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ABSTRACT 

 
 

PROBABILITY LEARNING IN NORMAL AND 
PARKINSON SUBJECTS: THE EFFECT OF REWARD, 

CONTEXT, AND UNCERTAINTY  
 
 
 

Erdeniz, Burak 
Master, Department of Cognitive Science 

Supervisor: Assist. Prof. Dr. Didem Gökçay 
Co-Supervisor: Assist. Prof. Dr. Bilge Say 

 
 
 

September 2007, 102 pages 
 
 
 
In this thesis, the learning of probabilistic relationships between stimulus-

action pairs is investigated under the probability learning paradigm. The effect 

of reward is investigated in the first three experiments. Additionally, the effect 

of context and uncertainty is investigated in the second and third experiments, 

respectively. The fourth experiment is the replication of the second experiment 

with a group of Parkinson patients where the effect of dopamine medication on 

probability learning is studied.  In Experiment 1, we replicate the classical 

probability learning task by comparing monetary and non-monetary reward 

feedback. Probability learning behavior is observed in both monetary and non-

monetary rewarding feedback conditions. However, no significant difference 

between the monetary and non-monetary feedback conditions is observed. In 

Experiment 2, a variation of the probability learning task which includes 

irrelevant contextual information is applied. Probability learning behavior is 



 
 

 

v 

observed, and a significant effect is found between monetary and non-

monetary feedback conditions. In Experiment 3; a probability learning task 

similar to that in Experiment 2 is applied, however, in this experiment, 

stimulus included relevant contextual information. As expected, due to the 

utilization of the relevant contextual information from the start of the 

experiment, no significant effect is found for probability learning behavior. 

The effect of uncertainty observed in this experiment is a replication of the 

reports in literature. Experiment 4 is identical to Experiment 2; except that the 

subject population is a group of dopamine medicated Parkinson patients and a 

group of age matched controls. This experiment is introduced to test the 

suggestions in the literature regarding the enhancement effect of dopamine 

medication in probability learning based on positive feedback conditions. In 

Experiment 4, probability learning behavior is observed in both groups, but the 

difference in learning performance between Parkinson patients and controls 

was not significant, probably due to the low number of subject recruited in the 

experiment. In addition to these investigations, learning mechanisms are also 

examined in Experiments 1 and 4.  Our results indicate that subjects initially 

search for patterns which lead to probability learning. At the end of 

Experiments 1 and 4, upon learning the winning frequencies, subjects change 

their behavior and demonstrate maximization behavior, which makes them 

prefer continuously one option over the other.  

 

Keywords: Probability Learning, Pattern searching, Parkinson Disease, 

Dopamine, Basal Ganglia 
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ÖZ 

 
 

ÖDÜLÜN, BAĞLAMIN VE BELİRSİZLİĞİN 
OLASILIKSAL ÖĞRENMEYE OLAN ETKİSİ 

 
 
 

Erdeniz, Burak 
Master, Bilişsel Bilimler Bölümü 

Tez Yoneticisi: Assist. Prof. Dr. Didem Gökçay  
Ortak Tez Yoneticisi: Assist. Prof. Dr. Bilge Say 

 
 
 

Eylül 2007, 102 sayfa 
 

 
 

Bu tezde uyaran-eylem kalıpları arasındaki olasılıksal ilişki olasılık öğrenme 

paradigması ile araştırılmıştır. İlk üç deneyde ödülün etkisine bakılmıştır. Ek 

olarak, sırasıyla bağlam ve belirsizlik ikinci ve üçünçü deneyler aracılığı ile 

araştırılmıştır. Dördüncü deney ikinci deneyin bir tekrarı olup bir grup 

dopamin tedavisi gören Parkinson hastasında olasılık öğrenme test edilmiştir. 

Birinci deneyde klasik olasılık öğrenme paradigması parasal ve parasal 

olmayan geribildirimler ile test edilmiştir. Olasılık öğrenme davranışı hem ödül 

olarak para ile geribildirim alan hem de ödül olarak para ile geri bildirim 

almayan durumlarda gözlemlenmiştir. Buna karşın, bu iki geri bildirim durumu 

arasında anlamlı bir fark bulunamamıştır. İkinci deneyde, olasılık öğrenme 

benzeri gereksiz bağlam bilgisi içeren bir görev uygulanmıştır. İkinci deneyde 

olasılık öğrenme davranışı gözlemlenmiştir ve ödül olarak para ile 

geribildirimin anlamlı bir etkisi gözlemlenmiştir. Üçüncü deneyde yine ikinci 

deney gibi olasılık öğrenme benzeri fakat bu sefer gerekli bağlam bilgisi içeren 
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bir görev uygulanmıştır. Beklendiği üzere faydalı bilginin kullanılması 

neticesinde ne olasılıksal öğrenme ve ne de ödül olarak para geri bildiriminin 

öğrenme üzerine bir etkisi gözlemlenmemiştir. Bu deneyde bulunan 

belirsizliğin etkisi literatürdeki raporların bir tekrarıdır. Dördüncü deney ikinci 

deneyin aynısıdır fakat deneyin uygulandığı örneklemler bir grup dopamin 

tedavisi gören Parkinson hastası ve aynı yaşlardaki kontrol grubudur. Bu deney 

literatürdeki dopamin tedavisinin pozitif geri bildirimi ile ilgili önermeleri test 

etmek için tasarlanmıştır. Dördüncü deneyde, olasılık öğrenme davranışı 

gözlemlenmiştir fakat Parkinsonlu hastalar ve kontrol grubu arasında olasalık 

öğrenmede anlamlı bir fark gözlemlenmemiştir bunun nedeni büyük olasılıkla 

katılımcı sayısının azlığından kaynaklanmaktadır. Bu çalışmalara ek olarak 

birinci ve dördüncü deneylerde öğrenme mekanizmaları sınanmıştır. 

Sonuçlarımız deneyin başlangıcında katılımcıların olasılıkları öğrenirken 

örüntü arama davranışı sergilediğini göstermesidir. Birinci ve dördüncü 

deneyde frekans öğrenmeye bağlı olarak katılımcılar maksimizasyon davranışı 

sergilemektedir ve sürekli aynı seçeneği seçmişlerdir.  

 

Anahtar Kelimeler: Olasılık Öğrenme, Örüntü Arama, Parkinson, Dopamin, 

Basal Ganglia 
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CHAPTER 1 

 
 

INTRODUCTION 
 
 

 
Decision-making is a high level cognitive function indispensable for 

humans. According to (some of) the fundamental decision making theories 

(e.g., Prospect Theory) in economics and psychology, humans use limited 

cognitive resources such as attention (capacity) or memory while they are 

making decisions under uncertainty (Simon, 1957; Kahneman, Slovic & 

Tversky, 1982; Glovic, Griffin & Kahneman, 2002; Gigerenzer & Selten, 

2002). Similarly, bounded rationality, a general assumption in human 

economic behavior, indicates that the human decisions are “limited” or 

“bounded” by the agent’s cognitive capacities (Simon, 1957). In order to 

understand the cognitive limitation of the human decision making capacity, 

the empirical research on bounded rationality in psychology has been 

studied under two paradigms: decision-making and learning.  

 

 In the decision-making paradigm, the limitations of people’s judgments for 

single trial choices (Simon, 1957), as well as the systematic biases 

(confronted) in uncertain decision making situations (Kahneman et al., 

1982) are studied.  

 

In the learning paradigm, decision making is considered to be a learned 

behavior (Atkinson, 1964). Therefore, researchers concentrate on the limits 

of the human learning ability (Rizello, 1999). Psychologists working on this 

paradigm study the cognitive constraints on learning of probabilities (e.g., 
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Estes, 1961) and they attempt to find a mathematical framework for the 

ability of learning probabilities (Atkinson, 1964; Bush & Mosteller; 1955; 

Laming, 1973). 

 

The primary focus of this thesis is on the second paradigm. By investigating 

the factors involved in probability learning, we specifically aim to 

understand “how people learn the probabilities to make decisions under 

uncertainty?”. In this paradigm, man is studied cognitively as an “intuitive 

statistician” (Peterson & Beach, 1967, p.42). To emphasize the importance 

of probability learning, Estes (1972, p.81) states that “human behavior in 

many situations involving uncertainty and risk depends on the acquisition of 

information concerning event probabilities”. Regardless of the complexity 

of people’s choices, probability learning is essential. In order to highlight 

this, Estes (1972, p.81) made a remarkable explanation: 

 
[A man] … must continually form estimates of 
probabilities of events as basis for action. He must assess 
the probabilities of various responses of adversaries to his 
own actions in economic competition, games, politics or 
war. He must estimate probabilities of increases and 
decreases in price as a basis for purchases and investments, 
of the efficacy of remedies for illness, of changes in 
weather as a basis of for selecting wardrobe, of the 
reactions of countless other people to his own behavior 
during nearly every waking moment.  

 

Therefore, the central issue in probability learning and decision making 

under uncertainty more specifically focuses on how people make predictions 

about the probabilities of events considering their short term and long term 

benefits in the period of learning. For instance, in a probability learning 

experiment, participants have to decide between two options, but one of 

them has a higher probability of winning. In the long run, after a trial and 

error period, people learn to predict on the winning option to be successful.  
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Although some of the distinct issues like probability learning mechanisms 

and probability learning strategies will be discussed further in detail in the 

literature review section, they will be briefly mentioned below. There are at 

least two learning mechanisms adopted to meliorate our decisions in a 

probability learning task; a pattern searching mechanism and a frequency 

learning mechanism (Figure 1).  

 

 

Figure 1 Two learning mechanisms are responsible for probability learning. 

 

The first mechanism that is involved in probability learning experiments is 

the pattern searching. When we consider the amount of information and 

technology in general that our species was confronted with, it increased 

exponentially in the last few million years (Kurzweil, 2005; Hawking, 

2001). There should be an advantage of a system that is involved in learning 

of probabilities which temporally stores information about the current 

options. A temporary storage system may help people make their judgments 

by utilizing their recent memory. The advantage of such a system is that 

people do not have to search their entire autobiographical memory just to 

make a simple decision such as deciding A or B. Another advantage of this 

temporary storage is that it can also cache some sequential information 

about the outcomes of choices and check these sequences to find whether 

there is a regular pattern among outcomes or not. This leads to the ability to 

search for patterns in sequences. It is plausible for a person to use this 

pattern searching mechanism in a probability learning task, to distinguish 

the randomness of the sequences of outcomes. According to Clark (2004), 

we have an innate mechanism to search for patterns, which helps us 

overcome the uncertainty of a situation.  
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“Our survival is likely linked to our ability to effectively 
identify causal associations, or patterns in our lives, and it 
is extremely probable for our brain to have developed a 
specialized function to address such a task.” (Clark, 2004, 
p.17).  

 
In other words, from an evolutionary perspective, this pattern searching 

mechanism might have helped us as a guide while we are making decisions.  

 

Another mechanism which is involved in probability learning is the 

frequency learning mechanism. In the last decade, in evolutionary 

psychology, it was postulated that our cognitive capacity is not capable of 

representing single event probabilities, but we can easily deal with event 

frequencies which occur by sampling over a period of time. According to 

Cosmides and Tobby (1996), our hominid ancestors had the ability to share 

the information of specific events in terms of relative frequencies, which 

necessitated the existence of a frequency learning mechanism. For example, 

in a hunting situation, hominids might remember which places have more 

food resources compared to places that have less or no food resources.   

Hence, Cosmides and Tobby (1996) suggested that our hominid ancestors 

could not experience single event probabilities, but they must have 

experienced relative frequencies like which places have more food resources 

and other places have less. In addition Gigerenzer and Hoffrage (1995, p.26) 

added that “An evolutionary point of view suggests that the mind is tuned to 

frequency formats, which is the information format humans encountered 

long before the advent of probability theory”.  

 

Another important issue in this thesis is the distinction between probability 

learning strategies. For example, in a probability learning experiment, if an 

option wins 75% of the time and a person choose that option 75% in overall, 
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this is called the “frequency matching strategy”1. On the other hand, if a 

person chooses the winning option more than 75% of the time, this type of 

strategy is called “overmatching”. A special case of overmatching occurs 

when the participants choose the winning option 100% of the time. This 

special case is called   “maximizing” (Figure 2).  

 

 
Figure 2 Two learning strategies that are used in probability learning. 

 
Researchers in this field define the strategy in reference to the asymptotic 

level of the learning curve. In probability learning tasks, one of the options 

usually wins more than the other. For example, when an option wins 75% of 

the time and a person follows the frequency matching strategy, this person 

reaches the asymptotic level of learning curve exactly at the percentage of 

the winning option. If he uses overmatching strategy, the asymptote of the 

learning curve will appear above the level of the winning probability (steady 

state phase occurs above the probability of the winning option, see Figure 

3). If the participant uses maximizing strategy, the asymptote is reached 

well above the level of the winning option. 

 

Figure 3 Learning Strategies 

                                                 
1 In the literature probability matching is also used to refer to the frequency matching 
strategy. We used frequency matching in this thesis to minimize the confusion. 
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There are several important factors which might directly or indirectly 

influence frequency matching or maximizing/overmatching strategy in a 

probability learning task. One of the important factors that influence 

probability learning strategy is the feedback saliency. There is 

overwhelming consensus among researchers that rewarding feedbacks such 

as financial incentives affect the performance positively in a probability 

learning task (Vulkan, 2000; Hertwig & Ortman, 2001). Using financial 

incentives in a probability learning environment may have several purposes. 

First, the general belief among psychologists is that salient payoffs 

(monetary rewards or punishments) reduce performance variability (Davis 

& Holt, 1993). Second, it is believed that using monetary feedback provides 

a framework which is built on the assumption of maximization. According 

to this framework everybody wants to earn more profit, so the participants 

may be motivated to use the maximization strategy.  

 

Furthermore, current research in the field of cognitive neuroscience and 

cognitive psychology has indicated that positive feedback (Elliot et al., 

1997; Elliot et al., 2000) and money (Thut et al., 1997) induce increasing 

blood flow in the brain's reward centers which is facilitated mainly by the 

dopamine system. Dopamine is a type of neurotransmitter naturally 

produced by the human body, which is also shown to be active during 

reward mediated probability learning. On the other hand, among many other 

diseases such as schizophrenia or attention deficit hyperactivity disorder 

(ADHD), impairment of the dopamine system affects especially patients 

with Parkinson Disease (PD), imposing cognitive dysfunction in perceptual 

category learning (Ashby & Maddox, 2005; Filoteo et al., 2005; Filoteo et 

al., 2007) as well as probabilistic learning (Knowlton et. al 1996, Frank et. 

al, 2005). 

