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ABSTRACT

ANALYTICAL AND NUMERICAL SOLUTIONS TO
ROTATING ORTHOTROPIC DISK PROBLEMS

Kaya, Yasemin
M.S., Department of Engineering Sciences

Supervisor: Assoc. Prof. Dr. Ahmet N. Eraslan

September 2007, 82 pages

Analytical and numerical models are developed to investigate the effect of
orthotropy on the stress distribution in variable thickness solid and annular
rotating disks. The plastic treatment is based on Hill’s quadratic yield criterion,
total deformation theory, and Swift’s hardening law. The elastic-plastic stress
distributions, residual stresses and radial displacement distributions are obtained
after having analysed the cases of rotating solid disk, annular disk with rigid
inclusion, annular disk subjected to either internal or external pressure. Thermal
loading is also considered for the annular disk with rigid inclusion. Effects of
different values of elastic and plastic orthotropy parameters are investigated. It is
observed that the elastic orthotropy significantly affects the residual stresses in
disks. The most remarkable effect of the plastic orthotropy is observed on the disk

with rigid inclusion.

Key words: Elastoplasticity; Rotating disk; Anisotropy; Nonlinear hardening;

Hill’s criterion.
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0z

DONEN ORTOTROPIK DISK PROBLEMLERININ
ANALITIK VE SAYISAL COZUMLERi

Kaya, Yasemin
Yiiksek Lisans, Mithendislik Bilimleri Bolumii

Tez Yoneticisi: Dog. Dr. Ahmet N. Eraslan

Eyliil 2007, 82 sayfa

Degisken kalinlikl i¢i dolu ve i¢i bos donen disklerde ortotropinin disk i¢indeki
gerilme dagilimma  etkisini arastirmak icin analitik ve sayisal modeller
gelistirilmistir. Plastik model , Hill’in kuadratik akma kriteri, toplam deformasyon
teorisi ve Swift tipinde peklesme kanununa dayanmaktadir. Elastik-plastik
gerilme dagilimlari, kalinti gerilmeler ve radyal yer degistirme dagilimlar1 donen
ici dolu disk, rijit mile monte edilmis i¢ci bos donen disk ve i¢ ya da dis yiizeyden
basing etkisi altindaki i¢i bos disk durumlart i¢in hesaplanmistir. Rijit mile monte
edilmis ici bos disk icin 1s1 yiikii de goz Oniine alinmistir. Degisik elastik ve
plastik ortotropi parametreleri i¢in hesaplamalar yapilmistir. Elastik ortotropi
parametresinin kalinti gerilmelerini 6nemli Olciide etkiledigi gozlemlenmistir.
Plastik ortotropi parametresinin ise en ¢ok etkin oldugu durum rijit mile monte

edilmis diskte gozlemlenmistir.

Anahtar sozciikler: FElastoplastisite; Donen disk; Anisotropi; Lineer olmayan

peklesme; Hill kriteri.
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CHAPTER 1

INTRODUCTION

Determination of stress distribution of disks rotating at high speeds has been
given widespread attention due to a large number of applications in mechanical
and structural engineering. Among these applications turbine rotors, high speed
gears, flywheels, and shrink fits can be mentioned. Analysis of stresses and
displacement of such structures of isotropic materials was discussed in many

textbooks [1-2].

Elastic-plastic analytical or numerical solutions for isotropic rotating disks
exist in literature. Giiven [3-7] widely investigated rotating disk problems with
various boundary conditions under different basic assumptions and obtained
closed form and numerical solutions. Eraslan, Eraslan and Orcan, Eraslan and
Argeso presented closed form and numerical solutions by using different
assumptions for linear and nonlinear strain hardening disks with variable
thickness under different boundary conditions [8-15]. You et. al. [16-17]
developed analytical and numerical solutions to determine the stresses and
deformation in nonlinear strain hardening rotating disks by using Von Mises
yield criterion, its associated flow rule and deformation theory of plasticity.
Rees [18] derived elastic-plastic stress distributions for a disk rotating at high
speeds by combining Von Mises and Tresca yield criteria and compared these
criteria. Ma et. al. [19] studied plastic limit analysis of a rotating solid or
annular disk in terms of a unified yield condition. Alexandrova and Alexandrov
[20] investigated elastic-plastic stress distribution in a rotating annular disk.
The same authors [21] also determined the displacement field and strain

distribution in a rotating annular disk.



Although isotropic disks have been studied extensively, there is rare study in
the literature about anisotropic disks. However, increasing the usage of
anisotropic materials in the engineering applications, investigation of elastic-
plastic anisotropic rotating disks has been of grate importance. Durban and
Birman [22] analyzed the elastic-plastic behavior of rotating annular disk
according to Hill's anisotropic flow theory. Tiitiincii [23] studied the effect of
anisotropy on inertio-elastic instability of rotating polar orthotropic disks.
Callioglu and Topcu [24] developed an analytical solution to elastic-plastic
stress analysis of an orthotropic rotating disk by using Tsai-Hill theory as a
yield criterion. They obtained the result that plastic yielding occurs first at the
inner surface. Magnitude of circumferential stresses is found to be higher than
that of the radial stress component throughout the disk. Alexandrova and
Alexandrov [25] presented a semi-analytical solution to investigate the effect
of anisotropy on the stress distribution in the rotating annular disk adopting
Hill's quadratic yield criterion and its associated flow rule. Alexandrova and
Real [26] investigated the singularities in a solution to a rotating orthotropic
disk of constant thickness and density. They used Hill's quadratic orthotropic
yield criterion and also considered temperature effect. Jain et. al. [27] obtained
a unified formulation for studying stresses in rotating polarly orthotropic disks,
shells and conical shells. They focused on the investigation of singularities
circumferential modulus of elasticity is smaller than the radial modulus. The
same authors [28] considered a rotating orthotropic disk of uniform thickness
to show that the orthotropy parameter can be varied in such a way that it leads

to equal radial and circumferential stresses.

