
1



THE EFFECT OF ROTATION, UP TO SECOND ORDER,
ON THE OSCILLATION FREQUENCIES OF SOME

DELTA-SCUTI STARS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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ABSTRACT

THE EFFECT OF ROTATION, UP TO SECOND ORDER,

ON THE OSCILLATION FREQUENCIES OF SOME

DELTA-SCUTI STARS

Doğan, Gülnur

M.S., Department of Physics

Supervisor : Prof. Dr. Halil Kırbıyık

Co-Supervisor : Prof. Dr. Nilgün Kızıloğlu

September 2007, 86 pages

In this work, the effect of rotation on the oscillation frequencies of some radially

and nonradially oscillating Delta-Scuti stars have been explored. Rotation has been

considered as a perturbation and treated up to the second order. Series of evolutionary

models have been calculated for the oscillating stars in question and compared with

the observational parameters. Three stars are considered: V350 Peg with no rotation,

CC And with a rotational velocity υsini=20 km/s, and BS Tuc with υsini=130 km/s.

We find that splitting in the oscillation frequencies are conspicuous especially in

fast rotating stars, with a considerable contribution from the related terms due to

second order effect.

Keywords: stellar oscillations, oscillation frequencies, rotating stars, pulsating stars,

Delta-Scuti stars
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ÖZ

DELTA-SCUTI YILDIZLARINDA,

EKSENEL DÖNMENİN İKİNCİ DERECE ETKİSİ DAHİL EDİLEREK,

TİTREŞİM FREKANSLARININ İNCELENMESİ

Doğan, Gülnur

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Halil Kırbıyık

Ortak Tez Yöneticisi : Prof. Dr. Nilgün Kızıloğlu

Eylül 2007, 86 sayfa

Bu çalışmada, çapsal ve çapsal olmayan titreşimler gösteren Delta-Scuti yıldızlarında,

eksenel dönmenin titreşim frekansları üzerindeki etkisi incelenmiştir. Dönme pertürbasyon

olarak ele alınmış ve dönmenin ikinci dereceye kadar etkisi hesaplamalara dahil edilmiştir.

Söz konusu yıldızlar icin evrimsel model dizileri hesaplanmış ve sonuçlar gözlemsel

parametrelerle karşılaştırılmıştır. Bu amaçla üç yıldızın verileri kullanılmıştır. Bunlar

dönmeyen bir değişen yıldız olan V350 Peg, dönme hızı υsini=20 km/s olan CC And

ve υsini=130 km/s hızla dönen BS Tuc’tur.

Sonuç olarak, titreşim frekanslarındaki saçılmanın özellikle hızlı dönen yıldızlarda

dikkat çekici olduğu ve dönmenin ikinci derece etkisinden gelen te- rimlerin, saçılımın

büyüklüğüne önemli bir katkıda bulunduğu görülmüştür.

Anahtar Kelimeler: yıldız titreşimleri, titreşim frekansları, dönen yıldızlar, zonklayan

yıldızlar, Delta-Scuti yıldızları
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CHAPTER 1

INTRODUCTION

The subject of stellar oscillations is of great interest as it is a leading area in stellar

astrophysics to explore the deep interior of stars. Studying the seismic waves within

the star helps us to understand the processes taking place inside and gives us some

clue about the stellar structure.

Stars are self-gravitating gaseous spheres radiating a great amount of energy to

their surrounding. Energy radiated from the surface of a star is generated in the

deep interior by thermonuclear reactions. Once a star is born out of an interstellar

cloud, it survives by burning the hydrogen in its core and spends most of its time in

the hydrogen burning stage, which is referred as main sequence stage. As evolution

proceeds, the star consumes the nuclear fuel in its core causing its internal structure

to change (Unno et al. 1989).

Stars are considered to be very active objects, some blow out stellar winds from

their surfaces with speeds up to a few thousand kilometers per hour, while some others

are pulsating variables (Unno et al. 1989).

Pulsating stars are stars in which large scale dynamical motions, usually including

the entire star are present. The motion in question is generally rhythmic and resem-

bles the breathing of a human body. The simplest kind of such motion is a purely

radial oscillation (or radial pulsation), in which the star always maintains its spherical

shape, but changes its volume by expanding and contracting. Nonradial oscillation

(or nonradial pulsation) is a more general type in which a star oscillates distorting its

spherical shape (Cox 1980, Unno et al. 1989).

The study of pulsating stars is a relatively small but highly important and promis-

ing area of modern stellar astrophysics. Pulsating stars constitute a subset of the

class of intrinsic variable stars. These are stars whose variability is caused by the
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activity within themselves, not by geometric effects such as eclipses in binary stars

or external agencies such as interaction with the interstellar medium. Variable stars

can be most generally defined as stars, physical properties of which change in time.

But since physical properties of all stars change during their lifetimes, for a star to

be classified as variable star, the time of change should be in a scale which can be

detectable by astronomers, i.e, ranging between fractions of seconds and a few years

or decades (Cox, 1980).

The most obvious and most easily detectable distinguishing feature of a variable

star is its apparent brightness: most such stars, in fact, are detected by their light

variations. Other observable properties, such as spectral type or color, and radial

velocity, usually also vary during the light variations (Cox 1980).

The theory of stellar pulsation was originally developed in order to explain the

pulsations of classical variable stars such as the Cepheids and RR Lyrae stars. These

variables are thought to be radial pulsators. However, pulsations and oscillation-

related phenomena have been discovered in many stars that were regarded as non-

pulsating stars before. They include our sun itself, white dwarfs, Ap stars , and early-

type O and B stars with slow and rapid rotation. The most important characteristics

of oscillations in these stars are that they are thought to be nonradial and are usually

multiperiodic with several modes of oscillations involved(Unno et al. 1989).

The variability of stars was first explained in terms of stellar pulsations by the

German physicist August Ritter. In 1879 he suggested that radial pulsations, accom-

panied by variations in surface temperature, might be responsible for the variability

of some stars showing periodic variations of light. Pulsation hypothesis was presented

in a quite definite form by Shapley in 1914. This hypothesis was analyzed in detail by

Eddington (1926). His work laid the basis for the theory of adiabatic natural radial

oscillations of gaseous spheres. Stellar oscillations were then analyzed by Rosseland

(1949), Ledoux (1958,1965,1974), Ledoux and Walraven (1958), Ledoux and Whitney

(1961), Cox (1967,1980). Further details about historical and theoretical background

of the subject may be found in many texts (Cox and Giuli 1968, Cox 1980, Unno et al.

1989, Zhevakin 1975, Rosseland 1964, Ledoux 1974, Gautschy and Saio 1995&1996,

Christensen-Dalsgaard and Dziembowski 2000). Also Christensen-Dalsgaard et al.

(1999) present helioseismic studies of the solar interior.

In this study, we are interested in δ-Scuti type stars, which belong to the class of

2



pulsating stars mentioned above. δ-Scuti stars are located in the lower part of the

instability strip in H-R diagram. Their pulsation period is up to a few hours. They

are of spectral type A-F and they are either main sequence (burning hydrogen in their

cores) or early post MS objects (just finished hydrogen in their cores).

They show small or large amplitude variations in their light curves, pulsation

amplitude ranging from milimagnitude to one magnitude, and these variations may

be multiperiodic. From observations and model calculations it is understood that

δ-Scuti stars show radial and nonradial pulsations simultaneously.

Generally, axial rotation is observed in these stars. They have equatorial rotational

velocities such as υsini=50 km/s, where the inclination angle, i is the angle between

the line of sight and rotation axis (for example; if i=30o, υ = 100 km/s). There are

some cases where i is such that υ = 250 km/s. Kırbıyık et al. (2004) studied FG Vir,

providing an analysis of the inclination angle.

From theoretical and observational studies it is known that δ-Scuti stars have

masses around 2 M¯ and their surface temperature, log Teff , ranges from 3.6 to 4.0.

δ-Scuti stars were studied first by Chevalier (1971). Detailed information about

these variable stars was given by Frolov (1975). Breger (1979) has given a review

about these stars. Kurtz (1988) published an observational review on δ-Scuti pulsators

and Ostermann et al. (1991) presented multiside campaign on a specific δ-Scuti star.

Dziembowski (1982), and Dziembowski & Krolikowska (1985) explored nonlinear mode

coupling in oscillating stars. Theoretical aspects of mode identification has also been

given by Pamyatnykh (2003). The problems related to modeling of δ-Scuti stars have

been discussed by Christensen-Dalsgaard (2000), and Kjeldsen (2001). Pulsational

instability domain of δ-Scuti stars has been studied by Pamyathnykh (2000), while

detailed introductory information and a seismological analysis of δ-Scuti stars in the

Pleiades cluster is given by Fox Machado et al. (2006).

However, there are some points about pulsation properties of δ-Scuti stars, which

are still unclear. Actually, it is known that there are many factors that could effect

stellar pulsation such as rotation, magnetic field, tidal effect and relativistic effects

(Matalgah 2004). Extensive studies have been done on the nature of oscillations in

rotating stars by Smeyers and Denis (1971), Hansen and Van Horn (1979), Cox (1980),

Saio (1981), Carroll and Hansen (1982), Unno et al (1989), Dziembowski and Goode

(1992), Strohmayer and Lee (1996), Christensen-Dalsgaard and Dziembowski (2000),
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Pamyathnykh (2003), Reese et al. (2006).

The aim of this work is to study the effect of rotation on the oscillation frequen-

cies. Rotation is treated as a perturbation and is assumed to be uniform. Effects of

magnetic field and viscosity are neglected. Stellar mass elements are considered to

be spherically symmetric. The star is assumed to be in hydrostatic equilibrium and

adiabatic condition is used. We calculated the oscillations up to the second order in

the rotation frequency Ω . We modified and used the oscillation program written in

Fortran by Al-Murad and Kırbıyık in 1993, to calculate oscillation frequencies. Evo-

lutionary models are constructed by N. Kızıloğlu using Ezer’s stellar evolution code

(Ezer and Cameron 1967) that was modified by Yıldız and Kızıloğlu (1997). We com-

puted oscillation frequencies of several models for low spherical harmonic degrees (l

up to 3). We tried to see the effect of rotation on different models with slow and fast

rotation.

Our work consists of five chapters along with two appendices. We summarize a

theoretical background and fundamental properties of nonradial oscillations of stars

in the second chapter, in the third chapter we analyze the effects of rotation on

the oscillation frequencies and in the fourth chapter some model calculations and

corresponding results are presented. Discussion and conclusion is given in the last

chapter. Finally, Appendix A includes the oscillation program that we used, while

Appendix B includes the MATHEMATICA results for some angular integrals which

are numerically calculated.
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CHAPTER 2

SOME THEORETICAL CONSIDERATIONS

RELATED TO STELLAR OSCILLATIONS

To study stellar oscillations we should be familiar with some basic mathematical and

physical concepts. In this chapter, an introduction will be made by discussing some

of these concepts.

2.1 Eulerian and Lagrangian Descriptions

To define a hydrodynamical system, the physical quantities are represented as func-

tions of position −→r and time t. Some of these quantities are the local density ρ(−→r , t),

local pressure P(−→r , t), local temperature T(−→r , t), and the local instantaneous veloc-

ity −→υ (−→r , t), where −→r is the position vector to a given point in space, i.e; point of

observation. Here −→r and t are independent variables. This description corresponds

to what is seen by a stationary observer. It is known as the Eulerian description and

denoted by ∂/∂t (local time derivative). On the other hand, it is often convenient to

use the Lagrangian description, which is also referred as the material (or Stokes) time

derivative and denoted by d/dt. It corresponds to what is seen by the observer moving

with the given fluid element (Cox 1980, Christensen-Dalsgaard & Dziembowski 2000).

The local velocity is determined by the rate of change of position −→r :

−→υ (−→r , t) =
d−→r
dt

. (2.1)

And the relation between two time derivatives is given as (Cox 1980, Christensen-

Dalsgaard & Dziembowski 2000)

d

dt
= (

∂

∂t
)r +

−→∇.
d−→r
dt

=
∂

∂t
+−→υ .

−→∇. (2.2)
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2.2 Basic Hydrodynamical Equations

Since stars can be treated as gaseous fluid, the equations of fluid dynamics, hence the

hydrodynamical equations apply to the stars. In this section; basic hydrodynamical

equations, which originate from the conservation of mass, momentum and energy, will

be shortly summarized. Derivation of the equations may be found in many textbooks

related to fluid mechanics (for details, see Landau and Lifshitz 1987).

Equation of Continuity (Conservation of Mass)

Conservation of mass is usually expressed by the equation of continuity and it states

that the amount of mass that enters a volume element is the same with the amount

leaving the volume.
∂ρ

∂t
+
−→∇.(ρ−→υ ) = 0, (2.3)

where ρ is density. By using the relation (2.2), equation (2.3) can also be written as

dρ

dt
+ ρ

−→∇.−→υ = 0. (2.4)

Equation of Motion (Conservation of Momentum)

For stars, we may ignore internal friction (viscosity) in the gas. Therefore, forces on

a volume of gas consist of surface forces (the pressure on the surface of the volume)

and the body forces. Thus the equation of motion, per unit volume, can be written

as

ρ
d−→υ
dt

= −−→∇P + ρ
−→
f , (2.5)

where P is the pressure and
−→
f is the body force per unit mass. Combining equations

(2.2) and (2.5), we get the equation of motion (Euler equations) as

ρ
∂−→υ
∂t

+ ρ(−→υ .
−→∇)−→υ = −−→∇P + ρ

−→
f . (2.6)

Gravity will be considered as the only body force, since the effect of the magnetic

field is neglected. Gravitational force per unit mass is the gravitational acceleration
−→g , and can be written as

−→g = −−→∇Φ, (2.7)

where Φ is the gravitational potential and satisfies Poisson’s equation

∇2Φ = 4πGρ, (2.8)

6



where G is the gravitational constant.

Thus, equation of motion can be written as

ρ
∂−→υ
∂t

+ ρ(−→υ .
−→∇)−→υ = −−→∇P − ρ

−→∇Φ. (2.9)

And knowing that velocity is the rate of change of position, for a displacement δ−→r
of a mass element, we have

−→υ =
∂

∂t
δ−→r . (2.10)

Energy Equation

Energy equation gives us the relation between P and ρ. In general it can be written

as

dQ

dt
=

dE

dt
+ P

d

dt
(
1
ρ
) =

dE

dt
− P

ρ2

dρ

dt
=

dE

dt
+

P

ρ

−→∇.−→υ , (2.11)

where dQ/dt gives the rate of heat gain or loss per unit mass, and E is the internal

energy per unit mass (Christensen-Dalsgaard & Dziembowski 2000).

Using the adiabatic approximation (i.e. no net heat gain or loss by the oscillating

mass element), this equation turns out to be

dP

dt
=

Γ1P

ρ

dρ

dt
, (2.12)

where

Γ1 = (
∂ ln P

∂ ln ρ
)ad (2.13)

is the adiabatic exponent.

2.2.1 Linearized Equations

Next step is to linearize the equations. Since the amplitude of the pulsations are small,

they may be considered as small perturbations around the equilibrium and hence we

may describe each quantity by adding this small perturbation to the quantity in the

equilibrium state. Thus ;
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ρ = ρ0 + ρ′ (2.14)

P = P0 + P ′ (2.15)

−→υ = −→υ0 +−→υ ′ (2.16)

Φ = Φ0 + Φ′ (2.17)

If we replace these in the nonlinear equations and use the relation between Eulerian

and Lagrangian time derivatives (eqn. (2.2)) we end up with the linearized set of

equations as follows
∂ρ′

∂t
+
−→∇.(ρ0

−→υ ′) = 0, (2.18)

∂−→υ ′

∂t
=

ρ′

ρ2
0

−→∇P − 1
ρ0

−→∇P ′ −−→∇Φ′, (2.19)

P ′

P
= Γ1

ρ′

ρ0
+ δ−→r .(

Γ1

ρ0

−→∇ρ− 1
P

−→∇P ), (2.20)

∇2Φ′ = 4πGρ′. (2.21)

In our calculations we will use Cowling approximation, Φ′=0 , (Cowling 1941), so

that we will treat the problem without taking into account of gravitational potential

perturbation.

2.3 Fundamental Properties of Nonradial Oscillations

In this section we present some basic concepts about the nonradial oscillations of stars.

As described before when a star is oscillating nonradially, some regions of the stellar

surface expand while others contract.

A spherically symmetric star in time independent equilibrium is considered as an

unperturbed state and we think of the oscillations as small perturbations. Hence we

take the perturbations of the physical variables as being proportional to Y m
l (θ, φ)eiσt,

where Y m
l represents the spherical harmonics, θ the colatitude and φ the azimuth

angle in the spherical polar coordinates, σ the angular frequency -which is a function

of n and l-, and t the time. The spherical harmonic degree l represents the number

of border lines by which the stellar surface is divided to oscillate in the opposite

phase(Unno et al. 1989). The azimuthal order m is the number of nodal lines at the
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longitude, while the quantum number n determines the nodal surfaces in the radial

direction(Matalgah 2004). The eigenfrequencies (σ) of a normal mode show (2l+1)-

fold degeneracy depending on the value of m, which takes the values from -l to l.

