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ABSTRACT 

 
 

A NOVEL NEURAL NETWORK BASED APPROACH FOR DIRECTION OF 
ARRIVAL ESTIMATION 

 
 

Çaylar, Selçuk 

  Ph.D., Department of Electrical and Electronics Engineering 

  Supervisor: Prof. Dr. Gülbin DURAL 

  Co-supervisor: Prof. Dr. Kemal LEBLEBİCİOĞLU 

 
 

September 2007, 109 pages 

 

 

In this study, a neural network(NN) based algorithm is proposed for real time 

multiple source tracking problem based on a previously reported work. The proposed 

algorithm namely modified neural network based multiple source tracking algorithm 

(MN-MUST) performs direction of arrival(DoA) estimation in three stages which are 

the detection, filtering and DoA estimation stages. The main contributions of this 

proposed system are: reducing the input size for the uncorrelated source case 

(reducing the training time) of NN system without degradation of accuracy and 

insertion of a nonlinear spatial filter to isolate each one of the sectors where sources 

are present, from the others.  

MN-MUST algorithm finds the targets correctly no matter whether the targets are 

located within the same angular sector or not. In addition as the number of targets 

exceeds the number of antenna elements the algorithm can still perform sufficiently 

well. Mutual coupling in array does not influence MN-MUST algorithm 

performance. 
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MN-MUST algorithm is further improved for a cylindrical microstrip patch antenna 

array by using the advantages of directive antenna pattern properties. The new 

algorithm is called cylindrical patch array MN-MUST(CMN-MUST). CMN-MUST 

algorithm consists of three stages as MN-MUST does.  Detection stage is exactly the 

same as in MN-MUST. However spatial filtering and DoA estimation stage are 

reduced order by using the advantages of directive antenna pattern of cylindirical 

microstrip patch array.  

The performance of the algorithm is investigated via computer simulations, for 

uniform linear arrays, a six element uniform dipole array and a twelve element 

uniform cylindrical microstrip patch array. The simulation results are compared to 

the previously reported works and the literature. It is observed that the proposed 

algorithm improves the previously reported works. The algorithm accuracy does not 

degrade in the presence of the mutual coupling. A uniform cylindrical patch array is 

successfully implemented to the MN-MUST algorithm. The implementation does not 

only cover full azimuth, but also improv the accuracy and speed. It is observed that 

the MN-MUST algorithm provides an accurate and efficient solution to the target-

tracking problem in real time.  

 

Keywords: Direction Finding, Target Tracking, Beam Forming, Direction of Arrival 

Estimation, Neural Network, Spatial Filtering. 
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ÖZ 

 

 
AKILLI ANTENLER İLE HEDEF İZLEME  

 
 

Çaylar, Selçuk 

  Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

  Tez Yöneticisi: Prof. Dr. Gülbin DURAL 

  Ortak Tez Yöneticisi: Prof. Dr. Kemal LEBLEBİCİOĞLU 

 
 
 

Eylül 2007, 109 sayfa 
 
 

Bu çalışmada, daha once geliştirilen bir algoritmaya dayanan, gerçek zamanlı çoklu 

hedef takibi problemi için yapay sinir ağı kullanan yeni bir algoritma önerilmiştir. 

Önerilen, geliştirilmiş yapay sinir ağına dayalı çoklu hedef izleme(GY-ÇHİ) 

algoritması üç bölümden, kestirim, konumsal süzgeçleme ve yön bulma katlarından 

oluşmaktadır. Önerilen sistemin ana katkısı bir birinden ilintisiz hedefler olması 

durumunda yapay sinir ağlarının giriş ölçeklerinin düşürülmesi ile birden çok 

sektörde hedef bulunması durumunda her bir sektörü diğer sektörlerden yalıymak 

amacıyla ilave edilen küresel süzgeçleme katıdır.   

GY-ÇHİ algoritması, hedefler birden çok açısal bölgede olsa bile bulabilmektedir. 

Ayrıca hedef sayısı anten dizini elamanı sayısını geçmesi durumunda bile algoritma  

hedefleri doğru olarak bulabilmektedir. Anten dizininde meydana gelecek girişimler 

GY-ÇHİ algoritmasının performansını etkilememektedir.   

GY-ÇHİ algoritması, yönlü anten yayılım karaktiristiği kullanılarak silindirik 

microstrip patch anten dizini için daha fazla iyileştirilmiştir. Yeni algoritma silindrik 

microstrip patch dizini ile GY-ÇHİ(SGY-ÇHİ) algoritması olarak isimlendirilmiştir. 

SGY-ÇHİ, GY-ÇHİ gibi üç bölümden oluşur. Kestrim bölümü GY-ÇHİ ile 
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tamamem aynıdır.  Konumsal süzgeçleme ve yön bulma katları ise yönlü antenin 

avantajlarını kullanarak sade bir yapıda önerilmiştir.  

Algoritmanın performansı, bilgisayar benzetimleri ile düzgün doğrusal anten dizini, 

altı elemanlı düzgün bir dairesel dipole anten dizini ve on iki elemanlı düzgün bir 

silindirik microstrip patch anten dizini için ayrı ayrı incelenmiştir. Benzetim 

sonuçları daha önce geliştirilen algoritmalar ve literatürde yer alan geleneksel 

yöntemler ile karşılaştırılmıştır. Önerilen algoritmanın daha önce geliştirilen 

algoritmaları iyileştirdiği gözlemlenmiştir. Anten dizininde oluşacak girişimler, 

algoritmanın kestirim doğruluğunu düşürmemektedir. On iki elemanlı düzgün 

silindirik bir patch anten dizinine SGY-ÇHİ algoritmasına başarıyla uygulanmıştır. 

Uygulama yanlızca tüm yatay açıyı kestirmekle kalmayıp, aynı zamanda kestirim 

doğruluğunu ve hızı iyileştirirken yapay sinir ağ boyutunu küçültmektedir. SGY-ÇHİ 

algoritmasının gerçek zamanlı hedef izleme problemine doğru ve etkin çözüm 

sağladığı gözlemlenmiştir. 

Direction Finding, Target Tracking, Beam Forming, Direction of Arrival Estimation, 

Neural Network, Spatial Filtering. 

 

Anahtar Kelimeler: Yön Bulma, Hedef İzleme, Huzme Şekillendirme, Geliş Yönü 

Tahmini, Yapay Sinir Ağı, Konumsal Filtreleme. 
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CHAPTER 1  

1 INTRODUCTION 

Direction finding is one of the major problems for many applications such as radar, 

navigation, mobile communications, electronic warfare systems, sonar and 

seismology. Direction finding algorithms have also been known as spectral 

estimation, direction-of-arrival (DoA) estimation, angle of arrival (AoA) estimation, 

or bearing estimation. The goal of DoA estimation algorithm is to estimate the 

direction of the signal of interest from a collection of noise ‘‘contaminated’’ set of 

received signals. 

The early direction finding methods were based on creating a pencil beam, then 

mechanically steering that beam into the angular region of interest. Arrays were used 

to create the desired beam. Later, mechanical steering is replaced by electronic beam 

steering with the advances in antenna manufacturing and signal processing. 

Direction finding have followed an evolutionary trend. In the previous decade some 

powerfull and high-resolution methods for DoA estimation such as MUSIC and 

ESPRIT [1-3] had already been developed. However, these conventional methods 

were typically linear algebra based methods requiring computationally intensive 

matrix inversions. Furthermore there were some drawbacks such as the number of 

arriving sources must be less than the number of antenna array elements and a 

accuracy degradation of DoA estimation under low SNR. Therefore they were not 

able to meet real-time requirements.  

Rapid growth in wireless communication accelareted the demand for DoA 

estimation. Neural networks (NN) evolved into powerful tools in various fields in the 

past few decades. Within the last decade quite a few number of NN based DoA 

estimation algorithms have been developed to overcome the drawbacks of 

conventional methods and respond the demand [4-57]. The main advantages of the 

NN methods are that they outperform conventional linear algebra based methods in 
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both speed and accuracy, since NN methods avoid the cumbersome eigen-

decomposition processes. Apart from being computationally efficient, NN methods 

have been observed to be more immune to noise and are found to yield better 

performance in the presence of correlated arrivals. However, in this study, proposed 

algorithm improvement in neural network size is developed for uncorrelated source 

case. 

In a recently published work, a NN algorithm, namely the Neural Multiple-Source 

Tracking (N-MUST) algorithm, was presented for locating and tracking angles of 

arrival from multiple sources [57]. The algorithm employs a neural network 

operating in two stages and is based on dividing the field of view of the antenna 

array into angular sectors. Each network in the first stage of the algorithm is trained 

to detect signals generated within its sector. Depending on the output of the first 

stage, one or more networks of the second stage can be activated to estimate the 

exact location of the sources. Main advantages of the N-MUST algorithm were 

presented as significant reduction in the size of training set and the ability of locating 

more sources than there are array elements. 

The algorithm proposed in this thesis [58-63], namely the Modified Neural Multiple 

Source Tracking Algorithm (MN-MUST), consists of three stages that are classified 

as the detection, filtering and DoA estimation stages. Similar to [57], a number of 

Radial Basis Function Neural Networks (RBFNN) are trained for detection of the 

angular sectors which have source or sources. A spatial filter stage is applied 

individually to the every angular sector which is classified in the first stage as having 

source or sources. Each individual spatial filter is designed to filter out the signals 

coming from the all other angular sectors outside the particular source detected 

angular sector. This stage considerably improves the performance of the algorithm in 

the case where more than one angular sector have source or sources at the same time. 

Insertion of this spatial filtering stage is one of the main contributions of this thesis. 

The third stage consists of a Neural Network trained for DoA estimation. In all three 

stages Neural Network’s size and the training data size is considerably reduced as 
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compared to the previous approach [57] for uncorrelated sources, without loss of 

accuracy.  

Within the scope of the thesis, the target tracking problem is examined for a linear 

array with uniform isotropic elements, a circular array with uniform dipole elements 

and a cylindrical patch array to demonstrate the performance of the algorithm.       

The ambiguity problem can arise for ULA and UCA applications. Therefore for 

UCA and ULA implementation of the MN-MUST algorithm is considered only for a 

limited angular sector. However, ambiguity is not a problem for cylindrical 

microstrip patch array, while covering the full azimuth.       

In Chapter 1, a general introduction to DoA estimation, evolution of the algorithms is 

given. 

In Chapter 2, the direction finding problem is defined. The conventional methods in 

the literature have been discussed in an orderly manner. The advances and drawbacks 

of the conventional algorithms have been reviewed. Neural network algorithms for 

DoA estimation is presented and each NN algorithm has been reviewed separately. 

The aim of the thesis is also explained in this chapter.  

In Chapter 3, the problem formulation is presented and the neural networks for the 

problem of DoA estimation are established for the case of a linear array of isotropic 

sources. Then the proposed algorithm is discussed for a linear array. The proposed 

algorithm is implemented on a uniform circular dipole array in the presence of 

mutual coupling. Mutual coupling matrix and mutual coupling impedance have been 

studied for a 6-six element uniform circular dipole array. Then the algorithm is tested 

in the presence of mutual coupling. In the last section of the chapter proposed 

algorithm is applied on a twelve-element cylindrical patch array. The proposed 

algorithm is simplified for cylindrical arrays because of the pattern characteristics, 

while covering the whole azimuth.  

In Chapter 4, simulation results are obtained to evaluate the performance of the 

proposed algorithm. Simulations have been made for linear, circular and cylindrical 

arrays examined in Chapter 3. 
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The performance of the algorithm is also tested in the presence of mutual coupling 

and different noise level. Simulation results are compared with conventional and 

neural network algorithms in the literature.  

In Chapter 5, conclusive remarks are provided.   
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CHAPTER 2 

2 DIRECTION FINDING  

In many applications such as radar, navigation, mobile communications, electronic 

warfare systems, sonar and seismology, direction finding is one of the major 

problems. A variety of techniques for its solution have been proposed over past 

decades. 

Direction finding algorithms have also been known as spectral estimation, angle of 

arrival (AoA) estimation, direction-of-arrival (DoA) estimation or bearing 

estimation. The goal of DoA estimation algorithms is to estimate the direction of the 

signal of interest from a collection of noise ‘‘contaminated’’ set of received signals 

in an array.  

DoA estimation algorithms have been developed following an evolutionary trend. In 

the previous decade some powerful and high-resolution methods for DoA such as 

MUSIC and ESPRIT had already been developed. However, these conventional 

methods were typically linear algebra based methods requiring computationally 

intensive matrix inversions. Furthermore there were some drawbacks such as the 

number of arriving sources must be less than the number of antenna array elements 

and an accuracy degradation of DoA estimation under low SNR. Therefore they were 

not able to meet real-time requirements. Neural Networks (NN) evolved into 

powerful tools in various fields in the past few decades. Within the last decade quite 

a few number of NN based DoA estimation algorithms have been developed to 

overcome the drawbacks of conventional methods. 

An extensive survey on the evolution of conventional DoA estimation algorithms is 

provided in [1], where conventional DoA estimation algorithms are classified. 

Conventional DoA estimation classifications can be found in [2] and [3] as well. The 

DoA algorithm classification discussed in this chapter is parallel to [1-3] to a large 

extent.  
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Neural network based methods have recently been developed for real-time DoA 

estimation problem requirements [4-57]. A survey of neural network based methods 

for array signal processing including DoA estimation methods is presented in [4]. 

The main advantages of the neural methods are that they outperform conventional 

linear algebra based methods in both speed and accuracy. Since neural methods 

avoid the cumbersome eigen-decomposition processes they are found to be far 

quicker than conventional methods. Apart from being computationally efficient, 

neural methods have been observed to be more immune to noise and are found to 

yield better performance in the presence of correlated arrivals. However, a drawback 

of the neural schemes is the selection of the network size which is usually done by 

trial and error. 

