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ABSTRACT 

 

MODELING AND SIMULATION OF NAVIGATION SYSTEM WITH AN 

IMU AND A MAGNETOMETER 

 

 

 
KAYASAL, UĞUR 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Kemal ÖZGÖREN 

Co-Supervisor: Dr. Osman MERTTOPÇUOĞLU 

September 2007, 173 pages 

 

In this thesis, the integration of a MEMS based inertial measurement unit and a 

three axis solid state magnetometer are studied. 

 

It is a fact that unaided inertial navigation systems, especially low cost MEMS 

based navigation systems have a divergent behavior. Nowadays, many navigation 

systems use GPS aiding to improve the performance, but GPS may not be 

applicable in some cases. Also, GPS provides the position and velocity reference 

whereas the attitude information is extracted through estimation filters. An 

alternative reference source is a three axis magnetometer, which provides direct 

attitude measurements. 

 

In this study, error propagation equations of an inertial navigation system are 

derived; measurement equations of  magnetometer for Kalman filtering are 
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developed;  the unique method to self align the MEMS navigation system is 

developed. In the motion estimation, the performance of the developed algorithms 

are compared using  a GPS aided system and magnetometer aided system. Some 

experiments are conducted for self alignment algorithms. 

 

Keywords:  Inertial navigation system, magnetometer, MEMS, Kalman filter 
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ÖZ 

 

AÖB VE MANYETOMETRELİ BİR SEYRÜSEFER SİSTEMİNİN 

MODELLENMESİ VE BENZETİMİ 

 

 

 
KAYASAL, Uğur 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Kemal ÖZGÖREN 

Ortak Tez Yöneticisi: Dr. Osman MERTTOPÇUOĞLU 

 

Eylül 2007, 173 sayfa 

 

Bu tezde, MEMS tabanlı bir ataletsel ölçüm birimi ile üç eksenli bir 

manyetometrenin tümleştirilmesi  üzerinde çalışılmıştır. 

 

Bilindiği gibi desteklenmeyen ataletsel seyrüsefer sistemlerinin, özellikle ucuz 

MEMS tabanlı  seyrüsefer sistemlerin, ıraksayan bir yapısı vardır. Günümüzde 

çoğu seyrüsefer sistemi GPS ölçümlerini destek amaçlı olarak kullanmaktadır. 

Ancak, GPS ölçümlerinin kullanılamadığı durumlar bir çok sistem için mevcuttur. 

Ayrıca, GPS doğrusal konum ve hız bilgisi sağlarken, açısal konum bilgisi de 

kestirim filtreleri kullanılarak elde edilir. Alternatif bir destek kaynağı da üç 

eksenli manyetometre kullanımıdır. 
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Bu çalışmada, ataletsel seyrüsefer sisteminin  hata ilerleme denklemleri 

çıkartılmış; Kalman filtresinde kullanılmak üzere manyetometre ölçüm 

denklemleri türetilmiş; kendi kendine ilk hizalama algoritmaları hazırlanmıştır. 

Hareket halindeki kestirim performansları GPS ve manyetometre desteklemeleri 

kullanılarak karşılaştırılmıştır. İlk hizalama algoritmaları için deneysel çalışmalar 

yapılmıştır. 

 

Anahtar kelimeler: Ataletsel seyrüsefer sistemi, manyetometre, MEMS, Kalman 

filtresi 
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CHAPTER 1 

1 INTRODUCTION 

 

1.1 Motivation 

 

Inertial Navigation systems are widely used in several areas, (especially in 

military areas, e.g. guided munitions) since WW2. The high accuracy inertial 

navigation systems (e.g. dynamically tuned gyros, pendulous accelerometers, fiber 

optic gyros (FOG), ring laser gyros (RLG)) have high accuracy, but these systems 

are very expensive. (~10k$-100k$) [1]. 

 

MEMS (Micro Electro Mechanical System) technology is being widely used for 

the last ten years in inertial measurement systems. Nowadays, MEMS 

accelerometers are used in tactical grade systems. These sensors have high 

accuracies such as 0.01 m/s2 bias and they are very cheap (~1k$) relative to 

accelerometers with older technologies (~5-10k$). MEMS gyros are also widely 

used in many areas, they provide a cheap solution to inertial sensing, but 

unfortunately they are not mature enough to provide tactical grade (~1deg/hr bias) 

accuracy, where RLGs or FOGs can have such accuracy. MEMS gyros have high 

bias values (100-1000 deg/hr) and high noise (1-10deg/√hr), which results in 

cumulative errors in attitude solution [2]. Therefore, these gyros need some kind 

of aiding to preserve accuracy.  
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1.2 Current Applications and Drawbacks 

 

There are different aiding alternatives to aid MEMS IMUs. Most navigation 

systems use GPS as an aiding source, which provides position and velocity to the 

estimation filter. Attitude errors are indirect observables in these systems, 

requiring more time to have the errors to be converged in the estimation filter. [1, 

3] 

 

Magnetometers are generally used as a reference system for North finding 

purposes. In satellite attitude determination and control systems, magnetometers 

are used as measurement in estimation filters, in which attitude dynamics are used 

as the main system [4, 5, and 6]. In most of the military navigation systems, 

attitude dynamics cannot be modeled accurately enough to be used in Kalman 

Filter as these dynamics are very complex to be modeled in a linear filter [6]. 

Generally, attitude kinematics is modeled rather than the attitude dynamics. 

Therefore, main system states, the navigation errors and sensor errors are derived 

from inertial navigation systems. 

1.3 Objectives of the Thesis 

 

In this thesis, magnetometers are proposed as an aiding source to the low cost 

MEMS IMUs. In the proposed system, the inertial navigation system error 

propagation models are used as the system model. Nonlinear error models are 

developed; these models are linearized to be used in the estimation filter with 

appropriate assumptions. Magnetometers provide attitude data with the help of the 

reference magnetic field model. In this thesis, World Magnetic Model 2005 [7], 

which is the most recent magnetic model is used as the reference magnetic model 

of the world. This model is being widely used in satellite attitude determination 

systems. 
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In the proposed system, there are two modes of operation; namely alignment 

mode and navigation mode. High accuracy navigation systems can make self 

alignment, by using gravity vector and earth rotation rate as reference information 

[6]. In the low cost IMUs, the gravity vector may be used as reference but low 

accuracy gyros prevent the use of earth rate data, because these gyros have high 

bias values greater than the earth rotation rate, which make this rate unobservable.  

For low cost systems, there are different alignment algorithms. Transfer alignment 

requires a reference (master) navigation system (either an INS or GPS), which 

may not be used some cases, such as where there is no host system for transfer 

alignment, or where GPS signals are not available. [7]. 

 

In this thesis, a new alignment method is proposed. Instead of earth rotation rate, 

magnetometer measurements are used. In the alignment mode, the gravity vector 

and magnetometer measurements are used in an analytical method, known as 

coarse alignment, therefore reduce the attitude errors in a quick manner.  After the 

alignment mode, the navigation system can proceed into navigation mode. In the 

navigation mode, the INS uses only magnetometers as an aiding source. 

Magnetometers provide measurement data for attitude errors and angular rate 

errors. Thus, velocity, position errors and accelerometer error states are not 

observable. But the main disturbing factor in the navigation solution, the gyro 

based errors are estimated. As the system is aligned before entering into 

navigation mode, the initial attitude errors are small enough (even only coarse 

alignment is completed), thus linear error models can be used. The system 

performance is demonstrated by Monte Carlo simulations.  

1.4 Outline of the Thesis 

 

Chapter 1 gives an introduction and brief information about this thesis study. 
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In Chapter 2, fundamental information about Inertial navigation systems are 

presented. Inertial navigation mechanization equations, linear error model of 

inertial navigation and inertial measurement systems are given. 

 

In Chapter 3, magnetometer technology is introduced. Brief information about 

reference magnetic field, magnetometer types and error behavior of 

magnetometers are presented.  

 

In Chapter 4, Kalman filter and its implementation techniques are given. 

Advantages and disadvantages of the Kalman Filter is discussed. 

 

In Chapter 5, attitude determination with vector measurement algorithms are 

derived. Classical attitude determination algorithm with two vector measurements 

is given. Measurement equations for Kalman filter implementation are derived. A 

novel analytical  solution with one vector measurement and two gyros is 

introduced. 

 

In Chapter 6 and 7, the simulation studies are carried out. An alignment method 

for MEMS IMUs is tested by Monte Carlo simulations and experiments. Dynamic 

performance of the developed algorithms is simulated in an air defense missile 

case. 

 

In chapter 8, the summary of this study is given. Conclusions and 

recommendations for future works are presented in this chapter. 
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CHAPTER 2 

2    STRAPDOWN INERTIAL NAVIGATION 

SYSTEMS  

 

This chapter presents the fundamentals of strapdown inertial navigation systems 

(SINS). The inertial measurement unit is defined and the error sources of inertial 

sensors are given. Kinematic equations that are used in a strapdown inertial 

navigation system are derived. The linear error propagation model of SINS is 

derived with  some appropriate assumptions. 

 

2.1 Inertial Measurement Unit  

 

An inertial measurement unit (IMU) is a closed system that is used to detect 

attitude, location, and motion. Typically installed on aircraft or missiles, it 

normally uses a combination of accelerometers and angular rate sensors 

(gyroscopes) to track how the craft is moving and where it is. The term IMU is 

widely used to refer to a box, containing 3 accelerometers and 3 gyroscopes. The 

Accelerometers and gyros are placed such that their measuring axes are 

orthogonal to each other. They measure the so-called "specific forces [1, 2, and 3]. 
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Typically, an IMU detects the current acceleration and rate of change in attitude 

(i.e. pitch, roll and yaw rates) and then integrates them to find the total change 

from the initial position. IMUs typically suffer from the accumulated error. 

Because an IMU is continually adding detected changes to the current position, 

any error in the measurement is accumulated.  

 

An IMU is a self sufficient, autonomous system; that is, it does need any external 

electromagnetic signal to be operational, thus it can work in almost all 

environments (e.g. , underwater, indoor, and underground. Also, an IMU cannot 

be jammed like GPS. Unlike GPS, an IMU can provide very high data output rates 

(~1 kHz), which makes it possible to track high dynamic maneuvers [3].  

 

IMU errors result in cumulative navigation errors. High quality inertial sensors 

provide a more stable navigation solution with a burden in cost. On the other 

hand, low cost inertial sensors are cheap but suffer in accuracy. Other systems 

such as GPS (used to correct for long term drift in position), a barometric system 

(for altitude correction), or as proposed in this thesis, a magnetometer (for attitude 

correction) compensate for the limitations of an IMU. Of course, only attitude 

correction is not sufficient for high accuracy navigation, but this will improve the 

performance in a good manner as the main driving factor in a navigation error is 

attitude performance[1]. Note that most other systems have their own 

shortcomings which are mutually compensated for. 

 

Another shortcoming of IMUs is the initial alignment requirement. An inertial 

navigation system is a deduced reckoning navigation system, it integrates ordinary 

differential equations to obtain position, velocity and attitude data. Without the 

knowledge of the initial conditions, it is not possible to have acceptable 

navigation solutions. Several kinds of initial alignment algorithms depending on 

the platform of navigation system can be found in the literature [8, 9, 10]. 

2.1.1 IMU Technologies 

The basic sensors of an INS are configured in either of two ways [1, 2, 8, and 11]:  
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• Isolated from the vehicle rotations on servo controlled gimbals (“stabilized 

gimbals”);  

• Mounted directly to the vehicle (“strapdown”).  

 

In stabilized systems, which are not widely used recently, inertial sensors are 

mounted on a stable platform with three or two gimbals that is kept either non 

rotating with respect to an inertial frame or is rotated with a known rate to 

establish a reference frame. The outputs of the gyroscopes, which are angular 

rates of the body with respect to the inertial frame, are sent to torque motors 

commanding them to maintain the platform fixed with respect to a reference 

frame. Thus, the accelerometers on that stable platform provide the specific force 

of the body with respect to the reference frame. Since the accelerometers measure 

the specific force, which is the difference between the acceleration with respect to 

inertial frame and the acceleration due to gravitation, the local gravity should be 

calculated and added to the sensor outputs. The compensated outputs are 

integrated twice to provide the velocity and position of the body in the reference 

frame. Moreover, the gimbal angles provide the attitude of the body with respect 

to the reference frame. In strapdown inertial navigation systems (SINS), the 

inertial sensors are rigidly attached to the body. An analytical platform is 

established in a computer. The measurements provided by the gyroscopes are used 

to calculate mathematically the attitude of the body with respect to the reference 

frame then the attitude of the host platform is used to resolve gravity compensated 

accelerometer outputs. Then they are integrated twice to obtain velocity and 

position of body. The advantages of the SINS compared to stabilized inertial 

navigation systems are reduced cost, weight, and mechanical complexity. 

However, an increase in computing complexity occurs. Due to advances in 

computer technology this is not a disadvantage anymore. In this work, a 

strapdown inertial navigation system is considered.  
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Strapdown systems appeared in the mid 70’s when the computation power 

became sufficient to compute a virtual reference frame in real-time. Strapdown 

systems are typically more reliable and lower cost than gimbaled systems.  

 

Accelerometers fall into two main categories: 

  

• Force feedback or pendulous rebalanced accelerometers; and  

• Vibrating beam accelerometers.  

 

Gyroscopes are more diverse: 

 • Earlier designs consisted of metal wheels spinning in ball or gas bearings; 

 • Optical gyros were developed later and have counter-rotating laser beams either 

in an evacuated cavity (RLG: Ring Laser Gyro) or in an optical fiber (FOG: Fiber 

Optic Gyro); and 

 • Other designs use resonators of different shapes (bars, cylinders, rings, 

hemispheres) and are known under the generic name of Coriolis vibrating gyros. 

 

Currently, the most advanced such technique uses micro electro mechanical 

systems (MEMS) technology, enabling true solid-state sensors. MEMS offer the 

promise of a complete sensor and supporting electronics on a single integrated 

circuit chip. The basic materials often used by this technology are silicon or 

quartz. 

 

Sensors are often compared on the basis of certain performance factors, such as 

bias and scale-factor stability and repeatability or noise (random walk) [12]. The 

sensor selection is made difficult by the fact that many different sensor 

technologies offer a range of advantages and disadvantages while offering similar 

performances. Nearly all new applications are strapdown (rather than gimbaled) 

and this places significant performance demands upon the gyroscope (specifically: 

gyro scale-factor stability, maximum angular rate capability, minimum g-

sensitivity, high bandwidth). For many applications, an improved 

accuracy/performance is not necessarily the driving issue, but meeting the 
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performance at a reduced cost and size is. In particular, a small sensor size allows 

the introduction of guidance, navigation, and control into applications previously 

considered out of reach (e.g., artillery shells, 30-mm bullets). Many of these 

newer applications require production in much larger quantities at much lower 

cost.  In recent years, three major technologies in inertial sensing have enabled 

advances in military (and commercial) capabilities. These are the ring laser gyro 

(since ~1975), fiber optic gyros (since ~1985), and MEMS (since ~1995). The 

RLG moved into a market dominated by spinning mass gyros such as rate gyros, 

single-degree-of-freedom integrating gyros, and dynamically (or dry) tuned gyros, 

because it is ideal for strapdown navigation. The RLG was thus an enabling 

technology for high dynamic environmental military applications. Fiber Optic 

Gyros (FOGs) were developed primarily as a lower-cost alternative to RLGs, with 

expectations of leveraging technology advances from the telecommunications 

industry. FOGs are now beginning to match and even beat RLGs in performance 

and cost, and are very competitive in many military and commercial applications. 

However, apart from the potential of reducing the cost, the FOG did not really 

enable the emergence of any new military capabilities beyond those already 

serviced by RLGs. Efforts to reduce size and cost resulted in the development of 

small-path-length RLGs and short-fiber-length FOGs. MEMS Inertial sensors 

have the potential to be an extreme enabling technology for new military 

applications. Small size, extreme ruggedness, and potential for very low-cost 

means that numerous new applications will be able to incorporate inertial 

guidance, a situation unthinkable before MEMS [11]. 

 

2.1.2 Error Model of IMU 

In the literature, more than 20 different types errors are defined for IMU outputs 

[10, 11]. However, for the system point of view, most of these errors are out of 

concern. This is because, during the field use of an IMU, the combined effect of 

most errors can not be separated by just observing the raw IMU outputs. To 

localize each error sources, some specialized test methodologies (like Allen 

variance tests) should be incorporated and obviously this is not possible during an 
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active operation. Therefore, in this study, actual IMU errors are grouped 

according to their effects on the raw IMU outputs. Errors which represent similar 

output characteristics are modeled using just a single model based on the  

dominant error source belonging to that group. For instance, the quantization error 

of sensors was ignored and their effects on sensor outputs were represented by 

adjusting random walk variance in constructing models. This is because, it is 

impossible to distinguish these two errors by using sensor outputs recorded at a 

constant rate.   

 

The bias and scale factor error are the major error sources for inertial sensors. 

According to IEEE standards, the inertial sensor bias is defined as the average of 

the sensor output over a specified time measured at specified operating conditions 

that are independent of input acceleration or rotation. A scale factor is the ratio of 

a change in output to a change in the input to be measured. Both errors include 

some or all of the following components: fixed terms, temperature induced 

variations, turn-on to turn-on variations and in-run variations. The fixed 

component of the error is present each time when the sensor is turned on and is 

predictable. A large extent of the temperature induced variations can be corrected 

with suitable calibration. The turn-on errors vary from sensor turn-on to turn-on 

but remain constant without power-off. Therefore, they can be obtained from 

laboratory calibrations or estimated during the navigation process. Sensitive to 

dynamics changes and vibrations, the in-run random errors are unpredictable and 

vary throughout the periods when the sensor is powered on. The in-run random 

errors therefore cannot be removed from measurements using deterministic 

models and should be modeled by a stochastic process such as random walk 

process or Gaussian Markov process.   