We shall here note that radial oscillation is a special case of nonradial oscillations

with l = 0.

Two characteristic frequencies are used in order to describe the local vibrational

property. One of them is the Lamb frequency and denoted by Ll

⇒ L2
l =

l(l + 1)c2
s

r2
. (2.22)

The other characteristic frequency is the Brunt-Vaisala frequency, denoted by N

⇒ N2 = g(
d ln P

Γ1dr
− d ln ρ

dr
), (2.23)

where cs is the speed of sound and given as

c2
s =

Γ1P

ρ
. (2.24)

For the oscillations with high frequency (σ2 > L2 and N2), the relative Eulerian

pressure perturbation dominates the relative radial displacement, leaving the excess

pressure to be the main restoring force. In this case, oscillation shows locally the

characteristics of the acoustic wave and the mode that appears is referred as p-mode.

For low frequency oscillations (σ2 < L2 and N2), pressure perturbation is less than

radial displacement, and in this case the restoring force is due mainly to buoyancy

(Unno et al. 1989). This type of oscillation which shows the characteristics of the

gravity wave leads to a mode referred as g-mode to appear. There is also a third

mode referred as fundamental mode (f-mode), which occurs between the p and g

mode regions.

We may represent the oscillation frequency σ in terms of a dimensionless frequency

ω using the relation

ω2 =
σ2R3

GM
. (2.25)

If we plot the so-called propagation diagram, we see the characteristics of the

mentioned frequencies from the center to the surface of the star (e.g., see Figure 4.10).

General properties of the oscillations are characterized by N2 and L2
l as mentioned
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before. As seen in the figure high frequency region is occupied by p-modes, while g

modes lie in the low frequency region which is the interior of the star.

While the radial oscillation has only the spectrum of the pressure mode (p-mode)

or the acoustic (wave) mode (see Figure 4.1), the nonradial oscillation shows the

spectrum of the gravity (wave) mode (g-mode) as well (see Figures 4.10 and 4.16).
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CHAPTER 3

EFFECT OF ROTATION ON THE OSCILLATION

FREQUENCIES

Two additional forces act on the oscillating mass elements in a star which is pulsating

as well as rotating. These are centrifugal force and Coriolis force. Complication is

caused by the nonsphericity, which is a result of the former. Centrifugal force is

proportional to the square of the angular rotation velocity, whereas the Coriolis force

is proportional only to the first power of the velocity. Thus, the Coriolis force can

not be neglected even in a star that is rotating sufficiently slow to neglect centrifugal

force -hence nonsphericity (Cox 1980).

The effect of rotation has been studied theoretically by many authors, some of

which are Simon (1969), Smeyers and Denis (1971), Chlebowski (1978), Saio (1981),

Strohmayer and Lee (1996), and Christensen-Dalsgaard & Dziembowski (2000).

As explained before, the degeneracy in m arises from the rotational symmetry of

the equilibrium structure around an arbitrary axis. Therefore, if a slow rotation or a

weak magnetic field is introduced, the degeneracy is resolved. The degeneracy is lifted

by slow rotation, giving (2l+1) separate eigenfrequencies with equal spacing (Unno et

al. 1989).

We assume uniform rotation in our calculations, in which the equation of motion

is modified as follows (Matalgah 2004);

d−→υ
dt

+ 2(
−→
Ω ×−→υ ) +

−→
Ω × (

−→
Ω ×−→r ) = −−→∇Φ′ +

ρ′

ρ2
0

−→∇P0 − 1
ρ0

−→∇P ′. (3.1)
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3.1 First Order Rotational Effect

To study the first order rotational effect, which is the aim of this section, we use the

equation (3.1) with the first order term in Ω only. Thus;

d−→υ
dt

+ 2(
−→
Ω ×−→υ ) = −−→∇Φ′ +

ρ′

ρ2
0

−→∇P0 − 1
ρ0

−→∇P ′. (3.2)

Generalizing the expansion of the perturbed quantities to rotation as;

f ′ = f ′(r)Y m
l (θ, φ)eiσt, (3.3)

and letting the displacement be along the radius vector in any direction as;

−→
ξ (r, θ, φ; t) = δ−→r (r, θ, φ; t) =

−→
ξ (r)Y m

l (θ, φ)eiσt, (3.4)

where σ is the oscillation frequency in the rotating frame, we have

−→υ =
∂

∂t
δ−→r =

∂

∂t

−→
ξ = (iσ)

−→
ξ (r, θ, φ; t) (3.5)

and

d−→υ
dt

= −σ2−→ξ (r, θ, φ; t). (3.6)

Substituting equations (3.5) and (3.6) in equation (3.2), we get

−σ2−→ξ + 2iσ(
−→
Ω ×−→ξ ) = −−→∇Φ′ +

ρ′

ρ2
0

−→∇P0 − 1
ρ0

−→∇P ′. (3.7)

Now let oscillation frequency σ = σ0 + σ1 in rotating frame, where ’0’ denotes the

oscillation frequency with no rotation and ’1’ denotes the oscillation frequency with

1st order rotation. We have

σ2 = (σ0 + σ1)2 = σ2
0 + 2σ0σ1 + σ2

1 (3.8)

and

−→
ξ =

−→
ξ 0 +

−→
ξ 1. (3.9)

Then, let us expand equation (3.7) up to the first order in rotation as;
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−(σ2
0 + 2σ0σ1 + σ2

1)(
−→
ξ 0 +

−→
ξ 1) + 2i(σ0 + σ1)(

−→
Ω ×−→ξ 0) = −−→∇Φ′ +

ρ′

ρ2
0

−→∇P0 − 1
ρ0

−→∇P ′.

(3.10)

Equating the 1st order perturbed terms in left and right hand sides;

−σ2
0

−→
ξ 1 − 2σ0σ1

−→
ξ 0 + 2iσ0(

−→
Ω ×−→ξ 0) = −−→∇Φ′1 +

ρ′1
ρ2
0

−→∇P0 − 1
ρ0

−→∇P ′
1. (3.11)

To solve this, we write the first order quantities in terms of zeroth order quantities

as;

−→
ξ1 =

∑
an
−→
ξ0n. (3.12)

Applying the similar representation to P1, Φ1 and ρ1, substituting in the equation

(3.11), multiplying both sides with
−→
ξ0
∗ and integrating over the mass, we get σ1, after

some manipulations, as

σ1 =
i
∫

(
−→
Ω ×−→ξ0).

−→
ξ0
∗ρ0r

2dr∫ |−→ξ0 |2ρ0r2dr
(3.13)

where

−→
ξ0 = {ξ0r, ξ0h

∂

∂θ
, ξ0h

1
sinθ

∂

∂φ
}Y m

l (θ, φ)eiσt. (3.14)

After proper integrations equation (3.13) becomes

σ1 = mΩ
∫

[2ξ0rξ0h + ξ2
0h]ρ0r

2dr∫
[ξ2

0r + l(l + 1)ξ2
0h]ρ0r2dr

. (3.15)

Call ∫
[2ξ0rξ0h + ξ2

0h]ρ0r
2dr∫

[ξ2
0r + l(l + 1)ξ2

0h]ρ0r2dr
= C. (3.16)

Thus,

σ1 = mΩC, (3.17)

and

σ = σ0 + mΩC, (3.18)

in rotating frame, while the oscillation frequency in inertial reference frame turns out

to be (Al-Murad 1993)

σ = σ0 + mΩ[1− C]. (3.19)
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To solve these, we define new dimensionless variables following Dziembowski (1971)

as

Y1 =
δr

r
=

ξr

r
, (3.20)

Y2 =
1
rg

(
P ′

ρ0
+ Φ′), (3.21)

Y3 =
1
rg

Φ′, (3.22)

and

Y4 =
1
g

dΦ′

dr
. (3.23)

Using these new variables and combining the four equations to be solved, we have

r
dY1

dr
= (

V

Γ1
−3)Y1+[

l(l + 1)
C1ω2

0

− V

Γ1
]Y2+

V

Γ1
Y3+

2mΩ
σ0

{Y0,1+[
1

C1ω2
0

− σ1

mΩ
l(l + 1)
C1ω2

0

]Y0,2},
(3.24)

r
dY2

dr
= (C1ω

2
0 + rA)Y1 + (1− U − rA)Y2 + rY3 +

2mΩ
σ0

[
σ1

mΩ
C1ω

2
0Y0,1 − Y0,2], (3.25)

r
dY3

dr
= (1− U)Y3 + Y4, (3.26)

r
dY4

dr
= −UrAY1 +

UV

Γ1
Y2 + [l(l + 1)− UV

Γ1
]Y3 − UY4, (3.27)

where

V = −d lnP

d ln r
=

gr

cs
, (3.28)

U =
d lnM

d ln r
=

4πρr3

M(r)
, (3.29)

C1 = (
r

R
)3

Mtotal

M(r)
, (3.30)
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ω2
0 =

σ2R3

GMtotal
, (3.31)

A =
d ln g

dr
− 1

Γ1

d ln P

dr
, (3.32)

cs = (
Γ1P

ρ
)1/2, (3.33)

where cs is the speed of sound and Γ1 is referred as the adiabatic exponent and

given as

Γ1 = (
d ln P

d ln ρ
)ad.. (3.34)

In the equations (3.24)-(3.27), Y0,i (i=1,2,3,4) are variables in nonrotating star,

hence have known solutions, whereas Y1, Y2, Y3, Y4, and σ1 are the unknowns. Hence

we have 4 equations and 5 unknowns.

We shall now introduce the boundary conditions. At the center, i.e. r = 0, (δr/r)

must be finite, while at the surface, i.e. r = R, (δP/P ) must be so. Thus we have the

following conditions.

At the center;

(i) C1ω
2
0Y1 − lY2 +

2mΩ
σ0

C1ω
2
0[

σ1

mΩ
− 1

l
]Y0,1 = 0 (3.35)

and

(ii) lY3 − Y4 = 0. (3.36)

At the surface;

(i) (1− 4 + C1ω
2
0

V
)Y1 + { l(l + 1)

C1ω2
0V

− 1}Y2 + (1− l + 1
V

)Y3

+
2mΩ
σ0V

{(1− σ1

mΩ
C1ω

2
0)Y0,1 + [1− σ1

mΩ
l(l + 1) + C1ω

2
0]

Y0,2

C1ω2
0

} = 0
(3.37)

and

(ii) UY1 + (1 + l)Y3 + Y4 = 0. (3.38)

At this point, to simplify the problem, we use Cowling approximation (Cowling

1941), which states Φ′ = 0. The effect of gravitational potential perturbation (Φ′ 6= 0)

has been studied for both rotating and nonrotating star models by Özel (2003), and

for a specific source V2109 Cyg by Özel et al. (2005).
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When this approximation is employed, our equations to be solved reduce to 2

equations since the variables Y3 and Y4 vanish together with the boundary conditions

involving them.

So we are left with 2 equations and 2 boundary conditions which are equations

(3.24)&(3.25) and (3.35)&(3.37), respectively. The unknowns to be found are Y1, Y2,

and σ1.

In our program the solution is achieved by first assigning a value to ω which is

related to σ, using this value in order to find Y1 and Y2, and then checking whether

the boundary conditions are satisfied. If they are not satisfied, small increments are

added to the initial value step by step until the equations of boundary conditions hold.

In this way we obtain the value of σ up to a certain accuracy by defining a tolerance

value at the beginning to determine up to which digit we want our value to be precise.

In our calculations we usually used a tolerance value of 10−3. This tells the program

when to stop iteration, i.e. when the numerical values are substituted in the equations

and boundary conditions hold up to a certain precision. In the case of a tolerance

value of 10−3 it means that it is enough to find the frequency value precisely up to

the third digit after the decimal point. A version of our oscillation program for an

arbitrary case is given in Appendix A.

3.2 Second Order Rotational Effect

To proceed in second order rotational calculations let us once again state our basic

equations.

Energy equation:

P ′

P0
= Γ1

ρ′

ρ0
+
−→
ξ .(

Γ1

ρ0

−→∇ρ0 − 1
P0

−→∇P0). (3.39)

Poisson’s equation:

∇2Φ′ = 4πGρ′ (3.40)

Continuity equation:

ρ′ +
−→∇.(ρ0

−→
ξ ) = 0 (3.41)

And equation of motion (Matalgah 2004):
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−σ2−→ξ + 2iσ(
−→
Ω ×−→ξ ) +

−→
Ω × (

−→
Ω ×−→r ) = − 1

ρ0

−→∇P ′ − ρ′

ρ2
0

−→∇P0 −−→∇Φ′. (3.42)

Now let us take equation (3.42) and rewrite it as

−σ2−→ξ + 2iσ(
−→
Ω ×−→ξ ) +

−→
Ω × (

−→
Ω ×−→r ) = −−→∇(Φ′ +

P ′

ρ0
)− P ′

ρ2
0

−→∇ρ0 +
ρ′

ρ2
0

−→∇P0. (3.43)

Call

χ = (Φ′ +
P ′

ρ0
). (3.44)

The sum in the paranthesis on the right hand side of equation (3.39) is equal to

Γ1
−→
A , since

−→
A was defined as the convection criterion as

−→
A =

1
ρ0

−→∇ρ0 − 1
Γ1P0

−→∇P0. (3.45)

After some manipulations, our equations turn out to be as follows;

P ′

P0
= Γ1

ρ′

ρ0
+ Γ1

−→
ξ .
−→
A, (3.46)

∇2Φ′ = 4πGρ′, (3.47)

ρ′

ρ0
+
−→
ξ .
−→∇ρ0

ρ0
= −−→∇.

−→
ξ , (3.48)

and

−σ2−→ξ + 2iσ(
−→
Ω ×−→ξ ) +

−→
Ω × (

−→
Ω ×−→r ) = −−→∇χ +

Γ1P0

ρ0
(
−→∇.
−→
ξ )
−→
A, (3.49)

where

σ = σ0 + σ1 + σ2, (3.50)

P ′ = P0 + P1 + P2, (3.51)

ρ′ = ρ0 + ρ1 + ρ2, (3.52)
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Φ′ = Φ0 + Φ1 + Φ2, (3.53)

χ′ = χ0 + χ1 + χ2, (3.54)

−→
ξ =

−→
ξ0 +

−→
ξ1 +

−→
ξ2 . (3.55)

To find
−→
ξ1 , which we will need in our calculations, we use equation (3.49) for the

first order case as

−2σ0σ1
−→
ξ0 − σ2

0

−→
ξ1 = 2iσ0(

−→
Ω ×−→ξ0)−−→∇χ1 +

Γ1P0

ρ0
(
−→∇.
−→
ξ1)
−→
A. (3.56)

For a spherically symmetric case,
−→
A has only r-component;

−→
A = Aêr.So,

−→
ξ1 = −2σ1

σ0

−→
ξ0 +

2i

σ0
(
−→
Ω ×−→ξ0) +

1
σ2

0

−→∇χ1 − Γ1P0

σ2
0ρ0

(
−→∇.
−→
ξ1)Aêr, (3.57)

where

−→
ξ0 = (ξ0r, ξ0h

∂

∂θ
,

ξ0h

sinθ

∂

∂φ
)Y m

l (3.58)

−→
Ω = (Ω cos θ,−Ωsin θ, 0) (3.59)

After some manipulations, we get the components of
−→
ξ1 as

ξ1r = ξ1r(r)Y m
l , (3.60)

ξ1θ = (b1 − 2σ1

σ0
ξ0h)

∂

∂θ
Y m

l +
2mΩ
σ0

ξ0h cot θY m
l , (3.61)

and

ξ1φ = (b1 − 2σ1

σ0
ξ0h)

im

sinθ
Y m

l +
2iΩ
σ0

[ξ0r sin θY m
l + ξ0h cos θ

∂Y m
l

∂θ
], (3.62)

where

b1 =
χ1

σ2
0 r Y m

l

=
χ(r)
σ2

0 r
. (3.63)

Now let us rewrite equation (3.49) keeping only the second order terms;
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− σ2
1

−→
ξ0 − 2σ0σ2

−→
ξ0 − 2σ0σ1

−→
ξ1 − σ2

0

−→
ξ2

+ 2iσ0(
−→
Ω ×−→ξ1) + 2iσ1(

−→
Ω ×−→ξ0) +

−→
Ω(
−→
Ω .−→r )− Ω2−→r = 0.

(3.64)

Taking the dot product of equation (3.65) with (−−→ξ0
∗), integrating over mass and

solving for σ2, we have

σ2 =
σ2

1

2σ0
+

1
J

∫
(
−→
Ω ×−→ξ1).

−→
ξ0
∗dmr +

1
2σ0J

∫
(
−→
Ω .−→r )(

−→
Ω .
−→
ξ0
∗)dmr− Ω2

2σ0J

∫
−→r .
−→
ξ0
∗dmr,

(3.65)

where

J =
∫ −→

ξ0 .
−→
ξ0
∗dmr (3.66)

and

dmr = ρr2drsinθdθdφ (3.67)

σ2 = σ21 + σ22 + σ23 + σ24 (3.68)

σ21 =
σ2

1

2σ0
=

[mΩ(1− C)]2

2σ0
(3.69)

σ22 =
i

J

∫
(
−→
Ω ×−→ξ1).

