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ABSTRACT 
 

 

COMPUTER AIDED MANUFACTURING (CAM) DATA GENERATION FOR 

SOLID FREEFORM FABRICATON 

 

YARKINOĞLU, Onur 

 

M.S., Department of Mechanical Engineering 

Supervisor : Assist. Prof. Dr. Buğra KOKU 

Co-Supervisor : Prof. Dr. Eres SÖYLEMEZ 

 

September 2007, 110 pages 

 

Rapid prototyping (RP) is a set of fabrication technologies that are used to produce 

accurate parts directly from computer aided drawing (CAD) data. These technologies are 

unique in a way that they use an additive fabrication approach in which a three dimensional 

(3D) object is directly produced. 

In this thesis study, a RP application with a modular architecture is designed and 

implemented to satisfy the possible requirements of future rapid prototyping studies. After 

a functional classification, the developed RP software is divided into View, RP and Slice 

Modules. In the RP module, the process parameter selection and optimal build orientation 

determination steps are carried out. In the Slice Module, slicing and tool path generation 

steps are performed. View Module is used to visualize the inputs and outputs of the RP 

software. To provide 3D visualization support for View Module, a fully independent, open 

for development, high level 3D modeling environment and graphics library called Graphics 

Framework is developed.  

The resulting RP application is benchmarked with the RP software packages in the 

market according to their memory usage and process time. As a result of this benchmark, it 

is observed that the developed RP software has presented an equivalent performance with 

the other commercial RP applications and has proved its success. 
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ÖZ 
 

 

KATI SERBEST FORMLU İNŞA YÖNTEMLERİ İÇİN BİLGİSAYAR DESTEKLİ 

ÜRETİM VERİSİ OLUŞTURULMASI 

 

YARKINOĞLU, Onur 

 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi : Yrd. Doç. Dr. Buğra KOKU 

Ortak Tez Yöneticisi : Prof. Dr. Eres SÖYLEMEZ 

 

Eylül 2007, 110 sayfa 

 

Hızlı prototipleme (HP), bilgisayar destekli tasarım (BDT) verisinden kesin 

doğrulukta parça üretilmesini sağlayan bir dizi üretim teknolojisine verilen addır. Bu 

teknolojiler üç boyutlu (3B) bir parçanın üretimi sırasında kullandıkları malzeme eklemeli 

üretim yaklaşımı açısından eşsizdirler. 

Bu tez çalışmasında, gelecekte gerçekleştirilmesi muhtemel hızlı prototipleme 

çalışmalarında doğabilecek gereksinimleri gidermek amacı ile kullanılacak, modüler yapıya 

sahip bir HP yazılımı tasarlanmış ve üretilmiştir. Fonksiyonel bir sınıflama sonrasında HP 

yazılımı, Görüntüleme Modülü, HP Modülü ve Kesitleme Modülü olmak üzere üç ana 

parçaya bölünmüştür. HP modülünde işlem değişkenlerinin seçilmesi ve uygun üretim 

pozisyonlamasının gerçekleştirilmesi, Kesitleme Modülünde kesitleme ve üretim yollarının 

çıkarılması işlemleri gerçekleştirilmektedir. Görüntüleme modülü HP yazılımındaki girdi 

ve çıktıların görselleştirildiği modüldür. Görüntüleme Modülüne 3B desteği sağlamak 

amacı ile Grafik Destek Sistemi adında, tamamen bağımsız, geliştirilmeye açık, üst seviye 

bir 3B modelleme ortamı ve grafik kütüphanesi geliştirilmiştir. 

Elde edilen HP yazılımı piyasadaki diğer yazılımlarla kıyaslanmıştır. Bu 

kıyaslamanın sonuçları hafıza kullanımı ve işlem sürelerine göre değerlendirilmiştir. Bu 

değerlendirmeler sonucunda, geliştirilen HP yazılımının, piyasadaki ticari HP yazılımlarına 

denk bir performans sergilediği ve başarısını kanıtladığı gözlemlenmiştir. 
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CHAPTER 1 
 

INTRODUCTION 
 

 

 

Thanks to today’s rapidly developing technology, nearly every day the world become 

familiar with a new product that makes life easier. However, from the manufacturers’ 

perspective, day by day, the product development speed is increasing to attain this 

technology growth and it becomes nearly impossible to design new competitive products by 

following traditional design steps. This fact forces the companies to design better products 

by spending less money and less time with respect to their competitors. Consequently, the 

prototyping becomes more important since the visual and the functional verification of the 

design is performed by means of prototypes before making time and money consuming 

manufacturing investments. Therefore, in the industry, rapid prototyping (RP) technologies 

are widely used to produce better, faster and cheaper prototypes. In the last years, extensive 

use of RP technologies in the industry is resulted in a sudden growth in the market of RP 

technologies (Figure 1.1). This growth is also accelerated by the new coming RP systems 

and technologies developed by specialized research laboratories of different universities 

and companies. Today, the market is still growing so fast that “If the worldwide economy 

remains relatively strong, an estimated 15,000 3D printers are expected to sell annually by 

2010” (Wohlers, 2006). This expectation makes RP an attractive field of research for 

universities all over the world and creates a competition between different universities and 

companies to develop better technologies to fulfill the future requirements of the market. 

However, in Turkey, the situation is nearly contradictory to the world’s trend.  

Unfortunately, only a few research studies in this topic are completed so far and most of 

these studies are only a collection or a revision of the currently available RP technologies 

(Erkut, 2007) and only a few research projects are in progress. Moreover, none of the 

universities in Turkey has a laboratory specialized in RP or any infrastructure that can be 

used in a comprehensive study. Another drawback is the lack of academic staff specialized 
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in this field. Since the main parameter of industrial growth is the design and production of 

new and better products in a faster, cheaper and more competitive manner, this state is far 

beyond being sufficient for a developing country like Turkey. So this situation makes every 

new research in this field more and more important. 

 

 

 
 

Figure 1.1: Growth of Rapid Prototyping Systems (Wohlers, 2006) 
 

 

1.1 Aim of the Thesis 

Considering the current state of RP technologies in Turkey, this thesis attempts to 

create (design and implement) a software framework which can satisfy the possible 

requirements of future RP studies and hence facilitate them. In this manner, it is desired to 

obtain an open for development and easy to use RP software package with all the necessary 

functionalities that are required to perform a RP process. 

 

1.2 An Overview of the Thesis 

The thesis study is presented in logically distinct four chapters, each of which 

contains some number of sections that are somehow related.  

In this chapter, a brief introduction to the topic of RP is provided and the aim of the 

thesis is described. 
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The aim of the second chapter is to give the reader a general understanding of RP 

techniques, systems and related software packages. Therefore, the second chapter starts 

with a detailed explanation of RP concept. After this explanation the chapter continues with 

a general classification of RP systems. This classification is based on the production 

techniques used by different RP systems. At the end of the chapter basic concepts of a RP 

software is discussed and a survey on RP software market is provided.  

The third chapter attempts to give the reader a general understanding of the 

architecture of the software and the methodology used during the design and 

implementation of this architecture. Therefore, in this chapter mainly design and 

implementation of the software is discussed. The chapter starts with a detailed requirement 

analysis of the software. After the requirement analysis, the tools used in the 

implementation and their alternatives are listed and the reasons of choice are justified. After 

this justification, core part of the software, which is called Graphics Framework, is 

discussed. Its application independency, multi-screen architecture, 3D visualization 

environment and graphics libraries are explained in detail. At the end of the chapter, the 

modules of the software and their properties are presented in detail by using screenshots 

taken from the software. The algorithms used in slicing and tool path generation operations 

are also discussed in this chapter.  

In the last chapter, a general performance benchmark is presented. In the 

benchmarking process, the resultant software is compared with the commercial software 

packages listed in the second chapter according to their memory usage and process time. 

After this benchmark study, possible future work and further improvements are discussed 

and the chapter is completed. 
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CHAPTER 2 
 

RAPID PROTOTYPING 
 

 

 

This chapter provides a detailed survey on RP concepts to facilitate a better 

understanding of RP technologies, systems and software packages. The basic concepts and 

definitions given in this chapter facilitate the reader to easily understand some given 

information in forthcoming chapters.  

 

2.1 Fundamentals of Rapid Prototyping 

Rapid prototyping is a term which embraces a set of fabrication technologies that are 

used to produce accurate parts directly from computer aided drawing (CAD) data (Pham 

and Gault, 1998). These technologies are unique in a way that they use an additive 

fabrication approach in which a three dimensional (3D) object is produced by building new 

layers on top of other existing layers by incrementally adding materials (Figure 2.1) 

(Venuvinod and Ma, 2004). Because of the use of different terms and concepts in the 

definition of RP, these technologies are also known by different names like additive 

fabrication, three dimensional printing, layered manufacturing and solid freeform 

fabrication (Grenda, 2006). 

The entire process of RP can be divided into three main parts that are performed in 

three different units. These units can be listed as computer aided design (CAD) software, 

RP software and RP machine. The prototyping process starts in the CAD software with the 

design of a model and ends in the machine with the production of the prototype (Figure 

2.2). 
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Figure 2.1: Three dimensional objects that are built layer by layer (Weiss, 1997) 
  

 

The RP process starts with a design. When a design is completed, it is modeled in 

CAD software by using a solid or surface representation. From this model, triangulated data 

to be used in the production of the model in a RP system is generated. This data is exported 

from the CAD software in a worldwide standard RP file format called STL1. This exported 

file is imported by RP software to perform the next steps in the RP process. 

 

 

 
 

Figure 2.2: Overview of the entire process of rapid prototyping 
 

 

                                                      
1 STL is the native file format of the stereolithography CAD/CAM software created by 3D Systems 
Company. 
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Main purpose of RP software is to generate computer aided manufacturing (CAM) 

data that are used in the production phase. In the generation of CAM data, special process 

parameters like workspace dimensions, layer thickness, tool compensation, etc. are used. 

These parameters are set according to the properties of RP machine. In a standard RP 

process, the process inside the software starts with the import of a 3D CAD file. When the 

file is imported, the part is oriented inside the workspace by considering different 

parameters like surface quality, production time, production cost, etc. In the next step, 

support structures are generated according to the orientation of the part. The formed 

workspace, the model and the support structures, are sliced into layers. After the slicing 

operation, the generation of CAM code is completed with the generation of the tool paths. 

When CAM code is generated, the physical side of the production is started. The 

code is sent to the machine by the software and the machine produces the part by using a 

particular RP technique. In most of the RP systems the production process is fully 

automated, so no technician is needed during the fabrication of the part. In some systems, 

secondary operations can be needed after the production. Some of these secondary 

operations are manually done by a technician and some of them are performed 

automatically in different units of the RP system. 

 

2.2 Historical Development of Rapid Prototyping 

In the presentation of historical development of RP it is necessary to be familiar with 

the concept of prototyping and the meaning of word “prototype”. 

Prototype used as a word in a product development and manufacturing cycle means 

“an approximation of a product (or system) or its components in some form for a definite 

purpose in its implementation” (Hornby and Wehnmeier, 2000). This is a very general 

description which not only contains meaning of being physical but also covers all kinds of 

prototyping issues like mathematical models, pen sketches or any virtual models of a 

product. Actually, as it is understood in our daily lives prototyping is a general process of 

realizing a design. From this point of view historically development of prototyping concept 

can be classified in three phases like manual prototyping, soft or virtual prototyping and RP 

(Chua, 2003). 

When the age of mechanization had started in 1770, a requirement to use prototypes 

has emerged. Until the mid of the 20th century, handmade models were the only way to 

assess the form, fitness and functionality of a design before making a significant investment 
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in tooling (Pham and Gault, 1998). Pen sketches were also used to visualize designs 

without fabricating a physical model. During this early phase, prototypes manufactured 

manually were not an accurate copy of the real product. Although, the prototypes were not 

very sophisticated, their fabrication took weeks or months depending on the skill of the 

craftsmen, level of complexity and representativeness (Chua, 2003). 

With the usage of computers in the design and manufacturing of products in the mid 

20th century, the prototyping entered its second phase. During this phase, computers and 

mathematical models were used to visualize the models and to analyze their physical 

attributes and properties. With increasing computation power it has become possible to 

design more complex products by spending less effort. Use of computers has also changed 

the way of production with the emergence of high precision computer numerical control 

(CNC) machines. This rapid change in technology has opened a new era in prototyping. 

Although, visual aids and mathematical models can be used to realize the product, still 

there has been a need to physically fabricate the prototypes of new products. By the 

introduction of CNC machines and computer technology it has become possible to produce 

more complex (about twice the complexity as before (Metelnick, 1991) ) and more accurate 

models with a disadvantage of extended production time (weeks or months for complex 

models) and high production cost (Chua, 2003). 

In 1988, with the release of the first commercial RP system, the next phase of 

prototyping has started. The invention of RP technology makes it possible to produce 

relatively three times more complex models compared to the parts produced in 1970s 

(Figure 2.3). Also the time and money required to produce these models has tremendously 

decreased. Required time to build a complex model has started to be expressed by months 

or even days (Chua, 2003). Today, 57 different companies from 11 different countries are 

producing RP systems by using 65 different RP techniques and nearly 700 service 

providers are giving prototyping service (Erkut, 2007).  

 

2.3 Advantages of Rapid Prototyping 

RP systems have a large area of use compared to other manufacturing processes 

(Figure 2.4). Today’s RP systems can directly be used to produce functional parts in small 

quantities. However, usually the accuracy and surface finish of these parts are not as good 

as the machined one. On the other hand, in some advanced RP systems near tooling quality 

parts can be produced as final products. Also in some other RP systems material qualities 
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and physical properties can be improved by using different secondary operations. More 

fundamentally, when the time and the cost to produce a complex part by using a RP system 

is considered, these deficiencies are considerably affordable compared to other machining 

techniques. Therefore, with the increasing surface quality and improved material properties, 

the RP systems are the most significant competitor of conventional production systems. 

 

 

 
 

Figure 2.3: A complex model produced by using a RP technology (Hart, 2005) 
 

 

When it is considered that the products in the market have increased in complexity, 

the companies, which need experimentation with physical objects of any complexity, are 

benefited more from the RP systems (Metelnick, 1991). During the development and design 

process, sometimes producing parts near to the final product or products that can be used in 

functional testing is important, however the time needed to manufacture a single final 

product is enormous. On the other hand, a RP system offers the companies a great 

opportunity to produce these products in a relatively short period of time with a low cost 

(Chua, 2003). 

RP systems used in the production of a final product give designers the opportunity 

of designing more complex parts, so more functional or aesthetic forms can be used in the 

design. Also, without any manufacturing limitation, part designs can be optimized and the 

number of parts can be decreased by combining features in a single part. Decrease in 

number of parts results in a decrease in analysis time, assembly time, assembly difficulties 
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and number of fastening parts (Chua, 2003). When RP systems are used in final product 

manufacturing, there are fewer constraints in the design of a part. The parts that cannot be 

set up for machining and the structures with production difficulties like thin walls, holes 

outside the limits of manufacturing tools, empty shapes, which causes high material 

removal and high production cost, can be designed without any manufacturing limitation. 

Also parts can be optimized for their strength / weight ratios without regarding the 

machining cost. Another advantage is the minimization of the time consumed during the 

discussions and evaluations that is made on the manufacturing possibilities (Chua, 2003). 

 

 

 
 

Figure 2.4: Area of use of rapid prototyping systems (Wohler, 2006) 
 

 

RP systems producing final products causes a reduction in labor cost since stock of 

different tools and many special purpose machines is not needed. Trained personnel cost is 

reduced as well, since setting up of machinery and CNC programming is eliminated. As an 

indirect effect, less training cost is required because less qualified operator is needed. Also 

there is no need to stock materials in different sizes; as a result, the material costs are 

reduced. The change in a dimension of a part can be applied to the production without 

rewriting all the CNC code; hence an enormous amount of time is gained (Chua, 2003). 