 

The cross-coupling error is the error due to sensor sensitivity to inputs about axes 

normal to an input reference axis. Such an error arises through non-orthogonality 

of the sensor triad and is usually expressed as parts per million (ppm). For a low-

cost MEMS INS, the cross-coupling error is relatively small and negligible 

compared to other error sources. 
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The bias for a gyro/accelerometer is the average of accelerometer/gyro output 

over a specified time measured at specified operating conditions that have no 

correlation with input acceleration or rotation. The gyro bias is typically expressed 

in degree per hour (o/h) or radian per second (rad/s) and the accelerometer bias is 

expressed in meter per second square (m/s2 or g). The bias generally consists of 

two parts: a deterministic part called bias offset and a random part.  The bias 

offset, which refers to the offset in the measurement provided by the inertial 

sensor, is deterministic in nature and can be determined by calibration. The 

random part is called as bias drift, which refers to the rate at which the error in an 

inertial sensor accumulates with time. The bias drift and the sensor output 

uncertainty are random in nature and they should be modeled as a stochastic 

process. Bias errors can be reduced from the reference values, but their specific 

amount is range and type dependent. 

 

In addition to the above, there are two other characteristics used to describe the 

sensor bias. The first is the bias asymmetry (for gyro or accelerometer), which is 

the difference between the bias for positive and negative inputs, typically 

expressed in degree per hour (deg/h) or meter per second square [m/s2, g]. The 

second is the bias instability (for gyro or accelerometer), which is the random 

variation in the bias as computed over specified finite sample time and averaging 

time intervals. This non-stationary (evolutionary) process is characterized by a 1/f 

power spectral density. It is typically expressed in degree per hour (deg/h) or 

meter per second square [m/s2, g], respectively. 

 

The scale factor is the ratio of a change in the input intended to be measured. The 

Scale factor is generally evaluated as the slope of the straight line that can be fit 

by the method of least squares to input-output data. The scale factor error is 

deterministic in nature and can be determined by calibration. The scale factor 

asymmetry (for gyro or accelerometer) is the difference between the scale factor 

measured with positive input and that measured with negative input, specified as a 

fraction of the scale factor measured over the input range. A scale factor 
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asymmetry implies that the slope of the input-output function is discontinuous at 

zero input. It must be distinguished from other nonlinearities. In some inertial 

sensor designs, the scale factor itself is not a constant for all ranges of applied 

acceleration. For example, a nonlinear spring might cause the scale factor itself to 

vary with acceleration. This type of error is known as scale factor non-linearity, 

and if not compensated can lead to errors in indicated acceleration/angular rate 

which are proportional to the square (or higher power) of the actual 

acceleration/angular rate. 

 

The scale factor stability, which is the capability of the inertial sensor to 

accurately sense angular velocity (or acceleration) at different angular rates (or at 

different accelerations), can also be used to describe the scale factor. The Scale 

factor stability is presumed to mean the variation of scale factor with temperature 

and its repeatability, which is expressed as part per million (ppm). Deviations 

from the theoretical scale are due to system imperfections.  

 

The axes misalignment is an error resulting from the imperfection of mounting the 

sensors. It usually results in a non-orthogonality of the axes defining the INS body 

frame. As a result, each axis is affected by the measurements of the other two axes 

in the body frame. The axes misalignment can, in general, be compensated or 

modeled in the INS error equation. 

 

The noise is an additional signal resulting from the sensor itself or other electronic 

equipment that interferes with the output signals trying to measure. The noise is in 

general non-systematic and therefore cannot be removed from the data using 

deterministic models. It can only be modeled by stochastic process. The random 

noise is an additional signal resulting from the sensor itself or other electronic 

equipments that interfere with the output signals being measured. It is often 

considered time-uncorrelated with zero mean and modeled by a stochastic 

process. The INS noise level can be characterized by the average of the standard 

deviation of static measurements over few seconds. 
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Of above error sources, the bias has the largest impact on the INS navigation 

performance after a mechanization process [11, 12 and 13]. The accelerometer 

bias will result in a position error drifting with the square of time while the gyro 

bias will lead to a position error drifting with the cube of time.   

 

 

 

 
Figure 2.1 Typical IMU Error Behavior [13] 
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S= Scale factor errors 
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m= Misalignment errors 

 

Bias =Constant errors 

 

Rnd= Random noise errors 

 

In the above equations, acca  and gyrω  represent the actual IMU outputs whereas, 

Ta and Tω  denotes true values. Take notice that this error model is in a simplified 

form which otherwise can be written in nonlinear form and can include some 

other terms, such as scale factor nonlinearities, g2 dependent terms etc. 

 

 

2.2 Inertial Navigation System 

 

An inertial navigation system is a unit which gets inertial data (angular rate and 

acceleration) from an IMU, calculates position, velocity and attitude information 

with respect to a known grid system or reference frame by utilizing 6 degree of 

freedom kinematics equations. Basically, an INS continuously integrates 

acceleration and angular rates to obtain velocity, position, and angular position. 

Generally, inertial navigation systems have high bandwidth, high data output rate 

and high accuracy in short duration. 

 

An attitude-heading reference is a dead-reckoning system which provides 

continuous attitude, heading, position, and velocity information.  It is neither a 

slaved directional gyrocompass system nor a vertical gyroscope, but a 

compromise to both that provides low-accuracy position and velocity (but with 

unbounded errors) information. Advanced AHRS systems in use today employ 

strapdown ring laser gyros (RLG) and/or fiber-optic gyros; that is, the sensors are 

“bolted” to the aircraft structure and not isolated using gimbals.  
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Due to its nature, an INS/AHRS suffers from stability. Accelerometers and gyros 

have different kind of errors (bias, noise etc.). When an INS integrates inertial 

data, all errors in the inertial sensors accumulate, resulting in a performance 

decrease in long term. Also, any error in gravity and world shape models result in 

errors similar to sensor errors. However, an INS is perfect for short term 

navigation requirements. A navigation system designer should choose IMU 

performance specifications according to the following criteria; 

 

• Accuracy requirements 
• Dynamics of the host system 

 

The primary object is to determine the position and attitude accuracy 

requirements. Choosing a suitable set of inertial sensors is accomplished by 

optimizing between price and performance.  Through the integration process, all 

inertial sensor errors accumulate, thus as the total integration time increases, 

navigation errors accumulate. The dynamics of the platform (e.g. manoeuvres 

done by the host platform) excites some of the inertial sensor errors (scale factor 

errors, g dependent errors etc.).  

 

Nowadays, many integrated systems use GPS, TERCOM, DSMAC, star sensors 

etc. to have a stable position and velocity solution. [3, 11].  

 

2.2.1 Inertial Navigation Mechanization Equations 

In this part of the thesis, basic components of inertial navigation kinematics will 

be introduced. 

2.2.1.1 Reference Coordinate Frames 

 

Many reference frames are defined in inertial navigation systems. The IMU 

outputs (acceleration and rotational rates) are expressed in body coordinates, but 
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the velocity is generally expressed in navigation frames. In this section, the 

fundamental reference frames that are used in navigation systems are defined [19] 

 

2.2.1.1.1 Inertial Frame 

 

 The inertial frame (denoted as i frame), is an ideal coordinate frame, where the 

coordinate frame itself has no acceleration or rotational rates, in other words an 

ideal IMU gives zero output if it attached to an inertial frame. Unfortunately, an 

inertial frame is difficult to express in real world, so a quasi inertial frame is 

generally used. This quasi inertial frame has its origin at the centre of the Earth 

and axes that are non-rotating with respect to distant stars. Z axis is along the spin 

axis of the Earth, x axis points towards the mean vernal equinox, and y axis 

completes the famous right hand rule. 

 

2.2.1.1.2 Earth frame 

 

The Earth (e) frame has its origin at the centre of the Earth and axes fixed with 

respect to the Earth. X axis points toward the mean meridian of Greenwich in 

equatorial plane, Z axis is parallel to mean spin axis of the Earth and again Y axis 

completes the right hand rule. 

 

Earth frame continuously rotates with respect to inertial frame with an angular 

velocity of; 

 

[0 0 ]e
ieω = Ω         (2.3) 

 

Here,  Ω  is the angular speed of the earth. Its value is; 

 

Ω  =7.2921158 rad/day 
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In the Earth frame, the position of the host platform is expressed in terms of its 

latitude, longitude, and altitude. 

 

 

2.2.1.1.3 Navigation frame 

 

The navigation frame is a local geodetic frame which has its origin coinciding 

with that of the IMU, with x axis pointing toward geodetic North, its z axis 

orthogonal to the reference ellipsoid pointing downward, and again y axis 

complies the right hand rule. The Navigation frame is also known as North East 

down (NED) frame. 

 

2.2.1.1.4 Computer frame 

 

The computer frame is the frame that is used by the navigation computer.  With an 

ideal inertial navigation system (no IMU errors, no computational errors etc.), the 

computer frame is exactly the same as the navigation frame. In the real world, 

there is a difference between the navigation and computer frames. 

 

The transformation matrix between computer and navigation frames is expressed 

in navigation error equations. 

 

2.2.1.2 Coordinate Transformation 

 

A coordinate transformation is used to express the components of a vector in a 

different coordinate frame. Coordinate transformation matrices are orthogonal 

matrices and their determinants are equal to one provided that right-handed 

Cartesian coordinate systems are used.  There are different methods to transform a 

vector between different coordinate frames, such as direction cosine matrix, 
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quaternion etc. In this thesis, direction cosine matrices that are obtained by 

successive Euler rotations are used. 

 

2.2.1.3 Earth Shape Model 

 

In order to determine position on the Earth using inertial measurements, it is 

necessary to make some assumptions regarding the shape of the Earth. Owing to 

the slight flattening of the Earth at the poles, Earth is modeled as a reference 

ellipsoid which approximates more closely to the true geometry. Generally, 

WGS84 model [1, 2, 3 and 8] is used as the earth shape model. In this model, 

following parameters are introduced; 

 

R: The length of the semi major axis (~6378 km) 

 

(1 )r R f= − : The length of the semi minor axis  (~6356 km) 

 

( ) /f R r R= − : The flattening of the ellipsoid (~1/298.25) 

 

(2 )e f f= − : The major eccentricity of the ellipsoid (~0.08188) 

 

With these parameters defined, the meridian radius of curvature ( NR ) and  the 

transverse radius of curvature ( ER ) may be derived as; 

 
2

3
2 2 2

(1 )

(1 sin )
N

R eR
e L

−
=

−
         (2.4) 

1
2 2 2(1 sin )

E
RR

e L
=

−
        (2.5) 

Here, L is latitude. 
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2.2.1.4 Gravitational Acceleration Model 

 

As mentioned earlier, an accelerometer can only measure the difference between 

the gravitational acceleration and the acceleration of the body with respect to the 

inertial frame. In order to obtain the velocity and position data, an accurate model 

of the gravitational field is needed. In the related literature, there are different 

gravity models that are used in navigation applications. Ideally, the gravity vector 

is assumed to be acting vertically downwards to the reference ellipsoid, which is 

not the case in the real world due to anomalies. In this thesis, the model given in 

[11] is used. In this model, gravity at the surface of the reference ellipsoid (zero 

altitude) is given as; 

 
3 2 6(0) 9.7803267714(1 5.3024.10 .sin 5.9.10 .sin 2 )g L L− −= + −    (2.6) 

 

And the change of magnitude of gravity with respect to altitude is given as; 

 

2

(0)( )
(1 / )

gg h
h R

=
+

        (2.7) 

Here, h is gathered from INS outputs. 

 

2.2.1.5 Inertial Frame mechanization 

 

Dominant INS errors are caused by imperfect knowledge of initial conditions (for 

example, those existing after alignment) and by error propagation in time. The 

nine, nonlinear differential navigation equations (3 velocity, 3 position, 3 attitude 

equation) can be perturbed by a wide variety of error sources, not only those 

resulting from incorrect initial conditions. The perturbations of these equations, 

when kept small, can be shown to result in a linear set of differential equations. 

The most popular set of these equations is called the Pinson error model, named 

after the man who derived it [14, 15, 16]. 
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Remember that errors are both deterministic and statistical, and the statistical 

errors can only be estimated. Investigating the propagation of deterministic errors 

may provide a useful insight into system performance, but there is such a wide 

variety of error sources that one is never totally sure which ones are dominating 

the error response curves. 

 

 

In this system, it is required to calculate the vehicle speed with respect to earth, 

the ground speed, in inertial axes, denoted by i
ev . The differential equations for 

velocity, position and attitude can expressed as follows; 

 

 

. (2. )= − + × +n n b n
e b ie en e pv C a v gω ω       (2.8) 

 

=
+
N

N

VL
R h

          (2.9) 

 

sec( )
=

+
E

N

V Ll
R h

         (2.10) 

 

= − Dh V          (2.11) 

 

 

( )=n n b
b b nbC C ω          (2.12) 

where; 

 
n
ev : velocity of the host platform 

 

 L: latitude 

 

 l: longitude 
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n
bC : direction cosine matrix relating body and navigation frame. 

 

h: altitude 

 
na : acceleration to which the inertial measurement unit is subjected 

 

enω :Transport rate, whic can be expressed as; 

 

[ /( ) /( ) . tan( ) /( )]n
en E e N n E eV R h V R h V L R hω = + − + − +    (2.13) 

 

 

ieω : Earth rotation rate 

 

pg : Gravity vector 

 
b
nbω :The angular rate of the body with respect to the navigation frame 

 

 
b
nbω  can be expressed as the measured body rates ( b

ibω ) and estimates of the 

components of the navigation frame rate ( in ie enω ω ω= + ) ; 

 

 

.( )b b n n n
nb ib b ie enCω ω ω ω= − +        (2.14) 

 

 

Detailed derivation of the navigation mechanization equations are given in 

Appendix C. 
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2.2.2 Error Model of Inertial Navigation Systems 

 

The navigation computer of an INS is essentially a differential equation solver. 

The navigation mechanization equations represent a nonlinear, time varying 

system. This system is unstable in the sense of Liapunov. Therefore, every 

disturbance that affects the system causes the output errors to grow unbounded. 

The rate at which errors grow are determined by the source of error and the 

trajectory that system follows. For the INS systems, major error sources can be 

classified into 3 groups [10, 15]: 

 

1. IMU Errors (Input Errors) 

 

2. Initialization Errors (Initial state Errors) 

 

3. Computation Errors 

 

The discrete and quantized nature of navigation processors tends to produce some 

computational errors on navigation solution. This situation arises especially in 

high vibratory environments. The importance of this kind of error depends on the 

fact that this error can neither be estimated nor compensated. Therefore this error 

sets a lower limit in the accuracy of inertial navigation system.  For the real 

implementation (when real IMU increments are used), with the use of appropriate 

conning and sculling algorithms and sufficient processing frequency, 

computational errors can be reduced to very low levels. However, one should be 

very careful when designing a simulation environment in computer. In a computer 

simulation implementation, calculating simulated velocity and angle increments 

instead of acceleration and rotation rate can be very difficult under vibratory 

environments (i.e. vibrations in the host platform). Usually, this difficulty is 

handled by simply taking Euler integration of  the calculated acceleration and 

rotation rate to obtain associated increments. However, such an operation causes 

computational errors to grow significantly. Therefore, when developing a 
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simulation environment in computer, this point should always be considered, and 

necessary precautions should be taken to reduce the effect of computational errors 

during simulations. 

 

As the navigation mechanization equations are nonlinear, they cannot be applied 

to  a linear estimation filter, namely Kalman filter. That’s why the error model of 

navigation states. The error propagation equations are derived by first order 

perturbations assuming small attitude errors. The error model of attitude, velocity 

and position is expressed as follows; 

 

 

.= − − × +n n b n n n
b ib in inCγ δω ω γ δω       (2.15) 

 

( . ) . (2. )

(2. )

= × + − × × +

− + × +
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e b b e ie en

n n n
ie en e p

v C a C a v

v g

δ γ δ ω ε δω

ω ω δ δ
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= Dh Vδ δ          (2.17) 

 

/( ) . /( )= + − +N n N nL V R h V h R hδ δ δ       (2.18) 

 

.sec( ) /( ) .sec( ). tan( ). /( )
.sec( ). /( )

= + + +
− +

E e E e

E e

l V L R h V L L L R h
V L h R h

δ δ δ δ
δ δ

   (2.19) 

 

 
nγ :     Error misalignment vector that relates navigation and computer frame 

 

Lδ :  Error in latitude 

 

lδ  : Error in longitude 
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Vδ : Velocity error vector   

 

hδ  : Altitude error 

 
b
ibδω : Errors in gyro measurements 

 
n
inδω : Errors in n

inω , which is expressed as; 

  
n n n
in ie enδω δω δω= +         (2.20) 

 

2

2 2
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δ δ
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δ δ

    (2.21) 

 

[ sin( ) 0 cos( ) ]n T
ie L L L Lδω δ δ= −Ω −Ω      (2.22) 

 

The detailed derivation of the linear error equations are given in Appendix D. 
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CHAPTER 3 

3 MAGNETOMETERS 

 

3.1 World Magnetic Model 

World magnetic model (WMM)[7] is a tool to obtain the Earth’s ideal magnetic 

field model at any point on the Earth. WMM gives the model in terms of spherical 

harmonic series. The coefficients of the model is updated every five years. The 

outputs of the model are magnetic field values in NED components. The details of 

WMM 2005 is given in Appendix A 

3.1.1 Alternative Magnetic Field Model 

World magnetic field model is global model that is the model theoretically works 

in any point of the world, but having some problems An alternative model is 

proposed  with the following assumptions; 

 

• Magnetic field is approximately constant in a local field, i.e., the 

horizontal position change is limited to 10km, and vertical position change 

is limited to 1km. 

• The sensor errors are negligible. 

 

The mathematical relation between the  reference magnetic field and  the 

magnetometer measurements is as bellows; 
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.( )=N N B
BB C B         (3.1) 

Where 
NB = Reference Magnetic field given by WMM2005 
BB  = Magnetic field measurement by magnetometer 
N
BC  = Direction Cosine matrix relating navigation and body frames. 

If attitude information of the host platform ( N
BC ) and magnetometer 

measurements ( )BB  are known, it is possible to find the reference magnetic field 

vector in every navigated point.  In this alternative model, two error sources 

occur; 

 

• INS errors (gyro errors especially) 

• Magnetometer errors 

 

INS errors can be minimized by using multiple aiding sources (DGPS, DSMAC, 

TERCOM etc.). As it will be explained in this chapter, magnetometer errors are 

negligible. 

 

This method has two deficiencies arising from its assumptions. The developed 

method only works in a local navigation case (short range missiles, UAVs, mobile 

robots). On the other hand, neither the magnetometer nor the gyros are perfect 

sensors; the sensor errors will affect the magnetic field solution. High accurate 

gyros (e.g.,  Ring laser or fiber optic gyros) and magnetometers must be used. 

