

COMPUTER AIDED MANUFACTURING (CAM) DATA GENERATION FOR
SOLID FREEFORM FABRICATON

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ONUR YARKINOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

SEPTEMBER 2007

Approval of the thesis:

COMPUTER AIDED MANUFACTURING (CAM) DATA GENERATION

FOR SOLID FREEFORM FABRICATON

submitted by ONUR YARKINOĞLU in partial fulfillment of the requirements for the

degree of Master of Science in Mechanical Engineering Department, Middle East

Technical University by,

Prof. Dr. Canan Özgen _____________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Kemal İder _____________________
Head of Department, Mechanical Engineering

Assist. Prof. Dr. Buğra Koku _____________________
Supervisor, Mechanical Engineering Dept., METU

Prof. Dr. Eres Söylemez _____________________
Co-Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

Assist. Prof. Dr. Merve Erdal _____________________
Mechanical Engineering Dept., METU

Assist. Prof. Dr. Buğra Koku _____________________
Mechanical Engineering Dept., METU

Prof. Dr. Eres Söylemez _____________________
Mechanical Engineering Dept., METU

Assoc. Prof. Dr. Veysel Gazi _____________________
Electrical Engineering Dept., TOBB

Assist. Prof. Dr. Melik Dölen _____________________
Mechanical Engineering Dept., METU

Date: 04 / 09 / 2007

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material
and results that are not original to this work.

Name, Last Name : Onur YARKINOĞLU

Signature :

iv

ABSTRACT

COMPUTER AIDED MANUFACTURING (CAM) DATA GENERATION FOR

SOLID FREEFORM FABRICATON

YARKINOĞLU, Onur

M.S., Department of Mechanical Engineering

Supervisor : Assist. Prof. Dr. Buğra KOKU

Co-Supervisor : Prof. Dr. Eres SÖYLEMEZ

September 2007, 110 pages

Rapid prototyping (RP) is a set of fabrication technologies that are used to produce

accurate parts directly from computer aided drawing (CAD) data. These technologies are

unique in a way that they use an additive fabrication approach in which a three dimensional

(3D) object is directly produced.

In this thesis study, a RP application with a modular architecture is designed and

implemented to satisfy the possible requirements of future rapid prototyping studies. After

a functional classification, the developed RP software is divided into View, RP and Slice

Modules. In the RP module, the process parameter selection and optimal build orientation

determination steps are carried out. In the Slice Module, slicing and tool path generation

steps are performed. View Module is used to visualize the inputs and outputs of the RP

software. To provide 3D visualization support for View Module, a fully independent, open

for development, high level 3D modeling environment and graphics library called Graphics

Framework is developed.

The resulting RP application is benchmarked with the RP software packages in the

market according to their memory usage and process time. As a result of this benchmark, it

is observed that the developed RP software has presented an equivalent performance with

the other commercial RP applications and has proved its success.

v

Keywords: Solid Freeform Fabrication, Rapid Prototyping Software, Model Slicing, Path

Planning, STL

vi

ÖZ

KATI SERBEST FORMLU İNŞA YÖNTEMLERİ İÇİN BİLGİSAYAR DESTEKLİ

ÜRETİM VERİSİ OLUŞTURULMASI

YARKINOĞLU, Onur

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Buğra KOKU

Ortak Tez Yöneticisi : Prof. Dr. Eres SÖYLEMEZ

Eylül 2007, 110 sayfa

Hızlı prototipleme (HP), bilgisayar destekli tasarım (BDT) verisinden kesin

doğrulukta parça üretilmesini sağlayan bir dizi üretim teknolojisine verilen addır. Bu

teknolojiler üç boyutlu (3B) bir parçanın üretimi sırasında kullandıkları malzeme eklemeli

üretim yaklaşımı açısından eşsizdirler.

Bu tez çalışmasında, gelecekte gerçekleştirilmesi muhtemel hızlı prototipleme

çalışmalarında doğabilecek gereksinimleri gidermek amacı ile kullanılacak, modüler yapıya

sahip bir HP yazılımı tasarlanmış ve üretilmiştir. Fonksiyonel bir sınıflama sonrasında HP

yazılımı, Görüntüleme Modülü, HP Modülü ve Kesitleme Modülü olmak üzere üç ana

parçaya bölünmüştür. HP modülünde işlem değişkenlerinin seçilmesi ve uygun üretim

pozisyonlamasının gerçekleştirilmesi, Kesitleme Modülünde kesitleme ve üretim yollarının

çıkarılması işlemleri gerçekleştirilmektedir. Görüntüleme modülü HP yazılımındaki girdi

ve çıktıların görselleştirildiği modüldür. Görüntüleme Modülüne 3B desteği sağlamak

amacı ile Grafik Destek Sistemi adında, tamamen bağımsız, geliştirilmeye açık, üst seviye

bir 3B modelleme ortamı ve grafik kütüphanesi geliştirilmiştir.

Elde edilen HP yazılımı piyasadaki diğer yazılımlarla kıyaslanmıştır. Bu

kıyaslamanın sonuçları hafıza kullanımı ve işlem sürelerine göre değerlendirilmiştir. Bu

değerlendirmeler sonucunda, geliştirilen HP yazılımının, piyasadaki ticari HP yazılımlarına

denk bir performans sergilediği ve başarısını kanıtladığı gözlemlenmiştir.

vii

Anahtar Kelimeler: Katı Serbest Formlu Üretim, Hızlı Prototipleme Yazılımı, Model

Kesitleme, Üretim Yolu Planlaması, STL

viii

To my family

ix

ACKNOWLEDGMENTS

I would like to thank my thesis advisor A. Buğra KOKU and my co-advisor Eres

Söylemez for their support, collaboration, and guidance. I also would like to thank to my

project colleague and my dear friend Faruk Yazıcıoğlu for his technical support and

sensibility.

I sincerely thank to the people who worked with me for days and nights during this

hard period of time. Thanks to all my friends Lütfi Taner Tunç, Süleyman Bideci, Umut

Koçak, Emre Sezginalp and Arda Özgen for their understanding, support and friendship.

Without their help and support, it would be difficult to overcome the faced problems

throughout my MSc. study and thesis research.

Special thanks are given to my family, especially to my dear sister Oya Yarkınoğlu

Gücük for their moral support and encouragement. Their sensibility gives me extra strength

to finalize this study.

Additionally, this study was supported by The Scientific and Technological

Research Council of Turkey (TÜBİTAK) as a part of a research project with project code

105M135.

x

TABLE OF CONTENTS

PLAGIARISM……………………………………………………………………………. iii

ABSTRACT……………………………………………………………………………… iv

ÖZ………………………………………………………………………………………… vi

DEDICATION…………………………………………………………………………… viii

ACKNOWLEDGMENTS ……………………………………………………………….. ix

TABLE OF CONTENTS………………………………………………………………… x

LIST OF TABLES……………………………………………………………………….. xiii

LIST OF FIGURES………………………………………………………………………. xiv

CHAPTER

 1 INTRODUCTION……………………………………...………………….….….. 1

1.1 Aim of the Thesis……………………………………………….…….…. 2

1.2 An Overview of the Thesis………………………………………….…... 2

 2 RAPID PROTOTYPING………………………………………………...…........ 4

2.1 Fundamentals of Rapid Prototyping……………………………….……. 4

2.2 Historical Development of Rapid Prototyping………………………….. 6

2.3 Advantages of Rapid Prototyping………………………………………. 7

2.4 Classification of Rapid Prototyping Techniques …………..…………… 10

2.4.1 Photopolymer Curing Techniques……………………………… 10

2.4.1.1 Stereolithography……………………………………… 10

2.4.1.2 Solid Laser Plotter……………………………………… 11

2.4.1.3 Solid Ground Curing…………………………………… 11

2.4.1.4 Perfactory………………………………………............. 12

2.4.1.5 Other Techniques………………………………………. 13

2.4.2 Material Deposition Techniques………………………………... 13

2.4.2.1 Fused Deposition Modeling……………………………. 13

2.4.2.2 Multi Jet Modeling…………………………………...… 14

2.4.2.3 InVision Three Dimensional Printing………………….. 15

2.4.2.4 Precision Metal Deposition…………………………….. 15

xi

2.4.2.5 Direct Metal Deposition………………………...……… 15

2.4.2.6 Other Techniques……………………………..………... 16

2.4.3 Powder binding Techniques……………………………………. 16

2.4.3.1 Selective Laser Sintering………………………….…… 17

2.4.3.2 Three Dimensional Printing……………………….…… 17

2.4.3.3 Other Techniques…………………………………….… 18

2.4.4 Object Lamination Techniques ………………………………. 18

2.4.4.1 Laminated Object Manufacturing……………………… 18

2.4.4.2 Solidimension Three Dimensional Printing……………. 19

2.4.4.3 Other Techniques………………………………………. 19

2.5 Rapid Prototyping Software…………………………………………….. 18

2.6 STL Data Format………………………………..…….………………… 20

2.7 Process Planning in Rapid Prototyping Software………………………. 23

2.7.1 Selecting Process Parameters…………………………………... 24

2.7.2 Determining Optimal Build Orientation ……………………….. 25

2.7.3 Generating Support Structures………………………………….. 25

2.7.4 Slicing the Model……………………………………………….. 26

2.7.5 Planning Tool Path…………………………………………….... 29

2.8 A Survey on Rapid Prototyping Software Market……………………… 30

 3 SOFTWARE DESIGN AND IMPLEMENTATION……………………………. 34

3.1 Requirement Analysis…………………………………………………… 34

3.2 Software Design and Implementation Tools……………………..…….. 35

3.2.1 Programming Language……………………………………..….. 35

3.2.2 3D Application Programming Interface ……………………….. 37

3.3 Software Architecture………………………………………………..….. 38

3.4 Graphics Framework………………………………………………...….. 39

3.4.1 Application Independency……………………………………... 41

3.4.2 Multi Screen Support………………………………………..….. 42

3.4.3 3D Modeling Environment………………………………….….. 42

3.4.4 Graphics Library…………………………………………….….. 44

3.5 Modules…………………………………………….…………………… 45

3.5.1 View Module………………………………..…………….……. 45

3.5.1.1 Generic File Format Support……………………….….. 45

3.5.1.2 Part Organization and Selection………..…………...….. 46

xii

3.5.1.3 Undo/Redo Support………………………..……….….. 48

3.5.2 Rapid Prototyping Module………………………….……….….. 48

3.5.2.1 Collision Detection ……….……………………..…….. 49

3.5.2.2 Part Transformation ……….……………………….….. 50

3.5.2.3 Direct Printing Interface…………………………….….. 57

3.5.3 Slice Module………………………………………...…….……. 57

3.5.3.1 Part Slicing ……….……………………………….…… 58

3.5.3.2 Tool Path Generation ………………………………….. 64

 4 DISCUSSION AND CONCLUSION………………………………….…….….. 71

4.1 Performance Benchmarking…………………………..…………….….. 71

4.2 Conclusion……………………………………………….…………..….. 74

4.3 Future Work and Further Improvements………………….……………. 75

REFERENCES…………………………………………………………………………… 77

APPENDIX

A COMPARISON OF RAPID PROTOTYPING TECHNIQUES AND

SYSTEMS ………………………………………………….…………………… 80

B RAPID PROTOTYPING SOFTWARE MARKET SURVEY DETAILS…….... 82

B.1 Viscam Software Technical Specifications…………………………….. 82

B.2 Magics Software Technical Specifications……………………………... 84

C REQUIREMENT ANALYSIS OF RP SOFTWARE…………………………… 88

D DETAILS OF INTERFACES AND STRUCTURAL CLASSES…………….… 90

E CASE STUDY…………………………………………………...……………….102

xiii

LIST OF TABLES

TABLES

Table 2.1: RP software packages and systems developed by different manufacturers........ 31

Table 2.2: Functionality and price information of Viscam Software modules 32

Table 2.3: Functionality and price information of Magics Software modules..................... 33

Table 4.1: Memory usage comparison of developed RP software, Magics and Viscam..... 72

Table 4.2: Process time comparison of developed RP software, Magics and Viscam 73

Table A.1: Comparison of Rapid Prototyping Techniques and Systems (Castle, 2007) 81

xiv

LIST OF FIGURES

FIGURES

Figure 1.1: Growth of Rapid Prototyping Systems (Wohlers, 2006)..................................... 2

Figure 2.1: Three dimensional objects that are built layer by layer (Weiss, 1997) 5

Figure 2.2: Overview of the entire process of rapid prototyping... 5

Figure 2.3: A complex model produced by using a RP technology (Hart, 2005).................. 8

Figure 2.4: Area of use of rapid prototyping systems (Wohler, 2006) 9

Figure 2.5: Diagram of stereolithography machine with essential parts

 (M2 Systems, 2007).. 11

Figure 2.6: Diagram of solid ground curing machine with essential parts (EFunda, 2007) 12

Figure 2.7: Diagram of multi jet modeling machine with essential parts (Erkut, 2007)...... 14

Figure 2.8: Diagram of direct metal deposition machine with essential parts

(Erkut, 2007).. 16

Figure 2.9: A faceted object with three faces and four vertices... 20

Figure 2.10: STL representation in ASCII format of the object shown in Figure 2.8 21

Figure 2.11: STL representation in binary format of the object shown in Figure 2.8.......... 22

Figure 2.12: Common topological problems: (a) flipped triangles, (b) missing triangles, .. 24

(c) - (d) invalid edge sharing and (e) misplaced triangles

(Venuvinod and Ma, 2004).. 24

Figure 2.13: Common geometric problems: (a) (b) (c) degenerate triangles,

(d) face overlapping (Venuvinod and Ma, 2004). ... 24

Figure 2.14: Support structures: (a) gusset support, (b) base support, (c) web support,

(d) column support, (e) zigzag support (used in FDM), (f) perimeter and hatch

support (Venuvinod and Ma, 2004)... 26

Figure 2.15: Staircase effect in uniform slicing (Venuvinod and Ma, 2004)....................... 27

Figure 2.16: Marching algorithm for slicing (Gültekin, 2003). ... 28

Figure 2.17: Raster tool path segment creations for a slice contour (Gültekin, 2003)......... 30

xv

Figure 3.1: RP software modules and their sub parts. ... 39

Figure 3.2: Relations between RP Software, Graphics Framework and other APIs............ 40

Figure 3.3: Multi screen support provided by the Graphics Framework 42

Figure 3.4: Top and top front views of different 3D objects. .. 43

Figure 3.5: Different objects that are selected by using hierarchical tree structure. 47

Figure 3.6: Platform and workspace are displayed with a set of parts inside. 49

Figure 3.7: Former and latter positions of a translated part. .. 51

Figure 3.8: Former and latter orientations of a rotated part. .. 52

Figure 3.9: Former and latter sizes of a uniformly scaled part. ... 52

Figure 3.10: Former and latter sizes of a non-uniformly scaled part. 53

Figure 3.11: Slice preview of a set of parts along X direction... 60

Figure 3.12: Slice preview of a set of parts along Y direction... 61

Figure 3.13: Slice preview of a set of parts along Z direction ... 61

Figure 3.14: Slice preview of a different set of parts along Z direction 62

Figure 3.15: View of a set of parts after a production slicing operation.............................. 64

Figure 3.16: View of a set of parts after a production slicing operation.............................. 65

Figure 3.17: Hatching parameters and hatching direction of a contour. 66

Figure 3.18: View of a contour after a tool path generation operation. 67

Figure 3.19: View of a set of parts after a tool path generation operation........................... 68

Figure B.1: The modular architecture of Viscam Software (Marcam, 2007) 82

Figure B.2: Functionalities of View module of Viscam Software (Marcam, 2007)............ 83

Figure B.3: Functionalities of Mesh module of Viscam Software (Marcam, 2007)............ 83

Figure B.4: Functionalities of RP module of Viscam Software (Marcam, 2007)................ 84

Figure E.1: Creating a new project by using the main menu of the software 102

Figure E.2: Importing parts in STL format by using the main menu of the software........ 103

Figure E.3: Choosing the parts to be imported by using open file dialog.......................... 103

Figure E.4: Selecting a part from the graphical user interface to translate 104

Figure E.5: Moving the selected part by using the translation menu................................. 104

Figure E.6: Selecting a part from the graphical user interface to scale.............................. 105

Figure E.7: Scaling the selected part by using the scaling menu 105

Figure E.8: Front view of the oriented parts .. 106

Figure E.9: Top view of the oriented parts .. 106

Figure E.10: Isometric view of the oriented parts.. 107

xvi

Figure E.11: Choosing the print preview functionality from the main menu 107

Figure E.12: Previewing the slices of the parts along X direction..................................... 108

Figure E.13: Previewing the slices of the parts along Y direction..................................... 108

Figure E.14: Previewing the slices of the parts along Z direction 109

Figure E.15: Choosing the print functionality from the main menu 109

Figure E.16: Printing the slices of the parts by using parameters 110

Figure E.17: Displaying parts after printing operation .. 110

1

CHAPTER 1

INTRODUCTION

Thanks to today’s rapidly developing technology, nearly every day the world become

familiar with a new product that makes life easier. However, from the manufacturers’

perspective, day by day, the product development speed is increasing to attain this

technology growth and it becomes nearly impossible to design new competitive products by

following traditional design steps. This fact forces the companies to design better products

by spending less money and less time with respect to their competitors. Consequently, the

prototyping becomes more important since the visual and the functional verification of the

design is performed by means of prototypes before making time and money consuming

manufacturing investments. Therefore, in the industry, rapid prototyping (RP) technologies

are widely used to produce better, faster and cheaper prototypes. In the last years, extensive

use of RP technologies in the industry is resulted in a sudden growth in the market of RP

technologies (Figure 1.1). This growth is also accelerated by the new coming RP systems

and technologies developed by specialized research laboratories of different universities

and companies. Today, the market is still growing so fast that “If the worldwide economy

remains relatively strong, an estimated 15,000 3D printers are expected to sell annually by

2010” (Wohlers, 2006). This expectation makes RP an attractive field of research for

universities all over the world and creates a competition between different universities and

companies to develop better technologies to fulfill the future requirements of the market.

However, in Turkey, the situation is nearly contradictory to the world’s trend.