This thesis is motivated around the Neural Multiple-Source Tracking (N-MUST) 

algorithm [53-57]. The proposed algorithm is based on N-MUST and is called 

Modified Neural Multiple Source Tracking (MN-MUST) and published in [58-63]. 

 

2.1 Direction Finding Problem 

DoA estimation problem in generalized form is to be defined in order to review the 

evolution of the DoA estimation algorithms. Notations used in this section are 

parallel to those given in [2].  

Fig. (2.1) shows a receiving array with incident plane waves from various directions. 

There are K signals arriving from K directions. Signals received by M antenna 

elements in the array are multiplied by M  potential weights. Each received signal 

)(kSm  includes additive, zero mean, Gaussian noise. Time is represented by the k -

th time sample. Thus the array output Y can be given as 

)()( kXWkY T=                                                                           (2.1) 
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[ ]

)()(

)(

)(
.
.
.

)(
)(

)(...)()()(

2

1

21

kNkSA

kN

kS

kS
kS

aaakX

K

K

+=

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= θθθ
                             (2.2) 

)(kS  is a vector of K signals at time k , )(kN  is a noise vector at each array element 

m , zero mean, variance 2σ , )( ia θ  is a M -element array steering vector for the 

iθ direction of arrival, A  is an M x K matrix of steering vectors )( ia θ . 

It is assumed that the directions of incident signals are not changed for a period of 

time. The received signals are also considered as time varying and thus the 

calculations are based upon snapshots of them.  

 

Figure 2.1 M -element array with arriving signals. 
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The correlation matrix based on Eq. (2.2)  can be defined as,  

{ }
{ }
{ } { }

n
H

S

HHH

HH

H

RAAR
NNEASSAE

ANASNASE
XXER

+=
+=

++=
=

))((
                                                            (2.3) 

where sR is an K x K source correlation matrix, IRn
2σ=  is a M x M noise 

correlation matrix, I is an M x M identity matrix. 

2.2 Conventional DoA Estimation Methods 

Conventional DoA estimation algorithms have been developed in the previous three 

decades. It is possible to group these algorithms in several different ways. The goal 

of this section is to give a general idea about the evolution of the conventional 

methods; that is the reason why the details of the algorithms are not given explicitly. 

However, the last two algorithms, i.e., MUSIC and ESPIRIT algorithms have been 

reviewed thoroughly as they are the most advanced conventional methods. The 

methods are given in an evolutionary and historical order.  

The goal of conventional DoA estimation techniques is to define a function that gives 

an indication of the angles of arrival based upon maxima vs. angle. This function is 

traditionally called the pseudospectrum )(θP  and the units can be in energy or in 

watts (or at times energy or watts squared). The pseudospectrum will be used for all 

conventional algorithms except ESPRIT. 

 

2.2.1. Bartlett DoA Estimation 

Bartlett DoA method is one of the earliest methods. Uniform weighting is applied to 

the array. This method estimates the mean power expression of 

pseudospectrum )(θBP  [64] such as  
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)()()( θθθ aRaP X
H

B =                                                                              (2.4) 

Under the conditions that the source signals are uncorrelated and there is no system 

noise, Eq. (2.4) is equivalent to 

2

1 1

)sin(sin)1()( ∑∑
= =

−−=
K

i

M

m

kdmj
B

ieP θθθ                                                                      (2.5) 

The pediagram is equivalent to the spatial finite Fourier transform of all arriving 

signals.  

The main limitation of Bartlett approach for DoA estimation is the resolution of 

arrival angles. It is limited by the array half power beam width [1].  

 

2.2.2. Capon DoA Estimation 

The Capon DoA estimation [65-66] is known as a minimum variance distortionless 

response. It is alternatively a maximum likehood estimate of power arriving from one 

direction while all other sources are considered as interference. The goal is to 

maximize the signal-to-interference ratio (SIR) while passing the signal of interest 

undistorted in phase and amplitude. This maximized SIR is accomplished with a set 

of array weights, W , is given by 

)()(
)(

1

1

θθ
θ
aRa

aRW
X

H
X

−

−

=                                                                              (2.6) 

where XR  is the unweighed array correlation matrix.  

Substituting Eq. (2.6) into the array given in Fig. (2.1), the pseudospectrum )(θCP  is 

obtained, 
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)()(
1)( 1 θθ

θ
aRa

P
X

HC −=                                                                           (2.7) 

Capon DoA estimate has much greater resolution than the Bartlett DoA estimate. 

However, Capon resolution will not work in the case of highly correlated sources 

exist. The main advantage of Capon estimate is that one does not need a priori 

knowledge of specific statistical properties [2].  

 

2.2.3. Linear Prediction DoA Estimate 

The goal of the linear prediction method is to minimize the prediction error between 

the output of the m -th sensor and the actual output [67]. In order to accomplish this 

goal it needs to find the weights that minimize the mean-squared prediction error. 

The solution for the array weights is given as 

mX
T
m

mX

URU
UR

W 1

1

−

−

=                                                                                      (2.8) 

where mU  is the Cartesian basis vector which is the m -th column of the 

M x M identity matrix.  

Substituting of the Eq. (2.8) into pseudo-spectrum, it can be shown that, 
mLPP  is 

given by 

21

1

)(
)(

θ
θ

aRU

URU
P

X
T
m

mX
T
m

LPm −

−

=                                                                               (2.9) 

The particular choice for which m -th  element output for prediction is random. 

However, its selection affects the resolution capability and bias in estimate. Linear 

prediction methods perform well in a moderately low SNR environment and are a 

good compromise in situations where sources are coherent and equal power. Linear 

prediction estimate can also provide signal strength information. 
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2.2.4. Maximum Entropy DoA Estimate 

The goal of maximum entropy DoA estimate is to find a pseudospectrum that 

maximizes the entropy function subject to constraints [68-70]. The pseudospectrum, 

mMEP , is given by  

)()(
1)(

θθ
θ

aCCa
P H

jj
HMEm

=                                                                        (2.10) 

where jC  is the j -th column of the inverse array correlation matrix( 1−
XR ).  

 

2.2.5 Pisarenko Harmonic Decomposition(PHD) DoA Estimate  

The goal is to minimize mean-squared error of the array output under the constraint 

that the norm of the weight vector be equal to unity. The eigenvector that minimizes 

the mean-squared error corresponds to the smallest eigenvalue [71-72]. Pisarenko 

harmonic decomposition pseudospectrum, PHDP , is given by 

2

1)(

1)(
ea

P
H

PHD
θ

θ =                                                                         (2.11) 

where 1e  is the eigen vector associated with the smallest eigenvalue 1λ . Pisarenko 

harmonic decomposition method provides the better solution than linear prediction 

and maximum entropy methods. 

 

2.2.6 Min-Norm DoA Estimate  

The minimum-norm method is only valid for uniform linear arrays (ULA) [72-75]. 

The min-norm algorithm optimizes the weight vector by solving the following 

optimization problem, 



 

12 

10min 1 == UWWEthatsuchWW HH
S

H

w
               (2.12) 

where  

W  is array weights, SE  subspace of K eigenvectors such as  

[ ]MKMKMS eeeE ...21 +−+−=  

M  is the number of array elements, K  is the number of arriving signals, and 

[ ]TU 0...011 =  

The solution to the optimization yields the min-norm pseudospectrum; MNP , 

( )
2

1

2
11

)(
)(

UEEa

UEEU
P

H
NN

H

H
NN

T

MN
θ

θ =                                                                       (2.13) 

where NE  is subspace of KM −  noise vectors 

[ ]KMN eeeE −= ...21  

)(θa  is array steering vector.  

Numerator of Eq. (2.13) is constant, so the pseudospectrum can be normalized such 

that 

2

1)(

1)(
UEEa

P
H
NN

H
MN

θ
θ =                                                                      (2.14) 

It should be noted that the pseudospectrum from the min-norm method is almost 

identical to the PHD pseudospectrum. The min-norm method combines all noise 

eigenvectors whereas the PHD method only uses the first noise eigenvector. 
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2.2.7 MUSIC DoA Estimate  

MUSIC is an acronym for Multiple Signal Classification. MUSIC is a popular high 

resolution exigent structure method [76]. It promises to provide unbiased estimates 

of number of signals, the angles of arrival, and the strengths of the waveforms. 

MUSIC makes the assumption that the noise in each channel is uncorrelated making 

the noise correlation matrix diagonal. The incident signals may be somewhat 

correlated creating a nondiagonal signal correlation matrix. 

The number of incoming signals is known or eigenvalues must be searched to 

determine the number of incoming signals. If the number of signals K , the number 

of signal eigenvalues and eigenvectors K , and the number of noise eigenvalues and 

eigenvectors is KM − ( M is the number of array elements), then the array 

correlation matrix can be calculated based on the assumption of uncorrelated noise 

and equal variances.  

IAARR H
SX

2σ+=                                                                       (2.15) 

The next step is to find eigenvalues and eigenvectors. Then K  eigenvectors 

associated with the signals and KM − eigenvectors associated with the noise are 

produced. Then the eigenvectors associated with the smallest eigenvalues are chosen. 

For uncorrelated signals, the smallest eigenvalues are equal to the variance of noise. 

Then the )( KMMx −  subspace spanned by the noise eigenvectors is constructed as 

shown below: 

[ ]KMN eeeE −= ...21                                                                         (2.16) 

The noise subspace eigenvectors are orthogonal to the array steering vectors at the 

angles of arrival Kθθθ ...,,, 21 . Because of this orthogonality condition, 

Euclidean distance becomes 0)()(2 == θθ aEEad H
NN

H  for every arrival angle 

Kθθθ ...,,, 21 . Placing this distance expression in the denominator creates 
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sharp peaks at the angles of arrival. The MUSIC pseudospectrum, MUP , is then given 

as 

)()(
1)(

θθ
θ

aEEa
P

H
NN

HMU =                                                                (2.17) 

For a single source case and a high SNR, MUSIC algorithm approaches the CRLB. 

When using large number of snapshots, MUSIC algorithm gets the best solution [1]. 

However for low SNR and correlated sources case the performance diminishes.   

 

2.2.8 Root-MUSIC DoA Estimate  

The MUSIC algorithm in general can be applied to any arbitrary array regardless of 

the position of the array elements. Root-MUSIC implies that the MUSIC algorithm is 

reduced to finding roots of a polynomial as opposed to merely plotting the 

pseudospectrum or searching for peaks in the pseudospectrum. 

One can simplify Eq. (2.17) by defining the matrix H
NN EEC =  which is Hermitian. 

This leads to the root-MUSIC expression [70], 

)()(
1)(

θθ
θ

Caa
P

HMU =                                                                                 (2.18) 

If we have an ULA, the m th element of the array steering vector is given by 

Mmea mjkd
m ,...,2,1)( sin)1( == − θθ                                       (2.19) 

The denominator in Eq. (2.18) can be written as 
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θ

θθθθ

sin
1

1

1 1

sin)1(sin)1()()(

jkdl
M

Ml
l

M

m

M

n

njkd
mn

mjkdH
m

eC

eCeCaa

∑

∑∑
−

+−=

= =

−−−

=

=

          (2.20) 

where lC  is the sum of the diagonal element of C  along the l th diagonal such that  

∑
=−

=
lmn

mnl CC                                                                               (2.21) 

It should be noted that the matrix C  has off-diagonal sums such that lCC >0  for 

0≠l . Thus the sum of off-diagonal elements is always less than the sum of the main 

diagonal elements. In addition,  *
ll CC −= .  

Eq. (2.20) can be simplified to be in the form of a polynomial whose coefficients are 

lC ,  

∑
−

+−=

=
1

1

)(
M

Ml

l
l zCzD                                                                       (2.22) 

where  θsinjkdez −=  

The roots of )(zD that lie closest to the unit circle correspond to the poles of the 

MUSIC pseudospectrum. Thus, this technique is called root-MUSIC. The 

polynomial Eq. (2.22) has an order of )1(2 −M  and thus has roots of 

)1(2,21 ...,, −Mzzz . In the fields of complex numbers, each root can be represented in 

polar form as 

)1(2,...,2,1)arg( −== Miezz izj
ii                                          (2.23) 

where )arg( iz  is the phase angle of iz . 
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Exact zeros in )(zD  exist when the root magnitudes 1=iz . DoA can be calculated 

by comparing )arg( izje  to ijkde θsin  to get 

⎟
⎠
⎞

⎜
⎝
⎛−= − )arg(1sin 1

ii z
kd

θ                                                                             (2.24) 

Root-MUSIC method has a better solution than MUSIC for a ULA case.  

 

2.2.9 ESPRIT DoA Estimate  

ESPRIT stands for Estimation of Signal Parameters via Rotational Invariance 

Techniques. The goal of ESPIRIT is to exploit the rotational invariance in the signal 

subspace which is created by two arrays with a translational invariance structure [77 

and 78]. ESPIRIT inherently assumes narrowband signals so it is assumed that there 

are MK < narrow-band sources centered at the center frequency 0f . These signal 

sources are assumed to be of a sufficient range so that the incident propagation field 

is approximately planar. The sources can be either random or deterministic and the 

noise is assumed to be random with zero mean. ESPIRIT assumes multiple identical 

arrays called doublets. These can be separate arrays or can be composed of subarrays 

of one larger array. These arrays are displaced translationally. An example is shown       

Fig. (2.2) where a four element linear array is composed of two identical three-

element subarrays or two doublets. These two subarrays are translationally displaced 

by the distance d . Arrays are labeled as array 1 and array 2. 

The signals induced on each the arrays are given by  

[ ]

)()(

)(

)(
...

)(
)(

)()()()(

11

12

1

121111

kNkSA

kN

kS

kS
kS

aaakX

K

K

+=

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= θθθ                                (2.25) 



 

17 

 

Figure 2.2 Doublet composed of two identical displaced arrays. 

 

)()(
)()()(

21

222

kNkSA
kNkSAkX

+Φ=
+=

                                                                          (2.26) 

where { }Kjkdjkdjkd eeediag θθθ sinsinsin ,...,, 21=Φ  is a KK ×  diagonal unitary matrix with 

phase shifts between the doublets for each DoA. iA  is a Vandermonde matrix of 

steering vectors for sub arrays 2,1=i . 

