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ABSTRACT

AUTOPILOT DESIGN AND GUIDANCE CONTROL OF ULISAR UUV
(UNMANNED UNDERWATER VEHICLE)

Isiyel, Kadir
M.Sc., Department of Electrical and Electronics Engirnegri
Supervisor: Prof. Dr. M. Kemal Leblebidjtu

September 2007, 109 pages

Unmanned Underwater Vehicles (UUV) in open-seas are higbhfinear with system mo-
tions. Because of the complex interaction of the body withirenment it is difficult to
control them efficiently. Linearization is applied to systeé order to design controllers de-
veloped for linear systems. To overcome the effects of siuces, a mathematical model
which will compensate all disturbances and effects of liizadion is required. In this study
first a mathematical model is formed wherein the linear amdinear hydrodynamic coeffi-
cients are calculated with strip theory.

After the basic mathematical model is developed, it is sifieol and decoupled into speed,
steering and diving subsystems. Consequently PID (PriopaitDerivative Integral), SMC
(Sliding Mode Control) and LQR (Linear Quadratic Regulfto®G (Linear Quadratic Gaus-
sian) control methods can be applied on each subsystem igndamtrollers. Some of the
system parameters can be estimated from state vector dagd ba measurements using the
methods of linear sequential estimation and genetic dlgns. As for the final part of the
study, an online obstacle avoidance algorithm which avtadal optimums using Boolean
operators is presented. In addition a simple guidance ighgoiis suggested for waypoint
navigation.

Due to the fact that ULISAR UUV is still on construction phasee were unable to test



our algorithms. But in the near future, we plan to study adiséh algorithms on the UUV
ULISAR.

Keywords: Mathematical Modeling, Control, Parameterifiation, Guidance



Oz

ULISAR (COK MAKSATLI ULUSAL INSANSIZ SU ALTI ARACI)
INSANSIZ SU ALTI ARACININ OTOPILOT TASARIMI VE GUDUM
KONTROLU

Isiyel, Kadir
Yiksek Lisans, Elektrik ve Elektronik Miihend&iiBolum{
Tez Yoneticisi: Prof. Dr. M. Kemal Leblebicgiu

Eylal 2007, 109 sayfa

Acik deniz kosullarinda ligasimli hareketleriyle insansiz su alti araclari yiuksekiyede
dogrusal olmayan 6zellik gosterirler. Arac govdesinin ¢evie karmasik etkilesimlerde
bulunmasi, aracin etkin olarak denetimini olduk¢a giigiesBu noktada dgrusal sistemler
icin tasarlanan denetim yontemlerinin kullanilabilmesnisistem dgrusallastinlir. Denetim
acisindan, cesitli bozucu etkilerin Uistesinden geledilve sistem Uizerinde denetingsaya-
bilmek i¢in bu etkileri karsilayabilecek bir matematik de gerekmektedir. Bu ¢alismada
oncelikle bir matematiksel model olusturulmus ve modejgér alan dgrusal ve dgrusal
olmayan hidrodinamik katsayilar serit teoremi ile heaaptistir.

Matematiksel modelin elde edilmesinden sonra sistemt,sddais ve dalma alt sistemler-
ine ayristiriimis ve sisteme sirasi ile PID, SMC ve LQRE&E@enetim yontemleri uygulan-

mistir. Daha sonra katsayi kestirimi yontemi olaragmdsal ardisik kestirim ve genetik al-
goritma ydntemleri uygulanmistir. Calismanin bir pargalarak, cevrimici seyirde kullanil-

mak Uzere, Bool algoritmalarini kullanarak yerel minimuaktalarindan kaginan engelden
sakinma algoritmalari denenmistir. Son olarak, araclinléen noktalari takip edebilmesi

icin temel bir glidiim algoritmasi olusturulmustur.

ULISAR projesi halihazirda tiretim asamasinda glshdan dolayi olusturulan algoritmalar

Vi



gercek bir sistemde denenememistir. Ancak yakin geledakttezde olusturulan tim algo-
ritmalarin gercek sistem Uzerinde denenmesi planlanrdakta

Anahtar Kelimeler: Matematiksel Modelleme, Denetim, KgisKestirimi, Gudim
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Introduction to Underwater Vehicles

In this thesis, our goal is to simulate the control and guigaprocedure of ULISAR un-
manned underwater vehicle.

In this chapter a brief information about underwater vedsckheir applications and impor-
tance and lastly our objectives to be achieved for this shexs mentioned.

Underwater vehicles are classified in two main groups as standerwater vehicles (MUVS)
and unmanned underwater vehicles (UUVs). Today, becaukmglofoperational costs, op-
erator weariness and the painful experiences in historigtwgave rise to the improvements
in the UUVs, employment of the MUVs are highly limited. Fromerational aspects, UUVs
are grouped in two main categories as remotely operatedleeiROVS) and autonomous
underwater vehicles (AUVs). While ROVs give chance of iméstion to the operator in any
phase of operation, with their highly operational costs tiair hulk values in case of lost,
in recent years they have been disfavored. Nowadays, oksearfully autonomous systems
increased and lessened the necessity of a human operattoe. 1890s, about 30 new AUVs
are built worldwide [37]. A self-contained, intelligent diself-decisive AUV is the goal for
the current underwater vehicle research .

ULISAR is a TUBITAK (Turkiye Bilimsel ve Teknolojik Arastma Kurumu) supported
project . Being a small UUV compared with their coevals, UARSwill be a novel ROV

vehicle. ROVs are small, efficient and tethered vehiclestiect underwater data and fulfill
given commands. Online communication with vehicle is agieby generally fiber optic
cable because of its variable huge bandwidths. Insteadlizing cables, a few disadvan-



tages of which can be stated as drag in water, risk of dispmeind reduction in speed,
ULISAR’s communication will be maintained via acousticKiavhich will be satisfied by
acoustic modems. Project will comprise two vehicles, ond¢hensea surface maintaining
the RF (Radio Frequency) communication with control ceatat the other one in the sea,
which will gather underwater information and achieve maiskt The surface vehicle will
relay the information it takes from bottom vehicle and vieszsa.

For many years, ROVs proved their efficiency in many situetibke underwater pipe in-
spections, rescuing goods from sunkens, oceanographaccdliéction and different mine
counter-measure operations.

Constructing an UUV is an exhaustive and time-consumingajbbre most of the tests are
executed in laboratory environment. Testing the parts ienenvironment is not always ap-
plicable and logical because of the risk of losing the vaeiaglquipments and most important
of all, risk of damage to the healths of project personnekréfore an effective and inexpen-
sive choice to be implemented for simulation of system fetsteSimulation with computer
aid is a practical and quick method of finding failures thayra confronted at sea. A good
working simulator needs an actual model of the system, whitiithen imitate the outputs
of the real system when the same inputs are applied. The deef§ of the system have to
be accurately found in order to simulate the system effilsienherwise simulation will fail
and unpredicted situations may occur at real system tes}s [3

In this study, we started the simulation first by forming thathematical model. We gener-
ated the model forming the kinematic and rigid-body dynamithen we found the linear
and nonlinear hydrodynamic coefficients by strip theory bodndary integral method as
stated in [8] and [22]. Forming a mathematical model, exjplgithe fact that our vehicle
is not a fast varying system, it is linearized around an dapuilm point. Linearized system
should be controlled more easily where most of the robustrabmethods are for linear
systems. First we started control procedure with desighRiig controller because of its
simplicity and applicability to the most of the linear sys® Then we tried SMC, trusting
the compensating success of it. Lastly we designed a ctertrgding LQR/LQG methods.
In last phase the benefit of separation principle is usedrevfiest a regulator and then an
observer is designed using Kalman Filter and they are p@theg to form a compensator
for the plant [29].

For the efficiency of the simulation, unknown parametersefrnodel are important there-
fore for a good simulation we should have to acquire corraetties of these parameters.
Therefore we applied two parameter estimation algorithwie.started with linear sequen-



tial estimation method and tried to estimate the coeffisiéimén we attempted to find them
by running a genetic algorithm.

Underwater vehicles in real time operations need obstadelance algorithms. Consider-
ing the needs, we worked on a problem such that, generatedvoatd avoid the vehicle to

stick in a local minimum, which may be a gap between two rockemn the vehicle can not
pass successfully. Using the Boolean algorithms, the lodalimum point is avoided [31].

Sometimes generated new path may be far from the optimunbpéathis is acceptable when
the safety conditions are prior to any other issue.

Last of all, our vehicle needs a guidance system where a vitygaidance system based on
line of sight is preferred. The details about the guidandebaigiven on Chapter 5.

1.2 Literature on Control and Guidance of UUVs

The main factors that make control process difficult can &gedtas: highly nonlinear, time-

varying dynamic behavior of the vehicle, uncertainties yaldodynamic coefficients, dis-

turbances by sea environment (especially high frequensgsvaear surface), unpredicted
underwater currents, for our case changes in the gravitypaagancy. Considering the dif-

ficulty to fine-tune the control gains during operations, il Wwe advantageous to have a
control system that will tune itself if the control perfornte decreases [37].

Different control techniques have been applied to undemathicles in recent years. Jalv-
ing used classical PID control methods for Norwegian DefeResearch Establishment-
AUV. He decoupled the system into three lightly interactiudpsystems and designed three
autopilots for steering, diving and speed control. The giesif the each controller was
based on PID techniques [12]. Yoerger and Slotine desigradidliag mode controller for
an underwater vehicle. In their study they neglected cecosgling terms and investigated
the uncertainties of the hydrodynamic coefficients [36]. all&hile, preferring SMC for
controlling their vehicle, Healey and Lienard were the ow® decoupled the system into
three subsystems first time. Each autopilot was again dedigaing SMC with exploiting
the advantage and ease of decoupled system [10]. Nakamdii@aaant urged a nonlinear
tracking control of an AUV pondering kinematic motion [3720]. They achieved the con-
trol by thinking the nonholonomic nature of the system withoonsidering the dynamics
of the system. Cristi, Papoulias and Healey designed a rallagptive SMC such that in
the presence of dynamical uncertainties, controllers darsato the changing dynamics and
operating conditions [23]. A hybrid adaptive controlleingsboth continuous and discrete



operations was mentioned by Tabaii et al [28].

In guidance of UUVs not so many studies have been performexileyl et al. worked on

the waypoint guidance by line of sight principle where thédgunce is accomplished by a
heading command to the vehicle’s steering system to apiprtae line of sight between

the present position of the vehicle and the waypoint to belea@ In missile guidance
this is related to “proportional navigation“ [10]. Cacciaa. introduced a PI- type task
functions which enables a Lyapunov-based guidance sysietnrhpensate the effects of
both unmodeled interactions between vehicle and envirobfbé

1.3 Organization

The organization of the thesis is as follows:

» Chapter 1 mentions what is planned to achieve with thissheesd some studies done
by other authors.

» Chapter 2 gives some mathematical formulation and tramsftions forming the math-
ematical model.

» Chapter 3 informs about the control methods used to coatmol/ehicle. Comparison
between the methods are also mentioned.

» Chapter 4 shows the efforts in estimating the linear hygnadhic coefficients. Linear
sequential estimation method and genetic algorithm arenéthods used for estima-
tion.

» Chapter 5 acquaints about guidance system for underweltéele and obstacle avoid-
ance method.

» Chapter 6 gives a summary of the obtained results in thd/sfthen a discussion and
possible future enhancements concluded in this the chapter



CHAPTER 2

MATHEMATICAL MODELING

2.1 Introduction

In this chapter the equations of motion for our vehicle wél gpenerated. First information
about the body-fixed reference frame, linear and angularciteds, inertial reference frame
positions and Euler rates will be given. Next, the vehicleeknatics which will be the
relation of body-fixed velocities with inertial frame pasiis will be shown. Then the rigid
body dynamics which is expanded from the Newton’s secondwdlrbe derived. Lastly
dynamics as the study of forces and moments of the movinghjéll be investigated.

ULISAR is a small and modular UUV which brings a novel appioé@ underwater oper-
ations. She is comprised of the equipments that will cartybagic underwater operations
successfully and fulfill the requirements of an underwatspéction. ULISAR will comprise
an imaging sonar, two B/W cameras, lights, an acoustic maderommunicate with sur-
face vehicle, acoustic transducers, pressure sensorQRBGtdck and video grabber as main
equipments. All power requirement will be satisfied by Liti-Polymer battery packs. Her
average speed is predicted to be about 1,5 knots. She wdldtabilizers and fins to enhance
the stability. Since she has no roll and sway control diyetttbse pars will aid in satisfying
passive roll control. Also in order to have passive roll 8igb center of gravity must be
below the center of buoyancy which will be performed by piacihe heavy parts near the
bottom of the vehicle. This method proved its success in nuliffgrent designs [24]. She
will be capable of diving to the depths of 100 meters but ferfilst tries 50 meters will be
a fair depth.

General parts and main components of ULISAR are shown inr&igui.
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Figure 2.1: ULISAR UUV and main parts

The design of an underwater vehicle guidance and contréémgsrequires knowledge of
an extensive field of disciplines. Some of these are vettkinematics and dynamics, hy-
drodynamics, navigation systems and lastly control thg8ly To able to design a high
performance control system it is obvious that a good mattieatanodel of the vehicle is
needed for both simulation and verification of the design.

First of all modeling of underwater vehicle is based on thelgtof statics and dynamics.
Statics is the analysis of the forces and moments on physysé&ms in static equilibrium,
while dynamics is concerned with the effects of forces omtia¢ion of objects.

The motion of underwater vehicles is studied in 6 degreeseefdom (DOF) where 6 inde-
pendent coordinates are necessary to determine the poaittborientation of a rigid body.
The first three coordinates and their time derivatives spoad to the position and trans-
lational motion along the x-, y-, and z- axes, whereas thela®ordinates and their time
derivatives are used to describe orientation and rotdtimadion. For underwater vehicles
these 6 degree of freedom are explained as:

-surge : motion in the x-direction



-sway : motion in the y-direction
-heave : motion in the z-direction
-roll : rotation about the x-axis
-pitch  : rotation about the y-axis
-yaw : rotation about the z-axis

Table 2.1: Notation used for marine vehicles

Motions & Forces & Linear & Positions &

DOF Rotations Moments| Angular Velocities| Euler Angles
1 Motions in the x-direction (surge X u X
2 Motions in the y-direction (sway) Y Y y
3 Motions in the z-direction (heave Z w z
4 Rotation in the x-axis (roll) K p (0]
5 Rotation in the y-axis (pitch) M q e
6 Rotation in the z-axis (yaw) N r 1)}

2.2 Kinematics

In this thesis we will use the following assumptions:

» Our vehicle is a rigid-body with a constant mass (Our vetscass will change

in time with proportional to the amount of water she will lat but this amount is

predicted to be small because of the slow velocity hencertfa@ss change can be

assumed to negligible.)

* Vehicle is not affected by the surface high frequency wdegeration condition is

assumed to be deep waters).

» The effect of the rotating world to the accelerations of impon the surface of the

Earth is negligible (Indeed for slow vehicles this is a piadtand tolerable assump-

tion) [8].