The objective of the present work is to investigate the effect of orthotropy on
stress, strain and displacement distributions in rotating disks. Pressure and
thermal loading are also taken into account. For this purpose, analytical and

numerical solutions are developed.



CHAPTER 2

THEORY

2.1 The Stress-Strain Diagram

To obtain the stress-strain diagram of a material, the most usual test type
conducted on a specimen of the material is tensile test. The result of this test is
represented by plotting the nominal stress against the conventional or

engineering strains as depicted in Fig. 2.1. Nominal stress is represented by

o =t 2.1)

and engineering strain by

e=h 22)
l()

where Pis load, A, is original cross-sectional area, [, is unit original length,

and [/ is the final length after the test.

If the load is increased, length of the specimen increases linearly up to point A,
which is known as proportional limit. This portion of the stress-strain diagram
is a straight line and obeys the Hooke’s law. If a further increase occurs after
this point, the strain no longer increases linearly but the material is still elastic.
In other words, upon release of the load the specimen returns to its original
length. This condition continues up to the point B, called as elastic limit or
yield point. There is usually little difference between proportional limit A and

elastic limit B. They are assumed the same for most materials. Point B shows



the end of elastic straining and initiation of plastic deformation. After the point
B, the strain increases at a greater rate. But, the specimen will not deform
further unless the load is increased. This condition is defined as work
hardening or strain hardening. At point C a maximum load is reached. Beyond
C the specimen neck down and fractures at D. The maximum load point C is

called the tensile strength or ultimate strength.

(o)
C ——————
B~
[ D
B :
’ 1
: A
E.____.III :
A :
1
1
1
1
1
1
1
1
1
1
1
|
1
C |
—r—» 3
e’ &°

Figure 2.1 The stress-strain curve.

In the Fig. 2.1, line B’C’ shows the unloading path when the load is removed

at any point between B and C. Some part of strain is recovered, which is elastic
part of the strain&‘, and other part remains permanently, which is plastic part
of the strain £”. Therefore, total strain is presented by

e=¢e"+¢’ (2.3)



2.2 Anisotropic Yield Criterion

Annealed material may be considered as isotropic. However, if it is in any
degree worked, it becomes anisotropic, i.e. its stress-strain behavior becomes
direction-dependent and the texture of the material takes on a fibrous

appearance. This occurs in all metal-working processes [30].

A metal in which the grains are initially oriented at random, and which is
therefore isotropic, is rendered anisotropic during plastic deformation. Hill [31]
presented a yield criterion assumed to be quadratic in the stress components, in
the form:

2f(c,)=F(0,-0.)+G(o,~0,)’ +H(0o,-0,) o

+2L72 +2M72 +2N72 =1 '

where F,G,H,L,M,N are parameters defining characteristics of a current state of
anisotropy. The absence of linear terms in the yield function implies that there

is no Bauschinger effect.

In the case of complete spherical symmetry or isotropy

3F=3G=3H=L=M=N,

and Eqn.(2.4) reduces to von Mises’ criterion. The yield criterion is represented
in the form of Eqn.(2.4) only when the principal axes of anisotropy are taken as

the axes of reference.

For the orthotropic material, it is chosen that rectangular axes coincide with the
principal axes of anisotropy. According to Hill’s criterion, the effective stress

o, is represented for the polar coordinates by

2(1+R)c” =(1+2R)o, -0,|" +|o, +0,|", (2.5)



where the parameters R and M characterize the normal plastic anisotropy of
the disk. For the rotating disk o, —0, <0, and o, +0,>0 [22]. If M =2,
Eqn.(2.5) reduces to

2(1+R)o! =(1+2R)(0, —0,)’ +(0, +0,)°, (2.6)

which is Hill’s orthotropic yield function. If R =1 , material is said to be

isotropic, and Eqn.(2.6) reduces to von Mises’ criterion.



CHAPTER 3

PROBLEM DEFINITION AND SOLUTION

In this study, a rotating disk that has an inner radius a and outer radius b is
considered. It is assumed that the thickness of the disk , %, changes according

to the following parabolic function:
r k
h(r) =h{l—n(zj :l 3.1

where h, is the thickness of the disk at r=0; n and £k are parameters
(n>0,k >0), which describe thickness variation. In the case that n— oo,

thickness of disk becomes uniform. If k =1, the disk has a linearly decreasing

thickness profile; if k <1, itis concave, and if k >1, it is convex.

0.6 0.6
o 0.4 F T s 04 T
8 02 f 8 02f
(o) - (] -
c c
g 0.0 fr-me - g 0.0 fro-e
= =
Z -02F S 02 F
) k]
T 04 F T-04F

06 L L L L L 06

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
radial coordinate radial coordinate
(@) (b)

Figure 3.1 Disk profiles (a) concave for n=0.4 and k =0.6and (b) convex for
n=04 and k=1.2.