 

Although this method has some advantages to the WMM, it must be 

experimentally proven before it can be used. Difficulties in this process are as 

follows; 

• High Accuracy Magnetometer Requirement: In order to have an accurate 

model, the magnetometer should have high accuracy, 
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• DGPS aided navigation unit:  As it can be seen from equation 3.1, the 

accuracy of the resultant magnetic field model depends on the accuracy of 

the attitude information. High accuracy, navigation grade  (e.g.., RLG, 

FOG) gyros must be used to have an accurate model. 

 

Any error in attitude and magnetic field measurements will result in error in the 

resultant model, so the magnetometers and gyros should have very high accuracy. 

As these units are very expensive, the accuracy of this magnetic model could not 

be proven in this study. Thus, WMM 2005 will be used in this thesis. 

3.2 Magnetometer Types 

Magnetic sensors differ from most other detectors in that they do not directly 

measure the physical property of interest [24]. Devices that monitor properties 

such as temperature, pressure, strain, or flow provide an output that directly 

reports the desired parameter. Magnetic sensors, on the other hand, detect 

changes, or disturbances, in magnetic fields that have been created or modified, 

and from them derive information on properties such as direction, presence, 

rotation, angle, or electrical currents. The output signal of these sensors requires 

some signal processing for translation into the desired parameter. Although 

magnetic detectors are somewhat more difficult to use, they do provide accurate 

and reliable data — without physical contact [24].  

Magnetic sensors can be classified according to low-, medium-, and high-field 

sensing range. In this study, devices that detect magnetic fields <1 µG (micro 

Gauss) are considered low-field sensors; those with a range of 1 µG to 10 G are 

Earth's field sensors; and detectors that sense fields >10 G are referred to as bias 

magnet field sensors.  

A magnetic field is a vector quantity with both magnitude and direction. The 

scalar sensor measures the field's total magnitude but not its direction. The omni 

directional sensor measures the magnitude of the component of magnetization that 

lies along its sensitive axis. The bidirectional sensor includes direction in its 
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measurements. The vector magnetic sensor incorporates two or three bidirectional 

detectors. Some magnetic sensors have a built-in threshold and produce an output 

only when it is surpassed. 

 

3.3 Magnetometer Error Sources 

 

Magnetometer accuracy is affected by [25]: 

 

1. Magnetic sensor errors 

2. Temperature effects 

3. Nearby ferrous materials 

4. Variation of the earth's field 

 

Solid state magneto-resistive (MR) sensors available today can reliably resolve 

<0.07 mgauss fields. This is more than a five times margin over the 0.39 mgauss 

field required to achieve 0.01° resolution. Other magnetic sensor specifications 

should support field measurement certainty better than 0.005° to maintain an 

overall 0.01° heading accuracy. These include the sensor noise, linearity, 

hysteresis, and repeatability errors. Any gain and offset errors of the magnetic 

sensor will be compensated for during the hard iron calibration (discussed later) 

and will not be considered in the error budget. MR sensors can provide a total 

error of less than 0.1 mgauss [24, 25]. 

 

The temperature coefficient of the sensor will also affect the heading accuracy. 

There are two characteristics of temperature to consider—the offset drift with 

temperature and the sensitivity temperature coefficient. The sensitivity 

temperature coefficient will appear as a change in output gain of the sensor over 

temperature (Figure 3.1). MR sensors generally have sensitivity temperature 

coefficients that are well correlated, or matched—especially sensors with two (X, 

Y) axes in the same package. The matching temperature coefficients imply that 
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the output change over temperature of the X axis will track the change in output 

of the Y axis. This effect will cancel itself since it is the ratio of Y over X that is 

used in the heading calculation [Azimuth = arcTan(Y/X)]. For example, as the 

temperature changes the Y reading by 12%, it also changes the X reading by 12% 

and the net change is canceled. The only consideration is then the dynamic input 

range of the A/D converter. The magnetic sensor offset drift with temperature is 

not correlated and may in fact drift in opposite directions. This will have a direct 

affect on the heading and can cause appreciable errors. There are many ways to 

compensate for temperature offset drifts using digital and analog circuit 

techniques. A simple method to compensate for temperature offset drifts in MR 

sensors is to use a switching technique referred to as set/reset switching. This 

technique cancels the sensor temperature offset drift, and the dc offset voltage as 

well as the amplifier offset voltage and its temperature drift. The transfer curves 

for a MR magnetic sensor after it has been set, and then reset, are shown in Figure 

3.2. The set/reset modes are achieved by using an ac coupled driver to generate a 

bi-directional current 

 

 

 

 
Figure 3.1Magnetic sensor output temperature variation 
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Figure 3.2 Set and reset output transfer curves. 

 

 

 

The two curves result from an inversion of the gain slope with a common 

crossover point at the offset voltage. For the sensor in Figure 3.2, the sensor offset 

is –3 mV. This offset is not desirable and can be eliminated using the set/reset 

switching technique described below. Other methods of offset compensation are 

described in [6]. The sensor offset (Vos) can be eliminated by using a simple 

subtraction technique. First apply a set pulse, measure Happlied and store it as Vset—

Figure 3.3. Then apply a reset pulse and store that reading as Vreset. Subtract these 

two readings to eliminate Vos: 

 

Vset = S * Happlied + Vos        (3.2) 

Vreset = -S * Happlied + Vos        (3.3) 

Vset - Vreset = S * 2 * Happlied       (3.4) 

 

The sensor sensitivity (S) is expressed in mV/gauss. Note that equation (3.4) has 

no Vos term. This method also eliminates the amplifier offset as well. Another 

benefit is that the temperature drift of the sensor offset and the amplifier is 

eliminated. Now, a low cost amplifier can be used without concern for its offset 
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effects. This is a powerful technique and is easy to implement if the readings are 

controlled by a low cost microprocessor. Using this technique to reduce 

temperature effects can drop the overall variation in magnetic readings to less than 

0.01%/°C. This amounts to less than 0.29° effect on the heading accuracy over a 

50°C temperature change [25]. 

 

 

 

 
Figure 3.3 Set and reset effect on sensor output (Vout)  [25]  

 

 

 

Another consideration for heading accuracy is the effects of nearby ferrous 

materials on the earth's magnetic field. Since heading is based on the direction of 

the earth's horizontal field (Xh,Yh), the magnetic sensor must be able to measure 

this field without influence from other nearby magnetic sources or disturbances. 

The amount of disturbance depends on the material content of the platform and 

connectors as well as ferrous objects moving near the magnetometer. When a 

ferrous object is placed in a uniform magnetic field it will create disturbances as 

shown in Figure 3.4. This object could be a steel bolt or bracket near the 

magnetometer or an iron door latch close to the magnetometer. The net result is a 

characteristic distortion, or anomaly, to the earth’s magnetic field that is unique to 
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the shape of the object. Before looking at the effects of nearby magnetic 

disturbances, it is beneficial to observe an ideal output curve with no disturbances. 

When a two-axis (X,Y) magnetic sensor is rotated in the horizontal plane, the 

output plot of Xh vs. Yh will form a circle centered at the (0,0) origin (see Figure 

3.5). If a heading is calculated at each point on the circle, the result will be a linear 

sweep from 0° to 360°. 

 

 

 

  
Figure 3.4 Ferrous object disturbance in uniform field. 

 

 

 

 
Figure 3.5 Magnetic sensor outputs (X,Y) rotated horizontally in the earth’s field 

with no disturbances. 
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The effect of a magnetic disturbance on the heading will be to distort the circle 

shown in Figure 3.6. Magnetic distortions can be categorized as two types—hard 

iron and soft iron effects. Hard iron distortions arise from permanent magnets and 

magnetized iron or steel on the magnetometer platform. These distortions will 

remain constant and in a fixed location relative to the magnetometer for all 

heading orientations. Hard iron effects add a constant magnitude field component 

along each axes of the sensor output. This appears as a shift in the origin of the 

circle equal to the hard iron disturbance in the Xh and Yh axis (see Figure 3.6). 

The effect of the hard iron distortion on the heading is a one-cycle error and is 

shown in Figure 3.7. To compensate for hard iron distortion, the offset in the 

center of the circle must be determined. This is usually done by rotating the 

magnetometer and platform in a circle and measures enough points on the circle 

to determine this offset. Once found, the (X,Y) offset can be stored in memory 

and subtracted from every reading. The net result will be to eliminate the hard 

iron disturbance from the heading calculation; as if it were not present. The soft 

iron distortion arises from the interaction of the earth’s magnetic field and any 

magnetically soft material surrounding the magnetometer.   Like the hard iron 

materials, the soft metals also distort the earth’s magnetic field lines. The 

difference is the amount of distortion from the soft iron depends on the 

magnetometer orientation. Soft iron influence on the field values measured by X 

and Y sensors are depicted in Figure 3.8. Figure 3.9 illustrates the magnetometer 

heading errors associated with this effect—also known as a two cycle error. 
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Figure 3.6 Hard iron offsets  

 

 

 

 
Figure 3.7  Heading error due to hard iron effects  
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Figure 3.8 Soft iron distortion  

  

 

 

 
Figure 3.9 Heading error due to soft iron effects  

 

 

 

Compensating for soft iron effects is a bit more difficult than for hard iron effects. 

This involves a bit more calculation than a simple subtraction. One way to remove 

the soft iron effect is to rotate the reading by 45°, scale the major axis to change 
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the ellipse to a circle, and then rotate the reading back by 45°. This will result in 

the desired circular output response shown in Figure 3.9. Most ferrous material in 

vehicles tends to have hard iron characteristics. The best approach is to eliminate 

any soft iron materials near the magnetometer and deal with the hard iron effects 

directly. It is also recommended to degauss the platform near the magnetometer 

prior to any hard/soft iron compensation. Some magnetometer manufacturers 

provide calibration methods to compensate for the hard and soft iron effects. Each 

calibration method is associated with a specified physical movement of the 

magnetometer platform in order to sample the magnetic space surrounding the 

magnetometer. The calibration procedure can be as simple as pointing the host in 

three known directions, or as complicated as moving in a complete circle with 

pitch and roll, or pointing the host in 24 orientations including variations in tilt. It 

is impossible for a marine vessel to perform the 24- point calibration, but easy for 

a hand-held platform. If the magnetometer is only able to sample the horizontal 

field components during calibration, then there will be uncompensated heading 

errors with tilt. Heading error curves can be generated for several known headings 

to improve heading accuracy Hard and soft iron distortions will vary from 

location to location within the same platform. The magnetometer has to be 

mounted permanently to its platform to get a valid calibration. A particular 

calibration is only valid for that location of the magnetometer. If the 

magnetometer is reoriented in the same location, then a new calibration is 

required. A gimbaled magnetometer can not satisfy these requirements and hence 

the advantage of using a strapdown, or solid state, magnetic sensor. It is possible 

to use a magnetometer without any calibration if the need is only for repeatability 

and not accuracy. 

 

The final consideration for heading accuracy is the variation, or declination, angle. 

It is well known that the earth's magnetic poles and its axis of rotation are not at 

the same geographical location. They are about 11.5° away from each other. This 

creates a difference between the true north, or grid north, and the magnetic north, 

or direction a magnetic magnetometer will point. Simply it is the angular 

difference between the magnetic and true north expressed as an Easterly or 
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Westerly variation. This difference is defined as the variation angle and is 

dependent on the magnetometer location—sometimes being as large as 25°. To 

account for the variation simply add, if Westerly, or subtract, if Easterly, the 

variation angle from the corrected heading computation. The variation angles have 

been mapped over the entire globe. For a given location the variation angle can be 

found by using a geomagnetic declination map or a GPS (Global Positioning 

System) reading and an IGRF model. The International Geomagnetic Reference 

Field (IGRF) or World Magnetic Model (WMM) is a series of mathematical 

models describing the earth's field and its time variation After heading is 

determined, the variation correction can be applied to find true north according to 

the geographic region of operation. 

 

The performance of a magnetometer will greatly depend on its installation 

location. A magnetometer depends on the earth’s magnetic field to provide 

heading. Any distortions of this magnetic field by other sources should be 

compensated for in order to determine an accurate heading. Sources of magnetic 

fields include permanent magnets, motors, electric currents—either dc or ac, and 

magnetic metals such as steel or iron. The influence of these sources on 

magnetometer accuracy can be greatly reduced by placing the magnetometer far 

from them. Some of the field effects can be compensated by calibration. However, 

it is not possible to compensate for time varying magnetic fields; for example, 

disturbances generated by the motion of magnetic metals, or unpredictable 

electrical current in a nearby wire. Magnetic shielding can be used for large field 

disturbances from motors or speakers. The best way to reduce disturbances is 

distance. Also, never enclose the magnetometer in a magnetically shielded 

metallic housing. 

 

The effects of nearby magnetic distortions can be calibrated out of the 

magnetometer readings once it is secured to the platform. Caution must be taken 

in finding a magnetometer location that is not too near varying magnetic 

disturbances and soft iron materials. Shielding effects from speakers and high 

current conductors near the magnetometer may be necessary. Variations in the 
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earth's field from a true north heading can be accounted for if the geographical 

location of the magnetometer is known. This can be achieved by using a map 

marked with the deviation angles to find the correct heading offset variation; or 

use a GPS system and the IGRF reference model to compute the variation angle. 

Low cost magnetometeres of the type described here are susceptible to temporary 

heading errors during accelerations and banked turns. The heading accuracy will 

be restored once these accelerations diminish. With a strapdown magnetometer 

there is no accuracy drift to worry about since the heading is based on the true 

earth's     magnetic field. They tend to be very rugged to shock and vibrations 

effects and consume very low power and are small in size 
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CHAPTER 4 

4 KALMAN FILTER 

 

Navigation outputs—position, velocity, and attitude (PVA) — must be updated in 

order to be bounded.  Kalman filter provides the manner and the method for 

combining updates that is practically useful as well as mathematically ingenious.  

Moreover, this technique can be extended to the integration of outputs from a 

wide variety of systems and continues to show a high degree of practical utility in 

navigation applications. 

 

The Kalman filter is a linear filter.  Recall that the actual differential equations for 

INS operation are non-linear, but the error equations are valid for linearized 

versions of these differential equations.  Hence the requirement for the errors 

themselves to remain small, otherwise a linear analysis is not valid.  Kalman filter 

applications presume that state-space dynamic modeling will be used to 

implement the algorithm.  In the next part of this chapter the discrete Kalman 

filter in its most universal form will be presented and derived in a straightforward 

manner.  Only those parts of the derivation will be emphasized that have practical 

significance for flight applications [26, 27, 28, 29]. 
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4.1 Kalman Filter 

4.1.1 Motivation for the Kalman Filter for INS 

The major problems that exist if one relies on an inertial navigation system in 

motion:  

 

• How to correct the navigation error equations while flying so that they 

remain useful even though the initial navigation errors were not known 

accurately. 

• How to deal with noisy measurements from a variety of other systems that 

are arriving at different times; how to estimate the covariance of the INS 

output whenever an update could occur to see how much of the 

measurement should be believed in the presence of noisy system 

dynamics;  

• How to obtain estimates for all navigation outputs even though only one or 

two is being measured by other means, providing as a result the most 

probable position. 

 

The Kalman filter can be used to solve all of these problems.  The basic procedure 

is; 

• Initialize the filter by providing statistical estimates ox̂ for the initial 

navigation error states, their covariance P(t0), and noise covariance Q0 .  

• Propagate both P(t0) and the ox̂  to time of measurement update tk before 

the measurement zk .   

• Note that values before measurement are kP ( )− and kx̂ ( )− .  

• Compute the most probable estimate kx̂ ( )+ by weighting kx̂ ( )− and zk 

with the Kalman gains. 

 

If the filter converges, then it is possible to have a useable estimate of all the 

navigation error states at all discrete times tk during the motion.  Also estimate of 
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the covariance of the navigation error states are obtained and one can verify that it 

decreases following a measurement update.   

 

4.1.1.1 Kalman Filter Implementation 

In the related literature, two implementation method for Kalman Filter exists, 

direct (total state space) and indirect (error state space) Kalman Filter. In the 

direct estimation, the states are attitude, position and velocity, which have high 

nonlinearities.  As the Kalman Filter is a linear filter, this implementation method 

may not work properly in integrated navigation. 

 

 

 

 
Figure 4.1 Direct Kalman Filter 

 

 

 

In the indirect filter, the linearized error navigation states are used, thus the 

Kalman Filter works properly. The indirect filter has also two types, feedback and 

feedforward filters. In the feedforward type, the estimated error states are used to 

correct the INS errors but the INS is unaware of the filter, thus the error states 

grow and linearity assumption fails. In the feedback type, the estimated errors are 

fed back to INS thus error states are not allowed to grow unbounded. In this 

thesis, feedback indirect Kalman Filter is used. 
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Figure 4.2 Indirect Feedforward Kalman Filter 
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Figure 4.3 Indirect Feedback Kalman Filter 

 

 

 

 

Equations for the Kalman Filter is summarized in table 4.1 
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Table 4.1 Discrete State-Space System Kalman Filter [26] 

Discrete System Equation and Error 

Source 
k 1 k k kx A x w+ = +   

Noise Covariance of Error Source 

Noise 

T
k k kE(w w ) Q=  

Discrete Measurement Equation k k k kz H x v= +  

Noise Covariance of Measurement T
k k kE(v v ) R=  

Assumed Form for Estimate of  

Navigation Error State  

'
k k k k kˆ ˆx ( ) K x ( ) K z  + = − +  

'
k k kK (I K H )= −  

Final Form for Estimate  

 
k k k k k kˆ ˆ ˆx ( ) x ( ) K [z H x ( )]+ = − + − −

 
T T 1

k k k k k k kK P ( )H [H P ( )H R ]−= − − +
 

Covariance of  navigation error 

residual T
k k kP ( ) E[x ( )x ( )]+ = + +  

k k k kP ( ) (I K H )P ( )+ = − −  

1 1 T 1
k k k k kP ( ) P ( ) H R H− − −+ = − +  

Propagation Equations for Estimate 

k 1x̂ ( )+ −  before update zk+1 

and for its residual covariance 

k 1P ( )+ −  

k 1 k kˆ ˆx ( ) A x ( )+ − = +  

T
k 1 k k k k

T
k k k

P ( ) A P ( )A Q

       Q E(w w )
+ − = + +

=
 

 

 

 

4.2 Kalman Filter Divergence 

4.2.1 Nonlinear System Behavior 

Kalman filter is a linear filter in that Kk, the Kalman gain matrix, produces a 

“weighted linear combination” of old estimates and measurements to produce new 

estimates. In this thesis, linearized navigation error states and magnetometer 

measurements are used in a feedback Kalman filter. The feedback in the 



 

 
 

44 

estimation filter does not let the unstable system errors grow and the linearity 

assumption is preserved.   [30].   

