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ABSTRACT

UNSTEADY AERODYNAMIC CALCULATIONS OF FLAPPING WING
MOTION

AKAY, Busra
M.Sc., Department of Aerospace Engineering

Supervisor: Prof. Dr. H. Nafiz Alemdatiu

September 2007, 89 pages

The present thesis aims at shedding some lightutore applications oflAVs by
investigating the hovering mode of flight by flapgimotion. In this study, a detailed
numerical investigation is performed to investigtte effect of some geometrical
parameters, such as the airfoil profile shapeskiti@ss and camber distributions and
as well as the flapping motion kinematics on thedgnamic force coefficients and
vortex formation mechanisms at low Reynolds numibie numerical analysis tool
is @ DNS code using the moving grid option. LamiNavier-Stokes computations
are done for flapping motion using the prescribiegiatics in the Reynolds number
range of 16-10°. The flow field for flapping hover flight is invégated for elliptic
profiles having thicknesses of 12%, 9% and 1% eirtbhord lengths and compared
with those of NACA 0009, NACA 0012 and SD 7003 aiirfprofiles all having
chord lengths of 0.01m for numerical computatioemputed aerodynamic force
coefficients are compared for these profiles hawdiffgrent centers of rotation and
angles of attack. NACA profiles have slightly highé coefficients than the ellipses
of the same t/c ratio. And one of the most impdrtanclusions is that the use of
elliptic and NACA profiles with 9% and 12% thickrses do not differ much as far

as the aerodynamic force coefficients is concefoethis Re number regime. Also,



two different sinusoidal flapping motions are amaly. Force coefficients and
vorticity contours obtained from the experimentghe literature and present study
are compared. The validation of the present contpui@ results with the
experimental results available in the literaturecemages us to conclude that present

numerical method can be a reliable alternativexpeemental techniques.

Keywords: Flapping Motion, Unsteady AerodynamicsPC
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CIRPAN KANAT HAREKETININ ZAMANA BA GLI AERODINAMIK
HESAPLAMALARI

Akay, Bwra
Yuksek Lisans, Havacilik ve Uzay MiuhendisBBolumu

Tez Yoneticisi: Prof. Dr. H. Nafiz Alemdagtu

Eylal 2007, 89 sayfa

Bu tez cirpan kanat hareketinin havada asili kalmdunu inceleyerek gelecekteki
mikro hava araglari uygulamalarirgki olmayr amagclangtir. Bu ¢algmada, dgik
Reynolds sayisinda kanat kesitigekli, kalinhgi, kambur dgihmi gibi geometric
parametrelerin ve bunlarin yaninda c¢irpan kanaeKetinin aerodinamik kuvvet
katsayilarinin ve girdap alum mekanizmasinin tzerindeki etkilerini giramak icin
detayh bir sayisal inceleme gercegtielmistir. Sayisal analiz araci hareket edgn a
yapisi opsiyonunu kullanabilen bir DNS koddur. Laam Navier-Stokes
hesaplamalari belirlenen kinematikler kullanilagakpan kanat hareketleri icin *0
10*° Reynolds sayisi rejimi icinde gerceftlelmistir. Cirpan kanat hareketinin
havada asili kalma modunda gklani kalinllar vetere uzunluklarinin (c=0.01m)
%12, %9 and %1 olan eliptik profiler icin ataulmistir ve vetere uzunluklari 0.01m
olan NACA 0009, NACA 0012 and SD 7003 kanat kesitlie karsilastirilmistir.
Hesaplanan aerodinamik kuvvet katsayilari bu peoirl farkli donme noktalari ve
hicum acilari icin karlastiriimistir. Ayni t/c orani icin NACA profilleri elipslerde
biraz daha fazla kaldirma kuvveti katsayisina sabipwlardir. En 6enmli
sonuclardan biri de bu Reynolds sayisi rejimi iggrodinamik kuvvet katsayilari

distunuldiginde %9 ve %12 kalinhktaki NACA ve eliptik proklullanmanin fazla

Vi



bir farki olmadgidir. Ayni zamanda iki farkli sinusoidal cirpan kanhareketi
incelenmgtir. Literatirdeki deney sonuclarindangkman kuvvet katsayilari ve
girdap konturlari ile bu caimadan elde edilen sonuclar $dastirimistir. Bu

calsmadan elde edilen sayisal sonuclarin literaturdé&neysel sonuclar ile
sgglanms olmasi bizi ‘bu cabmadaki sayisal metod deneysel tekniklere guvenitir

alternatif olabilir sonucuna goturngiilr.

Anahtar Kelimeler: Cirpan Kanat Hareketi, Zamangl|Baerodinamik, CFD
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CHAPTER |

INTRODUCTION

This thesis is about numerical analysis of two disienal flapping motion in

hovering mode. Direct Numerical Simulation is usedolve the flow field around

the two dimensional wing during the flapping motioknsteady, laminar,

incompressible two dimensional Navier-Stokes Eaqumgti are solved by using
moving grid technique. After grid refinement studi€» type grids are generated
around the profiles with grid outer boundaries chosertatl20 chord lengths.

The flapping motion is assumed to consist of a dudwake, rotation and an upstroke.
The length of each stroke depends on the kinematitse defined flapping motion.
Detailed information about flapping kinematics isan in the following chapters.
Three types of flapping motion kinematics are amadlyduring this thesis study and

their descriptions are given in Chapter lll.

The first motion type is prescribed by Kurtulusadt [1]. A parametric study is
performed on the unsteady aerodynamics of diffeneng profiles at low Reynolds

number (Re=1000) with this flapping motion kineroati1l]. An investigation is

done to assess the importance of the shape anahéisie of the 2D wing profile on
the aerodynamic force coefficients and the vor@xnftion mechanisms by using
the Direct Numerical Simulation technique. The pesfiinvestigated are elliptic
profiles with 12%, 9% and 1% thicknesses and NACA)MWNACA 0012 and SD

7003 airfoil profiles all having 0.01m chord lengthishe computed aerodynamic
force coefficients are then compared for these ilpoffor different center of

rotations and angles of attack [2].



The second and third flapping motion kinematics @mescribed by Wang et al. [3]
and Freymuth [4]. A study is performed to check ¢benputational performance of
the present numerical method and to analyze thessidal flapping motion
aerodynamics for different Reynolds numbers in tthiege 16-10° by using this
kinematics. Two different sinusoidal motions are dated by implementing the

sinusoidal translational and angular motions usingdheeshumerical solver.

The present thesis is composed of 5 Chapters. Témrdtical background of the
present study and a review of the literature altagping motion are given in
Chapter 2. In Chapter 3, the numerical method islagxgd by giving the
computational details and by describing the wingdet® and the kinematics used.
The computational results obtained by using the [@N&e are given in Chapter 4.
Finally, the conclusions obtained from the presewgsitigations are given in Chapter
5.



CHAPTER I

BACKGROUND OF THE STUDY

Interest in the aerodynamics of insect flights lmeseased in conjunction with the
concept of Micro Air VehiclesyAVs). Based on their size, flying insects operate in
a wide range of Reynolds numbers; from approxirgatéf to 1¢ [5]. Operating
Reynolds number ranges pAVs are similar with those of birds or insects. $hu
this similarity led most of the researchers to ustind the aerodynamic basis for the

flight of birds and insects.

The present study aims at shedding some light flurduapplications ofitAVs by
investigating the hovering mode of flight by flapping rant

2.1 Basic Aerodynamics of Insect Flight

Four degrees of freedom in each wing are usedtieee flight in nature: flapping,
lagging, feathering and spanning. Flapping is an angonovement about an axis in
the direction of flight. Lagging is an angular mowarhabout a vertical axis which
effectively moves the wing forward and backwardafial to the vehicle body.
Feathering is an angular movement about an axigsndréhe center of the wing
which tilts the wing to change its angle of atta8jpanning is an expanding and
contracting of the wing span. However not all flyiagimals can implement all of
these motions. Unlike birds, most insects do nottheespanning. They have very
restricted lagging capabilities. Thus, flapping flighpossible with only two degrees
of freedom: flapping and feathering [6].

The critical characteristic in insect flight whichstinguishes it from other flying

creatures or machines is the kinematics of wingianofexcept for hummingbirds).



Due to their smaller scale, insects differ fundaralntfrom birds. Insects carry out
all of the operations at their wing roots. As aufesf this kinematics, the
aerodynamics associated with insect flight is alsy different from those

encountered in conventional fixed- and rotary-wing omndwed flight [7].

Figure 2.1 Hummingbird [8].

Identification of major forces is critical to undéand insect flight. Conventional
aerodynamic theory is based on rigid wings movingoastant velocity. However, it
is observed that when insect wings are placed winal tunnel and tested over a
range of air velocities, the measured forces geaerhy flapping their wings are
substantially smaller than those required for a&ctilight [9]. Thus, there is
something more complex with the flapping motion ethincreases the lift produced
by a wing. The failure of conventional steady-stéteory has prompted the search
for unsteady mechanisms that might explain theid these high forces produced

during flapping motion [10].



2.1.1 Hovering Flight

“Hovering is an extreme mode of flight where thewfard velocity is zero. To do
this, insects must draw clean air from the ambitow fand get rid of the 'messy

vortices' they have created to obtain a large periodid1iti.

The wingstroke of an insect is divided into fouagds: while the wings sweep
through the air with a high angle of attack, twanglational phases (upstroke and
downstroke) occur; and while the wings rapidly tetand reverse direction, two
rotational phases (pronation and supination) of2ir The wing path is shown with
a blue dotted line. Blue arrows indicate the digactf the wing motion. Lift (dark
blue) and drag (green) aerodynamic forces are cosmgs of the total aerodynamic

force (red).

Leading edge
of the wing

wing path

Figure 2.2 Hovering flight posture [12].

A hovering hummer keeps its body at about @a#gle to the ground and moves its
wings in a more or less a “figure eight” patteruriimers have an extremely mobile
shoulder joint to generate lift on both up-downké® The direction of thrust
changes between the up-downstrokes, so that theyelcaach other out. Since the
wings beat more than 20 times per second (sometasespidly as 80 beats per
second), inertia holds the bird's body essentially statjo[13].



However, the hovering flight is quite expensive. Whiteak fliers and strong flying
birds invest about 15 and 20 percent (respectivafythe total body weight in the
breast muscles, hummingbirds invest about 30 peafeht total body weight in the
breast muscles [13].