 

In this study, motivated by the complexity of the factors influencing 

probability learning, we investigated the contribution of several factors such 

as the effect of reward, uncertainty and context. Three experiments are 
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designed to differentiate the effects of reward, uncertainty and context. In 

the classical probability learning task (CT, Experiment 1), subjects are 

instructed to predict the winning class out of two options presented as one 

red and one blue box. In this task, blue wins 80% of the time. In the 

irrelevant information task (IIT, Experiment 2); subjects see 10 boxes, and 

in each trial, the proportion of blue and red boxes changes randomly. In this 

task, again the blue wins 80% of the time regardless of the number of 

blue/red boxes. In the relevant information task (RIT, Experiment 3); the 

stimuli are the same as in Experiment 2 (IIT) but in each trial, the 

probability of winning is proportional to the number of boxes in that trial. If 

the number of blue boxes is more than the number of red boxes, then the 

likelihood for blue to win is more. The reason why these three experiments 

are chosen is as follows: the common point between Experiment 1 and 

Experiment 2 is the probability of the winning option. Blue wins 80% of the 

time in these two Experiments. However, the information presented on the 

screen, context, differs. Thereby, the effects of context in probability 

learning can be investigated. On the other hand, the common point between 

Experiment 2 and Experiment 3 is the information presented on the screen 

(context). However, Experiment 2 and Experiment 3 differ with respect to 

the uncertainty of winning.  In Experiment 2, the uncertainty associated with 

the winning option is irrelevant with the context, but in Experiment 3 

uncertainty can be directly identified and can be derived from the contextual 

information. This helps us investigate the effects of uncertainty. The other 

variable, reward, is studied by conducting all experiments twice, with 

separate subject pools, using either monetary rewarding feedback or non-

monetary feedback (win/no-win information as feedback). In addition, in a 

small set of subjects with PD and an age-matched control group, we 

investigated dopamine based behavioral differences exhibited during 

probability learning in Experiment 4, under the same design of the 

Experiment 2 (IIT). 
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We hypothesized that when the participants are paid contingently on their 

correct responses, they will try to avoid making judgment errors. Thereby, 

monetary rewarding feedback will affect the participant’s behavior 

positively and towards using maximizing strategy during learning. Our 

second hypothesis is that, when the probability learning experiment is 

presented within a context, participants will try to use this contextual cue 

information to guide their choice. Hence, where the context is irrelevant to 

the task, learning will be harder in comparison to the case when the context 

is relevant. Third, when the relevant contextual cue information is directly 

associated with the uncertainty of winning, choice reaction times will reflect 

this. Finally, when subjects are PD patients who receive dopamine 

replacement therapy, we hypothesize that this will influence the cognitive 

functionality and will result in differences in the probability learning 

performance compared to controls. 

 

The organization of this thesis is as follows: Chapter 2 will give an 

overview of the probability learning literature. Concepts related to the 

probability learning framework will be summarized and studies on the 

probability learning mechanisms will be described. In Chapter 3, the 

rationale behind studying the effect of reward, context and uncertainty will 

be explained and behavioral experiments will be outlined. In Chapter 4, the 

results of the findings will be discussed in the light of previous research and 

finally, Chapter 5 draws a brief conclusion of the study. 
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CHAPTER 2 
 
 

BACKGROUND AND LITERATURE REVIEW ON 
PROBABILITY LEARNING 

 
 
 
Probability learning has been studied extensively to understand learning in 

humans within a probabilistic context as reviewed in Vulkan (2000). It has 

been suggested that the probability learning paradigm was first developed 

for testing the stimulus sampling theory (Bower, 1994; Poon, 1997). 

According to Estes and Suppes (1974, p.163) stimulus sampling theory 

stands for the situations 

 
…that the subject in a learning experiment samples a 
population of stimuli, or ‘cues’ on each trial, that his 
probability of making a given response depends on the 
proportion of sampled stimuli that are ‘conditioned,’ or 
’connected,’ to the response, and that the connections 
between stimuli and response change as a result of 
reinforcement and non-reinforcement during learning.  
 

Initially, probability-learning tasks were established to understand the 

principles underlying repetitive decision making situations (Humphreys, 

1939). Later on, numerous variations of the probability-learning tasks have 

been established to test the effect of the payoff value of the feedback 

(Friedman et. al., 1964) the ratio of the most frequent event (Beach & 

Shoenberger, 1965), and the  effect of the number of trials (Shanks et al., 

2002). 
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In a classic probability-learning task, subjects practice a number of trials 

that contain a binary choice task (Siegel, 1964). The total number of trials 

changes from hundreds to thousands. Participants in a classical probability 

learning task usually see two lights and they are asked to predict which one 

of these two lights would be illuminated on each of a series of trials (Siegel, 

1964). Experimenters usually instruct the participants to try to give as many 

correct answers as they can. For example, in an experimental design, light 1 

has 0.8 probability to illuminate and light 2 has 0.2 probability to illuminate. 

Therefore, in a task that consists of 200 trials, light 1 illuminates 160 times 

and light 2 for 40 times on average. The specific task for the participant, 

then, is to predict which event will occur next. Depending on the subjects’ 

choice, in each trial, the selected item is followed by immediate feedback. 

There are several different types of feedback in probability-learning tasks 

such as monetary reward or a written feedback.  

 

In probability learning tasks, types of the stimuli (e.g., color, shape) or 

positions of the stimuli (e.g., right, left, up or down) may vary. This change 

occurs probabilistically and is used to facilitate the prediction of the 

outcome (e.g., correct/false or win/lose). The response of the participant 

indicates the his/her belief regarding whether a stimulus is winning or 

losing. In addition, each stimulus comes randomly and in each trial, the 

correctness of the feedback is independent from the previous feedback. 

Therefore, in the prediction or decision making stage, subjects have no 

deterministic information regarding which event will occur in the next trial. 

The argument is that people equally divide their predictions between options 

and update their predictions with respect to the outcome of their choices. 

For this reason, people can trust only the feedback information which comes 

from the preceding trials (Poon, 1997). According to Estes (1954), and 

Bower (1994), the feedback information from the previous trials serves as a 

base rate, which will be used to make a prediction in the forthcoming trials. 

Base rate refers to the unconditioned probabilities which come from the 

feedback of the preceding trials. 
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To sum up, probability-learning tasks examine subjects’ predictions 

throughout the iterating trials in a discrete trial procedure. It has been 

supposed that the adaptive fashion of response behavior in such iterated 

tasks with feedback directs the participants to learn the correct probability of 

each stimulus set (Estes, 1954). 

 

2.1. Underlying Strategies 

Probability learning tasks serve as a test base for how the choice behavior 

changes with increasing experience. Second, the asymptotic level of the 

learning curve gives information about the strategy of the subjects. In the 

literature of probability learning, there are at least two suggestions for the 

learning strategy that might be used by decision makers. The first 

suggestion is the frequency matching strategy, which means that the 

proportion of the subjects’ correct choices matches the frequency of the 

winning option. According to the example in the previous section, light 1 

has a probability of 0.8 to be the correct answer and light 2 has a 0.2 

probability to be the correct answer. If the participant’s ratio of choosing 

light 1 matches light 1’s actual frequency, this means that this participant 

uses the frequency matching strategy. The second suggestion is the 

maximization strategy, in which subjects do not change their predictions in 

every trial, but stick to the winning option and constantly predict on the 

same light. 

 

The strategies mentioned above are directly measurable from behavioral 

responses. The tendency to use the frequency matching strategy fascinated 

investigators because it is a non-optimal strategy which does not allow 

people to achieve the highest possible number of correct answers (Siegel, 

1964). On the other hand, maximization strategy which asserts choosing the 

same option in all trials, allows people to achieve more correct responses 

than the frequency matching strategy unless p is not equal to 0.5. For 

example, suppose P1 and P2 be the proportions of predictions of the subject 
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(P1 for light1 and P2 for light2). Let C1 = .8 and C2 = .2 be the actual 

proportions of the correct responses for light 1 and light 2, respectively. 

Then, according to Siegel (1964), the expected proportions of the correct 

responses (E(x)) would be calculated with the following formula: 

 

            E(x) = P1 (C1) + P2 (C2)                               Equation (1) 

 

Because subjects are instructed to do their best and try to predict as much 

correctly as they can, they try to allocate their predictions in an efficient 

way. Therefore, over 200 trials the subjects who use the maximization 

strategy should devote their predictions as P1 = 1.0 and P2 = 0 The 

expected correct response proportion is as follows: 

 

E(x) = 1.0 (.8) + 0 (.2) = .8                           Equation (2) 

 

However, in the frequency matching strategy, subjects allocate their 

predictions according to the proportion of the exact frequency of C1 and C2. 

In this case, the expected correct responses are: 

 

E(x) = .8 (.8) + .2 (.2) = .68                         Equation (3) 

 

As can be seen from here Equation (3), the maximization strategy is 

superior to the frequency matching strategy. Interestingly, most people 

prefer the frequency matching strategy (West & Stanovich, 2003). 

According to Siegel (1964) one reason for why people use frequency 

matching strategy might be that, choosing the same option in every trial is 

boring for participants. But at least one exception is reported in the literature 

for people’s use of the maximization strategy rather than frequency 

matching. Shanks, Tunney & McCharty (2002) reported that 6 out of 12 

participants used the maximization strategy in the last 150 trials in a total of 

1800 trials.  Probably, after extensive experience, subjects can derive some 

statistical information from the feedback information to build up a rule 
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similar to the use of the maximization strategy, which makes them turn to 

choose the most profitable option in every trial. Animals are also known to 

exhibit probability learning behavior (Brunswik, 1939; Wilson & Rollin, 

1959; Uhl, 1963; Karsh & Suppes, 1964; Kirk & Bitterman, 1965). 

According to Hinson and Staddon (1983) and Staddon (2003) most species 

such as rhesus monkeys and rats use maximizing strategy while learning 

probabilities.  

 

In the context of probability learning, the term “strategy” which is taken 

from game theory, asserts that people use conscious tactics to win more in a 

simple game (Siegel, 1964). However, it seems that the amount of reaction 

time allowed by the experimenter for choosing an option is too short (2 to 5 

seconds) for using a conscious strategy (Clark, 2004). Therefore, it has been 

suggested that probability learning might be a low-level, implicit thought 

process which embodies a multitude of mechanisms (Reber, 1989; 

Knowlton et al., 1996; Clark, 2004).  

 

Pattern Searching Mechanism 

In the previous section it has been told that there are at least two major 

learning strategies which are frequency matching and maximizing. These 

learning strategies are defined by the observed learning behavior. However, 

it is impossible to see the underlying mechanisms behind these strategies by 

just looking the learning curves or asymptotic levels as previously showed 

by the Figure 3.  

 

In the literature it has been suggested that people simply look for patterns in 

sequences (Jarvik, 1951; Peterson & Ulehla, 1965; Yellott; 1969; Wolford 

et al., 2004) while learning probabilities. In the context of a binary choice 

probability learning task, pattern searching refers to “the deduction of future 

outcomes based on matching patterns recalled from past experiences” (Clark 

2004, p.1). For example, in a binary choice probability learning task 

(Yellott, 1969), several blocks with 50 trials are used such that the actual 
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frequency (i.e. the probability of an option being correct) changed across 

blocks. In the last block, the task changed such that the sequences of the 

correct lights are matched to the participants’ choice to make the participant 

predict the outcome correctly in all of the 50 trials of this last block. In this 

study Yellott (1969) demonstrated that people continue to do frequency 

matching, even when they predict fully correctly in the last fifty trials. Post 

hoc analysis of participants’ verbal reports showed that they had been 

looking for a sequence or a pattern and at the final block; they thought that 

they had found it.  

 

Additional evidence for the ability to search for patterns in a binary choice 

task comes from the Heuristics and Biases research program of Kahneman 

et al. (1982). This program revealed that, people make systematic errors 

while judging probabilities. Kahneman et al. (1972b) demonstrated a 

common reasoning bias with their representativeness heuristic which was 

called gambler’s fallacy. They showed that participants’ predictions were 

affected by the previous outcomes when people had to guess heads or tails 

for a sequence of coin tosses. For example, most people regarded the 

sequence H-T-H-T-T-H to be more likely than the sequence H-H-H-T-T-T. 

For the participants, the second sequence of head and tails does not appear 

to be random. Thus, most of the people change their predictions after the 

same side (e.g., head) appears more than twice. Therefore, the gambler’s 

fallacy bias generally refers to a false belief which asserts that a coin has a 

memory of previous experiences and if one side of the coin comes too often, 

then the probability of the other sides coming up will increase. For example, 

people believe that, after two times heads show up, the probability of tails in 

the next trial is higher than that of heads. Thus, most people think that 

fairness of a coin can be represented by the randomness of the sequences 

(Kahneman et al., 1982).  At this point, researchers speculate that the ability 

to search for patterns causes the gambler’s fallacy bias (Wards, 2002; 

Wolford et al., 2004). In the light of this example and many others, it can be 
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said that people are searching for sequence of short patterns in repeated 

binary choice tasks.  

 

Furthermore, Hardoon and his colleagues (2001) showed that people are 

looking for random patterns even when they are filling lottery tickets. They 

did an experiment with both pathological gamblers (PG) and non-

pathological gamblers. The task is ranking 12 lottery tickets according to 

their possibility of winning, each containing 6 numbers chosen from 49 

numbers. The lottery tickets were divided into several categories which 

were named as pattern (e.g., 5, 10, 15, 20, 25, 30), long sequence (e.g., 1, 2, 

3, 4, 5, 6), non-equilibrated (e.g., 3, 5, 9, 12, 15, 17), and random (e.g., 1, 

13, 19, 34, 40, 47).  Most of the people from both PG and control group 

rank the random sequence category higher than the pattern, long sequence 

and non-equilibrated category because most of the participants believe that 

the degree of winning in the random sequence category was higher than the 

others. This research clearly showed that people have a false belief -very 

similar to the gambler’s fallacy on the definition of randomness. Hence 

people are using this false belief in their choices.  

 

Another way to examine the pattern searching mechanism is to measure the 

effects of previous trials on succeeding trials which is done by calculating 

the sequential dependencies between the outcomes of trials. Calculating the 

conditional probabilities between trials indicate some effect of sequential 

dependencies, thereby indirectly showing some evidence for the pattern 

searching mechanism. Friedman et al. (1964) provide evidence for the 

gambler’s fallacy bias in a binary choice probability learning experiment. 

They analyzed the predictions of subjects by comparing their predictions as 

adjacent couples in a series of trials (first prediction followed by the next 

prediction such as Light1-Light1, Light1-Light2, Light2-Light1, and Light2-

Light2). Their results showed that the conditional probability of choosing 

different options (Light1-Light2, Light2-Light1) is higher than the 

conditional probability of choosing the same options (Light2-Light2, 
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Light1-Light1). In agreement with Friedman and colleagues, Lovett (1998) 

states that the frequency matching strategy is a natural by-product of choice 

processes which are sensitive to individual past experiences. Similarly, 

some early studies (Jarvik, 1951; Peterson & Ulehla, 1965) suggested that 

people look for sequential dependencies or patterns in sequences of events 

on binary choice probability learning tasks.   

