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ABSTRACT

HUMAN MOTION ANALYSIS VIA AXIS BASED REPRESENTATIONS

Erdem, Sezen

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Sibel Tari

September 2007, 67 pages

Visual analysis of human motion is one of the active research areas in computer vi-

sion. The trend shifts from computing motion fields to understanding actions. In this

thesis, an action coding scheme based on trajectories of the features calculated with

respect to a part based coordinate system is presented. The part based coordinate

system is formed using an axis based representation. The features are extracted from

images segmented in the form of silhouettes. We present some preliminary experi-

ments that demonstrate the potential of the method in action similarity analysis.

Keywords: motion, articulated motion, human motion, human motion analysis, axial

representations, disconnected skeleton
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ÖZ

EKSEN TABANLI GÖSTERİM İLE İNSAN HARAKETLERİNİN GÖRSEL

ÇÖZÜMLEMESİ

Erdem, Sezen

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doçent Dr. Sibel Tari

Eylül 2007, 67 sayfa

İnsan hareketlerinin görsel çözümlemesi Bilgisayar Görüşü alanının önemli konu-

larından birisidir. Bugünlerde hareket çözümlemesi konusundaki eğilim hareket

alanlarının hesaplanmasından görüntüde ne oluyorun yorumlanmasına doğru kay-

maktadır. Bu tez kapsamında, parça tabanlı koordinat sistemi kullanılarak elde edilen

özellik yörüngelerine dayalı bir eylem tanıma yöntemi anlatılmaktadır. Parça ta-

banlı koordinat sistemi eksen tabanlı bir gösterime dayalı olarak oluşturulmuştur.

Hareket çözümlemesinde kullanılan özellikler siluetler kullanılarak elde edilmekte-

dir. Bu tez kapsamında, önerilen yöntemin eylem benzerliği çözümlemesi alanında

kullanılabilirliğini gösteren denemeler sunulmuştur.

Anahtar Kelimeler: hareket,eklemli hareket, insan hareketleri, insan hareketlerinin

cözümlemesi, eksensel gösterim, bağlantısız iskelet.
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CHAPTER 1

INTRODUCTION

In physics, motion is defined as a continuous change in the position of a body relative

to a reference point as measured by a particular observer in a particular frame of

reference. Motion is one of the most striking events for biological visual systems.

Even in very low resolutions, human vision system can detect motion and recognize

the performed action. The importance of visual motion stimulated a significant body

of work in computer vision.

The framework of visual analysis of motion contains three steps: detecting mo-

tion, tracking motion and generating high level descriptions for the motion (Figure

1.1).

Figure 1.1: The framework of visual motion analysis

Motion detection means separating the moving objects in the scene from the rest

of the image in each frame. The existing approaches use spatial or temporal data to

extract motion. Various approaches are reviewed in Chapter 2.

Motion tracking is the process of locating the moving object in time on the scene.
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Knowledge about the performed action is important to locate the moving object ac-

curately. Such knowledge about the motion can be related with the kinematics of

the object such as velocity and acceleration. The general idea in the approaches for

motion tracking is to generate a dynamic model relating the measurements directly

taken from motion data to pre-knowledge about the motion. Hence tracking prob-

lem is solved using dynamic system analysis methods which will be discussed in

Chapter 2.

Generating high level descriptions for the motion is the interpretation of the spa-

tiotemporal data. It is the step where the perception meets with the cognition. It

may involve contextual data, artificial intelligence and natural languages to generate

high level descriptions representing the motion. The generated descriptions can be

used in action recognition to analyze and recognize motion patterns. The details of

generating high level descriptions for the motion will be reviewed in Chapter 2.

Visual analysis of motion can be divided into groups as rigid and non-rigid mo-

tion according to the structure of the object of interest. (Figure 1.2)

Figure 1.2: Motion classification

In rigid motion, the moving object performs an action as a whole. All of the points

on the object move with the same dynamics. Therefore motion can be modeled with
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single dynamic system.

In non-rigid motion, deformations and articulations are introduced. Different

points on the object move with different dynamics. Therefore, non-rigid motion can

not be modeled with a single dynamic system.

Articulated motion is a special case of non-rigid motion. The moving object is a

composition of several rigid parts and joint points. The rigid parts can move inde-

pendently at their joint points. If we fix a reference frame on the joint, the motion

is rigid with respect to the local reference frame. Many of the biological systems

including humans perform articulated motion.

Aggarwal et. al.[2] give the definitions of the remaining types of non-rigid motion

as follows:

• Quasi-rigid Motion: It restricts the deformation to be small. A general motion

is quasi-rigid when viewed in a sufficiently short interval of time.

• Isometric Motion: It is defined as motion that preserves the distances along the

surface and the angles between the curves on the surface.

• Homothetic Motion: It is motion with a uniform expansion or contraction of

the surface.

• Conformal Motion: It is non-rigid motion which preserves the angles between

the curves on the surface, but not the distances.

• Elastic Motion: It is non-rigid motion whose only constraint is some degree of

continuity or smoothness.

• Fluid Motion: It involves topological variations and turbulent deformations.

Visual analysis of human motion is one of the active research areas in computer

vision. The interest on human motion analysis gained more importance with the de-

velopment of wide spectrum applications such as visual surveillance, virtual reality,

advanced man-machine interface, personalized training, content-based video stor-

age etc. There is also an interest in human motion from wide variety of disciplines. In

psychology, human movement is analyzed to understand human perception. Biome-

chanics analyze how human body functions and try to find ways of increasing move-

ment efficiency. In choreography, high-level descriptions of human movements for

3



the notation of dance, ballet and theater are generated by using human motion anal-

ysis. In computer graphics, human motion analysis is used for generating realistic

models for simulations, computer games and animations.

In early days of visual analysis of motion, the aim was to capture the motion in

spatiotemporal video data. The need for developing intelligent systems leads to de-

velopment of systems that can understand what is happening in a scene. As a result,

generation of high level descriptions step gained more importance. In recent years,

human motion analysis becomes a part of more general domain called as ”Look-

ing At People” which relates computer vision with artificial intelligence and natural

languages. The systems should have the capability of extracting information from

its environment independently rather than relying on externally supplied data. The

systems should be able to understand actions taking place in the scene. The basic

question changed from how things are moving to what is happening [3]. Human

motion is described in terms of knowledge rather than geometric terms.

The approaches in human motion analysis can be classified into two groups based

on the body structure analysis: model based and non-model based. There is a priori

human body model in the model based approaches [4] [5] [6] [7] [8]. The images in

the sequence are matched with the human model for motion analysis. The details of

model based human motion analysis and proposed approaches in the literature are

reviewed in Section 3.1. In non-model based approaches, there is no priori human

body model [9] [10]. The images in the sequence are matched with each other to find

the correspondences. The analysis is performed based on the data extracted from

correspondences through the image sequences. The approaches in non-model based

human motion analysis are reviewed in Section 3.2.

Using a priori model handles self-occlusions. However, the success of the motion

analysis depends greatly on the selected priori model. The model should cover the

essential part of the variations of human body poses in the sequence. In non-model

based approaches, the features used in motion analysis have great importance. The

features should be clear and exist in all frames of the sequence. They should be easily

and accurately extractable. The evolution of the features during the sequence should

reflect the performed action.

Model based and non-model based approaches for human motion analysis are

4



discussed in detail in Chapter 3.

After reviewing the proposed approaches and observing the trend in visual anal-

ysis of human motion, we introduce a non-model based human motion analysis

scheme based on an axis-based representation of human body and change of axial

features through the frames.

1.1 Motivation

As mentioned earlier, the methods based on using a predefined human model for

analysis depend greatly on the constructed model. The model should be able to rep-

resent the variations of human posture during the course of an action. Constructing a

human body model which covers an essential part of variations of postures is a diffi-

cult work. The methods which do not use a predefined model; non-model based ap-

proaches; perform motion analysis by matching the features extracted at each frame.

The extracted features should be present at each frame and be easily and accurately

extractable. The features should be both simple and dependable.

In this thesis, a non-model based human motion analysis scheme is proposed.

Human motion analysis is based on the trajectories of features defined with respect

to a part based coordinate system. Human postures are represented with a local sym-

metry axis representation called disconnected skeletons [1]. The symmetry branches

are classified as positive and negative. A positive branch indicates an articulated part

and always merges with a negative branch. Both of the branches terminate when

they meet. The proposed scheme takes the advantage of this particular structure

to present an action coding scheme. Trajectories of change in the features extracted

from axis based representation generate patterns for performed actions. Represen-

tations for the actions are generated by using the patterns. The steps of generating

representations for the actions are displayed in the Figure 1.3.

The generated patterns are used in comparing the similarity of actions. The flow

diagrams of the similarity analysis are displayed in Figure 1.3.

Human body is a 3D structure. There are two possible approaches including

the effects of the 3D body structure into the motion analysis. One of them is to use

3D models [11] [12] [13] [14]. The data collected from 3D model are matched with

2D data obtained from images which brings a non trivial complexity into the mo-

5



(a) (b)
Figure 1.3: Flow diagrams of analysis (a)Action space construction (b)Similarity anal-

ysis of actions

tion analysis. Second approach is to use special motion capture systems such as

body markers to collect the data [15]. However, motion capture systems such as

body markers requires special hardware and body markers are stuck on the human

performing the action. Hence the motion analysis systems intervene into the action

performance.

In our analysis scheme, 3D effects are neglected while obtaining motion data and

analysis is performed on 2D silhouettes. However, the initially ignored 3D effects

are revealed in analysis. We can capture the effects of 3D body structure such as

self-occlusion and motion in the plane orthogonal to viewing plane.

In this work, we represent motion without using flow vectors or fields. We try

to generate semantic descriptions for the performed actions rather than geometric

6



representations.

1.2 Thesis Organization

The rest of the thesis is organized as follows:

In Chapter2, the framework of visual analysis of motion is reviewed. The steps

in the framework are discussed in detail. The approaches in the literature are sum-

marized briefly to give a general idea about the visual analysis of motion. The ideas

and methods construct a basis for visual analysis of motion.