All these factors show their effect as more aesthetic and functional products with 

lower manufacturing costs; this way, the product prices decrease while the user satisfaction 

and competition power of companies increase.  
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2.4 Classification of Rapid Prototyping Techniques 

RP technologies have shown a rapid growth since the release of the first commercial 

system in mid 80s. After this triggering event various systems using different techniques 

have been developed and commercialized all over the world.  Today, worldwide 57 

different companies are producing RP systems by using 65 different RP techniques and still 

new technologies are emerging (Appendix A) (Erkut, 2007). All these systems used 

worldwide can be grouped under four main classes based on the characteristics of 

production techniques. These classes can be listed as photopolymer techniques, deposition 

techniques, powder binding techniques and lamination techniques. In the following sections 

different RP techniques are presented in detail. The information used in these sections is 

taken from the technical report of Erkut (2007). 

 

2.4.1 Photopolymer Curing Techniques 

In photopolymer curing techniques, a photosensitive material layer is laid out to the 

production platform and the required parts of this layer are cured by using a light source. 

When this photosensitive material is cured, it solidifies and bonds with the previous 

layer(s). This procedure is repeated until all the layers of the three dimensional model of the 

prototype is completed. This curing operation can be performed by using two different 

approaches. In the first approach required parts of a layer is scanned point by point by using 

a laser beam. In the second approach, a mask that is covering the unnecessary parts of the 

layer is used and each layer is cured at a single time by using a single UV lamp. In the 

forthcoming subsections, systems using photopolymer curing techniques are described in 

detail. 

 

2.4.1.1 Stereolithography 

In the stereolithography (SLA) technique, liquid photopolymer accumulated in a tank 

is solidified layer by layer by using a laser beam that is positioned on top of the production 

platform (Figure 2.5). When curing of a layer is completed, the platform is plunged into the 

tank by a layer thickness and the curing operation of the next layer is started. After all the 

layers are formed, the platform is raised to the liquid level. Throughout the manufacturing 

process, some special structures called support structures are also produced with the 
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prototype. These support structures are used for different purposes and they are manually 

removed from the prototype after the production process. The details of these structures are 

described in the forthcoming sections of this chapter. Mostly, after the first curing 

operation, the physical properties of the manufactured model are not ideal, so the model is 

kept in a special UV lamp oven for a period of time to improve its physical properties. 

 

 

 
 

Figure 2.5: Diagram of stereolithography machine with essential parts (M2 Systems, 2007) 
 

 

2.4.1.2 Solid Laser Plotter 

In the solid laser plotter (SLP) technique, liquid photopolymer accumulated in a 

transparent tank is solidified under a production platform by using a laser beam that is 

positioned on top of the liquid tank. During the fabrication, the platform is positioned 

outside the liquid level and completed layers are adhered to the bottom of the platform. 

When curing of a layer is completed, the platform is moved upward by a layer thickness 

and the curing operation of the next layer is started. So, model is fabricated layer by layer in 

an inverse manner when compared to SLA. 

 

2.4.1.3 Solid Ground Curing 

In the solid ground curing (SGC) technique, liquid photopolymer is laid out to the 

production platform as a thin layer. Then a mask of the layer is formed on a glass with 
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electrophotography technique by using photocopy toner. When the mask is formed, a single 

UV lamp cures the photopolymer to form a solid layer (Figure 2.6). Curing is performed by 

using a high density UV lamp, so a second curing process used in SLA is not needed. After 

the curing operation is completed, remaining liquid photopolymer is pumped out to be used 

in the next cycle and the empty parts are filled with liquid wax. Support wax is solidified by 

applying pressure with a water cooled metal sheet. For the next layer the surface of the 

existing layer is shaven by a blade. This process cycle is repeated until the fabrication of the 

model is completed. 

 

 

 
 

Figure 2.6: Diagram of solid ground curing machine with essential parts (EFunda, 2007) 
 

 

2.4.1.4 Perfactory 

In the perfactory technique, the light diffused from the UV lamp is directed to the 

photopolymer layer through a masking projection system that is driven by digital light 

processing (DLP) technology. In DLP, the direction of the light is controlled by thousands 

of micro mirrors positioned on a silicon chip. The state of these mirrors is controlled by 

electric signals in two stages (on / off). By changing the states of these mirrors, mask of a 

layer is formed and the fabrication of each layer is completed like it is performed in the 

SLP technique. 
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2.4.1.5 Other Techniques 

Some other techniques that are using photopolymer curing approach are also 

available. However, these techniques have a more limited area of use compared to the 

stereolithography, the solid laser plotter, the perfactory and the solid ground curing 

techniques. In some applications the masking methods or the physical properties of the 

photopolymer material may show differences from the popular photopolymer curing 

techniques. Use of an LCD screen as a mask or use of a solid photopolymer material can be 

examples of these applications. 

 

2.4.2 Material Deposition Techniques 

In material deposition techniques, production material in a liquid or a cemented state 

is sprayed or plastered to the desired points of a layer in a controlled fashion. In this group 

of methods solidification of the material usually occurs by a state change of the material 

from a liquid to a solid form or by a chemical reaction. The material is sprayed or plastered 

to the production platform by using single or multi nozzle head systems. During the same 

production process, different materials can be deposited for production or supporting 

purposes by using different nozzles. As a result of this, it is possible to produce multi-

material complex models by using different materials with different physical properties. In 

addition, assemblies composed of different parts with different materials can also be 

produced during a single build operation. 

 

2.4.2.1 Fused Deposition Modeling 

In the fused deposition modeling (FDM) technique, production material that is heated 

and held under the melting temperature is extruded through a thin nozzle and plastered to 

the production platform to form the layers. When a layer is produced, the platform moves 

downward and the deposition of the next layer starts. This cycle is repeated until the 

fabrication of the model is completed. The production material in the form of filament is 

fed to the nozzle by using a position controlled feeding system. During the production 

process, two different types of materials can be used as support structure. First type of 

support structure is produced by using an easy to break type plastic material, so the 

supports are manually removed from the model. The second type of support structure is 
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produced by using a special material that dissolves in water, so the removal process is 

automatically handled in an external unit. In this production technique, different materials 

like acrylonitrile butadiene styrene (ABS), polyamide, casting wax and high temperature 

resistant engineering plastics can be used as production material. 

 

2.4.2.2 Multi Jet Modeling 

In the multi jet modeling (MJM) technique, melted material is sprayed to the 

platform by using an inkjet printer head (Figure 2.7). This inkjet printer head contains 352 

micro nozzles that are driven by a piezoelectric actuation system. In production, printing 

the head moves in the direction of X and the platform moves in the direction of Y and Z. 

Owing to multi nozzle head structure, the printing head can cover Y direction in eight 

passes. In each layer, the order of passes in Y direction is randomized to prevent an error 

accumulation that can be originated from a material blockage in a nozzle. After production 

of each layer, a roller system passes along the layer to provide the uniform layer thickness. 

Support structures are produced by using the same material with the model and removed 

manually after the model is hold under the temperature of 10 degree in an external unit. In 

this production technique a paraffin based polymer is used as production material. 

 

 

 
 

 

Figure 2.7: Diagram of multi jet modeling machine with essential parts (Erkut, 2007) 
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2.4.2.3 InVision Three Dimensional Printing 

In the InVision 3D printing technique, an acrylic photopolymer material in gel form 

is heated until its melting point and sprayed to the platform by using an inkjet printer head 

similar to the one used in MJM. When a layer is formed in solid form it is cured by using 

an UV lamp. By repeating this cycle the fabrication of the model is completed. During 

production process, a special wax is used as a support material. Support structures are 

removed after the fabrication by heating the model. When compared to MJM, this 

technique can produce more durable materials at higher speed and better accuracy. In the 

market there are different implementations of this method. 

 

2.4.2.4 Precision Metal Deposition 

In the precision metal deposition (PMD) technique, a metal wire is melted and 

deposited to a platform by using a laser beam.  During the fabrication, an inert gas is 

exerted from the wire feeding system to the deposition point to prevent corrosion. In PMD, 

compared to other methods, a lesser amount of melted material is produced and smaller 

amount of thermal stress is generated. So, parts with better metallurgical properties and a 

reduced amount of distortion can be produced. This makes PMD a superior example of use 

of RP systems in direct manufacturing of parts and molds. PMD is also used in aerospace 

industry to repair the expensive and complex titanium and stainless steel parts and molds. 

 

2.4.2.5 Direct Metal Deposition 

In the direct metal deposition (DMD) technique, metal powder is melted and 

deposited by using a carbon dioxide laser beam (Figure 2.8). The metal powder is fed by a 

funnel shaped feeding system that is positioned around the laser beam. The temperature of 

the melted powder and the crystal structure of the metal are controlled during the 

production. By using this technique, multi material parts can be produced by using different 

materials in the same fabrication process. DMD is an example of use of RP systems in 

direct manufacturing of parts and molds. DMD is also used to repair damaged or corroded 

parts and molds. 
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Figure 2.8: Diagram of direct metal deposition machine with essential parts (Erkut, 2007). 
 

 

2.4.2.6 Other Techniques 

Some other techniques that are using material deposition approach are also available. 

However, these techniques have more limited area of use compared to the ones introduced 

above. Some of these techniques are liquid metal jet printing, ballistic particle 

manufacturing, Pligraphy, electrochemical fabrication, micro-droplet fabrication and bio-

plotter. 

 

2.4.3 Powder Binding Techniques 

In the powder binding techniques, material in powder form is laid out to the platform 

and is heated or glued in necessary sections of the layer by using a laser or electron beam or 

an inkjet type glue gun. Powders that are not bonded are used as support structure 

throughout the production. In this type of techniques secondary operations like removing 

unused powder and cleaning fabricated model is required. In model fabrication plastic, 

metal, ceramic or multi-material powders can be used as production material. 
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2.4.3.1 Selective Laser Sintering 

In the selective laser sintering (SLS) technique, a heat fusible powder is laid out to 

the production platform as a thin layer and melted selectively by using a laser beam. The 

melted powder particles are bound together and form a solid layer. Then the platform 

moves downward and the production of the other layers are done by following the same 

steps. In SLS, the required powder is fed to the system by using another platform which is 

moving in the opposite direction of production platform. When the production platform 

moves downward, the feeding platform moves upward and feeds the required powder. The 

fed powder is laid out as a thin layer by using a roller. The production chamber is held 

under the melting temperature of material to be able to bind the powders faster and easier. 

In model fabrication, plastic, metal, ceramic or multi-material powders can be used. By 

using these materials, functional final products and ceramics molds can be produced. The 

most important disadvantage of this technique is the porous structure of the fabricated parts. 

To resolve this issue mostly a secondary heat treatment process is required to improve the 

physical properties of the model. Also, other secondary operations like removing unused 

powder and cleaning the fabricated model are necessary after production. 

 

2.4.3.2 Three Dimensional Printing 

In the three dimensional printing (3DP) technique, the material in powder form is 

laid to the production platform by using a similar feeding system that is used in SLS. But 

different from SLS, the powder is bonded in the required areas by using a multi nozzle glue 

gun. After a layer is finished the production platform is moved downward and the powder 

of the next layer is laid. This process cycle is repeated until all the layers of the model are 

completed. The unbound powder particles are used as a support structure throughout the 

production phase and removed for recycling by using a vacuum cleaner at the end of the 

production. In this technique, secondary operations like sintering and a different material 

saturation can be applied to improve the physical properties of the model. The advantages 

of this technique can be listed as high production speed and low production cost. 3DP 

systems are the fastest prototyping systems in the market. On the other hand, the products 

fabricated with 3DP have some deficiencies like low surface quality, low dimensional 

accuracy and being fragile. 3DP systems are mostly used in the visualization of conceptual 

designs or in the production of tooling rather than to be used in final products. Different 
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parts like casting molds, filters and steel-bronze alloy materials can be produced by using 

this technique. 

 

2.4.3.3 Other Techniques 

Some other techniques that are using powder binding approach are also available. 

But, these techniques have a more limited area of use compared to selective laser sintering 

and three dimensional printing techniques. These techniques can be listed as sintering 

technique of EOS Company (EOSINT), selective laser melting, electron beam melting, 

selective mask sintering, laser-forming and lasercusing combined processing. 

 

2.4.4 Object Lamination Techniques 

In object lamination techniques, thin solid materials are used in production. The 

layers are formed by cutting the production material. After the cutting operation, the formed 

layer is pasted to the other layers. By repeating this cycle the model is formed layer by 

layer. In these systems paper, plastic, foam, metal sheets and some different materials 

saturated with ceramics and metals are used in production. 

 

2.4.4.1 Laminated Object Manufacturing 

In the laminated object manufacturing (LOM) technique, a special paper that is 

saturated with polymer adhesive is laid out to a platform by using a cylindrical feeding 

system. This material is pasted to the previous layer by using a hot roller. After positioning, 

the profile of the model section is cut on the material by using a laser cutter. Scrap parts are 

hatched to facilitate the removal process. These scrap parts are used as support structure 

throughout the production. This process cycle is repeated until the model is completed. A 

considerable amount of smoke is generated during the cutting operation. So a ventilation 

system and an air filter are used to remove the polluted air. The supports are removed 

manually. This process can be painful and time consuming in complex models. Also some 

secondary operations like retouching and sanding can be required after production. The 

fabricated models have similar physical properties with wooden models. 
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2.4.4.2 Solidimension Three Dimensional Printing 

In the Solidimension 3DP technique, a PVC material in a sheet form is laid out to the 

platform and an adhesive material is applied onto the layer by using a roller system. Then 

the profile of the model section is cut from the material by using a blade. The uncut parts 

are used as support structures. A special anti-glue chemical is sprayed to these parts to 

facilitate the structure removing process. Compared to LOM more durable parts can be 

manufactured by using this technique. 

 

2.4.4.3 Other Techniques 

Some other techniques that are using object lamination approach are also available. 

But, these techniques have a more limited area of use compared to the laminated object 

manufacturing, the Solidimension 3D printing and the trusurf techniques. These techniques 

can be listed as trusurf, shape adhesive hot press, CAM-LEM, offset fabbing, 

stratoconception and customLAM. 

 

2.5 Rapid Prototyping Software 

RP systems can be studied in three sub groups which are software, hardware and the 

technique. The main concern of this thesis study is the software part of an RP process.  

In the previous section, detailed information about the RP techniques is given. There 

are two reasons for this. First is the importance of RP techniques in the concept of RP. 

Therefore, a RP technology presentation without a detailed RP techniques survey is 

considered incomplete. The second reason is the effect of the RP techniques on the process 

planning part of the RP software packages. Consequently, the basic principles of production 

techniques have a great effect on the way how the software works.  

On the other hand, the RP hardware is strictly dependant on the used RP technique. 

Each machine is designed to use a specific technique so a detailed presentation in RP 

techniques also reflects the details of RP hardware. Also, the effects of hardware on the RP 

software is limited; only some production parameters in the process planning part are set by 

the hardware, thus the technical details of hardware are considered as a different issue 

which is outside the boundaries of this study. To be able to use the software with different 
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types of hardware, all of these parameters are programmed in a parametric fashion, so a 

detailed study on technical details of hardware is not needed and therefore not presented.  

In the forthcoming sections of this chapter, the concern is only on the details of RP 

software packages. The required information about the STL data format, RP process 

planning steps and RP software market is presented.  

 

2.6 STL Data Format 

STL is a file format specification for importing CAD models from different design 

programs to RP systems. The specification was initially developed by 3D Systems Inc. for 

their stereolithography systems. Now, STL is the standard RP data format for all RP 

systems worldwide (Venuvinod and Ma, 2004). 

STL file format mainly uses faceted objects to represent a model (Figure 2.9). To 

perform this representation, initially the surfaces of the model are reconstructed by using 

triangles. After the completion of re-construction, the data is stored in a file by using one of 

the two different STL representations. These representations can be listed as ASCII and 

binary. Both of these representations provide a list of triangles that is forming the model. 

Triangles are represented by a normal vector and coordinates of three edges. Each of these 

values is stored in floating point accuracy (Venuvinod and Ma, 2004). 

 

 

 
 

Figure 2.9: A faceted object with three faces and four vertices. 
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In ASCII format the data is stored in text format by using some keywords and values 

(Figure 2.10). This representation can be easily read and checked since all the values 

required to define a triangle is listed with its attribute name and corresponding value. 

However, an ASCII format representation results in a large file size since an ASCII value 

of each character is used to store the data (Venuvinod and Ma, 2004). 

