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ABSTRACT 

 
 
 

MODELLING OF  
X-BAND ELECTROMAGNETIC WAVE PROPAGATION 

 
 

Pelgur, Ali 
    M. Sc., Department of Electrical and Electronics Engineering 
    Supervisor : Assoc. Prof. Dr. Sencer KOÇ 
 

 
August 2007, 86 pages 

 
 
 

Calculation of electromagnetic wave propagation over irregular terrain 

is an important problem in many applications such as coverage 

calculations for radars or communication links. Many different 

approaches to this problem may be found in the literature. One of the 

most commonly used methods to solve electromagnetic boundary 

value problems is the Method of Moments (MoM). However, especially 

at high frequencies, the very large number of unknows required in the 

MoM formulation, limits the applicability of this method, since the 

memory requirement and the operation count increases by O(N2) and 

O(N3), respectively, where N is the number of the unknowns. 

 

Several approaches have been proposed in the literature to reduce the 

memory requirement and the operation count of the MoM. These 

approaches rely on the special structure of the impedance matrix 

generated by the MoM. The Conjugate Gradient (CG) method is a 

non-stationary iterative technique that can be used to solve general 

asymmetric/non-Hermitian systems with an operational cost of O(N2) 
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per iteration. Furthermore, the computational time can be improved by 

the Fast Fourier Transform (FFT) algorithm to perform the 

matrix-vector multiplication that appear in any iterative technique. This 

approach has been successfully used in the literature to solve 

scattering from electrically large objects and it has been shown that the 

computational cost and memory requirement can be reduced to 

O(KNlogN) with K being the number of iterations. 

 

In this thesis, CG method accelerated with Fast Fourier Transform 

(CG-FFT) method is applied to the problem of electromagnetic 

propagation over irregular terrain. Applications for electrically large 

rough terrain profiles are presented. The accuracy of the method is 

compared to the direct solution of the MoM, CG method and Free 

Space model with recoveries by Hata model or multiple knife-edge 

diffraction and reflection. The solution works on quasi-planar surfaces 

and profiles with small deviation like little breezy sea surface properly. 

 

 

Keywords: Electromagnetic Wave Propagation, CG-FFT. 
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ÖZ 

 
 
 

X-BANDINDA ELEKTROMANYETİK DALGA YAYILIMININ 
MODELLENMESİ 

 
 

Pelgur, Ali 
    Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 
    Tez Yöneticisi: Doç. Dr. Sencer KOÇ 
 

 
Ağustos 2007, 86 sayfa 

 
 
 

Düzensiz bir arazi üzerinde elektromanyetik dalga yayılımının 

hesaplanması, radar ve haberleşme linklerinin kapsama alanı 

belirlenmesi gibi önemli uygulamaları olan bir problemdir. Bu problemin 

çözümü için literatürde değişik yaklaşımlar önerilmiştir. Elektromanyetik 

sınır değer problemlerinin çözümünde yaygın olarak kullanılan bir 

yöntem Method of Moments (MoM) tekniğidir. Ancak, özellikle yüksek 

frekanslarda MoM formülasyonunun gerektirdiği çok yüksek bilinmeyen 

sayısı, metodun uygulanabilirliğini sınırlamaktadır. Çünkü, kullanılan 

bilinmeyen sayısı N ise, O(N2) ile artan hafıza kapasitesi ve O(N3) ile 

artan işlem yükü getirmektedir.  

MoM yönteminin hafıza gereksinimini ve işlem sayısını azaltmak 

amacıyla, literatürde değişik yaklaşımlar önerilmiştir. Bu yaklaşımlarda, 

MoM yönteminde üretilen empedans matrisinin özel yapısı 

kullanılmaktadır. Eşlenik Eğim (CG) yöntemi, genel asimetrik ve 

Hermitian olmayan sistemleri, her yinelemede O(N2)’lik işlem sayısı 

yaparak çözmek için geliştirilen durağan olmayan bir yinelemeli 

tekniktir. Ayrıca işlem süresi, yinelemeli tekniklerde gerekli olan 
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matris-vektör çarpımlarının FFT algoritmasıyla gerçekleştirilmesi ile 

azaltılabilir. Bu yaklaşım, literatürde elektriksel olarak büyük 

cisimlerden saçılım hesaplarına başarıyla uygulanmış ve hafıza 

gereksiniminin ve işlem yükünün, K yineleme sayısı olmak üzere, 

O(KNlogN) değerine indiği gösterilmiştir. 

 

Bu tezde, Fast Fourier Transform yöntemi ile hızlandırılmış CG 

yöntemi (CG-FFT), düzensiz yüzeyler üzerinde elektromanyetik dalga 

yayılımı problemine uygulanmaktadır. Elektriksel olarak büyük ve 

düzensiz yüzey profilleri için örnek uygulamalar sunulmaktadır. 

Sonuçların doğruluğu MoM matris sisteminin doğrudan çözümü, 

olağan CG yöntemi ve çeşitli yöntemlerle düzeltilmiş serbest uzay 

modeli ile karşılaştırılmıştır. Yöntem, düşeyde yüzey değişiminin az 

olduğu, düze yakın yüzey profillerinde başarılı bir şekilde çalışmıştır. 

 

 

Anahtar Kelimeler: Elektromanyetik Dalga Yayınımı, CG-FFT. 
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CHAPTER 1 
 

 
INTRODUCTION 

 
 
 
The enourmous growth in the development of highly reliable, miniature, 

solid-state radio frequency hardware and the mobile radio 

communication industry produced the wireless communications era in 

1970s. The development powered by digital RF fabrication 

improvements, VLSI and other technologies made the mobile radio 

equipment smaller, cheaper and reliable. Since then, people 

throughout the world have enthusiastically adopted new wireless 

communication methods and services. The future growth of mobile 

radio communications will be tied more closely to radio spectrum 

allocations and regulatory decisions.  

 

The frequency assignment problem has a significant role in sharing 

well-planned frequency spectrum and obtaining the maximum 

serviceability. Frequency allocation and planning is a comprehensive 

study that implies coverage analysis, establishing locations of 

transmitters or receivers, computation of the interference over the 

candidate frequencies. Therefore, mobile radio planning requires the 

accurate computation of electromagnetic field strengths over large 

areas and in a wide variety of environments. A lot of solution 

techniques have been developed for this purpose. Some of them are 

based on propagation prediction models. These are the automatic tools 

for radio coverage prediction over characteristic geographical 

databases. Some of the techniques are the integral equation based 
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methods dealing directly with Maxwell’s equations for the computation 

of scattered field over randomly rough surfaces. 

 

In the numerical solution for x-band propagation over terrain profiles, 

one has to produce a reliable and fast solution between 9-12 GHz, 

which is a very useful band for accurate and high data rate signal 

transmission. Some prediction models can find the empirical solutions 

be found by  

 

1.1 One-Dimensional (1-D) Rough Surface Scattering 
Problem 

 

Electromagnetic scattering from rough surfaces has been extensively 

treated in the literature. A good review can be found in a special issue 

about this topic, [1]. Most recent advances have been focused on the 

direct numerical simulation of the scattering problem. Numerical 

techniques based on integral equation formulations, such as the well-

known Method of Moments (MoM), [2], are apparently some of the few 

sufficiently accurate and robust methods for low-grazing-angle 

scattering problems. 

 

The primary factor limiting the use of the MoM in the calculation of 

electromagnetic scattering from rough surfaces is that a linear system 

of equations must be solved to yield the currents induced on the 

scatterer. Direct solution methods such as LU decomposition need O 

(N3) operations, where N is the number of unknowns in the discretized 

representation of the surface current. Electrically larger scattering 

surfaces (for very large N) increase the computational cost and data 

storing capacity and make these operations prohibitive. This has led to 
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the development of iterative schemes that solve for the surface current 

in O (N2) steps. 

 

1.2  Propagation Prediction Models 
 
Since the computational limitations of integral equation based methods 

have been due to the large number of surface unknowns, the 

development of automatic tools for radio coverage prediction over 

geographical data is a growing interest area. Therefore, the coverage 

and propagation loss study for wireless communications has become a 

focus of interest and a great number of propagation models have been 

developed. According to their nature, the propagation models can be 

classified as empirical, semi-empirical (or semi-deterministic), and 

deterministic models.  

 

Empirical models are described by equations or curves derived from 

statistical analysis of a large number of measured data. Among the 

empirical methods for predicting the field strength and path loss over 

terrain profiles for VHF-UHF frequencies, International 

Telecommunication Union Recommendations, [3-5], and Federal 

Communications Commission curves, [6], are considered to be the 

most significant ones. These models are simple and do not require 

detailed information about the environment. They are also easy and 

fast to apply because the estimation is usually obtained from 

experimental measurements. However, they cannot provide a very 

accurate estimation of the scattered field or the path loss for an 

arbitrary environment.  

 

Deterministic models are site-specific calculation methods, which 

physically simulate the propagation of radio waves. Therefore the effect 
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of the environment on the propagation parameters can be taken into 

account more accurately than those in the empirical models. Most of 

the deterministic models are based on ray-optical modelling 

approaches. The serious disadvantage of ray-optical methods is the 

computational complexity. Another kind of deterministic methods that 

have been studied extensively are those derived from the parabolic 

wave equation (PWE) approximation to the Helmholtz equation, in both 

integral and differential forms [7-10]. The PWE method is useful in 

problems where the energy is expected to propagate dominantly in a 

particular direction. The parabolic wave equation method allows 

handling the tropospheric refractive index variations, but they neglect 

the contribution of the backscattered field that is important in some 

cases and assume only forward propagation. This method is not useful 

for urban areas and also very undulating profiles.  

