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ABSTRACT 
 
 

ANALYTICAL AND NUMERICAL SOLUTIONS TO  

ROTATING ORTHOTROPIC DISK PROBLEMS 

 

Kaya, Yasemin 

M.S., Department of Engineering Sciences 

Supervisor: Assoc. Prof. Dr. Ahmet N. Eraslan 

 

September 2007, 82 pages 

 

 

Analytical and numerical models are developed to investigate the effect of 

orthotropy on the stress distribution in variable thickness solid and annular 

rotating disks. The plastic treatment  is based on Hill’s quadratic yield criterion, 

total deformation theory, and Swift’s hardening law. The elastic-plastic stress 

distributions, residual stresses and radial displacement distributions are obtained 

after having analysed the cases of rotating solid disk, annular disk with rigid 

inclusion, annular disk subjected to either internal or external pressure. Thermal 

loading is also considered for the annular disk with rigid inclusion. Effects of 

different values of elastic and plastic orthotropy parameters are investigated. It is 

observed that the  elastic orthotropy significantly affects the residual stresses in 

disks. The most remarkable effect of the plastic orthotropy is observed on the disk 

with rigid inclusion. 

 

 

Key words: Elastoplasticity; Rotating disk; Anisotropy; Nonlinear hardening; 

Hill’s criterion. 
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ÖZ 
 
 

DÖNEN ORTOTROPİK DİSK PROBLEMLERİNİN  

ANALİTİK VE SAYISAL ÇÖZÜMLERi 

 

Kaya, Yasemin 

Yüksek Lisans, Mühendislik Bilimleri Bölümü 

Tez Yöneticisi: Doç.  Dr. Ahmet N. Eraslan 

 

Eylül 2007, 82 sayfa 

 

 

Değişken kalınlıklı içi dolu ve içi boş dönen disklerde ortotropinin disk içindeki 

gerilme dağılımına  etkisini araştırmak için analitik ve sayısal modeller 

geliştirilmiştir. Plastik model , Hill’in kuadratik akma kriteri, toplam deformasyon 

teorisi ve Swift tipinde pekleşme kanununa dayanmaktadır. Elastik-plastik 

gerilme dağılımları, kalıntı gerilmeler ve radyal yer değiştirme dağılımları dönen 

içi dolu disk, rijit mile monte edilmiş içi boş dönen disk ve iç ya da dış yüzeyden 

basınç etkisi altındaki içi boş disk durumları için hesaplanmıştır. Rijit mile monte 

edilmiş içi boş disk için ısı yükü de göz önüne alınmıştır. Değişik elastik ve 

plastik ortotropi parametreleri için hesaplamalar yapılmıştır. Elastik ortotropi 

parametresinin kalıntı gerilmelerini önemli ölçüde etkilediği gözlemlenmiştir. 

Plastik ortotropi parametresinin ise en çok etkin olduğu durum rijit mile monte 

edilmiş diskte gözlemlenmiştir. 

 

 

Anahtar sözcükler: Elastoplastisite; Dönen disk; Anisotropi; Lineer olmayan 

pekleşme; Hill kriteri. 
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CHAPTER 1 

INTRODUCTION 

Determination of stress distribution of disks rotating at high speeds has been 

given widespread attention due to a large number of applications in mechanical 

and structural engineering. Among these applications turbine rotors, high speed 

gears, flywheels, and shrink fits can be mentioned. Analysis of stresses and 

displacement of such structures of isotropic materials was discussed in many 

textbooks [1-2]. 

 

Elastic-plastic analytical or numerical solutions for isotropic rotating disks 

exist in literature. Güven [3-7] widely investigated rotating disk problems with 

various boundary conditions under different basic assumptions and obtained 

closed form and numerical solutions. Eraslan, Eraslan and Orçan, Eraslan and 

Argeşo presented closed form and numerical solutions by using different 

assumptions for linear and nonlinear strain hardening disks with variable 

thickness under different boundary conditions [8-15]. You et. al. [16-17] 

developed analytical and numerical solutions to determine the stresses and 

deformation in nonlinear strain hardening rotating disks by using Von Mises 

yield criterion, its associated flow rule and deformation theory of plasticity. 

Rees [18] derived elastic-plastic stress distributions for a disk rotating at high 

speeds by combining Von Mises and Tresca yield criteria and compared these 

criteria. Ma et. al. [19] studied plastic limit analysis of a rotating solid or 

annular disk in terms of a unified yield condition. Alexandrova and Alexandrov 

[20] investigated elastic-plastic stress distribution in a rotating annular disk. 

The same authors [21] also determined the displacement field and strain 

distribution in a rotating annular disk. 
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Although isotropic disks have been studied extensively, there is rare study in 

the literature about anisotropic disks. However, increasing the usage of 

anisotropic materials in the engineering applications, investigation of elastic-

plastic anisotropic rotating disks has been of grate importance. Durban and 

Birman [22] analyzed the elastic-plastic behavior of rotating annular disk 

according to Hill's anisotropic flow theory. Tütüncü [23] studied the effect of 

anisotropy on inertio-elastic instability of rotating polar orthotropic disks. 

Çallıoğlu and Topçu [24] developed an analytical solution to elastic-plastic 

stress analysis of an orthotropic rotating disk by using Tsai-Hill theory as a 

yield criterion. They obtained the result that plastic yielding occurs first at the 

inner surface. Magnitude of circumferential stresses is found to be higher than 

that of the radial stress component throughout the disk. Alexandrova and 

Alexandrov [25] presented a semi-analytical solution to investigate the effect 

of anisotropy on the stress distribution in the rotating annular disk adopting 

Hill's quadratic yield criterion and its associated flow rule. Alexandrova and 

Real [26] investigated the singularities in a solution to a rotating orthotropic 

disk of constant thickness and density. They used Hill's quadratic orthotropic 

yield criterion and also considered temperature effect. Jain et. al. [27] obtained 

a unified formulation for studying stresses in rotating polarly orthotropic disks, 

shells and conical shells. They focused on the investigation of singularities 

circumferential modulus of elasticity is smaller than the radial modulus. The 

same authors [28] considered a rotating orthotropic disk of uniform thickness 

to show that the orthotropy parameter can be varied in such a way that it leads 

to equal radial and circumferential stresses. 

 

The objective of the present work is to investigate the effect of orthotropy on 

stress, strain and displacement distributions in rotating disks. Pressure and 

thermal loading are also taken into account. For this purpose, analytical and 

numerical solutions are developed. 
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CHAPTER 2 

THEORY 

2.1 The Stress-Strain Diagram 

 

To obtain the stress-strain diagram of a material, the most usual test type 

conducted on a specimen of the material is tensile test. The result of this test is 

represented by plotting the nominal stress against the conventional or 

engineering strains as depicted in Fig. 2.1. Nominal stress is represented by 

0A

P
n =σ ,          (2.1) 

 

and engineering strain by 

0

0

l

ll −
=ε ,          (2.2) 

 

where P is load, 0A  is original cross-sectional area, 0l  is unit original length, 

and l  is the final length after the test. 

