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ABSTRACT

AUTOPILOT DESIGN AND GUIDANCE CONTROL OF ULISAR UUV

(UNMANNED UNDERWATER VEHICLE)

Isıyel, Kadir

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. M. Kemal Leblebicioğlu

September 2007, 109 pages

Unmanned Underwater Vehicles (UUV) in open-seas are highlynonlinear with system mo-

tions. Because of the complex interaction of the body with environment it is difficult to

control them efficiently. Linearization is applied to system in order to design controllers de-

veloped for linear systems. To overcome the effects of disturbances, a mathematical model

which will compensate all disturbances and effects of linearization is required. In this study

first a mathematical model is formed wherein the linear and nonlinear hydrodynamic coeffi-

cients are calculated with strip theory.

After the basic mathematical model is developed, it is simplified and decoupled into speed,

steering and diving subsystems. Consequently PID (Proportional Derivative Integral), SMC

(Sliding Mode Control) and LQR (Linear Quadratic Regulator)/LQG (Linear Quadratic Gaus-

sian) control methods can be applied on each subsystem to design controllers. Some of the

system parameters can be estimated from state vector data based on measurements using the

methods of linear sequential estimation and genetic algorithms. As for the final part of the

study, an online obstacle avoidance algorithm which avoidslocal optimums using Boolean

operators is presented. In addition a simple guidance algorithm is suggested for waypoint

navigation.

Due to the fact that ULISAR UUV is still on construction phase, we were unable to test
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our algorithms. But in the near future, we plan to study all these algorithms on the UUV

ULISAR.

Keywords: Mathematical Modeling, Control, Parameter Estimation, Guidance
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ÖZ

ULİSAR (ÇOK MAKSATLI ULUSAL İNSANSIZ SU ALTI ARACI)

İNSANSIZ SU ALTI ARACININ OTOPİLOT TASARIMI VE GÜDÜM

KONTROLU

Isıyel, Kadir

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. M. Kemal Leblebiciŏglu

Eylül 2007, 109 sayfa

Açık deniz koşullarında băglaşımlı hareketleriyle insansız su altı araçları yüksekseviyede

doğrusal olmayan özellik gösterirler. Araç gövdesinin çevresi ile karmaşık etkileşimlerde

bulunması, aracın etkin olarak denetimini oldukça güçleştirir. Bu noktada dŏgrusal sistemler

için tasarlanan denetim yöntemlerinin kullanılabilmesi için sistem dŏgrusallaştırılır. Denetim

açısından, çeşitli bozucu etkilerin üstesinden gelebilmek ve sistem üzerinde denetim sağlaya-

bilmek için bu etkileri karşılayabilecek bir matematik model gerekmektedir. Bu çalışmada

öncelikle bir matematiksel model oluşturulmuş ve modelde yer alan dŏgrusal ve dŏgrusal

olmayan hidrodinamik katsayılar şerit teoremi ile hesaplanmıştır.

Matematiksel modelin elde edilmesinden sonra sistem; sürat, dönüş ve dalma alt sistemler-

ine ayrıştırılmış ve sisteme sırası ile PID, SMC ve LQR/LQG denetim yöntemleri uygulan-

mıştır. Daha sonra katsayı kestirimi yöntemi olarak doğrusal ardışık kestirim ve genetik al-

goritma yöntemleri uygulanmıştır. Çalışmanın bir parçası olarak, çevrimiçi seyirde kullanıl-

mak üzere, Bool algoritmalarını kullanarak yerel minimum noktalarından kaçınan engelden

sakınma algoritmaları denenmiştir. Son olarak, aracın belirlenen noktaları takip edebilmesi

için temel bir güdüm algoritması oluşturulmuştur.

ULİSAR projesi hâlihazırda üretim aşamasında olduğundan dolayı oluşturulan algoritmalar
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gerçek bir sistemde denenememiştir. Ancak yakın gelecekte bu tezde oluşturulan tüm algo-

ritmaların gerçek sistem üzerinde denenmesi planlanmaktadır.

Anahtar Kelimeler: Matematiksel Modelleme, Denetim, Katsayı Kestirimi, Güdüm
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Introduction to Underwater Vehicles

In this thesis, our goal is to simulate the control and guidance procedure of ULISAR un-

manned underwater vehicle.

In this chapter a brief information about underwater vehicles, their applications and impor-

tance and lastly our objectives to be achieved for this thesis are mentioned.

Underwater vehicles are classified in two main groups as manned underwater vehicles (MUVs)

and unmanned underwater vehicles (UUVs). Today, because ofhigh operational costs, op-

erator weariness and the painful experiences in history, which gave rise to the improvements

in the UUVs, employment of the MUVs are highly limited. From operational aspects, UUVs

are grouped in two main categories as remotely operated vehicles (ROVS) and autonomous

underwater vehicles (AUVs). While ROVs give chance of intervention to the operator in any

phase of operation, with their highly operational costs andtheir hulk values in case of lost,

in recent years they have been disfavored. Nowadays, research on fully autonomous systems

increased and lessened the necessity of a human operator. Inthe 1990s, about 30 new AUVs

are built worldwide [37]. A self-contained, intelligent and self-decisive AUV is the goal for

the current underwater vehicle research .

ULISAR is a TUBITAK (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu) supported

project . Being a small UUV compared with their coevals, ULISAR will be a novel ROV

vehicle. ROVs are small, efficient and tethered vehicles to collect underwater data and fulfill

given commands. Online communication with vehicle is achieved by generally fiber optic

cable because of its variable huge bandwidths. Instead of utilizing cables, a few disadvan-
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tages of which can be stated as drag in water, risk of disjunction and reduction in speed,

ULISAR’s communication will be maintained via acoustic link which will be satisfied by

acoustic modems. Project will comprise two vehicles, one onthe sea surface maintaining

the RF (Radio Frequency) communication with control centerand the other one in the sea,

which will gather underwater information and achieve main task. The surface vehicle will

relay the information it takes from bottom vehicle and vice versa.

For many years, ROVs proved their efficiency in many situations like underwater pipe in-

spections, rescuing goods from sunkens, oceanographic data collection and different mine

counter-measure operations.

Constructing an UUV is an exhaustive and time-consuming jobwhere most of the tests are

executed in laboratory environment. Testing the parts in water environment is not always ap-

plicable and logical because of the risk of losing the valuable equipments and most important

of all, risk of damage to the healths of project personnel. Therefore an effective and inexpen-

sive choice to be implemented for simulation of system for tests. Simulation with computer

aid is a practical and quick method of finding failures that may be confronted at sea. A good

working simulator needs an actual model of the system, whichwill then imitate the outputs

of the real system when the same inputs are applied. The coefficients of the system have to

be accurately found in order to simulate the system efficiently otherwise simulation will fail

and unpredicted situations may occur at real system tests [37].

In this study, we started the simulation first by forming the mathematical model. We gener-

ated the model forming the kinematic and rigid-body dynamics. Then we found the linear

and nonlinear hydrodynamic coefficients by strip theory andboundary integral method as

stated in [8] and [22]. Forming a mathematical model, exploiting the fact that our vehicle

is not a fast varying system, it is linearized around an equilibrium point. Linearized system

should be controlled more easily where most of the robust control methods are for linear

systems. First we started control procedure with designingPID controller because of its

simplicity and applicability to the most of the linear systems. Then we tried SMC, trusting

the compensating success of it. Lastly we designed a controller using LQR/LQG methods.

In last phase the benefit of separation principle is used, where first a regulator and then an

observer is designed using Kalman Filter and they are put together to form a compensator

for the plant [29].

For the efficiency of the simulation, unknown parameters of the model are important there-

fore for a good simulation we should have to acquire correct values of these parameters.

Therefore we applied two parameter estimation algorithms.We started with linear sequen-
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tial estimation method and tried to estimate the coefficients then we attempted to find them

by running a genetic algorithm.

Underwater vehicles in real time operations need obstacle avoidance algorithms. Consider-

ing the needs, we worked on a problem such that, generated path would avoid the vehicle to

stick in a local minimum, which may be a gap between two rocks where the vehicle can not

pass successfully. Using the Boolean algorithms, the localminimum point is avoided [31].

Sometimes generated new path may be far from the optimum pathbut this is acceptable when

the safety conditions are prior to any other issue.

Last of all, our vehicle needs a guidance system where a waypoint guidance system based on

line of sight is preferred. The details about the guidance will be given on Chapter 5.

1.2 Literature on Control and Guidance of UUVs

The main factors that make control process difficult can be stated as: highly nonlinear, time-

varying dynamic behavior of the vehicle, uncertainties in hydrodynamic coefficients, dis-

turbances by sea environment (especially high frequency waves near surface), unpredicted

underwater currents, for our case changes in the gravity andbuoyancy. Considering the dif-

ficulty to fine-tune the control gains during operations, it will be advantageous to have a

control system that will tune itself if the control performance decreases [37].

Different control techniques have been applied to underwater vehicles in recent years. Jalv-

ing used classical PID control methods for Norwegian Defence Research Establishment-

AUV. He decoupled the system into three lightly interactingsubsystems and designed three

autopilots for steering, diving and speed control. The design of the each controller was

based on PID techniques [12]. Yoerger and Slotine designed asliding mode controller for

an underwater vehicle. In their study they neglected cross-coupling terms and investigated

the uncertainties of the hydrodynamic coefficients [36]. Meanwhile, preferring SMC for

controlling their vehicle, Healey and Lienard were the oneswho decoupled the system into

three subsystems first time. Each autopilot was again designed using SMC with exploiting

the advantage and ease of decoupled system [10]. Nakamura and Savant urged a nonlinear

tracking control of an AUV pondering kinematic motion [37],[20]. They achieved the con-

trol by thinking the nonholonomic nature of the system without considering the dynamics

of the system. Cristi, Papoulias and Healey designed a robust adaptive SMC such that in

the presence of dynamical uncertainties, controllers can adjust to the changing dynamics and

operating conditions [23]. A hybrid adaptive controller using both continuous and discrete
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operations was mentioned by Tabaii et al [28].

In guidance of UUVs not so many studies have been performed. Healey et al. worked on

the waypoint guidance by line of sight principle where the guidance is accomplished by a

heading command to the vehicle’s steering system to approach the line of sight between

the present position of the vehicle and the waypoint to be reached. In missile guidance

this is related to “proportional navigation“ [10]. Caccia et al. introduced a PI- type task

functions which enables a Lyapunov-based guidance system to compensate the effects of

both unmodeled interactions between vehicle and environment [5].

1.3 Organization

The organization of the thesis is as follows:

• Chapter 1 mentions what is planned to achieve with this thesis and some studies done

by other authors.

• Chapter 2 gives some mathematical formulation and transformations forming the math-

ematical model.

• Chapter 3 informs about the control methods used to controlour vehicle. Comparison

between the methods are also mentioned.

• Chapter 4 shows the efforts in estimating the linear hydrodynamic coefficients. Linear

sequential estimation method and genetic algorithm are themethods used for estima-

tion.

• Chapter 5 acquaints about guidance system for underwater vehicle and obstacle avoid-

ance method.

• Chapter 6 gives a summary of the obtained results in this study. Then a discussion and

possible future enhancements concluded in this the chapter.

4



CHAPTER 2

MATHEMATICAL MODELING

2.1 Introduction

In this chapter the equations of motion for our vehicle will be generated. First information

about the body-fixed reference frame, linear and angular velocities, inertial reference frame

positions and Euler rates will be given. Next, the vehicle kinematics which will be the

relation of body-fixed velocities with inertial frame positions will be shown. Then the rigid

body dynamics which is expanded from the Newton’s second lawwill be derived. Lastly

dynamics as the study of forces and moments of the moving objects will be investigated.

ULISAR is a small and modular UUV which brings a novel approach to underwater oper-

ations. She is comprised of the equipments that will carry out basic underwater operations

successfully and fulfill the requirements of an underwater inspection. ULISAR will comprise

an imaging sonar, two B/W cameras, lights, an acoustic modemto communicate with sur-

face vehicle, acoustic transducers, pressure sensor, PC-104 stack and video grabber as main

equipments. All power requirement will be satisfied by Lithium-Polymer battery packs. Her

average speed is predicted to be about 1,5 knots. She will have stabilizers and fins to enhance

the stability. Since she has no roll and sway control directly those pars will aid in satisfying

passive roll control. Also in order to have passive roll stability, center of gravity must be

below the center of buoyancy which will be performed by placing the heavy parts near the

bottom of the vehicle. This method proved its success in manydifferent designs [24]. She

will be capable of diving to the depths of 100 meters but for the first tries 50 meters will be

a fair depth.

General parts and main components of ULISAR are shown in Figure 2.1.
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Figure 2.1: ULISAR UUV and main parts

The design of an underwater vehicle guidance and control systems requires knowledge of

an extensive field of disciplines. Some of these are vectorial kinematics and dynamics, hy-

drodynamics, navigation systems and lastly control theory[8]. To able to design a high

performance control system it is obvious that a good mathematical model of the vehicle is

needed for both simulation and verification of the design.

First of all modeling of underwater vehicle is based on the study of statics and dynamics.

Statics is the analysis of the forces and moments on physicalsystems in static equilibrium,

while dynamics is concerned with the effects of forces on themotion of objects.

The motion of underwater vehicles is studied in 6 degrees of freedom (DOF) where 6 inde-

pendent coordinates are necessary to determine the position and orientation of a rigid body.

The first three coordinates and their time derivatives correspond to the position and trans-

lational motion along the x-, y-, and z- axes, whereas the last 3 coordinates and their time

derivatives are used to describe orientation and rotational motion. For underwater vehicles

these 6 degree of freedom are explained as:

-surge : motion in the x-direction
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-sway : motion in the y-direction

-heave : motion in the z-direction

-roll : rotation about the x-axis

-pitch : rotation about the y-axis

-yaw : rotation about the z-axis

Table 2.1: Notation used for marine vehicles

DOF
Motions & Forces & Linear & Positions &

Rotations Moments Angular Velocities Euler Angles

1 Motions in the x-direction (surge) X u x

2 Motions in the y-direction (sway) Y v y

3 Motions in the z-direction (heave) Z w z

4 Rotation in the x-axis (roll) K p φ
5 Rotation in the y-axis (pitch) M q θ
6 Rotation in the z-axis (yaw) N r ψ

2.2 Kinematics

In this thesis we will use the following assumptions:

• Our vehicle is a rigid-body with a constant mass (Our vehicle’s mass will change

in time with proportional to the amount of water she will let in, but this amount is

predicted to be small because of the slow velocity hence thismass change can be

assumed to negligible.)

• Vehicle is not affected by the surface high frequency waves(operation condition is

assumed to be deep waters).

• The effect of the rotating world to the accelerations of a point on the surface of the

Earth is negligible (Indeed for slow vehicles this is a practical and tolerable assump-

tion) [8].
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• Hydrodynamic coefficients are not variable (Though statedin [13] nonlinear damping

terms do not affect maneuverability of the underwater vehicles, changes in the speed

and accelerations will differ the hydrodynamic coefficients. But since these coeffi-

cients are very small their changes will be much smaller where they can be assumed

to negligible).

• We have the port-starboard (xz-plane) and bottom-top (xy-plane) symmetry.(Our heavy

main parts are located on the middle of the xz-plane axis hence we have gained auto-

matically a symmetry).

2.2.1 Coordinate Frames

Defining the motions of the underwater vehicles in 6-DOF, twocoordinate reference frames

are used. The moving coordinate frameX0Y0Z0 is fixed to the vehicle and called the "Body-

fixed reference frame" and other one according to the ground (earth) is called "Earth-fixed

reference frame". Selecting the origin of the body-fixed coordinate frame as thecenter of

gravity (CG)is a logical solution.

For underwater vehicles, body axesX0, Y0 andZ0 coincide with the principal axes of inertia

and are usually defined as [8]:

• X0 - longitudinal axis (directed from aft to fore)

• Y0 - transverse axis (directed to starboard)

• Z0 - normal axis (directed from top to bottom)

Based on the The Society of Naval Architects and Marine Engineers (SNAME) notation,

general motion of a vehicle in 6-DOF can be shown by the below vectors [8],

η =
[
ηT

1 ,ηT
2

]T
; η1 = [x,y,z]T ; η2 = [φ ,θ ,ψ ]T (2.1)

ν =
[
νT

1 ,νT
2

]T
; ν1 = [u,v,ω ]T ; ν2 = [p,q, r]T (2.2)

τ =
[
τT

1 ,τT
2

]T
; τ1 = [X,Y,Z]T ; τ2 = [K,M,N]T (2.3)

Above η denotes the position and orientation vector with coordinates in the earth-fixed

frame,ν denotes the linear and angular velocity vector with coordinates in the body-fixed
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coordinate frame andτ describes the forces and moments acting on the vehicle in thebody-

fixed frame. In a guidance and control system, orientation isusually represented by means

of Euler angles or quaternions. Generally Euler angles are preferred for their simplicity but

because tangent 90◦ is not defined for pitch angle, quaternions are used. In our case 90◦ pitch

angle is an extreme case hence using Euler angles brings no disadvantage to us.