 

 

solid irregular tetrahedron 
facet normal  ‐1.0  0.0  0.0 

outer loop 
vertex  0.0  0.0  0.0 
vertex  0.0  0.0  3.0 
vertex   0.0     2.0     0.0 

end loop 
endfacet 
facet normal  0.0  ‐1.0  0.0 

outer loop 
vertex  0.0  0.0  0.0 
vertex  1.0  0.0  0.0 
vertex   0.0     0.0     3.0 

end loop 
endfacet 
facet normal  0.0  0.0  ‐1.0 

outer loop 
vertex  0.0  0.0  0.0 
vertex  0.0  2.0  0.0 
vertex   1.0     0.0     0.0 

end loop 
endfacet 
facet normal  0.85714286  0.42857143  0.28571429 

outer loop 
vertex  1.0  0.0  0.0 
vertex  0.0  2.0  0.0 
vertex   0.0     0.0     3.0 

end loop 
endfacet 

endsolid irregular tetrahedron 
 

Figure 2.10: STL representation in ASCII format of the object shown in Figure 2.8 
 

 

On the other hand, in binary format only the required data is stored in a predefined 

order by using the byte representations of the values (Figure 2.11) which results in 85% file 

size reduction in a typical file. The reduction in file size also affects the read, write and 

transfer times. Hence, mostly the binary STL representation is used in the market 
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(Venuvinod and Ma, 2004). Despite its simplicity, the STL file format has some inherent 

problems that have to be dealt with when processing these files. 

 

 

 (Start of File) 
84 bytes  –  header record 

80 bytes  –  unformatted general information such as file  
          name, part name and comments 

    4 bytes    –  number of facet records each facet record  
         defines one triangle 

  50 bytes  –  first facet record 
    12 bytes  –  facet normal vector 
              4 bytes  –  i coordinate   
              4 bytes  –  j coordinate   
              4 bytes  –  k coordinate   
    12 bytes  –  first vertex 
              4 bytes  –  i coordinate   
              4 bytes  –  j coordinate   
              4 bytes  –  k coordinate   
    12 bytes  –  second vertex 
              4 bytes  –  i coordinate   
              4 bytes  –  j coordinate   
              4 bytes  –  k coordinate   

12 bytes  –  third vertex 
              4 bytes  –  i coordinate   
              4 bytes  –  j coordinate   
              4 bytes  –  k coordinate 
    2 bytes    –  optional facet attributes like color 
  50 bytes  –  second facet record 
    : 
    : 
    : 
  50 bytes  –  the last facet record 
  (End of File) 

 

Figure 2.11: STL representation in binary format of the object shown in Figure 2.8 
 

 

The most obvious problem of the STL file format is the large file size. When 

complex models are converted into STL format, huge files are created which makes file 

transfer more difficult. Also the time required to read or write a file increases with the 

increasing file size. When a single surface is represented by too many triangles, the 

memory usage also increases since all the required data is held in the memory during the 

data manipulation. This problem comes from the fact that the STL file format holds 

redundant data to represent a model. In a closed surface, the outer and inner surfaces can be 
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found from the given data, so the normal vector information can also be calculated from the 

given vertex list. On the other hand, for a typical triangle mesh each mesh is shared by six 

neighboring triangles which implies that the same vertex data is hold for six times. So, 

when the vertices are ordered properly, the information of the shared vertices can also be 

found from the given triangle list. So it is entirely unnecessary to hold the normal vector 

information and the shared vertices information in STL files (Venuvinod and Ma, 2004). 

The STL file format also has some deficiency in the accuracy of the representation of 

the model. Since an approximation is done during the conversion of a CAD model to a 

faceted model, the precision of some surfaces and some details can be lost. If the surface is 

planar this conversion is performed accurately, but if the surface is curved then the 

accuracy of the conversion is controlled by the number of triangles used in the 

approximation. Also the level of details can be affected from the conversion tolerances. 

These two error sources can result in inappropriate model or low surface quality in RP.  

STL data can also contain some topological and geometric problems which are 

originated from surface approximation. The topological problems can be listed as flipped 

triangles, missing triangles, invalid sharing and misplaced triangles (Figure 2.12). These 

problems can be solved through face flipping, local re-triangulation and edge, triangle and 

vertex reconnection, insertion and deletion. The geometric problems can be listed as the 

degenerate triangles and face overlapping (Figure 2.13). Such problems can be solved by 

deleting degenerate triangles or by vertex repositioning (Venuvinod and Ma, 2004). In 

today’s RP systems these problems are handled before the production process by using RP 

software packages or individual STL file repair applications.  

 

2.7 Process Planning in Rapid Prototyping Software 

The operations performed in RP software packages can be classified and analyzed in 

five groups. These five groups can be listed as selecting process parameters, determining 

optimal build orientation, slicing model, planning tool path and generating support 

structures (Marsan, 1998). Although all of these steps can be considered as necessary in a 

standard RP process, in some cases one or more of these steps can show differences or even 

be neglected. As an example, in a process planning of a RP system using the LOM 

technique, the support generation step can be neglected depending on the system. 
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Figure 2.12: Common topological problems: (a) flipped triangles, (b) missing triangles, 
 (c) - (d) invalid edge sharing and (e) misplaced triangles (Venuvinod and Ma, 2004). 

 

 

 
 

Figure 2.13: Common geometric problems: (a) (b) (c) degenerate triangles, (d) face 
overlapping (Venuvinod and Ma, 2004). 

 

 

2.7.1 Selecting Process Parameters 

The parameters that are used by the software to perform a RP process can be referred 

to as process parameters. These parameters can show differences from one technique to 

another, but in all techniques the proper selection of process parameters has a great effect 

on the production time, production quality and production cost. Workspace dimensions, 
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slice thickness, production direction, extrusion head radius, material flow rate, head speed, 

acceleration and deceleration can be the examples of some process parameters that can be 

required in a RP process.  

 

2.7.2 Determining Optimal Build Orientation 

Orientation of a part on the production platform has a decisive affect on the surface 

quality, production time, production cost, material properties in different directions and the 

amount of support structures needed. Originally, build orientation of parts are decided by 

the operator by placing the parts on a production platform by rotating and translating parts 

in different directions. However, with too many parts in a single production process, it is 

very difficult to place maximum number of parts by finding the best possible part 

orientations. Therefore, various optimization methods are employed to find the optimal 

build orientation of parts. On the other hand, these software packages still give the operator 

the opportunity to pick and place parts manually. More detailed information on automatic 

part placement methods can be found in the study of Marsan, et al (Marsan, 1998). 

 

2.7.3 Generating Support Structures 

Different types of “support structures are used for variety of reasons (Figure 2.14), 

including supporting overhangs, maintaining stability of the part, supporting large flat 

walls, preventing excessive shrinkage, supporting components initially disconnected from 

the main part and supporting slanted walls” (Marsan, 1998). On the other hand, these 

problems can also be solved or at least minimized by finding the optimal build orientation 

of a problematic part. So generating support structures and finding the optimal build 

orientations of parts are related problems that must be considered as one and solved 

together. Also in some techniques like SLS, LOM and 3DP the support structures are not 

needed since the excessive production material are used as support structures. However 

quite a number of RP techniques still need support structures. Therefore, deciding when, 

where and which kind of a support structure is needed during manufacturing are the critical 

questions to be answered. To answer this question, different types of rules and automatic 

support structure generation algorithms have been developed for different techniques. More 

detailed information on these rules and algorithms can be found in the study of Marsan, et 

al (Marsan, 1998). 
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Figure 2.14: Support structures: (a) gusset support, (b) base support, (c) web support, (d) 
column support, (e) zigzag support (used in FDM), (f) perimeter and hatch support 

(Venuvinod and Ma, 2004). 
 

 

2.7.4 Slicing the Model 

For all RP production techniques, slicing operation is the most important process 

planning step. In this step, intersection of a model with a set of parallel planes is computed 

and the contour curve of each slice at a particular height is formed (Marsan, 1998). 

Originally, the parallel cutting planes are positioned perpendicular to building direction 

with uniform distance between the planes. Because of this uniform order this approach is 

known as uniform slicing. 

The major problem of uniform slicing is the staircase effect (Figure 2.15). Staircase 

effect can be a great problem for near-vertical surfaces since it reduces the surface quality. 

In addition, some part details and dimensions smaller than the slice thickness can be lost 

during slicing operation.  

In most RP systems the material is deposited in only one direction. Consequently, the 

stairway effect can only be minimized by changing the orientation of the part and using a 

smaller slice thickness value. However, minimizing slice thickness value has some counter 

effects like increase in production time and cost. Alternatively, a different slicing approach 

called adaptive slicing can be used as a more general solution for the problem. In adaptive 
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slicing, different slice thickness values are used during the slicing operation. So, to 

minimize the stairway effect, the sections with near-vertical planes or small dimensioned 

details can be sliced by using smaller thickness values. On the other hand, the production 

time and cost can be minimized by using higher thickness values in the other sections of the 

model. 

 

 

 
 

Figure 2.15: Staircase effect in uniform slicing (Venuvinod and Ma, 2004). 
 

 

In addition to staircase effect, the slicing operation can also be negatively influenced 

from the STL data since the faceted data has some problems that originate from the nature 

of being a simple approximation of a true model. This fact can result in an inaccurate outer 

surface or coarse surface quality for the parts with complex surface designs. This deficiency 

can be solved by using a different slicing approach called direct slicing. In direct slicing, 

the original NURBS (Non Uniform Rational Bezier Spline) surfaces are used instead of 

their faceted approximations. So, the data is not imported in STL format but in some 

standard formats like IGES (Initial Graphics Exchange Specification), STEP (Standard for 

the Exchange of Product Model Data) or in native formats of different CAD programs.  

Although there are some studies on adaptive and direct slicing, uniform slicing 

approach is still the mostly used slicing approach in the commercial RP software market. 

More detailed information about the adaptive and direct slicing algorithms can be found in 

the study of Marsan, et al (Marsan, 1998). 

Faceted data provides a great advantage since only a plane to plane type intersection 

is computed to find the resultant intersection curves. However, commonly used STL data 

format does not contain connectivity information of the triangles (Marsan, 1998). As a 
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result of this, a time consuming searching operation is required to find the triangles that are 

intersecting with a cutting plane positioned at a particular height. Hence, finding the 

connectivity information of the triangles increases the efficiency of the slicing operation.  

Rock and Wozny (1991) used a topological based marching algorithm to find each 

intersection curve (Figure 2.16). In this study, a cutting plane intersects with an edge of a 

triangle and the other two edges of the same triangle are checked for another intersection. 

When two edges of a triangle are cut by a single cutting plane, the first line segment of the 

intersection curve is obtained. Then the next triangle is found by using the common edge 

shared by adjacent triangles. So the cutting operation is marched to the forthcoming 

triangles until the intersection curve at this particular height is closed. The same algorithm 

can also be used by spatially partitioning the triangles according to their heights (Gültekin, 

2003). This partitioning improves the slicing speed. 

Chalasani, et al (1991) used an approach different from marching algorithm. In this 

approach, for each cutting plane, all triangles are checked for an intersection. The slicing 

operation is done randomly between the triangles. So, when all intersections of a particular 

cutting plane are found, the resultant lines are ordered to satisfy the continuity of the 

contour curve. In a study using the same algorithm, parallel processing is used to speed up 

the slicing operation (Kirschman and Jara-Almonte, 1992). 

 

 

 
 

Figure 2.16: Marching algorithm for slicing (Gültekin, 2003). 
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2.7.5 Planning Tool Path 

In the path planning step the tool paths which are used to build each layer are 

determined. In this operation the resultant contour curves of the slicing operation are used 

as input data. This operation can be classified in two categories. In the first category, the 

layers are formed at once so the contours are used directly as the tool paths. Laminated 

object manufacturing and solid ground curing techniques can be the examples of this 

category. In the second category, the tool paths are generated in a way that the inside of the 

layers are incrementally filled with the material, the tool paths may or may not include the 

contour curves. Fused deposition modeling and stereolithography are the two examples of 

this category (Marsan, 1998). 

The tool paths followed by the production head affects different manufacturing 

parameters like the production time, surface accuracy, surface quality, stiffness, strength 

and post-manufacture distortion. During the fabrication, the tool head is re-positioned in the 

start of each layer and accelerated and decelerated to make the necessary direction changes. 

This movement influences the production time. So, the distances between the start points of 

each layer and the number of direction changes should be minimized while generating the 

tool path.  In the tool path generation, the deposition width and depth of the material should 

be considered to satisfy the surface accuracy and the exact part dimensions. In production 

techniques where the material is deposited as molten, the temperature difference between 

the previously deposited layers and the added material may lead to residual stresses and 

subsequent warpage or other distortion of the part. A suitable choice of tool paths can 

minimize this effect, so, this effect should also be considered in tool path generation. 

Finally, the contact area between the newly deposited material and the previous layers plus 

the time passed between the depositions of these materials has an important effect on the 

stiffness and the strength of the part. In some techniques, the deposition direction of 

subsequent layers can affect the strength and the stiffness. Therefore, changing the 

deposition direction by 90 degrees in each layer can improve these properties. More 

detailed information about the studies made on these factors can be found in the survey 

made by Marsan and Dutta (1997). 

Different methods and algorithms can be used for filling a layer. In the study made 

by Chang (1989), 3D cubic elements called voxels are used to generate the tool paths by 

superimposing the STL model. In this method interior of the model is filled with voxels 

whose heights corresponds to the slice thickness. The tool paths are generated by moving 

through the neighboring voxels in horizontal or vertical directions. Other methods for 
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determining tool paths are reported by Rock and Wozny (1991) and Chari and Hall (1993). 

In these studies, parallel rays are intersected with the contour of each layer and the rays are 

connected to the next ray at the point of intersection so the tool paths are generated (Figure 

2.17). But, in this method, the biggest problem is the possibility to miss some small interior 

features such as holes. To solve this issue a method that finds small features inside the 

model is presented by Tate and Fadel (1996). Another approach is to trace the counter 

curves by giving an offset rather than filling the interior of the object by using parallel lines 

(Yang, 1995). By doing so, the resultant tool paths are longer compared to the tool paths 

generated by the raster fill method, so the production time is minimized. Also, the need for 

support structures can be reduced since it enables the construction of an overhang by a 

sequence of offsets (Marsan, 1998). On the other hand, the models fabricated by using 

raster line methods have better strength and stiffness properties than the models produced 

by using offset contour fill methods. There are some variations of this approach  that use 

different type of solutions to the problem of finding the offset contours. The details of these 

alternative methods can be found in the survey of Marsan and Dutta (1997). 

 

 

 
 

Figure 2.17: Raster tool path segment creations for a slice contour (Gültekin, 2003). 
 

 

2.8 A Survey on Rapid Prototyping Software Market 

RP system manufacturers in the market use different software solutions in their 

products. These solutions can be classified in two groups. The software packages in the first 
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group can be referred to as product software that is specific to an RP machine. The second 

group is mostly known as the complete RP software solutions.  

Product software packages are developed by the RP system manufacturers. These 

software packages are the system specific applications that are designed to satisfy the basic 

requirements of the manufacturer’s product (Table 2.1). The purpose of this type of 

software packages is to generate the required control data for a specific RP machine by 

performing the necessary process planning steps.  

 

 

Table 2.1: RP software packages and systems developed by different manufacturers 
 

Company Software RP System 

InVision™ System Software InVision 3D Printers 

3D Lightyear™ Software SLA Systems 3D Systems 

LS™ Software SLS Systems 

Insight™ Software Stratasys Systems 
Stratasys 

3D Printing Catalyst™ Software Dimension Systems 

Z Corporation 

ZPrint™ Software 

ZEdit™ Software 

Mimics Z™ Software 

3D Printing Systems 

Solidscape ModelWorks™ Software Solidscape Systems 

EOS RP Tools™ Software EOS Systems 

Objet Objet Studio™ Software Objet Systems 

 

 

 

Complete RP software solutions are developed to satisfy all the requirements of a 

RP system. These software packages support different types of RP systems from different 

manufacturers and are mostly distributed by RP manufacturers with their systems. These 

software packages have modular architectures. They consist of different modules 

performing different functions. Mostly the main modules perform tasks like part 

visualization, STL file repair, part editing, smart part placement, support structure 

generation, part slicing, tool path generation, CAD file formats to STL conversion, 

production time and cost estimation and etc. Magics software developed by Materialise 

company and Viscam software developed by Marcam Engineering company can be listed 
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as the market leaders. The basic modules of the Viscam and Magics software packages and 

the pricing and functionality information of these modules can be found in the Tables 2.2 

and 2.3. The technical specifications of these software packages are given in Appendix B. 