The flow associated with insect flapping flight iiscompressible, laminar and
unsteady, and occurs at low Reynolds numbers- @01F). The enhanced

aerodynamic performance of insects result fromnégraction of some mechanisms:
Wagner effect, delayed stall and the formation atlieg edge vortex, Kramer effect,

wake capture, and clap and fling mechanism.

2.1.2 Wagner Effect

There are three main features in insect's flappiygle. These are the wing’'s
repeated acceleration (starting), deceleration fatgp and reversal. “This ‘start—
stop—reversal’ behavior is fundamental to the agrathics that makes this flight
possible [7].” During this process, vorticity is gesited and shed at the trailing edge,
and the shed vorticity eventually rolls up in thnh of a starting vortex. The
vorticity shed at the trailing edge induces a vijofield in the vicinity of the wing.
This velocity field counteracts the growth of cilaion bound to the wing and
therefore, has an inhibitory effect on lift-the called Wagner effect. Until the
starting vortex has moved sufficiently far from tin@ling edge, this effect proceeds.
Then the wing attains its maximum steady circulaiigee Figure 2.3). As it is seen
in Figure 2.3, the ratio of instantaneous to steeidyulation grows as the trailing
edge vortex moves away from the airfoil, and itsuefice on the circulation around

the airfoil diminishes with distance [5].
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Figure 2.3 Schematic diagram of Wagner effect. Ditais non-dimensionalized
with respect to chord lengths traveled [5].

2.1.3 Delayed Stall and Leading Edge Vortex

Delayed stall occurs during the translational phatehe stroke. As the wing
increases its angle of attack, the fluid stream g@wer the wing separates as it
crosses the leading edge but reattaches befoeacdhes the trailing edge. In such
cases, a leading edge vortex occupies the sepamdits above the wing. Because
the flow reattaches, the fluid continues to flow siidy from the trailing edge and
the Kutta condition is maintained. In this case, heeahe wing translates at a high
angle of attack, a greater downward momentum is iitag&o the fluid, resulting in

substantial enhancement of lift [5].

Although many mechanisms are identified to explia insect flight, the main
source of the extra lift was unknown until Ellingtet al. [14] discovered the leading
edge vortex. They have visualized the airflow arbtime wings of the Hawkmoth
Manduca sexta and a hovering large mechanical metiel flapper. An intense
leading edge vortex having sufficient strength xplain the high lift forces was
found on the downstroke. The vortex is created biyadyic stall, and not by the
rotational lift mechanisms that have been postdiébe insect flight. The schematic

representation of delayed stall is given in Figure 2.4-(1).



2.1.4 Kramer Effect (Rotational Circulation)

Insect wings generate lift during both up and deivokes by always having positive
angle of attack. This is achieved by undergoing tsuibsl two rotational phases
(pronation and supination) about a spanwise axés tiee end of every stroke [5].
The orientation of the resulting force should alepend critically on the direction of
wing rotation. If the wing flips early, before reviexg direction, then the leading
edge rotates backward relative to translation airoplified wing kinematics. An
advance in rotation relative to translation residta positive lift peak at the end of
each half stroke, whereas a delay in rotation resalhegative lift at the beginning
of each half stroke. Thus, by properly adjustingtiimeng of wing rotation, an insect
can generate lift via a rotational mechanism inesscof that produced by delayed
stall [5].

According to Dickinson et al. [10], the physics ofating wings have two important
consequences for the forces generated by rotatiinallation due to flat insect
wings. First, the rotational force on a wing actsrnma to its chord, not
perpendicular to the direction of motion. Second¢cmiss forces within the air will
make the flow smoothly at the sharp trailing eddeis Tonstraint, termed the Kutta
condition, fixes a fluid stagnation point at theiling edge of the wing. The
functional consequence of the Kutta condition &t tfthe amount of circulation and
thus force produced by a rotating wing will depenitically upon the position of the
rotational axis [10]. The schematic representatibrotational lift is given in Figure
2.4-(2). At its completion (see Figure 2.4-(3)), thenmaver also results in a

powerful force propelling the insect forward.



~— downstroke

3 2 1

rotational delayed
lift stall

Figure 2.4 Schematic representation of delayed atallrotational lift. A fly moves
from right to left during a downstroke of its win@®p), blue arrows indicate the
direction of wing movement and red arrows the directionraagnitude of the forces
generated in the stroke plane [12].

2.1.5 Wake Capture

The wake behind a flying object contains energyartgd to the surrounding fluid in
the form of momentum and heat. Wing passage thrthigkvake could, therefore, be
a method to recover some of this lost energy (Wek®a previous stroke) and utilize
it usefully for flight [6]. The schematic represeitia of wake capture is given in
Figure 2.5 (1, 2).

According to Dickinson et al. [10], although rota@brirculation can explain one of
the stroke reversal forces, it can not explain &éngd positive transient that develops
immediately after the wing changes direction atsteet of each half stroke. These
force peaks are distinct from the rotational ciatian peaks, because their timing is
independent of the phase of wing rotation. One ptessixplanation for these forces
is the mechanism of wake capture, in which the videgefits from the shed vorticity

of the wing at an angle that produces negative lift.



upsiroke —p=

- wake capture -

Figure 2.5 Schematic representation of wake capfuf. moves from left to right
during a upstrokéop), blue arrows indicate the direction of wing movemamd red
arrows the direction and magnitude of the forces gertenatine stroke plane [12].

2.1.6 Clap and Fling Mechanism

The clap-and-fling mechanism was first proposed\iBis-Fogh [15] to explain the
high lift generation in the chaliced wagmcarsia formosand is sometimes also
referred to as the Weis-Fogh mechanism [5].

In this process, the wings clap together abovertbect’s body and then fling apart.
As they fling open, the air gets sucked in and eeatvortex over each wing. This
bound vortex then moves across the wing and, irtlg® acts as the starting vortex
for the other wing. By this method, circulation ardig lift are increased to the
extent of being higher, in most cases, than the typical lgaaige vortex mechanism
[16]. “Although the clap and fling may be importaespecially in small species, it is
not used by all insects and thus can not represgeneral solution to the enigma of
force production [10].” In Figure 2.6 schematic resmmatation of clap and fling

mechanism is presented. Black lines show flow lirreg] dark blue arrows show

induced velocity. Light blue arrows show net forces actmghe airfoil.

10



Clap Fling

D i
V \Qh; fx\’////_ )

B
o T
Sy | % AN 7/
@) Q
C Ex 7 N
O @ \\'l 7 \;\\\ J.(I."f::\\_.._
MM TN
/ H b

Figure 2.6 A-C represent wing approaching each otheslap and D-F represent
flinging apart [5].

2.2 Advantages of Flapping Flight in MAV

Insect-like flapping wing Micro Air Vehiclesp@AVs) are small hand-held flying
vehicles that are developed for the purpose ofmeaisance in confined spaces, for
example, inside buildings, tunnels and shafts. Tooperfthese applications, the
vehicles have a stable hover and a highly manebleegower efficient platform.
Flying insects have this kind of performance, andcke insect-like flapping is

focused on by engineering means [17].

“The flapping motion of insect wings is qualitatiyedifferent from fixed airplane
wings or even the rotation of helicopter bladess’ perhaps not surprising, that the
guasi-steady-state analysis that works so welhfiaraft but it does not work when
insects’ flight is considered [18]. Although flapginving design is more complex
than a fixed wing design, there are many reasonsxfdore the possibilities of

flapping wing flight.
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* The size constraints:

While the vehicle becomes smaller, the fixed wingl@ption becomes less
reasonable. The lift which a fixed wing generatesupport the weight of the vehicle
is directly proportional to wing area and veloaityair flow over the wing. Thus, the

smaller the vehicle, the less lift it can supply.

* To increase lift -to support the weight of the v most designs
increase the velocity of the vehicle. Increasinge®y is unacceptable in

situations such as indoor missions where a HAV makesdsesanse.

» A flapping wing design can rely on lift generatgddirflow created by
both vehicle speed and wing flapping to supporiikeht of the vehicle.
Therefore, if the scale is reduced, the frequencyhefbeating can be
increased without affecting the minimum velocitytbé vehicle [6]. The
main consequence for insect flight is generatiohigh lift at low speeds
thus enabling slow, but highly maneuverable and pasficient flight
[19].

* Ability to perform short takeoffs and landings:
Provided with enough power, a vehicle with flappimimgs could actually takeoff

and land vertically [6].

Figure 2.7 Sympetrum flaveolum-side (aka) [16].
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2.3 Literature Survey

The aim of the present section is to combine thdiss performed about the flapping
motion in recent years. This literature survey wiklp to understand the
fundamentals of the flapping flight. While surveyithe literature, the studies are
divided into three subgroups; experimental studiesimerical studies, and

comparative studies.

2.3.1.Numerical Studies

The defining property of airfoil aerodynamics atwvl&keynolds number is laminar
flow separation. Many applications have been peréairby using Navier-Stokes
solvers in the field of flapping motion. NACA 0012fail profile has been used as
wing section in many applications ([20]-[23]) witbure pitching and combined
pitch-plunge oscillations. Tuncer and Kaya [20] haweestigated sinusoidal plunge
and pitching motion by using unsteady laminar amtulent flow in a wide range of
Re number; 1%Re<106. Young and Lai [21] have analyzed sinusoidally kesing
NACA 0012 airfoil in plunge motion at Re=2x10 They have also used unsteady
panel method (UPM) with numerical visualizationngsthe partical tracing method.
Later, Young [22] have used unsteady panel methdd\mvier-Stokes solver codes
to analyze plunging and pitching airfoil at Re=1@002D airflow of a
stationary/flapping airfoil combination in tandenashbeen investigated by using
Navier-Stokes solver with Baldwin-Lomax and Baldvarth turbulence models
[23]. To provide more insight into the bioaerodynesnof insect flight for the design
of flapping wing MAVs, Szmelter and Zbikowski [19h¥e analyzed 3D bibio fly
wing at Re number higher than 9%y using NACA 0012 profile. The kinematic
data used in this study was provided by Willmotd agllington ([24]-[26]). A
detailed analysis of free flight in the hawkmd#anduca sextahas revealed the
kinematic changes as the speed increases fromihgwverfast forward flight. It was
observed that significant changes occurred in the@dynamics of the observed

kinematic variation, the power requirements for Htigat different speeds and the
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nature of the constraints on maximum flight speg#]( [25]). According to

Willmott and Ellington, a robust technique for deteing the angle of attack of
insect wings is to use a fast camera to film tlee filight. To date this method has
proved to be elusive. They reported a study deswyithe development of two new
methods — the Strips and Planes techniques — whére designed to overcome

some of the limitations experienced in previous stud2g X[

Three dimensional hovering flight of the dragonfly tandem configuration at
Reynolds number of the order of*lifave been analyzed by Isogai et al. [27]. They
used a Navier-Stokes code and validated theirtsebylcomparing their simulations
with the experimental values of total lift and &oplane angle obtained using a

flying robot.