Z 

X 

Y 

O

Body-f ixed

Earth- f ixed

Xo

Y o
Z o

p (rol l )

u  (surge)

v  (sway)
w  ( h e a v e )

q (p i tch)

r  ( yaw)

CG

Figure 2.2: Earth-fixed and Body-fixed reference frames

All the motions of our vehicle in the body-fixed frame have to be represented relative to an

inertial reference frame. For underwater vehicles we can assume that the effect of the rotating

world to the accelerations of a point on the surface of the Earth is negligible. Therefore we

do not need a star-fixed reference frame and we can select earth-fixed reference frameXYZ

as inertial. In all our calculations, the position and the orientation of our vehicle should be

explained according to the inertial reference frame where the linear and angular velocities

should be expressed in the body-fixed reference frame.

9



2.2.2 Euler Angles

As mentioned above for transformation from body-fixed frameto earth-fixed frame and vice

verse, Euler angles are used. In all our transformationsxyz- conventionwill be used. First

transforming translational motion, we will utilize the following equation:

η̇1 = T1(η2)ν1 (2.4)

Writing above equation according to (2.1) and (2.2) we get






ẋ

ẏ

ż







= T1(η2)







u

v

w







(2.5)

whereT1 in (2.5) is defined as [8]

T1(η2) =







cψcθ −sψcφ +cψsθsφ sψsφ +cψcφsθ
sψcθ cψcφ +sψsθsφ −cψsφ +sψsθcφ
−sθ cθsφ cθcφ







(2.6)

Rotational transformations are achieved by the body-fixed angular velocity vectorν2 =

[p, q, r]T and Euler rate vectoṙη2 =
[
φ̇ , θ̇ , ψ̇

]T
related formula as

η̇2 = T2(η2)ν2 (2.7)

Mentioning the vectors in open form we get






φ̇
θ̇
ψ̇







= T2(η2)







p

q

r







(2.8)

Angular velocity transformation matrix in (2.8) is defined as

T2(η2) =







1 sφ tθ cφ tθ
0 cφ −sφ
0 sφ/cθ cφ/cθ







(2.9)

2.3 Rigid-Body Dynamics

In a general form the nonlinear dynamic equations of motion in 6 DOF can be written as:

Mν̇ +C(ν)ν +D(ν)ν +g(η) = τ (2.10)
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Using the Euler’s first and second axioms which were built on Newton’s second law we can

write the 6 DOF Rigid body equations of motion as:

X = m
[
u̇−vr +wq−xG(q2 + r2)+yG(pq− ṙ)+zG(pr + q̇)

]

Y = m
[
v̇−wp+ur−yG(r2 + p2)+zG(qr− ṗ)+xG(qp+ ṙ)

]

Z = m
[
ẇ−uq+vp−zG(p2 +q2)+xG(rp− q̇)+yG(rq+ ṗ)

]

K = Ixṗ+(Iz− Iy)qr− (ṙ + pq)Ixz+(r2−q2)Iyz+(pr− q̇)Ixy

+m[yG(ẇ−uq+vp)−zG(v̇−wp+ur)] (2.11)

M = Iyq̇+(Ix− Iz) pr− (ṗ+qr)Ixy+(p2− r2)Izx+(qp− ṙ)Iyz

+m[zG(u̇−vr +wq)−xG(ẇ−uq+vp)]

N = Izṙ +(Iy− Ix) pq− (q̇+ rp)Iyz+(q2− p2)Ixy+(rq− ṗ)Izx

+m[xG(v̇−wp+ur)−yG(u̇−vr +wq)]

In mathematical formulation for the ease of calculations (2.11) can be represented by vecto-

rial form as

MRBν̇ +CRB(ν)ν = τRB (2.12)

Here the elements of the equations of motion relating toν̇ can be written inMRB as

MRB =















m 0 0 0 mzG −myG

0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0

0 −mzG myG Ix −Ixy −Izx

mzG 0 −mxG −Iyx Iy −Iyz

−myG mxG 0 −Izx −Izy Iz















(2.13)

and the remainder elements the Coriolis termω ×v and centripetal termω ×(ω × rG) can be

written inCRB. The Coriolis effect can be defined as the apparent deflectionof objects from

a straight path if the objects are viewed from a rotating frame of reference. The centripetal

force is the external force required to make a body follow a circular path at constant speed.

The force is directed inward, toward the center of the circle. Hence we can write our matrix

as
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CRB=















0 0 0

0 0 0

0 0 0

−m(yGq+zGr) m(yGp+w) m(zGp−v)

m(xGq−w) −m(zGr +xGp) m(zGq+u)

m(xGr +v) m(yGr −u) −m(xGp+yGq)

m(yGq+zGr) −m(xGq−w) −m(xGr +v)

−m(yGp+w) m(zGr +xGp) −m(yGr −u)

−m(zGp−v) −m(zGq+u) m(xGp+yGq)

0 −Iyzq− Ixzp+ Izr Iyzr + Ixyp− Iyq

Iyzq+ Ixzp− Izr 0 −Ixzr − Ixyq+ Ixp

−Iyzr − Ixyp+ Iyq Ixzr + Ixyq− Ixp 0















(2.14)

2.4 Added Mass

Added mass is the inertia added to system because of the accelerating body which will move

some liquid surrounding its body. But the vehicle will forcethe surrounding fluid with

proportional to forced harmonic motion due to accelerationof body where the particles which

are far from the body will be induced less. In order to generate the added mass forces and

moments Kirchhoff’s equations related to the fluid kinetic energy will be used.

Kinetic energy of the ideal fluid can be written as

TA =
1
2

νTMAν (2.15)

whereMA is the 6× 6 added mass inertia matrix which is comprised of 36 distinctadded

mass coefficients.

Hence we can write the added mass inertia matrix as

MA
∼= −















Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ















(2.16)
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In the added mass inertia matrix the elements of the matrix are the derivatives of the forces

and moments in the stated axis with respect to the accelerations. In other words,

Mẇ =
∂M
∂ ẇ

(2.17)

Expressing the body-fixed velocity vectors asν1 = [u,v,ω ]T andν2 = [p,q, r]T , relation of

the forceτ1 and momentτ2 is achieved with Kirchhoff’s equations in vector form.

d
dt

(
∂T
∂ν1

)

+ ν2×
∂T
∂ν1

= τ1 (2.18)

d
dt

(
∂T
∂ν2

)

+ ν2×
∂T
∂ν2

+ ν1×
∂T
∂ν1

= τ2 (2.19)

Hence for the totally submerged vehicle we will find the addedmass terms by using Kirch-

hoff’s equations. Here we will utilize the fluid kinetic energy principle and take into consid-

eration that by the motion of the vehicle in any direction, itwill bring forth a kinetic energy

for surrounding fluid [8]. Expanding the equations (2.18) and (2.19) yields

d
dt







∂TA
∂u

∂TA
∂v

∂TA
∂ω







+







p

q

r






×







∂TA
∂u

∂TA
∂v

∂TA
∂ω







=







XA

YA

ZA







⇒
d
dt







∂TA
∂u

∂TA
∂v

∂TA
∂ω







+







q∂TA
∂ω − r ∂TA

∂v

r ∂TA
∂u − p∂TA

∂ω

p∂TA
∂v −q∂TA

∂u







=







XA

YA

ZA







(2.20)

For the moments from the added mass,

d
dt







∂TA
∂ p
∂TA
∂q
∂TA
∂ r







+







p

q

r






×







∂TA
∂ p
∂TA
∂q

∂TA
∂ r







+







u

v

ω






×







∂TA
∂u
∂TA
∂v

∂TA
∂ω







=







KA

MA

NA







(2.21)

Applying vectorial products in (2.21) gives

d
dt







q∂TA
∂ r − r ∂TA

∂q

r ∂TA
∂ p − p∂TA

∂ r

p∂TA
∂q −q∂TA

∂ p







+







v∂TA
∂ω −ω ∂TA

∂v

ω ∂TA
∂u −u∂TA

∂ω

u∂TA
∂v −v∂TA

∂u







=







KA

MA

NA







(2.22)

When we take the partial derivatives ofTA with respect to our linear and angular velocity
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vectors and substitute them in (2.20) and (2.22) yields us the main added mass terms [8].

XA = Xu̇u̇+Xω̇ (ω̇ +uq)+Xq̇q̇+Zω̇ωq+Zq̇q2

+Xv̇v+Xṗṗ+Xṙ ṙ −Yv̇vr−Yṗpr−Yṙ r
2

−Xv̇ur−Yω̇ωr

+Yω̇vq+Zṗpq− (Yq̇−Zṙ)qr

YA = Xv̇u̇+Yω̇ ω̇ +Yq̇q̇

+Yv̇v̇+Yṗṗ+Yṙ ṙ +Xv̇rv−Yω̇vp+Xṙr
2 +(Xṗ−Zṙ) rp−Zṗp2

−Xω̇ (up−ωr)+Xu̇ur−Zω̇ω p

−Zq̇pq+Xq̇qr

ZA = Xω̇ (u̇−ωq)+Zω̇ω̇ +Zq̇q̇−Xu̇uq−Xq̇q2

+Yω̇ v̇+Zṗṗ+Zṙ ṙ +Yv̇vp+Yṙ rp+Yṗp2

+Xv̇up+Yω̇ω p

−Xv̇vq− (Xṗ−Yq̇) pq−Xṙqr

KA = Xṗu̇+Zṗω̇ +Kq̇q̇−Xv̇ωu+Xṙuq−Yω̇ω2− (Yq̇−Zṙ)ωq+Mṙq
2 (2.23)

+Yṗv̇+Kṗṗ+Kṙ ṙ +Yω̇v2− (Yq̇−Zṙ)vr +Zṗvp−Mṙr
2−Kq̇rp

+Xω̇uv− (Yv̇−Zω̇)vω − (Yṙ +Zq̇)ωr −Yṗω p−Xq̇ur

+(Yṙ +Zq̇)vq+Kṙ pq− (Mq̇−Nṙ)qr

MA = Xq̇(u̇+ ωq)+Zq̇(ω̇ −uq)+Mq̇q̇−Xω̇
(
u2−ω2)− (Zω̇ −Xu̇)ωu

+Yq̇v̇+Kq̇ṗ+Mṙ ṙ +Yṗvr−Yṙvp−Kṙ
(
p2− r2)+(Kṗ−Nṙ) rp

−Yω̇uv+Xv̇vω − (Xṙ +Zṗ)(up−ωr)+ (Xṗ−Zṙ)(ω p+ur)

−Mṙ pq+Kq̇qr

NA = Xṙ u̇+Zṙω̇ +Mṙ q̇+Xv̇u
2 +Yω̇ωu− (Xṗ−Yq̇)uq−Zṗωq−Kq̇q

2

+Yṙ v̇+Kṙ ṗ+Nṙ ṙ −Xv̇v
2−Xṙvr− (Xṗ−Yq̇)vp+Mṙrp+Kq̇p2

− (Xu̇−Yv̇)uv−Xω̇vω +(Xq̇+Yṗ)up+Yṙur +Zq̇ω p

− (Xq̇+Yṗ)vq− (Kṗ−Mq̇) pq−Kṙqr

2.5 Damping

Hydrodynamic damping for the underwater vehicles occurs because of the following effects.

• Potential Damping: Damping caused by the surface waves. These waves are generally
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high frequency waves with small wave lengths. By our assumption at the beginning

of the mathematical model stating that our vehicle works near the sea bottom gives us

the right to neglect this effect.

• Skin Friction: This is the damping occurring because of theflow of water around the

boundary of vehicle. While vehicle advancing with a constant speed, water near the

bow achieves laminar flow (streamline flow) with no disruption to the surface. Going

forward on its flow after passing the bow, skin friction decelerates the liquid that is

why turbulent flow starts at this point. This process of passing from laminar flow to

turbulent flow is known as boundary layer transition. Skin friction is represented with

linear skin friction because of laminar boundary layer and quadratic skin friction due

to turbulent boundary layers. Non-dimensional Reynolds number assigns the type of

the flow.

• Wave Damping: This is the damping due to the waves while vehicles try to advance

on the surface of the water. Again with our assumption that the operations will be near

the sea bottom, we can neglect this damping.

• Damping of Vortex Shedding: Vortex shedding occurs because of the pressure differ-

ences on the flow path of water. Liquid after passing the first meet surface of the object

creates the low pressure vortices, which ends with a turbulent and unsteady flow. The

size of the vortices and the effect of damping due to vortex shedding is directly pro-

portional to front (projected) sectional area of the vehicle and with square of velocity.

Trying to increase the operational speed of underwater vehicle brings damping dis-

advantage with it. At this point, the outer body design and the vehicle’s production

material take an important role.

From the aspect of losses, effect of the damping will mostly occur due to skin friction and

vortex shedding. Skin friction is an important effect on thedamping of the vehicle but the

details of it is far beyond the scope of this thesis. More details about damping can be found

in [15] and [22]. The design of the body to decrease the damping is an important problem

for the construction of vehicle. Here eccentricity plays animportant role, which shows how

much the head shape of vehicle deviates from circular mode. Also the ratio of the total length

of the vehicle to the diameter directly affects the speed of the vehicle where the torpedoes are

good examples for this kind of design. Now let us formulate the components of the damping

which are important for us.
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The damping force due to the vortex shedding can be modeled as

D f (U) = −
1
2

ρ cd (Rn)Acs |U |U (2.24)

wherecd is the non-dimensional drag coefficient directly related with Reynolds number.Acs

is the projected cross sectional area of the vehicle facing with water which isπ d2/4 for

a sphere (d is diameter).U stands for the velocity of the vehicle andρ is the density of

the water. Reynolds number is a function of velocity (U ), physical length (l ) and kinematic

viscosity (ν). Reynolds number can be calculated by the following formula [22]. In our

calculations we assumedcd = 0.20.

Rn =
ρ U l

µ
=

U l
ν

(2.25)

Hereµ stands for the fluid viscosity andρ for the density of water (ν = 1.05×10−6 for sea

water with 20◦C and salinity of 3.5 %). Appendix B shows the drag coefficientof a sphere

for different Reynolds numbers [22].

Damping due to the skin friction will be modeled as linear andquadratic damping. Hence

our damping will be as

D(ν)ν + |ν |D(ν)ν (2.26)

Though some approximations and simplifications will be achieved on the damping matrix in

following steps, now it can be written as

DM (ν) =















Xu+X|u|u|u| Xv +X|v|v|v| Xw +X|w|w|w|

Yu +Y|u|u|u| Yv +Y|v|v|v| Yw +Y|w|w|w|

Zu+Z|u|u|u| Zv +Z|v|v|v| Zw +Z|w|w|w|

Ku+K|u|u|u| Kv +K|v|v|v| Kw +K|w|w|w|

Mu+M|u|u|u| Mv +M|v|v|v| Mw +M|w|w|w|

Nu+N|u|u|u| Nv +N|v|v|v| Nw +N|w|w|w|

Xp +X|p|p|p| Xq+X|q|q|q| Xr +X|r |r |r|

Yp +Y|p|p|p| Yq +Y|q|q|q| Yr +Y|r |r |r|

Zp +Z|p|p|p| Zq +Z|q|q|q| Zr +Z|r |r |r|

Kp +K|p|p|p| Kq +K|q|q|q| Kr +K|r |r |r|

Mp +M|p|p|p| Mq +M|q|q|q| Mr +M|r |r |r|

Np +N|p|p|p| Nq +N|q|q|q| Nr +N|r |r |r|















(2.27)
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2.6 Gravitational and Buoyant Forces

In our vehicle center of gravity will be defined withrG = [xG,yG,zG]T and the center of

buoyancy will be expressed withrB = [xB,yB,zB]T . The gravitational forcefG will act on

center of gravity and buoyant force will act on center of buoyancy fB where both forces act

in inertial frame but they are defined in body-fixed frame.

The mass of the vehicle is defined asm, V as the volume of fluid displaced,g as the accel-

eration of gravity downwards,ρ density of the fluid. Weight of vehicle and buoyancy force

can be written asW = m g, B = ρ gV.