 

4.2.2 Covariance Matrix Calculations 

The problem of Kalman filter divergence caused by covariance calculations, 

which has been with system developers since the 1960s, is still with the aerospace 

community.  Basically, the covariance matrix kP ( )+ becomes too small resulting 

in a small T 1
k k k kK P ( )H R−= +  and thus eliminates the weighting on new 

measurements as can be seen 

k k k k k kˆ ˆx ( ) x ( ) K [z H x ( )]+ = − + − −    (4.1) 

 

This results in the new state estimate after update staying the same as the estimate 

before update (since kK  approaches zero).  This estimate is then propagated 

forward and the same thing occurs at the next measurement time.  The filter, in 

effect, is rejecting all of the new measurements and relying only on its own 

propagated values for covariance which keep getting smaller and making things 

worse.  This is a loss of system integrity. 

  

4.2.3 Inaccurate Models 

Modeling is the hardest part of the Kalman filtering. This is especially true when 

there are nonlinearities in the physical equations that must be linearized. As a 

general rule, a Kalman filter should have models that are simple enough to be 

implementable, but at the same time it should still represent the physical situation 

with a reasonable degree of accuracy.   

 

That’s why the error propagation model of inertial navigation systems is derived. 

With the help of these error models, the Kalman filter represents the real world 

behavior of the navigation system with a simple linear model.  Also, the 
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measurement model of the magnetometer is derived in the same manner, it is 

linear and accurate.  

 

4.2.4 Measurement Acceptance/Rejection Criteria 

If “outlier” measurements cannot be rejected, the navigation error will rapidly 

grow without bound because the filter equations will ignore its own system 

equations and become erratic. Measurement rejection criteria are normally based 

on the “innovations” given by [ k k kˆz H x ( )− − ] or the equivalent [ kz kẑ ( )− − ] 

which represents the “new information” that the measurement zk is providing 

relative to what the filter estimates the measurement to be [ kẑ ( )− = k kˆH x ( )− ]. 

 

[28] recommends a 3-sigma test for this problem based on the innovations. 

According to his scheme, if the magnitude of the ratio of the innovation to its 

standard deviation is larger than 3, it is rejected, otherwise it is accepted.  There 

are no distinct criteria in this area, and once again the Monte Carlo data is 

invaluable in testing the algorithms before it is in-motion tested.  The sigma value 

of a state is extracted from the related diagonal element of the covariance matrix, 

kP ( )+ . The diagonal elements of kP ( )+  are the square of sigma (standard 

deviation) of related states. 
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CHAPTER 5  

5  ATTITUDE DETERMINATION WITH VECTOR 

MEASUREMENTS 

 

5.1 Attitude Determination with 2 Vector Sets 

 

Let B represent the body frame and N represent the navigation frame. With a 

single sensor that gives a vector output (e.g. magnetometer) VB
sensor, it is not 

possible to find the Euler angles that gives the transformation CB
N between B and 

N frames; 

 

vB
sensor = CB

N .vN
reference       (5.1) 

 

By a single vector measurement, there exist infinitely many Euler angle solutions 

[31]. To overcome this problem, a second vector measurement that is also 

between B and N frame is used. Thus, 2 different vector sets (totally 4 vectors) are 

ready for the attitude solution; 

 

vB = CB
N .vN  uB = CB

N .uN        (5.2) 
 

By cross product of U and V vectors, W vector is obtained; 
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wB = uB × vB  wN = uN × vN       (5.3) 

Using U, V and W, augmented matrix D is obtained; 

 

 

DB
3×3 = [uB

3×1 vB
3×1 wB

3×1]  DN
3×3 = [uN

3×1 vN
3×1 wN

3×1]    (5.4) 

 

Finally, CB
N matrix can obtain as [33]; 

 

CB
N = DB. (DN)-1         (5.5) 

 

In order to obtain attitude from 5.5, UN
3×1 and VN

3×1 should be non-collinear, 

otherwise DN will be singular. For this kind of solution, two different vector 

measurements are required. In coarse alignment procedure of navigation systems, 

generally gravity and Earth rotation rates, which are certainly not parallel to each 

other, are used for vector measurements [8, 32]. To measure the Earth rotation 

rate (approx. 15deg/hr); the angular rate sensors must have a bias that is far less 

than 15deg/hr, which is not the case in low cost gyros. To overcome this problem, 

another kind of vector measurement should be taken. Three axis magnetometer 

(TAM) is a good candidate for solution. Magnetic field and gravity are certainly 

not parallel to each other.  Thus, one has 4 vectors for attitude determination; 

 

• Earth gravity field vector (defined in navigation frame) 

• Accelerometer outputs( defined in body frame) 

• Earth magnetic field vector (defined in navigation frame) 

• Magnetometer field vector ( defined in body frame) 

 

This kind of a solution requires the body to have accelerations except the 

gravitational acceleration. In accelerating body, it is not possible to use gravity 

field vector. 
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5.2 Magnetometer Measurement Models for Kalman Filter 

 

Here we assume that the magnetometer has been calibrated for scale factors, non-

orthogonality corrections, and biases using one of the attitude independent 

calibration algorithms. The body frame observation model of a TAM is similar to 

a typical vector sensor [6,34,35] 

 

.( )= +N N B
B MgnB C B ν         (5.6) 

 

where BB  is the TAM observation, NB  is the reference magnetic field in an 

Earth-fixed inertial frame corresponding to the specific position and altitude, N
BC  

is the ideal direction cosine matrix which is function of Euler angles , ,φ θ ψ , and 

finally vk is the measurement noise that includes both sensor errors and 

geomagnetic field model uncertainties,. The measurement noise is assumed to be 

a zero-mean Gaussian process with covariance. 

 

In terms of the DCM of computed navigation frame; 

 

( . )( )= +N N N B
B B MgnB C C Bδ ν          (5.7) 

 

Replacing N
BCδ   with the error misalignment vector,  

 

( ). ( )= − +N n N B
B MgnB I C Bγ ν         (5.8) 

 

Rearranging the equation 

 

( ) . ( )= + − +N N B n N B
B Mgn B MgnB C B C Bν γ ν       (5.9) 

 

. . . .− = −N N B N n N B
B B Mgn BB C B C C Bν γ       (5.10) 
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. ( . ) .− = × +N N B N B n N
B B B MgnB C B C B Cγ ν      (5.11) 

 

Similarly, gravitational acceleration measurement can be written as; 

 

.( )N N B b
Bg C a aδ= +         (5.12) 

 

Where 
baδ : Acceleration errors, such as bias scale factor, noise etc. 

 

Following the same procedure in magnetometer measurements; 

 

( )( )N N N B b
B Bg C C a aδ δ= + +        (5.13) 

 

( ). ( )N C B b
Bg I C a aγ δ= − +        (5.14) 

 

( ) . ( )N C B b C B b
B Bg C a a C a aδ γ δ= + − +      (5.15) 

 

. . . .N C B C b C B
B B Bg C a C a C aδ γ− = −       (5.16) 

 

. ( . ) .− = × +N C B C B C b
B B Bg C a C a C aγ δ        (5.17) 

 

In measurement equation (5.1), the states are three Euler angles given in nonlinear 

form. To obtain a measurement equation which have error states (e.g. states that 

model attitude errors), the relation between true and erroneous direction cosine 

matrices are expressed; 

 

A measurement equation directly for angular rates can be written by taking 

derivative of equation (5.6); 
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. .

( . . )

( . ) . .

− −

= + × +

× + +

N N B N B
B B

N B N B n
B B

N B n N N
B B Mgn B Mgn

B C B C B

C B C B

C B C C

γ

γ ν ν

      (5.18) 

 

Replacing  n
bC  and nγ  by 

.( ) ( ).= −n n b n n
b b ib in bC C Cω ω         (5.19) 

.= − − × +n n b n n n
b ib in inCγ δω ω γ δω       (5.20) 

 

( .( ) ( ). ). .

(( .( ) ( ). ). . )

( . ) ( . )

( .( ) ( ). ). .

− − − =

− +

+ − − +

+ − +

N n b n n B N B
b ib in b B

n b n n B N B n
b ib in b B

N B n b n n n
B b ib in in
n b n n N
b ib in b Mgn B Mgn

B C C B C B

C C B C B x

C B x C x

C C C

ω ω

ω ω γ

δω ω γ δω

ω ω ν ν

     (5.21) 

Same procedure can be applied to gravitational measurement equation. 

 

With this equation, it is possible to estimate the angular rates. But, as this equation 

is based on differentiation, all noisy measurements, magnetometer and gyro 

outputs, are differentiated, which yields an extremely noisy measurement 

equation. Magnetometers are generally low noise sensors, but the MEMS gyros 

(especially MEMS gyros) can be very noisy. This measurement equation may 

result in bad estimation if it is used in Kalman filter. In order to use these 

equations, gyros should have low noise characteristics. In this thesis, low accuracy 

MEMS gyros are taken into consideration, thus equation 5.21 cannot be used in 

the simulation studies. This equation may be used in a case where low noise gyros 

(such as RLG or FOG) are used. 

5.3 Single Axis Attitude Determination  

In spinning missiles, the roll rate can be as high as 7000-8.000 deg/s. Many gyros 

will saturate in that kind of angular motion. Gyros that have such a measurement 

range probably will have extremely high prices. As the guidance and autopilot 

loops need the roll rate, it is crucial to estimate this roll motion. 
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Before analyzing the equations 5.30-5.36 and 5.41, it is important to note that in a 

vector measurement equation set, three equations are not independent. Thus, it is 

not possible to find all three Euler angles or rates analytically by a single vector 

measurement, which is known as Wahba’s problem [31]. With a single vector, 

only one Euler angle without ambiguity can be obtained provided that the other 

two Euler angle should be known a priori.  

 

Note that all three Euler angles are coupled to each other, thus if someone does 

not know one of the angular speeds, it is not possible to calculate the Euler angles 

due to the couplings. In the proposed algorithm, the following assumptions are 

taken into consideration. 

 

• The system has only one degree of rotational freedom, thus 2 Euler angles 

are known a priori. 

• If the system has three degree of freedom, then; 

o The algorithm should run in such a high rate that the errors due to 

Euler angle coupling between time steps are minimized. 

o Three are three gyros, but one of them is saturated (e.g. it measures 

1000 deg/s angular speed as 500 deg/s due to its measurement 

range), thus the coupling errors again minimized. 

 

The flow chart of this algorithm is given in Figure 5.1 . 
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Figure 5.1 Flow diagram of the Single Axis Attitude Determination Algorithm 

 

 

 

Remember that a direction cosine matrix can be written as; 

 
cos( ).cos( ) cos( ).sin( ).sin( ) sin( ).cos( ) cos( ).sin( ).cos( ) sin( ).sin( )
sin( ).cos( ) sin( ).sin( ).sin( ) cos( ).cos( ) sin( ).sin( ).cos( ) cos( ).sin( )

sin( ) cos( ).sin( ) cos( ).cos( )

− +⎛
= + −

−

n
bC

ψ θ ψ θ φ ψ φ ψ θ φ ψ φ
ψ θ ψ θ φ ψ φ ψ θ φ ψ φ

θ θ φ θ φ

⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  (5.22) 

 

In an ideal vector measurement; 

 

.= n
bA C B          (5.23) 

 

Thus, from equation 5.23, it is possible to write 3 equations, but only 2 of them 

are independent, which means that it is not possible to solve for 3 unknown Euler 

angles. Besides that, with a vector measurement equation, it is not possible to 

solve for 2 Euler angles without ambiguity. Note that, the Euler angles in DCM 

are in sine and cosine form; 
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2

2

2

sin( ) 1 cos ( )

sin( ) 1 cos ( )

sin( ) 1 cos ( )

= ± −

= ± −

= ± −

ψ ψ

θ θ

φ φ

        (5.24) 

 

To solve equation 5.23 for two unknown Euler angles, basic sine-cosine relation 

for each Euler should be inserted, but it is not possible to do it with out ambiguity, 

as it can be seen from equation 5.24.  

 

To find a single Euler angle with a vector measurement, remember the vector-

DCM equation; 

 

321
ˆ ( , , )=N BB C Bψ θ φ          (5.25) 

 

There are three unknowns and three dependent equations. In the following part, a 

methodology to find each Euler angle provided that the other two Euler angle is 

given; 

 

To find the roll angle, provided that pitch and yaw angle is given, write equation 

25 as; 

 

321 32 1
ˆ ˆ ˆ( , , ) ( , ) ( )= =N B BB C B C C Bψ θ φ ψ θ φ       

 (5.26) 

 

Note that 
1
ˆ ( )C Bφ  can be written as follows with some algebraic manipulations; 

 

1

ˆ

1 0 0 0 0 1
ˆ( ) 0 cos sin 0 cos

0 sin cos 0 sin

x x

y y z

z z y

B

B B
C B B B B

B B B
φ

φ φ φ φ
φ φ φ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

   (5.27) 
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Now insert equation 5.27 into equation 5.26 and solve for 

 

32
ˆ ˆ=NB C Bφ           (5.28) 

 

And solve forφ ; 

11

32
ˆˆ −−= NB C Bφ         (5.29) 

 

Thus, the roll angle can be found as; 

 

( )2 3 2arctan ,φ φ φ=          (5.30) 

 

Similarly, pitch and yaw angles can be found as follows; 

 

To find the pitch angle, rotate the Body vector in roll axis; 

 

2

321 32 1
ˆ ˆ ˆ( , , ) ( , ) ( )= =N

B

B C B C C Bψ θ φ ψ θ φ        (5.31) 

2 232 3 2
ˆ ˆ ˆ( , ) ( ). ( ).= =NB C B C C Bψ θ ψ θ        (5.32) 

 

With the help of linear algebra; 

 

2

2 2 2

2 2 22

2 2 2

ˆ

cos( ) 0 sin( ) 0 1
ˆ ( ) 0 1 0 0 0 cos

sin( ) 0 cos( ) 0 sin

x x z

y y

z z x

B

B B B
C B B B

B B B
θ

θ θ
θ θ

θ θ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5.33) 

23
ˆ ˆ=NB C B θ           (5.34) 

 

Now solve for pitch angle; 
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11
2 3

ˆˆ −−= NB C Bθ          (5.35) 

 

And the pitch angle can be written as; 

 

( )2 3 2arctan ,θ θ θ=          (5.36) 

 

Likewise, to find the yaw angle, rotate the body vector B in roll and pitch axes; 

 

3

321 3 2 1
ˆ ˆ ˆ ˆ( , , ) ( ) ( ) ( )= =N

B

B C B C C C Bψ θ φ ψ θ φ       (5.37) 

3

3

3 33

3

3 3

3 3

3

ˆ

cos( ) sin( ) 0
ˆ ( ) sin( ) cos( ) 0

0 0 1

0 1
0 cos

0 0 sin

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x

y

z

x y

y x

z

B

B
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B

B B
B B

B
ϕ

ψ ψ
ψ ψ ψ

ψ
ψ

      (5.38) 

 

3
ˆ=NB B ϕ           (5.39) 

 
1

2
ˆ −= NB Bϕ           (5.40) 

 

( )2 3 2arctan ,=ψ ψ ψ          (5.41) 

 

Using equations 5.30, 5.36 and 5.41, one can find the related Euler angle, given 

that the assumptions mentioned above are valid. Remember that in this method, 

the main driving factor in the errors is the coupling between the Euler angles. 

Only one Euler angle is corrected with the help of magnetometers, the other two 

are stand alone inertial, which means that the accuracy of  the aided Euler angle is 

affected by the errors of these 2 Euler angles. 
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As this method is an analytical solution, it is not accurate as the Kalman filtered 

solution. Besides, the cumulative error in the unaided Euler angles will result in 

high errors in the aided Euler angle. This method can be used only in a short 

period of time. The main advantage of this algorithm is its computational 

superiority over Kalman filtered solution.  
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CHAPTER 6 

6 GROUND ALIGNMENT VIA MEMS IMU + 

MAGNETOMETER 

 

 

In a high accuracy IMU, it is possible to align the navigation system by using the 

inertial measurements, which is also known as self alignment or quasi stationary 

alignment. This method is generally composed of two main parts [36, 37, and 38]; 

 

1. Coarse Alignment 

2. Fine Alignment 

 

Where coarse alignment is an analytical solution and the fine alignment is the part 

that the Kalman filter is used. 

 

The reason for this partition is arising from the nature of estimation algorithms. In 

most of the navigation system, Kalman filter is used, which is indeed a linear 

estimation filter. As explained in the previous chapters, the states in the estimation 

are the navigation and sensor errors. The navigation error equations were derived 

by using the small attitude error assumption, which is valid up to 20 degree errors. 

[1, 11, 13, 14] 
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The coarse alignment phase is an analytic procedure, in which two sets of vector 

equations are used to find the related direction cosine matrix. In a high accuracy 

system, gravity and earth rotation rate is used as the vector equations.  As it is 

implied in its name, the solution is “coarse”, that is accuracy is only up to 1-0.5 

degrees. The main function of the coarse alignment phase is to make the attitude 

errors as small as possible so that the linearity assumption in the navigation errors 

is valid. The details of the coarse alignment process were given in the previous 

chapter. 

 

The fine alignment phase is the part where not only the attitude errors are found 

with high accuracy, but also the sensor errors may be estimated. In the fine 

alignment process, following measurements are taken into consideration; 

 

1. Two sets of vector equations 

2. Zero velocity 

3. Constant Position 

 

As explained above, the ground alignment algorithms use earth rotation rate (~15 

deg/hr) and gravity (~9.801 m/s2) as the vector measurement equations. MEMS 

accelerometers generally have a bias repeatability in the order of 10 mg, thus they 

can measure the gravitational acceleration accurate enough such that it may be 

used as a vector equation. On the other hand, MEMS gyros have a drift 

repeatability in the order of 100 deg/hr, which is greatly higher than the earth 

rotation rate. Earth rotation rate can not be used as a vector measurement where 

MEMS gyros are used. 

 

In the proposed method, the magnetic field is used as a vector measurement 

equation. The MEMS magnetometers have high accuracy, and the reference 

magnetic field (world magnetic field) can be modeled very accurately.  