−→
ξ0
∗dmr (3.70)

σ23 =
1

2σ0J

∫
(
−→
Ω .−→r )(

−→
Ω .
−→
ξ0
∗)dmr (3.71)

σ24 = − Ω2

2σ0J

∫
(−→r .

−→
ξ0
∗)dmr (3.72)

Let us remember the coordinates of
−→
Ω,−→r and

−→
ξ0
∗;

−→
Ω = [Ω(r, θ)cosθ,−Ω(r, θ)sinθ, 0] (3.73)

−→r = (r, 0, 0) (3.74)

−→
ξ0
∗ = (ξ0rY

m∗
l , ξ0h

∂

∂θ
Y m∗

l ,
ξ0h

sinθ

∂

∂φ
Y m∗

l ) (3.75)
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Using (3.8)-(3.10) we have σ23 and σ24 as

σ23 =
Ω2

2σ0J
{
∫

rcos2θξ0rY
m∗
l dmr −

∫
rcosθsinθξ0h

∂

∂θ
Y m∗

l dmr} (3.76)

σ24 = − Ω2

2σ0J

∫
rξ0rY

m∗
l dmr (3.77)

σ23 + σ24 =− Ω2

2σ0J
[
∫

rξ0rρr2dr

∫
(1− cos2θ)Y m∗

l sinθdθdφ

+
∫

rξ0hρr2dr

∫
cosθsinθ

∂

∂θ
Y m∗

l sinθdθdφ]
(3.78)

= − Ω2

2σ0J
{
∫

r3ξ0rρdr

∫
(sinθ−sinθcos2θ)Y m∗

l dθdφ+
∫

r3ξ0hρdr

∫
sin2θcosθ

∂

∂θ
Y m∗

l dθdφ}
(3.79)

The angular integrals above and all the others hereafter are calculated numerically

using MATHEMATICA and the results are given in the Appendix B.

The result of σ23 + σ24 is equal to zero for all (l,m) in consideration (l ≤ 3) except

for (l, m) = (0, 0) and (2,0). For (0,0)

σ23 + σ24 = −2Ω2√π

3σ0J

∫
r3ξ0rρdr, (3.80)

while for (2,0)

σ23 + σ24 = −2Ω2
√

π/5
σ0J

∫
(ξ0h − 1

3
ξ0r)ρr3dr. (3.81)

Now we have σ21, σ23 and σ24. We should next find σ22, which is a little bit more

complicated.

σ22 =
i

J

∫
(
−→
Ω ×−→ξ1).

−→
ξ0
∗dmr =

i

J

∫
Sdmr, (3.82)

where

ξ1 = (ξ1r, ξ1θ, ξ1φ). (3.83)

−→
Ω ×−→ξ1 = (−ξ1φΩsinθ)êr − (ξ1φΩcosθ)êθ + (ξ1θΩcosθ + ξ1rΩsinθ)êφ (3.84)

Then,

S = −ξ1φΩsinθξ0rY
m∗
l −ξ1φΩcosθξ0h

∂

∂θ
Y m∗

l +ξ1θΩcosθ
ξ0h

sinθ

∂

∂φ
Y m∗

l +ξ1rΩξ0h
∂

∂φ
Y m∗

l

(3.85)
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S = ξ1rΩξ0h
∂

∂φ
Y m∗

l + ξ1θΩcosθ
ξ0h

sinθ

∂

∂φ
Y m∗

l − ξ1φΩsinθξ0rY
m∗
l − ξ1φΩcosθξ0h

∂

∂θ
Y m∗

l

(3.86)

Now,

σ22 =
i

J

∫
Sdmr =

i

J

∫
(S1 + S2 + S3 + S4)dmr = σ22,S1 + σ22,S2 + σ22,S3 + σ22,S4 .

(3.87)

Let us remember the expression of spherical harmonics;

Y m
l = (−1)m

√
2l + 1

4π

(l −m)!
(l + m)!

eimφPm
l (cosθ). (3.88)

So we have

S1 = −imξ1rΩξ0hY m∗
l , (3.89)

where

ξ1r = ξ1r(r)Y m
l . (3.90)

Then,

σ22,S1 =
mΩ
J

∫
ξ1r(r)ξ0hρr2dr, (3.91)

where the orthogonality relation of spherical harmonics (Arfken and Weber 1995)

∫
Y m

l Y m∗
l sinθdθdφ = 1 (3.92)

is used.

S2 = −imΩξ0hξ1θcotθY
m∗
l (3.93)

Remember

ξ1θ = (b1 − 2σ1

σ0
ξ0h)

∂

∂θ
Y m

l +
2mΩ
σ0

ξ0hcotθY m
l . (3.94)

Since

σ22,S2 =
i

J

∫
S2dmr, (3.95)

we have

σ22,S2 =
mΩ
J

∫
ξ0h(b1 − 2σ1

σ0
ξ0h)ρr2dr

∫
∂

∂θ
(Y m

l Y m∗
l )cosθdθdφ

+
2(mΩ)2

σ0J

∫
ξ2
0hρr2dr

∫
cot2θ|Y m

l |2sinθdθdφ,

(3.96)
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where the first term will be referred as σ22,S2a , while the second as σ22,S2b
.

S3 = −Ωξ0rξ1φsinθY m∗
l , (3.97)

and

σ22,S3 =
i

J

∫
S3dmr. (3.98)

Remember

ξ1φ = (b1 − 2σ1

σ0
ξ0h)

im

sinθ
Y m

l +
2iΩ
σ0

[ξ0rsinθY m
l + ξ0hcosθ

∂

∂θ
Y m

l ]. (3.99)

We have

σ22,S3 =
mΩ
J

∫
(b1 − 2σ1

σ0
ξ0h)ξ0rρr2dr

+
2Ω2

σ0J

∫
ξ2
0rρr2dr

∫
sin3θY m

l Y m∗
l dθdφ

+
2Ω2

σ0J

∫
ξ0rξ0hρr2dr

∫
cosθsin2θ

∂

∂θ
Y m

l Y m∗
l dθdφ,

(3.100)

where the first, second and third terms will be referred as σ22,S3a , σ22,S3b
and

σ22,S3c , respectively.

S4 = −Ωξ0hξ1φcosθ
∂

∂θ
Y m∗

l and σ22,S4 =
i

J

∫
S4dmr (3.101)

So,

σ22,S4 =
mΩ
J

∫
(b1 − 2σ1

σ0
ξ0h)ξ0hρr2dr

∫
cosθY m

l

∂

∂θ
Y m∗

l dθdφ

+
2Ω2

σ0J

∫
ξ0rξ0hρr2dr

∫
sin2θcosθY m

l

∂

∂θ
Y m∗

l dθdφ

+
2Ω2

σ0J

∫
ξ2
0hρr2dr

∫
cos2θsinθ

∂

∂θ
Y m

l

∂

∂θ
Y m∗

l dθdφ,

(3.102)

where the first, second and third terms will be referred as σ22,S4a , σ22,S4b
and σ22,S4c ,

respectively.

To have σ22 in a better form, we will gather some terms, which have common

variables as;

σ22,S2a+S3a+S4a = −2(mΩ)2(1− C)
σ0J

∫
(ξ2

0h + ξ0hξ0r)ρr2dr +
mΩ
J

∫
b1(ξ0h + ξ0r)ρr2dr,

(3.103)

and
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σ22,S3c+S4b
=

2Ω2

σ0J

∫
ξ0rξ0hρr2dr

∫
sin2θcosθ

∂

∂θ
(Y m

l Y m∗
l )dθdφ. (3.104)

Hence, we finally have σ2 as composed of following terms:

σ21 =
σ2

1

2σ0
=

[mΩ(1− C)]2

2σ0
, (3.105)

σ22,S1 =
mΩ
J

∫
ξ1r(r)ξ0hρr2dr, (3.106)

σ22,S2a+S3a+S4a = −2(mΩ)2(1− C)
σ0J

∫
(ξ2

0h + ξ0hξ0r)ρr2dr +
mΩ
J

∫
b1(ξ0h + ξ0r)ρr2dr,

(3.107)

σ22,S3c+S4b
=

2Ω2

σ0J

∫
ξ0rξ0hρr2dr

∫
sin2θcosθ

∂

∂θ
(Y m

l Y m∗
l )dθdφ, (3.108)

σ22,S3b
=

2Ω2

σ0J

∫
ξ2
0rρr2dr

∫
sin3θY m

l Y m∗
l dθdφ, (3.109)

σ22,S2b
=

2(mΩ)2

σ0J

∫
ξ2
0hρr2dr

∫
cot2θ|Y m

l |2sinθdθdφ, (3.110)

σ22,S4c =
2Ω2

σ0J

∫
ξ2
0hρr2dr

∫
cos2θsinθ

∂

∂θ
Y m

l

∂

∂θ
Y m∗

l dθdφ, (3.111)

σ23 + σ24 = {−2Ω2√π

3σ0J

∫
r3ξ0rρdr, for(l, m) = (0, 0) (3.112)

= {2Ω2
√

π/5
σ0J

∫
(ξ0h +

1
3
ξ0r)ρr3dr, for(l, m) = (2, 0). (3.113)

Once calculating the angular parts of the integrals numerically for all the (l,m)

values of interest (in our case; up to l = 3), we write all the integral terms that

constitute σ2 as multiplication of the angular integral result -if there is an angular

part- with the radial integral part. Each integral term for a given case of different
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(l,m) combination that we want to calculate is introduced in our computer program.

The program for an arbitrary case is given in APPENDIX A. This is the last version

of the program including our modifications, while the original version may be found

in M.S. thesis of Al-Murad (1993). The program was also used and modified by Özel

(2003), and Matalgah (2004).
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CHAPTER 4

SOME MODEL CALCULATIONS AND RESULTS

In this chapter, results of calculations done by using our oscillation program and star

models are presented. To choose suitable models for the observed stars, it was first

attempted to match the observed fundamental frequency of each star to the frequen-

cies calculated using our models. After having various models giving the frequency

in question, the best model to represent the observed star is determined by trying

to match the parameters (like temperature, luminosity, mass and radius) given in

literature, up to a certain precision.

The models that are used for rotating stars have been evolved including rotation

and considering global angular momentum conservation. Our evolutionary models

are constructed by N. Kızıloğlu using the modified version (Yıldız and Kızıloğlu 1997)

of Ezer’s stellar evolution code (Ezer and Cameron 1967). The modification was

made according to the MHD equation of state(Mihalas et al. 1990). OPAL opacity

tables (Iglesias et al. 1992) were applied to the stellar models. The initial chemical

composition used in our models is such that X = 0.698, and Z = 0.019. Other details

about the stellar evolutionary code are described by Yıldız and Kızıloğlu (1997).

To start with, oscillation program is tested using a model without rotation. For

this model star with no rotation, radial fundamental frequency was calculated and

matched to the corresponding observed one. After that a star with slow rotation and

then one with fast rotation were chosen. Results will be presented in this order.

4.1 V350 Peg

V350 Peg (=HIP 115563, HD 220564) has been classified as a δ-Scuti type pulsating

star since its discovery during the Hipparcos mission (ESA 1997). It has a pulsation

period of 0.2012 days and a total pulsation amplitude of 0.05 mag (Vidal-Sainz et al.
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2002, Ekmekçi and Topal 2007) with a minimum visual magnitude of 7.32 (SIMBAD

Astronomical Database). No information about its rotation has been recorded. Some

parameters of this star are given in Table 4.1.

Table 4.1: Parameters of V350 Peg given in literature

V350 Peg in literature Mass Radius Luminosity Teff (K) Freq. (c/d)

(M¯) (R¯) (L¯) (l = 0)

Ekmekçi and Topal 1.7-2 4.3 23.988 6137.6 / 6760.8 6.67332 (F1)

(2007) 4.66181 (F2)

Vidal-Sainz et al.(2002) 6800 (100) 5.668 (F2)

5.840 (F1)

The given pulsation period (0.2012 days) leads to a frequency of 4.97 c/d. None

of the authors quoted above had confirmed the main period given in the Hipparcos

Catalogue. Instead, Vidal-Sainz et al. identified two frequencies -of almost similar

amplitude-,the ratio of which indicates nonradial pulsation for at least one of the

corresponding modes (2002). They achieved the frequencies using the observational

data of 31 nights between July 1997 and January 1998, and 4 nights in Novenber

and December 2001. Ekmekçi and Topal had also identified two frequencies (by using

different temperatures), which are not in agreement with that of the former authors, as

possible fundamental frequencies (2007). They used the observational data obtained

between August 2005-December 2005.

It has been attempted to obtain each frequency given by the authors quoted above.

It has not been concluded on one certain model but the possible models that might

represent the star, i.e. the models with the closest values to the given parameters and

frequency range are presented in Table 4.2 along with the corresponding parameters.

As can be seen in Table 4.2, the proposed eligible models are in a mass range

1.9-2 M¯. It was not possible to match both the frequency and the parameters for

models with smaller masses. And all the models that are proposed belong to the

region towards the end of the Main Sequence because of their quite low core hydrogen

abundance. These results are in agreement with the results of Ekmekçi and Topal.

They proposed that V350 Peg is located between the evolutionary tracks of 1.7 and
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Table 4.2: Frequency results of the suitable models, calculated by our oscillation

program with no rotation

Model Mass Radius Luminosity Teff (K) ρc/ρmean
§1 Xc

§2 Freq. (c/d)

Number (M¯) (R¯) (L¯) (l = 0, f)

652 1.9 3.400792 24.45154 6965.300 26658.0 ≈ 0 6.67

716 1.9 3.693506 24.20325 6666.568 50903.3 ≈ 0 5.851

717 1.9 3.701962 24.19243 6658.206 52046.9 ≈ 0 5.829

724 1.9 3.762146 24.09741 6598.239 58779.9 ≈ 0 5.68

725 1.9 3.770911 24.08478 6589.702 59829.3 ≈ 0 5.659

771 1.9 4.146194 22.87361 6203.862 125134.7 ≈ 0 4.66

965 2.0 3.769423 29.63301 6941.603 139058.3 ≈ 0 5.848

979 2.0 3.840460 29.49271 6868.950 53110.6 ≈ 0 5.667

1030 2.0 4.324073 28.07006 6393.926 119606.7 ≈ 0 4.674

1031 2.0 4.333165 28.02848 6384.848 121313.3 ≈ 0 4.655

§1 Ratio of the core density to the mean density of the star

§2 Central Hydrogen abundance

2 M¯, but nearer to that of 2 M¯ with the point close to the upper end of the

main sequence or may be at the beginning of the subgiant branch to be classified as

F2 IV-V (Ekmekçi and Topal 2007).

The propagation diagram of one of the selected models can be found in Figure 4.1.

Lamb frequency does not exist in the diagram since l=0.

While trying to find the appropriate models in the given frequency range, several

models have been calculated at different evolutionary stages of 1.9 and 2 M¯ stars

without rotation. The frequency trend is shown in Figure 4.2. It is obvious from

Figure 4.2 that as stellar mass increases, oscillation frequency corresponding to the

same temperature gets higher. The lines corresponding to fundamental frequency,

first and second overtones are not equidistant as the temperature varies. This is a

precursor of the difficulty in the mode identification as the temperature decreases,

which will be encountered again in the following models.
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Figure 4.1: The Propagation Diagram for model 724 (1.9 M¯ star, Xc≈0), plotted for

l=0 in the absence of rotation
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Figure 4.2: Frequency change along some part of the evolutionary track of 1.9 and 2

M¯ stars in the absence of rotation
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Luminosity versus effective temperature belonging to the series of models that are

calculated for 1.9 M¯ star is plotted in Figure 4.3.
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Figure 4.3: Change in luminosity and effective temperature with evolution (1.9 M¯)

Only part of the track, that includes the models we used, is presented.

In order to see where our models are located in the Hertzsprung-Russell (HR)

diagram, the track of 1.9 M¯ star, obtained by using our models, is placed onto the

HR diagram presented by Maeder and Meynet (1988) (Figure 4.4).

Figure 4.4: Evolutionary tracks of low mass stars in the HR diagram as presented by

Maeder and Meynet (1988) and 1.9 M¯ track added using the calculated models
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It seems that the track corresponding to the 1.9 M¯ exactly corresponds to the

expected region. By combining with the result presented in Figure 4.2, it can be

concluded that as the star evolves, the pulsation frequency decreases.

Since all the results have been in accordance with our expectations, calculations

are carried on by selecting another star (CC And) with slow rotation and analyzing

the rotational effect on the oscillation frequencies.

4.2 CC And

CC And (=HIP3432) is a δ Scuti type variable star with a spectral type F3IV-V. It

was discovered in 1952 due to its light variation by Lindblad and Eggen (Lindblad

and Eggen 1953). It has a rotational speed of υsini=20 km/s (Lopez de Coca et al.