 

Semi-deterministic models result from an empirical modification of 

deterministic models in order to improve the agreement with 

measurement results. These methods require more detailed 

information about the environment than the empirical methods but not 

as much as the deterministic models.  Many of them are based on the 

high frequency asymptotic techniques such as spherical earth 

diffraction, multiple knife-edge diffraction, geometrical optics and 

geometrical theory of diffraction. One such model, known as the 

Spherical Earth Knife Edge, [11], uses a weighted average of analytic 

solutions for the multi-path, spherical earth, and knife-edge diffraction 

contributions which depend on the transmitter, receiver and terrain 

geometries. Another approach is the GTD model described in [12] that 

is based on the application of the wedge diffraction modified to include 

finite conductivity and local roughness effects. Both methods have 

shown reasonable agreement with experimental data but there are 
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significant differences in some cases that are difficult to explain. 

Besides, large number of knife-edges or wedges is required to model a 

terrain profile, which makes their application to real problems very 

cumbersome.  

 

For the practical application of propagation models there is an 

important tradeoff between the accuracy of the prediction and the 

speed with which the prediction can be made. 

 

1.3 Integral Equation Based Methods  
         For Terrain Propagation 
 
Most of the radio propagation prediction methods are obtained by a 

combination of guesswork and analysis so that they cannot give clear 

physical picture of the propagation process. So, choosing the best 

prediction model among a great number of methods becomes an 

important problem. 

 

Numerical methods, such as integral equation (IE) based methods, 

become very desirable because they would avoid any kind of 

uncertainty in the electromagnetic analysis and hence, could be used 

to check the sensitivity of the true solution to the input terrain data. 

Besides, they could be used as a reference solution as an alternative to 

measurements to validate and clarify the limitations of other methods 

involving approximations. Majority of the integral equation methods are 

based on the Method of Moments formulation, [2]. The application of 

the MoM for the electrically large scattering surfaces implies the use of 

a very large number of surface unknowns, N. Therefore, the solution of 

these kind of problems imply a very high computational cost in terms of 

CPU time and even terabytes of data storing capacity. In this sense, 
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the recently developed fast solvers for surface integral equation 

problems provide an alternative. 

 

The first application of an integral equation method to the terrain 

propagation problem can be found in [13], where an IE is applied over 

small terrain profiles. Nevertheless, the application of this method to 

electrically large terrain profiles becomes impractical, due to the 

computational cost associated. Later on, in [14], a surface integral 

equation is derived and simplified with some assumptions such as 

neglecting back scattering and perfect magnetic conductivity, which 

make the method more efficient but still very time consuming and less 

accurate. 

 

As mentioned before, electrically larger scattering surfaces (for very 

large N) increase the computational cost and data storing capacity and 

make these operations prohibitive. This has led to the development of 

iterative schemes that solve for the surface current in O (N2) steps.  

 

1.4 Iterative Approaches For One Dimensional (1-D)  
Rough Surface Scattering 

 

For the problem of evaluating the current distribution over a rough 

surface by means of an iterative method, two different approaches 

have been followed depending on how the estimates are updated. In 

the first one, named as stationary technique, the current is updated by 

applying the surface boundary conditions to the scattered field with the 

previous iteration’s current. Forward – Backward Method (FBM) [15] is 

a well-known technique. It sweeps the surface on the forward and 

backward directions to find the forward and backward contributions due 

to the current element located at a fixed observation point. FBM was 
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proposed for calculating the electromagnetic current on ocean-like 

perfectly electric conducting (PEC) surfaces at low grazing angles. The 

method gives accurate results within very few iterations but the 

computational cost is still O (N2). Furthermore, due to its stationary 

nature, the method fails to converge when the surface of interest is not 

ordered (reentrant surface of a ship). The second classes of iterative 

approaches are the non-stationary techniques. These are the 

extensions of Standard Conjugate Gradient method, [16], that were 

developed to solve general asymmetric/non-Hermition systems and 

therefore do not attempt to solve the physical multiple scattering of 

electromagnetic energy directly. Examples of these are given in [17] 

where BiConjugate Gradient Method (BiCG) is used. Generalized 

Conjugate Gradient (GCG) is used in [18], preconditioned multi-grid 

Generalized Conjugate Residual (GCR) approach is used in [19], and 

Quasi-Minimum Residual (QMR) is employed in [20]. 

 
All of the methods, above, require an operation count of O (N2). Thus 

when they are used to solve very-large scale problems, the 

computational cost and data-storing capacity prohibits their 

applicability. One has to accelerate the solution to make them 

applicable. Chou and Johnson, [21], proposed a spectral acceleration 

(SA) algorithm to overcome the limitation on slightly rough large-scale 

problems. The algorithm accelerates the matrix-vector multiplications 

taking place in the iterative process and divides contributions between 

points in strong and weak regions. The algorithm is mainly based on a 

spectral representation of two-dimensional Green’s function. This 

technique reduces the computational cost and memory requirements to 

O (N) and the FBSA (Forward Backward Spectral Acceleration) can be 

applied over electrically large surfaces. But one should note that the 

original implementation of spectral acceleration is utilized for slightly 
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rough quasi-planar surfaces and may not be suitable for undulating 

rough geometries.  

 

As mentioned previously, the choice of direct methods versus iterative 

methods is usually made based on the ultimate computational 

efficiency of the algorithm. Direct methods for dense matrices require O 

(N3) operations, while iterative methods require O (PQ) operations, 

where P is the number of iterations and Q is the operation count per 

iteration. Electromagnetic problems posed in terms of integral 

equations with convolutional kernels can sometimes be discretized to 

yield matrices having discrete-convolutional symmetries and one can 

solve the scattering problem easily by the circulant or linear discrete 

convolution, [22,23]. Literature shows that Su, Peters, Volakis, Borup 

and Gandhi merged conjugate gradient method and fast fourier 

transform and argued that the fast and the less storing method would 

be useful in scattering problems, [24,25,26]. For a conjugate gradient 

with fast Fourier transform (CG-FFT) implementation, where Q may 

grow as slowly as NlogN, an overall computational complexity of O 

(PNlogN) may be obtained. The CG-FFT approach is attractive when N 

is large, and the O (N3) operation count for dense matrices is 

prohibitive. Unfortunately, the CG-FFT approach is restricted to 

translationally invariant geometries, which seriously limits its application 

to practical structures such as urban areas, [25, 27, 28]. An alternative 

scheme, known as the fast multipole method (FMM), offers the 

possibility of achieving O (PNlogN) operations for arbitrarily shaped 

scatterers, [29,30]. Both of the last two methods are competitive for 

accuracy, solution time and complexity. In the next chapters CG-FFT 

method, which is the basis of this thesis work, is covered in detail. 
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This thesis aims to examine CG-FFT over various kinds of terrain 

profiles to find out if it is preferable in terms of accuracy. In order to 

achieve these goals, the various implementations of CG-FFT over 

various kinds of rough surface profiles, are presented. 

 

The conventional CG method with MoM is used as a reference solution 

with its very accurate solutions and rapid convergence ability, for large 

numbers of surface unknowns where direct inversion of MoM matrix 

fails due to the operational and memory cost. Thus, it is applied over 

some chosen terrain profiles and used as a reference solution in order 

to examine the CG-FFT results. Of course the reference solutions are 

limited to a few thousand unknowns. After several numerical 

experimentation over the CG-FFT, advantages and limitations of the 

method are detected, and CG-FFT is shown to be useful for the terrain 

profiles of rough quasi-planar surfaces, and ocean-like surfaces 

similarly and not to be useful for undulating terrain profiles of urban 

areas. 

 

 

 

 
 
 
 
 
 
 



10

 

 
CHAPTER 2 

 
 

SCATTERING PROBLEM  
FOR 1-D ROUGH SURFACES  

 
 
 
2.1 Introduction 
 

This chapter covers the calculation of the current distribution over a 

surface profile on which an electromagnetic source is incident. The 

surface considered is assumed to have no variation along the direction 

transverse to the propagation of the wave. This restriction is necessary 

to reduce the problem into two dimensions. The variation of the height 

at the surface along the displacement (x-axis) is characterized by the 

curve C and defined by z = f (x) as shown in Figure 2.1 below, yielding 

the roughness of the surface in one dimension. This surface is 

illuminated by an incident field {Ei (ρ), Hi (ρ)}, where ρ= zzxx ˆˆ +  is the 

two-dimensional position vector denoting the position along the 

surface. The terrain profile is modeled to be a non-perfect conductor 

(with permeability µr (ρ), and permittivity ∈ r (ρ) and analyzed using an 

impedance boundary condition (IBC), [31,32], to be able to investigate 

more general situations. Assuming the relative permittivity of the 

scattering surface is large, an approximate IBC can be used. If an IBC 

is valid, the surface may be treated using a single surface integral 

equation. Detailed information about IBC can be found in [33-36].This 

chapter is devoted to the discussion of integral equations in order to 

find current distribution on the surface of the scatterer. The 

formulations of integral equations are described in next section. 
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Corresponding matrix equations to solve these integral equations are 

determined in last section of this chapter. 

 
 

 
Figure 2.1:  A generic terrain profile 

 
 

2.2 Electric and Magnetic Field Integral   
       Equation Formulations 
 

The solution of a scattering problem is focused on the determination of 

the physical or equivalent current distribution behavior on the surface of 

the scatterer. Once they are known, the scattered fields can be 

evaluated by using conventional radiation integrals. The method used 

to solve the system should be capable of finding current densities over 

terrain profiles accurately. This task can be achieved by an integral 

equation (IE) method. 
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There are many forms of integral equations. Two of the most popular 

examples for the time-harmonic electromagnetic fields are known as 

the Electric Field Integral Equation (EFIE) and the Magnetic Field 

Integral Equation (MFIE). The EFIE enforces the boundary condition on 

the tangential electric field and the MFIE enforces the boundary 

condition on the tangential magnetic field. EFIE will be employed for 

horizontal polarization; namely, transverse magnetic (TM) case, and 

MFIE will be utilized for vertical polarization, namely, transverse electric 

(TE) case. In each case an IBC approximation will be used. The IBC 

implies that only the electric and magnetic fields external to the 

scatterer are relevant and their relationship is a function of the material 

constitution (i.e., surface impedance) or surface characteristics (i.e., 

roughness) of the scatterer, [37]. 