 

The simulations are carried out in Matlab®. The structure of the simulation 

environment is given as follows; 
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Reference Trajectory

Position, Velocity,
Attitude,

Acceleration and 
Angular rates

IMU Error Model

Inertial Navgation System

Aiding Measurements( GPS, 
Magnetometer etc.)Kalman Filter

Acceleration and 
Angular rates with 
errors such as bias 

noise etc.

Measurement 
vector

Position, velocity 
and attitude

Feedback of aided 
states (position, 
velocity, attitude)

Results Module

State Estimations, 
Covariance 

Matrices

 
Figure 6.1 Flow diagram of the Simulations 
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The Matlab®. codes that developed in this thesis are given in Appendix F. 

6.1 Coarse Alignment 

 

In the coarse alignment procedure, Equations (5.1)-(5.5) are used, where the  

gravity and magnetic field are used as vector measurements. 

 

6.1.1 Monte Carlo Simulations 

 

In the simulation and experimental studies process, the following sensor sets are 

used; 

 

• Colibrys MS8000.C Accelerometer 

• Inertial Science RRS01 Gyro 

• HMC 1053 Magnetometer 

 

Performance specifications of these sensors are given in the Appendix. 

 

In the Monte Carlo Simulations, following set of random variables is used; 

 

• Gyro Bias Repeatability : 100 deg/hr (1 σ), Normal Distribution  

• Gyro Noise: 1 deg/s (1 σ), Normal Distribution  

• Gyro Scale Factor Error: 1000 ppm (1 σ), Normal Distribution  

• Accelerometer Bias Repeatability 10 mg (1 σ),: Normal Distribution 

• Accelerometer Noise : 5 mg (1 σ), Normal Distribution  

• Accelerometer Scale Factor Error: 1000 ppm (1 σ), Normal Distribution  

• Magnetometer Noise: 5 mGauss (1 σ), Normal Distribution 

• Attitude of the Sensor Block (North, East, Down) : Uniform Distribution 
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Variances of gyro, accelerometer and magnetometer are selected in accordance 

with the performance specifications of the related sensor, which are given in 

Appendix B. 

 

The update rate of the inertial navigation module and Kalman filter module are 

100 Hz. 

 

Note that, all variables except attitude of the sensor block have normal 

distribution. Attitude is chosen to have uniform distribution so that the effects of 

the initial attitude in the simulations are eliminated [37, 38].   

 

The results of the simulations for the pitch roll and azimuth estimations are given 

in Figure 6-1-6-3.  The azimuth and roll attitude errors are approximately 1 

degree. The pitch error is relatively smaller (~0.3 degree), which is a results of the 

accuracy in measuring the gravity vector.  

 

 

 

 
Figure 6.1 Azimuth Error (Root Mean Square Error) 
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Figure 6.2 Pitch Error (Root Mean Square Error) 

 

 

 

 
Figure 6.3 Roll Error (Root Mean Square Error) 
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6.1.2 Coarse Alignment Experiments 

The coarse alignment experiment basically consists of an IMU and a 

magnetometer oriented accurately in a stationary position. The experiments are 

divided into two parts according to the attitude of the sensor block; 

 

• Set 1: Heading towards North, level to the ground 

• Set 2: Heading towards East,  level to the ground 

 

6.1.2.1 Coarse Alignment Experiment Set 1 

 

The results of the C/A experiment are given in Figures 6-4-6-6.  The azimuth 

error is relatively larger than pitch and roll errors, which is a result of the errors in 

the world magnetic field error 

 

 

 

 
Figure 6.4 Pitch Error (Root Mean Square Error) 
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Figure 6.5 Roll Error (Root Mean Square Error) 

 

 

 

 
Figure 6.6 Azimuth Error (Root Mean Square Error) 
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6.1.2.2 Coarse Alignment Experiment Set 2 

 

 In the C/A experiment Set 2, again the largest error is seen in the azimuth angle, 

as a result of the magnetic field modeling errors. 

 

 

 

 
Figure 6.7 Azimuth Error (Root Mean Square Error) 
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Figure 6.8  Pitch Error (Root Mean Square Error) 

 

 

 

 
Figure 6.9 Roll Error (Root Mean Square Error) 
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6.2 Fine Alignment  

 The fine alignment algorithm is in fact a stochastic estimation. The estimation 

filter is a linear Kalman filter. As the navigation unit is stationary through the 

alignment, GPS velocity (quasi stationary velocity) and position (constant 

position) measurements are used in addition to the accelerometer and 

magnetometer measurements, 

6.2.1 Monte Carlo Simulations  

The states of the Kalman filter are; 

 

• 3 states of attitude error 

• 3 states of velocity error 

• 3 states of position error 

• 3 states of gyro bias  

• 3 states of accelerometer bias 

 

The attitude, velocity and position errors are modeled with equations given in 

Chapter 2, where gyro and accelerometer noises are modeled as random constants. 

 

The scale factor error, misalignment errors etc. are not modeled in the estimation 

filter as these errors are not observable in the MEMS sensors. 

 

The process noises are; 

 

• Accelerometer noises 

• Gyro noises 

 

The measurements are; 

 

• Accelerometer measurements 

• Magnetometer measurements 



 

 
 

68 

• Velocity measurements (zero velocity) 

• Position measurements (constant position) 

 

The measurement noises; 

 

• Accelerometer noises 

• Magnetometer noises 

• Velocity uncertainty 

• Position uncertainty 

 

Accelerometer, gyro and magnetometer noises account for all unobservable and 

negligible sensor errors. Scale factor, cross couplings, g dependent bias etc. are 

assumed to be pre-calibrated. Initial values for noise covariance matrices are 

chosen according to the sensor’s performance specifications. The velocity and 

position uncertainties in the measurement noise matrix are chosen as given in the 

GPS receiver’s performance specifications, which also account for the host 

vehicle vibrations.  

 

Initial states of the covariance values are; 

 

• Attitude error (1σ) : 5 degrees 

• Velocity error (1σ) : 0.1 m/s 

• Position error (1σ) : 5  m 

• Gyro Bias (1σ) : 100 deg/hr 

• Accelerometer Bias (1σ) : 10 mg 

 

Process and measurement noise covariance values: 

 

• Gyro noises: 1 deg/s 

• Accelerometer noises : 5 mg 

• Magnetometer noises: 10 mGauss 
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• Velocity uncertainty: 0.1 m/s 

• Position uncertainty: 5  m 

 

The random variables in the Monte Carlo Simulations are as follows, 

 

• Gyro Bias Repeatability : 100 deg/hr (1 σ), Normal Distribution  

• Gyro Noise: 1 deg/s (1 σ), Normal Distribution  

• Gyro Scale Factor Error: 1000 ppm (1 σ), Normal Distribution  

• Accelerometer Bias Repeatability 10 mg (1 σ), Normal Distribution 

• Accelerometer Noise : 5 mg (1 σ), Normal Distribution  

• Accelerometer Scale Factor Error: 1000 ppm (1 σ), Normal Distribution  

• Magnetometer Noise: 5 mgauss (1 σ), Normal Distribution 

• Attitude of the Sensor Block (North, East, Down) : Uniform Distribution 

• Velocity uncertainty: 0.1 m/s, (1 σ), Normal Distribution 

• Position uncertainty: 5  m, (1 σ), Normal Distribution 

 

The gyro, accelerometer and magnetometer variances are chosen in accordance 

with their performance specification, given in Appendix B 

 

The primary objective of the fine alignment algorithm is to find the attitude angles 

in a high accuracy, which can be seen in Figure 6.10-6.12. The secondary 

objective is to on-line calibrate the IMU. The designed algorithm can estimate the 

bias errors of the accelerometer and gyros in a fast and accurate manner (Figures 

6-10-6-18) 
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Figure 6.10 Azimuth Error (Root Mean Square Error) 

 

 

 

 
Figure 6.11 Pitch Error (Root Mean Square Error) 
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Figure 6.12 Roll Error (Root Mean Square Error) 

 

 

 

 
Figure 6.13 X Gyro Bias Estimation Error (Root Mean Square Error) 



 

 
 

72 

 

 
Figure 6.14 Y Gyro Bias Estimation Error (Root Mean Square Error) 

 

 

 

 
Figure 6.15 Z Gyro Bias Estimation Error (Root Mean Square Error) 
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 Figure 6.16 X Accelerometer Bias Estimation Error (Root Mean Square Error) 

 

 

 

Figure 6.17 Y Accelerometer Bias Estimation Error (Root Mean Square Error) 
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 Figure 6.18 Z Accelerometer Bias Estimation Error (Root Mean Square Error) 

 

 

 

6.2.2 Fine Alignment Experiments 

 

As in the case in the coarse alignment, the fine alignment experiments are divided 

into two parts;  

 

• Heading towards North, level to the ground 

• Heading towards East,  level to the ground 

 

It can be seen from both experiments that the fine alignments has a fast 

convergence rate with high accuracy. The azimuth error is slightly larger than roll 
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and pitch errors, which is a result of the WMM 2005 errors, i.e.,  magnetic 

anomalies. 

6.2.2.1 Fine Alignment Experiment Set 1 

 

 

 

 
Figure 6.19 Pitch Estimation Error (Root Mean Square Error) 
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Figure 6.20 Roll Estimation Error (Root Mean Square Error) 

 

 

 

 
Figure 6.21 Azimuth Estimation Error (Root Mean Square Error) 
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 Figure 6.22 X Gyro Bias Estimation Error (Root Mean Square Error) 

 

 

 

 
Figure 6.23 Y Gyro Bias Estimation Error (Root Mean Square Error) 
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Figure 6.24 Z Gyro Bias Estimation Error (Root Mean Square Error) 

 

 

 

 
Figure 6.25 X Accelerometer Bias Estimation Error (Root Mean Square Error) 
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Figure 6.26 Y Accelerometer Bias Estimation Error (Root Mean Square Error) 

 

 

 

 
Figure 6.27 Z Accelerometer Bias Estimation Error (Root Mean Square Error) 
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6.2.2.2 Fine Alignment Experiment Set 2 

 

 

 

 

 
Figure 6.28 Roll Estimation Error (Root Mean Square Error) 
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 Figure 6.29 Pitch Estimation Error (Root Mean Square Error) 

 

 
Figure 6.30 Azimuth Estimation Error (Root Mean Square Error) 
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Figure 6.31 X Gyro Bias Estimation Error (Root Mean Square Error) 

 

 

 
Figure 6.32 Y Gyro Bias Estimation Error (Root Mean Square Error) 
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Figure 6.33 Z Gyro Bias Estimation Error (Root Mean Square Error) 

 

 

 

 

Figure 6.34 X Accelerometer Bias Estimation Error (Root Mean Square Error) 
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Figure 6.35 Y Accelerometer Bias Estimation Error (Root Mean Square Error) 

 

 

 

 
Figure 6.36 Z Accelerometer Bias Estimation Error (Root Mean Square Error) 
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CHAPTER 7 

7 IN-MOTION ATTITUDE ESTIMATION 

 

7.1 GPS Aided IMU+Magnetometer Navigation System 

 

In the GPS/INS integrated systems, position and velocity errors are generally very 

low, but attitude errors are dependent on the system’s maneuvers, because of the 

low observability degree [1, 11, 39]. With the addition of the magnetometer, 

observability of the system is increased, thus having low attitude errors. 

 

To analyze the effectiveness of the developed method, a realistic case is taken into 

consideration. The spinning missiles are common in short range air defense 

systems, having high maneuverability and high kill effectiveness.  The reference 

flight profile of the simulation is given as in Figures 7-1-7-7. [40] 
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Figure 7.1 Trajectory of the Missile 

 

 

 

 

 
Figure 7.2 Normal Velocity Profile of the Missile 
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Figure 7.3 Side Velocity of the Missile 

 

 

 

 
 

Figure 7.4 Axial Velocity of the Missile 



 

 
 

88 

 
Figure 7.5 Azimuth profile of the Missile 

 

 

 

 
Figure 7.6 Pitch profile of the Missile 



 

 
 

89 

 
Figure 7.7 Roll profile of the missile 

 

 

 

The simulation structure is the same as given in Chapter 6. The update rate of the 

inertial navigation system is 100 Hz, while the Kalman Filter is updated at 10 Hz. 

 

The simulations are divided into three parts according to the sensor sets used; 

 

• IMU aided by Magnetometer  

• IMU aided by GPS  

• IMU aided by GPS and Magnetometer  

 

 

The states of the Kalman Filter are; 

 

• 3 states of attitude error 

• 3 states of velocity error 
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• 3 states of position error 

• 3 states of gyro bias  

• 3 states of accelerometer bias 

 

Same state equations with fine alignment algorithm are used. 

 

The process noises are; 

 

• Accelerometer noises 

• Gyro noises 

 

The measurements for Magnetometer aiding; 

• Magnetometer measurements 

 

The measurement noises in Magnetometer aiding; 

• Magnetometer noises 

 

The measurements for GPS aiding; 

• Velocity measurements  

• Position measurements 

 

The measurement noises in  GPS aiding; 

• Position  uncertainty 

• Velocity uncertainty 

 

Accelerometer, gyro and magnetometer noises account for all unobservable sensor 

errors.  Scale factor, cross couplings, g dependent bias etc. are assumed to be pre-

calibrated. Initial values for noise covariance matrices are chosen according to the 

sensor’s performance specifications. 

 

Initial state covariance values; 
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• Attitude error (1σ) : 5 degrees 

• Velocity error (1σ) : 0.1 m/s 

• Position error (1σ) : 0.1 m 

• Gyro Bias (1σ) : 100 deg/hr 

• Accelerometer Bias (1σ) : 10 mg 

 

Noise covariance values: 

 

• Gyro noises: 1 deg/s 

• Accelerometer noises : 5 mg 

• Magnetometer noises: 10 mGauss 

• Velocity uncertainty: 0.1 m/s 

• Position uncertainty: 5  m 

 

 

The random variables in the Monte Carlo Simulations are as follows, 

 

• Gyro Bias Repeatability : 100 deg/hr (1 σ), Normal Distribution  

• Gyro Noise: 1 deg/s (1 σ), Normal Distribution  

• Gyro Scale Factor Error: 1000 ppm (1 σ), Normal Distribution  

• Accelerometer Bias Repeatability 10 mg (1 σ), Normal Distribution 

• Accelerometer Noise : 5 mg (1 σ), Normal Distribution  

• Accelerometer Scale Factor Error: 1000 ppm (1 σ), Normal Distribution  

• Magnetometer Noise: 5 mgauss (1 σ), Normal Distribution 

• Attitude of the Sensor Block (North, East, Down) : Uniform Distribution 

• Velocity uncertainty: 0.1 m/s, (1 σ), Normal Distribution 

• Position uncertainty: 5  m, (1 σ), Normal Distribution 
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The gyro, accelerometer and magnetometer variances are chosen in accordance 

with the performance specification of the sensors, given in Appendix B. The 

position and velocity variances are the GPS uncertainties [1] 

 

Note that, all variables except attitude of the sensor block have normal 

distribution. Attitude is chosen to have uniform distribution so that the effects of 

the attitude in the simulations are eliminated [37, 38].   

 

As the magnetometer provides only attitude information, position errors quickly 

accumulate; where GPS aided navigation system has a stable position error 

behavior. (Figure 7-8- 7-10) 

 

 

 

 

 
Figure 7.8 Altitude Estimation Error (Root Mean Square Error) 
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Figure 7.9 East Position Estimation Error (Root Mean Square Error) 

 

 

 

 
Figure 7.10 North Position Estimation Error (Root Mean Square Error) 
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In the attitude error behaviors, the magnetometer aided system is superior to GPS 

aided system. In the GPS aided system, reference attitude information is hidden 

inside the position and velocity measurements. The magnetometer provides 

directly attitude measurements, but GPS provides position and velocity 

measurements, thus the attitude information is indirectly observable. The best 

attitude solution is the combination of GPS and magnetometer systems, where the 

attitude solution converges in a quick manner; the attitude information comes 

form both GPS and magnetometer. With the combined system, the attitude is 

observed from all navigation (position, velocity and attitude) measurements 

 

 

 

 
Figure 7.11 Azimuth Estimation Error (Root Mean Square Error) 
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Figure 7.12 Pitch Estimation Error (Root Mean Square Error) 

 

 

 

 
Figure 7.13 Roll Estimation Error (Root Mean Square Error) 
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As in the attitude estimation case, gyro biases are better estimated in 

magnetometer case, the best estimation is in the GPS/Magnetometer aiding 

system. GPS aiding has a relatively low accuracy and low convergence rate. The 

combined aiding system has a high accuracy in gyro bias estimation, providing 

better navigation solution when measurements are denied, i.e. jammed GPS 

signals or high magnetic anomaly occurs. 

 

 

 

 
Figure 7.14 X Gyro Bias Estimation Error (Root Mean Square Error) 
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Figure 7.15 Y Gyro Bias Estimation Error (Root Mean Square Error) 

 

 

 

 
Figure 7.16 Z Gyro Bias Estimation Error (Root Mean Square Error) 
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The magnetometers are ineffective in accelerometer bias estimations, as there is 

no information about linear position/velocity/acceleration. GPS is a good 

reference to estimate the accelerometer observable errors. 

 

 

 

 
Figure 7.17 X Accelerometer Bias Estimation Error (Root Mean Square Error) 
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Figure 7.18 Y Accelerometer Bias Estimation Error (Root Mean Square Error) 

 

 

 

 
Figure 7.19 Z Accelerometer Bias Estimation Error (Root Mean Square Error) 



 

 
 

100 

 

7.2 Single Attitude Euler Determination 

 

In a case where only one vector measurement can be used, only one Euler angle 

can be found provided that the other two Euler angles are provided. Details were 

given in chapter 5. 

 

Kalman filter is theoretically an optimal stochastic estimator. Almost all the aided 

navigation systems use a Kalman Filter or its variant, but the filter also has a 

deficiency, computational load. Matrix decomposition techniques are generally 

used to deal with this problem. Also, Kalman Filter may diverge in a case where 

one of the sensors saturate, resulting in highly erroneous navigation solution and 

the linearity assumption in the inertial navigation error equations will not be true 

anymore. 

 

The spinning missiles generally have high spin rates, which are in the order of 10 

Hz (3600 deg/s). Most of the gyros in the military industry does not have such a 

measurement range, or have very low accuracy in that range. In the developed 

method, an IMU and magnetometer can provide good estimates of roll angle. The 

solution is certainly not accurate as the Kalman Filter solution, and the IMU errors 

can not be estimated. On the other hand, this deterministic solution is  a low cost 

solution. 