1990) which categorizes this star as a slow rotator. Quite a few observed oscillation

frequencies have been reported in literature. All frequencies have been identified as

nonradial oscillations by Fu and Jiang (1995), however some of the frequencies were

recently identified as radial oscillations by Ekmekçi and Topal (2007). Fu and Jiang

used the observational data obtained between 25 September and 20 November 1984,

while Ekmekçi and Topal used tha data obtained in the period August-December 2005.

Visual magnitude V of this source is 9.39 with ∆V=0.240 (Solano and Fernley 1997),

and the pulsation period was given as 0.1249 days in many papers. Those mentioned

and some other parameters of this star are given in Table 4.3.

Table 4.3: Parameters of CC And given in literature

CC And in literature Rot. Vel. Spectral Period Mass Radius Luminosity Q §1 Teff

(υsini) type (days) (M¯) (R¯) (L¯) (days) (K)

(km/s)

Breger (1979) F3 IV 0.125

Halprin and Moon (1983) F3 IV 0.125

Lopez de Coca et al. (1990) 20 F3 IV 0.1249

Claret et al. (1990) 0.1249 1.98 3.04 25.1189

(Mbol=1.25)

Rodriguez et al. (1994) 20 F3 IV-V 0.1249

Fu and Jiang (1995) 20 F3 IV-V 0.1249 1.98 3.04 25.1189 0.0331 7400

(Mbol=1.25)

Solano and Fernley (1997) F3 IV-V 0.1249

Ekmekçi and Topal ∼1.7 3.04 25.1189 0.033 7413

(2007) (Mbol=1.25)

∼1.7 3.04 25.1189 0.031 6918.3

(Mbol=1.25)

§1 Q = P
√

<ρ∗>
<ρ¯>

, where P is the period in days.
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In Tables 4.4 and 4.5, observed frequencies presented by the authors quoted above

are given.

The pulsation frequency of the star (8.006 c/d, calculated by taking the reciprocal

of the given pulsation period) is considered as the radial fundamental frequency. So,

our attempt was to obtain this value, in the case of l=0. Trying to match both the

parameters given in Table 4.3 and the fundamental frequency up to a certain precision,

the model which represents the star best is chosen.

Parameters of the chosen model can be seen in Table 4.6 and the results corre-

sponding to l=0 are shown in Table 4.7.

Table 4.4: Observed frequencies given by Fu and Jiang (1995)

Frequency Q §1 Identification

(cycle/day) (days)

F1 8.005890 0.0331 l=3,f,m=0

F2 7.814795 0.0339 l=3,f,m=2

F3 8.101026 0.0327 l=3,f,m=-1

F4 13.34628 0.0198 l=3,p2 or radial 2H

F5 7.902449 0.0335 l=3,f,m=1

F6 16.01199 0.0165 l=3,p3,m=0

F7 15.82091 0.0167 l=3,p3,m=2

§1 Q = P
√

<ρ∗>
<ρ¯>

, where P is the period in days.

Table 4.5: Observed frequencies given by Ekmekçi and Topal (2007)

Frequency Q §1 Identification

(cycle/day) (days)

F1 8.00576 0.031 Fundamental

F2 8.81625 0.028

F3 6.84994 0.036

F4 6.56455 0.038

F5 16.88150 0.015

§1 Q = P
√

<ρ∗>
<ρ¯>

, where P is the period in days.
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Table 4.6: Parameters of the selected model for CC And

Mass Radius Luminosity Teff (K) ρc/ρmean
§1 Xc

§2 Rot. Vel. §3

(M¯) (R¯) (L¯) (km/s)

1.93 3.040220 25.80512 7466.674 9249.00 ≈ 0 21.3341994

§1 Ratio of the core density to the mean density of the star

§2 Central Hydrogen abundance

§3 Equatorial rotational velocity, υ=υsini, with the inclination angle i=90o

Table 4.7: Frequency results for l=0 calculated using the selected model for CC And

Mode Frequency Q §1

(cycle/day) (days)

f 8.005 0.03274

p1 10.36 0.02530

p2 12.96 0.02023

§1 Q = P
√

<ρ∗>
<ρ¯>

, where P is the period in days.

After achieving the fundamental frequency (up to a certain precision) by simultane-

ously matching the parameters (letting an error of 1% to 8% -depending on the variety

of the given values- for the effective temperature and around 3% for the luminosity)

we ended up with a series of models with a mass of ≥ 1.9 M¯. We then calculated the

other frequencies belonging to the low degree spherical harmonics (l ≤3). Our main

purpose was to see how much effect slow rotation has on oscillation frequencies. We

also tried to see whether we could obtain the observed frequencies. We finally selected

the model with 1.93 M¯ since we could match many of the observed frequencies. Some

results of our calculations for l=1 can be seen in Table 4.8.

In Figure 4.5 the splitting in the frequency of the selected model for l=1 can be

seen. Splitting for l=1 of individual modes is shown in Figure 4.6 in large scale.

It is seen that for a rotational velocity around 20 km/s, contribution of the second

order rotational effect to the change in frequency is not large enough to be taken into

account. Frequency splitting between consecutive m values is around 0.15 c/d, while

only around 15% of this value is the contribution of the second order rotational effect.
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Table 4.8: Several frequency results of the selected model for CC And (l=1)

m Freq. (c/d) Freq.1 (c/d) Freq.2 (c/d) Freq. Q §1 Np
§2 Ng

§3 esti-

(without (1st order rot. (1st & 2nd order ratio (days) mated

rotation) effect added) rot. effect added) (Freq.2/Freq.1) mode

-1 20.1185 20.0096 20.0051 0.99978 0.0131 5 6 g1

0 20.1185 20.1185 20.1191 1.00003 0.01303 5 6 g1

1 20.1185 20.2274 20.2367 1.00046 0.01295 5 6 g1

-1 21.5046 21.4185 21.3825 0.99832 0.01226 5 5 f

0 21.5046 21.5046 21.505 1.00002 0.01219 5 5 f

1 21.5046 21.5907 21.6289 1.00177 0.01212 5 5 f

-1 22.6896 22.5745 22.5713 0.99986 0.01161 6 5 p1

0 22.6896 22.6896 22.6901 1.00002 0.01155 6 5 p1

1 22.6896 22.8047 22.8123 1.00033 0.01149 6 5 p1

-1 25.9699 25.8782 25.849 0.99887 0.01014 7 4 p3

0 25.9699 25.9699 25.9703 1.00002 0.01009 7 4 p3

1 25.9699 26.0616 26.0932 1.00121 0.01004 7 4 p3

-1 28.1602 28.0345 28.0323 0.99992 0.00935 8 4 p4

0 28.1602 28.1602 28.1607 1.00002 0.00931 8 4 p4

1 28.1602 28.2859 28.2922 1.00022 0.00926 8 4 p4

-1 31.4993 31.3957 31.3738 0.9993 0.00835 9 3 p6

0 31.4993 31.4993 31.4997 1.00001 0.00832 9 3 p6

1 31.4993 31.6029 31.6274 1.00078 0.00829 9 3 p6

-1 34.0738 33.944 33.9428 0.99996 0.00772 10 3 p7

0 34.0738 34.0738 34.0743 1.00001 0.00769 10 3 p7

1 34.0738 34.2037 34.2085 1.00014 0.00766 10 3 p7

§1 Q = P
√

<ρ∗>
<ρ¯>

, where P is the period in days.

§2 Number of p nodes from the center to the surface of the star

§3 Number of g nodes from the center to the surface of the star
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Figure 4.6: Frequency splitting for several selected modes of l=1

Calculated frequencies for the case of l=2 are presented in Table 4.9, while split-

ting for several modes of l=2 is shown in Figure 4.7, and in a larger scale in Figure 4.8.
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Table 4.9: Several frequency results of the selected model for CC And (l=2)

m Freq. (c/d) Freq.1 (c/d) Freq.2 (c/d) Freq. Q §1 Np
§2 Ng

§3 esti-

(without (1st order rot. (1st & 2nd order ratio (days) mated

rotation) effect added) rot. effect added) (Freq.2/Freq.1) mode

-2 23.6741 23.4307 23.4167 0.9994 0.01119 6 8 g2

-1 23.6741 23.5524 23.5447 0.99967 0.01113 6 8 g2

0 23.6741 23.6741 23.6846 1.00044 0.01107 6 8 g2

1 23.6741 23.7957 23.8071 1.00048 0.01101 6 8 g2

2 23.6741 23.9174 23.9415 1.00101 0.01095 6 8 g2

-2 26.4007 26.155 26.1421 0.99951 0.01003 7 7 f

-1 26.4007 26.2779 26.2707 0.99973 0.00998 7 7 f

0 26.4007 26.4007 26.4001 0.99998 0.00993 7 7 f

1 26.4007 26.5236 26.534 1.00039 0.00988 7 7 f

2 26.4007 26.6464 26.6687 1.00084 0.00983 7 7 f

-2 29.7323 29.4944 29.4709 0.9992 0.00889 8 6 p2

-1 29.7323 29.6133 29.6011 0.99959 0.00885 8 6 p2

0 29.7323 29.7323 29.7422 1.00033 0.00881 8 6 p2

1 29.7323 29.8513 29.8662 1.0005 0.00878 8 6 p2

2 29.7323 29.9702 30.001 1.00103 0.00874 8 6 p2

-2 32.0668 31.8002 31.8053 1.00016 0.00824 9 6 p3

-1 32.0668 31.9335 31.9352 1.00005 0.00821 9 6 p3

0 32.0668 32.0668 32.0655 0.99996 0.00817 9 6 p3

1 32.0668 32.2001 32.2020 1.00006 0.00814 9 6 p3

2 32.0668 32.3334 32.3389 1.00017 0.0081 9 6 p3

-2 35.0661 34.7986 34.8029 1.00012 0.00753 10 5 p5

-1 35.0661 34.9323 34.9337 1.00004 0.0075 10 5 p5

0 35.0661 35.0661 35.0697 1.0001 0.00747 10 5 p5

1 35.0661 35.1999 35.2017 1.00005 0.00745 10 5 p5

2 35.0661 35.3336 35.3391 1.00016 0.00742 10 5 p5

§1 Q = P
√

<ρ∗>
<ρ¯>

, where P is the period in days.

§2 Number of p nodes from the center to the surface of the star

§3 Number of g nodes from the center to the surface of the star
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In this case it is seen again that the splitting between the consecutive m values is

around 0.15 c/d, with a second order rotational contribution of about 15%. A similar

conclusion is reached from the analysis of l=3 (Table 4.10, Figure 4.9).
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Figure 4.9: Frequency splitting of several modes of the selected model for CC And

(l = 3)

In Figure 4.10 the propagation diagram is plotted for l=1, 2 and 3.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0,01

0,1

1

10

100

1000

10000

100000

 N2

 L2
1

 L2
2

 L2
3

 

 w
2

r/R

Figure 4.10: The Propagation Diagram for 1.93 M¯ star, Xc≈0, υsini ' 21.3 km/s
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Table 4.10: Several frequency results of the selected model for CC And (l=3)

m Freq. (c/d) Freq.1 (c/d) Freq.2 (c/d) Freq. Q §1 Np
§2 Ng

§3 esti-

(without (1st order rot. (1st & 2nd order ratio (days) mated

rotation) effect added) rot. effect added) (Freq.2/Freq.1) mode

-3 24.0584 23.6581 23.6725 1.00061 0.01107 6 8 g2

-2 24.0584 23.7915 23.7983 1.00029 0.01101 6 8 g2

-1 24.0584 23.9249 23.9272 1.0001 0.01095 6 8 g2

0 24.0584 24.0584 24.0591 1.00003 0.01089 6 8 g2

1 24.0584 24.1918 24.1941 1.0001 0.01083 6 8 g2

2 24.0584 24.3252 24.332 1.00028 0.01077 6 8 g2

3 24.0584 24.4586 24.4729 1.00058 0.01071 6 8 g2

-3 24.9908 24.6065 24.5957 0.99956 0.01066 7 7 f

-2 24.9908 24.7346 24.7253 0.99962 0.0106 7 7 f

-1 24.9908 24.8627 24.8573 0.99978 0.01054 7 7 f

0 24.9908 24.9908 24.9915 1.00003 0.01049 7 7 f

1 24.9908 25.1189 25.1281 1.00037 0.01043 7 7 f

2 24.9908 25.2471 25.267 1.00079 0.01037 7 7 f

3 24.9908 25.3752 25.4083 1.0013 0.01032 7 7 f

-3 26.9315 26.5296 26.5425 1.00049 0.00987 7 6 p1

-2 26.9315 26.6636 26.6697 1.00023 0.00983 7 6 p1

-1 26.9315 26.7975 26.7996 1.00008 0.00978 7 6 p1

0 26.9315 26.9315 26.9322 1.00003 0.00973 7 6 p1

1 26.9315 27.0655 27.0676 1.00008 0.00968 7 6 p1

2 26.9315 27.1995 27.2056 1.00022 0.00963 7 6 p1

3 26.9315 27.3335 27.3464 1.00047 0.00958 7 6 p1

-3 35.8967 35.4904 35.4999 1.00027 0.00738 10 5 p5

-2 35.8967 35.6258 35.6303 1.00013 0.00736 10 5 p5

-1 35.8967 35.7613 35.7627 1.00004 0.00733 10 5 p5

0 35.8967 35.8967 35.8972 1.00001 0.0073 10 5 p5

1 35.8967 36.0322 36.0339 1.00005 0.00727 10 5 p5

2 35.8967 36.1676 36.1726 1.00014 0.00725 10 5 p5

3 35.8967 36.3031 36.3134 1.00028 0.00722 10 5 p5

§1 Q = P
√

<ρ∗>
<ρ¯>

, where P is the period in days.

§2 Number of p nodes from the center to the surface of the star

§3 Number of g nodes from the center to the surface of the star
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In Figure 4.11 we show the correspondence of our results which are in the range

of observed frequencies.
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Figure 4.11: Calculated frequencies of our model for CC And, corresponding to the

range of observed frequencies

(The results are obtained by using the model with a mass of 1.93 M¯ and a rotation

velocity of 21.3km/s. The results are given for l=0,1,2 and 3. The splitted

frequencies according to the azimuthal order m is also shown. The solid lines f1-f7

correspond to the observational frequencies given by Fu and Jiang (1995) while the

dotted lines F1-F5 correspond to the observational frequencies given by Ekmekci and

Topal (2007), which were presented in Tables 4.4 and 4.5.)

It is clear that the first frequency of each group, which are very close to each

other, agrees with our calculated fundamental frequency. Other frequencies may also

be considered to match several calculated frequencies. As the spherical harmonic

degree l gets higher, there is an increase in the number of calculated frequencies in the

same frequency range. An important remark is that mode identification may not be

completely reliable and that is why the expression of ”estimated modes” is used. Our
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program determines the modes using the number of p and g nodes. One is referred

as p-mode if there is a larger number of p nodes than g nodes and as g-mode in

the opposite case. For that matter, number of p and g nodes, which are reliable are

also given. Frequency results which are in the observed frequency range, are mostly

estimated as g modes by the program, but in this case, since these frequencies are

observed, another phenomenon like ”avoided crossing” (Aizenman et al., 1977) must

have occurred so that the nature of p and g modes may change and one mode may

show the properties of the other mode. Another reason for the g modes to be observed

may be that; each estimated mode is not pure g or pure p mode because of having

nodes both in g and in p region.

At this point, sticking to our main purpose, which is to investigate the rotational

effect on the oscillation frequencies, we propose that it may be sufficient to include

the effect of slow rotation up to the first order only, since the second order rotational

effect is not very effective on the oscillation frequencies. In the next section, second

order rotational effect will be analyzed for the fast rotating variable star BS Tuc.

4.3 Bs Tuc

Bs Tuc (=HD6870) is listed as a δ-Scuti type variable star by Michel Breger (1979).

It was then classified as λ Bootis star (one of the δ Scuti subgroups) by Rodriguez

and Breger (2001). Its rotational speed is given as υsini=130 km/s (Lopez de Coca et

al. 1990). The pulsation period is reported as 0.065 days which turns out to be 15.38

cycles/day. Visual magnitude V of this variable is 7.49 with ∆V=0.02 (Rodriguez and

Breger 2001). The parameters of this star is listed in Table 4.11.

To start with; a model is selected, which has the closest frequency value to the

fundamental frequency and at the same time it was attempted to match the other

parameters. The most appropriate model is presented in Table 4.12.

The frequency results of this model calculated for l=0 can be seen in Table 4.13,

while calculated frequencies for l=1 and 2 are listed in Tables 4.14 and 4.15, respec-

tively.

In Figure 4.12, the rotational effect on the oscillation frequencies for low spherical

harmonic degrees l=1 and l=2 are plotted.
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Table 4.11: Parameters of BS Tuc given in literature.

Bs Tuc in literature Rot. Vel. Spectral Period Teff (K) Mbol
§1 Q §2

(υ sin i) type (days) (days)

(km/s)

Breger (1979) A5 III 0.065

Halprin and Moon (1983) A5 III 0.065

Tsvetkov (1985) 0.065 7744.62 1.98 0.0327

(lum.=12.82L¯)

Lopez de Coca et al. (1990) 130 A5 III 0.065

Rodriguez et al. (1994) 130 A5 III 0.065

§1 Bolometric magnitude

§2 Q = P
√

<ρ∗>
<ρ¯>

, where P is the period in days.