 

An equivalent exterior problem for the rough terrain profile illustrated in 

Figure 2.1 can be obtained using electric and magnetic sources J and 

K, respectively, defined on the surface according to  

HJ ×= n̂                                            (2.1) 
 

n̂×= EK                                            (2.2) 

and radiating in an infinite space with the same parameters as the 

exterior medium. Since the relative permittivity is large, the equivalent 

sources of (2.1) and (2.2) can satisfy the IBC, [34]. 

( ) ( ) ( ) ( )ρρρρ s nη ˆJK ×=                               (2.3) 

Where n̂  is the unit normal vector to the surface and ηs is the surface 

impedance which may vary along the surface. Integral equations for the 

problem can be formulated to relate the incident electric or magnetic 

fields to the equivalent sources. 
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To examine the scattering problem for a general wave polarization, it is 

most suitable to decompose the electric field into its perpendicular and 

parallel components relative to the plane of incidence, and analyze 

each one of them individually, [38]. The total field will be the vector sum 

of these two polarizations. The transverse magnetic (TM) case, in 

which the electric field is perpendicular to the plane of incidence, is 

defined as the horizontal polarization case; while the transverse electric 

(TE) case, in which the electric field is parallel to the plane of incidence, 

is called as the vertical polarization case, [27]. Both horizontal and 

vertical polarization cases are covered in the following subsections. 

 

2.2.1 Electric Field Integral Equation (EFIE)   
Formulation for Horizontally Polarized   

  Incidence on Non-PEC Surfaces 
 

The unknown current induced on the surface has to be found for a 

given incident field, which may be radiated by any kind of source, so 

that the scattered field can be computed. If the incident field on the 

scattering surface in Figure 2.1 is horizontally polarized, namely, 

“ incinc ˆEy=E ” and if an impedance boundary condition is valid, then 

equivalent sources have components Jy and Kt where ” nyt ˆˆˆ ×= ” is the 

unit tangent vector along the surface and on xz-plane, and the IBC 

reduces to 

( ) ( ) ( ) ( ) ( ) ( )tJtHtE ˆρρηˆρρηˆρρ ystsyt ===K .            (2.4) 

Since t̂  is the unit tangent vector, Kt denotes the tangential component 

of the equivalent magnetic source. Then an electric field boundary 

condition given by 

( ) ( ) ( ) ( )ρJρηρEρE ys
incscat =+ yy                                    (2.5) 
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is valid on the scattering surface where incEy  denotes the incident field 

and scat
yE  denotes scattered field above the scatterer. The electric field 

integral equation (EFIE) can be written entirely in terms of the 

equivalent electric current density Jy on the surface as 

( ) ( ) ( )








∂
∂

−
∂
∂

∈
−−−=−

x
F

z
F1A jωρJρηρE zx

yys
inc
y                 (2.6) 

where Ay and Ft are the appropriate components of the magnetic and 

electric vector potentials, respectively, and can be expressed as 

( ) ( ) ( ) ρdρρ,G ρJµρA
C

yy ′′′= ∫                              (2.7) 

   ( ) ( ) ( ) ( ) ( ) ρdρρ,G ρJ ρηρtρ ys
C

t ′′′′′=∈ ∫ ˆF                        (2.8) 

where µ and ∈  are the permeability and permittivity of the medium 

above the rough surface, respectively, [27]. Ft denotes the tangential 

component of the electric vector potential, and G is the two-

dimensional Green's function expressed as, 

( ) ( )kRH
j

1ρρ,G (2)
04

=′                                 (2.9) 

where (2)
0H  is the Hankel function of the second-kind with order zero 

and 

( ) ( )[ ] ( ) ( )[ ]22 ρzρzρxρxR ′−+′−=                  (2.10) 

Here, primed coordinates denote the source locations, while unprimed 

coordinates represent observation points on the surface. 

 

Substituting (2.7) and (2.8) into (2.6), the electric field integral equation 

can be rewritten as 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ρdρρ,G
n

ρJρη

ρdρρ,GρJjωρJρηρE

ys
C

C
yys

inc
y

′′
′∂

∂′′+

′′′−−=−

∫

∫µ
       (2.11) 

where, Jy is the surface electrical current on C and nG ′∂∂  is the 

derivative of the two-dimensional Green's function with respect to n′ˆ , 

the normal vector to the surface at the source point ρ′ , [38]. 

 

Assuming that the incident field is finite, the surface and the integration 

in (2.11) can be confined to a finite region, though the profile C is 

arbitrarily extended to infinity. Therefore, (2.11) can be solved using a 

Method of Moments (MoM) discretization process, [2]. 

 

The Method of Moments Solution 
 
 
 

 
Figure 2.2: Surface discretization 
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It is necessary to solve (2.11) for the unknown ( )ρJy ′  and that is an 

operator inversion problem.  (2.11) is an integral equation that can be 

used to find the unknown induced current ( )ρJy ′  based on the incident 

electric field ( )ρE inc
y− . The solution may be reached numerically by 

reducing (2.11) to a series of linear algebraic equations that may be 

solved by customary matrix equation techniques. To facilitate this, the 

unknown current density ( )ρJy ′  is approximated by an expansion in 

terms of N known functions with constant, but unknown coefficients: 

( ) ( )∑
=

′≅′
N

1m
mmy ρpIρJ                               (2.12) 

The ( )ρpm ′  functions in the expansion (2.12) are chosen for their ability 

to accurately model the unknown quantity, while minimizing 

computation. They are often referred to as basis or expansion 

functions. To avoid the computational cost, subdomain piecewise 

constant or pulse functions will be used. These functions are defined to 

be of a constant value over one segment and zero elsewhere, such 

that 

( )


 ∈′

=′
otherwise ,0

mρ,1
ρpm

segmentif
                    (2.13) 

The surface is now divided into N segments as illustrated in Figure 2.2. 

Substituting (2.12) into (2.11) and evaluating (2.11) at a fixed 

observation point on the surface such as np , produces an integrand 

that is solely a function of ρ′ . Obviously this leads to one equation with 

N unknowns Im. In order to obtain a solution for these N amplitude 

constants, N linearly independent equations are necessary. Choosing 

an observation point np on the surface at the center of each segment 

may produce. It is shown in Figure 2.2 (n =1, 2, …, N). This will result 

in one equation corresponding to each observation point. Since the 
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integral in (2.11) is nonsingular, interchanging the integration and 

summation, 

( ) ( ) ( )

( ) ( ) mmn
m

ms
1m

m

mmn
1m

mnnsn
inc
y

dρρ,ρG
n

ρηI

dρρ,ρGIjωIρηρE

∂
∂

+

−−≅−

∫∑

∫∑

∆=

∆=

m

m

x

N

x

N

µ

    (2.14) 

is valid for N such points of observation. The NN × system produced by 

(2.14) can be written more concisely using matrix notation as 

( )
( )

( ) 











































=





















−

N

2

1

NNN2N1

2N2221

1N1211

N
inc
y

2
inc
y

1
inc
y

I

I

I

ZZZ

ZZZ

ZZZ

ρE

ρE

ρE

M

L

MOMM

L

L

M
               (2.15) 

or 

[ ] [ ] [ ]mnmn IZV ⋅=                                        (2.16) 

 
In summary, the solution of (2.11) for the current distribution on a rough 

surface has been accomplished by approximating the unknown with 

pulse basis functions, dividing the surface into segments, and then 

sequentially enforcing (2.11) at the center of each segment to form a 

set of linear equations. The procedure that is followed to convert the 

continuous integral equation to a discrete matrix equation is a special 

case of a general approach known as Method of Moments. In this 

special case the basis functions are pulse functions and weighting 

(testing) functions are impulses. This is also called the point matching 

with pulse basis functions, [2]. 
 

The entries of the NN ×  matrix in (2.15) represent the self and mutual 

impedances between different segments in the model; thus, this matrix 
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is called as the moment method impedance matrix. The entries of the 

impedance matrix in (2.15) are given by, 

( ) ( ) mmn
m

mmnnm dρρ,ρG
n

ηρ,ρGjωZ 







∂
∂

+−= ∫
∆

µ
mx

           (2.17) 

where nρ  denotes the observation point which is considered to be 

located on the center of the nth segment, while mρ represents the 

source point on the center of the mth. If the segments are small 

compared to the wavelength, typically 10λ , the elements of the 

impedance matrix may be approximated as, 

( )

( ) nmmmn
(2)
1m

m

mn
(2)
0mnm

ρnρρkHxkηj

ρρkHxωµZ

ˆˆ ⋅−−

−−≅

∆
4

∆
4       (2.18) 

where (2)
1H  is the Hankel function of the second-kind with order one, 

arising from the partial derivative of the Green's function and mx∆ is the 

length of the mth segment. Also, nmρ̂  denotes a unit vector in the 

direction from source mρ  to the receiving element nρ , and mn̂  

represents the unit normal vector of the surface at mρ . 

 

Since the Hankel function is singular for nρ mρ= , the diagonal 

elements of the impedance matrix cannot be evaluated using (2.18). 

Moreover, accurate evaluation of the diagonal terms is very important, 

since they give greater contribution to the solution of the system 

because of their relatively larger amplitudes. Therefore, the impedance 

matrix is diagonally dominant, and using the small argument series 

expansion of the Hankel functions, diagonal entries of the impedance 

matrix can be obtained as, [27,39], 
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24
∆21∆

4
mm

mmm
η

e
xklnjxωµZ −














−−≅
γ

π
                (2.19) 

where γ  is the Euler constant 1.781072418 and e = 2.718281828. 