 

According to Wolford et al. (2004) the reason why people have such biases 

like the gambler’s fallacy is not because people lack statistical knowledge or 

they fail to understand the meaning of independent trials, but it is because 

most of the time people automatically search for patterns in random 

sequences and at the same time they unconsciously learn the relative 

frequencies of events. In a binary choice probability learning task, Wolford 

et. al (2004)  showed that, participants’ degree of deviation from the 

frequency matching strategy decreases when a left hemisphere working 

memory load (such as remembering three digits shown in the previous 

trials) is introduced. In their experiment, participants in both conditions 

(working memory load and non-working memory load) learn the 

frequencies, but participants in the working memory load condition exhibit 

maximization behavior more than that of the participants in the non-working 

memory load condition. When subjects are burdened with a working 

memory task, they abandon frequency matching and switch to the easier 

maximizing strategy.  This experiment showed that working memory is a 

necessary component of the pattern searching mechanism which directly 

affects the learning strategy by doing pattern searching. 

 

Briefly, in a probability learning task where the stimuli are randomly 

ordered, searching for patterns in sequences of events influence people to 

make mistakes and such mistakes seem to bind the learning curve below the 

probability of the winning option. 

 

Frequency Learning Mechanism 
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The frequency learning mechanism was first introduced by Hashner in the 

framework of memory and attention (for a review see Zacks and Hashner, 

2002). The origins of that framework focus on the evidence that people of 

all ages unintentionally encode information about the relative frequencies of 

events. In this respect, they learn the relative frequency of words, pictures, 

events, etc. Thus, people are very accurate at responding to relative 

frequencies. According to Hasher and Zacks (1984, 2002) learning or 

encoding the relative frequency of an event is automatic (without intention) 

and is not affected by age, stress or arousal. Hasher and Zacks (1984, 2002) 

proposed that frequency learning mechanism is active during the time of 

decision making. Hence, frequency learning mechanism guides our choices 

towards the more frequent events. The proposal of Hasher and colleagues on 

the frequency learning mechanism is also supported by a vast amount of 

empirical research such as Zajonc, (1968) and Estes (1976a, 1976b). For 

example, Zajonc (1968) showed that people become sensitive for more 

frequent items (Chinese symbols) even those symbols have no meaning. 

 

As a consequence of the aforementioned studies, converging evidence 

accumulates that the internal mechanism to search for patterns result in the 

frequency matching strategy observed in behavioral responses. On the other 

hand, when we consider the aforementioned studies, it is reasonable to think 

that the mechanism for searching for patterns of sequences and the 

mechanism for learning of relative frequencies might also be active 

concurrently, because during the search for patterns, frequencies are learned 

implicitly. Still, the relationship between these two mechanisms is not very 

clear and needs to be explored further.  

 

2.2. The Effect of Reward in Probability Learning 

Rewards have been used to understand probability learning since Thorndike 

(1911). Stimuli which induce positive conditioning are called rewards. 

Reward is one of the most powerful motivator that influences animal 

behavior. For example, if a monkey systematically repeats its behavior after 
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an object is offered, the object is called reward and the behavior is called 

positive conditioning. Different species can be conditioned to different types 

of rewards like fruit juice for monkeys and money for humans. According to 

Thorndike’s “law of effect”, an animal’s response to a stimulus that has a 

pleasant outcome is more likely to occur again. Conversely, a response to a 

stimulus with an unpleasant outcome is less likely to occur again when 

animals are faced with the same situation.  In other words, the probability of 

a correct response with positive feedback tends to increase in time and the 

probability of a wrong answer with negative feedback tends to decrease in 

time (Thorndike, 1911). More specifically, there is a systematic relation 

between an animal’s allocation of responses and the ratio of rewards. For 

example, if an option gives reward twice as more than the other option, then 

the animal chooses that option twice as more (Herrnstein, 1970). Thereby, 

rewards make it possible for an animal to learn the frequency of different 

options.  

 

Reward processing in humans is less well understood because rewards in 

humans have lots of different forms.  For instance, in humans, rewards can 

take more abstract forms like success, love or money. In general, rewards 

that are derived by our bodily needs (e.g. water or food) are called primary 

reinforcer and rewards that take more abstract forms are called secondary 

reinforcer. There is evidence showing that when feedback given for a choice 

is a monetary reward rather than a simple verbal feedback, people tend to 

choose the probable option more. For example, Myers, Fort, Katz, & 

Suydam (1963) did a binary choice probability learning experiment and 

compared the learning behavior for three different probability values P= 0.6, 

0.7 and 0.8.  They demonstrated that when the reward value increased, this 

made participants choose the highly probable option with higher frequency. 

This behavior (overmatching) is illustrated in Table 1. In addition, when 

three different reward conditions where the reward/punishment values 

changed between ±0 cents, ±1 cent, and ±10 cent were tested, overmatching 
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behavior became more prominent. That is to say, the usage of overmatching 

strategy increases when the reward value gets increases. 

 

Table 1 The proportions of correct choices in the last 100 trials out of 400 
trials. Adapted from Myers et al. 1963. 
 

 Probabilities 

Reward P = 0.6 P = 0.7 P = 0.8 

0 cents 0.624 0.753 0.869 

1 cent 0.653 0.871 0.925 

10 cents 0.714 0.866 0.951 

 

Interestingly, under some circumstances, increasing the reward value alone 

may cause overmatching behavior (Lovett, 1998), making it difficult to 

justify how the two general mechanisms pattern searching and frequency 

learning, interact with maximization and frequency matching strategy. Some 

people might not search for patterns, because they might be using only the 

frequency learning mechanism, i.e., predicting only via a priori choice 

probabilities (e.g., frequency of options). Rewards may act as a switch 

between these two alternative paths. However, these comments are highly 

speculative and need to be tested extensively through future research. 

 
2.3. The Effect of Uncertainty in Probability Learning 

In a binary choice probability learning study (Friedman et al., 1964), it was 

demonstrated that people are sensitive to the level of uncertainty of the 

proportion of options. The experimental condition was to respond over 

1,000 choice trials in 3 days. The success probabilities of choosing an 

option changed as 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, and 0.9 across blocks that 

contain 48 trials. The blocks are randomly ordered. In Figure 4, the average 

learning curves across different uncertainty levels are shown. 
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Figure 4 Graphs comparing the results of Friedman et. al (1964) study 
(observed) with the computational model (ACT-R) of Anderson et. al. 
(1998). Adapted from Lovett (1998). 
 

In each graph in Figure 4, the horizontal axis shows the block number and 

the vertical axis shows the participants’ proportions of choices for one of the 

two lights. It indicates that over time, participants’ responses tend to match 

the actual proportion of lights. The degree of learning changes for different 

probability ratios. The solid lines in each graph represent the asymptotic 

levels for the learning curves. Thereby, it represents whether the participants 

learn the underlying frequency or not. In each condition, learning occurs and 

the proportion of choosing the highly probable option increases 

systematically. This study showed that people are sensitive to the level of 

uncertainty of each option if they have been instructed to give as many 

correct responses as they can.  

 

Some cognitive psychologists apply information theory to the probability 

learning tasks to investigate the relation between choice reaction times and 

uncertainty. Information theory in psychology has been used to understand 
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the human information processing capacity in general (Duncan, 2003). 

Researchers in this field mostly used the analogy of an ideal communication 

system to human subject (Laming, 1968; 1973). This analogy describes the 

human sensory system by using the concept of transmitter, channel and 

receiver. According to Laming (1968; 1973) the speed of the transmission 

of a message is limited by the capacity of the channel, so in practice, the 

reaction time is limited to the entropy (uncertainty) of the signal (e.g., 

message, or stimuli). For Laming (1968; 1973), analyzing the choice 

reaction time in terms of information theory is only meaningful if the 

experimenter instructs the subject to be as accurate as possible by not 

making mistakes and secondly when the subject  is instructed to go as fast 

as possible. Previous studies showed that the probability of winning an 

option directly affects the choice reaction times (Hick, 1952; Hyman, 1953; 

Wollen, 1953; Quastler, 1955; Laming; 1973; Norwick, 1993). More 

specifically, when the probability of winning an option in a binary choice 

probability learning task is 0.5 the reaction time takes longer. High 

uncertainty is encoded as high entropy, which is attained when probability 

of winning option is 0.5. Therefore, it is a useful approach to analyze the 

choice reaction time data, if there is an uncertainty condition in an 

experimental situation.   

 

2.4. The Effect of Context in Probability Learning  

In the literature of judgment and decision making, “context” has various 

forms but in general it refers to the circumstances under within an event 

occurs. In this thesis, “context” refers to a change in stimulus representation. 

This change occurs only in the information content of a stimulus. For 

example, stimulus may contain two lights or more than two lights. Previous 

studies showed that the context of the stimulus directly affects the outcome 

of the choices (Sloman et al., 2003). In addition, it is believed that the 

stimulus context defines the premises of the reasoning problem (Held, 

Knauff, Vosgerau, 2006). For example, the ability to solve some 

probabilistic reasoning problems using representations in frequency format 
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does not always mean that humans have been adapted just for frequency 

representations. Sloman et al. (2003) showed that humans perfectly 

overcome the cognitive bias introduced by a priori choice probabilities 

when representations of probabilities are presented in the venn diagram 

format. In agreement with this, according to mental model theory, it is 

reasonable to think that humans’ can draw inferences from different mental 

representations (Held et al., 2006). According to mental model theory, 

 
If the organism carries out a “small scale model” of external 
reality and its own possible actions within its head, it is able 
to try out various alternatives, conclude which is the best of 
them, react to future situations before they arise, utilizes the 
knowledge of past events in dealing with the present and 
future, and in every way to react in a much fuller, safer, and 
more competent manner to the emergencies which face it 
(Craik,  1943 cited in  Held, et al., 2006, p.11).  

 
As a result, it is a challenging question how the probabilistic information is 

represented in the mind/brain and how the brain evolved by natural selection 

for such probabilistic representations (Pinker, 1997). Previous studies 

suggest that probabilistic reasoning is not limited only to frequency 

representation of probabilities. Indeed, performing better at some 

probabilistic reasoning problems with the representations in the frequency 

format do not mean that people cannot make probabilistic reasoning using 

probability representations in other formats. Sloman et al. (2003) showed 

that by changing the stimulus context, people can derive probabilistic 

information and use it while they were reasoning on choices. More 

specifically, he demonstrated that adding a relevant stimulus dimension 

increases the accuracy of a decision making situation. Under the light of this 

evidence we investigate the effect of stimulus context in the second and 

third experiment. We suggest that in a probability learning task, the 

irrelevant and relevant stimulus dimension might have such effects on the 

representations of probabilities. For example, Edgell and Castellan (1996) 

showed that, using irrelevant cue information in a probabilistic learning task 

affects the learning performance negatively.     
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2.5. Neural Correlates of Probability Learning  

This section reviews the plausible neural mechanisms underlying the 

probability learning ability, because by understanding the neural 

underpinnings of probability learning paradigm, we might develop a better 

understanding of the cognitive dysfunction of Parkinson patients who have 

been tested as a part of this thesis in Experiment 4. This section more 

specifically reviews the basal ganglia dopamine mediated reward system as 

a relative frequency learning mechanism and the prefrontal cortex working 

memory system as a pattern searching mechanism. Different methodological 

findings like lesion studies and imaging studies are discussed in detail. 

 

Underlying strategies 

As discussed above, there are at least two mechanisms responsible for 

probability learning ability (a) the pattern searching mechanism and (b) the 

frequency learning mechanism. Empirical evidence support the idea that, the 

pattern searching mechanism has its neural correlates in the prefrontal 

cortex, specifically in dorsolateral prefrontal cortex (DLPFC) which is 

associated with the working memory mechanism, and the frequency 

learning mechanism has its neural correlates in the basal ganglia, 

specifically in the striatum which is associated with procedural memory. 

 

The idea that there are two separate mechanisms responsible in probability 

learning ability is inspired from double dissociation studies (Knowlton, 

Squire & Gluck, 1994). Moreover, Wolford et al. (2000) showed that in a 

probability learning task, split brain patients who were trained with their 

right hemisphere showed maximizing behavior. However, when the patients 

are trained with their left hemisphere, they showed frequency matching 

behavior. Both patients learn the probabilities, but their strategy changes 

when they perform the task with different hemispheres.  On the other hand, 

people with dorsalateral prefrontal cortex damage do learn probabilities, but 

again their strategies differ (most of the time they do frequency matching, 

Wolford et. al, 2000). It is plausible that basal ganglia is effective on 
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learning of probabilities (frequencies) and it is sensitive to rewarding stimuli 

but dorsalateral prefrontal cortex (possibly left dorsalateral prefrontal 

cortex) seems to be only effective in pattern searching. When the 

neuroanatomical connections between basal ganglia and dorsolateral 

prefrontal cortex are being considered (Alexander, DeLong & Strick; 1986; 

Middleton & Strick; 2002), dorsolateral prefrontal cortex has connections 

with dorsal striatum area of the basal ganglia which consist of caudate 

nucleus and putamen (Figure 5). The dorsal-striatal pathway is involved 

generally in cognitive aspects of learning (Seger, 2006). Therefore 

suggesting that these regions might somehow be involved in probability 

learning is very reasonable.  

 

Figure 5 DLPFC and Basal Ganglia Anatomy. Created by Brain Voyager 
tutor (www.brainvoyager.com) 

 

Neural Correlates of the Pattern Searching Mechanism  

Berthoz (2005, p.1) made a useful analogy for the function of prefrontal 

cortex that is “prefrontal cortex is the center of executive functions like the 

big companies has their management offices at the top of the skyscrapers”. 

http://www.brainvoyager.com/
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It has also been acknowledged by a multitude of studies that prefrontal 

cortex is the place where the working memory is (Jonides et al., 1993; 

Petrides et al., 1993; McCarthy et al., 1994; D'Esposito et al., 1995a; Smith 

et al., 1995; Cohen et al., 1997; Courtney et al., 1997; Courtney et al., 1998; 

Courtney, et al., 1998; Miller & Cohen, 2001; Baddeley, 2003; Owen et. al, 

2005). According to Baddeley (2003) working memory, which has evolved 

from the concept of unitary short term memory, is a term that refers to a 

brain system which provides temporary storage for different types of 

information such as numbers, words, and spatial places. Another definition 

supports the view that working memory is also involved in real time 

(online) monitoring processes for temporal ordering (Shimamura, 1995, 

Fuster, 1990; Baddeley, 1992; Goldman-Rakic, 1992). In the context of the 

pattern searching mechanism; working memory operates by correlating 

subject’s judged order of items with the actual presentation order (Milner, 

1971, Milner et al., 1991). In addition, findings suggest that patients with 

prefrontal cortex damage suffer from a lack of learning temporal order 

(Shimamura, 1995) and dorsalateral prefrontal cortex has been found to be 

involved in remembering the temporal order or sequence between 

consecutive trials (Owen et al., 2005). Also, numerous imaging studies 

reveal that in many of the working memory tasks, the human prefrontal 

cortex gets activated (for a review see, Miller & Cohen, 2001; Courtney, 

Petit, Haxby & Ungerleider, 1998). 