» Hydrodynamic coefficients are not variable (Though stittdd 3] nonlinear damping
terms do not affect maneuverability of the underwater Pebjochanges in the speed
and accelerations will differ the hydrodynamic coefficeenBut since these coeffi-
cients are very small their changes will be much smaller whieey can be assumed
to negligible).

* We have the port-starboard (xz-plane) and bottom-top{ape) symmetry.(Our heavy
main parts are located on the middle of the xz-plane axisénemchave gained auto-
matically a symmetry).

2.2.1 Coordinate Frames

Defining the motions of the underwater vehicles in 6-DOF, t@ordinate reference frames
are used. The moving coordinate fragYpZo is fixed to the vehicle and called the "Body-
fixed reference frame" and other one according to the groeardh() is called "Earth-fixed
reference frame". Selecting the origin of the body-fixedrdowte frame as theenter of
gravity (CG)is a logical solution.

For underwater vehicles, body ax¥s Yo andZy coincide with the principal axes of inertia
and are usually defined as [8]:

» Xp - longitudinal axis (directed from aft to fore)
* Yy - transverse axis (directed to starboard)

» Zp - normal axis (directed from top to bottom)

Based on the The Society of Naval Architects and Marine Eragm (SNAME) notation,
general motion of a vehicle in 6-DOF can be shown by the belegtors [8],

.
n=I[ni,n3] ; n=xy7; n2=[@,0,y]" (2.1)
V= [VJT7 V;]T ; V1= [U,V, O‘)]T’ Vo = [p> q>r]T (22)
r=[d,3]"; n=[XY,2; n=[KMNT (23

Above n denotes the position and orientation vector with coorégadh the earth-fixed
frame, v denotes the linear and angular velocity vector with coatis in the body-fixed



coordinate frame and describes the forces and moments acting on the vehicle incithe-
fixed frame. In a guidance and control system, orientatiarsiglly represented by means
of Euler angles or quaternions. Generally Euler angles @feped for their simplicity but
because tangent 9& not defined for pitch angle, quaternions are used. In @& 8@ pitch
angle is an extreme case hence using Euler angles bringsadvdintage to us.

Body-fixed

u (surge)

Yo v (sway) w (heave)

Earth-fixed

Figure 2.2: Earth-fixed and Body-fixed reference frames

All the motions of our vehicle in the body-fixed frame have ®rbpresented relative to an
inertial reference frame. For underwater vehicles we canras that the effect of the rotating
world to the accelerations of a point on the surface of thehHamegligible. Therefore we
do not need a star-fixed reference frame and we can selehtfead reference framxYZ
as inertial. In all our calculations, the position and thigmation of our vehicle should be
explained according to the inertial reference frame whieclinear and angular velocities
should be expressed in the body-fixed reference frame.



2.2.2 Euler Angles

As mentioned above for transformation from body-fixed framearth-fixed frame and vice
verse, Euler angles are used. In all our transformatigras conventiorwill be used. First
transforming translational motion, we will utilize the li@ving equation:

Ni=Ti(N2)v1 (2.4)

Writing above equation according to (2.1) and (2.2) we get

X u
y| =Ti(n2) |v (2.5)
Z w

whereT; in (2.5) is defined as [8]

cychd —sycece+cPsosp  sPse+ cycpso
Ti(n2) = |sch cycep+sysdsp —cysp+ sysbep (2.6)
—s6 cOsp cOco

Rotational transformations are achieved by the body-fixegukar velocity vectorv, =
[, g, 1|7 and Euler rate vectay, = [, 6, (] related formula as

N2 = T2(N2) v2 (2.7)

Mentioning the vectors in open form we get

¢ p
6| =Tx(n2) | q (2.8)
1] r

Angular velocity transformation matrix in (2.8) is definesl a
1 s@pt6 coto
To(n2) =10  co —s@ (2.9)
0 sp/cO ce/cO

2.3 Rigid-Body Dynamics

In a general form the nonlinear dynamic equations of motioé DOF can be written as:

Mv+C(v)v+D(v)v+g(n)=T1 (2.10)
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Using the Euler’s first and second axioms which were built @widn’s second law we can
write the 6 DOF Rigid body equations of motion as:

X =m[0—vr+wa—xg(a” +%) +Ya(Pa— ) +zo(pr+ )]

Y =m[V—wp+ur—ys(r?+ p?) + Zs(ar — p) + X (qp+1)]

Z = m[W—ug+vp—2z5(p*+ ) +Xc(rp — @) + Ya(rd + p)]

= kP4 (Iz=ly) ar = (F + pA) e+ (r? = G2)lyz + (Pr — @) luy

+ mlyg(W—uq+Vvp) — zg(V—wp+ur)] (2.11)
M = 1,4+ (Ix— I2) pr = (p+an)ly+ (P? = r2)lpx+ (Ap—1)ly,

+ m{Zs(U— vr +waq) — Xg(W—uq+vp)]

N = lIf + (ly = 1) Pa— (A4 rp)lyz+ (6° — p2)lxy+ (rq — P)l2x
+MXg(V—wp+ur) —yg(U—vr+wa)]

In mathematical formulation for the ease of calculationd 12 can be represented by vecto-
rial form as
MgV +Cre(V)V = Trs (2.12)

Here the elements of the equations of motion relating ¢an be written ifMgg as

[ m 0 0 0 mz; —myG—
0 m 0 —Mz 0 mxs
Mig — 0 0 m mys —mxs 0 (2.13)
0 —MZz Myg Iy —lxy —lx
mz 0 —mxg  —lyx ly —lyz
—MYe  MXs 0 —lzx  —lyy I, |

and the remainder elements the Coriolis teom v and centripetal term x (w x rg) can be
written in Crg. The Coriolis effect can be defined as the apparent defleofiobjects from

a straight path if the objects are viewed from a rotating #ashreference. The centripetal
force is the external force required to make a body followreutar path at constant speed.
The force is directed inward, toward the center of the cireElence we can write our matrix
as
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[ 0 0 0
0 0 0
0 0 0
Cre=
—m(yed+2zsr)  m(ycp+w) m(zep—V)
mXcq—w)  —m(zgr +Xp) m(zgq+ u)
mM(Xar + V) m(yer —u)  —m(Xcp+Yycq)
m(yea+ Zar) —m(Xgq—W) —m(xar +V) |
—Mm(ygp+Ww) M(zar + %G P) —m(ygr — u)
—m(zgp—V) —m(zsq+U) M(Xe P+ Ysa) (2.14)
0 Iy Q=P+l lyr +lgyp—1yq
lyz0+ Ixzp — 12 0 —lyot — @+ Ixp
—ly —lyp+1lyd I + g — Ixp 0 |

2.4 Added Mass

Added mass is the inertia added to system because of thesatogy body which will move
some liquid surrounding its body. But the vehicle will fortee surrounding fluid with
proportional to forced harmonic motion due to acceleratiimody where the particles which
are far from the body will be induced less. In order to gerethé added mass forces and
moments Kirchhoff’s equations related to the fluid kinetiergy will be used.

Kinetic energy of the ideal fluid can be written as
1
Ta= évT MaV (2.15)
whereMa is the 6x 6 added mass inertia matrix which is comprised of 36 distautted

mass coefficients.

Hence we can write the added mass inertia matrix as

X X X Xo Xg X
Yo % Ya Yo Y5 Y
B Zy Zy Zw Zp Zg Zi (2.16)
Ko Kv Ky Kp Ky K;
Mo My My Mp Mg M

No Ny Ni Np Ny N

12

Ma
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In the added mass inertia matrix the elements of the matethar derivatives of the forces
and moments in the stated axis with respect to the accelegatin other words,

oM

W= 3

= (2.17)

Expressing the body-fixed velocity vectors\as= [u,V, w]T andv, = [p, q,r]T, relation of
the forcer; and moment; is achieved with Kirchhoff’s equations in vector form.

d /oT oT
d/oT oT oT
a(a\}z)—'— 2><a 2 V]_Xa—Vl—Tz (219)

Hence for the totally submerged vehicle we will find the addeass terms by using Kirch-
hoff’s equations. Here we will utilize the fluid kinetic eggrprinciple and take into consid-
eration that by the motion of the vehicle in any directiorwill bring forth a kinetic energy

for surrounding fluid [8]. Expanding the equations (2.18) é2.19) yields

d u u d u V

= | 0Ta 0Ta | — | 0Ta 0TA 0Ta | —

gt | o +a| X |52 = |Ya| = i | v + 152 —-p%5| = |Ya| (2.20)
JTa JTa 0Ta 0Ta dTA
dw r dw Zp oW P —A%u Zn

For the moments from the added mass,

aT, aT, oT,
B el (%] o] [F] [k
aT, aT, Ta| —
Golael Flal < (G V] < || = [Ma (2.21)
T, oT, T,
al L ol 9 |G Na
Applying vectorial products in (2.21) gives
anA _r aaE VaTA waTA Ka
L w@{f ug}; = [Ma (2.22)
paTA daA u% -~ v% Na

When we take the partial derivatives ©f with respect to our linear and angular velocity
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vectors and substitute them in (2.20) and (2.22) yields esrthin added mass terms [8].

Xa = Xall+ X (@4 ud) +Xell+ Zow + Zgq?
+ XV Xp P+ Xef — Your — Yppr — Y;r?
— Xyur — Y, or
+Yova+Zppa— (Yg—Z:)ar
Ya = XU+ Yo+ Yy
Y+ Yo+ Vi -+ XV — Yovp+ X%+ (Xp — Z: ) rp — Zpp?
— Xao (Up— r) + Xgur — Z,wp
— Zypg+ Xyqar
Zn = Xo (U — @0) + Zip@+ Z4G — Xguq— X0
+ Yo+ Zpp+ Zit +Youp+Yerp + Yp p?

+ Xyup+ Yewp
—Xova— (Xp — Yq) Pq— Xiqr
Ka = XpU 4 Zpw + Kgd — XU + Xeug — Yow? — (Yg — Z) wq + Mi P (2.23)

+ Yo+ Kpp+ Kif + Yor? — (Yg — Ze) Vr 4+ Zpvp— Mir? — Kgrp
+ Xeouv— (Vg — Zy) v — (Y; + Zg) wr — Ypwp — Xqur
+ (Y; + Zg) va+ Ki pg— (Mg — N¢) ar
Ma = Xg (U+ @) + Z4 (0 — ug) + MG — Xeo (U7 — @°) — (Zio — Xa) wu
+ g+ KgP+ Mf + Yavr —Yivp—Ki (p? —1%) + (Kp— Ni) rp
— Youv—+ Xovw — (Xi + Zp) (up— wr) + (Xp — Z;) (op+ur)
— Mipg-+ Kqar
Na = XU+ Z¢ 0 + Mi@ + XoU? + Yeoou — (Xp — Y) Ug— Zpowg — Kg QP
F YV Ki Pt Nef — XV — Xevr — (X — Yg) v+ Merp 4 Kg p?
— (Xa—Yo) uv— XV + (Xg+ Yp) up+ Yiur + Zgwp
— (X4+Yp) va— (Kp — Mg) pa—Kiar

2.5 Damping
Hydrodynamic damping for the underwater vehicles occucsibge of the following effects.
» Potential Damping: Damping caused by the surface wavessdtvaves are generally
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high frequency waves with small wave lengths. By our assiomgit the beginning
of the mathematical model stating that our vehicle works tieasea bottom gives us
the right to neglect this effect.

 Skin Friction: This is the damping occurring because offtbe of water around the
boundary of vehicle. While vehicle advancing with a constgreed, water near the
bow achieves laminar flow (streamline flow) with no disruptio the surface. Going
forward on its flow after passing the bow, skin friction decates the liquid that is
why turbulent flow starts at this point. This process of pag$iom laminar flow to
turbulent flow is known as boundary layer transition. Skiatfon is represented with
linear skin friction because of laminar boundary layer anddyatic skin friction due
to turbulent boundary layers. Non-dimensional Reynoldsiner assigns the type of
the flow.

» Wave Damping: This is the damping due to the waves whileckesitry to advance
on the surface of the water. Again with our assumption thebgherations will be near
the sea bottom, we can neglect this damping.

» Damping of Vortex Shedding: Vortex shedding occurs beeaighe pressure differ-
ences on the flow path of water. Liquid after passing the fiettraurface of the object
creates the low pressure vortices, which ends with a tunbaled unsteady flow. The
size of the vortices and the effect of damping due to vortexdding is directly pro-
portional to front (projected) sectional area of the vehihd with square of velocity.
Trying to increase the operational speed of underwaterciehirings damping dis-
advantage with it. At this point, the outer body design arel\vhhicle’s production
material take an important role.

From the aspect of losses, effect of the damping will mostiguo due to skin friction and
vortex shedding. Skin friction is an important effect on tanping of the vehicle but the
details of it is far beyond the scope of this thesis. Moreittetdbout damping can be found
in [15] and [22]. The design of the body to decrease the dagnigin important problem
for the construction of vehicle. Here eccentricity playsraportant role, which shows how
much the head shape of vehicle deviates from circular motim thAe ratio of the total length
of the vehicle to the diameter directly affects the speet®f/ehicle where the torpedoes are
good examples for this kind of design. Now let us formulaedbmponents of the damping
which are important for us.
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The damping force due to the vortex shedding can be modeled as

D1(U) =~ pcs (RN) Ass U U (2.24)

wherecq is the non-dimensional drag coefficient directly relatethvireynolds number\.s

is the projected cross sectional area of the vehicle faciitly water which isrtd?/4 for

a sphered is diameter).U stands for the velocity of the vehicle amdis the density of
the water. Reynolds number is a function of veloclth) (physical lengthl( and kinematic
viscosity ). Reynolds number can be calculated by the following foar{@R]. In our
calculations we assumeg = 0.20.

Ry= b = = (2.25)

Hereu stands for the fluid viscosity anplfor the density of watery = 1.05 x 10~ for sea
water with 20C and salinity of 3.5 %). Appendix B shows the drag coefficigind sphere
for different Reynolds numbers [22].

Damping due to the skin friction will be modeled as linear goddratic damping. Hence
our damping will be as
D(v)v+|v|D(v)v (2.26)

Though some approximations and simplifications will be eehil on the damping matrix in
following steps, now it can be written as

XaF KUl X+ XVl X+ Xy W]
Yut+Yyulul  Yo+YuwVl Y+ Yiww| W]
Zy+Zyulu  Zv+ZuwVl Zw+ Zjwgw|W
Ku+Kpplul Kv+Kywlvl - K+ KW
My +Myulul  My+MyyVl My + Mg Wi
N+ Nyl Ne+Nyyvl No+ Ny W]

Xp+XjpjplPl Xq+Xgiglal %o +Xppelr|
Yo+YpplPl  Yg+Ygqldl Y+ Yirlr|
Zo+ZpplPl  Zg+Zggldl  Zr +Zpylr]
Kp+Kppplpl  Kq+Kgglal K+ Ky [r]
Mp+MgiplPl  Mg+Mgglal  Mr+ M|
Np+NipjplPl - Ng+Ngglal  Nr+Npe[r]

(2.27)
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2.6 Gravitational and Buoyant Forces

In our vehicle center of gravity will be defined witly = [Xg,Ys,Zs]" and the center of
buoyancy will be expressed witly = [xg,ys,2s]". The gravitational forcef will act on
center of gravity and buoyant force will act on center of karagy fg where both forces act
in inertial frame but they are defined in body-fixed frame.