The complete received signals considering the contributions of both sub-arrays is 

given as  

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
Φ

=⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

1

1

2

1 )(
)(
)(

)(
N
N

kS
A
A

kX
kX

kX                                                              (2.27) 

Correlation matrix for either the complete array or for the two subarrays can be 

computed. The correlation matrix for the complete array is given by  

{ } IAARXXER H
S

H
X

2σ+==                                                                         (2.28) 

The correlation matrices for the two sub arrays are given by 

{ } IARAXXER H
S

H 2
11111 σ+==                                                                        (2.29) 

d

Array 1 

Array 2 
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{ } IARAXXER HH
S

H 2
11222 σ+ΦΦ==                                                               (2.30) 

Each of the full rank correlation matrices given in Eq. (2.29) and (2.30) has a set of 

eigenvectors corresponding to the K sources. Creating the signal subspace for two 

subarrays results in the two matrices 1E  and 2E . Creating the signal subspace for 

entire array results in the one signal subspace given by xE . Because of the invariance 

structure of the array, xE can be decomposed into the subspaces 1E  and 2E . 

Both 1E  and 2E  are KM ×  matrices whose columns are composed of the K  

eigenvectors corresponding to the latest eigenvalues of 1R  and 2R . Since the arrays 

are translationally related, the subspaces of eigenvectors are related by a unique non-

singular transformation matrix Ψ  such that 

21 EE =Ψ                                                                          (2.31) 

There must also exist a unique non-singular transformation matrix T such that  

ATE =1                                                                             (2.32) 

and 

TAE Φ=2                                                                          (2.33) 

By substituting Eqs (2.31) and (2.32) into Eq. (2.33) and assuming that A  is full-

rank, then one can write,  

Φ=Ψ −1TT                                                                                         (2.34) 

Thus, the eigenvalues of Ψ must be equal to the diagonal elements of Φ  such that 
Kjkd

K
jkdjkd eee θθθ λλλ sinsin

2
sin

1 ,...,, 21 ===  and the columns of T  must be the 

eigenvectors of Ψ . Ψ is a rotation operator that maps the signal subspace 1E  into 

the signal subspace 2E . The only remaining thing left is to estimate the eigenvalues 

of rotational operator Ψ . Following steps outlines the details of the estimation.  
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Step-1: Estimate the array correlation matrices 21 , RR  from the data samples. 

Step-2: Estimate the total number of sources by the number of large eigenvalues of 

either 1R  or 2R .  

Step-3: Calculate the signal subspaces 1E  and 2E  based upon the signal eigenvectors 

of 1R  and 2R .  

Step-4: Form a KK 22 ×  matrix using the signal subspaces such that  

[ ] H
CCH

H

EEEE
E
E

C Λ=⎥
⎦

⎤
⎢
⎣

⎡
= 21

2

1                                                                   (2.35) 

where the matrix CE  is from the eigenvalue decomposition (EVD) of C such that 

K221 ... λλλ ≥≥≥  and { }Kdiag 221 ,...,, λλλ=Λ . 

Step-5: Partition CE  into four KK ×  submatrices such that  

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

EE
EE

EC                                                                                      (2.36) 

Step-6: Estimate the rotation operator Ψ  by 

1
2212
−−=Ψ EE                                                                                             (2.37) 

Step-7: Calculate the eigenvalues of Ψ , Kλλλ ,...,, 21  

Step-8: Estimate the angles of arrival, given that )arg( ij
ii e λλλ =  

Ki
kd

i
i ,...,2,1)arg(sin 1 =⎟

⎠
⎞

⎜
⎝
⎛= − λθ                                                        (2.38) 
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ESPRIT [1] is a computationally efficient and robust method of DoA estimation. 

However it requires the prior knowledge of number of sources. The number of 

sources needs to be less than the total number of elements in the array.  

ESPRIT and MUSIC algorithms are the most advanced conventional methods. There 

are also available some more hybrid methods but the general drawbacks still remain.   

2.3 Neural Network Based Algorithms for DoA  

Neural network (NN) based DoA methods is reviewed by [4] thoroughly. The 

notations and classifications of NN DoA methods in this section are parallel to those 

given in [4].  

The DoA problem aims to get the DoA of signals from the measurement of the array 

output Fig. (2.3). For an antenna array system, a neural network is first trained, 

which then performs the DoA estimation. 

 

Figure 2.3 DoA neural network model. 

 

A typical architecture of a neural processor is displayed in Fig. (2.4). The network 

computational structure is composed of input preprocessing for antenna 

measurements, a neural network to perform the inversion, and output post 

processing. Input preprocessing is used to remove redundant or irrelevant 

information to reduce the size of the network, and hence to reduce the dimensionality 

of the signal parameter space. Post processing the output node information yields the 

desired information. For example, for the DoA problem, the initial phase contains no  

( )φθ ,R
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Figure 2.4 Neural architecture. 

 

information about the DoA and can be eliminated at the preprocessing phase. The 

input of the network can also be normalized since the signal gain does not affect the 

detection of the DoA. [4] Classifies NN methods for DOA into five different 

methods.  

 

2.3.1. Multilayer Perceptron Method 

The multilayer perceptron (MLP) has strong classification capabilities, and is a 

universal approximator with a three-layer topology [79, 80]. The architecture of the 

MLP is shown in Fig. (2.5), where ( ).g  represents the sigmoid relation. The MLP is 

very efficient for function approximation in high dimensional spaces. The 

convergence rate of the MLP is independent of the input space dimensionality, while 

the rate of the error convergence of polynomial approximators decreases with the 

input dimensionality, while the rate of the error convergence of polynomial 

Pre-processing 

Neural Network 

Post-processing 

Output 

Input 
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approximators decreases with the input dimensionality. The MLP with the back 

propagation (BP) learning rule is one of the most widely used networks. The BP is a 

supervised gradient-descent technique wherein the squared error between the actual 

output of the network and the desired output is minimized. It is prone to local 

minima. 

  

Figure 2.5 MLP architecture. 

 

For a given problem, there is a set of training vectors X , such that for every vector 

Xx∈  there is a corresponding desired output vector Dd ∈ , where D  is the set of 

the desired output. The error pE  is defined as 

ppp zdE −=
2
1                                                                               (2.39) 

where subscript p  represents the p th desired output, . denotes the Euclidean norm.  

The total error is defined ∑=
P

p
pT EE , where p  is the cardinality of X . The BP 

algorithm is defined as  

)1()( −∆+
∂
∂

−=∆ tw
w
E

tw p αη                                                                     (2.40) 
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where η  is the learning rate, α  is the momentum factor, and w  represents any 

single weight in the network. When 0≠α , it is called the momentum method; for  

0=α , it is the BP algorithm. In [81, 82] MLP with the BP rule have been 

implemented for DoA problem.  

  

2.3.2. Hopfield Method 

The Hopfield network [83] is a two-layered fully interconnected recurrent neural 

network. The structure of the network is shown in Fig. (2.6). The input layer only 

collects signals from the feedback of the output layer. Due to recurrence, it 

remembers cues from the past and does not appreciably complicate the training 

procedure. This network is considered as a stable dynamic system in which the 

forward and backward paths will cause the processing of the network to converge to 

a stable fixed point. 

 

Figure 2.6 Hopfield network. 
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2.3.3. Radial Basis Function Network Method 

The radial-basis function network (RBFN) is a three-layered feed forward network, 

and is shown in Fig. (2-7). 

 

Figure 2.7 Architecture of the RBFN. 

It has universal approximation and regularization capabilities [84]. It has been 

proved that the RBFN can theoretically approximate any continuous function [84, 

85].The RBFN is a type of receptive field network, or a localized network. The 

localized approximation method provides the strongest output when the input is near 

a node centroid. It has a faster learning speed as compared to global methods, such as 

the MLP with the BP rule, and only part of the input space needs to be trained. It has 

been reported that the RBFN requires orders-of-magnitude less iterations for 

convergence than the popular MLP with the BP rule using the sigmoid activation 

function [52]. In [52-87] RBFN is implemented for DoA problem. RFBN is 

employed in this thesis and it will be discussed in more detail in Chapter 3. 

 

2.3.4. Principal Component Analysis Based Neural Method  

The principal component analysis (PCA) is a well-known statistical criterion. This 

criterion turns out to be closely related to the Hebbian learning rule. The PCA is 

directly related to the Karhunen–Loeve transform (KLT) and singular value 

decomposition (SVD) [4]. 
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Figure 2.8 PCA network. 

 

The PCA can be used as a solution to the maximization problem when the weight W  

in Eq. (2.1) is the eigenvector corresponding to the largest eigenvalue of the 

correlation matrix R. The cross-correlation asymmetric PCA network consists of two 

sets of neurons laterally connected mutually. The topology of the network is shown 

in Fig. (2.8). The two sets of neurons are with cross-coupled Hebbian learning rules 

orthogonal to each other. This model is extracts the SVD of the cross-correlation 

matrix of two stochastic signals. The exponential convergence has been 

demonstrated by simulation. In Fig. (2.8), x  and y  are input signals to the network, 

],...,,[ 21 xPxxx wwwW =  and ],...,[ 21 yPyyy wwwW =  are the network connection 

weights, the lateral connection weights are Cx and yC . The network is described by 

the following relations: 

xWa T
x=                                                                                                        (2.41) 

yWb T
y=                                                                                                        (2.42) 

Thus 

y
TT

x
T WxyWab =                                                                                              (2.43) 

The learning rules are as follows: 

)()]()()([)()1( kakbkwkykwkw ppxpxpxp ′−+=+ β                                                (2.44) 
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)()]()()([)()1( kbkakwkxkwkw ppypypyp ′−+=+ β                                               (2.45) 

)()]()()([)()1( kakbkckbkckc ppxpiixpixpi ′−+=+ β                                                   (2.46) 

)()]()()([)()1( kbkakckakckc ppypiiypiypi ′−+=+ β                                                   (2.47) 

where 

∑
<

≤=−=′
pi

T
xiiixpipp pixWaacaa ,,                                                           (2.48) 

∑
<

≤=−=′
pi

T
yiiiypipp pixWbbcbb ,,                                                       (2.49) 

and β  is the learning rate. In the above algorithm, xW  and yW  will approximate the 

left and right singular vectors of xyR  respectively, as ∞→k . When yx= , it reduces 

to the conventional symmetric PCA [88]. 

 

2.3.5. Fuzzy Neural Method  

In feedback control systems, fuzzy logic is a very popular tool. Usually, the inputs to 

the system are the error and the change in error of the feedback loop, while the 

output is the control action. The date flow in a fuzzy logic system involves 

fuzzification, rule base evaluation, and defuzzification [89]. The fuzzy neural 

network (FNN) is a neural network structure constructed from fuzzy reasoning. The 

FNN acquires the fuzzy rules and tunes the membership functions based on the 

learning ability of the neural network, and is a synergy of the two paradigms, which 

captures the merits of both the fuzzy logic and the neural networks. Expert 

knowledge is expressed by using the fuzzy IF-THEN rules, and is put into the 

network as a priori knowledge, which can increase the learning speed and estimation 

accuracy.  
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A typical FNN structure includes an input layer, an output layer, and several hidden 

rule nodes. The FNN employs the same network topologies as the ordinary neural 

networks, such as the multi-layer perceptron-structured FNN, RBFN-structured 

FNN, and recurrent FNN. Fundamentals in fuzzy neural synergysms for modeling 

and control have been reviewed in [90].  

In [26] the authors have applied the six-layered, self-constructing neural fuzzy 

inference network (SONFIN) [91] to the DoA problem. The SONFIN is a feed 

forward multi-layer network that integrates the basic elements and functions of a 

traditional fuzzy system into a connectionist structure. It can find the proper fuzzy 

logic rules dynamically, and can find its optimal structure and parameters 

automatically. It always produces an economical network size, and its learning speed 

and modeling ability are superior to the ordinary neural networks. The input to the 

network is the phase difference, which experiences the same input preprocessing as 

in [52], and thus the method is useful only for single source case.  

 

2.4. Discussion 

Due to its general-purpose nature and proven excellent properties, the neural method 

provides a powerful means to solve DoA problems. The neural method outperforms 

the conventional linear algebra-based method in both the accuracy and speed, 

although each specific application has its own limitation [4]. It is especially suitable 

for hardware implementation. Among the neural models, the Hopfield network is 

suitable for hardware implementation and can converge in the same order of time as 

the hardware time constant; the RBFN method is much faster than the MLP method, 

and is receiving more attention in recent years. the PCA-based neural method 

deserves attention since it provides a general method for treating the computationally 

intensive SVD or eigen decomposition, which is common in linear algebra-based 

methods; the FNN method is a synergy of the neural method and fuzzy logic, which 

captures the merits of both methods. It can achieve a faster convergence speed with 

smaller network size, and represents a direction of research interests.  
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A DoA estimation scheme based on a radial basis function neural network (RBFNN) 

is presented in [57]. Here the DoA estimation problem is viewed as a function 

approximation problem, and the RBFNN is trained to perform the mapping from the 

space of the sensor array output to the space of DoAs. It exploits the universal 

function approximation capability of RBFNNs to estimate the DoAs and a successful 

classification of closely separated sources (2 degrees) has been reported. Further, this 

RBFNN based method has been compared with the conventional MUSIC algorithm 

for different levels of source correlations and it has been shown to produce better 

results. We propose a modified version N-MUST algorithm in this thesis. Details of 

the proposed algorithm are given in Chapter III for ULA, UCA and uniform 

cylindrical patch arrays, simulation results are provided in Chapter IV. Publications 

related with the proposed algorithm are given in [58-63].  
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CHAPTER 3 

3 NEURAL NETWORK-BASED DIRECTION FINDING 

Direction of Arrival (DoA) estimation and Direction Finding algorithms have been 

classified in general and overviewed in Chapter 2. DoA estimation and target 

tracking problems have been studied for years and several different adaptive 

algorithms have been developed within the last two decades [1]. However, since 

adaptive algorithms require extensive computation time, it is difficult to implement 

them in real time in general [92]. In recent years application of Neural Network (NN) 

algorithms in both target tracking problem and DoA estimation [4-63] and [78-92] 

have become popular because of the increased computational efficiency. 