 

 

Table 2.2: Functionality and price information of Viscam Software modules 

   

Modules Functionality2 
License3 

Price  

Service 

Price 

Viscam View 

Import of STL, 3DS, VRML, DXF, PLY, ZCP 
and VFX files, visualization  of STL problems,  
detection and separation of included solids, 
model info like dimension, volume and surface 
area, visual measuring and annotation functions 

Free Free 

Viscam Mesh 

Detect defective edges, holes and triangles, 
automatic STL problem solving, accurate 
reduction, smoothing or filtering of triangles, 
cut and split the model along defined section 
planes, editing of solids, surfaces, triangles, 
Boolean operations, offset and extrusion 
functions, attach text, logos or bitmaps and 
create base solids, trim, cut and punch meshes 
with definable poly-lines, calculation and 
generation of error-free hollow models 

1990€ 300€ 

Viscam RP 

Integrated database with more than 150 RP 
machines, copy, insert, orientate, scale and 
place individual parts, fully automatic import, 
placement and nesting of parts, adjustable build 
time estimation and cost calculation, fast and 
exact slice generation, compensation of 
material shrinkage and spot radius hatch 
generation for laser and jet based RP machines, 
support generation, file export support CLI, 
SLC, F&S, SLI, ISO, NC, SSL, STD, DXF, 
HPGL, BMP, PNG, TIFF formats 

5980€ 900€ 

Viscam Import IGES, VDA, STEP file format support 995€ 150€ 

Total  8695€ 1350€ 

 

                                                      
2 Functionality information has been taken from the specifications of Viscam software. 
3 License and service price information is requested from the Marcam Engineering company by mail 
as of 6 February 2007. 
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Table 2.3: Functionality and price information of Magics Software modules 

 

Modules Functionality4 
License5 

Price  

Service 

Price 

Magics Base 

Visualization, measuring and  manipulation of 
STL files, fixing STL files, uniting shells, 
trimming surfaces, double triangle detection, 
cutting STL files, punching holes, extruding 
surfaces, hollowing, applying offset, boolean 
operations, triangle reduction, smoothing, 
labeling, part nesting, collision detection 

Magics RP The platform concept, Build time estimation, 
Quotation Making, Slice verification 

5200€ 1040€ 

Magics Import 
IGES, VDA, STEP, Unigraphics, Pro/E and 
Catia (V4.5x and V5) and STL file format 
support 

2200€ 400€ 

Magics Slice 
Slice parts, generates tool paths, writes out 
slice files for 3D systems, EOS, Stratasys and 
Sanders 

1500€ 300€ 

Magics Support Fast and easy generation of support structures 2200€ 400€ 

Total  11100€ 2140€ 

 

 

The functionality and architectural organizations of these commercial software 

packages are used as guidance in the design and implementation of the software developed 

in this thesis study. The concepts explained in this chapter are widely used and referenced 

in the next chapter where RP software is presented in detail. The most of the knowledge 

used in the development of the RP software is mainly build on the information provided 

during this literature survey. 

 

 

                                                      
4 Functionality information has been taken from the specifications of Magics software. 
5 License and service price information is requested from the Materialise company by mail as of 7 
February 2007. 
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CHAPTER 3 
 

SOFTWARE DESIGN AND IMPLEMENTATION 
 

 

 

In this chapter, design and implementation of the software is discussed in detail. 

First, requirement analysis of the software based on the aim of the thesis and the 

commercial RP software market is given. The design and implementation tools are listed 

with their alternatives and the reasons of choice are justified. The software architecture is 

described and architectural and functional properties of the individual software parts are 

presented. 

 

3.1 Requirement Analysis 

When the aim of the thesis and the RP software market is considered, a RP 

application, which claims to satisfy the possible requirements of future RP studies and 

hence facilitate them, must be a complete and fully independent software package with an 

open for development and easy to use architecture. To be able to design an extendible and 

application independent software package, this RP software should be considered as a 

multipurpose application, which can be used in different engineering studies, rather than a 

specific RP application. 

The software package must have a 3D modeling environment with 3D hardware 

visualization support to be capable of displaying different types of inputs and outputs. A 

multi screen support should be used to be able to present different information at the same 

time. A graphics library that facilitates the design of new graphic objects must be developed 

to use the same application core in different engineering applications where different types 

of visualization requirements and 3D objects can be required. 

 In the RP software, a modular architecture must be used to take advantage of 

software modularity in the design, development, release and update of the resultant 
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software package. The software modules must be well organized according to their 

functionality.  

A core module that supports a generic file transfer system can facilitate the use of 

different file types, which can be required in a future study. This interface is required to 

support multi file import and export. In the software, more than one file must be visualized 

at the same time. Since more than one part is imported, a part organization system can be 

developed to group parts. Part selection functionality has to be implemented to be able to 

perform different operations to different parts. In addition to these, undo/redo functionality 

may be provided for the sake of easy usage. 

RP software must satisfy the process planning steps of RP. Therefore, additional 

modules with part modification, part transform, part slicing and tool path generation 

functionalities must be developed. In the current phase, the support generation step can be 

neglected since it is not required for all RP systems. On the other hand, support generation 

functionality should be considered as a future improvement in the design of the modules. 

Functionalities that facilitate easy modification and orientation of parts should be provided 

to the user. Parts should be scaled uniformly or non-uniformly, moved absolutely or 

relatively and rotated around three different directions. Additional functionality like part 

slicing in X, Y and Z directions to preview the production or to see the interior of the model 

can be provided to the user. Finally, a direct printing interface must be designed and 

implemented to be used in the RP machines that can be designed in future studies.  

 

3.2 Software Design and Implementation Tools 

The tools used in the design and implementation of a 3D application software can be 

studied in two groups. These groups can be listed as programming language and 3D 

application programming interface (API). In the forthcoming sections these groups are 

presented in detail. 

 

3.2.1 Programming Language 

When the programming languages that are used in different 3D applications in the 

market are considered, C, C++, C# and Java programming languages can be listed as the 

most commonly used options. These programming languages have different advantages and 
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disadvantages, so, while making the choice, these languages should be considered in depth 

according to their performance, 3D support and ease of use. 

The C programming language is the oldest programming language in the alternatives 

listed above. Today, it is mostly used in the applications where performance is critical since 

an application written in C executes faster than the applications written in the other three 

programming languages. In addition, all the popular 3D APIs can be used in a 3D 

application written in C.  On the other hand, it is difficult and time consuming to develop a 

complex program by using C (Troelsen, 2005). Hence, only the performance critical parts 

of the complex 3D applications are written in C programming language. 

The C++ programming language is a C based object oriented programming language, 

thus, programming complex software needs less effort and less time compared to C. 

However, compared to new generation programming languages like C# and Java, it is still 

time consuming to write complex applications. In C++, memory management, which is a 

problematic procedure that requires a serious amount of time and effort, is handled by the 

programmer (Troelsen, 2005). Besides, the amount of code written in C++ is considerably 

high compared to C# and Java to implement the same application. On the other hand, 3D 

applications written in C++ executes faster than the applications written in C# and Java. 

Also, C++ supports all the popular 3D APIs. So, it is still widely used in 3D applications 

where performance is a more important concern than time.  

With the expansion of internet usage, the portability of applications has become an 

important issue. At this phase, a new generation of programming language called Java was 

released. An application written in Java is compiled into a processor independent 

intermediate language. This intermediate language can be transferred over the internet and 

recompiled at the target system in runtime. The compilation in the runtime is performed by 

using client software compatible with the target system. Consequently, the portability of the 

application is increased. With its portability, Java becomes the mostly used programming 

language in internet based applications. On the other hand, as a side effect of processor 

independency, the runtime performance is decreased. Java is rarely used in 3D applications 

because of its poor performance in 3D applications (Troelsen, 2005). 

The newest programming language among the candidates is the C# programming 

language. C# is a new generation, C based object oriented programming language. Some of 

the software developers claim that C# contains the power of C and the portability of Java 

(Robinson, 2004). With its new generation of memory management system and .NET 

framework support, writing a piece of code for a specific task requires less time and less 

effort compared to C++ with an affordable performance decrease (Troelsen, 2005). In 
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addition, one of the most popular 3D APIs that can be used in a 3D application is written in 

C#. Consequently, C# programming language is used both in 3D desktop and internet based 

applications.  

In this study, a relatively complex 3D application must be design and implemented in 

a relatively short time. Therefore, C can be eliminated because it is not an object oriented 

programming language and Java can also be eliminated for its low 3D performance. Then, a 

choice between C# and C++ programming languages must be made according to ease of 

use and performance. In our study, as a consequence of time limitations, ease of use is a 

more important issue then performance.  So, C# programming language is chosen as the 

programming language of our RP software. Another reason for choosing C# is that, as of 

the time this thesis work is carried out, C# is the mostly preferred language among fellow 

students who are expected to build applications upon the open architecture provided as a 

result of this work.  

 

3.2.2 3D Application Programming Interface 

The most popular 3D application programming interfaces can be listed as DirectX 

and OpenGL. Nearly all the 3D applications in the market use one of these 3D APIs. These 

APIs have similar properties and functionalities but different compatibility and 

performance issues. Therefore, while making the choice, these criteria should be considered 

in depth. 

DirectX API is a product of Microsoft Company. It is mostly used in game 

programming. It is fully compatible with C# and Microsoft Windows operating systems. 

Consequently, compared to OpenGL, DirectX shows a better performance in a 3D 

application written in C# (Managed DirectX, 2003). 

OpenGL API is used in both engineering and gaming applications. It is released by 

an independent consortium composed of different hardware and software developers. It is 

more portable compared to DirectX. It can be used in open source operating systems. But it 

is not fully compatible with C# programming language. There are different APIs that 

supports OpenGL in C#. But these APIs are not official solutions for the compatibility 

problems of OpenGL and C#.  

Since both APIs have similar properties and functionalities that satisfy the 

requirements of our RP software, due to the compatibility and performance issues, DirectX 

API is preferred to be used in our RP software.  
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3.3 Software Architecture 

The commercial RP software packages in the market contain independent software 

parts with different functional properties that are somehow related. These independent 

software parts are called modules. Modules communicate with other parts of the software 

through interfaces to abstract their functions and properties. Modules ensure their 

independency with their self sufficient structures and communication interfaces. The 

relations between the modules are provided by a single part which is called base module. 

The base module holds the necessary information about the functionalities of the other 

modules and uses them to perform the necessary tasks. Each module can be added to the 

base module independently. The architecture that is used by these software packages is 

called modular architecture. This architecture provides advantages to the developer in the 

design, development, release and update of a software package.  

Owing to modular architecture, each part of the software can be designed 

independently. Since modules consists of related functionalities that are independent form 

the other parts of the software, these distinct parts can be designed by different programmer 

groups. So, the programmers can focus on a specific functionality rather than focusing on 

the entire software. Therefore, a better design can be achieved. 

The independency of the modules also shortens the development period of the 

software. Since each part has a well defined independent functionality, they can be 

implemented and tested independently to satisfy the functional requirements. So, more 

stable parts with fewer errors can be developed.  

In addition to these, with the help of modular architecture, the software companies 

release different package options with different functionalities that satisfy the needs of 

different customer profiles. Therefore, their customers can choose to buy only the required 

functionalities of a software package rather than giving extra money to unnecessary 

functionalities that they do not use.  

In a modular application, if an update is required, only the parts that need revisions 

can be updated, hence none of the other parts is affected from any version change of an 

individual part. Thus, a problem can be fixed by using smaller update files without re-

installation of the application software. This means that the customers can easily update 

their software packages over the internet in a relatively short time. 

By considering these benefits, a modular architecture is implemented in the 

developed RP software. A functional classification depending on requirement analysis is 

made and the RP software is divided into three modules (Appendix C). These modules are 
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named as View Module, RP Module and Slice Module. Each module consists of two sub 

parts called user interface and engine (Figure 3.1). Engine is the part where the necessary 

functional operations of the module are performed. User interfaces are the parts that are 

used by the engine to get the necessary input from the user. 

 

 

 
 

Figure 3.1: RP software modules and their sub parts. 
 

 

The View Module is the base module of the application. This module uses the RP 

Module and Slice Module to perform the necessary process planning steps. The data 

processed in these modules are displayed by the View Module. The View Module uses a 

3D display framework to abstract the details of 3D rendering process. This framework is 

called Graphics Framework. Graphics Framework uses .NET Framework, Microsoft 

Direct3D and Microsoft Windows (WIN32) APIs to render 3D objects (Figure 3.2). All the 

models, slices and 3D graphical user interfaces that are sent by the View Module are 

displayed in the Graphics Framework. 

 

3.4 Graphics Framework 

The Graphics Framework (in Figure 3.2) is designed and implemented as a part of 

the developed RP software to provide 3D visualization support. It can be described as a 

high level 3D engine that can be used in engineering applications where 3D visualization is 

required. The Graphics Framework is an application independent, multi-screen 3D 

modeling environment and graphics library that is based on the Microsoft Sample 

Framework. 

The Microsoft Sample Framework is an open source layer “used by most of the 

Microsoft Direct3D samples and is built on top of the WIN32 and Direct3D APIs. Its goal 

is to make Direct3D samples, prototypes, and tools as well as professional games more 
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robust and easier to build. It simplifies the WIN32 and Direct3D APIs for typical usage and 

is designed to help make simple to moderately complex Direct3D applications” (Microsoft, 

2005).  

 

 

 
 

Figure 3.2: Relations between RP Software, Graphics Framework and other APIs. 
 

 

The Microsoft Sample Framework is designed to be used in single or full screen 

gaming or demonstration purpose 3D applications. In this framework 3D user interfaces are 

used instead of classical Microsoft Windows user interfaces. The internal architecture is 

designed to be used with DirectX mesh objects which are mostly used in texture based 

gaming applications where the complex models with textures are required. Therefore, to be 

able to develop a graphics framework to be used in the visualization of 3D engineering 

applications, more than 50% of the Microsoft Sample Framework is rewritten or 

completely changed and a considerable amount of additional architectural property is 

added. Application independency, multi-screen support, 3D modeling environment and 

graphics library can be listed as these architectural properties. In the forthcoming sections 

these architectural properties are expressed in detail. More general information about the 

Microsoft Sample Framework can be found in Microsoft DirectX Programmer’s Reference 

(2005) and the book of Miller (2004). 

 
 
 
 
 

Rapid Prototyping Software 

Slice Module RP Module

View Module

 
Graphics Framework 

 
.NET Framework 

 
Direct3D API 

 
WIN32 API 

Developed by 
changing 50% of 
the Microsoft 
Sample Framework 

Standard packages 
that are developed 
and distributed by 
Microsoft Company 

Part of the 
Windows Operating 
System 

The RP software 
developed within 
the thesis study 

Entirely developed 
within the thesis 
study 



 

 

41

3.4.1 Application Independency 

Application independency can be described as being self sufficient to perform its 

functional responsibilities without using any other application. Graphics Framework is a 

fully independent, open for development, high level 3D modeling environment and 

graphics library that can be used in engineering applications where 3D visualization support 

is required. 

In some of the engineering applications the visualization needs are met by utilizing 

different 3D CAD software packages as graphical user interfaces. The thesis study 

presented by Gültekin (2003) can be given as an example of this type of usage. In this 

study, an RP application is developed as an add-on of AutoCAD software package and the 

visualization needs of this application are utilized by using this CAD software. Therefore, 

the application is written fully dependent on AutoCAD.  

Two deficiencies can be listed for this type of usage. First one is the functional 

limitations of the used application. The limits of the further studies are dependent on this 

application since it cannot be modified or further improved according to the needs of the 

study. Secondly, for each copy of the software, an additional license price must be paid. 

Use of commercial software package may also cause some copyright problems in the 

distribution of the study. 

The Graphics Framework can also be used in this type of academic purpose 

engineering applications to overcome these deficiencies owing to its application 

independent architecture. With its open for development architecture it can be modified or 

improved with additional functionalities to satisfy special requirements of different type of 

studies without any copyright problems.  