Unfortunately, only a few research studies in this topic are completed so far and most of

these studies are only a collection or a revision of the currently available RP technologies

(Erkut, 2007) and only a few research projects are in progress. Moreover, none of the

universities in Turkey has a laboratory specialized in RP or any infrastructure that can be

used in a comprehensive study. Another drawback is the lack of academic staff specialized

2

in this field. Since the main parameter of industrial growth is the design and production of

new and better products in a faster, cheaper and more competitive manner, this state is far

beyond being sufficient for a developing country like Turkey. So this situation makes every

new research in this field more and more important.

Figure 1.1: Growth of Rapid Prototyping Systems (Wohlers, 2006)

1.1 Aim of the Thesis

Considering the current state of RP technologies in Turkey, this thesis attempts to

create (design and implement) a software framework which can satisfy the possible

requirements of future RP studies and hence facilitate them. In this manner, it is desired to

obtain an open for development and easy to use RP software package with all the necessary

functionalities that are required to perform a RP process.

1.2 An Overview of the Thesis

The thesis study is presented in logically distinct four chapters, each of which

contains some number of sections that are somehow related.

In this chapter, a brief introduction to the topic of RP is provided and the aim of the

thesis is described.

3

The aim of the second chapter is to give the reader a general understanding of RP

techniques, systems and related software packages. Therefore, the second chapter starts

with a detailed explanation of RP concept. After this explanation the chapter continues with

a general classification of RP systems. This classification is based on the production

techniques used by different RP systems. At the end of the chapter basic concepts of a RP

software is discussed and a survey on RP software market is provided.

The third chapter attempts to give the reader a general understanding of the

architecture of the software and the methodology used during the design and

implementation of this architecture. Therefore, in this chapter mainly design and

implementation of the software is discussed. The chapter starts with a detailed requirement

analysis of the software. After the requirement analysis, the tools used in the

implementation and their alternatives are listed and the reasons of choice are justified. After

this justification, core part of the software, which is called Graphics Framework, is

discussed. Its application independency, multi-screen architecture, 3D visualization

environment and graphics libraries are explained in detail. At the end of the chapter, the

modules of the software and their properties are presented in detail by using screenshots

taken from the software. The algorithms used in slicing and tool path generation operations

are also discussed in this chapter.

In the last chapter, a general performance benchmark is presented. In the

benchmarking process, the resultant software is compared with the commercial software

packages listed in the second chapter according to their memory usage and process time.

After this benchmark study, possible future work and further improvements are discussed

and the chapter is completed.

4

CHAPTER 2

RAPID PROTOTYPING

This chapter provides a detailed survey on RP concepts to facilitate a better

understanding of RP technologies, systems and software packages. The basic concepts and

definitions given in this chapter facilitate the reader to easily understand some given

information in forthcoming chapters.

2.1 Fundamentals of Rapid Prototyping

Rapid prototyping is a term which embraces a set of fabrication technologies that are

used to produce accurate parts directly from computer aided drawing (CAD) data (Pham

and Gault, 1998). These technologies are unique in a way that they use an additive

fabrication approach in which a three dimensional (3D) object is produced by building new

layers on top of other existing layers by incrementally adding materials (Figure 2.1)

(Venuvinod and Ma, 2004). Because of the use of different terms and concepts in the

definition of RP, these technologies are also known by different names like additive

fabrication, three dimensional printing, layered manufacturing and solid freeform

fabrication (Grenda, 2006).

The entire process of RP can be divided into three main parts that are performed in

three different units. These units can be listed as computer aided design (CAD) software,

RP software and RP machine. The prototyping process starts in the CAD software with the

design of a model and ends in the machine with the production of the prototype (Figure

2.2).

5

Figure 2.1: Three dimensional objects that are built layer by layer (Weiss, 1997)

The RP process starts with a design. When a design is completed, it is modeled in

CAD software by using a solid or surface representation. From this model, triangulated data

to be used in the production of the model in a RP system is generated. This data is exported

from the CAD software in a worldwide standard RP file format called STL1. This exported

file is imported by RP software to perform the next steps in the RP process.

Figure 2.2: Overview of the entire process of rapid prototyping

1 STL is the native file format of the stereolithography CAD/CAM software created by 3D Systems
Company.

RP Machine

RP Software

Part Orientation

Support Generation

Model Slicing

Tool Path Generation

Prototype Production

Secondary Operations

Prototype Model

CAD Software

CAD Modelling

STL File Generation

Product Design

6

Main purpose of RP software is to generate computer aided manufacturing (CAM)

data that are used in the production phase. In the generation of CAM data, special process

parameters like workspace dimensions, layer thickness, tool compensation, etc. are used.

These parameters are set according to the properties of RP machine. In a standard RP

process, the process inside the software starts with the import of a 3D CAD file. When the

file is imported, the part is oriented inside the workspace by considering different

parameters like surface quality, production time, production cost, etc. In the next step,

support structures are generated according to the orientation of the part. The formed

workspace, the model and the support structures, are sliced into layers. After the slicing

operation, the generation of CAM code is completed with the generation of the tool paths.

When CAM code is generated, the physical side of the production is started. The

code is sent to the machine by the software and the machine produces the part by using a

particular RP technique. In most of the RP systems the production process is fully

automated, so no technician is needed during the fabrication of the part. In some systems,

secondary operations can be needed after the production. Some of these secondary

operations are manually done by a technician and some of them are performed

automatically in different units of the RP system.

2.2 Historical Development of Rapid Prototyping

In the presentation of historical development of RP it is necessary to be familiar with

the concept of prototyping and the meaning of word “prototype”.

Prototype used as a word in a product development and manufacturing cycle means

“an approximation of a product (or system) or its components in some form for a definite

purpose in its implementation” (Hornby and Wehnmeier, 2000). This is a very general

description which not only contains meaning of being physical but also covers all kinds of

prototyping issues like mathematical models, pen sketches or any virtual models of a

product. Actually, as it is understood in our daily lives prototyping is a general process of

realizing a design. From this point of view historically development of prototyping concept

can be classified in three phases like manual prototyping, soft or virtual prototyping and RP

(Chua, 2003).

When the age of mechanization had started in 1770, a requirement to use prototypes

has emerged. Until the mid of the 20th century, handmade models were the only way to

assess the form, fitness and functionality of a design before making a significant investment

7

in tooling (Pham and Gault, 1998). Pen sketches were also used to visualize designs

without fabricating a physical model. During this early phase, prototypes manufactured

manually were not an accurate copy of the real product. Although, the prototypes were not

very sophisticated, their fabrication took weeks or months depending on the skill of the

craftsmen, level of complexity and representativeness (Chua, 2003).

With the usage of computers in the design and manufacturing of products in the mid

20th century, the prototyping entered its second phase. During this phase, computers and

mathematical models were used to visualize the models and to analyze their physical

attributes and properties. With increasing computation power it has become possible to

design more complex products by spending less effort. Use of computers has also changed

the way of production with the emergence of high precision computer numerical control

(CNC) machines. This rapid change in technology has opened a new era in prototyping.

Although, visual aids and mathematical models can be used to realize the product, still

there has been a need to physically fabricate the prototypes of new products. By the

introduction of CNC machines and computer technology it has become possible to produce

more complex (about twice the complexity as before (Metelnick, 1991)) and more accurate

models with a disadvantage of extended production time (weeks or months for complex

models) and high production cost (Chua, 2003).

In 1988, with the release of the first commercial RP system, the next phase of

prototyping has started. The invention of RP technology makes it possible to produce

relatively three times more complex models compared to the parts produced in 1970s

(Figure 2.3). Also the time and money required to produce these models has tremendously

decreased. Required time to build a complex model has started to be expressed by months

or even days (Chua, 2003). Today, 57 different companies from 11 different countries are

producing RP systems by using 65 different RP techniques and nearly 700 service

providers are giving prototyping service (Erkut, 2007).

2.3 Advantages of Rapid Prototyping

RP systems have a large area of use compared to other manufacturing processes

(Figure 2.4). Today’s RP systems can directly be used to produce functional parts in small

quantities. However, usually the accuracy and surface finish of these parts are not as good

as the machined one. On the other hand, in some advanced RP systems near tooling quality

parts can be produced as final products. Also in some other RP systems material qualities

8

and physical properties can be improved by using different secondary operations. More

fundamentally, when the time and the cost to produce a complex part by using a RP system

is considered, these deficiencies are considerably affordable compared to other machining

techniques. Therefore, with the increasing surface quality and improved material properties,

the RP systems are the most significant competitor of conventional production systems.

Figure 2.3: A complex model produced by using a RP technology (Hart, 2005)

When it is considered that the products in the market have increased in complexity,

the companies, which need experimentation with physical objects of any complexity, are

benefited more from the RP systems (Metelnick, 1991). During the development and design

process, sometimes producing parts near to the final product or products that can be used in

functional testing is important, however the time needed to manufacture a single final

product is enormous. On the other hand, a RP system offers the companies a great

opportunity to produce these products in a relatively short period of time with a low cost

(Chua, 2003).

RP systems used in the production of a final product give designers the opportunity

of designing more complex parts, so more functional or aesthetic forms can be used in the

design. Also, without any manufacturing limitation, part designs can be optimized and the

number of parts can be decreased by combining features in a single part. Decrease in

number of parts results in a decrease in analysis time, assembly time, assembly difficulties

9

and number of fastening parts (Chua, 2003). When RP systems are used in final product

manufacturing, there are fewer constraints in the design of a part. The parts that cannot be

set up for machining and the structures with production difficulties like thin walls, holes

outside the limits of manufacturing tools, empty shapes, which causes high material

removal and high production cost, can be designed without any manufacturing limitation.

Also parts can be optimized for their strength / weight ratios without regarding the

machining cost. Another advantage is the minimization of the time consumed during the

discussions and evaluations that is made on the manufacturing possibilities (Chua, 2003).

Figure 2.4: Area of use of rapid prototyping systems (Wohler, 2006)

RP systems producing final products causes a reduction in labor cost since stock of

different tools and many special purpose machines is not needed. Trained personnel cost is

reduced as well, since setting up of machinery and CNC programming is eliminated. As an

indirect effect, less training cost is required because less qualified operator is needed. Also

there is no need to stock materials in different sizes; as a result, the material costs are

reduced. The change in a dimension of a part can be applied to the production without

rewriting all the CNC code; hence an enormous amount of time is gained (Chua, 2003).

All these factors show their effect as more aesthetic and functional products with

lower manufacturing costs; this way, the product prices decrease while the user satisfaction

and competition power of companies increase.

10

2.4 Classification of Rapid Prototyping Techniques

RP technologies have shown a rapid growth since the release of the first commercial

system in mid 80s. After this triggering event various systems using different techniques

have been developed and commercialized all over the world. Today, worldwide 57

different companies are producing RP systems by using 65 different RP techniques and still

new technologies are emerging (Appendix A) (Erkut, 2007). All these systems used

worldwide can be grouped under four main classes based on the characteristics of

production techniques. These classes can be listed as photopolymer techniques, deposition

techniques, powder binding techniques and lamination techniques. In the following sections

different RP techniques are presented in detail. The information used in these sections is

taken from the technical report of Erkut (2007).

2.4.1 Photopolymer Curing Techniques

In photopolymer curing techniques, a photosensitive material layer is laid out to the

production platform and the required parts of this layer are cured by using a light source.

When this photosensitive material is cured, it solidifies and bonds with the previous

layer(s). This procedure is repeated until all the layers of the three dimensional model of the

prototype is completed. This curing operation can be performed by using two different

approaches. In the first approach required parts of a layer is scanned point by point by using

a laser beam. In the second approach, a mask that is covering the unnecessary parts of the

layer is used and each layer is cured at a single time by using a single UV lamp. In the

forthcoming subsections, systems using photopolymer curing techniques are described in

detail.

2.4.1.1 Stereolithography

In the stereolithography (SLA) technique, liquid photopolymer accumulated in a tank

is solidified layer by layer by using a laser beam that is positioned on top of the production

platform (Figure 2.5). When curing of a layer is completed, the platform is plunged into the

tank by a layer thickness and the curing operation of the next layer is started. After all the

layers are formed, the platform is raised to the liquid level. Throughout the manufacturing

process, some special structures called support structures are also produced with the

11

prototype. These support structures are used for different purposes and they are manually

removed from the prototype after the production process. The details of these structures are

described in the forthcoming sections of this chapter. Mostly, after the first curing

operation, the physical properties of the manufactured model are not ideal, so the model is

kept in a special UV lamp oven for a period of time to improve its physical properties.

Figure 2.5: Diagram of stereolithography machine with essential parts (M2 Systems, 2007)

2.4.1.2 Solid Laser Plotter

In the solid laser plotter (SLP) technique, liquid photopolymer accumulated in a

transparent tank is solidified under a production platform by using a laser beam that is

positioned on top of the liquid tank. During the fabrication, the platform is positioned

outside the liquid level and completed layers are adhered to the bottom of the platform.

When curing of a layer is completed, the platform is moved upward by a layer thickness

and the curing operation of the next layer is started. So, model is fabricated layer by layer in

an inverse manner when compared to SLA.

2.4.1.3 Solid Ground Curing

In the solid ground curing (SGC) technique, liquid photopolymer is laid out to the

production platform as a thin layer. Then a mask of the layer is formed on a glass with

12

electrophotography technique by using photocopy toner. When the mask is formed, a single

UV lamp cures the photopolymer to form a solid layer (Figure 2.6). Curing is performed by

using a high density UV lamp, so a second curing process used in SLA is not needed. After

the curing operation is completed, remaining liquid photopolymer is pumped out to be used

in the next cycle and the empty parts are filled with liquid wax. Support wax is solidified by

applying pressure with a water cooled metal sheet. For the next layer the surface of the

existing layer is shaven by a blade. This process cycle is repeated until the fabrication of the

model is completed.

Figure 2.6: Diagram of solid ground curing machine with essential parts (EFunda, 2007)

2.4.1.4 Perfactory

In the perfactory technique, the light diffused from the UV lamp is directed to the

photopolymer layer through a masking projection system that is driven by digital light

processing (DLP) technology. In DLP, the direction of the light is controlled by thousands

of micro mirrors positioned on a silicon chip. The state of these mirrors is controlled by

electric signals in two stages (on / off). By changing the states of these mirrors, mask of a

layer is formed and the fabrication of each layer is completed like it is performed in the

SLP technique.

13

2.4.1.5 Other Techniques

Some other techniques that are using photopolymer curing approach are also

available. However, these techniques have a more limited area of use compared to the

stereolithography, the solid laser plotter, the perfactory and the solid ground curing

techniques. In some applications the masking methods or the physical properties of the

photopolymer material may show differences from the popular photopolymer curing

techniques. Use of an LCD screen as a mask or use of a solid photopolymer material can be

examples of these applications.

2.4.2 Material Deposition Techniques

In material deposition techniques, production material in a liquid or a cemented state

is sprayed or plastered to the desired points of a layer in a controlled fashion. In this group

of methods solidification of the material usually occurs by a state change of the material

from a liquid to a solid form or by a chemical reaction. The material is sprayed or plastered

to the production platform by using single or multi nozzle head systems. During the same

production process, different materials can be deposited for production or supporting

purposes by using different nozzles. As a result of this, it is possible to produce multi-

material complex models by using different materials with different physical properties. In

addition, assemblies composed of different parts with different materials can also be

produced during a single build operation.

2.4.2.1 Fused Deposition Modeling

In the fused deposition modeling (FDM) technique, production material that is heated

and held under the melting temperature is extruded through a thin nozzle and plastered to

the production platform to form the layers. When a layer is produced, the platform moves

downward and the deposition of the next layer starts. This cycle is repeated until the

fabrication of the model is completed. The production material in the form of filament is

fed to the nozzle by using a position controlled feeding system. During the production

process, two different types of materials can be used as support structure. First type of

support structure is produced by using an easy to break type plastic material, so the

supports are manually removed from the model. The second type of support structure is

14

produced by using a special material that dissolves in water, so the removal process is

automatically handled in an external unit. In this production technique, different materials

like acrylonitrile butadiene styrene (ABS), polyamide, casting wax and high temperature

resistant engineering plastics can be used as production material.

2.4.2.2 Multi Jet Modeling

In the multi jet modeling (MJM) technique, melted material is sprayed to the

platform by using an inkjet printer head (Figure 2.7). This inkjet printer head contains 352

micro nozzles that are driven by a piezoelectric actuation system. In production, printing

the head moves in the direction of X and the platform moves in the direction of Y and Z.

Owing to multi nozzle head structure, the printing head can cover Y direction in eight

passes. In each layer, the order of passes in Y direction is randomized to prevent an error

accumulation that can be originated from a material blockage in a nozzle. After production

of each layer, a roller system passes along the layer to provide the uniform layer thickness.

Support structures are produced by using the same material with the model and removed

manually after the model is hold under the temperature of 10 degree in an external unit. In

this production technique a paraffin based polymer is used as production material.

Figure 2.7: Diagram of multi jet modeling machine with essential parts (Erkut, 2007)

15

2.4.2.3 InVision Three Dimensional Printing

In the InVision 3D printing technique, an acrylic photopolymer material in gel form

is heated until its melting point and sprayed to the platform by using an inkjet printer head

similar to the one used in MJM. When a layer is formed in solid form it is cured by using

an UV lamp. By repeating this cycle the fabrication of the model is completed. During

production process, a special wax is used as a support material. Support structures are

removed after the fabrication by heating the model. When compared to MJM, this

technique can produce more durable materials at higher speed and better accuracy. In the

market there are different implementations of this method.

2.4.2.4 Precision Metal Deposition

In the precision metal deposition (PMD) technique, a metal wire is melted and

deposited to a platform by using a laser beam. During the fabrication, an inert gas is

exerted from the wire feeding system to the deposition point to prevent corrosion. In PMD,

compared to other methods, a lesser amount of melted material is produced and smaller

amount of thermal stress is generated. So, parts with better metallurgical properties and a

reduced amount of distortion can be produced. This makes PMD a superior example of use

of RP systems in direct manufacturing of parts and molds. PMD is also used in aerospace

industry to repair the expensive and complex titanium and stainless steel parts and molds.

2.4.2.5 Direct Metal Deposition

In the direct metal deposition (DMD) technique, metal powder is melted and

deposited by using a carbon dioxide laser beam (Figure 2.8). The metal powder is fed by a

funnel shaped feeding system that is positioned around the laser beam. The temperature of

the melted powder and the crystal structure of the metal are controlled during the

production. By using this technique, multi material parts can be produced by using different

materials in the same fabrication process. DMD is an example of use of RP systems in

direct manufacturing of parts and molds. DMD is also used to repair damaged or corroded

parts and molds.