In a recently published work, a NN algorithm, namely the Neural Multiple-Source 

Tracking (N-MUST) algorithm, is presented for locating and tracking angles of 

arrival from multiple sources [57]. N-MUST algorithm has a neural network 

operating in two stages and is based on dividing the field of view of the antenna 

array into angular sectors. Each network in the first stage of the algorithm is trained 

to detect signals generated within its sector. Depending on the output of the first 

stage, one or more networks of the second stage can be activated to estimate the 

exact location of the sources. Main advantages of the N-MUST algorithm were 

presented as significant reduction in the size of training set and the ability of locating 

more sources than there are array elements. 

The algorithm proposed in this thesis, namely the Modified Neural Multiple Source 

Tracking Algorithm (MN-MUST), consists of three stages those are classified as the 

detection, filtering and DoA estimation stages [58-63]. Similar to [57], a number of 

Radial Basis Function Neural Networks (RBFNN) are trained for detection of the 

angular sectors which have source or sources. A spatial filtering stage is applied 

individually to every angular sector which is classified in the first stage as having 

source or sources. Each individual spatial filter is designed to filter out the signals 

coming from all other angular sectors outside the particular source detected angular 
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sector. This stage considerably improves the performance of the algorithm in the case 

where more than one angular sector have source or sources at the same time. 

Insertion of this spatial filtering stage is one of the main contributions of this thesis. 

The third stage consists of a Neural Network trained for DoA estimation. In all three 

stages Neural Network’s size and the training data are considerably reduced as 

compared to the previous approach [57] for uncorrelated sources, without loss of 

accuracy. Reduced size neural network approach is also applicable to beam forming 

and direction of arrival estimation algorithms presented in [53-56].  

In this chapter first the problem is established for a linear array with uniform 

isotropic point source elements, then the problem is examined for a uniform circular 

array with dipole elements in the presence of mutual coupling, eventually problem is 

tested for a cylindrical microstrip patch array. MN-MUST algorithm is adapted to 

cylindrical patch array implementation. This adaptation reduced the size of NNs in 

filtering and DoA estimation stages. 

 

3.1 Problem Formulation for Uniform Linear Array 

The notations and symbols used in this section are parallel to [57] where NN-based 

multiple source tracking algorithm is introduced. The problem is formulated as 

follows: M isotropic antenna elements are placed along a line and separated by a 

uniform distance d as shown in Fig. (3.1). The number of sources (targets) is K, 

where K is not known and it is allowed to exceed M. The antenna elements are 

assumed to be omni-directional point sources. The angle of incidence of each source 

is iΘ , Ki ,...,2,1=  which are required to be determined.    

The sources are assumed to be located in the far field of the antenna array, so the 

difference in the aspect angle of a given source by the different antenna element is 

neglected. The signal received on each antenna element can be written as 
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Figure 3.1 Array Structure. 

 

where )(tni  is the noise signal received by the i-th antenna element and 

)sin(0
mm c

d
k Θ=

ω
, d is the spacing between the elements of array, c is the speed of 

light in free-space, and 0ω  is the angular center frequency of the signal. 

In matrix form, 

    )()()( tNtAStX +=                        (3.2) 

where 

[ ]TM tXtXtXtX )(...)()()( 21= , 

[ ]TM tntntntN )(...)()()( 21= , 

                                               [ ]TK tStStStS )(...)()()( 21= ,         (3.3) 

and each entry of A can be defined as; 
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mkij
im eA )1( −−=                        (3.4) 

The noise signals, { }Mitni :1,)( =  received at different antenna elements of the 

array are assumed to be statistically independent zero mean white noise signals with 

variance 2σ  independent of )(tS . The spatial correlation matrix R  of the received 

signal is given by   

{ }
{ } { }HHH

H

tNtNEAtStSAE
tXtXER

)()()()(
)()(

+=
=

                     (3.5) 

here  “H” denotes the conjugate transpose.  

It is shown in Appendix A that all entries of the correlation matrix R  starting from 

the second row are arithmetic combinations of the entries in the first row. Therefore, 

it will be sufficient to calculate only the first row to represent the overall correlation 

matrix.  

Based on Eq. (3.2), the array can be considered as a mapping, MK CRG →: , 

from the space of DoA’s [ ]{ }T
Kθθθ ,...,, 21 , to the space of antenna element output 

[ ]{ }T
M tXtXtX )(),...,(),( 21 . In order to construct the inverse mapping, 

KM RCF →: , a multistage architecture using NNs are employed. The block 

diagram of DoA estimation and MN-MUST algorithm architecture are given in Figs. 

(3.2) and (3.3), respectively. 

In general, array-processing algorithms utilize correlation matrix for direction of 

arrival estimation instead of the actual array output )(tX . In this thesis a similar 

approach is followed with an improvement in the DoA estimation stage by using a 

three-stage algorithm consisting of preprocessing, neural network and the post 

processing stages (Fig. (3.2)). In the preprocessing stage the input to the spatial 

filtering stage is obtained from the antenna element signals )(tX  given by Eq. (3.2). 
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Upper triangular part of the correlation matrix R is used for the DoA estimation 

applications in [53-57]. Based on Eq. (A.10), in this study, only the first row of 

correlation matrix is used to represent the signals in the antenna elements for the case 

of uncorrelated sources exist. Then the input of neural networks is given as 

[ ]131211

333231

232221

131211

RRRb
RRR
RRR
RRR

R =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=  

                                                        
b
bZ =                                                           (3.6) 

The first entry of R , 11R  is real and all the other entries are complex. NN algorithms 

deals with only real entries so the entries with complex parts are considered as two 

different numbers. Therefore the size of Z is 12 −M where M  is the number of 

elements of the array structure. On the other hand, in the N-MUST algorithm [53-

57], the size of Z  is given to be )1( +× MM . For example, for an 6488 =×   

 

 

 

 

 

 

 

 

Figure 3.2 The block diagram of DoA estimation problem (Fig. 1. of [57]). 
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element planner smart array structure, the NN input sizes of the MN-MUST and N-

MUST are 1271642 =−× and 4160)164(64 =+× , respectively, while the output 

sizes of both NNs are the same. Obviously a considerable reduction in the training 

time is obtained with the use of MN-MUST algorithm. 

 

3.2 Modified Neural Multiple Source Tracking (MN-MUST) Algorithm 

MN-MUST algorithm consists of three stages those are the detection stage, the 

filtering stage and the DoA estimation stage as shown in Fig. (3.3). In the first stage a 

number of Radial Basis Function Neural Networks (RBFNN)’s are trained for 

detection similar to the N-MUST algorithm [57] but with reduced input size as 

discussed in the previous section. In the spatial filtering stage, the angular sector of 

interest is isolated from the others so as to improve the detection accuracy. The third 

stage is dedicated to DoA estimation by a NN whose input size is much smaller than 

the input size of N-MUST algorithm. Third stage is also similar to the N-MUST 

algorithm [57] except the size of NN.  

 

3.2.1 Detection Stage 

In this stage first, the entire angular spectrum is divided into P  subsectors. For each 

subsector p, ( Pp ≤≤1 ) an RBFNN is trained to determine if any source exists 

within the sector. Depending on whether sources are present in the corresponding 

sector or not, the sectorial NN will produce “1” or “0” as its output, respectively. 

This information is then transferred to the “Filtering” stage. In the detection stage the 

input vector Z  is supposed to have size 12 −M  as mentioned in the previous section. 

Network training and test (generalization) phase in training are similar to those of N-

MUST algorithm except the input size of the network. The test phase produces the 
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input vector Z , presents it to the RBFNN’s of the detection stage and then sends the 

output of each subsector, that is “1”or “0”, to the next stage.  

 

3.2.2 Spatial Filtering Stage  

This stage is one of main the contributions of the thesis. The spatial filtering stage 

aims to isolate each one of the sectors where sources are present from the other 

sectors. A separate nonlinear (band-pass) filter is designed for each sector and 

activated depending on whether or not target exists in that sector. All these filters are 

multilayer perceptron type NN’s with input size of 12 −M  and output size of 

12 −M . The Spatial Filtering stage is basically a NN system. The inputs for the 

Spatial Filter Network are similar to the vector Z  as of detection stage in [57]. The 

output of the spatial filter network for sector-i is fiZ  which does not include the 

signals from other sectors. In the training phase fiZ  pairs are processed discarding 

the signals outside the i-th angular sector. It is assumed that { })(),...,(),( 21 tStStS K  

are the signals impinging on the array and { })(),(),( tStStS lqt  are the only signals 

coming from direction of angular sector-i where Klqt ≤&, . The input of the NN, 

Z  is computed through Eq. (3.6) having { })(),...,(),( 21 tStStS K  signal pair while the 

output of NN, fiZ  is computed through Eq. (3.6) again but the signal pair is 

{ })(),(),( tStStS lqt  this time. Filtering stage filters out the 

{ } { })(),(),()(),...,(),( 21 tStStStStStS lqtK −   signal pair for subject training example. 

In the training phase NN generalizes the input-output ( )fiZZ →  relations. In the 

testing phase, one can have a generalized response to inputs that it has not seen 

before.   

The filtered Z , which is fiZ  will be the input DoA Estimation Network for Sector-i. 

In order to understand the spatial filtering stage’s function, let us assume it were not 

used and there were sources in other angular sectors as well as in sector-i.  
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Figure 3.3 The modified neural multiple source tracking architecture 

 

    DETECTION     STAGE  

1

Detection 

Network for 

Sector 1 

Detection 

Network for 

Sector 2 

Detection 

Network for 

Sector p 

                         SPATIAL   FILTERING       STAGE 

Spatial Filter 

Network for 

Sector 1 

Spatial Filter 

Network for 

Sector 2 

Spatial Filter 

Network for 

Sector p 

   DoA       ESTIMATION   STAGE  

DoA Estimation 

Network for 

Sector 1  

…..

DoA Estimation 

Network for 

Sector 2  

…..

DoA Estimation 

Network for 

Sector p  

…..

Zf1 Zf2 Zfp 

Z Z Z 

Z Z Z 



 

37 

The algorithm described in [57] can be used; in other words, the algorithm with 

detection stage first and DoA estimation stage next. After the detection stage the 

angular sectors having the sources would have been identified correctly, but in DoA 

Estimation stages for the neighboring angular sectors, the correct source angles 

would not be found because the NN was trained in such a way that sources were 

present only in a specific angular sector. At a first glance it may seem that the 

filtering stage inserted in this study makes the algorithm more complicated with 

respect to the one in [57], but in reality, it is not so. A single NN is trained for a 

sector and the others have been obtained by spatial shifting. The selection of number 

of angular sectors basically depends on the total angular range we are looking for and 

the angular resolution. In this thesis one degree angular resolution is preferred.  

 

3.2.3 DoA Estimation Stage 

DoA estimation stage consists of a NN that is trained to perform the actual direction 

of arrival estimation. When the output of one or more networks of sectors from the 

first stage is “1”, the corresponding second stage network(s) are activated. The 

sectors (associated NN’s) that have outputs “1” are considered as the sectors having 

targets. Then the second stage filtering is activated. The input information to each 

second stage network is Z , while the output is the filtered fiZ . For each sector 

having output “1” from the stage 1, the corresponding third stage network(s) are 

activated. The input information to each third stage network is fiZ , while the output 

is the actual DoA of the sources.  

For a sector WΘ  and a minimum angular resolution of min∆Θ , the number of output 

nodes is given by  

                                                           ⎥
⎦

⎤
⎢
⎣

⎡
∆Θ
Θ

=
min

WJ                                             (3.7) 
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DoA estimates are obtained by post processing the neural network outputs of this 

stage. J  output nodes represent bins in a discrete angular sector centered at intervals 

of width min∆Θ . For example, if WΘ is a sector of 10 degrees width, and the desired 

accuracy min∆Θ , is 1 degree, then the number of output nodes is 10.  The NN is 

trained so as to produce “0” or “1” values at the outputs. An output of “1” indicates 

the presence of a source exactly on that bin and “0” represents no source.  

 

3.3 MN-MUST Algorithm Features 

Sampled Data Processing and correlation matrix construction for MN-MUST 

algorithm is a key first step go through. Even though radial basis function neural 

network applied to MN-MUST has similarities to [57], training and testing phase of 

the RBNN for each stage of MN-MUST algorithm have certain differences. Signal 

and noise models used in this algorithm is similar to [3], to a large extent.  

 

3.3.1. Sampled Data Processing  

Because of advances in analog-to-digital converters (ADC) and digital signal 

processing (DSP); what was once performed in hardware can now be performed 

digitally and quickly [93]. ADCs, which have resolutions that range from 8 to 24 

bits, and sampling rates approaching 20 Giga samples (GSa/s), are now reality [94] 

With supercomputing data converters one will be able to sample data at rates up to 

100 GSa/s [95]. This makes the direct digitizing of most radio frequency (RF) signals 

possible in many applications. This allows most of the signal processing to be 

defined in software near the front end of the receiver [2]. 

It is assumed that the targets are stationary during the sampling and several samples 

are available in each period of the signals. 400 snap-shots are used for sampling the 

data in [57].  
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3.3.2. Correlation Matrix  

Correlation matrix definition and computation is parallel to the one given in [2]. 

Incoming plane waves induce a random voltage on all M-array elements. The 

received signal X is a vector and array output voltages in the array are given in Eq. 

(3.2).  MM ×  array correlation matrix defined as,  

{ }
{ } { }HHH

H

tNtNEAtStSAE
tXtXER

)()()()(
)()(

+=
=

                     (3.8) 

The correlation matrix in Eq. (3.8) assumes that we are calculating the ensemble 

average using the expectation operator { }E . It should be noted that this is not a 

vector autocorrelation because we have imposed no time delay in the vector X .  