3.1 Basic Equations

In the solution Timoshenko and Goodier notation is used. The thickness of the
disk is small in comparison with its radius; therefore, stresses can be neglected
throughout the disk thickness and the problem can be solved as the plane stress

condition.

The equation of motion of the rotating disk with variable thickness can be

written as [1]

i(hrar)—hag +hpw’r’ =0, (3.2)
-

where r is the radial coordinate, o, and o, are the radial and circumferential

stresses, p , the constant density of the disk material, @, the angular velocity of

the disk, and % is the thickness variation function of the disk as mentioned in

Eqn.(3.1). o,, 0, and h are functions of the radial coordinate r .

The relations between strains and radial displacement are:

du u

& =—, and g, =—, (3.3)
dr r

where £ and g, are the total radial and circumferential strains, respectively.

These two equations satisfy the compatibility equation:

%(rer)—eg =0. (3.4)

Elastic and plastic deformations occur in the rotating disk. The total strains

consist of elastic and plastic components:

e =€ +¢’,and g,=¢€,+¢,, (3.5)



For the plane stress problems, elastic deformations in the case of anisotropy
can be expressed by the following stress-strain relations based on Hooke law:

o, v,

& =—"-—"0,+00, 3.6

' Er 0 ’ ( )
14

ge=20 Vg 400, 3.7)
EH r

where £ and &, are the elastic radial and circumferential strains, E, and E,
are Young’s Modulus in r and @ directions, v,, and v, , Poisson’s ratios, &

,thermal expansion coefficient, ® =T (r)—T, ,temperature difference between

the disk surface and the surrounding temperatures for the nonisothermal case.

For the plastic deformation, considering the deformation theory of plasticity,
the stress-plastic strain relations are constructed on the basis of Hill’s

anisotropic yield function [16, 31]:

& R
er=""lo -—20,]|, (3.8)
o, | I+R,
€| R, |
&r=—\0, - o |, 3.9
o, |’ 1+R, G:9)

where £ and g; are the plastic radial and circumferential strains, &, is the
equivalent plastic strain, o, , the equivalent stress. According to Hill’s

quadratic yield criterion, o, is defined as

2R
o,= |0, -—20.0,+0,, (3.10)
1+R,

and R, is the plastic orthotropy parameter given before as R in Eqn. (2.6).

When o, 21, the yielding starts.



Using Swift’s nonlinear strain hardening law, the relation between the

equivalent stress o,, and the equivalent plastic strain €., can be written as
[30]

o, =0,(1+ne,)"" (3.11)

where o, is the yield stress, 7, the hardening parameter, and m , the material

parameter. The inverse relation is:

€1 =[(‘7€J —1]1. (3.12)
o, n

In order to calculate the temperature distribution throughout the disk, energy

equation can be written as [32]

2 '
d_Z@{lJrﬁ}i@_Hc@:o, (3.13)
dr r hldr Ah

where ® =T(r)—T. is the temperature difference between the surface of the
disk and the surrounding temperature, ' denotes the first derivative of the disk

profile function & with respect to r, H, is the heat transfer coefficient, and 4,

thermal conductivity of the disk material.

Heat transfer coefficient H,_ is a function of r and @ , given by

H (r,w)=H,+Hwr+H,0'r, (3.14)
with the parameters H, , H, ,and H, .

In the solution process, basic equations are written in the dimensionless forms.
For this purpose, the following nondimensional and normalized variables are

defined;

10



Radial coordinate :

_r
Fr=—,
b
. . — h
Disk thickness h=—,
h()
Stress 10, = -,
GO
Displacement u= uk, ,
o,b
. _ EE
Strain L€ = A
O-O
Angular velocity : Q=awb,/p/ 0, ,
Pressure :P= i
O-O

The equation of motion of rotating disk with variable thickness can be written
as

—(h75.)~hT,+hQ* 7> =0 (3.15)
dr
Compatibility equation:
—(FE)—& =0. (3.16)
dr
If we define the orthotropy parameter in the elastic region as
R=L:, (.17)
EB
and Maxwell relation is written as
Ve=RV,. (3.18)

11



the elastic strains become:
& =0,-v,,0,+00,

£ =RG,-V,,0 +00.

Plastic strains:

ool _ R, _
17=_EQ|:O._ 2 O-Igj|,

"0, " 1+R,
Eol _ R, _
HPZ_LQ Oy — - r
o, I+R,

Equivalent plastic strain:

fo = 4loz i)

where H =10,/ E, is the hardening parameter.

Hill’s yield criterion for orthotropic materials:

_ _ 2R, _ _  _
= |6/ -—260,+0, .
I+R,

Total strains are summation of the elastic and plastic strains:

o — ~ Vol o P
E =0,—V,,0,+0O+E",

g,=RG,-V,,0, +0AO+E/.

Later the following stress function will be used [1]:

Y =hro,.

The radial stress, therefore, is

12

(3.19)
(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
(3.26)

(3.27)

(3.28)



and if it is substituted into the equation of motion, Eqn. (3.15), circumferential

stress is obtained as
o, =7rQ° +id—l_/. (3.29)
h dr

Derivatives of stresses with respect to r are:

do 1 1 dy
O:r == 7 =2 + 72— Y+—__d__ H (3.30)
dr hr= h°r hr dr
d— 0 2
% _grqe A 1dT (3.31)
dr h=dr hdr
Derivative of the yield stress:
do, _[(1+R,)T, -R,5,10, +[6, + R, (5, - 5,)15,
a 1+ k)0, , (3.32)
do do
=N, 2% 4y, 49
dr dr
where
= R0 ROy gy, = 0ot R0 2 0)) (3.33)
(1+R,)5, (1+R,)5,

Substituting total strains, Eqn.s (3.25) and (3.26) in the compatibility, Eqn.