In Chapter 3, the literature on visual analysis of human motion is reviewed.

Model based and non-model based approaches are discussed and the details of some

example works are explained to address where our work stands in human motion

analysis literature.

In Chapter 4, the proposed human motion analysis scheme is presented. The axis

based representation of human body is described. The features of the representation,

the information carried in the features and the usage of the extracted information in

the human motion analysis are explained in detail. The experimental results of the

proposed scheme are displayed.

Summary and future works are discussed in Chapter 5.

1.3 Contributions

Main contributions of this thesis are as follows:

• An overview of the methods for human motion analysis are provided. (Chapter

3)

• A non model based articulated human motion analysis scheme based on an axis

based representation of human posture is presented. The method is applied to

images segmented as 2D silhouettes. The method has an important difference

from other silhouette based approaches [10], in the sense that, initially ignored

factors such as the effects of 3D body structure are revealed in the analysis.

(Chapter 4)
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CHAPTER 2

MOTION

Psychophysical researches suggest that biological visual systems are very sensitive

to motion. This fact leads to many researches in computer vision area dealing with

visual analysis of motion in spatiotemporal image data. There are many important

applications of visual analysis of motion in various areas such as visual surveillance,

robotics, tracking, gait analysis, etc. In recent years, due to the increase in compu-

tational power and decrease in cost, the demand for visual analysis of motion has

increased.

Although there are various approaches in visual analysis of motion, they follow

a general framework (Figure 1.1). The steps of the framework are as follows:

1. Detecting Motion

2. Tracking Motion

3. Generating High-Level Descriptions of Motion

In this chapter, the details of the steps in visual analysis of motion are explained.

In Section 2.1, the approaches and the methods in detecting motion are discussed. In

Section 2.2, the methods and some well known algorithms for tracking motion are

reviewed. In Section 2.3, ideas in generating high level descriptions for motion are

mentioned and action recognition is discussed.

The approaches and the methods reviewed in this chapter construct a basis for the

visual analysis of motion. The sample video data that we used in our work contain

a single human performing some specific actions and scene background is static.

Therefore, in our work, Detecting Motion and Tracking Motion steps of the motion

analysis are quite simple and we do not directly make use of many of the methods

8



reviewed in Detecting Motion and Tracking Motion sections. However, the methods

reviewed in this chapter can be involved into our work in the future when we deal

with more complex cases such as real world scenarios. The reviews are included for

the sake of completeness of visual analysis of motion and uninterested reader may

skip Section 2.1 and Section 2.2 without interrupting the readability of the thesis.

2.1 Detecting Motion

Moving objects are separated from the rest of the image in each frame in detecting

motion. Each pixel in each frame is classified as either background or foreground

to decide on moving objects. Lighting, shadows, weather changes, occlusions and

many other factors make accurate motion detection a though problem.

There are several approaches for motion detection. They can be clustered into

two general categories according to the information used: temporal or spatial. Tem-

poral information based methods make use of differences between the images in the

sequence to obtain movement data. In temporal information based methods, it is

assumed that the background is static. Hence the differences between the images

in the sequence originate from the motion of the objects. Spatial information based

methods use some special features of individual pixels or groups of pixels such as

color, intensity, edges, etc. to extract the motion.

The methods used in motion detection are explained in the following part.

2.1.1 Background Subtraction

Background subtraction is a popular temporal information based approach for mo-

tion detection. Moving objects are detected by differencing the current image from a

reference background image. The difference image is further processed to extract the

moving objects in the frame.

The background subtraction methods in the literature differ in modeling the ref-

erence background image. The simplest one is considering a static, non-adaptive

background model (Figure 2.1). However non-adaptive background subtraction ap-

proaches need manual background model initialization. The background model has

to be re-initialized periodically for the success of the approach. Median of the pixel

values observed in an image sequence can be used as background model [16].
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(a) (b) (c)
Figure 2.1: Static, non-adaptive background modeling approach (a)Input image

(b)Background model (c)Output image

Background subtraction methods are very sensitive to changes in the dynamic

scenes. A good background subtraction algorithm should adapt to various levels of

illumination values at different times of the day, handle weather conditions (fog, rain,

snow etc.), shadows, slow moving objects, objects that become background for a time

and become foreground at a later time. However most of the background subtraction

based methods can not satisfy these requirements. New methods including statistical

data for background image construction are examined to solve the problems faced in

background subtraction based approaches.

2.1.2 Temporal Differencing

Temporal differencing is another temporal information based approach for motion

detection. In temporal differencing approach, pixel-wise differences between con-

secutive frames (generally two or three consecutive frames) of a sequence are used.

Temporal differencing approaches can capture any change in the environment and

are highly adaptive to dynamic environments. However they have a poor perfor-

mance in extracting the entire relevant feature pixels. Generally they generate holes

in the moving objects.

Lipton, Fujiyoshi and Patil [17] used temporal differencing in their work. Moving

targets in real video streams are detected by using temporal differencing. Then, the

extracted moving sections are clustered by using connected component analysis.

Another work is performed in VSAM [18]. A hybrid algorithm is developed for

motion segmentation by combining an adaptive background subtraction algorithm

with three frame differencing technique.
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2.1.3 Optical Flow

Flow vectors or fields describe the apparent motion of points or features between

image frames. Optical flow based motion segmentation approaches make use of flow

vectors over time to detect moving objects. Bregler [19] represents each pixel by its

optical flow. The flow vectors are grouped into blobs having coherent motion.

Optical flow methods are successful to extract coherent motion. However, obtain-

ing accurate results with optical flow is difficult. Due to the aperture problem [20],

noise sensitivity, difficulties with multiple moving objects and the complexity of the

operations, optical flow based methods are not commonly used in applications.

2.1.4 Statistical Methods

In real world scenarios, the background of a scene does not stay constant. Illumina-

tion changes, lighting, shadows, noise and many other environmental factors affect

the state of the background. The model should be updated to reflect very recent state

of the background scene.

Statistical methods are used for constructing advanced background models by

using characteristics of the pixels. A dynamic background model is constructed and

this model is updated with the images from the sequence. Each pixel in the cur-

rent image is compared with the dynamic background model and marked as either

background or foreground.

Ridder, Munkelt and Kirchner [21] model each pixel with a Kalman Filter to have

a robust system to scene lighting changes. Pfinder by Wren et al. [22] uses a single

Gaussian model per pixel to model background. Single Gaussian is sufficient if the

pixels are on a particular surface under a particular lighting. However in real life,

multiple surfaces appear on a particular pixel and the lighting conditions change.

Stauffer and Grimson [23] use mixture of Gaussians for each pixel to model back-

ground. History of recent values of each pixel is modeled with a mixture of Gaus-

sians. Each Gaussian in the mixture has a weight. At each time step, these weights are

recalculated according to the current pixel values. After the recalculation of weights,

the Gaussians in the mixture are evaluated for determining most likely ones belong-

ing to the background model. Pixels not matching any of the background Gaussians

are marked as foreground. These pixels are grouped by using connected component
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analysis and construct the foreground objects (Figure 2.2).

(a) (b) (c)
Figure 2.2: Mixture Of gaussian background modeling approach (a)Input image

(b)Obtained background model (c)Output image

In non-parametric background modeling approach of Elgammal,Harwood and

Davis [24], a sample for each pixel of the scene is stored. The method has two stages.

In the first stage, the probability that a new pixel belongs to background is estimated

non-parametrically. Small motions in the scene background lead to false detections.

In the second stage, the false detections are suppressed. The pixels detected as fore-

ground in the first stage are queried to check whether they belong to the background

distribution of some points in their neighborhood. The objective of the constructed

background model is to capture very recent information about the image sequence.

This model is continuously updated to capture fast changes in the scene background

(Figure 2.3).

(a) (b)
Figure 2.3: Non-parametric model for background subtraction (a)Input image

(b)Output image

At the study of Haritaoglu et al. [25], the maximum and the minimum values

a pixel gets during training period and the maximum intensity difference between
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consecutive frames are collected for each pixel. The data construct the background

model and it is updated periodically to reflect changes in the scene.

Statistical methods are becoming increasingly popular. They are robust to changes

in the background and they produce better results compared with other motion de-

tection methods.

In this section, the approaches and the methods in detecting motion step of visual

analysis of motion framework are reviewed. The next step is tracking motion. The

approaches in tracking motion are reviewed in the following section.

2.2 Tracking Motion

The moving object is located on the scene in motion tracking. It may be thought

that tracking can be done by just finding and extracting the moving object at each

frame. However, it is not the case. We should have knowledge about the performed

action to locate the moving object accurately. Tracking can not be based on only the

measurement data obtained directly from image data. The measurements contain

errors due to noise, occlusions, shadows and etc. The knowledge about the motion

should be included into the tracking process to get dependable results.

Generally, kinematics of the moving object such as velocity and acceleration are

used in tracking motion. The performed motion is represented with a dynamic sys-

tem model. The tracking problem is reduced to dynamic system analysis problem.

Dynamic system analysis requires two models: system model and measurement

model. The system model describes the evolution of a dynamic system with time

(Equation 2.1). The measurement model is used for relating the noisy measurement

data to the dynamic system (Equation 2.2). The state of the dynamic system is esti-

mated by using the noisy measurements.

System Model:

xt = f(xt−1, vt−1) (2.1)

where f is possibly a non-liner function of xt−1 and vt−1 is independently and

identically distributed noise.

Update Model:

zt = h(xt, wt) (2.2)
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where h is possibly a non-liner function and wt is independently and identically

distributed measurement noise.

In motion tracking, system and measurement models are generally represented

in a probabilistic form. Tracking is a prediction process of the states of the dynamic

system via Bayesian approach [26]. The aim is to construct the posterior probabil-

ity density function of the state by using available information. The prediction is

repeated as new measurements are received. This approach is called as recursive

filtering [26] in statistics and convenient for dynamic system analysis.