For realistic systems where we have a finite data block, we must estimate the 

correlation matrix using a time average. Each antenna noise is independent from the  

signals received and from each other. It has a zero-mean variance 2σ . Therefore, we 

can re-express the operation in Eq. (3.8) as 
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Hence the data is sampled data Eq. (3.9) can be written as a series to be expressed as  
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When the signals are uncorrelated, sR  obviously has to be a diagonal matrix because 

off-diagonal elements have no correlation. When the signals are partially correlated, 

sR is nonsingular. When the signals are coherent, sR  may become singular because 

the rows are linear combinations of each other. When the signals are uncorrelated 

and considered as sinusoidal with unit amplitude, then 

Ks IR
2
1

=                                                                                (3.14) 

where KI  is a KK ×  identity matrix. Noise part of the correlation matrix nR  for 

zero mean and 2σ  Gaussian noise will be  

Kn IR 2σ=                                                                               (3.15) 

Eqs (3.14) and (3.15) are used during the simulations will be given in the following 

chapter with the related signal and noise assumptions.  

 

3.3.3. Signal and Noise Model  

Transmission medium is assumed to be isotropic and homogeneous so that the 

radiation propagates in straight lines. The targets (sources) are assumed to be in the 

far field of the array. That means a particular source (target) signal is coming to the 

every array elements in the same incident angle. Basically signals in each element 

are the summation of plane waves. However there are phase differences for a 

particular incident wave impinging on each antenna element. The transmission 

medium is assumed to be non-dispersive so that the signal waveforms do not change 

as they propagate. It is also assumed that the signal received from a particular target 

source in each antenna element has basically a phase delay of the carriers.  
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Antenna elements are considered identical in terms of pattern, polarization, gain and 

impedance. Mutual coupling is only considered for uniform circular dipole array. 

Mutual coupling is not taken into account for uniform linear array in the analysis. 

However, it can be handled easily by multiplying the patterns with appropriate 

coefficients (mutual coupling matrix). It is also assumed that the antennas and the 

incident waves are polarization matched. The assumptions made so far are similar to 

the DF algorithm given in [3]. 

 

3.3.4. Radial Basis Function Applied to MN-MUST Algorithm 

An overview of neural network can be found in [96]. Radial basis function neural 

network (RBFNN) can approximate an arbitrary function from an input space of 

arbitrary dimensionality to an output space of arbitrary dimensionality [92]. RBFNNs 

The RBNN can be considered as designing neural networks as an interpolation 

problem in a high-dimensional space [96] and [97]. The mapping from the input 

space to the output space may be thought of as a hypersurface Γ  representing a 

multidimensional function of the input. During the training phase, the input-output 

patterns presented to the network are used to perform a fitting for Γ . The 

architecture consists of three layers; the input layer, a hidden layer of high 

dimension, and an output layer as shown in Fig. (3.4).  

The transformation from the input space to the hidden-unit space is non-linear, 

whereas the transformation from the hidden layer to the output space is linear. The 

network represents a mapping from the p-dimensional input space to the m-

dimensional output space: mp ℜ→ℜ . The radial-basis functions (RBF) technique 

consists of constructing a function F that has the following form  

( )∑ −=
N

ii xxwxF
1

)( ϕ                                                                   (3.16) 
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Figure 3.4 Radial basis neural network structure. 

 

where  denotes the norm, N is a set of arbitrary functions, and ix are the centers 

of the radial-basis functions. One of the common and most useful forms for ϕ  is the 

Gaussian function defined by  

2

2

2)( σϕ
x

ex
−

=                                                                                (3.17) 

There are several different learning strategies for RBF networks. In this thesis newrb 

function of [98] software is used trough the simulations. One can find the proper 

syntax and training requirements for that function from [98] help box.  

Once the training of the RBFNN is accomplished, the training phase is completed 

and the trained neural network can operate in the performance phase. In the 

performance phase, the neural network is supposed to generalize, that is, respond to 

inputs ( )stX )'(  that it has never seen before, but are drawn from the same 

distribution as the inputs used in the training set. Hence, during the performance 

phase the RBFNN produces outputs to previously unseen inputs by interpolating 

between the inputs used (seen) in the training phase.  
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3.3.4.1. Detection Stage RBFNN Training and Performance Phase  

A. Generation of training data.  

1) Divide the angular spectrum in to P  sub -sectors. 

2) Select a proper angular separation. 

3) Generate possible targets in any angle in the angular spectrum. 

4) Evaluate the correlation matrix for each target pairs using Eq. (3.5). N  set of 

source (target) pairs will yield { }.,...,2,1, NnRn =  

5) Form the vectors { }.,...,2,1, Nnbn =   

6) Normalize the input vectors using Eq. (3.6). 

7) Generate input output pairs { }.0,nz for source (target) pairs located outside the 

related sub sector, { }.1,nz  for the source pairs inside the related subsector.  

8) Employ newrb of [98] to learn the training set generated in step 7.  

9) For each sub-sector repeat steps 7 and 8.  

B. Performance Phase 

1) Evaluate the sample correlation matrix using the collected array output 

measurements Eq. (3.5). If you are using simulation then consider the noise and 

generate sampled noise data as well and add to the correlation matrix.  

2) Form the vector b . 

3) Produce normalized Z using equation (3.6). 

4) Present input vector Z to the RBFNN’s of the detection stage and obtain an 

output { }01 or  for each sub-sector.  
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3.3.4.2. Spatial Filtering Stage RBNN Training and Performance Phase  

A. Generation of training data.  

1) Divide the angular spectrum in to P  sub -sectors. 

2) Select a proper angular separation. 

3) Generate possible targets in any angle in the angular spectrum. 

4) Evaluate the correlation matrix for each target pairs using Eq. (3.5). N  set of 

source (target) pairs will yield { }.,...,2,1, NnRn =  

5) Evaluate the correlation matrix for each target pairs only for the targets which 

are in the sub-sector and considering the others as if the do not exist, 

{ }.,...,2,1, NnR n
fP =  Let the target pair consists of five targets coming from 

{ }.,,,, 54321 θθθθθ  and your sub-sector only has targets { }.,, 431 θθθ  Then array 

correlation matrix { }.R  is computed through Eq. (3.5) considering all 5 signals, while 

{ }.,fPR  is computed only considering 3 signals.  

6) Form the vectors { }.,...,2,1, Nnbn =  and { }.,...,2,1, Nnbn
fP =  

7) Normalize the input vectors using Eq. (3.6). 

8) Generate input-output pairs { }., N
fp

N ZZ   

9) Employ newrb of [98] to learn the training set generated in step 7.  

10) For each sub-sector repeat steps 5- 9.  

B. Performance Phase 

1) Evaluate the sample correlation matrix using the collected array output 

measurements using Eq. (3.5). If you are using simulation, then consider the noise 

and generate sampled noise data as well and add to the correlation matrix.  
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2) Form the vector b . 

3) Produce normalized Z using Eq. (3.6). 

4) Present input vector Z to the RBFNN’s of the spatial filtering network stage and 

obtain a filtered output fPZ  for each sub-sector. fPZ  will be an input to the next 

stage in the performance phase. 

 

3.3.4.3. DoA Estimation Stage RBNN Training and Performance Phase  

A. Generation of training data.  

1) Generate possible targets in any angle in the sub-sector. 

2) Evaluate the correlation matrix for each target pairs using Eq. (3.5) for N  set of 

source (target) pairs you like, { }.,...,2,1, NnR n =  

3) Form the vectors{ }.,...,2,1, Nnbn = . 

4) Normalize the input vectors using Eq. (3.6). 

5) Generate input output pairs { }., NN LZ , where L is a vector whose size is given 

by Eq. (3.7) and the entries are ‘‘1’’if there is a target in the related angle or ‘‘0’’ if 

there is no target. 

7) Employ newrb of [98] to learn the training set generated in step 5.  

8) For each sub-sector repeat steps 1-7. 

B. Performance Phase 

1) Evaluate the sample correlation matrix using the collected array output 

measurements using Eq. (3.5). If you are using simulation, then consider the noise 

and generate sampled noise data as well and add to the correlation matrix.  
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2) Form the vector b . 

3) Produce normalized Z using Eq. (3.6). 

4) Present input vector Z to the RBFNN’s of the spatial filtering network stage 

(previous stage) and obtain a filtered output fPZ  for the related sub-sector. Then 

present input vector fPZ  to the RBFNN’s of the DoA stage network and obtain the 

vector .L  .L  has the information about which one of the discretized angle of the 

angular sub-sector has targets. Basically the values should be around ‘‘1’’if there is a 

target in the related angle or ‘‘0’’ if there is no target. 

  

3.4 MNMUST Algorithm for Circular Array in The Presence of Mutual 

Coupling  

In recent years application of Neural Network (NN) algorithms in both target 

tracking problem and DoA estimation have become popular because of the increased 

computational efficiency. The Neural Multiple-Source Tracking (N-MUST) 

algorithm was presented for locating and tracking angles of arrival from multiple 

sources [57]. Modified Neural Multiple Source Tracking (MN-MUST) algorithm 

[58-63] improved the performance of the N-MUST algorithm.  

MN-MUST algorithm is established and implemented to ULA(Uniform Linear 

Array) in the previous section [58]. This section examines MN-MUST algorithm for 

UCA(Uniform Circular Array) in the presence of mutual coupling. The UCA 

geometry, antenna elements and induced electromotive force (EMF) model in this 

thesis is similar to [99].   

In smart antenna systems, mutual coupling between elements can significantly 

degrade the processing algorithms [100]. In this section mutual coupling effects on 

Modified Neural Multiple Source Tracking algorithm (MN-MUST) have been 

studied. MN-MUST algorithm applied to UCA geometry. The validity of MN-
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MUST algorithm in the presence of mutual coupling has been proved for UCA. The 

presence of mutual coupling degraded the MN-MUST algorithm performance, as 

expected.   

The MN-MUST algorithm will be formulated for circular array with uniform 

isotropic elements. Then the problem will be implemented to dipole array in the 

presence of mutual coupling. 

 

3.4.1 Problem Formulation for Circular Array  

The notations and symbols used in this study are parallel to those given in [57] where 

NN-based multiple source tracking algorithm is introduced. Circular array geometry 

is similar to the one in [99].  The problem is formulated as follows: M isotropic 

antenna elements are placed along a circle radius a  and separated by a uniform angle 

∆Φ  as shown in   Fig. (3.1).. The origin of the coordinate system (The spherical 

coordinate system is used) is located at the center of the array. Source (target) 

elevation angles, [ ]2/,0 π∈Θ , are measured from the z  axis, and azimuth angles, 

[ ]π2,0∈Φ , are measured counterclockwise from the x  axis on yx −  plane. 

The angular position of the n-th element of the array is  

Mn
M
n

n ,...,2,1,2 =⎟
⎠
⎞

⎜
⎝
⎛=Φ π            (3.18) 

The unit vector from the origin is represented in Cartesian coordinates by  

θφθφθ cossinsincossin zyxr aaaa
∧∧∧∧

++=            (3.19) 

nynxn aaa φφ sincos
∧∧∧

+=            (3.20) 

The vector nr∆  represents the differential distance by which the planar wavefront 

reaches the nth element of the array relative to the origin, and it is given by 
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 nrn aar ψcos
∧

=∆                                                                                                (3.21) 

Since the wavefront is incoming and not radiating outwards, nψ  can be written as 

( )
( )

( ) Mn
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n

nn

nn
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⎠
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(3.22) 

Then Eq. (3.21) becomes 

( ) Mnaar nrn ,...,2,1,cossin =−−=∆
∧

φφθ                                           (3.23) 

Furthermore, assuming that the wavefront passes through the origin at time t = 0, it 

impinges on the n-th element of the array a relative time delay of  

( ) Mn
c
a

nn ,...,2,1,cossin =−−= φφθτ                                                 (3.24) 

 

where c is speed of light in free space.  

The number of sources (targets) is K., where K is not known and it is allowed to 

exceed M. The angle of incidence of each source is { }sisi ΦΘ , , Ki ,...,2,1=  

which are required to be determined. Then the Eq. (3.24) for each single target 

becomes 

( ) KiMn
c
a

nsisin ,...,2,1,...,2,1,cossin ==−−= φφθτ                            (3.25) 

 



 

49 

 

 

Figure 3.5 Circular Array Structure. 

The sources are assumed to be located in the far field of the antenna array, so the 

difference in the viewing angle of a given source by the different antenna element is 

neglected. The signal received on each antenna element can be written as 

MitnetStX i

K

m

kij
mi

m ,...,2,1)()()(
1

)1( =+= ∑
=

−−                (3.26) 
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where )(tni  is the noise signal received by the i-th antenna element and 

( )ismsmm c
a

k φφθ
ω

−= cossin0 , a  is the radius of the circular array, c is the speed of 

light in free-space, and 0ω  is the angular center frequency of the signal. 

In matrix form, 

)()()( tNtAStX +=                                                           (3.27) 

where 

[ ]TM tXtXtXtX )(...)()()( 21= , 

[ ]TM tntntntN )(...)()()( 21= , 

[ ]TK tStStStS )(...)()()( 21= ,                                     (3.28) 

 

and each entry of A  is defined as; 

mkij
im eA )1( −−=                                                               (3.29) 

The noise signals,{ }Mitni :1,)( =  received at different antenna elements of the 

array are assumed to is statistically independent zero mean white noise signals with 

variance 2σ  independent of )(tS . The spatial correlation matrix R  of the received 

signal is given by   

{ }
{ } { }HHH

H

tNtNEAtStSAE
tXtXER

)()()()(
)()(

+=
=

                  (3.30) 

 where “H” is denoting the conjugate transpose.  
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3.4.2. Mutual Coupling 

The impedance and radiation pattern of an antenna element changes when the 

element is radiating in the vicinity of other elements causing the maximum and  nulls 

of the radiation pattern to shift [101]. These changes lead to less accurate estimates 

of the angle of arrival and deterioration in the overall pattern. If these effect are not 

taken into account by the AoA algorithms (adaptive or others), the overall system 

performance will degrade. However mutual coupling can be taken into account by 

using a mutual coupling matrix.  