Then the gravitational and buoyant forces in body-fixed frame can be defined by using Euler

transformations

fG = T−1
1 (η2)







0

0

W







(2.28)

and

fB = −T−1
1 (η2)







0

0

B







(2.29)

Finally gravitational and buoyant forces and moments can bewritten as [8]

g = −

[

fG(η)+ fB(η)

rG× fG(η)+ rB× fB(η)

]

(2.30)

Substituting the center of gravity and buoyancy with forcesin (2.30) we get

g =















(W−B)sθ
−(W−B)cθsφ
−(W−B)cθcφ

−(yGW−yBB)cθcφ +(zGW−zBB)cθsφ
(zGW−zBB)sθ +(xGW−xBB)cθcφ
−(xGW−xBB)cθsφ − (yGW−yBB)sθ















(2.31)

To that point we showed the path to generate the mathematicalmodel of an underwater

vehicle. But because of the nonlinear and coupled attitude of the model there will be too

many unknowns with different weighted values which is an undesired point. Now we will
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use some simplifications and assumptions to reduce the complicated model which proved

success in many designed underwater vehicles.

Because of the position of the center of gravity and center ofbuoyancy,xG and yG will

be equal to zero. On the other hand, sinceIxy = 0 (top/bottom symmetry) andIxz = 0

(port/starboard symmetry) our new inertia matrix becomes

I0 ∼=







Ix 0 0

0 Iy Iyz

0 Izy Iz







(2.32)

Also because of the symmetry properties, our mass inertia matrix can be simplified. The

simplification procedure applied to mass matrix can also be applied to damping matrix [8].

In Section 2.2 we assumed that we have xz- and xy- plane symmetries (port/starboard and

bottom/top symmetries) by which we acquire the following simplified mass matrix

M =















M11 0 0 0 0 0

0 M22 0 0 0 M26

0 0 M33 0 M35 0

0 0 0 M44 0 0

0 0 M53 0 M55 0

0 M62 0 0 0 M66















(2.33)

The same simplification method can be applied to the damping matrix and the same co-

efficients on the stated positions will be left but in most of the underwater applications a

rough approximation is done where the damping matrix with its linear and quadratic terms

is assumed to form a diagonal matrix.

2.7 Hydrodynamic Coefficients

In this section we will find the numerical values of hydrodynamical coefficients. We will

derive the added mass coefficients and damping coefficients which are the representations of

the derivation of forces and moments with respect to the linear and angular velocities and

accelerations. As we evinced in Section 2.5 axial drag can becalculated by

X|u|u = −
1
2

ρ cd (Rn)Acs|U |U (2.34)

The remaining crossflow drag will be found by strip theory according to [8]. After simpli-

fication in the damping matrix the following coefficients remain, which are found by the
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following formula:Y|v|v, Z|w|w, K|p|p, M|q|q, N|r |r , Y|r |r , Z|q|q, M|w|w, N|v|v.

Y|v|v = Z|w|w = −
1
2

ρ cdc

L/2∫

−L/2

2b(x)dx (2.35)

M|w|w = −N|v|v =
1
2

ρ cdc

L/2∫

−L/2

2b(x)xdx (2.36)

Y|r |r = −Z|q|q = −
1
2

ρ cdc

L/2∫

−L/2

2b(x)x|x|dx (2.37)

M|q|q = −N|r |r = −
1
2

ρ cdc

L/2∫

−L/2

2b(x)x3 dx (2.38)

K|p|p = 0 (2.39)

Here ρ is the water density,cdc crossflow drag coefficient,b(x) is the half-width of the

vehicle with respect to the total length,l is the length of the vehicle.

After simplifications because of symmetry our added mass matrix (2.16) will transform into

M =















Xu̇ 0 0 0 0

0 Yv̇ 0 0 0 Nv̇

0 0 Zẇ 0 Mẇ 0

0 0 0 Kṗ 0 0

0 0 Zq̇ 0 Mq̇ 0

0 Yṙ 0 0 0 Nṙ















(2.40)

Figure 2.3: Prolate Ellipsoid and Dimensions

19



Hence we have to derive the remainders form the added mass matrix terms which are;Xu̇, Yv̇,

Zẇ, Kṗ, Mq̇, Nṙ , Yṙ , Zq̇, Mẇ, Nv̇. For slender bodies these coefficients can be derived by strip

theory. These coefficients in three-dimensions are found byintegrating the two-dimensional

coefficients along the vehicle length. In our case our vehicle shows similarities with a prolate

ellipsoid as shown in Figure (2.3).

Therefore using the strip theory added mass coefficients will be found according to [8] as

−Xu̇ =

L/2∫

−L/2

A11(y,z)dx ≃ 0.10m (2.41)

−Yv̇ =

L/2∫

−L/2

A22(y,z)dx (2.42)

−Zẇ =

L/2∫

−L/2

A33(y,z)dx (2.43)

−Kṗ =

L/2∫

−L/2

A44(y,z)dx ,

B/2∫

−B/2

y2 A33(x,z)dy+

H/2∫

−H/2

z2 A22(x,y)dz (2.44)

−Mq̇ =

L/2∫

−L/2

A55(y,z)dx ,

L/2∫

−L/2

x2 A33(x,z)dx+

H/2∫

−H/2

z2 A11(x,y)dz (2.45)

−Nṗ =

L/2∫

−L/2

A66(y,z)dx ,

B/2∫

−B/2

y2 A11(x,z)dy+

L/2∫

−L/2

x2 A22(y,z)dx (2.46)

where L,B and H are the dimensions of the vehicle. For a prolate ellipsoid, 2-dimensional

coefficients in the above equations are given in Figure (2.4).

On the other hand those added mass coefficients can be found bytheoretical formulations

stated by Lamb in [15].

Xu̇ = −
α0

2−α0
m (2.47)

Yv̇ = Zẇ = −
β0

2−β0
m (2.48)

Kṗ = 0 (2.49)

Nṙ = Mq̇ = −
1
5

(b2−a2)2(α0−β0)

2(b2−a2)+ (b2 +a2)(β0−α0)
m (2.50)
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Figure 2.4: Two-dimensional Added Mass Coefficients

Herem is the mass of the vehicle which can be found by

m=
4
3

π ρ ab2 (2.51)

andα0 andβ0 are defined as

α0 =
2(1−e2)

e3

(
1
2

ln
1+e
1−e

−e

)

(2.52)

β0 =
1
e2 −

1−e2

2e3 ln
1+e
1−e

(2.53)

Above in the equationsestands for the eccentricity defined as

e= 1− (b/a)2 (2.54)

Also there exists another alternative method of equations which are related with the added

mass terms. We used this last method to check the coefficientsfound by the first explained

method above, both gave the same results after calculations. This last method is similar with

the one method mentioned above. In this method, Lamb expresses first k-terms as

k1 =
α0

2−α0
(2.55)

k2 =
β0

2−β0
(2.56)

k′ =
e4(β0−α0)

(2−e2) [2e2− (2−e2)(β0−α0)]
(2.57)
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Then he mentioned the added mass coefficients as

Xu̇ = −k1 m (2.58)

Yv̇ = −Zẇ = −k1 m (2.59)

Nṙ = −Mq̇ = −k′ Iy (2.60)

where the moment of inertia in y- axis,Iy can be found by

Iy = Iz=
4
15

π ρ ab2 (a2 +b2) (2.61)

For a prolate ellipsoid calculation of the quadratic damping coefficients can be achieved by

the equations (2.35)-(2.39) but since shape of our vehicle is a little different from an ellipsoid

we have to separate it in order to find stated coefficients.

Figure 2.5: Cross-sectional view of our Vehicle

It is clear in Figure (2.5) that we have to separate the ellipsoid into three parts. We will

find the equations of each part. Our vehicle’s length is 1.60 meters and the distance of the
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separation points from nose to aft are .25 m. and 1.045 m. The width of hull with respect to

total length of vehicle is required in the quadratic dampingequations where we formulated

the each section of the vehicle as

y =

√

0.152−

(
0.15
0.25

)2

(x−0.25)2 0≤ x≤ 0.25 (L1) (2.62)

y = 0.15 0.25< x < 1.045 (L2) (2.63)

y =

√

0.152−

(
0.15
0.555

)2

(x−1.045)2 1.045≤ x≤ 1.60 (L3) (2.64)

herey shows the half width of the ellipsoid with respect to the length which is defined as

b(x) in equations (2.35)-(2.39).

Hence our quadratic damping equations will be as

Y|v|v = Z|w|w = −
1
2

ρ cdc

P1∫

0

2

√

0.152−

(
0.15
0.25

)2

(x−0.25)2 dx

−
1
2

ρ cdc

P2∫

P1

0.30dx−
1
2

ρ cdc

P3∫

P2

2

√

0.152−

(
0.15
0.555

)2

(x−1.045)2 dx (2.65)

M|w|w = −N|v|v = −
1
2

ρ cdc

P1∫

0

2

√

0.152−

(
0.15
0.25

)2

(x−0.25)2 xdx

−
1
2

ρ cdc

P2∫

P1

0.30xdx−
1
2

ρ cdc

P3∫

P2

2

√

0.152−

(
0.15
0.555

)2

(x−1.045)2 xdx (2.66)

Y|r |r = −Z|q|q = −
1
2

ρ cdc

P1∫

0

2

√

0.152−

(
0.15
0.25

)2

(x−0.25)2 x|x|dx

−
1
2

ρ cdc

P2∫

P1

0.30x|x|dx−
1
2

ρ cdc

P3∫

P2

2

√

0.152−

(
0.15
0.555

)2

(x−1.045)2 x|x|dx (2.67)

M|q|q = −N|r |r = −
1
2

ρ cdc

P1∫

0

2

√

0.152−

(
0.15
0.25

)2

(x−0.25)2 x3 dx

−
1
2

ρ cdc

P2∫

P1

0.30x3 dx−
1
2

ρ cdc

P3∫

P2

2

√

0.152−

(
0.15
0.555

)2

(x−1.045)2 x3 dx (2.68)
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K|p|p = 0 (2.69)

2.8 Retrieval of Hydrodynamic Coefficients

In this section, we will show the results of our calculationsfinding the main hydrodynamic

coefficients by using formula in Section 2.7. Through the study it is assumed that the hy-

drodynamic coefficients are time-invariant. Although it isnot the case in real time such

an assumption will not effect the system so much because the coefficients are very small

compared to mass and states, slight changes in them will be compensated by the system.

In the calculations of the coefficients the following valuesare taken.

Table 2.2: Vehicle Related Values Used in Coefficient Retrieval

Mass (m) 64 kg Total Length (L) 1.60 m

Half Length (a) 0.80 m Half Width (b,c) 0.15 m

Vehicle Avg. Density (ρv) 996kg/m3 Water Density (ρv) 1023kg/m3

Axial Drag Coef. 0.1412 Crossflow Drag Coef. 2.1

Center of Gravity, x- (xG) 0 Center of Gravity, y-(yG) 0

Center of Gravity, z- (zG) 0.08 m Center of Buoyancy, x- (yB) 0

Center of Buoyancy,y- (yB) 0 Center of Buoyancy, z- (zB) 0

Axial Projected Area (Af ) 0.0707m2 Eccentricity 0.9648

Added Mass Coef. 1 (α0) 0.1610 Added Mass Coefficient 1 (β0) 0.9494

Lamb’s Coef. 1 (k1) 0.0876 Lamb’s Coef. 2 (k2) 0.9037

Lamb’s Coef. 1 (k′) 0.6271 Total Volume (V) 0.0629m3

First Section Area (A1) 0.0294m2 Second Section Area (A2) 0.1192m2

Third Section Area (A3) 0.0654m2 Total Cross-Sec. Area (A1) 0.4284m2

Added mass hydrodynamic coefficients found by the strip theory are given in Table (2.8).

Those are the non-dimensionalized values. Since the units of the axial, crossflow and rolling

added mass coefficients are different, non-dimensionalization is achieved in different ways.
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The units withkgare divided byρ
2 L3, kg.mwith ρ

2 L4 and others with similar methods. After

non-dimensionalization we founded the added mass coefficients as

Table 2.3: Added Mass Coefficients

Xu̇ −3.2×10−3 Kṗ 0

Yv̇ −3.33×10−2 Mq̇ −4.6×10−3

Zẇ −3.33×10−2 Nṙ −1.2×10−3

Yṙ 1.38×10−3 Nv̇ 1.38×10−3

Zq̇ −1.38×10−2 Mẇ −1.38×10−3

Weight of our vehicle is found by the formula

W = mg (2.70)

and buoyancy with

B = ρVg (2.71)

wherem denotes the mass,g gravity, V volume of our vehicle andρ the density of wa-

ter. Hence after calculations,W is found 627kgm/s and buoyancy is found as 631kgm/s,

denoting that our vehicle is slightly positive buoyant which is a desired conclusion

Quadratic damping coefficients are calculated by the piecewise integrals. Piecewise integrals

for strip theory are used because of the different shape of our vehicle shown in Figure (2.5).

Strip theory is derived for ellipsoid shaped bodies therefore to apply the theory to our vehicle

we inspected the our shape in three sections. We calculated the cross-sectional area for each

section and added them to find the total area. Again we used thesame procedure that we

used in non-dimensionalization of the added mass coefficients here.

Calculated coefficients by Equations (2.65)-(2.69) are shown in Table (2.4).

2.9 Equations of Motion

In this section we will show the vectorial representation ofthe body-fixed equations of mo-

tion for our vehicle. In Section 2.3 we have expressed the nonlinear equations of motion in
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body-fixed frame as

Mν̇ +C(ν)ν +D(ν)ν +g(η) = τ (2.72)

η̇ = T(η)ν (2.73)

where

M = MRB+MA C(ν) = CRB(ν)+CA(ν) (2.74)

D(ν) = Dskin(ν)+Dvortex(ν) (2.75)

After our simplifications we obtain the component matrices of the equations of motion as

M = MRB+MA =















m−Xu̇ 0 0 0 0 0

0 m−Yv̇ 0 0 0 m−Nv̇

0 0 m−Zẇ 0 m−Mẇ 0

0 0 0 m−Kṗ 0 0

0 0 m−Zq̇ 0 m−Mq̇ 0

0 m−Yṙ 0 0 0 m−Nṙ















(2.76)

Table 2.4: Linear Quadratic Damping Coefficients

X|u|u −3.9×10−3 Y|r |r −2.99×10−5

Y|v|v −9.77×10−2 Z|q|q 2.99×10−5

Z|w|w −9.77×10−2 N|r |r 7.51×10−2

K|p|p 0 M|w|w 1.694×10−1

M|q|q −7.51×10−2 N|v|v −1.694×10−1
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CA =















0 0 0 0 −Zẇw Ẏvv

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −Zẇw Ẏvv 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0















(2.77)

CRB =















0 0 0 mzGr mw −mv

0 0 0 −mw mzGr mu

0 0 0 −m(zGp+v) −m(zGq+u) 0

−mzGr mw m(zGp+v) 0 Iyzq+ Izr Iyzr − Iyq

−mw −mzGr m(zGq+u) Iyzq+ Izr 0 Ixp

mv −mu 0 −Iyzr + Iyq −Ixp 0















(2.78)

Dν (ν) = −















Xu+X|u|u|u| 0 0 0 0 0

0 Yv +Y|v|v|v| 0 0 0 Yr +Y|r |r |r|

0 0 Zw +Z|w|w|w| 0 Zq+Z|q|q|q| 0

0 0 0 Kp+K|p|p|p| 0 0

0 0 Mw +M|w|w|w| 0 Mq+M|q|q|q| 0

0 Nv +N|v|v|v| 0 0 0 Nr +N|r |r |r|















(2.79)

Last of all our gravitational and buoyant forces matrix willbe as

g =















(W−B)sθ
−(W−B)cθsφ
−(W−B)cθcφ

−(yGW−yBB)cθcφ +(zGW−zBB)cθsφ
(zGW−zBB)sθ +(xGW−xBB)cθcφ
−(xGW−xBB)cθsφ − (yGW−yBB)sθ















(2.80)

27



2.10 Summary

In this chapter the mathematical model of our vehicle is formed by adding damping equa-

tions, gravitational and buoyant forces to rigid body dynamics. Rigid body dynamics are

generated according to [8] using Newton’s second law. In order to evaluate the motion of the

underwater vehicle in earth-fixed coordinate system, kinematic transformations are needed,

therefore the relation of motion between earth-fixed and body-fixed coordinate system is

built. Then we found some of our damping coefficients via strip theory. Considering the 2D

cross sectional structure of our vehicle, its body is partitioned into three sections. A formula

for each section is derived in order to evaluate the strip theory and the coefficients are de-

rived. At the end of the chapter, simplified equations of motions are stated for our vehicle.

In simplifications, some assumptions like symmetry and other similarities are used.