 

If the load is increased, length of the specimen increases linearly up to point A, 

which is known as proportional limit. This portion of the stress-strain diagram 

is a straight line and obeys the Hooke’s law. If a further increase occurs after 

this point, the strain no longer increases linearly but the material is still elastic. 

In other words, upon release of the load the specimen returns to its original 

length. This condition continues up to the point B, called as elastic limit or 

yield point. There is usually little difference between proportional limit A and 

elastic limit B. They are assumed the same for most materials. Point B shows 
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the end of elastic straining and initiation of plastic deformation. After the point 

B, the strain increases at a greater rate. But, the specimen will not deform 

further unless the load is increased. This condition is defined as work 

hardening or strain hardening. At point C a maximum load is reached. Beyond 

C the specimen neck down and fractures at D. The maximum load point C is 

called the tensile strength or ultimate strength. 

 

 
Figure 2.1 The stress-strain curve. 
 
 
In the Fig. 2.1 , line  B’C’ shows the unloading path when the load is removed 

at any point between B and C. Some part of strain is recovered, which is elastic 

part of the strain eε , and other part remains permanently, which is plastic part 

of the strain pε . Therefore, total strain is presented by 

pe εεε +=           (2.3) 

 

 

 

σ
 

ε  

A 

B 

B’ 

C’ 

D 

pε  eε  

C 
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2.2 Anisotropic Yield Criterion 

 

Annealed material may be considered as isotropic. However, if it is in any 

degree worked, it becomes anisotropic, i.e. its stress-strain behavior becomes 

direction-dependent and the texture of the material takes on a fibrous 

appearance. This occurs in all metal-working processes [30]. 

 

A metal in which the grains are initially oriented at random, and which is 

therefore isotropic, is rendered anisotropic during plastic deformation. Hill [31] 

presented a yield criterion assumed to be quadratic in the stress components, in 

the form: 

1222

)()()()(2

222

222

=+++

−+−+−=

xyzxyz

yxxzzyij

NML

HGFf

τττ

σσσσσσσ
    (2.4) 

 

where F,G,H,L,M,N are parameters defining characteristics of a current state of 

anisotropy. The absence of linear terms in the yield function implies that there 

is no Bauschinger effect.  

 

In the case of complete spherical symmetry or isotropy 

NMLHGF ===== 333 , 

 

and Eqn.(2.4) reduces to von Mises’ criterion. The yield criterion is represented 

in the form of Eqn.(2.4) only when the principal axes of anisotropy are taken as 

the axes of reference. 

 

For the orthotropic material, it is chosen that rectangular axes coincide with the 

principal axes of anisotropy. According to Hill’s criterion, the effective stress 

eσ  is represented for the polar coordinates by 

M

r

M

r

M

e RR θθ σσσσσ ++−+=+ )21()1(2 ,     (2.5) 
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where the parameters R  and M  characterize the normal plastic anisotropy of 

the disk. For the rotating disk 0<− θσσ r , and 0>+ θσσ r  [22]. If  2=M , 

Eqn.(2.5) reduces to  

222 )())(21()1(2 θθ σσσσσ ++−+=+ rre RR ,     (2.6) 

 

which is Hill’s orthotropic yield function. If 1=R  , material is said to be 

isotropic, and Eqn.(2.6) reduces to von Mises’ criterion. 
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CHAPTER 3 

PROBLEM DEFINITION AND SOLUTION 

In this study, a rotating disk that has an inner radius a  and outer radius b  is 

considered. It is assumed that the thickness of the disk , h , changes according 

to the following parabolic function: 




















−=

k

b

r
nhrh 1)( 0  ,        (3.1) 

 

where 0h  is the thickness of the disk at 0=r ; n  and  k  are parameters 

)0,0( >> kn , which describe thickness variation. In the case that ∞→n , 

thickness of  disk becomes uniform. If  1=k , the disk has a linearly decreasing 

thickness profile; if 1<k , it is concave, and if 1>k , it is convex. 
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(a) (b) 
Figure 3.1 Disk profiles (a) concave for 4.0=n  and 6.0=k and (b) convex for 

4.0=n  and 2.1=k . 
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3.1 Basic Equations  

 

In the solution Timoshenko and Goodier notation is used. The thickness of the 

disk is small in comparison with its radius; therefore, stresses can be neglected 

throughout the disk thickness and the problem can be solved as the plane stress 

condition. 

 

The equation of motion of the rotating disk with variable thickness can be 

written as [1]  

( ) 022 =+− rhhhr
dr

d
r ρωσσ θ ,       (3.2) 

 

where r  is the radial coordinate, rσ  and θσ  are the radial and circumferential 

stresses, ρ , the constant density of the disk material,ω , the angular velocity of 

the disk, and h  is the thickness variation function of the disk as mentioned in 

Eqn.(3.1). rσ , θσ  and h  are functions of the radial coordinate r .  

 

The relations between strains and radial displacement are: 

dr

du
r =ε ,  and 

r

u
=θε ,        (3.3) 

 

where rε  and θε  are the total radial and circumferential strains, respectively. 

These two equations satisfy the compatibility equation: 

( ) 0=− θεε rr
dr

d
.         (3.4) 

 

Elastic and plastic deformations occur in the rotating disk. The total strains 

consist of elastic and plastic components: 

p

r

e

rr εεε +=  , and  pe

θθθ εεε += ,       (3.5) 
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For the plane stress problems, elastic deformations in the case of anisotropy 

can be expressed by the following stress-strain relations based on Hooke law: 

Θ+−= ασ
νσ

ε θ

θ

θ

EE

r

r

re

r ,        (3.6) 

Θ+−= ασ
νσ

ε θ

θ

θ
θ r

r

re

EE
,        (3.7) 

 

where e

rε  and e

θε  are the elastic radial and circumferential strains, rE  and θE  

are Young’s Modulus in r  and θ  directions, θν r
 and 

rθν , Poisson’s ratios,α  

,thermal expansion coefficient, ∞−=Θ TrT )( ,temperature difference between 

the disk surface and the surrounding temperatures for the nonisothermal case.  

 

For the plastic deformation, considering the deformation theory of plasticity, 

the stress-plastic strain relations are constructed on the basis of Hill’s 

anisotropic yield function [16, 31]: 










+
−= θσσ

σ

ε
ε

2

2

1 R

R
r

e

EQp

r ,        (3.8) 










+
−= r

e

EQp

R

R
σσ

σ

ε
ε θθ

2

2

1
,        (3.9) 

 

where p

rε  and p

θε  are the plastic radial and circumferential strains, EQε  is the 

equivalent plastic strain, eσ  , the equivalent stress. According to Hill’s 

quadratic yield criterion, eσ  is defined as 

2

2

22

1

2
θθ σσσσσ +

+
−= rre

R

R
,                (3.10) 

 

and 2R  is the plastic orthotropy parameter given before as R  in Eqn. (2.6). 