In addition to the RP software presented in this thesis study, the Graphics 

framework is also used in the study of Sezginalp (2007) to develop a 3D localization and 

mapping application for mobile robots. In these two application examples, the application 

independency of the Graphics Framework is verified. When these two applications are 

considered, it can be said that, moderately complex 3D applications can be designed and 

implemented in a considerably short time by using the Graphics Framework. 

 



 

 

42

3.4.2 Multi Screen Support 

The Graphics Framework provides a multi screen interface to display more than one 

3D modeling environment at the same time (Figure 3.3). All the functionalities of the 

framework can be used concurrently by all the windows in the multi screen interface. 

Owing to multi screen support of Graphics Framework, the user can display many files in 

different windows to choose the suitable parts to create a printing job, while performing 

another printing operation of an existing project, in a different window. With the multi 

screen support, in a single application that uses the Graphics Framework, different 

operations can be performed independently and simultaneously in different windows.  

 

 

 
 

Figure 3.3: Multi screen support provided by the Graphics Framework 
 

 

3.4.3 3D Modeling Environment 

The Graphics Framework abstracts the complex low level functions of the Direct3D 

API and WIN32 API to a high level 3D modeling environment where 3D objects can be 

displayed. A camera with a perspective view cone is used to show the objects in the 
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environment. The 3D environment is illuminated with the use of directional lighting 

technique. Perspective view cone and directional lighting technique creates the 3D view 

effect.  

The 3D modeling environment uses the WIN32 API to get the user actions through 

the keyboard and the mouse. These actions are used to create different views of 3D objects 

by transforming the positions of the camera and the lights. Panning, free handed rotation 

and zooming actions can be performed by the user to see the environment from different 

directions. Also, there are some predefined views. These views are the ones that are mostly 

used in the CAD software; front, back, left, right, top, bottom and isometric views (Figure 

3.4).  

 

 

 
 

Figure 3.4: Top and top front views of different 3D objects. 
 

 

User defined objects compatible with the Graphics Framework can be created by 

using two methods. As the first method, a special interface called IDrawable can be used to 

create a Graphics Framework compatible object in any complexity and functionality 

(Appendix D). However, using this method requires a high level of Direct3D API 

knowledge and experience since all the required low level rendering functions of the 3D 

object must be implemented by the user. As a second method, the existing 3D objects in 
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graphics library can be used to create new 3D objects. In this method, new objects can be 

created by using inheritance rule of the object oriented programming approach. This is an 

easy to use method since only the basic object oriented knowledge is required. When 3D 

object is created by using the graphics library, all the low level rendering functions that are 

required for the Graphics Framework compatibility are handled by the parent graphics 

object.  

 

3.4.4 Graphics Library 

As a part of the Graphics Framework a completely new graphics library is developed 

to be used in engineering applications. In this library there are different types of objects that 

can be classified in two groups.  

The graphics objects in the first group are the structural objects. This type of objects 

can only be used to create new objects. Their instances cannot be created in runtime 

therefore they cannot be directly used as 3D objects. There are two objects in this type. The 

first one is called Entity. Entity is the lowest level graphics class. It implements an interface 

called IDrawable in order to be compatible with the Graphics Framework. Entity is a 

generic class that can be used to create any type of 3D objects. The second one is a class 

called Feature. Feature is a higher level structural class which is inherited from the Entity 

class. Hence, it has all the properties and functionalities of the Entity class. It also has 

higher level functionalities like selection, transparency, object bounding box and object 

transformation. In the creation of 3D objects mostly the Feature class is preferred since it is 

easier to implement a 3D object by using the Feature class rather than the Entity class. The 

details of IDrawable interface, Entity and Feature classes can be found in the Appendix D. 

The graphics objects in the second group are the functional objects. These objects are 

used by the Graphics Framework to visualize some necessary functionality such as 

Bounding Box, Background, Line and Plane objects. Bounding Box is used by the Graphics 

Framework to display the bounding boxes of the high level objects. Background is a plane 

used in all rendering windows to form a background picture. Line and Plane objects are 

used as the sub elements of the Bounding Box and Background objects. These objects are 

also accessible from the applications that are using the Graphics Framework and therefore 

they can also be used by these applications as well.  
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3.5 Modules 

The RP software that is developed in this thesis contains three different modules to 

perform the process planning steps that are described in the “Process Planning in Rapid 

Prototyping Software” section of the first chapter. In this section, how these steps are 

performed is explained by using the algorithms and the architectural structures of modules 

and some other functionality of the modules are discussed. 

 

3.5.1  View Module 

The View Module is the base module of the RP software. It is the most important 

module of the application because it is structurally the core part of the whole process. It is 

used in the visualization of the inputs and outputs of the application. All the user interfaces, 

modules and their functionalities are handled by this module. In addition to these, it also 

contains different structural properties that are critical for future expansion of the RP 

software. These properties can be listed as generic file format support, part organization and 

selection support and undo/redo support. 

 

3.5.1.1 Generic File Format Support 

All applications, which use a specific type of data to perform some of its 

functionalities or generate a specific type of data as a result of an operation, must support 

one or more standard file types to import or export data. For an open for development RP 

application that is designed to be used in research studies, data import and export support 

for different file formats is an indispensable requirement. Therefore, in the RP software 

package, a generic data transfer structure is implemented as a part of the View Module to 

be able to support different file formats. 

All the data transfers between the RP software and external sources are performed by 

using this generic data transfer structure. This structure consists of three elements. The first 

two elements are the data transfer interfaces that are called IWriteable and IReadable 

(Appendix D). These interfaces define the properties and functions that are required for the 

generic data transfer structure compatibility. The IWriteable and IReadable interfaces 

contain the definitions for write and read operations, respectively. The third element of the 
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structure is an object list that stores a special type of objects called file format. File format 

objects perform read and/or write operation(s) for a specific file type. 

Support for a new file format can be added to the View Module by performing a 

series of operations. Firstly, a file format object must be developed. According to the 

supported operation type, the developed object must implement IWriteable and/or 

IReadable interface(s). With the implementation of one or two of these data transfer 

interfaces, the file format object becomes compatible with the generic data transfer 

structure and can be added to the object list to be used in file transfer operations. 

In a file transfer operation, a request for a specific file type is sent to the generic data 

transfer structure. According to this request, all file format objects in the interface list are 

searched for the requested file format and operation. If the requested file operation and file 

format is supported, then the operation is performed by the corresponding file format 

object. In case of a read operation, the data in an external source is read by the 

corresponding file format object and send back to the RP software by using the IReadable 

interface. In case of a write operation, this time IWriteable interface of the corresponding 

file format object is used to write the send data to an external source. 

 

3.5.1.2 Part Organization and Selection 

RP software can import more than one file or create part groups that contain multiple 

parts; therefore, a part organization structure with a selection support is required to clarify 

the relations between these objects and to make it possible to use different functionalities 

for different parts. 

Part organization structure used in the RP software contains three elements that are 

named as project, product and part. The first element; project is used to define a build job. 

For each project a new screen with a 3D modeling environment is created by the View 

Module. The second one, product, can be defined as a collection of related parts. Products 

can be created as a part of a project or another product. The last element; part is used to 

define a part file that is imported from an external source. Part can be created as a member 

of a project or a product. 

Each build job can be saved as a project file in which the relation information and 

part data is stored as an individual file or as a reference file. When project is saved as an 

individual file, all the relations and the parts included in this project are stored in a single 

file. This type of file is not affected from the changes made on the part files. If the project is 
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saved as an external reference, only the relations and the locations of the parts are saved. In 

this case, when a referenced part file is modified all the projects referencing this particular 

part file also change. 

In the internal structure of the RP software, project and product elements are simple 

collection objects that hold the related elements, while, the part elements are held in a 

special object called Model. The Model is a 3D object that is created by using the Feature 

object as it is explained in the “Graphics Library” section of this chapter. In the Model all 

the information and data about a part file is stored. All the part related operations are 

performed by using the Model object. Thanks to the object inheritance, the Model object 

can use all the properties of the Feature object including the transparency. 

In the view module, the transparency functionality of the Model object is used to 

emphasize the selected parts (Figure 3.5). When a part is selected, all the unselected parts 

are displayed transparent and all the part related functionalities are performed only for the 

selected parts. The selection of a part or product can be performed through a graphical user 

interface (GUI) displayed in the project screen (Figure 3.5). In the GUI, the relations 

between the parts and products are displayed in a hierarchical tree structure by using the 

user defined names of these elements. User can select part(s) and/or part groups by using 

their corresponding product(s). 

 
 

 
 

Figure 3.5: Different objects that are selected by using hierarchical tree structure. 
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3.5.1.3 Undo/Redo Support 

One of the functionality provided by the View Module is the undo/redo support. In 

the RP software, the user can navigate through the executed user commands in the order of 

occurrence which means that a previously executed user command can be unexecuted or a 

previously unexecuted user command can be re-executed by the user. To handle this series 

of execution and un-execution operations, a command managing structure is used by the 

View Module.  

In this structure, a command object is created for each user command where an 

undo/redo operation can be performed. This command object uses a special structure to 

execute or un-execute the related user command. The execution of a user command is a 

simple task since only the ordinary operation is performed by the command object. On the 

other hand un-execution of a user command is a hard to implement procedure since the 

state of the software must be reversed to a previous position by preserving the stability of 

the software. To perform a un-execution step, all the changes in the system must be stored 

by the command object. When a un-execution command is received, the related command 

object reverses all the changes in the system in the reverse order of occurrence to preserve 

the stability. This is a memory consuming process since all the state changes are held inside 

the command object; therefore a limited number of commands are held in the memory.  

All the command objects are stored in a special storage system called command 

manager. The command manager is a part of the command managing structure. All the 

necessary information about the undo/redo operation like command objects, their orders, 

the point of navigation and the capacity of command object storage is hold by the command 

manager. The command manager handles all the execution and un-execution operations by 

keeping track of the user navigation. It reorders all the command objects after each 

undo/redo operation. Another responsibility of the command manager is to handle the 

memory usage by counting the command objects hold in the storage. When the number of 

command objects exceeds the limit, the oldest command object is removed from the storage 

to free up a place for the new coming command object. 

 

3.5.2  Rapid Prototyping Module 

In this module, the functionalities that facilitate easy modification and orientation of 

parts are developed. In addition, a direct printing interface for the supported RP hardware is 
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implemented. The user can translate, rotate and scale parts, perform collision check 

between the parts and the fabrication limits and directly send the generated CAM code to a 

supported machine by using this module. In the forthcoming sections, these functionalities 

of RP module are presented in detail. 

 

3.5.2.1 Collision Detection 

In RP software, it is assumed that all the RP process is performed in a limited virtual 

3D volume called workspace. Workspace is the virtual representation of production 

compartment of the machine, so it is a RP machine dependent process parameter that is 

used to define the limits of all fabrication specific functionalities. In RP software, 

architecturally, the workspace is defined by a 3D object that is called with the same name. 

This object is parametrically defined therefore different values can be set for different RP 

machines to visualize machine specific limits. Workspace object can be displayed in two 

different forms; a rectangular prismatic shaped 3D volume and a square shaped 2D 

platform (Figure 3.6). The platform shape is used to present the production platform of the 

machine and the 3D volume represents the whole production compartment. 

 

 

 
 

Figure 3.6: Platform and workspace are displayed with a set of parts inside. 
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In the RP software, all the parts must be oriented inside the workspace to be 

fabricated. Therefore, a collision between the parts and the boundaries of the workspace 

must be checked before each production operation. This collision detection is performed by 

the RP module by using a volumetric base comparison between the bounding boxes of the 

objects and the workspace. Each time a part is oriented, its bounding box is calculated and 

before a slicing operation, a collision between this bounding box and workspace is checked 

to continue the fabrication process.  

 

3.5.2.2 Part Transformation 

The RP module uses transformation matrices of Direct3D API to perform dimension 

and position modifications of the parts. For each operation a transformation matrix is 

generated according to the user inputs and sent to the corresponding Model object that 

supports a 3D transformation functionality inherited from Feature object. When the 

transformation matrix of the Model object is set, all the position and/or normal vector data 

of the part is modified. This modification can be performed by using two methods. The 

method of transformation can be chosen by the user.  

The first way is to use object specific transformation support of the 3D modeling 

environment. 3D modeling environment provides a transformation matrix for each 

displayed 3D object. When this matrix is set, the 3D environment displays the 3D object as 

transformed without changing the real data. This method can be used to preview the effect 

of a transformation. A transformation operation performed by using this method can be 

reversed only by changing the transformation matrix of the 3D object to identity since the 

original data is preserved. 

The second way is to directly transform the original position and normal vector data 

of the part. If the user requests a data transformation, the Feature object can perform all the 

position and/or normal vector data transformations by using 3D point and vector 

transformation functions provided by the Direct3D API. This operation is not reversible 

since the original data is changed. Therefore this method is only used when the original 

data is required in the transformed form for the slicing operation. 

Both of the methods described above are used by the RP module to perform 

translation, rotation and scaling operations. When the user applies a transformation, the 

transformed forms of the parts are previewed by using the first method. By this way, an 

opportunity to cancel the operation is provided to the user since the first method is 
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reversible. If the user confirms the previewed transformation, then the part data is modified 

by using the second method to be able to perform following operations by using the 

transformed form of the object. 

The user can orient the parts in the build space by translating them absolutely to a 

given position or relatively with a given displacement (Figure 3.7) or by rotating them 

around X, Y and Z axes with respect to their centers (Figure 3.8). For each operation a 

different transformation matrix is generated by the View Module. In translation, generated 

transformation matrix is applied only to the position data of the part. The normal vector 

data is a direction representation; therefore it is not scaled since it is not affected from a 

translation operation. On the other hand, in a rotation operation, both position and normal 

vector data are modified to be able to rotate the part.  

 

 

 
 

Figure 3.7: Former and latter positions of a translated part. 
 

 

The parts loaded into the 3D environment can be scaled in two ways: uniformly in all 

directions (Figure 3.9) or non-uniformly in different directions (Figure 3.10). In a scaling 

operation, a scaling matrix is generated by the View Module. This matrix is applied only to 

the position data as it is done in a translation operation. 
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Figure 3.8: Former and latter orientations of a rotated part. 
 

 

 

 
 

Figure 3.9: Former and latter sizes of a uniformly scaled part. 
 



 

 

53

 
 

Figure 3.10: Former and latter sizes of a non-uniformly scaled part. 
 

 

The mathematical background of the part translation, rotation and scaling operations 

are provided in the following sections. 

 

3.5.2.2.1  Part Translation 

According to the Hearn and Baker (1996) the matrix expression for the translation of 

a position ),,( zyxP = relative to its original position can be written as 
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where translation parameters xt , yt  and zt  are assigned any real values. When this 

transformation is applied to the position data of the part, the resultant coordinates of the 

position can be expressed as 
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xtxx +=1           ytyy +=1           ztzz +=1              (3.2) 

 
To translate a part to an absolute point in the 3D environment the following 

transformation sequence must be applied. 

 
1. Translate the center of the part to the origin 

2. Translate the center of the part to the given absolute position 

 
The resultant matrix of this transformation sequence can be written as 
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where cx , cy  and cz  are the coordinates of the center point of the part, ax , ay  and az  

are the coordinates of the absolute point, ),,( ccc zyxT −−−  and ),,( aaa zyxT  are the 

translation matrices. 

 

3.5.2.2.2  Part Rotation 

According to the Hearn and Baker (1996) the matrix expression for the rotation of a 

position ),,( zyxP =  around the x, y and z axis can be written as 
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for a left-handed coordinate system where rotation parameters xθ , yθ  and zθ  specifies the 

rotation angles around x, y and z axes, respectively. These matrix expressions can be 

defined in more compact forms as 

  
PRP xx ⋅= )(1 θ           PRP yy ⋅= )(1 θ           PRP zz ⋅= )(1 θ               (3.7) 

 
A general form of rotation matrix can be obtained by rotating an object around three 

axes in x, y and z order as expressed in Equation 3.8. 

  
)()()(),,( xxyyzzzyx RRRR θθθθθθ ⋅⋅=                    (3.8) 

 
To rotate an object around an axis with respect to its center, the following 

transformation sequence must be applied. 

 
1. Translate the center of the part to the origin 

2. Perform the specified rotations around the axes 

3. Retranslate the center of the part to its original position 

 
The resultant matrix of the given transformation sequence can be found by 

performing the matrix operation given in Equation 3.9. 