The recursive filtering approaches contain two steps. The first step is the predic-

tion. The state of the system is predicted using the system model. The next step is the

update. The prediction is updated with the latest measurements. Tracking problem

can be considered as the evolution of the states of a moving object.

The process can be described as calculating some degree of belief on the state (xt)

at time (t) based on the measurements (zt) up to time (t) in Bayesian approach. The

probability distribution function (p(xt, z1:t)) can be obtained recursively by following

prediction and update steps. The following part explains the details of the prediction

process via Bayesian approach.

Assume that the posterior pdf (p(xt−1, z1:t−1)) at time (t − 1) is available. The

prediction step is computed using the system model to obtain the prior distribution

at time t. The prior distribution can be computed using Chapman - Kolmogorov

equation (Equation 2.3).

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (2.3)

The prior distribution is updated using the measurements (zt) via Bayes’ rule and

the posterior distribution (p(xt|z1:t)) is obtained (Equation 2.4).

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|zt−1)
(2.4)

The recursive estimation of the posterior density generally provides a concep-

tual solution to the problem instead of an analytical solution. Several different ap-

proaches are proposed for the analytical solution of the problem. The following part

describes some of these approaches.
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2.2.1 g-h Filters

The g-h filters are one of the dynamic system analysis methods and generally used

in tracking applications on radars [27]. The g-h filters assume that the object to be

tracked moves with a constant speed. The system model of the dynamic system is as

Equation 2.5 and Equation 2.6.

xt = xt−1 + vt−1T (2.5)

vt = vt−1 (2.6)

where xt denotes location, vt denotes velocity and T denotes time interval.

At time step t, the measurements (yt) are obtained from the system. There are

three cases to be considered:

• if xt < yt then the speed should be increased

• if xt = yt then no need for update

• if xt > yt then the speed should be decreased

After considering the update conditions, the velocity should be updated as Equation

2.7.

vt = vt + ht(yt − xt) (2.7)

where ht is small parameter.

The problem with the Equation 2.7 is that both updated velocity estimate after the

measurement and the velocity estimate before measurement are represented with vt.

This ambiguity can be cleared with a new representation as follows:

v̇t,t = v̇t,t−1 + ht(yt − ẋt,t−1) (2.8)

where v̇t,t−1 represents the predicted estimate and v̇t,t represents updated esti-

mate. Similarly the updated position can be rewritten as Equation 2.9.

ẋt,t = ẋt,t−1 + gt(yt − ẋt,t−1) (2.9)

15



where gt is small parameter. With this new notation, the system model of the

dynamic system becomes:

v̇t+1,t = v̇t,t (2.10)

ẋt+1,t = ẋt,t + v̇t,tT = ẋt,t + v̇t+1,tT (2.11)

And update model of the dynamic system becomes:

v̇t+1,t = v̇t,t−1 +
ht

T
(yt − ẋt,t−1) (2.12)

ẋt+1,t = ẋt,t−1 + T v̇t+1,t + gt(yt − ẋt,t−1) (2.13)

2.2.2 g-h-k Filters

Another dynamic system analysis method is g-h-k filters. The assumption in the

approach is that the moving object travels with a constant acceleration [27]. The

system dynamic model is described with Equation 2.14, 2.15 and 2.16.

xt = xt−1 + vt−1T + at−1
T 2

2
(2.14)

vt = vt−1 + at−1T (2.15)

at = at−1 (2.16)

where xt denotes location, vt denotes velocity, at denotes acceleration and T de-

notes time interval. By following the same heuristic procedure pursued in the g-h

filters, the system and update models are represented as follows:

System Model

ȧt,t = ȧt,t−1 +
2k

T 2
(yt − ẋt,t−1) (2.17)

v̇t,t = v̇t,t−1 +
h

T
(yt − ẋt,t−1) (2.18)
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ẋt,t = ẋt,t−1 + g(yt − ẋt,t−1) (2.19)

Update Model

ȧt+1,t = ȧt,t (2.20)

v̇t+1,t = v̇t,t + ȧt,tT (2.21)

ẋt+1,t = ẋt,t + v̇t,tT + ȧt,t
T 2

2
(2.22)

However in real world, targets generally do not move with either constant ve-

locity or constant acceleration. Hence more advanced methods are introduced to

deal with the nonuniformity of kinematics. The following part describes some of the

advanced methods used in dynamic system analysis.

2.2.3 Kalman Filters

Kalman Filter is a recursive filter used in dynamic system state estimation. Kalman

filter is based on linear dynamical systems which are discretized in the time domain

[27].

The Kalman Filter has two basic assumptions:

• The posterior density always has a Gaussian distribution

• The measurement errors are independent and normally distributed

When these assumptions are assured, the Kalman Filter is the optimal solution

for tracking problem. It produces the minimum mean squared error estimate of the

system state.

The dynamic system equations (Equation 2.1 and 2.2) can be written as

Xt = Ft−1Xt−1 + Wt−1 (2.23)

Zt = HtXt + Vt (2.24)

where
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Xt is state vector

Ft−1 is state transition matrix

Wt−1 is zero mean, white gaussian error with covariance Q(t)

Zt is measurement vector

Ht is transition matrix

Vt is zero mean, white gaussian error with covariance R(t)

Ft−1 and Ht are matrix representation of linear functions.

The Kalman Filter estimates recursively the state vector (Xt) based on the mea-

surements (Zt) taken at time (t=1...n).

The equations of the recursive process are as follows:

Innovation:

Yt = Zt −HtX̃t (2.25)

Estimate :

X̂t = X̃t + KtYt (2.26)

Prediction :

˜Xt+1 = FtX̂t (2.27)

Kalman Gain :

Kt = ˜PtHT
t [HtPtHT

t + Rt]−1 (2.28)

Estimate Covariance :

P̂t = [I −KtHt]P̃t (2.29)

Prediction Covariance :

˜Pt+1 = FtP̂tF
T
t + Qt (2.30)

where P is the covariance matrix of the error of Xt. The mean and the covariance

of Gaussian posterior are computed recursively.

The assumptions of Kalman Filter do not hold in many situations. It may not be

possible to express the problems with the linear equations. If either the system or

the update model is non-linear, the posterior distribution will not have a Gaussian

distribution. Hence we can not obtain an optimal solution by Kalman Filter. The

following part describes an approach based on the Kalman Filter dealing with the

non-linear situations.
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2.2.4 Extended Kalman Filters

Extended Kalman Filters (EKF) are based on local linearization of nonlinearity in

the system and the measurement models of the dynamic system [27]. The dynamic

system equations of Kalman Filter (Equation 2.23 and 2.24) can be written as

Xt = ft−1Xt−1 + wt−1 (2.31)

Zt = htXt + vt (2.32)

where ft−1 and ht are non-linear functions and vk−1 and wk are mutually indepen-

dent, zero mean white Gaussians. The non-linear functions ft−1 and ht are approxi-

mated by using first order Taylor expansion. The Extended Kalman Filter approach

assumes that local linearization of ft−1 and ht are sufficient to describe nonlinearity

of the dynamic system. The result of EKF is Gaussian approximation of the posterior

density function. If ft−1 and ht are non-linear functions which can not be approxi-

mated accurately with a Gaussian distribution, EKF approaches will fail.

By the nature of the tracking motion problem, we have to deal with nonlineari-

ties. Using the Kalman Filter approach may not solve the problems containing multi

model densities. Even using the Extended Kalman Filter approach may lead to com-

plex computations and poor results. At this point, making use of simulation based

approaches such as Sequential Monte Carlo methods may help to deal with multi-

modal, non-linear systems. The Sequential Monte Carlo methods are sophisticated

model estimation techniques based on random sampling. The next section reviews

Particle Filters which is an example of Monte Carlo methods.

2.2.5 Particle Filters

Particle Filter is one of the Sequential Monte Carlo Filters. The Sequential Monte

Carlo methods are simulation based methods developed for computing posterior

distributions [28]. The idea is to represent the posterior density function with a set of

random samples and associated weights. The estimates are computed based on the

samples and weights.

Suppose that multi-dimensional integral in Equation 2.33 is computed numeri-

cally.
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I =
∫

g(x)dx (2.33)

The Monte Carlo methods factorize g(x) as Equation 2.34.

g(x) = f(x)π(x) (2.34)

where π(x) is a probability density function such that (π(x) ≥ 0) and (
∫

π(x)dx =

1). The Monte Carlo estimation of integral in Equation 2.35 can be computed via

drawing N À 1 samples {xi; i = 1, ...N} from π(x).

I =
∫

f(x)π(x)dx (2.35)

The estimate is as Equation 2.36.

IN =
1
N

N∑

i=1

f(xi) (2.36)

In fact, it is possible to represent the functional description of the posterior prob-

ability distribution function equivalently with the enough number of samples. In

ideal case, the samples should be generated directly from π(x). However it is not

generally possible to sample from π(x) since it is a multivariate distribution. One of

the known solution to this problem is to use importance sampling. In the following

part, two algorithms based on importance sampling for tracking motion is explained.

2.2.5.1 Sequential Importance Sampling (SIS) Algorithm

Sequential Importance Sampling (SIS) Algorithm is a Monte Carlo method which es-

timates the state of a dynamic system using the noisy measurements taken at discrete

time intervals [28]. The state of the system is represented by an unknown probability

distribution function. A Bayesian approach is used to estimate the state of the dy-

namic system. The posterior probability density function of the state is constructed

by using available data which also includes the noisy measurements. As mentioned

in the previous part, it is not always possible to directly sample from π(x). To over-

come this problem, the samples are taken from another distribution q(x) which is

similar to π(x). The only assumption is that q(x) and π(x) have same support (Equa-

tion 2.37).
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π(x) > 0 ⇒ q(x) > 0∀x ∈ R (2.37)

The distribution, q(x), is called importance density. Monte Carlo estimation of

the posterior density of the state is still possible by weighting samples correctly.