Table 4.12: Parameters of the selected model for BS Tuc

Mass Radius Luminosity Teff (K) ρc/ρmean
§1 Xc

§2 Rot. Vel. §3

(M¯) (R¯) (L¯) (km/s)

1.8 1.93 12.185 7766.174 216.18 0.4501 132.763712

§1 Ratio of the core density to the mean density of the star

§2 Central Hydrogen abundance

§3 Equatorial rotational velocity, υ=υsini, with the inclination angle i=90o

Table 4.13: Frequency results for l=0 calculated using the selected model for BS Tuc

Mode Frequency Q §1

(cycle/days) (days)

f 15.34 0.03294

p1 19.52 0.02561

p2 24.02 0.02082

§1 Q = P
√

<ρ∗>
<ρ¯>

, where P is the period in days.
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Figure 4.12: Rotational splitting for various modes

Results belong to 1.8 M¯ star, with Teff'7766K and rotational velocity υsini '
132.8 km/s. Figure 4.12.a corresponds to the results for l=1, while Figure 4.12.b

corresponds to the results for l=2. Frequencies calculated in the absence of rotation

for the same model are shown closest to the lower frequency axis, with the first and

second order rotational effect added respectively upwards.
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In both Figures 4.12.a and 4.12.b the rather symmetric splitting of the frequencies

is seen when the rotational effect is considered up to first order in angular frequency

Ω, (effect of Coriolis force). When the Centrifugal force effect (contribution from

Ω2) is also taken into account, the asymmetry in the splitting is conspicious for both

harmonic degrees.

As can be seen from the Figure 4.12.a , splitting in the acoustic modes are larger

than that of gravity modes, for low spherical harmonic degree l=1. This is because

of the relatively large Ledoux constant, C for gravity modes, however, for acoustic

modes, C is small (Pamyatnykh 2003). C gets smaller for acoustic modes, because

amplitude of the radial displacement vector ξ0r increases towards the surface (See

equation 3.16).

As the spherical harmonic degree increases, the frequencies of different modes get

closer to each other, hence it gets harder to identify the mode. In Figures 4.14 and

4.15, larger scaled graphs can be seen, which show the splitting in each mode for l=2

separately. Frequency results of several modes for l=3 are listed in Table 4.16, and

plotted in Figure 4.16.

And in Figure 4.13, the propagation diagram is plotted for l=1, 2 and 3.
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Figure 4.13: The Propagation Diagram for 1.8 M¯ star, Xc=0.45, l=1, 2, 3 and

rotational velocity≈132.8 km/s
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Table 4.14: Calculated frequencies of the selected model for BS Tuc (l=1)

m Freq. (c/d) Freq.1 (c/d) Freq.2 (c/d) Freq. Q §1 Np
§2 Ng

§3 esti-

(without (1st order rot. (1st & 2nd order ratio (days) mated

rotation) effect added) rot. effect added) (Freq.2/Freq.1) mode

-1 7.91967 7.14765 7.72015 1.0801 0.06476 0 2 g2

0 7.91967 7.91967 8.02565 1.01338 0.06229 0 2 g2

1 7.91967 8.69168 8.60507 0.99004 0.0581 0 2 g2

-1 11.5731 10.7926 11.1451 1.03266 0.04486 0 1 g1

0 11.5731 11.5731 11.6464 1.00633 0.04293 0 1 g1

1 11.5731 12.3536 12.3898 1.00293 0.04035 0 1 g1

-1 15.5212 14.185 14.6096 1.02993 0.03422 1 1 f

0 15.5212 15.5212 15.6148 1.00603 0.03202 1 1 f

1 15.5212 16.8574 17.2551 1.02359 0.02897 1 1 f

-1 19.7878 18.4749 18.8407 1.0198 0.02653 1 0 p1

0 19.7878 19.7878 19.8599 1.00364 0.02517 1 0 p1

1 19.7878 21.1006 21.3705 1.01279 0.02339 1 0 p1

-1 23.6715 22.5902 22.6790 1.00393 0.02204 2 0 p2

0 23.6715 23.6715 23.7212 1.0021 0.02108 2 0 p2

1 23.6715 24.7529 25.0836 1.01336 0.01993 2 0 p2

-1 27.3063 26.2865 26.2342 0.99801 0.01906 3 0 p3

0 27.3063 27.3063 27.3469 1.00149 0.01828 3 0 p3

1 27.3063 28.3261 28.7152 1.01374 0.01741 3 0 p3

-1 31.7617 30.5965 30.6220 1.00083 0.01633 4 0 p4

0 31.7617 31.7617 31.8016 1.00126 0.01572 4 0 p4

1 31.7617 32.9269 33.2368 1.00941 0.01504 4 0 p4

-1 36.6334 35.3913 35.4589 1.00191 0.0141 5 0 p5

0 36.6334 36.6334 36.6703 1.00101 0.01363 5 0 p5

1 36.6334 37.8755 38.1237 1.00655 0.01311 5 0 p5

-1 41.54151 40.2630 40.3419 1.00196 0.01239 6 0 p6

0 41.5415 41.5415 41.575 1.00081 0.01202 6 0 p6

1 41.5415 42.8200 43.0309 1.00493 0.01162 6 0 p6

§1 Q = P
√

<ρ∗>
<ρ¯>

, where P is the period in days.

§2 Number of p nodes from the center to the surface of the star

§3 Number of g nodes from the center to the surface of the star
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Table 4.15: Calculated frequencies of the selected model for BS Tuc (l=2)

m Freq. (c/d) Freq.1 (c/d) Freq.2 (c/d) Freq. Q §1 Np
§2 Ng

§3 esti-

(without (1st order rot. (1st & 2nd order ratio (days) mated

rotation) effect added) rot. effect added) (Freq.2/Freq.1) mode

-2 12.2626 9.9605 10.9980 1.10416 0.04546 1 2 g1

-1 12.2626 11.1115 11.5130 1.03613 0.04342 1 2 g1

0 12.2626 12.2626 12.3641 1.00828 0.04043 1 2 g1

1 12.2626 13.4136 13.6376 1.0167 0.03666 1 2 g1

2 12.2626 14.5647 15.2471 1.04685 0.03279 1 2 g1

-2 15.1275 12.5729 13.6732 1.08751 0.03656 1 1 f

-1 15.1275 13.8502 14.2328 1.02762 0.03513 1 1 f

0 15.1275 15.1275 15.2342 1.00705 0.03282 1 1 f

1 15.1275 16.4048 16.6935 1.0176 0.02995 1 1 f

2 15.1275 17.6821 18.5946 1.05161 0.02686 1 1 f

-2 20.4736 17.7188 18.6309 1.05148 0.02683 1 0 p1

-1 20.4736 19.0962 19.3977 1.01579 0.02577 1 0 p1

0 20.4736 20.4736 20.5874 1.00556 0.02428 1 0 p1

1 20.4736 21.8510 22.1185 1.01224 0.0226 1 0 p1

2 20.4736 23.2284 24.0724 1.03633 0.02077 1 0 p1

-2 24.3923 21.8392 22.4884 1.02973 0.02223 2 0 p2

-1 24.3923 23.1158 23.3316 1.00934 0.02143 2 0 p2

0 24.3923 24.3923 24.4698 1.00318 0.02043 2 0 p2

1 24.3923 25.6689 25.8789 1.00818 0.01932 2 0 p2

2 24.3923 26.9454 27.5830 1.02366 0.01812 2 0 p2

-2 28.6904 26.2442 26.6414 1.01513 0.01877 3 0 p3

-1 28.6904 27.4673 27.5843 1.00426 0.01812 3 0 p3

0 28.6904 28.6904 28.7491 1.00205 0.01739 3 0 p3

1 28.6904 29.9136 30.1327 1.00732 0.01659 3 0 p3

2 28.6904 31.1367 31.7381 1.01931 0.01575 3 0 p3

-2 33.3899 30.9105 31.1936 1.00916 0.01603 4 0 p4

-1 33.3899 32.1502 32.2195 1.00216 0.01552 4 0 p4

0 33.3899 33.3899 33.439 1.00147 0.01495 4 0 p4

1 33.3899 34.6297 34.8547 1.0065 0.01434 4 0 p4

2 33.3899 35.8694 36.464 1.01658 0.01371 4 0 p4

§1 Q = P
√

<ρ∗>
<ρ¯>

, where P is the period in days.

§2 Number of p nodes from the center to the surface of the star

§3 Number of g nodes from the center to the surface of the star
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Figure 4.14: Large scale illustration for some of the modes shown in Figure 4.12.b
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Figure 4.15: Rotational splitting of some acoustic modes for l=2 calculated by using

the same model presented in Figure 4.12.b
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Table 4.16: Several calculated frequencies of the selected model for BS Tuc (l=3)

m Freq. (c/d) Freq.1 (c/d) Freq.2 (c/d) Freq. Q §1 Np
§2 Ng

§3 esti-

(without (1st order rot. (1st & 2nd order ratio (days) mated

rotation) effect added) rot. effect added) (Freq.2/Freq.1) mode

-3 12.5579 8.78328 11.1699 1.27172 0.04476 1 2 g1

-2 12.5579 10.0415 11.2147 1.11684 0.04458 1 2 g1

-1 12.5579 11.2997 11.7233 1.03749 0.04264 1 2 g1

0 12.5579 12.5579 12.6958 1.01098 0.03938 1 2 g1

1 12.5579 13.816 14.1323 1.02289 0.03538 1 2 g1

2 12.5579 15.0742 16.0326 1.06358 0.03118 1 2 g1

3 12.5579 16.3324 18.3967 1.12639 0.02718 1 2 g1

-3 14.6198 10.9408 13.032 1.19114 0.03836 1 1 f

-2 14.6198 12.1672 13.2025 1.08509 0.03787 1 1 f

-1 14.6198 13.3935 13.7707 1.02816 0.0363 1 1 f

0 14.6198 14.6198 14.7368 1.008 0.03392 1 1 f

1 14.6198 15.8461 16.1006 1.01606 0.03105 1 1 f

2 14.6198 17.0725 17.8621 1.04625 0.02799 1 1 f

3 14.6198 18.2988 20.0215 1.09414 0.02497 1 1 f

-3 24.8449 20.9322 22.3129 1.06596 0.02241 2 0 p2

-2 24.8449 22.2364 22.9008 1.02988 0.02183 2 0 p2

-1 24.8449 23.5407 23.7685 1.00968 0.02103 2 0 p2

0 24.8449 24.8449 24.916 1.00286 0.02006 2 0 p2

1 24.8449 26.1491 26.3432 1.00742 0.01898 2 0 p2

2 24.8449 27.4533 28.0502 1.02174 0.01782 2 0 p2

3 24.8449 28.7576 30.037 1.04449 0.01664 2 0 p2

-3 39,4877 35,6 36,3335 1,0206 0,01376 5 0 p5

-2 39,4877 36,8959 37,2272 1,00898 0,01343 5 0 p5

-1 39,4877 38,1918 38,2934 1,00266 0,01306 5 0 p5

0 39,4877 39,4877 39,5323 1,00113 0,01265 5 0 p5

1 39,4877 40,7837 40,9438 1,00393 0,01221 5 0 p5

2 39,4877 42,0796 42,5278 1,01065 0,01176 5 0 p5

3 39,4877 43,3755 44,2844 1,02095 0,01129 5 0 p5

§1 Q = P
√

<ρ∗>
<ρ¯>

, where P is the period in days.

§2 Number of p nodes from the center to the surface of the star

§3 Number of g nodes from the center to the surface of the star
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Figure 4.16: Frequency splitting of several modes for the selected model for BS Tuc

(l = 3)

Another important point is the change in frequency when the azimuthal degree, m,

is equal to zero (if not clearly seen in the figures, obvious in the tables), for the second

order rotational effect, while there is no change when only the first order effect is taken

into account. The reason is that the contribution from the first order rotational effect

is as σ1=m Ω (1-C), while there are some terms -in the calculation of σ2- in which m

does not appear, as can be seen in the equations (3.78), (3.108), (3.109), (3.111) in

the previous chapter.

After analyzing the rotational effect in the case of fast rotation, it is seen that

the frequency difference between each consecutive azimuthal order m, ranges from 0.5

to 2.5 c/d, but mostly around 1.5 c/d, while the contribution of the second order

effect on this difference ranges from 30% to 75%. This effect is large enough, much

larger than that in the case of slow rotation, to take into account. Therefore we may

conclude that rotational effect should be considered including at least up to second

order to achieve accurate results in the case of fast rotation.
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There are still some effects which we did not take into consideration in order to

simplify the problem, such as magnetic field effects and rotational mode coupling. The

latter may be significant when the frequency separation between the modes is around

the same order with rotational frequency (Pamyatnykh 2003). There are also other

factors to be considered when comparing some cases, such as the evolutionary stage

of the star, different chemical composition and stellar parameters. Of course, these

leave us a great deal to explore more in our future work.
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CHAPTER 5

DISCUSSION AND CONCLUSION

When a star is rotating as well as pulsating we have more complicated problems to

solve. Axial rotation of a star is an important agent which has effect both on evolu-

tionary structure of a star and also observed quantities such as oscillation frequencies.

We tried to investigate the effect of rotation on the oscillation frequencies of some

Delta Scuti type pulsating stars. We included this effect up to the second order in

rotation velocity Ω. Calculations are made for low order spherical harmonic degrees

(l ≤ 3).

We modified an oscillation program that was written by Al-Murad and Kırbıyık

in 1993. Our modifications are related to the inclusion of the second order rotational

effect in calculating the oscillation frequencies. All the radial integral terms -presented

in Chapter 3- constituting the frequencies are calculated numerically by our program

and the frequency results are presented in Chapter 4, while the angular integrals are

calculated by the program MATHEMATICA and the corresponding results are listed

in Appendix B.

According to our results, second order rotational effect has a significant contribu-

tion on the total rotational effect for fast rotating stars. Therefore it should not be

neglected for that case, while the effect in question may be neglected for the case of

slow rotation.

Analyzing the tables 4.8 - 4.10 and 4.14 - 4.16 presented in the previous chapter,

we see that the ratio of the second order rotation to first order rotation increases as

the spherical harmonic degree l increases. But the difficulty in determining the modes

increases with the degree l, as well. As seen in figure 4.12, the modes gets very close

to each other, and sometimes the frequency values of different modes can be almost

same, so that we need better methods for mode identification.
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The propagation diagrams shown in figures 4.1, 4.10 and 4.16 give us ideas about

the frequency range that may be observed. As clearly seen in figures 4.10 and 4.16,

the formation region of the pressure waves gets closer to the surface of the star when

the spherical harmonic degree l increases, while for smaller l we can get information

via pressure (acoustic) waves from the deep regions closer to the center.

Nonradial oscillations are still not clear in all aspects and there are many specific

cases to consider, and many more effects to take into account. The nonadiabatic case

could be a possible topic for future work; while rotational mode coupling, the analysis

of the inclination angle, gravitation potential perturbation, third order rotational

effect, and inclusion of higher degrees of spherical harmonics into the calculations still

remain as appropriate future study goals.

In the slow rotation case, calculated frequencies match most of the observed ones.

For CC And, observed frequencies given by Fu and Jiang (1995) are 8.005890 c/d,

7.814795 c/d, 8.101026 c/d, 13.34628 c/d, 7.902449 c/d, 16.01199 c/d, and 15.82091

c/d. Corresponding calculated frequencies that are closest to these values are 8.005 c/d

(l=0, f), 7.81346 c/d (l=3, m=1), 8.13371 c/d (l=3, m=2), 13.3542 c/d (l=1, m=0),

7.91887 c/d (l=2, m=-1), 16.0174 c/d (l=1, m=-1), and 15.8166 c/d (l=3, m=-1),

respectively. Except the first one which is referred as the radial fundamental frequency,

all the frequencies that are calculated are estimated as g-modes as mentioned before.

The other observed frequencies given by Ekmekçi and Topal (2007) are 8.00576 c/d,

8.81625 c/d, 6.84994 c/d, 6.56455 c/d, and 16.88150 c/d, while the corresponding

calculated ones with closest values are 8.005 c/d (l=0, f), 8.81911 c/d (l=3, m=-1),

6.84242 c/d (l=3, m=0), 6.56602 c/d (l=3, m=2), and 16.8514 c/d (l=3, m=-3). The

mode estimation is again as explained for the other group of frequencies. But it is

appropriate to remark again that the crossing of the modes is expected for this star

model, as the temperature of the model corresponds to a region where the modes get

unstable (See Figure 1 in Pamyatnykh 2003). Along the evolution of the star, as the

temperature decreases, mixed character of the modes is expected.