The mass of the vehicle is definedrasV as the volume of fluid displaced,as the accel-
eration of gravity downwardgy density of the fluid. Weight of vehicle and buoyancy force
can be written agV =mg,B=pgV.

Then the gravitational and buoyant forces in body-fixed faran be defined by using Euler
transformations

0
fo=T,1n2) | 0 (2.28)
W

and

fg =T, *(n2) (2.29)

W O O

Finally gravitational and buoyant forces and moments caniitéen as [8]

a=_ fa(n)+ fa(n) (2.30)

g X fg(r]) —+1rIg X fB(n)

Substituting the center of gravity and buoyancy with forice@.30) we get

(W—B)so
—(W —B)cOsp
= —(W —B)cOco (2.31)

—(YoW — ygB)cOcg + (zgW — z5B)cOsp
(ZcW — 78B) s + (xgW — xgB)cOce
| —(XcW — xgB)cOsp — (yeW — ygB)st |

To that point we showed the path to generate the mathematiodkl of an underwater
vehicle. But because of the nonlinear and coupled attitddbeomodel there will be too
many unknowns with different weighted values which is anagietd point. Now we will
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use some simplifications and assumptions to reduce the @atgadd model which proved
success in many designed underwater vehicles.

Because of the position of the center of gravity and centdoualyancy,xg andyg will
be equal to zero. On the other hand, singe= 0 (top/bottom symmetry) antk, = O
(port/starboard symmetry) our new inertia matrix becomes

Ik 0 O
0 Izy IZ

Also because of the symmetry properties, our mass inertiaixran be simplified. The
simplification procedure applied to mass matrix can alsodpdied to damping matrix [8].
In Section 2.2 we assumed that we have xz- and xy- plane synes@bort/starboard and
bottom/top symmetries) by which we acquire the followingigiified mass matrix

My O O O 0 O
M, O O 0 My
0 Msz O Mg O
0 0 Mg O O
0 Mss O Mss O
Mz 0 0 0 Mg

(2.33)

o O O o o

The same simplification method can be applied to the dampiagixnand the same co-
efficients on the stated positions will be left but in most leé underwater applications a
rough approximation is done where the damping matrix wiHiitear and quadratic terms
is assumed to form a diagonal matrix.

2.7 Hydrodynamic Coefficients

In this section we will find the numerical values of hydrodymeal coefficients. We will
derive the added mass coefficients and damping coefficignithvare the representations of
the derivation of forces and moments with respect to theatlimad angular velocities and
accelerations. As we evinced in Section 2.5 axial drag caraloeilated by

1
X\u|u = _Epcd (Rn) ACS|U |U (2.34)

The remaining crossflow drag will be found by strip theoryading to [8]. After simpli-
fication in the damping matrix the following coefficients raim which are found by the
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following formula: Yy, Zww: Kipp: Migia» Nirir» Yirir: Zigia» Mywiw: Ny

L/2

1

Yy = Zww = _Epcdc / 2b(x) dx (2.35)
“L)2
1 L/2

Mwiw = =Ny = Epcdc / 2b(x)xdx (2.36)
L2
L L/2

Yirr = —Zjqq = _EP Cdc / 2b(x) x|x|dx (2.37)
—L)2
L/2

1
“L)2

Kiplp =0 (2.39)

Here p is the water densitycqc crossflow drag coefficienty(x) is the half-width of the
vehicle with respect to the total lengthis the length of the vehicle.

After simplifications because of symmetry our added massixn@ 16) will transform into

X; 0 0 )
0OY 0 0 0 N

me | O O & O M (2.40)
0 0 0Ky 0 0
0 02 0 Mg O
_0 Y. 0 0 O Nf_

0

y/

Figure 2.3: Prolate Ellipsoid and Dimensions
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Hence we have to derive the remainders form the added mags teains which areXg, Yy,

Zyy, Kp, Mg, Ni, Vi, Zg, Myi, Ny. For slender bodies these coefficients can be derived lgy stri
theory. These coefficients in three-dimensions are founidtegrating the two-dimensional
coefficients along the vehicle length. In our case our velsblows similarities with a prolate
ellipsoid as shown in Figure (2.3).

Therefore using the strip theory added mass coefficientdwifound according to [8] as

L/2

X = / Aw(y,2)dx =~ 0.10m (2.42)
L2
L/2

Yy = / A2z (Y, 2)dx (2.42)
L2
L/2

—Ly = / Ags (Y, 2)dX (2.43)
L2
L/2 B/2 H/2

—Kp= / Ass(y,2dx £ / y2 Ass (%, 2) dy+ / Z Ay (x,y)dz (2.44)
L2 —B/2 —H/2
L/2 L/2 H/2

—Mg = / Ass(y,2)dx = /x2A33(x,z)dx+ / Z A1 (xy)dz (2.45)
L2 L2 ~H/2
L/2 B/2 L/2

—Np = / Ass(y,2)dx 2 /yzAll(x,z)der / X2 Az (y,2) dx (2.46)
L2 B2 L2

where L,B and H are the dimensions of the vehicle. For a pratdipsoid, 2-dimensional
coefficients in the above equations are given in Figure (2.4)

On the other hand those added mass coefficients can be foutlebdmetical formulations
stated by Lamb in [15].

L Qo
Xo= 5 (2.47)
Yy = Ziy = —% m (2.48)
Ko= O (2.49)
_ oo 1 (b? — a%)?(a0 — Po)
V= M = Ts o (P e (Beao) (2.50)
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A,,=pirho &
A,,=pirho @
A,=0

Figure 2.4: Two-dimensional Added Mass Coefficients

Heremis the mass of the vehicle which can be found by

m= g npab? (2.51)
andag andf3y are defined as
Qo= 2(1T_92) (%mg_e) (2.52)
1 1-¢€, 1+e

Above in the equations stands for the eccentricity defined as

e=1—(b/a)? (2.54)
Also there exists another alternative method of equationistware related with the added
mass terms. We used this last method to check the coeffidimumsl by the first explained

method above, both gave the same results after calculafldns last method is similar with
the one method mentioned above. In this method, Lamb exgwdisst k-terms as

=5 (2.55)
_ B

K =

e*(Bo— ao)
(2—e?)[2e>— (2—€)(Bo— Qo)) (2.57)
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Then he mentioned the added mass coefficients as

Xo=—kim (2.58)
Yo=—-Zy =—-kim (2.59)
Ni = —-Mg = —K ly (2.60)

where the moment of inertia in y- axilg,can be found by

ly=l,= 1i5npab2(a2+b2) (2.61)

For a prolate ellipsoid calculation of the quadratic dargnefficients can be achieved by

the equations (2.35)-(2.39) but since shape of our vehsddittle different from an ellipsoid
we have to separate it in order to find stated coefficients.

150

250 - 795 - 555

Figure 2.5: Cross-sectional view of our Vehicle

It is clear in Figure (2.5) that we have to separate the @ligito three parts. We will

find the equations of each part. Our vehicle’s length is 1.@Pens and the distance of the
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separation points from nose to aft are .25 m. and 1.045 m. Tt wf hull with respect to
total length of vehicle is required in the quadratic dampagations where we formulated
the each section of the vehicle as

0.15\ 2
y=1/0.1% — 0ot (x—0.25)2 0<x<0.25 (Ly) (2.62)

y=0.15 025<x< 1045 (Ly) (2.63)

2
y— \/0.152 - (%) (x—1.0452 1.045<x<160 (L) (2.64)

herey shows the half width of the ellipsoid with respect to the knghich is defined as
b(x) in equations (2.35)-(2.39).

Hence our quadratic damping equations will be as

0. 15
Y = Zww = —5 \/O 1% — O 25 ( —0.25)2dx

0.15
_ = _ = _ 2
pCdc / 0.30dx pcdc / \/o 12 — 0555> (x—1.0452dx (2.65)

0. 15
= — = — _ J— 2
Miwiw = —Nyv pCdc/ \/O 15 — O 25 (x 0.25)2xdx

PCdC/O?)OXdX —pcdc/ \/0152 (;)51;5> (x—1.0452xdx (2.66)

0. 15
Yir =—Zgg=—5 \/O 1% — E (x— 0.25)2x|x| dx

- —PCdc/O3Ox]x\dx— —pCdc/ \/O 1% — 0051555> (x—1.0452x|x|dx (2.67)

0. 15
M|Q\q = _Nlrlr = \/o 152 — 0—25 (X— 0.25)2X3dX

0.15
_t _ 1 _ 2
pcdc/030x3dx pcdc/ \/0152 555) (x—1.0452x3dx (2.68)
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Kiplp =0 (2.69)

2.8 Retrieval of Hydrodynamic Coefficients

In this section, we will show the results of our calculatidimgling the main hydrodynamic
coefficients by using formula in Section 2.7. Through thelgtil is assumed that the hy-
drodynamic coefficients are time-invariant. Although itnist the case in real time such
an assumption will not effect the system so much becausedéiacents are very small
compared to mass and states, slight changes in them willlnpasated by the system.

In the calculations of the coefficients the following valaes taken.

Table 2.2: Vehicle Related Values Used in Coefficient Resdtie

Mass (m) 64 kg Total Length (L) 1.60m
Half Length (a) 0.80 m Half Width (b,c) 0.15m
Vehicle Avg. Density f,) | 996kg/m3 Water Density () 1023kg/m?
Axial Drag Coef. 0.1412 Crossflow Drag Coef. 2.1
Center of Gravity, X-Xg) 0 Center of Gravity, y¥c) 0
Center of Gravity, z-43) 0.08 m Center of Buoyancy, xg) 0
Center of Buoyancy,y-yg) 0 Center of Buoyancy, z-z§) 0
Axial Projected Areaks) | 0.0707n? Eccentricity 0.9648
Added Mass Coef. 1) 0.1610 | Added Mass Coefficient 130) 0.9494
Lamb’s Coef. 1K) 0.0876 Lamb’s Coef. 2Kk») 0.9037
Lamb’s Coef. 1K) 0.6271 Total Volume (V) 0.0629m?
First Section Area;) | 0.0294n? Second Section Area\§) 0.1192n7?
Third Section Areads) | 0.0654n? | Total Cross-Sec. Aread() 0.4284m?

Added mass hydrodynamic coefficients found by the stripriheoe given in Table (2.8).
Those are the non-dimensionalized values. Since the urthe @xial, crossflow and rolling
added mass coefficients are different, non-dimensioriaizds achieved in different ways.

24



The units withkgare divided by5 L3, kgmwith £ L* and others with similar methods. After
non-dimensionalization we founded the added mass coeffscas

Table 2.3: Added Mass Coefficients

Xq —32x 1073 | Ky 0
Yy —~3.33x 1072 | My —4.6x10°3
Zy —3.33x1072 | \; ~1.2x1073
Y; 1.38x 1072 | Ny 1.38x 1073
Z4 —~1.38x 1072 | My, —~1.38x 1073

Weight of our vehicle is found by the formula

W =mg (2.70)

and buoyancy with
B=pVg (2.71)

wherem denotes the masg, gravity, V volume of our vehicle angp the density of wa-
ter. Hence after calculation®y is found 62kgnys and buoyancy is found as 6&jnys,
denoting that our vehicle is slightly positive buoyant whis a desired conclusion

Quadratic damping coefficients are calculated by the pisgeintegrals. Piecewise integrals
for strip theory are used because of the different shaperofehicle shown in Figure (2.5).
Strip theory is derived for ellipsoid shaped bodies therefo apply the theory to our vehicle
we inspected the our shape in three sections. We calcula¢ertdss-sectional area for each
section and added them to find the total area. Again we usesatie procedure that we
used in non-dimensionalization of the added mass coeffglere.

Calculated coefficients by Equations (2.65)-(2.69) arevshio Table (2.4).

2.9 Equations of Motion

In this section we will show the vectorial representationihaf body-fixed equations of mo-
tion for our vehicle. In Section 2.3 we have expressed thdimgar equations of motion in
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body-fixed frame as

Mv+C(v)v+D(v)v+g(n)=T1 (2.72)
n=T(n)v (2.73)
where
M = Mgrg+ Ma C(v) =Cra(V) +Ca(V) (2.74)
D(V) = Dskin(V) + Dvortex(V) (2.75)

After our simplifications we obtain the component matricethe equations of motion as

‘m—X, 0 0 0 0 0
0O m-Y O 0 0 m-Ny
M MeaiMac | O 0 m-Z, O m-My O 2.76)
0 0 0 m-K, O 0
0 0 m-2z 0 m-Mg O
0 m-Y% o0 0 0 m-N

Table 2.4: Linear Quadratic Damping Coefficients

Xuu | —39x103 Yy, | —299x10°
Yoy | —9.77x1072 | Zgq 2.99x 1075
Zww | —9.77x10°2 | Ny 7.51x 1072
Kpip O | My | 1.694x10°
Mgq | —7.51x102 | Ny, | —1.694x10°!
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0 0 0 0 -Ziw Yy
0 0 0 ZiyW 0 —Xuu
0 0 0 YoV su 0
Ca= W% (2.77)
0 —-zZiw Yy 0 —Nir  Mgq
ZyW 0 —Xgu  Ner 0 —Kpp
=Yov XU 0 —Mga Kpp 0 |
[ 0 0 0 mzsr mw —mv |
0 0 0 —mw mzr mu
0 0 0 —m V) —m u 0
G (zep+V) —m(zeq-+U) 2.78)
—mzr mw mZgp+Vv) 0 lyQ+ I lyzr —1yq
—-mw  —mzr m(zgq+u) g+l 0 lyp
| mv —mu 0 —ly +1yq —lxp 0 |
DV (V) - —
[ Xa+ XUl 0 0 0 0 0
0 Yv+Y|v\vM 0 0 0 Yr +Y\r\r’r’
0 0 Zo+ Zyjw|W] 0 Zg+ Zjqqlal 0
0 0 0 Kp+KjpplPl 0 0
0 0 Mw + M‘W‘W‘W‘ 0 Mq+M|q‘q]q] 0
i 0 Ny + N|v\v|V| 0 0 0 Nr+NMr|r|_
(2.79)
Last of all our gravitational and buoyant forces matrix ol as
[ (W —B)so ]
—(W —B)cOsp
—(W —B)cbc
g= (W—B)cbee (2.80)
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2.10 Summary

In this chapter the mathematical model of our vehicle is fdrby adding damping equa-
tions, gravitational and buoyant forces to rigid body dyrmam Rigid body dynamics are

generated according to [8] using Newton’s second law. leotal evaluate the motion of the
underwater vehicle in earth-fixed coordinate system, kat@ransformations are needed,
therefore the relation of motion between earth-fixed andydoed coordinate system is

built. Then we found some of our damping coefficients vigodtineory. Considering the 2D

cross sectional structure of our vehicle, its body is partéd into three sections. A formula
for each section is derived in order to evaluate the striprshand the coefficients are de-
rived. At the end of the chapter, simplified equations of owsiare stated for our vehicle.
In simplifications, some assumptions like symmetry andrahmilarities are used.