The details of the SIS Algorithm are as follows:

Notation

x : States of the system

z : Measurements

q(x0:k|z1:k) : Importance density (approximation of the posterior)

p(x0:k|z1:k) : Posterior pdf

w : Weights associated to samples

Assumptions

• The proposal distribution (importance density q(x0:k|z1:k)) is known

• State transition depends only on the previous state

• The proposal distribution factorizes such that

q(x0:k|z1:k) = q(x0:k−1|z1:k−1)q(xk|x0:k−1|z1:k) (2.38)

• The measurements are independent of the observations

At each iteration step

We have N samples and their associated weights (xi
k−1, w

i
k−1, i=1...N) approximating

p(x0:k−1|z1:k) and we want to approximate p(x0:k|z1:k) with new set of samples.

• Step 1: Resample with replacement

Generate N samples from the old sample set according to their associated weights.

By this way, we can pick the samples having higher weight value more than

once. Generate the sample set : (xi
k; i = 1...N)

• Step 2: Predict the generated samples by using proposal distribution

In this step the system model of the dynamic system is used for prediction.

q(xk|xk−1 = xi
k) (2.39)
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The random terms in the system model of the dynamic system introduces vari-

ations.

• Step 3: Associate a weight wi to each generated sample by using measure-

ment data

The weight represents the probability of the sample fitting the posterior density.

wk
i = p(z0:k|x0:k = xi

0:k) (2.40)

There are two options for obtaining the associated weights.

Option 1 By considering Equation 2.40, the weights can be directly estimated

from the observation.

wk
i =

eE(xi
k,xk)

∑
eE(xi

k,xk)
(2.41)

In Equation 2.41, Energy E() is selected such that it is lower for more probable

states.

Option 2 The associated weights (wi
k) can be obtained by using the weights

(wi
k−1) obtained in (k − 1)th iteration. The process is as follows:

wi
k =

p(xi
0:k|z1:k)

q(xi
0:k|z1:k)

(2.42)

We should find p(x0:k|z1:k) term to compute the weight. By using Bayesian

approach, p(x0:k|z1:k) can be expressed in terms of p(xk|xk−1), p(zk|xk) and

p(x0:k−1|z1:k−1) as Equation 2.43-2.46.

p(x0:k|z1:k) =
p(zk|x0:k|z1:k−1).p(x0:k|z1:k−1)

p(zk|z1:k−1)
(2.43)

p(x0:k|z1:k) =
p(zk|x0:k|z1:k−1).p(xk|x0:k−1|z1:k−1)

p(zk|z1:k−1)
.p(x0:k−1|z1:k−1) (2.44)

p(x0:k|z1:k) =
p(zk|xk).p(xk|xk−1)

p(zk|zk−1)
.p(x0:k−1|z1:k−1) (2.45)

Omit normalization term
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p(x0:k|z1:k) = p(zk|xk).p(xk|xk−1).p(x0:k−1|z1:k−1) (2.46)

By replacing this formula to Equation 2.42, calculate the weights.

wi
k =

p(zk|xi
0:k).p(xi

k|xi
k−1).p(xi

0:k−1|z1:k−1)
q(xi

k|xi
0:k−1, zk)q(x0:k−1|z1:k)

(2.47)

wi
k = wi

k−1.
p(zk|xi

0:k).p(xi
k|xi

k−1)
p(zk|xi

k).p(xi
k|xi

k−1)
(2.48)

Degeneracy Problem

In perfect case, the importance density and the posterior density should be same.

Unfortunately, it is not possible. This leads to problems in the process. One of the

problems is so called Degeneracy Problem caused by the increase of the variance of

the importance weights. After a certain number of recursive steps, all but one particle

will have negligible weight [29]. In order to measure the degeneracy of the algorithm,

effective sample size (Neff ) is introduced (Equation 2.49). If the effective sample size

(Neff ) is small, there is a severe degeneracy.

Neff =
Ns

1 + V ar(w∗ik )
(2.49)

where w∗ik = p(xi
k|z1:k)

q(xi
k|xi

k−1,zk)
and 1 ≤ Neff ≤ N .

There are approaches for solving degeneracy problem. One of the proposed ap-

proaches is resampling. Resampling eliminates the samples having low importance

weights and multiplies the samples having high importance weights. Approximate

discrete representation of p(xk|z1:k) is resampled N times to generate a new sam-

ple set. The generated set is an identically and independently distributed and the

weights are reset to wi
k = 1

Ns
.

Another approach to solve the degeneracy problem is good choice of the impor-

tance density. Choosing an optimal importance density q(xk|xi
k−1, zk) minimizes the

variance of w∗ik . It has been shown that the optimal importance density function can

be obtained as Equation 2.50 [30].
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q(xk|xi
k−1, zk)opt = p(xk|xi

k−1, zk) =
p(zk|xk|xi

k−1)p(xk|xi
k−1)

p(zk|xi
k−1)

(2.50)

This importance density is optimal because for a given xi
k−1, wi

k takes the same

value whatever sample is drawn from q(xk|xi
k−1, zk)opt. Hence the variance of w∗ik is

equal to 0.

Both of the proposed solution to the degeneracy problem have some drawbacks

and lead to new problems. In the resampling approach, the particles with the high

importance weights are statistically selected many times which leads to loss of diver-

sity among the particles. Choosing optimal importance density requires to sample

from p(xk|xi
k−1, zk) and to evaluate the integral over the new state. Generally doing

either of the operations may not be possible.

2.2.5.2 Conditional Density Propagation (CONDENSATION) Algorithm

Conditional Density Propagation (CONDENSATION) Algorithm is used for detect-

ing and tracking the contour of the objects moving in a cluttered environment. Con-

densation applies factored sampling iteratively to the successive images in a se-

quence [31]. Since the algorithm is iteration of factored sampling over time, the out-

put is a set of weighted samples sn
t , wn

t , n = 1, ...., N approximating the state density

p(xt|Zt).

The steps of the algorithm are as follows (Figure 2.4):

• At the beginning of each time step, the sample set representation of the pre-

vious time step p(xt−1|Zt−1) is available as [sn
t−1, w

n
t−1, n = 1, ...., N ]. The prior

density approximation is obtained by sampling N times from sn
t−1. In this step,

the samples with high importance weights can be selected more than once. The

sample size is fixed with N so that the running time of the algorithm is fixed.

• Each element of the new sample set goes into predictive step. First, each el-

ement undergoes drift. The drift part of the predictive step is deterministic.

Hence identical elements in the set undergo same drift. Then, diffusion part of

the predictive step is executed. The diffusion part contains random features.

Each element undergoes its own independent Brownian motion step.
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• After the previous steps, the sample set (sn
t ) is generated without the associated

weights. In measurement step, the importance weights are computed from the

measurement density p(zt|xt). Finally the sample set representation [sn
t , wn

t ] of

the state density p(xt|Zt) is obtained.

Figure 2.4: One time step in the CONDENSATION Algorithm

In this section, the approaches in the detecting motion step of the visual analysis

of motion framework are discussed. Some of the methods and the algorithms are

explained in details to explain the basis of the tracking motion process. In the next

section, the final step of visual analysis of motion framework, Generating High Level

Descriptions of Motion, is reviewed.

2.3 Generating High Level Descriptions of Motion

Final step of the framework is generating high level descriptions for motion. The pre-

vious steps (Detecting Motion and Tracking Motion) make use of only the information

obtained directly from the spatiotemporal image data. Some statistical foundations
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are applied on the image data. High level description generation step introduces

interpretation of the extracted information. The previous steps can be considered

as part of perception process while this step is the point where the cognition pro-

cess begins. Artificial intelligence, natural languages and computer vision work in a

collaboration to describe the motion in a higher level with the daily used words.

The idea of representing visual motion with the words in natural languages is the

subject of many researches in the literature. One of them is the motion classification

work of Nagel [32]. Nagel classified motion into five levels: change, event, verb, episode

and history . Change is described as a discernable motion in a sequence. An event is

a change which is considered as a primitive of more complex descriptions. Verb de-

scribes an activity, episode describes complex motions involving several actions and

history is the extended sequence of related activities. The terms are related with story

understanding. The aim is to obtain conceptual descriptions by using natural lan-

guage.

Bobick [3] introduced an alternative classification for motion. The categorization

is as movement, activity and action. Movement is described as the consistent motion

characterized by a definite space - time trajectory. The only required knowledge is

the motion. Activity is the statistical sequences of the movements. Action relates the

semantic primitives to the context of the motion.

Gonzales et. al. [5] proposed a taxonomy used in analysis of human motion. It

is a combination of the taxonomies of Nagel [32] and Bobick [3]. Motion is classified

into four levels: movement, action, activity and situation. Movement represents a change

in the posture or location of human. Movement is not related with the context. Action

is a temporal series of human movements (running, jumping, bending and etc.). Ac-

tivity is defined as a sequence of one or several human actions. Sequence relates the

contextual information with the motion. It is defined as an activity that acquires a

meaning in a specific scene.

Generated descriptions can be used in recognizing, predicting or querying the

actions. Action recognition is one of the most popular application area in which high

level motion descriptions are widely used.
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2.3.1 Action Recognition

The aim of action recognition is to analyze and recognize motion patterns and pro-

duce a high level description of actions and interactions. In order to analyze and

recognize the motion patterns, typical actions should be represented as reference se-

quences. Then test sequences are compared with the reference sequences for recog-

nizing action. The approaches in action recognition are classified into two groups:

template matching and state space approaches.

Template matching approaches convert image sequences into static shape pat-

terns. The patterns are compared with the stored action prototypes to recognize the

performed action.

Polana and Nelson [33] utilized low level features of motion for the recognition

of activities. A spatio-temporal motion magnitude template is used as a basis for

activity recognition. Optical flow fields between successive frames are computed to

segment and track the walking actor. The flow frames are divided into spatial grids

and motion magnitude of each grid cell is accumulated to form the feature vector

used in activity recognition.