Wu and Sun [28] have analyzed flapping motion ef fituit fly wing with flat plate

wing section in the range of 20<Re<1800. They amal\the effects of varying five
non-dimensional parameters (i.e. Reynolds numberkesteonplitude, mid-stroke
angle of attack, non-dimensional duration of wingation, rotation timing) on the

force coefficients were analyzed.

Miller and Peskin [29] used immersed boundary methio solve the two-
dimensional Navier—-Stokes equations two immersed wings performing an
idealized clap and fling stroke and a fling hatieke in the range of 8<Re<128.
They found that flow around the wing branches imto tistinct patterns. FdRe>64,
leading and trailing edge vortices are alternastlgd behind the wing forming the
Karman vortex street. FORe<32, the leading and trailing edge vortices remain

attached to the wing during each half stroke.

Ramamurti and Sandberg [30] have used finite elerflew solver to analyze 3D
drosophila wing in flapping motion at Re=136. Théesef of phasindetween the
translational and rotational motions was studiedvasying the rotational motion

prior to the stroke reversal.
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Elliptic profiles have also been used to investagae flapping motion characteristics
([31]-[34]). Lan and Sun [31] explored the flappimption at Re=1000 by using a
Navier-Stokes solver for incompressible flow impéting moving overset grid.
The results show that, if the insect employs a laeggle of attack or changes the
timing of wing rotation, much greater lift can beguced for maneuvering and for
other purposes. 3D flapping motion of the modeltffiyi wing at Re=136 has been
investigated by Sun and Tang [32] with some ingEghto the unsteady aerodynamic
force generation process from the force and flawestire information. They
compared their results with the model wing expentakresults and fruit-fly data
provided by Dickinson et al. [10] and Weis-Fogh J[1®/eis-Fogh [15] aimed to
provide new material and novel solutions to make o$ the large number of
observations on freely flying animals. His major dosion is that most insects
perform normal hovering on the basis of the welkbkshed principles of steady-
state flow. However, one must also realize that gpg of flapping flight involves
also non-steady periods, particularly at the rever@iats where active pronation and
supination occur. Wang ([11], [33]) has analyzed 2dning and flapping flight on
elliptic wing section to identify the vortex sheddiand their frequencies in the Re
number range of f@Re<1d. Eldredge [34] has performed DNS solutions with
viscous vortex particle method to investigate titehing and plunging motion at
Re=550.

2.3.2.Experimental Studies

The understanding the physics of flapping flight hang been limited due to the
obvious experimental difficulties in studying thw field around real insects.
Recently, PIV and DPIV techniques have been useabasl experimental tools to

analyze the flapping motion [35] - [37].
Poelma et al. [35] have performed a 3D Steoreosd®P experiment in a mineral

oil tank to measure the time dependent three-diraeak velocity field

quantitatively, around a dynamically scaled roboticglag wing at Re=256.
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For the first time it was shown that data can &lsmbtained for quantitative studies,
such as lift and the drag. Tian et al. [36] have eam@nted the PIV technique by
using a fog generator in a flight cage to undecstinie 3D high speed stereo images
to analyze the kinematic motion during straight &maing flights of a bat in the Re
number range of f8Re<10. The kinematic data revealed that, at relativelyvslo
flight speeds the wing motion is quite complex, intthg a sharp retraction of the
wing during the upstroke and a broad sweep of tiflg €xtended wing during the
downstrokeClap and fling movement have been analyzed usimgmycally scaled
mechanical model of the small fruit fly Drosophifeelanogaster (see Figure 2.8) by
Lehmann et al. [37]. They performed 3D DPIV experiteeand used force
transducers to investigate force enhancement dgerttva lateral wing interactions
during stroke reversals (‘the clap-and-fling’) ihet Reynolds number range of
100<Re<200.

Figure 2.8 Drosophila_melanogaster-side [16].

Figure 2.9 A, B shows time sequences of one wingkstoycle with superimposed
instantaneous force vectors produced by an isolsitegle wing. In this case, the
mean flight force normal to the wing surface an@raged throughout the entire
stroke cycle is approximately 0.453 N, with a peakhat beginning of the down
stroke of 1.34 N. In comparison, a wing undergoirgggame kinematic pattern along
with a second, mirror-image symmetric wing producas mean force of
approximately 0.476 N, with a peak of 1.82 N (Figur@ @, D). The results of this
study on the dorsal clap-and-fling mechanism ipgiag wing motion of ‘hovering’
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robotic fruit fly wing has revealed an unknown cdexity of flight force

modifications throughout the entire stroke [37].

C

Ventral Dorsal

A

Ventral Dorsal

44— Downstroke

Upstroke ——p Upstroke ——3p

Figure 2.9 Wing motion of a robotic wing performiagclap-and fling kinematic
maneuver [37].

Galvao et al. [38] have explored 3D mammalian flighth compliant membrane
wing models in the range of 70000<Re<200000. Thee hesed a low-speed, low

turbulence wind tunnel equipped with a stereo photogretnersystem.

2D biomimetic flapping-pitching wing is analyzed Byngh et al. [39] using laser
sheet visualization method at Re=15000. Images waptured by a CCD camera,

and the seeding was produced by vaporizing a mineral oididense fog.

Usherwood et al. [40] have investigated the flighPigeons in slow, flapping flight
to obtain the dynamic pressure maps of their wangs tails by using accelerometers

and differential pressure sensors.

Dickinson et al. [10] have performed an experimana imineral oil tank with a 3D
dynamically scaled model of the fruit fly to inviggtte the interaction of three
distinct interactive mechanisms namely delayed stalifiostal circulation, and wake
capture on the enhancement of the aerodynamic rpefae of insect flights.
Experiments have been performed at Re=136. The weng equipped with a 2D

force transducer. Before this study, Dickinson antz@4il] have performed similar
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experiments in an aquarium by using a 2D impulgivebved model wing in the

range of 10<Re<1000. The purpose of Dickinson an’&{1] analysis is not to

drive yet another nail into the quasi-steady staféin, but rather to characterize the
time-dependency of forces produced by impulsivelgved wings and thereby
expand the knowledge of unsteady mechanisms thgtitrbie employed by insects
during flight. In particular, they were concerned hwithe time history of two

processes: the generation of lift and the onsettaf. Time dependence of force
production, the effect of Reynolds number on unstefadces, effects of surface
roughness and camber on force coefficients werlyzath They concluded that the
unsteady process of vortex generation at largeeangfl attack might contribute to

the production of aerodynamic forces in insect flight.

Spedding et al. [42] performed a study reportinghenresults of an extensive series
of experiments in measuring bird wakes over a ocoltiis range of flight speeds in a
closed-loop, low-turbulence wind tunnel. The measnamt technique has been
customized extensively for this particuégplication. A correct reconstruction of the
most likely three-dimensional wak&ucture is focused on.

Recent experimental and numerical unsteady aerodigr@search in the domain of
flapping flight with applications to Micro Air Vehles are also presented by Platzer
and Jones [43] and the analytical models develdpednsect-like flapping are
summarized by Ansari et al. [7] with the basic aimapplying them to flight

dynamic problems of Micro Air Vehicles.

2.3.3.Comparative Studies: Experimental vs. Numerical Approacks

There are many comparative studies available in litleeature used mainly to
validate the numerical studies in the field of fag motion to understand the
fundamentals of the aerodynamics of the flappingiono Some of them is analyzed

and presented below.
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Kurtulus et al. [1] has performed a study to underdtthe aerodynamic mechanisms
and vortex shedding dynamics of flapping motion using numerical methods,
analytical models and experimental techniques. Thememical study was
investigated in three sub-section namely, numerisgdualization, vortex
identification via different methods and calculatiof the instantaneous aerodynamic
forces and average lift and drag coefficient valuasthe experimental part of the
study, the dimensional analysis for the air-watemjgarison, description of the
displacement system, laser plane visualization dWd#asurement procedure were
performed. The numerical and experimental visuabratare compared in order to
understand the vortex generation mechanism duhiegrotion in consideration and
to reason the unsteady effects generated by thmtiees on the airfoil in terms of
the aerodynamic force coefficients and pressurdrilgigion. The experimental
results are done as a part for the validation ofmemical simulations. The
visualizations and Q contours are the indirectdadion of the aerodynamic force

calculations of these numerical solutions.

Pivkin et al. [44] have utilized arbitrary Lagrangi&ulerian formulation of the
incompressible Navier-Stokes equation to investighe 3D airflow around the bat
wings during flight at Re=100. They have also impeted an experiment by using

two high speed cameras to track the infrared markers attdolthe bat wings.

Another comparative study was performed by Wangle{3]. In this study, the
computational, experimental and quasi-steady fohncea generic hovering wing
undergoing sinusoidal motion alomghorizontal stroke plane were compared. By
using a dynamically scaled robotic fly, both forceddlow data were obtained. At
thebase of one arm was attached a 2D force sensom@meguredorces parallel and
perpendicular to the wing surface. Lift and dragésrwerdhen calculated from the
perpendicular shear forces measured thg sensor. Digital Particle Image
Velocimetry (DPIV) was used to measute flow structure in a 841 cdmarea
centered on the wing. Thel was seeded with air forced through a ceramitewa
filter stone, creating a dense bubble field. The computtioodel used is a thin

wing element of elliptic crossection undergoing the same kinematics as performed
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in the experimentsThe computation of flow around this hovering wingpoys a
fourth-order finite difference scheme of Navierd&®equation in vorticity-stream
function formulation. Here it is seen ththe success and failure of a 2D model in
capturing the forcem 3D experiments can provide important insightsbbth the
advancedand symmetrical rotation cases, the 2D forces arg sieilarto the 3D
forces. A notable difference between the experimieartd computational forces
seen in the delayed rotation, where there is a gleaseshift between the computed

and measured lift.
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CHAPTER IlI

NUMERICAL METHODS

Any CFD, CAD or CAE system should be treated @schto assist the engineer in
understanding physical phenomena. The success larefadf a fluid simulation

depends not only on the code capabilities, but also updnpgbedata, such as:

« Geometry of the flow domain
* Fluid properties
» Boundary conditions

* Solution control parameters

For a simulation to have any chance of success, sufchhmation should be
physically realistic and correctly presented to theyaisicode.