 

When we review the literature on animal probability learning, we realize 

that some low level animals such as rats do not have the ability to search for 

patterns; however, they show maximizing behavior in a repeated binary 

choice task (Uhl, 1963). According to Staddon (2003), the reason why lower 

animals do not search for patterns is because they either have no or limited 

working memory. It might be that lower animals have no such complex and 

developed prefrontal cortex as humans (Semendeferi, Lu, Schenker, 

Damasio, 2002).  The human species is the only species that has a highly 
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developed prefrontal cortex which is the major place responsible for 

working memory.  

 

A novel approach is presented in Huettel et al. (2002) for studying human 

pattern searching mechanism. The experimental condition that they perform 

is similar to the “gambler’s fallacy”, the belief that “chance events form 

coherent patterns”, as described in detail in Ivry & Knight (2002). They 

instruct the participant to guess between two stimuli, a circle or a square. 

Experimenters also explicitly instruct the participants that the events are 

randomly determined. However, in the real task conditions, the series of 

patterns are not random. Two main patterns occur throughout the 

experiment: the first pattern is composed of consecutive trials where the two 

stimuli are altered (circle-square-circle-square-circle) and the second pattern 

consists of one stimulus followed by a series of the other stimulus (circle-

square-square-square). They demonstrate that repetition violations in the 

outcomes that are similar to the second pattern activated the regions in 

inferior frontal cortex bilaterally; cingulate cortex, insular cortex and basal 

ganglia. Huettel and his colleagues link this activity to a pattern searching 

process of the working memory operations, which is associated with 

prefrontal cortex (for a detailed discussion see Ivry & Knight, 2002).    

 

Moreover, Miller et al. (2005) also showed activation patterns in the 

prefrontal cortex including the right dorsalateral, ventrolateral cortex, and 

the right medial frontal cortex in a classical probability learning task. More 

specifically, the task was to predict the place of the stimulus by pressing the 

up or down keys. The stimulus appears on the right side of the screen with a 

probability of 70% and on the other side with a probability of 30%. They 

demonstrated that, the activation patterns found in the right dorsolateral, and 

parietal cortices were significantly altered according to the degree of 

deviations from the frequency matching strategy. The patterns of activations 

that Miller et. al (2005) reported were consistent with the previous findings 

in other types of probability learning tasks (Elliot & Dolan, 1998; Elliot et 
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al., 1999; Paulos et al., 2001; Schubotz & von Cromon, 2002; Volz et al., 

2003).  

 

Furthermore, Bogacz et al. (2007) perform a rising optimum task (Egelman 

et. al 1998; Montague & Berns, 2002) which is a kind of dynamic version of 

the probability learning task. In this task, participants had to predict between 

two options where only one of them has a rewarding outcome in each trial. 

The difference is that, participants see their overall performance and they 

were instructed to keep their overall performance as high as they can.  If 

they choose the same side too often, they will get more reward in the long 

period but if they change their prediction frequently, they will get more 

immediate reward, but less long term reward. The optimal strategy in this 

task is to predict on the same light in every trial which increases the long-

term gain. Bogacz and his colleagues administered this task with three 

different response time constraints. The result of this experiment shows that 

when the participants are let to respond slower, they switch between options 

(frequency matching strategy) more frequently. However, when the 

constraint to give a response is shorter, they stick to the winning option 

(maximizing strategy). Bogacz et al. (2007) relate the results of their study 

with working memory, because increasing the time limit for giving a 

response, gives opportunity of access to working memory, hence increasing 

the degree of pattern searching. In addition, they also support the argument 

that even when the basal ganglia dopamine neurons learn the frequency of 

each option, a short-term memory component is necessary to compute the 

“eligibility traces”, memory traces which store the temporary information 

outcomes of a participant’s choices. 

 

Frequency Learning Mechanism 

Learning of probabilities or event frequencies is an ancient skill (Cosmides 

et al., 1993), so it is not surprising that it is localized in the phylogenetically 

older parts of the human brain. The most important brain areas responsible 

for probability learning are the basal ganglia (Packard and Knowlton, 2002). 
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It has been suggested that probability learning affects implicit learning of 

event sequences that are acquired independently of conscious effort, making 

subjects learn via unconscious intentional strategies (Reber 1989).  

Evidence shows that the basal ganglia play an important role in most of the 

implicit and procedural learning tasks (see Packard and Knowlton, 2002; 

Squire, 2004 for a review). The basal ganglia are a collection of sub cortical 

structures that have been implicated in skill learning and procedural 

memory. Procedural memory, which is subsumed under the non-declarative 

memory branch of multiple memory systems, is also thought to be 

responsible for habit and skill learning (Squire, 2004). Basal ganglia are 

connected to several cortical areas by multiple cortico-striatal loops which 

include divergent projections to prefrontal cortex (Seger, 2006). It is also at 

the center of the dopamine pathway, producing behavior linked to rewarding 

stimuli which makes its role critical for learning of probabilities. The most 

important theory behind the basal ganglia probability learning system is 

that, the dopamine neurons in the basal ganglia code the prediction error 

signal2 (see Schultz, Dayan & Montague, 1997; Schultz, 2006, 2007 for a 

review) while learning to predict between choices. This is also supported by 

basal ganglia activity found in imaging studies related to probability 

learning (see O'Doherty, Dayan, Friston, Critchley, Dolan, 2003; McClure, 

Berns, Montague, 2003; Seymour, O'Doherty, Dayan, Koltzenburg, Jones, 

Dolan, Friston, Frackowiak; 2004). 

 

Reward 

Neurotransmitters are chemicals which influence and modulate the electrical 

signals between neurons. Dopamine is the major neurotransmitter in the 

brain’s reward system (Berridge & Robinson, 1998, 2003; Schultz, 2006). 

The midbrain dopamine neurons become active both during acquisition of 

reward related behavior (e.g., action preparation) and at the time of 

                                                 
2 The reward prediction error signal codes the difference between the expected reward and 
the actual reward, that is this signal works as a teacher which is very similar to the temporal 
difference reinforcement learning algorithm (Sutton & Barto, 1998).  
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subjective responses (e.g., hedonic feelings like joy). These two different 

roles of dopamine in reward conditioning correspond to two major 

functions: “Wanting”, which relates to action preparation behavior, and 

“Liking”, which mediates subjective feelings of hedonic pleasure (Berridge 

& Robinson, 2003). The liking function of dopamine neurons contributes to 

positive emotions. The investigation of liking function is hard to study 

(Rolls, 2005), therefore, large amounts of literature concentrate on the 

wanting function, which creates the predictive association between a 

stimulus and a reinforcer. The wanting process can be further separated into 

sub-processes such as reward prediction: a neural process which occurs 

before decision making, reward detection: remembering previous rewards, 

and reward expectation: anticipating the rewards that occurs after decisions. 

These sub-processes are carried out by several different areas of the brain as 

can be seen in Figure 6.  

 

According to Berridge & Robinson (1998, 2003), the key role of dopamine 

neurons is mediating the incentive salience of rewards. As summarized by 

McClure (2003), “dopamine release assigns incentive or motivational value 

to objects or behavioral acts”. For example, in mice whose dopamine 

receptors had been blocked, internal valuation of rewards did not change, 

but reward seeking actions were impaired (Berridge & Robinson, 1998).    
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Figure 6 Theoretical network showing multiple brain areas involved in 
reward related signal (Schultz, 2000 p.3). 

    

Dopamine is produced by the neurons located in the ventral tegmental area 

and substantia nigra (see Figure 7). The midbrain dopamine neurons, which 

have cell bodies in the substantia nigra and the ventral tegmental area have 

divergent projections that have connections to the frontal cortex, dorsal and 

ventral striatum, and other forebrain regions. Reward processing in the brain 

is included in a very complex network which is called the “ventral valuation 

network” (Montague et al., 2006). The ventral valuation network (VVN) 

refers to a collection of subcortical and cortical brain regions which has 

connections to nearly every part of the brain. 
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Figure 7 Schematic representation of the human dopamine pathways 
Adapted from Yahel (2005). 

 

The VVN is open to different modalities and extracts information from 

several cortical areas in olfactory, auditory, visual and somatosensory 

cortex. These connections facilitate multiple forms of rewards such as 

beautiful scenes, nice smells and even hedonic pleasures such as nicotine3. 

In the midbrain, dopamine neurons show phasic4 excitatory firing response 

(activation) to reward predicting stimuli such as food rewards, 

somotosensory, visual and auditory (Schultz, 2007). These dopamine 

activations to the reward predicting stimuli occur nearly in 80%-90% of the 

substantia nigra and in the ventral tegmental area dopamine neurons 

(Schultz, 2007). Imaging studies of reward processing got started with 

primary reinforcers (O’Doherty, 2004) and continued with secondary 

reinforcers. Secondary reinforcers like money (Breiter et al., 2001, Elliot et 

                                                 
3 Dopamine neurons also play an active role in drug addiction (Nestler & Aghajanian, 1997; 
Chao & Nestler, 2004; Nestler, 2004).  
 
4 Phasic activity refers to the neural firing which turns to its resting potential when the 
stimulus still applies. 
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al, 2003; Knutson et al., 2003), cultural rewards like brand products (Erk et 

al, 2002; Kawabata & Zeki 2004; McClure et. al 2004; O’Doherty 2006) 

and even social rewards like trust and love (Bartels & Zeki 2004; King-

Casas et. al., 2005; Delgado et al., 2005) were used extensively to 

understand reward processing in the human brain. Some of the imaging 

studies showed activation to a variety of rewards in the sub compartments of 

the striatum which is a part of basal ganglia. 

 

The reward system in humans is also integrated into different functionally 

localized brain regions including areas for decision making (prefrontal 

cortex in general), stimulus-response learning (basal ganglia), goal 

representation (dorsalateral prefrontal cotex, premotor cotex, parietal cortex  

and striatum), reward detection (medial temporal cortex, striatum), reward 

prediction (medial temporal cortex, dopamine neurons), reward expectation 

(orbito frontal cortex) and error detection (dopamine neurons) (Figure 6). 

Within this framework, in a probability learning task, neural activity is 

supposed to be in the prefrontal cortex occurs at the prediction stage while 

activity in the basal ganglia occurs during the period when reward is 

anticipated. 

 

Dopamine neurons in the midbrain are also sensitive to the value of the 

expected reward. Tobler et al. (2005) showed that dopamine neurons fire for 

different combinations of probabilities and magnitudes of rewards 

depending on the expected reward value. Dopamine activation for an 

expected reward value has also been reported in magnetic resonance 

imaging (fMRI) studies (Knutson et al., 2005; Tobler et al., 2007).  

 

An important component of the dopamine mediated reward signal is the 

prediction error signal.  This prediction error activity of dopamine neurons 

is first reported by Schultz et al. (1997) and repeatedly observed by other 

researchers (Satoh et al. 2003, Morris et al. 2004, Nakahara et al. 2004, 

Bayer & Glimcher 2005, Pan et al. 2005).  According to the prediction error 
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theory, dopamine neurons do not fire when the reward predicting stimulus 

fully predicts the reward, but the level of dopamine neuron firing is equal to 

the difference between the occurred reward and its prediction. For example, 

after a period of learning, reward omissions produce a depressing neural 

response which was called negative error prediction. The prediction error 

signals are described as an indicator of learning. Therefore it can be stated 

that in the period of learning, the dopamine neurons are programmed to 

decrease the prediction error signals5 (Schultz, 1997). Using neuroimaging, 

the prediction error theory was tested with human subjects, where several 

studies found activations in the striatum area of the basal ganglia (O'Doherty 

et al., 2003; Seymour et al., 2004; McClure, Berns, Montague, 2003).   

 

Uncertainty 

Striking new evidence on dopamine neurons is that increasing tonic activity6 

is obtained with respect to an increase in stimulus uncertainty (Tobler et al., 

2003; Morris et al., 2006).  Monkey dopamine neurons are reported to be 

sensitive for reward predicting stimuli when each stimulus had a different 

probability of receiving reward. This phenomenon co-exists with the phasic 

activity discussed before, which specifically predicts the error during the 

time course of learning of stimulus-action pairs. Therefore, it can be stated 

that dopamine neurons have different firing patterns for uncertainty and for 

expected reward. Figure 8 shows the average dopamine neuron firing 

recorded from two monkeys.  Dopamine activity increase when the stimulus 

uncertainty increases. 

 

                                                 
5 The equivalent of the prediction error hypothesis in computational reinforcement learning 
theory is the temporal difference learning algorithm (Sutton and Barto, 1998). 
6 Tonic activity is the slowly increasing ramp when there is a stimulus applied. It is 
measured by the single neuron electrophysiology studies. 
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Figure 8 Uncertainty in dopamine neurons. Adapted from Tobler et al. 
(2003). 

 

Recently, uncertainty in reward processing has also been studied by various 

researchers using neuroimaging (Volz et al, 2004; Dreher et al., 2005; 

Preuschoff et al., 2006; Tobler et al., 2007). All of these imaging studies 

showed activation in the basal ganglia. Interestingly, signals associated with 

expected reward and uncertainty create different BOLD (blood oxygenated 

level dependent signal) profiles, indicating that these two processes also 

differ at the gross level.   

 

2.6. Probability Learning in Parkinson's Disease 

The aforementioned studies suggest that the role of dopamine neurons in 

learning is critical when the context is probabilistic, because the dopamine 

neurons in the midbrain may code uncertainty and expected reward value at 

the same time. It is important to keep in mind that these firing patterns of 

dopamine activity can change due to the requirement of the tasks and the 

pathological conditions of the participants.  

 

Parkinson disease (PD) is a neurodegenerative disorder which affects the 

central nervous system. Idiopathic Parkinsonism is generally caused by a 

reduction in the number of dopamine producing neurons in the substantia 

nigra and ventral tegmental area.  This reduction of dopamine neurons 
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impairs an array of cortico-striatal activity associated with motor as well as 

cognitive functions. Impairments in the motor functions are tremor 

(shaking), rigidity (muscle rigidity), akinesia (total loss of movement), and 

bradykinesia (slowness in physical movement). Cognitive impairments 

relate to executive functions or memory (both procedural and declarative) as 

will be explained below.  

 

Cortico-Striatal Cognitive Dysfunctions in Parkinson Disease 

Various cognitive functions are linked to synchronized communication of 

the frontal cortex and the basal ganglia, achieved by the cortico-striatal 

loops. Cortico-striatal dysfunction may lead to differences in cognition as 

evidenced by various disorders like the attention deficit hyperactivity 

syndrome or Parkinson disease (Frank et al., 2005). In PD, a generalized 

procedural learning deficit (Knowlton, Squire & Mangels, 1994), as well as 

impairment in ability to learn probabilities (Frank et al., 2006) have been 

established.  