The work of Bobick and Davis [34] use template matching to represent and recog-

nize actions. In their work, Motion Energy Images (MEI) representing where motion

occurs in the image sequence and Motion History Images (MHI) representing how

motion in the image sequence is moving are computed (Figure 2.5).

MEI and MHI are then used for constructing a template. The system is trained

with image sequence samples of the actions obtained from a variety of viewing an-

gles. Then statistical descriptions of MEI and MHI for each view/action combination

are computed using moment based features. The moment descriptions of the motion

is obtained. Action recognition process is done via computing Mahalanobis distance

between the input moment description and the prestored known actions.

Template matching approaches have simple implementation and do not involve

complex computations. However they are viewpoint dependent and sensitive to

noise and variations of time intervals of movements.

State space approaches define each static posture as a state. Based on certain

probabilities, transitions between the states are defined. Motion sequence is a set of

state transitions between the states. State space approaches have a wide usage in the
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(a)

(b)
Figure 2.5: (a)Motion energy images (b)Motion history images

analysis of temporal series. Hidden Markov Model (HMM) [35] is the most repre-

sentative method used in analysis. HMM is used in construction of the states and

transition rules. Yamato, Ohya and Ishii [36] introduce a human action recognition

method based on HMM.

State space approaches solve some of the problems of template matching ap-

proaches. However state space approaches involve complex iterative computations.

Selecting proper number of state to represent the static postures and dimensions of

feature vectors describing states are difficult issues.

28



CHAPTER 3

HUMAN MOTION ANALYSIS

The general framework of visual analysis of motion is discussed in the previous chap-

ter. In this chapter, we will examine human motion.

Motion can be can be divided into two groups according to body structure of the

object of interest (Figure 1.2):

• Rigid Motion: The moving object preserves all distances and angles during the

action. The deformations are neglected. The motion can be represented with

a single dynamic system and all parts of the moving object perform the action

according to same dynamic system.

• Non-Rigid Motion: Deformations, articulations and bending are introduced

into the motion analysis. The parts of the moving object may perform different

actions independent from each other.

Articulated motion is a special kind of non-rigid motion. It may be considered as

a piecewise rigid-motion. The moving object is a composition of several rigid body

parts connected at joint points. The rigid parts perform rigid motion. However, the

overall motion is not rigid. Humans perform articulated motion.

Human motion analysis can also be divided into different categories according

to viewing aspects such as single or multi camera capturing, monocular or stereo vi-

sion, stationary or moving camera motion analysis. The most common classification

is based on body structure analysis. The works in the literature can be classified as

model based and non-model based.(Figure 3.1)
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Figure 3.1: Human motion analysis classifications

The general framework for both model and non-model based approaches in-

volves the following steps: feature extraction, feature correspondence and high level

processing (Figure 3.2).

Figure 3.2: The framework of visual analysis of human motion

Model based and non-model based approaches differ only in feature correspon-

dence process. At model based human motion analysis, there is a priori model and

image sequences are matched to model. At non-model based approaches, estimation

of features such as position, joint point angles, color, texture is used to find corre-

spondence between successive frames.

In this chapter, the approaches in human motion analysis are reviewed. The work

in the literature based on model and non-model based approaches are reviewed. In

Section 3.1, model based approaches are explained. In Section 3.2, non-model based
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approaches are examined. Finally, the application areas of human motion analysis

and the sample applications are summarized in Section 3.3.

3.1 Model Based Approaches

There is a priori model to represent the observed object in model based human mo-

tion analysis approaches. The images in the sequences are matched with the priori

model for feature correspondence. The models are generally represented as stick fig-

ures, 2D contours or 3D volumetric models. Type of the model used in modeling

affects the features used in analysis.

The simplest representation of the human body is obtained by using stick figures.

The human body is represented as line segments and joints representing the artic-

ulating features. The motion at the joint points provide the motion information of

whole figure.

In ASpaces work [5] [6], Gonzales et al. represent human posture as a stick figure

which is a composition of ten rigid body parts. The rigid parts are connected to each

other by joints in a hierarchial manner.

In the work of Akita [4], it is assumed that the movement of the human is known

a priori as a set of key frames which are stick figure representations of the human

poses.

In 2-D representations, the priori model is usually a stick figure wrapped around

with ribbons or blobs.

Niyogi and Adelson [7] [8] use deformable structures (contours in X-T space and

surfaces in X-Y-T space) to find human silhouettes. They analyze the patterns gener-

ated by the human motion to estimate the parameters of a simple stick figure model.

The generated model is used for gait recognition.

Wren et al. [22] model and track human body using a set of blobs in real-time

person finder system (Pfinder)(Figure 3.3).

The blobs are described with spatial coordinates (x,y) and color components (Y,U,V).

Each blob correspond to a body part of human such as head,hands and feet. Pfinder

system uses a 2D contour shape analysis to identify the body parts. Tracking is ac-

complished by following an analysis loop. The analysis loop predicts the appearance

of the human in the new image then resolves the membership of each pixel to one of
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Figure 3.3: Blob representation in Pfinder.

the blobs and updates the statistical model.

In 3-D models, human body generally is represented with a skeletal structure and

a flesh surrounding the skeletal structure. The skeletal structure generally is a stick

figure which is a collection of segments and joints. The flesh surrounding the skeletal

structure can either be surface based (polygons) or volumetric (cylinders).

Badler and O’Rourke [11] use overlapping spheres for modeling human. There

is a trade-off between the accuracy of the model and the number of parameters used

in modeling. In the general human motion analysis framework, it is not necessary to

model the human body very accurately. The focus should be on the overall motion.

In the following part, details of ASpaces of Gonzales et al. [5] will be discussed

as an example for model-based human motion analysis which uses features of stick

figure representations of human posture for motion analysis.

3.1.1 ASpaces

In ASpaces [5] [6], Gonzales et al. consider human actions as a sequence of postures.

Human postures are represented with stick figures. The stick figures are described

in polar coordinates to handle the non-linearities of posture variations. The work is

described as a human action recognition method in a generic image sequence evalua-

tion framework. Mixture of knowledge based classifications of Nagel [32] and Bobick

[3] is used in analysis and recognition of human motion (Section 2.3).

The first step of the analysis is training phase. Postures of different humans are

used in building action spaces in training phase. Each human posture is represented

as a stick figure with ten rigid body parts (torso, head, two primitive part for each

arms, two primitive part for each leg) and joints connecting the parts. Body parts are

connected by joints in a hierarchical manner (Figure 3.4).
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Figure 3.4: Human body model

The stick figure is described with the end points of the limbs.

ps = (x1, y1, ..., x11, y11)T (3.1)

However cartesian coordinate representation of the joints leads to problems at

non-linear variations of the joints. Hence absolute angles of the limbs are computed

and the stick figure is represented in polar coordinates. (Figure 3.5)(Equation 3.2, 3.3

and 3.4).

Figure 3.5: Human body model represented in terms of ten angle

θ = tan−1(
yi − yj

xi − xj
) (3.2)

Θ = (θ1, θ2, ..., θ10)T (3.3)

xs = (u,Θ)T (3.4)
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where u is hip center coordinate.

After the representation of each posture in an action is obtained, the aSpace is

built. An action is described by a sequence of postures of different people performing

same action.

A = x1, ..., xn (3.5)

The mean posture is subtracted from each sample

Ā = x1 − x̄, x2 − x̄, ..., xn − x̄ (3.6)

Covariance matrix of Ā is computed

∑
= ĀĀT (3.7)

Eigenvectors (ei) and eigenvalues (λi) of
∑

are computed. Each eigenvector cor-

responds to a mode of variation of the posture during the action. The smallest num-

ber of eigenvectors which best describe the large portion of the total variance of pos-

ture sequence are selected. Each posture is represented as a combination of the mean

body posture and the eigenvectors. The compact representation of an action which

consist of the eigenvectors (E) and the mean posture of the action (x̄) is called as

aSpace (Equation 3.8).

A = (E, x̄) (3.8)

Test sample is projected onto the action space for action recognition. The distance

between the projected sample and aSpace is computed. Distance values are metrics

for measuring the similarity of actions.

In ASpaces, the human posture is represented in terms of the orientations of the

limbs and the coordinate of the hip. Since polar coordinates are used, the represen-

tation is invariant to translation, rotation and scaling. A nice approach is proposed

based on simple stick figure representation of human posture and benefits of Point

Distribution Model [35].
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3.2 Non-Model Based Approaches

The previous part described the human motion analysis approaches based on using

a prior human body model. There are approaches analyzing human motion with-

out using a prior human model. Similar to model based approaches, the non-model

based approaches start with representing human body using geometric structures.

Stick figures, 2-D contours or 3-D volumetric structures are the most common repre-

sentations.

Stick figures are the most simple representations of human body. As mentioned

in the previous part, the stick figure representation is a collection of line segments

and joint points. The motion trajectories of the joint points are used in analysis of

motion. The idea of using motion of the joint points is first described in Moving

Light Display (MLD) work of Johansson [15]. Motion is described with the positions

of light displays placed on the joints of human body.

Human body can be represented as 2-D contours. Shio and Sklansky [37] use

ribbons for representing the parts of human body. Ribbons are matched with each

other in the sequence and ribbon sequences are built to obtain a shape description

of articulated objects. Kurakake and Nevatia [9] use ribbon structures to segment

people in motion.

In the following part, Real Time Human Motion Analysis by Image Skeletonisation of

Fujiyoshi et. al. [10] is reviewed as an example for non-model based human motion

analysis approach. They use a skeletal structure to represent human posture and

analyze the features of the skeletal structure for motion analysis.

3.2.1 Real Time Human Motion Analysis by Image Skeletonisation

Fujiyoshi et. al. [10] have done a work on real time motion analysis of targets; partic-

ularly humans; by using star skeletonization process which does not require a priori

human model. They use cyclic motion of legs and the posture of torso to classify and

recognize human movements. An adaptive background modeling is used for real

time target extraction. The result image of target extraction is preprocessed to clean

up the anomalies via morphological operations (Figure 3.6).
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Figure 3.6: Target preprocessing

The outline of the target is extracted by using a border following algorithm. The

skeletal representation of the target is extracted using local extremal points on bound-

ary. This skeletal structure is called as star skeleton (Figure 3.7).