By being aware of and completing these tasks, STARis chosen as a CFD tool
and used in the numerical analysis part of thiglystiDirect Numerical Simulation
(DNS) technique is used to solve the present flappioom problems. The code has
the capability to solve transient flow problems, useving mesh with arbitrary
motions, handle user defined properties and comditiny the use of user-defined
subroutines, and it also has the capability of hagda large variety of boundary

conditions, and offers a range of moving mesh features.
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3.1 Flow Field Description

Transient time domain is applied to the probleng ttunature of the simulation. The
transient calculation starts from well defined iaditand boundary conditions and
proceeds to a new state in a series of discrete time steps.

Direct Numerical Simulation is used to simulate the flowdfi@ecause the Reynolds
number is low, there is no need to apply a turbidenodel. Simulation is performed
for laminar, incompressible flow condition. The tmerphysical properties of the
fluid (air) are specified as follows (see Table 3.1):

Table 3.1 Thermo-physical properties of the fluid

Density Constant 1.225 kg/m3
Viscosity Constant 1.781 x fkg/ms
Specific Heat Constant 1006 J/kgK

The acronym PISO stands for ‘Pressure Implicitt8pyj of Operators’ used for time
dependent flows. PISO is mandatory for unsteadyutations where at each
iteration (or time step) a predictor step is perfed, followed by a number of
corrector steps, during which linear equation sedssalved iteratively for each main
dependent variable. Therefore, in this study Transd®#80O solution procedure is
used during the calculations. Scalar solver typeiargdicit temporal discretization
is used by STAR-CD during these calculations withUpward Differencing (UD)

scheme [45].

The mass and momentum conservation equations dedsby STAR-CD for

general incompressible and compressible fluid flaveeng a moving coordinate

frame. The ‘Navier Stokes’ equations in Cartesian tensatioot[45] are:
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7 at(f gp) + (pu) S (3.1)

op
[ T)=——+ 3.2
fat(f"“’ U =n) =g s (32)
where t - time
Xi : cartesian coordinate (i=1,2,3)
Ui : absolute fluid velocity component in direction x
u, . U-Ug, relative velocity between fluid and local (movingordinate

frame that moves with velocity;u
p . piezometric pressure =-Po gm Xm Where pis static pressurey is

reference density, theygare gravitational field components and theate
coordinates from a datum wheygis defined

yo, : density

T : stress tensor components

Sn . mass source

S : momentum source components

Jg  : determinant of metric tensor

In the case of laminar flows, STAR-CD caters for Nmvian fluid that obeys the
following constitutive relation [45]:

2 du,

T, =28 < GH (3.3)

where pis the molecular dynamic fluid viscosity and, the ‘Kronecker delta’. It is

unity wheni = j and zero otherwise.
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The rate of strain tensor is represented pya8d is given by:

1( du auj
S =—| —+—> :
! 2(0xi axij @

3.2 Definition of Boundaries

For unsteady flow simulation problems, specifyitng ocation and definition of
boundaries, transient boundary conditions and siteps are critically important. The

boundary conditions and locations are determinedadlbsvs:

« Pressure BoundariesIn the case of pressure boundaries, the massriiteg are

unknown a priori and are determined as part ofdbl@tion. Pressure boundaries
should be applied either in regions where the presis expected to be uniform (or
nearly so) or where the variation is known. Thdi¢kd boundary is determined by
pressure boundary condition. The pressures atdbedary cell faces are assumed
known and taken to be the standard air pressuie.obfain the velocities at these
faces, the velocities at these cell faces are dirtkethe local pressure gradients by
momentum equations, whose coefficients are equitetiose at the cell centre.
These equations, together with the continuity caimst, effectively allow the

magnitude and direction of the local flow (whichyrze inwards or outwards) to be

calculated. The Pressure boundary location is showigure 3.1.

+ Symmetry Plane Boundaries In STAR-CD, symmetry boundaries are used at

two sides of the domain to get two dimensional totu(see Figure 3.1). No user
input is required beyond definition of the boundbrgation. The normal component
of velocity and the normal gradient of all otherrigbles are set to zero at the

boundary.

« Wall Boundaries: The Wall boundary condition is defined as no-shmoving

mesh type which is controlled by a user definedsuime (see Figure 3.1).
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The flapping motion kinematics is implemented ois thall boundary condition by
using user defined subroutines. Three user defobdoutines are implemented into
STAR-CD namely BCDEFW, UPARM, POSDAT.

BCDEFW.f This subroutine enables the user to define bayndanditions at the
wall for U, V, W, etc.

UPARM.f: Generates parameters required for moving meshes subroutine
enables the user to generate parameters to bebysgarostar” when it is called
during the execution of “egrid” in a moving mesartsient solution. Position of the

model is determined in this subroutine.

POSDAT.f Performs special post-processing operations. Jiiisoutine enables the
user record data and is called at the end of gachtibn/time step. Aerodynamic
forces and the other parameters like iteration rermbme, and position of the

model, velocity and angle of attack are writtetthiis subroutine.

3.3 Wing Models Considered and Their Kinematics

Three types of flapping motion are analyzed dutimg thesis study. In the present
study, the flapping motion prescribed by Kurtulet al. [1] is called “Type A”
flapping motion. It is analyzed and an investigatis performed to assess the
importance of the shape and thickness of the 20y wirofile on the aerodynamic
force coefficients and vortex formation mechanisats low Reynolds number
(Re=1000). The sinusoidal flapping motion defingdWang et al. [3] is called the
“Type B” flapping motion. It is applied to an elip having 12% thickness and
0.01m chord length. The computed results are tbempared with three dimensional
experiments and empirical data [3]. Finally, th@pfling motion defined by
Freymuth [4] is called the “Type C” flapping motieused. It is implemented to an
elliptic wing model having a thickness of 1.6mm anchord length of 0.0254m as in
Freymuth’s experiments [4].
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Generally, the motion of the flapping wing consiststhree main phases: pitching
down, rotation and translation. The translationt@g® consists of two half strokes-
downstroke and upstroke (see Figure 3.2). The dookesrefers to the motion of the
wing from its rearmost position (relative to thedigd to its foremost position. The
upstroke describes the return cycle. At either ehthe half stroke, the rotational
phases come into play, stroke reversal occurs, etlyethe wing rotates rapidly and
reverses its direction of motion for the subsequeit-stroke. During this process,

the morphological lower surface becomes the uppdiase and the leading edge
always leads [19].
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Figure 3.1Boundaries location on the grid domain.
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Pitching up _ Translation N Rotation

Figure 3.2 Half-strokes during an insect flappiygle. The leading edge (thick line)
always leads.

3.3.1 Investigation of Wing Model Kinematics of Type A

In this part of the study, the motion prescribedkaytulus et al. [1] is implemented
to the wing models. The wing models are SD 7008iaiprofile, NACA 0012,
NACA 0009 symmetric airfoil profiles and ellipsesavwing 1%, 9% and 12%
thickness all having 0.01m chord length. Centerotdition is at 50% chord location
and in some cases it is changed to 25% chord (gpeeeF3.3). The flow regime is
assumed to be laminar, incompressible, and calooktare performed at low Re
(Re=1000) number regime. For the present probleencbmputations are performed

at zero free-stream velocity in hover mode.

Grid domain used in the numerical part of the prestudy is formed via GRIDGEN
V15, a package programmed to generate grid don@type grid domain is used
around the profiles. According to the results aflgefinement study, 229x340 (229
number of nodes around the profile) grid domainged in the numerical simulation
of this part (Figure 3.4).

The domains are formed in two sub-domains, innenaip is finer. The radius of the

whole domain is 20 chords having a total of 7728i8sc

27



Center of rotations; ., '% chord

Figure 3.3 Ellipse having 12% c thickness profite @enter of rotation points.

Figure 3.4 Inner grid domain of different wing ples.

While in normal hovering flight, the wing motion idlng the upstroke is identical to
that during the downstroke; in forward flight, tdewnstroke lasts longer than the
upstroke because of the need to generate thruptlfiL¢his study, although normal
hovering mode is analyzed, both symmetric and cagabprofiles are analyzed to

see the difference.

Type A flapping motion description is representetiesnatically in Figure 3.5 in
detail. Upstroke is represented by solid lines, dogvnstroke is represented by
dashed lines in Figure 3.5. The profile startsritgion in the middle of the stroke (at
x=0 and moves towards —x direction). Thereforghfirst region of the motion, the
profile translates with a constant velocity andlargf attack until it reaches position
-Xa (@ngle of attack changing point) in the correspongdime interval ¢§. Then it
starts to pitch up still with a constant velocitytibpoint -x,. The time corresponding

to location-x is t,. After location-x, the profile starts to decelerate with an incregsin
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angle of attack and rotates around its center wattiom until it reaches 90angle of
attack. In this way, it completes one quarter ef thotion and reaches location/zx
At this location the velocity of the profile becosneero. The time corresponding the
motion up to this location (7)) is T/4 where T is the total period of one complet
cycle of the motion. After this location, the pilefistarts to accelerate with a
decreasing angle of attack up to the locatign After passing the location yxthe
profile moves with a constant velocity but stillcdeasing angle of attack up to
location -%. Until x=0, the profile translates with a constaelocity and angle of
attack. In this way, the profile has completed ba# of the motion cycle when it
returns to the initial position of x=0. Second hailfthe motion is a mirror image of
the first one. The rotation is such that the legdedge stays always as the leading

edge during all phases of the motion.
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Figure 3.5 Schematic representation of flappingiomotSolid lines +— ) represents
upstroke, dashed lines.(— ) represents dookesf the profile.

The velocity V and the angular velocity variatiorare given in Eq. 3.5 and Eq. 3.6,
respectively. Kurtulus et al. [1] have chosen ttype of motion to ensure the
continuity of velocities and the accelerations lBdwthe two phases of translational

motion.