When  1≥eσ , the yielding starts. 
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Using Swift’s nonlinear strain hardening law, the relation between the 

equivalent stress eσ , and the equivalent plastic strain EQε  can be written as 

[30] 

m

EQe

/1
0 )1( ηεσσ +=  ,                 (3.11) 

 

where 0σ  is the yield stress,η , the hardening parameter, and m , the material 

parameter. The inverse relation is: 

ησ

σ
ε

1
1

0 












−








=

m

e

EQ .                 (3.12) 

 

 

In order to calculate the temperature distribution throughout the disk, energy 

equation can be written as [32] 

0
'1

2

2

=Θ−Θ





++Θ

h

H

dr

d

h

h

rdr

d c

λ
,                (3.13) 

 

where ∞−=Θ TrT )(  is the temperature difference between the surface of the 

disk and the surrounding temperature, 'h  denotes the first derivative of the disk 

profile function h  with respect to r, cH  is the heat transfer coefficient, and λ , 

thermal conductivity of the disk material. 

 

Heat transfer coefficient 
cH  is a function of  r  and ω  , given by 

22
210),( rHrHHrH c ωωω ++= ,                (3.14) 

 

with the parameters 0H  , 1H  , and 2H  . 

 

In the solution process, basic equations are written in the dimensionless forms. 

For this purpose, the following nondimensional and normalized variables are 

defined; 
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Radial coordinate   : 
b

r
r = , 

Disk thickness       :
0

 
h

h
h = , 

Stress                     : 
0σ

σ
σ j

j = , 

Displacement         : 
b

uE
u r

0σ
= , 

Strain                    : 
0σ

ε
ε rj

j

E
= , 

Angular velocity  : 0/ σρωb=Ω , 

Pressure               : 
0σ

P
P = . 

 

The equation of motion of rotating disk with variable thickness can be written 

as 

0)( 22 =Ω+− rhhrh
rd

d
r θσσ .                (3.15) 

 

Compatibility equation: 

0)( =− rrr
rd

d
εε .                  (3.16) 

 

If we define the orthotropy parameter  in the elastic region as 

θE

E
R r=1 ,                   (3.17) 

 

and Maxwell relation is written as   

rr R θθ νν 1= ,                   (3.18) 
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the elastic strains become: 

Θ+−= ασνσε θθrr

e

r ,                 (3.19) 

Θ+−= ασνσε θθθ rr

e
R1 .                 (3.20) 

 

Plastic strains: 










+
−= θσσ

σ

ε
ε

2

2

1 R

R
r

Y

EQp

r ,                 (3.21) 










+
−= r

Y

EQp

R

R
σσ

σ

ε
ε θθ

2

2

1
.                 (3.22) 

 

Equivalent plastic strain: 

( )1
1

−= m

eEQ
H

σε ,                  (3.23) 

where rEH /0ησ=  is the hardening parameter. 

 

Hill’s yield criterion for orthotropic materials: 

2

2

22

1

2
θθ σσσσσ +

+
−= rre

R

R
.                (3.24) 

 

Total strains are summation of the elastic and plastic strains: 

p

rrrr εασνσε θθ +Θ+−= ,                 (3.25) 

p

rrR θθθθ εασνσε +Θ+−= 1 .                 (3.26) 

 

Later the following stress function will be used [1]: 

rrhY σ= .                   (3.27) 

 

The radial stress, therefore, is 

rh

Y
r =σ ,                    (3.28) 
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and if it is substituted into the equation of motion, Eqn. (3.15), circumferential 

stress is obtained as 

rd

dY

h
r

122 +Ω=θσ .                  (3.29) 

 

Derivatives of stresses with respect to r  are: 

rd

dY

rh
Y

rh

h

rhrd

d r 1'1
22

+







+−=

σ
 ,                 (3.30) 

 

2

2

2

2 1'
2

rd

Yd

hrd

dY

h

h
r

rd

d
+−Ω=θσ

.                (3.31) 

 

Derivative of the yield stress: 

rd

d
N

rd

d
N

R

RRR

rd

d

r

e

rrre

θ

θθθθ

σσ

σ

σσσσσσσσ

21

2

'
2

'
22

)1(

)]([])1[(

+=

+

−++−+
=

,             (3.32) 

 

where 

e

r

R

RR
N

σ

σσ θ

)1(

)1(

2

22
1

+

−+
= , and 

e

r

R

R
N

σ

σσσ θθ

)1(

)(

2

2
2

+

−+
= .             (3.33) 

 

Substituting total strains, Eqn.s (3.25) and (3.26) in the compatibility, Eqn. 

(3.16), gives 

0

1)()1(

1

111

1

11

=Θ++

−+
+

+
+

−
−

rd

d

Rrd

d

rd

d

Rrd

d

RRr

R

RrRr

rr

p

rrr

p

r

p

ασ

σνεσνσνεε

θ

θθθθθθ

           (3.34) 
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with derivative of plastic strain 

rd

d

RH

RNNNN

rd

d

RH

RNNNN

rd

d

e

er

e

e

p

θθ σ

σ

σσ

σ

σε









+

+−
+









+

−
=

2
2

23542
2

2

23541

)1(

)1(

)1(
 ,   (3.35) 

 

where 

13 −= m

eN σ , 

m

emNN σ−= 34 , 

θσσ )1( 225 RRN r +−= . 

 

3.2 Temperature Distribution 

 

In the problem, nonisothermal case is calculated only for the rigid inclusion 

case. Temperature distribution is calculated numerically. The following 

dimensionless parameters are defined; 

Thermal expansion coefficient : 
0σ

α
α rE

= , 

Heat transfer coefficient            : 
λ

bH
H c

c = , 

Heat load                                  :  
)log(a

T
q bα

−= . 