16

Figure 2.8: Diagram of direct metal deposition machine with essential parts (Erkut, 2007).

2.4.2.6 Other Techniques

Some other techniques that are using material deposition approach are also available.

However, these techniques have more limited area of use compared to the ones introduced

above. Some of these techniques are liquid metal jet printing, ballistic particle

manufacturing, Pligraphy, electrochemical fabrication, micro-droplet fabrication and bio-

plotter.

2.4.3 Powder Binding Techniques

In the powder binding techniques, material in powder form is laid out to the platform

and is heated or glued in necessary sections of the layer by using a laser or electron beam or

an inkjet type glue gun. Powders that are not bonded are used as support structure

throughout the production. In this type of techniques secondary operations like removing

unused powder and cleaning fabricated model is required. In model fabrication plastic,

metal, ceramic or multi-material powders can be used as production material.

17

2.4.3.1 Selective Laser Sintering

In the selective laser sintering (SLS) technique, a heat fusible powder is laid out to

the production platform as a thin layer and melted selectively by using a laser beam. The

melted powder particles are bound together and form a solid layer. Then the platform

moves downward and the production of the other layers are done by following the same

steps. In SLS, the required powder is fed to the system by using another platform which is

moving in the opposite direction of production platform. When the production platform

moves downward, the feeding platform moves upward and feeds the required powder. The

fed powder is laid out as a thin layer by using a roller. The production chamber is held

under the melting temperature of material to be able to bind the powders faster and easier.

In model fabrication, plastic, metal, ceramic or multi-material powders can be used. By

using these materials, functional final products and ceramics molds can be produced. The

most important disadvantage of this technique is the porous structure of the fabricated parts.

To resolve this issue mostly a secondary heat treatment process is required to improve the

physical properties of the model. Also, other secondary operations like removing unused

powder and cleaning the fabricated model are necessary after production.

2.4.3.2 Three Dimensional Printing

In the three dimensional printing (3DP) technique, the material in powder form is

laid to the production platform by using a similar feeding system that is used in SLS. But

different from SLS, the powder is bonded in the required areas by using a multi nozzle glue

gun. After a layer is finished the production platform is moved downward and the powder

of the next layer is laid. This process cycle is repeated until all the layers of the model are

completed. The unbound powder particles are used as a support structure throughout the

production phase and removed for recycling by using a vacuum cleaner at the end of the

production. In this technique, secondary operations like sintering and a different material

saturation can be applied to improve the physical properties of the model. The advantages

of this technique can be listed as high production speed and low production cost. 3DP

systems are the fastest prototyping systems in the market. On the other hand, the products

fabricated with 3DP have some deficiencies like low surface quality, low dimensional

accuracy and being fragile. 3DP systems are mostly used in the visualization of conceptual

designs or in the production of tooling rather than to be used in final products. Different

18

parts like casting molds, filters and steel-bronze alloy materials can be produced by using

this technique.

2.4.3.3 Other Techniques

Some other techniques that are using powder binding approach are also available.

But, these techniques have a more limited area of use compared to selective laser sintering

and three dimensional printing techniques. These techniques can be listed as sintering

technique of EOS Company (EOSINT), selective laser melting, electron beam melting,

selective mask sintering, laser-forming and lasercusing combined processing.

2.4.4 Object Lamination Techniques

In object lamination techniques, thin solid materials are used in production. The

layers are formed by cutting the production material. After the cutting operation, the formed

layer is pasted to the other layers. By repeating this cycle the model is formed layer by

layer. In these systems paper, plastic, foam, metal sheets and some different materials

saturated with ceramics and metals are used in production.

2.4.4.1 Laminated Object Manufacturing

In the laminated object manufacturing (LOM) technique, a special paper that is

saturated with polymer adhesive is laid out to a platform by using a cylindrical feeding

system. This material is pasted to the previous layer by using a hot roller. After positioning,

the profile of the model section is cut on the material by using a laser cutter. Scrap parts are

hatched to facilitate the removal process. These scrap parts are used as support structure

throughout the production. This process cycle is repeated until the model is completed. A

considerable amount of smoke is generated during the cutting operation. So a ventilation

system and an air filter are used to remove the polluted air. The supports are removed

manually. This process can be painful and time consuming in complex models. Also some

secondary operations like retouching and sanding can be required after production. The

fabricated models have similar physical properties with wooden models.

19

2.4.4.2 Solidimension Three Dimensional Printing

In the Solidimension 3DP technique, a PVC material in a sheet form is laid out to the

platform and an adhesive material is applied onto the layer by using a roller system. Then

the profile of the model section is cut from the material by using a blade. The uncut parts

are used as support structures. A special anti-glue chemical is sprayed to these parts to

facilitate the structure removing process. Compared to LOM more durable parts can be

manufactured by using this technique.

2.4.4.3 Other Techniques

Some other techniques that are using object lamination approach are also available.

But, these techniques have a more limited area of use compared to the laminated object

manufacturing, the Solidimension 3D printing and the trusurf techniques. These techniques

can be listed as trusurf, shape adhesive hot press, CAM-LEM, offset fabbing,

stratoconception and customLAM.

2.5 Rapid Prototyping Software

RP systems can be studied in three sub groups which are software, hardware and the

technique. The main concern of this thesis study is the software part of an RP process.

In the previous section, detailed information about the RP techniques is given. There

are two reasons for this. First is the importance of RP techniques in the concept of RP.

Therefore, a RP technology presentation without a detailed RP techniques survey is

considered incomplete. The second reason is the effect of the RP techniques on the process

planning part of the RP software packages. Consequently, the basic principles of production

techniques have a great effect on the way how the software works.

On the other hand, the RP hardware is strictly dependant on the used RP technique.

Each machine is designed to use a specific technique so a detailed presentation in RP

techniques also reflects the details of RP hardware. Also, the effects of hardware on the RP

software is limited; only some production parameters in the process planning part are set by

the hardware, thus the technical details of hardware are considered as a different issue

which is outside the boundaries of this study. To be able to use the software with different

20

types of hardware, all of these parameters are programmed in a parametric fashion, so a

detailed study on technical details of hardware is not needed and therefore not presented.

In the forthcoming sections of this chapter, the concern is only on the details of RP

software packages. The required information about the STL data format, RP process

planning steps and RP software market is presented.

2.6 STL Data Format

STL is a file format specification for importing CAD models from different design

programs to RP systems. The specification was initially developed by 3D Systems Inc. for

their stereolithography systems. Now, STL is the standard RP data format for all RP

systems worldwide (Venuvinod and Ma, 2004).

STL file format mainly uses faceted objects to represent a model (Figure 2.9). To

perform this representation, initially the surfaces of the model are reconstructed by using

triangles. After the completion of re-construction, the data is stored in a file by using one of

the two different STL representations. These representations can be listed as ASCII and

binary. Both of these representations provide a list of triangles that is forming the model.

Triangles are represented by a normal vector and coordinates of three edges. Each of these

values is stored in floating point accuracy (Venuvinod and Ma, 2004).

Figure 2.9: A faceted object with three faces and four vertices.

z

x y

(0,0,3)

(0,2,0) (1,0,0)

(0,0,0)

21

In ASCII format the data is stored in text format by using some keywords and values

(Figure 2.10). This representation can be easily read and checked since all the values

required to define a triangle is listed with its attribute name and corresponding value.

However, an ASCII format representation results in a large file size since an ASCII value

of each character is used to store the data (Venuvinod and Ma, 2004).

solid irregular tetrahedron
facet normal ‐1.0 0.0 0.0

outer loop
vertex 0.0 0.0 0.0
vertex 0.0 0.0 3.0
vertex 0.0 2.0 0.0

end loop
endfacet
facet normal 0.0 ‐1.0 0.0

outer loop
vertex 0.0 0.0 0.0
vertex 1.0 0.0 0.0
vertex 0.0 0.0 3.0

end loop
endfacet
facet normal 0.0 0.0 ‐1.0

outer loop
vertex 0.0 0.0 0.0
vertex 0.0 2.0 0.0
vertex 1.0 0.0 0.0

end loop
endfacet
facet normal 0.85714286 0.42857143 0.28571429

outer loop
vertex 1.0 0.0 0.0
vertex 0.0 2.0 0.0
vertex 0.0 0.0 3.0

end loop
endfacet

endsolid irregular tetrahedron

Figure 2.10: STL representation in ASCII format of the object shown in Figure 2.8

On the other hand, in binary format only the required data is stored in a predefined

order by using the byte representations of the values (Figure 2.11) which results in 85% file

size reduction in a typical file. The reduction in file size also affects the read, write and

transfer times. Hence, mostly the binary STL representation is used in the market

22

(Venuvinod and Ma, 2004). Despite its simplicity, the STL file format has some inherent

problems that have to be dealt with when processing these files.

 (Start of File)
84 bytes – header record

80 bytes – unformatted general information such as file
 name, part name and comments

 4 bytes – number of facet records each facet record
 defines one triangle

 50 bytes – first facet record
 12 bytes – facet normal vector
 4 bytes – i coordinate
 4 bytes – j coordinate
 4 bytes – k coordinate
 12 bytes – first vertex
 4 bytes – i coordinate
 4 bytes – j coordinate
 4 bytes – k coordinate
 12 bytes – second vertex
 4 bytes – i coordinate
 4 bytes – j coordinate
 4 bytes – k coordinate

12 bytes – third vertex
 4 bytes – i coordinate
 4 bytes – j coordinate
 4 bytes – k coordinate
 2 bytes – optional facet attributes like color
 50 bytes – second facet record
 :
 :
 :
 50 bytes – the last facet record
 (End of File)

Figure 2.11: STL representation in binary format of the object shown in Figure 2.8

The most obvious problem of the STL file format is the large file size. When

complex models are converted into STL format, huge files are created which makes file

transfer more difficult. Also the time required to read or write a file increases with the

increasing file size. When a single surface is represented by too many triangles, the

memory usage also increases since all the required data is held in the memory during the

data manipulation. This problem comes from the fact that the STL file format holds

redundant data to represent a model. In a closed surface, the outer and inner surfaces can be

23

found from the given data, so the normal vector information can also be calculated from the

given vertex list. On the other hand, for a typical triangle mesh each mesh is shared by six

neighboring triangles which implies that the same vertex data is hold for six times. So,

when the vertices are ordered properly, the information of the shared vertices can also be

found from the given triangle list. So it is entirely unnecessary to hold the normal vector

information and the shared vertices information in STL files (Venuvinod and Ma, 2004).

The STL file format also has some deficiency in the accuracy of the representation of

the model. Since an approximation is done during the conversion of a CAD model to a

faceted model, the precision of some surfaces and some details can be lost. If the surface is

planar this conversion is performed accurately, but if the surface is curved then the

accuracy of the conversion is controlled by the number of triangles used in the

approximation. Also the level of details can be affected from the conversion tolerances.

These two error sources can result in inappropriate model or low surface quality in RP.

STL data can also contain some topological and geometric problems which are

originated from surface approximation. The topological problems can be listed as flipped

triangles, missing triangles, invalid sharing and misplaced triangles (Figure 2.12). These

problems can be solved through face flipping, local re-triangulation and edge, triangle and

vertex reconnection, insertion and deletion. The geometric problems can be listed as the

degenerate triangles and face overlapping (Figure 2.13). Such problems can be solved by

deleting degenerate triangles or by vertex repositioning (Venuvinod and Ma, 2004). In

today’s RP systems these problems are handled before the production process by using RP

software packages or individual STL file repair applications.

2.7 Process Planning in Rapid Prototyping Software

The operations performed in RP software packages can be classified and analyzed in

five groups. These five groups can be listed as selecting process parameters, determining

optimal build orientation, slicing model, planning tool path and generating support

structures (Marsan, 1998). Although all of these steps can be considered as necessary in a

standard RP process, in some cases one or more of these steps can show differences or even

be neglected. As an example, in a process planning of a RP system using the LOM

technique, the support generation step can be neglected depending on the system.

24

Figure 2.12: Common topological problems: (a) flipped triangles, (b) missing triangles,
 (c) - (d) invalid edge sharing and (e) misplaced triangles (Venuvinod and Ma, 2004).

Figure 2.13: Common geometric problems: (a) (b) (c) degenerate triangles, (d) face
overlapping (Venuvinod and Ma, 2004).

2.7.1 Selecting Process Parameters

The parameters that are used by the software to perform a RP process can be referred

to as process parameters. These parameters can show differences from one technique to

another, but in all techniques the proper selection of process parameters has a great effect

on the production time, production quality and production cost. Workspace dimensions,

25

slice thickness, production direction, extrusion head radius, material flow rate, head speed,

acceleration and deceleration can be the examples of some process parameters that can be

required in a RP process.

2.7.2 Determining Optimal Build Orientation

Orientation of a part on the production platform has a decisive affect on the surface

quality, production time, production cost, material properties in different directions and the

amount of support structures needed. Originally, build orientation of parts are decided by

the operator by placing the parts on a production platform by rotating and translating parts

in different directions. However, with too many parts in a single production process, it is

very difficult to place maximum number of parts by finding the best possible part

orientations. Therefore, various optimization methods are employed to find the optimal

build orientation of parts. On the other hand, these software packages still give the operator

the opportunity to pick and place parts manually. More detailed information on automatic

part placement methods can be found in the study of Marsan, et al (Marsan, 1998).

2.7.3 Generating Support Structures

Different types of “support structures are used for variety of reasons (Figure 2.14),

including supporting overhangs, maintaining stability of the part, supporting large flat

walls, preventing excessive shrinkage, supporting components initially disconnected from

the main part and supporting slanted walls” (Marsan, 1998). On the other hand, these

problems can also be solved or at least minimized by finding the optimal build orientation

of a problematic part. So generating support structures and finding the optimal build

orientations of parts are related problems that must be considered as one and solved

together. Also in some techniques like SLS, LOM and 3DP the support structures are not

needed since the excessive production material are used as support structures. However

quite a number of RP techniques still need support structures. Therefore, deciding when,

where and which kind of a support structure is needed during manufacturing are the critical

questions to be answered. To answer this question, different types of rules and automatic

support structure generation algorithms have been developed for different techniques. More

detailed information on these rules and algorithms can be found in the study of Marsan, et

al (Marsan, 1998).

26

Figure 2.14: Support structures: (a) gusset support, (b) base support, (c) web support, (d)
column support, (e) zigzag support (used in FDM), (f) perimeter and hatch support

(Venuvinod and Ma, 2004).

2.7.4 Slicing the Model

For all RP production techniques, slicing operation is the most important process

planning step. In this step, intersection of a model with a set of parallel planes is computed

and the contour curve of each slice at a particular height is formed (Marsan, 1998).

Originally, the parallel cutting planes are positioned perpendicular to building direction

with uniform distance between the planes. Because of this uniform order this approach is

known as uniform slicing.

The major problem of uniform slicing is the staircase effect (Figure 2.15). Staircase

effect can be a great problem for near-vertical surfaces since it reduces the surface quality.

In addition, some part details and dimensions smaller than the slice thickness can be lost

during slicing operation.

In most RP systems the material is deposited in only one direction. Consequently, the

stairway effect can only be minimized by changing the orientation of the part and using a

smaller slice thickness value. However, minimizing slice thickness value has some counter

effects like increase in production time and cost. Alternatively, a different slicing approach

called adaptive slicing can be used as a more general solution for the problem. In adaptive

27

slicing, different slice thickness values are used during the slicing operation. So, to

minimize the stairway effect, the sections with near-vertical planes or small dimensioned

details can be sliced by using smaller thickness values. On the other hand, the production

time and cost can be minimized by using higher thickness values in the other sections of the

model.

Figure 2.15: Staircase effect in uniform slicing (Venuvinod and Ma, 2004).

In addition to staircase effect, the slicing operation can also be negatively influenced

from the STL data since the faceted data has some problems that originate from the nature

of being a simple approximation of a true model. This fact can result in an inaccurate outer

surface or coarse surface quality for the parts with complex surface designs. This deficiency

can be solved by using a different slicing approach called direct slicing. In direct slicing,

the original NURBS (Non Uniform Rational Bezier Spline) surfaces are used instead of

their faceted approximations. So, the data is not imported in STL format but in some

standard formats like IGES (Initial Graphics Exchange Specification), STEP (Standard for

the Exchange of Product Model Data) or in native formats of different CAD programs.

Although there are some studies on adaptive and direct slicing, uniform slicing

approach is still the mostly used slicing approach in the commercial RP software market.

More detailed information about the adaptive and direct slicing algorithms can be found in

the study of Marsan, et al (Marsan, 1998).

Faceted data provides a great advantage since only a plane to plane type intersection

is computed to find the resultant intersection curves. However, commonly used STL data

format does not contain connectivity information of the triangles (Marsan, 1998). As a

28

result of this, a time consuming searching operation is required to find the triangles that are

intersecting with a cutting plane positioned at a particular height. Hence, finding the

connectivity information of the triangles increases the efficiency of the slicing operation.

Rock and Wozny (1991) used a topological based marching algorithm to find each

intersection curve (Figure 2.16). In this study, a cutting plane intersects with an edge of a

triangle and the other two edges of the same triangle are checked for another intersection.

When two edges of a triangle are cut by a single cutting plane, the first line segment of the

intersection curve is obtained. Then the next triangle is found by using the common edge

shared by adjacent triangles. So the cutting operation is marched to the forthcoming

triangles until the intersection curve at this particular height is closed. The same algorithm

can also be used by spatially partitioning the triangles according to their heights (Gültekin,

2003). This partitioning improves the slicing speed.

Chalasani, et al (1991) used an approach different from marching algorithm. In this

approach, for each cutting plane, all triangles are checked for an intersection. The slicing

operation is done randomly between the triangles. So, when all intersections of a particular

cutting plane are found, the resultant lines are ordered to satisfy the continuity of the

contour curve. In a study using the same algorithm, parallel processing is used to speed up

the slicing operation (Kirschman and Jara-Almonte, 1992).

Figure 2.16: Marching algorithm for slicing (Gültekin, 2003).

29

2.7.5 Planning Tool Path

In the path planning step the tool paths which are used to build each layer are

determined. In this operation the resultant contour curves of the slicing operation are used

as input data. This operation can be classified in two categories. In the first category, the

layers are formed at once so the contours are used directly as the tool paths. Laminated

object manufacturing and solid ground curing techniques can be the examples of this

category. In the second category, the tool paths are generated in a way that the inside of the

layers are incrementally filled with the material, the tool paths may or may not include the

contour curves. Fused deposition modeling and stereolithography are the two examples of

this category (Marsan, 1998).