Figure 3.7: Star skeleton

The extremal points accommodate cues for motion analysis. The lower extremal

points correspond to legs and cyclic motion of these points can be used in analysis of

human motion such as walking or running. The angle (θ) that lower extremal point

make with vertical is observed for cyclic motion detection (Figure 3.8).

Figure 3.8: Features of star skeleton
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The evaluation of angle (θ) demonstrates the cyclic nature of walking (Equation

3.9).

θ = tan−1(
lx − xc

ly − yc
) (3.9)

The star skeleton representation contains another cue for determining the posture

of a moving human. The inclination of torso can be approximated by the angle (φ) of

the uppermost extremal point at the target (Figure 3.8).

In this work, the posture information is used for human motion classification. If

the human is running, body tends to lean forward and the frequency of cyclic motion

is higher. This metrics are used in motion classification and recognition.

3.3 Application Areas

The approaches in the human motion analysis are summarized in previous sections.

The reviewed approaches have many usage in many applications in several applica-

tion areas. In the following part, some of the popular application areas and sample

applications are reviewed briefly.

3.3.1 Visual Surveillance

Visual surveillance applications deal with tracking the objects performing some spe-

cial actions or detecting the objects performing some unusual actions. Visual surveil-

lance applications are generally used in security sensitive areas such as battlefield

management systems, borders, banks and parking lots. Video Surveillance and Mon-

itoring (VSAM) [18], funded by Defense Advanced Research Projects Agency(DARPA),

is an automatic video understanding technology that enables a single user to monitor

activities in an area and alerts the user in case of unusualness. Systems for detecting

burglaries or suspicious actions in parking lots are being developed. These systems

involves tracking, face and gait recognition subsystems. These are called as smart

surveillance systems. The smart surveillance systems detect the presence of a human

in the area. The identity of the human is detected by using face recognition systems.

Then, the activities of the human are analyzed and what the person is doing is deter-

mined. The visual surveillance applications are not only applied in security systems.
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Grossmarkets use the systems for compiling consumer demographics. Traffic flow

can be measured by using the visual surveillance systems.

3.3.2 Virtual Reality

Human motion analysis is used in creating virtual worlds. With the development

of interactive spaces on the internet just like chat rooms, the systems interpreting

gesture, head pose and facial expressions are becoming popular. The users will be

able communicate without using text based methods.

3.3.3 Advanced User Interface

Advanced user interface applications are complementary part of speech recognition

and natural language understanding systems used in human-machine interface sys-

tems. Gestures, body poses and facial expressions of a human can be used in com-

munication. The system detects the presence of a human, then identifies who the

user is and initiates a communication according to the identity using personal infor-

mation and facial expressions. Advanced user interface applications can be used in

sign-language translation, gesture driven control systems.

3.3.4 Motion Analysis

There are various applications involving motion analysis. One of the possible appli-

cations is context based storage and querying of video databases. Motion analysis

is used in personal training systems for sports. The personalized training systems

observe the skills performed by the trainee and make suggestions for improvements.

Motion analysis systems are also used in choreography. High level descriptions of

human movements for the notation of dance are constructed. Computer graphics

area uses motion analysis to device realistic models for applications.
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CHAPTER 4

HUMAN MOTION ANALYSIS VIA AXIS BASED

REPRESENTATION

In the previous chapter, the approaches in human motion analysis are reviewed and

application areas are discussed briefly. In this chapter, we introduce a non-model

based human motion analysis scheme which is based on an axis-based representation

of human body and change of axial features through the frames.

In this work, we analyze articulated motion to generate high level, knowledge

based descriptions of motion. Following the terminology in knowledge based classi-

fication of motion (Section 2.3), we define action as temporal series of the change in

the human posture. We neither assume any predefined human model, nor use any

special motion capture system and represent motion without using motion fields. We

only use silhouettes and articulation coordinates to represent action.

In our human motion analysis scheme, performed action is considered as a se-

quence of human postures. Each posture is represented with an axis based repre-

sentation called disconnected skeleton [1] [38] which is essentially a collection of

isolated simple local symmetry branches organized around a unique shape center

(Figure 4.1). The features of local symmetry branches (the angle between symmetry

branches and the length of symmetry branches) are processed to extract the motion

information. Obtained information is used in analysis of human motion. The change

in the angle values between the symmetry branches constitute a pattern for an ac-

tion. The patterns are utilized to generate representations for actions. The generated

action representations are used in similarity analysis of the actions.

In disconnected skeleton representation, symmetry branches are classified as pos-

itive or negative according to Tari, Shah, Pien method [39]. Positive symmetry branches
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correspond to articulated body parts. In disconnected skeleton representation, a pos-

itive branch always merges with a negative branch. When they meet, both branches

terminate (Figure 4.1). The start point and disconnection point of a negative symme-

try branch stays stable under articulations. On the other hand, positive symmetry

branches move freely as a result of articulated motion.

Figure 4.1: Disconnected skeleton representation of human body

In the next section, we describe the representation of a single frame in a motion

sequence.

4.1 Representation of A Single Frame

In the proposed human motion analysis scheme, at each frame, disconnected skele-

ton representation of the posture is obtained. Recall that the angle between symmetry

branches and the length of symmetry branches contain the information about the ac-

tion. The features of symmetry branches of freely moving articulated parts (positive

branches) are examined to extract the information. As mentioned in previous section,

a positive branch merges with a negative branch and they both terminate when they

meet. Furthermore, a positive (negative) branch is always neighbored by a negative

(positive) branch. The angle between a positive symmetry branch and the nearest
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negative branch is used in motion analysis (Figure 4.2). Details of the computation

of feature values are described in the following part.

Vector, v1, is drawn from start point of negative symmetry branch (xs,ys) to end

point of negative symmetry branch (x2,y2). Similarly vector, v2, is drawn from start

point of negative symmetry branch (xs,ys) to end point of positive symmetry branch

(x1,y1).

Figure 4.2: Features of symmetry branches

The angle between the symmetry branches is computed as in Equation 4.1.

φ = arccos(v1.v2) (4.1)

where φ takes values between 0 and π in radians.

The length of the symmetry branch is computed as in Equation 4.2.

` = |v1| =
√

((x1− xs) ∗ (x1− xs)) + ((y1− ys) ∗ (y1− ys)) (4.2)

Lengths are normalized by dividing length of each symmetry branch to total

length of symmetry branches. Hence the sum of the lengths of the symmetry branches

is always equal to 1.
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There are five positive symmetry branches in the axial representation of human

body corresponding to the articulated body parts (one head, two arms, two legs)

(Figure 4.3).

Figure 4.3: Vector representations of symmetry branches

A single frame is represented with vectors storing the values of the computed

features (Equation 4.3 and 4.4).

φ =
[

φ1 φ2 φ3 φ4 φ5

]
(4.3)

` =
[

`1 `2 `3 `4 `5

]
(4.4)

Feature values are stored in the order of left arm, head, right arm, right leg and

left leg in the vectors φ and `.

Representation of a single frame in the proposed human motion analysis scheme

is described in this section. Representation of a frame sequence is described in the

following section.
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4.2 Representation of Sequence of Frames

After obtaining the representation of each frame in the sequence, the values are col-

lected to construct a trajectory showing the change of the angle during the course of

an action. Vector representation of each frame are brought together and the sequence

is represented as matrices θ and L (Equation 4.5). Each row of the matrices stores

the representation of the human posture at a specific frame and each column stores

the values of a specific feature corresponding to one of the five articulation points

through the course of the performed action.

θ =




φ11 φ12 φ13 φ14 φ15

. . . . .

. . . . .

. . . . .

φN1 φN2 φN3 φN4 φN5




L =




`11 `12 `13 `14 `15

. . . . .

. . . . .

. . . . .

`N1 `N2 `N3 `N4 `N5




(4.5)

where N is the number of frames in sequence.

As an example, some specific frames and trajectories of change of the feature

values for the case of left arm weaving are displayed in Figure 4.4 and 4.5.

Figure 4.4: Specific frames of left arm weaving action
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Figure 4.5: Feature trajectory graphics
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In Figure 4.5 , the trajectories of the change in the angle between the symmetry

branches and length of the symmetry branches corresponding to articulated body

parts (positive symmetry branches) are displayed. As observed from the graphics,

there is nearly no change in the feature values for the articulated parts which do not

move. However, for the left arm, there is a periodic change in the values displaying

the motion. There is also nearly no change in the length of the symmetry branches

since there is no self-occlusion and motion in the plane orthogonal to viewing plane.

The effects of self-occlusion and motion in the plane orthogonal to viewing plane are

discussed in Section 4.4.

The important thing in the proposed human motion analysis scheme is the trajec-

tories of the change in the feature values. Hence the obtained matrix representation

is preprocessed before the analysis operations. The median of each column is sub-

tracted from the the values in the columns. By this way, the variations of the change

in the feature values are used in the analysis of motion. The ”median” is used in

analysis to discard the effects of noise which causes extreme values in the trajectory.

After obtaining the representation of sequences of frames, the performed action

can be analyzed using this representation. In the following sections, the approaches

for the analysis of human motion based on the described representation are dis-

cussed.

4.3 Similarity Analysis of Actions

We propose a similarity analysis method for the actions. First the system is trained

for specific actions. Then the system can be queried with a test action to measure the

similarity of the test action with the trained actions. In this section, the details of the

similarity analysis are described.

A specific action is performed by different humans having different postural char-

acteristics and matrix representation of each performance is obtained. This part is

called as training phase. In this work, it is assumed that training sequences have

same number of frames to generate an accurate representation for motion.