 

Energy equation is rearranged as follows: 

0
'1

0
2

2

=Θ−Θ







++Θ

hh

H

rd

d

h

h

rrd

d c
,                (3.36) 

 

where bhh /00 = , and the heat transfer coefficient cH  is used in the 

dimensionless form as 

22
210),( rHrHHrH c Ω+Ω+=Ω .                (3.37) 
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Boundary conditions for annular disk: 

∞−=Θ TTa b)(  , and   [ ]∞

=

−=
Θ

− TbTbH
dr

d
k c

br

)(),( ω ,              (3.38) 

 

where α/)log(aqTb −= , is the temperature of the hot rigid shaft found from 

the heat load. If the surrounding temperature ∞T  is taken as zero, boundary 

conditions can be written in the following form: 

bTa =Θ )(  , and  )1(),1(
1

ΘΩ=
Θ

=

c

r

H
rd

d
.               (3.39) 

 

This two point boundary value problem can be converted to an initial value 

problem, IVP, and solved numerically by shooting method as follows: 








 Θ
Θ=

Θ

rd

d
rf

rd

d
,,

2

2

,                  (3.40) 

 

and, if Θ  and its derivative is defined as Θ=1φ and  
rd

dΘ
=2φ , thus, 

2
1 φ

φ
=

Θ
=

rd

d

rd

d
, and   ),,( 212

2
2 φφ

φ
rf

rd

d

rd

d
=

Θ
= , or 

 

.
'1

-

,

0

2
2

2
1

φφ
φ

φ
φ

hh

H

h

h

rrd

d

rd

d

c−







+=

=

                 (3.41) 

 

For this initial value problem, the initial conditions are that bTa =)(1φ   , )(2 aφ  

is unknown.  Right boundary condition is written in the same form as 

)1(),1()1( 12 φφ Ω= cH . Since )(2 aφ  is not known, it is assumed, and the 

estimation is improved by Newton iteration scheme. For this purpose, the IVP 

is solved numerically three times for kth iteration cycle as follows: 
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I.   )1(
1

)1(  give     to          )()( 21122 φφφφ
c

k

H
Faa +==  

II.  )1(
1

)1(  give      to)()( 21222 φφφφφ
c

k

H
Faa +=∆+=              (3.42) 

III. )1(
1

)1(  give      to)()( 21322 φφφφφ
c

k

H
Faa +=∆−=  

 

where baa /= ,and φ∆  is a small increment. A better approximated value of 

)(2 aφ  is obtained from: 

32

1
2

1
2

2
)()(

FF

F
aa kk

−

∆
−=+ φ

φφ                  (3.43) 

 

If  T

kk
aa εφφ <−+ )()( 2

1
2  , iteration will stop and the IVP is solved numerically 

by using Runge-Kutta Fehlberg predictor corrector method for the last 

estimation of )(2 aφ  value. In addition, Tε  is the error tolerance, which is taken 

as 910− . 

 

 

3.3 Elastic Analytical Solution 

 

Elastic part of the Eqn.(3.35) is: 

0
)()1(

111

1

1

=
Θ

++−
+

+
+

−
rd

d

Rrd

d

rd

d

RRr

R

Rr

rrrrr ασσνσνσν θθθθθ .            (3.44) 

 

Using the stresses in the form of 

rh

Y
r =σ , and 

rd

dY

h
r

122 +Ω=θσ ,                (3.45) 

 

and parabolic disk profile: 

krnrh −= 1)(  ,                  (3.46) 
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elastic equation Eqn.(3.44) becomes: 

rd

d

R

rrn

R

rRrn

Y
R

rnk

rd

dY
rnkr

rd

Yd
rnr

k

r

k

k

rkk

Θ−
−

Ω+−
−

=






 −−
−−−+−

1

22

1

32
1

2

1
2

2
2

)1()3()1(

)1(1
])1(1[)1(

αν

ν

θ

θ

 .          (3.47) 

 

 

General solution of this equation is: 

)()()()( 2211 rPrYCrYCrY ++= ,                (3.48) 

 

where 

,)(

),;2,1,1()(

),;,,()(

2211

1

1

YUYUrP

rnFrrY

rnFrrY

kM

kM

+=

−+−+−=

= −

δδβδα

δβα

,              (3.49) 

1

1

R
M = .                   (3.50) 

 

);,,( krnF δβα  is the hypergeometric function with the following arguments: 

...,
!3)2)(1(

)2)(1()2)(1(

!2)1(

)1()1(

!1
1);,,(

3

2

+
++

++++
+

+

++
++=

z

zzrnF
k

δδδ

βββααα

δδ

ββαα

δ

αβ
δβα

            (3.51) 

 

k

RkkM

k

M r

2

)1(4

2

1 1
2+−

−−−= θν
α  

k

RkkM

k

M r

2

)1(4

2

1 1
2+−

+−−= θν
β                (3.52) 

k

M2
1−=δ  
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λλ dGrU

r

a

)()( 11 ∫=  ;  λλ dGrU

r

a

)()( 22 ∫=                (3.53) 

 

)(

)()(
)(

0

2
1

rW

rfrY
rG

r

−=  , and 
)(

)()(
)(

0

1
2

rW

rfrY
rG

r

=               (3.54) 

rd

d

RR

rRrn
rf r

k Θ
−

Ω+−
−=

11

2
1 )3)(1(

)(
αν θ                           (3.55) 

 

)()()()()( '
12

'
210 rYrYrYrYrWr −=                 (3.56) 

 

1U  and 2U  are evaluated by expanding the integrals in series at Gaussian 

points: 

 








 ++−
×

−
= ∑

= 2

)(

2
)( 1

1
1

arXar
G

ar
rU i

N

i

iφ                (3.57) 

 








 ++−
×

−
= ∑

= 2

)(

2
)( 2

1
2

arXar
G

ar
rU i

N

i

iφ               (3.58) 

 

Note that 0)()( 21 == aUaU , and 0)( =aP . 

 

 

3.3.1 Boundary Conditions 

 

In this problem, five different cases of the disk are taken into account, rotating 

solid disk, rotating annular disk, rotating annular disk with rigid inclusion, 

annular disk subjected to internal pressure and annular disk subjected to 

external pressure. 

 

We note that from Eqn. (3.20), the radial displacement takes the form: 
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Tr
rd

dY

h

Rr
Y

h
rRru r α

ν θ ++−Ω= 132
1)(                (3.59) 

 

3.3.2 Rotating Solid Disk 

 

Stresses are finite at  0=r . From Eqn. (3.27) 0)0( =Y , and from Eqn. (3.49), 

01 =C . From  0)1( =rσ  , 0)1( =Y  , and 

)1(

)1(

2

2
Y

P
C −=                    (3.60) 

 

In this case, as 1)0( =h  , we can show that: 

rd

dY
r == )0()0( θσσ  , and  0)0( =u                (3.61) 

 

 

3.3.3 Rotating Annular Disk 

 

Boundary conditions are  0)( =arσ , and  0)1( =rσ . Integration constants are 

found to be: 

)()1()1()(

)()1(

2121

2
1

aYYYaY

aYP
C

−
−=                 (3.62) 

)1()()()1(

)()1(

2121

1
2

YaYaYY

aYP
C

−
−=                 (3.63) 

 

 

3.3.4 Rotating Annular Disk with Rigid Inclusion 

 

Boundary conditions are 0)( =au  and 0)1( =rσ . The result is: 

)]()()[1()]()()[1(

)]()()[1()]()[1()(
'

11122
'

211

'
212

2
1

2
2

1
aYRaaYYaYaYRaY

aYRaaYPaTRaYaha
C

rr

r

−+−

−++Ω
=

θθ

θ

νν

να
            (3.64) 
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)]()()[1()]()()[1(

)]()[1()()]()()[1(
'

11122
'

211

2
1

2
11

'
11

2
aYRaaYYaYaYRaY

aTRaYahaaYaYRaP
C

rr

r

−+−

+Ω−−
=

θθ

θ

νν

αν
            (3.65) 

 

 

3.3.5 Annular Disk Subjected to Internal Pressure 

 

Boundary conditions are inr Pa −=)(σ  and 0)1( =rσ . The result is 

)()1()1()(

)()1()1()(

2121

22
1

aYYYaY

aYPYahPa
C in

−

−
−= ,                (3.66) 

)()1()1()(

)()1()1()(

2121

11
2

aYYYaY

aYPYahPa
C in

−

−
= ,                (3.67) 

 

where inP  is the internal pressure. 