The tool paths followed by the production head affects different manufacturing

parameters like the production time, surface accuracy, surface quality, stiffness, strength

and post-manufacture distortion. During the fabrication, the tool head is re-positioned in the

start of each layer and accelerated and decelerated to make the necessary direction changes.

This movement influences the production time. So, the distances between the start points of

each layer and the number of direction changes should be minimized while generating the

tool path. In the tool path generation, the deposition width and depth of the material should

be considered to satisfy the surface accuracy and the exact part dimensions. In production

techniques where the material is deposited as molten, the temperature difference between

the previously deposited layers and the added material may lead to residual stresses and

subsequent warpage or other distortion of the part. A suitable choice of tool paths can

minimize this effect, so, this effect should also be considered in tool path generation.

Finally, the contact area between the newly deposited material and the previous layers plus

the time passed between the depositions of these materials has an important effect on the

stiffness and the strength of the part. In some techniques, the deposition direction of

subsequent layers can affect the strength and the stiffness. Therefore, changing the

deposition direction by 90 degrees in each layer can improve these properties. More

detailed information about the studies made on these factors can be found in the survey

made by Marsan and Dutta (1997).

Different methods and algorithms can be used for filling a layer. In the study made

by Chang (1989), 3D cubic elements called voxels are used to generate the tool paths by

superimposing the STL model. In this method interior of the model is filled with voxels

whose heights corresponds to the slice thickness. The tool paths are generated by moving

through the neighboring voxels in horizontal or vertical directions. Other methods for

30

determining tool paths are reported by Rock and Wozny (1991) and Chari and Hall (1993).

In these studies, parallel rays are intersected with the contour of each layer and the rays are

connected to the next ray at the point of intersection so the tool paths are generated (Figure

2.17). But, in this method, the biggest problem is the possibility to miss some small interior

features such as holes. To solve this issue a method that finds small features inside the

model is presented by Tate and Fadel (1996). Another approach is to trace the counter

curves by giving an offset rather than filling the interior of the object by using parallel lines

(Yang, 1995). By doing so, the resultant tool paths are longer compared to the tool paths

generated by the raster fill method, so the production time is minimized. Also, the need for

support structures can be reduced since it enables the construction of an overhang by a

sequence of offsets (Marsan, 1998). On the other hand, the models fabricated by using

raster line methods have better strength and stiffness properties than the models produced

by using offset contour fill methods. There are some variations of this approach that use

different type of solutions to the problem of finding the offset contours. The details of these

alternative methods can be found in the survey of Marsan and Dutta (1997).

Figure 2.17: Raster tool path segment creations for a slice contour (Gültekin, 2003).

2.8 A Survey on Rapid Prototyping Software Market

RP system manufacturers in the market use different software solutions in their

products. These solutions can be classified in two groups. The software packages in the first

31

group can be referred to as product software that is specific to an RP machine. The second

group is mostly known as the complete RP software solutions.

Product software packages are developed by the RP system manufacturers. These

software packages are the system specific applications that are designed to satisfy the basic

requirements of the manufacturer’s product (Table 2.1). The purpose of this type of

software packages is to generate the required control data for a specific RP machine by

performing the necessary process planning steps.

Table 2.1: RP software packages and systems developed by different manufacturers

Company Software RP System

InVision™ System Software InVision 3D Printers

3D Lightyear™ Software SLA Systems 3D Systems

LS™ Software SLS Systems

Insight™ Software Stratasys Systems
Stratasys

3D Printing Catalyst™ Software Dimension Systems

Z Corporation

ZPrint™ Software

ZEdit™ Software

Mimics Z™ Software

3D Printing Systems

Solidscape ModelWorks™ Software Solidscape Systems

EOS RP Tools™ Software EOS Systems

Objet Objet Studio™ Software Objet Systems

Complete RP software solutions are developed to satisfy all the requirements of a

RP system. These software packages support different types of RP systems from different

manufacturers and are mostly distributed by RP manufacturers with their systems. These

software packages have modular architectures. They consist of different modules

performing different functions. Mostly the main modules perform tasks like part

visualization, STL file repair, part editing, smart part placement, support structure

generation, part slicing, tool path generation, CAD file formats to STL conversion,

production time and cost estimation and etc. Magics software developed by Materialise

company and Viscam software developed by Marcam Engineering company can be listed

32

as the market leaders. The basic modules of the Viscam and Magics software packages and

the pricing and functionality information of these modules can be found in the Tables 2.2

and 2.3. The technical specifications of these software packages are given in Appendix B.

Table 2.2: Functionality and price information of Viscam Software modules

Modules Functionality2
License3

Price

Service

Price

Viscam View

Import of STL, 3DS, VRML, DXF, PLY, ZCP
and VFX files, visualization of STL problems,
detection and separation of included solids,
model info like dimension, volume and surface
area, visual measuring and annotation functions

Free Free

Viscam Mesh

Detect defective edges, holes and triangles,
automatic STL problem solving, accurate
reduction, smoothing or filtering of triangles,
cut and split the model along defined section
planes, editing of solids, surfaces, triangles,
Boolean operations, offset and extrusion
functions, attach text, logos or bitmaps and
create base solids, trim, cut and punch meshes
with definable poly-lines, calculation and
generation of error-free hollow models

1990€ 300€

Viscam RP

Integrated database with more than 150 RP
machines, copy, insert, orientate, scale and
place individual parts, fully automatic import,
placement and nesting of parts, adjustable build
time estimation and cost calculation, fast and
exact slice generation, compensation of
material shrinkage and spot radius hatch
generation for laser and jet based RP machines,
support generation, file export support CLI,
SLC, F&S, SLI, ISO, NC, SSL, STD, DXF,
HPGL, BMP, PNG, TIFF formats

5980€ 900€

Viscam Import IGES, VDA, STEP file format support 995€ 150€

Total 8695€ 1350€

2 Functionality information has been taken from the specifications of Viscam software.
3 License and service price information is requested from the Marcam Engineering company by mail
as of 6 February 2007.

33

Table 2.3: Functionality and price information of Magics Software modules

Modules Functionality4
License5

Price

Service

Price

Magics Base

Visualization, measuring and manipulation of
STL files, fixing STL files, uniting shells,
trimming surfaces, double triangle detection,
cutting STL files, punching holes, extruding
surfaces, hollowing, applying offset, boolean
operations, triangle reduction, smoothing,
labeling, part nesting, collision detection

Magics RP The platform concept, Build time estimation,
Quotation Making, Slice verification

5200€ 1040€

Magics Import
IGES, VDA, STEP, Unigraphics, Pro/E and
Catia (V4.5x and V5) and STL file format
support

2200€ 400€

Magics Slice
Slice parts, generates tool paths, writes out
slice files for 3D systems, EOS, Stratasys and
Sanders

1500€ 300€

Magics Support Fast and easy generation of support structures 2200€ 400€

Total 11100€ 2140€

The functionality and architectural organizations of these commercial software

packages are used as guidance in the design and implementation of the software developed

in this thesis study. The concepts explained in this chapter are widely used and referenced

in the next chapter where RP software is presented in detail. The most of the knowledge

used in the development of the RP software is mainly build on the information provided

during this literature survey.

4 Functionality information has been taken from the specifications of Magics software.
5 License and service price information is requested from the Materialise company by mail as of 7
February 2007.

34

CHAPTER 3

SOFTWARE DESIGN AND IMPLEMENTATION

In this chapter, design and implementation of the software is discussed in detail.

First, requirement analysis of the software based on the aim of the thesis and the

commercial RP software market is given. The design and implementation tools are listed

with their alternatives and the reasons of choice are justified. The software architecture is

described and architectural and functional properties of the individual software parts are

presented.

3.1 Requirement Analysis

When the aim of the thesis and the RP software market is considered, a RP

application, which claims to satisfy the possible requirements of future RP studies and

hence facilitate them, must be a complete and fully independent software package with an

open for development and easy to use architecture. To be able to design an extendible and

application independent software package, this RP software should be considered as a

multipurpose application, which can be used in different engineering studies, rather than a

specific RP application.

The software package must have a 3D modeling environment with 3D hardware

visualization support to be capable of displaying different types of inputs and outputs. A

multi screen support should be used to be able to present different information at the same

time. A graphics library that facilitates the design of new graphic objects must be developed

to use the same application core in different engineering applications where different types

of visualization requirements and 3D objects can be required.

 In the RP software, a modular architecture must be used to take advantage of

software modularity in the design, development, release and update of the resultant

35

software package. The software modules must be well organized according to their

functionality.

A core module that supports a generic file transfer system can facilitate the use of

different file types, which can be required in a future study. This interface is required to

support multi file import and export. In the software, more than one file must be visualized

at the same time. Since more than one part is imported, a part organization system can be

developed to group parts. Part selection functionality has to be implemented to be able to

perform different operations to different parts. In addition to these, undo/redo functionality

may be provided for the sake of easy usage.

RP software must satisfy the process planning steps of RP. Therefore, additional

modules with part modification, part transform, part slicing and tool path generation

functionalities must be developed. In the current phase, the support generation step can be

neglected since it is not required for all RP systems. On the other hand, support generation

functionality should be considered as a future improvement in the design of the modules.

Functionalities that facilitate easy modification and orientation of parts should be provided

to the user. Parts should be scaled uniformly or non-uniformly, moved absolutely or

relatively and rotated around three different directions. Additional functionality like part

slicing in X, Y and Z directions to preview the production or to see the interior of the model

can be provided to the user. Finally, a direct printing interface must be designed and

implemented to be used in the RP machines that can be designed in future studies.

3.2 Software Design and Implementation Tools

The tools used in the design and implementation of a 3D application software can be

studied in two groups. These groups can be listed as programming language and 3D

application programming interface (API). In the forthcoming sections these groups are

presented in detail.

3.2.1 Programming Language

When the programming languages that are used in different 3D applications in the

market are considered, C, C++, C# and Java programming languages can be listed as the

most commonly used options. These programming languages have different advantages and

36

disadvantages, so, while making the choice, these languages should be considered in depth

according to their performance, 3D support and ease of use.

The C programming language is the oldest programming language in the alternatives

listed above. Today, it is mostly used in the applications where performance is critical since

an application written in C executes faster than the applications written in the other three

programming languages. In addition, all the popular 3D APIs can be used in a 3D

application written in C. On the other hand, it is difficult and time consuming to develop a

complex program by using C (Troelsen, 2005). Hence, only the performance critical parts

of the complex 3D applications are written in C programming language.

The C++ programming language is a C based object oriented programming language,

thus, programming complex software needs less effort and less time compared to C.

However, compared to new generation programming languages like C# and Java, it is still

time consuming to write complex applications. In C++, memory management, which is a

problematic procedure that requires a serious amount of time and effort, is handled by the

programmer (Troelsen, 2005). Besides, the amount of code written in C++ is considerably

high compared to C# and Java to implement the same application. On the other hand, 3D

applications written in C++ executes faster than the applications written in C# and Java.

Also, C++ supports all the popular 3D APIs. So, it is still widely used in 3D applications

where performance is a more important concern than time.

With the expansion of internet usage, the portability of applications has become an

important issue. At this phase, a new generation of programming language called Java was

released. An application written in Java is compiled into a processor independent

intermediate language. This intermediate language can be transferred over the internet and

recompiled at the target system in runtime. The compilation in the runtime is performed by

using client software compatible with the target system. Consequently, the portability of the

application is increased. With its portability, Java becomes the mostly used programming

language in internet based applications. On the other hand, as a side effect of processor

independency, the runtime performance is decreased. Java is rarely used in 3D applications

because of its poor performance in 3D applications (Troelsen, 2005).

The newest programming language among the candidates is the C# programming

language. C# is a new generation, C based object oriented programming language. Some of

the software developers claim that C# contains the power of C and the portability of Java

(Robinson, 2004). With its new generation of memory management system and .NET

framework support, writing a piece of code for a specific task requires less time and less

effort compared to C++ with an affordable performance decrease (Troelsen, 2005). In

37

addition, one of the most popular 3D APIs that can be used in a 3D application is written in

C#. Consequently, C# programming language is used both in 3D desktop and internet based

applications.

In this study, a relatively complex 3D application must be design and implemented in

a relatively short time. Therefore, C can be eliminated because it is not an object oriented

programming language and Java can also be eliminated for its low 3D performance. Then, a

choice between C# and C++ programming languages must be made according to ease of

use and performance. In our study, as a consequence of time limitations, ease of use is a

more important issue then performance. So, C# programming language is chosen as the

programming language of our RP software. Another reason for choosing C# is that, as of

the time this thesis work is carried out, C# is the mostly preferred language among fellow

students who are expected to build applications upon the open architecture provided as a

result of this work.

3.2.2 3D Application Programming Interface

The most popular 3D application programming interfaces can be listed as DirectX

and OpenGL. Nearly all the 3D applications in the market use one of these 3D APIs. These

APIs have similar properties and functionalities but different compatibility and

performance issues. Therefore, while making the choice, these criteria should be considered

in depth.

DirectX API is a product of Microsoft Company. It is mostly used in game

programming. It is fully compatible with C# and Microsoft Windows operating systems.

Consequently, compared to OpenGL, DirectX shows a better performance in a 3D

application written in C# (Managed DirectX, 2003).

OpenGL API is used in both engineering and gaming applications. It is released by

an independent consortium composed of different hardware and software developers. It is

more portable compared to DirectX. It can be used in open source operating systems. But it

is not fully compatible with C# programming language. There are different APIs that

supports OpenGL in C#. But these APIs are not official solutions for the compatibility

problems of OpenGL and C#.

Since both APIs have similar properties and functionalities that satisfy the

requirements of our RP software, due to the compatibility and performance issues, DirectX

API is preferred to be used in our RP software.

38

3.3 Software Architecture

The commercial RP software packages in the market contain independent software

parts with different functional properties that are somehow related. These independent

software parts are called modules. Modules communicate with other parts of the software

through interfaces to abstract their functions and properties. Modules ensure their

independency with their self sufficient structures and communication interfaces. The

relations between the modules are provided by a single part which is called base module.

The base module holds the necessary information about the functionalities of the other

modules and uses them to perform the necessary tasks. Each module can be added to the

base module independently. The architecture that is used by these software packages is

called modular architecture. This architecture provides advantages to the developer in the

design, development, release and update of a software package.

Owing to modular architecture, each part of the software can be designed

independently. Since modules consists of related functionalities that are independent form

the other parts of the software, these distinct parts can be designed by different programmer

groups. So, the programmers can focus on a specific functionality rather than focusing on

the entire software. Therefore, a better design can be achieved.

The independency of the modules also shortens the development period of the

software. Since each part has a well defined independent functionality, they can be

implemented and tested independently to satisfy the functional requirements. So, more

stable parts with fewer errors can be developed.

In addition to these, with the help of modular architecture, the software companies

release different package options with different functionalities that satisfy the needs of

different customer profiles. Therefore, their customers can choose to buy only the required

functionalities of a software package rather than giving extra money to unnecessary

functionalities that they do not use.

In a modular application, if an update is required, only the parts that need revisions

can be updated, hence none of the other parts is affected from any version change of an

individual part. Thus, a problem can be fixed by using smaller update files without re-

installation of the application software. This means that the customers can easily update

their software packages over the internet in a relatively short time.

By considering these benefits, a modular architecture is implemented in the

developed RP software. A functional classification depending on requirement analysis is

made and the RP software is divided into three modules (Appendix C). These modules are

39

named as View Module, RP Module and Slice Module. Each module consists of two sub

parts called user interface and engine (Figure 3.1). Engine is the part where the necessary

functional operations of the module are performed. User interfaces are the parts that are

used by the engine to get the necessary input from the user.

Figure 3.1: RP software modules and their sub parts.

The View Module is the base module of the application. This module uses the RP

Module and Slice Module to perform the necessary process planning steps. The data

processed in these modules are displayed by the View Module. The View Module uses a

3D display framework to abstract the details of 3D rendering process. This framework is

called Graphics Framework. Graphics Framework uses .NET Framework, Microsoft

Direct3D and Microsoft Windows (WIN32) APIs to render 3D objects (Figure 3.2). All the

models, slices and 3D graphical user interfaces that are sent by the View Module are

displayed in the Graphics Framework.

3.4 Graphics Framework

The Graphics Framework (in Figure 3.2) is designed and implemented as a part of

the developed RP software to provide 3D visualization support. It can be described as a

high level 3D engine that can be used in engineering applications where 3D visualization is

required. The Graphics Framework is an application independent, multi-screen 3D

modeling environment and graphics library that is based on the Microsoft Sample

Framework.

The Microsoft Sample Framework is an open source layer “used by most of the

Microsoft Direct3D samples and is built on top of the WIN32 and Direct3D APIs. Its goal

is to make Direct3D samples, prototypes, and tools as well as professional games more

RP Module

User Interface

Module Engine

Slice Module

User Interface

Module Engine

View Module

User Interface

Module Engine

40

robust and easier to build. It simplifies the WIN32 and Direct3D APIs for typical usage and

is designed to help make simple to moderately complex Direct3D applications” (Microsoft,

2005).

Figure 3.2: Relations between RP Software, Graphics Framework and other APIs.

The Microsoft Sample Framework is designed to be used in single or full screen

gaming or demonstration purpose 3D applications. In this framework 3D user interfaces are

used instead of classical Microsoft Windows user interfaces. The internal architecture is

designed to be used with DirectX mesh objects which are mostly used in texture based

gaming applications where the complex models with textures are required. Therefore, to be

able to develop a graphics framework to be used in the visualization of 3D engineering

applications, more than 50% of the Microsoft Sample Framework is rewritten or

completely changed and a considerable amount of additional architectural property is

added. Application independency, multi-screen support, 3D modeling environment and

graphics library can be listed as these architectural properties. In the forthcoming sections

these architectural properties are expressed in detail. More general information about the

Microsoft Sample Framework can be found in Microsoft DirectX Programmer’s Reference

(2005) and the book of Miller (2004).

Rapid Prototyping Software

Slice Module RP Module

View Module

Graphics Framework

.NET Framework

Direct3D API

WIN32 API

Developed by
changing 50% of
the Microsoft
Sample Framework

Standard packages
that are developed
and distributed by
Microsoft Company

Part of the
Windows Operating
System

The RP software
developed within
the thesis study

Entirely developed
within the thesis
study

41

3.4.1 Application Independency

Application independency can be described as being self sufficient to perform its

functional responsibilities without using any other application. Graphics Framework is a

fully independent, open for development, high level 3D modeling environment and

graphics library that can be used in engineering applications where 3D visualization support

is required.