29



-t
V =V, — i .
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i_ta
4
where
hnax = 2 (3.7)
T
i_ta
4
4n
T=— (X =X)L, (3.8)

2Vo|

For the computation of the aerodynamic forces ol forces are calculated as the

sum of the shear force and the pressure forceeowali [1].

F=F +F, (3.9)
The shear force is:
_ Voar
F,=-1,A f’ (3)10
‘Vpar

where A is the elementary wall area and, is the velocity vector component

parallel to the wall and, is the wall shear stress.

The pressure force coefficient is given by the Hgua3.11.
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Fo = P A, (3.11)

where p, is the pressure on the elementary wall afgaand fi is the outward

pointing unit area vector.

Mean aerodynamic coefficients are calculated agithe average of instantaneous
values throughout one period (Egs. 3.12-3.13). Maamdynamic coefficients are

calculated for the"7period of the motion to avoid the effect of impuddy starting.

= 1t=7T
CL=x e ®adt 3)1

t=6T

- 1=
Co== [Co (bt (3)13

t=6T
3.3.2 Investigation of Wing Model Kinematics of Type B

For the simulation of flapping kinematics of Wartgak [3], an ellipse of 12% chord
thickness is used (c=0.01m). For the ellipse (e=d)2%he same grid domain is used
as the previous study. The wing follows a sinudoil#goping and pitching motion
(Egs. 3.14-3.15, respectively) [3]. Specificallhetwing sweeps in the horizontal
plane and pitches about its spanwise axis withhgleifrequency:

x(t) = % cos@rit) 314
a(t)=a, + Gsin@2rt+¢) (3.15)

wherex(t) is the position of the center of the wing, amdt) is the wing orientation
with respect to the x-axis. By definition, the ts&tional and angular velocities are

given by Ug(t)=dx(t)/dt and Q (t)=da(t)/dt. The parameters include the stroke
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amplitudeAy, the initial angle of attack, the amplitude of pitching angle of attack

B, the frequency and the phase differenge betweerx(t) and a(t) .

Upstroke

/) 7 7
NN N

Downstroke

Figure 3.6Sinusoidal motion of the profile during one stroke.

The translational motion of the wing is completsfyecified by two dimensionless

parameters, Reynolds numb&e=Unac/Vv =7HAc/v, andAdc, whereUmax is the

maximum flapping velocity, and is the chord length. From their steady-state 2D
numerical data Wang et al. [3] found the approxedaémpirical correlations for
both of the aerodynamic coefficients, namely,(Eq. 3.16) andCp (Eq. 3.17) in

terms of angle of attaek.
C, =12sin(2a) 18)
C, =14-cos@a) 317

The constants depend on the Reynolds number, dethitbe wing, etc. They
implemented this empirical data (Eq. 3.16-Eq. 3.07 @il of the instantaneous angle
of attack variations that they have investigateat. éacho value,C_. andCp values
are calculated. Quasi-steady translational lif) @nd drag forced)s) are calculated,
0.5Uu”C. and0.5U’Cp, respectively. All of the numerical and empiridatces are
normalized by the maxima of the corresponding tasgisteady forces as described
in the study of Wang et al. [3].
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3.3.3 Investigation of Wing Model Kinematics of Type C

In this part of the study, the flapping motion asfided by Freymuth [4] is
investigated. Freymuth [4] used a planar airfoNihg a thickness of 1.6mm and a
chord of c=2.54cm with rounded edges to execute citiabined plunging and
pitching motions in the experiments. In the preseuainerical investigations an

elliptical wing having the same thickness and clawdrreymuth’s model is used.

The grid domain used for the simulations of the Freth [4] motion kinematics is
generated by carrying out the same procedure usdype A and Type B motion
solutions. 259 numbers of nodes are put on thell@rofhe radius of the whole
domain is 20 chords having 82560 cells. The comjmurtal grid domain used in this

part is presented in Figure 3.7.

The airfoil performs a translating (plunging) moti@h h in horizontal direction (EQ.
3.18):

h = h, sin(7ft) 18)

where h, is the amplitude of linear translatioh,is the frequency of sinusoidal
oscillation and t is the time. Considering that #udoil performs a pitching motion
(Eg. 3.19) simultaneously, around its half chordaxi

a=a,+a,sin@rt +¢) (3.19)

wherea is the pitch angle with respect to the horizoagkhown in Figure 3.89 is

the mean pitch angles is the pitch amplitude and is the phase difference between

pitching and plunging.
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Figure 3.7Computational Grid Domain used in Type C.

Dimensionless parameters of the system ageun,, ¢, the dimensionless plunge

amplitudehs/c and a Reynolds number;

R, =2rfh,clv .40)

based on the maximum plunge spe2dh,and on c, where is the kinematic

viscosity.

Two simple modes of hovering were initially ideredi by Freymuth [4]: “Mode 1”

or “water treading mode” is characterized dy0° and ¢=90° and is sketched in

Figure 3.8. The airfoil starts a cycle from the giosi of having pitch amplitudexf)
at middle of the downstroke (indicated as righbas): It moves a distance 2to the
right to reach its initial position. The right edgéthe airfoil is leading during its
motion to the right but when the airfoil returndtléhe leading and trailing edges

switch their roles.

“Mode 2” or “degenerate figure eight mode” or “n@himovering mode” is sketched
in Figure 3.9 and is characterized dy90". In this mode leading, and trailing edges
do not switch role during one cycle. Leading edgeagk leads. This mode

resembles the hovering of hummingbirds and mosidlynsects [4].
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Figure 3.8Sketch of combined translating-pitching motionstloé airfoil for one
cycle of mode 1 hoveringig=0°, ¢=90).

Figure 3.9Sketch of combined translating-pitching motionstloé airfoil for one
cycle of mode 2 hoveringig=90°, ¢=-9¢).

To characterize the time averaged thrust T on tHeilaia thrust coefficient €is
defined in Reference [4] (EQ. 3.21):

co=— " (3.21)

0.5,0\?cl
wherep is the air density, [>>c, is the span of the aliidod

V.2 = 05(27fh,)? (3)2

is the mean square speed of the horizontal airfation (Eq. 3.23). From the

momentum theorem

T=4 T\?dx 3.23)
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where V2 is the mean square velocity at a sufficient distafitom the airfoil. The

thrust coefficient is found as follows (Eq. 3.24);

C; = [V2dx/(rfh,)*c
o (3.24)

Since thrust during actual hovering would be upw@ydanay also be considered as a

lift coefficient of the hovering airfoil [4].
3.4 Computational Grid Domain

A grid refinement study was carried out by using@M 0012 airfoil and ellipse
having 12% thick profiles. Flapping motion prebed by Kurtulus et al. [1] is used
at Reynolds number Re=100Q+2c and %=2c, center of rotation a=0.25c and angle
of attacka=45". O-type grid domain is used around the profilese hid domains
are 175x198 (175 points around the profile), 22@9x@PR9 points around the profile)
and 260x340 (260 points around the profil€he G distributions of these three grid
domains are presented in Figure 3.10. To decidehapic domain should be used
in the numerical analysis of the problem, vortiaityntours of the profiles at some
indicated times are also compared (see Figure @&tilFigure 3.12). According to
C_ distributions there are no big difference betw@29x340 and 260x340 grid
domains for both NACA 0012 and Ellipse (e=12%). Heere this is not sufficient to
decide on the grid domain. As it is known, vortédhedding mechanism has an
important role while flapping motion is investigdteAlthough there is a small
difference in capturing the vorticity trace of tmeotion between 229x340 and
260x340 grid domains, it is not a big differenceewlihe CPU times are considered
(see Figure 3.13). In Figure 3.13, CPU time spentDO0 iterations is represented
for three different grid domains. Therefore, it isciled that the 229x340 grid
domain is sufficiently fine for DNS solution of th@oblem. Clusters used in this
present study are Albatros N. These clusters hav&Riz. CPU, 1.0 Gb RAM, and

Xeon processor.
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Figure 3.10 Lift Coefficient () of different grid domains for NACA 0012 and
Ellipse (e=12%) profiles.

Grid
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Figure 3.11 Vorticity contours of three differemicgdomains for NACA 0012 at
indicated times.
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Figure 3.11 (Cont'd) Vorticity contours of threeffdrent grid domains for NACA
0012 at indicated times.
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Figure 3.12 Vorticity contours of three differemtcydomains for Ellipse (e=12%) at
indicated times.
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Figure 3.12 (Cont'd) Vorticity contours of threeffdrent grid domains for Ellipse
(e=12%) at indicated times.
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Figure 3.13 CPU Time vs. Grid Domain
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CHAPTER IV

NUMERICAL RESULTS

This chapter is devoted to the numerical analysiditierent flapping motion
kinematics for different Reynolds numbers in thegexof (18-10°). Effects of some
parameters on the aerodynamic forces and the vattexiding mechanisms are

investigated.

The numerical solution technique defined in Chagités applied to three different
flapping kinematics. The first kinematics, desigdads type A, is characterized by
Kurtulus et al. [1]. The second one, designated as Type Beione proposed by
Wang et al. [3] and the third one, Type C, is the one suggestéctimuth [4].

An investigation is performed to understand theatéfef profile shape and thickness
on the aerodynamic force coefficients and vorteadsing mechanism by using the
flapping motion defined by Kurtufuet al. [1]. The effects of Reynolds number and
stroke amplitude on the aerodynamic force coeffitseare investigated by using the
study of Wang et al. [3]. Finally, the study of Fmayth [4] is analyzed and
experimental lift coefficient data and vortex fomma is compared with the

presented computed results.

4.1 Parametrical Study on Unsteady Aerodynamics of Different Whg
Profiles at Low Reynolds Number by using Type A Flapping Mabn

In this part of the study, Type A flapping motionfided in Chapter Il is
implemented to the computations. To analyze thecedf of profile shape and

thickness, two dimensional elliptic wing profilestivarying thicknesses (e=1%,
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e=9% and e=12%) are compared with NACA (namely NAQ#09 and NACA
0012) and SD 7003 airfoil profiles all having the same chemdth, (0.01m) [2].

The instantaneous angle of attack and velocityidigions are represented in Figure

4.1. The different parameters studied are summarized ie Aabl

Downstroke Upstroke Downstroke
140 T - 10

I

i —19
120 : 8
|

100}

a[]
1

T
>
-
m
V [m/s]

N

1 |
06 062 064 066 0.68
time [s]

V [mis]

w [0]

Figure 4.1 Instantaneous velocity and angle of lttéistributions of the flapping
motion.