Since some of the coefficients can not be derived directly by analytic formula they are esti-

mated by relating them with other coefficients. The values ofthe hydrodynamic coefficients

are very small compared to the mass of the vehicle therefore small errors in coefficients will

not severely effect control of our system. Furthermore our controllers are designed to be

robust enough to compensate the changes in coefficients, also the errors accumulated from

wrong calculations. A requirement to possess the optimum values of hydrodynamic coeffi-

cients led us to solve a parameter estimation problem in Chapter 4.
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CHAPTER 3

CONTROL PROCEDURES

3.1 Introduction

In this chapter, general control methods for our system are explained. We started control pro-

cedure by first linearizing our system around an equilibriumpoint and found a linear model

in order to apply linear control methods. Then we decoupled the system into three linear

subsystems of speed, steering and depth control. Controlling the speed of an underwater

vehicle is an indispensable process before starting to control other components, therefore we

designed a speed controller first. Then we designed steeringand depth controllers for our

vehicle. In the design process we analyzed PID, SMC and LQR/LQG methods. Since not all

the components of our states for each designer are observable, an estimator is needed where

we used the continuous Kalman Filter as the optimal estimator when noise is assumed as

Gaussian.

Section 3.2 describes the linearization of our vehicle and decoupling of the system. Sec-

tion 3.3 is comprised of speed control achieved via PID method. Section 3.4 contains the

information about steering control procedure using optimal control, SMC and PID. Also

SMC and optimal control (LQR) methods are described in this section. Depth control at-

tained with same methods are described in Section 3.5. In Section 3.6 information about

LQG design is given and also its difference from LQR is explained. Because of the necessity

of the Kalman filter in designing LQG controller, a brief information about it is given in

Section 3.7. Lastly a summary of this chapter in given in Section 3.8.
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3.2 Linearized Equations of Motion

Underwater vehicles operating in complex environments with coupled maneuvers are known

to be highly nonlinear, nevertheless to exploit the advantage of enhanced control methods we

prefer to linearize our model around an equilibrium point, which is a constant speed for our

case. Hence linearizing our model and achieving some simplifications a sort of well known

control methods should be applied easily. Since linearization is the approximation of the

nonlinear system near the linearization point, we will gainthe information about our system

in general.

In our configuration we have 4 thrusters, 2 of them are placed vertically and other 2 horizon-

tally. Horizontal thrusters are used both for speed and steering (yaw) and vertical thrusters

are used for depth control. In order to achieve robust control, we have chosen the Decoupled

Control Method hence divided the 6 DOF (Degree of Freedom) motion into three main sub-

systems and designed different control methods for each subsystem. We achieved separation

as

1. Speed System

2. Steering System

3. Diving System

Design and analysis phase of all work is done by using ControlToolbox in MATLABand

Simulink.

We know that the nonlinear equations of motion for an underwater vehicle can be written as

M((̇ν))+C(ν)ν +D(ν)ν +g(η) = τ (3.1)

η̇ = J(η)ν (3.2)

Nonlinear equations can be linearized around an equilibrium point, but a linearization point

should be defined first, for our case which can be defined as

ν0(t) = [u0(t),v0(t),w0(t), p0(t),q0(t), r0(t)] (3.3)

η0(t) = [x0(t),y0(t),z0(t),φ0(t),θ0(t),ψ0(t)] (3.4)
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Since linearization is based on the perturbations from equilibrium point, perturbations can

be defined as

∆ν(t) = ν(t)−ν0(t), ∆η(t) = η(t)−η0(t), ∆τ(t) = τ(t)− τ0(t) (3.5)

then our equations of motion can be written as [8]

M∆ν̇ +
∂C(ν)ν

∂ν

∣
∣
∣
∣
ν0

∆ν +
∂D(ν)ν

∂ν

∣
∣
∣
∣
ν0

∆ν +
∂g(η)

∂η

∣
∣
∣
∣
η0

= ∆τ (3.6)

The kinematic transformation equation becomes

η̇0 + ∆η̇ = J(η0 + ∆η)(ν0 + ∆ν) (3.7)

Substituting initial condition forη , η̇0 = J(η0)ν0 in Equation (3.7) yields

J(η0)ν0 + ∆η̇ = J(η0 + ∆η)ν0 +J(η0 + ∆η)∆ν (3.8)

which can be written as

∆η̇ = J(η0 + ∆η −J(η0))ν0 +J(η0+ ∆η)∆ν (3.9)

Linear time invariant equations of motion can be derived by the assumption that the vehicle

is moving in the longitudinal plane with non-zero velocities of u0 and w0. Also adding

the assumption that other initial velocities are zero,v0 = p0 = q0 = r0 = 0 and equilibrium

point is defined by zero roll and pitch angles,φ0 = θ0 = 0, linear time-invariant matrices are

obtained as [

ẋ1

ẋ2

]

=

[

−M−1(C+D) −M−1G

J 0

][

x1

x2

]

+

[

M−1

0

]

u (3.10)

wherex1 = ∆ν , x2 = ∆η andu = τ . The matrices exceptJ in (3.10) are defined at the end of

Chapter 2. TheJ matrix is defined as [8]

J =

[

J1 0

0 I

]

J1 =







cosψ0 −sinψ0 0

sinψ0 cosψ0 0

0 0 1







(3.11)

In the process of designing controllers, the thruster modeldefined in [1] is used. In that

model, thrust and torque for an underwater propeller can be stated as

T = ρD4CT |n|n (3.12)
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Q = ρD5CQ|n|n (3.13)

whereT defines thrust,Q torque,ρ density of fluid,D propeller diameter,n propeller revo-

lution, CT thrust coefficient andCQ torque coefficient. Thrust coefficient is directly related

with advance coefficientJ, which can be defined asJ = Ua/nD. Relation between advance

speed of vehicle and control voltage applied to thrusters isshown in Figure (3.1).

Figure 3.1: Relation between Thruster Components

3.3 Speed Control

Today robust and reliable control stands as a first priority towards the development of effi-

cient underwater vehicles most of which operate in strict and tough conditions. On nonlinear

control systems, modeling inaccuracies may cause to undesired effects, hence to deal with

model uncertainties robust control methods are needed. On the other hand when the simple

systems or the simplified models of complex systems are acquired, basic control methods

like PID (Proportional Integral Differential) is preferred.

In the speed control due to simplicity of our model where the effects from sway, heave, roll,

pitch and yaw are neglected, PID Control method is preferredand the control models are

designed by using Simulink. Neglecting other effects, a SISO model with one state and one

input is obtained as in [8].

(m−Xu̇)u̇ = X|u|u|u|u+ τ +Xext (3.14)

In equation acquisition, some effects like Coriolis and centripetal forces are omitted nev-

ertheless quadratic damping is taken as the main disturbingeffect. Hereτ stands for the

horizontal thruster force. For linear case it is known that 1st order approximation of the

thrust forceτ is equal to,
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τ = ρD4CT(J0)|n|n (3.15)

whereρ states the density of sea water,D propeller diameter,CT advance thruster coefficient

which is a function of advance number (J0 = Ua/nD) , Ua water speed passing through the

propeller and lastlyn for the revolution of propeller.

Hence our equation can be written as,

(m−Xu̇)u̇ = X|u|u|u|u+ τ +Xext (3.16)

τ stands for the thruster force, which is found by (3.15).

PID control is applied to one DOF model with positive coefficients ofKp, Kd andKi selected

with respect to the response of the system. It is assumed thatthe state and output is directly

measurable and the model parameters are obtain according tothe formulas that stated on the

previous chapter. A white Gaussian noise is added to the system as an external disturbance

in order to raise the reality of model compared with the actual one.

τ = Kp(x(t)−xd(t))+Kd(ẋ(t)− ẋd(t))+Ki

∫ t

0
(x(τ)−xd(τ))dτ (3.17)

Most underwater vehicle controllers prefer PI- control lawinstead of PID in order to get

rid of necessity for Kalman filter, which should be designed for estimating the derivative

of surge and angular propeller accelerations. Since PID parameters are found by response

optimization in Simulink, we preferred using PID triple parameters instead of PI- control

law. PID parameters for first block are found as:Kp = 16.1, Ki = 1.1 andKd = 0.01 and for

the second block, parameters are found as:Kp = 6.3, Ki = 0.001 andKd = 0.01. Simulink

diagram of the Speed Controller is shown in Appendix C.

It can be seen that the effect of the disturbance in Figure (3.3) where PID controller can not

quickly compensate the error.
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Figure 3.2: Commanded and Real Output Velocities (m/s) for PID

3.4 Steer Control

Before starting steering control, information about SMC and Optimal Control methods will

be given.

3.4.1 Sliding Mode Control

As being one of the most robust control methods, Sliding ModeControl (SMC) is based on

the philosophy that it is easier to control 1st order systems compared with high order systems

(n > 1). Therefore any modeling and parameter inaccuracies can be compensated with

this method though in a wearisome manner. In addition to stated assets, SMC brings us the

advantage to face with strong perturbations like currents,waves and other unpredicted effects

in complex sea environment. General application of SMC to underwater vehicles consists of

designing a controller for the linearized part of the systemand considering the nonlinearities

as the parametric uncertainties. In design step we face withtwo different sliding surface

selections. In the first method we select a scalar function ofform s= ė+ λe, which is the

sum of the position error and the velocity vector. Fors= 0 this functions defines a sliding
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Figure 3.3: Thrust Output in Speed Control

surface ensuring that the tracking errore converges to zero. In the second method sliding

surface is based on the state variable errors depicted as:σ(e) = sTe.

In the first method we start design by defining the tracking error vector withe = x− xd

wherex stands for the state vector,xd for the desired state vector. Then we define a scalar

time-varying surfaces(t) in ℜn by the scalar equations(x, t) = 0, where

s(x, t) = (
d
dt

+ λ )n−1e (3.18)

with λ being a strictly positive constant. In a general manner, choosing n = 2 we get a

weighted sum of the position error and the velocity vector. For s= 0, our surface defines a

sliding surface with dynamics:

e(t) = e−λ(t−t0)e(t0) (3.19)

guaranteeing that tracking errore(t) will converge to zero exponentially in finite time what-

ever the initial condition is.

As a second method when the coupled movements considered, using the sliding surface

based on the state variable errors instead of the output errors seems to be more logical and
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more useful especially in underwater environment. In that manner sliding surface is defined

asσ(e) = sTe wheree= x− xd is the state tracking error,s∈ ℜn is an arbitrary vector to

be evaluated in the end. It will be a sufficient condition to lead the sliding surface to zero

(σ(e) → 0) for the convergence of the state tracking error to zero(e→ 0).

Assuming our model as:

ẋ = Ax+Bu+ f (x) (3.20)

where for our casex∈ ℜn, u∈ ℜm, A∈ ℜnxn, B∈ ℜmxn, f (x) acting as the deviation from

linearity because of modeling errors and environmental disturbances. Feedback control input

can be taken as:

u = ū+ û (3.21)

whereû is the linear feedback part of model and ¯u is the nonlinear feedback control that has

a compensating effect.

Nominal part of control is chosen as:

û = −kTx (3.22)

where k stating the feedback gain vector. Applying this input into our linear model we obtain

the closed loop dynamics:

ẋ = (A−BkT)x+Bū+ f (x) = Acx+Bū+ f (x) (3.23)

Here feedback gain vector can be determined by pole placement or optimal control methods.

To find the compensating part of the control input, we have to keep (3.23) satisfying that

σ(e) → 0, which requiresσ̇(e) < 0. From the definition of sliding surface we know that

σ̇(e) = sT(ẋ− ẋd) hence multiplying (3.23) withsT from left and subtractingsT ẋd from

both side yields:

σ̇(e) = sTAcx+sTBū+sT f (x)−sT ẋd (3.24)

Assuming thatsTB 6= 0 , we choose compensating part of control, ¯u as:

ū = (sTB)−1[
sT ẋd −sT f̂ (x)−ηsgn(σ)

]
(3.25)

and applying to the equation yields:

σ̇(e) = sT Ac x−η sgn(σ(e))+sT ∆ f (x) (3.26)
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Now we work ons. We know that ifλ stating the eigenvalue of an arbitrary matrixM,

following equation satisfies with a nonzero vector ¯v,

Mv̄ = λ v̄ (3.27)

Then assigning one of the eigenvalues ofAc as zero, the termsT Ac x in (3.26) can be made

zero by taking vectors as the right eigenvector ofAT
c corresponding to the eigenvalue with

zero value.

Eliminating the termsT Ac x in (3.26) yields:

σ̇(e) = −η sgn(σ(e))+sT ∆ f (x) (3.28)

This term is global asymptotically stable in case of,

η > ||s|| . ||∆ f (x)|| (3.29)

which can be shown by theBarbălat’s lemma first by selecting a candidate Lyapunov func-

tion as:

V(σ) =
1
2

σ2 (3.30)

which ensures thatV(σ) > 0 then differentiatingV, we get:

V̇(σ) = σσ̇ = −ησsgn(σ)+ σsT∆ f (x) = −η |σ |+ σsT∆ f (x) (3.31)

from that equation it is clear that selectingη as stated in (3.29),̇V(σ) becomes negative semi

definite (V̇(σ) ≤ 0). Lastly taking second derivative ofV yields:

V̈(σ) = η2sgn2(σ)−ηsT∆ f (x)sgn(σ)−ηsgn(σ)sT ∆ f (x)+ (sT∆ f (x))2 + σsT∆ ḟ (x)

(3.32)

It can be easily seen thatV̈(σ) is bounded. Hence (3.30), (3.31) and (3.32) satisfiesBarbălat’s

lemma asserting that:

if,

1. V(σ , t) is lower bounded. (V(σ) ≥ 0)

2. V̇(σ , t) is negative semi definite. (V̇(σ) ≤ 0)

3. V̇(σ , t) is uniformly continuous in time. (̈V(σ) is bounded∀t ≥ t0)
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thenV(σ , t) → 0 ast → ∞.

That fact in accordance with (3.29) brings the consequence of σ to converge to zero in finite

time.

V(σ , t) → 0 =⇒ −η |σ |+ σsT∆ f (x) → 0 =⇒ σ → 0 (3.33)

To conclude our calculations, combining two parts of control effort as stated in (3.21), our

control law becomes,

u = −kTx+(sTB)−1[sT ẋd −sT f̂ (x)−η sgn(σ)] (3.34)

In practice to reduce the chattering effect instead ofsgn(σ) function,sat(σ/φ) or tanh(σ/φ)

functions are used withφ appears as the sliding surface boundary layer thickness.

Finally we obtain the modified control law as:

u = −kTx+(sTB)−1[sT ẋd −sT f̂ (x)−η tanh(σ/φ)] (3.35)

3.4.2 Steering Control with SMC

Steering control with SMC is found by first linearizing the system around an equilibrium

point and substituting the coefficients in the linearized matrix. Decoupling the system for an

efficient control, the following matrix is obtained.

Hereυ stands for sway,r for yaw andψ for the Euler Angle for steering.






m−Yυ̇ −Yṙ 0

−Nυ̇ (Ixz−Nṙ) 0

0 0 1













υ̇
ṙ

ψ̇







+







Yυ mu−Yr 0

Nυ Nr 0

0 1 0













υ
r

ψ







=







0

τN

0







(3.36)

The sliding surface is taken as

σ = s1 υ +s2 r +s3 (ψ −ψd) (3.37)
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and our model is transformed into state space form as

ẋ = Ax+Bu (3.38)

Hence using the simulation values, the following equation is obtained

ẋ =







−0.0943 −0.0322 0

−0.9537 −1.1733 0

0 1 0







x+







−1.6627

4.5960

0







u (3.39)

ThenAc matrix is found

Ac = (A−BkT) =







−0.3653 −0.2994 0

−0.2047 −0.4347 0

0 1 0







(3.40)

where the vectork is determined by the pole-placement method. Choosing the poles as

p = [−0.15 ;−0.65 ;0]T (3.41)

thek vector is found as

k = [−0.1630 ;−0.1607 ;0]T (3.42)

Then the right eigenvector is found as

s= [−0.4762 ;0.8496 ;0.2268]T =⇒ AT
c s= 0 (3.43)

hence our sliding surfaceσ , takes the form

σ = −0.4762υ +0.8496r +0.2268(ψ −ψd) (3.44)

Lastly after finding all the coefficients, the control law turns into

u = 0.1630υ +0.1607r (3.45)

+
1

4.6965
(−0.23tanh(−0.4762υ +0.8496r +0.2268(ψ −ψd)/0.05))

Here the sliding surface boundary layer thickness is selected as 0.05 which seems to be a

proper value andη is selected as 0.23 in accordance with the balance between robustness

and performance.

The model of the SMC Steering control is shown in Figure (3.4),

39



Figure 3.4: Model of Sliding Mode Controller for Steering
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Figure 3.5: Input for Sliding Mode Controller for Steering

3.4.3 Optimal Control

Like the behavior of nature which is designed in a manner of always selecting the minimum

effort with maximum performance, every system can be controlled with a minimum effort.