In some of the engineering applications the visualization needs are met by utilizing

different 3D CAD software packages as graphical user interfaces. The thesis study

presented by Gültekin (2003) can be given as an example of this type of usage. In this

study, an RP application is developed as an add-on of AutoCAD software package and the

visualization needs of this application are utilized by using this CAD software. Therefore,

the application is written fully dependent on AutoCAD.

Two deficiencies can be listed for this type of usage. First one is the functional

limitations of the used application. The limits of the further studies are dependent on this

application since it cannot be modified or further improved according to the needs of the

study. Secondly, for each copy of the software, an additional license price must be paid.

Use of commercial software package may also cause some copyright problems in the

distribution of the study.

The Graphics Framework can also be used in this type of academic purpose

engineering applications to overcome these deficiencies owing to its application

independent architecture. With its open for development architecture it can be modified or

improved with additional functionalities to satisfy special requirements of different type of

studies without any copyright problems.

In addition to the RP software presented in this thesis study, the Graphics

framework is also used in the study of Sezginalp (2007) to develop a 3D localization and

mapping application for mobile robots. In these two application examples, the application

independency of the Graphics Framework is verified. When these two applications are

considered, it can be said that, moderately complex 3D applications can be designed and

implemented in a considerably short time by using the Graphics Framework.

42

3.4.2 Multi Screen Support

The Graphics Framework provides a multi screen interface to display more than one

3D modeling environment at the same time (Figure 3.3). All the functionalities of the

framework can be used concurrently by all the windows in the multi screen interface.

Owing to multi screen support of Graphics Framework, the user can display many files in

different windows to choose the suitable parts to create a printing job, while performing

another printing operation of an existing project, in a different window. With the multi

screen support, in a single application that uses the Graphics Framework, different

operations can be performed independently and simultaneously in different windows.

Figure 3.3: Multi screen support provided by the Graphics Framework

3.4.3 3D Modeling Environment

The Graphics Framework abstracts the complex low level functions of the Direct3D

API and WIN32 API to a high level 3D modeling environment where 3D objects can be

displayed. A camera with a perspective view cone is used to show the objects in the

43

environment. The 3D environment is illuminated with the use of directional lighting

technique. Perspective view cone and directional lighting technique creates the 3D view

effect.

The 3D modeling environment uses the WIN32 API to get the user actions through

the keyboard and the mouse. These actions are used to create different views of 3D objects

by transforming the positions of the camera and the lights. Panning, free handed rotation

and zooming actions can be performed by the user to see the environment from different

directions. Also, there are some predefined views. These views are the ones that are mostly

used in the CAD software; front, back, left, right, top, bottom and isometric views (Figure

3.4).

Figure 3.4: Top and top front views of different 3D objects.

User defined objects compatible with the Graphics Framework can be created by

using two methods. As the first method, a special interface called IDrawable can be used to

create a Graphics Framework compatible object in any complexity and functionality

(Appendix D). However, using this method requires a high level of Direct3D API

knowledge and experience since all the required low level rendering functions of the 3D

object must be implemented by the user. As a second method, the existing 3D objects in

44

graphics library can be used to create new 3D objects. In this method, new objects can be

created by using inheritance rule of the object oriented programming approach. This is an

easy to use method since only the basic object oriented knowledge is required. When 3D

object is created by using the graphics library, all the low level rendering functions that are

required for the Graphics Framework compatibility are handled by the parent graphics

object.

3.4.4 Graphics Library

As a part of the Graphics Framework a completely new graphics library is developed

to be used in engineering applications. In this library there are different types of objects that

can be classified in two groups.

The graphics objects in the first group are the structural objects. This type of objects

can only be used to create new objects. Their instances cannot be created in runtime

therefore they cannot be directly used as 3D objects. There are two objects in this type. The

first one is called Entity. Entity is the lowest level graphics class. It implements an interface

called IDrawable in order to be compatible with the Graphics Framework. Entity is a

generic class that can be used to create any type of 3D objects. The second one is a class

called Feature. Feature is a higher level structural class which is inherited from the Entity

class. Hence, it has all the properties and functionalities of the Entity class. It also has

higher level functionalities like selection, transparency, object bounding box and object

transformation. In the creation of 3D objects mostly the Feature class is preferred since it is

easier to implement a 3D object by using the Feature class rather than the Entity class. The

details of IDrawable interface, Entity and Feature classes can be found in the Appendix D.

The graphics objects in the second group are the functional objects. These objects are

used by the Graphics Framework to visualize some necessary functionality such as

Bounding Box, Background, Line and Plane objects. Bounding Box is used by the Graphics

Framework to display the bounding boxes of the high level objects. Background is a plane

used in all rendering windows to form a background picture. Line and Plane objects are

used as the sub elements of the Bounding Box and Background objects. These objects are

also accessible from the applications that are using the Graphics Framework and therefore

they can also be used by these applications as well.

45

3.5 Modules

The RP software that is developed in this thesis contains three different modules to

perform the process planning steps that are described in the “Process Planning in Rapid

Prototyping Software” section of the first chapter. In this section, how these steps are

performed is explained by using the algorithms and the architectural structures of modules

and some other functionality of the modules are discussed.

3.5.1 View Module

The View Module is the base module of the RP software. It is the most important

module of the application because it is structurally the core part of the whole process. It is

used in the visualization of the inputs and outputs of the application. All the user interfaces,

modules and their functionalities are handled by this module. In addition to these, it also

contains different structural properties that are critical for future expansion of the RP

software. These properties can be listed as generic file format support, part organization and

selection support and undo/redo support.

3.5.1.1 Generic File Format Support

All applications, which use a specific type of data to perform some of its

functionalities or generate a specific type of data as a result of an operation, must support

one or more standard file types to import or export data. For an open for development RP

application that is designed to be used in research studies, data import and export support

for different file formats is an indispensable requirement. Therefore, in the RP software

package, a generic data transfer structure is implemented as a part of the View Module to

be able to support different file formats.

All the data transfers between the RP software and external sources are performed by

using this generic data transfer structure. This structure consists of three elements. The first

two elements are the data transfer interfaces that are called IWriteable and IReadable

(Appendix D). These interfaces define the properties and functions that are required for the

generic data transfer structure compatibility. The IWriteable and IReadable interfaces

contain the definitions for write and read operations, respectively. The third element of the

46

structure is an object list that stores a special type of objects called file format. File format

objects perform read and/or write operation(s) for a specific file type.

Support for a new file format can be added to the View Module by performing a

series of operations. Firstly, a file format object must be developed. According to the

supported operation type, the developed object must implement IWriteable and/or

IReadable interface(s). With the implementation of one or two of these data transfer

interfaces, the file format object becomes compatible with the generic data transfer

structure and can be added to the object list to be used in file transfer operations.

In a file transfer operation, a request for a specific file type is sent to the generic data

transfer structure. According to this request, all file format objects in the interface list are

searched for the requested file format and operation. If the requested file operation and file

format is supported, then the operation is performed by the corresponding file format

object. In case of a read operation, the data in an external source is read by the

corresponding file format object and send back to the RP software by using the IReadable

interface. In case of a write operation, this time IWriteable interface of the corresponding

file format object is used to write the send data to an external source.

3.5.1.2 Part Organization and Selection

RP software can import more than one file or create part groups that contain multiple

parts; therefore, a part organization structure with a selection support is required to clarify

the relations between these objects and to make it possible to use different functionalities

for different parts.

Part organization structure used in the RP software contains three elements that are

named as project, product and part. The first element; project is used to define a build job.

For each project a new screen with a 3D modeling environment is created by the View

Module. The second one, product, can be defined as a collection of related parts. Products

can be created as a part of a project or another product. The last element; part is used to

define a part file that is imported from an external source. Part can be created as a member

of a project or a product.

Each build job can be saved as a project file in which the relation information and

part data is stored as an individual file or as a reference file. When project is saved as an

individual file, all the relations and the parts included in this project are stored in a single

file. This type of file is not affected from the changes made on the part files. If the project is

47

saved as an external reference, only the relations and the locations of the parts are saved. In

this case, when a referenced part file is modified all the projects referencing this particular

part file also change.

In the internal structure of the RP software, project and product elements are simple

collection objects that hold the related elements, while, the part elements are held in a

special object called Model. The Model is a 3D object that is created by using the Feature

object as it is explained in the “Graphics Library” section of this chapter. In the Model all

the information and data about a part file is stored. All the part related operations are

performed by using the Model object. Thanks to the object inheritance, the Model object

can use all the properties of the Feature object including the transparency.

In the view module, the transparency functionality of the Model object is used to

emphasize the selected parts (Figure 3.5). When a part is selected, all the unselected parts

are displayed transparent and all the part related functionalities are performed only for the

selected parts. The selection of a part or product can be performed through a graphical user

interface (GUI) displayed in the project screen (Figure 3.5). In the GUI, the relations

between the parts and products are displayed in a hierarchical tree structure by using the

user defined names of these elements. User can select part(s) and/or part groups by using

their corresponding product(s).

Figure 3.5: Different objects that are selected by using hierarchical tree structure.

48

3.5.1.3 Undo/Redo Support

One of the functionality provided by the View Module is the undo/redo support. In

the RP software, the user can navigate through the executed user commands in the order of

occurrence which means that a previously executed user command can be unexecuted or a

previously unexecuted user command can be re-executed by the user. To handle this series

of execution and un-execution operations, a command managing structure is used by the

View Module.

In this structure, a command object is created for each user command where an

undo/redo operation can be performed. This command object uses a special structure to

execute or un-execute the related user command. The execution of a user command is a

simple task since only the ordinary operation is performed by the command object. On the

other hand un-execution of a user command is a hard to implement procedure since the

state of the software must be reversed to a previous position by preserving the stability of

the software. To perform a un-execution step, all the changes in the system must be stored

by the command object. When a un-execution command is received, the related command

object reverses all the changes in the system in the reverse order of occurrence to preserve

the stability. This is a memory consuming process since all the state changes are held inside

the command object; therefore a limited number of commands are held in the memory.

All the command objects are stored in a special storage system called command

manager. The command manager is a part of the command managing structure. All the

necessary information about the undo/redo operation like command objects, their orders,

the point of navigation and the capacity of command object storage is hold by the command

manager. The command manager handles all the execution and un-execution operations by

keeping track of the user navigation. It reorders all the command objects after each

undo/redo operation. Another responsibility of the command manager is to handle the

memory usage by counting the command objects hold in the storage. When the number of

command objects exceeds the limit, the oldest command object is removed from the storage

to free up a place for the new coming command object.

3.5.2 Rapid Prototyping Module

In this module, the functionalities that facilitate easy modification and orientation of

parts are developed. In addition, a direct printing interface for the supported RP hardware is

49

implemented. The user can translate, rotate and scale parts, perform collision check

between the parts and the fabrication limits and directly send the generated CAM code to a

supported machine by using this module. In the forthcoming sections, these functionalities

of RP module are presented in detail.

3.5.2.1 Collision Detection

In RP software, it is assumed that all the RP process is performed in a limited virtual

3D volume called workspace. Workspace is the virtual representation of production

compartment of the machine, so it is a RP machine dependent process parameter that is

used to define the limits of all fabrication specific functionalities. In RP software,

architecturally, the workspace is defined by a 3D object that is called with the same name.

This object is parametrically defined therefore different values can be set for different RP

machines to visualize machine specific limits. Workspace object can be displayed in two

different forms; a rectangular prismatic shaped 3D volume and a square shaped 2D

platform (Figure 3.6). The platform shape is used to present the production platform of the

machine and the 3D volume represents the whole production compartment.

Figure 3.6: Platform and workspace are displayed with a set of parts inside.

50

In the RP software, all the parts must be oriented inside the workspace to be

fabricated. Therefore, a collision between the parts and the boundaries of the workspace

must be checked before each production operation. This collision detection is performed by

the RP module by using a volumetric base comparison between the bounding boxes of the

objects and the workspace. Each time a part is oriented, its bounding box is calculated and

before a slicing operation, a collision between this bounding box and workspace is checked

to continue the fabrication process.

3.5.2.2 Part Transformation

The RP module uses transformation matrices of Direct3D API to perform dimension

and position modifications of the parts. For each operation a transformation matrix is

generated according to the user inputs and sent to the corresponding Model object that

supports a 3D transformation functionality inherited from Feature object. When the

transformation matrix of the Model object is set, all the position and/or normal vector data

of the part is modified. This modification can be performed by using two methods. The

method of transformation can be chosen by the user.

The first way is to use object specific transformation support of the 3D modeling

environment. 3D modeling environment provides a transformation matrix for each

displayed 3D object. When this matrix is set, the 3D environment displays the 3D object as

transformed without changing the real data. This method can be used to preview the effect

of a transformation. A transformation operation performed by using this method can be

reversed only by changing the transformation matrix of the 3D object to identity since the

original data is preserved.

The second way is to directly transform the original position and normal vector data

of the part. If the user requests a data transformation, the Feature object can perform all the

position and/or normal vector data transformations by using 3D point and vector

transformation functions provided by the Direct3D API. This operation is not reversible

since the original data is changed. Therefore this method is only used when the original

data is required in the transformed form for the slicing operation.

Both of the methods described above are used by the RP module to perform

translation, rotation and scaling operations. When the user applies a transformation, the

transformed forms of the parts are previewed by using the first method. By this way, an

opportunity to cancel the operation is provided to the user since the first method is

51

reversible. If the user confirms the previewed transformation, then the part data is modified

by using the second method to be able to perform following operations by using the

transformed form of the object.

The user can orient the parts in the build space by translating them absolutely to a

given position or relatively with a given displacement (Figure 3.7) or by rotating them

around X, Y and Z axes with respect to their centers (Figure 3.8). For each operation a

different transformation matrix is generated by the View Module. In translation, generated

transformation matrix is applied only to the position data of the part. The normal vector

data is a direction representation; therefore it is not scaled since it is not affected from a

translation operation. On the other hand, in a rotation operation, both position and normal

vector data are modified to be able to rotate the part.

Figure 3.7: Former and latter positions of a translated part.

The parts loaded into the 3D environment can be scaled in two ways: uniformly in all

directions (Figure 3.9) or non-uniformly in different directions (Figure 3.10). In a scaling

operation, a scaling matrix is generated by the View Module. This matrix is applied only to

the position data as it is done in a translation operation.

52

Figure 3.8: Former and latter orientations of a rotated part.

Figure 3.9: Former and latter sizes of a uniformly scaled part.

53

Figure 3.10: Former and latter sizes of a non-uniformly scaled part.

The mathematical background of the part translation, rotation and scaling operations

are provided in the following sections.

3.5.2.2.1 Part Translation

According to the Hearn and Baker (1996) the matrix expression for the translation of

a position),,(zyxP = relative to its original position can be written as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

11000
100
010
001

1

1

1

1

z
y
x

t
t
t

z
y
x

z

y

x

 (3.1)

where translation parameters xt , yt and zt are assigned any real values. When this

transformation is applied to the position data of the part, the resultant coordinates of the

position can be expressed as

54

xtxx +=1 ytyy +=1 ztzz +=1 (3.2)

To translate a part to an absolute point in the 3D environment the following

transformation sequence must be applied.

1. Translate the center of the part to the origin

2. Translate the center of the part to the given absolute position

The resultant matrix of this transformation sequence can be written as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−
+−
+−

=−−−⋅

1000
100
010
001

),,(),,(
ac

ac

ac

cccaaa zz
yy
xx

zyxTzyxT (3.3)

where cx , cy and cz are the coordinates of the center point of the part, ax , ay and az

are the coordinates of the absolute point,),,(ccc zyxT −−− and),,(aaa zyxT are the

translation matrices.

3.5.2.2.2 Part Rotation

According to the Hearn and Baker (1996) the matrix expression for the rotation of a

position),,(zyxP = around the x, y and z axis can be written as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

11000
0cossin0
0sincos0
0001

1

1

1

1

z
y
x

z
y
x

xx

xx

θθ
θθ

 (3.4)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

11000
0cos0sin
0010
0sin0cos

1

1

1

1

z
y
x

z
y
x

yy

yy

θθ

θθ

 (3.5)

55

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

11000
0100
00cossin
00sincos

1

1

1

1

z
y
x

z
y
x

zz

zz

θθ
θθ

 (3.6)

for a left-handed coordinate system where rotation parameters xθ , yθ and zθ specifies the

rotation angles around x, y and z axes, respectively. These matrix expressions can be

defined in more compact forms as

PRP xx ⋅=)(1 θ PRP yy ⋅=)(1 θ PRP zz ⋅=)(1 θ (3.7)

A general form of rotation matrix can be obtained by rotating an object around three

axes in x, y and z order as expressed in Equation 3.8.

)()()(),,(xxyyzzzyx RRRR θθθθθθ ⋅⋅= (3.8)

To rotate an object around an axis with respect to its center, the following

transformation sequence must be applied.

1. Translate the center of the part to the origin

2. Perform the specified rotations around the axes

3. Retranslate the center of the part to its original position

The resultant matrix of the given transformation sequence can be found by

performing the matrix operation given in Equation 3.9.

),,(),,(),,(),,(ccczyxccczyxT zyxTRzyxTR −−−⋅⋅= θθθθθθ (3.9)

where cx , cy and cz are the coordinates of the center point of the part,),,(ccc zyxT and

),,(ccc zyxT −−− are the translation matrices,),,(zyxR θθθ is the general form of rotation

matrix and),,(zyxTR θθθ is the resultant transformation matrix.

56

3.5.2.2.3 Part Scaling

According to the Hearn and Baker (1996) the matrix expression for the scaling

transformation of a position),,(zyxP = relative to the coordinate origin can be written as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

11000
000
000
000

1

1

1

1

z
y
x

s
s

s

z
y
x

z

y

x

 (3.10)

where scaling parameters xs , ys and zs are assigned as a positive single value for uniform

scaling or positive different values for non-uniform scaling. When this transformation is

applied to the position data of the part, the resultant coordinates of the position can be

expressed as

 xsxx ⋅=1 ysyy ⋅=1 zszz ⋅=1 (3.11)

Scaling of a part with respect to the origin results in both dimension and position

change if the part is positioned away from the origin. Repositioning of the part can be

prevented by scaling the part with respect to its center point; to do this the following

transformation sequence must be applied.