 

The effectiveness of this method is also shown by Monte Carlo Simulations. The 

same flight profile and same random variables are used with the Kalman Filter 

estimation case. The simulations are divided into three cases; 

 

• Azimuth Estimation 

• Pitch Estimation 

• Roll Estimation 
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As it can be seen from Figure 7-20-7-23, the accuracy of the developed method is 

lower than the Kalman Filter case, but it is a computational and cost efficient 

solution.  Besides, there is no guarantee that the single axis attitude solution is 

bounded because the other two Euler angles are not aided in a three rotational 

degree of freedom system. The accuracy of the unaided Euler angles directly 

affect the accuracy of this solution. 

 

 

 

Figure 7.20 Azimuth Estimation Error (Root Mean Square Error) 
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Figure 7.21 Pitch Estimation Error (Root Mean Square Error) 

 

 

 

 
Figure 7.22 Roll Estimation Error (Root Mean Square Error) 
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CHAPTER 8 

8 DISCUSSION and CONCLUSION 

 

 

Magnetic field sensors are generally characterized by low cost and high signal to 

noise ratio. Moreover, effective bias compensation can easily be achieved via a 

simple set/reset circuit. Taking advantage of these features and based on real 

needs, this work has presented magnetometer algorithms as aiding means for INS. 

Magnetic measurements can either be directly used in Euler angle calculations or 

fused in a Kalman filter with gyro measurements to yield improved navigation 

results. 

 

The Kalman filter solution improves DCM estimates, which leads to better 

position calculations. This approach is especially useful when either GPS is not 

implemented or its signals are unavailable. Even if GPS is utilized, it cannot 

provide the attitude accuracy which otherwise can be captured with the aid of a 

magnetometer. The only drawback of Kalman filtering is the computational power 

it may require depending on the number of states in the mathematical formulation.  

 

Roll gyro saturation problem in spinning missiles may be solved with the 

proposed analytic roll angle calculation. Following the fact that gyros capable of 

measuring high roll rates are either poor in performance or unreasonably 

expensive, this deterministic solution provides an effective and cheap solution to 

this dilemma. Whichever is the preferred way; deterministic or stochastic, the 
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primary result of magnetometer algorithms is considerable reduction in gyro 

costs. 

 

In the modeling and simulation studies, following tasks are performed 

 

1. Error model of a generic inertial measurement unit is derived 

2. Linear error mechanization equations of a inertial navigation system is 

derived with small attitude error assumptions 

3. World Magnetic Field is embedded into simulation environment 

4. Alternative magnetic field model is proposed. 

5. Deterministic attitude determination equations with two vector sets are 

derived. 

6. Magnetometer measurement equations are derived for Kalman Filter 

7. Single axis deterministic attitude determination algorithm is derived. 

8. Experimental studies are carried for ground alignment 

9. Monte Carlo simulations are done for ground alignment and in motion 

estimations. 

 

The developed navigation system has a self alignment capability, which is not the 

case in unaided MEMS IMU.  The classical two phase alignment process (coarse 

and fine) is applied to the proposed system, resulting in a fast and accurate 

alignment solution. Even in a RLG navigation unit, the ground alignment take at 

least several minutes, where the magnetometer + IMU system aligns itself in a 

few seconds. 

 

The flight performance of the proposed system is demonstrated in a spinning 

missile application. It is shown that magnetometer aiding is superior to GPS for 

attitude and gyro error estimations. When the magnetometer + IMU system is 

combined with GPS, not only the position and velocity errors become observable, 

but also the accuracy and the convergence rate of the attitude and gyro error 

estimations increases. 
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For a low computational cost solution, a single axis attitude determination 

algorithm is developed. In the simulations, it is shown that the solution is not good 

as Kalman Filter, but the computational load is very low relative to the stochastic 

estimation filters. 

 

This thesis has shown the effectiveness of magnetometer algorithms in navigation 

calculations. However, the crucial issue that needs to be raised is about the 

correctness of the measurements and reliability of the reference field model, and 

the consistency between. Theoretically, these two are the representations of the 

same vector in different frames. In practice; however, none of them will be 

available without errors and/or uncertainties, which means that they will not be 

equal when transformed from one frame to another. Consequently, care must be 

taken in acquisition and interpretation of magnetic data. One imposed condition is 

that in-vehicle magnetic disturbances must never affect sensor outputs. This can 

be accomplished by convenient sensor placement and selection of non-magnetic 

material. Secondly, the algorithms require that the outer field be known a priori as 

a function of location. Over short ranges, this does not constitute a problem since 

the directional and time derivatives of the Earth’s magnetic strength are 

negligible; as a result, the reference magnetic vector can be approximated as 

constant. Over long ranges; however, some other means of estimating the 

reference vector becomes necessary. Mathematical models such as WMM2005 

might be used here; but, one must be cautious against their applicability. There is 

always possibility of being confronted by some outer, local magnetic disturbances 

especially at low altitudes. These approximations are most accurate at sufficiently 

high altitudes. 

 

As a future work, real time in motion experiments can be done to demonstrate the 

effectiveness of the developed algorithms. Thus, the effect of the magnetic 

anomalies in the algorithms can be seen. Also, the alternative magnetic field 

modeling can be applied to correct local WMM2005 errors. 
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APPENDIX A 

A WORLD MAGNETIC MODEL 2005 

 

A.1 World Magnetic Model 

 

 

The Earth’s magnetic field (B) is a vector quantity varying in space (r) and time 

(t). The field, as measured by a magnetic sensor on or above the Earth’s surface, is 

actually a composite of several magnetic fields, generated by a variety of sources. 

These fields are superimposed on each other and through inductive processes 

interact with each other. The most important of these geomagnetic sources are: 

 

1. The main field (Figure 1), generated in Earth’s conducting, fluid outer 

core (Bm); 

2. The crustal field from Earth’s crust/upper mantle (Bc); 

3. The combined disturbance field from electrical currents flowing in the 

upper atmosphere and magnetosphere, which also induce electrical 

currents in the sea and the ground (Bd) 

 

Thus, the observed magnetic field is a sum of these  contributions 

 

( , ) ( , ) ( , ) ( , )m c dB r t B r t B r t B r t= + +       (A.1)  
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Bm is the dominating part of the field, accounting for over 95% of the field 

strength at the Earth’s surface. Secular variation is the slow change in time of 

Bm. Bc, the field arising from magnetized crustal rocks, varies spatially, but is 

considered constant in time for the time-scales considered here. Bc is usually 

much smaller in magnitude than Bm. The crustal field is constant over the time-

scales considered here. The field arising from currents flowing in the ionosphere 

and magnetosphere and their resultant induced currents in the Earth’s mantle and 

crust, Bd, varies both with location and time. The WMM represents only the main 

geomagnetic field, Bm. To create an accurate main field model, it is necessary to 

have data with good global coverage and as low a noise level as possible. The 

Danish Ørsted and German CHAMP satellite data sets satisfy these requirements. 

Both satellites provide high quality vector and scalar data at all latitudes and 

longitudes, but not during all time periods needed for modeling. These satellite 

data were therefore augmented with ground observatory hourly mean data, which 

were available almost continuously over the period of interest, although with 

poorer spatial coverage. The observatory data therefore provide valuable 

constraints on the time variations of the geomagnetic field. Used together, satellite 

and observatory data provide an exceptional quality data set for modeling the 

behavior of the main magnetic field in space and time. Bc has spatial variations on 

the order of meters to thousands of kilometers and cannot be fully modeled with 

low degree spherical harmonic models. Therefore, the WMM does not include 

contributions from the crust except for those of very long wavelength. Bc is 

usually smaller at sea than on land, and decreases with increasing altitude. The 

rock magnetization resulting in Bc may be either induced (by the main magnetic 

field) or remnant or a combination of both. The field arising from currents flowing 

in the ionosphere and magnetosphere and their associated induced currents in the 

Earth, Bd, varies both with location and time. The regular variations are both 

diurnal and annual and they are essentially generated by the daylit atmosphere at 

altitudes of 100-130 km, ionized by the Sun’s radiation, being moved in the 

Earth’s main field by winds and tides, thus producing the necessary conditions 

(motion of a conductor in a magnetic field) for a dynamo to operate. Further daily 
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and annual variations are caused by the rotation of the Earth in the external 

magnetosphere field, which is organized in a sun-synchronous reference frame. 

The irregular variations are due to magnetic storms and sub storms. Magnetic 

storms generally have three phases: an initial phase, often with a sudden 

commencement and increased horizontal field at mid-latitudes, a main phase, and 

a recovery phase. The main phase involves an intensification of the ring current 

from the plasma sheet. 

 

During the recovery phase the ring current returns to normal over a number of 

days and associated sub-storms subside. Magnetic storm and sub-storm effects are 

generally more severe at high geomagnetic latitudes where the ionized region of 

the upper atmosphere (the ionosphere) is coupled to the magnetosphere by field-

aligned currents and is therefore strongly influenced by the interplanetary 

magnetic field and current systems in the magneto tail. Both the regular and 

irregular disturbance field variations are modulated by season and the solar 

magnetic activity cycle. The primary disturbance field is often known as the 

external field, as its main sources, the ionosphere and magnetosphere, are external 

to the surface of the Earth where geomagnetic measurements were traditionally 

made. However, this term can be confusing and is avoided when using satellite 

data, as the ionosphere is below the altitude of these data and is therefore 

effectively internal to this observation surface.  

 

A.2  Model Parameterization 

 

The geomagnetic field measured at the Earth’s surface or at satellite altitude is the 

sum of the fields generated by sources internal or external to the solid Earth. 

Away from its sources, the internal magnetic field B is a potential field and 

therefore can be written as the negative gradient of a scalar potential 

 

( , , , ) ( , , , )B r t V r tϕ λ ϕ λ′ ′= −∇         (A.1) 
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This potential can be expanded in terms of spherical harmonics: 

 

1

1 1

( , , , )

( ( )cos( ) ( )sin( ))( ) (sin )
N N

m m n m
n n n

n m

V r t
aa g t m h t m P
r

ϕ λ

λ λ ϕ+

= =

′ =

⎧ ⎫′+⎨ ⎬
⎩ ⎭
∑∑

    (A.2) 

 

where a (6371.2 km) is the standard Earth’s magnetic reference radius ( , , )rϕ λ′ are 

the latitude, longitude and radius in a spherical, geocentric reference frame, 

( ( ), ( ))m m
n ng t h t  are the time-dependent Gauss coefficients of degree n and order m 

describing internal sources. (sin )m
nP ϕ′ are the Schmidt semi-normalized 

Associated Legendre Functions, defined as 

 

( )!(sin ) 2 (sin )
( )!

m m
n n

n mP P
n m

ϕ ϕ−′ ′=
+

 if m > 0 

(sin ) (sin )m m
n nP Pϕ ϕ′ ′=  if m=0      (A.3) 

 

WMM 2005 used 36 = N as the truncation level of the internal expansion. The 

internal Gauss coefficients from degree 1 to 8 are assumed to have a quadratic 

dependence on time, 

 

2
0 0

2
0 0

1( ) ( ) ( )
2

1( ) ( ) ( )
2

m m m m
n n n n

m m m m
n n n n

g t g g t t g t t

h t h h t t h t t

= + − + −

= + − + −
     (A.4) 

 

where, on the left side, ( )m
ng t  and ( )m

nh t  are time varying functions, 

while , , , , ,m m m m m m
n n n n n ng g g h h h    denote constants. The time is given in decimal year 

and 0 t is the reference date of the model, chosen to be at the approximate mid-

point of the time span of satellite and observatory hourly mean values (2002.0). 

From degree 9 up to 12 a linear dependence on time of the internal Gauss 
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coefficients is assumed, and, for higher degrees, the internal Gauss coefficients 

are assumed to be constant with time. These truncation levels are chosen as the 

degrees up to which coefficients can be determined robustly without recourse to 

damping. 

 

This model given by WMM 2005 is valid only for sources internal to the Earth, 

like the main field and the crustal field. For the external field, caused by currents 

in the ionosphere and magnetosphere, a spherical harmonic representation can be 

used. However, the external fields are organized in a sun synchronous reference 

frame. WMM 2005 parent model includes a constant degree-2 parameterization of 

magnetospheric fields in a sunsynchronous reference frame. For an earth-fixed, 

rotating observer, these external fields are perceived to have daily and seasonal 

variations. Our parent model accounts for these periodic variations, as well as for 

their electromagnetic induction in the Earth.  

 

Following evidence of a penetration of the Interplanetary Magnetic Field (IMF), 

an IMF By correlated component in a sun-synchronous reference frame was 

included in the modeling. This component reaches about half of the IMF By at the 

Earth’s surface, with typical strengths of 1-2 nT. 

 

Tidal movement of conducting seawater through the Earth’s magnetic field 

induces electric fields, currents, and secondary magnetic fields, which reach about 

7 nT at the ocean surface and 3 nT at satellite altitude. These fields are clearly 

visible in satellite data and closely coincide with independent predictions from 

tidal ocean flow models. The satellite measurements were corrected for the eight 

major tidal constituents. 

 

Finally, when the data set contains hourly mean observatory data, offsets at each 

observatory have to be introduced to take into account the local field, mainly 

generated in the crust, which cannot be described by the model. Then, at an 

observatory, the magnetic field B is: 

( , , , ) ( , , , ) ( , , )B r t V r t O rϕ λ ϕ λ ϕ λ′ ′ ′= −∇ +      (A.5) 
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where the offset vector ( , , )O rϕ λ′ , also referred to as crustal bias, is constant in 

time. 

 

The above parameterization is used to fit data sets selected from satellite 

measurements and observatory hourly mean values. The equations for the internal 

part of the field are: 

 

2

1 0

1( , , )

(sin )( ( ) cos( ) ( )sin( ))
n mN n

m m n
n n

n m

VX r
r

dPa g t m h t m
r d

ϕ λ
ϕ

ϕλ λ
ϕ

+

= =

∂′ ′ =
′∂

′⎛ ⎞= − +⎜ ⎟ ′⎝ ⎠
∑ ∑

  (A.6) 
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   (A.8) 

 

A.3 Model Determination 

 

The above equations, with the magnetic field vector observations on the left-hand 

side, form the equations of condition. Thus, if there are d data, there are d linear 

equations with the p parameters of the parent model: 

 

y Am=          (A.9) 
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where is y the column vector (d x 1) of observations, A is the matrix (d x p) of 

coefficients to the unknowns which are functions of position, and m is the column 

vector (p x 1) of unknowns, the Gauss coefficients of the model. As there are 

many more observations than unknowns, i.e. as d > p, the system is over-

determined and therefore does not have an exact solution. Suppose m~ is an 

estimate of m. Then 

 

y Am=          (A.10) 

where y are estimates of the observations. The residuals are ( )y y− and the least-

squares method requires that m is chosen so as to minimize the weighted sum of 

the squares of the residuals, S, 

i.e.: minimize ( ) ( ) ( ) ( )T TS y y W y y y Am W y Am= − − = − −  with respect to  m  

 

W is the weight matrix (d x d) of the data. For satellite data there are off-diagonal 

terms in this matrix to account for the anisotropic errors arising from the star 

camera. The minimum is reached when 0S
m

∂
=

∂
, now; 
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  (A.11) 

 

These are the normal equations and the estimated unknowns  are found from 

 
1( )T Tm A WA A Wy−=         (A.12) 
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A.4 Coordinate Transformation 

 

Satellite data are already located in a geocentric coordinate system but surface 

data are almost invariably located in a geodetic coordinate system, i.e. relative to 

the mean sea surface of the Earth, which can be approximated by an ellipsoid. The 

locations of surface data, and the data themselves, must be transformed from 

geodetic to geocentric coordinates prior to spherical harmonic modeling. 

 

When computing the model, the locations ( , , )h ϕ λ , where h is the geodetic 

altitude and ö is the geodetic latitude, are transformed into ( , , )r ϕ λ′ using 

 
2 2 2 2 0.5 2

2 2 2 2 0.5 2

( cos sin )tan( ) tan( )
( cos sin )
A B h B
A B h A

ϕ ϕϕ ϕ
ϕ ϕ

+ +′ =
+ +

      (A.13) 

4 2 4 2
2 2 2 2 2 2 0.5

2 2 2 2

( cos sin )2 ( cos sin )
( cos sin )
A Br h h A B
A B

ϕ ϕϕ ϕ
ϕ ϕ

+
= + + +

+
  (A.14)    

 

where A=6378.137 km is the semi-major axis (equatorial radius) of the ellipsoid 

and B=6356.7523142 km is the semi-minor axis as defined by the World Geodetic 

System 1984(WGS84). 

 

The observations of the northerly, easterly and vertically down intensities X, Y, 

and Z, relative to an ellipsoid, are transformed into the northerly, easterly and 

vertically down intensities relative to a sphere, X´, Y´, and Z´: 

 

cos sin

sin cos

X X Z
Y Y
Z X Z

ψ ψ

ψ ψ

′ = +
′ =
′ = − +

       (A.15) 
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where ψ  is the difference between geocentric and geodetic latitude in the sense 

ψ ϕ ϕ′= −  

 

Another coordinate system used in global magnetic field modeling is the 

geomagnetic coordinate system. This is used in the derivation of WMM2005 to 

identify data locations within a certain latitude band of the geomagnetic equator 

for which vector data values are required. This coordinate system is based on the 

internal centered dipolar field and is defined by the first three main-field 

coefficients of an existing global spherical harmonic model. Its reference axis is 

aligned along the dipole axis, which is tilted from the rotational axis of the Earth 

by about 11° and cuts the surface of the Earth at the geomagnetic poles. The 

geomagnetic equator is the great circle 90° from the geomagnetic poles and 

geomagnetic latitude varies from 0° at the geomagnetic equator to ±90° at the 

geomagnetic poles. 

 

A.5 Secular Variation Prediction 

 

Predictions of future changes in the magnetic field were derived from the long-

term observatory annual mean data as well as polynomial extrapolation of the 

parent model based on satellite data and observatory hourly mean values. Annual 

mean data were utilized by determining and applying linear predictor filters to 

series of first differences to result in estimates of secular variation up to 2010.0. 