(3.16), gives
B (+v,,)0, N (v, +R)0, +Ld§9” _Vidﬁr
'R, R, dr R, dr

gl —&’
7R 7R,

1

(3.34)

+d0'5 +£i®:0
dr R, dr

13



with derivative of plastic strain

dg) | NN,N;—N,R,0, d6,+ N,N,N,—N,(1+R,)o, |do, (3.39)
dr H(+R,)o’ dr H(1+R,)o; dar

where
N,=0] -1,

_ —m
N,=N,—-mao,",

N, =R,G,—(1+R,)5,.
3.2 Temperature Distribution

In the problem, nonisothermal case is calculated only for the rigid inclusion
case. Temperature distribution is calculated numerically. The following

dimensionless parameters are defined;

Thermal expansion coefficient : & = Ea ,
O-O
— H
Heat transfer coefficient cH, = jb’
aT,
Heat load Cg=-— b
log(a)

Energy equation is rearranged as follows:

d> {1 E}d H.

L o+|-+=|Z0-

— - —0=0, (3.36)
dr r h|dr hyh

where h, =h,/b, and the heat transfer coefficient H, is used in the

dimensionless form as

H,(r,Q)=H,+HQr +H,Q7. (3.37)
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Boundary conditions for annular disk:
doe
O@=T,~T. and —k—= =H (b, o)Tb)-T.], (3.38)
r

r=b

where T, = —qglog(a)/a , is the temperature of the hot rigid shaft found from

the heat load. If the surrounding temperature 7, is taken as zero, boundary

conditions can be written in the following form:

®@)=T, ,and ‘jl—(? = H_(1,9)0(). (3.39)

r=1

This two point boundary value problem can be converted to an initial value
problem, IVP, and solved numerically by shooting method as follows:

d’e d®
=f|7,0,— |, 3.40
dr’® f(r d?j (3-40)

and, if ® and its derivative is defined as ¢, = ®and ¢, = c;—(:) , thus,
r

dg, dO dg, d’®© _

—=—=¢,,and — = = »01,9,), 0r

d? d? ¢2 d? sz f (r ¢1 ¢2)

d¢, _

ar (3.41)
o, _[1, ), H_, |
dr |7 k|7 hhy

For this initial value problem, the initial conditions are that ¢,(a) =7, , ¢,(a)
is unknown. Right boundary condition is written in the same form as
¢2(l)zﬁc(1,§2)¢1(1). Since ¢,(a) is not known, it is assumed, and the

estimation is improved by Newton iteration scheme. For this purpose, the IVP

is solved numerically three times for k"™ iteration cycle as follows:

15



L ¢,(a)=¢.(a) togive F, =¢,(1)+ %¢2 @

IL ¢,(@)=¢,(@+A¢$ togive F, :¢1(1)+%¢2(1) (3.42)

c

1L 6,@) = ¢! @) -Ap togive F,=g,(1)+ ﬁi% 0

where a =a/b,and A¢ is a small increment. A better approximated value of
@, (a) is obtained from:

k+l ;=\ _ 4k = _2A¢Fl
@ =9l @ - (3.43)

If ‘qﬁz"“ (a) - ¢2" (a )‘ < &, , iteration will stop and the IVP is solved numerically

by using Runge-Kutta Fehlberg predictor corrector method for the last

estimation of ¢,(a) value. In addition, &, is the error tolerance, which is taken

as 107,

3.3 Elastic Analytical Solution

Elastic part of the Eqn.(3.35) is:

_(4v,))5,  (V,+R)T, V,do, d5, @ dO _
7R, 7R, R, dr dr R, dr

0. (3.44)

Using the stresses in the form of

o, = _l_ and &, =7’Q’ +id—l_/, (3.45)
hr h dr

and parabolic disk profile:

h(r)=1-nr*, (3.46)

16



elastic equation Eqn.(3.44) becomes:

2 —_ _ =k
72(1—n7k)d_§+7[1_(1_k)n7k]d_1_/_ 1-(—=kv,,)nr v
dr dr R,

_(1=nF")’ (v, +3R)QF  (1—nF")’F’a dO
R, R, dr

General solution of this equation is:

Y(r)= C1Y1(’7) + C2Y2 (r)+P(r),

where
Y, (F) =7 MF(a,p,0;nr"),

Y,(F) =" F(@—8+1,-5+12-8:nF"),,
P(F)=U,Y, +U,Y,,

M=——

T

(3.47)

(3.48)

(3.49)

(3.50)

F(a, B,0;n7") is the hypergeometric function with the following arguments:

Fla. .oty =1+ %, @@+ DBB+D

Sl S5 +1)2!
Lo+ e+ D)BB+D(B+2) N
S(S+1)(5+2)3!

| M MJ4(0-kv,)+kR,

2k 2k

I M MJ41-kv,)+kR,
p=—-M

2k 2k
s=1_M

k
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U,(F) = le (A)dA ; U,(F) = j.Gz (D)dA (3.53)

oo LOf@) __Y(Of@)
G,(r)= G ,and G, (r) —Wro(F) (3.54)
___ (=nF")W,, +3R)Q’F C
f(r= R X & (3.55)
W, (F) =Y, (P, (F) =Y, (P)Y, (F) (3.56)

U, and U, are evaluated by expanding the integrals in series at Gaussian

points:

Ul(F)z7;5i¢ixGl((F—5))(2i+F+5j (3.57)

U,(F) = F%ZQ G, ; (3.58)

i=1

a ((F—E)Xi+7+c_zj
Note that U, (@) =U,(@) =0, and P(@)=0.