In the case of fast rotation, there are not observational data available for the star

(BS Tuc) we consider. However, the pulsation frequency of the star is reported as

15.38 c/d, while calculated radial fundamental frequency is 15.34 c/d. It may be

interesting to make a further study in the near future on a similar fast rotating star

having reported observational frequencies.
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ASI Ser. C, 544; Dordrecht: Kluwer), Chapter II

[11] Christensen-Dalsgaard, J., and Dziembowski, W. A., 2000, in: Variable Stars
as Essential Astrophysical Tools, ed. C. İbanoğlu , (NATO ASI Ser. C, 544;
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APPENDIX A

OSCILLATION PROGRAM

IMPLICIT REAL*8(A-H,O-Z)

c GAMA1 her shell de degisiyor.

c Yildizin kutlesi ve yaricapi her model icin ayri ayri yazilacak

c L degeri 0,1,2,3...hangisi icin yapilacaksa ona gore her run da

c degisecek. Kac shell oldugu belirtilecek.

DIMENSION X(10000),Y(10000),Z(10000),YY(10000),

* ZZ(10000),RR(10000),DTERM(2000,2000),FQV(2000,2000),

* RM(10000),PR(10000),DNS(10000),RMI(10000),PRI(10000),

* DLTH(10000),FIRSTI(2000,2000),SECONDI(2000,2000),

* SECONDII(2000,2000),

* DNSI(10000),SD(10000),BV(10000),FL(10000),FRATIO(2000,2000),

* COMEGA(2000,2000),THIRDI(2000,2000),FORTHI(2000,2000),

* DNSD(10000),DLTR(10000),DLPP(10000),FIFTHI(2000,2000),

* SIGMA(2000,2000),QV(2000,2000),SIXTHI(2000,2000),

* CNUM(10000),CDEN(10000),XPHASE(10000),SQV(2000,2000),

* YPHASE(10000),ERPR(10000),THIRDC(10000),SRATIO(2000,2000),

* A1(10000),A2(10000),B1(10000),B2(10000),FORTHC(10000),

* tl(10000),alrl(10000),el(10000),bwl(10000),wl(10000),

* psi(10000),beta(10000),il(10000),rrr(10000),TRATIO(2000,2000),

* rmm(10000),rdns(10000),FIFTHC(10000),SEVENTHI(2000,2000),

* SIXTHC(10000),SEVENTHC(10000),EIGHTHC(10000),FSIGMA(2000,2000),

* rpr(10000),gama1(10000),gamval(10000),rgamval(10000),

* SSIGMA(2000,2000),SIGMAT(2000,2000),SCOMEGA(2000,2000),

* FCOMEGA(2000,2000),EIGHTHI(2000,2000),NINTHC(10000)
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CHARACTER*4 bdchar

character*4 aster/’ * ’/

CHARACTER MODE

c data aster/’* ’/

G=6.6732D-8

PI=3.141593d0

J=1

NA=0

NG=0

np=0

IORD=0

bc1=0.d0

L=0

j2=1

c do 109 L1=1,3

c l=l1-1

c GAMA1=5./3.

vsini=132.7637122d5

amin=1.0d0

c amax=50.0d0

amax=200.0d0

tol0=1.d-3

tol1=1.d-3

del0=(amax-amin)/50000.d0

c del0=1.d-1

c TE=3.840d0

H=3.0d-4

tol=tol0

DELTA =DEL0

OMEGA=AMIN

c PRINT*,’===========================

c * =====================’

c PRINT*,’ THE FOLLOWING MODES HAS BEEN APPROACHED’
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c PRINT*,’===========================

c * ======================’

c PRINT*,’ ’

TR=1.3433d11

TM=3.5730d33

open(7,file=’123.dta’,status=’old’)

OPEN (5,FILE=’freq.dta’,STATUS=’UNKNOWN’)

OPEN (3,FILE=’p.dta’,STATUS=’UNKNOWN’)

c if(j2.gt.1)go to 108

DO 15 M=1,358

c10 READ (7,*) RM(M), RR(M), DNS(M), PR(M), gamval(i)

c ********el(m)=delrr, wl(m)=deladi,gamval(m)=gama1,beta(m)=gam2(m)

read(7,119) bdchar,il(m),rm(m),rr(m),dns(m),tl(m),pr(m),alrl(m),

* el(m),bwl(m),wl(m),gamval(m),beta(m)

119 format(A4,I3,8e12.5,e12.4,1x,f6.4,e12.5)

c PRINT*,’TEST’,m,RM(M),RR(M),DNS(M),PR(M)

c write(5,1020) bdchar,m,rm(m),rr(m),dns(m),pr(m),gamval(m)

1020 format(A4,I4,5(e11.4))

c if(m.eq.357) go to 15

if(m.gt.100) go to 15

c write(5,107)aster

c print*,aster

c107 format(A4)

if(bdchar. eq. aster) m11=m

m11=2

c x11=rr(m)/tr

c x11=x11+0.0009d0

c x11=x11+0.0005d0

c x11=x11+0.025d0

c endif

c write(5,1035) x11

c1035 format(e11.4)

15 CONTINUE
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x11=rr(m11)/tr

m=m-1

DNSM=TM/((4.D0/3.D0)*PI*TR**3.D0)

c j2=2

c108 continue

1000 FORMAT(E11.3,4(E11.3),2I4,2(E11.3))

c ******************************************************

187 continue

I=1

c OPEN (5,FILE=’pulsout.dta’,STATUS=’UNKNOWN’)

X(1)=0.D0

i1=0

tp=pr(1)

td=dns(1)

do 3 j=1,m

rrr(j)=rr(j)/tr

c if(rrr(j).eq.rrr(j-1))print *,j

rmm(j)=rm(j)/tm

rdns(j)=dns(j)/td

rpr(j)=pr(j)/tp

rgamval(j)=gamval(j)

3 continue

20 X1=X(I)

c if(rrr(i).lt.0.1d0) h=1.0d-6

CALL INTRP (X1,RM1,RRR,RMM,m)

CALL INTRP (X1,DNS1,RRR,rDNS,m)

CALL INTRP (X1,PR1,RRR,rPR,m)

call intrp (x1,gm1,rrr,rgamval,m)

gama1(i)=gm1

RMI(I)=RM1

dns1=dns1*td

pr1=pr1*tp

DNSI(I)=DNS1
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PRI(I)=PR1

c WRITE(5,1000) X(I),PRI(I),RMI(I),DNSI(I),i,m

if(y1.gt.1.0d8) go to 33

c WRITE(5,1000) X1,PR1,RM1,DNS1,gm1,i,m

33 continue

I=I+1

x(i)=x(i-1)+H

c if(x(i).lt.0.084d0)go to 33

if(x(i).lt.x11)go to 33

if(i1.eq.2)go to 34

x(2)=x(i)

x11=x(2)

i=2

i1=2

34 continue

c ****************************************m=1 ? m=385?

if(x(i).gt.1.0d0) go to 25

GOTO 20

25 RMI(I)=1.0D0

DNSI(I)=0.0D0

PRI(I)=0.0D0

CALL DNSDIF (DNSI,DNSD,TR,H,I)

c OPEN (5,FILE=’output1.dat’,STATUS=’NEW’)

c WRITE(5,101)

c WRITE(5,104)

WRITE(5,101)

DO 35 N=2,i-1

SD(N)=DNSD(N)/DNSI(N)+DNSI(N)*G*TM*RMI(N)/

* (GAMA1(N)*PRI(N)*TR*TR*X(N)*X(N))

BV(N)=-SD(N)*G*TM*RMI(N)/(TR*TR*X(N)*X(N))

BV(N)=BV(N)*TR**3/(G*TM)

c if(bv(n).lt.0.0d0) bv(n)=bv(n-1)

tr2=tr*tr
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FL(N)=DFLOAT(L*(L+1))*GAMA1(N)*PRI(N)/(DNSI(N)*(TR2*X(N)*X(N)))

FL(N)=FL(N)*TR**3/(G*TM)

if(y1.gt.1.0d8) go to 36

WRITE(5,2000) X(N),BV(N),FL(N)

2000 FORMAT(F10.4,2(E20.4))

35 CONTINUE

36 continue

104 FORMAT(7X,’X’,11X,’BRUNT V.FRQ.’,9X,’LAMB FRQ.’)

c CLOSE(5)

c ********************************************************c

40 CONTINUE

Y(2)=1.D0

IF (L.EQ.0) THEN

Z(2)=1.d0-3.D0*GAMA1(2)*PRI(2)*TR*X(2)/(G*TM*RMI(2)*DNSI(2))

c print*, z(2),x(2),rmi(2),dnsi(2),gama1(2),pri(2)

GOTO 5

ENDIF

Z(2)=OMEGA*X(2)**3/(RMI(2)*DFLOAT(L))

c *************************************************

c5 DO 50 N=3,300

5 do 50 n=2,I-1

X0=X(N)

Y0=Y(N)

Z0=Z(N)

RMI0=RMI(N)

DNSI0=DNSI(N)

PRI0=PRI(N)

DNSD0=DNSD(N)

gama0=gama1(N)

CONST1=0.D0

CONST2=0.D0

c print*, gama0,rmi0,dnsi0,pri0,dnsd0,y0,z0

CALL RUNGE(X0,Y0,Z0,Y1,Z1,G,TM,RMI0,DNSI0,PRI0,TR,GAMA0,L,
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* OMEGA,PI,DNSD0,H,CONST1,CONST2)

if(y1.gt.1.0d8) then

x11=x11+h

go to 187

endif

c print*, x0,y0,z0,y1,z1

Y(N+1)=Y1

Z(N+1)=Z1

50 CONTINUE

c ****************************************************************

BC=Y(I-1)-Z(I-1)

c bc1=Y(i-2)-z(i-2)

SIGM=DSQRT(G*TM*OMEGA/(TR**3))

c fr=1.d6*sigm/(2.d0*pi)

fr=86400.D0*SIGM/(2.D0*PI)

p=2.D0*PI/SIGM/86400.D0

rhomean=3.d0*TM/(4.d0*pi*(TR*TR*TR))

q=p*(dsqrt(rhomean/1.408d0))

cd1=1.d0/p

c if(bc.gt.0.d0.and.bc1.lt.0.d0)print*,bc,bc1,omega,fr

c if(bc.lt.0.d0.and.bc1.gt.0.d0)print*,bc,bc1,omega,fr

c if(bc.gt.0.d0.and.bc1.lt.0.d0)write(5,37)l,bc,bc1,omega,fr

c if(bc.lt.0.d0.and.bc1.gt.0.d0)write(5,37)l,bc,bc1,omega,fr

c if(bc.gt.0.d0.and.bc1.lt.0.d0)write(5,37)l,omega,fr,p,cd1,q

c if(bc.lt.0.d0.and.bc1.gt.0.d0)write(5,37)l,omega,fr,p,cd1,q

if(bc.gt.0.d0.and.bc1.lt.0.d0) tol=1.0d-4

if(bc.lt.0.d0.and.bc1.gt.0.d0) tol=1.0d-4

37 format(i3,e13.5,f12.7,3e13.5)

bc1=bc

c print*, omega,fr,bc

c if(dabs(bc).lt.0.2) print *,omega,bc,fr

IF (OMEGA.GE.AMAX) GOTO 999

IF (tol.GE.TOL1) GOTO 888
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tol=1.0d-3

c SIGM=DSQRT(G*TM*OMEGA/(TR**3))

c DO 55 N=4,300

c print*,sigm,qva

do 55 n=2,I-1

ERPR(N)=G*TM*RMI(N)*DNSI(N)*Z(N)/(TR*X(N))

DLPP(N)=(ERPR(N)-y(n)*G*TM*RMI(N)*DNSI(N)/(TR*X(N)))/PRI(N)

DLTR(N)=y(n)*X(N)*TR

DLTH(N)=(ERPR(N)/DNSI(N))/ (X(N)*TR*SIGM**2.D0)

IF (Y(N)*Y(N+1).LT.0.D0) THEN

c IF (OMEGA.LT.BV(N).AND.OMEGA.LT.FL(N)) NG=NG+1

c IF (OMEGA.GT.BV(N).AND.OMEGA.GT.FL(N)) NP=NP+1

IF (OMEGA.LT.BV(N).AND.OMEGA.LT.FL(N)) then

ng=ng+1

if(ng.eq.1) xg1=x(n)

if(ng.eq.2) xg2=x(n)

if(ng.eq.3) xg3=x(n)

if(ng.eq.4) xg4=x(n)

if(ng.eq.5) xg5=x(n)

if(ng.eq.6) xg6=x(n)

if(ng.eq.7) xg7=x(n)

if(ng.eq.8) xg8=x(n)

if(ng.eq.9) xg9=x(n)

if(ng.eq.10) xg10=x(n)

endif

IF (OMEGA.GT.BV(N).AND.OMEGA.GT.FL(N)) then

np=np+1

if(np.eq.1) xp1=x(n)

if(np.eq.2) xp2=x(n)

if(np.eq.3) xp3=x(n)

if(np.eq.4) xp4=x(n)

if(np.eq.5) xp5=x(n)

if(np.eq.6) xp6=x(n)
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if(np.eq.7) xp7=x(n)

if(np.eq.8) xp8=x(n)

if(np.eq.9) xp9=x(n)

if(np.eq.10) xp10=x(n)

endif

ENDIF

CNUM(N)=(2.D0*Y(N)*X(N)*TR*(G*TM*RMI(N)*Z(N)/

* (SIGM**2.D0*(X(N)*TR)**2.D0))+(G*TM*RMI(N)*Z(N)/

* (SIGM**2.D0*(X(N)*TR)**2.D0))*(G*TM*RMI(N)*Z(N)/

* (SIGM**2.D0*(X(N)*TR)**2.D0)))*DNSI(N)*(X(N)*TR)**2.D0

CDEN(N)=(Y(N)*X(N)*TR*Y(N)*X(N)*TR+L*(L+1)*(G*TM*RMI(N)*Z(N)/

* (SIGM**2.D0*(X(N)*TR)**2.D0))*(G*TM*RMI(N)*Z(N)/

* (SIGM**2.D0*(X(N)*TR)**2.D0)))*DNSI(N)*(X(N)*TR)**2.D0

THIRDC(N)=(Y(N)*X(N)*TR*X(N)*TR)**2.D0*DNSI(N)

FORTHC(N)=(G*TM*RMI(N)*Z(N)/

* (SIGM**2.D0*(X(N)*TR)**2.D0))**2.D0*(X(N)*TR)**2.D0*DNSI(N)

FIFTHC(N)=Y(N)*X(N)*TR*(G*TM*RMI(N)*Z(N)/

* (SIGM**2.D0*(X(N)*TR)**2.D0))*(X(N)*TR)**2.D0*DNSI(N)

SIXTHC(N)=((Y(N)*X(N)*TR)+((G*TM*RMI(N)*Z(N))/

* (SIGM**2.D0*(X(N)*TR)**2.D0)))*G*TM*RMI(N)*DNSI(N)*ZZ(N)

SEVENTHC(N)=(G*TM*RMI(N)*Z(N)/(SIGM**2.D0*(X(N)*TR)**2.D0))*

* YY(N)*X(N)*TR*(X(N)*TR)**2.D0*DNSI(N)

EIGHTHC(N)=(Y(N)*X(N)*TR*(1.D0/3.D0)+(G*TM*RMI(N)*Z(N)/

* (SIGM**2.D0*(X(N)*TR)**2.D0)))*DNSI(N)*(X(N)*TR)**3.D0

NINTHC(N)=Y(N)*X(N)*TR*DNSI(N)*(X(N)*TR)**3.D0

55 CONTINUE

c ***************************************************************

IORD=NP-NG

IF (IORD.LT.0.D0) MODE=’G’

IF (IORD.GT.0.D0) MODE=’P’

IF (IORD.EQ.0.D0) MODE=’F’

WRITE(5,105)J,OMEGA,MODE,IORD

105 FORMAT(I10,10X,’OMEGA 2=’,F10.4,A14,I3)
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IF (L.EQ.0) THEN

OPEN (9,FILE=’zeroth.dat’,STATUS=’NEW’)

c WRITE(5,101)

c WRITE(5,102)

c WRITE(5,101)

WRITE(9,100)K,OMEGA,SIGM,q,FR,MODE,NP,NG,IORD

c WRITE(5,101)

c WRITE(5,103)

c WRITE(5,101)

DO 71 N= 2,I-1

XPHASE(N)=DLOG10(1.D0+DABS(DLTR(N)/TR))

YPHASE(N)=DLOG10(1.D0+DABS(Z(N)*RMI(N)/X(N)))

IF (DLTR(N).LT.0.D0) XPHASE(N)= -XPHASE(N)

IF(ZZ(N).LT.0.D0) YPHASE(N)= -YPHASE(N)

c WRITE(5,3000)X(N),y(n),DLPP(N),XPHASE(N),YPHASE(N)

71 CONTINUE

c GOTO 70

ENDIF

c ********************************************************

CALL ROTAT(CNUM,CDEN,CINTGRL,DEN,I,H)

CALL SECONDFRQ(THIRDC,FORTHC,FIFTHC,SIXTHC,SEVENTHC,

* EIGHTHC,NINTHC,THIRD,FORTH,FIFTH,SIXTH,SEVENTH,

* EIGHTH,NINTH,I,H)

c ROTFRQ=VSINI/(2.D0*PI*TR)