Linear prediction is successful at extrapolating signals which are smooth and 

oscillatory, though not necessarily periodic, and tests have shown that when 

predicting more than about 3 years ahead, this method is better than linear 

regression applied to recent first differences (equivalent to quadratic polynomial 

fitted to annual means). For incorporation into the final secular-variation model 

we used averages of the predictions for 2005.0-2010.0 at 159 observatories with 

sufficiently long time series. They were assigned uncertainties that reflected the 

past success of prediction for the data series in question. Data from 29 
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observatories, which had time series too short for the application of linear 

prediction filters, were also used by computing average secular-variation 

estimates and assuming that these did not change with time. 

A.6 Derivation of World Magnetic Model 

 

The final main-field coefficients for 2005.0 were derived by polynomial 

extrapolation of the main-field Gauss coefficients from the parent model to this 

date. 

 

Before the final secular-variation coefficients could be derived, the secular-

variation estimates from the parent model (valid for 1999.0-2004.5) were 

combined with the long-term predictions at the observatories described in Section 

4.4. This was done by using the parent model to estimate annual rates of change in 

the north, east and vertically down directions, in a geocentric coordinate system, 

at the centers of 1654 equal-area tessera. Each tessera was equivalent in size to a 

5° latitude by 5° longitude box at the equator. This synthetic dataset was 

combined with the predicted mean X, Y and Z rates of change for 2005.0-2010.0 at 

the 188 observatories, rotated into a geocentric coordinate system. Equations (8)-

(10) of Section 4.1, with the time varying Gauss coefficients ( )m
ng t , ( )m

nh t  

replaced by their derivatives m
ng  and m

nh  were then used to determine the final 

secular-variation coefficients.  

 

A.7 Resulting Model 

 

This section lists the final model coefficients, the corresponding magnetic pole 

and eccentric dipole locations, provides the equations for computing the magnetic 

field components at a given location, and discusses the accuracy and limitations of 

the model. 
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A.8 Model Coefficients 

 

The model coefficients also referred to as Gauss coefficients; provide an accurate 

and convenient representation of the Earth’s main magnetic field. Their values are 

listed in Table A.1. These coefficients can be used to compute values for the field 

elements and their annual rates of change at any location near the surface of the 

Earth and at any date between 2005.0 and 2010.0.  
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Table A.1 
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A.9 Equations for computing magnetic field elements 

 

A step by step procedure is given for computing the magnetic field elements at a 

given location and time  ( , , , )h tϕ λ , h is the geodetic altitude, ϕ and λ  are the 

geodetic latitude and longitude, and t is the time given in decimal year. 

 

In the first step, the ellipsoidal geodetic coordinates ( , , )h ϕ λ  are transformed into 

spherical geocentric coordinates  using 

 
2 2 2 2 0.5 2

2 2 2 2 0.5 2

( cos sin )tan( ) tan( )
( cos sin )
A B h B
A B h A

ϕ ϕϕ ϕ
ϕ ϕ
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    (A.16) 
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+
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+
  (A.17) 

 

where A=6378.137 km is the semi-major axis (equatorial radius) of the ellipsoid 

and B=6356.7523142 km is the semi-minor axis referenced to the WGS84 

ellipsoid. 

 

In the second step, the Gauss coefficients ( ( ), ( ))m m
n ng t h t   of degree n and order m 

are determined for the desired time. This is achieved by adjusting the coefficients 

( , )m m
n ng h  of the field at  0 2005.0t = for the linear secular variation ( , )m m

n ng h  as 

 

0

0

( ) ( )

( ) ( )

m m m
n n n

m m m
n n n

g t g g t t

h t h h t t

= + −

= + −
       (A.18) 

 

where the time is given in decimal year and 0 2005.0t =  is the reference date of 

the model 

 

In the third step, the field vector components X´, Y´ and Z´ in geocentric 

coordinates are computed as 
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At this point, one can also compute the secular variation of the field components 

as 

 

2

1 0

1( , , )

(sin )( ( ) cos( ) ( )sin( ))
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m m n
n n

n m

VX r
r

dPa g t m h t m
r d

ϕ λ
ϕ

ϕλ λ
ϕ

+
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In the fourth step, the geocentric vector components X´, Y´ and Z´ are transformed 

back into the geodetic reference frame, using 
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cos sin

sin cos

X X Z
Y Y
Z X Z

ψ ψ

ψ ψ

′ ′= +
′=

′ ′= − +
       (A.25) 

 

where ψ ϕ ϕ′= − is the difference between geocentric and geodetic latitude and 

′ϕ was computed in step 1. Similarly, the time derivatives of the vector 

components are transformed using 

 

cos sin

sin cos

X X Z
Y Y
Z X Z

ψ ψ

ψ ψ

′ ′= +

′=

′ ′= − +

       (A.26) 

 

In the last step, the magnetic elements H, F, D, I, and the grid variation, GV, are 

computed from the vector components as 

 
2 2 2 2, , arctan( , ), arctan( , )

, 55
, 55

o

o

H X Y F H Z D Y X I Z H
GV D for
GV D for

λ ϕ

λ ϕ

= + = + = =

= − >

= + < −

  (A.27) 

 

For H=0 the declination is undefined. 

 

The secular variation of these elements is computed using 

 

2
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=

−
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=

        (A.28) 
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where D , I  and GV are given in degrees/year. Here, the factor 180
π

converts from 

radians to degree. This conversion factor is not present in equation (A.29), 

assuming that the arctan function provides the result in degrees. 

A.10 Model Limitations 

It is important to recognize that the WMM geomagnetic model and the charts 

produced from this model characterize only that portion of the Earth’s magnetic 

field that is generated by dynamo action in the Earth’s fluid outer core (Bm). The 

portions of the geomagnetic field generated by the Earth’s crust and upper mantle 

(Bc), and by the ionosphere and magnetosphere (Bd), are not represented in the 

WMM. Consequently, a magnetic sensor such as a compass or magnetometer may 

observe spatial and temporal magnetic anomalies when referenced to the WMM. 

In particular, certain local, regional, and temporal magnetic declination anomalies 

can exceed 10 degrees. Anomalies of this magnitude are not common but they do 

exist. Declination anomalies of the order of 3 or 4 degrees are not uncommon but 

are of small spatial extent and are relatively isolated. On land, spatial anomalies 

are produced by mountain ranges, ore deposits, ground struck by lightning, 

geological faults, and cultural features such as trains, planes, tanks, railroad 

tracks, power lines, etc. The corresponding deviations are usually smaller at sea, 

and decrease with increasing altitude of an aircraft or spacecraft. In ocean areas, 

these anomalies occur most frequently along continental margins, near seamounts, 

and near ocean ridges, trenches, and fault zones, particularly those of volcanic 

origin. Ships and submarines are also sources of magnetic anomalies in the ocean. 

The crustal contributions could be included in an extended model, expanded to 

high degrees, as is common for modern gravity field models. Since the crustal 

field is almost constant in time, it can be inferred from all available marine, 

aeromagnetic, and high resolution CHAMP and future SWARM satellite data, 

measured at all times. However, this extended model would differ significantly in 

format from the current WMM, requiring changes in supporting software. 
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APPENDIX B 

B  LOW COST MEMS IMU + MAGNETOMETER 

PERFORMANCE SPECIFICATIONS 

 

Table B.1 

 

PERFORMANCE (1 σ) 

Gyros (Inertial Science RRS75)  

Measurement Range > ± 500 deg/sec 

Dynamic Bandwidth 50 Hz 

Scale Factor Repeatability < 1000 ppm 

Nonlinearity < 1000 ppm 

Bias Repeatability < 100 deg/hr 

Axis Misalignment ≤ 3 mrad 

Random Walk ≤ 1 deg/√hr 

Start-up Time ≤ 100 ms 

g Sensitivity < 100 deg/hr/g 

Accelerometers (Colibrys Ms8000C)  

Measurement Range ±30g 

Dynamic Bandwidth 50 Hz 

Scale Factor Repeatability < 1000 ppm 
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Nonlinearity < 1000 ppm 

Bias Repeatability < 10 mg 

Axis Misalignment ≤ 3 mrad 

Random Walk 0.5 m/s/√hr 

Start-up Time ≤ 100 ms 

Magnetometers(Honeywell 

HMR2300) 

 

Measurement Range ±2 Gauss 

Dynamic Bandwidth 50 Hz 

Scale Factor Repeatability < 750 ppm 

Nonlinearity < 500 ppm 

Bias Repeatability < %0.05 of full scale 

Axis Misalignment ≤ 5 mrad 

Noise Level 0.1 mGauss 

Start-up Time ≤ 100 ms 
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APPENDIX C 

C    DERIVATION OF INERTIAL NAVIGATION                  

MECHANIZATION EQUATIONS 

 

In this system, it is required to calculate the vehicle speed with respect to earth, 

the ground speed, in inertial axes, denoted by i
ev . First of all, it is essential to 

express the fundamental navigation equations[17,18]  

 
2

2
i

d r f
dt

=          (C.1)  

 

And 

 
2

2
i

d r a g
dt

= +          (C.2) 

 

where  

 

f: the acceleration of the rigid body with respect to the inertial axis set 

 

a: accelerations measured by accelerometers 
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g: gravitational acceleration 

 

r: position vector 

 

Note that an accelerometer can not directly measure gravitational acceleration 

 

To obtain velocity with respect to earth, Coriolis equation is introduced; 

 

= + ×ie
i e

dr dr r
dt dt

ω         (C.3) 

 

Differentiating this equation and introducing e
e

dr v
dt

= ; 

 
2

2

( )×
= +e ie

i ii

dv d rd r
dt dt dt

ω        (C.4) 

 
2

2 ( )= + × + × ×e
ie e ie ie

ii

dvd r v r
dt dt

ω ω ω       (C.5) 

 

where 0ied
dt
ω

=  is assumed, i.e. the rate of rotation of Earth is assumed to be 

constant 

 

Rearranging these equations yield; 

 

( )= − × − × × +ne
ie e ie ie

i

dv a v r g
dt

ω ω ω      (C.6) 

 

Where; 
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na : Acceleration to which the inertial measurement unit is subjected 

 

ie exvω :  Transport rate 

 

( )ie iex xrω ω : Centrifugal acceleration experienced by the system as a result of the 

rotational rate of Earth. This term is not separately distinguishable from the 

gravitational acceleration which arises through mass attraction.  The sum of the 

accelerations caused by the mass attraction force and the centrifugal acceleration 

constitutes what is known as the local gravity vector (plumb bob gravity); 

 

( )p ie ieg g x xrω ω= −         (C.7) 

 

A local geographic (or navigation) axis set is needed in order to navigate over 

large distances around the Earth. In a local geographic frame, the position is 

expressed in terms of latitude, longitude and altitude. The velocity is expressed in 

NED components. 

 

The ground speed in navigation frame is denoted as n
ev . Writing its rate of change 

with respect to navigation frame in terms of inertial frame; 

 

( )= − + ×e e
ie en e

n i

dv dv v
dt dt

ω ω        (C.8) 

 

Substituting e

i

dv
dt

; 

 

(2. )= − + × +ne
ie en e p

n

dv a v g
dt

ω ω       (C.9) 

 

which can also be expressed as; 
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. (2. )= − + × +n n b n
e b ie en e pv C a v gω ω       (C.10) 

 
n
bC : The direction cosine matrix (DCM) that is used to transform body coordinate 

frame into navigation coordinate frame. DCM propagates in accordance with the 

following equation; 

 

( )=n n b
b b nbC C ω          

 
b
nbω :The angular rate of the body with respect to the navigation frame 

 
b
nbω : Skew symmetric matrix representation of b

nbω  

 
b
nbω  can be expressed as the measured body rates ( b

ibω ) and estimates of the 

components of the navigation frame rate ( in ie enω ω ω= + ) ; 

 

.( )b b n n n
nb ib b ie enCω ω ω ω= − +        (C.11) 

 

Note that the navigation frame is required to rotate continuously as the system 

moves over the surface of the Earth in order to keep x axis parallel to the ground. 

The turn rate of the navigation frame can be expressed as; 

 

[ /( ) /( ) . tan( ) /( )]n
en E e N n E eV R h V R h V L R hω = + − + − +    (C.12) 

 

This is also known as transport rate. 

 

The DCM that relates earth and navigation frames can be expressed as [19, 20, 

21]; 

 

( )=e e n
n n enC C ω          (C.13) 
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The rate of change in latitude, longitude  and altitude is also expressed as 

 

=
+
N

N

VL
R h

          (C.14) 

 

sec( )
=

+
E

N

V Ll
R h

         (C.15) 

 

= − Dh V          (C.16) 
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APPENDIX D 

D DERIVATION OF INERTIAL NAVIGATION ERROR 

MECHANIZATION EQUATIONS 

In this section, error behavior of a six degree of freedom inertial navigation 

system is analyzed. Error equations in navigation frame are examined [1, 22 and 

23].  

 

D.1 Attitude Errors 

 

The attitude difference between the navigation and computer (erroneous 

navigation) frame can be expressed as; 

 

ˆ .n n n
b b bC C Cδ=         (D.1) 

 

where 

 

ˆ n
bC : True navigation frame 

n
bC : Erroneous navigation (computer) frame  

n
bCδ : Misalignment matrix that relates true and erroneous navigation frame 
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Remember that the attitude kinematics is given as; 

 

.( ) ( ).= −n n b n n
b b ib in bC C Cω ω        (D.2) 

 

Differentiating this equation; 

 

.( ) .( ) ( ). ( ).= + − −n n b n b n n n n
b b ib b ib in b in bC C C C Cδ δ ω δω δω ω δ     (D.3) 

 

 where n
bCδ  can be expressed as a misalignment vector with small angles 

assumption; 

( ).= −n n n
b bC Cδ γ         (D.4) 

 
nγ  : Misalignment vector 

 

Taking this equation’s derivative with respect to time; 

 

( ). ( ).= − −n n n n n
b b bC C Cδ γ γ        (D.5) 

Substitute for n
bC  

 

( ). ( ).( .( ) ( ). )= − − −n n n n n b n n
b b b ib in bC C C Cδ γ γ ω ω      (D.6) 

 

Equating both equations; 

 

.( ) .( ) ( ). ( ).

( ). ( ).( .( ) ( ). )

+ − − =

− − −

n b n b n n n n
b ib b ib in b in b

n n n n b n n
b b ib in b

C C C C

C C C

ω δω δω ω δ

γ γ ω ω
    (D.7) 

And solving for misalignment vector derivative 

 

( ). .( ) ( ).( ).

( ).( ). ( ).

= − +

− +

n n n b n n n
b b ib in b

n n n n n
in b in b

C C C

C C

γ δω γ ω

ω γ δω
      (D.8) 
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Multiplying on the right by the inverse of n
bC ; 

 

( ) .( )( ) ( ).( ) ( ).( ) ( )= − + − +n n b n T n n n n n
b ib b in in inC Cγ δω γ ω ω γ δω    (D.9) 

 

 

.= − − × +n n b n n n
b ib in inCγ δω ω γ δω       (D.10) 

 

Note that n
enω  and n

ieω are defined as; 

 

. tan( )[ ]−
=

+ + +
n TN NE
en

E N E

V V LV
R h R h R h

ω       (D.11) 

 

and 

 

[ cos( ) 0 sin( )]n T
ie L Lω = Ω −Ω       (D.12) 

 
n
inδω is defined mathematically as; 

 
n n n
in ie enω ω ω= +          (D.13) 

 
n n n
in ie enδω δω δω= +         (D.14) 

 

where  

 

.n e e
ie n ieCδω δ ω=          (D.15) 

 

Note that e
ieω  is constant in time. 
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Introducing the error in position, nε  

 

.n n e e
ie n iexCδω ε ω= −          (D.16) 

 
nε  : Position Error vector 

 

Rearranging the equation yields; 

 
n n n n n
ie ie iex xδω ε ω ω ε= − =        (D.17) 

 

In an alternative form, n
enδω  and n

ieδω  can be expressed by differentiating; 

 

2

2 2

( )
. tan( ) . tan( ) .

( ) ( )(cos( ))

⎡ ⎤
−⎢ ⎥+ +⎢ ⎥

⎢ ⎥
= −⎢ ⎥+ +⎢ ⎥

⎢ ⎥− −
+ −⎢ ⎥

+ + +⎣ ⎦

E E

E E

n N N
en

N N

N N N

E E E

V V h
R h R h
V V h

R h R h
V L V L h V
R h R h R h L

δ δ

δ δδω

δ δ

    (D.18) 

[ sin( ) 0 cos( ) ]n T
ie L L L Lδω δ δ= −Ω −Ω      (D.19) 

 

 

 

D.2 Velocity Errors 

 

Remember that differential equation for velocity is given as; 

 

. (2. )= − + × +n n b n
e b ie en e pv C a v gω ω       (D.20) 

 

Differentiating this equation; 
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. .