 

Note that, the expressions for the PEC case can be deduced by a 

simple manner through replacing mη  by 0. For the sake of 

completeness, the expressions for the PEC case are rewritten as 

follows: 

( )mn
(2)
0mnm ρρkHxωµZ −−≅ ∆

4
                        (2.20) 















−−≅

e
xklnjxωµZ m

mmm 4
∆21∆

4
γ

π
                    (2.21) 

(2.11) is discretized to form the matrix equation (2.15). The elements of 

the impedance matrix are obtained in (2.18) and (2.19) for mutual and 

self-coupling terms, respectively. The system IZV ⋅=  should be solved 

for unknown current coefficients, I = {Im},  [27]. 

 

2.2.2   Magnetic Field Integral Equation (MFIE)    
  Formulation for Vertically Polarized  
  Incidence on Non-PEC Surfaces 

 

If the incident field on the scattering surface in Figure 2.1 is vertically 

polarized, namely, “ incHŷinc =H ” and if an impedance boundary 

condition is valid along the surface, then equivalent sources have 

components Jt and Ky where ” nyt ˆˆˆ ×= ” is the unit tangent vector along 

the surface and on xz-plane, and the boundary condition reduces to 

( ) ( ) ( ) ( ) ( ) ( )ρρηρHρηρEρK tsysty J−==−=         (2.22) 

Although the MFIE formulation is generally used for closed surfaces; 

since the surface is assumed to be arbitrarily extended to infinity, a 
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magnetic field integral equation can be used to model the vertical 

polarization problem, [27,38]. Thus, the magnetic field boundary 

condition 

( ) ( ) ( )ρ- ρHρH t
inc

y
scat

y J=+                                  (2.23) 

is valid on the scattering surface. 

 

In terms of the tangential induced current Jt, the magnetic field integral 

equation can be expressed on the surface as 

( ) ( )








∂
∂

−
∂
∂

−−=−
z

A
x
A

µ
1F jωρρH xz

yt
inc
y J                  (2.24) 

where A and F are the magnetic and electric vector potentials, 

respectively, and their relevant components can be expressed as 

( ) ( ) ( ) ( ) ρdρρ,G ρρtµρ
C

tt ′′′′= ∫ JˆA                        (2.25)    

( ) ( ) ( ) ( ) ρdρρ,G ρ ρηρF ts
C

y ′′′′∈−= ∫ J                       (2.26) 

Substituting (2.25) and (2.26) into (2.24), the magnetic field integral 

equation can be rewritten as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ρdρρ,G
n

ρ

ρdρρ,GρρηjωρρH

t
C

C
tst

inc
y

′′
′∂

∂′−

′′′′∈+=−

∫

∫

J

JJ

           (2.27) 

where, nG ′∂∂  is the derivative of the two-dimensional Green's function 

given by (2.9) with respect to n′ˆ  which is the normal vector to the 

surface at the source point ρ′ , [38]. 

 

Assuming that the incident field is finite, the surface and the integration 

in (2.27) can be confined to a finite region, though the profile C is 

arbitrarily extended to infinity. Therefore, applying the same Method of 
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Moments (MoM) discretization process illustrated in Figure 2.2, the 

equivalent current density can be approximated, [2]. 
 

The Method of Moments Solution 
 

The last integral equation (2.27) can be used to find the unknown 

induced current ( )ρJt ′  based on the incident magnetic field ( )ρH inc
y− . 

The solution may be reached numerically by reducing (2.27) to a series 

of linear algebraic equations that may be solved by customary matrix 

equations techniques. To facilitate this, the unknown current density 

( )ρJt ′  is approximated by an expansion of N known functions with 

constant, but unknown coefficients: 

( ) ( )∑
=

′≅′
N

1m
mmt ρpIρJ                                    (2.28) 

The ( )ρpm ′  functions in the expansion (2.28) are chosen for their ability 

to accurately model the unknown quantity, while minimizing 

computation. They are often referred to as basis or expansion 

functions. To avoid the computational cost, subdomain piecewise 

constant or pulse functions will be used. These functions are defined to 

be of a constant value over one segment and zero elsewhere, such 

that 

( )


 ∈′

=′
otherwise ,0

mρ,1
ρpm

segmentif
                         (2.29) 

The surface is now divided into N segments as illustrated in Figure 2.2. 

Note that, as N → ∞, the approximated expression for the unknown 

current density approaches to the exact solution, [27,38]. 
 

Substituting (2.28) into (2.27) and evaluating (2.27) at a fixed 

observation point on the surface such as np , produces an integrand 
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that is solely a function of ρ′ . Obviously this leads to one equation with 

N unknowns Im. To obtain a solution for these N amplitude constants, N 

linearly independent equations are necessary. These equations may be 

produced by choosing an observation point np  on the surface at the 

center of each segment as shown in Figure 2.2 (n =1, 2, …, N). This 

will result in one equation corresponding to each observation point. 

Thus, 

( ) ( ) ( )

( ) mmn
m1m

m

mmnms
1m

mnn
inc
y

dρρ,ρG
n

I

dρρ,ρGρηIjωIρH

∂
∂

−

∈+≅−

∫∑

∫∑

∆=

∆=

m

m

x

N

x

N

  (2.30) 

 
is valid for N such points of observation. The NN ×  system produced 

by (2.30) can be written more concisely using matrix notation as 

( )
( )

( ) 











































=





















−

N

2

1

NNN2N1

2N2221

1N1211

N
inc
y

2
inc
y

1
inc
y

I

I

I

ZZZ

ZZZ

ZZZ

ρH

ρH

ρH

M

L

MOMM

L

L

M
                  (2.31) 

or 

[ ] [ ] [ ]mnmn IZV ⋅=                                           (2.32) 

Consequently, the solution of (2.27) for the current distribution on a 

rough surface has been accomplished by approximating the unknown 

with pulse basis functions, dividing the surface into segments, and then 

sequentially enforcing (2.27) at the center of each segment (point 

matching) to form a set of linear equations, [2,27]. The entries of the 

MoM impedance matrix in (2.31) are given by 

( ) ( ) mmn
m

mnmnm dρρ,ρG
n

ρ,ρGηjωZ 







∂
∂

−∈= ∫
∆ mx

            (2.33) 
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where nρ  denotes the observation point which is considered to be 

located on the center of the nth segment, while mρ represents the 

source point on the center of the mth. If the segments are small 

compared to the wavelength, typically 10λ , the elements of the 

impedance matrix may be approximated as, 

( )

( ) nmmmn
(2)
1m

mn
(2)
0m

m
nm

ρnρρkHxkj

ρρkHxηωZ

ˆˆ ⋅−+

−
∈

≅

∆
4

∆
4          (2.34) 

where (2)
1H is the Hankel function of the second-kind with order one, 

arising from the partial derivative of the Green's function and mx∆ is the 

length of the mth segment. Also, nmρ̂  denotes a unit vector in the 

direction from source mρ  to the receiving element nρ , and mn̂  

represents the unit normal vector of the surface at mρ . 

 
Since the Hankel function is singular for nρ mρ= , the diagonal 

elements of the impedance matrix cannot be evaluated using (2.34). 

Moreover, the impedance matrix is diagonally dominant, and therefore 

using the small argument series expansion of the Hankel functions, 

diagonal entries of the impedance matrix can be obtained as, [27,39], 















−

∈
+≅

e
xklnjxηωZ m

m
m

mm 4
∆21∆

4
γ

π2
1

                 (2.35) 

where γ  is the Euler constant 1.781072418 and e = 2.718281828. 

 
The expressions for the PEC case can be obtained simply by replacing 

mη  by 0. For the sake of completeness, the expressions for the PEC 

case are rewritten below: 

( ) nmmmn
(2)
1mnm ρnρρkHxkjZ ˆˆ ⋅−≅ ∆

4
                        (2.36) 



24

 

2
1

≅mmZ                                                (2.37) 

The MoM procedure generates an impedance matrix that has N2 

entries for N surface unknowns. Each element of the matrix is 

calculated separately. For this reason, the processing time and 

memory requirement appears to be O (N2) to form the impedance 

matrix. Once the impedance matrix Z  is formed, the system IZV ⋅=  

should be solved for unknown current coefficients, I = {Im}, [27]. The 

direct solution method such as Gaussian elimination or LU 

decomposition requires an O (N3) floating point operations. Therefore, 

processing time for the solution becomes O (N3) for direct solution 

methods. As the problem size becomes electrically larger, 

computational requirements of the MoM increases very rapidly. The 

computational requirement for the problem under focus in this study is 

very high, and direct solution thechnique is prohibitively time-

consuming due to dense impedance matrices. Therefore, instead of 

direct matrix inversion, gradient type iterative techniques such as CG 

(conjugate gradient) methods, whose formulation is given in Chapter 3, 

can be used to reduce the operation count to O (N2). 
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CHAPTER 3 

 
 

A GRADIENT TYPE ITERATIVE SOLVER:  
CONJUGATE GRADIENT METHOD 

 
 
 
3.1 Introduction 
 

As mentioned in the previous chapter, the primary factor limiting the 

use of MoM in the calculation of electromagnetic scattering from rough 

surfaces is that a linear system of equations must be solved to obtain 

currents induced on the scatterer. Direct solution methods such as LU 

decomposition require O (N3) operations, where N is the number of 

unknowns in the discretized representation of the surface current. 

Electrically larger scattering surfaces (for very large N) increase the 

computational cost of the method and make it intractable especially at 

high frequencies. 