 

 

3.3.6 Annular Disk Subjected to External Pressure 

 

Boundary conditions are 0)( =arσ  and exr P−=)1(σ . The result is 

)()1()1()(

)]1()1()[(

2121

2
1

aYYYaY

PhPaY
C ex

−

+
=  ,                (3.68) 

)()1()1()(

)]1()1()[(

2121

1
2

aYYYaY

PhPaY
C ex

−

+
−= ,                (3.69) 

 

where exP  is the internal pressure. 
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3.4 Elastic-Plastic Numerical Solution 

 

Since the first derivative of circumferential stress, rdd /θσ , includes the 

second derivative of the stress function, 22 / rdYd , elastic equation Eqn.(3.44) 

should be rearranged in terms of stress function as follows: 

 

0
)()1(

111

1

1

=+
Θ

+−
+

+
+

−
rd

d

rd

d

Rrd

d

RRr

R

Rr

K

rrrrr θθθθθ σασνσνσν

444444444 3444444444 21

, 

0=+
rd

d
K θσ

.                   (3.70) 

 

 

Substituting derivative of  circumferential stress into the above equation, it can 

be written in terms of stress function: 

0
1'

2
2

2
2 =+−Ω+

rd

Yd

hrd

dY

h

h
rK .                (3.71) 

 

If  Eqn.(3.71) is rearranged, a second order ordinary differential equation is 

obtained: 









−Ω+−=

rd

dY

h

h
rKh

rd

Yd '
2 2

2

2

.                (3.72) 

 

In the plastic case, derivative of circumferential plastic strain also includes the 

second derivative of stress function indicated below:  

rd

d

RH

RNNNN

rd

d

RH

RNNNN

rd

d

B

Y

Y

A

r

Y

Y

p

θθ σ

σ

σσ

σ

σε

44444 344444 214444 34444 21










+

+−
+









+

−
=

2
2

23542
2

2

23541

)1(

)1(

)1(
, 

rd

d
BA

rd

d
p

θθ σε
+= .                  (3.73) 
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If Eqn. (3.73) is substituted into the Eqn.(3.34), we obtain: 

0
1)()1(

1111

1

11

=++
Θ

+−
+

+
+

−
−

rd

d

rd

d

Rrd

d

Rrd

d

RRr

R

RrRr

p

L

rrrrr

p

r

p

θθθθθθθ σεασνσνσνεε

44444444444 344444444444 21

 

0
1

1

=+







++

rd

d

rd

d
BA

R
L θθ σσ

 

01
11

=







+++

rd

d

R

B

R

A
L

C

θσ

43421

                  (3.74) 

Inserting derivative of circumferential stress, rdd /θσ , in terms of stress 

functions into Eqn. (3.74), a second order ordinary differential equation is 

obtained. 

0
'

2
2

2
2

1

=+







−Ω++

rd

Yd

h

C

rd

dY

h

h
rC

R

A
L                (3.75) 

 

















−Ω++−=

rd

dY

h

h
rC

R

A
L

C

h

rd

Yd '
2 2

1
2

2

               (3.76) 

 

For both elastic and plastic cases, right hand sides of Eqn.(3.72) and Eqn.(3.76) 

are functions of Y  and rddY / . 









=

rd

dY
Yrf

rd

Yd
,,

2

2

                  (3.77) 

 

If we define stress function and its derivative as Y=1φ ,and rddY /2 =φ  ,this 

two point boundary problem can be converted into an initial value problem and 

solved numerically for the five cases by using Runge-Kutta Fehlberg predictor 

corrector method. 

2
1 φ

φ
==

rd

dY

rd

d
                  (3.78) 
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







==

rd

dY
Yrf

rd

Yd

rd

d
,,

2

2
2φ

                 (3.79) 

 

 

3.4.1 Rotating Solid and Annular Disk 

 

Recall that  0)( =arσ , and  0)1( =rσ , thus 0)( =aY  and 0)1( =Y  and the 

conditions are rewritten as 

, )(

,0)(

2

1

knownnota

a

→

=

φ

φ
                  (3.80) 

and 

.0)1(1 =φ                    (3.81) 

 

Since )(2 aφ  is not known, it is assumed and the estimation is improved by 

Newton iteration scheme. For this purpose, the IVP is solved numerically three 

times for the kth iteration cycle as follows: 

I.   )1(  give  to          )()( 1122 φφφ == Faa k  

II.  )1(  give   to)()( 1222 φφφφ =∆+= Faa k                 (3.82) 

III. )1(  give   to)()( 1322 φφφφ =∆−= Faa k  

 

A better approximated value of )( 02 rφ  is obtained from 

32

1
2

1
2

2
)()(

FF

F
aa

kk

−

∆
−=+ φ

φφ                  (3.83) 

 

If  T

kk
aa εφφ <−+ )()( 2

1
2  , iteration will stop and IVP is solved for the last 

estimation of )(2 aφ .  
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3.4.2 Rotating Annular Disk with Rigid Inclusion 

 

We know that boundary conditions are 0)( =au  and 0)1( =rσ . Thus 

, )(

, )(

2

1

knownnota

knownnota

→

→

φ

φ
                  (3.84) 

and 

0)1(1 =φ .                   (3.85) 

 

In the above system, both )(1 aφ and )(2 aφ are not known and not obtained 

directly from the left boundary conditions. Firstly, )(1 aφ  is assumed. Then, 

)(2 aφ  is obtained  by using assumed )(1 aφ . For this purpose, radial and 

circumferential stresses are expressed in terms of stress function. 

aah

a
ar

)(

)(
)( 1φ

σ = ,                  (3.86) 

)(
)(

1
)( 2

22
a

ah
aa φσ θ +Ω=  .                (3.87) 

 

Eqn. (3.86) and Eqn. (3.87) are substituted into left boundary condition, 

0)( =au  , in order to obtain )(2 aφ . We know that 

,
1

)(
2

2
1 









+
−+Θ+−= θθθθ σσ

σ

ε
ασνσε

R

R
Ra r

e

EQ

rr              (3.88) 

 

and 

aaau )()( θε=                   (3.89) 

 

Since 0)( =au , 0)( =aθε . Hence, Eqn.(3.88)  is set to zero.  
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0)(
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1)(

)(
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)(
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22

2

21

1
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22
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=



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

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
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
+Ω

+
−



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


+

Θ+







−







+Ω

a
ah

a
R

R

aah

a

aah

a
a

ah
aR

e

EQ

r

φ
φ

σ

ε

α
φ

νφ θ

              (3.90) 

 

Because the effective stress and the equivalent stress include the )(aiφ as the 

following ways 

2

2
22

2
221

2

2

2

1 11

1

2








+Ω+








+Ω









+
−








= φφ

φφ
σ

h
a

h
a

ahR

R

ah
e             (3.91) 




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Eqn.(3.90) is rearranged and solved by iteration to obtain )(2 aφ . 
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Then, )(1 aφ  value is corrected by Newton iteration scheme.  