(2. ) (2. )

= +

− + × − + × +

n n b n b
e b b

n n
ie en e ie en e p

v C a C a

v v g

δ δ δ

δω δω ω ω δ δ
    (D.21) 

 

Introducing n
bCδ  to this equation, neglecting second order effects and rearranging 

yields in the velocity error propagation equation; 

 

( . ) . (2. )

(2. )

= × + − × × +

− + × +

n n b n n b n n n n
e b b e ie en

n n n
ie en e p

v C a C a v

v g

δ γ δ ω ε δω

ω ω δ δ
    (D.22) 

 

 

D.3 Position Errors 

 

Position Equation is given as; 

 

( )=e e n
n n enC C ω          (D.23) 

 

Differentiating this equation 

 

( ) ( )= +e e n e n
n n en n enC C Cδ δ ω δω          (D.24) 

 

Defining; 

 

( )=e e n
n nC Cδ ε          (D.25) 

 
nε  : Position error vector 

 

Taking derivative with respect to time; 

 



 

 
 

140 

( ) ( )= +e e n e n
n n nC C Cδ ε ε        (D.26) 

Rearranging; 

 

( )( ) ( )= +e e n n e n
n n en nC C Cδ ω ε ε        (D.27) 

 

Equating these equations 

 

( )( ) ( ) ( ) ( )+ = +e n n e n e n e n
n en n n en n enC C C Cω ε ε δ ω δω      (D.28) 

 

Solving for nε  

 

( ) ( ) ( ) ( )( )= + −e n e n e n e n n
n n en n en n enC C C Cε δ ω δω ω ε      (D.29) 

 

Multiply on the left by the inverse of e
nC  

 

( ) ( )( ) ( ) ( )( )= + −n n n n n n
en en enε ε ω δω ω ε       (D.30) 

 

Rearranging; 

 
n n n n

en enxε ω ε δω= − +         (D.31) 

 

Altitude error is given by differentiating  

 

= Dh V           (D.32) 

 

= Dh Vδ δ          (D.33) 

 

As an alternative form, longitude and latitude errors can be found from their 

differential equations; 
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/( ) . /( )= + − +N n N nL V R h V h R hδ δ δ       (D.34) 

 

.sec( ) /( ) .sec( ). tan( ). /( )
.sec( ). /( )

= + + +
− +

E e E e

E e

l V L R h V L L L R h
V L h R h

δ δ δ δ
δ δ

   (D.35) 
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APPENDIX E 

E  STATE SPACE REPRESENTATION OF THE 

NAVIGATION EQUATIONS 

 

Error propagation equations of navigation states can be represented in state space 

formulation for Kalman filter implementation; 

 

x F.x G.w= +           (E.1) 

 

z H.x v= +           (E.2)  

 

Where x, w and v can be defined as follows; 

 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

N

N

B
a
B
g

V
L

x l
h

B
B

γ
δ
δ
δ
δ

         (E.3) 

 

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

a

g

N
w

N
         (E.4) 
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For magnetometer aiding; 

 

( )= Mgnv N          (E.5) 

 

For GPS aiding; 

 

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

pos

vel

N
v

N
         (E.6) 

 
Nγ : Attitude error vector 

NVδ : Velocity error vector 

Lδ : Latitude error 

lδ : Longitude error 

hδ  : Altitude error 
B
aB  : Accelerometer bias vector 

B
gB  : Gyro bias vector 

aN : Accelerometer noise vector 

gN : Gyro noise vector 

MgnN : Magnetometer noise vector 

posN  : GPS position uncertainty 

velN : GPS velocity uncertainty 

 

The system matrix is given as; 

 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

F F F F F
F F F F F

F F F F F F
F F F F F
F F F F F

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

      (E.7) 
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E e N n

11 E e E e

N n E e

0 sin(L) V / R tan L V / R
F sin(L) V / R tan L 0 cos(L) V / R

V / R cos(L) V / R 0

−Ω −

= Ω + Ω +

− −Ω −

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

  (E.8) 

 

12

0 1/ R 0
F 1/ R 0 0

0 tan(L) / R 0

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

      (E.9) 

 
2

E E
2

13 N N
2 2

E e E

sin(L) 0 (V / R )
F 0 0 V /(R )

sin(L) V /(R (cos L) ) 0 V tan(L) / R

⎛ ⎞−Ω −
⎜ ⎟

= −⎜ ⎟
⎜ ⎟−Ω −⎝ ⎠

   (E.10) 

 
N

14 BF C= −          (E.11) 

 
N B

21 BF C .a=          (E.12) 

 

D n E e N n

22 E e N D E e

N n E e

V / R 2 sin(L) V / R tan L V / R

F 2 sin(L) V / R tan L 1/ R(V tan(L) V ) 2 cos(L) 2V / R

2V / R 2 cos(L) 2V / R 0

− Ω −

= − Ω − + Ω +

− − Ω −

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

(E.13) 

 
2 2 2

E E e E D N

2 2

23 N D D N e E N D

2 2 2

E N E

V (2 cos(L) V /(R (cos L) ) 0 (V tan(L) V V ) / R

F 2 (V cos(L) V sin(L)) V V /(R (cos L) ) 0 V (V tan(L) V ) / R

2 V sin(L) 0 (V V ) / R

Ω − −

= Ω − + −

Ω +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

(E.14) 

 
N B

25 BF C .w=          (E.15) 

32

1/ R 0 0
F 0 1/(R cos(L)) 0

0 0 1

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

      (E.16) 
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2
N n

2
33 E

0 0 V / R
F 0 1/(R cos(L)) V /(R cos(L))

0 0 0

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠

     (E.17) 

15 24 31 34 35 3x3F F F F F 0= = = = =       (E.18) 

 

41 42 43 44 45 3x3F F F F F 0= = = = =       (E.19) 

 

51 52 53 54 55 3x3F F F F F 0= = = = =       (E.20) 

 

The system noise matrix can be simply written as; 

 

3 3 3 3

3 3 3 3

0
0

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
( ) x x

x x

I
G x

I
        (E.21) 

 

For magnetometer and GPS aiding, measurement matrices can be expressed as 

follows, respectively; 

 

( )3 3 3 3 3 3 3 30 0 0 0=( ) N B
B x x x xH x C B      (E.22) 

 

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

0 0 0 0
0 0 0 0

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
( ) x x x x x

x x x x x

I
H x

I
     (E.23) 
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APPENDIX E 

F MATLAB CODE FOR MAGNETOMETER AND GPS 

AIDED NAVIGATION SIMULATION 

 

 

 

Main.m 

 

% Main Module 

  

% clear all 

% close all 

% clc 

% commandwindow 

 

% Initiate the simulation parameters 

  

INET_INPUT 

% Start the simulation loop 

  

% disp(' ') 

% disp('----------------------- SIMULATION IS STARTED --------------------') 

Master = load('traj.dat') ; 
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% Outer Navigation Loop 

i=1; 

j=1; 

  

  

for t=0:dt:(tmax-dt) 

    % Calculate the Inertial Measurement Unit errors 

     

[S_WB_IB_CORE,S_aB_SF_CORE] = 

INET_IMUERROR(S_WB_IB,S_aB_SF, imu_bias_gyr_vector , 

imu_bias_acc_vector 

,imu_F_scal_matrix,imu_G_scal_matrix,imu_rnd_gyr_vector,imu_rnd_acc_vecto

r); 

     

[lat,lon,alt,velocity_vector,CL_B,phi,theta,psi,V_tot_ins]= 

INET_ins(S_aB_SF_CORE ,S_WB_IB_CORE,CL_B, velocity_vector,lat,lon,alt 

) ; 

  

     

  

J=magfd(2005,1,M_h,90-M_Lat*180/pi,M_Lon*180/pi); 

  

H= J(1:3)'*10^-5*1000; 

B= S_CL_Bm'*H +INET_randgauss(0,[1 1 1]'); 

 

 [Z1] = INET_MEASUREMENT_MAG_ONLY (H,B,BDOT, CL_B, 

S_CL_Bm); 

INET_ESTIMATION_AHRS(obs,Z_ahrs_vel,X,R,Rn_ahrs_vel,CL_B 

,S_aB_SF_CORE, S_WB_IB_CORE, FAb, FAs, FGb 

,FGs,M_CL_B,M_WB_IB,S_Latm ,velocity_vector,B,U,S_aB_SF_CORE); 
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% [lat,lon,alt, velocity_vector,CL_B, phi,theta,psi,Ab,Gb,As,Gs]= 

INET_FEEDBACK3a(lat,lon,alt, velocity_vector, phi,theta,psi,X); 

%     disp(sprintf( ' Estimation Procedure is completed...')); 

     

Magfd.m 

 

 

function  J=magfd(DATE,ITYPE,ALT,COLAT,ELONG) 

%  MAGFD 

%  Function to compute Earths magnetic field 

%  and components: X,Y,Z,T for a given latitude 

%  and longitude, date and altitude. 

%  Uses MATLAB MAT files sh1900.mat to sh2005.mat in 5 yr 

%  intervals. 

% 

%  Usage: out=magfd(DATE,ITYPE,ALT,COLAT,ELONG); 

% 

%  DATE = date of survey (decimal years) 

%  ITYPE=1 for geodetic to geocentric (USE 1) 

%  ALT = altitude of survey relative to sealevel (km +ve up) 

%  COLAT=90-latitude (decimal degrees) 

%  ELONG=longitude of survey (decimal degrees) 

% 

%  Output array out contains components X,Y,Z,T in nanoteslas 

%   X north component 

%   Y east component      

%   Z vertical component +ve down 

%   T total field magnitude 

% 

%igrfyear=2000; 

%igrffile='sh2000'; 

%DGRF=[1900:5:2000]; 
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DGRF=[1900:5:2005]; 

igrfyear=2005; 

igrffile='sh2005'; 

pl=0; 

if DATE < 0, pl=1; end 

DATE=abs(DATE); 

% Determine year for base DGRF to use. 

 if DATE < igrfyear, 

  BASE=fix(DATE-DGRF(1));  

  i=fix(BASE/5)+1; 

  BASE=DGRF(i); 

%   if pl==0, 

%       fprintf('Using DGRF base year %f \n',BASE);       

%   end 

  eval(['load sh',num2str(BASE)]) 

  % loads agh and agh41 but now need to get  

   iagh=agh;iagh41=agh41; 

  % load next epoch 

  eval(['load sh',num2str(DGRF(i+1))]) 

   eagh=agh;eagh41=agh41; 

   dgh=(eagh-iagh)./5;dgh41=(eagh41-iagh41)./5; 

   agh=iagh;agh41=iagh41; 

   clear iagh iagh41 eagh eagh41 

   T = DATE - BASE; 

 else 

%   if pl==0, 

%       fprintf('Using IGRF base year %f \n',igrfyear);        

%   end 

  eval(['load ',igrffile])   % load in igrf data file 

  T     = DATE - igrfyear; 

 end 

% combine spherical harmonic coefficients from first 8 degrees  
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% with degrees 9 and 10  

 agh=[agh,agh41]; 

 dgh=[dgh,dgh41]; 

% 

      D2R   = pi/180; 

      R     = ALT; 

      ONE   = COLAT*0.01745329; 

      SLAT  = cos(ONE); 

      CLAT  = sin(ONE); 

      ONE   = ELONG*0.01745329; 

      CL(1) = cos(ONE); 

      SL(1) = sin(ONE); 

      X     = 0.0; 

      Y     = 0.0; 

      Z     = 0.0; 

      CD    = 1.0; 

      SD    = 0.0; 

      L     = 1; 

      M     = 1; 

      N     = 0; 

if ITYPE == 1  % CONVERSION FROM GEODETIC TO GEOCENTRIC 

COORDINATES 

    A2    = 40680925.;  % squared semi major axis 

    B2    = 40408588.;  % squared semi minor axis 

    ONE   = A2*CLAT*CLAT; 

    TWO   = B2*SLAT*SLAT; 

    THREE = ONE + TWO; 

    FOUR  = sqrt(THREE); 

    R     = sqrt(ALT*(ALT + 2.0*FOUR) + (A2*ONE + B2*TWO)/THREE); 

    CD    = (ALT + FOUR)/R; 

    SD    = (A2 - B2)/FOUR*SLAT*CLAT/R; 

    ONE   = SLAT; 
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    SLAT  = SLAT*CD - CLAT*SD; 

    CLAT  = CLAT*CD +  ONE*SD; 

end 

    RATIO = 6371.2/R; 

% 

%     COMPUTATION OF SCHMIDT QUASI-NORMAL COEFFICIENTS  P 

AND X(=Q) 

% 

      P(1)  = 2.0*SLAT; 

      P(2)  = 2.0*CLAT; 

      P(3)  = 4.5*SLAT*SLAT - 1.5; 

      P(4)  = 5.1961524*CLAT*SLAT; 

      Q(1)  = -CLAT; 

      Q(2)  =  SLAT; 

      Q(3)  = -3.0*CLAT*SLAT; 

      Q(4)  = 1.7320508*(SLAT*SLAT - CLAT*CLAT); 

  

NMAX=10; % Max number of harmonic degrees 

NPQ=(NMAX*(NMAX+3))/2; 

for K=1:NPQ, 

 if N < M  

    M     = 0; 

    N     = N + 1; 

    RR    = RATIO^(N + 2); 

    FN    = N; 

 end 

 FM    = M; 

 if K >= 5 %8,5,5 

    if (M-N) == 0 %,7,6,7 

        ONE   = sqrt(1.0 - 0.5/FM); 

        J     = K - N - 1; 

        P(K)  = (1.0 + 1.0/FM)*ONE*CLAT*P(J); 
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        Q(K)  = ONE*(CLAT*Q(J) + SLAT/FM*P(J)); 

        SL(M) = SL(M-1)*CL(1) + CL(M-1)*SL(1); 

        CL(M) = CL(M-1)*CL(1) - SL(M-1)*SL(1); 

    else 

        ONE   = sqrt(FN*FN - FM*FM); 

        TWO   = sqrt((FN - 1.0)^2 - FM*FM)/ONE; 

        THREE = (2.0*FN - 1.0)/ONE; 

        I     = K - N; 

        J     = K - 2*N + 1; 

        P(K)  = (FN + 1.0)*(THREE*SLAT/FN*P(I) - TWO/(FN - 1.0)*P(J)); 

        Q(K)  = THREE*(SLAT*Q(I) - CLAT/FN*P(I)) - TWO*Q(J); 

    end 

% 

%     SYNTHESIS OF X, Y AND Z IN GEOCENTRIC COORDINATES 

% 

 end 

 ONE   = (agh(L) + dgh(L)*T)*RR; 

  

 if M == 0 %10,9,10 

    X     = X + ONE*Q(K); 

    Z     = Z - ONE*P(K); 

    L     = L + 1; 

 else 

    TWO   = (agh(L+1) + dgh(L+1)*T)*RR; 

    THREE = ONE*CL(M) + TWO*SL(M); 

    X     = X + THREE*Q(K); 

    Z     = Z - THREE*P(K); 

    if CLAT > 0 %12,12,11 

        Y = Y+(ONE*SL(M)-TWO*CL(M))*FM*P(K)/((FN + 1.0)*CLAT); 

    else 

        Y = Y + (ONE*SL(M) - TWO*CL(M))*Q(K)*SLAT; 

    end 
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    L     = L + 2; 

 end 

    M     = M + 1; 

end 

%     CONVERSION TO COORDINATE SYSTEM SPECIFIED BY ITYPE 

ONE   = X; 

X     = X*CD +  Z*SD; 

Z     = Z*CD - ONE*SD; 

T     = sqrt(X*X + Y*Y + Z*Z); 

J=[X,Y,Z,T]; 

%  END 

 

 

 

IMUERROR.m 

  

function [S_WB_IB_CORE,S_aB_SF_CORE] = 

INET_IMUERROR(S_WB_IB,S_aB_SF,imu_bias_gyr_vector , 

imu_bias_acc_vector 

,imu_F_scal_matrix,imu_G_scal_matrix,imu_rnd_gyr_vector,imu_rnd_acc_vecto

r) 

  

%Function  to compute simulated IMU outputs 

% S_WB_IB: reference gyro outputs 

% S_aB_SF: reference accelerometer outputs 

% imu_F_scal_matrix: Scale factor and misalignment error matrix for gyro 

% imu_G_scal_matrix: Scale factor and misalignment error matrix for 

%accelerometer 

% imu_bias_gyr_vector: Gyro bias vector 

% imu_bias_acc_vector: Accelerometer bias vector 

% imu_rnd_gyr_vector: Gyro noise vector 

%,imu_rnd_acc_vector: Accelerometer noise vector 
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S_WB_IB_CORE = S_WB_IB+ imu_F_scal_matrix*S_WB_IB   + 

imu_bias_gyr_vector +  INET_randgauss(0,imu_rnd_gyr_vector); 

  

S_aB_SF_CORE =  S_aB_SF+ imu_G_scal_matrix*S_aB_SF + 

imu_bias_acc_vector + INET_randgauss(0,imu_rnd_acc_vector); 

 

 

ESTIMATION.m 

 

 

function [obs X Pe Phi U] = INET_ESTIMATION(obs,Z,X,R,Rn,CN_B 

,S_aB_SF, S_WB_IB,M_CL_B,M_WB_IB ,Lat, velocity_vector,B,U) 

  

global r_m_s states i 

global dte CL_N deltaVx deltaVy deltaVz deltapitch deltaroll deltayaw  

deltaAccbias deltaAccscale deltaGyrbias deltaGyrscale deltaLat deltaLon deltah 

persistent   init_flag_est P Q 

  

if isempty(init_flag_est) 

     

     

    obs=zeros(states); 

    U=zeros(states,1); 

P = zeros(states,states) ; 

  

% Covariance Related to deltavN 

P(1,1) =  deltaroll  ; 

P(2,2) = deltapitch ; 

P(3,3) = deltayaw ; 

% Covariance Related to gamma 
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P(4,4) = deltaVx; 

P(5,5) = deltaVy; 

P(6,6) = deltaVz ; 

  

% Covariance Related to Accelerometer Bias Error 

  

P(7,7) = deltaLat; 

P(8,8) = deltaLon; 

P(9,9) = deltah; 

  

  

P(10,10) = deltaAccbias; 

P(11,11) = deltaAccbias; 

P(12,12) = deltaAccbias; 

  

% Covariance Related to Accelerometer SF Error 

P(13,13) = deltaAccscale ; 

P(14,14)  = deltaAccscale ; 

P(15,15)= deltaAccscale ; 

  

% Covariance Related to Gyro Bias Error 

P(16,16) = deltaGyrbias; 

P(17,17) = deltaGyrbias; 

P(18,18) = deltaGyrbias; 

  

% Covariance Related to Gyro SF Error 

P(19,19) = deltaGyrscale; 

P(20,20) = deltaGyrscale; 

P(21,21) = deltaGyrscale; 

     

 U(1:3,1) = [ 0 0 0]' ; 

U(4:6,1) = [ 0 0 0]'; 
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U(7:9,1) = [ 0 0 0]' ; 

U(10:12,1) = [ 0 0 0]' ; 

U(13:15,1) = [ 0 0 0]' ; 

U(16:18,1) = [ 0 0 0]' ; 

U(19:21,1) = [ 0 0 0]' ; 

  

  

    init_flag_est = 1 ; 

     

end 

F = getF(CN_B,S_aB_SF,S_WB_IB,FAb,FAs,FGb,FGs,Lat,velocity_vector); 

  

G = getG(CN_B); 

H = getH(CN_B,S_WB_IB,B); 

  

Gm = getGm(CN_B,S_WB_IB) ; 

  

% State Transition Matrix 

 Phi =  expm(F*dte); 

  

 

%Covariance Equations 

X=X-U; 

  X= Phi*(X); 

  

P = abs((Phi*P*Phi' + G*R*G')); 

  

  

Kn = P*H'* inv(H*P*H'+ Gm*Rn*Gm'); 

  

 

X=  X +Kn*(Z - H*X) ; 
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P= abs(((eye(21)- Kn*H)*P)); 

Pe=P; 

U(1:3,1) = X(1:3) ; 

U(4:21,1) = zeros(18,1);  