 

Probabilistic learning deficits have been studied using the weather 

prediction tasks, originally designed by Knowlton et al. (1994). In such a 

task, different cues are present on a pair of cards. Participants study the 

cards, as well as card combinations. In the task, they have to predict whether 

the cards presented in a given trial are associated with rain or sunshine.  

Healthy participants learn this probabilistic relationship over multiple trials 

(Gluck, Shohamy, & Myers, 2002). However, non-medicated Parkinson 

patients are impaired in the weather prediction task (Knowlton et al. 1994). 

Researchers think that the basal ganglia dysfunction is responsible from this 

type of impairment. In addition, according to Maddox (2005), Parkinson 

patients may be impaired when the learning task is based on trial-by-trial 

feedback, because the basal ganglia are also implicated in feedback 

mediated learning. This learning impairment may be due to the deficiency in 

the dopamine mediated reward signal that drives trial by trial feedback 

learning (Aron et al., 2004).   
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An explanation may be that damage to overall dopamine neurons reduces 

both phasic and tonic activity, thereby, diminishing the effectiveness of the 

procedural learning system (Frank et. al, 2005). It has been shown that 

phasic burst are associated with positive error prediction signal whereas 

phasic dips are associated with negative error prediction signal. These error 

prediction signals which are critical for learning might not occur in 

Parkinson patients. On another front, according to Frank et al (2006), phasic 

burst and dips of dopamine activity during positive and negative feedback 

may not occur due to modified synaptic plasticity in Parkinson patients. 

Finally, the impairments may be due to timing problems. Maddox et al. 

(2003) showed that learning impairments occur if the feedback that creates 

the reward signal is delayed approximately 2.5 seconds after each response. 

It is quite possible that dopamine reduction may also affect this circuitry. 

  

 The Effect of Parkinson Disease Treatment on Probability Learning  

The most common treatment for Parkinson disease is dopamine replacement 

therapy7. In general, motor dysfunction is caused by reduced dopamine 

activity in the putamen. Although dopamine medication helps increase the 

dopamine activity to normal levels in putamen, it also increases the 

dopamine activity in other areas of the brain above the normal level.  In the 

literature, side effects of dopamine medication are not generally reported. 

Frank et al.  (2005) states that “many cognitive studies on Parkinson Disease 

do not take into account the level of medication administered to patients.” 

Thus, confounding interpretations occur regarding the learning deficits of 

these patients. Whether the impairments are due to the abnormal dopamine 

activation caused from the disease or from the treatment is unclear.  

According to Frank et al.  (2005): 

 

                                                 
7 In general dopamine agonists or dopamine precursors (Levodopa) are used in dopamine 
replacement therapy. 
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“If an effect is found, it is difficult to know if this effect 
stems from a lack of DA [dopamine] in PD [parkinson 
disease], or is somehow related to the medication. For 
instance, medication results in elevated levels of tonic DA 
in undamaged areas. This may prevent phasic dips from 
being effective and degrade performance when they are 
functionally important”. 
 

Frank et al. (2003) demonstrated that Parkinson patients compared to 

normal controls, Parkinson patients on medication are better in learning 

relative probabilities with positive feedback. On the contrary, patients off 

medication are better in learning with negative feedback compared to 

controls (Frank et. al 2003). Interestingly, Parkinson patients who have 

dopamine dysregulation syndrome, which is caused by excessive use of 

dopamine drugs, develop pathological gambling8 behavior. In addition, it is 

hypothesized that patients exhibiting pathological gambling behavior do not 

learn by negative feedback (Ross et al., 2006).  

 

Summarizing this section, there are multiple mechanisms responsible for 

probability learning and there are several factors effecting these 

mechanisms, thereby, affecting the probability learning performance (i.e., 

learning strategy). A graphical summary of this chapter is given in Figure 9. 

                                                 
8 According to DSM-IV (American Psychiatric Association, 1994), pathological gambling 
is characterized by repetitive and persistent gambling behavior which has negative effects 
on family, personal, and professional life. 
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Figure 9 Summaries of the probability learning strategies and mechanisms. 
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CHAPTER 3 
 
 

BEHAVIORAL EXPERIMENTS 
 
 

 
Performance in a probability learning task could be influenced by a variety 

of factors (reward value, context & uncertainty). In this thesis, three 

behavioral experiments are conducted to investigate the effects of reward, 

relevance and irrelevance of context, and uncertainty on learning of 

probabilities. Furthermore, a small group of Parkinson patients are 

examined to investigate behavioral differences caused by medication. 

 

3.1. Overview of the Experiments 

We recorded data from four experiments. In the first classic probability 

learning experiment (CT), subjects have to choose between two colored 

boxes (red and blue). We expected that participants will learn to predict to 

choose the more rewarding color. The rewarding outcome between these 

two colors is distributed probabilistically and only one color has a rewarding 

outcome in a trial. Overall, in each session, blue option wins 80% of the 

time and red option wins 20% of the time. There are two conditions. The 

first condition gives monetary feedback after each correct trial and the 

second condition gives only positive non-monetary feedback after each 

correct trial. We compare learning behavior between these two conditions. 

 

For the non-monetary feedback condition, participants receive “You won” 

and “You did not win” phrases for the positive and negative feedbacks 

respectively.  For the monetary payoff condition we use “You won 1 YTL” 
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for the positive feedback condition and “You did not win” for the negative 

feedback condition. It is important to note that, in all feedback conditions 

there is no punishment like losing money or decreasing in overall 

performance. We did not add a punishment condition because it has been 

claimed that experiments and theories underlying learning with punishment 

are different from theories learning with rewards (Seymour, Singer & 

Dolan, 2007).   

 

In the second experiment, there are ten colored boxes shown on the 

computer screen. Each box is either red or blue; however the number of 

boxes shown is irrelevant for winning in that trial. Similar to the Experiment 

1, blue choice wins 80% and red choice wins 20% of the time. This is the 

reason why we named the Experiment 2 as irrelevant information task (IIT). 

In the period of learning, subjects have to learn to choose the blue response 

and suppress the irrelevant information. This approach will lead us to 

understand how people learn the probabilistic information by suppressing 

the irrelevant information. Again in the second experiment, we have two 

reward conditions for correct feedbacks (monetary feedback & non-

monetary feedback). 

 

In the third experiment, the cue information which is represented by the 

number boxes is relevant. In this experiment there are ten colored boxes on 

the screen and the probabilities of the reward outcomes are represented 

explicitly according to the number of boxes. For example, if there are nine 

blue boxes and one red box, blue has a rewarding outcome with a 

probability of 0.9 and red has a rewarding outcome with a probability of 0.1. 

Subjects have to learn to weigh their subjective probability of winning in a 

trial according to the number of blue and red boxes. This is the reason why 

we name this task, relevant information task (RIT). In the third experiment, 

the proportion of blue and red winning is balanced in the total of 200 trials 

such that blue choice wins 50% and red wins %50 overall. Similar to 
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Experiment 1 and 2, there are two reward conditions: monetary and non-

monetary. 

 

The common points and differences across these three experiments are 

summarized as follows: 

- In Experiment 1 (CT) and Experiment 2 (IIT), overall probability of 

winning for blue is the same which is 80%. However the context 

which is represented by the stimulus on screen is different.  

- In Experiment 2 (IIT) and Experiment 3 (RIT) the context is the 

same but overall probability of winning for blue is 80 % and % 50 

percent respectively. Furthermore, the probability of winning is 

unrelated to the context in Experiment 2, but directly related to the 

context in Experiment 3 

 

Using data from these series of experiments the effects of reward, 

uncertainty and context are investigated as follows. 

- In each Experiment 1, 2 and 3, the effect of reward is studied by 

comparing two subject pools, one receiving monetary feedback and 

the other receiving non-monetary feedback. 

- The effect of context is studied by comparing behavioral data from 

Experiment 1 and 2, for which winning probabilities for both choices 

are exactly the same, but only the stimulus presented on the screen 

differs. 

- The effect of uncertainty is studied by using data from Experiment 3, 

for which the uncertainty of choosing the winning option is directly 

related to the proportion of the number of colored boxes on the 

screen. 

 

The effect of dopamine replacement therapy in probability learning is 

studied by analyzing data from Experiment 4 which consists of the same test 

in Experiment 2 (IIT). In Experiment 4 the only difference from Experiment 

2 is the subject population which is a group of medicated Parkinson patients 
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and age matched controls. Finally, in an explorative study we investigated 

the role of probability learning strategies using data from Experiment 1 (CT) 

and Experiment 4 (IIT). The experiments and analyses are summarized in 

the table below. 

 

Table 2 Experiments and investigated factors in probability learning. 

Experiment 

Number 

Reward Uncertainty Context Learning 

Strategy 

1 ü   ü  ü  

2 ü   ü   

3 ü  ü    

4    ü  

    

Our hypotheses are as follows:  

1. Monetary rewarding feedback will affect the participant’s behavior 

positively and towards using maximizing strategy during learning.  

2. When the probability learning experiment is presented within a context, 

participants will try to use this contextual cue information to guide their 

choice. Therefore, in IIT, learning will be harder in comparison to the 

RIT.  

3. In RIT, choice reaction times will reflect the uncertainty associated with 

winning. 

4.  In PD patients who receive dopamine replacement therapy, probability 

learning performance will differ in comparison to controls who have 

less dopamine in their system. 
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3.2 EXPERIMENT 1: Classic Probability Learning Task (CT) 

 

3.2.1 Method  

Participants  

Forty-four participants were all Middle East Technical University students 

or employees. They had been recruited by assigning posters to a variety of 

department bulletin boards. All participants were randomly allocated to one 

of the two experimental conditions: the first condition monetary feedback 

(n=22, 11 males, 11 females, 22.3 mean age, SD 2.8) or the second 

condition non-monetary feedback (n=22, 10 males, 12 females, 21.4 mean 

age, SD 2.1). Participants in the monetary feedback condition received 

financial payoff according to their performance in the experiment, and the 

participants in the non-monetary feedback condition received nothing at the 

end of the experiment.  

 

Stimuli  

The stimuli in Experiment 1 were two differently colored boxes. The spatial 

locations of the colored boxes are randomly distributed and counter 

balanced in the total of 200 trials.  In each trial participants saw these 

colored boxes as shown in Figure 10.    

 

 

 

Figure 10 Stimulus uncertainties9 are 0.5 but the probability of blue 
winning is 0.8. 

 

 

 

 

                                                 
9 Stimulus uncertainty refers to the proportion of blue and red boxes. 
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Procedure  

The data is collected by using a desktop computer. Each participant sat 

facing a computer screen. Participants gave their responses by pressing one 

the two designated response keys “M” for “blue” and “K” for “red” on the 

keyboard. Participants took the experiment in the Experimental Psychology 

Laboratory of the Department of Cognitive Science, METU. SuperlabPro10 

experiment design and management software was used for stimulus 

presentation. Before the experimental session started, participants signed an 

informed consent form (Appendix-A), then they were briefed (Appendix-B) 

and after finishing the experimental session they were debriefed (Appendix-

C).  

 

The experiment began with a test session in which participants practiced 5 

trials. In the practice session, participants learned to press the keys. In all 5 

practice trials the feedback is correct (positive). They had been told that if 

they did not respond to a stimulus in 5 seconds after it was presented, they 

would get a negative feedback. They were instructed to give as many correct 

answers as they could.  

    

The practice session was followed by the test session. The test session was 

the same as the practice session, except that responses given in the 

experimental session were included in the analysis. Responses and reaction 

times were recorded in all 200 trials. Once the participant has pressed on a 

key, the computer proceeded to select a winning color independent of the 

participant’s choice. Then the participants were provided with feedback on 

the actual outcome regarding their choice and the reward amount. The 

feedback was presented for 3 seconds and after the feedback is presented, 

the next trial started in 2 seconds (Figure 11).  

                                                 
10 More information can be obtained from http://www.superlab.com/ 
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Figure 11 The experimental procedure for the first experiment. 

 

3.2.2 Results and Discussion 

We calculated the percentage of “blue” responses over 5 blocks which 

contained 40 trials each. Blocks were averaged for all forty trials and for all 

subjects. A two-way mixed ANOVA with the factors of group (between 

participants, 2 levels) and block (within participants, 5 levels) revealed an 

insignificant main effect of group, F(1, 42) = 0,779 Mse = 251.023 p > .01 

η2 = 0.018, a significant main effect of block, F(4,168) = 36.987, Mse = 

3775.8 p < .01, η2 = 0.468 and an insignificant group/block interaction, F(4, 

168) = 0,460, Mse = 46.974 p > .01. η2 = 0.011.  

 

There is a significant increase in the level of blue responses across blocks in 

the classic probability learning task (CT) which shows that learning occurs 

gradually by increasing experience. However, we found no significant 

difference between the monetary and non-monetary feedback conditions 

(see Figure 12). It is important to note that as seen in Figure 12 participant’s 

exhibit overmatching behavior starting from block 3. 
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Figure 12 Frequency of blue response graphs for the two experimental 
conditions in the classic probability learning task (CT). 
 

Figure 12 demonstrates that the average choice of blue box in the first block 

for both conditions start over 0.6, which is not surprising since subjects start 

learning even in the first 40 trials. In the first 40 trials, they learn to choose 

the blue option more.  Figure 12 also demonstrates that subjects 

performance in the first 40 trials is more than chance (probability= 0.5).  

 

In order to examine the average number of correct responses between these 

two conditions, block scores were calculated due to the value of percent 

correct responses (Figure 13). A two-way mixed ANOVA with factors of 

group (between participants, 2 levels) and block (within participants, 5 

levels) revealed a insignificant main effect of group, F(1,42) = 0.079, Mse = 

p > .01 η2 = 0.018, a significant main effect of block, F(4,168) = 13.815, 

Mse = 1287.03 p < .01 η2 = 0.248, an insignificant group/block interaction, 

F(4, 168) = 0.444, Mse = 37.598 p > .01. η2 = 0.014. 
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Figure 13 Average correct response graph for the two feedback conditions. 

 

The average reaction time (RT) for all responses was calculated for both 

feedback conditions (monetary and non-monetary feedback) for each block 

(Figure 14). A two-way mixed ANOVA with factors of group (between 

participants, 2 levels) and block (within participants, 5 levels) revealed an 

insignificant main effect of group, F(1,42) = 0.277, Mse = 118161.2  p > 

.01, η2 = 0.007 a significant main effect of block, F(4,168) = 23.130, Mse = 

1022970.1 p < .01, η2 = 0.355 and  insignificant group/block interaction, 

F(4, 164) = 0.833, Mse = 36843.6  p > .01  η2= 0.019. As seen from Figure 

14 reaction time shows a consistent decrease over blocks, which is an 

indication of learning in both monetary and non-monetary feedback 

conditions.  
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Figure 14 The average reaction times for the classic probability learning 

task. 