 

The computational cost is reduced to O (N2) operations per iteration by 

using iterative techniques. The basic idea in iterative processes is to 

reach the exact solution by updating estimates at each iteration. Two 

different approaches can be applied as iterative schemes to solve the 

system of equations formed by MoM. These are, namely, stationary 

and non-stationary iterative techniques. In each of these methods, 

different update schemes are used for the estimates to find the exact 

solution, [27]. 
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A method is called stationary if the rule to determine the estimates at 

each iteration does not change from iteration to iteration (i.e. the 

iteration matrix is stable during the process). In stationary iterative 

techniques, the surface current is approximated by physical optics 

approximation applied to the incident field, [40]. The current is then 

updated by applying surface boundary condition. Kapp and Brown, 

[41], and Holliday et al., [15], choose the ordering of the updates to 

follow multiple scattering paths on the surface. This led Kapp and 

Brown and Holliday et al. to name their approaches as method of 

ordered multiple interactions (MOMI) and forward backward method 

(FBM), [38], respectively. These two techniques have shown a very 

effective and rapid convergence to solve linear systems of equations 

constructed by MFIE in vertical polarization case and EFIE in horizontal 

polarization case for the PEC and non-PEC surfaces, which are single 

valued and rough in one dimension. But when the ordering of the 

scatterer is multi-valued (re-entrant surfaces), divergence problem 

occurs, [37]. 
 
Non-stationary techniques are the second kind of iterative methods 

used to solve systems formed by MoM solution. These methods are 

extensions of standard conjugate gradient (CG) method, [16], which 

converge to the exact solution assuming infinite precision by 

constructing orthogonal vector sequences. The bi-conjugate gradient 

(BiCG) method used in [17], the generalized conjugate gradient (GCG) 

method utilized in [18] and the quasi-minimum residual (QMR) method 

employed in [20] are some typical examples. These methods are 

developed to solve asymmetric/non-Hermitian complex linear systems 

of equations and hence, their algorithms are different than those of 

stationary methods. In these kinds of methods, the rule to determine 

the estimates changes from iteration to iteration. The rule is based on 
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orthogonality conditions in the space defining the linear system of 

equations. Consequently, a new iteration matrix is generated at every 

iteration step to update the estimates, [37]. 
 
This chapter is devoted to the discussion of conjugate gradient method. 

 And the evaluation of induced currents on some terrain surfaces. Next 

chapter is devoted to the acceleration of the algorithm by performing 

the matrix-vector multiplications faster. The properties of conjugate 

gradient methods are presented and numerical results for CG method 

are given in the following sections. 

 

3.2 Conjugate Gradient (CG) Method 
 
The conjugate gradient method, which is the oldest and best, known 

nonstationary technique, is an effective method for symmetric positive 

definite systems.  This method is developed to solve a linear system of 

equations given by bx A = , where A  is an NxN interaction matrix, b is 

an excitation vector for the system and x is the unknown vector to be 

solved. The process, which stimulates the method is the generation of 

vector sequences of iterates (i.e., consecutive approximations to the 

solution), creating residuals that correspond to the iterates, and search 

directions that are used to update the iterates and residuals. Although 

the length of these sequences can become large, only a small number 

of vectors are needed to be kept in memory. In order to calculate 

update scalars that are defined to assure that the sequences fulfill 

certain orthogonality conditions, there are two inner products to be 

used at each iteration of the method. These conditions guarantee on a 

symmetric positive definite linear system that the distance to the true 

solution is minimized according to some standards, [27]. 
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Peterson, Ray and Mittra give very detailed information for the method 

in their book chapters, [27,42]. It is necessary to define an inner 

product, and they employ the conventional Euclidean scalar product 

y x yx, †=                                              (3.1) 

and its associated norm 

xx,x =                                              (3.2) 

where the dagger  “†” denotes the transpose-conjugate of a matrix. 

 

All iterative algorithms for solving bx A =  seek an estimate of the 

solution in the form  

xn
 = xn-1 + αn pn                                           (3.3) 

where xn-1 is a previous estimate of the solution, pn is a “direction” 

vector (pn determines the direction in the N-dimensional space in which 

the algorithm moves to correct the estimate of x), and αn is a scalar 

coefficient that determines how far the algorithm moves in the pn 

direction. Altough all iterative methods are similar in that they follow the 

form of (3.3), they differ in the procedure by which they generate αn and 

pn. Nondivergence can be guaranteed by selecting αn in order to 

minimize an error functional. The CG algorithm to be presented is 

based on the error functional  

En (xn) = 2bAx −n                                         (3.4) 

Note that other functionals have been used and give rise to related 

members of the family of CG algoritms, [42]. 

 

The coefficient αn from (3.3) that minimizes the functional is given by  

2
n

1n n
nα

Ap
rAp −−

=
,

                                        (3.5) 

where for convenience the residual vector is 
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rn = Axn – b                                                 (3.6) 

This process has the geometric interpretation of minimizing En along 

the line in N-dimensional space defined by pn, [27]. 

 

It is resonable to expect that an improved algorithm would seek the 

minimum of En in a plane spanned by two direction vectors. For 

example, consider a solution estimate of the form 

xn
 = xn-1 + αn (pn + βnqn)                                (3.7) 

where the direction vectors pn and qn span a plane in N-dimensional 

space and the scalar coefficients αn and βn are to be obtained to 

simultaneously minimize the error functional En. Carrying out the 

simultaneous minimization, αn is given by (3.5) with pn replaced by 

pn+βnqn   and βn is given by 

nn1nnn1nn

nn1nnn1nn
nβ

AqAprAqAqrAp
ApAqrApAprAq

,,,

,,,
2

2

−−

−−

−

−
=                  (3.8) 

Suppose that pn and qn are arbitrary direction vectors but that qn has 

been previously used in the iterative procedure, so that 

xn-1
 = xn-2 + αn-1 qn                                      (3.9) 

where αn-1 was previously found to minimize the error functional along 

the line defined by qn, that is,  

2
n

n n
1-nα

Aq
rAq 2, −−

=                                     (3.10) 

It immediately follows that 

0,, =+= −−− n1n2nn1nn α AqrAqrAq                          (3.11)  

2
n

nn
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ApAq ,−

=                                   (3.12) 

and 

( ) 0 , =+ nnnn β Aqqp A                             (3.13) 
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Therefore, if the solution is already optimized along the qn direction, the 

best solution in the plane spanned by pn and qn is obtained in a 

direction orthogonal to qn in the sense of (3.13),  [42]. 

 
This analysis shows that the process of selecting direction vectors and 

coefficients to minimize the error functional En is optimized when 

vectors satisfying the orthogonality condition 

0 , =ji AppA       i ≠ j                             (3.14) 

are used. If an arbitrary set of direction vectors is employed, the 

process of minimizing En will adjust their coefficients in order to 

generate a sequence satisfying this generalized orthogonality. 

Furthermore, if direction vectors satisfying (3.14) are used, there is no 

advantage in simultaneously minimizing the error functional along more 

than one direction. Vectors satisfying (3.14) are said to be mutually 

conjugate with respect to the operator A†A, where A† is the adjoint with 

respect to the inner product, that is,  

AyxyxA  ,   ,† =                                        (3.15) 

In accordance with the definition for the inner product above, the matrix 

A† is the transpose conjugate of A, [27]. It is shown in [27] that a set of 

direction vectors satisfying the orthogonality condition of (3.14) is 

available. Since A is nonsingular, these vectors are linearly 

independent and span the N-dimensional space. The solution can be 

expressed in the form 

x = x0 + α1p1 + α2p2 + ··· + αNpN                            (3.16) 

where, the arbitrary vector x0 can be thought of as an initial estimate, or 

“guess”, for the solution x. Because of the orthogonality stated in 

(3.14), each coefficient can be found independently according to 

2
n

0 n
nα

Ap
rAp ,−

=                                        (3.17) 
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where r0 = Ax0  - b. 

 

From the above relationships, it is apparent that 

             rn = r0 + α1Ap1 + α2Ap2 + ··· + αNApN                       (3.18) 

and recursive relations are given as 

rn = rn-1 + αn Apn                                   (3.19) 

xn = xn-1 + αn pn                                    (3.20) 

and 
2222

nn1nn α  Apr r −= −               (3.21) 

 

From (3.14), (3.17) and (3.18) it can be deduce that, [27] 





≥

≤
=

mn
mn0m

nm 0
,

,
rAp

rAp                   (3.22) 

It follows that equations in (3.5) and in (3.17) are equivalent, indicating 

that the error minimization process and the orthogonal expansion 

procedure yield the same results. 

 

The process of expanding a solution in terms of mutually conjugate 

direction vectors is known as the conjugate direction method, after 

Hestenes and Stiefel, [27, 43]. Peterson et al. state that the conjugate 

direction method does not specify the means for generating mutual 

conjugate sequence, [27]. The CG method is a conjugate direction 

method that includes a recursive procedure, for generating the p 

vectors. The CG algorithm begins with the choice 

p1 = -A†r0                                       (3.23) 

which is proportional to the gradient of the functional En at x = x0. 

Subsequent functions are found from 

pn+1 = -A†rn + βn pn                        (3.24) 

where the scalar coefficient βn is chosen to ensure  
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0,† =+1nn pApA                          (3.25) 

Peterson et al demonstrate that enforcing (3.25) is sufficient to ensure 

that the p vectors form a mutually conjugate set satisfying (3.14) [27]. 

To illustrate, they first present several relationships involving the 

vectors generated within the CG algorithm.  

 

From (3.24),  

nmnnmm β prArArAprA ,,, †††† +−=+1n                (3.26) 

According to (3.22), the first and last inner product in (3.26) vanish for 

m > n, leaving 

0 , †† = mn rArA         m ≠ n                         (3.27) 

which is the orthogonality associated with the residual vectors. (3.22) 

and (3.24) can be combined to produce 
2

nnnn rArArArAp †††† ,, −=−=+1n                  (3.28) 

Therefore, αn can be expressed in the alternate form 
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From (3.19), 

A†rn =  A†rn-1 + αn A†Apn                                 (3.30) 

Because of the orthogonality expressed in (3.27), an inner product 

between A†rm and (3.30) leads to the result 
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Using (3.31) with m = n, the value of βn can be found from (3.24) and 

(3.25) as 

2

1-n

n
nβ

rA

rA
†

† 2

=   .                                        (3.32) 

In an inductive fashion one can see that the direction vectors generated 

by the procedure satisfy the assumed orthogonality properties of the 

conjugate direction method. 