Mutual coupling compensation is used for adaptive algorithms [102-108]. In the 

MN-MUST algorithm, if mutual coupling is considered during the training phase, 

then in the performance phase algorithm works accurately.  

Under the condition of single-mode elements, the mutual coupling matrix is based on 

angular independence [109]. Using the fundamental electromagnetic and circuit 

theory information, mutual coupling matrix can be written as [110] 

( ) ( ) 1−++= MLLA IZZZZC                                                                (3.31) 

where AZ  is the element matrix MI  is the MxM identity matrix, Z  is the mutual 

impedance matrix, and LZ  is the load impedance (i.e., 50 Ω ). In general, numerical 

techniques in electromagnetics, such as the method of moments (MoM), the induced 

electromotive force (EMF) method, the full-wave electromagnetic computation, can 

be used to calculate the self and mutual impedances [111-112].  

With the presence of array mutual coupling the array output vector Eq. 3-17 can be 

written as [111] 

)()()( tntCAStX +=                                                                                 (3.32) 
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Without loss of generality, we suppose that the signal sources (targets) are 

uncorrelated and the noises are independent with zero mean with 2σ  variance. Then 

the correlation matrix Eq. (3-30) becomes 

       { }HtXtXER )()(=  

       { }( ) { }HHH tNtNECAtStSCAER )()()()( +=  

( ) ICACARR H
S

2σ+=                                                                               (3.33) 

where  { }H
S tStSER )()(= , and I is the identity matrix.  

 

3.4.3. Problem Formulation in the Presence of Mutual Coupling for Circular 

Array  

The coupling matrix C is symmetric for ULA. In the UCA application since the array 

follows the rotational symmetry, C is a Circulant [113] matrix such as  
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                   (3.34) 

The coupling matrix can be calculated using the induced electromotive force (EMF) 

method [114-115].  

For an equal length, side-by-side, and identically oriented dipoles, using the induced 

(EMF) method the self and mutual impedance formula is given by [114] 
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22
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22
0

24
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ββ
ββ                                     (3.38) 

∫∫ =−=
∞ x

x

dt
t

txSidt
t

txCi
0

sin)(cos)(                                    (3.39) 

 

d  is the horizontal distance between the  thm  and  thn  dipole antennas and it is given 

by 

( ) ( )22 )/2sin()/2sin()/2cos()/2cos( MnNmMnMmad ππππ −−−=            (3.40) 

a  is the radius of the circular array, M is the total number of dipole antenna 

elements, 5772.0≈C  is the Euler’s constant, λπβ /2=  is the wave number, λ  is 

the wave length, l  is the length of the dipole antenna element.  
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3.5 MN-MUST Algorithm for Cylindrical Microstrip Patch Array  

In the previous sections MN-MUST algorithm is established for uniform point source 

linear array similar to the N-MUST algorithm implementation of [57]. Now, MN-

MUST algorithm is applied to uniform dipole circular array in the presence of mutual 

coupling to examine the performance of the algorithm in the presence of mutual 

coupling. MN-MUST algorithm is implemented to the somewhat realistic array 

pattern, in this section. 

Cylindrical microstrip patch array is chosen to cover all azimuth angles. Microstrip 

patch radiation pattern characteristics helps to overcome ambiguity problem for DoA 

estimation. Even though the pattern of the patch elements of a cylindrical array is not 

a pencil beam, its directivity is good enough to solve the ambiguity problem arising 

in uniform patterns of circular arrays. On the other hand directivity characteristics of 

the pattern has a positive effect on the Spatial Filtering Stage.  

Microstrip patch antennas can easily be made to conform to cylindrical surfaces to 

provide low profile omni directional arrays. A specified array pattern can also be 

obtained by configuring the geometries [116]. 

Since the mutual coupling effect on MN-MUST algorithm is already discussed in the 

previous section for dipole UCA, mutual coupling is not considered for cylindrical 

microstrip patch array. However, if either mutual coupling matrix or mutual 

impedance is available then the mutual coupling matrix can easily be inserted to the 

computation as mentioned in the previous section. Moreover, if MN-MUST 

algorithm training data is based on measurements, then it is equivalent to the fact that 

mutual coupling is already considered. 

MN-MUST algorithm implementation for a cylindrical microstrip patch array is a 

practical system solution to the DoA estimation for full azimuth coverage. For 

instance, the system solution can be implemented in base stations to locate the 

direction of the mobile user’s directions.  
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The cylindrical patch array used in this section is similar to the one analyzed in 

[116]. After the element pattern is analyzed, the twelve-element patch array is 

considered to be implemented in the MN-MUST algorithm. 

3.5.1 Cylindrical Microstrip Patch  

For the analysis of the array for MN-MUST algorithm, radiation pattern of the patch 

element is needed. Radiation pattern can be studied by utilizing the cavity          

model [117].  

The geometry of a typical cylindrical patch antenna is shown in Fig. (3.6). b2  and 

02θ  define the dimension of the patch in the Z and φ  directions, respectively. 0φ  

indicates φ -position of the patch, while a and h define the radius of the cylinder and 

height of substrate, respectively. The position of the coaxial probe feed is indicated 

by fZ and fφ . When the coaxial probe feed is modeled by a current density, with an 

effective width w , the wave equation of the field in the cavity becomes [117] 

01)(1 2
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EEE z                                    (3.41) 

where ∈= µ22 wk . 

Following the usual cavity model approximation, the electric field is assumed to have 

only a ρE  component which is independent of ρ . Equation (3.31) becomes 

01 2
2

2

2

2

2 =⎥
⎦

⎤
⎢
⎣

⎡
+

∂
∂

+
∂
∂

ρφρ
Ek

z
                                                                   (3.42) 

For a thin substrates satisfying ah << , it can be further assumed that ha +=ρ  in       

Eq. (3.42). Using this approximation, the eigenfunctions of ρE  and the eigenvalues 

of k  satisfying the magnetic wall condition are given by  
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Figure 3.6 Geometry of cylindrical microstrip patch antenna. 
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The expression for the resonant frequencies is 
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The equivalent magnetic currents along the edges of the curved patch is obtained 

from 

nEM ˆˆ ×= ρρ                                                                            (3.46) 

where ρE  is given by Eq. (3.43). The problem of magnetic currents radiating in the 

presence of a cylindrical surface has been considered in [118-125]. Then,  
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)2(
pH is a Hankel function of the second kind and 

/)2(
pH  denotes its derivative. 

Evaluating Eqs. (3.49) and (3.50), the resulting components of the far zone electric 

fields for each cavity mode becomes  
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The total radiated field is obtained by a summation over all cavity modes, nm, . The 

infinite summations of Eqs. (3.53) and (3.54) are summations over the cylindrical 

modes in which the fields have been expanded.  

 

3.5.2 Cylindrical Microstrip Patch Radiation Pattern 

The radiation pattern of a cylindrical patch depends on the geometries of the 

cylinder ( )a  and the patch ( )b,0θ , as well as the characteristics of the substrate 

( )rh ∈,  [116]. A software code using [98] is developed by employing the closed form 

of the Eqns. (3.43-46) to determine the total electric field for chosen fundamental 

modes.  

A cylindrical patch antenna has been chosen as the one presented in [116] to analyze 

the electrical field pattern. Geometry of the patch is similar the one in Fig. (3-6). 

Patch has the dimensions mmL 3.38=  and ( )mmw 423696.182 0 == oθ . Substrate 

has the height and relative permittivity 4.4,6.1 =∈= rmmh , respectively. The 

radius of the cylinder is mma 131= . The patch has been put into X  axis, i.e., 

2/3696.1800
o== θφ . The resulting electrical field pattern is given in Fig. (3.7) at 
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GHz8.1 . Normalized azimuth pattern data for ‘‘1 degree’’ resolution is also 

obtained. The pattern and the data is similar to the one given in [116].  

 

3.5.3 Cylindrical Microstrip Patch Array 

A twelve element equally spaced cylindrical patch array is designed to implement the 

MN-MUST algorithm for full azimuth coverage. The geometry of the array is given 

in Fig. (3-8). Array is equally spaced in XY -plane ( )o90=θ . The patch elements are 

as the same as the one in the previous section. The excitation point of first antenna 

element 1A  is located on the X axis, i.e., o1848.90 −=φ  according to the notation 

used in previous section. All of the parameters of the patch elements are the same as 

in the previous section. The n -th element is located at the angle  

12
2 n

an
πφ =                                                                        (3.57) 

Far zone electric field is given by eqns. (3-53 – 3-56). The overall array electric field 

total radiation pattern is given in Fig. (3-9).  

Twelve cylindrical patch elements are placed along a circle radius a  and separated 

by a uniform angle o30 as shown in Fig. (3.10). A spherical coordinate system is used 

with its the origin located at the center of the array. Source (target) azimuth angles, 

[ ]π2,0∈Φ , are measured counterclockwise from the x  axis on yx −  plane. Targets 

(sources) are assumed to be on the yx −  plane and 2/πθ = . DoA estimation is 

performed only for the azimuth angle. Patch elements are considered to have 

identical patterns on yx −  plane )( mTE φ . The signals in each patch antenna element 

can be expressed as  

12,...,2,1)()()()(
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=+= ∑
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− itneEtStX i

K
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jk
mTmi

mφ           (3.58) 
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where )(tni  is the noise signal received by the i-th antenna element and 

)
12

)1(2
cos(0

−
−=

i
akk mm

π
φ , a  is the radius of the cylinder, c is the speed of light in 

free-space, and 0ω  is the angular center frequency of the signal. In matrix form 

    )()()( tNtAStX +=                   (3.59) 

where 

[ ]TM tXtXtXtX )(...)()()( 21= , 

[ ]TM tntntntN )(...)()()( 21= ,                             

[ ]TK tStStStS )(...)()()( 21= ,                      (3.60) 

and each entry of A is defined as 
mjk

mTim eEA −= )(φ                                                  (3.61) 

where  

)()()( mmmT EEE φφφ φθ +=                                        (3.62) 

θE  and φE  are given in equations 3.53 and 3.54, respectively.  

The noise signals,{ }Mitni :1,)( =  received at different antenna elements of the 

array are assumed to be statistically independent zero mean white noise signals with 

variance 2σ  independent of )(tS . The spatial correlation matrix R  of the received 

signal is given by   

{ }
{ } { }HHH

H

tNtNEAtStSAE
tXtXER

)()()()(
)()(

+=
=

                  (3.63) 

 where “H” denotes the conjugate transpose.  
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Figure 3.7 The total electrical field pattern of a patch at o90=θ  ( E -plane) with 

4.4,6.1 =∈= rmmh , mmL 3.38= , o1848.90 =θ  and mma 3.38= GHzf 8.1= . 
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Figure 3.8 The geometry of 12 element uniform cylindrical patch array with 

4.4,6.1 =∈= rmmh , mmL 3.38= , o1848.90 =θ  and mma 3.38= . 
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Figure 3.9 The individual element electrical field patterns of 12 element patch array 

given in Fig. (3.8). 

 

Figure 3.10 Geometry of a circular array ( m -th incident wave on n -th antenna 

element).  
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3.5.4 MN-MUST Implementation to Cylindrical Array 
The twelve cylindrical patch patterns are divided into 12 equal sectors in Fig. (3-11). 

Sector size is o30 in the azimuth direction. The centers of each sector is located at 

]330...300[ ooo  degrees, where the patch centers are located. It can be 

recognized from Fig. (3-11) that each sector has only three antenna elements whose 

normalized values higher than dB20− . Cylindrical patch array MN-MUST 

algorithm structure is given in Fig. (3-12). The adopted algorithm is called CMN-

MUST (Cylindrical patch array  MN-MUST). CMN-MUST algorithm consists of 

three stages, detection, reduced order spatial filtering and DoA estimation stage. 

Detection stage is exactly the same as Section 3.2.1. There are three antenna 

elements in each sector such as iSector −  has the thithi −− ,)1(  and ,)1( thi −  

antenna elements. If we consider only the antenna elements inside the sector of 

interest, then we do not need to filter out the signals in the antenna elements outside 

the sector of interest. On the other hand we do not need to have full array for DoA 

estimation stage for sectors. This reduces spatial filtering and DoA estimation stage 

NN sizes. Hence the detection stage is not changed, but only reduced order filtering 

and DoA estimation stages are discussed in detail. 

 

3.5.4.1 Spatial Filtering Stage  

This stage is the reduced order form of the spatial filtering stage mentioned in 

Section 3.2.2. DoA estimation stage needs the signals only from the antenna 

elements in the sector of interest, then the filtering stage also needs to filter out the 

signals outside the sector of interest in the antenna elements associated with sector of 

interest. In otherwords, spatial filter for iSector −  will filter out the signals coming 

outside the iSector −  on the thithi −− ,)1(  and ,)1( thi −  antenna elements.   

First (detection) stage is exactly the same as Section 3.2.1, i.e., NN input vector is 

Z , and its output is either ‘‘0’’ or ‘‘1’’. The size of Z for a 12 element cylindrical 

patch array is 124× . Input size of spatial filtering stage is reduced by considering the 
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antenna elements inside the sector of interest only. The NN input for iSector − , 

SiZ can be expressed by using Eq. (3.63) as 
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Figure 3.11 The twelve cylindrical patch pattern is divided into 12 equal sectors. 