 

The overall results revealed that people in both monetary and non-monetary 

feedback group started to use overmatching strategy after the second block. 

Statistical analyses showed that there is no significant difference found for 

the learning performance between these two groups (both group showed 

overmatching behavior). This insignificant main effect of group is also same 

for the average correct responses and average reaction times. This 

unexpected result may be due to the feedback condition which includes non-

losing negative feedback.    

 

3.3 EXPERIMENT 2: Probability Learning with Irrelevant 

Information Task (IIT) 

 

3.3.1. Method   

Participants 

Forty-four participants were Middle East Technical University students or 

employees. They have been collected by assigning posters to a variety of 

department bulletin boards. All participants were randomly allocated to one 
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of the two experimental conditions: the first, monetary feedback condition 

(n=22, 12 males, 10 females, 22.6 mean age, SD 1.7) or the second, non-

monetary feedback condition (n=22, 10 males, 12 females, 22.8 mean age, 

SD 2.2). The participants in the monetary feedback condition received 

money according to their performance in the experiment, and the 

participants in the non-monetary feedback condition received nothing at the 

end of the experiment.  

 

Stimuli  

There were 10 colored boxes. In each trial, the proportion of these colors 

changed but in the total 200 trials, their number was balanced. The 

proportions of colors have no association with the prediction of correct 

choice (see Figure 15).   

 

 

Figure 15 The stimulus uncertainty change but probability of blue winning 

is fixed. 

 

Procedure  

The apparatus and practice session was same as in the previous experiment.  

In the experimental session of the irrelevant information task (IIT), rewards 

at the outcome phase of the experiment were not contingent on the 

proportion of blue and red boxes in a trial and the probability of blue 

winning was not effected by  stimulus uncertainty (see Figure 16). The 

probability of being correct in each trial was independent from the number 

of blue and red boxes seen on screen.  Therefore, we can say that the 

information gained from the proportion of blue and red boxes (context) of 
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that trial is irrelevant. To be successful, participants had to focus on the type 

of color and suppress the irrelevant information. In every trial, there is a 0.8 

probability that blue boxes have a winning outcome and 0.2 probability of a 

red boxes have a winning outcome (see Figure 16). Participants have to 

learn to choose the blue boxes over time. Each participant is tested with a 

total of 200 trials. The demand for the second task is then to suppress the 

irrelevant stimulus dimension (proportion of red and blue boxes) and 

generate a rule for the color dimension.  

 

 

 

Figure 16 Experimental procedure for the 2nd experiment. 

 

3.3.2. Results and Discussion 

In this section, we calculated the percentage of “blue” responses over 5 

blocks which contained 40 trials each. Blocks are averaged for all forty 

trials and for all subjects. A two-way mixed ANOVA with the factors of 

group (between participants, 2 levels) and block (within participants, 5 

levels) revealed a significant main effect of group, F(1,42) = 3.961 Mse = 

1350.11 p < .05, one-tailed, η2 = 0.086, a significant main effect of block, 

F(4,168) = 31.912, Mse = 3164.247  p < .05, η2 = 0. 432, an insignificant 

group/block interaction, F(4, 168) = 1.942, Mse =192.514 p > .01. η2 = 
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0.044. The results reveal that there is a significant increase in the level of 

blue responses across block in the IIT which shows that learning occurs (see 

Figure 17). In addition the effect of monetary feedback is observed in this 

experiment because the subjects who receive monetary feedback 

demonstrated significantly different overmatching behavior with in the last 

two blocks as observed from Figure 17. 
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Figure 17 Frequency of blue response graph for the irrelevant information 
task (IIT). 
 

Next, block scores were calculated due to the value of percent correct 

responses (Figure 18). A two-way mixed ANOVA with factors of group 

(between participants, 2 levels) and block (within participants, 5 levels) 

revealed a significant main effect of group, F(1,42) = 2.169, Mse = 248.091 

p < .05, one-tailed, η2 = 0.049, a significant main effect of block, F(4,168) = 

17.192, Mse = 1448.6   p < .01, η2 = 0.290, an insignificant group/block 

interaction, F(4, 168) = 1.375, Mse = 119.034 p > .05 η2 = 0.32. The 

prediction proportions start at over 0.5 for all two treatments, which is not 

surprising since subjects were not given the probabilities of the two events; 
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learning occurs in the first 40 trials. There is a significant increase in the 

level of correct responses across blocks in IIT due to learning.  
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Figure 18 Average correct response graph for the irrelevant information 
task. 
 

The average reaction time (RT) for all responses was calculated for the two 

feedback conditions (Figure 19). The average RTs for each block and for 

each subject were calculated.  A two-way mixed ANOVA with factors of 

group (between participants, 2 levels) and block (within participants, 5 

levels) revealed an insignificant main effect of group, F(1,42) = 0.02 Mse = 

1638.039 p > .05, η2 = 0, a significant main effect of block, F(4,168) = 

13.036, Mse = 1172816.9 p < .01, η2  = 0.237, and  insignificant group/block 

interaction, F(4, 168) = 1.012, Mse = 91.9013  p  > .05. η2 = 0.24. 
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Figure 19 Average reaction time graph for the irrelevant information task 

(IIT). 

 

The analyses revealed that the monetary feedback group significantly 

performs better than non-monetary group in learning to choose the blue 

option. A part of this effect could be explained by the difference in the last 

three blocks. On the other hand, when the Experiment 2 is compared with 

Experiment 1, it should be said that monetary feedback is more effective 

when the task includes irrelevant information which may indicate that task 

complexity is important.    

 

3.4 EXPERIMENT 3: Probability Learning with Relevant Information 

Task (RIT)  

 

3.4.1. Method  

Participants  

Forty-four participants were Middle East Technical University students or 

employees. They have been collected by assigning posters to a variety of 

department bulletin boards. All participants were randomly allocated to one 

of the two experimental conditions: the first condition monetary feedback 
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(n=22, 11 males, 11 females, 22.3 mean age, SD 2.8) or the second 

condition non-monetary feedback (n=22, 10 males, 12 females, 21.4 mean 

age, SD 2.1). The participants in the monetary reward condition received 

money according to their performance in the experiment, and the 

participants in the positive feedback condition received nothing at the end of 

the experiment.  

 

Stimuli  

In Experiment 3 the stimuli was same with the Experiment 2, however their 

probability of being correct is different (Figure 20).   

 

 

Figure 20 The stimulus uncertainty and probability of winning change 

according to the distribution of the number of colored boxes. 

 

Procedure  

In the RIT, we use the same stimuli as in the IIT, but the proportions of red 

and blue boxes change in each trial. The proportion of blue/red boxes is 

directly related to the probability of winning a positive feedback. Therefore, 

the variability of uncertainty of each choice changes according to the 

proportion of blue and red boxes (Figure 21). For example, one red box and 

nine blue boxes in a total of ten boxes means that there is one over ten 

chances that the red box has a rewarding outcome and nine over ten chances 

for the blue box to have a rewarding outcome. The level of uncertainty is 
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maximized when there are equal numbers of red and blue boxes 

corresponding to 0.5 probability.  

 

 

Figure 21 Proportions of colors have direct effect on winning in that trial. 

 

3.4.2 Results and Discussion 

Percentages of “blue” responses were calculated over 5 blocks which 

contained 40 trials each. Blocks are averaged for all forty trials and for all 

subjects. A two-way mixed ANOVA with factors of group (between 

participants, 2 levels) and block (within participants, 5 levels) revealed an 

insignificant main effect of group, F(1,42) = 0.462 Mse =47.756 p > .05, η2  

= 0.11, an insignificant main effect of block, F(4,168) = 1.016, Mse = 

58.532 p > .05, η2  = 0.024, an insignificant group/block interaction, F(4, 

168) = 0.124, Mse = 7.131 p > .05. η2 = 0.003 In the RIT, the frequency of 

winning of blues versus reds across the experiment is the same, so the 

subject presses blue half of the time (see, Figure 22). It is worth noting the 

contrast between Figure 22 and Figure 17. The effect of learning in Figure 

17 has disappeared in Figure 22.  This is probably because in RIT, the initial 

assumption of the participants regarding the frequencies involved in each 

trial is valid trough out the experiment. 
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Figure 22 Frequency of blue choice in the relevant information task (RIT). 

 

Next, block scores were calculated due to the value of percent correct 

responses (Figure 23). A two-way mixed ANOVA with factors of group 

(between participants, 2 levels) and block (within participants, 5 levels) 

revealed a insignificant main effect of group, F(1,42) = 0.558, Mse = 89.091 

p > .05, η2 = 0.013, a significant main effect of block, F(4,164) = 3.778, Mse 

= 239.389 p <.01, η2= 0.83 and insignificant group/block interaction, F(4, 

164) = 0.488, Mse = 30.923  p > .05. η2 = 0.11.  
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Figure 23 Average correct responses for the relevant information task. 

 

Jittering occurs in the RIT which means no learning occurs (see, Figure 23). 

This is expected because even at the beginning the subjects have an intuition 

to choose the color associated with the larger number of boxes. The 

probability of winning is 0.9, 0.8, 0.7, 0.6, 0.5, which is evenly distributed 

across both colors and blocks. The mean of these probabilities is 0.7; 

therefore the subjects’ performance of about 70 % correct in the RIT is 

expected.       

 

 The average RTs for each block and for each subject were calculated 

(Figure 24).  A two-way mixed ANOVA with factors of group (between 

participants, 2 levels) and block (within participants, 5 levels) revealed an 

insignificant main effect of group, F(1,42) = 0.02 Mse = 73.545 p > .05, η2 = 

0.013 a significant main effect of block, F(4,168) = 13.036, Mse = 144621.3 

p < .01, η2 = 0.079 and  an insignificant group/block interaction, F(4, 168) = 

1,012, Mse = 8818.5  p > .05. η2 = 0.005 
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Figure 24 Average reaction time graph for the relevant information task. 

 

Experiment 3 showed that when the stimulus includes relevant information 

for making a choice people automatically start to use this information. Due 

to effective usage of this relevant information, no learning effect was seen 

from the Figure 22 as expected by the hypothesis. In addition the reduction 

in reaction times towards the end of the experiment might be interpreted as a 

side effect of practice instead of learning. 

 

3.5 EXPERIMENT 4: Probability Learning with Irrelevant 

Information Task in a Group of Parkinson Patients 

Experiment 4 is a replication of Experiment 2 except we did not examine 

the monetary feedback condition because of time constraints on the present 

study. In the Experiment 4, probability learning behavior of Parkinson 

patients (PD) and normal controls was compared with the Irrelevant 

Information Task.  
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3.5.1. Method 

Participants  

Twenty seven participants were recruited in this experiment. Thirteen of 

them were idiopathic Parkinson patients whose mean age was 57 (range, 45-

65 years). One PD patient was excluded due to his low score on a mini 

mental status examination (Güngen, et al., 2002), and another PD patient 

was excluded due to his treatment condition (deep brain stimulation). 

Participants were recruited in this experiment in the İstanbul Faculty of 

Medicine, Neurology department under professional supervision11. Patients 

were non-demented (average Mini Mental Status Examination-MMSE 

under 26), and non-depressed (Geriatric Depression Scale, under 13, Ertan 

et al., 2005). The mean motor stage (Hoehn and Yahr, 1965) was 1.5. All 

patients were L-dopa and DA agonist treated. The average symptomatic 

disease duration of PD was 4 years (range, 1-7 years). Fourteen healthy 

controls were age matched between 45 and 65 years and recruited to the 

same experiment.  

 

Stimuli  

Stimuli were the same as in Experiment 2. 

 

Procedure 

The irrelevant information task (see Experiment 2 for details) with non–

monetary feedback condition was administered to both groups. All 

experimental procedures were the same as in Experiment 2, except we 

additionally collected verbal reports of each subject at the end of each 

session. The analyses of verbal reports were planned as part of a future 

research project on the medicated PD patients. 

 

 

    

                                                 
11 Participant had been screened for their regular visiting by Neurologist Assoc. Prof. Dr. 
Hakan Gürvit,  Assist. Prof.Dr.Haşmet Hanağası before the experimental sessions started. 
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3.5.2. Results and Discussion 

Percentages of “blue” responses were calculated over 5 blocks which 

contain 40 trials each (Figure 25). Blocks were averaged for all forty trials 

and for all subjects. A two-way mixed ANOVA with factors of group 

(between participants, 2 levels) and block (within participants, 5 levels) 

revealed an insignificant main effect of group, F(1,23) = 1.728 Mse 

=696.826  p > .05, η2 = 0.070, an significant main effect of block, F(4,92) = 

19.022, Mse = 1914.42 p < .01, η2 = 0.453, and an insignificant group/block 

interaction, F(4, 92) = 0.111, Mse = 11.210  p > .05. η2 = 0.005.  
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Figure 25 Frequency of blue choice graph between Parkinson patients and 

healthy controls. 

 

Percentages of correct responses were calculated over 5 blocks. Blocks were 

averaged for all forty trials and for all subjects (Figure 26). A two-way 

mixed ANOVA with factors of group (between participants, 2 levels) and 

block (within participants, 5 levels) revealed an insignificant main effect of 

group, F(1,23) = 0,417 Mse =10.755  p > .05, η2 = 0.018, a significant main 

effect of block, F(4,92) = 7.813, Mse = 127.782 p < .01, η2 = 0.254, an 
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insignificant group/block interaction, F(4, 92) = 0,319, Mse = 5.222  p > .05. 

η2 = 0.014. 
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Figure 26 Average percent correct responses for Parkinson patients and 

healthy controls. 

 

The average reaction time (RT) for overall responses was calculated for the 

two groups. The average RTs for each block and for each subject were 

calculated.  A two-way mixed ANOVA with factors of group (between 

participants, 2 levels) and block (within participants, 5 levels) revealed an 

insignificant main effect of group, F(1,23) = 1,621 Mse = 887149.3 p > .05, 

η2 = 0.066 a significant main effect of block, F(4,92) =6.934 , Mse = 

372285.2 p < .01, η2 = 0.232 and  a significant group/block interaction, F(4, 

92) = 2.908, Mse =156127.5  p > .05, η2 = 0.112. 

 

As seen from the percent correct graph in Figure 26, both Parkinson patients 

and normal controls exhibit learning behavior. It is worth noting that 

Parkinson patients showed overmatching behavior earlier than control group 

(Figure 25).  

 

Although RT did not differ significantly between PD and Controls, the 

reaction time in the PD group considerably less during the beginning and 
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middle phases of the task (Figure 27). This may be due to the impulsiveness 

of the patient population. Similar impulsive behavior is also observed in 

pathological gambling who are known to have dopamine dysfunction.   
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Figure 27 Average reaction time graph between Parkinson patients and 

healthy controls. 