I.   )1(  give  to          )()( 1111 φφφ == Faa
k  

II.  )1(  give   to)()( 1211 φφφφ =∆+= Faa
k                (3.94) 

III. )1(  give   to)()( 1311 φφφφ =∆−= Faa
k  

 

After the assumptions and verifications the IVP is solved.  
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3.4.3 Annular Disk Subjected to Internal Pressure 

 

Since 
inr Pa −=)(σ  and 0)1( =rσ , we can write aahaaY r )()()( σ=  or 

aahPaY in )()( −=  and  0)1( =Y . Thus 

, )(

,)()(

2

1

knownnota

aahPa in

→

−=

φ

φ
                  (3.95) 

and 

.0)1(1 =φ                    (3.96) 

 

Afterwards solution procedure is the same as the rotating annular disk. 

 

 

3.4.4 Annular Disk Subjected to External Pressure 

 

As it mentioned before, 0)( =arσ  and 
exr P−=)1(σ . Therefore, 0)( =aY  and 

1)1()1()1( hY rσ=  or )1()1( hPY ex−= . Hence, 

 

0)(1 =aφ  

knownnota  )(2 →φ                   (3.97) 

exPh )1()1(1 −=φ  

 

)(2 aφ  is corrected by Newton iteration scheme as follows: 

I.   ex

k
PhFaa )1()1(  give  to          )()( 1122 +== φφφ  

II.  ex

k
PhFaa )1()1(  give   to)()( 1222 +=∆+= φφφφ              (3.98) 

III. ex

k
PhFaa )1()1(  give   to)()( 1322 +=∆−= φφφφ  

 

and  then the IVP is solved. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

In this study, effects of elastic and plastic orthotropy parameters, 1R  and 2R , 

on disks having different boundary conditions and loads have been 

investigated. Whereas the plastic part of the problem is solved numerically, the 

analytical solution of the elastic part exists. The problem is solved for different 

orthotropy parameters in order to observe their effects on stress, strain, 

displacement, and residual stress distributions.  

 

 

4.1 Elastic Analytical Solution 

 

Results of elastic analytical solutions are presented in Figures (4.1)-(4.14). As 

it can be seen from the figures, the effects of 1R  have been studied. 

 

Figures (4.1)-(4.3) show the stress and displacement distributions of rotating 

annular disk under the load 13845.1=Ω , which is the elastic-plastic limit 

angular velocity on the inner surface of the disk for 4.11 =R  and 8.02 =R . It is 

seen that radial stress and displacement increases with the increasing value of 

1R . Whereas the circumferential stress is increasing near the inner surface of 

disk, it decreases after a point up to the outer surface of the disk with the 

increasing value of 1R . Dotted lines in the figures show the isotropic case 

( 0.11 =R  and 0.12 =R ). 
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Figures (4.4)-(4.6) show the effect of 1R  for the case of annular disk with rigid 

inclusion for the angular velocity 38381.1=Ω . As seen in Fig. (4.4) , radial 

stresses are highly effected by variation of the 1R  in the inner surface. 

 

Effects of 1R on stress and displacements for the disk subjected to internal and 

external pressures are depicted in Figures (4.7)-(4.12). For both cases radial 

stresses are slightly affected by the variation of 1R . As seen in Fig. (4.8) 

circumferential stress decreases for the increasing values of 1R  in the inner 

surface of disk, while it increases near the outer surface.  For the external 

pressure case, circumferential stress is compressive and it increases with the 

increasing 1R  near the inner surface and vice versa near the outer surface. 

 

Fig. (4.13) and Fig. (4.14) show the nonisothermal case for stationary and 

rotating annular disks with rigid inclusion. In both cases circumferential 

stresses are compressive near the inner surface and tensile near the outer 

surface. 

 
 
 
 
 
 
 
 



 

 29

0.0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1.0

radial coordinate

ra
d

ia
l 
s
tr

e
s
s

4.11 =R

6.0

8.0

2.1

13845.1  

8.0

8.0

4.0

2.0

2

=Ω

=

=

=

=

R

k

n

a

 
 
 
 

Figure 4.1 Effect of elastic orthotropy parameter 1R  on radial stress 

distribution for rotating annular disk. 
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Figure 4.2 Effect of elastic orthotropy parameter 1R  on circumferential stress 
distribution for rotating annular disk. 
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Figure 4.3 Effect of elastic orthotropy parameter 1R  on displacement for 
rotating annular disk. 



 

 32

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.25 0.50 0.75 1.00

radial coordinate

ra
d

ia
l 
s
tr

e
s
s

95.0

15.135.1

38381.1  

75.0

8.0

4.0

25.0

2

=Ω

=

=

=

=

R

k

n

a

75.01 =R

 
Figure 4.4 Effect of elastic orthotropy parameter 1R  on radial stress 
distribution for rotating annular disk with rigid inclusion. 
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Figure 4.5 Effect of elastic orthotropy parameter 1R  on circumferential stress 
distribution for rotating annular disk with rigid inclusion. 
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Figure 4.6 Effect of elastic orthotropy parameter 1R  on displacement  for 
rotating annular disk with rigid inclusion. 
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Figure 4.7 Effect of elastic orthotropy parameter 1R  on radial stress 
distribution for stationary annular disk subjected to internal pressure. 
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Figure 4.8 Effect of elastic orthotropy parameter 1R  on circumferential stress 
distribution for stationary annular disk subjected to internal pressure. 
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Figure 4.9 Effect of elastic orthotropy parameter 1R  on displacement for 
stationary annular disk subjected to internal pressure. 
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Figure 4.10 Effect of elastic orthotropy parameter 1R  on radial stress 
distribution for stationary annular disk subjected to external pressure. 
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Figure 4.11 Effect of elastic orthotropy parameter 1R  on circumferential stress 
distribution for stationary annular disk subjected to external pressure. 
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Figure 4.12 Effect of elastic orthotropy parameter 1R  on displacement for 
stationary annular disk subjected to external pressure. 
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Figure 4.13 Effect of elastic orthotropy parameter 1R  on stress and 
displacement distributions for stationary annular disk with rigid inclusion 
under the thermal load. 
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Figure 4.14 Effect of elastic orthotropy parameter 1R  on stress and 
displacement distributions for rotating annular disk with rigid inclusion under 
the thermal load. 
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4.2 Elastic-Plastic Numerical Solutions 