 

The output of the spatial filter network for iSector −  is fiZ  which does not include 

the signals from other sectors on the thithi −− ,)1(  and ,)1( thi −  in the related 

antenna elements. In the training phase fiZ  pairs are processed discarding the signals  
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Figure 3.12 The CMN-MUST algorithm architecture. 
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outside the i-th angular sector. It is assumed that { })(),...,(),( 21 tStStS K  are all of the 

signals impinging on the array and { })(),(),( tStStS lqt  are the only signals coming 

into the angular sector-i where Klqt ≤&, . The input of the NN, Z  is computed 

through Eq. (3.64) having { })(),...,(),( 21 tStStS K  signals, while the output of NN, fiZ  

is computed through Eq. (3.64) again, but the signal is { })(),(),( tStStS lqt  this time. 

Filtering stage filters out the { } { })(),(),()(),...,(),( 21 tStStStStStS lqtK −  signals for 

the training example. In the training phase NN generalizes the input-output 

( )fiSi ZZ →  relations in the training phase. In the testing phase, one can have a 

generalized response to inputs that it has never seen before.    

3.5.4.2 Reduced Order Sectoral DoA Estimation Stage 

DoA estimation stage consists of a NN that is trained to perform the actual direction 

of arrival estimation. The sectors (associated NN’s) that have outputs “1” are 

considered as the sectors having targets. When the output of networks of sectors 

from the first stage is “1”, the corresponding second stage network(s) are activated. 

Then the next stage DoA estimation stage is activated.  

First (detection) stage is exactly the same as the one given in Section 3.2.1, i.e., NN 

input is the vector Z , and its output is either ‘‘0’’ or ‘‘1’’. The filtered SiZ , which is 

fiZ  in spatial filtering stage, will be the input DoA estimation network for 

iSector − . The size of both the input and output of filtering NN is 16× , instead of 

124× , as given in Section 3.2.2.  

Except the structure and size of fiZ  the rest of the stage is exactly the same as DoA 

estimation stage described in Section 3.2.3.  
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  CHAPTER 4 

4 SIMULATIONS  

In this Chapter simulation results are presented to demonstrate various performance 

features of the MN-MUST algorithm. Some of the results of earlier works can be 

found in [58-63] as well.  

MN-MUST algorithm is implemented for a uniform linear array(ULA) consisting of 

point sources, a six element dipole uniform circular array in the presence of mutual 

coupling and a twelve element cylindrical patch array. The general performance 

features of MN-MUST algorithm has been run for ULA. Mutual coupling affects on 

MN-MUST algorithm has been studied in a six element uniform dipole circular 

array. The realistic case, array elements having directive patterns has been tested 

with a twelve element cylindrical patch array. 

An important measure of how well a particular method performs is the covariance 

matrix of estimation errors [3]. The Cramer-Rao bound (CRB) is the most common 

tool in this respect. There are several studies to calculate CRB in the literature [126-

135].  

In this thesis CRBs are not computed. However CRBs already calculated for some 

particular scenarios in similar neural network algorithms [134-135] are used to 

compare MN-MUST algorithm with other methods and CRBs. For those particular 

scenarios, MN-MUST algorithm has been run to generate the data.  

MN-MUST and N-MUST are run in parallel to generate data for performance 

comparison such as, NN training, memory requirements, accuracy performance etc.  

Various scenarios have been simulated with design parameters such as the number of 

array elements, number of targets need to be estimated, different positions of the 

targets, different signal to noise ratio (SNR) levels and RBNN parameters, number of 

hidden layers, training root mean square (RMS) error, number of training sample etc. 
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4.1 Simulations Features 

The number of antenna elements is an important parameter for DoA algorithms. 

Simulations are run for ULA, UCA and cylindrical microstrip patch array. The aim 

of UCA application is to test the algorithm in the presence of mutual coupling.  

Cylindrical microstrip patch array is implemented to test the effects of directive 

patterns on the MN-MUST algorithm, so that the number of antenna elements is also 

constant as twelve for cylindrical microstrip patch array. The effect of antenna 

elements on MN-MUST algorithm is tested only for ULA with point source 

elements. 

Correlation matrix is evaluated the using the data provided from narrow band 

receiver from each antenna elements. Because of the advances in ADC, sampling 

rate is not an issue for the MN-MUST algorithm. The number of snapshots is an 

important parameter for correlation matrix computations and the noise contribution. 

The number of snapshots is considered as 400, unless otherwise is stated. The targets 

(sources) are considered stationary during the time period of the observations 

(snapshots).  

The SNR used in simulations is defined parallel to [3] as, 

⎟
⎠
⎞

⎜
⎝
⎛= 2log10
σ
SPSNR  

where 2σ is the average noise power, and SP (Signal Power) is the maximum signal 

power.  

SP is assumed as one for all of the simulations. Noise is generated as zero-mean 

Gaussian random complex sequence, with uncorrelated real and imaginary parts, 

each with a variance of 2/2σ . 

The number of trials directly influence the confidence level of the assessment. Unless 

otherwise is stated, the number of trials is chosen as 150 in the simulations to 
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compute the DoA estimation error RMS value computation. Simulations are run in 

MATLAB [98] software. 

4.2 Cramer-Rao Bound 

There are two sources fixed at ‘‘0’’ and ‘‘2’’ degrees in a scenario of [136]. CRBs 

and MUSIC algorithm DoA estimation RMS error used in this section are taken from 

Tables III and IV of [136] for three different SNR levels. 

RMS error for MN-MUST algorithm for that particular scenario (2 sources) is 

calculated through a series of simulations. The simulations are run for a ten degree 

angular sector from °− 4  to o5  with an angular resolution of °1 . The array is a six 

element point source uniform linear array with a uniform distance 2/λ . The 

number of NN neurons is 50, the number of training data pair 60 for the MN-MUST  

algorithm training. Training is performed with no-noise. MN-MUST algorithm is run 

for three different SNR levels, i.e., dB10 , dB20  and dB50 . The number of 

snapshots taken is 200, the number of trails for calculating the variance of estimation 

error is 300 independent trials.  
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Figure 4.1 MN-MUST performance comparison with MUSIC algorithm and CRB for 

°0  for three different SNR. 
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Results for °0 and °2 source are given in Fig. 4.1 and 4.2 respectively. Three 

different SNRs are considered and the corresponding values of the CRB are also 

given. It can be observed that for high SNRs, MUSIC algorithm nearly attains the 

CRB and its variance is far lower than of MN-MUST algorithm. However as the 

SNR decreases the variance in the error for MUSIC becomes very high. This is due 

to the fact that the two sources become irresolvable in the MUSIC spectrum at lower 

SNR and a spurious peak is picked up as a signal source [136]. The neural network 

based methods perform far better than MUSIC algorithm at lower SNRs since they 

don’t encounter the problem of resolvability. It must be mentioned here that 

comparisons with the CRB are usually done for studying the performance of 

unbiased estimators only [136]. The neural network based methods cannot be 

considered as unbiased estimators since they give a finite error even when there is no 

noise. However this small error can be reduced to an arbitrarily small level by 

choosing a smaller error criterion while training.  
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Figure 4.2 MN-MUST performance comparison with MUSIC algorithm and CRB for 

°2  for three different SNR. 
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4.3 Neural Network Training Mean Squared Error Effects  

Neural network training mean square error plays a major role on the accuracy of 

MN-MUST algorithm. In order to test that feature, four separate neural networks are 

trained with four different training mean squared error goal, i.e., 20, 50, 100 and 150 

training mean squared error for 3 and 4 sources cases separately. Training is run for 

three and five element point sources ULA with a uniform 2/λ  distance. The 

angular sector is [ ]°−° 3021  with a °1 resolution. DoA estimation RMS testing 

error for 3 elements and five elements ULA are given in Figures 4-3 and 4-4 

respectively. 
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Figure 4.3 DoA estimation RMS error for three elements ULA, three and four 

sources cases tested on a MN-MUST algorithm DoA estimation stage NN trained 

under the goal of 20, 50, 100 and 150 mean squared error. 
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There is a direct link between the training RMS testing error and DoA estimation 

accuracy. As it is mentioned in the previous section if the training goal is set to a 

small number then the NN is well trained so that the DoA estimation RMS value is 

also low. That trend is also observed for the number of sources as well. When the 

number of sources decreases then the DoA estimation RMS error also decreases.  
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Figure 4.4 DoA estimation RMS error for five element ULA, three and four sources 

cases tested on a MN-MUST algorithm DoA estimation stage NN trained under the 

goal of 20, 50, 100 and 150 mean squared error. 

 

4.4 Number of Antenna Elements  

The input size of each NN used in MN-MUST algorithm is two times of the number 

of antenna elements used in the array (ULA and UCA application). This means 

process cost (time, memory etc.) increases as the number of antenna elements used. 
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However, the DoA estimation accuracy is supposed to increase as the number of 

antenna elements increases.  

Four separate neural networks are trained for a 3, 5, 8 and 16 element ULA with a 

uniform 2/λ  distance and are tested for 3 sources separately. The NN training 

parameters is set to a constant value for each NN. The angular sector is 

[ ]°−° 4021  with a °1 resolution. DoA estimation RMS testing error for 3, 5, 8, 10, 

12, 14 and 18 antenna elements is given in Figure 4-5. 
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Figure 4.5 DoA estimation RMS error vs. number of antenna elements used in ULA, 

three source, 20 dB SNR, constant training RBNN parameter.  

 

4.5 MN-MUST and N-MUST Comparison 

The use of reduced input size in the NN based system decreases the computational 

time while keeping the computational accuracy unaffected (Figs 4-6 through 4-8). In 

Fig. 4-6, neural network training time versus size of the smart antenna structures in 

N-MUST and MN-MUST algorithms is compared. As the number of array elements 
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increases the training times of the two systems become drastically different as 

expected. Fig. 4-7 shows the total training error of both networks within the training 

times given in Fig. 4-6. The training error threshold is set to the same (one) for all 

examples for both N-MUST and MN-MUST algorithm. In Fig.4-8 comparison of 

memory requirements of MN-MUST algorithm and N-MUST algorithm are 

provided. It is observed that after a certain threshold value in the number of array 

elements, the MN-MUST algorithm training requires much less memory as well as 

having high speed for the same training error threshold level. 
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Figure 4.7 Error performance of MN-MUST algorithm and N-MUST algorithm. 
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Figure 4.8 Memory requirements comparison of the neural networks for MN-MUST 

algorithm and N-MUST algorithm.  
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Performance of the MN-MUST algorithm is demonstrated in Figs 4-9 – 4-11 for 

some different cases. For this purpose the angular spectrum between 1-30 degrees is 

divided into 3 angular sectors in 10-degree intervals. The angular resolution is 1 

degree within each angular sector. For the first two examples, three stage of          

MN-MUST algorithm trained for three-target case with a three and five element 

linear arrays, are used, respectively. Three different detection neural networks are 

trained to determine whether or not there exists a target in that sector. Three network 

filters are then trained to annihilate the targets outside the corresponding angular 

sector. Finally, three separate DoA networks are trained to find the actual targets 

location within the corresponding sectors.  

In the first scenario there exists three targets in three different angular sectors located 

at 1, 15 and 24 degrees, respectively. The performance of the MN-MUST algorithm 

is given in Fig. 4-9.  

 

Figure 4.9 Three targets in three sectors in three-element array (Targets are at 1, 15 

and 24 degrees) 
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In the second scenario presented in Fig. 4-10, there exist three targets in one angular 

sector case located at 22, 24 and 29 degrees, respectively. This scenario is run using 

a 5 dB Signal to Noise Ratio (SNR) both for MN-MUST and N-MUST algorithms.  

 

Figure 4.10 Three targets in one sector in five-element array (Targets are at 22, 24 

and 29 degrees).Targets are equal power and 5 dB higher than noise power.   

In the last scenario MN-MUST algorithm is applied to the case where there exist four 

targets and a three element antenna array, i.e., the number of targets is greater than 

the number of antenna elements and 5 dB SNR. The four targets were located at 21, 

24, 27 and 29 degrees. The critical point in this application is that all the targets are 

located within the same angular sector. Simulation results are given in Fig. 4-11.   

In all three cases demonstrated in the Figs 4.9 – 4.11, it is observed that the MN-

MUST algorithm finds the targets correctly no matter whether the targets are located 

within the same angular sector or not. In addition, as the number of targets exceeds 

the number of antenna elements the algorithm can still perform sufficiently well even 

in a high SNR condition. 

The maximum number of targets within an angular sector depends upon the size of 

the sector and the angular resolution. 
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Figure 4.11 Four targets in one sector in three-element array (Targets are at 21, 24, 

27 and 29 degrees). Targets are equal power and 5 dB higher than noise power. 

 

4.6 SNR Level 

MN-MUST algorithm is compared to conventional methods and CRB in Section 4.1.  

It is observed that MN-MUST algorithm performs well in low SNR. In order to 

investigate MN-MUST algorithm performance against noise, two different neural 

networks have been trained and tested with more than 100 trials.  

First Neural network is trained for a 12 elements ULA with a uniform 2/λ  distance 

and is tested for 3 sources with 3, 5, 10, 15, 20 and 30 dB SNRs separately. The 

angular sector is [ ]°−° 4021  with a °1 resolution. DoA estimation RMS testing 

error for different SNR levels is given in Figure 4-12. 
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Figure 4.12 Twelve-element ULA , tested for  three sources. 

 

Second neural network is trained for a 3 elements ULA with a uniform 2/λ  

distance and is tested for 3 sources with 3, 5, 10, 15, 20 and 30 dB SNRs separately. 

The angular sector is [ ]°−° 4021  with a °1 resolution. DoA estimation RMS 

testing error for different SNR levels is given in Figure 4-13. 
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Figure 4.13 Three-element ULA , tested for three sources. 
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RMS error decreased as the SNR level increased for both simulations. The main 

difference between two simulations is the offset value between two RMS errors. 

However, their trends are similar. RMS error decreases when SNR increases, as 

expected. The RMS error offset value between two simulation exists because of the 

number of antenna elements used in both ULA. DoA estimation accuracy 

dramatically increases as the number of antenna elements used in array increase. 

DoA estimation accuracy of MN-MUST algorithm for low SNR is observed far 

beyond the conventional algorithms.          