Table 4.1 Different profiles and parameters invegéd for Re=1000,,%2c, %=2C
case

Initial angle of attack, ap, | center of rotation, a
Ellipse (9% thickness) 30°, 45°, 60° cla,cl2
Ellipse (12% thickness) 30°, 45°, 60° c/4, cl2
Ellipse (1% thickness) 30°, 45°, 60° c/4, cl2
NACA 0009 30°, 45°, 60° cl/4, cl2
NACA 0012 30°, 45°, 60° cl/4, cl2
SD 7003 30°, 45°, 60° cl/4, cl2
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4.1.1 Evolution of Instantaneous Flow for Different Profiles

As a consequence of the kinematics of the flappimgtion, due to unsteady
separation and coherent vortex shedding, the aeandignloads exhibit a highly
unsteady behavior. Lift coefficient (L and drag coefficient (§} are calculated
instantaneously during the 7th period of the flagpmotion and represented in
Figure 4.2 for elliptical profile with 12% thicknes$he results are compared for
different ap values with the center of rotation located at tlaf-bhord position
(a=c/2). It is observed that fer,=30° case, the lift coefficient increases gradually
from the beginning of the upstroke where it reachgseak value at the end of the
translational phase of the upstroke. Moreover, itated that the Cis close to zero
at the beginning of the upstroke for this case. Hamefor higher angles of attack,
namely 45° and 60°, the peaks at the beginning ef upstroke are relatively
important. The maximum peaks of the drag coeffigextcur at the beginning of the
upstroke for all three cases. By comparing differ@mgles, it is observed that C
reaches its minimum value fap=45°case (¢€=-0.294) at t=0.612s and it reaches its
maximum value (C=2.10) at t=0.625s fon, =60° case. @ reaches its absolute
maximum value (|6)=3.27) during upstroke at t=0.624 s for° &@itial angle of

attack.

The instantaneous vorticity contours of the sanodilprare represented in Figure 4.3
for these three different starting angles of atti@okn the beginning to the end of the
upstroke. At the beginning of the upstroke theddefficients for all of the cases are
zero, but the highest drag coefficient (the forcehi@ x direction) has a maximum
value for 30° case just at the beginning of thetroge. This peak value decays in

time as the starting angle of attack increases.

Just at the beginning of the upstroke the vorteddng are observed to be different
for differentag values. The traces of the vortices from the previdownstroke are
very strong forap=60° case. The counter-clockwise (red) trailing esgeex is

increasing in magnitude for highy values and detaches from the airfoil surface
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during previous downstroke (t=0.615s in Figure 4.3) profile starts to accelerate
at the beginning of the upstroke and reaches V@F\ value at t=0.615s with an
angle of attack ofa(t)= 84.2°, 85.7° and 87.1° fom,=30°,45° and 60° cases
respectively. There is also a counter-clockwisalileg edge vortex which is just
generated at the beginning of the upstroke whicdhes and deforms the clockwise
vortex dominant at the lower surface of the airfoiAt t=0.619s, lift and drag
coefficients are very close to zero €C-0.164 and g= 0.062) foray=30°. At this
instant, the lift coefficient is higher for 45° casempared to other angles and the
drag coefficient has a similar order of magnitudenpared withoy=60° (G = 1.908
and G= -2.57 forap=45° and €= 1.166 and &= -2.65 fora,=60°). The ellipse is
moving with a velocity of V(t)=0.71¥ and its angle of attack ¢st)= 40.7°, 53.1°
and 65.4° fonp=30°, 45° and 60° cases respectively. Until t=0.62801tng to the
kinematics of the motion, the velocity of the prefincreases to V=)and its angle

of attack decreases t value.

ownstroke Upstroke Downstroke Dgwnstroke Upstroke Downstroke
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0.6 0.62 0.64 0.66 0.68 06 062 064 0.66 0.68
time [s] time [s]
Re=1000, aca=30°, x =2¢, ¥ =2¢, a=1/2¢
Re=1000, aca=45", x =2¢, x,=2c, a=1/2c
Re=1000, aca=60°, x =2c, x =2c, a=1/2c

Re=1000, aca=30", x =2¢, x,=2¢, a=1/2¢
Re=1000, aca=45°, x =2¢, x =2c, a=1/2¢c
Re=1000, aoa=60°, x =2c, x,=2c, a=1/2c

Figure 4.2C, and G distributions of ellipse (e=12%c) for differentg@s of attack
with center of rotation at a=c/2.

For 00=30° case, at t=0.629s, the leading edge vortex erugiper surface of the
airfoil stays attached to the ellipse. However, 46f case the same leading edge
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vortex detaches completely from the upper surfddbe ellipse leaving its trace at
the mid of the domain. For 60° case, at t=0.629s, afthdhe same leading edge
vortex detaches from the upper surface of thesdlijit stays attached to the airfoil
leading edge until t=0.639s until a clockwise ver{blue) is formed on the mid-
upper surface of the airfoil. The airfoil enterdoitthe trace of the clockwise leading
edge vortex (blue) for 60° case at t=0.629s by mgskdiownwards the trace of the
counter-clockwise trailing edge vortex (red) getesta during the previous
downstroke. The lift coefficients at t=0.629s for° 2hd 45° cases are very close to
each other (G- 0.617 fora,=30° and ¢= 0.614 foray=45°). However, € of 60° at
this instant is twice of these cases{C.575 foray=60°). The drag coefficients are
also increasing with increasimgp values at the same time instant with a highest

value of -2.3 foig=60°.

At t=0.639s, the profile is approximately at mid-ditygle location of the flapping
domain. The trailing edge vortex is very dominant liggh angles of attack. The
trailing and leading edge vortices are behavingtredly different for differenio
values. The traces of both of these vortices arergbble until the end of the stroke
without any detachment for 30° case. At this time, @ values corresponding to
differentagvalues argiven a<C = 0.994 fora,=30°, G = 1.387 fora,=45° and ¢C=
0.383 forap=60°. Corresponding drag coefficients are founddab G=-0.404 for
00=30°, G=-0.996 fora,=45° and G= -0.860 fora,=60°. The highest lift and drag
occurs at 45° angle of attack. The lift coefficiemtsmallest for 60° angle of attack
where two counter-rotating vortices exist on th@amsurface of the airfoil. This
vortex formation at 60° is also represented stegtbp in the following section for
NACAO0012 where the formations of the vortices are verylamior Re=1000.

The constant velocity translational phase finishies=0.652s and after this time the
airfoil starts to accelerate once more by increa#im angle of attack. It is observed
that at t=0.656s another leading edge vortex gravasfarces the previous one to
detach from the ellipse’s upper surface dge60° case. Locally, these two leading

edge vortices and trailing edge vortex form a @mgattern to Karman vortex street.
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The velocity attains a value of V(t)=0.84With changing angles of attack oft)=
34.5°, 48.4° and 62.3° correspondingatg=30°, 45° and 60° cases respectively. At
this instant, €=1.43 fora=30°, G = 0.554 foray=45° and ¢= 0.636 foray=60°. In
the mean time, 6= -0.683 foray=30°, G= -0.96 foray=45° and G= -1.09 for
00=60°. As a result, at t=0.656s, the lift coefficientshiés maximum value for
00=30° angle of attack case which is more than twicthe value attained af;=45°
and the lift coefficient is the lowest when commhte other angles. However the
drag coefficient is increasing with the angle ofaek where its lowest value is

obtained atip=30° case and its highest valuexgt60°.

Close-up sequence of instantaneous vorticity caatand ¢ distributions of ellipse
(e=12%c) at some instances are presented in frgurd-i4.4 to Figure 4.7 for the
same case as analyzed in Figure 4.2. Close-up vietv&adistributions helped to
investigate in detail the vortex formations. Diffetrerortex topologies are observed
for differentag values. Both trailing edge vortex and leading edggices are very
strong, grow very and detach quickly from the alréoirface for higlog values. The
angle of attack, velocity, Cand G values at the indicated time instances are noted
on the views (see Figure 4.4-Figure 4.7).
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Figure 4.3 Instantaneous vorticity contours of sliffe=12%c) for differerdo with
a=c/2.
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Figure 4.4 Close-up view of instantaneous vortieityl G distributions at t=0.615s,
a=c/2.
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Figure 4.5 Close-up view of instantaneous vortieity G distributions at t=0.619s,
a=c/2.
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Figure 4.7 Close-up view of instantaneous vortieityl G distributions at t=0.639s,
a=c/2.

Instantaneous lift and drag coefficients are oetinluring the 7 period of the
flapping motion for three different thickness ragitipses (e=1%, 9% and 12%), two
different thickness NACA profiles (NACA 0012 and KA 0009) and one SD 7003
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airfoil profiles for three different angles. The uw#is are given in Figure 4.8 for 45°

angle of attack with their centers of rotation located at c/4

The force coefficients of different thickness (e=8%ea e=12%) ellipses are observed
to have almost the same functional dependence emtigle of attack but with
different magnitudes [33]. The lift comes from viasdorces [3], especially at this
low Re number regime. NACA profiles give higher #®rcoefficients at the peak
locations. It is also noted that the aerodynamicffimdents of thinner profiles
(especially ellipse) are slightly higher in magdeuthan their thicker cases. The

same behavior is also observed for other angles of attacks.
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Figure 4.8 Cand G distributions of profiles for,=45", a=c/4.

Instantaneous vorticity contours of different plesdi (ellipse (€=9%), NACA 0009,
NACA 0012) as investigated in Figure 4.8 are algwesented in Figure 4.9. The
thickness effects on the vorticity contours of theofiles are not very clearly
distinguishable for the analyzed cases in viewhef vortex shedding (see Figure
4.9).
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The effect of profile thicknesses is very minor és19% and e=12% cases. However,
the difference between the Ellipse 9%c and NACAfij@® are observable. The
formation of the counter-clockwise leading edgetaxwrat the beginning of the
upstroke and its vorticity radius are different fellipse and NACA profiles
(t=0.619s). Although its influence is not clearlyille in G curves it is observable
in Cp curves at the peak locations. At t=0.639s, durirg plare translation, the
clockwise (blue) trailing edge vortex starts to deteaHier from the lower surface of
NACA 0012 than the others’. At t=0.656s, this trailiegdge vortex completely
breaks off the new trailing edge vortex of NACA files. In addition, the leading
edge vortex detaches completely from the airfoilhéd time and its trace is highly

visible until the end of the upstroke (see Figure 4.9 ab643).