 

Fig. (4.15) shows that the propagation of elastic-plastic border radius with 

increasing angular speed , for a rotating solid disk. It is seen from that, the size 

of plastic region decreases with increasing values of parameter 2R , except 

small angular speeds. Figures (4.16)-(4.17) show the effect of parameter 2R  on 

the stress, strain and radial displacement. It is seen from Fig. (4.17) that, the 

plastic strains and radial displacement decrease for increasing values of 

parameter 2R . It appears that the axial plastic strain is strongly affected by the 

parameter 2R , but, the effect of parameter  2R  on the plastic stresses is very 

slight. Fig.(4.18) shows that the effect of parameter 2R  on the residual stresses 

and the radial displacement for a rotating solid disk. Fig.(4.18) shows that the 

effect of parameter 2R  on the residual stresses are very slight. However, the 

residual tensile circumferential stress at the outer surface decreases with 

increasing values of parameter 2R . It is also seen from Fig. (4.18) that, the 

residual radial displacement decreases with increasing values of parameter 2R . 

The effect of parameter 2R  on the variation of residual radial displacement is 

significant. 

 

Figures (4.19) and (4.20) show the propagation of elastic-plastic border radius 

with increasing angular speed, for a free rotating annular disk. It is seen from 

Fig.( 4.19) and Fig. (4.20) that, in general, for sufficiently high angular speeds 

the size of plastic region decreases with increasing values of parameters 1R  and 

2R . Figures (4.21)-(4.22) show the effect of parameter 1R and 2R  on the stress, 

strain and radial displacement distributions, for a free rotating annular disk. 

The increase of radial displacement is significant, but the radial stress varies 

slightly. In addition, it is seen from Fig (4.21), the maximum increases for the 

circumferential stress and plastic strains occur at the inner surface. Fig. (4.23) 

shows that the effect of parameter 1R  on the residual stresses and the radial 
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displacement for a free rotating annular disk. It can be seen from Fig. (4.23), 

the effect of parameter 1R  on the residual stresses is very small. When the 

value of parameter  1R  increases, the residual radial displacement increases 

slightly. Fig. (4.24) shows that the effect of parameter 2R  on the residual 

stresses and the radial displacement, for a free rotating annular disk. It is seen 

from Fig. (4.24) that, the effect of parameter  2R  on the residual stresses at 

regions near the inner surface is very slight. The magnitude of residual 

circumferential stress is affected by the parameter 2R , the variation of residual 

radial stress is slight. The residual radial displacement and the maximum 

residual tensile circumferential stress decrease with increasing values of 

parameter 2R . In addition, at regions near the outer surface the magnitude of 

residual tensile circumferential stress decreases with increasing the values of 

parameter 2R  and the location of maximum residual tensile circumferential 

stress moves toward to the outer surface with decreasing values of 

parameter 2R . It also noted that the magnitude of maximum residual tensile 

circumferential stress is affected by the variation of parameter 2R , but the 

variation of maximum residual compressive stress is slight. The residual tensile 

circumferential stress at the outer surface decreases with increasing values of 

parameter 2R . 

 
Figures (4.25) and (4.26) show propagation of elastic-plastic border radius with 

increasing angular speed, for a rotating disk with rigid inclusion. It is seen from 

Fig. (4.25) and (4.26) that, in general, in sufficiently high angular speeds the 

size of plastic region decreases with increasing values of parameters 1R  and 

2R . Figures (4.27)-( 4.30) show the effect of parameters 1R  and 2R   on the 

residual stresses and radial displacement, for a rotating disk with rigid 

inclusion. Compared to 1R  , the effect of 2R  is more significant. As observed 

from Fig. (4.31) that, when the value of parameter 1R  increases, the residual 

stresses and the radial displacement increase, but the residual circumferential 
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stress at the near outer surface decreases. Fig. (4.32) shows that, when the 

value of parameter 2R  increases, the residual circumferential stresses increase,  

but the variation of maximum residual radial stress is very small and the 

residual radial displacement decreases significantly. It is seen from Figures 

(4.31) and (4.32) that, the location of maximum residual tensile circumferential 

stress moves toward the outer surface with decreasing values of parameters 1R  

and 2R .It is additionally observed that, the tensile circumferential stress can 

change its sign in the small region with decreasing values of parameters 1R  and 

2R , but the change of sign is more sensitive to parameter 1R .  

 

Figures (4.33)-(4.38) show the effects of parameters 1R  and 2R  on stress, 

strain, displacement distributions for disk subjected to internal pressure. It can 

be observed from the figures that the effect of parameters 1R  and 2R  is not very 

significant for the internal pressure case. 

 

Fig. (4.39) and Fig.(4.40) show the propagation of elastic-plastic border radius 

with increasing angular speed for stationary annular disk subjected to external 

pressure. Figures (4.41)-(4.44) show the effect of parameters 1R  and 2R  on the 

tress, strain, displacement, and residual stress distributions. It is seen from the 

figures, effect of  parameter 1R  is more significant on displacement and 

residual stresses. 

  

The thermal loading for rotating disk with rigid inclusion case is also 

considered. It is seen from Figures (4.45)-(4.48), in this case, stresses and 

strains are highly affected by the variation of the  orthotropy parameters 1R  and 

2R . 
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Figure 4.15 Propagation of elastic-plastic border radius with increasing 
angular speed due to effect of plastic orthotropy parameter 2R  for rotating 

solid disk. 
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Figure 4.16 Effect of plastic orthotropy parameter 2R  on stresses and radial 
displacement distributions for rotating solid disk. 
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Figure 4.17 Effect of plastic orthotropy parameter 2R  on strains for rotating 
solid disk. 
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Figure 4.18 Effect of plastic orthotropy parameter 2R  on residual stress 
distributions for rotating solid disk. 
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Figure 4.19 Propagation of elastic-plastic border radius with increasing 
angular speed due to effect of elastic orthotropy parameter 1R  for rotating 

annular disk. 
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Figure 4.20 Propagation of elastic-plastic border radius with increasing 
angular speed due to effect of plastic orthotropy parameter 2R  for rotating 