 

In the computer science literature, this particular form of the CG 

algorithm is referred to as the “conjugate gradient method applied to 

the normal equations”. The conventional CG algorithm discussed in 

many texts is restricted to the special case of a Hermitian positive-

definite matrix A. The authors of [27] say that to extend algorithm to 

arbitrary linear systems, the matrix equation is premultiplied by A† to 

produce the normal equations A†Ax = A†b. Note that it is not necessary 

to compute the product explicitly, and a variety of related CG 

algorithms can be constructed based on this equation, [44]. 

 

For an arbitrary nonsingular matrix A, the CG algorithm outlined above 

produces a solution in at most N iteration steps (assuming infinite-

precision arithmetic). This is a direct consequence of the fact that N p-

vectors span the solution space. Finite-step termination is a significant 

advantage of the CG method over other iterative algorithms. In 

addition, the CG algorithm produces solution estimates that satisfy 

mn xxxx −≤−            n > m                       (3.33) 

In words, the error in xn decreases monotonically as the algorithm 

progress. Consequently, it will usually be possible to terminate the 

algorithm prior to the nth iteration step, [27]. For the purpose of 
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terminating the CG algorithm, it is necessary to estimate the accuracy 

of xn at each step. Since the solution x is not known, the error vector 

en = x – xn                                              (3.34) 

is not directly computable. Instead, it is convenient to compute the 

residual norm 

b
bAx

b
r −

== nn
nN                                       (3.35) 

As illustrated by (3.21), the residual norm decreases monotonically (a 

direct consequence of minimizing En at each iteration step). The CG 

algorithm can be terminated when the residual norm decreases to 

some predetermined value.  As long as A is fairly well conditioned, 

Nn<10-4 suggests that several decimal places of accuracy are obtained 

in xn. However, note that the residual norm only provides an indirect 

bound on the error, [45]. Peterson et al. warn that if the matrix A 
becomes ill conditioned, the residual norm, Nn, may be a poor 

indication of the accuracy of xn. If the matrix is poorly conditioned, the 

convergence may be slow, [27]. 

 

In infinite-precision arithmetic, the CG algorithm produces a solution in 

at most N iteration steps. Unfortunately, for a general linear system, 

CG requires approximately six times the number of operations as LU 

factorization to attain N complete steps. Thus, to be competitive with 

direct methods, the CG algorithm would have to converge to necessary 

accuracy in fewer than N/6 iteration steps. Consequently, the CG 

algorithm is usually reserved for treating matrix equations having 

sparsity or special structure that cannot easily be exploited using direct 

methods of solution. Because the integral equations of 

electromagnetics involve convolutional kernels, the matrix equations of 

interest often possess discrete-convolutional symmetries, [27]. An 
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implementation of the CG method for treating these systems is 

discussed in next chapter. 

 

3.3 Numerical Results For  
       Conjugate Gradient (CG) Method 
 

In this section, some numerical results are presented to validate the 

convergence and accuracy of the Conjugate Gradient Method over 

one-dimensional rough terrain profiles. Applying method of moments, a 

matrix equation is formed to obtain the unknown current coefficients 

VIZ =⋅                                                  (3.36) 

where the elements of the impedance matrices are given by (2.20) and 

(2.21) for TM polarization and by (2.35) and (2.37) for TE polarization, 

respectively. Results are obtained both for perfect and imperfect 

conductor surfaces. In order to check the accuracy of the method, 

results are compared with the direct solution of the method of 

moment’s matrix equation. The pulse width in point matching technique 

is taken as x = λ / 10. Residual error is employed as a stopping 

criterion of the iterative method. The residual error vector at the ith 

iteration step is defined as 
ii IZVr ⋅−=                                         (3.37.a) 

and the corresponding residual error is given as, 

V
r i

=errorresidual                                    (3.37.b) 

where || . || denotes the vector norm. The stopping criterion of the CG 

method is limited by the residual error of 10-4 in this thesis. It has been 

seen that this error rate is sufficient to obtain accurate results. 
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3.3.1 Source Incidence on the Terrain Profile 
 
Three kinds of sources are considered in the thesis. The first one is 

finite plane wave excitation as shown in Figure 3.1(a). The elements of 

the excitation vector for the TM polarization will be 


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n
i

n

nne
ρEv                 (3.38) 

where the subscript n denotes the location of observation points on the 

terrain. For the TE polarization, it can be expressed as 



−

=−=
−−

elsewhere,0
surfacetheon,)(

sincos θ)zθk(xj

0
n

i
n

nne
η

ρHv 1
                (3.39) 

The second source is an isotropic radiator located above the surface as 

shown in Figure 3.1(b). The elements of the of the excitation vector for 

TM and TE cases are 

n

dkj

0n
i

n d
eEρEv
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−=−= )(                               (3.40) 

and 

n
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0

0
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e
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respectively. The source distance dn is 

( ) ( )22
snsnn zzxxd −+−=                            (3.42) 
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Figure 3.1: Source incidence on the terrain profile 
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The last source considered here is an infinitesimal dipole depicted in 

Figure 3.1(c). For this type of excitation, elements of the incident field 

vector for both vertical and horizontal polarizations are: 

n
n
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0n
i

n θ
d

eEρEv
n

sin)(
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−=−=                            (3.43) 

and 
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−
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where       
n

sn
n d

xx
θ

−
=sin                                  (3.45) 

  

3.3.2 Applications of CG Method over Rough Surfaces 
 

Operating frequency is chosen to be 10 GHz, which corresponds to 3 

centimeters wavelength for all of the results, and the radiated power is 

chosen as 100 Watts. Figure 3.2 shows a strip surface of width 50λ. 
 

 

 

Figure 3.2: Strip surface of width 50λ 

 

 
Plane wave incidence is considered for both TM and TE polarizations. 

Figure 3.3 shows results for oblique ( 2/πθ = ) incidence. To see the 

absorption effects of the terrain profile, both PEC ( 0=sη ) and 

imperfect conducting case are considered. For the non-PEC case the 
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surface impedance is taken as j2015 +=sη  as an example. The non-

PEC case is considered just for the sake of completeness since the 

earth behaves like a PEC at x-band frequencies. As can be seen in 

Figure 3.3(c), the TE polarized plane wave, induced on the strip for the 

PEC case, results a stable current on the terrain profile. The interaction 

matrix is a diagonal matrix. Using (2.37) one can easily see that the 

self-terms are ½ and (since 0=mη ) and the mutual terms are 0 since 

the unit vector mn̂  is always perpendicular to the surface of the strip. 

This shows that the tangential current in the MFIE is: 

( ) ( )ρHρJ i
t 2−=                                           (3.46) 

This is a reasonable result considering that the surface profile is 

extended to infinity, thus the induced current on an infinite strip is the 

physical optics current incPO
s HJ ×= n2 ˆ . Hence, reaching accurate 

solution of the induced current over flat PEC strip profiles for vertical 

polarization is not numerically possible. However, when the strip is 

imperfectly conducting, the MFIE yields accurate results as shown in 

Figure 3.3(d). This is also true when we are dealing with undulating 

geometries that the dot product term in (3.36), to find mutual elements 

interaction, does not vanish. 

 

Figure 3.4 illustrates the residual errors of Figure 3.3(a) and Figure 

3.3(b). It can be clearly seen in Figure 3.4(a) and Figure 3.4(b) that 

non-PEC case reaches at the desired level of error in a faster way. 



40

 

 0 10 20 30 40 50  
4

4.5
5

5.5
6

6.5
7

7.5
8
(a) TM polarized planewave (PEC)

Displacement (  )

In
du

ce
d 

cu
rre

nt
 (m

A
)

0 10 20 30 40 50
3

3.5
4

4.5
5

5.5
6

6.5
7
(b) TM polarized planewave (nonPEC)

Displacement (  )

In
du

ce
d 

cu
rre

nt
 (m

A
)

0 10 20 30 40 50
5

5.1

5.2

5.3

5.4

5.5
(c) TE polarized planewave (PEC)

Displacement (  )

In
du

ce
d 

cu
rre

nt
 (m

A
)

0 10 20 30 40 50

5

5.1

5.2

5.3
(d) TE polarized planewave (nonPEC)

Displacement (  )

In
du

ce
d 

cu
rre

nt
 (m

A
)

MoM
CG

MoM
CG

MoM
CG

MoM
CG

λ

λ λ

λ
 

Figure 3.3: Distributed current on a strip, oblique plane wave 
incidence 

 
 

 

         Figure 3.4:  Residual errors for TM polarized case for PEC and  
                             Non-PEC 
 



41

 

A rough surface profile of width 100λ illuminated by a plane wave is 

shown in Figure 3.5 for both polarization cases. Maximum height 

deviation is about 20λ. The incident angle is now 20/πθ =  (grazing 

incidence). Results show that the CG method solution converges more 

successfully than direct solution of MoM. Because of grazing angle 

condition, shadowing effects are seen after the hill of the terrain.  
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            Figure 3.5: Distributed current on a 100λ rough surface,    
                              grazing plane wave 
 
 
 
The residual errors with respect to the iteration number are given in 

Figure 3.6. The desired level of error is achieved in less iterations for 
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the TM PEC case. Figure 3.7 shows the third example in which the 

terrain is again a 100λ long rough surface illuminated by an isotropic 

radiator placed at 25λ above the left most point of the terrain. The 

radiated power is assumed to be 25 Watts.  Both TM and TE 

polarization cases are plotted for perfect conducting surface in 

Figure 2.7. 
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Figure 3.6: Residual errors of Figure 3.5 
 

 
 
The residual errors with respect to the iteration number are given in 

Figure 3.8. Again, the desired level of error is achieved in less 

iterations for the TM PEC case  in which occurs at the 9th iteration.  
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Figure 3.7: Isotropic radiator on the rough surface 
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Figure 3.8: Residual errors of Figure 3.7 
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Figure 3.9 displays a rough surface of length 200λ. The results are 

again compared with direct MoM solution for validity. An infinitesimal 

dipole is placed above the surface at a height of 25λ at the center of 

the terrain. The surface impedance of non-PEC surface is taken as 

j2015 +=sη . The radiated power is chosen as 25 Watts. Because of 

the hill geometry, and the antenna position the current suddenly 

decreases between 90 centimeters and 1.8 meters and also between 

3.6 meters and 3.9 meters. This is the shadowing effect of the peak of 

the terrain preceding the location of the dipole. The left lobe of the 

current is slightly higher than the right one due to θn deviation.  
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Figure 3.9:  Dipole radiator on the rough surface located at the center  
of  terrain profile 
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Figure 3.10 shows same surface profile of length 200λ, in which, 

imperfectly conducting surface case is considered with j2025 +=sη . 