 
     ),,(),,(),,(),,( ccczyxccczyxT zyxTRzyxTR −−−⋅⋅= θθθθθθ              (3.9) 

 
where cx , cy  and cz  are the coordinates of the center point of the part, ),,( ccc zyxT  and 

),,( ccc zyxT −−−  are the translation matrices, ),,( zyxR θθθ is the general form of rotation 

matrix and ),,( zyxTR θθθ  is the resultant transformation matrix. 
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3.5.2.2.3  Part Scaling 

According to the Hearn and Baker (1996) the matrix expression for the scaling 

transformation of a position ),,( zyxP = relative to the coordinate origin can be written as 
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           (3.10) 

 
where scaling parameters xs , ys  and zs  are assigned as a positive single value for uniform 

scaling or positive different values for non-uniform scaling. When this transformation is 

applied to the position data of the part, the resultant coordinates of the position can be 

expressed as 

 
   xsxx ⋅=1           ysyy ⋅=1           zszz ⋅=1            (3.11) 

 
Scaling of a part with respect to the origin results in both dimension and position 

change if the part is positioned away from the origin. Repositioning of the part can be 

prevented by scaling the part with respect to its center point; to do this the following 

transformation sequence must be applied. 

 
1. Translate the center of the part to the origin 

2. Scale the part with respect to the origin by using Equation 3.1 

3. Translate the center of the part back to its original position 

 
The resultant matrix of this transformation sequence can be written as 
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where cx , cy  and cz  are the coordinates of the center point of the part, ),,( ccc zyxT  and 

),,( ccc zyxT −−−  are the translation matrices and ),,( zyx sssS is the scaling matrix. 
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3.5.2.3 Direct Printing Interface 

Main purpose of the RP software is to generate CAM data required to perform the 

fabrication of an imported part, however, properly transferring this data to a RP machine is 

as important as generating it since the generated CAM code becomes useless if it cannot be 

transferred to a production system. Therefore, in the RP software, a CAM data transfer 

interface is developed to be able to directly transfer the generated CAM code to a supported 

RP machine. 

The RP software can connect to an external application by using its dynamic link 

library (DLL) if it implements an interface called IConnection (Appendix D). This interface 

defines the rules of communication of RP software with an external application. Therefore, 

an application DLL must be written for each RP machine that will be used with RP 

software. The user must implement IConnection interface to this application DLL and add 

it to the “Driver” directory of the RP software.  

When a direct printing operation is requested by a user, the RP software searches its 

“Driver” directory to find the application DLLs implementing the IConnection interface 

and displays the supported RP machines that correspond to the found application DLLs to 

the user. The user can choose the printing device among the supported RP machines. Once 

a machine is chosen by the user, the RP software connects to the corresponding application 

DLL and sends the generated CAM code in Common Layer Interface (CLI) Format. 

The CLI Format “is a simple, efficient and unambiguous slice format for data input 

to all RP systems. In CLI, each layer is represented by a set of contours and hatches. 

Contours define the boundaries of the solid material within a layer and are represented by 

polylines. Each contour should be closed and have no intersections with itself or with other 

contours. A hatch is also defined, as a set of independent straight lines each defined by a 

start and an end point. Hatches are used with open polylines to define support and filling 

structures. Polylines representing internal contours are ordered clockwise and those of 

external contours counterclockwise when viewed along the negative Z-axis. No non-

geometric information is defined in CLI” (Marsan, 1998). 

 

3.5.3  Slice Module 

All the production based operations are performed in the slice module. In this 

module, the CAM code required for production is generated by slicing the parts and 
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generating the tool paths. Once the tool paths are generated, these paths can be converted to 

CLI Format to be saved as an external file or can be directly sent to a supported RP 

machine. 

 

3.5.3.1 Part Slicing 

The most important functionality of the slice module is the slicing operation. In this 

module the parts oriented in the workspace can be sliced by using two different algorithms 

that perform two different slicing functionalities. These functionalities can be listed as 

preview slicing and production slicing. Both of these functionalities use slicing algorithms 

performing uniform slicing by using the same mathematical background. 

 

3.5.3.1.1 Mathematical Background 

In both algorithms, a plane to plane intersection between a triangle and a cutting 

plane is used. However, when the intersection between a triangle and a cutting plane is 

considered, it can be seen that the intersection occurs between the edges of the triangles, 

which are straight lines, and the contact line of the cutting plane. Therefore, a cutting 

operation can be simplified as an intersection of two three dimensonal lines.  

According to Mahir (1999), a three dimensional line can be defined in a parametric 

form as 
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where ( ){ }RzyxzyxR ∈= ,,,,3 , Rbbbaaa ∈321321 ,,,,, and ( ) ( )321321 ,,,, bbbaaa ≠ .  

Cartesian equation of a three dimensional line can be found by eliminating λ  from 

the parametric form given in Equation 3.13. To eliminateλ , the parametric form of a three 

dimensional line must be redefined as 
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( ) ( )11111 1 babbax −+=−+= λλλ  

( ) ( )22222 1 babbay −+=−+= λλλ                        (3.14) 

( ) ( )33333 1 babbaz −+=−+= λλλ  
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From this expression the Cartesian equation of a three dimensional line can be 

extracted as 
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              (3.16) 

 
In a case, where a cutting plane in the x direction with an equation of cx =  is 

intersected with a three dimensional line with start and end points ( )3211 ,, aaaP  

and ( )3212 ,, bbbP , the x value of the intersection point will be equal to c since the 

intersection point must be positioned on the cutting plane. Therefore, the intersection point 

can be found by putting the 321321 ,,,,, bbbaaa  and c values to the Equation 3.16. When 

the necessary operations are performed the resultant point ( )zyxP ,,  can be expressed as 

 
cx =  

( )( )
2

11

122 b
ba

bcba
y +

−
−−

=               (3.17) 
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The same operations can be performed for other cutting directions to find the 

intersection lines between the cutting planes in different directions and the triangles. 
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3.5.3.1.2 Preview Slicing 

The first functionality using a slicing operation is the slice preview. In the slice 

preview, the parts in the workspace are sliced in X, Y or Z directions in order to display a 

single slice at a particular width, height or depth. This feature can be used to verify the 

slices used in the production or to visualize the inside of an object. 

In the slice preview, each triangle in the workspace is checked according to their 

positions. If a triangle inside the bounds of a cut is found, then a cutting plane in the given 

position is intersected with an edge of this triangle. After the first intersection, the other 

edges of the same triangle are checked for another intersection. When two edges of a 

triangle are cut by a single cutting plane, the first line segment of the intersection curve is 

obtained. Then the other triangles are checked to find another triangle laid in the cutting 

bounds. This procedure continues until all the triangles in the workspace are checked for an 

intersection. When the procedure is completed, all the intersection lines in this particular 

height are found in mixed order. The lines are not ordered in order not to loose time since 

the slice preview data is used only for visualization purposes.  The contour generated at a 

particular position is displayed in the 3D environment (Figure 3.11, 3.12, 3.13 and 3.14). 

 

 

 
 

Figure 3.11: Slice preview of a set of parts along X direction 
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Figure 3.12: Slice preview of a set of parts along Y direction 
 

 

 

 
 

Figure 3.13: Slice preview of a set of parts along Z direction 
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Figure 3.14: Slice preview of a different set of parts along Z direction 
 

 

3.5.3.1.3  Production Slicing 

In the production slicing, instead of finding a single slice in a particular position, all 

the slices in the workspace must be found to generate the slice contours that are used in the 

tool path generation step. Therefore, the production slicing is a more time consuming 

procedure, compared to the slice preview.  

In finding a single slice, all the triangles of the parts are searched to find the triangles 

intersecting with a particular cutting plane. This searching operation consumes a 

considerable amount of time. Even worse, in a complex part with millions of triangles, 

thousands of slice contours must be generated by searching the entire triangle list for each 

slice which means an incredible amount of process time. Therefore, methods like 

partitioning of triangles according to their positions or finding the adjacent triangles to 

apply a marching algorithm have been developed in different studies to solve this problem. 

Although, these methods decrease the process times in considerable amounts, they still 

have disadvantages like unnecessary searching and high memory usage.  

When the method of finding the adjacency of triangles is examined, it can be seen 

that the searching operation is performed only to find the adjacency of triangles. Once the 
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adjacency of triangles is found, the remaining slicing operation marches through all the 

triangles by using the shared edges. However, still a huge amount of time is consumed for 

searching operation to find the adjacency of triangles. In addition, more than one call for a 

single triangle must be performed since in most of the cases more than one cutting planes 

cut the same triangle. On the other hand additional memory is allocated to hold the 

adjacency information of triangles so the memory usage increases. 

In the method of triangle partitioning, triangles are partitioned into the buckets 

according to their heights in the cutting direction, so the list of triangles corresponding to a 

cutting plane is known before starting the slicing operation. This partitioning operation can 

be performed in a single search, therefore, the search time and the number of triangle calls 

decreases considerably compared to the method of finding adjacency of triangles. However, 

for a triangle cut by different cutting planes, the reference of a single triangle must be held 

in more than one bucket. As a result, when millions of triangles are considered, a huge 

amount of memory is required to hold the partitioning information. Additionally, the 

partitioning only provides information about the relations between the intersection lines and 

the slices. The triangles in the buckets are cut by the cutting planes in a random order.  

Hence, after the slicing operation, another time consuming search operation must be 

performed to order the intersection lines. 

In production slicing feature, a third method different than the ones described above 

is used to generate slice contours. In this method, all the cutting planes correspond to a 

randomly chosen triangle and the intersections between this triangle and cutting planes are 

calculated in a single call (Figure 3.15). Therefore, a reverse approach is applied where the 

triangle is decided randomly and all the cutting planes are calculated rather than searching 

an item in an existing list. In the other methods, the cutting plane is decided first and then a 

search operation is performed among a huge triangle list to find an intersection. When the 

process times of searching a particular triangle among millions of triangles and calculating 

the positions and IDs of at most tens of cutting planes are compared, it can be seen that 

summation operation takes significantly less time than searching. Therefore this method 

consumes considerably less time compared to the other two methods. In addition, in this 

method no additional memory is used to hold partition buckets or adjacency information.  

In this method each cutting plane is identified with an integer slice ID. This slice ID 

is calculated with the cutting plane by using the first cutting plane, slice thickness value and 

the minimum and maximum bounds of the triangle.  
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Figure 3.15: View of a set of parts after a production slicing operation. 
 

 

After the slicing operation is performed, like in the triangle portioning method, the 

intersection lines must be ordered to form the contour curves. In this ordering the slice 

information of the lines and their start and end points are used. The first search process is 

performed to place intersection lines into slice lists and the second search is performed 

among the slice lists to order lines. However, these searches take less time than a portioning 

search, since only an equality check is performed to find order lines into slice. When, the 

slicing operation is completed the resultant slice contours are displayed in the 3D 

environment (Figure 3.16). 

 

3.5.3.2 Tool Path Generation 

The generation of the tool path is the final process planning step before fabricating a 

part. In this stage, the contour curves generated by the production slicing functionality are 

used as the input. The generated contour curves are also used as the tool paths to fabricate 

the outer bounds of each layer. To complete the CAM code generation, the inside of these 

contours must be filled by raster method to form the final tool paths. The tool paths 

generated after raster process must be as continuous as possible and avoid any unnecessary 

direction changes. The consecutive raster segments must be alternated in direction to 

improve the physical properties of the fabricated part. If one layer of raster segments is laid 
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in the horizontal direction, the next layer of raster segments must be laid in the vertical 

direction. Between the layer changes the continuity of the deposition of the production 

material can be an important concern in some production techniques. Therefore it is better 

to design the tool paths as continuous as possible in the layer changes, as well. This can be 

achieved by linking the end of a raster segment to the beginning of the next one and 

oppositely orienting the direction of the raster segments of consecutive layers (Gültekin, 

2003). 

 

 

 
 

Figure 3.16: View of a set of parts after a production slicing operation. 
 

 

The raster segments are generated for one contour in a time. Tool path generation of 

a contour is started when the whole tool path generation process of a previous contour is 

completed. The raster segments are generated by intersecting the closed slice contours with 

equally spaced parallel infinite rays laid along a common direction. The process of 

generating tool paths by using these parallel infinite rays is also called hatching. The rays 

can be generated in two different directions, x and y. These two directions are called 

hatching directions (Figure 3.17). The hatching direction is alternated in subsequent 

contours.  



 

 

66

 
 

Figure 3.17: Hatching parameters and hatching direction of a contour. 
 

 

Two parameters, called tool compensation and contour offset, are used in the 

hatching operation. Tool compensation value defines the distance between the parallel 

infinite rays. Contour offset value defines the distance between the internal raster segments 

and the inner and outer contours. Tool compensation and contour offset values are set at the 

beginning of the process and the same values are used throughout a single tool path 

generation step. On the other hand, different values can be used in different tool path 

generation operations. These values and their physical meanings can be seen in Figure 3.17. 

Hatching operation starts with the creation of new offset contours. The existing 

contour curves are regenerated inside the outer and outside the inner contours with a 

distance equal to contour offset. When all the offset contours are generated, the minimum 

and maximum values of all new contours in the perpendicular direction of hatching are 

found. These values are used to form a hatching interval. The parallel infinite lines are 

generated in this interval with equal spacing defined by tool compensation value. 

Afterward, the intersections between the rays and offset contours are calculated and the 

resultant intersection points are hold in a point list. Once all the intersection points are 

found, the points are ordered according to ascending values of the coordinates in the 

hatching direction. The ordered points are used to create the line segments that fill the 

inside of the contours. The line segments are connected to their neighboring lines at the 

point of intersection so the tool paths are generated (Figure 3.18). These connections are 

performed by obeying three intersection rules listed by Gültekin (2003). 
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1. A line segment can be linked to another line segment if and only if the segments 

are consecutive. If not, the link might cross other line segments. 

2. A link is possible only between the tail and the head of a segment. This guarantees 

proper orientation. 

3. A raster segment can be linked to another raster segment if and only if the two 

vertices to be connected originate from the same contour. If not, the link could overlap 

some existing line segments. 

 

 

 
 

Figure 3.18: View of a contour after a tool path generation operation. 
 

 

 
When all the line segments are connected to each other by obeying these rules, the 

tool path generation stage of the current contour is completed and the same steps are 

repeated for the subsequent contours. After all the contours in the workspace are hatched 

(Figure 3.19), the generated tool paths are converted into CAM code by saving this data in 

CLI Format or by sending the generated data to a supported RP machine through the direct 

printing interface provided by the RP module of the RP software. 

 



 

 

68

 
 

Figure 3.19: View of a set of parts after a tool path generation operation. 
 

 

3.6 Software Technical Specifications 

The RP software developed within the thesis is designed to be used in Microsoft 

Windows XP operating system. The software is implemented by using C# language and 

Microsoft .NET Framework 2.0. DirectX April 2007 Software Development Kit is used to 

support Direct3D hardware acceleration which is used in the display of 3D inputs and 

outputs of the software. To be able to use this software in a personal computer (PC), the 

target system must have Microsoft XP operating system, .NET Framework 2.0 and 

Managed DirectX April 2007 libraries. 

Different functionalities are supported in different parts of the software. A modular 

architecture is used to be able to distribute different parts of the software independently. 

Furthermore, the modular architecture has its benefits while updating the program and 

adding new functionalities to the existing software. Therefore, the software is designed in 

four different parts as three different modules and a graphics framework. Each of these 

parts performs different functionalities of the software. 

The software can display three dimensional objects by using a multi screen interface. 

Different windows can be opened simultaneously by using a single application. All the 
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windows provide an independent 3D modeling environment with user controls like rotation, 

zoom and pan, display options like wireframe, flat shading and point view, predefined 

views like top, bottom, front, back, left, right and isometric views. In addition, each 

window can be displayed in full screen mode by covering the whole screen of the PC. 

The software supports STL file format to import CAD data and CLI file format to 

export generated CAM data. Software can import multi STL files at the same time. The 

imported files are listed in the graphical user interfaces of their parent windows by means 

of their filenames. These files can be grouped in special structures called Product. The parts 

and products can be selected by using the graphical user interfaces of their windows. 

Therefore, different functions can be performed to different parts or part groups. The parts 

can be visualized individually in different colors. The bounding box of each part can be 

displayed by using the software. The software also supports undo and redo functionality to 

facilitate the ease of use. 