 

 

3.6 Further Analysis 

In the standard analyses performed above, effects of monetary feedback for 

the classic probability learning task, irrelevant information task, and 

relevant information task is investigated. In addition, further analyses were 

carried in order to show the effect of uncertainty and context in detail as 

described below.  

 

3.6.1. Effect of Uncertainty  

Experiment 3 

In the literature review section it has been told that cognitive psychologists 

such as Laming (1968) apply information theoretic entropy to choice 
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reaction times to find a correlation between reaction times and uncertainty.  

The correlation between the information theoretic entropy12 (Shannon, 

1948) and the average choice reaction times were calculated for the number 

of blue boxes for each stimulus in Experiment 3 (RIT). The statistical 

analysis is carried out by using the average reaction time and information 

entropy. The results showed that the average reaction time and information 

theoretic uncertainty are positively correlated P < .05, r = 0.745 (see Figure 

29) 
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Figure 28 Relation between information entropy and choice reaction times. 

 

Figure 28 demonstrates that the average reaction times take longer when the 

contextual information represents 0.5 probabilities (where the stimulus 

represents 5 blue, 5 red boxes). Although entropy and reaction time were 

correlated the shapes of these graphs were different. Our attempt was just to 

establish a relationship between entropy and reaction times but not develop 

a model. 

  

                                                 
12 Information theoretic entropy = -plog(p)-(1-p)log(1-p). P stands for probability of 
winning. 
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3.6.2. Effect of Context 

Experiment 2   

In order to show that there was an interaction between the proportions of 

blue responses and the learning experience, we took the first (first 50 trials) 

and last block (last 50 trials) of Experiment 2 (IIT) to calculate the average 

blue responses with respect to proportions of blue boxes (see Figure 29). 

The first 50 and last 50 trials were used because we believe that after a 

period of learning, people learn to suppress the belief about the proportion 

of the boxes.   

 

For the non-monetary feedback condition, a two-way repeated ANOVA 

with factors of block (within participants, 2 levels) and proportions of blue 

boxes (within participants, 9 levels) revealed a significant main effect of 

block, F(1,21) = 37.693, Mse =3.785  p > .05, η2 = 0. 642, a significant main 

effect of number of blue boxes, F (8,168) = 8.081, Mse = 0.610 p < .01, η2 = 

0.278 and a significant effect of proportion of blue boxes/block interaction, 

F (8,168) = 4.096, Mse =0.193 p > .05 η2 = 0.163. 
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Figure 29 Changes in blue choice with in the first and last fifty trials for the 

non-monetary feedback group. 
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Figure 29 demonstrates that in the initial stages (first 50 trials) of the 

experiment, participants use the contextual cue information but after 

learning occurs (last 50 trials) they suppress this information and learn by 

feedback.  

 

Comparison of Reaction Times between Experiment 1 and Experiment 2 

It was previously mentioned that irrelevant information affects probability 

learning negatively, which is observed through an increase in reaction times 

or decrease in performance. In order to understand the effect of irrelevant 

information effect on the choice reaction times (RT), we compared the 

reaction times between Experiment 1 (CT) and Experiment 2 (IIT) by 

merging overall responses for both monetary and non-monetary groups. For 

each block and for each subject average reaction times were included in data 

analysis. 

 

A two-way mixed ANOVA with factors of group (between participants, 2 

levels) and block (within participants, 5 levels) revealed a significant main 

effect of group, F(1,86) = 25.988 Mse = 393554792,1 p < .01, η2 = 0.870 a 

significant main effect of block, F(4, 344) =32.010 , Mse = 2145762.6 p < 

.01, η2 = 0.271 and  a insignificant group/block interaction, F(4, 344) = 

0.746 , Mse =50024.24  p > .05 η2 = 0.009. 
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Figure 30 Average choice reaction times between Experiment 1 and 

Experiment 2. 

 

As seen from Figure 30, there is a prominent effect of the context in RT. 

Although the probability of blue and red choices are the same between CT 

and IIT tasks, the information presented on screen is more complex and 

irrelevant in IIT. Hence, this complexity is directly reflected as significantly 

higher reaction times.   

 

3.6.3. Probability Learning Strategy 

Frequency Matching Strategy in CT 

As mentioned in chapter 2, one possible way for the subjects to learn 

frequencies is by a pattern search. In order to evaluate frequency matching 

versus maximization behavior, the response sequences of subjects have to 

be analyzed individually. In this exploratory analyses, we used data from the 

first (CT) and fourth experiment (PD-IIT). An ad-hoc method is devised to 

investigate how participants estimate the current winning option based on 

the previous options. 
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Two types of patterns are identified: alternating patterns and fixed patterns. 

Alternating patterns correspond to frequency matching behavior whereas 

fixed patterns correspond to maximization behavior. Alternating patterns are 

defined as sequences of blue (B) or red (R) choices such that B and R are 

distributed evenly in the sequence. The reason why choices are evenly 

distributed in alternating patterns is because according to gambler’s fallacy, 

alternating patterns seem more random, hence preferable than fixed 

sequences. The minimum length sequence which can hold a meaningful 

alternating pattern should be 4. A shorter sequence with 0.5 probability for 2 

options would have been of length 2, but then, within such a short sequence, 

only the random patterns BR, RB, BB, RR could have been produced, 

which we found to be inadequate to represent a consistent pattern search. 

With 4 digits, patterns with 0.5 probability of winning for blue and red 

could have been represented by: BBRR, RRBB, BRBR, RBRB, BRRB, and 

RBBR. On the other hand, fixed patterns of length 4, BBBB, and RRRR 

would represent a consistent behavior of maximization. Within the 200 

trials, the occurrence of these patterns is reported13 separately for the first 

and last blocks (40 trials). While searching for these two groups of patterns, 

each pattern is reported by the index of the trial which starts with the 

pattern, and these indices are bundled into block one if the value is between 

1-40, and block five, if the value is between 160-200. While reporting the 

indices, a moving window is used to search for pattern occurrences. Once a 

pattern is found, the window is advanced to the next non-overlapping index 

for further search.  

 

For the Experiment 1, a two-way mixed ANOVA with factors of pattern 

(within participants, 2 levels alternating-fixed) and block (within 

participants, 2 levels first 50- last 50 trials) revealed a significant main 

effect of block, F(1,43) = 50,031, Mse = 162,27 p < .01, η2 = 0,537 and  a 

                                                 
13 The author would like to express his gratitude to Özkan Bayraktar for helping to write a 
program for the current analyses. 
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significant pattern/block interaction, F(1, 43) = 42,049, Mse = 684,142 p < 

.01. η2 = 0,494.  

 

As seen in Figure 31, in the first fifty trials participants choose alternating 

patterns more than fixed patterns. This indicates the usage of frequency 

matching strategy in the beginning of the experiment. On the contrary, in 

the last fifty trials higher usage of fixed patterns by most of the participants 

leads to maximization strategy.   
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Figure 31 Average numbers of patterns between blocks in the Experiment1. 
 

Parkinson Patients and Maximization Strategy 

For the Experiment 4, a two-way mixed ANOVA with factors of group 

(between participants, 2 levels PD vs Control) x block (within participants, 

2 levels first 50- last 50 trials) x pattern (within participants, 2 random-

nonrandom) levels revealed a significant main effect of block, F(1,23) = 

20.621, Mse = 91.646 p < .01, η2 = 0.473, a significant pattern /block 

interaction, F(1,23) = 40,10 Mse = 488.93 p < .01. η2 = 0,636 and an 

insignificant effect of group F(1,23) = 0.755 Mse = 3.617 p > .01. η2 = 

0,032.  

 

As seen from Figure 32 in general PD patients show less frequency 

matching but more maximization behavior in comparison to controls. 



 
 
 
 

69 

However, this difference was not significant; possibly due to the number of 

participants.   
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Figure 32 Average numbers of patterns between blocks in the Experiment4. 

 

In Figure 33, the behavioral response of a PD patient is shown over 200 

trials. Until now, the behavior of the participants has been illustrated 

through graphs that average data from all participants. As seen clearly from 

Figure 33, there is the high contrast between frequency matching behavior 

at the beginning of the experiment and maximizing behavior at the end. 

 

 

Figure 33 One participant’s blue choice graph. 
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CHAPTER 4 
 
 

GENERAL DISCUSSION 
 
 
 
The difference between monetary feedback and non-monetary positive 

feedback was examined in the first three experiments. A barely significant 

effect of monetary feedback was found in the second experiment (IIT). 

Additionally, in the second and third experiment the effect of context 

(irrelevant & relevant) was tested to find how people utilize the cue 

information. It was found that initially people automatically use the cue 

information to guide their choices, but after a period of trial and error, 

people start using the feedback information. In the fourth experiment, 

medicated Parkinson patients performed the Irrelevant Information Task. 

Their performance was compared with normal controls. No significant 

difference was found between the control group and Parkinson patients. On 

the other hand, both in Experiment 2 and Experiment 4, it was found that in 

the initial stages of the experimental session participants search for patterns 

of random sequences but later on, they give up searching and exhibit 

maximization behavior. 

 

4.1. Effect of Monetary Feedback on Probability Learning 

In Experiment 2 (IIT), a significant effect of monetary reward was found. 

However, in Experiment 1 (CT) and Experiment 3 (RIT) no significant 

effect of monetary reward was found. We had hypothesized that monetary 

reward would have a significant effect, because in previous studies it was 
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found that monetary feedback increases subjects performance positively 

(Edward, 1956; Myers et al., 1963, Shanks et al, 2002) 

 

There are several possible explanations for these controversial results. One 

explanation is that the monetary feedback that we used was not enough for 

the participants to be effective. Participants can only eat one lunch in the 

University campus with that money if they had showed average 

performance. However, studies (Edward, 1956; Myers et al., 1963, Shanks 

et al, 2002) showed a clear difference between monetary feedback and non-

monetary feedback with similar or lower amount of money than we used. 

Therefore, the conclusion that there is no effect of monetary feedback due to 

the inadequacy of reward value is not convincing. 

 

An alternative explanation may be that monetary feedback is more effective 

if there was a loss condition in the experimental procedure. It is possible 

that the effect of monetary feedback is more prominent in the presence of a 

negative feedback such as loss (Siegel & Goldstein, 1959). In the previous 

studies, both reward and punishment were used in the same experimental 

procedure where the positive feedback condition was winning and the 

negative feedback condition was losing (Edward, 1956; Myers et al., 1963; 

Shanks et al., 2002).  

 

On the other hand, we can probably say that the monetary feedback became 

effective when the task complexity increased. Experiment 2 (IIT) 

demonstrates that subjects in the monetary feedback condition showed 

overmatching behavior but non-monetary feedback group showed under 

matching behavior in the last 80 trials. Interestingly, learning performance 

was not affected by the monetary payoff in Experiment 1 (CT), because 

both groups do show overmatching behavior. We can suggest that when the 

task complexity is high (such as in Experiment 2 (IIT)), subjects need 

monetary feedback to be motivated and perform better. When the task 
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complexity is low (such as in Experiment 1 (CT)), subjects perform well 

regardless of monetary feedback. 

 

4.2. Effect of Uncertainty in Probability Learning 

We studied the contribution of uncertainty in the third experiment (RIT).  

Previous studies on the psychology of information processing showed that 

when the number of possible outcomes are equally probable (P=0.5, 

maximum entropy) choice reaction time is at its maximum level (Wollen, 

1963). When we analyzed the choice reaction time data of Experiment 3 

(RIT) it has been clearly seen that, the longest reaction time is for the 0.5 

probability condition. The reaction times for other probability values 

decrease due to a decrease in probabilistic uncertainty (Wollen, 1963).  We 

investigated the correlation between the information theoretic entropy and 

choice reaction times. Thereby, we replicated the earlier findings regarding 

the effect of uncertainty in probabilistic learning. 

 

4.3. Effect of Context in Probability Learning 

By comparing the reaction time between Experiment 2 (IIT) and 

Experiment 1 (CT), we investigated the effect of irrelevant probabilistic 

context on learning performance in a probability learning task. We 

hypothesized that subjects in the second experiment (IIT) will respond 

slower than the subjects in the first experiment (CT) due to the complexity 

introduced by irrelevant context. Experiments 1 and 2 are identical, except 

that in Experiment 1 (CT) subjects are presented with simpler stimulus 

screen consisting of one blue and one red box, whereas in Experiment 2 

(IIT), the subjects are presented with a set of red and blue boxes. The 

multiplicity of the boxes in Experiment 2 has no relationship with the 

winning probabilities, and in both experiments, the winning probability of 

colors is the same (blue winning 80 percent of the time). We hypothesized 

that the subjects need to resolve the effects of the irrelevant information in 

Experiment 2, so this would increase the time for the response to occur. Our 
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findings on reaction time replicated the previous findings that irrelevant 

information increases response latencies (Edgell & Castellan, 1996).  

 

In Experiment 3 (RIT), subjects start the experiment using the probabilistic 

cue information and continue to use this information till the very end. 

Because of this, learning effects are not seen in all 5 blocks in the frequency 

of blue choices and percent correct answers. It seems that people 

automatically make probabilistic predictions from the cue information 

(proportions of blue boxes). This raises the question “Do people have 

probabilistic templates in their minds for some perceptual cues?”.  

 

The presence of a plausible mental model which draws probabilistic 

inference from the ratio of blue and red boxes presented in the stimulus is a 

reasonable opinion. For example, our findings indicate that participants 

think a priori that the proportion of blue boxes to red boxes represents the 

probability of choosing a specific color. This argument is reasonable, only if 

participants have a mental representation for every box (blue/red) in which 

the probability scale is divided evenly between the boxes. For example, 

because there are 10 boxes presented in Experiment 3 (RIT), subjects seem 

to automatically believe that each box represents a probability value of 0.1. 

Therefore when they see 9 blue boxes and 1 red box, they infer that blue is 

the rewarding category, and interestingly, this inference is present even at 

the beginning of the experiment. Such mental representations are common 

in Gestalt psychology (Kahneman, 2002). For example, Gestalt similarity 

effect will lead people to automatically group physically similar items. 

Kahneman (2002) also suggested that some percepts are more easily 

accessible that others and people might use these easily accessible 

information to guide their choices. Combining our results with these ideas, 

we can state that the proportion of blue and red boxes (cue information) in 

the second and third experiment may be perceived as an easily accessible 

information for the probability areas of the brain. Thereby, in experiment 2, 
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it takes time to suppress this automatic inference to the mental 

representation and learn via the feedback signal. 

 

4.4. Mechanisms of Probability Learning 

We observed learning effects in Experiment 1, 2, and 4, as revealed by the 

significant difference across blocks for both percent of correct and 

frequency of blue choice values. The reaction time data also indicates 

significant differences across blocks. On the other hand, in Experiment 3, 

only the reaction time graph revealed a significant effect of block in choice 

reaction times. On average, in Experiment 3, subjects start with 1220 msec 

of reaction time and decrease to 1100 msec at the end of the experiment. 