Consequently, assuming T different training sequence, there are T matrix repre-

sentation for a specific action. The action space for the motion is computed by using

Principal Component Analysis [35]. Construction of action space has four steps:
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1. Convert matrix representations of motion sequences into row vectors. (Equa-

tion 4.6).

Q =
[

φ11 φ12 φ13 φ14 φ15 φ21 φ22 ..... φN4 φN5

]
(4.6)

2. Mean posture for the action, QM , is obtained and it is subtracted from each

training sequence. The matrix in Equation 4.7 is obtained.

D =




Q1 −QM

Q2 −QM

.

.

QT −QM




(4.7)

where T is the number of the training sample videos.

3. Covariance matrix of D is computed (Equation 4.8).

C = DDT (4.8)

4. Eigenvalues and eigenvectors of C are calculated. Each eigenvector (ei) has a

correspondence with the variation of posture during the action performance.

Corresponding eigenvalue (λi) is the measure of the variation. The smallest

number of eigenvalues covering an essential part of the total variation are cho-

sen. The corresponding eigenvectors and the mean posture construct a compact

representation for the action.

Consequently, the compact representation of the action is obtained. The data col-

lected in training phase and the compact action representation are used in similarity

analysis of actions. We call the analysis part of the scheme as analysis phase.

Similarity analysis of a test action has four steps:

1. Axis-based descriptions of the query sequence are formed.

2. The query sequence is aligned with the trained action sequence. In this work,

Dynamic Time Warping(DTW) [35] is used to compensate the difference in the
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speed of the actions. Details of Dynamic Time Warping (DTW) are explained in

Appendix.

3. The aligned trajectories are projected onto the action space.

4. The difference is computed. Different methods can be used for finding the

distance between the sequence. In this work, we used Euclidean Distance for

simplicity.

In this section, an approach for the similarity analysis of actions based on the

proposed human motion representation is described. There are also other inferences

about the human motion based on the examination of feature trajectories in the pro-

posed human motion representation. In the following section, we describe some of

these inferences.

4.4 Analysis of Feature Trajectories

In our motion analysis scheme, 3D effects of human body are neglected in the train-

ing phase. The information is retrieved from 2D silhouettes. However, in analysis

phase, the effects of 3D structure such as self occlusion and motion in the plane or-

thogonal to viewing plane are revealed.

4.4.1 Self-Occlusions

Self-occlusions occur when an articulated body part is partially hidden behind an-

other body part. In case of self occlusion, the coordinates of the start point of the

corresponding symmetry branches change significantly and the angle between sym-

metry branches gets significantly different values from the usual. As motion contin-

ues and articulated part becomes visible (it goes far away from occluding part), the

representation returns to normal and the trajectory starts to follow a usual pattern.

Self-occlusions result in discontinuities and sharp changes in both angle trajectories

of symmetry branches and relative length of articulated body parts.

Detecting self-occlusions reveals information about the position of the camera.

In case of a dynamic camera system (the camera can be translated and rotated), the

position of the camera can be changed to eliminate the self-occlusions.
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In Figure 4.6, some specific frames of a video containing an action having self-

occlusion are displayed. The moving arm (left arm) of the human is occluded by

the torso. As the motion continues, it goes away from the torso and the occlusion

disappears.

In Figure 4.7, the graphics of the trajectories of the angle and the length for artic-

ulated part are displayed.

The discontinuities in the trajectories alert self-occlusion and indicates that the

position of the camera is inappropriate to catch the performed action accurately. The

camera should be repositioned.

Figure 4.6: Frames of human motion having self-occlusion

(a) (b)
Figure 4.7: (a)Frame - theta (φ) graph of articulated body part (left arm) (b)Frame -

length graph of articulated body part (left arm)
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The camera is translated towards the articulated body part and rotated in the

opposite direction of translation. In Figure 4.8 , frames of the new situation are dis-

played. In Figure 4.9, the graphics of the trajectories of the angle and the length for

articulated part are displayed. There is again discontinuities in the graphics. But

the number of frames that have discontinuity has decreased. This indicates that, the

camera should be again repositioned to eliminate the self-occlusion.

Figure 4.8: Frames of human motion having self-occlusion

(a) (b)
Figure 4.9: (a)Frame - theta (φ) graph of articulated body part (left arm) (b)Frame -

length graph of articulated body part (left arm)
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The camera is repositioned again. In Figure 4.10 , frames of the final situation are

displayed. In Figure 4.11, the graphics of the trajectories of the angle and the length

for articulated part are displayed. As observed from the graphics, the discontinuities

has disappeared. Self-occlusion is eliminated by translating and rotating the camera.

Figure 4.10: Frames of human motion (Self-occlusion is eliminated)

(a) (b)
Figure 4.11: (a)Frame - theta (φ) graph of articulated body part (left arm) (b)Frame -

length graph of articulated body part (left arm)
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4.4.2 Motion In the Plane Orthogonal to the Viewing Plane

The proposed human motion analysis scheme also carries information about the mo-

tion orthogonal to the viewing plane. The information is hidden in the change of the

relative length of the articulated body parts during a video sequence. The length of

a symmetry branch is simply computed as the distance between its start point and

end point. As mentioned earlier, the length of articulated body part stays nearly con-

stant when the motion is parallel to viewing plane. If the length of articulated body

part changes as the angle stays stable, it implies a movement orthogonal to viewing

plane. Since the articulated body part comes nearer or goes further from camera, the

length changes.

Figure 4.12: Frames of human motion orthogonal to viewing plane

(a) (b)
Figure 4.13: (a)Frame - theta (φ) graph of articulated body part (left arm) (b)Frame -

length graph of articulated body part (left arm)
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In Figure 4.12, we display some specific frames of a video of a human weaving

his left arm towards the camera. Hence the movement is on the plane orthogonal to

the viewing plane. In Figure 4.13, the trajectories of angle and length are displayed.

The length changes through the motion while the angle stays nearly constant.

4.5 Connection to Related Works

As mentioned in Chapter 3, there are various approaches in the literature related

with visual analysis of human motion. The proposed approach in this thesis can be

considered as an example for non-model based approaches. In Chapter 3, two of the

works in the literature are reviewed in details; ASpace [5] and Real Time Human Motion

Analysis by Image Skeletonisation [10]. They are example works for model based and

non-model based approaches accordingly. These works are important to show where

our work stands in the literature.

In these works, human body is represented with skeletal structures and the fea-

tures of the skeletal representations are used in human motion analysis. In our work,

we also represent human body with an axis based skeletal structure and the features

extracted from the skeletal structure are used in human motion analysis.

Our approach differs from ASpace work in baseline of the analysis. ASpace is a

model based approach. A human body model is fit on the human posture at each

frame and the features are computed using the model.

Real Time Human Motion Analysis by Image Skeletonisation work bases the analy-

sis on the cyclic nature of the movement in the extreme point of the star skeleton

representation. Articulated body parts are not considered while analyzing the mo-

tion. In our approach, we also focus on the change of the features through the action

performance and analyze the nature of the change to extract information about the

performed action. The articulated parts of the human body have great importance in

our analysis. The analysis is based on the movement of articulated body parts.

Also our approach differs in the skeletal structure used in the representation of

human body in the analysis. In ASpace, human body is represented with a stick figure

composed of rigid body parts connected each other at joints. In Real Time Human

Motion Analysis by Image Skeletonisation, a special structure called as ”star skeleton”

is used in analysis. We use disconnected skeletons [1] [38] to represent human body
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which is more flexible structure compared with well known skeletal structures.

The proposed approach in this thesis also differs from other silhouette based ap-

proaches in the sense that initially ignored 3D effects of human body such as self-

occlusion and motion in the plane orthogonal to viewing plane are revealed in the

analysis.

4.6 Experimental Results

In this section, we will demonstrate the results of the experiments. In the experi-

ments, nine different human beings having different postural characteristics are used

for training our system. The training video sequences are all 160 frames length.

4.6.1 Similarity Analysis

The system is trained for five different actions in similarity analysis experiments.

Then the similarity of the training actions with each other is computed and confusion

matrix of the performed actions are constructed (Table 4.1). We present disconnected

skeleton representation of some specific frames of action sequence in Figure 4.14 -

4.18.

The performed five actions can be described briefly as follows:

• Action #1 - Left Arm Weaving: The human weaves his left arm from down to

up. There is no bending in the action. Some specific frames of the performed

action are displayed in Figure 4.14.

• Action #2 - Right Arm Weaving: The human weaves his right arm from down

to up. Some specific frames of the performed action are displayed in Figure

4.15.

• Action #3 - Both Arm Weaving: The human weaves his both arms from down

to up. There is no bending in the action. Some specific frames of the performed

action are displayed in Figure 4.16.

• Action #4 - Both Arm Weaving and Bending: The human weaves his left arm

from down to up. After a point, the human bends the elbows. Some specific

frames of the performed action are displayed in Figure 4.17.
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• Action #5 - Left Leg Weaving: The human weaves his left leg from down to up.

Some specific frames of the performed action are displayed in Figure 4.18.

Table 4.1: Confusion Matrix of Performed Actions

Action #1 Action #2 Action #3 Action #4 Action #5 Figures

Action #1 1.34 12.76 7.91 11.99 9.93 Figure 4.14

Action #2 13.06 1.81 9.17 10.73 9.80 Figure 4.15

Action #3 9.08 9.24 2.67 9.65 13.22 Figure 4.16

Action #4 11.45 12.15 9.64 1.86 10.74 Figure 4.17

Action #5 9.37 9.50 11.89 10.71 1.30 Figure 4.18

The distance is a metric of similarity of the actions. As observed from the confu-

sion matrix, the distances between similar actions are smaller.

Another action different from the five training actions is compared with the train-

ing sequences to decide to which action the performed action is more similar. In this

action, human weaves both his right arm and left leg simultaneously. Some specific

frames of the action performance are displayed in Figure 4.19. The results of the dis-

tance computation are displayed in Table 4.2. As observed from the results in the

table, the distances between the performed action and Action #2 (Right Arm Weav-

ing Action) and Action #5 (Left Leg Weaving Action) are smaller when compared

with the other distances indicating that the performed action is more similar to these

two actions compared with the other training actions.