3.3.1 Boundary Conditions

In this problem, five different cases of the disk are taken into account, rotating
solid disk, rotating annular disk, rotating annular disk with rigid inclusion,
annular disk subjected to internal pressure and annular disk subjected to

external pressure.

We note that from Eqn. (3.20), the radial displacement takes the form:

18



i(F)=RQF —@Yﬂ—@d—{wm (3.59)
1 ]’L h r

3.3.2 Rotating Solid Disk

Stresses are finite at ¥ =0. From Eqn. (3.27) Y(0) =0, and from Eqn. (3.49),
C,=0.From &,()=0, Y1)=0, and

__PO)
C,= Y.0) (3.60)

In this case, as 4 (0) =1 , we can show that:

5,(0)=59(0)=Z—1_7 ,and #(0)=0 (3.61)
r

3.3.3 Rotating Annular Disk

Boundary conditions are &,(a)=0, and &,(l) =0. Integration constants are

found to be:
PQ)Y,(a
N Y, (@) _ (3.62)
Y (@)Y,(D) =Y, (DY, (a)
P, (a
) =" @) (3.63)
Y,(DY,(a) =Y, (a)Y, (1)
3.3.4 Rotating Annular Disk with Rigid Inclusion
Boundary conditions are u(a) =0 and &, (1) =0. The result is:
_ah@Y, )@’ RQ’ + & @)+ PO)IY,,Y, @ ~aRY,@) G6d)

1

Y,(D[@RY,@) ~V,,Y,(@]+Y,(DIV,Y, @) -aR Y, (@)]
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c - POIERY, (@ -v, Y, @) -ah@Y,(h[a’RQ* +al(@)]

2 —— — ——— (3.65)
Yl(l)[aRle (Cl) _Vr6Y2 (a)]+ Yz (D[V,»ng(a) _aR1Y1 (a)]

3.3.5 Annular Disk Subjected to Internal Pressure

Boundary conditions are &, (a) =—P,

»and &, (1) =0. The result is
c - _@Ph@Y,()-PO)Y,@) (3.66)
A AN AN A '

_abP,h@yY,(h-P()Y, (@)
C K@Y,()-Y,()Y,(@)

(3.67)

2

where P, is the internal pressure.

3.3.6 Annular Disk Subjected to External Pressure

Boundary conditions are &,(a) =0 and &, (1) = —Fex. The result is

_ Y, @I[P,h(1)+P()]
Y, @Y,()-Y,()Y, @)

(3.68)

1

C, = YIEE)[Pexh(l)+P(1)_] ’ (3.69)
Y,@Y,()~Y, (DY, @)

where P _ is the internal pressure.
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3.4 Elastic-Plastic Numerical Solution

Since the first derivative of circumferential stress, d&,/dr, includes the

second derivative of the stress function, d°Y /dr*, elastic equation Eqn.(3.44)

should be rearranged in terms of stress function as follows:

_(+v,)0, N (v, +R)O, V,do, +Z@ do, ~0
7R, 7R, R, dr R dr dr

K

o,
dr

K+

=0. (3.70)

Substituting derivative of circumferential stress into the above equation, it can

be written in terms of stress function:

T 2
K12 dYy 1d7Y
h dr hdr’

0. (3.71)

If Eqn.(3.71) is rearranged, a second order ordinary differential equation is

obtained:

2 P
d_f i k+270 LA (3.72)
dr h dr

In the plastic case, derivative of circumferential plastic strain also includes the

second derivative of stress function indicated below:

dg} {N1N4N5 —N,R,G, } dG, J{N2N4N5 —N,(+R,)G, |d5,

dr H(1+R,)T; dr H(1+R,)T, dar -’
A B
_, _
dgf =A+B d({" . (3.73)
dr dr
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If Eqn. (3.73) is substituted into the Eqn.(3.34), we obtain:

£/ ~& _(4v,)0, (v, +R)3, V,d5, @d® 1 deg  dg,

r :O
7R, 7R, 7R, R, df R, dF R, df  dr
L
do, do
L+1|a+B O} +@=0
R, dr dr
i5
L+A+{£+l} % _ (3.74)
| 1 dr

C

Inserting derivative of circumferential stress, do,/dr, in terms of stress

functions into Eqn. (3.74), a second order ordinary differential equation is

obtained.
— 5
L+ ¢ 2792—h:d_’_/ +£d_f =0 (3.75)
| h dr h dr
2 7 7
d_f :—ﬁ L+£+C 2rQ? —h:d—l_/ (3.76)
dr C | h dr

For both elastic and plastic cases, right hand sides of Eqn.(3.72) and Eqn.(3.76)
are functions of Y and dY /dr.

d*y dy
= flr,Y,— 3.77
dr? f(r d?j 77

If we define stress function and its derivative as ¢, =Y ,and ¢, =dY /dr ,this
two point boundary problem can be converted into an initial value problem and
solved numerically for the five cases by using Runge-Kutta Fehlberg predictor
corrector method.