Since some of the coefficients can not be derived directlyrapydic formula they are esti-
mated by relating them with other coefficients. The valuethethydrodynamic coefficients
are very small compared to the mass of the vehicle therefoed] errors in coefficients will
not severely effect control of our system. Furthermore antmllers are designed to be
robust enough to compensate the changes in coefficientsthrerrors accumulated from
wrong calculations. A requirement to possess the optimumneseof hydrodynamic coeffi-
cients led us to solve a parameter estimation problem in €hdp
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CHAPTER 3

CONTROL PROCEDURES

3.1 Introduction

In this chapter, general control methods for our system>gamed. We started control pro-
cedure by first linearizing our system around an equilibrpomt and found a linear model
in order to apply linear control methods. Then we decouptedstystem into three linear
subsystems of speed, steering and depth control. Congadllie speed of an underwater
vehicle is an indispensable process before starting toaarther components, therefore we
designed a speed controller first. Then we designed stearnidglepth controllers for our
vehicle. In the design process we analyzed PID, SMC and LQR/Imethods. Since not all
the components of our states for each designer are obserabéstimator is needed where
we used the continuous Kalman Filter as the optimal estimalb®n noise is assumed as
Gaussian.

Section 3.2 describes the linearization of our vehicle acbdpling of the system. Sec-
tion 3.3 is comprised of speed control achieved via PID nukth®ection 3.4 contains the
information about steering control procedure using optiowetrol, SMC and PID. Also
SMC and optimal control (LQR) methods are described in thigisn. Depth control at-
tained with same methods are described in Section 3.5. ItioBe®.6 information about
LQG design is given and also its difference from LQR is expdi. Because of the necessity
of the Kalman filter in designing LQG controller, a brief infioation about it is given in
Section 3.7. Lastly a summary of this chapter in given in isac3.8.
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3.2 Linearized Equations of Motion

Underwater vehicles operating in complex environmenth aidiupled maneuvers are known
to be highly nonlinear, nevertheless to exploit the adgentaf enhanced control methods we
prefer to linearize our model around an equilibrium poirthjeh is a constant speed for our
case. Hence linearizing our model and achieving some diggilons a sort of well known
control methods should be applied easily. Since lineaomat the approximation of the
nonlinear system near the linearization point, we will gai@ information about our system

in general.

In our configuration we have 4 thrusters, 2 of them are plaeetically and other 2 horizon-
tally. Horizontal thrusters are used both for speed andiag€yaw) and vertical thrusters
are used for depth control. In order to achieve robust chnthave chosen the Decoupled
Control Method hence divided the 6 DOF (Degree of Freedont)amdnto three main sub-
systems and designed different control methods for eacdystém. We achieved separation
as

1. Speed System
2. Steering System
3. Diving System
Design and analysis phase of all work is done by using Cofwolbox in MATLABand

Simulink

We know that the nonlinear equations of motion for an undesmeehicle can be written as

M((v))+C(v)v+D(v)v+g(n)=T1 (3.1)

n=3n)v (3.2)

Nonlinear equations can be linearized around an equilibpoint, but a linearization point
should be defined first, for our case which can be defined as

Vo(t) = [Uo(t),Vo(t), wWo(t), po(t),do(t), ro(t)] (3-3)
No(t) = [Xo(t),Yo(t), 2o(t), @(t), Bo(t), Yo(t)] (3.4
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Since linearization is based on the perturbations fromlibgiuim point, perturbations can
be defined as

AV(t) = V(D)= volt), BAn(t)=n{)—nolt), ATM)=T()-Tolt)  (35)

then our equations of motion can be written as [8]

MAV + ICv)v Av + M Av + M =AtT (3.6)
dv Vo Vo dr’ No
The kinematic transformation equation becomes
No+A4n =J3(No+4n) (vo+Av) (3.7)

Substituting initial condition fon, ny = J(no)Vvo in Equation (3.7) yields
J(no)vo+ 240 = JI(no+4n)vo+JI(No+A4n)Av (3.8)

which can be written as

An =J(no+A4An —J(no)) vo+J(No+A4An)Av (3.9)

Linear time invariant equations of motion can be derivedh®yassumption that the vehicle
is moving in the longitudinal plane with non-zero veloditief up andwgy. Also adding
the assumption that other initial velocities are zego— pg = 0o = ro = 0 and equilibrium
point is defined by zero roll and pitch angles,= 6, = 0, linear time-invariant matrices are

X1 B

Xo
wherex; = Av, X = An andu = 1. The matrices exceptin (3.10) are defined at the end of
Chapter 2. Thd matrix is defined as [8]

obtained as
Mfl
0

-M-1C+D) —-M1G
J 0

X
! u (3.10)
X2

I 0 cosypy —sinygp O
J:[ol I] J=|singy cosgp O (3.11)
0 0o 1

In the process of designing controllers, the thruster modeééhed in [1] is used. In that
model, thrust and torque for an underwater propeller candiedsas

T = pD*Cr|n|n (3.12)
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Q= pD°Cq|n|n (3.13)

whereT defines thrustQ) torque,p density of fluid,D propeller diametem propeller revo-
lution, Cy thrust coefficient an€q torque coefficient. Thrust coefficient is directly related
with advance coefficient, which can be defined a= U,/nD. Relation between advance
speed of vehicle and control voltage applied to thrustestiésvn in Figure (3.1).

(control voltage) (angular rate) (thrust) (advance velocity)
Vs WP T UO
— Motor Propeller Fluid D—
Model Mapping Model
—
is Q U,
(current) (torque) (flow velocity)

Figure 3.1: Relation between Thruster Components

3.3 Speed Control

Today robust and reliable control stands as a first prioatyards the development of effi-
cient underwater vehicles most of which operate in stricttaagh conditions. On nonlinear
control systems, modeling inaccuracies may cause to uedesifects, hence to deal with
model uncertainties robust control methods are neededh®ather hand when the simple
systems or the simplified models of complex systems are martjubasic control methods
like PID (Proportional Integral Differential) is prefede

In the speed control due to simplicity of our model where tffiects from sway, heave, roll,

pitch and yaw are neglected, PID Control method is prefeard the control models are
designed by using Simulink. Neglecting other effects, alsh$odel with one state and one
input is obtained as in [8].

(M—Xg)u = Xyululu+ T+ Xext (3.14)

In equation acquisition, some effects like Coriolis andtdpatal forces are omitted nev-
ertheless quadratic damping is taken as the main distudfiegt. Heret stands for the
horizontal thruster force. For linear case it is known th#tatder approximation of the
thrust forcer is equal to,
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T = pD*Cr(Jo)|n|n (3.15)

wherep states the density of sea watBrpropeller diameteCt advance thruster coefficient
which is a function of advance numbek & U,/nD) , U, water speed passing through the
propeller and lastiy for the revolution of propeller.

Hence our equation can be written as,

(M—Xu)U = Xpyju|ulu+ T + Xext (3.16)

T stands for the thruster force, which is found by (3.15).

PID control is applied to one DOF model with positive coeéfittis ofK,, Kq andK; selected
with respect to the response of the system. It is assumethtiatate and output is directly
measurable and the model parameters are obtain according fiarmulas that stated on the
previous chapter. A white Gaussian noise is added to thersyas an external disturbance
in order to raise the reality of model compared with the datna.

£ = Kolx(t) ~alt) +KalX() —5alt) +K [ () ~xo(r)dr (317

Most underwater vehicle controllers prefer Pl- control lestead of PID in order to get
rid of necessity for Kalman filter, which should be designed dstimating the derivative
of surge and angular propeller accelerations. Since PlBrpeters are found by response
optimization in Simulink, we preferred using PID triple pareters instead of PI- control
law. PID parameters for first block are found &= 16.1, K; = 1.1 andKy = 0.01 and for
the second block, parameters are foundias= 6.3, K; = 0.001 andKy = 0.01. Simulink
diagram of the Speed Controller is shown in Appendix C.

It can be seen that the effect of the disturbance in Figu® {8here PID controller can not
quickly compensate the error.
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Output Speed

Figure 3.2: Commanded and Real Output Velocities (m/s) for P

3.4 Steer Control

Before starting steering control, information about SM@ @ptimal Control methods will
be given.

3.4.1 Sliding Mode Control

As being one of the most robust control methods, Sliding M@datrol (SMC) is based on
the philosophy that it is easier to contrdt drder systems compared with high order systems
(n > 1). Therefore any modeling and parameter inaccuracies eacolmpensated with
this method though in a wearisome manner. In addition tegtassets, SMC brings us the
advantage to face with strong perturbations like curremas'es and other unpredicted effects
in complex sea environment. General application of SMC ttemwater vehicles consists of
designing a controller for the linearized part of the systerd considering the nonlinearities
as the parametric uncertainties. In design step we face twithdifferent sliding surface
selections. In the first method we select a scalar functiciorofi s= €+ Ae, which is the
sum of the position error and the velocity vector. Bet 0 this functions defines a sliding
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Thrust

Figure 3.3: Thrust Output in Speed Control

surface ensuring that the tracking ersconverges to zero. In the second method sliding
surface is based on the state variable errors depictedl(as:= s'e.

In the first method we start design by defining the trackingrevector withe = x — x4
wherex stands for the state vectog for the desired state vector. Then we define a scalar
time-varying surface(t) in O" by the scalar equatios(x,t) = 0, where

d
s(xt) = (a+)\)”’le (3.18)
with A being a strictly positive constant. In a general mannerpsimgn = 2 we get a
weighted sum of the position error and the velocity vectar = 0, our surface defines a
sliding surface with dynamics:

e(t) = e Mt-Llg(ty) (3.19)

guaranteeing that tracking erre(t) will converge to zero exponentially in finite time what-
ever the initial condition is.

As a second method when the coupled movements consideried, the sliding surface
based on the state variable errors instead of the outputsesems to be more logical and
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more useful especially in underwater environment. In thatner sliding surface is defined
aso(e) = s'ewheree = x— Xq is the state tracking errosc 0" is an arbitrary vector to
be evaluated in the end. It will be a sufficient condition taddhe sliding surface to zero
(o(e) — 0) for the convergence of the state tracking error to Zere- 0).

Assuming our model as:
X = AX+ Bu+ f(x) (3.20)

where for our casg € 0", ue O™, Ae O™, Be O™ f(x) acting as the deviation from
linearity because of modeling errors and environmentalidhences. Feedback control input
can be taken as:

U=0+0 (3.21)

whereu'is the linear feedback part of model ands the nonlinear feedback control that has
a compensating effect.

Nominal part of control is chosen as:
0=—k"x (3.22)

where k stating the feedback gain vector. Applying this tripto our linear model we obtain
the closed loop dynamics:

X = (A—BK")x-+BU+ f(x) = Acx+ Bu+ f(x) (3.23)
Here feedback gain vector can be determined by pole pladesneptimal control methods.
To find the compensating part of the control input, we haveeepk (3.23) satisfying that
o(e) — 0, which requiress(e) < 0. From the definition of sliding surface we know that
g(e) = s" (Xx— xg) hence multiplying (3.23) witls" from left and subtracting x4 from

both side yields:
g(e) =s'Ax+s'Bu+s' f(x) —sxg (3.24)

Assuming thas'B # 0, we choose compensating part of conttohs:

U= (s'B)~*[s"xs—s" f(x) — nsgno)] (3.25)

and applying to the equation yields:

g(e) =s' Acx—nsgroa(e)) +s' Af(x) (3.26)
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Now we work ons. We know that ifA stating the eigenvalue of an arbitrary mathk
following equation satisfies with a nonzero vector —

MV = AV (3.27)

Then assigning one of the eigenvalueshgfas zero, the terra™ Acx in (3.26) can be made
zero by taking vectos as the right eigenvector & corresponding to the eigenvalue with
zero value.

Eliminating the terms’ Ac.x in (3.26) yields:

o(e) = —nsgno(e))+s' Af(x) (3.28)

This term is global asymptotically stable in case of,

n > [sl].[[Af(x)| (3.29)

which can be shown by thearbalat's lemma first by selecting a candidate Lyapunov func-

tion as:
1 2
V(o) = 50 (3.30)
which ensures that (o) > 0 then differentiating/, we get:
V(0) =006 = —nosgno) + as'Af(x) = —n|a| + as'Af(x) (3.31)

from that equation it is clear that selectings stated in (3.29), (o) becomes negative semi
definite (\7(0) < 0). Lastly taking second derivative ¥fyields:

V(o) = n?sgrf(o) — ns' Af(x)sgn(o) — nsgn(o)s' Af(x) + (s'Af(x))? + osTAf(x)
(3.32)

It can be easily seen thd{ o) is bounded. Hence (3.30), (3.31) and (3.32) sati§fabilat’s
lemma asserting that:
if,

1. V(o,t) is lower bounded.\((o) > 0)

2. V(o,t) is negative semi definiteV(a) < 0)

3. V(0,t) is uniformly continuous in time. Y (o) is bounded/t > to)
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thenV(o,t) — 0 ast — .

That fact in accordance with (3.29) brings the consequehceto converge to zero in finite
time.

V(o,t) -0 = —n|o|+0os’af(x) =0 = 0—0 (3.33)

To conclude our calculations, combining two parts of cdnéftort as stated in (3.21), our
control law becomes,

u=—k"x+(s"B)"}[s" x4 —s" f(x) — n sgn(o)] (3.34)
In practice to reduce the chattering effect insteasignf o) function,sat(a/¢) ortanh(a /)
functions are used witlp appears as the sliding surface boundary layer thickness.

Finally we obtain the modified control law as:

u=—k'x+(s"B)"}[s"xq — ' f(x) — ntanh(a/0)] (3.35)

3.4.2 Steering Control with SMC

Steering control with SMC is found by first linearizing thessgm around an equilibrium
point and substituting the coefficients in the linearizedrinaDecoupling the system for an
efficient control, the following matrix is obtained.

Hereu stands for sway, for yaw andy for the Euler Angle for steering.

m-Y, -Y; o |v Y, mu=Y, 0| |v 0
0 0 1| @ 0 1 o |y 0

The sliding surface is taken as

0=S0+9r+s3(¢—yy) (3.37)
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and our model is transformed into state space form as

X = Ax+Bu (3.38)

Hence using the simulation values, the following equattoltained

~0.0943 —0.0322 0 ~1.6627
x=|-09537 —1.1733 0 x+ | 45960 | u (3.39)
0 1 0 0

ThenA; matrix is found

—0.3653 —0.2994 0
Ac=(A—-BK')= |-0.2047 —0.4347 O (3.40)
0 1 0

where the vectok is determined by the pole-placement method. Choosing thes ae
p=[-0.15;-0.65;0]" (3.41)

thek vector is found as
k=[-0.1630;-0.1607; 0]T (3.42)

Then the right eigenvector is found as

s=[—0.4762;08496;02268 " = Al s=0 (3.43)

hence our sliding surface, takes the form

0 = —0.4762 + 0.8496 + 0.2268 ( — i) (3.44)

Lastly after finding all the coefficients, the control lawrtarinto

u=0.163 + 0.1607 (3.45)

_|_

605 —0-23tanh(~0.4762) +0.8496 +-0.2268 Y — i) /0.05))

Here the sliding surface boundary layer thickness is ssfieas 005 which seems to be a
proper value and is selected as.@3 in accordance with the balance between robustness
and performance.