Therefore in order to find the minimum effort we use Optimal Control.

Before starting work for optimal control, we know that our system is linear hence selecting

a quadratic performance function we can apply the Linear Quadratic Regulator (LQR) rules,

which requires a linear system and quadratic performance index to minimize in order to get

minimum control effort. Here our aim is to find a control inputwhich will guide the system

to follow a desired state variable and meanwhile minimize a performance index which is

chosen for minimum energy control system in conformity withour situation.

Considering a linear time-invariant system stated as

ẋ(t) = Ax(t)+Bu(t) (3.46)

41



Figure 3.6: Steering for Sliding Mode Controller for Steering

with a cost functional

J(u(t)) = J(x(t0),u(t), t0) (3.47)

=
1
2

[xd(t f )−x(t f )]
T F [xd(t f )−x(t f )]

+
1
2

∫ t f

t0

[

[xd(t)−x(t)]T Q [xd(t)−x(t)] + uT(t)R u(t)
]

dt

=
1
2

eT(t f )F e(t f )

+
1
2

∫ t f

t0

[
eT(t) uT(t)

]

[

Q(t) 0

0 R(t)

][

e(t)

u(t)

]

dt

where errore(t), states the difference between the reference (desired state) xd and statex as

e(t) = xd − x. For infinite time interval casefinal cost functionin the cost functionalJ(u)

does not have any meaning for the system and the final timet f , is taken as infinite(t f → ∞ ).

Hence our cost functional can be written in a more simplified way as

J(u) = +
1
2

∫ ∞

t0

[
xT(t)Q x(t)+uT(t)R u(t)

]
dt (3.48)
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We follow the standart procedure, first building with theHamiltonianas

H(x(t),u(t),λ (t)) =
1
2

xT(t)Q x(t)+
1
2

uT(t)R u(t) (3.49)

+ λ T(t) [A x(t)+B u(t)]

whereλ (t) is the costate vector.

Then we obtain the optimal controlu(t) as

∂H
∂u

= 0 =⇒ R u(t)+BT λ (t) = 0 (3.50)

from which we find the control input as

u(t) = −R−1 BT λ (t) (3.51)

after that we obtain the state and costate equations as

ẋ(t) = +

(
∂H
∂λ

)

=⇒ ẋ(t) = A x(t)+B u(t) (3.52)

λ̇ (t) = −

(
∂H
∂x

)

=⇒ λ̇ (t) = −Q x(t)−ATλ (t) (3.53)

with using (3.51) in (3.52) we get

ẋ(t) = A x(t)−B R−1 BT λ (t) (3.54)

In the infinite final-time interval optimal control, we have to satisfy that the system is com-

pletely controllable, which requires that the controllability matrix,

C =
[
B AB . . .An−1B

]
(3.55)

must be offull rank (n linearly independent columns). Having a controllable system guaran-

tees that the optimal cost isfinite.

Assuming a transformation

λ (t) = P x(t) (3.56)

whereP is not known yet, our new optimal control becomes

u(t) = −R−1 BT P̂ x(t) (3.57)
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now which stands as a negative feedback of our error vectorx(t). Here,

P̂ = lim
t f →∞

{P} (3.58)

Continuing our replacements with differentiating (3.56) w.r.t. time yields,

λ̇ (t) = ˙̂P x(t)+ P̂ ẋ(t) (3.59)

and using it in the state and costate equations we get,

ẋ(t) = A x(t)−B R−1 BT P̂ x(t) (3.60)

λ̇ (t) = −Q x(t)−ATP̂ x(t) (3.61)

Lastly, substituting our new equations (3.60) and (3.61) in(3.59) results,

−Qx(t)−ATP̂x(t) = ˙̂P x(t)+ P̂
[
A x(t)−B R−1 BT P̂ x(t)

]

0 =
[

˙̂P+ P̂ A +ATP̂ +Q− P̂ B R−1 BT P̂
]

x(t) (3.62)

(3.63)

The equation stated above is calleddifferential Riccati equation (DRE), where the matrixP̂

is often calledRiccati matrix. P̂ is ann x nsymmetric, positive definite matrix found by the

solution of theDRE, satisfying the final condition

P̂(t f −→ ∞) = 0 (3.64)

Our optimal state is the found as

ẋ(t) =
[
A−B R−1 BT P̂

]
x (3.65)

and the optimal cost is found by

J =
1
2

xT(t)P̂ x(t) (3.66)
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3.4.4 Steering Control with Optimal Control

Optimal Control is applied to our linearized steering matrix, which is stated on the previous

section. Hence substituting the coefficients in the matrices, following equation is obtained

ẋ =







−0.0943 −0.0322 0

−0.9537 −1.1733 0

0 1 0







x+







−1.6627

4.5960

0







u (3.67)

Using the optimal control equations, error weighting matricesQ andRare applied as

Q =







1 0 0

0 1 0

0 0 1







(3.68)

R= 1/4

And also the steady state Riccati matrixP̂ is calculated using MATLABlqr command

[K,P,Eig] = lqr (A,B,Q,R) (3.69)

The solutions for control problem by using optimal control can be stated as

K = [−0.5949 1.9505 2.0000] Eig =







−9.7858

−1.0377

−0.3977







P =







1.1077 0.3684 0.4409

0.3684 0.2394 0.2683

0.4409 0.2683 1.3042







3.4.5 Steering Control with PID

Lastly for steering, PID method is applied for basic controland the efficiency of this method

is compared with the other methods. A simple Simulink diagram is designed, figure of which

is shown in Figure (??). Then the control law and the output of the system for PID is found.

Though it is expected that PID method will not succeed in compensating the noise when

compared with SMC, after optimizing the parameters with response optimization method in
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Figure 3.7: Control Input for Steering by Optimal Control

Simulink, PID method yielded similar outputs as SMC. Applying response optimization to

our model, PID parameters are found as:Kp = 0.2798,Ki = 0.00074 andKd = 0.1175.

Here again, the same amount of white Gaussian noise is injected to the system as in SMC

method. Simulink diagram of the PID steering controller is shown in Appendix C.

3.5 Depth Control

On the depth control, the same procedure is followed as in thesteering control. First solution

with PID method is shown, then solution is given for SMC and lastly for optimal control.

Like in the steering design, control methods responded in the same manner. SMC confirmed

its robustness and stability in compensating noise more than other methods. Optimal control

followed SMC, but evinced less efficiency. Lastly PID came into scene when the goal is

robustness, but whatever the outputs are, we realized that also when PID coefficients are

adjusted optimally desired outputs are not afar. Depth is not taken a high value due to the

fact that the system will response in the same manner, no matter how deep the vehicle dives.
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Figure 3.8: Steering Angle found by Optimal Control

Figure 3.9: Input for PID Steering Control

3.5.1 Depth Control with PID

This time, depth control procedure is first initialized withPID method because of its direct

approach. Coefficients are found by optimization using the response optimization block
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Figure 3.10: Steering Angle for PID Control

in Simulink and the solution is found at the 28th step as:Kp = 1.2279, Ki = 0.0094 and

Kd = 15.0032. Model of the depth controller is shown in Appendix C.
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Figure 3.11: Optimization of PID Response for Steering

Figure 3.12: Input Value of Simulink PID Control for Depth

49



Figure 3.13: Desired Depth of PID for Depth Control

3.5.2 Depth Control with SMC

In depth control with SMC, we assumed that we achieve diving operation vertically without

adding the pitch effect which means, we do not use our thrusters to maintain a desired pitch

angle in order to dive, where we obtain a direct thrust vectorperpendicular to sea surface. On

the other hand, by resultant thrust vector which is the sum ofthe vertical thrust and horizontal

thrust, our vehicle will decline on a slope.

After linearizing our system we get the following matrix fordepth. Herew stands for heave,

q for pitch andz for the depth.







m−Zẇ mxG−Zq̇ 0

mxG−Wẇ (Iy−Mq̇) 0

0 0 1













ẇ

q̇

ż







+







Zw −mu+Zq 0

Mw mxGu+Mq 0

1 0 0













w

q

z







=







τZ

0

0







(3.70)

The sliding surface is taken as
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σ = s1 w+s2 q+s3 (z−zd) (3.71)

and our model transformed into

ẋ = Ax+Bu (3.72)

form via MATLAB yielding

ẋ =







1.4327 1.3356 0

−7.6031 −7.0186 0

1 0 0







x+







2.1937

−8.6137

0







u (3.73)

Then we findAc matrix

Ac = (A−BkT) =







−0.5061 −0.3541 0

−0.0099 −0.3839 0

1 0 0







(3.74)

where the vectork is found by the pole-placement method. Choosing the poles as

p = [0 ;−5.5680 ;−0.0179]T (3.75)

we find thek vector as

k = [−0.8838 ;0.7703 ;0]T (3.76)

Equatingk3 to 0 shows us that feedback fromz has no effect to stabilize the heave-pitch

dynamics. On the other hand, in order to simplify our equation we find the right eigenvector

sof Ac corresponding toλ3, which is equal to 0.

Then the right eigenvector is found as

s= [0.6874 ;−0.6340 ;0.3542]T =⇒ AT
c s= 0 (3.77)
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hence our sliding surfaceσ , takes the form

σ = 0.6874w−0.6340q+0.3542(z−zd) (3.78)

Lastly after finding all the coefficients, our control input turns into

u = −0.8838w−0.7703q (3.79)

+
1

6.9693
(−0.11tanh(0.6874w−0.6340q+0.3542(z−zd)/0.05))

Here the sliding surface boundary layer thickness is selected as 0.05 which seems to be a

proper value andη is selected as 0.11 in accordance with the balance between robustness

and performance.

Figure 3.14: Model of Sliding Mode Control for Depth
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Figure 3.15: Input for Sliding Mode Depth Control

Figure 3.16: Desired Depth for Sliding Mode Control

3.5.3 Depth Control with Optimal Control

Optimal Control is applied to the same matrix used in SMC which is obtained by linearizing

the system for depth control. Only the coefficients of the linearized matrix are different.

Hence substituting the coefficients we found the following matrix
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ẋ =







1.4327 1.3356 0

−7.6031 −7.0186 0

1 0 0







x+







2.1937

−8.6137

0







u (3.80)

Then we used the optimal control equations stated above and built a MATLAB m-file to

obtain the desired output.

Here againQ andR matrices in cost functional are taken as the same with matrices in steer

control.

Q =







1 0 0

0 1 0

0 0 1







(3.81)

R= 1/4

Also we preferred to find the Riccati matrix̂P from MATLAB with lqr command as

[K,P,Eig] = lqr (A,B,Q,R) (3.82)

which yielded theK,P,Eig matrices as

K = [−0.5949 1.9505 2.0000]

P =







2.8419 0.6208 1.7216

0.6208 0.2394 0.3804

1.7216 0.3804 2.1995







3.6 LQG Design

In LQR design we have supposed that we have all the state information at each step but in real

time design it will not be possible to acquire full state information. Environmental distur-

bances like currents, wind, waves, etc. will cause to systemnoise and also state information

acquired from sensors will not be so definite because of the measurement noise hence system
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Figure 3.17: Control Input for Optimal Depth Control

will not be controlled efficiently as desired. Generally noise will set in too much oscillation

which will end with too much chattering at the input for compensation. Therefore we need

a filter in order to obtain optimum state estimates. In that manner Kalman filter is selected,

where in case of white noise it is the optimal filter [35]. In our design we assumed that

all noises are white otherwise we would design a Colored-Noise Kalman filter. Combining

the LQR feedback design with an estimator forms the optimal system known as "Separation

Principle". In this theorem, design is achieved in two stages. First, states are obtained from

Kalman filter as optimal estimates then optimal control problem is solved with these known

states.

In LQG design we followed the Separation Theorem hence first we designed an optimal

regulator assuming full-state feedback for linear system then we designed a continuous-time

Kalman filter with white noises and known power spectral densities. Lastly we combined

optimal regulator and Kalman filter into an optimal compensator which yields an input from

estimated state and whence output.
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Figure 3.18: Desired Depth with Optimal Control

3.7 Kalman Filter

We start designing the Kalman filter first with a truth model:

ẋ(t) = A(t) x(t)+B(t) u(t)+G(t) w(t) (3.83)

y(t) = C(t) x(t)+v(t) (3.84)

where

x(t) : State vector

y(t) : Measurement vector

A(t) : State matrix

C(t) : Measurement matrix

w(t) : System noise and model uncertainty

v(t) : Measurement noise

Both noises are assumed to be white noises with zero-mean Gaussian and uncorrelated with
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each other and with state.

E
{

w(t) wT(t)
}

= Q(t) (3.85)

E
{

v(t) vT(t)
}

= R(t) (3.86)

E
{

v(t) wT(t)
}

= 0 (3.87)

Kalman filter for state and output estimate is build as

˙̂x(t) = A(t) x̂(t)+B(t) u(t)+L(t) [y−C(t) x̂] (3.88)

Let’s define the state error ase= x̂− x. Combining the truth model with Kalman form we

get

ė= (A(t) x̂(t)+B(t) u(t)+L(t) [y−C(t) x̂ ])− (A(t) x(t)+B(t) u(t)+G(t) w(t))

= A(t) e+L(t) C(t) x+L(t) v(t)−L(t) C(t) x̂−G(t) w(t)

= (A(t) −L(t) C(t))e−G(t) w(t)+L(t) v(t) (3.89)

We define the state error-covariance matrix as

P(t) ≡ E
{

e(t) eT(t)
}

(3.90)

Considering the linear time-invariant state-space equation

ẋ(t) = A(t) x(t) + B(t)u(t) (3.91)

y(t) = C(t)x(t) + Du(t) (3.92)

Using the below formula which is known ascontinuous Riccati equation, continuous time

Kalman filter is derived as stated in [19].

Ṗ(t) = A(t)P(t) + P(t)AT(t)

−P(t) CT(t) R−1(t) C(t) P(t) + G(t) Q(t) GT(t) (3.93)

The algorithm for continuous time Kalman filter is stated in the table below. Assuming the

linear time varying system with white noise sequences and zero-mean Gaussian distributions,

first initial values for state and error-covariance matrix should be assigned. Then the Kalman

gain matrix is found and used in updating the error-covariance matrix in next step. Here a

differential equation is obtained which is solved in Simulink toolbox of MATLAB.
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Table 3.1: Continuous Time Kalman Filter

Model
ẋ(t) = A(t)x(t)+B(t)u(t)+G(t)w(t), w(t) ∼ N(0,Q(t))

y(t) = C(t)x(t)+v(t), v(t) ∼ N(0,R(t))

Initialize
x̂(t0) = x̂0

P0 = E
{

e(t0)eT(t0)
}

Gain K(t) = P(t)C(T)(t)R−1(t)

Covariance
Ṗ(t) = A(t)P(t)+P(t)AT(t)

−P(t)CT(t)R−1(t)C(t)P(t)+G(t)Q(t)GT(t)

Estimate ˙̂x(t) = A(t)x̂(t)+B(t)u(t)+L(t) [y−C(t)x̂(t)]

Combining the optimal regulator with Kalman filter we retrieve a compensator. Regulator’s

weighting matricesQ andR and Kalman filter’s spectral noise densitiesV andZ play impor-

tant role in designing compensator. Using the state information obtained from Kalman filter

we get the following LQG equation which we built in Simulink.

˙̂x = Ax̂ + B u+ L(y − Cx̂)

= (A − B K − LC) x̂ + L y (3.94)

with the input value

u = −K x̂ (3.95)

whereK = PBR−1.

Our design for LQR/LQG Control is based on separation principle therefore combining each

controller on the same Simulink diagram would be more appropriate in order to compare

their efficiencies.

Here
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Figure 3.19: LQG Design

3.8 Summary

In this chapter, we tried different control methods and remarked the outputs and successes of

each method. Because of its simplicity and easy applicability first we tried PID method. In

real world, many successful designs with PID method has beenreported [12] recently. On

the other hand, when the chaotic specifications are thought of sea conditions, better control

methods are developed for underwater systems. SMC is one these control methods with its

robustness. Different studies showed that [13], SMC is a robust and effective method to

compensate environmental disturbances and unexpected effects. In our algorithms, we have

also analyzed that applying same amount of noise to the system, SMC is more successful in

compensating these effects when compared with PID and LQR. On the other hand, most of

the time because of chattering property of SMC while trying to keep the error on a sliding

surface swiftly, extra battery power is needed, which can bea disadvantage of SMC for a

long operation.