dg, _dYy _

A 3.78
dr  dr . (378)
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d¢, _dY _ f(f,y,d_’_/j (3.79)

3.4.1 Rotating Solid and Annular Disk

Recall that &,(a)=0, and o&,(1)=0, thus Y(a)=0 and Y(1)=0 and the
conditions are rewritten as

¢1 (67) = 07

@, (@) — not known, (3.80)
and
¢1(1):0- (3.81)

Since ¢,(a) is not known, it is assumed and the estimation is improved by

Newton iteration scheme. For this purpose, the IVP is solved numerically three

times for the k™ iteration cycle as follows:
L ¢,(a)=¢.(a) togive F, =¢,(1)
II. ¢,(a)=¢.(a)+Agp togive F, =g, (1) (3.82)

1L ¢,(@) = ¢} @)~ A¢ togive F, =g, ()

A better approximated value of ¢,(7,) is obtained from

2AQF,

ktl =N __ 4k =\ _
, (@) =9, (a) Fo—F (3.83)

If ‘g/)zk“ (5)—4/)2" (5)‘ <&, , iteration will stop and IVP is solved for the last

estimation of ¢, (a).
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3.4.2 Rotating Annular Disk with Rigid Inclusion

We know that boundary conditions are u(a) =0 and &, (1) =0. Thus

¢,(a) — not known,

@, (a) — not known, (3.84)
and
#H=0. (3.85)

In the above system, both ¢, (a)and ¢,(a)are not known and not obtained
directly from the left boundary conditions. Firstly, ¢ (a) is assumed. Then,
¢,(a) is obtained by using assumed ¢ (a). For this purpose, radial and

circumferential stresses are expressed in terms of stress function.

_ . ¢(a)

_ 4 3.86
O T (3.86)
— = =22 1 —

5@ =0 4 @) (3.87)

Eqgn. (3.86) and Eqn. (3.87) are substituted into left boundary condition,

u(a)=0 ,in order to obtain ¢,(a). We know that

3 R

£,(a)=R,G,-V,0, +00+—2|6. -——2-5, |, (3.88)
o, I+R,

and

(@) =¢&,(aa (3.89)

Since u(a) =0, &,(a)=0. Hence, Eqn.(3.88) is set to zero.
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R{#Qz +%¢2 (E)J—V,B(L_a)_} a0
h(a) h(a)a
Epo

+— Kf’l(_‘_’)_} R, [azgu%@(a)ﬂzo
o, |\h(a)a) 1+R, h(a)

Because the effective stress and the equivalent stress include the ¢,(a)as the

(3.90)

following ways

(Y 2R (B gLy V2o L )
Ge_\/(ﬁaj 1+R2(Eaj(a @ +,;‘/’2j+(a Q +E¢2j (3.91)
— _i ﬂz_ 2R, ﬂ o l e l Py ’”_
0Ty [\/(Eﬁj 1+R2(Eaj(a Q +E¢zj+(a Q +E¢2j J 1],
(3.92)

Eqn.(3.90) is rearranged and solved by iteration to obtain ¢,(a).

a®h(a@)

6, (@) = 12, (@) — a’Qh(a)
ar, 1
e lo@ R (3.93)
EQ \a) 2 (=202 —
+R@[ a  1+R (@ +¢2(a))}

Then, ¢,(a) value is corrected by Newton iteration scheme.
L o) =¢(a) togive F, =¢,(1)
II. ¢(a)=¢'(@)+A¢ togive F, =¢, () (3.94)

1L ¢,(@)=¢ (@) —A¢ togive F, =¢,(1)

After the assumptions and verifications the IVP is solved.
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3.4.3 Annular Disk Subjected to Internal Pressure

Since ﬁr(c_z):—}_’m and o0,(1)=0, we can write Y(E)z&r(ﬁ)ﬁ(ﬁ)ﬁ or
Y(@)=-P h(a)a and Y(1)=0. Thus

m

¢,(a)=—-P,h(a)a,

3.95
@, (@) — not known, (3.95)
and
HH=0. (3.96)

Afterwards solution procedure is the same as the rotating annular disk.

3.4.4 Annular Disk Subjected to External Pressure

As it mentioned before, &,(a)=0 and &, (1) =—P, . Therefore, Y(a)=0 and

Y(1) =&, (DA ()1 or Y(1) =—P, h(l). Hence,

¢1 (@)=0
¢, (a) = not known (3.97)

¢,()=-h()P,

@, (a) is corrected by Newton iteration scheme as follows:
L ¢,(a)=¢i(a) to give F, =¢,(1)+h(1)P,,
II. ¢,(a)= ¢2" (@)+A¢ togive F, =¢,(1)+ E(I)EX (3.98)

1Il. ¢,(a@)=¢*(@)—A¢ togive F, =¢,(1)+h(1)P,

and then the IVP is solved.
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CHAPTER 4

RESULTS AND DISCUSSION

In this study, effects of elastic and plastic orthotropy parameters, R, and R,,

on disks having different boundary conditions and loads have been
investigated. Whereas the plastic part of the problem is solved numerically, the
analytical solution of the elastic part exists. The problem is solved for different
orthotropy parameters in order to observe their effects on stress, strain,

displacement, and residual stress distributions.

4.1 Elastic Analytical Solution

Results of elastic analytical solutions are presented in Figures (4.1)-(4.14). As

it can be seen from the figures, the effects of R, have been studied.