The model of the SMC Steering control is shown in Figure (3.4)
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Figure 3.4: Model of Sliding Mode Controller for Steering



Figure 3.5: Input for Sliding Mode Controller for Steering

3.4.3 Optimal Control

Like the behavior of nature which is designed in a mannerwégs selecting the minimum
effort with maximum performance, every system can be cdiattavith a minimum effort.
Therefore in order to find the minimum effort we use Optimah@ol.

Before starting work for optimal control, we know that ous&®m is linear hence selecting
a quadratic performance function we can apply the Linead@aie Regulator (LQR) rules,

which requires a linear system and quadratic performarsexito minimize in order to get

minimum control effort. Here our aim is to find a control inputich will guide the system

to follow a desired state variable and meanwhile minimizeedggmance index which is

chosen for minimum energy control system in conformity vathr situation.

Considering a linear time-invariant system stated as

X(t) = AX(t) + Bu(t) (3.46)
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Figure 3.6: Steering for Sliding Mode Controller for Steeri

with a cost functional

3(u(t) = I(x(t).u() to) (347
= Ka(tr) Xt F ba(te) — x(tr)]
#5 [ [0 X0 Qi) 0] + TR
= }eT(tf)F e(tr)
ts 0
Lot 2

where errore(t), states the difference between the reference (desirez) sjednd statex as
e(t) = xg — Xx. For infinite time interval casénal cost functionin the cost functional(u)
does not have any meaning for the system and the finalttinietaken as infinite(; — o ).
Hence our cost functional can be written in a more simplifiey as

1 e

J(u) = +=
W=+3

(X" (H)Qx(t) +u' (t)Rut)] dt (3.48)
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We follow the standart procedure, first building with tHamiltonianas

H(x(t),u(t),A(t)) = %xT (HQX(t) + %UT(t)R ut) (3.49)

+AT () [AX(t) +Bu(t)]

whereA (t) is the costate vector.

Then we obtain the optimal contro(t) as

(Z—E:O:H?u(t)—i-BT)\(t):O (3.50)

from which we find the control input as

ut)=-R BT A1) (3.51)

after that we obtain the state and costate equations as

X(t) =+ <3—;‘> = X(t) = Ax(t) +Bu(t) (3.52)
Alt) =— (%) — A1) = —QX(t)—ATA(t) (3.53)

with using (3.51) in (3.52) we get
X(t) = Ax(t) —BR BT A(t) (3.54)
In the infinite final-time interval optimal control, we hawe gatisfy that the system is com-
pletely controllable, which requires that the controlldpimatrix,
C=[B AB...A" 'B] (3.55)
must be ofull rank (n linearly independent columpsHaving a controllable system guaran-
tees that the optimal costfimite.

Assuming a transformation
A(t) =Px) (3.56)

whereP is not known yet, our new optimal control becomes

ut) = —R BT Px(t) (3.57)
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now which stands as a negative feedback of our error vectorHere,

P = lim {P} (3.58)

tf—o0

Continuing our replacements with differentiating (3.56).tvtime yields,

A(t) =P x(t) +Px(t) (3.59)

and using it in the state and costate equations we get,

X(t) =Axt)—BR BT P x(t) (3.60)

Alt) = —Qx(t)—ATP x(t) (3.61)

Lastly, substituting our new equations (3.60) and (3.61BiB9) results,

—Qx(t)— ATPx(t) = Px(t)+ P [Axt)—BR BT Px(1)]
0:[l5+F3A+AT|5 +Q—F“>BFr15TF“>}x(t) (3.62)

(3.63)
The equation stated above is calldifferential Riccati equation (DREwhere the matrixP

is often calledRiccati matrix P is ann x nsymmetric, positive definite matrix found by the
solution of theDRE, satisfying the final condition

P(tf — ») =0 (3.64)

Our optimal state is the found as
x(t)=[A-BR'B"P]x (3.65)

and the optimal cost is found by
J= %xT ()P x(t) (3.66)
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3.4.4 Steering Control with Optimal Control

Optimal Control is applied to our linearized steering matwhich is stated on the previous
section. Hence substituting the coefficients in the matritmlowing equation is obtained

~0.0943 —0.0322 0 ~1.6627
x=|-09537 —1.1733 0 x+ | 45960 | u (3.67)
0 1 0 0

Using the optimal control equations, error weighting ntasiQ andR are applied as

Q= (3.68)

o O Bk
o +— O
= O O

R=1/4

And also the steady state Riccati matfixs calculated using MATLABqr command

[K,P,Eig] = Igr (A,B,Q,R) (3.69)

The solutions for control problem by using optimal contrahde stated as

—9.7858
K =[-0.5949 19505 20000 Eig= |-1.0377
—-0.3977

1.1077 03684 04409
P=10.3684 02394 02683
0.4409 02683 13042

3.4.5 Steering Control with PID

Lastly for steering, PID method is applied for basic con&madl the efficiency of this method
is compared with the other methods. A simple Simulink diagimdesigned, figure of which
is shown in Figure??). Then the control law and the output of the system for PIisfl.

Though it is expected that PID method will not succeed in censating the noise when
compared with SMC, after optimizing the parameters witipoase optimization method in
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Figure 3.7: Control Input for Steering by Optimal Control

Simulink, PID method yielded similar outputs as SMC. Applyiresponse optimization to
our model, PID parameters are found Kg:= 0.2798,K; = 0.00074 ancKy = 0.1175.

Here again, the same amount of white Gaussian noise iseadj¢otthe system as in SMC
method. Simulink diagram of the PID steering controllerhiewn in Appendix C.

3.5 Depth Control

On the depth control, the same procedure is followed as istd@¥ing control. First solution
with PID method is shown, then solution is given for SMC anstliafor optimal control.
Like in the steering design, control methods respondedearséime manner. SMC confirmed
its robustness and stability in compensating noise moredtizer methods. Optimal control
followed SMC, but evinced less efficiency. Lastly PID camiiacene when the goal is
robustness, but whatever the outputs are, we realized lb@twdnen PID coefficients are
adjusted optimally desired outputs are not afar. Depth idal@n a high value due to the
fact that the system will response in the same manner, n@ntaitv deep the vehicle dives.
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Figure 3.8: Steering Angle found by Optimal Control

Figure 3.9: Input for PID Steering Control

3.5.1 Depth Control with PID

This time, depth control procedure is first initialized wiRfD method because of its direct
approach. Coefficients are found by optimization using #sponse optimization block
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Figure 3.10: Steering Angle for PID Control

in Simulink and the solution is found at the 28th step Kg:= 1.2279,K; = 0.0094 and
Kg = 15.0032. Model of the depth controller is shown in Appendix C.
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Figure 3.11: Optimization of PID Response for Steering

Figure 3.12: Input Value of Simulink PID Control for Depth
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Figure 3.13: Desired Depth of PID for Depth Control

3.5.2 Depth Control with SMC

In depth control with SMC, we assumed that we achieve divipgration vertically without
adding the pitch effect which means, we do not use our thrauisbemaintain a desired pitch
angle in order to dive, where we obtain a direct thrust vessopendicular to sea surface. On
the other hand, by resultant thrust vector which is the sutheobertical thrust and horizontal

thrust, our vehicle will decline on a slope.

After linearizing our system we get the following matrix fdepth. Herav stands for heave,
g for pitch andzfor the depth.

m—Zy Mxg—2Zy3 0 (W Zy —mu+Zg Of |w 4
mxs—Wy (ly—Mg) 0| |g|+ [My mxu+Mg O [g| = |0 (3.70)
0 0 1| |z 1 0 O |z 0

The sliding surface is taken as
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0=SW+Sq+S3(2—74) (3.72)

and our model transformed into

X = Ax+Bu (3.72)
form via MATLAB yielding
1.4327 13356 O 2.1937
X=|-7.6031 —7.0186 0O X+ |—8.6137| u (3.73)
1 0 0 0

Then we findA. matrix

~0.5061 —0.3541 0O
Ac=(A-BK')= |-0.0099 —0.3839 0 (3.74)
1 0 0

where the vectok is found by the pole-placement method. Choosing the poles as

p=[0;-5.5680;—0.0179]" (3.75)

we find thek vector as

k=[-0.8838;07703;0" (3.76)

Equatingks to 0 shows us that feedback fromhas no effect to stabilize the heave-pitch
dynamics. On the other hand, in order to simplify our equeti@ find the right eigenvector
sof A; corresponding tds, which is equal to O.

Then the right eigenvector is found as

s=[0.6874;—0.6340;03542]" — Al s=0 (3.77)
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hence our sliding surface, takes the form

0 = 0.6874v— 0.6340y+ 0.3542z— 74) (3.78)

Lastly after finding all the coefficients, our control inputrs into

u= —0.8838v— 0.7703 (3.79)

1

* 6.0693

(—0.11tanh(0.6874n — 0.6340y + 0.3542z— z4) /0.05))

Here the sliding surface boundary layer thickness is ssfieas 005 which seems to be a
proper value and is selected as.01 in accordance with the balance between robustness
and performance.

layer
thidinesszyitching term

-

._I'
™
ot

Figure 3.14: Model of Sliding Mode Control for Depth
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Figure 3.15: Input for Sliding Mode Depth Control

Figure 3.16: Desired Depth for Sliding Mode Control

3.5.3 Depth Control with Optimal Control

Optimal Control is applied to the same matrix used in SMC Wiiscobtained by linearizing
the system for depth control. Only the coefficients of thedinzed matrix are different.
Hence substituting the coefficients we found the followinagtimx
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14327 13356 O 2.1937
X=|-7.6031 -7.0186 0 x+ |—86137 u (3.80)
1 0 0 0

Then we used the optimal control equations stated above ailtdabMATLAB m-file to
obtain the desired output.

Here agaimQ andR matrices in cost functional are taken as the same with neatiit steer
control.

100

Q=1{0 1 0 (3.81)
00 1
R=1/4

Also we preferred to find the Riccati matrixfrom MATLAB with Iqr command as

[K,P,Eig] = Igr (A,B,Q,R) (3.82)

which yielded th&K, P, Eig matrices as

K = [-0.5949 19505 20000

2.8419 06208 17216
P= 10.6208 02394 03804
17216 Q3804 21995

3.6 LQG Design

In LQR design we have supposed that we have all the stateriatarn at each step but in real
time design it will not be possible to acquire full state imf@tion. Environmental distur-
bances like currents, wind, waves, etc. will cause to systeise and also state information
acquired from sensors will not be so definite because of ttesmrement noise hence system
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Figure 3.17: Control Input for Optimal Depth Control

will not be controlled efficiently as desired. Generallysewill set in too much oscillation
which will end with too much chattering at the input for compation. Therefore we need
a filter in order to obtain optimum state estimates. In thatmea Kalman filter is selected,
where in case of white noise it is the optimal filter [35]. Inralesign we assumed that
all noises are white otherwise we would design a Coloredsé&#ialman filter. Combining
the LQR feedback design with an estimator forms the optiystiesn known as "Separation
Principle". In this theorem, design is achieved in two stadérst, states are obtained from
Kalman filter as optimal estimates then optimal control peobis solved with these known
states.

In LQG design we followed the Separation Theorem hence fissdasigned an optimal
regulator assuming full-state feedback for linear systeen tve designed a continuous-time
Kalman filter with white noises and known power spectral dmss Lastly we combined
optimal regulator and Kalman filter into an optimal compéasahich yields an input from
estimated state and whence output.
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Figure 3.18: Desired Depth with Optimal Control

3.7 Kalman Filter

We start designing the Kalman filter first with a truth model:

X(t) = A(t) x(t) + B(t) u(t) + G(t) w(t) (3.83)
y(t) =C(t) x(t) +v(t) (3.84)

where

X(t) . State vector

y(t) : Measurement vector

A(t) . State matrix

C(®) : Measurement matrix

wi(t) . System noise and model uncertainty

v(t) : Measurement noise

Both noises are assumed to be white noises with zero-meass{@aawand uncorrelated with
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each other and with state.

E{w(t)w'(t)} =Q(t) (3.85)
E{v(t)v' (1)} =R() (3.86)
E{vit)w'(t)} =0 (3.87)

Kalman filter for state and output estimate is build as
K(t) = A(t) X(t) + B(t) u(t) + L(t) [y—C(t) K] (3.88)
Let's define the state error &= X— x. Combining the truth model with Kalman form we
get
e= (A(t) X(t) +B(t) u(t) + L(t) [y—C(t) X]) — (A(t) x(t) + B(t) u(t) + G(t) w(t))

=A(t) e+ L(t) C(t) x+ L(t) v(t) — L(t) C(t) Xx— G(t) w(t)

= (A(t) —L(t) C(t))e—G(t) w(t) +L(t) v(t) (3.89)
We define the state error-covariance matrix as

Pt)=E{et)e"(t)} (3.90)

Considering the linear time-invariant state-space egnati

X(t) = A(t) X(t) + B(t)u(t) (3.91)
y(t) = C()x(t) + Du(t) (3.92)

Using the below formula which is known asntinuous Riccati equatigrcontinuous time
Kalman filter is derived as stated in [19].

P(t) = A(t)P(t) + P(t)AT (1)
—P(t)CT(t) R (t) C(t) P(t) + G(t) Q(t) GT(t) (3.93)

The algorithm for continuous time Kalman filter is statedhe table below. Assuming the

linear time varying system with white noise sequences aratmean Gaussian distributions,

first initial values for state and error-covariance mathirdd be assigned. Then the Kalman
gain matrix is found and used in updating the error-covagamatrix in next step. Here a

differential equation is obtained which is solved in Simultoolbox of MATLAB.
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Table 3.1: Continuous Time Kalman Filter

Model X(t) = A(t)x(t) + B(t)u(t) + G(t)w(t), w(t) ~N(0,Q(t))
y(t) = C(t)x(t) +v(t), v(t) ~ N(O,R(t))
Initialize X(to) =%
Po=E{e(to)e’ (to) }
Gain K(t) = P(t)C(T)(t)R (1)
Covariance P(t) = A(t)P(t) + P()AT(t)
—P(O)CT (R (HC(1)P(t) + G(H)Q(L)G' (t)

Estimate K(t) = A(D)R(t) + B(t)u(t) + L(t) [y— C(H)K(t)]

Combining the optimal regulator with Kalman filter we retéea compensator. Regulator’s
weighting matrice® andR and Kalman filter's spectral noise densitiésndZ play impor-
tant role in designing compensator. Using the state infiomabtained from Kalman filter
we get the following LQG equation which we built in Simulink.

X=A%X+Bu+L(y—Cx)
=(A—BK—-LC)%+Ly (3.94)

with the input value

u= —KR (3.95)

whereK = PBR 1.

Our design for LQR/LQG Control is based on separation ppiedherefore combining each
controller on the same Simulink diagram would be more apmt®p in order to compare
their efficiencies.