We assumed that full state feedback information is available while designing PID and SMC

methods which is far from the reality. Hence to get rid of thisdeficiency, we analyzed an
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Figure 3.20: Simulink LQG Steer Sub-block

LQG design where the Kalman filter is a prerequisite. In that manner, first we designed

an LQR system and combined Kalman filter with it to obtain LQG model. We probed the

success of Kalman filter in filtering the undesired noise and also gained the advantage of

acquiring the information of some components of state whichcan not be measured by the

sensors in real time operation. Advantage of LQG method overLQR is obvious which has

been demonstrated with related figures.

Probing all the methods we generated SMC seems to be most effective control method in

harsh sea conditions. Using the state information obtainedfrom Kalman filter will probably

increase its efficiency and bring important advantages to the system.
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Figure 3.21: Simulink LQR Steer Sub-block

Figure 3.22: LQG vs. LQR
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CHAPTER 4

PARAMETER ESTIMATION

4.1 Introduction

In this chapter we worked on the problem of parameter estimation which is directly related

with system identification. System identification is definedas the deduction of system char-

acteristics from measured data [18]. It is commonly referred as an inverse problem in a

way that one tries to find the input when the output is known. Ina general manner what

we tried in this chapter is estimating the hydrodynamic coefficients of our vehicle from our

measurements which are obtained from controllers.

In Section 4.2, a solution to our parameter estimation problem is probed from window of

least squares method. A sequential method that corrects theparameters at each step is used.

In Section 4.3, parameter estimation problem is faced from other side and Genetic algorithms

as an optimization method is used. Defining a nonlinear cost function for our problem we

applied different simulations in order to estimate our coefficients from controllers outputs.

The goal in parameter estimation is to predict the value of a quantity which is assumed to

be time invariant. In case of time-variance change of parameters must be slow compared

with the state variables in order to estimate the values successfully [35]. In our estimation

problem we assumed that all our parameters (hydrodynamic coefficients) are time-invariant.

Parameter estimation for underwater vehicle consists of predicting some of the hydrody-

namic coefficients by analyzing the measurements, which canbe modeled as

ỹ(i) = h[i,x,v(i)] , i = 1,2, . . . ,k (4.1)

whereỹ(i) denotes the measurements,x parameters andv(i) measurement noise. Hence we
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must find a function ofk observations

x̂(k) , x̂
[

k,Yk
]

(4.2)

here observations are shown as

Yk , {ỹ(i)}k
i=1 (4.3)

The measurement noisev(i) is assumed to be zero mean Gaussian noise with varianceσ2,

v(i) ∼ N
(
0,σ2) (4.4)

4.2 Linear Sequential Estimation

Basically linear sequential estimation method is achievedby linear least squares algorithm.

In linear least squares, our goal is to estimate the unknown vectorx from given measure-

ments. Our problem can be modeled as

ỹi = Hi x̂+vi i = 1, . . . ,k (4.5)

where

ỹi :measurements

Hi :measurement matrix

x̂ :vector of unknowns

vi :measurement noise

Our model (4.5) is linear with its nature, if there would be a nonlinear functionh(x(t), t)

instead ofH(i), we would have a nonlinear parameter estimation problem. Here, we try to

estimatex such that the estimation error is minimum, hence we grab thatsolution by mini-

mizing the square of the estimation errors with inserted weight matrix in the cost function,

J =
1
2

eT W e (4.6)

We are looking for ˆx that minimizesJ. HereW is ann×n symmetric matrix.e stands for

error and defined as

e = ỹi − Hi x̂
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Our cost function (4.6) can be written as

J(k) =
k

∑
i=1

[ỹi −Hix̂]
T Wi [ỹi −Hi x̂]

= ỹT
k Wkỹk− ỹT

k WkHkx̂− x̂THT
k Wkỹk + x̂THT

k WkHkx̂ (4.7)

Utilizing the necessary condition for ˆx to be minimum, which is

∂J
∂ x̂

= 0 (4.8)

we find

∂J
∂ x̂

= −2ỹT
k Wk Hk +2x̂T HT

k Wk Hk = 0 (4.9)

equating both sides yields

ỹT
k Wk Hk = x̂T HT

k Wk Hk

Then taking the transpose of both sides we get

HT
k Wk Hk x̂ = HT

k Wk ỹk

Lastly leaving ˆx we find the least squares solution as

x̂ =
(
HT

k Wk Hk
)−1

HT
k Wk ỹk (4.10)

From the sufficient condition of minimum,∂
2J

∂ x̂2 > 0, which means setting the gradient to

zero, it is clear in (4.9) thatW must be positive definite in order to equation to be positive.

Least squares estimator is unbiased which can be defined as

E [ek] = 0 =⇒ E [x − x̂k] = 0 =⇒ E [x̂k] = x (4.11)

whereek , x− x̂k.

An estimator ˆx(y) is defined as the unbiased estimator ofx if the expected value of the

estimator is equal tox, E{x̂(y)} = x, ∀x [35].

SelectingW = R−1 and substituting it in (4.10) we get

E [x̂k] =
(
HT

k R−1
k Hk

)−1
HT

k R−1E [ỹk]

=
(
HT

k R−1
k Hk

)−1
HT

k R−1E [Hk x̂+vk] (4.12)
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Hence estimation error is found as

ek = x− x̂k

= x−
(
HT

k R−1
k Hk

)−1
HT

k R−1E [Hk x̂
︸ ︷︷ ︸

x

+vk]

= −
(
HT

k R−1
k Hk

)−1
HT

k R−1vk (4.13)

Next we find the information matrix as the expected value of the square of the bias

P(k) = E [e(k)e(k)T ]

= (HT
k R−1

k Hk)
−1HT

k R−1
k vk vT

k
︸︷︷︸

Rk

R−1
k Hk(H

T
k R−1

k Hk)
−1

= H−1
k Rk (HT

k )−1HT
k R−1

k RkR−1
k HkH−1

k Rk (HT
k )−1 (4.14)

After cancellation we get

P(k) =
[
HT

k R−1
k Hk

]−1
(4.15)

Here existence of the inverse means that the information matrix is finite and the eigenvalues

of HT
k R−1

k Hk are directly related with the condition number which is the ratio of the largest

singular value to smallest one shows the effort for invertibility. Small condition number

denotes that the matrix can be easily inverted, on the contrary large condition number defines

poor invertibility or nearly singular matrices.

Substituting equation (4.15) in (4.10), our least squares solution simplifies to

x̂ = Pk HT
k R−1

k ỹk (4.16)

Taking the inverse of both sides and writing fork+1 our information matrix transforms into

P−1
k+1 = HT

k+1R−1
k+1 Hk+1 (4.17)

In order to write a sequential form we define the variables partitioned as

yk+1 =

[

yk

y(k+1)

]

(4.18)

Hk+1 =

[

Hk

H(k+1)

]

(4.19)

vk+1 =

[

vk

v(k+1)

]

(4.20)

Rk+1 =

[

Rk 0

0 R(k+1)

]

(4.21)
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which will bring the advantage of writing our information matrix in a sequential form

P−1
k+1 =

[

HT
k H(k+1)T

]
[

Rk 0

0 R(k+1)

]−1[

Hk

H(k+1)

]

=
[

HT
k R−1

k H(k+1)T R(k+1)−1
]

= HT
k R−1

k Hk + H(k+1)T R(k+1)−1 H(k+1) (4.22)

Hence it can be written in a more compact form as

P−1
k+1 = P−1

k + HT
k+1R−1

k+1Hk+1 (4.23)

Equation (4.23) means that information gained at thek+1 step is the sum of information at

k step and the new information aboutx that is obtained from measurement ˜y(k+1). Owing

to write the estimation in a more calculation accordant, we will write the information matrix

in a more compact form by using the matrix inversion lemma [7]which states that

F = [A + BCD]−1 (4.24)

here

F = n×nmatrix

A = n×nmatrix

B = n×mmatrix

C = m×mmatrix

D = m×nmatrix

If we have the assumption that all parts have inverses, then we can write the above inverse as

F = A−1 −A−1 B
(

D A−1 B + C−1)−1
D A−1 (4.25)

In our sequential algorithm selecting the components of information matrix as they adapt in

the matrix inversion lemma

F = Pk+1

A = P−1
k

B = HT
k+1

C = Rk+1

D = Hk+1
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and placing them in the matrix inverse lemma yields

Pk+1 =
[
P−1

k + HT
k+1 R−1

k+1 Hk+1
]−1

= Pk − Pk HT
k+1

(
Hk+1 Pk HT

k+1 + R−1
k+1

)−1
Hk+1 Pk (4.26)

In order to write the above equation more briefly we define new variables as

Sk+1 = Hk+1 Pk HT
k+1 + Rk+1 (4.27)

Wk+1 = Pk HT
k+1 S−1

k+1 (4.28)

hence we can write information matrix recursion

Pk+1 = [I − Wk+1 Hk+1] Pk (4.29)

which is equal to

Pk+1 = Pk − Wk+1 Sk+1WT
k+1 (4.30)

The estimation formula can be written in a recursive form with the assumption that all the

inverses exist

x̂k =
(
HT

k R−1
k Hk

)

︸ ︷︷ ︸

Pk

HT
k R−1

k ỹk (4.31)

for k+1 it is written as

x̂k+1 = Pk+1 HT
k+1 R−1

k+1 ỹk+1

= Pk+1

[

HT
k H(k+1)T

]
[

Rk 0

0 R(k+1)

]−1[

ỹk

ỹ(k+1)

]

= Pk+1 HT
k R−1

k ỹk + Pk+1 HT
k+1 R−1

k+1 ỹk+1

(4.32)

when we substitutePk+1 defined in (4.30) for the first term on the right-hand side in (4.32)

x̂k+1 = Pk HT
k R−1

k ỹk − Wk+1 Hk+1 Pk HT
k R−1

k ỹk + Pk+1 HT
k+1 R−1

k+1
︸ ︷︷ ︸

Wk+1

ỹk+1

= [ I − Wk+1 Hk+1] Pk HT
k R−1

k ỹk
︸ ︷︷ ︸

x̂k

+Wk+1 ỹk+1 (4.33)

which yields a more simplified form when we write it as

x̂k+1 = x̂k − Wk+1 Hk+1 x̂k + Wk+1 ỹk+1

= x̂k − Wk+1 [ỹk+1 − Hk+1 x̂k] (4.34)

The recursion form of linear sequential estimation is shownin Table (4.1).
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Table 4.1: Linear Sequential Estimation

Initialize
P1 =

[
1

α2 I +HT
1 W1H1

]−1

x̂1 = P1
[

1
α β +HT

1 W1ỹ1
]−1

Update x̂k+1 = x̂k +Kk+1(ỹk+1−Hk+1x̂k)

Gain Kk+1 = PkHT
k+1

[
Hk+1PkHT

k+1+W−1
k+1

]−1

Information Matrix Pk+1 = [I − Kk+1 Hk+1]Pk

4.2.1 Steering Parameter Estimation

Applying the above sequential algorithm to the simplified linearized steering motion equa-

tions stated below, we find the estimated parameters.

[

m−Yv̇ −Yṙ

−Nv̇ (Iz−Nṙ)

][

v̇

ṙ

]

=

[

Yv mu−Yr

Nv Nr

][

v

r

]

+

[

0

τN

]

(4.35)

In order to reduce the coupling effect of the parameters occurring because of the multiplica-

tion we omit the parametersYṙ andNv̇ [3]. Leaving the derivatives on the left side alone

(m−Yv̇) v̇ = Yvv+(Yr −mU) r

(Iz−Nṙ) ṙ = Nvv+NrrNτ τ (4.36)

(4.37)

we define the derivatives as

v̇ =

(
Yv

m−Yv̇

)

︸ ︷︷ ︸

δ

v+

(
Yr −mU
m−Yv̇

)

︸ ︷︷ ︸

ε

r

ṙ =

(
Nv

Iz−Nṙ

)

︸ ︷︷ ︸

α

v+

(
Nr

Iz−Nṙ

)

︸ ︷︷ ︸

β

r +

(
Nτ

Iz−Nṙ

)

︸ ︷︷ ︸

γ

τ (4.38)

(4.39)
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arranging the equations to apply the algorithm we get

vt+1−vt

∆t
= δv+ εr =⇒ vt+1= (δv ∆t +1)v+ ε ∆t r (4.40)

which can be written as

vt+1 =
[

v r
]

︸ ︷︷ ︸

H

[

(δv ∆t +1)

ε ∆t

]

︸ ︷︷ ︸

Θ

(4.41)

4.2.2 Diving Parameter Estimation

Before using the sequential parameter estimation algorithm we arrange our diving model and

configure it in order to make it applicable to obtain unknown parameters. Hence simplifying

the model we get

[

m−Zω̇ −Zq̇

−Mω̇ (Iy−Mq̇)

][

ω̇
q̇

]

=

[

Zω mU−Zq

Mω Mq

][

v

r

]

+

[

τZ

τM

]

(4.42)

then leaving the derivatives alone yields

ω̇ =

(
Zω

m−Zω̇

)

w+

(
Zq−mU

m−Zω̇

)

q+

(
τZ

m−Zω̇

)

u

q̇ =

(
Mω

Iy−Mq̇

)

w+

(
Mq

Iy−Mq̇

)

q+

(
τM

Iy−Mq̇

)

u (4.43)

Evaluating the sequential algorithm both for steering and diving motions we find the esti-

mated linear hydrodynamic coefficients and errors as
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Table 4.2: Parameter Estimation via LSE

Parameters Initial Value Estimated Value Absolute Error Percent Error

Yv -0.0510 -0.0310 0.0200 %39.21

Yr 0.0300 0.0280 0.0020 % 6.66

Nv -0.0074 -0.0077 0.0003 % 3.67

Nr -0.0160 -0.0035 0.0195 %78.12

Zω -0.3000 -0.2144 0.0856 %28.52

Zq -0.1400 0.1038 0.2438 %174.15

Mω -0.0029 -0.0027 0.0002 % 8.47

Mq -0.0016 -0.0017 0.0001 % 6.44

4.3 Parameter Estimation via Genetic Algorithm

Genetic Algorithm (GA) is an optimization and search methodbased on the rules of genetics

and natural selection [9]. Goal of the genetic algorithms isto select a state that maximizes

the fitness which is equal to minimizing the cost function. Fitness is directly related with the

survivability, which is wanted to maximize.

Since GA is based on genetics, some terms used in problem solution are to be defined first.

A geneis the basic unit of heredity which includes the sequence of enzymes calledgenetic

code. This code does not vary in an organism. GA is solved by using chromosomes which

breed to form new generation. This group of interbreeding individuals is calledpopulation.

Genes are found in two forms that show different characteristics. Each of these forms is

known asallele. The combination of the alleles influence the traits of the organism. One

of the alleles becomes dominant and the other one becomes recessive by which the genetic

code is transferred to next generations in a natural way.

Though many different algorithms are developed which are somewhat superior to other

mates, general advantages of GA can be stated as [9]

• No need of derivation or gradient of cost, which can be a burden job for a complex

cost function.

• Generates a list of optimum variables, not just a single one.
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• GA can be applied to both continuous and discrete variables.

• Evaluation of a large number of variables is possible and itnot a big issue for GA.

• Efficient for parallel computers.

• Variables of the problem can be encoded, bringing the advantage of running optimiza-

tion with these encoded variables.

• GA can run with numerically generated data, experimental data or analytical functions.

Hydrodynamic coefficients of the system are small and must beprecisely defined enough to

run in an optimization problem to minimize the cost effectively. It will be a burdensome job

to define our small coefficients in binary GA therefore we preferred to use real-coded GA,

which is sometimes called continuous GA.

Figure (4.2) gives a summary of the real-coded GA. The main difference of real-coded GA

from binary coded GA is that instead of zeros and ones the genes are represented with

floating-numbers between defined range.

The GA process starts with fitting the variables to a chromosome therefore selection of the

chromosome plays an important role. The chromosome is written as an array of 1×Nvar

elements whereNvar shows the number of the variables in the problem which is equal to the

number of genes in a chromosome. Hence a chromosome can be stated as

chromosome= [ p1, p2, p3, . . . pNvar ] (4.44)

At each step after generation of new chromosome, a cost is calculated with respect to the

variablesp1, p2, p3, . . . pNvar .

cost= f (chromosome) = f (p1, p2, p3, . . . pNvar) (4.45)

GA is an search technique therefore to avoid too much computation effort, a reasonable

region must be searched. This is achieved by constraining the genes between upper and

lower boundaries. If the region of interest is not known at the beginning, a region with

enough diversity for GA to find the solution must be selected.

Before starting the algorithm an initial population ofNpop is selected whereNpop shows the

number of population or number of chromosomes. Once the population is generated, one will

have a matrix ofNpop×Nvar. Generally for the ease of calculation the values are normalized
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Figure 4.1: Real-Coded Genetic Algorithm Flowchart

in selection phase but during evaluation, unnormalized values are used in the cost function.