Figures (4.1)-(4.3) show the stress and displacement distributions of rotating
annular disk under the load Q=1.13845, which is the elastic-plastic limit
angular velocity on the inner surface of the disk for R, =1.4 and R, =0.8.Itis
seen that radial stress and displacement increases with the increasing value of
R, . Whereas the circumferential stress is increasing near the inner surface of
disk, it decreases after a point up to the outer surface of the disk with the

increasing value of R,. Dotted lines in the figures show the isotropic case

(R,=1.0 and R, =1.0).
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Figures (4.4)-(4.6) show the effect of R, for the case of annular disk with rigid
inclusion for the angular velocity Q =1.38381. As seen in Fig. (4.4) , radial

stresses are highly effected by variation of the R, in the inner surface.

Effects of R, on stress and displacements for the disk subjected to internal and
external pressures are depicted in Figures (4.7)-(4.12). For both cases radial
stresses are slightly affected by the variation of R,. As seen in Fig. (4.8)
circumferential stress decreases for the increasing values of R, in the inner

surface of disk, while it increases near the outer surface. For the external
pressure case, circumferential stress is compressive and it increases with the

increasing R, near the inner surface and vice versa near the outer surface.

Fig. (4.13) and Fig. (4.14) show the nonisothermal case for stationary and
rotating annular disks with rigid inclusion. In both cases circumferential
stresses are compressive near the inner surface and tensile near the outer

surface.
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Figure 4.1 Effect of elastic orthotropy parameter R, on radial stress
distribution for rotating annular disk.
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Figure 4.2 Effect of elastic orthotropy parameter R, on circumferential stress
distribution for rotating annular disk.
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Figure 4.3 Effect of elastic orthotropy parameter R, on displacement for
rotating annular disk.
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Figure 4.4 Effect of elastic orthotropy parameter R, on radial stress
distribution for rotating annular disk with rigid inclusion.
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Figure 4.5 Effect of elastic orthotropy parameter R, on circumferential stress
distribution for rotating annular disk with rigid inclusion.
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Figure 4.6 Effect of elastic orthotropy parameter R, on displacement for
rotating annular disk with rigid inclusion.
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Figure 4.7 Effect of elastic orthotropy parameter R, on radial stress
distribution for stationary annular disk subjected to internal pressure.
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Figure 4.8 Effect of elastic orthotropy parameter R, on circumferential stress
distribution for stationary annular disk subjected to internal pressure.
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Figure 4.9 Effect of elastic orthotropy parameter R, on displacement for
stationary annular disk subjected to internal pressure.
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Figure 4.10 Effect of elastic orthotropy parameter R, on radial stress
distribution for stationary annular disk subjected to external pressure.
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Figure 4.11 Effect of elastic orthotropy parameter R, on circumferential stress
distribution for stationary annular disk subjected to external pressure.
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Figure 4.12 Effect of elastic orthotropy parameter R, on displacement for
stationary annular disk subjected to external pressure.
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Figure 4.13 Effect of elastic orthotropy parameter R, on stress and

displacement distributions for stationary annular disk with rigid inclusion
under the thermal load.
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Figure 4.14 Effect of elastic orthotropy parameter R, on stress and

displacement distributions for rotating annular disk with rigid inclusion under
the thermal load.
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4.2 Elastic-Plastic Numerical Solutions

Fig. (4.15) shows that the propagation of elastic-plastic border radius with
increasing angular speed , for a rotating solid disk. It is seen from that, the size
of plastic region decreases with increasing values of parameter R,, except
small angular speeds. Figures (4.16)-(4.17) show the effect of parameter R, on
the stress, strain and radial displacement. It is seen from Fig. (4.17) that, the
plastic strains and radial displacement decrease for increasing values of
parameter R, . It appears that the axial plastic strain is strongly affected by the
parameter R,, but, the effect of parameter R, on the plastic stresses is very
slight. Fig.(4.18) shows that the effect of parameter R, on the residual stresses
and the radial displacement for a rotating solid disk. Fig.(4.18) shows that the
effect of parameter R, on the residual stresses are very slight. However, the
residual tensile circumferential stress at the outer surface decreases with
increasing values of parameterR,. It is also seen from Fig. (4.18) that, the
residual radial displacement decreases with increasing values of parameter R, .

The effect of parameter R, on the variation of residual radial displacement is

significant.

Figures (4.19) and (4.20) show the propagation of elastic-plastic border radius
with increasing angular speed, for a free rotating annular disk. It is seen from
Fig.( 4.19) and Fig. (4.20) that, in general, for sufficiently high angular speeds

the size of plastic region decreases with increasing values of parameters R, and
R, . Figures (4.21)-(4.22) show the effect of parameter R and R, on the stress,

strain and radial displacement distributions, for a free rotating annular disk.
The increase of radial displacement is significant, but the radial stress varies
slightly. In addition, it is seen from Fig (4.21), the maximum increases for the
circumferential stress and plastic strains occur at the inner surface. Fig. (4.23)

shows that the effect of parameter R, on the residual stresses and the radial
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displacement for a free rotating annular disk. It can be seen from Fig. (4.23),
the effect of parameter R, on the residual stresses is very small. When the
value of parameter R, increases, the residual radial displacement increases
slightly. Fig. (4.24) shows that the effect of parameter R, on the residual
stresses and the radial displacement, for a free rotating annular disk. It is seen
from Fig. (4.24) that, the effect of parameter R, on the residual stresses at
regions near the inner surface is very slight. The magnitude of residual
circumferential stress is affected by the parameter R,, the variation of residual
radial stress is slight. The residual radial displacement and the maximum
residual tensile circumferential stress decrease with increasing values of
parameter R,. In addition, at regions near the outer surface the magnitude of
residual tensile circumferential stress decreases with increasing the values of
parameter R, and the location of maximum residual tensile circumferential
stress moves toward to the outer surface with decreasing values of
parameter R,. It also noted that the magnitude of maximum residual tensile
circumferential stress is affected by the variation of parameterR,, but the

variation of maximum residual compressive stress is slight. The residual tensile
circumferential stress at the outer surface decreases with increasing values of

parameter R, .