Here
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Figure 3.19: LQG Design

3.8 Summary

In this chapter, we tried different control methods and n&waé the outputs and successes of
each method. Because of its simplicity and easy applitaliilst we tried PID method. In
real world, many successful designs with PID method has begorted [12] recently. On
the other hand, when the chaotic specifications are thodgdaoconditions, better control
methods are developed for underwater systems. SMC is ose tmmtrol methods with its
robustness. Different studies showed that [13], SMC is aisbhnd effective method to
compensate environmental disturbances and unexpectiseffn our algorithms, we have
also analyzed that applying same amount of noise to thersyS®IC is more successful in
compensating these effects when compared with PID and L@Rh®other hand, most of
the time because of chattering property of SMC while tryiodeeep the error on a sliding
surface swiftly, extra battery power is needed, which cam loésadvantage of SMC for a
long operation.

We assumed that full state feedback information is availaiflile designing PID and SMC
methods which is far from the reality. Hence to get rid of tiiéficiency, we analyzed an
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Figure 3.20: Simulink LQG Steer Sub-block

LQG design where the Kalman filter is a prerequisite. In thanner, first we designed
an LQR system and combined Kalman filter with it to obtain LQGd®&l. We probed the

success of Kalman filter in filtering the undesired noise dsd gained the advantage of
acquiring the information of some components of state whih not be measured by the
sensors in real time operation. Advantage of LQG method b@R is obvious which has

been demonstrated with related figures.

Probing all the methods we generated SMC seems to be mostiveffeontrol method in
harsh sea conditions. Using the state information obtdired Kalman filter will probably
increase its efficiency and bring important advantageseaayistem.
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LGIG versus LGR

Figure 3.22: LQG vs. LOR
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CHAPTER4

PARAMETER ESTIMATION

4.1 Introduction

In this chapter we worked on the problem of parameter esitimathich is directly related
with system identification. System identification is defirasdhe deduction of system char-
acteristics from measured data [18]. It is commonly reféme an inverse problem in a
way that one tries to find the input when the output is knowna lgeneral manner what
we tried in this chapter is estimating the hydrodynamic ficiehts of our vehicle from our
measurements which are obtained from controllers.

In Section 4.2, a solution to our parameter estimation gmbis probed from window of
least squares method. A sequential method that correcfsatiaeneters at each step is used.
In Section 4.3, parameter estimation problem is faced frifrarside and Genetic algorithms
as an optimization method is used. Defining a nonlinear aowttion for our problem we
applied different simulations in order to estimate our fioieits from controllers outputs.

The goal in parameter estimation is to predict the value afiantjty which is assumed to
be time invariant. In case of time-variance change of patarsenust be slow compared
with the state variables in order to estimate the valuesesstally [35]. In our estimation

problem we assumed that all our parameters (hydrodynangificients) are time-invariant.

Parameter estimation for underwater vehicle consists edipting some of the hydrody-
namic coefficients by analyzing the measurements, whictbeanodeled as

i) =hli,xv(i)], i=12...k (4.1)

wherey(i) denotes the measurementparameters andi) measurement noise. Hence we
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must find a function ok observations
R(K) 2 R [k,vk} (4.2)
here observations are shown as

YR 2 [y}, (4.3)

The measurement noisé) is assumed to be zero mean Gaussian noise with variafce

V(i) ~ N (0,02) (4.4)

4.2 Linear Sequential Estimation

Basically linear sequential estimation method is achidwetinear least squares algorithm.
In linear least squares, our goal is to estimate the unknaatovx from given measure-
ments. Our problem can be modeled as

¥i = HiR+ Vi i=1,....k (4.5)
where

Vi :measurements

Hi :measurement matrix

X :vector of unknowns

Vi :measurement noise

Our model (4.5) is linear with its nature, if there would beanlnear functionh(x(t),t)
instead ofH (i), we would have a nonlinear parameter estimation problente,Hee try to
estimatex such that the estimation error is minimum, hence we grabsiiation by mini-
mizing the square of the estimation errors with insertedyimematrix in the cost function,

1
J= EeTWe (4.6)

We are looking forxthat minimizes]. HereW is ann x n symmetric matrix.e stands for
error and defined as

e =Y —Hi>2

63



Our cost function (4.6) can be written as

K
J(k) = Zx [ — Hi®|T W [§ — Hig

= T WP — T WecHIR — KT HT Wi+ X7 HTWEHKR 4.7)

Utilizing the necessary condition farté be minimum, which is

aJ
3% = 0 (4.8)
we find
aJ =T ST T
&:—Zykvw(HkJer Hy WkHc=0 (4.9

equating both sides yields
Yie Wi Hic = X H Wi Hi
Then taking the transpose of both sides we get
H Wi Hick = H{ W i
Lastly leavingx'we find the least squares solution as
%= (HY WeHi) ™ HT Wi (4.10)

From the sufficient condition of minimun%ﬁ > 0, which means setting the gradient to
zero, it is clear in (4.9) thalV must be positive definite in order to equation to be positive.

Least squares estimator is unbiased which can be defined as
Ela] =0 = E[x— % =0 = E[X] =X (4.12)
wheree £ X — %.

An estimatorx(y) is defined as the unbiased estimatorxaf the expected value of the
estimator is equal tg, E {X(y)} = X, VX [35].

SelectingV = R~ and substituting it in (4.10) we get

E[%] = (H{ ReHY) ~ HIRE[Si
= (H R H) ™ HY RE [Hik+ v (4.12)
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Hence estimation error is found as
& = X— X
= x— (H{ R TH) ™ HY REE [HeR -+

X

= — (HY R*H) 7 HIR Ly, (4.13)

Next we find the information matrix as the expected value efduare of the bias
P(k) = E[e(k)e(k) ']
= (Hy R HI) ™ H R i R HK(HE R HI) ™
~—~
R
= H M Re(H) T HE R RR P HicH MR (HY) ™ (4.14)
After cancellation we get

1

P(k) = [Hy R MHi] (4.15)

Here existence of the inverse means that the informationxmatffinite and the eigenvalues
of HkTRngk are directly related with the condition number which is thea of the largest
singular value to smallest one shows the effort for invéityp Small condition number
denotes that the matrix can be easily inverted, on the agritage condition number defines
poor invertibility or nearly singular matrices.

Substituting equation (4.15) in (4.10), our least squaoégisn simplifies to

%= RcHg R (4.16)

Taking the inverse of both sides and writing fof 1 our information matrix transforms into

Pt = Hir1 Ry Hira (4.17)

In order to write a sequential form we define the variablesitiared as

Vit = :y(kyi ) (4.18)
Hit1 = :H(::- D (4.19)
Vi1 = :V(kvi ) (4.20)
Ret1 = F;k R(k(j- D (4.21)
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which will bring the advantage of writing our information tria in a sequential form

_ R« 0 Hk
Poi=|H{ Hk+D)T
kit [ o Hkrd) ] 0 Rk+1)| [H(Kk+1)
— [HTR* H(k+1)TRKk+1)
=H RMH + H(k+1)TR(k+1) " tH(k+1) (4.22)
Hence it can be written in a more compact form as
P =R+ HG R Hea (4.23)

Equation (4.23) means that information gained atkhel step is the sum of information at
k step and the new information abouthat is obtained from measuremsiik ¥ 1). Owing
to write the estimation in a more calculation accordant, wkwyite the information matrix
in a more compact form by using the matrix inversion lemmanffiich states that

F=|A+BCD! (4.24)
here

F = nxnmatrix

A= nxnmatrix

B = nxmmatrix

C = mxmmatrix

D = mxnmatrix

If we have the assumption that all parts have inverses, tleecew write the above inverse as

F=A!l-A!B(DA'B+C?!) ‘DA (4.25)

In our sequential algorithm selecting the components afrimftion matrix as they adapt in
the matrix inversion lemma

F =P
A=P1
B= HkT+1
C=Ru1
D = Hkia

66



and placing them in the matrix inverse lemma yields

P = [P[l + Hip Riil Hip1]
- -1
= P — AcHG 1 (Hiet PcH s + Rel) ™ Hia R (4.26)

1

In order to write the above equation more briefly we define naxables as

Sci1 = Higr AcH 1+ Riis (4.27)
W1 = RcHG 1 S (4.28)

hence we can write information matrix recursion

P = [l — Wkt Hk+1] R (4-29)

which is equal to

Per = P — Wer1 St W 4 (4.30)

The estimation formula can be written in a recursive formhviite assumption that all the
inverses exist

R = (He R HK) HY Rt (4.31)
R(
for k+ 1 it is written as

A~ T _1 ~
Xier1 = P Hicn Ry Vi
-1

Re O
0 Rk+1)

Yk

—Rea [HY H(k+1)T] [ )

= P He Rk + P Ha R Y
(4.32)

when we substitut&, ; defined in (4.30) for the first term on the right-hand side i394
Rer1 = P HkT thlyk — Wkt Hia PkaT R;Zlyk + B H|<T+1 R;:jl Yir1
~—_—————
W1
= [ = W1 Higpa] BeH R i+ W1 B (4.33)
N———

R
which yields a more simplified form when we write it as

Rier1 = R — Whep1 Hipr R + Wh1 1
=R — Whi1 [Yir1 — Hir 1 %] (4.34)

The recursion form of linear sequential estimation is shawTable (4.1).
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Table 4.1:;

Linear Sequential Estimation

Po=[L1+HWH,]

Initialize R ~1-1
X1=P [% B + Hirwlyl]
Update K1 = K+ Kicra (Vierr — Hir1%)
X -1
Gain Kir1 = H<H|I+1 [Hk+1H<HII+1 +Wk+ll]

Information Matrix

Py = [l — Kk Hk+1] R

4.2.1 Steering Parameter Estimation

Applying the above sequential algorithm to the simplifietelirized steering motion equa-
tions stated below, we find the estimated parameters.

; MK

In order to reduce the coupling effect of the parametersmicgubecause of the multiplica-

Yy mu—Y

(4.35)
N N

[m—w ~Y;
Ny (=N

tion we omit the parametelé andN; [3]. Leaving the derivatives on the left side alone

(M=Yy)v=Yv+ (Y, —mU) r

(Iz—Ni) F =NwW+ N rN¢ T (4.36)
(4.37)
we define the derivatives as
ve (Y Yy (Y=mU
S \Am-=Y, m—Yy
5 €
NV NI’ T
— 4.38
' <u—M>V+<u—M> +<u—M>T (4.39)
a B y
(4.39)
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arranging the equations to apply the algorithm we get

Vi1 — MW

N ov+er = Vir1= (OVAt+1)v+ e Atr (4.40)

which can be written as

OVAt+1
v = v 1] ( ) (4.41)
R , e At
H (]

4.2.2 Diving Parameter Estimation

Before using the sequential parameter estimation algonitie arrange our diving model and
configure it in order to make it applicable to obtain unknovangmeters. Hence simplifying
the model we get

@
q

m—Z;, —Z4 \Y 1z

—Ms  (ly—Mg)

Z, mU-2Z,

(4.42)
Mo Mg

Y

then leaving the derivatives alone yields

w= (m—Z(;,> Wt ( m—Z;, > a+ <m—Zw> u
- Mw Mq ™
q_('y—MQ>W+('y—MQ>q+<|y_MQ>u (4.43)

Evaluating the sequential algorithm both for steering awthg motions we find the esti-

mated linear hydrodynamic coefficients and errors as
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Table 4.2: Parameter Estimation via LSE

Parameters Initial Value | Estimated Valug Absolute Error| Percent Error
Yy -0.0510 -0.0310 0.0200 %39.21
Y, 0.0300 0.0280 0.0020 % 6.66
Ny -0.0074 -0.0077 0.0003 % 3.67
Nr -0.0160 -0.0035 0.0195 %78.12
Zy -0.3000 -0.2144 0.0856 %28.52
Zy -0.1400 0.1038 0.2438 %174.15
Mw -0.0029 -0.0027 0.0002 % 8.47
Mq -0.0016 -0.0017 0.0001 % 6.44

4.3 Parameter Estimation via Genetic Algorithm

Genetic Algorithm (GA) is an optimization and search methaded on the rules of genetics
and natural selection [9]. Goal of the genetic algorithmiiselect a state that maximizes
the fithess which is equal to minimizing the cost functiortn€ss is directly related with the
survivability, which is wanted to maximize.

Since GA is based on genetics, some terms used in problertiosoéire to be defined first.
A geneis the basic unit of heredity which includes the sequencenp§mes calledjenetic
code This code does not vary in an organism. GA is solved by usimgrmmosomes which
breed to form new generation. This group of interbreedimtividuals is calledhopulation
Genes are found in two forms that show different charadiesis Each of these forms is
known asallele. The combination of the alleles influence the traits of thganoism. One
of the alleles becomes dominant and the other one becomessies by which the genetic
code is transferred to next generations in a natural way.

Though many different algorithms are developed which amesghat superior to other
mates, general advantages of GA can be stated as [9]

» No need of derivation or gradient of cost, which can be a &urdb for a complex
cost function.

» Generates a list of optimum variables, not just a single one
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» GA can be applied to both continuous and discrete variables

» Evaluation of a large number of variables is possible andtita big issue for GA.

Efficient for parallel computers.

Variables of the problem can be encoded, bringing the adgarof running optimiza-
tion with these encoded variables.

» GA can run with numerically generated data, experimerdtd dr analytical functions.

Hydrodynamic coefficients of the system are small and musgréeisely defined enough to
run in an optimization problem to minimize the cost effeely It will be a burdensome job
to define our small coefficients in binary GA therefore we enefd to use real-coded GA,
which is sometimes called continuous GA.

Figure (4.2) gives a summary of the real-coded GA. The mdfardnce of real-coded GA
from binary coded GA is that instead of zeros and ones thesgare represented with
floating-numbers between defined range.

The GA process starts with fitting the variables to a chrommstherefore selection of the
chromosome plays an important role. The chromosome isenrdts an array of & Ny,
elements wherd\l,5r shows the number of the variables in the problem which is lequhe
number of genes in a chromosome. Hence a chromosome candubata

chromosome= [ p1, P2, Ps; - - - PN | (4.44)

At each step after generation of new chromosome, a costdslatgdd with respect to the

VariabIeSpL p27 p37 “ee pNvar'

cost= f(chromosome= f(p1, P2, P3;--- Phyar) (4.45)

GA is an search technique therefore to avoid too much cortipntaffort, a reasonable
region must be searched. This is achieved by constrainiaggéimes between upper and
lower boundaries. If the region of interest is not known a Heginning, a region with
enough diversity for GA to find the solution must be selected.