Dipole antenna is located at 1 meters (~33 λ) on the displacement axis 

10 λ  above the surface. 

 

Average radiated power is now 30 Watts. The shadowing effects are 

clearly seen on the surface. And the oscillations are also clearly seen in 

Figure 3.10 (b) and Figure 3.10 (c). It must be noted that the induced 

current is oscillating in the flat region at right side of the surface profile 

and its magnitude decreases as the distance to the antenna increases. 
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Figure 3.10: Dipole radiator on the rough surface located at the  
                     33λ point on the terrain profile 
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Figure 3.11 illustrates a quasi-planar surface profile of length 200 λ. 

Surface impedance of imperfect conducting case is chosen to be 

j2025 +=sη . Dipole antenna is located at 4.5 meters (150 λ) on the 

displacement axis 10 λ above the surface. Average radiated power is 

10 Watts for this case. 

 

The shadowing effects are clearly seen on the surface. One can also 

see that the current magnitude is decreasing inversely by the distance 

to the source in the flat regions of the surface profile and shows similar 

behaviour of dipole on the rough surface in Figure 3.9. 
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Figure 3.11: Dipole on a quasi-planar surface of width 200λ 
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Figure 3.12: Residual errors of Figure 3.11 

 

 
The residual errors with respect to the iteration number are given in 

Figure 3.12 for both TM case and TE case. The desired residual error 

constraint, which is 10-4, is achieved in only 11 iterations for the TE 

non-PEC case. Another important thing is that the residual error 

decreases monotonically in each iteration step for TE case. 

 

The last example is sea surface profile. Imperfect conducting case is 

considered in which the sea is assumed to have a surface impedance 

of j65.176.4 −=sη  and relative permitivity of sea is chosen as 78. 

Plane wave incidence is considered with an incidence angle of θ 

=π/30. 
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Figure 3.13: Distributed current on a 300λ rough surface,  
    grazing plane  wave 

 

 
Current distributions on the surface of the sea due to 0 m/s wind speed 

are plotted in Figure 3.13. The frequency is 10 GHz with N=3000. The 

residual errors with respect to the iteration number are given in 

Figure 3.14 for both TM case and TE case. Again, the desired residual 

error is achived in less number of iterations for the TE non-PEC case. 

The desired level of error is reached at the 135th iteration step. 
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Figure 3.14: Residual errors of Figure 3.13 

 
 
 

N = 3000 is the upper limit to use direct matrix inversion with MoM as a 

reference due to RAM requirement of the computer used. Also the 

operation count of O (N3) to employ LU decomposition to invert the 

MoM matrix makes the process really cumbersome after this number of 

unknowns. The numerical examples show that CG method is well 

suited for scattering problems. By applying this method, the operation 

count is reduced to O (N2). So CG method can be used as a reference 

solution for the analysis of the terrain profile. 

 

In Chapter 4, Conjugate Gradient Method with Fast Fourier Transform 

is introduced and the acceleration of the approximated solutions are 

shown with same examples of terrain profiles chosen in this chapter. 

Also, the comparison of computational costs for the MoM solutions and 

the approximated CG-FFT solutions are tabulated in the next chapter. 

 
Investigations on rough surface profiles show that CG method obtains 

numerically accurate results for both TM and TE polarization cases. CG 

reaches a residual error of 10-4 in less number of iterations for TE case 
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than TM case. For the last example, the numbers of required iterations 

are 458 and 138, respectively. But it’s better not to use an upper limit 

for the number of iterations as a stopping criterion since this number is 

strongly dependent upon the number of unknowns to be solved. While 

direct inversion of MoM matrix method’s computational cost is related 

to the matrix fill time and LU inversion, CG has a computational cost 

due to matrix-vector multiplication and number of iterations. Table 3.1 

tabulates the computational cost of LU inversion of MoM and CG 

method for sea surface profile example. 

 
 
 

Table 3.1: Computational cost for CG method 

 
N Matrix Fill (s) LU inversion (s) TM-CG (s) TE-CG (s) 

500 1.8 19.2 8.67 2.45 

1000 9.2 172.5 42 11.6 

2000 28.8 1705.67 169.34 55.2 

3000 115 3455.5 384.6 102 

4000 170 NA 752.6 234 

 
 
 
From the table above, it is obvious that LU inversion requires O (N3) 

CPU-time while the CG requires O (N2) computational cost. The 

examinations and comparisons demonstrate that, the CG can be used 

as a reference solution instead of MoM for the study of scattering 

problems for both horizontal and vertical polarizations with a 

computational cost of O (N2). An interesting point is that the iteration 

number is reduced for imperfect conductor surface since the 

corresponding impedance matrices have better condition numbers.The 

authors of [37] and [38] agree with this result. 
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CHAPTER 4 

 
 

CONJUGATE GRADIENT  
WITH FAST FOURIER TRANSFORM 

 
 
 
4.1 Introduction 
 
Direct methods for general matrix solution require the full NN ×  matrix 

to be stored in computer memory, placing a bottleneck on the solution 

process for large systems. If sufficient structure or sparsity is present in 

the equation of interest, iterative methods offer the possibility of 

avoiding this storage bottleneck. Iterative algorithms only require an 

implicit matrix operator (a subroutine that when given a column vector 

returns the product of the NN ×  system matrix with the column vector) 

and can easily exploit any type of matrix structure, [27].  

 

4.2 Conjugate Gradient Method with    
       Fast Fourier Transform  
 

Electromagnetic problems posed in terms of integral equations with 

convolutional kernels can sometimes be discretized to yield matrices 

having discrete-convolutional symmetries. A general discrete 

convolution is an operation of the form, [22, 23], 

∑
−

=
−=

1

0

N

n
nmnm gje                                         (4.1) 

where e, j and g denote sequences of numbers. (4.1) is equivalent to 

the matrix equation 
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The NN ×  matrix depicted in (4.2) is a general Toeplitz matrix. All of 

the elements of this matrix are described by the 2N –1 entries of the 

first row and column, [27]. If the elements of the sequence g repeat 

with period N, so that 

gn-N = gn             n=1, 2, ..., N –1                               (4.3) 

the operation is known as a circular discrete convolution and the 

NN ×  matrix in (4.2) is circulant. Otherwise, the operation is a linear 

discrete convolution. Note that any linear discrete convolution of length 

N can be embedded into a circular discrete convolution of length 2N–1. 

This can be accomplished by extending the original sequence g to 

repeat with period 2N–1, zero padding the sequence j to length 2N–1, 

and changing the upper limit of the summation in (4.1) to 2N–2, [27]. 

 

The FFT algorithm is an efficient way of implementing the discrete 

Fourier transform, [22, 23], 

∑
−

=

−
=

1

0

2

e
N

k

N
πnkj

kn gg~             n=0,1,...,N-1                             (4.4) 

The inverse discrete Fourier transform is defined as 

∑
−

=

=
1

0

2

e
N

k

N
πnkj

nk gg ~1
N

            k=0,1,...,N-1                             (4.5) 

For notational purposes, 

)(FFT gg N=~       (4.6) 

)(FFT-1 gg N
~=       (4.7) 
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are used to denote the discrete Fourier transform pair for a sequence 

of length N. The discrete convolution theorem states that if (4.1)  is a 

circular discrete convolution of length N, it is equivalent to 

nnn gje ~~~ =             n=0,1,...,N-1                             (4.8) 

If (4.1) is a linear discrete convolution, the equivalence holds if the 

linear convolution is embedded in a circular convolution of length 2N–1 

as described above. 

 

To summarize, the discrete convolution operation of (4.1) is equivalent 

to a Toeplitz matrix multiplication. Furthermore, either can be 

implemented using the FFT and inverse FFT algorithm according to the 

discrete convolution theorem, [22, 23], 

)]()FFT([FFTFFT 1 gje NNN
−=                                  (4.9) 

If the discrete convolution is of the linear type, the FFTs must be of 

length 2N–1 rather than length N. The above conclusions are easily 

generalized to two or three dimensions. The relationship established in 

(4.9) can be extended to multiple dimensions in an obvious manner, 

[27]. 

 

In this study, the bottleneck on the solution of the established system is 

the limited storage capacity of computers. The solution also takes 

longer time. As mentioned before, matrix filling and regular LU 

decompositon of MoM takes a very long time in O(N3) and the storage 

needed is in O(N2). The CG method reduces the solution time to O(N2)  

but the storage limitation still remains. The CG-FFT method described 

in previous pages is an appropriate solution for the MoM matrices 

arising in electromagnetics problems. Only a single row or a few rows 

may be enough to solve the system by CG-FFT. Next section includes 
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comparison of CG-FFT and MoM applications for the rough terrain and 

sea profiles sampled previously.   