This effect may be due to the practice (Speelman and Maybery, 1998), a 

point which needs further investigation. The absence of learning effect in 

Experiment 3 (RIT) is not surprising. In this experiment subjects used the 

relevant cue information from the very beginning because the probability of 

winning is directly related to the context, there is no further information to 

learn.      

 

4.4.1. Implicit (Procedural) versus Explicit Learning 

Implicit learning has been categorized as an unconscious learning process. 

On the contrary, in explicit learning, there is conscious monitoring of 

learning strategies (e.g., finding a rule). It has been shown that implicit 

learning is unlimited and stores all contingencies between stimulus variables 

(O’Brien-Malone and Maybery, 1998). By contrast, explicit learning has 

been showed to have limited capacity which is maintained by working 

memory (O’Brien-Malone and Maybery, 1998).  According to Reber 

(1992), implicit learning is more robust and show less population variance 

compared to explicit learning.  

 

In the debriefing period at the end of each experimental session, we let 

participants ask questions. Many of the participants in Experiments 1, 2, 4 

said that they had searched for a pattern, but they had failed to find it. 
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Afterwards, they realized that blue wins more than the red color and they 

decided to choose blue more frequently. Additionally, they reported that 

they did not have a specific rule-based strategy. In Experiment 4, we also 

collected verbal reports at the end of the experiment, similar to those of 

Maia and McClelland (2004). Our brief judgments of these reports indicate 

that at the end of the experiments, most subjects guessed the proportion of 

blue winning correctly. On average, the participants in both PD group and 

control group reported a winning percent close to 0.8. At this point, because 

we do not have any statistics, we can only speculate that probability learning 

is an implicit thought process. At the end of the experiments, subjects 

mostly guess the true proportion of blue winning, but do not have a specific 

rule-based strategy. In order to be able to state this objectively, we need to 

analyze the verbal reports as a part of our future studies. 

 

4.4.2. Frequency Matching versus Maximization 

In the literature chapter, we discussed that there are at least two mechanisms 

responsible for probability learning: a pattern searching mechanism and a 

frequency learning mechanism. We were able to show that in the initial 

stages of Experiments 2 and 4, people searched for alternating patterns 

across trials. However, in the later stages of the experiments, subjects gave 

up searching for patterns and at the end of the experiments, subjects 

preferred to choose the winning option (blue) more frequently. Therefore, 

most of the subjects choose maximization behavior towards the end of the 

experiments. However, this is not directly observable from the graphs 

presented in the previous chapter because these graphs show average 

response of all participants. Interestingly, in Experiment 4, the PD patients 

showed less pattern searching behavior and more maximizing behavior than 

controls but it needs more patients to confirm this trend. Whether these 

behavioral differences were influenced by the dopamine replacement 

therapy is an intriguing question. 
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In the context of the pattern searching mechanism in probability learning, a 

working memory system seems to be necessary to integrate previous 

information to predict future actions. Working memory might be acting like 

a buffer which stores previous patterns of feedback information and 

compares them with the newly learned ones in order to execute new action 

strategies. According to this hypothesis, if working memory could not find 

any pattern information from the preceding trials, procedural memory is still 

there to learn the relative frequency of outcomes. Interestingly, our findings 

indicate that pattern search occurs at the beginning which leads to 

probabilistic learning of the frequencies of choices. Once the frequencies are 

learned, pattern search behavior is replaced with maximization behavior to 

achieve better winning performance. In the light of these findings, we 

project that at the beginning of the experiments, activity occurs at DLPFC 

and striatum due to pattern searching and frequency learning. Towards the 

end of the experiments, however, learning would have been completed, so 

reduced activity only due to error prediction will be observed at striatum 

exclusively. Nevertheless, this projection must be verified by neuroimaging 

experiments in future studies. 

 

4.5. Performance of the Medicated Parkinson Disease Patients 

Experiment 4 is conducted to investigate the probability learning 

performance of dopamine medicated Parkinson patients. Frank and his 

colleagues (2004) reported that patients who are on medication learn better 

with positive feedback than un-medicated patients. In Experiment 4, we 

examined the PD patients on the most complex probability learning task, 

IIT. When the percent blue choice graphs are considered, medicated 

Parkinson patients showed better performance than healthy controls in the 

irrelevant information task (IIT). Hence our findings are similar to Frank’s 

(Frank et al., 2004), but due to the low number of PD patients, statistical 

significance could not be obtained in Experiment 4. We anticipate that 

increasing the number of Parkinson patients in this study might increase the 

statistical significance, leading to the replication of Frank’s study. 
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Unfortunately, we were unable to study the behavior of unmediated patients 

because of the difficulty of obtaining this type of subject pool. In the future 

it would be interesting to complement our research with un-medicated 

patients as well. 

 

4.6. Limitations of the Study 

One limitation of our experiments is that in all experiments the stimuli and 

the feedbacks were presented randomly which makes it harder to analyze 

the response data in terms of sequences of patterns. If the sequences of the 

feedbacks have been controlled we could have differentiated the random 

responses and non-random responses more accurately.  

 

Another limitation is the number of trials in our experiments. In the 

literature, probabilistic learning experiments have been conducted with 100 

- 3000 trials extending from 30 min to a few days. Due to technical and 

timing limitations, we administered one 30 min session consisting of 200 

trials to each participant. We speculate that if we had a chance to study more 

trials, the statistical significance of monetary versus non-monetary reward 

comparisons might have changed. 

 

Finally, the number of Parkinson patients recruited for Experiment 4 is low 

because we applied a high standard to control for dopamine medication, 

level of disease, on/off condition for accepting a patient into our experiment. 

Increasing the number of patients might change the significance of the 

results. 
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CHAPTER 5 
 
 

CONCLUSION 
 

 
 
The present study investigated the effects of reward, context, and 

uncertainty in probability learning behavior in a series of four experiments. 

Reward was investigated by changing the feedback saliency, to compare the 

effect of monetary and non-monetary feedback. In Experiment 1 and 

Experiment 3 we found no significant effect of monetary reward on 

probability learning, but in Experiment 2 the performance of the subjects 

who are in the monetary feedback condition was significantly better than the 

non-monetary feedback group. It seems that monetary feedback is more 

effective when there is irrelevant information, or when task complexity is 

higher. Therefore, we can say that when the variability in the data is 

increased money can explain part of this variability.  

 

On the other hand, when we compared the overall reaction time data of the 

subjects in both groups of Experiment 1 and Experiment 2, overall reaction 

time in the Experiment 2 is significantly higher than the overall reaction 

time in Experiment 1. Therefore, we can say that the irrelevant information 

increases the complexity of the context to be processed, hence increasing 

the response latency.  

 

The effect of uncertainty was measured by the frequency of blue winning 

with respect to stimulus type in Experiment 3. Because blue wins half of the 

time, no learning effect was expected in this experiment. The overall 
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reaction time data for both the monetary and non-monetary group shows 

that when there is high uncertainty, the reaction time takes longer. This 

finding replicates the literature which indicates that uncertainty embodied in 

the task is similar to the entropy calculated from the probabilities, and 

reaction time correlates with the entropy but not perfectly. 

 

Frequency matching behavior is studied for Experiment 1 and Experiment 4. 

It seems that in the initial trials of the probability learning experiments, 

subjects look for sequential patterns, but after a period of learning, they 

show maximizing behavior preferring to choose the more frequent option, 

which leads to optimal performance. We suggest that this finding supports 

the claims in the literature which indicate pattern search is a behavioral 

choice for learning the frequency of outcomes implicitly.    

  

Experiment 4 was designed to test the hypothesis on the effects of dopamine 

medication. Whether dopamine replacement therapy improves or impairs 

probability learning ability, it was not explicitly known in the literature. We 

found no significant behavioral difference between normal controls and 

medicated Parkinson patients, although the learning curves indicated more 

overmatching behavior for Parkinson patients. The observed overmatching 

result actually goes along with our hypothesis that positive feedback causes 

dopamine medicated Parkinson patients to learn better than controls. 

 

Overall, this thesis helped us make the following observations regarding 

probability learning: 1. the positive effect of reward is not as pronounced as 

reported in the literature; 2. The uncertainty embodied in the task has a 

direct effect on reaction times; 3. The effect of the complexity of context in 

the stimuli is reflected in reaction times, but does not affect performance 

reported as percentage of correct responses; 4. Dopamine medication may 

change the behavior of subjects during and at completion of probability 

learning, but to conclude whether this effect is significant, a larger subject 

pool is needed.    
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As part of our future studies, we would like to develop computational 

models of the probability learning behavior, and investigate neural 

correlates of this behavior using neuroimaging techniques. We also would 

like to extend our experiments of the dopamine medicated Parkinson 

population by increasing the number of participants and further 

investigating the effects of treatment.  
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APPENDICES 
 

 

APPENDIX A - A Sample Inform Consent Form 
 

 

 

        Teyit 
Verilerinizin ve kişisel bilgilerinizin saklı tutulacağını ve korunacağını teyit 
ediyorum. Bu çalışmanın sonuçları isminizi veya katılımcıları belirleyecek 
herhangi bir bilgi içermeyecektir. Bu veriler üçüncü kişilere verilmeyecek 
ve sadece araştırma amaçlı kullanılacaktır. Bu deneyde öğrenmenin ve karar 
vermenin doğası araştırılmaktadır. Katılımcılara bir grup farklı renge sahip 
şekil gösterilecektir. Katılımcılardan ödülün hangi rengin altında olduğunu 
bulmaları istenmektedir. Her doğru  tahmin sonunda da bir miktar para 
ödülü kazanılacaktır. 
 
Burak Erdeniz 

 
Rıza Onay Formu 

 
Ben,__________________________, Orta Doğu Teknik Universitesi 
Enformatik Enstitüsüne bağlı olan Bilişsel Bilimler bölümü Master 
öğrencisi Burak Erdeniz denetimindeki öğrenme ve karar verme ile ilgili bu 
deneye gönüllü olarak  katılmayı kabul ediyorum.  
 
Bu çalışmada ekranda bazı figürler gösterileceğinin farkındayım.Bunun 
devamında bazı sorulara cevap vermem gerektiğini biliyorum.  
 
Çalışma sonuçlarında ismimin kullanılmayacağını ve ismimin benden 
toplanan verilerle ilişkilendirilmeyeceğini biliyorum. 
 
 Kimliğimi belirleyecek bir bilgi olmaksızın benden toplanan verilerin 
araştırma sonuçlarını paylaşma amaçlı bir dergide yayınlanmasına veya 
konferansta sunulmasına izin veriyorum.  
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Çalışmanın ortalama 30 dakika süreceğinin ve istedeğim zaman 
bırakabileceğimin farkındayım. Çalışmaya gönüllü olarak ve hiç bir etki 
altında kalmadan katılıyorum ve  çalışmayı tamamladığım takdirde 
deneydeki performansıma göre belli bir miktar para almaya hak 
kazanabileceğimin farkındayım. 
 
     
İmza________________________ Tarih_______________  
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APPENDIX B - A Sample Instructions Form 
 

 

 

Yönerge – PRFL01 

Ø Öncelikle deneye katıldığınız için teşekkürler. Bu deneyde sizden bir 

takım seçimler yapmanız beklenmektedir. Yapacağınız bu seçimler 

sonucunda para kazanacak veya hiç birşey kazanamayacaksınız. Size 

10 adet kare şekil göstereceğiz. Bunlarda bazıları mavi bazıları ise 

kırmızı olacak. Kırmızıların veya mavilerin altında bir sarı kare 

şekil saklı olacak ve sizden deney esnasında sarı karenin yerinin 

mavilerin mi yoksa kırmızıların mı altında saklı olduğunu bulmanız 

beklenecek. Seçimlerinizi klavye kullanarak yapacaksınız. Eğer sarı 

karenin mavilerin altında saklı olduğunu düşünüyorsanız  klavyeden 

“M” tuşuna, kırmızıların altında olduğunu düşünüyorsanız “K” 

tuşuna basınız. Sarı karenin yerini her doğru bildiğinizde 50 kuruş 

kazandığınızı gösteren bir ekran göreceksiniz. Yanlış bildiğinizde ise 

kazanamadınız yazısı çıkacak. 

Ø Öncelikle 5 denemeden oluşan bir pratik yapıcaksınız ondan sonra 

gerçek deneye geçilecek. Bu deneme esnasında seçiminiz ne olursa 

olsun kazancaksınız. Yalnız bilmeniz gereken birşey var eğer 5 

saniye içinde bir seçim yapmazsanız bilgisayar bunu yanlış tahmin 
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olarak kabul edecek. Neticede sizden   bütün denemelerde bir seçim 

yapmanız beklenmektedir. 

Ø Birazdan  180 denemeden oluşan deneye başlayacağız. Lütfen bütün 

sorulara 5 saniye içinde cevap vermeye çalışın. Tahminimizce deney 

en fazla 15 dakika sürecektir. Deneyin sonunda ne kadar para 

kazandığınızın hesaplandığını söyleyen bir ekran karşınıza 

çıkacaktır. Ancak kazancınız bir katsayı ile çarpılarak size 

ödenecektir. Bu ekranı gördügünüzde lütfen deneyi yapan kişiye 

deneyin bittiğini söyleyin.  

Ø Son olarak bu deneyde sizden beklenen mümkün olduğu kadar doğru 

tahmin yapmaya çalışmanızdır. Teşekkürler. 
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APPENDIX C - A Sample Debriefing Form 
 

 

 
AÇIKLAMA 

Lütfen arkadaşlarınıza bugün katıldığınız deney hakkında hiç bir şey 

söylemeyin. Deney hakkında vereceğiniz herhangi bir bilgi, diğer 

deneklerin karar verme sürecini etkileyeceğinden yapılan bütün çalışmanın 

boşa gitmesine sebep olabilir. 

 

Bu deneyde insanlara renklerle kodlanmış bir bilgi sunulduğunda 

karar vermenin nasıl gerçekleştiğini araştırmaktayız. Farklı öğrenme 

yöntemlerini test etmek için deneyde pekiştirmeli öğrenme benzeri deneme 

ve yanılma içeren ödül tabanlı bir test uygulanmıştır. Bu deney sonucunda 

elde edilecek bilgiler ışığın daha sonra benzeri çalışmalar hasta 

populasyonlarında da denenebilecektir.   

 

Katılımınız için çok teşekkür ederiz. Eğer daha sonra, yapılan bu 

çalışma hakkında başka sorunuz olursa veya genel bir sorunuz olursa lütfen 

Bilişsel Bilimler yüksek lisans öğrencisi Burak Erdeniz ile bağlantıya 

geçiniz (MM410). Tekrardan hatırlatalım, lütfen arkadaşlarınıza bugün 

katıldığınız deney hakkında hiç bir şey söylemeyin. Deney hakkında 

vereceğiniz her hangi bir bilgi diğer deneklerden toplanan verileri bozucu 

bir etkiye neden olacaktır.  
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