 

4.7 Effect of the Number of Snapshots 

MN-MUST algorithm depends on computation of correlation matrix. Correlation 

matrix computation methodology is given in Section 3.3.2. Correlation matrix value 

used in the algorithm is the average of values taken in snapshots. During the 

observation period, targets are assumed stationary. Because of advances in sampling 

technology, i.e., high speed ADCs, the observation period is short, so the assumption 

is realistic. An observation on a time instant is called snapshot. The number of 

snapshots used for neural network algorithms in literature is usually between 50-400.  

A neural network trained for a 8-element ULA with a uniform 2/λ  distance in 

order to test MN-MUST sensitivity against number of snapshots used. The angular 

sector is [ ]°−° 4021  with a °1 resolution. NN is tested for 3 sources with 50, 60, 

70, 80, 90 and 100 snapshots. The DoA estimation error RMS values for 100 trials 

are given in Fig. 4.14.  RMS value of DoA errors decreased as the number of 

snapshots reaches 90. The optimum value of snapshots may vary for different ULA 

or different number of sources. However, during simulations it is observed that 

snapshots over 100 performs good solutions.   
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Figure 4.14 RMS value of DoA estimation error vs. number of snapshots for a 8-

element ULA with 2/λ distance and tested for 3 targets. Targets are equal power 

and 20 dB higher than noise power 

 

4.8 Effect of Angular Separation of the Targets 

Angular resolution is a parameter for MN-MUST algorithm. Angular resolution is 

the minimum angular separation. A MN-MUST DoA estimation neural network is 

trained for an eight elements-ULA with a 2/λ distance. The angular sector is 

[ ]°−° 4021  with a °1 resolution. The network tested in 20 DB SNR for different 

angular separation of three targets. DoA estimation error RMS values are given in 

Fig. 4.15 for °°°°°° 6,5,4,3,2,1 , and °7  separations. The number of trials 

for each case is more than 50.  The DoA estimation accuracy gets better as the 

angular separation gets bigger. But the trend is not smooth. DoA estimation error 

RMS value for the smallest angular separation, i.e., resolution, is reasonable.  
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Figure 4.15 RMS value of DoA estimation error vs. angular separation for an             

8-element ULA with 2/λ distance. There are three targets, equal power and 20 dB 

higher than noise power. 

 

4.9 Effect of the Mutual Coupling under UCA Implementation 

Simulation results are presented to demonstrate MN-MUST algorithm performance 

in UCA structure in the presence of mutual coupling. Six element half-wave dipole 

UCA is used for simulation. The coupling impedance is calculated trough the 

formulas derived in Section 3.4.3. The coupling impedance matrix for six element 

half-wave dipole UCA with a radius of πλ 2/3=a is given in Table C.1. 

Performance of the MN-MUST algorithm is demonstrated in Figs 4.16 to 4.17 for 

two different cases. For this purpose the angular spectrum between 21-30 degrees is 

used in 1 degree separation. In the both cases there exist two targets located at 21and 

25 degrees, respectively. Both scenarios are run using a 20 dB Signal to Noise Ratio. 
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In the first scenario, MN-MUST DoA networks are trained in the presence of mutual 

coupling (PMC) to find the actual targets location. Simulation results are provided in 

Fig. 4.16. It is observed that MN-MUST algorithm performs well if the NN is trained 

in PMC and is tested in PMC.  

In the second scenario, MN-MUST algorithm is trained in the absence of mutual 

coupling. Then the test phase of MN-MUST algorithm performed in the presence of 

mutual coupling. The result is given in Fig 4.17. One can observe a significant 

degradation from Fig 4.16. The degradation of the performance is an expected result.  
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Figure 4.16 Two targets in six-element half-wave dipole uniform circular array 

(Targets are at 21 and 25 degrees). MN-MUST DoA Networks are trained in PMC. 
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Figure 4.17 Two targets in six-element half-wave dipole uniform circular array 

(Targets are at 21 and 25 degrees). MN-MUST DoA Networks are trained in the 

absence of mutual coupling. 

 

4.10 Cylindrical Patch Array Implementation 

In order to test MN-MUST algorithm performance in case of a realistic antenna 

pattern, algorithm is implemented for a twelve element cylindrical patch array. The 

algorithm is adopted and called CMN-MUST. The  array parameters are chosen as 

4.4,6.1 =∈= rmmh , mmL 3.38= , o1848.90 =θ , mma 3.38= and GHzf 8.1= .   

It is aimed to cover full azimuth direction. Full azimuth direction is divided into 

twelve equal sectors. In each sector only three antenna elements whose normalized 

values more than dB20−  are used. CMN-MUST algorithm consists of three stages; 

detection, reduced order spatial filtering and DoA estimation stage as MN-MUST 

does. Detection stage is exactly the same as in MN-MUST.  

CMN-MUST algorithm is tested through several simulations. First simulation has 

two sources in Sector 1. SNR is 20 dB for this simulation. Sector 1 is covering   
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]15346[ oo −  angular region and the resolution of DoA estimation stage is set to 

o1 . Two sources are placed at o348  and o3 .  DoA estimation results in polar 

coordinates are given in Fig. (4.18). Actual targets are shifted 2 units and estimated 

values are shifted one unit. DoA estimation error RMS values for this example 

versus 3, 10, 20, 30 and 50 dB SNR levels are given in Fig. (4.19). CMN-MUST 

algorithm DoA estimation accuracy against SNR is similar to MN-MUST algorithm.  

Two targets in two different angular sector case is simulated. CMN-MUST 

algorithm’s detection stage found the targets in Sector-1 and Sector-6. Then the 

spatial filter for Sector-1 is run to filter out the signal outside the Sector-1. The 

filtered output applied to the DoA estimation stage of Sector-1. The DoA estimation 

results and actual targets are given in Fig. (4-20). The target in Sector-6 can be found 

in a similar way. Hence it is identical to the one in Sector-1, and it was not run. 

CMN-MUST algorithm performs similarly as the MN-MUST algorithm. However, 

12 elements patch is sufficient to cover full 360 degrees of azimuth angle and only 

three antenna elements are used in each spatial filtering and DoA estimation stages.    
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Figure 4.18 DoA estimation two targets are in angular Sector 1 (Targets are at 348 

and 3 degrees). CMN-MUST DoA estimation stage of Sector-1 run with a 30 dB 

SNR level (estimated values of the targets is the one close to the center).  
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Figure 4.19 CMN-MUST DoA estimation error RMS values vs. 20, 30, 50 dB SNR. 

Two target case run for angular Sector 1. 
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Figure 4.20 Two targets are in two different sectors. The spatial filtering stage run 

after the detection stage for Sector 1. The filtered output is the input for DoA 

estimation stage for Sector 1. DoA estimation results for Sector 1 and actual targets 

in the same axes (targets at 5 and 164 degrees).  SNR is 30 dB.  
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CHAPTER 5 

5 CONCLUSIONS 

In this thesis a neural network-based algorithm (MN-MUST) is proposed for real 

time multiple source tracking problem based on a previously reported work (N-

MUST) [57]. MN-MUST algorithm performs DoA estimation in three stages which 

are the detection, filtering and DoA estimation stages. The main contributions of this 

proposed system are: reducing the input size for the uncorrelated source case 

(reducing the training time) of NN system without degradation of accuracy and 

insertion of a nonlinear spatial filter to isolate each one of the sectors where sources 

are present, from the others. Focusing on each sub-sector independently improves the 

accuracy of the overall system.  

It is also observed that the MN-MUST algorithm finds the targets correctly no matter 

whether the targets are located within the same angular sector or not. In addition as 

the number of targets exceeds the number of antenna elements the algorithm can still 

perform sufficiently well. 

An important measure of how well a particular method performs is the covariance 

matrix of estimation errors. Estimation error RMS value is compared to Cramer-Rao 

bound and MUSIC algorithm for a uniform linear point source array. MN-MUST 

algorithm demonstrated a better performance than MUSIC algorithm for low SNR 

level. The neural network based methods perform far better than MUSIC algorithm 

at lower SNRs since they don’t encounter the problem of resolvability.  

MN-MUST algorithm performance is compared with the N-MUST algorithm in the 

sense of accuracy, training and performance times and memory requirements. The 

proposed algorithm had a similar accuracy performance as N-MUST algorithm while 

having a fast training and performance phases. MN-MUST algorithm had a good 

performance when there are targets in different angular sectors with the help of 

inserted spatial filters; while N-MUST algorithm fails when there are targets in 

different angular sectors. It is observed from simulation results that MN-MUST 
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algorithm improves N-MUST algorithm and also is successful in cases where N-

MUST fails. 

The performance of MN-MUST algorithm is discussed with a serious of simulations 

for varying uniform linear arrays with point sources. The parameters such as, antenna 

elements number in array, SNR levels, sampling number, neural network training 

parameters are investigated in terms of their influence on DoA RMS error. It is 

observed that when the number of antenna elements increases then the RMS error 

decreases, it also has a similar trend for sampling number, angular separation of the 

sources,  

The proposed algorithm is also examined for a uniform circular dipole array in the 

presence of mutual coupling. Mutual coupling for a uniform circular dipole array is 

calculated by using the induced EMF method. It has been proved that the MN-MUST 

algorithm for smart real time multiple source tracking problem can effectively be 

used in the presence of mutual coupling for both ULA and UCA geometries. 

Simulation results of MN-MUST algorithm in the presence of mutual coupling for a 

six element half-wave dipole UCA geometry are provided. Results demonstrate the 

success of the MN-MUST algorithm performance in the presence of mutual 

coupling. Similar to adaptive algorithms MN-MUST algorithm is also sensitive to 

mutual coupling. When the MN-MUST algorithm is performed in the absence of 

mutual coupling, then in the test phase the MN-MUST algorithm fails as expected. 

In order to test the MN-MUST algorithm performance in case of a realistic antenna 

pattern, algorithm is implemented to a twelve element cylindrical patch array. It is 

aimed to cover full azimuth direction. Full azimuth direction is divided into twelve 

equal sectors. In each sector only three antenna elements whose normalized values 

more than dB20−  are used. Because of those characteristics, MN-MUST algorithm 

is adopted for cylindrical array geometry. The adopted algorithm is called CMN-

MUST (Cylindrical patch array MN-MUST). CMN-MUST algorithm consists of 

three stages; detection, reduced order spatial filtering and DoA estimation stage as 

MN-MUST does. Detection stage is exactly the same as in MN-MUST. There are 
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three antenna elements in each sector, such as iSector −  has the thithi −− ,)1(  and 

,)1( thi −  antenna elements. If we consider the antenna elements inside the sector of 

interest only, then we do not need to filter out the signals in the antenna elements out 

side the sector of interest. In addition we do not need the full array for DoA 

estimation stage for sectors. This reduces spatial filtering and DoA estimation stage 

NN size. 

It is demonstrated through computer simulations that the performance of the 

proposed MN-MUST algorithm is quite satisfactory and MN-MUST algorithm is 

applicable for real time target tracking and DoA estimation problems.  

Proposed algorithm is implemented in two dimensional DoA estimation. Future 

works will be focused on three dimensional DoA estimation of the proposed 

algorithm.  

Proposed algorithm is implemented in two dimensional DoA estimation. Future 

works will be focused on three dimensional DoA estimation.   
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APPENDIX A 
A. CORRELATION MATRIX  

Ignoring the noise each entry of the correlation matrix given by Eq. 3.5 can be 

written as, 

                     { }H
liil XXER =                                                                               (A1) 

          )()()()( tStXandtStX llii αα ==          (A2) 

where 
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Let’s define the P matrix as, 

{ }HtStSEP )()(= .               (A5) 

The i -th row and l -th column entry of the matrix P , is { }*)()( tStSEP liil =  where *  

represents complex conjugate. Hence if the source signals{ })(),...,(),( 21 tStStS K  are 

assumed to be uncorraleted then: 
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Providing Eq. A7 one can write,  

HHHH PPPP γααβγβαα =               (A8) 

where βα ,  andγ  are 1xK row vector have non zero entries. 

Using the property in Eq. A8, Eq. A4 becomes,  
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Eq. A10 -shows that all entries of R starting from second row are the combination of 

the entries in the first row of correlation Matrix. Eventually first row of R is enough 

to represent the overall correlation matrix when the sources are uncorrelated.  
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 APPENDIX B 

B. MUTUAL IMPEDANCE MATRİX FOR 6 ELEMENT CIRCULAR 

ARRAY WITH HALF-WAVELENGTH DIPOLES 

 

The mutual impedance matrix of a  six element uniform circular array with 

halfwavelength dipoles is calculated for a circular radius of  
π
λ

2
3

=a  using the 

equations described in Chapter 3 section 3.4.3(eqs 3-25 through 3-30). )(xCi and 

)(xSi are calculated through the MATLAB functions. The impedance matrix for the 

subject array is given in Table 3.1. 

 

Table C.1 Coupling Impedance Matrix for a 6 elements halfwavelength dipole array 

with a radius 
π
λ

2
3

=a  . 

73.13 + 42.54i   223.85 - 32.36i   195.54 + 14.65i 174.22 + 18.94i   195.54 + 14.65i 223.85 – 32.36i 

223.85 - 32.36i   73.13 + 42.54i   223.85 - 32.36i   195.54 + 14.65i 174.22 + 18.94i   195.54 + 14.65i 

195.54 + 14.65i 223.85 - 32.36i   73.13 + 42.54i   223.85 - 32.36i   195.54 + 14.65i 174.22 + 18.94i   

174.22 + 18.94i   195.54 + 14.65i 223.85 - 32.36i   73.13 + 42.54i   223.85 - 32.36i   195.54 + 14.65i 

195.54 + 14.65i 174.22 + 18.94i   195.54 + 14.65i 223.85 - 32.36i   73.13 + 42.54i    223.85 - 32.36i   

223.85 - 32.36i   195.54 + 14.65i 174.22 + 18.94i   195.54 + 14.65i 223.85 - 32.36i   73.13 + 42.54i   
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