1. Translate the center of the part to the origin

2. Scale the part with respect to the origin by using Equation 3.1

3. Translate the center of the part back to its original position

The resultant matrix of this transformation sequence can be written as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=−−−⋅⋅

1000
)1(00
)1(00
)1(00

),,(),,(),,(
czz

cyy

cxx

ccczyxccc zss
yss
xss

zyxTsssSzyxT (3.12)

where cx , cy and cz are the coordinates of the center point of the part,),,(ccc zyxT and

),,(ccc zyxT −−− are the translation matrices and),,(zyx sssS is the scaling matrix.

57

3.5.2.3 Direct Printing Interface

Main purpose of the RP software is to generate CAM data required to perform the

fabrication of an imported part, however, properly transferring this data to a RP machine is

as important as generating it since the generated CAM code becomes useless if it cannot be

transferred to a production system. Therefore, in the RP software, a CAM data transfer

interface is developed to be able to directly transfer the generated CAM code to a supported

RP machine.

The RP software can connect to an external application by using its dynamic link

library (DLL) if it implements an interface called IConnection (Appendix D). This interface

defines the rules of communication of RP software with an external application. Therefore,

an application DLL must be written for each RP machine that will be used with RP

software. The user must implement IConnection interface to this application DLL and add

it to the “Driver” directory of the RP software.

When a direct printing operation is requested by a user, the RP software searches its

“Driver” directory to find the application DLLs implementing the IConnection interface

and displays the supported RP machines that correspond to the found application DLLs to

the user. The user can choose the printing device among the supported RP machines. Once

a machine is chosen by the user, the RP software connects to the corresponding application

DLL and sends the generated CAM code in Common Layer Interface (CLI) Format.

The CLI Format “is a simple, efficient and unambiguous slice format for data input

to all RP systems. In CLI, each layer is represented by a set of contours and hatches.

Contours define the boundaries of the solid material within a layer and are represented by

polylines. Each contour should be closed and have no intersections with itself or with other

contours. A hatch is also defined, as a set of independent straight lines each defined by a

start and an end point. Hatches are used with open polylines to define support and filling

structures. Polylines representing internal contours are ordered clockwise and those of

external contours counterclockwise when viewed along the negative Z-axis. No non-

geometric information is defined in CLI” (Marsan, 1998).

3.5.3 Slice Module

All the production based operations are performed in the slice module. In this

module, the CAM code required for production is generated by slicing the parts and

58

generating the tool paths. Once the tool paths are generated, these paths can be converted to

CLI Format to be saved as an external file or can be directly sent to a supported RP

machine.

3.5.3.1 Part Slicing

The most important functionality of the slice module is the slicing operation. In this

module the parts oriented in the workspace can be sliced by using two different algorithms

that perform two different slicing functionalities. These functionalities can be listed as

preview slicing and production slicing. Both of these functionalities use slicing algorithms

performing uniform slicing by using the same mathematical background.

3.5.3.1.1 Mathematical Background

In both algorithms, a plane to plane intersection between a triangle and a cutting

plane is used. However, when the intersection between a triangle and a cutting plane is

considered, it can be seen that the intersection occurs between the edges of the triangles,

which are straight lines, and the contact line of the cutting plane. Therefore, a cutting

operation can be simplified as an intersection of two three dimensonal lines.

According to Mahir (1999), a three dimensional line can be defined in a parametric

form as

()
()
()
() ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
∈

−+=
−+=
−+=

∈ Rwhere
baz
bay
bax

Rzyx λ
λλ
λλ
λλ

,1
,1
,1

,,

33

22

11
3 (3.13)

where (){ }RzyxzyxR ∈= ,,,,3 , Rbbbaaa ∈321321 ,,,,, and () ()321321 ,,,, bbbaaa ≠ .

Cartesian equation of a three dimensional line can be found by eliminating λ from

the parametric form given in Equation 3.13. To eliminateλ , the parametric form of a three

dimensional line must be redefined as

59

() ()11111 1 babbax −+=−+= λλλ

() ()22222 1 babbay −+=−+= λλλ (3.14)

() ()33333 1 babbaz −+=−+= λλλ

011 ≠− ba ⇒
11

1

ba
bx

−
−

=λ

022 ≠− ba ⇒
22

2

ba
by
−
−

=λ (3.15)

033 ≠− ba ⇒
33

3

ba
bz
−
−

=λ

From this expression the Cartesian equation of a three dimensional line can be

extracted as

33

3

22

2

11

1

ba
bz

ba
by

ba
bx

−
−

=
−
−

=
−
−

 (3.16)

In a case, where a cutting plane in the x direction with an equation of cx = is

intersected with a three dimensional line with start and end points ()3211 ,, aaaP

and ()3212 ,, bbbP , the x value of the intersection point will be equal to c since the

intersection point must be positioned on the cutting plane. Therefore, the intersection point

can be found by putting the 321321 ,,,,, bbbaaa and c values to the Equation 3.16. When

the necessary operations are performed the resultant point ()zyxP ,, can be expressed as

cx =

()()
2

11

122 b
ba

bcba
y +

−
−−

= (3.17)

()()
3

11

133 b
ba

bcba
z +

−
−−

=

The same operations can be performed for other cutting directions to find the

intersection lines between the cutting planes in different directions and the triangles.

60

3.5.3.1.2 Preview Slicing

The first functionality using a slicing operation is the slice preview. In the slice

preview, the parts in the workspace are sliced in X, Y or Z directions in order to display a

single slice at a particular width, height or depth. This feature can be used to verify the

slices used in the production or to visualize the inside of an object.

In the slice preview, each triangle in the workspace is checked according to their

positions. If a triangle inside the bounds of a cut is found, then a cutting plane in the given

position is intersected with an edge of this triangle. After the first intersection, the other

edges of the same triangle are checked for another intersection. When two edges of a

triangle are cut by a single cutting plane, the first line segment of the intersection curve is

obtained. Then the other triangles are checked to find another triangle laid in the cutting

bounds. This procedure continues until all the triangles in the workspace are checked for an

intersection. When the procedure is completed, all the intersection lines in this particular

height are found in mixed order. The lines are not ordered in order not to loose time since

the slice preview data is used only for visualization purposes. The contour generated at a

particular position is displayed in the 3D environment (Figure 3.11, 3.12, 3.13 and 3.14).

Figure 3.11: Slice preview of a set of parts along X direction

61

Figure 3.12: Slice preview of a set of parts along Y direction

Figure 3.13: Slice preview of a set of parts along Z direction

62

Figure 3.14: Slice preview of a different set of parts along Z direction

3.5.3.1.3 Production Slicing

In the production slicing, instead of finding a single slice in a particular position, all

the slices in the workspace must be found to generate the slice contours that are used in the

tool path generation step. Therefore, the production slicing is a more time consuming

procedure, compared to the slice preview.

In finding a single slice, all the triangles of the parts are searched to find the triangles

intersecting with a particular cutting plane. This searching operation consumes a

considerable amount of time. Even worse, in a complex part with millions of triangles,

thousands of slice contours must be generated by searching the entire triangle list for each

slice which means an incredible amount of process time. Therefore, methods like

partitioning of triangles according to their positions or finding the adjacent triangles to

apply a marching algorithm have been developed in different studies to solve this problem.

Although, these methods decrease the process times in considerable amounts, they still

have disadvantages like unnecessary searching and high memory usage.

When the method of finding the adjacency of triangles is examined, it can be seen

that the searching operation is performed only to find the adjacency of triangles. Once the

63

adjacency of triangles is found, the remaining slicing operation marches through all the

triangles by using the shared edges. However, still a huge amount of time is consumed for

searching operation to find the adjacency of triangles. In addition, more than one call for a

single triangle must be performed since in most of the cases more than one cutting planes

cut the same triangle. On the other hand additional memory is allocated to hold the

adjacency information of triangles so the memory usage increases.

In the method of triangle partitioning, triangles are partitioned into the buckets

according to their heights in the cutting direction, so the list of triangles corresponding to a

cutting plane is known before starting the slicing operation. This partitioning operation can

be performed in a single search, therefore, the search time and the number of triangle calls

decreases considerably compared to the method of finding adjacency of triangles. However,

for a triangle cut by different cutting planes, the reference of a single triangle must be held

in more than one bucket. As a result, when millions of triangles are considered, a huge

amount of memory is required to hold the partitioning information. Additionally, the

partitioning only provides information about the relations between the intersection lines and

the slices. The triangles in the buckets are cut by the cutting planes in a random order.

Hence, after the slicing operation, another time consuming search operation must be

performed to order the intersection lines.

In production slicing feature, a third method different than the ones described above

is used to generate slice contours. In this method, all the cutting planes correspond to a

randomly chosen triangle and the intersections between this triangle and cutting planes are

calculated in a single call (Figure 3.15). Therefore, a reverse approach is applied where the

triangle is decided randomly and all the cutting planes are calculated rather than searching

an item in an existing list. In the other methods, the cutting plane is decided first and then a

search operation is performed among a huge triangle list to find an intersection. When the

process times of searching a particular triangle among millions of triangles and calculating

the positions and IDs of at most tens of cutting planes are compared, it can be seen that

summation operation takes significantly less time than searching. Therefore this method

consumes considerably less time compared to the other two methods. In addition, in this

method no additional memory is used to hold partition buckets or adjacency information.

In this method each cutting plane is identified with an integer slice ID. This slice ID

is calculated with the cutting plane by using the first cutting plane, slice thickness value and

the minimum and maximum bounds of the triangle.

64

Figure 3.15: View of a set of parts after a production slicing operation.

After the slicing operation is performed, like in the triangle portioning method, the

intersection lines must be ordered to form the contour curves. In this ordering the slice

information of the lines and their start and end points are used. The first search process is

performed to place intersection lines into slice lists and the second search is performed

among the slice lists to order lines. However, these searches take less time than a portioning

search, since only an equality check is performed to find order lines into slice. When, the

slicing operation is completed the resultant slice contours are displayed in the 3D

environment (Figure 3.16).

3.5.3.2 Tool Path Generation

The generation of the tool path is the final process planning step before fabricating a

part. In this stage, the contour curves generated by the production slicing functionality are

used as the input. The generated contour curves are also used as the tool paths to fabricate

the outer bounds of each layer. To complete the CAM code generation, the inside of these

contours must be filled by raster method to form the final tool paths. The tool paths

generated after raster process must be as continuous as possible and avoid any unnecessary

direction changes. The consecutive raster segments must be alternated in direction to

improve the physical properties of the fabricated part. If one layer of raster segments is laid

Slice ID = 0

 1

 2
Slice Thickness

 n
 n+1

 n+6

Sliced Triangle

Intersection Lines

Cutting Planes

First Cutting Plane

65

in the horizontal direction, the next layer of raster segments must be laid in the vertical

direction. Between the layer changes the continuity of the deposition of the production

material can be an important concern in some production techniques. Therefore it is better

to design the tool paths as continuous as possible in the layer changes, as well. This can be

achieved by linking the end of a raster segment to the beginning of the next one and

oppositely orienting the direction of the raster segments of consecutive layers (Gültekin,

2003).

Figure 3.16: View of a set of parts after a production slicing operation.

The raster segments are generated for one contour in a time. Tool path generation of

a contour is started when the whole tool path generation process of a previous contour is

completed. The raster segments are generated by intersecting the closed slice contours with

equally spaced parallel infinite rays laid along a common direction. The process of

generating tool paths by using these parallel infinite rays is also called hatching. The rays

can be generated in two different directions, x and y. These two directions are called

hatching directions (Figure 3.17). The hatching direction is alternated in subsequent

contours.

66

Figure 3.17: Hatching parameters and hatching direction of a contour.

Two parameters, called tool compensation and contour offset, are used in the

hatching operation. Tool compensation value defines the distance between the parallel

infinite rays. Contour offset value defines the distance between the internal raster segments

and the inner and outer contours. Tool compensation and contour offset values are set at the

beginning of the process and the same values are used throughout a single tool path

generation step. On the other hand, different values can be used in different tool path

generation operations. These values and their physical meanings can be seen in Figure 3.17.

Hatching operation starts with the creation of new offset contours. The existing

contour curves are regenerated inside the outer and outside the inner contours with a

distance equal to contour offset. When all the offset contours are generated, the minimum

and maximum values of all new contours in the perpendicular direction of hatching are

found. These values are used to form a hatching interval. The parallel infinite lines are

generated in this interval with equal spacing defined by tool compensation value.

Afterward, the intersections between the rays and offset contours are calculated and the

resultant intersection points are hold in a point list. Once all the intersection points are

found, the points are ordered according to ascending values of the coordinates in the

hatching direction. The ordered points are used to create the line segments that fill the

inside of the contours. The line segments are connected to their neighboring lines at the

point of intersection so the tool paths are generated (Figure 3.18). These connections are

performed by obeying three intersection rules listed by Gültekin (2003).

67

1. A line segment can be linked to another line segment if and only if the segments

are consecutive. If not, the link might cross other line segments.

2. A link is possible only between the tail and the head of a segment. This guarantees

proper orientation.

3. A raster segment can be linked to another raster segment if and only if the two

vertices to be connected originate from the same contour. If not, the link could overlap

some existing line segments.

Figure 3.18: View of a contour after a tool path generation operation.

When all the line segments are connected to each other by obeying these rules, the

tool path generation stage of the current contour is completed and the same steps are

repeated for the subsequent contours. After all the contours in the workspace are hatched

(Figure 3.19), the generated tool paths are converted into CAM code by saving this data in

CLI Format or by sending the generated data to a supported RP machine through the direct

printing interface provided by the RP module of the RP software.

68

Figure 3.19: View of a set of parts after a tool path generation operation.

3.6 Software Technical Specifications

The RP software developed within the thesis is designed to be used in Microsoft

Windows XP operating system. The software is implemented by using C# language and

Microsoft .NET Framework 2.0. DirectX April 2007 Software Development Kit is used to

support Direct3D hardware acceleration which is used in the display of 3D inputs and

outputs of the software. To be able to use this software in a personal computer (PC), the

target system must have Microsoft XP operating system, .NET Framework 2.0 and

Managed DirectX April 2007 libraries.

Different functionalities are supported in different parts of the software. A modular

architecture is used to be able to distribute different parts of the software independently.

Furthermore, the modular architecture has its benefits while updating the program and

adding new functionalities to the existing software. Therefore, the software is designed in

four different parts as three different modules and a graphics framework. Each of these

parts performs different functionalities of the software.

The software can display three dimensional objects by using a multi screen interface.

Different windows can be opened simultaneously by using a single application. All the

69

windows provide an independent 3D modeling environment with user controls like rotation,

zoom and pan, display options like wireframe, flat shading and point view, predefined

views like top, bottom, front, back, left, right and isometric views. In addition, each

window can be displayed in full screen mode by covering the whole screen of the PC.

The software supports STL file format to import CAD data and CLI file format to

export generated CAM data. Software can import multi STL files at the same time. The

imported files are listed in the graphical user interfaces of their parent windows by means

of their filenames. These files can be grouped in special structures called Product. The parts

and products can be selected by using the graphical user interfaces of their windows.

Therefore, different functions can be performed to different parts or part groups. The parts

can be visualized individually in different colors. The bounding box of each part can be

displayed by using the software. The software also supports undo and redo functionality to

facilitate the ease of use.

A workspace and a platform are displayed by the software to define the virtual

workspace of the target RP machine. An imported part can be oriented in this virtual

workspace by translating the part absolutely or relatively to a given position and by rotating

the part around X, Y and Z axes with a given angle. Moreover, sizes of the parts can be

modified by scaling the part uniformly or non-uniformly along X, Y and Z directions. The

oriented parts are automatically checked for a collision with the virtual workspace to

prevent any failure in manufacturing.

The user can see the previews of the slices of the parts by using slice preview

functionality. The user can verify the slicing operation and slicing parameters before

generating the CAM code or see the interior sections of the parts by using this functionality.

The parts in the workspace can be previewed in three directions, X, Y and Z. The user can

display any slice in any position by using a scroll bar or by entering the position of the

required slice. The user can also choose to display the hatches of the slice contours.

The CAM data generation is automatically performed by the software. The user only

sets the required parameters; tool thickness, first cutting plane, tool compensation and

contour offset. The user can change or use the default values of these parameters before

tool path generation. The process parameters do not have soft limits. Therefore, the user can

set any value to these parameters. However, in large data, the small parameter values may

results in high computation times and high memory and processor usage.

The user can control the slicing operation through the slice thickness and first cutting

plane parameters. The user can change the start point of slicing operation and the thickness

of the resultant layers by changing these parameters. The slicing operation is performed

70

uniformly. All the parts in the workspace are sliced by using a single slice thickness value

provided by the user.

The user can control the hatching operation through the contour offset and tool

compensation parameters. These parameters can be used for different purposes like

manufacturing porous parts or decreasing the production times by rarefying the tool paths

in the interior of the parts. By using the tool compensation value, the distances between the

hatches and by using the contour offset value the distances between the contours and the

hatches can be controlled. The same values are used throughout the tool path generation

process. The hatches can only be spaced uniformly. The software only generates vertical

and horizontal tool paths. The direction of hatching is changed by the software in

subsequent layers. The software does not optimize the tool paths to improve the physical

properties of the fabricated part. Therefore, these parameters must be used by considering

this fact.

The generated tool paths are sent to a supported RP machine through a special

architecture called direct printing interface. Support files for different machines can be

written by the user by using some predefined rules of communication. The generated CAM

code can also be converted into CLI format and saved to an external file to be used in any

application where CLI format is required.

71

CHAPTER 4

DISCUSSION AND CONCLUSION

 In this last chapter, the resultant RP software is compared with the other commercial

RP software packages according to their memory usage and process time to verify the

success of this study. After this benchmark study, the results of this comparison and

achievements of the thesis study are concluded. At the end of the chapter, possible future

work and further improvements are discussed.

4.1 Performance Benchmarking

A performance benchmark study based on memory usage and process time can be

performed between the developed RP software and other commercial RP software packages

in the market to validate the success of this thesis study.

The memory usage of the developed RP software can be tested by comparing the

amount of memory used in different states with Magics and Viscam Software packages.