ROTFRQ=VSINI/TR

c ********************************************************

OPEN (7,FILE=’1stORD.dat’,STATUS=’NEW’)

c

c DO 65 K= -L,L,1

SIGMA(J,K) =SIGM+DFLOAT(K)*ROTFRQ*(1.D0-CINTGRL)

FR1=86400*SIGMA(J,K)/(2.D0*PI)

QV(J,K) =(2.D0*PI/SIGMA(J,K)/86400.D0)*(DSQRT(DNSM/1.408d0))

c DNSMsun=1.408d0 g/cm**3
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COMEGA(J,K) =SIGMA(J,K)**2.D0*TR**3.D0/(G*TM)

c

OPEN (11,FILE=’2ndORD.dat’,STATUS=’NEW’)

c OPEN (12,FILE=’1stORDcont.dat’,STATUS=’NEW’)

OPEN (14,FILE=’freqs.dat’,STATUS=’NEW’)

OPEN (15,FILE=’integrals.dat’,STATUS=’NEW’)

c

FSIGMA(J,K)=DFLOAT(K)*ROTFRQ*(1.D0-CINTGRL)

DTERM(J,K)=(DFLOAT(K)*ROTFRQ*(1.D0-CINTGRL))**2.d0/SIGM*2.d0

FIRSTI(J,K)=DFLOAT(K)*ROTFRQ/DEN*SEVENTH

SECONDI(J,K)=(2.D0*(DFLOAT(K)*ROTFRQ)**2.D0*(CINTGRL-1.D0))/

* (SIGM*DEN)*(FIFTH+FORTH)

SECONDII(J,K)=(DFLOAT(K)*ROTFRQ)/

* (SIGM*SIGM*DEN)*SIXTH

THIRDI(J,K)=((2.D0*(ROTFRQ)**2.D0)/

* (SIGM*DEN))*FIFTH

FORTHI(J,K)=((2.D0*(ROTFRQ)**2.D0)/

* (SIGM*DEN))*THIRD

FIFTHI(J,K)=(2.D0*(DFLOAT(K)*ROTFRQ)**2.D0)/

* (SIGM*DEN)*FORTH

SIXTHI(J,K)=(2.D0*(ROTFRQ)**2.D0)/

* (SIGM*DEN)*FORTH

SEVENTHI(J,K)=(2.D0*(DSQRT(PI/5.D0))*(ROTFRQ)**2.D0)/

* (SIGM*DEN)*EIGHTH

EIGHTHI(J,K)=-(2.D0*(DSQRT(PI))*(ROTFRQ)**2.D0)/

* (3.D0*SIGM*DEN)*NINTH

IF(L.EQ.3 .AND. K.EQ.3) THEN

THIRDI(J,K)=THIRDI(J,K)*(2.D0/3.D0)

FORTHI(J,K)=FORTHI(J,K)*(8.D0/9.D0)

FIFTHI(J,K)=FIFTHI(J,K)*(1.D0/6.D0)

SIXTHI(J,K)=SIXTHI(J,K)*(1.D0/2.D0)

ELSE IF(L.EQ.3 .AND. K.EQ.2) THEN

THIRDI(J,K)=0.D0
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FORTHI(J,K)=FORTHI(J,K)*(2.D0/3.D0)

FIFTHI(J,K)=FIFTHI(J,K)*(3.D0/4.D0)

SIXTHI(J,K)=SIXTHI(J,K)*(1.D0)

ELSE IF(L.EQ.3 .AND. K.EQ.1) THEN

THIRDI(J,K)=THIRDI(J,K)*(-2.D0/5.D0)

FORTHI(J,K)=FORTHI(J,K)*(8.D0/15.D0)

FIFTHI(J,K)=FIFTHI(J,K)*(5.D0/2.D0)

SIXTHI(J,K)=SIXTHI(J,K)*(27.D0/10.D0)

ELSE IF(L.EQ.3 .AND. K.EQ.0) THEN

THIRDI(J,K)=THIRDI(J,K)*(-8.D0/15.D0)

FORTHI(J,K)=FORTHI(J,K)*(22.D0/45.D0)

FIFTHI(J,K)=0.D0

SIXTHI(J,K)=SIXTHI(J,K)*(28.D0/5.D0)

ELSE IF(L.EQ.3 .AND. K.EQ.-1) THEN

THIRDI(J,K)=THIRDI(J,K)*(-2.D0/5.D0)

FORTHI(J,K)=FORTHI(J,K)*(8.D0/15.D0)

FIFTHI(J,K)=FIFTHI(J,K)*(5.D0/2.D0)

SIXTHI(J,K)=SIXTHI(J,K)*(27.D0/10.D0)

ELSE IF(L.EQ.3 .AND. K.EQ.-2) THEN

THIRDI(J,K)=0.D0

FORTHI(J,K)=FORTHI(J,K)*(2.D0/3.D0)

FIFTHI(J,K)=FIFTHI(J,K)*(3.D0/4.D0)

SIXTHI(J,K)=SIXTHI(J,K)*(1.D0)

ELSE IF(L.EQ.3 .AND. K.EQ.-3) THEN

THIRDI(J,K)=THIRDI(J,K)*(2.D0/3.D0)

FORTHI(J,K)=FORTHI(J,K)*(8.D0/9.D0)

FIFTHI(J,K)=FIFTHI(J,K)*(1.D0/6.D0)

SIXTHI(J,K)=SIXTHI(J,K)*(1.D0/2.D0)

ELSE IF(L.EQ.2 .AND. K.EQ.2) THEN

THIRDI(J,K)=THIRDI(J,K)*(4.D0/7.D0)

FORTHI(J,K)=FORTHI(J,K)*(6.D0/7.D0)

FIFTHI(J,K)=FIFTHI(J,K)*(1.D0/4.D0)

SIXTHI(J,K)=SIXTHI(J,K)*(3.D0/7.D0)
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ELSE IF(L.EQ.2 .AND. K.EQ.1) THEN

THIRDI(J,K)=THIRDI(J,K)*(-2.D0/7.D0)

FORTHI(J,K)=FORTHI(J,K)*(4.D0/7.D0)

FIFTHI(J,K)=FIFTHI(J,K)*(3.D0/2.D0)

SIXTHI(J,K)=SIXTHI(J,K)*(11.D0/14.D0)

ELSE IF(L.EQ.2 .AND. K.EQ.0) THEN

THIRDI(J,K)=THIRDI(J,K)*(-4.D0/7.D0)

FORTHI(J,K)=FORTHI(J,K)*(10.D0/21.D0)

FIFTHI(J,K)=0.D0

SIXTHI(J,K)=SIXTHI(J,K)*(18.D0/7.D0)

ELSE IF(L.EQ.2 .AND. K.EQ.-1) THEN

THIRDI(J,K)=THIRDI(J,K)*(-2.D0/7.D0)

FORTHI(J,K)=FORTHI(J,K)*(4.D0/7.D0)

FIFTHI(J,K)=FIFTHI(J,K)*(3.D0/2.D0)

SIXTHI(J,K)=SIXTHI(J,K)*(11.D0/14.D0)

ELSE IF(L.EQ.2 .AND. K.EQ.-2) THEN

THIRDI(J,K)=THIRDI(J,K)*(4.D0/7.D0)

FORTHI(J,K)=FORTHI(J,K)*(6.D0/7.D0)

FIFTHI(J,K)=FIFTHI(J,K)*(1.D0/4.D0)

SIXTHI(J,K)=SIXTHI(J,K)*(3.D0/7.D0)

ELSE IF(L.EQ.1 .AND. K.EQ.1) THEN

THIRDI(J,K)=THIRDI(J,K)*(2.D0/5.D0)

FORTHI(J,K)=FORTHI(J,K)*(4.D0/5.D0)

FIFTHI(J,K)=FIFTHI(J,K)*(1.D0/2.D0)

SIXTHI(J,K)=SIXTHI(J,K)*(3.D0/10.D0)

ELSE IF(L.EQ.1 .AND. K.EQ.0) THEN

THIRDI(J,K)=THIRDI(J,K)*(-4.D0/5.D0)

FORTHI(J,K)=FORTHI(J,K)*(2.D0/5.D0)

FIFTHI(J,K)=0.D0

SIXTHI(J,K)=SIXTHI(J,K)*(2.D0/5.D0)

ELSE IF(L.EQ.1 .AND. K.EQ.-1) THEN

THIRDI(J,K)=THIRDI(J,K)*(2.D0/5.D0)

FORTHI(J,K)=FORTHI(J,K)*(4.D0/5.D0)
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FIFTHI(J,K)=FIFTHI(J,K)*(1.D0/2.D0)

SIXTHI(J,K)=SIXTHI(J,K)*(3.D0/10.D0)

ELSE IF(L.EQ.0 .AND. K.EQ.0) THEN

THIRDI(J,K)=0.D0

FORTHI(J,K)=FORTHI(J,K)*(2.D0/3.D0)

FIFTHI(J,K)=0.D0

SIXTHI(J,K)=0.D0

ENDIF

SSIGMA(J,K)=FIRSTI(J,K)+SECONDI(J,K)+SECONDII(J,K)+THIRDI(J,K)+

* FORTHI(J,K)+FIFTHI(J,K)+DTERM(J,K)+SIXTHI(J,K)

IF(L.EQ.2 .AND. K.EQ.0) THEN

SSIGMA(J,K)=FIRSTI(J,K)+SECONDI(J,K)+SECONDII(J,K)+THIRDI(J,K)+

* FORTHI(J,K)+FIFTHI(J,K)+DTERM(J,K)+SIXTHI(J,K)+SEVENTHI(J,K)

ELSE IF(L.EQ.0 .AND. K.EQ.0) THEN

SSIGMA(J,K)=FIRSTI(J,K)+SECONDI(J,K)+SECONDII(J,K)+THIRDI(J,K)+

* FORTHI(J,K)+FIFTHI(J,K)+DTERM(J,K)+SIXTHI(J,K)+EIGHTHI(J,K)

ENDIF

SIGMAT(J,K)=SIGMA(J,K)+SSIGMA(J,K)

FRATIO(J,K)=FSIGMA(J,K)/SIGM

SRATIO(J,K)=SSIGMA(J,K)/SIGM

TRATIO(J,K)=SSIGMA(J,K)/FSIGMA(J,K)

IFR=SIGM*1.D+6/(2.D0*PI)

SFR=SIGMAT(J,K)*1.D+6/(2.D0*PI)

FFR=SIGMA(J,K)*1.D+6/(2.D0*PI)

FQV(J,K)=(2.D0*PI/SIGMA(J,K)/86400.D0)*(DSQRT(DNSM/1.408d0))

IQV=(2.D0*PI/SIGM/86400.D0)*(DSQRT(DNSM/1.408d0))

SQV(J,K) =(2.D0*PI/SIGMAT(J,K)/86400.D0)*(DSQRT(DNSM/1.408d0))

rqva=rhom*qv(j,k)

FRFR=SIGMA(J,K)*86400.D0/(2.D0*PI)

IRFR=(SIGM*86400.D0)/(2.D0*PI)

SRFR=SIGMAT(J,K)*86400.D0/(2.D0*PI)

ICOMEGA=(SIGM**2.D0*TR**3.D0)/(G*TM)
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FCOMEGA(J,K)=SIGMA(J,K)**2.D0*TR**3.D0/(G*TM)

SCOMEGA(J,K)=SIGMAT(J,K)**2.D0*TR**3.D0/(G*TM)

com=comega(j,k)

c

c WRITE(5,101)

c WRITE(5,102)

WRITE(7,101)

c if(k .ne. 0) go to 111

WRITE(7,100)K,COMEGA(J,K),SIGMA(J,K),QV(J,K),FR1,MODE,np,ng,IORD

WRITE(11,402)K,SIGM,FSIGMA(J,K),SSIGMA(J,K)

c WRITE(11,400)K,SIGMA(J,K),SIGMAT(J,K)

c WRITE(12,413)K,SIGMA(J,K),FCOMEGA(J,K),FQV(J,K),FFR,FRFR,

* MODE,IORD

WRITE(11,409)SIGMA(J,K),SIGMAT(J,K),SCOMEGA(J,K),SQV(J,K),SRFR,

* MODE,IORD

c WRITE(11,414)K,SIGM,ICOMEGA,IQV,IFR,IRFR

c WRITE(11,410)K,SCOMEGA(J,K),SIGMAT(J,K),SQV(J,K),SRFR,MODE,IORD

WRITE(14,412)K,FRFR,SRFR,MODE,np,ng,IORD

WRITE(15,415)K,DTERM(J,K),FIRSTI(J,K),SECONDI(J,K),SECONDII(J,K)

* ,THIRDI(J,K),FORTHI(J,K),FIFTHI(J,K),SIXTHI(J,K)

* ,SEVENTHI(J,K),EIGHTHI(J,K)

c WRITE(3,151)L,TE,qv(j,k),comega(j,k),iord,np,ng,xg1,xg2,xg3,xg4

c * ,xg5,xg6

c write(3,151)L,TE,qv(j,k),comega(j,k),iord,np,ng,xp1,xp2,xp3,xp4

c * ,xp5,xp6

WRITE(3,151)L,comega(j,k),iord,np,ng,xg1,xg2,xg3,xg4,xg5,xg6,xg7,

* xg8,xg9,xg10

write(3,151)L,comega(j,k),iord,np,ng,xp1,xp2,xp3,xp4,xp5,xp6,xp7,

* xp8,xp9,xp10

c151 FORMAT(I2,F6.3,2F6.2,3I3,7f7.3)

151 FORMAT(I2,F6.2,3I3,10f6.3)

111 continue

c WRITE(5,101)
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c WRITE(5,103)

c WRITE(5,101)

YY(2)=1.D0

ZZ(2)=((X(2)**3/RMI(2))*OMEGA*(1.D0+2.D0*K*ROTFRQ/

c * SIGM*(CINTGRL+1.D0/L)*Y(2)))/L

* SIGM*(-CINTGRL-1.D0/L)*Y(2)))/L

DO 75 N=2,I-1

X0=X(N)

Y0=YY(N)

Z0=ZZ(N)

RMI0=RMI(N)

DNSI0=DNSI(N)

PRI0=PRI(N)

DNSD0=DNSD(N)

gama0=gama1(N)

CONST1=2.D0*K*ROTFRQ/SIGM*(Y(N)+(RMI(N)/(X(N)**3*

* OMEGA)+CINTGRL*L*(L+1)*RMI(N)/(X(N)**3*OMEGA)))*Z(N)

CONST2=2.D0*K*ROTFRQ/SIGM*(-CINTGRL*OMEGA*X(N)**3*

* Y(N)/RMI(N)-Z(N))

CALL RUNGE(X0,Y0,Z0,Y1,Z1,G,TM,RMI0,DNSI0,PRI0,TR,GAMA0,L,OMEGA

* ,PI,DNSD0,H,CONST1,CONST2)

YY(N+1)=Y1

ZZ(N+1)=Z1

ERPR(N)=G*TM*RMI(N)*DNSI(N)*ZZ(N)/(TR*X(N))

c print *,yy(1),zz(1),yy(2),zz(2),yy(3),zz(3)

DLPP(N)= (ERPR(N)-YY(N)*G*TM*RMI(N)*DNSI(N)/(TR*X(N)))/PRI(N)

DLTR(N)= YY(N)*X(N)*TR

DLTH(N)=(ERPR(N)/DNSI(N))/(X(N)*TR*SIGM**2.D0)

XPHASE(N)=DLOG10(1.D0+DABS(DLTR(N)/TR))

YPHASE(N)=DLOG10(1.D0+DABS(ZZ(N)*RMI(N)/X(N)))

IF (DLTR(N).LT.0.D0) XPHASE(N)= -XPHASE(N)

IF (ZZ(N).LT.0.D0) YPHASE(N)=-YPHASE(N)

c WRITE(5,3000)X(N),DLTR(N),DLPP(N),XPHASE(N),YPHASE(N)
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c WRITE(5,3000)X(N),yy(N),DLPP(N)

75 CONTINUE

65 CONTINUE

c CLOSE(5)

100 FORMAT(I5,F13.4,E14.4,2E12.4,A6,3I3)

101 FORMAT(60(’=’))

102 FORMAT(4X,’M’,7X,’ OMEGA’,7X,’SIGMA’,6X,’c/d(lne0)’,6X,’MODE’)

103 FORMAT(4X,’X’,8X,’DR/R’,8X,’DP/P’,6X,’XPHASE’,6X,’YPHASE’)

400 FORMAT(I5,2e14.6)

409 FORMAT(5e14.6,A6,I3)

402 FORMAT(I5,3e14.6)

410 FORMAT(I5,4e14.6,A6,I3)

412 FORMAT(I5,2e14.6,A6,3I3)

413 FORMAT(I5,5e14.6,A6,I3)

414 FORMAT(I5,5e14.6)

415 FORMAT(I5,9e14.6)

3000 FORMAT(F7.3,4(E12.3))

70 CONTINUE

c *****************************************************

J=J+1

TOL=TOL0

NA=0

NG=0

np=0

IORD=0

OMEGA=OMEGA+DELTA

GOTO 40

c *****************************************************

888 IF (DABS(BC).LT.0.002d0) THEN

c print*, omega,bc,fr

c write(5,58) omega,bc,fr

c58 format(3e12.3)

endif
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c PRINT*,’THE’,J,’APPROACH’,’TOL=’,TOL,OMEGA

c TOL=TOL/10.D0

c DELTA=DELTA/10.D0

c OMEGA=OMEGA+DELTA

c GOTO 40

c ENDIF

c ******************************************************

80 OMEGA=OMEGA+DELTA

GOTO 40

999 CONTINUE

c109 continue

c PRINT*,’=====================================

c * THE CHARECTERISTICS OF THESE MODES’

c PRINT*,’ ARE IN /NONRAD OUT A1’

c PRINT*,’=====================================

c PRINT*,’END’