A workspace and a platform are displayed by the software to define the virtual 

workspace of the target RP machine. An imported part can be oriented in this virtual 

workspace by translating the part absolutely or relatively to a given position and by rotating 

the part around X, Y and Z axes with a given angle. Moreover, sizes of the parts can be 

modified by scaling the part uniformly or non-uniformly along X, Y and Z directions. The 

oriented parts are automatically checked for a collision with the virtual workspace to 

prevent any failure in manufacturing. 

The user can see the previews of the slices of the parts by using slice preview 

functionality. The user can verify the slicing operation and slicing parameters before 

generating the CAM code or see the interior sections of the parts by using this functionality. 

The parts in the workspace can be previewed in three directions, X, Y and Z. The user can 

display any slice in any position by using a scroll bar or by entering the position of the 

required slice. The user can also choose to display the hatches of the slice contours.  

The CAM data generation is automatically performed by the software. The user only 

sets the required parameters; tool thickness, first cutting plane, tool compensation and 

contour offset. The user can change or use the default values of these parameters before 

tool path generation. The process parameters do not have soft limits. Therefore, the user can 

set any value to these parameters. However, in large data, the small parameter values may 

results in high computation times and high memory and processor usage.  

The user can control the slicing operation through the slice thickness and first cutting 

plane parameters. The user can change the start point of slicing operation and the thickness 

of the resultant layers by changing these parameters. The slicing operation is performed 
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uniformly. All the parts in the workspace are sliced by using a single slice thickness value 

provided by the user.  

The user can control the hatching operation through the contour offset and tool 

compensation parameters. These parameters can be used for different purposes like 

manufacturing porous parts or decreasing the production times by rarefying the tool paths 

in the interior of the parts. By using the tool compensation value, the distances between the 

hatches and by using the contour offset value the distances between the contours and the 

hatches can be controlled. The same values are used throughout the tool path generation 

process. The hatches can only be spaced uniformly. The software only generates vertical 

and horizontal tool paths. The direction of hatching is changed by the software in 

subsequent layers. The software does not optimize the tool paths to improve the physical 

properties of the fabricated part. Therefore, these parameters must be used by considering 

this fact. 

The generated tool paths are sent to a supported RP machine through a special 

architecture called direct printing interface. Support files for different machines can be 

written by the user by using some predefined rules of communication. The generated CAM 

code can also be converted into CLI format and saved to an external file to be used in any 

application where CLI format is required. 
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CHAPTER 4 

 

DISCUSSION AND CONCLUSION 
 

 

 

 In this last chapter, the resultant RP software is compared with the other commercial 

RP software packages according to their memory usage and process time to verify the 

success of this study. After this benchmark study, the results of this comparison and 

achievements of the thesis study are concluded. At the end of the chapter, possible future 

work and further improvements are discussed. 

 

4.1 Performance Benchmarking 

A performance benchmark study based on memory usage and process time can be 

performed between the developed RP software and other commercial RP software packages 

in the market to validate the success of this thesis study.  

The memory usage of the developed RP software can be tested by comparing the 

amount of memory used in different states with Magics and Viscam Software packages. 

These states can be listed as the state when the software is just initialized, the state when 

the software displays a set of parts, the state when the software created two different build 

jobs at the same time and the state when the software is generated the tool paths for a set of 

parts. When the memory usages of these three software packages are tabulated at these 

stages, the results listed in the Table 4.1 is obtained. The values listed in the Table 4.1 are 

taken from Microsoft Windows XP operating system taskbar when the memory usage of 

the program is stabilized after the processes or operations listed in the table 4.1 are 

completed. The set of parts used in this comparison can be found in the Appendix E. The 

creation of two build jobs simultaneously is given as a criterion to emphasize the 

importance of the multi screen interface. Since the other commercial software packages do 
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not support multi screen interface, this state is performed by running two copy of the same 

application with different build jobs. In the developed RP software, this criterion is 

performed by using the multi screen interface. The set of parts used in this comparison can 

be seen in the case study provided in Appendix E.  

 

 

Table 4.1: Memory usage comparison of developed RP software, Magics and Viscam 

 

 

 

Developed RP 

Software 

Magics  

Version 11.1 

Viscam  

Version 

Initialized Software 23.580 KB 40.628 KB 13.812 KB 

Opened a set of parts 31.488 KB 55.556 KB 31.612 KB 

Opened more than one 

build job 
40.348 KB 121.760 KB 71.472 KB 

After tool path 

generation of set of parts 
49.328 KB 55.656 KB 55.928 KB 

 

 

 

The overall process performance of the developed RP software can be tested by 

comparing the process completion time of these three software packages. These software 

packages can be compared according to the time needed to open a complex file, the time 

needed to open multiple files and the time needed to slice a complex part. When the process 

completion time of these three software packages are tabulated according to these criteria, 

the results listed in the Table 4.2 are obtained. The process completion time of the 

developed RP software is measured in milliseconds by using the processor clock. The 

measurement is performed by implementing additional timer codes into the source code of 

the software. However, process completion time of the other software packages are 

measured by simultaneously executing an external timer application and manually stopping 

the timer at the end of the process. Consequently, some measurement error is generated in 

the values tabulated in Table 4.2. 
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Table 4.2: Process time comparison of developed RP software, Magics and Viscam 

 

 
Developed RP 

Software 

Magics  

Version 9.52 

Viscam  

Version 

Opening a complex file6 0,47 sec 1,34 sec 3,20 sec 

Opening  a set of files 0,29 sec 0,67 sec 0,76 sec 

Tool path generation of 

a complex part 
6,42 sec 2,37 sec 4,57 sec 

 

  

 

The memory usage and the process completion time of the developed RP software 

are comparable with the other commercial systems. However, this comparison can not be 

considered as an exact result since the development platforms of the software packages and 

additional functionalities my show varieties from one software package to another. The 

software packages discussed in the benchmark study is developed by using different 

libraries. The developed RP software is using .NET framework libraries and a managed 

memory management system that depends on the structure of C# language. On the other 

hand, the other two software packages are developed by using C++ language and different 

software libraries with an unmanaged memory management system. Therefore, the memory 

usage values displayed in the Microsoft Windows XP operating system taskbar can not be 

considered as an exact comparison criterion. In addition, the commercial software packages 

listed in the table have additional functionalities like STL file repair, STL file modification, 

support structure generation, etc. as listed in Appendix B. These additional functionalities 

and the methods used in measurement affect the accuracy of the memory usage and process 

completion time values of the software packages. However, the results displayed in Table 

4.1 and 4.2 are only presented to show the similarity of the developed RP software with the 

other commercial RP software packages in a performance wise comparison. The 

comparison is not performed to compare the developed RP software in a commercial point 

of view. For that reason, the exact memory usage and process time values are not crucial to 

discuss the success of the developed RP software. Therefore, by using these values, it can 

be said that this study is a reasonable implementation of the functionalities discussed in this 

thesis study.  
                                                      
6  The complex part used in this comparison is a STL file with a size of 11 926 KB and it contains 
245 258 number of triangles. 



 

 

74

4.2 Conclusion 

In this study, a detailed survey on RP technology is presented. In this presentation the 

fundamentals and basic concepts of RP technology, its historical background and 

advantages, classification of RP techniques and basic concepts of RP software packages 

like STL data format, process planning steps of RP software are explained as detailed as 

possible. At the end of this RP technology presentation, a market survey of RP software 

packages is given to the reader to justify the requirement analysis of the developed 

software. 

As a result of this study, a RP software package that satisfies the possible 

requirements of future RP studies and hence facilitate them, with a complete, fully 

independent, open for development and easy to use architecture is designed and 

implemented. This software is developed as an extendible and application independent, 

multipurpose software package, which can be used in different engineering studies, rather 

than a specific RP application. 

The software package supports a 3D modeling environment with 3D hardware 

visualization support to be capable of displaying different types of inputs and outputs. A 

multi screen support is used to be able to present different information at the same time. A 

graphics library that facilitates the design of new graphic objects is developed to use the 

same application core in different engineering applications where different types of 

visualization requirements and 3D objects are required. 

 In the RP software, a modular architecture is used to take advantage of software 

modularity in the design, development, release and update of the resultant software 

package. The software modules are organized according to their functionality.  

A core module that supports a generic file transfer system is designed to facilitate the 

use of different file types, which can be required in a future study. This interface also 

supports multi file import and export. In the software, more than one file can be visualized 

at the same time. Since more than one part is imported, a part organization system is 

developed to be able to group parts. Part selection functionality is implemented to be able 

to use different functionalities for different parts. In addition to these, undo/redo 

functionality is provided for the sake of easy usage. 

A RP software package that satisfies the process planning steps of RP is designed 

and implemented. As a part of this software package, modules with part modification, part 

transform, part slicing and tool path generation functionalities are developed. In the current 

phase, the support generation step is neglected since it is considered as a future 
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improvement. Functionalities that facilitate easy modification and orientation of parts are 

provided to the user as a part of the RP module. By using this module parts can be scaled 

uniformly or non-uniformly, moved absolutely or relatively and rotated around three 

different directions. An additional functionality like part slicing in X, Y and Z directions to 

preview the production or to see the interior of the model is provided in a different module 

called Slice module. Finally, a direct printing interface is designed and implemented as a 

part of the RP module to be able to support different RP machines that can be designed in 

future studies.  

When the application is completed it is tested for different conditions by using 

different part files. Finally to test the performance of the developed RP software, it is 

compared with commercial RP applications sold in the market according to memory usage 

and process time. This comparison has verified the success of the RP software with 

acceptable memory usage and process times compared to other commercial RP 

applications. Therefore, it can be said that, the resultant RP software is comparable with 

other commercial RP applications in case of functionality and performance. 

 

4.3 Future Work and Further Improvements 

The basic functionalities that are necessary to perform a standard RP process are 

implemented in this version of RP software. However, some additional functionalities and 

modules must be added to the developed RP software to be able to use it with all RP 

systems in the market.  

Support generation module, STL file repair and edit module, data import and export 

module can be implemented to the RP software in the future. Automatic and manual 

support generation, automatic STL file problems recognition and repair, boolean operation 

and 3D shape generation and direct CAD data import support for  STEP and IGES formats 

can be listed as the functionalities that can be provided by these new modules.  

In addition to these new modules, current modules can be improved to support new 

functionalities. Automatic part nesting, determining optimal orientation, build time and cost 

estimation, build animation and RP machine library supports can be listed as the 

functionalities that can be added to the existing RP and View Modules. Additionally, the 

current algorithms used in the Slice module can be improved with adaptive and direct 

slicing algorithms to perform more accurate slicing operations. 
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Some architectural properties like multi language support, a completely independent 

modular expansion support, exception handling and automatic system recovery support, 

online update and system logging support can also be developed in a newer version of the 

RP software.  
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APPENDIX A 
 

COMPARISON OF RAPID PROTOTYPING TECHNIQUES 

AND SYSTEMS 

 

 

A detailed comparison of commercial RP techniques and systems is presented in the 

Table A.1. The techniques are presented with their representative vendors and acronyms. 

They are compared according to their general qualitative features by means of maximum 

build chamber size, production speed, production accuracy, surface finish and system price. 

Additionally, the strengths and the weaknesses of the techniques and their typical 

applications are provided in the table. At the end of the table, the materials used by each 

technique are listed with production costs.  
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APPENDIX B 
 

RAPID PROTOTYPING SOFTWARE MARKET SURVEY 

 

 

 

In Appendix B.1 and B.2, the technical specifications of Viscam and Magics 

software are given, respectively. 

 

B.1 Viscam Software Technical Specifications 

 

 
 

Figure B.1: The modular architecture of Viscam Software (Marcam, 2007) 
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Figure B.2: Functionalities of View module of Viscam Software (Marcam, 2007) 

 
 
 

 
 

Figure B.3: Functionalities of Mesh module of Viscam Software (Marcam, 2007) 
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Figure B.4: Functionalities of RP module of Viscam Software (Marcam, 2007) 

 

 

B.2 Magics Software Technical Specifications 

The Information provided in this section is taken from the (Materialise, 2007). 

 

Magics Base 

Magics gives a control over STL-files among the offered functionality: 

• Visualization, measuring and manipulation of STL Files 

• Fixing STL files, uniting shells, trimming surfaces, double triangle detector  

• Cutting STL files, punching holes, extruding surfaces, hollowing, applying 

offset  

• Boolean operations, triangle Reduction, smoothing, labeling  

• Nesting, collision detection  

• Coloring STL-files  
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Magics RP 

This version offers some extra Rapid Prototyping functions like:  

• The platform concept, Build time estimation, Quotation Making  

• Slice verification  

• Z-compensation 

 

Modules “IGES”, “VDA”, “STEP”, “UG”, "Pro/E", “CATIAV4.2x" "Catia 

V5" and "Slice to STL" import  

Magics is compatible with all major CAD formats like IGES, VDA, STEP, 

Unigraphics, Pro/E and Catia (V4.5x and V5) and STL. In combination with the STL fixer, 

Magics enables you to send any file to the RP system or use it in a tooldesign.  

 

Module “Pointcloud-import”  

Point-cloud import allows Magics to import directly the pointclouds generated by 

3D scanners. Magics will triangulate the pointclouds by connecting the points by triangles. 

A wide range of parameters is available, allowing you to optimise the triangulation. It is 

also possible to import VDA pointclouds.  

 

Module “Support Generation”  

Support generation is one of the key issues for stereolithography and metal 

sintering. Fast and easy generation of support structures is crucial but also the verification 

and adaptation of these generated supports is essential for the final quality of the part. 

Magics offers several support types and combinations of these different support structures 

on one surface.  

 

Module “SG Volumes”  

Sand parts are fragile when they are lifted out of the build envelope. The volume 

supports avoid that the part breaks or drifts away. The volume supports give extra stability 

to the part and large overhangs. The part and supports are automatically placed on a 

sintered platform to enable easy lifting of the built construction.  

 

Modules “C-Tools” and “Slice”  

The Slice module writes out files for 3D systems, EOS, Stratasys and Sanders. 

Slices are automatically repaired and before the slicing is done, the slice preview allows 
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you to inspect the slices. The Ctools module writes out contours and hatching for 3D 

Systems SLA 250 machines in the SLI format.  

 

Module “RapidFit”  

Quality control is an important issue in the Rapid prototyping industry, speed too. 

With Magics RapidFit you can quickly and semi-automatically create fixtures (» supports) 

which can be produced with any rapid prototyping technique. These supports are 

constructed so they can be placed on so called base plates or beams. This setup can be used 

as measuring caliber, supports for easy measuring or for avoiding deformation when storing 

the part.  

 

Module “Tooling”  

RP Machine constructors are offering techniques to produce mold inserts. However 

the tool design is still an elaborate work. Rapid Tooling software allows you to create the 

tool directly from the STL design in a matter of minutes. The parting line is automatically 

generated. Tooling elements and draft are easily added.  

  

Module “EDM”  

The EDM module is included in the tooling module. It is specifically designed for a 

fast and easy design of electrodes for spark erosion. Reference points can be defined to 

determine coordinates for the setup of the EDM machine. A report file helps managing the 

spark erosion project.  

  

Module “Tooling Expert”  

With this module quotes for tools for the injection molding process can be made in 

a fast, reliable and consistent way. In a 1-2-3 approach, a complete analysis of the part is 

done (step 1), a reliable price estimation is obtained (step 2) and a well-documented quote 

is automatically generated (step 3).  

 

Module “Remesh”  

Optimize your STL models for FEA purposes. Magics’ Remesh Module enables to 

quickly and easily transform badly shaped triangles into more or less equilateral triangles. 

The more geometrically ‘regular’ the triangles are, the better and more reliable the results 

of the FEA calculations will be. Apart from the automatic remeshing option, different 

techniques are available to further improve the quality of the triangles manually.  



 

 

87

Module “SmartSpace”  

SMART – Save Material And Reduce Time. SmartSpace assures an optimal load 

for your sintering machine and this in a very easy and fast way. Considering the parts’ 

geometry, the software automatically nests your parts, maximising the number of parts in 

the build envelope and/or minimising the build time. At the same time, the software ensures 

that none of the parts collides with another part nor the container.  