Unnormalized values of the chromosomes can be selected as [9]

p = (phi − plo) pnorm+ plo (4.46)

where

phi = upper boundary for the variables in a chromosome

plo = lower boundary for the variables in a chromosome

pnorm = normalized values of the variables in a chromosome

Normalization of the variables (V) can be achieved by

Vnorm =
V −Vmin

Vmax−Vmin
,Vnorm∈ [0,1] (4.47)
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Next all the chromosomes are evaluated. In GA, the chromosomes with high fitnesses are

selected to reproduce offsprings for the next generation. Apairing algorithm is applied here

to select the chromosomes for crossover phase. For pairing process we preferred roulette

wheel weighting. Here the chromosomes have probabilities which are inversely proportional

with their costs, chromosome with lowest cost will have maximum probability and inversely

chromosome with highest cost will have minimum probabilitybecause of the fact that we

are looking for the minimum. A normalized cost is calculatedfor each chromosome by

subtracting the cost of best chromosome from eliminated group which satisfies that costs of

the chromosomes in our population are all negative. Then thecosts are normalized by the

following formulae

Pn =

∣
∣
∣
∣
∣

Cn

∑
Nkeep
m Cm

∣
∣
∣
∣
∣

(4.48)

By this pairing method selection probability of the chromosomes with low costs are greater

than ones with high costs. Therefore tendency towards the minimum cost becomes faster,

however if the costs of the chromosomes are close each other this method weights nearly

even.

Figure 4.2: Roulette Wheel like selection

Using roulette wheel selection all the chromosomes are selected by two pairs. Now they are

ready for the crossover operation to breed next generation.Crossover operation is achieved

as

ch1 = [ ch11 | ch12 ] ch2 = [ ch21 | ch22 ] (4.49)

o f f1 = [ o f f11 | o f f12 ] o f f2 = [ o f f21 | o f f22 ] (4.50)

Here,o f f states the new offsprings. A number between zero and one is selected,α ∈ [0,1].
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Separation in variables is achieved by selecting a random number between one andNvar. The

components of offsprings are defined as

o f f11 = α ch11 + (1−α)ch21

o f f12 =(1−α)ch12 + α ch22

o f f21 =(1−α)ch11 + α ch21

o f f22 = α ch12 + (1−α)ch22

Then we apply mutation operation. Sometimes GA may convergetoo quickly into one region

and if this region comprises local minimums algorithm generally ends in one of the local

minimums. In order to avoid this tendency, new regions are introduced to algorithm for

searching which is achieved by mutation in the variables. Though is shows difference due to

the type of the problem a mutation rate of % 5 - %20 are applicable. We preferred %10 as

mutation rate. Number of mutations is found byNMut = µRate×(Npop−1)×Nvar whereNMut

stands for the number of mutations andNRatedefines mutation rate. Easiest way of mutation

is achieved by adding a normally distributed random number to the variable selected for

mutation which can be shown as

pnew= pold + σN(0,1) (4.51)

whereσ shows standart deviation of the normal distribution N (0,1)is the standart normal

distribution with mean 0, and variance 1. Selection of the standart deviation plays an im-

portant role here because of the real values that stay between zero and one. Selecting a big

deviation number just pushes the selected values to boundaries.

At this phase the chromosomes that will pass to next generation will be selected. Due to the

elitism the optimum chromosome with minimum cost is not included for selection. Hence

Npop− 3 chromosomes will be keep for the next generation. One free space will be used

for the elitist chromosome and other two spaces will be the boundary chromosomes which

will be obtained after applying boundary mutation. Boundary mutation will be applied to

two randomly selected chromosomes. Generally mutating %40of a chromosome will be

enough. Selecting a random number between zero and one, if the random number is smaller

than 0.5 than selected genes will be mutated to lower boundary otherwise they will be made

equal to upper boundary of each gene.

Algorithm will run until the desired convergence rate is reached. Analyzing the convergence

rate of GA with Markov chains, studies showed that large population size and low mutation

rate leads to solution more efficiently [9]. Alternative ways to stop the algorithm if it did not

converged can be stated as
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• If the best chromosome of GA does not change aftern iterations then stop. Algorithm

found a solution or it stucked in a local minimum.

• If the standart deviation and mean of the population’s costreached a level then stop

the algorithm because the chromosomes will no longer change.

• Algorithm may found the correct answer, check whether the solution is compared with

the best chromosome not others.

• If algorithm does not stop for one of the reasons above, thenlimit the number of

iterations.

After a number iterations if the algorithm does not convergeto a good solution changing the

population size and mutation rate may remedy the problem.

4.3.1 Parameter Retrieval via Genetic Algorithm

In parameter estimation via GA we used a black box which is based on measurement data

[21]. Applying a sequence of input to a unknown system we obtained an output. By the

measurements from output we solved a back problem. All the simulations were generated in

Simulink.

Figure 4.3: Parameter Estimation Procedure

We started parameter estimation process first by constructing cost function. Since our math-

ematical model is in form

M ẋ = A x+B u+v (4.52)

Better evaluation of the model can be achieved by writing ourmodel as

ẋ = M−1 A x+M−1 B u+v (4.53)
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wherev denotes noise. Since our goal is to minimize the error, we candefine our cost as

Cost=‖ ẋ−M−1 A x+M−1 B u‖2 (4.54)

Hence running GA with our measurements, the following solutions for steering and depth

damping hydrodynamic coefficients are obtained.

Table 4.3: Steering Parameters found by Genetic Algorithm (After 192 Steps)

Parameters Initial Value Estimated Value Absolute Error Percent Error

Yv -0.05100 -0.05102 0.00002 % 0.039

Yr 0.03000 0.02203 0.00797 %26.566

Nv -0.00740 -0.00739 0.00001 % 0.135

Nr -0.01600 -0.01798 0.00198 %12.375

Yv̇ -0.03330 -0.02853 0.00477 %14.324

Yṙ -0.01380 -0.01845 0.00465 %33.695

Nv̇ 0.01380 0.01233 0.00147 %10.652

Nṙ -0.00920 -0.00948 0.00028 % 3.043

4.4 Summary

In this chapter, the goal was to estimate the hydrodynamic coefficients from system measure-

ments. We tried two different methods. First we applied linear sequential estimation which

is a recursive parameter estimation method. This method calculates a new update for the

parameter vector each time new data comes in. Computation time has to be constant for each

parameter calculation therefore it is easily applicable for real time applications. Basic idea

of this method is to calculate the new parameter estimate at timek by adding some correction

vector to previous parameter estimate [21].

Next we used genetic algorithms for parameter estimation. Because of the system and mea-

surement noises, output of the system does not directly giveinformation about the structure

of the system. Therefore we tried to estimate the system by analyzing measurements such

that, minimizing the errors would give us maximum information. Solution of the parameter
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Table 4.4: Depth Parameters found by Genetic Algorithm (After 513 Steps)

Parameters Initial Value Estimated Value Absolute Error Percent Error

Zw -0.30000 -0.30027 0.00027 % 0.09

Zq -0.14000 0.16066 0.02066 %14.757

Mw -0.00290 -0.00292 0.00002 % 0.689

Mq -0.01600 -0.01669 0.00069 % 4.312

Zẇ -0.03330 -0.03148 0.00178 % 5.351

Zq̇ -0.01380 -0.01340 0.00040 % 2.898

Mẇ -0.01380 0.01418 0.00038 % 2.753

Mq̇ -0.00463 -0.00448 0.00015 % 3.239

estimation problem with GA ended with satisfying results, where estimation errors of some

of the parameters are far beyond from errors found with linear sequential estimation. The

success of GA comes from the fact that it is an optimization search method which directly

concentrates on the solution for our case.

But when the applicabilities of both methods are considered, using linear sequential estima-

tion for online studies and GA for offline estimation seems tobe more logical. LSE runs in

a short time when compared with GA therefore that makes it preferable for online estima-

tion but because of its unsatisfactory results using GA for offline estimation will give good

results.
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CHAPTER 5

GUIDANCE, PATH PLANNING AND

OBSTACLE AVOIDANCE

5.1 Introduction

In this chapter we described guidance and obstacle avoidance with path planning. Section 5.2

gives information about path planning and how to keep our underwater vehicle far from

obstacles while not moving away from goal point. For path planning we preferred to solve

online problem which seems to be more applicable for real time situations. We assumed

that at the start of the operation, no information about the locations of the obstacles are

available. As our vehicle advances towards the goal point, obstacles start to give echo that is

when the information about obstacles are obtained. Obstacles are modeled using constructive

solid geometry and path planning as an optimization problemis solved both with sequential

quadratic programming (SQP) and Fletcher-Reeves methods.Solutions about algorithms are

expressed within graphs at the end of the section.

In Section 5.3, information about guidance methods in literature is given. Then, as a sim-

ple practical approach line of sight guidance method is described, which is the most applied

guidance algorithm in underwater environment. Generatingsome random numbers, effi-

ciency of our Simulink guidance model is tested. Solutions are presented at the end of the

section.
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5.2 Path Planning and Obstacle Avoidance

Path planning is an essential requirement in different conditions especially in military op-

erations for underwater vehicles. When time and energy comeforth as important issues,

path planning becomes an indispensable method in order to consume less energy because

of the limited battery capacity. Selecting the environmentas two dimensional space brings

an important advantage where in 3D, necessity to define the position and attitude informa-

tion increases the number of the variables hence problem becomes more complex for online

solving.

For path planning we assumed that the problem will be online obstacle avoidance where

safety of underwater vehicle is the first priority in our condition. Goal is to reach the global

minimum point and avoiding from local minimums. In order to achieve a successful opera-

tion, space free from obstacles is considered as a set of inequalities for nonlinear program-

ming problem [31]. Our study was based on the potential field theory where the vehicle is

represented as a point under the influence of an artificial field and area around the obstacles

show collision region. Therefore the potential function will be the sum of effects that will

push the vehicle from the obstacles and pull it towards to thegoal point. Due to the fact that

potential field approach can not avoid the vehicle from localminimums, combining the con-

structive solid geometry (CSG) with it local minimums can beavoided. Detailed information

about CSG can be found in [6].

Three possibilities exist in object defining procedure for CSG. A solidS defined in 3D Eu-

clidian space, set of its interior points are shown byI , points on the boundary are denoted by

B and points that are out of boundary are represented withT with bringing the fact

I ∪B∪T = E3 (5.1)

A non-negative continuous functionf (c) defines a solid inE3 where intersection and union

operations ofn objects can be defined respectively as

f I (c) = max( f1(c), f2(c), . . . , fn(c)) (5.2)

and union can be defined as

fU (c) = min( f1(c), f2(c), . . . , fn(c)) (5.3)

Assuming the operation condition a cluttered area we modeled our obstacles as circles with

different diameters in 2D. A circle in CSG can be modeled as

(x−a)2 +(y−b)2 = R2 (5.4)
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whereRdenotes the diameter of the circle anda,b are distances from main axes. Hence our

free space becomes

R2− (x−a)2− (y−b)2 ≤ 0 (5.5)

In calculations for the optimum path, SQP (Sequential Quadratic Programming) method is

used. General properties of SQP can be denoted as

• It is one of the most widely used algorithms for nonlinear constrained optimization.

• The Karush-Kuhn-Tucker (KKT) conditions are enforced in an iterative manner.

• An approximate Quadratic Programming sub-problem is solved at each major iteration

(The Quadratic Programming problem solved at each iteration of SQP is an approxi-

mation of the original problem with linear constraints and quadratic objective).

• The solution to the QP problem gives a search direction.

• Using the search direction a line search is carried out.

• At each major iteration an approximation of the Hessian is updated using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method.

The algorithm that we applied for solving the problem and detailed information can be found

in [16].

In order to test the efficiency of the algorithm we checked if it is capable of passing through

the narrow the gaps and analyzed that algorithm can convergethe goal point successfully in

such conditions. At this test the objective function is selected as

f (x,y) = (x−4)2 +(y−4)2 (5.6)

and the obstacles are modeled according to CSG as

x2 +y2−8.988≤ 0 (5.7)

x2 +(y−4)2−1≤ 0 (5.8)

x2 +(y+4)2−1≤ 0 (5.9)

(x−4)2 +y2−1≤ 0 (5.10)

(x+4)2 +y2−1≤ 0 (5.11)

Solution for this case is shown in Figure (5.1).
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Figure 5.1: Algorithm Passing Through Narrow Gaps

We tried the algorithm with different starting points, in order to set the most difficult sce-

nario we selected the goal point as[4,4] and starting point[−7,−8]. Then we realized that

algorithm converged to local minimum and stuck at that pointwith the following obstacle

mapping.

x2 +y2−1≤ 0 (5.12)

x2 +(y−4)2−1≤ 0 (5.13)

x2 +(y+4)2−9≤ 0 (5.14)

(x−4)2 +y2−1≤ 0 (5.15)

(x+4)2 +y2−9≤ 0 (5.16)

Solution for that mapping is shown in Figure (5.2). Here solution leads us to the local

minimum.

After changing the start point and shift it from the region, where converging chance to local

minimum is high, algorithm managed to reach the goal point. Vehicle path, reaching the goal

point is shown in Figure (5.3).
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Figure 5.2: Converging Algorithm to Local Minimum

Figure 5.3: Converging Algorithm to Goal Point
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In order to enhance the algorithm, using the same obstacles we added intersection of obsta-

cles as a new constraint to the system therefore algorithm managed to avoid from obstacles

without sticking in local minimum. Algorithm avoiding fromthe local minimum is shown in

Figure (5.4) and Figure (5.5).

Figure 5.4: Solution Avoiding The Local Minimum
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Figure 5.5: Solution Reaching The Goal Point

This path planning problem is also solved using Fletcher-Reeves method with random gener-

ated obstacles. In this solution the goal is to increase the distance between obstacles and the

vehicle in order to avoid endangering the operation. Here a weighting cost function is defined

which fulfills increasing the cost when the vehicle approaches obstacles and decreases the

cost when the vehicle goes away from obstacles. Since the target is reaching the goal point,

while avoiding from obstacles, a weighting function is usedwhich balances the efficiency of

the algorithm in reaching the goal point and keeping distance from obstacles.

The cost function with five constraints, used in calculations is stated below.
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f (x,y) = 0.4(x−4)2 +0.4(y−4)2 +0.6(
1

√

(x−xobs1)
2 +(y−yobs1)

2−Robs1

+
1

√

(x−xobs2)
2 +(y−yobs2)

2−Robs2

+
1

√

(x−xobs3)
2 +(y−yobs3)

2−Robs3

+
1

√

(x−xobs4)
2 +(y−yobs4)

2−Robs4

+
1

√

(x−xobs5)
2 +(y−yobs5)

2−Robs5

)

(5.17)

The path through the random generated obstacles is shown in Figure (5.6).

Figure 5.6: Algorithm Through Random Obstacles

When compared with Fletcher-Reeves method, it is seen that the BFGS method solves the

problem in less steps therefore in a shorter time.
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5.3 Guidance

Autonomy for an underwater vehicle requires the design of a proper guidance system. For

a safe operation, vehicle needs a reliable Navigation, Guidance and Control (NGC) system,

where guidance is the dominant element. With the success of NGC systems after 50s in

aerospace technology, underwater navigation systems found an impetus by simulating sys-

tems designed for missiles and rockets.

NGC systems on-board of an underwater vehicles work in a harmony with other components.

Navigation system provides the information of the target, then guidance system evaluates

this information and calculates the heading angle which becomes the input for the controller.

Controller keeps the vehicle on the heading angle that comesfrom guidance system. For a

remotely operated vehicle, operator plays the mission of a guidance system and sends the

heading angles directly to the controller [30]. When the definition of the guidance is defined

as determining the course, attitude and speed of the vehicle, its main duty can be denoted

as deciding the best trajectory to be followed by the vehiclebased on target location and

vehicle capability. Since sensing, information processing and correction are the main tasks

that enhance the efficiency of a guidance system, the position of the target with respect to the

vehicle and environmental conditions directly effects theaccuracy. Though the capability of

a guidance system can be measured with its computation and sensing power, its efficiency

will be limited directly with the vehicle dynamics and actuator limitations.

Generally in literature the following guidance methods arepreferred most of which are

adapted from advances from aerospace.

• Waypoint Guidance by Line of Sight (LOS)

• Lyapunov Based Guidance

• Vision Based Guidance

• Proportional Navigation Guidance

• Guidance by Chemical Signals

• Guidance via Magnetometers for Cable Tracking

• Electromagnetic Guidance

Our vehicle operating near sea bottom will not have the opportunity of knowing its location

precisely. She will get the position information of the surface vehicle and will try to correct
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this value by acoustic transducers and sonar. Since the bottom vehicle will conceive the

depth information with bearing and distance from the surface vehicle, she will be capable of

estimating her own position by these information. Though itis more logical to use guidance

system for the bottom vehicle, for our case it will be used on surface vehicle because of

the precise position information that she will obtain fromNavstar GPS(Global Positioning

System). With the improvements in last decade, accuracy of the GPS system enhanced

significantly. Error of a normal GPS system between 10m to 100m is decreased to 5 cm

with carrier-phase differential GPS (CDGPS).