Before starting the algorithm an initial populationigf,, is selected wherbl,op, Shows the
number of population or number of chromosomes. Once thelatipuiis generated, one will
have a matrix oNpop x Nyar. Generally for the ease of calculation the values are nozehl
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Figure 4.1: Real-Coded Genetic Algorithm Flowchart

in selection phase but during evaluation, unnormalizedeshre used in the cost function.
Unnormalized values of the chromosomes can be selected as [9

P = (Pnhi — Plo) Pnorm+ Plo (4.46)
where
Pni = upper boundary for the variables in a chromosome
Pio = lower boundary for the variables in a chromosome

Prorm = normalized values of the variables in a chromosome

Normalization of the variables (V) can be achieved by

Vv —Vmin

Vnorm =
Vmax— Vmin

,Vhorm € [0, 1] (4.47)
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Next all the chromosomes are evaluated. In GA, the chromesaith high fitnesses are
selected to reproduce offsprings for the next generatiopaifing algorithm is applied here
to select the chromosomes for crossover phase. For pairoapgs we preferred roulette
wheel weighting. Here the chromosomes have probabilitiisiware inversely proportional
with their costs, chromosome with lowest cost will have maxin probability and inversely
chromosome with highest cost will have minimum probabiligcause of the fact that we
are looking for the minimum. A normalized cost is calculafed each chromosome by
subtracting the cost of best chromosome from eliminatedgwehich satisfies that costs of
the chromosomes in our population are all negative. Theradlses are normalized by the

following formulae
C
— (4.48)

Pn — N
Z mkee pCm

By this pairing method selection probability of the chrommes with low costs are greater
than ones with high costs. Therefore tendency towards ti@maim cost becomes faster,
however if the costs of the chromosomes are close each dtisemethod weights nearly

even.
| | | | Ll Ll Ll
1 T T T 1T T
0 Rt BB B]E PP
Random Random Random
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BR+R
RiR+R+. .. +P

Figure 4.2: Roulette Wheel like selection

Using roulette wheel selection all the chromosomes aretseldy two pairs. Now they are
ready for the crossover operation to breed next generaiomssover operation is achieved

as

Ch]_:[ Chll | Chlz ] Chz:[ Ch21 | Ch22 ] (4.49)
Off]_:[ Offll | Off12 ] Ofng[ 0ff21 | Off22 ] (4.50)

Here,of f states the new offsprings. A number between zero and onteisted,a < [0,1].
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Separation in variables is achieved by selecting a randanbrubetween one amdj,,. The
components of offsprings are defined as

offi= a cm; + (1—a)chy
offi,=(1—a)chy + a chy
offpr =(1—a)chyy + a chy
offpo= a chz + (1—a)chy

Then we apply mutation operation. Sometimes GA may conve@guickly into one region
and if this region comprises local minimums algorithm gefigrends in one of the local
minimums. In order to avoid this tendency, new regions ateduced to algorithm for
searching which is achieved by mutation in the variableguth is shows difference due to
the type of the problem a mutation rate of % 5 - %20 are apdkcalye preferred %10 as
mutation rate. Number of mutations is foundMyu: = UrateX (Npop— 1) X Nyar WhereNwy
stands for the number of mutations aXg,e defines mutation rate. Easiest way of mutation
is achieved by adding a normally distributed random numbehé variable selected for
mutation which can be shown as

Pnew = Pold + UN(Q 1) (4-51)

whereo shows standart deviation of the normal distribution N (@slthe standart normal

distribution with mean 0, and variance 1. Selection of tte@art deviation plays an im-
portant role here because of the real values that stay beteee and one. Selecting a big
deviation number just pushes the selected values to baesdar

At this phase the chromosomes that will pass to next geoeratill be selected. Due to the
elitism the optimum chromosome with minimum cost is notuidgld for selection. Hence
Npop — 3 chromosomes will be keep for the next generation. One fpaeeswill be used
for the elitist chromosome and other two spaces will be thendary chromosomes which
will be obtained after applying boundary mutation. Bouydarutation will be applied to
two randomly selected chromosomes. Generally mutating 8640 chromosome will be
enough. Selecting a random number between zero and one,réitdom number is smaller
than 0.5 than selected genes will be mutated to lower boyratherwise they will be made
equal to upper boundary of each gene.

Algorithm will run until the desired convergence rate isalead. Analyzing the convergence
rate of GA with Markov chains, studies showed that large patfmn size and low mutation
rate leads to solution more efficiently [9]. Alternative vgap stop the algorithm if it did not
converged can be stated as
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* If the best chromosome of GA does not change aftiggrations then stop. Algorithm
found a solution or it stucked in a local minimum.

« If the standart deviation and mean of the population’s ceathed a level then stop
the algorithm because the chromosomes will no longer change

« Algorithm may found the correct answer, check whether thetion is compared with
the best chromosome not others.

« If algorithm does not stop for one of the reasons above, timeit the number of
iterations.

After a number iterations if the algorithm does not convdma good solution changing the
population size and mutation rate may remedy the problem.

4.3.1 Parameter Retrieval via Genetic Algorithm

In parameter estimation via GA we used a black box which igtham measurement data
[21]. Applying a sequence of input to a unknown system weinbthan output. By the
measurements from output we solved a back problem. All thelsitions were generated in
Simulink.

u Black y
Box

»

measurement

A 4

input

Figure 4.3: Parameter Estimation Procedure

We started parameter estimation process first by constguctst function. Since our math-
ematical model is in form

MXx=AXx+Bu+v (4.52)

Better evaluation of the model can be achieved by writingmadel as

Xx=M1Ax+M1Bu+v (4.53)
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wherev denotes noise. Since our goal is to minimize the error, wadefine our cost as

Cost=|| x—MtAx+ M 1Bu|? (4.54)

Hence running GA with our measurements, the following soh for steering and depth
damping hydrodynamic coefficients are obtained.

Table 4.3: Steering Parameters found by Genetic AlgoritAftef 192 Steps)

Parameters Initial Value | Estimated Valug Absolute Error| Percent Error
Yy -0.05100 -0.05102 0.00002 % 0.039
Y, 0.03000 0.02203 0.00797 %26.566
Ny -0.00740 -0.00739 0.00001 % 0.135
Nr -0.01600 -0.01798 0.00198 %12.375
Yy -0.03330 -0.02853 0.00477 %14.324
Y; -0.01380 -0.01845 0.00465 %33.695
Ny 0.01380 0.01233 0.00147 %10.652
N: -0.00920 -0.00948 0.00028 % 3.043
4.4 Summary

In this chapter, the goal was to estimate the hydrodynangéficeents from system measure-
ments. We tried two different methods. First we applieddimsequential estimation which

is a recursive parameter estimation method. This methanllea¢s a new update for the
parameter vector each time new data comes in. Computatienhas to be constant for each
parameter calculation therefore it is easily applicableréal time applications. Basic idea
of this method is to calculate the new parameter estimatmaktby adding some correction

vector to previous parameter estimate [21].

Next we used genetic algorithms for parameter estimati@taBse of the system and mea-
surement noises, output of the system does not directlyigisemation about the structure
of the system. Therefore we tried to estimate the system blyzing measurements such
that, minimizing the errors would give us maximum inforroati Solution of the parameter
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Table 4.4: Depth Parameters found by Genetic AlgorithmdAil3 Steps)

Parameters Initial Value | Estimated Valug Absolute Error| Percent Error

Zy -0.30000 -0.30027 0.00027 % 0.09

Zy -0.14000 0.16066 0.02066 %14.757
Mw -0.00290 -0.00292 0.00002 % 0.689
Mq -0.01600 -0.01669 0.00069 % 4.312
Zi, -0.03330 -0.03148 0.00178 % 5.351
Z -0.01380 -0.01340 0.00040 % 2.898
My, -0.01380 0.01418 0.00038 % 2.753
Mg -0.00463 -0.00448 0.00015 % 3.239

estimation problem with GA ended with satisfying resultfiene estimation errors of some
of the parameters are far beyond from errors found with tirseguential estimation. The
success of GA comes from the fact that it is an optimizatiarae method which directly
concentrates on the solution for our case.

But when the applicabilities of both methods are consideusihg linear sequential estima-
tion for online studies and GA for offline estimation seembdéamore logical. LSE runs in
a short time when compared with GA therefore that makes fepmble for online estima-
tion but because of its unsatisfactory results using GA ffline estimation will give good
results.
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CHAPTERDS

GUIDANCE, PATH PLANNING AND
OBSTACLE AVOIDANCE

5.1 Introduction

In this chapter we described guidance and obstacle avadaitic path planning. Section 5.2
gives information about path planning and how to keep ourenmdter vehicle far from
obstacles while not moving away from goal point. For patmplag we preferred to solve
online problem which seems to be more applicable for read thituations. We assumed
that at the start of the operation, no information about tations of the obstacles are
available. As our vehicle advances towards the goal pobstazles start to give echo that is
when the information about obstacles are obtained. Olestace modeled using constructive
solid geometry and path planning as an optimization probesolved both with sequential
guadratic programming (SQP) and Fletcher-Reeves metlsmdistions about algorithms are
expressed within graphs at the end of the section.

In Section 5.3, information about guidance methods indiie is given. Then, as a sim-
ple practical approach line of sight guidance method isritesd, which is the most applied
guidance algorithm in underwater environment. Generasimge random numbers, effi-
ciency of our Simulink guidance model is tested. Solutiorspesented at the end of the
section.
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5.2 Path Planning and Obstacle Avoidance

Path planning is an essential requirement in different itmmd especially in military op-
erations for underwater vehicles. When time and energy ciomie as important issues,
path planning becomes an indispensable method in ordemsuote less energy because
of the limited battery capacity. Selecting the environmasntwo dimensional space brings
an important advantage where in 3D, necessity to define théiggoand attitude informa-
tion increases the number of the variables hence problentes more complex for online

solving.

For path planning we assumed that the problem will be onlingtazle avoidance where
safety of underwater vehicle is the first priority in our ciiimh. Goal is to reach the global
minimum point and avoiding from local minimums. In order th&eve a successful opera-
tion, space free from obstacles is considered as a set afaliggs for nonlinear program-
ming problem [31]. Our study was based on the potential fiedabty where the vehicle is
represented as a point under the influence of an artificial &ietl area around the obstacles
show collision region. Therefore the potential functiorl e the sum of effects that will
push the vehicle from the obstacles and pull it towards taythed point. Due to the fact that
potential field approach can not avoid the vehicle from legadimums, combining the con-
structive solid geometry (CSG) with it local minimums careveided. Detailed information
about CSG can be found in [6].

Three possibilities exist in object defining procedure f&C A solidS defined in 3D Eu-
clidian space, set of its interior points are shown pgoints on the boundary are denoted by
B and points that are out of boundary are represented Wtlith bringing the fact

lUBUT =E3 (5.1)

A non-negative continuous functiof(c) defines a solid ife where intersection and union
operations o objects can be defined respectively as

f'(c) = max(f1(c), f2(c), ..., fa(C)) (5.2)
and union can be defined as

fY(c) = min(f1(c), f2(c),..., fa(C)) (5.3)
Assuming the operation condition a cluttered area we mddwmle obstacles as circles with
different diameters in 2D. A circle in CSG can be modeled as

(x—a)+(y—b?=R (5.4)
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whereR denotes the diameter of the circle amt are distances from main axes. Hence our
free space becomes

R - (x—a)’—(y—b)?<0 (5.5)
In calculations for the optimum path, SQP (Sequential QatatiProgramming) method is
used. General properties of SQP can be denoted as
* It is one of the most widely used algorithms for nonlineanstoained optimization.
» The Karush-Kuhn-Tucker (KKT) conditions are enforced imiterative manner.

» An approximate Quadratic Programming sub-problem isexbht each major iteration
(The Quadratic Programming problem solved at each iterafdSQP is an approxi-
mation of the original problem with linear constraints anghdratic objective).

» The solution to the QP problem gives a search direction.
» Using the search direction a line search is carried out.
» At each major iteration an approximation of the Hessiarpated using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method.

The algorithm that we applied for solving the problem andified information can be found
in [16].

In order to test the efficiency of the algorithm we checked ig capable of passing through
the narrow the gaps and analyzed that algorithm can contleeggoal point successfully in
such conditions. At this test the objective function is sedd as

f(xy) = (x—4)°+ (y—4)? (5.6)

and the obstacles are modeled according to CSG as

X°+y>—8.988<0 (5.7)
X+ (y—4)>-1<0 (5.8)
X+ (y+4)%2-1<0 (5.9)
(x—4)>+y?—1<0 (5.10)
(Xx+4)°>+y?—1<0 (5.11)

Solution for this case is shown in Figure (5.1).
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Figure 5.1: Algorithm Passing Through Narrow Gaps

We tried the algorithm with different starting points, inder to set the most difficult sce-
nario we selected the goal point @s4] and starting poini—7,—8]. Then we realized that
algorithm converged to local minimum and stuck at that puwiith the following obstacle

mapping.

X+y?—1<0 (5.12)
X2+ (y—4)>—1<0 (5.13)
X2+ (y+4)%—-9<0 (5.14)
(x—4)+y?—1<0 (5.15)
(x+4)%2+y?—-9<0 (5.16)

Solution for that mapping is shown in Figure (5.2). Here 8oluleads us to the local
minimum.

After changing the start point and shift it from the regiomese converging chance to local
minimum is high, algorithm managed to reach the goal poiehitle path, reaching the goal
point is shown in Figure (5.3).
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Figure 5.2: Converging Algorithm to Local Minimum
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Figure 5.3: Converging Algorithm to Goal Point
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In order to enhance the algorithm, using the same obstadexdded intersection of obsta-
cles as a new constraint to the system therefore algorithmageal to avoid from obstacles
without sticking in local minimum. Algorithm avoiding frotime local minimum is shown in
Figure (5.4) and Figure (5.5).
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Figure 5.4: Solution Avoiding The Local Minimum
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Figure 5.5: Solution Reaching The Goal Point

This path planning problem is also solved using Fletcheavee method with random gener-
ated obstacles. In this solution the goal is to increaseigtartte between obstacles and the
vehicle in order to avoid endangering the operation. Hereighting cost function is defined
which fulfills increasing the cost when the vehicle appr@aschbstacles and decreases the
cost when the vehicle goes away from obstacles. Since thett@rreaching the goal point,
while avoiding from obstacles, a weighting function is usddch balances the efficiency of
the algorithm in reaching the goal point and keeping distdnam obstacles.

The cost function with five constraints, used in calculaiognstated below.
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1

\/(X— Xobs)®+ (Y — Yobst)® — Robst

1 1
+ +

\/(X— Xob2)? + (¥ — Yobs2)* — Rope \/(X— Xobs3)” + (Y — Yobss)* — Rops

1 1
+ + )

\/(X— Xobst)® + (Y — Yobst)> — Robst \/(X— Xobs)” + (Y — Yobss)> — Robss
(5.17)

f(x,y) = 0.4(x—4)*+0.4(y—4)* +0.6(

The path through the random generated obstacles is showgureR5.6).

Figure 5.6: Algorithm Through Random Obstacles

When compared with Fletcher-Reeves method, it is seentiraBEFGS method solves the
problem in less steps therefore in a shorter time.
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5.3 Guidance

Autonomy for an underwater vehicle requires the design afopgr guidance system. For
a safe operation, vehicle needs a reliable Navigation, &we and Control (NGC) system,
where guidance is the dominant element. With the successGi Bystems after 50s in
aerospace technology, underwater navigation systemsl fanrimpetus by simulating sys-
tems designed for missiles and rockets.

NGC systems on-board of an underwater vehicles work in adayrwith other components.
Navigation system provides the information of the targkeéntguidance system evaluates
this information and calculates the heading angle whiclotres the input for the controller.
Controller keeps the vehicle on the heading angle that cdrogsguidance system. For a
remotely operated vehicle, operator plays the mission afidagice system and sends the
heading angles directly to the controller [30]. When therdtfin of the guidance is defined
as determining the course, attitude and speed of the velitielmain duty can be denoted
as deciding the best trajectory to be followed by the vehigsed on target location and
vehicle capability. Since sensing, information procegsind correction are the main tasks
that enhance the efficiency of a guidance system, the posifithe target with respect to the
vehicle and environmental conditions directly effectsdbeuracy. Though the capability of
a guidance system can be measured with its computation asthgepower, its efficiency
will be limited directly with the vehicle dynamics and actoalimitations.