Table 4.2: Test Action Similarity Analysis Results

Action #1 Action #2 Action #3 Action #4 Action #5

Test Action 12.98 5.34 10.04 12.56 8.43
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Figure 4.14: Frames of left arm weaving action performance

Figure 4.15: Frames of right arm weaving action performance
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Figure 4.16: Frames of both arm weaving action performance

Figure 4.17: Frames of bended both arm weaving action performance
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Figure 4.18: Frames of leg weaving action performance

Figure 4.19: Frames of test action performance

4.6.2 Self Occlusion Detection

In this experiment, the human weaves his left arm. The camera is shifted a bit right

and rotated about 50 degree to the left. Due to the position of the camera, the left

arm is self occluded by the torso at some specific frames. In Figure 4.6, some specific

frames of the action sequence are displayed. In Figure 4.7, the trajectories of the

features are displayed. The disconnected parts in the Frame - Theta graphics (Figure

4.7.a) correspond to the frames having self occlusion (frames: 1-20, 65-95 and 145-

160). As it can be observed in Frame-Length graph (Figure 4.7.b), the length of the

corresponding symmetry branch at the corresponding frames changes abruptly. As
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mentioned earlier, it should stay stable in ordinary cases.

Self-occlusion indicates that the viewing plane should be considered to grab the

action accurately. The position and rotation of the camera should be changed. The

camera is shifted a bit left and rotated about 20 degrees to the right. The frames of

the performed action in this new viewing position are displayed in Figure 4.8 and

the trajectories of the features corresponding to the left arm are displayed in Figure

4.9.

As observed from the trajectory graphics, self-occlusion has not disappeared but

number of the frames having self-occlusion has decreased (frames: 1-10, 75-85 and

155-160). Hence the camera is again shifted to left and rotated 30 degrees to the right.

The frames in this new situation are displayed in Figure 4.10 and the trajectories

of the features corresponding to the left arm are displayed in 4.11. This time, self-

occlusion disappeared.

4.6.3 Motion Orthogonal to the Viewing Plane

In this experiment, the human weaves his left arm towards the camera. Hence, the

motion is on the plane orthogonal to viewing plane. In Figure 4.12, some specific

frames of the action sequence are displayed. In Figure 4.13, the trajectories of the

features are displayed. The angle value stays almost stable. There are some variations

due to noise and the small changes in the start or end point location of the symmetry

branches. However, there is a continuous and severe change in the length. The length

of the symmetry branch corresponding to the moving arm get shorter as the arm

comes nearer to camera and then returns back to its original length. The change in

the length indicates the motion in the plane orthogonal to viewing plane.
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CHAPTER 5

SUMMARY and DISCUSSIONS

In this thesis, a potential use of disconnected skeletons in motion analysis is demon-

strated. A non-model based human motion analysis scheme is proposed. The par-

ticular structure of disconnected skeletal representation accommodates features re-

vealing the motion information. The trajectory of features defined with respect to

a part based coordinates are utilized to describe action. An action coding scheme

based on the descriptions obtained from analysis of the trajectories is presented. Tra-

jectories are aligned via Dynamic Time Warping (DTW) and compact action models

are generated via Principal Component Analysis. Generated models are used in ac-

tion recognition. The scheme works on 2D silhouettes and ignore 3D effects during

skeleton extraction step. However, initially ignored 3D effects such as self-occlusions

or motion in the plane orthogonal to the viewing plane can be detected during the

analysis step.

It may be argued that if we miss a feature at some frames, the trajectory will have

gaps and the gaps will lead to defects in the analysis. The problem can be solved

by using prediction algorithms such as Kalman Filters, simulation based approaches

(Chapter 2). The trajectory can be fitted into a functional model which will be used

to estimate the missing values.

The intend of the thesis is to study the usage of disconnected skeleton repre-

sentation in human motion analysis. We explored the features of the disconnected

skeleton structure and analyzed the behaviors of the features. We obtained good re-

sults revealing many cues about the human motion. The methods and the results are

discussed in the thesis. The future work will be to generate high level descriptions

for the performed actions and introduce contextual data to produce a more accurate
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descriptions for real life events. Another future work may be developing a template

matching based action recognition method based on the similarity analysis discussed

in Section 4.3.

We experimentally demonstrate the results of the proposed approach in action

similarity analysis, self-occlusion detection and detecting motion in the plane orthog-

onal to viewing plane in Chapter 4. The proposed method takes the advantages of

axis based representation human body to generate a motion analysis scheme.
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APPENDIX A

METHODS

A.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of the corner stone approach in data

analysis. PCA is a technique to reduce a multi-dimensional data set to a lower di-

mension while retaining as much as possible of variations present in the data set.

Relevant information from confusing data is simply extracted and complex data set

is reduced to a lower dimension. It transforms a number of correlated variable into

smaller number of uncorrelated variables. These variables are called as principal

components. First principal component accounts for the greatest variance in the data,

the second one accounts for the second greatest variance and so on. Data can be

compressed using obtained components. Number of dimension is reduced without

loosing much information. PCA has wide usage in many application areas as motion

analysis, face recognition, pattern finding, image compression. The steps followed in

PCA are as follows.

1. Collect Data: Multi dimensional data to be used in principal component anal-

ysis are collected.

2. Subtract Mean: Mean of collected data is computed and it is subtracted from

each sample. This step produces a data set having zero-mean.

3. Calculate Covariance Matrix: Covariance matrix for mean-subtracted data is

calculated to measure how much the dimensions vary from the mean with re-

spect to each other.

4. Calculate Eigenvalues and Eigenvectors of Covariance Matrix: Eigenvalues

and eigenvectors of covariance matrix is computed Eigenvectors identifies the
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patterns in the data. The lines characterizing data is extracted by finding eigen-

vectors.

5. Choosing Principal Components: Eigenvalues covering large portion of the

total variance in data is selected as principal components. The eigenvalues

are ordered from highest to lowest. The highest eigenvalue is called as first

principal component, second one is called as second principal component and

so on. Components having small eigenvalue can be ignored. Of course, there

is a loss of information by ignoring them however it is not significant. The final

data set has less dimension than the original.

A.2 Dynamic Time Warping

Comparing two or more sequences, finding the distance between them and measur-

ing the extent of difference has a vital importance in many application area. However

comparing the raw data of sequences may lead to incorrect results. The sequences

may have approximately same overall distribution but may not line up in a reference

axis. In order to find the similarity between the sequences, they should be warped

and aligned with each other. Dynamic Time Warping (DTW) is one of the methods

used for warping sequences. DTW is an algorithm for measuring similarity between

two sequences which may vary in time or speed. It has a wide usage area as gesture

recognition, data mining, robotics, speech processing, etc. Details of the algorithm is

as follows.

Suppose that there exists two sequences Q and R which have M and N elements

respectively.

Q = q1, q2, q3, ..., qM (A.1)

R = r1, r2, r3, ..., rN (A.2)

DTW constructs an M-by-N distance matrix. The (ith, jth) elements of distance

matrix contains the distance d(qi, rj) between the points of sequences. The aim is to

find a warping path W defining the mapping between the sequences.

65



W = w1, w2, w3, ..., wK (A.3)

The warping path should satisfy some constraints.

Boundary Condition : Warping path starts and finish in diagonally opposite cor-

ner cells of distance matrix. So w1 = (1, 1) and wK = (M, N)

Continuity :Allowable steps in warping path contains only adjacent cells. So for

wk(a, b), wk−1(â, b̂) is such that a− â ≤ 1 and b− b̂ ≤ 1.

Monotonicity : Points in W is monotonically spaced in time. So for wk(a, b),

wk−1(â, b̂) is such that a− â ≥ 0 and b− b̂ ≥ 0.

Under these constraints, the aim is to find the path which minimizes the warping

cost.

DTW (Q, R) = min

√∑K
k=1 wk

K
(A.4)

The solution to finding minimum distance is obtained easily by using dynamic

programming. The algorithm is as follows.

int DTWDistance(char q[1..m], char r[1..n], int d[1..m,1..n]) {

declare int DTW[0..n,0..m]

declare int i, j, cost

for i := 1 to n

DTW[0,i] := infinity

for i := 1 to m

DTW[i,0] := infinity

DTW[0,0] := 0

for i := 1 to m

for j := 1 to n

cost:= d[q[i],r[j]]

DTW[i,j] := minimum(DTW[i-1,j ] + cost, // insertion

DTW[i ,j-1] + cost, // deletion

DTW[i-1,j-1] + cost) // match

return DTW[m,n]

}
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Dynamic time warping is an useful and easy-to-implement method for warp-

ing sequences. By using dynamic programming, the cost of algorithm is reduced.

However there are some weakness in dynamic time warping. The algorithm only

considers the difference in time axis for sequences. However the sequences may also

differ in Y axis. The sequences may have different means. This problem is eliminated

by using offset translation methods. The sequences may have different scaling. It is

overcome by applying amplitudes scaling. These problems are related with global

differences affecting the entire sequences. However local differences between the

sequences also generate problems. A valley in a sequence may be deeper than in

other sequences. DTW algorithm try to explain this difference in terms of time axis.

This problem may also lead to matching a point which is part of raising trend in

one sequence to a point in other sequence which is part of falling trend. Derivative

Dynamic Time Warping Algorithm (DDTW) [40] overcomes the described problems.

The steps followed in DDTW are same as in DTW. The distance measure between

sequences is not Euclidean. The measure is square of the difference of the estimated

derivatives of qi and rj . Any of the approaches of derivative computation of a se-

quence can be used for DDTW. Keogh and Pazzani use simply following estimate

D[q] =
(qi − qi−1) + ((qi+1 − qi)/2)

2
(A.5)

This is simply the average of the slope of the line through the point in question

and its left neighbor, and the slope of the line through the left neighbor and the right

neighbor [40].
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