  

Module “Hearing Aid”  

The purpose of the Hearing Aid module is to automate the platform preparation for 

the production of Hearing Aid shells. With this in mind, the module combines existing 

Magics functionality in a one-button solution.  

 

Module “2D Drawing”  

Generate powerful feedback on your STL models by creating and printing 2D 

drawings. This module offers fast and easy 2D drawing generation from even the most 

complex STL models. You can generate all types of views in both 1st angle and 3rd angle 

projection. Adding and editing measurements and annotations takes only seconds and the 

title blocks are completely customizable.  

  

Module “ActiveX”  

Use the ActiveX interface to integrate Magics in your business process. The 

ActiveX module enables direct communication between your software applications (like 

databases, quoting programs, web applications) and Magics. Using the ActiveX interface, 

Magics can provide these applications with all the imaginable parameters and pictures of 

your STL-files. This will bring the automation of your business processes to a higher level: 

saving you time and eliminating human errors.  
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APPENDIX C 
 

REQUIREMENT ANALYSIS OF RP SOFTWARE 

 

 

View Module 
Visualization 

• Hardware acceleration: support of Direct3D 

• Rotation, zoom and pan of parts. 

• Flat shading 

• Individual visualization of parts  

• Cross-section display to analyze the model interior 

• Visualization of included color information 

File Input/output 

• STL file format input. 

• Multiple file reading 

View-modes  

• Flat shading (opaque), triangle (the STL-file), and point view.  

• Part bounding box: shows the bounding box around the part 

• Full screen display. 

• Multi screen support 

• Different parts can be shown in different colors 

Tools  

• UNDO and REDO functions 

 

RP Module 
Hardware Communication 

• Direct printing interface for the Hermes. 
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Orientation 

• Easy orientation of the part on the workspace. 

• Parts can be moved absolutely and relatively 

• Parts can be rotated around three axes. 

Modification 

• Parts can be scaled uniformly. 

• Parts can be scaled in three different directions 

 

Slice Module 
Slicing 

• Fast and exact uniform slice generation from triangle models 

• No slice thickness limitation 

• Section in X,Y,Z planes 

Tool Path Generation 

• Fast and exact tool path generation from slices 



 

 

 

APPENDIX D 
 

DETAILS OF INTERFACES AND STRUCTURAL CLASSES 

 

 

 

/// <summary> 

/// Define the methods required to draw an object in graphics engine 

/// </summary> 

public interface IDrawable 

{ 

/// </summary> 

/// Method that will be called when device is lost 

/// </summary> 

void Dispose(); 

/// <summary> 

/// Method used to render the object in a 3D environment 

/// </summary> 

/// <param name="device">Rendering device</param> 

/// <returns>State of the rendering process</returns> 

bool Render(Device device); 

/// <summary> 

/// Method that will be called when device is reset 

/// </summary> 

/// <param name="device">Rendering device</param> 

/// <returns>State of the rendering process</returns> 

bool Reset(Device device); 

} 
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/// <summary> 

/// Define the methods required to create a selectable object 

/// </summary> 

public interface ISelectable 

{ 

/// </summary> 

/// Required to set or get selection information 

/// </summary> 

bool IsSelected { get; set; } 

/// </summary> 

/// Required to set or get the selection color 

/// </summary> 

Color SelectionColor { get; set; } 

} 

 

/// <summary> 

/// Define the rules of reading a file and adding it to Graphics Framework 

/// </summary> 

public interface IReadable 

{ 

/// </summary> 

/// Reads a file and returns it as a feature type object 

/// </summary> 

/// <param name=" targetLocation ">Location of the target file</param> 

/// <returns>Read feature object</returns> 

Feature Read(string targetLocation); 

/// <summary> 

/// Gets supported file extension as a string 

/// </summary> 

string FileExtension { get; } 

} 
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/// <summary> 

/// Define the rules of writing a object to a file 

/// </summary> 

public interface IWriteable 

{ 

/// </summary> 

/// Writes a the given object to a file 

/// </summary> 

/// <param name=" object ">Object to be write to the file</param> 

/// <param name=" targetLocation ">Location of the target file</param> 

/// <returns>Status of the operation</returns> 

bool Write(Feature object, string targetLocation); 

/// <summary> 

/// Supported file extension 

/// </summary> 

string FileExtension { get; } 

} 

 

/// <summary> 

/// Defines the rules of communication with an external application 

/// </summary> 

public interface IConnection 

{ 

/// </summary> 

/// RP software starts connection by using this method 

/// </summary> 

/// <returns>Status of the process</returns> 

bool OpenConnection(); 

/// <summary> 

/// Sends toolpath as an Vector3 array to the external application 

/// </summary> 

/// <param name="device">Tool path</param> 

/// <returns>Status of the process</returns> 

bool SendCode(Vector3[] toolPath); 

} 
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/// <summary> 

/// Base class for all drawable colored objects. When a class is inhereted from this class, it  

/// must set vertices and(optionally) indices of this base class. This can be easily made by  

/// adding ": base(vertices, vertexType, vertexFormat)" or ": base(vertices, vertexType,  

/// vertexFormat, indices, indexType)" /// statements to constructor of inhereted class or by 

/// using "SetVertices(Array vertices, Type vertexType, VertexFormats  vertexFormat)" and 

/// "SetIndices(Array indices, Type indexType)" methods. Once vertices and (optionally)  

/// indices are set then any changes made on them can be reflected to drawing by setting  

/// "IsResetRequired" property as true which will yield a resetting process in base class. 

/// </summary> 

public abstract class Entity : IDrawable, IDisposable 

{ 

/// <summary> 

/// Constructor of the entity class 

/// </summary> 

public Entity(); 

/// <summary> 

/// Constructor of the entity class 

/// </summary> 

/// <param name="vertices">Vertices of the entity</param> 

/// <param name="vertexType">Format of the vertices</param> 

/// <param name="vertexFormat">Type of the vertices</param> 

public Entity(Array vertices, Type vertexType, VertexFormats vertexFormat); 

/// <summary> 

/// Constructor of the entity class 

/// </summary> 

/// <param name="vertices">Vertices of the entity</param> 

/// <param name="vertexType">Format of the vertices</param> 

/// <param name="vertexFormat">Type of the vertices</param> 

/// <param name="indices">Indices of the entity</param> 

/// <param name="indexType">Type of the indices</param> 

public Entity(Array vertices, Type vertexType, VertexFormats vertexFormat, Array  

indices, Type indexType); 
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/// <summary> 

/// Indices of entity 

/// </summary> 

protected Array IndexArray { get; } 

/// <summary> 

/// Buffer which is holding indices 

/// </summary> 

protected IndexBuffer IndexBuffer { get; } 

/// <summary> 

/// Type of the indices in the indices array 

/// </summary> 

protected Type IndexType { get; set; } 

/// <summary> 

/// Indicates whether a reset for the device is required or not 

/// </summary> 

protected bool IsResetRequired { get; set; } 

/// <summary> 

/// Gets or sets the  material color of the entity 

/// </summary> 

protected Color MaterialColor { get; set; } 

/// <summary> 

/// Type of the primitive that will be used in rendering 

/// </summary> 

protected PrimitiveType PrimitiveType { get; set; } 

/// <summary> 

/// Gets or sets the material of the entity 

/// </summary> 

public Material SurfaceMaterial { get; set; } 

/// <summary> 

/// Indicates whether indices are used or not 

/// </summary> 

protected bool UsingIndices { get; set; } 
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/// <summary> 

/// Indicates whether material is used or not 

/// </summary> 

protected bool UsingMaterial { get; set; } 

/// <summary> 

/// Vertices of entity 

/// </summary> 

protected Array VertexArray { get; } 

/// <summary> 

/// Buffer which is holding vertices 

/// </summary> 

protected VertexBuffer VertexBuffer { get; } 

/// <summary> 

/// Format of the vertices in the vertices array 

/// </summary> 

protected VertexFormats VertexFormat { get; set; } 

/// <summary> 

/// Type of the vertices in the vertices array 

/// </summary> 

protected Type VertexType { get; set; } 

 

/// <summary> 

/// Method that will be called when device is lost. When you override this method, to 

/// improve performance call disposable objects of the class if IsResetRequired is  

/// false. 

/// </summary> 

public virtual void Dispose(); 

/// <summary> 

/// Method used to render the object in a 3D environment 

/// </summary> 

/// <param name="device">Rendering device</param> 

/// <returns>State of the rendering process</returns> 

public virtual bool Render(Device device); 
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/// <summary> 

/// Method that will be called when device is reset. When you  override this method, 

/// to improve performance call objects of the class that will be reseted if  

/// IsResetRequired is false. 

/// </summary> 

/// <param name="device">Rendering device</param> 

/// <returns>State of the rendering process</returns> 

public virtual bool Reset(Device device); 

/// <summary> 

/// Method used to set buffers of device 

/// </summary> 

/// <param name="device">Rendering device</param> 

/// <returns>State of the process</returns> 

protected bool SetDeviceBuffers(Device device); 

/// <summary> 

/// Sets the indices of the entity class 

/// </summary> 

/// <param name="vertices">Indices of the entity class</param> 

/// <param name="vertexType">Type of the indices</param> 

protected void SetIndices(Array indices, Type indexType); 

/// <summary> 

/// Sets the vertices of the entity class 

/// </summary> 

/// <param name="vertices">Vertices of the entity class</param> 

/// <param name="vertexType">Type of the vertices</param> 

/// <param name="vertexFormat">Format of the vertices</param> 

protected void SetVertices(Array vertices, Type vertexType, VertexFormats  

vertexFormat); 

} 

 

/// <summary> 

/// Base class for drawable objects that needs selection, custom colorization, transparency  

/// and transformation functionality. When a class is inhereted from this class, it must set  

/// vertices and (optionally) indices of this base class. This can be easily made by adding  

/// ": base(renderColor, vertices, indices)" statement to constructor of inhereted class or by  
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/// using "Vertices" and (optionally) "Indices" properties. Once vertices and (optionally)  

/// indices are set then any changes made on them can be reflected to drawing by setting  

/// "IsResetRequired" property as true which will yield a resetting process in base class. 

/// </summary> 

public abstract class Feature : Entity, ISelectable 

{  

/// <summary> 

/// Constructor of the feature class 

/// </summary> 

public Feature(); 

/// <summary> 

/// Constructor of the feature class 

/// </summary> 

/// <param name="renderColor">Rendering color</param> 

public Feature(Color renderColor); 

/// <summary> 

/// Constructor of the feature class 

/// </summary> 

/// <param name="renderColor">Rendering color</param> 

/// <param name="vertices">Vertices of the feature</param> 

public Feature(Color renderColor, CustomVertex.PositionNormal[] vertices); 

/// <summary> 

/// Constructor of the feature class 

/// </summary> 

/// <param name="renderColor">Rendering color</param> 

/// <param name="vertices">Vertices of the feature</param> 

/// <param name="indices">Indices of the feature</param> 

public Feature(Color renderColor, CustomVertex.PositionNormal[] vertices, int[]  

indices); 

 

/// <summary> 

/// Center of the object 

/// </summary> 

public Vector3 Center { get; } 
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/// <summary> 

/// Identifier of the feature.  

/// </summary> 

public int Identifier { get; set; } 

/// <summary> 

/// Indices of feature 

/// </summary> 

public virtual int[] Indices { get; set; } 

/// </summary> 

/// Required to set or get selection information 

/// </summary> 

bool IsSelected { get; set; } 

/// <summary> 

/// Maximum bound of the object 

/// </summary> 

public Vector3 MaximumBound { get; } 

/// <summary> 

/// Maximum distance of object boundary from center of the object 

/// </summary> 

public float MaximumDistanceToCenter { get; } 

/// <summary> 

/// Minimum bound of the object 

/// </summary> 

public Vector3 MinimumBound { get; } 

/// <summary> 

/// Name of the feature.  

/// </summary> 

public string Name { get; set; } 

/// <summary> 

/// Number of triangles hold in the list of the model 

/// </summary> 

public int NumberOfTriangles { get; } 
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/// <summary> 

/// sets or gets the render color of the feature 

/// </summary> 

public Color RenderColor { get; set; } 

/// </summary> 

/// Required to set or get the selection color 

/// </summary> 

Color SelectionColor { get; set; } 

/// <summary> 

/// Is entity render its bounding box 

/// </summary> 

public bool ShowBoundingBox { get; set; } 

/// <summary> 

/// This property indicates whether the feature will drawn  

/// transparent or opaque.  

/// </summary> 

public bool ShowTransparent { get; set; } 

/// <summary> 

/// Tranformation matrix of the object 

/// </summary> 

public Matrix Transformation { get; } 

/// <summary> 

/// Transparency value of the feature. This value must be 0 for full transparent and  

/// 255 for opaque. Values greater /// than 255 and smaller than 0 will be set to 255  

/// and 0, respectively. 

/// </summary> 

public byte Transparency { get; set; } 

/// <summary> 

/// Is feature using its transformation matrix 

/// </summary> 

public bool UsingTransformation { get; set; } 

/// <summary> 

/// Vertices of feature 

/// </summary> 

public virtual CustomVertex.PositionNormal[] Vertices { get; set; } 
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/// <summary> 

/// The indexer returns a triangle based on a numerical index. 

/// </summary> 

/// <param name="i">Indexer</param> 

/// <returns> Triangle that corresponds to given indexer </returns> 

public Triangle this[int i] { get; } 

 

/// <summary> 

/// Permanently apply transformation matrix to the vertices of the feature. 

/// </summary> 

public void ApplyTransformation(); 

/// <summary> 

/// Method that will be called when device is lost. When you override this method, to  

/// improve performance call disposable objects of the class if IsResetRequired is  

/// false. 

/// </summary> 

public virtual void Dispose(); 

/// <summary> 

/// Iterator method of the model class 

/// </summary> 

/// <returns>Triangles of the model in a foreach syntax</returns> 

public IEnumerator<Triangle> GetEnumerator(); 

/// <summary> 

/// Method used to render the object in a 3D environment 

/// </summary> 

/// <param name="device">Rendering device</param> 

/// <returns>State of the rendering process</returns> 

public virtual bool Render(Device device); 

/// <summary> 

/// Method that will be called when device is reset. When you override this method,  

/// to improve performance call objects of the class that will be reseted if  

/// IsResetRequired is false. 
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/// </summary> 

/// <param name="device">Rendering device</param> 

/// <returns>State of the rendering process</returns> 

public virtual bool Reset(Device device); 

/// <summary> 

/// Sets transformation matrix 

/// </summary> 

/// <param name="isAbsolute"> 

/// Is given transformation according to absolute values 

/// </param> 

public void SetTransformation(Matrix tMatrix, bool isAbsolute); 

}



 

 

 

APPENDIX E 
 

CASE STUDY 

 

 

 

In this appendix, a standard rapid prototyping process is performed for a set of 

parts. The screenshots of the software after each operation is provided in operation order. 

The process is started by creating a new project. Different STL parts are imported to this 

project by using the main menu of the software. The imported parts are oriented in the 

production platform. All the oriented parts are displayed in different predefined views. 

Slices of the parts are previewed in X, Y and Z directions. At the end of the process, the 

parts are printed, sliced and hatched, by using the printing functionality of the software. 

 
 

 
 

Figure E.1: Creating a new project by using the main menu of the software 
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Figure E.2: Importing parts in STL format by using the main menu of the software 

 

 

 
 

Figure E.3: Choosing the parts to be imported by using open file dialog 
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Figure E.4: Selecting a part from the graphical user interface to translate  

 

 

 
 

Figure E.5: Moving the selected part by using the translation menu 
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Figure E.6: Selecting a part from the graphical user interface to scale 

 

 

 
 

Figure E.7: Scaling the selected part by using the scaling menu 
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Figure E.8: Front view of the oriented parts 

 

 

 
 

Figure E.9: Top view of the oriented parts 
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Figure E.10: Isometric view of the oriented parts 

 

 

 
 

Figure E.11: Choosing the print preview functionality from the main menu 
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Figure E.12: Previewing the slices of the parts along X direction 

 

 

 
 

Figure E.13: Previewing the slices of the parts along Y direction 
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Figure E.14: Previewing the slices of the parts along Z direction 

 

 

 
 

Figure E.15: Choosing the print functionality from the main menu 
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Figure E.16: Printing the slices of the parts by using parameters 

 

 

 
 

Figure E.17: Displaying parts after printing operation 
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