annular disk. 
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Figure 4.21 Effect of elastic orthotropy parameter 1R  on stress, strain and 
radial displacement distributions for rotating annular disk. 
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Figure 4.22 Effect of plastic orthotropy parameter 2R  on stress, strain and 
radial displacement distributions for rotating annular disk. 
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Figure 4.23 Effect of elastic orthotropy parameter 1R  on residual stress 
distributions for rotating annular disk. 
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Figure 4.24 Effect of plastic orthotropy parameter 2R  on residual stress 
distributions for rotating annular disk. 
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Figure 4.25 Propagation of elastic-plastic border radius with increasing 
angular speed due to effect of elastic orthotropy parameter 1R  for rotating disk 

with rigid inclusion. 
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Figure 4.26 Propagation of elastic-plastic border radius with increasing 
angular speed  due to effect of plastic orthotropy parameter 2R  for rotating disk 

with rigid inclusion. 
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Figure 4.27 Effect of elastic orthotropy parameter 1R  on stress and radial 
displacement distributions for rotating disk with rigid inclusion. 
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Figure 4.28 Effect of elastic orthotropy parameter 1R  on strains for rotating 
disk with rigid inclusion. 
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Figure 4.29 Effect of plastic orthotropy parameter 2R  on stress and radial 
displacement distributions for rotating disk with rigid inclusion. 
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Figure 4.30 Effect of plastic orthotropy parameter 2R  on strains for rotating 
disk with rigid inclusion. 



 

 62

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.25 0.50 0.75 1.00

radial coordinate

re
s
id

u
a

l 
s
tr

e
s
s
e
s
 a

n
d

 d
is

p
la

c
e

m
e
n

t

9.0

1.1

9.0

1.2

1

1

2

=

=

=

=Ω

R

R

R

R

eσ

R

rσ

R

θσ

Ru

 
Figure 4.31 Effect of elastic orthotropy parameter 1R  on residual stress 
distributions for rotating disk with rigid inclusion. 
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Figure 4.32 Effect of plastic orthotropy parameter 2R  on residual stress 
distributions for rotating disk with rigid inclusion. 



 

 64

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

0.25 0.50 0.75 1.00

radial coordinate

p
re

s
s
u

re

85.01 =R
15.11 =R

85.0

2.1

2.1

5.0

25.0

2 =

=

=

=

=

R

m

k

n

a

52454.0=P

50602.0=P
4982.0=P

59630.2=P

48867.2=P

43866.2=P

 
Figure 4.33 Propagation of elastic-plastic border radius with increasing 
angular speed due to effect of elastic orthotropy parameter 1R  for stationary 
annular disk subjected to internal pressure. 
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Figure 4.34 Propagation of elastic-plastic border radius with increasing 
angular speed due to effect of plastic orthotropy parameter 2R  for stationary 
annular disk subjected to internal pressure. 



 

 66

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.25 0.50 0.75 1.00

radial coordinate

re
s
p

o
n
s
e

 v
a

ri
a

b
le

s

rσ

θσ

u

eσ

p

rε

p

θε

p

zε

46474.0=r45368.0=r

85.0

15.1

85.0

2.1  

1

1

2

=

=

=

=

R

R

R

P

 
Figure 4.35 Effect of elastic orthotropy parameter 1R  on stress, strain and 
radial displacement distributions for stationary annular disk subjected to 
internal pressure. 
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Figure 4.36 Effect of plastic orthotropy parameter 2R  on stress, strain and 
radial displacement distributions for stationary annular disk subjected to 
internal pressure. 
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Figure 4.37 Effect of elastic orthotropy parameter 1R  on residual stress 
distributions for stationary annular disk subjected to internal pressure. 



 

 69

-1.00

-0.50

0.00

0.50

1.00

0.25 0.50 0.75 1.00

radial coordinate

re
s
id

u
a
l 
s
tr

e
s
s
e

s
85.0

15.1

85.0

2.1  

2

2

1

=

=

=

=

R

R

R

P

R

rσ

R

eσ

R

θσ

Ru

 
Figure 4.38 Effect of plastic orthotropy parameter 2R  on residual stress 
distributions for stationary annular disk subjected to internal pressure. 
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Figure 4.39 Propagation of elastic-plastic border radius with increasing 
angular speed due to effect of elastic orthotropy parameter 1R  for stationary 
annular disk subjected to external pressure. 



 

 71

0.65

0.75

0.85

0.95

1.05

1.15

1.25

0.2 0.4 0.6 0.8 1.0

radial coordinate

p
re

s
s
u
re

85.02 =R

15.12 =R

85.0

2.1

2.1

4.0

2.0

1 =

=

=

=

=

R

m

k

n

a

50186.0=r

56382.0=r

52932.0=r

19431.1=P

11938.1=P

15583.1=P

03122.1=P

02811.1=P

95774.0=P

71570.0=P

66901.0=P

 
Figure 4.40 Propagation of elastic-plastic border radius with increasing 
angular speed due to effect of plastic orthotropy parameter 2R  for stationary 
annular disk subjected to external pressure. 
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Figure 4.41 Effect of elastic orthotropy parameter 1R  on stress, strain and 
radial displacement distributions for stationary annular disk subjected to 
external pressure. 
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Figure 4.42 Effect of plastic orthotropy parameter 2R  on stress, strain and 
radial displacement distributions for stationary annular disk subjected to 
external pressure. 
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Figure 4.43 Effect of elastic orthotropy parameter 1R  on residual stress 
distributions for annular disk subjected to external pressure. 
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Figure 4.44 Effect of plastic orthotropy parameter 2R  on residual stress 
distributions for annular disk subjected to external pressure. 
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Figure 4.45 Effect of plastic orthotropy parameter 1R  on stress and 
displacement distributions for nonisothermal rotating disk with rigid inclusion. 
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Figure 4.46 Effect of plastic orthotropy parameter 2R  on stress and 
displacement distributions for nonisothermal rotating disk with rigid inclusion. 
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Figure 4.47 Effect of plastic orthotropy parameter 1R  on strains for 
nonisothermal rotating disk with rigid inclusion. 
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Figure 4.48 Effect of plastic orthotropy parameter 2R  on strains for 
nonisothermal rotating disk with rigid inclusion. 
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CHAPTER 5 

CONCLUSION 

In this study, an elastic-plastic rotating disk problem is investigated under 

various boundary conditions considering the orthotropy properties of material. 

In the five different cases, elastic and plastic orthotropy effects are taken into 

account. When the elastic and plastic orthotropy parameters 1R   and 2R , 

respectively, are equal to 1, the solution gives nonlinear strain hardening 

rotating isotropic disk with variable thickness. In general, it is seen that the 

plastic strains are affected strongly from plastic orthotropy and in the rotating 

disks working at high angular speed the size of plastic region decreases with 

increasing the degree of orthotropy. One of   the important results of this 

research is that the effect of elastic orthotropic properties of the material on the 

residual stresses can be significant. Comparison between different cases 

considered here shows that the effect of plastic orthotropy is more significant 

under the rigid inner boundary condition.     
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