These states can be listed as the state when the software is just initialized, the state when

the software displays a set of parts, the state when the software created two different build

jobs at the same time and the state when the software is generated the tool paths for a set of

parts. When the memory usages of these three software packages are tabulated at these

stages, the results listed in the Table 4.1 is obtained. The values listed in the Table 4.1 are

taken from Microsoft Windows XP operating system taskbar when the memory usage of

the program is stabilized after the processes or operations listed in the table 4.1 are

completed. The set of parts used in this comparison can be found in the Appendix E. The

creation of two build jobs simultaneously is given as a criterion to emphasize the

importance of the multi screen interface. Since the other commercial software packages do

72

not support multi screen interface, this state is performed by running two copy of the same

application with different build jobs. In the developed RP software, this criterion is

performed by using the multi screen interface. The set of parts used in this comparison can

be seen in the case study provided in Appendix E.

Table 4.1: Memory usage comparison of developed RP software, Magics and Viscam

Developed RP

Software

Magics

Version 11.1

Viscam

Version

Initialized Software 23.580 KB 40.628 KB 13.812 KB

Opened a set of parts 31.488 KB 55.556 KB 31.612 KB

Opened more than one

build job
40.348 KB 121.760 KB 71.472 KB

After tool path

generation of set of parts
49.328 KB 55.656 KB 55.928 KB

The overall process performance of the developed RP software can be tested by

comparing the process completion time of these three software packages. These software

packages can be compared according to the time needed to open a complex file, the time

needed to open multiple files and the time needed to slice a complex part. When the process

completion time of these three software packages are tabulated according to these criteria,

the results listed in the Table 4.2 are obtained. The process completion time of the

developed RP software is measured in milliseconds by using the processor clock. The

measurement is performed by implementing additional timer codes into the source code of

the software. However, process completion time of the other software packages are

measured by simultaneously executing an external timer application and manually stopping

the timer at the end of the process. Consequently, some measurement error is generated in

the values tabulated in Table 4.2.

73

Table 4.2: Process time comparison of developed RP software, Magics and Viscam

Developed RP

Software

Magics

Version 9.52

Viscam

Version

Opening a complex file6 0,47 sec 1,34 sec 3,20 sec

Opening a set of files 0,29 sec 0,67 sec 0,76 sec

Tool path generation of

a complex part
6,42 sec 2,37 sec 4,57 sec

The memory usage and the process completion time of the developed RP software

are comparable with the other commercial systems. However, this comparison can not be

considered as an exact result since the development platforms of the software packages and

additional functionalities my show varieties from one software package to another. The

software packages discussed in the benchmark study is developed by using different

libraries. The developed RP software is using .NET framework libraries and a managed

memory management system that depends on the structure of C# language. On the other

hand, the other two software packages are developed by using C++ language and different

software libraries with an unmanaged memory management system. Therefore, the memory

usage values displayed in the Microsoft Windows XP operating system taskbar can not be

considered as an exact comparison criterion. In addition, the commercial software packages

listed in the table have additional functionalities like STL file repair, STL file modification,

support structure generation, etc. as listed in Appendix B. These additional functionalities

and the methods used in measurement affect the accuracy of the memory usage and process

completion time values of the software packages. However, the results displayed in Table

4.1 and 4.2 are only presented to show the similarity of the developed RP software with the

other commercial RP software packages in a performance wise comparison. The

comparison is not performed to compare the developed RP software in a commercial point

of view. For that reason, the exact memory usage and process time values are not crucial to

discuss the success of the developed RP software. Therefore, by using these values, it can

be said that this study is a reasonable implementation of the functionalities discussed in this

thesis study.

6 The complex part used in this comparison is a STL file with a size of 11 926 KB and it contains
245 258 number of triangles.

74

4.2 Conclusion

In this study, a detailed survey on RP technology is presented. In this presentation the

fundamentals and basic concepts of RP technology, its historical background and

advantages, classification of RP techniques and basic concepts of RP software packages

like STL data format, process planning steps of RP software are explained as detailed as

possible. At the end of this RP technology presentation, a market survey of RP software

packages is given to the reader to justify the requirement analysis of the developed

software.

As a result of this study, a RP software package that satisfies the possible

requirements of future RP studies and hence facilitate them, with a complete, fully

independent, open for development and easy to use architecture is designed and

implemented. This software is developed as an extendible and application independent,

multipurpose software package, which can be used in different engineering studies, rather

than a specific RP application.

The software package supports a 3D modeling environment with 3D hardware

visualization support to be capable of displaying different types of inputs and outputs. A

multi screen support is used to be able to present different information at the same time. A

graphics library that facilitates the design of new graphic objects is developed to use the

same application core in different engineering applications where different types of

visualization requirements and 3D objects are required.

 In the RP software, a modular architecture is used to take advantage of software

modularity in the design, development, release and update of the resultant software

package. The software modules are organized according to their functionality.

A core module that supports a generic file transfer system is designed to facilitate the

use of different file types, which can be required in a future study. This interface also

supports multi file import and export. In the software, more than one file can be visualized

at the same time. Since more than one part is imported, a part organization system is

developed to be able to group parts. Part selection functionality is implemented to be able

to use different functionalities for different parts. In addition to these, undo/redo

functionality is provided for the sake of easy usage.

A RP software package that satisfies the process planning steps of RP is designed

and implemented. As a part of this software package, modules with part modification, part

transform, part slicing and tool path generation functionalities are developed. In the current

phase, the support generation step is neglected since it is considered as a future

75

improvement. Functionalities that facilitate easy modification and orientation of parts are

provided to the user as a part of the RP module. By using this module parts can be scaled

uniformly or non-uniformly, moved absolutely or relatively and rotated around three

different directions. An additional functionality like part slicing in X, Y and Z directions to

preview the production or to see the interior of the model is provided in a different module

called Slice module. Finally, a direct printing interface is designed and implemented as a

part of the RP module to be able to support different RP machines that can be designed in

future studies.

When the application is completed it is tested for different conditions by using

different part files. Finally to test the performance of the developed RP software, it is

compared with commercial RP applications sold in the market according to memory usage

and process time. This comparison has verified the success of the RP software with

acceptable memory usage and process times compared to other commercial RP

applications. Therefore, it can be said that, the resultant RP software is comparable with

other commercial RP applications in case of functionality and performance.

4.3 Future Work and Further Improvements

The basic functionalities that are necessary to perform a standard RP process are

implemented in this version of RP software. However, some additional functionalities and

modules must be added to the developed RP software to be able to use it with all RP

systems in the market.

Support generation module, STL file repair and edit module, data import and export

module can be implemented to the RP software in the future. Automatic and manual

support generation, automatic STL file problems recognition and repair, boolean operation

and 3D shape generation and direct CAD data import support for STEP and IGES formats

can be listed as the functionalities that can be provided by these new modules.

In addition to these new modules, current modules can be improved to support new

functionalities. Automatic part nesting, determining optimal orientation, build time and cost

estimation, build animation and RP machine library supports can be listed as the

functionalities that can be added to the existing RP and View Modules. Additionally, the

current algorithms used in the Slice module can be improved with adaptive and direct

slicing algorithms to perform more accurate slicing operations.

76

Some architectural properties like multi language support, a completely independent

modular expansion support, exception handling and automatic system recovery support,

online update and system logging support can also be developed in a newer version of the

RP software.

77

REFERENCES

Castle Island’s Worldwide Guide to Rapid Prototyping, Rapid Prototyping Equipment,
Software and Materials, http://home.att.net/~castleisland/rp_int1.htm, Last accessed
September 27, 2007, Last updated September 3, 2007.

Chalasani, K. L., Grogan, B. N., Bagchi, A., Jara- Almonte, C. C., Ogale, A. A. and
Dooley, R. L., An algorithm to slice 3d shapes for reconstruction in prototyping systems.

Chang, W., CAD/CAM for the Selective Laser Sintering Process, M.S Thesis, University of
Texas, Austion, TX, 1989.

Chari, J. K. and Hall, J. L., Robust Prototyping, Solid Freeform Fabrication Symposium
1993, H. L. Marcus et al., eds. University of Texas, Austin, August 1993, pp. 135-142.

Chua, C.K., Leong, K.F., Lim, C.S., Rapid prototyping : Principles and Applications.
World Scientific, Suite 202, 1060 Main Street River Edge, NJ 07661, 2003.

EFunda Engineering Fundamentals, Rapid Prototyping: SGC, Solid Ground Curing Process
Figure, http://www.efunda.com/processes/rapid_prototyping/sgc.cfm, Last accessed
September 27, 2007.

Erkut, N., Towards perfection in manufacturing: Autofabrication technologies.
http://www.turkcadcam.net/rapor/autofab/index.html, Last updated June 26, 2007, Last
accessed August 19, 2007.

Gültekin, Murat, Design and Development of a Rapid Prototyping Machine, Master Thesis,
The Graduate School of Natural And Applied Sciences of University of Gaziantep, 2003.

Grenda, E. P., Printing the Future; The 3D Printing and Rapid Prototyping Source Book,
Castle Island Corporation, 119 Webster Street Arlington, MA 02474 U.S.A., 2006.

Hart, George W., "Creating a Mathematical Museum on your Desk", Mathematical
Intelligencer, 27, No. 4, Winter, 2005

Hearn, D., Baker, M. P., Computer Graphics, C Version, Second Edition, Prentice Hall,
May 24, 1996.

78

Hornby, A. and Wehnmeier, S. (Editor), Oxford Advanced Learner’s Dictionary of Current
English, 6th edition, Oxford University Press, Oxford, 2000.

Kirschman, C. F. and Jara-Almonte, C. C., A parallel slicing algorithm for solid freeform
fabrication processes, Solid Freeform Fabrication Symposium, pages 26–33, August 1992.

M2 Systems, Diagram of stereolithography machine with essential parts figure,
http://www.m2-systems.com/prototyping/stereolithography.php, Last accessed September
27, 2007.

Mahir, N., Analitik Geometri; Uzayın Analitik Geometrisi, T.C Anadolu Üniversitesi
Matematik Öğretmenliği Bölümü, T.C Anadolu Üniversitesi Yayınları, 1999

Marcam Engineering GmbH, Viscam RP Software Technical Specification,
http://www.marcam.de/Eng/default.htm, Last accessed September 27, 2007.

Marsan, A. L. and Dutta, D., Survey of Process Planning Techniques for Layered
Manufacturing, Proceedings of DETC’97, 1997 ASME Design Engineering Technical
Conferences, September 1997, 14-17,

Marsan, A. L., Kumar, V., Dutta, D., Pratt, M. J., An assessment of data requirements and
data transfer formats for layered manufacturing. U.S. Department of Commerce, NISTIR
6216, September 1998.

Materialise Company, Magics RP Software Technical Specification,
http://www.materialise.com/materialise/view/en/240063-Magics+brochure+pdf.html, Last
accessed September 27, 2007.

Metelnick, J., How today’s model/prototype shop helps designers use rapid prototyping to
full advantage, Society of Manufacturing Engineers Technical Paper, pages MS91–457,
1991.

Microsoft DirectX Development Team, DirectX 9.0 Programmer’s Reference, Microsoft
Corporation, August 2005.

Miller, T., Managed DirectX 9 Kick Start: Graphics and Game Programming, Sams
Publishing, Inc., 800 East 96th Street Indianapolis, IN 46240 USA, October 22, 2003.

Miller, T., Beginning 3D Game Programming, Sams Publishing, Inc., 800 East 96th Street
Indianapolis, IN 46240 USA, December 3, 2004.

Pham, D. T., and Gault, R. S., A comparison of rapid prototyping Technologies,
International Journal of Machine Tools and Manufacture, 38 (10):1257–1287, October
1998.

79

Proceedings of the 1991 ASME Computers in Engineering Conference, pages 209–216,
August 1991.

Robinson, S., Nagel, C., Glynn, J., Skinner, M., Watson, K., Evjen, B., Professional C#,
Third Edition, Wiley Publishing, Inc., 10475 Crosspoint Boulevard Indianapolis, IN 46256
USA, 2004.

Rock, S. J. and Wozny, M. J., Utilizing topological information to increase scan vector
generation efficiency, Solid Freeform Fabrication Symposium, pages 28–36, August 1991.

Sezginalp, E., Simultaneous Localization and Mapping for an Outdoor Mobile Robot,
Master Thesis, The Graduate School of Natural And Applied Sciences of Middle East
Technical University, 2007.

Tata, K. and Fadel, G., Feature Extraction from Tessellated and Sliced Data in Layered
Manufacturing, Solid Freeform Fabrication Symposium 1996, H. L. Marcus et al., eds.
University of Texas, August 1996, pp. 587-595.

Troelsen, A., Pro C# 2005 and the .NET Platform, Third Edition, A Press, 2560 Ninth
Street, Suite 219, Berkeley, CA 94710, 2005

Venuvinod, P. K., and Ma, P. K., Rapid Prototyping - Laser-Based and Other Technologies,
Kluwer Academic Publishers, Post Office Box 322, 3300 AH Dordrecht, The Netherlands,
2004.

Yang, D. C. H., Jou, Y., Kong, T. and Chuang J., Laser Beam Diameter Compensation for
Helisys LOM Machine, Proceedings of the Sixth International Conference on Rapid
Prototyping, R. P. Chartoff and A. J. Lightman, eds. University of Dayton, pp. 171-178,
June 1995.

Weiss, L. E., Rapid Prototyping Process Overview, Generic Fixturing Figure,
http://www.wtec.org/loyola/rp/02_01.htm, WTEC Hyper-Librarian, Last accessed September
27, 2007, Published March 1997.

Wohlers, T.T., Wohlers Report 2006; Rapid Prototyping Tooling State of the Industry;
Annual Worldwide Progress Report, Wohlers Associates, Inc., New York, May 2006.

80

APPENDIX A

COMPARISON OF RAPID PROTOTYPING TECHNIQUES

AND SYSTEMS

A detailed comparison of commercial RP techniques and systems is presented in the

Table A.1. The techniques are presented with their representative vendors and acronyms.

They are compared according to their general qualitative features by means of maximum

build chamber size, production speed, production accuracy, surface finish and system price.

Additionally, the strengths and the weaknesses of the techniques and their typical

applications are provided in the table. At the end of the table, the materials used by each

technique are listed with production costs.

81

82

APPENDIX B

RAPID PROTOTYPING SOFTWARE MARKET SURVEY

In Appendix B.1 and B.2, the technical specifications of Viscam and Magics

software are given, respectively.

B.1 Viscam Software Technical Specifications

Figure B.1: The modular architecture of Viscam Software (Marcam, 2007)

83

Figure B.2: Functionalities of View module of Viscam Software (Marcam, 2007)

Figure B.3: Functionalities of Mesh module of Viscam Software (Marcam, 2007)

84

Figure B.4: Functionalities of RP module of Viscam Software (Marcam, 2007)

B.2 Magics Software Technical Specifications

The Information provided in this section is taken from the (Materialise, 2007).

Magics Base

Magics gives a control over STL-files among the offered functionality:

• Visualization, measuring and manipulation of STL Files

• Fixing STL files, uniting shells, trimming surfaces, double triangle detector

• Cutting STL files, punching holes, extruding surfaces, hollowing, applying

offset

• Boolean operations, triangle Reduction, smoothing, labeling

• Nesting, collision detection

• Coloring STL-files

85

Magics RP

This version offers some extra Rapid Prototyping functions like:

• The platform concept, Build time estimation, Quotation Making

• Slice verification

• Z-compensation

Modules “IGES”, “VDA”, “STEP”, “UG”, "Pro/E", “CATIAV4.2x" "Catia

V5" and "Slice to STL" import

Magics is compatible with all major CAD formats like IGES, VDA, STEP,

Unigraphics, Pro/E and Catia (V4.5x and V5) and STL. In combination with the STL fixer,

Magics enables you to send any file to the RP system or use it in a tooldesign.

Module “Pointcloud-import”

Point-cloud import allows Magics to import directly the pointclouds generated by

3D scanners. Magics will triangulate the pointclouds by connecting the points by triangles.

A wide range of parameters is available, allowing you to optimise the triangulation. It is

also possible to import VDA pointclouds.

Module “Support Generation”

Support generation is one of the key issues for stereolithography and metal

sintering. Fast and easy generation of support structures is crucial but also the verification

and adaptation of these generated supports is essential for the final quality of the part.

Magics offers several support types and combinations of these different support structures

on one surface.

Module “SG Volumes”

Sand parts are fragile when they are lifted out of the build envelope. The volume

supports avoid that the part breaks or drifts away. The volume supports give extra stability

to the part and large overhangs. The part and supports are automatically placed on a

sintered platform to enable easy lifting of the built construction.

Modules “C-Tools” and “Slice”

The Slice module writes out files for 3D systems, EOS, Stratasys and Sanders.

Slices are automatically repaired and before the slicing is done, the slice preview allows

86

you to inspect the slices. The Ctools module writes out contours and hatching for 3D

Systems SLA 250 machines in the SLI format.

Module “RapidFit”

Quality control is an important issue in the Rapid prototyping industry, speed too.

With Magics RapidFit you can quickly and semi-automatically create fixtures (» supports)

which can be produced with any rapid prototyping technique. These supports are

constructed so they can be placed on so called base plates or beams. This setup can be used

as measuring caliber, supports for easy measuring or for avoiding deformation when storing

the part.

Module “Tooling”

RP Machine constructors are offering techniques to produce mold inserts. However

the tool design is still an elaborate work. Rapid Tooling software allows you to create the

tool directly from the STL design in a matter of minutes. The parting line is automatically

generated. Tooling elements and draft are easily added.

Module “EDM”

The EDM module is included in the tooling module. It is specifically designed for a

fast and easy design of electrodes for spark erosion. Reference points can be defined to

determine coordinates for the setup of the EDM machine. A report file helps managing the

spark erosion project.

Module “Tooling Expert”

With this module quotes for tools for the injection molding process can be made in

a fast, reliable and consistent way. In a 1-2-3 approach, a complete analysis of the part is

done (step 1), a reliable price estimation is obtained (step 2) and a well-documented quote

is automatically generated (step 3).

Module “Remesh”

Optimize your STL models for FEA purposes. Magics’ Remesh Module enables to

quickly and easily transform badly shaped triangles into more or less equilateral triangles.

The more geometrically ‘regular’ the triangles are, the better and more reliable the results

of the FEA calculations will be. Apart from the automatic remeshing option, different

techniques are available to further improve the quality of the triangles manually.

87

Module “SmartSpace”

SMART – Save Material And Reduce Time. SmartSpace assures an optimal load

for your sintering machine and this in a very easy and fast way. Considering the parts’

geometry, the software automatically nests your parts, maximising the number of parts in

the build envelope and/or minimising the build time. At the same time, the software ensures

that none of the parts collides with another part nor the container.