As mentioned in Chapter 3 output of our steering and depth controllers are degrees where

the operator introduces to the system as the reference. But in real time operations especially

in pipeline tracking and mine counter measure operations, operator does not interest how

the system turns or dives. In those circumstances the path, vehicle follows or the points,

that vehicle has to pass through come into prominence. In order to lift the responsibility of

achieving such tasks from operator, a guidance system has tobe designed for underwater

vehicles. In those systems it is assumed that the vehicle canadvance with constant forward

speed. Desired routes generally are represented by waypoints. Adding the environmental

conditions wind, current and wave informations, efficiencycan be increased.

In order to define the position of the vehicle first the kinematics must be described. Since the

operation is on 2D it is assumed thatθ = φ = 0. From the general kinematics equations we

have the following equations.

ẋ = ucosψ − v sinψ (5.18)

ẏ = usinψ + v cosψ (5.19)

ψ̇ = r (5.20)

Since the above equations are nonlinear in the states, by applying a linear approximation

that the earth-fixed coordinate system can be rotated such that desired heading isψd = 0 and

moving the origin of the coordinate system to the initial point, our heading angleψ will be

small where we can make the assumption,

sinψ ≈ ψ ; cosψ ≈ 1 (5.21)

In the linearization process perturbing equation (5.18) yields

ẋ0 + ∆ẋ= (u0 + ∆u)cos(ψ0 + ∆ψ)− (v0+ ∆v)sin(ψ0 + ∆ψ) (5.22)

87



Figure 5.7: Coordinate system for Guidance

Figure 5.8: Guidance and Control System

Trigonometric functions stated above can be extended as

cos(ψ0 + ∆ψ) = cosψ0 cos∆ψ − sinψ0 sin∆ψ (5.23)

sin(ψ0 + ∆ψ) = sinψ0 cos∆ψ + sin∆ψ cosψ0 (5.24)
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Using the simplifications stated in (5.21) trigonometric equations simplify to

cos(ψ0 + ∆ψ)≈ cosψ0−∆ψsinψ0 (5.25)

sin(ψ0 + ∆ψ)≈ sinψ0 + ∆ψcosψ0 (5.26)

Substituting initial condition, ˙x0 = u0 cosψ0 − v0 sinψ0 in the left hand side of (5.22) and

simplified trigonometric functions in the right hand side yields

u0 cosψ0 − v0 sinψ0 + ∆ẋ = u0 cosψ0 − (u0 sinψ0)∆ψ + ∆ucosψ0 − v0 sinψ0

− (v0 cosψ0)∆ψ −∆v sinψ0 (5.27)

∆ẋ = ∆ucosψ0 − ∆v sinψ0− (u0 sinψ0)∆ψ − (v0 cosψ0)∆ψ (5.28)

As a fact of linearization getting rid of∆ in (5.28) gives

ẋ = ucosψ0 − v sinψ0− (u0 sinψ0)∆ψ − (v0 cosψ0)∆ψ (5.29)

Applying the same procedure to perturby in Earth-fixed frame we get the following equa-

tions.

ẏ = usinψ + v cosψ (5.30)

then perturbation yields

ẏ0 + ∆ẏ= (u0 + ∆u)sin(ψ0 + ∆ψ) + (v0 + ∆v)cos(ψ0 + ∆ψ) (5.31)

Substituting initial conditions and after elimination gives

∆ẏ = ∆usinψ0 + ∆v cosψ0 +(u0 cosψ0)∆ψ − (v0 sinψ0)∆ψ) (5.32)

which is equal to

ẏ = usinψ0 + v cosψ0 + (u0 cosψ0)∆ψ − (v0 sinψ0)∆ψ (5.33)

5.3.1 Line of Sight (LOS) Guidance

When an operation path is defined with respect to the waypoints, line of sight guidance is

an efficient method. Here the desired waypoints[xd(k),yd(k)] are entered to the system and

the vehicle is guided with the goal of bringing the vehicle near the points. Guidance system

generates an angle based output to the input for the controller which is defined as

ψd(t) = atan

(
yd(t) − y(t)
xd(t) − x(t)

)

(5.34)
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Because of the nature of tangent, quadrant of the angle must be taken into consideration in

the calculations. To check the proximity of vehicle to the waypoints a measure of error must

be defined. When the vehicle enters in the defined proximity ofthe waypoint, new goal must

be selected as the next waypoint. Here measure of error can bedefined as
√

(xd(t) − x(t))2 +(yd(t) − y(t))2 ≤ ẽ (5.35)

Though it may be defined by the importance of the mission, in most cases measure of guid-

ance error ˜e is taken to be not more than two vehicle lengths, ˜e≤ 2L.

Figure 5.9: Line of Sight Guidance

We used Simulink for modeling the guidance system. In LOS guidance, a series of points

which represent the waypoints are generated then these points are introduced to guidance

system. Guidance system calculates the distance between these points and generates a steer-

ing angle for the controller. Controller imports that steering angle and commands the system

to get closer to the points consecutively. After each steer angle update to the controller,

guidance system checks whether the proximity condition is satisfied. When the system en-

ters in the measure of the proximity circle, guidance systemrefers to the next waypoint and

procedure goes on till to the last waypoint. Simulink diagram of our model is shown in

Appendix D.

The evaluation of our algorithm is achieved by first selecting 12 random points then contin-
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Figure 5.10: Waypoints

ues with calculating errors and steering angles between each consecutive waypoints. These

errors and steering angles are imposed to the simulink model. Guidance unit checks the prox-

imity of errors with respect to the defined value, which is twotimes length of our vehicle in

our case. Instead of checking for the entrance of vehicle to the acceptance circle, we probed

errors till they show increase attitude after decreasing. We applied the guidance correcting

steering angle to the vehicle till error decreases. When theerror starts to increase guidance

systems directs to the next point to the controller and system starts to turn to the new steering

angle. With the above logic, the path that our guidance system followed is shown in Fig-

ure (5.11). Some waypoints are not covered because of the early commands that guidance

system injects to the controller.
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Figure 5.11: Path Generated by Guidance System

5.3.2 Lyapunov Based Guidance

This method is directly based on Lyapunov theory which states that

If,

1. V(x) > 0 (positive definite)

2. V̇(x) < 0 (negative definite)

3. V(x)−→ ∞ as‖x‖ −→ ∞ (radially unbounded) then the equilibrium pointx∗ satisfying

f (x∗) = 0 isglobally asymptotic stable, which also means that‖x‖ −→ 0 ast −→ ∞.

A new law is generated where the vehicle is planned to move from a start point to a goal

point with desired heading. A Lyapunov function is selecteddefining the distance between

two points and by selecting appropriate velocities to Lyapunov function, the Lyapunov theory

is satisfied. The function simulating the error converges tozero as time increases.
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Figure 5.12: Steer Angles by Guidance and Response of Controller

5.3.3 Vision Based Guidance

Generally vision based guidance is used for cable tracking and docking problems. This

method is applied with different equipments. For docking problems a beacon has been used.

Beacon is used as light emitter which is detected by the photodetectors on the underwater

vehicle. After acquisition of light, detectors feed guidance system and heading angle is

generated. This is similar with procedure used in heat seeking missiles [25]. A high sun spot

for the cameras becomes a huge disadvantage and source of error for shallow waters.

Another manner used in vision based guidance is achieved by evaluating images that are

taken from two different cameras [4]. Images that are taken from different cameras are

processed by correlating the features and direction to eachfeature and range is determined.

Then the pixel disparity of the images are found by calibration and the direction and range to

each feature is filled up to the guidance system to determine the next step. Also the similar

process with one camera is developed [2].

Also a laser based light tracker system is developed for guidance where the light is processed

with respect to the center of screen. If it is not detected at first glance, all the pixels are
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scanned row by row. In situation of detection, its angle and elevation is evaluated and send

to the vision processor. More than one light source makes thesystem invalid.

5.3.4 Proportional Navigation Guidance (PNG)

Basically generated for missiles, PNG method is also applicable to underwater vehicles. This

method is useful especially for docking purposes because for stationary targets, method is

similar to LOS guidance. It is modeled as

Uc = N Vc λ (5.36)

whereN is tuning parameter,Vc is closing velocity,λ is LOS angle andUc is the command

input [30].

5.3.5 Guidance by Chemical Signals

This guidance method is used for the vehicles that mimics seacreatures and these systems are

called biomimics. One of the vehicles for this purpose mimics a lobster and tries to identify

the location of a chemical discharge by sensing it with its conductivity sensors.

5.3.6 Guidance via Magnetometers for Cable Tracking

As it is defined with its name, this method’s main goal is to efficiently track cables for under-

water vehicles. Though for unburied cables vision based guidance can be efficient, in case

of buried cables to protect them from fishery and anchors, performance of visual guidance

decreases seriously. Hence to move out the disadvantages ofother guidance methods, mag-

netometers are used to sense the cables and information fromsensors are fed to the guidance

system to track these cables successfully.

5.3.7 Electromagnetic Guidance

This method is comprised of magnetic coils on the dock and on-board of vehicle. When the

environmental conditions are harsh with a high turbidity and low light, most of the guidance

methods become inapplicable. Electromagnetic guidance rectifies this problem by running

in every condition from shallow waters to very depth of oceans. It is a very accurate system

but its range is limited with a distance of 25m-30m [17].
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CHAPTER 6

CONCLUSION

6.1 Summary of the Results

After the improvements in robotics many different underwater vehicles were built in last

decades. Requirements especially in military environments accelerates the underwater tech-

nology towards autonomous underwater vehicles. Since the interference from operator is

minimum in autonomous vehicles, importance of the precise controllers and guidance sys-

tems plays an important role. Therefore we focused on the different controllers and probed

for the efficient one. Because of determining the hydrodynamic coefficients during pool tests

becomes a wearing process, we tried to estimate some of the coefficients from our measure-

ments and applied parameter estimation techniques. Again when autonomy for a vehicle is

considered, obstacle avoidance and path planning is an inevitable component for a success-

ful navigation, therefore utilizing the advantages of constructive solid geometry we used an

online path planning algorithm. Last of all we generated a guidance system based on line of

sight principle.

Since the conclusions of the studies are given at the end of each chapter, an extra effort is not

taken to show them again.

6.2 Discussion and Future Work

Considering the richness of the underwater research environment, still there exists many

unexplored areas. First of all since ULISAR underwater vehicle is in construction phase,

simulations achieved in this study will be applied to our vehicle as soon as she will be ready
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for sea deployment.

On the other hand for an efficient navigation, a design for optimum thrust for different mo-

tions should be designed for our vehicle. Since we have two thrusters for each motion in

different planes, a solution is to be found in order to use batteries optimum because when

the motion is left to operator’s initiative there exist infinitely many possibilities to execute a

command.

Also for autonomy of the vehicle before mission planning, assuming that boundaries of the

operation area are totally known a path that will cover all the operation area can be generated

based on sonar and other sensors.
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APPENDIX A

NONLINEAR EQUATIONS OFMOTION

Nonlinear equations of motion for our vehicle:

τX = mu̇−mvr+mωq+mzG(pr + q̇)+Xu̇u̇+Xω̇ (ω̇ +uq)+Xq̇q̇+Zω̇ωq

+Zq̇q
2 +Xv̇v̇+Xṗṗ+Xṙ ṙ −Yv̇vr−Yṗrp−Yṙr

2−Xv̇ur−Yω̇ωr

+Yω̇vq+Zq̇pq− (Yq̇−Zṙ )qr

−Xuu−X|u|u|u|u+Xvv+Xωω +Xpp+Xqq+Xrr +(W−B)sθ

τY = mv̇−mω p+mur+mzG(qr− ṗ)+Xv̇u̇+Yω̇ẇ+Yq̇q̇+Yv̇v̇

+Yṗṗ+Yṙ ṙ +Xv̇vr−Yω̇vp+Xrr
2 +(Xṗ−Zṙ) rp−Zṗp2−Xω̇ (up−ωr)

+Xu̇ur−Zω̇ω p−Zq̇pq+Xq̇qr

−Yvv−Y|v|v|v|v+Yuu+Yωω +Ypp+Yqq+Yr r − (W−B)cθsφ

τZ = mω̇ −muq+mvp−mzG
(
p2 +q2)+Xω̇ (u̇−ωq)+Zω̇ω̇ +Zq̇q̇−Xu̇uq

−Xq̇q
2 +Yω̇ v̇+Zṗṗ+Zṙ ṙ +Yv̇vp+Yṙ rp+Yṗp2 +Xv̇up+Yω̇ ω p

−Xv̇vq− (Xṗ−Yq̇) pq−Xṙqr

−Zww−Z|ω |ω|ω |ω +Zuu+Zvv+Zpp+Zqq+Zrr − (W−B)cθcφ

τK = Ix ṗ+(Iz− Iy)qr− (ṙ + pq) Ixz+
(
r2−q2) Iyz+(pr− q̇) Ixy−mzG(v̇−ω p+ur)

+Xṗu̇+Zṗω̇ +Kq̇q̇−Xv̇ωu+Xṙuq−Yω̇ω2− (Yq̇−Zṙ)ωq+Mṙq
2 (A.1)

+Yṗv̇+Kṗṗ+Kṙ ṙ +Yω̇v2− (Yq̇−Zṙ)vr +Zṗvp−Mṙr
2−Kq̇rp+Xω̇uv

− (Yv̇−Zω̇)vω − (Yṙ +Zq̇)ωr −Yṗω p−Xq̇ur +(Yṙ +Zq̇)vq+Kṙ pq− (Mq̇−Nṙ)qr

−Kpp−K|p|p|p|p+Kuu+Kvv+Kωω +Kqq+Krr +(zGW)cθsφ

(A.2)
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τM = Iyq̇+(Ix− Iz) rp− (ṗ+qr) Ixy+
(
p2− r2) Izx+(qp− ṙ) Iyz−mzG(u̇−vr + ωq)

+Xq̇(u̇+ ωq)+Zq̇(ω̇ −uq)+Mq̇q̇−Xω̇
(
u2−ω2)− (Zω̇ −Xu̇)ωu+Yq̇u̇

+Kq̇ṗ+Mṙ ṙ +Yṗur−Yṙvp−Kṙ
(
p2− r2)+(Kṗ−Nṙ) rp−Yω̇uv+Xω̇vω

− (Xṙ +Zṗ) (up−ωr)+ (Xṗ−Zṙ)(ω p+ur)−Mṙ pq+Kq̇qr

+Mqq+M|q|q|q|q+Muu+Mvv+Mωω +Mpp+Mrr (zGW)sθ

τN = Izṙ +(Iy− Iz) pq− (q̇+ rp) Iyz+
(
q2− p2) Ixy+(rp− ṗ) Izx+Xṙ u̇+Zṙω̇

+Mṙ q̇+Xv̇u
2 +Yω̇ωu− (Xṗ−Yq̇)uq−Zq̇ωq−Kq̇q

2 +Yṙ v̇+Kṙ ṗ

+Nṙ ṙ −Xv̇v
2−Xṙvr− (Xṗ−Yq̇)vp+Mṙrp+Kq̇p2− (Xu̇−Yv̇)uv−Xω̇vω

+(Xq̇+Yṗ)up+Yṙur +Zq̇ω p− (Xq̇ +Yṗ)vq− (Kṗ−Mq̇) pq−Kṙqr

+Nrr +N|r |r |r|r +Nuu+Nvv+Nωω +Npp+Nqq
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APPENDIX B

REYNOLDS NUMBER

In the middle of the head of our vehicle stands a point called stagnation point where the pres-

sure is in its highest value compared to the other points of vehicle and the velocity of water

is zero at this point during navigation. Here we see a laminarflow till to the occurence of

seperation where the turbulent flow starts. From the figure itis seen that the Reynolds num-

ber between 103 and 3×105 denotes the laminar flow, after 3×105 flow becomes turbulent

and increase of momentum avoids seperation therefore the drag decreases immediately [22].

102



Figure B.1: The drag coefficient for a sphere [22].
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APPENDIX C

SIMULINK PID MODELS
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Figure C.1: Simulink PID Speed Model
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Figure C.2: Simulink PID Steering Model
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Figure C.3: Simulink PID Depth Model
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APPENDIX D

GUIDANCE MODEL
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Figure D.1: Simulink Guidance Model
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