Figures (4.25) and (4.26) show propagation of elastic-plastic border radius with
increasing angular speed, for a rotating disk with rigid inclusion. It is seen from
Fig. (4.25) and (4.26) that, in general, in sufficiently high angular speeds the
size of plastic region decreases with increasing values of parameters R, and
R, . Figures (4.27)-( 4.30) show the effect of parameters R, and R, on the
residual stresses and radial displacement, for a rotating disk with rigid
inclusion. Compared to R, , the effect of R, is more significant. As observed
from Fig. (4.31) that, when the value of parameter R, increases, the residual

stresses and the radial displacement increase, but the residual circumferential
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stress at the near outer surface decreases. Fig. (4.32) shows that, when the
value of parameter R, increases, the residual circumferential stresses increase,
but the variation of maximum residual radial stress is very small and the
residual radial displacement decreases significantly. It is seen from Figures
(4.31) and (4.32) that, the location of maximum residual tensile circumferential
stress moves toward the outer surface with decreasing values of parameters R,
and R,.It is additionally observed that, the tensile circumferential stress can

change its sign in the small region with decreasing values of parameters R, and

R, , but the change of sign is more sensitive to parameter R, .

Figures (4.33)-(4.38) show the effects of parameters R, and R, on stress,
strain, displacement distributions for disk subjected to internal pressure. It can
be observed from the figures that the effect of parameters R, and R, is not very

significant for the internal pressure case.

Fig. (4.39) and Fig.(4.40) show the propagation of elastic-plastic border radius
with increasing angular speed for stationary annular disk subjected to external
pressure. Figures (4.41)-(4.44) show the effect of parameters R, and R, on the
tress, strain, displacement, and residual stress distributions. It is seen from the
figures, effect of parameter R, is more significant on displacement and

residual stresses.

The thermal loading for rotating disk with rigid inclusion case is also
considered. It is seen from Figures (4.45)-(4.48), in this case, stresses and

strains are highly affected by the variation of the orthotropy parameters R, and

R,.
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Figure 4.15 Propagation of elastic-plastic border radius with increasing
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Figure 4.21 Effect of elastic orthotropy parameter R, on stress, strain and
radial displacement distributions for rotating annular disk.
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Figure 4.23 Effect of elastic orthotropy parameter R, on residual stress
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Figure 4.24 Effect of plastic orthotropy parameter R, on residual stress
distributions for rotating annular disk.
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Figure 4.30 Effect of plastic orthotropy parameter R, on strains for rotating
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Figure 4.31 Effect of elastic orthotropy parameter R, on residual stress
distributions for rotating disk with rigid inclusion.
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Figure 4.32 Effect of plastic orthotropy parameter R, on residual stress
distributions for rotating disk with rigid inclusion.
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Figure 4.35 Effect of elastic orthotropy parameter R, on stress, strain and
radial displacement distributions for stationary annular disk subjected to
internal pressure.
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Figure 4.38 Effect of plastic orthotropy parameter R, on residual stress
distributions for stationary annular disk subjected to internal pressure.

69



1.2

B P=1.15583

.

1.1

1.0

pressure
o
©

0.8

0.7

o b
0.2 0.4 0.6 0.8 1.0

radial coordinate

Figure 4.39 Propagation of elastic-plastic border radius with increasing
angular speed due to effect of elastic orthotropy parameter R, for stationary
annular disk subjected to external pressure.

70



1.25

———————— P =1.19431

P =1.15583

1.05

P =1.02811

()
§ 0.95 P =095774
o r =0.56382
o
2932
0.85
a=02
0.75 -
P =0.71570 m=12
\ R, =085
F--- P =0.66901
0.65 —
0.2 0.4 0.6 0.8 1.0

radial coordinate
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Figure 4.41 Effect of elastic orthotropy parameter R, on stress, strain and

radial displacement distributions for stationary annular disk subjected to
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displacement distributions for nonisothermal rotating disk with rigid inclusion.
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CHAPTER 5

CONCLUSION

In this study, an elastic-plastic rotating disk problem is investigated under
various boundary conditions considering the orthotropy properties of material.
In the five different cases, elastic and plastic orthotropy effects are taken into
account. When the elastic and plastic orthotropy parameters R, and R,,
respectively, are equal to 1, the solution gives nonlinear strain hardening
rotating isotropic disk with variable thickness. In general, it is seen that the
plastic strains are affected strongly from plastic orthotropy and in the rotating
disks working at high angular speed the size of plastic region decreases with
increasing the degree of orthotropy. One of the important results of this
research is that the effect of elastic orthotropic properties of the material on the
residual stresses can be significant. Comparison between different cases
considered here shows that the effect of plastic orthotropy is more significant

under the rigid inner boundary condition.
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