 

4.3  Numerical Results For Conjugate  Gradient Method    
       with Fast Fourier Transform (CG-FFT) 
 

Operating frequency is chosen to be 10 GHz, which corresponds to a 

wavelength of 3 centimeters, for all of the results. Figure 4.1 illustrates 

a quasi-planar surface profile of length 200 λ. Surface impedance for 

imperfect conducting case is chosen to be j2025 +=sη . Dipole 

antenna is located at 4.5 meters (150 λ) on the displacement axis 10 λ 

above the surface. Average radiated power is 25 Watts. Results are 

compared to those in Figure 3.11. As shown in Figure 4.1 (b) the 

induced current result due to TM polarized wave quite close to that 

obtained by MoM and the percentage error is given in Figure 4.1 (c) at 

every point to investigate coincidence. Percentage error is calculated 

by 

100
I

IIe%
MoM

MoMFFTCG ×
−

= − .   (4.10) 

The next example uses a sea surface profile. Imperfect conducting 

case is considered in which the sea is assumed to have a surface 

impedance of j65.176.4 −=sη  and relative permitivity of sea is chosen 

as 78. Plane wave incidence is considered with an incidence angle of θ 

= π/30. 
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Figure 4.1: Dipole on a quasi-planar surface of width 200λ 
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CHAPTER 5 

 
 

ACCELERATED COMPUTATION OF FIELD STRENGTH 
ON ROUGH SURFACE PROFILES  

 
 
 

5.1  Introduction 
 
After the current distributions over the rough surface profile have been 

computed by the CG-FFT method, the next step is to compute the 

scattered field. If the region of interest corresponds to a small portion of 

the surface, the numerical evaluation of the total field will involve a 

reduced number of operations, but if these regions are extended to the 

complete terrain profile and the field strength is computed in a dense 

set of points, similar to the MoM discretization, the cpu-cost will 

increase up in O(N2), since the scattered field is expressed as, 

( )

( ) nmmmn
(2)
1m

N

m
m

m

mn
(2)
0m

N

m
m
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ρnρρkHxIkηj
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and 

( )
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1

1           (5.2) 

for TM and TE polarization cases, respectively, [27]. Here Im denotes 

the computed induced current on the source point ρn, and ρm denotes 

the observation point on which the scattered field will be obtained. 
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This O(N2) cost can make the method unsuitable for large terrain 

profiles. To overcome this limitation, acceleration with FFT can be 

applied in a similar way to compute the scattered field only with an 

O(NlogN) cost. Equation (5.1) and (5.2) can be written as a matrix-

vector multiplication. The CG-FFT can be employed for matrix-vector 

multiplications in which the impedance matrix is in Toeplitz form.  The 

impedance matrix has a Toeplitz form for terrain profiles with small 

deviation. 

 

Total field at any point over terrain profile can be found by 

 
inc
y

scat
y

tot
y

inc
y

scat
y

tot
y

HHH

EEE

+=

+=
       (5.3) 

 

5.2 Comparisons of Propagation Models  
with CGFFT Numerical Results 

 

As a first example, the frequency is selected not in the x-band, but 

chosen as 1 GHz to investigate the accuracy of the method. The terrain 

profile used for this example is illustrated in Figure 5.1. An isotropic 

radiator is located at 60 meters for 300 meters terrain profile with 16 

meters maximum deviation as shown in the figure. The free space 

model result is also shown in the figure for comparison. It can be seen 

that the free space model calculation has similarities to the CG-FFT 

result. The result of free space correction with Hata model, [46], is also 

shown in the figure. The computational cost of CG-FFT for Figure 5.1 

with different deviations is illustrated in Table 5.1. 
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    Figure 5.1: Field strength on a 300 m rough surface, with isotropic  
                       radiator at 1 GHz. 
 
 
 

Table 5.1: Computational cost in MATLAB of CGFFT for Figure 5.1 

 

N Frequency 
Deviation 

h/L 

First Row 

Fill (s) 

Induced 

Cur. with 

CGFFT(s)

Iteration 

number 

Field Strength 

with CGFFT(s)

10000 1 GHz 0.01 0.545 1203 3854 2.4 

10000 1 GHz 0.02 0.56 833 2540 2.5 

10000 1 GHz 0.03 0.525 557 1636 2.6 

10000 1 GHz 0.04 0.576 111.3 333 2.9 

10000 1 GHz 0.05 0.544 235 687 2.24 
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Table 5.1 shows that if h/L is below 0.04, the number of iterations 

becomes higher due to worse conditioning of the impedance matrix. 

But if h/L is above 0.05 the Toeplitz form is broken down. So the 

method is limited to deviation of height. 
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     Figure 5.2: Field strength on a 3m multivalued rough surface with    
                        different roundnesses 
                   
 
 
Next example is shown in Figure 5.2. Now, the frequency is 10 GHz 

and the terrain has a length of 1000 λ, namely 3 m. An isotropic 

radiator is located at the left most of area, 30 centimeters above the 
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terrain. TE polarized wave is used. The area has two different regions: 

between 600 λ and 800 λ there is a PEC surface with 3 different 

roundness to investigate the diffraction, rest of the profile is modeled as 

smooth water region. Relative permittivity of sea water is 81 and 

surface impedance is j65.176.4 −=sη . This example shows that the 

propagation over multivalued terrain profiles can be modelled. The 

results with CG-FFT is compared to Free Space model and is also 

compared to Free Space model recovered by paying attention to 

ground reflection, [47,48]. 

 

Another example is shown in Figure 5.3. Now, the frequency is 10 GHz 

and the terrain has a width of 10000 λ (N=100000), namely 300 m 

again. A dipole antenna is located at the left most of area. But this time, 

TE polarized wave is used. The terrain has different regions near the 

left most of Figure 5.3 (a), the needles symbolize two pines which 

model a knife-edge and near at right most there is a cottage with timber 

woods and the rest of area is modeled as sand. Relative permittivities 

of pines, timber woods, sand are 7, 2.5 and 5, respectively, and surface 

impedances of them are 109, 1012 and 1015, respectively. This example 

shows that the propagation over multivalued terrain profiles can be 

accurately modeled. The results from CG-FFT is compared to both 

Free Space model and to Free Space model recovered by paying 

attention to knife-edge diffraction and ground reflection (indicated as 

RMD), [47,48]. 

 

Figure 5.1, Figure 5.2 and Figure 5.3 shows that the CG-FFT method 

gives reliable results with some limitations. Limitations are covered in 

the last chapter. 
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Figure 5.3: Field strength on a 300 m rough surface, with dipole  
                    antenna at 10 GHz. 
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CHAPTER 6 

 
 

CONCLUSION 
 
 
 
In this thesis, conventional CG and CG-FFT methods over various 

kinds of terrain profiles rough in one dimension and multi valued 

surfaces have been implemented by examples. 

 

In order to compare the accuracy of CG method, results have been 

tested with reference direct inversion of MoM matrix solutions for both 

TM and TE polarization cases up to N = 3000 unknowns. This limitation 

is due to storage requirement to keep interaction matrices of MoM and 

due to computational cost of the direct solution technique, LU inverison 

which has an operation count of O(N3). 

 

Numerical examples have shown that CG methods yield precise 

current distributions with a computational cost of O(N2) per iteration. An 

interesting result is that in the solution of induced current arising from 

TE polarized wave incidence on non-PEC surfaces, the iteration 

number is reduced for imperfect conductor surface due to the better 

conditioning of impedance matrices. 

 

Later on, accelerated CG method has been applied over slightly rough 

surfaces with different height deviations. By this method, only a few 

rows of impedance matrice are used because the impedance matrice is 

diagonally dominant for quasiplanar surfaces. Results of CG-FFT 

method with respect to MoM and CG method have been investigated. 
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Numerical results for quasi-planar surfaces have shown that FFT 

algorithm works properly with CG. Error percentages of induced 

currents are very small for smaller height changes to the distance. This 

situation also confirms that the CG-FFT method works very well for 

Toeplitz form matrices. If one makes the impedance matrice in form of 

Toeplitz, it is sure that the CG-FFT works properly. Another result 

accompanied this result; the solutions for undulating geometries by 

CG-FFT method are not tolerable. Approximation works only for small 

height changes on the terrain and sea surfaces with very small wind 

effect. 

 

The main product of this work is to present electrically large rough 

surface scattering analysis with CG-FFT method up to very large 

unknowns. Another innovation is the examination of multi-valued 

surface profiles without any computational complexity or high memory 

requirements. Based on these results, it can be used with general 

scattering problems confidentially.  

 

There are also some limitations of the method. The major limitation in 

this method is that the matrix must be in Toeplitz form. In this thesis, it 

is provided by some interpolation and extrapolation algorithms on 

functional space and it is also provided by making height changes on 

the terrain profile small compared to displacement. That is, the MoM 

points over surface line are redistiributed by interpolation and the 

matrix becomes more closer to Toeplitz form. Although there are some 

methods employing non-uniform FFT in the literature, they are not 

considered in this thesis. By small deviation in terrain samples, the CG-

FFT method on these is usable. This is the great limitation of the 

method in the thesis.  And there is another limitation arising from 
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height-displacement relation with an oppurtunity cost between better-

conditioning impedance matrix and Toeplitz form matrix. 

 

Future work will focus on accelerating CPU processing time of the CG-

FFT method. Since it depends on matrix – vector multiplies, it is well 

suited to parallel processing. Furthermore, some modifications 

corresponding to the acceleration algorithm may be implemented to 

analyze undulating terrain profiles in the rural and urban areas and also 

using non-uniform FFT can be considered which does not require 

interpolation to put the impedance matrices into Toeplitz form. In this 

respect Fast Multipole Method will also be useful. 
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