STOP

END

c ******************************************************************

c INTERPOLATION. REF: S.CONTE&C.de.BOORE,1981,numerical analysis

c ******************************************************************

SUBROUTINE INTRP(XU,YU,X,F,NP)

IMPLICIT REAL*8 (A-H,O-Z)

c DIMENSION F(NP),X(NP),A(20),XK(20)

DIMENSION F(10000),X(10000),A(20),XK(20)

c do 113 j=1,385

c write(5,1002) j,f(j),x(j)

c113 continue

c1002 format(I4, 2(e11.4))

c TOL11=1.0D-2

TOL11=1.0D-3

IF (XU.GT.X(1).AND.XU.LE.X(NP)) THEN

DO 11 NEXT=2,NP
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IF (XU.LE.X(NEXT)) GOTO 12

11 CONTINUE

ENDIF

IF (XU.LE.X(1)) THEN

YU=F(1)

ELSE

YU=F(NP)

ENDIF

IFLAG=3

RETURN

12 XK(1)=X(NEXT)

NEXTL=NEXT-1

NEXTR=NEXT+1

A(1)=F(NEXT)

YU=A(1)

PSIK=1.D0

KP1MAX=MIN(20,NP)

DO 21 KP1=2,KP1MAX

IF (NEXTL.EQ.0.D0) THEN

NEXT=NEXTR

NEXTR=NEXTR+1

ELSEIF (NEXTR.GT.NP) THEN

NEXT=NEXTL

NEXTL=NEXTL-1

ELSEIF (XU-X(NEXTL).GT.X(NEXTR)-XU) THEN

NEXT=NEXTR

NEXTR=NEXTR+1

ELSE

NEXT=NEXTL

NEXTL=NEXTL-1

c print*, xu,kp1

ENDIF

XK(KP1)=X(NEXT)
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A(KP1)=F(NEXT)

DO 13 J=KP1-1,1,-1

c if(xk(kp1).eq.xk(j)) go to 133

A(J)=(A(J+1)-A(J))/(XK(KP1)-XK(J))

c go to 13

c133 a(j)=a(j-1)

c print *,j,xu

13 CONTINUE

PSIK=PSIK*(XU-XK(KP1-1))

ERROR=A(1)*PSIK

YU=YU+ERROR

c print*,yu,psik,a(1),a(2),a(3)

IF (DABS(ERROR).LE.TOL11) THEN

IFLAG=1

RETURN

ENDIF

21 CONTINUE

IFLAG=2

RETURN

END

c *******************************************************

c NUMERICAL DIFFERENTIATION using 3 points formula

c *******************************************************

SUBROUTINE DNSDIF(DNSI,DNSD,TR,H,I)

IMPLICIT REAL*8 (A-H,O-Z)

save

DIMENSION DNSI(10000),DNSD(10000)

DO 30 N=1,i-3

DNSD(N)=(-3.D0*DNSI(N)+4.D0*DNSI(N+1)-DNSI(N+2))/(2.D0*H*TR)

c write(5,55)n,dnsd(n),dnsi(n),dnsi(n+1),dnsi(n+2)

55 format(i5,3x,4e13.6)

30 CONTINUE

DNSD(I-2)=(-DNSI(I-3)+DNSI(I-1))/(2.D0*H*TR)
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DNSD(I-1)=(DNSI(I-3)-4.D0*DNSI(I-2)+3.D0*DNSI(I-1))/(2.D0*H*TR)

RETURN

END

c *******************************************************

c NUMERICAL INTEGRATION

c *******************************************************

SUBROUTINE ROTAT(CNUM,CDEN,CINTGRL,DEN,I,H)

IMPLICIT REAL*8 (A-H,O-Z)

save

DIMENSION CNUM(10000),CDEN(10000)

SNUM1=0.D0

SNUM2=0.D0

SDEN1=0.D0

SDEN2=0.D0

SNUM0=CNUM(2)+CNUM(I+1)

SDEN0=CDEN(2)+CDEN(I+1)

DO 60 N=2,I-4,2

SNUM1=SNUM1+CNUM(N+1)

SNUM2=SNUM2+CNUM(N+2)

SDEN1=SDEN1+CDEN(N+1)

SDEN2=SDEN2+CDEN(N+2)

60 CONTINUE

CNUMI=H/3.D0*(SNUM0+4.D0*SNUM1+2.D0*SNUM2)

CDENI=H/3.D0*(SDEN0+4.D0*SDEN1+2.D0*SDEN2)

DEN=CDENI

CINTGRL=CNUMI/CDENI

RETURN

END

c *******************************************************

c RUNGE-KUTTA METHOD

c *******************************************************

SUBROUTINE RUNGE(X,Y0,Z0,Y,Z,G,TM,RMI,DNSI,PRI,TR,GAMA1,L,

* OMEGA,PI,DNSD,H,CONST1,CONST2)
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IMPLICIT REAL*8 (A-H,O-Z)

A=H*F1(X,Y0,Z0,G,TM,RMI,DNSI,PRI,TR,GAMA1,L,OMEGA)+H*CONST1

AA=H*F2(X,Y0,Z0,G,PI,TM,RMI,DNSI,PRI,TR,GAMA1,L,DNSD,OMEGA)+

* H*CONST2

X=X+0.5D0*H

Y1=Y0+0.5D0*A

Z1=Z0+0.5D0*AA

B=H*F1(X,Y1,Z1,G,TM,RMI,DNSI,PRI,TR,GAMA1,L,OMEGA)+H*CONST1

BB=H*F2(X,Y1,Z1,G,PI,TM,RMI,DNSI,PRI,TR,GAMA1,L,DNSD,OMEGA)+

* H*CONST2

Y1=Y0+0.5D0*B

Z1=Z0+0.5D0*BB

C=H*F1(X,Y1,Z1,G,TM,RMI,DNSI,PRI,TR,GAMA1,L,OMEGA)+H*CONST1

CC=H*F2(X,Y1,Z1,G,PI,TM,RMI,DNSI,PRI,TR,GAMA1,L,DNSD,OMEGA)+

* (H*CONST2)

X=X+0.5D0*H

Y1=Y0+C

Z1=Z0+CC

D=H*F1(X,Y1,Z1,G,TM,RMI,DNSI,PRI,TR,GAMA1,L,OMEGA)+H*CONST1

DD=H*F2(X,Y1,Z1,G,PI,TM,RMI,DNSI,PRI,TR,GAMA1,L,DNSD,OMEGA)+

* H*CONST2

Y=Y0+(A+2.D0*B+2.D0*C+D)/6.D0

Z=Z0+(AA+2.D0*BB+2.D0*CC+DD)/6.D0

RETURN

END

c ***********************************************************

FUNCTION F1(X,Y0,Z0,G,TM,RMI,DNSI,PRI,TR,GAMA1,L,OMEGA)

IMPLICIT REAL*8 (A-H,O-Z)

F1 = ((G*TM*RMI*DNSI/(PRI*TR*X*GAMA1)-3.D0)*Y0+(L*(L+1)/

* (OMEGA*X**3/RMI)-G*TM*RMI*DNSI/(PRI*TR*X*GAMA1))*Z0)/X

RETURN

END

c ***********************************************************
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FUNCTION F2(X,Y0,Z0,G,PI,TM,RMI,DNSI,PRI,TR,GAMA1,L,DNSD,OMEGA)

IMPLICIT REAL*8 (A-H,O-Z)

F2 = ((1.D0-4.D0*PI*DNSI*(TR*X)**3/(TM*RMI)-TR*X*(DNSD/DNSI+

* DNSI*G*TM*RMI/(GAMA1*PRI*TR*TR*X*X)))*Z0+(OMEGA*X**3/RMI+

* X*TR*(DNSD/DNSI+DNSI*G*TM*RMI/

* (GAMA1*PRI*TR*TR*X*X)))*Y0)/X

IF (L.EQ.0) THEN

F2=F2+((4.D0*PI*DNSI*(TR*X)**3/(TM*RMI))*Y0)/X

ENDIF

RETURN

END

c ************************************************

c FINDING THE SECOND ORDER EIGEN FREQUENCY

c ************************************************

SUBROUTINE SECONDFRQ(THIRDC,FORTHC,FIFTHC,SIXTHC,

* SEVENTHC,EIGHTHC,NINTHC,THIRD,FORTH,FIFTH,SIXTH,

* SEVENTH,EIGHTH,NINTH,I,H)

IMPLICIT REAL*8 (A-H,O-Z)

SAVE

DIMENSION THIRDC(5000),FIFTHC(5000),FORTHC(5000),SIXTHC(5000),

* SEVENTHC(5000),EIGHTHC(5000),NINTHC(5000)

STHIRDC1=0.D0

SFORTHC1=0.D0

SFIFTHC1=0.D0

SSIXTHC1=0.D0

SSEVENTHC1=0.D0

SEIGHTHC1=0.D0

SNINTHC1=0.D0

STHIRDC2=0.D0

SFORTHC2=0.D0

SFIFTHC2=0.D0

SSIXTHC2=0.D0

SSEVENTHC2=0.D0
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SEIGHTHC2=0.D0

SNINTHC2=0.D0

STHIRDC0=THIRDC(2)+THIRDC(I+1)

SFORTHC0=FORTHC(2)+FORTHC(I+1)

SFIFTHC0=FIFTHC(2)+FIFTHC(I+1)

SSIXTHC0=SIXTHC(2)+SIXTHC(I+1)

SSEVENTHC0=SEVENTHC(2)+SEVENTHC(I+1)

SEIGHTHC0=EIGHTHC(2)+EIGHTHC(I+1)

SNINTHC0=NINTHC(2)+NINTHC(I+1)

DO 60 N=2,I-4,2

STHIRDC1=STHIRDC1+THIRDC(N+1)

SFORTHC1=SFORTHC1+FORTHC(N+1)

SFIFTHC1=SFIFTHC1+FIFTHC(N+1)

SSIXTHC1=SSIXTHC1+SIXTHC(N+1)

SSEVENTHC1=SSEVENTHC1+SEVENTHC(N+1)

SEIGHTHC1=SEIGHTHC1+EIGHTHC(N+1)

SNINTHC1=SNINTHC1+NINTHC(N+1)

STHIRDC2=STHIRDC2+THIRDC(N+2)

SFORTHC2=SFORTHC2+FORTHC(N+2)

SFIFTHC2=SFIFTHC2+FIFTHC(N+2)

SSIXTHC2=SSIXTHC2+SIXTHC(N+2)

SSEVENTHC2=SSEVENTHC2+SEVENTHC(N+2)

SEIGHTHC2=SEIGHTHC2+EIGHTHC(N+2)

SNINTHC2=SNINTHC2+NINTHC(N+2)

60 CONTINUE

THIRDCI=H/3.D0*(STHIRDC0+4.D0*STHIRDC1+2.D0*STHIRDC2)

FORTHCI=H/3.D0*(SFORTHC0+4.D0*SFORTHC1+2.D0*SFORTHC2)

FIFTHCI=H/3.D0*(SFIFTHC0+4.D0*SFIFTHC1+2.D0*SFIFTHC2)

SIXTHCI=H/3.D0*(SSIXTHC0+4.D0*SSIXTHC1+2.D0*SSIXTHC2)

SEVENTHCI=H/3.D0*(SSEVENTHC0+4.D0*SSEVENTHC1+

* 2.D0*SSEVENTHC2)

EIGHTHCI=H/3.D0*(SEIGHTHC0+4.D0*SEIGHTHC1+2.D0*SEIGHTHC2)

NINTHCI=H/3.D0*(SNINTHC0+4.D0*SNINTHC1+2.D0*SNINTHC2)
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THIRD=THIRDCI

FORTH=FORTHCI

FIFTH=FIFTHCI

SIXTH=SIXTHCI

SEVENTH=SEVENTHCI

EIGHTH=EIGHTHCI

NINTH=NINTHCI

RETURN

END
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APPENDIX B

MATHEMATICA RESULTS

OF SOME ANGULAR INTEGRALS

∫
cosθ ∂

∂θ (Y m
l Y m∗

l ) dθdφ=

0 , for (l,m)=(0,0)

-2 , for (l,m)=(1,0)

-4 , for (l,m)=(2,0)

-6 , for (l,m)=(3,0)

1, for other cases of (l,m) (l≤3)

This integral is in equation (3.96), and its value is taken as 1 afterwards, since for

m=0 the term including this integral totally vanishes.
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∫
cot2θ |Y m

l |2 sinθ dθdφ=

diverges , for (l,m)=(0,0)
1
2 , for (l,m)=(1,-1)

diverges , for (l,m)=(1,0)
1
2 , for (l,m)=(1,1)
1
4 , for (l,m)=(2,-2)
3
2 , for (l,m)=(2,-1)

diverges , for (l,m)=(2,0)
3
2 , for (l,m)=(2,1)
1
4 , for (l,m)=(2,2)
1
6 , for (l,m)=(3,-3)
3
4 , for (l,mm)=(3,-2)
5
2 , for (l,m)=(3,-1)

diverges , for (l,m)=(3,0)
5
2 , for (l,m)=(3,1)
3
4 , for (l,m)=(3,2)
1
6 , for (l,m)=(3,3)

As seen in equation (3.110), when m=0, σ22,S2b
totally vanishes.
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∫
sin3θ Y m

l Y m∗
l dθdφ=

2
3 , for (l,m)=(0,0)
4
5 , for (l,m)=(1,-1)
2
5 , for (l,m)=(1,0)
4
5 , for (l,m)=(1,1)
6
7 , for (l,m)=(2,-2)
4
7 , for (l,m)=(2,-1)
10
21 , for (l,m)=(2,0)
4
7 , for (l,m)=(2,1)
6
7 , for (l,m)=(2,2)
8
9 , for (l,m)=(3,-3)
2
3 , for (l,m)=(3,-2)
8
15 , for (l,m)=(3,-1)
22
45 , for (l,m)=(3,0)
8
15 , for (l,m)=(3,1)
2
3 , for (l,m)=(3,2)
8
9 , for (l,m)=(3,3)

(See equation (3.109).)
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∫
sin2θ cosθ ∂

∂θ (Y m
l Y m∗

l ) dθdφ=

0 , for (l,m)=(0,0)
2
5 , for (l,m)=(1,-1)

-4
5 , for (l,m)=(1,0)

2
5 , for (l,m)=(1,1)
4
7 , for (l,m)=(2,-2)

-2
7 , for (l,m)=(2,-1)

-4
7 , for (l,m)=(2,0)

-2
7 , for (l,m)=(2,1)

4
7 , for (l,m)=(2,2)
2
3 , for (l,m)=(3,-3)

0 , for (l,m)=(3,-2)

-2
5 , for (l,m)=(3,-1)

- 8
15 , for (l,m)=(3,0)

-2
5 , for (l,m)=(3,1)

0 , for (l,m)=(3,2)
2
3 , for (l,m)=(3,3)

(See equation (3.108).)
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∫
cos2θ sinθ ∂

∂θY m
l

∂
∂θY m∗

l dθdφ=

0 , for (l,m)=(0,0)
3
10 , for (l,m)=(1,-1)
2
5 , for (l,m)=(1,0)
3
10 , for (l,m)=(1,1)
3
7 , for (l,m)=(2,-2)
11
14 , for (l,m)=(2,-1)
18
7 , for (l,m)=(2,0)
11
14 , for (l,m)=(2,1)
3
7 , for (l,m)=(2,2)
1
2 , for (l,m)=(3,-3)

1 , for (l,m)=(3,-2)
27
10 , for (l,m)=(3,-1)
28
5 , for (l,m)=(3,0)
27
10 , for (l,m)=(3,1)

1 , for (l,m)=(3,2)
1
2 , for (l,m)=(3,3)

(See equation (3.111).)
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∫
sinθ Y m∗

l dθdφ=

2
√

π, for (l,m)=(0,0)

0 , for (l,m)6=(0,0) and l≤3

(See equation (3.79).)

∫
sinθ cos2θ Y m∗

l dθdφ=

2
√

π
3 , for (l,m)=(0,0)

4
3

√
π
5 , for (l,m)=(2,0)

0, for other cases of (l,m) (l≤3)

(See equation (3.79).)

∫
sin2θ cosθ ∂

∂θY m∗
l dθdφ=

-4
√

π
5 , for (l,m)=(2,0)

0, for other cases of (l,m) (l≤3)

(See equation (3.79).)
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