Module “Hearing Aid”

The purpose of the Hearing Aid module is to automate the platform preparation for

the production of Hearing Aid shells. With this in mind, the module combines existing

Magics functionality in a one-button solution.

Module “2D Drawing”

Generate powerful feedback on your STL models by creating and printing 2D

drawings. This module offers fast and easy 2D drawing generation from even the most

complex STL models. You can generate all types of views in both 1st angle and 3rd angle

projection. Adding and editing measurements and annotations takes only seconds and the

title blocks are completely customizable.

Module “ActiveX”

Use the ActiveX interface to integrate Magics in your business process. The

ActiveX module enables direct communication between your software applications (like

databases, quoting programs, web applications) and Magics. Using the ActiveX interface,

Magics can provide these applications with all the imaginable parameters and pictures of

your STL-files. This will bring the automation of your business processes to a higher level:

saving you time and eliminating human errors.

88

APPENDIX C

REQUIREMENT ANALYSIS OF RP SOFTWARE

View Module
Visualization

• Hardware acceleration: support of Direct3D

• Rotation, zoom and pan of parts.

• Flat shading

• Individual visualization of parts

• Cross-section display to analyze the model interior

• Visualization of included color information

File Input/output

• STL file format input.

• Multiple file reading

View-modes

• Flat shading (opaque), triangle (the STL-file), and point view.

• Part bounding box: shows the bounding box around the part

• Full screen display.

• Multi screen support

• Different parts can be shown in different colors

Tools

• UNDO and REDO functions

RP Module
Hardware Communication

• Direct printing interface for the Hermes.

89

Orientation

• Easy orientation of the part on the workspace.

• Parts can be moved absolutely and relatively

• Parts can be rotated around three axes.

Modification

• Parts can be scaled uniformly.

• Parts can be scaled in three different directions

Slice Module
Slicing

• Fast and exact uniform slice generation from triangle models

• No slice thickness limitation

• Section in X,Y,Z planes

Tool Path Generation

• Fast and exact tool path generation from slices

APPENDIX D

DETAILS OF INTERFACES AND STRUCTURAL CLASSES

/// <summary>

/// Define the methods required to draw an object in graphics engine

/// </summary>

public interface IDrawable

{

/// </summary>

/// Method that will be called when device is lost

/// </summary>

void Dispose();

/// <summary>

/// Method used to render the object in a 3D environment

/// </summary>

/// <param name="device">Rendering device</param>

/// <returns>State of the rendering process</returns>

bool Render(Device device);

/// <summary>

/// Method that will be called when device is reset

/// </summary>

/// <param name="device">Rendering device</param>

/// <returns>State of the rendering process</returns>

bool Reset(Device device);

}

91

/// <summary>

/// Define the methods required to create a selectable object

/// </summary>

public interface ISelectable

{

/// </summary>

/// Required to set or get selection information

/// </summary>

bool IsSelected { get; set; }

/// </summary>

/// Required to set or get the selection color

/// </summary>

Color SelectionColor { get; set; }

}

/// <summary>

/// Define the rules of reading a file and adding it to Graphics Framework

/// </summary>

public interface IReadable

{

/// </summary>

/// Reads a file and returns it as a feature type object

/// </summary>

/// <param name=" targetLocation ">Location of the target file</param>

/// <returns>Read feature object</returns>

Feature Read(string targetLocation);

/// <summary>

/// Gets supported file extension as a string

/// </summary>

string FileExtension { get; }

}

92

/// <summary>

/// Define the rules of writing a object to a file

/// </summary>

public interface IWriteable

{

/// </summary>

/// Writes a the given object to a file

/// </summary>

/// <param name=" object ">Object to be write to the file</param>

/// <param name=" targetLocation ">Location of the target file</param>

/// <returns>Status of the operation</returns>

bool Write(Feature object, string targetLocation);

/// <summary>

/// Supported file extension

/// </summary>

string FileExtension { get; }

}

/// <summary>

/// Defines the rules of communication with an external application

/// </summary>

public interface IConnection

{

/// </summary>

/// RP software starts connection by using this method

/// </summary>

/// <returns>Status of the process</returns>

bool OpenConnection();

/// <summary>

/// Sends toolpath as an Vector3 array to the external application

/// </summary>

/// <param name="device">Tool path</param>

/// <returns>Status of the process</returns>

bool SendCode(Vector3[] toolPath);

}

93

/// <summary>

/// Base class for all drawable colored objects. When a class is inhereted from this class, it

/// must set vertices and(optionally) indices of this base class. This can be easily made by

/// adding ": base(vertices, vertexType, vertexFormat)" or ": base(vertices, vertexType,

/// vertexFormat, indices, indexType)" /// statements to constructor of inhereted class or by

/// using "SetVertices(Array vertices, Type vertexType, VertexFormats vertexFormat)" and

/// "SetIndices(Array indices, Type indexType)" methods. Once vertices and (optionally)

/// indices are set then any changes made on them can be reflected to drawing by setting

/// "IsResetRequired" property as true which will yield a resetting process in base class.

/// </summary>

public abstract class Entity : IDrawable, IDisposable

{

/// <summary>

/// Constructor of the entity class

/// </summary>

public Entity();

/// <summary>

/// Constructor of the entity class

/// </summary>

/// <param name="vertices">Vertices of the entity</param>

/// <param name="vertexType">Format of the vertices</param>

/// <param name="vertexFormat">Type of the vertices</param>

public Entity(Array vertices, Type vertexType, VertexFormats vertexFormat);

/// <summary>

/// Constructor of the entity class

/// </summary>

/// <param name="vertices">Vertices of the entity</param>

/// <param name="vertexType">Format of the vertices</param>

/// <param name="vertexFormat">Type of the vertices</param>

/// <param name="indices">Indices of the entity</param>

/// <param name="indexType">Type of the indices</param>

public Entity(Array vertices, Type vertexType, VertexFormats vertexFormat, Array

indices, Type indexType);

94

/// <summary>

/// Indices of entity

/// </summary>

protected Array IndexArray { get; }

/// <summary>

/// Buffer which is holding indices

/// </summary>

protected IndexBuffer IndexBuffer { get; }

/// <summary>

/// Type of the indices in the indices array

/// </summary>

protected Type IndexType { get; set; }

/// <summary>

/// Indicates whether a reset for the device is required or not

/// </summary>

protected bool IsResetRequired { get; set; }

/// <summary>

/// Gets or sets the material color of the entity

/// </summary>

protected Color MaterialColor { get; set; }

/// <summary>

/// Type of the primitive that will be used in rendering

/// </summary>

protected PrimitiveType PrimitiveType { get; set; }

/// <summary>

/// Gets or sets the material of the entity

/// </summary>

public Material SurfaceMaterial { get; set; }

/// <summary>

/// Indicates whether indices are used or not

/// </summary>

protected bool UsingIndices { get; set; }

95

/// <summary>

/// Indicates whether material is used or not

/// </summary>

protected bool UsingMaterial { get; set; }

/// <summary>

/// Vertices of entity

/// </summary>

protected Array VertexArray { get; }

/// <summary>

/// Buffer which is holding vertices

/// </summary>

protected VertexBuffer VertexBuffer { get; }

/// <summary>

/// Format of the vertices in the vertices array

/// </summary>

protected VertexFormats VertexFormat { get; set; }

/// <summary>

/// Type of the vertices in the vertices array

/// </summary>

protected Type VertexType { get; set; }

/// <summary>

/// Method that will be called when device is lost. When you override this method, to

/// improve performance call disposable objects of the class if IsResetRequired is

/// false.

/// </summary>

public virtual void Dispose();

/// <summary>

/// Method used to render the object in a 3D environment

/// </summary>

/// <param name="device">Rendering device</param>

/// <returns>State of the rendering process</returns>

public virtual bool Render(Device device);

96

/// <summary>

/// Method that will be called when device is reset. When you override this method,

/// to improve performance call objects of the class that will be reseted if

/// IsResetRequired is false.

/// </summary>

/// <param name="device">Rendering device</param>

/// <returns>State of the rendering process</returns>

public virtual bool Reset(Device device);

/// <summary>

/// Method used to set buffers of device

/// </summary>

/// <param name="device">Rendering device</param>

/// <returns>State of the process</returns>

protected bool SetDeviceBuffers(Device device);

/// <summary>

/// Sets the indices of the entity class

/// </summary>

/// <param name="vertices">Indices of the entity class</param>

/// <param name="vertexType">Type of the indices</param>

protected void SetIndices(Array indices, Type indexType);

/// <summary>

/// Sets the vertices of the entity class

/// </summary>

/// <param name="vertices">Vertices of the entity class</param>

/// <param name="vertexType">Type of the vertices</param>

/// <param name="vertexFormat">Format of the vertices</param>

protected void SetVertices(Array vertices, Type vertexType, VertexFormats

vertexFormat);

}

/// <summary>

/// Base class for drawable objects that needs selection, custom colorization, transparency

/// and transformation functionality. When a class is inhereted from this class, it must set

/// vertices and (optionally) indices of this base class. This can be easily made by adding

/// ": base(renderColor, vertices, indices)" statement to constructor of inhereted class or by

97

/// using "Vertices" and (optionally) "Indices" properties. Once vertices and (optionally)

/// indices are set then any changes made on them can be reflected to drawing by setting

/// "IsResetRequired" property as true which will yield a resetting process in base class.

/// </summary>

public abstract class Feature : Entity, ISelectable

{

/// <summary>

/// Constructor of the feature class

/// </summary>

public Feature();

/// <summary>

/// Constructor of the feature class

/// </summary>

/// <param name="renderColor">Rendering color</param>

public Feature(Color renderColor);

/// <summary>

/// Constructor of the feature class

/// </summary>

/// <param name="renderColor">Rendering color</param>

/// <param name="vertices">Vertices of the feature</param>

public Feature(Color renderColor, CustomVertex.PositionNormal[] vertices);

/// <summary>

/// Constructor of the feature class

/// </summary>

/// <param name="renderColor">Rendering color</param>

/// <param name="vertices">Vertices of the feature</param>

/// <param name="indices">Indices of the feature</param>

public Feature(Color renderColor, CustomVertex.PositionNormal[] vertices, int[]

indices);

/// <summary>

/// Center of the object

/// </summary>

public Vector3 Center { get; }

98

/// <summary>

/// Identifier of the feature.

/// </summary>

public int Identifier { get; set; }

/// <summary>

/// Indices of feature

/// </summary>

public virtual int[] Indices { get; set; }

/// </summary>

/// Required to set or get selection information

/// </summary>

bool IsSelected { get; set; }

/// <summary>

/// Maximum bound of the object

/// </summary>

public Vector3 MaximumBound { get; }

/// <summary>

/// Maximum distance of object boundary from center of the object

/// </summary>

public float MaximumDistanceToCenter { get; }

/// <summary>

/// Minimum bound of the object

/// </summary>

public Vector3 MinimumBound { get; }

/// <summary>

/// Name of the feature.

/// </summary>

public string Name { get; set; }

/// <summary>

/// Number of triangles hold in the list of the model

/// </summary>

public int NumberOfTriangles { get; }

99

/// <summary>

/// sets or gets the render color of the feature

/// </summary>

public Color RenderColor { get; set; }

/// </summary>

/// Required to set or get the selection color

/// </summary>

Color SelectionColor { get; set; }

/// <summary>

/// Is entity render its bounding box

/// </summary>

public bool ShowBoundingBox { get; set; }

/// <summary>

/// This property indicates whether the feature will drawn

/// transparent or opaque.

/// </summary>

public bool ShowTransparent { get; set; }

/// <summary>

/// Tranformation matrix of the object

/// </summary>

public Matrix Transformation { get; }

/// <summary>

/// Transparency value of the feature. This value must be 0 for full transparent and

/// 255 for opaque. Values greater /// than 255 and smaller than 0 will be set to 255

/// and 0, respectively.

/// </summary>

public byte Transparency { get; set; }

/// <summary>

/// Is feature using its transformation matrix

/// </summary>

public bool UsingTransformation { get; set; }

/// <summary>

/// Vertices of feature

/// </summary>

public virtual CustomVertex.PositionNormal[] Vertices { get; set; }

100

/// <summary>

/// The indexer returns a triangle based on a numerical index.

/// </summary>

/// <param name="i">Indexer</param>

/// <returns> Triangle that corresponds to given indexer </returns>

public Triangle this[int i] { get; }

/// <summary>

/// Permanently apply transformation matrix to the vertices of the feature.

/// </summary>

public void ApplyTransformation();

/// <summary>

/// Method that will be called when device is lost. When you override this method, to

/// improve performance call disposable objects of the class if IsResetRequired is

/// false.

/// </summary>

public virtual void Dispose();

/// <summary>

/// Iterator method of the model class

/// </summary>

/// <returns>Triangles of the model in a foreach syntax</returns>

public IEnumerator<Triangle> GetEnumerator();

/// <summary>

/// Method used to render the object in a 3D environment

/// </summary>

/// <param name="device">Rendering device</param>

/// <returns>State of the rendering process</returns>

public virtual bool Render(Device device);

/// <summary>

/// Method that will be called when device is reset. When you override this method,

/// to improve performance call objects of the class that will be reseted if

/// IsResetRequired is false.

101

/// </summary>

/// <param name="device">Rendering device</param>

/// <returns>State of the rendering process</returns>

public virtual bool Reset(Device device);

/// <summary>

/// Sets transformation matrix

/// </summary>

/// <param name="isAbsolute">

/// Is given transformation according to absolute values

/// </param>

public void SetTransformation(Matrix tMatrix, bool isAbsolute);

}

APPENDIX E

CASE STUDY

In this appendix, a standard rapid prototyping process is performed for a set of

parts. The screenshots of the software after each operation is provided in operation order.

The process is started by creating a new project. Different STL parts are imported to this

project by using the main menu of the software. The imported parts are oriented in the

production platform. All the oriented parts are displayed in different predefined views.

Slices of the parts are previewed in X, Y and Z directions. At the end of the process, the

parts are printed, sliced and hatched, by using the printing functionality of the software.

Figure E.1: Creating a new project by using the main menu of the software

103

Figure E.2: Importing parts in STL format by using the main menu of the software

Figure E.3: Choosing the parts to be imported by using open file dialog

104

Figure E.4: Selecting a part from the graphical user interface to translate

Figure E.5: Moving the selected part by using the translation menu

105

Figure E.6: Selecting a part from the graphical user interface to scale

Figure E.7: Scaling the selected part by using the scaling menu

106

Figure E.8: Front view of the oriented parts

Figure E.9: Top view of the oriented parts

107

Figure E.10: Isometric view of the oriented parts

Figure E.11: Choosing the print preview functionality from the main menu

108

Figure E.12: Previewing the slices of the parts along X direction

Figure E.13: Previewing the slices of the parts along Y direction

109

Figure E.14: Previewing the slices of the parts along Z direction

Figure E.15: Choosing the print functionality from the main menu

110

Figure E.16: Printing the slices of the parts by using parameters

Figure E.17: Displaying parts after printing operation

	1.1 Aim of the Thesis
	1.2 An Overview of the Thesis
	Fundamentals of Rapid Prototyping
	Historical Development of Rapid Prototyping
	2.3 Advantages of Rapid Prototyping
	2.4 Classification of Rapid Prototyping Techniques
	2.4.1 Photopolymer Curing Techniques
	2.4.1.1 Stereolithography
	2.4.1.2 Solid Laser Plotter
	2.4.1.3 Solid Ground Curing
	2.4.1.4 Perfactory
	2.4.1.5 Other Techniques

	2.4.2 Material Deposition Techniques
	2.4.2.1 Fused Deposition Modeling
	2.4.2.2 Multi Jet Modeling
	2.4.2.3 InVision Three Dimensional Printing
	2.4.2.4 Precision Metal Deposition
	2.4.2.5 Direct Metal Deposition
	2.4.2.6 Other Techniques

	2.4.3 Powder Binding Techniques
	2.4.3.1 Selective Laser Sintering
	2.4.3.2 Three Dimensional Printing
	2.4.3.3 Other Techniques

	2.4.4 Object Lamination Techniques
	2.4.4.1 Laminated Object Manufacturing
	2.4.4.2 Solidimension Three Dimensional Printing
	2.4.4.3 Other Techniques

	2.5 Rapid Prototyping Software
	2.6 STL Data Format
	2.7 Process Planning in Rapid Prototyping Software
	2.7.1 Selecting Process Parameters
	2.7.2 Determining Optimal Build Orientation
	2.7.3 Generating Support Structures
	2.7.4 Slicing the Model
	2.7.5 Planning Tool Path

	2.8 A Survey on Rapid Prototyping Software Market
	Requirement Analysis
	3.2 Software Design and Implementation Tools
	3.2.1 Programming Language
	3.2.2 3D Application Programming Interface

	3.3 Software Architecture
	3.4 Graphics Framework
	3.4.1 Application Independency
	3.4.2 Multi Screen Support
	3.4.3 3D Modeling Environment
	3.4.4 Graphics Library

	3.5 Modules
	3.5.1 View Module
	3.5.1.1 Generic File Format Support
	3.5.1.2 Part Organization and Selection
	3.5.1.3 Undo/Redo Support

	3.5.2 Rapid Prototyping Module
	3.5.2.1 Collision Detection
	3.5.2.2 Part Transformation
	3.5.2.2.1 Part Translation
	3.5.2.2.2 Part Rotation
	3.5.2.2.3 Part Scaling

	3.5.2.3 Direct Printing Interface

	3.5.3 Slice Module
	3.5.3.1 Part Slicing
	3.5.3.1.1 Mathematical Background
	3.5.3.1.2 Preview Slicing
	3.5.3.1.3 Production Slicing

	3.5.3.2 Tool Path Generation

	3.6 Software Technical Specifications
	Performance Benchmarking
	4.2 Conclusion
	4.3 Future Work and Further Improvements
	COMPARISON OF RAPID PROTOTYPING TECHNIQUES AND SYSTEMS
	RAPID PROTOTYPING SOFTWARE MARKET SURVEY
	B.1 Viscam Software Technical Specifications
	B.2 Magics Software Technical Specifications

	REQUIREMENT ANALYSIS OF RP SOFTWARE
	DETAILS OF INTERFACES AND STRUCTURAL CLASSES
	CASE STUDY