Instantaneous lift and drag coefficients obtainedrdy the ¥ period of the flapping
motion of the profiles for the case @=6C, a=c/2 are represented in Figure 4.10. In
this case evaluation, it is noticed that the Ellifsel%c) and SD 7003 do not have
effective G values at the peak locations as in the case of a=c/doan&’.

However, ellipse (e=1%) has absolute maximugwv@lues at the beginning of the

translational phases of the upstroHé:Dq:4.092 at t=0.623s) and downstroke

(|Cp| = 4030 at t=0.672s).
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Figure 4.9 Instantaneous vorticity contours of pesffor a;=60°, a=c/4.

To see the camber and thickness effects on trelaeamic force coefficients and
on vortex shedding mechanisms more clearly, thedyaamic force coefficients
(see Figure 4.11) and the instantaneous vorticdgtaurs (see Figure 4.12) of
different profiles (ellipse (e=1%c and e=12%c), &1d 7003) are also represented
for the case of a=c/and u=6C, during the ¥ period of the flapping motioriThe
effect of thickness for the elliptic profiles (e=t%and e=12%c) can be clearly
observed at the peak locations. This result is éeoeas indicated in the literature
[33].
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Figure 4.10 Cand G distributions of the profiles fary=60°, a=c/2.

The mean aerodynamic force coefficients are cdledlay using Eq. 3.12 and Eg.
3.13 and presented in Table 4.2 for the case offass6(. Although the force
coefficients of NACA 0012 do not have an effectixaue during one stroke of the

motion, NACA 0012 has the maximum mean lift coeéfit value.

Table 4.2 Mean aerodynamic coefficients of profftasa=c/2,a=60".

Profile C. Co
Ellipse (e=1%:c) 0.984 0.0050
Ellipse (e=12%:c) 0.831 0.0079

NACA 0009 1.019 0.0144
NACA 0012 1.082 -0.0103
SD 7003 1.052 0.0187
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Figure 4.11 C and G distributions of Ellipse and SD 7003 profiles fas=60",
a=c/2.

The following explanations of vortex shedding ace Figure 4.12. The general,
character of the vortex shedding obtained fromedéit profiles is similar. However,
at some regions small differences may result incéffe peaks in force coefficients
curves. The traces of the vortices left from thevmpus downstroke are very
influential for all cases. The counter-clockwised} trailing edge vortex starts to
detach earlier from the surface of thicker ellipsel12%c) than that of thinner ellipse
(e=1%c) (at t=0.615s). The radius of the counteckise leading edge vortex
formed at t=0.615s and t=0.619s is different folipsés and SD 7003. This
difference is not clearly observable in €urves but observable inpCurves at this

instant (t=0.619s). At t=0.629s, the profiles enterthe trace of the clockwise
leading edge vortex (blue) while pushing the trat¢éhe counter-clockwise trailing

edge vortex (red) generated during the dowstrokenddhe counter-clockwise (red)
leading edge vortex has started to detach fromeihding edge of the profiles but it
is observable in ellipse (e=1%c) case. The countekwise (red) and clockwise
(blue) vortices on the upper surface of SD 7003 alligdse (e=12%c) profiles are
adjacent to each other (t=0.629s). Clockwise vofbdxe) on the mid-upper surface
of the profiles advances to cause the leading &dgees to detach from the upper

surface of the profiles (t=0.639s). This clockwigartex on ellipse (e=12%c) is
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stronger than on ellipse (e=1%c) and SD 7003 (sgeré-4.12, t=0.639s). During
the rest of the upstroke, the vortex shedding ry semilar for ellipses (e=1%c and
e=12%c) and SD 7003 profiles. In addition, the iegdedge and trailing edge
vortices detach completely from the airfoil (segufe 4.12 at t=0.664s).

Ellipse: Ellipse

(1% thickness) {1 7%¢ thickness) 5D 7003

titne [5]

0615

0.E149

0.629

0,539

0656

0:661

0664

Wt -1 DS [ 05 1| wd <1 08 o 05 1] W =V DS [ 0s 1

Figure 4.12 Instantaneous vorticity contours offites for a=c/2,0=6C, during the
7" period of the flapping motion.
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For ellipse (e=12%c) at a=c/2, a study is perforrteeédee which initial angle of
attack () gives the best mean lift coefficienC_,() value. C_L of the givenoy is
presented in Table 4.3. As it is noted in Table th8re is an optimura, value to get

high C_ value. Up toog=45", C. increases. Ati=45°, C. reaches its maximum

value (EL:1.046). Then, it drops abruptly at=50" and there is an increment
betweenuy=50° andae=7C . Finally, it starts to decrease and reacBes -0.098 at

00=90". Actually, due to the nature of hovering fligﬁb should be zero during one
period of the flapping motion, but there is cerainumerical errors and this error is

getting larger for highed, values.

Table 4.3 Mean aerodynamic coefficients of elligee12%c) for differentoy at
a=c/2.

ao(deg) Cu Co ao(deg) C. Co

5 0.101 -0.0011 50 0.817 -0.0021
10 0.229 -0.0013 55 0.826 0.0890
15 0.357 -0.0015 60 0.832 0.0079
20 0.489 -0.0019 65 0.875 0.1673
25 0.627 -0.0025 70 0.884 -0.2152
30 0.767 -0.0031 75 0.764 -0.2075
35 0.894 -0.0038 80 0.579 -0.3906
40 1.012 -0.0032 85 0.371 -0.0448
45 1.046 -0.0031 | 90 -0.098 -0.1150

The pressure distributions on the NACA 0012 andp&# (e=12%c) airfoils are

shown in Figure 4.13. For these profiles, five elifint time instances are represented
during the upstroke fomy=30° anda,=60° cases with the center of rotation at c/2.
The pressure fields are also shown superposed tha&hnstantaneous streamlines

during the corresponding times in Figure 4.14.
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It is observed that, at the beginning of the upgsrdhe overpressure region in the
domain due to the vortices from the previous stigk@ore dominant for the ellipse
case compared to NACAO0012 (see Figure 4.14). Attime, the upper surface of the
profile is fully dominated with the suction regiowith the translation of the airfoil,
there is a formation of strong suction region am tipper surface of the airfoil which
further results in an increase in the lift coeffitis during the translation phase. This
increase in suction is also observable on the pressoefficient distribution along
the surface of the profile (Figure 4.13). In theam@&me, the overpressure region on
the lower surface of the airfoil also increasesth mid-amplitude of the flapping
motion, the airfoil's lower surface (leeward side) entirely dominated by the
overpressure region (red). However a small sucatemgion is also observed at the

lower surface of the ellipse close to the trailedye.

At the inertial reference frame, the streamlineswshhat there is an important
downwash induced on the airfoil when it is transfgin the flowfield created by the
two counter rotating vortices at the left and rigfaind sides of the domain. These
vortices stay approximately in their positions &ohalf-stroke period until the airfoll

returns back and pushes them downwards.

ELLIPSE 12% ¢ —  ELUPSE12% c
—— NACA 0012 MNACA 0012
-10f -10f
5 -5 Q
& of f =] -J 4’ b |5 of § Q \r’
5+ 5
10-0 S e / 10—0 / / / i
A = R -
x/c x/c
a) a=30° b} x0=60°

Figure 4.13Pressure coefficient around the profiles (ellip2&6t and NACA 0012)
at different time instances during upstroke, a=c/2.
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Figure 4.14nstantaneous pressure coefficient (Cp) distrimgifor different profiles
for ap=30°, a=c/2.

4.1.2 Physics of Instantaneous Vortex Formation

In order to understand the physics of the probléme, variation in the vortex
shedding mechanism close to the flapping airfoiexamined at this section. The
distributions of pressure coefficients around the( 0012 airfoil are presented in
Figure 4.15 for different angles of attack where genter of rotation is at c/2. The
pressure coefficient distributions in the flowfieldre also shown with the
instantaneous streamlines in Figure 4.16. Samarioss are represented in Figure
4.15 and Figure 4.16 during the upstroke. The cemné the vortices are also the

locations for suction peak as can be observed Fogure 4.16.
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At the beginning of the translational phase of tipstroke (2° column in Figure
4.16), the overpressure region at the lower surtdcthe airfoil is very strong for
00=60° and it covers the entire lower surface. Thigrpressure region is very weak
for 0p=30° (see Figure 4.14) and it is only visible cldasethe leading edge at the
beginning. The suction pressure on the upper seidathe airfoil is highly dominant
by the two vortices generated at the leading aatling edges of the profile. The

upper surface suction pressure is also very stimng,=60° case.

j 30°
10t is:
omo_'ﬁ
| & ]
e SR T
xlc

Figure 4.15 Pressure coefficient distributions atblNACA 0012 at different time
instances during upstroke at a=c/2.

At the mid location of the domain'f3ow in Figure 4.16), the upper surface of the
airfoil is less dominated by the suction regionsewltompared to the beginning of
the translational phase. Specially, for 30°, thetisn has its highest value at the
leading edge and diminishes towards the trailingeeah the upper surface. For 60°,
there is still dominance of the trailing and leagiedge vortices in addition to a
detached leading edge vortex so the suction regiorthe upper surface is still

observable.
At this time (t=0.637s), the overpressure regioesdoot cover the entire lower

surface of the airfoil fog=60°, which was the case fap=30°. At the end of the

translational phase of the upstrokd (dw in Figure 4.16), the leading edge vortex

58



covers the entire upper surface of the airfoil itgsg in a suction region throughout

the upper surface far,=30°.

The suction region of the airfoil far;=60° case at this time (t=0.639s) is obtained
by the combination of the leading and trailing edwgetices. Overpressure regions

under the airfoil are similar for both cases.

ylc

ylc

yle

ylc

yle

a) ag=45° b) 20=60°

Figure 4.16 Instantaneous pressure coefficient @jibutions of NACA 0012 for
differentag at a=c/2.

The vorticity contours and relative streamlines ftbe time interval of local
maximum lift coefficients are represented in thistfand third columns (second row)
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and for local minimum lift locations are represehte the second column (second
row) of Figure 4.17. The streamlines are represkntative to the airfoils
translational velocity. In this reference framee tlortices on the upper surface of the

airfoil are visible.

Figure 4.17Vorticity contours represented with streamlinesatige to airfoil's
translational velocity for NACA 0012, a=c/@¢=60°.