Generally in literature the following guidance methods preferred most of which are
adapted from advances from aerospace.

Waypoint Guidance by Line of Sight (LOS)
» Lyapunov Based Guidance
* Vision Based Guidance

 Proportional Navigation Guidance

Guidance by Chemical Signals

» Guidance via Magnetometers for Cable Tracking

Electromagnetic Guidance

Our vehicle operating near sea bottom will not have the dppdy of knowing its location
precisely. She will get the position information of the sizé vehicle and will try to correct
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this value by acoustic transducers and sonar. Since thenbotehicle will conceive the
depth information with bearing and distance from the s@rfaghicle, she will be capable of
estimating her own position by these information. Though ihore logical to use guidance
system for the bottom vehicle, for our case it will be used orfage vehicle because of
the precise position information that she will obtain frofavstar GPSGlobal Positioning
System). With the improvements in last decade, accurach@fGPS system enhanced
significantly. Error of a normal GPS system between 10m tari@®decreased to 5 cm
with carrier-phase differential GPS (CDGPS).

As mentioned in Chapter 3 output of our steering and deptlraiters are degrees where
the operator introduces to the system as the referencenBel time operations especially
in pipeline tracking and mine counter measure operatiopsrator does not interest how
the system turns or dives. In those circumstances the patficlg follows or the points,
that vehicle has to pass through come into prominence. lerdadlift the responsibility of
achieving such tasks from operator, a guidance system has tlesigned for underwater
vehicles. In those systems it is assumed that the vehicladeence with constant forward
speed. Desired routes generally are represented by wagpadkuding the environmental
conditions wind, current and wave informations, efficienen be increased.

In order to define the position of the vehicle first the kindosainust be described. Since the
operation is on 2D it is assumed tht= ¢ = 0. From the general kinematics equations we
have the following equations.

X=ucosy — vsiny (5.18)
y=usiny + vcosy (5.19)
P=r (5.20)

Since the above equations are nonlinear in the states, byirp@ linear approximation
that the earth-fixed coordinate system can be rotated satkd¢iired heading gy = 0 and
moving the origin of the coordinate system to the initialmipour heading angley will be
small where we can make the assumption,

sing ~ y; cosy ~ 1 (5.22)

In the linearization process perturbing equation (5.18)dg@

Xo + AX = (Up + Au) cos(Yp + AY) — (Vo+Av) sin(Yo + AY) (5.22)
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Trigonometric functions stated above can be extended as
cos(WYp + AY) = cosyp COSAY — sinyp SINAY (5.23)
sin(Wo + AY) = sinyp cosAY + SinAY cosyy (5.24)
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Using the simplifications stated in (5.21) trigonometricigtipns simplify to

cos(Wo + AY) =~ cosyp — AYsinyp (5.25)
sin(Yo + AY) ~ sinyp + Acosyy (5.26)

Substituting initial conditionxg = ug cosypy — Vo Sinyy in the left hand side of (5.22) and
simplified trigonometric functions in the right hand sidelgis

Up COSWo — Vo Sino + AX = Up Cos — (Up Sino) AY + Au cosyy — Vo Sinyp

— (vocosyp) Ay — Avsingp (5.27)

Ax = Aucosypy — Avsingp — (UpSinWo) AP — (Vo cosyo) AY (5.28)
As a fact of linearization getting rid & in (5.28) gives

X = ucosip — vsingp — (UpSinyo) AY — (Vo cosyp) AP (5.29)

Applying the same procedure to pertyrtin Earth-fixed frame we get the following equa-
tions.
y=usiny + vcosy (5.30)

then perturbation yields
Yo+Ay= (Up+Au)sin(Po+AY) + (Vo+Av)cos(Yo+AY) (5.31)
Substituting initial conditions and after elimination gs/
Ay = Ausinyiy + Av cosyp + (Up cosyp) AY — (Vo Singp) AY) (5.32)
which is equal to

y=usinyp + vcosyp + (Upcosyp) AP — (Vosingp) AP (5.33)

5.3.1 Line of Sight (LOS) Guidance

When an operation path is defined with respect to the waygdiine of sight guidance is
an efficient method. Here the desired waypoimtgk), yq (k)] are entered to the system and
the vehicle is guided with the goal of bringing the vehiclamnehe points. Guidance system
generates an angle based output to the input for the catselich is defined as

Wy(t) = atan(%) (5.34)
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Because of the nature of tangent, quadrant of the angle naustkien into consideration in
the calculations. To check the proximity of vehicle to theyp@ints a measure of error must
be defined. When the vehicle enters in the defined proximitiiefvaypoint, new goal must
be selected as the next waypoint. Here measure of error cdefined as

VOt = x©)2+ (va(t) — y(1))2 < & (5.35)

Though it may be defined by the importance of the mission, istrnases measure of guid-

ance erroe’s taken to be not more than two vehicle lengths; ZL.
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Figure 5.9: Line of Sight Guidance

We used Simulink for modeling the guidance system. In LOSlgnie, a series of points
which represent the waypoints are generated then thesés @om introduced to guidance
system. Guidance system calculates the distance betwess ploints and generates a steer-
ing angle for the controller. Controller imports that siergrangle and commands the system
to get closer to the points consecutively. After each stegteaupdate to the controller,
guidance system checks whether the proximity conditioraiisfied. When the system en-
ters in the measure of the proximity circle, guidance systefiers to the next waypoint and
procedure goes on till to the last waypoint. Simulink diagraf our model is shown in
Appendix D.

The evaluation of our algorithm is achieved by first selecti? random points then contin-
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ues with calculating errors and steering angles betwedn @atsecutive waypoints. These
errors and steering angles are imposed to the simulink m@aedlance unit checks the prox-
imity of errors with respect to the defined value, which is timoes length of our vehicle in
our case. Instead of checking for the entrance of vehicledé@tceptance circle, we probed
errors till they show increase attitude after decreasing. applied the guidance correcting
steering angle to the vehicle till error decreases. Wheretiar starts to increase guidance
systems directs to the next point to the controller and systarts to turn to the new steering
angle. With the above logic, the path that our guidance sy$tdlowed is shown in Fig-
ure (5.11). Some waypoints are not covered because of thecesmmands that guidance
system injects to the controller.
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5.3.2 Lyapunov Based Guidance

This method is directly based on Lyapunov theory which stdiat

If,

1. V(x) > 0 (positive definite)

2. V(x) < 0 (negative definite)

3. V(X) — o as||x|| — o (radially unbounded) then the equilibrium poxitsatisfying
f(x*) =0 isglobally asymptotic stabjevhich also means thdk|| — 0 ast — co.

A new law is generated where the vehicle is planned to mova ficstart point to a goal

point with desired heading. A Lyapunov function is seleadefining the distance between
two points and by selecting appropriate velocities to Lyagufunction, the Lyapunov theory
is satisfied. The function simulating the error convergezsto as time increases.
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5.3.3 Vision Based Guidance

Generally vision based guidance is used for cable trackimdydocking problems. This
method is applied with different equipments. For dockingigbems a beacon has been used.
Beacon is used as light emitter which is detected by the pdetectors on the underwater
vehicle. After acquisition of light, detectors feed guidarsystem and heading angle is
generated. This is similar with procedure used in heat sgakissiles [25]. A high sun spot
for the cameras becomes a huge disadvantage and sourcerdbeshallow waters.

Another manner used in vision based guidance is achieved/ddyaging images that are

taken from two different cameras [4]. Images that are takemfdifferent cameras are

processed by correlating the features and direction to femthre and range is determined.
Then the pixel disparity of the images are found by calibraind the direction and range to
each feature is filled up to the guidance system to deterrhim@éxt step. Also the similar

process with one camera is developed [2].

Also a laser based light tracker system is developed foraguaie where the light is processed
with respect to the center of screen. If it is not detectedrst §jlance, all the pixels are
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scanned row by row. In situation of detection, its angle dedation is evaluated and send
to the vision processor. More than one light source makesytstem invalid.

5.3.4 Proportional Navigation Guidance (PNG)

Basically generated for missiles, PNG method is also agiplécto underwater vehicles. This
method is useful especially for docking purposes becausstdtionary targets, method is
similar to LOS guidance. It is modeled as

whereN is tuning parametel/ is closing velocityA is LOS angle andl. is the command
input [30].

5.3.5 Guidance by Chemical Signals

This guidance method is used for the vehicles that mimicsissdures and these systems are
called biomimics. One of the vehicles for this purpose mgrwdobster and tries to identify
the location of a chemical discharge by sensing it with itsdrativity sensors.

5.3.6 Guidance via Magnetometers for Cable Tracking

As itis defined with its name, this method’s main goal is tacaédfitly track cables for under-
water vehicles. Though for unburied cables vision basedagge can be efficient, in case
of buried cables to protect them from fishery and anchordpprance of visual guidance
decreases seriously. Hence to move out the disadvantagéisenfguidance methods, mag-
netometers are used to sense the cables and informatiorsénasors are fed to the guidance
system to track these cables successfully.

5.3.7 Electromagnetic Guidance

This method is comprised of magnetic coils on the dock antdaard of vehicle. When the
environmental conditions are harsh with a high turbiditg &ow light, most of the guidance

methods become inapplicable. Electromagnetic guidarcidies this problem by running

in every condition from shallow waters to very depth of ocedhis a very accurate system
but its range is limited with a distance of 25m-30m [17].

94



CHAPTERG

CONCLUSION

6.1 Summary of the Results

After the improvements in robotics many different undeevatehicles were built in last
decades. Requirements especially in military environsantelerates the underwater tech-
nology towards autonomous underwater vehicles. Sincentieeférence from operator is
minimum in autonomous vehicles, importance of the precms#rollers and guidance sys-
tems plays an important role. Therefore we focused on tHerdiit controllers and probed
for the efficient one. Because of determining the hydrodynawefficients during pool tests
becomes a wearing process, we tried to estimate some of d¢ffic@nts from our measure-
ments and applied parameter estimation techniques. Adaémwautonomy for a vehicle is
considered, obstacle avoidance and path planning is aitab®/component for a success-
ful navigation, therefore utilizing the advantages of ¢ardive solid geometry we used an
online path planning algorithm. Last of all we generated idajce system based on line of
sight principle.

Since the conclusions of the studies are given at the enctbfawpter, an extra effort is not
taken to show them again.

6.2 Discussion and Future Work

Considering the richness of the underwater research emaiat, still there exists many
unexplored areas. First of all since ULISAR underwater elehis in construction phase,
simulations achieved in this study will be applied to ouriehas soon as she will be ready
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for sea deployment.

On the other hand for an efficient navigation, a design foinmtn thrust for different mo-
tions should be designed for our vehicle. Since we have twasters for each motion in
different planes, a solution is to be found in order to uséehials optimum because when
the motion is left to operator’s initiative there exist infaty many possibilities to execute a
command.

Also for autonomy of the vehicle before mission planninguasing that boundaries of the
operation area are totally known a path that will cover aldiperation area can be generated
based on sonar and other sensors.
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APPENDIX A

NONLINEAR EQUATIONS OFMOTION

Nonlinear equations of motion for our vehicle:

Tx = MU— mvr+mwd+ mz (pr+ @) + Xau+ X4, (w0 +uq) + X4+ Zowq
+ Z4QP 4 XV -+ Xp P+ XeF —Your — Yprp — Yir? — Xour — Ygpcor
+Yova+ Zgpag— (Yg-z ) qr
= XaU— Xy ulu+ XV + Xy + Xpp + X0 + X1 + (W — B) s6
Ty = MV — MwpP+ mur-+mz (gr — p) + XeU+ YW+ Y4 + Yov
FYpP 4 Yk + Xt — Yooup+ Xer2 4 (Xp — Zi) 1p — Zpp? — Xio (Up— @)
+ Xgur — Zg,wp — Zgpg+ Xqar
=YV =Yy |VIV+ Yyu+ Yo+ Ypp+ Yqq + Yot — (W — B) cOsp
Tz = M& — Mug+ Mvp— mzs (P2 + 07) + X (U — w0) + Zgy@ + Z¢G — XU
— Xq@ + YoV + Zpp+ Zit + Yovp+ Yir p+ Yo p? + Xoup+ Yo, wp
—Xvg— (Xp — Yq) pg— Xeqr
— ZyW — Z) )| 0|0 + Zyu+ZNV + Zpp+ Zgq + Zr — (W — B) cOcp
Tk = P+ (12— ly) ar — (F + pa) Iz+ (12 = 67) lyz+ (pr — @) ly — Mz (V— wp+ur)
4+ XpU+ Zp @+ Kg@ — Xy + Xeugq — Yo ? — (Yq — Z) g+ My (A1)
YV 4 KpP+ Kif + YooV? — (Yg — Z¢ ) VI + Zpvp— Mir2 — Kgrp + Xeuv
— (Yo — Zay) v — (Y; + Zg) wr — Ypwp — Xqur + (Y; + Zg) va+ Ki pg— (Mg — N; ) r
— Kpp = Kjpp| Pl P+ Kyt + KW+ Ky + Kqq + Kt + (ZgW) cOsp
(A.2)
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™ = lyG+ (k=12 rp— (P+ar) Ixy + (P? = %) lax+ (AP — ) lyz — M5 (U — vr + )
+ Xg (U4 @) + Z4 (0 — ug) +MgG — Xeo (U7 — @?) — (Zey — Xg) wu+ Ygu
+Kgb+ Mif + Ypur —Yivp— K (p? — 1) + (Kp — Ni) rp — Yoouv-+ Xgvew
— (% +2Zp) (Up—@r) + (Xp — Z¢) (wp+ur) — M pa+ Keqr
+Mqd + Mjqq]a|d+Myu+ MW+ Muw +Mpp+ Mr (z6W) 6
N = lf + (ly—1z) pa— (q+rp) Iy, + (qz_ pz) Ly + (rp— P) lzx+ XU+ Zi o
+ M G4 Xl + Yooou — (Xp — Yg) UQ— Zgwq — Kg0? 4 ViV + Ki p
+ N — XV — XV — (Xp — Yg) VP4 Mirp + Kg p? — (Xg — Yo) uv— XV
+ (Xq+Yp) Up+Yeur + Zgwp — (X +Yp) va— (Kp — Mg) pq— Kear
+ Nt + Ny [+ Nyu -+ Ny + Ny + Npp + Ngg
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APPENDIX B

REYNOLDS NUMBER

In the middle of the head of our vehicle stands a point callagrsation point where the pres-
sure is in its highest value compared to the other points bicle and the velocity of water
is zero at this point during navigation. Here we see a lamfioar till to the occurence of
seperation where the turbulent flow starts. From the figureséen that the Reynolds num-
ber between 1Dand 3x 1¢° denotes the laminar flow, after31CP flow becomes turbulent
and increase of momentum avoids seperation therefore #geddicreases immediately [22].
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APPENDIX C

SIMULINK PID MODELS
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APPENDIXD

GUIDANCE MODEL
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