Q contours represent the centre of the vorticesvshwith the relative streamlines
(Figure 4.18). These vortices cause a suction negio the upper surface of the
airfoil. The vortices on the upper surface of tlidod at the leading edge cause a
decrease in the suction region when they grow thightranslation of the airfoil. This
results in minimum lift coefficient at this timestant. At the maximum lift location
the vortices form a strong suction region on thpanpsurface of the airfoil and the

whole lower surface becomes an overpressure region.
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Figure 4.18Vorticity, Q and G contours represented with streamlines relative to
airfoil’s translational velocity for NACA0012, a=2)/a,=60°.

Figure 4.19 shows the streamlines relative to timoiks translational velocity
during the upstroke starting from the end of thtational phase fone=60°. At
t=0.622 s the profile is at the end of its pitchohgvn motion until time t=0.625 s.
After this time, it starts to translate with comdtavelocity and incidence up to
t=0.652 s. At t= 0.654 s the profile restarts ttat® where it reaches 9angle of
attack at the end of the upstroke. The sheddirngaafing edge vortices, the dynamic
stall processes, is analyzed to understand thgdifieration mechanism during the
flapping motion. This shedding mechanism differsdely according to theng
parameter. The most interesting valuengfs found to be 60° since at this value the
lift coefficient is very high at the beginning dig upstroke and decreases abruptly
when compared to the smallesg value at the end of the upstroke where the
shedding of the leading edge vortices are very ¢exnpnd abundant. Similar
phenomenon is observed both in elliptic and NAC#fipgs for Re=1000.
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In Figure 4.19, both streamlines relative to ali$otranslational velocity and C
distribution of NACA 0012, at a=c/&10=60° are presented. Some critical points
during the upstroke are indicated in @istribution (see Figure 4.19). Following
comments are for close-up sequences of Figure &&8 Figure 4.20 (a-e)). At
t=0.622 s, a clockwise leading edge vortex (LEV&jarming on the upper surface
of the airfoil where the airfoil is translating Wwil/(t)=0.91\% anda(t)=61°. At this
time the lift and drag coefficients are calculatad G=2.02 and G= -3.18
respectively. At t=0.624s maximum lift occurs withe growth of LEV2. The first
counter-clockwise leading edge vortex (LEV1) graavel occupies the first half of
the upper surface of the airfoil at t=0.624 s andltill attached to all over the upper
surface of the airfoil by surrounding LEV2 at t=P76s. With the growth of LEV2,
the lift coefficient increases to a local maximumlue of G=2.32 and the drag
coefficient decreases slightly taa€-3.10 at t=0.624 s. As LEV2 grows, it causes
the detachment of the LEV1 from the upper surfdeading edge) of the profile.
Due to the effect of LEV2, LEV1 stretches and fortmue counter clockwise vortices
(figure of eight) which results once more in a &ngprtex with the translation of the
airfoil at t=0.627 s. When the LEV1 covers the entipper surface of the airfoil, the
lift coefficient decreases t0,€2.01 with a decrease as well in the drag coefiicie
(Co= -2.57). At t=0.629s the trailing edge vortex (Tyms. At t=0.631s LEV3
(ccw) forms, LEV1 detaches from the upper surfadé whe growth of LEV2 (cw)
and TV. At t=0.634s LEV3 grows by pushing LEV2 tods TV. Another leading
edge vortex (LEV4-cw) forms at t=0.637, and it cdetgs the shedding of LEV1
from the airfoil. At t=0.639s LEV3 starts to detaffom leading edge with the
growth of LEV4. LEV2 and TV mix to form a unique nex at t=0.642s. It is noted
that as LEV3 (ccw) and LEV4 (cw) grow, @creases (see Figure 4.19, t=0.644s-
t=0.649s). At t=0.649s LEV2 + TV vortex starts tetach from the trailing edge of
the airfoil and at t=0.654s LEV2+TV vortex detacleespletely from the airfoil due
to growth of LEV3. This instant corresponds to tbheal G max value. At t=0.656s

LEV3 covers the entire upper surface of the aidoil G value starts to decrease.
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Figure 4.1%treamlines relative to airfoil translational vatgand G distribution of
NACAO0012, a=c/2pp=60°.
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Figure 4.20(a) Close-up Sequence of streamlines relative to aitfanslational
velocity and C distribution of NACA0012, a=c/2y,=60° at indicated times  (first
row of Figure Figure 4.19).
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Figure 4.20 (b)Close-up Sequence of streamlines relative to aitfanslational
velocity and C distribution of NACA0012, a=c/Zyp=60° at indicated times (second
row of Figure 4.19).

Figure 4.20 (c)Close-up Sequence of streamlines relative to aitfanslational
velocity and € distribution of NACA0012, a=c/2y,=60° at indicated times (third
row of Figure 4.19).
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Figure 4.20 (d)Close-up Sequence of streamlines relative to aitfanslational
velocity and ¢ distribution of NACA0012, a=c/Zy,=60° at indicated times (fourth
row of Figure 4.19).

Figure 4.20 (e)Close-up Sequence of streamlines relative to aitfanslational
velocity and ¢ distribution of NACA0012, a=c/2),=60° at indicated times (fifth
row of Figure 4.19).
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A similar presentation to Figure 4.19 is done fdlipge (e=1%c) and SD 7003

profiles at prescribed instants (see Figure 4.Zhg vortices on the upper surface
(LEV1 and LEV2) and trailing edge (TV) of ellipse1%oc) is different than that of

SD 7003 (t=0.629s-at the beginning of the transhati phase of the upstroke).

At t=0.637s TV forming on ellipse (e=1%c) is strengand a new leading edge
vortex (LEV3) forms at this time on the profilest this time due to the effect of the
vortex (LEV2) at the mid-upper surface of the pedj LEV1 detaches from the
upper surface. At t=0.639s LEV2 and TV start tagee but the vortices formed on
the ellipse (e=1%c) mix earlier than that on SD¥ (&t t=0.642s). Also, the leading
edge vortex formations and their growth rates dfferént for ellipse (e=1%c) and

SD 7003 (t=0.639s). At t=0.656s LEV2+TV covers #wire upper surface of the
profiles and a distinct leading edge vortex formstloe upper surface of the ellipse
(e=1%c).
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Figure 4.21 Streamlines relative to airfoil tramisiaal velocity for Ellipse (e=1%c)
and SD 7003 profiles, a=c/@y=60°.
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4.2 Analysis of Type B Flapping Motion [46]

In this part of the study, “Type B” flapping motiodefined in Chapter Il is
implemented to an elliptic profile (e=12%c) havid@1m chord length. The works
of Wang et al. [3] cover a 2D numerical calculatiand comparison with 3D

experimental results in view of aerodynamic foroefticients.

For the simulation of flapping kinematics of Warigak [3], an ellipse of 12% chord
thickness is used (c=0.01m). The effects of prailape and thickness of the profiles
on the aerodynamic forces and vortex shedding nmesima of the prescribed
flapping motion was analyzed in the previous st{ly It is found that the use of
elliptic profiles and NACA airfoil profiles with 9% and 12%c thicknesses do not
differ much from the aerodynamic force coefficiemtsw point at a Re number of
1000.

Same numerical solution technique and computatigndl domain as used in the

previous study [2] is employed for all computatiafighe present study.

An analysis on sinusoidal flapping motion [46] isrformed with the described
kinematics in order to investigate the effect ety parameters on the aerodynamic
force coefficients. In order to obtain the definB& values; frequencyf, is

calculated a$= Rev/ A, .

Table 4.4 Investigated Parameters

Adc Re f[Hz]
Case 1 2.8 75 1.240
Case 2 2.8 115 1.900
Case 3 2.8 200 3.306
Case 4 4.8 115 1.109
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4.2.1 Evaluation of Unsteady Flowfield and Aerodynamic Forces

Sinusoidal angle of attack and velocity distriboscof the motion for Case 2 and
Case 4 are presented in Figure 4.22 to show tliereiifce of the kinematics by the
change of A/c value. The frequency of the former is approxghatwice of the later

one.
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Figure 4.22 Instantaneous velocity and angle tafcht(a (t)) distribution vs. time
for case 2 and case 4.

In the figures below, time is non-dimensionalizeithwespect to the flapping period
of the case.

In Figure 4.23, the computed forces obtained frbm firesent study are compared
with the experimental and empirical data of Wan@let{3]. The empirical data is
carried out by using the Egs. 3.18-3.19 based eirémslational velocity. The forces
are normalized by the maxima of the correspondugsgsteady forces [3]. For lift
coefficient distribution, although there is a sligiver estimation at the mid-strokes,
the present computations catch thev@lues of the experiment during translation of
the wing (see Figure 4.23). Also, the present agatmpns estimate the right rotation
position as in the experiment. For drag coeffigiehis observed that the general
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behavior of the distribution obtained by the preésemputations is very similar with
that of the experiment [3]. Especially in the tdatisnal phase, they are very
successful. Generally, it is noted that the presemhputations are very good at
estimating the force coefficients of this problem.

15 ; Iid-stroke
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Present computation
Experiment [3]
——— Quasi-steady prediction B]
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——— Present computation vT
——— Experiment 2]
Quasi-steady prediction ]

Figure 4.23 Lift and Drag coefficients comparisatvireen experiment [3], present
computation and quasi-steady estimations [3] fonmsetric (p=0) rotation, Re=75,
and A/c=2.8. Time is non-dimensionalized with the flappperiod of the case 1.
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The lift and drag coefficient distributions of th@o cases are represented in Figure
4.24. The effect of stroke amplitude on the aeradyic force coefficients is
observed by keeping the Reynolds number constantRés115. While €
distributions converge to each other in time, sdmeavior is not observed forp,C
distributions. By keeping the stroke amplitude d¢ans (A/c=2.8), the effect of
Reynolds number on the aerodynamic force coeffisi¢@ and @) is analyzed in
Figure 4.25. It is noticed that the effect of seakmplitude is more significant than
the effect of Reynolds number on drag coefficieitsis effect is also observed in
vorticity distribution (Figure 4.26).
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Figure 4.24 Computational lift and drag coefficee®e=115, #/c=2.8 and 4.8.
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Figure 4.25 Computational lift and drag coefficefdr A/c=2.8, Re=115 and 200.
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It is found that as the amplitude increases, trgikdge vortex trace at the end of the
stroke (blue region at t/T=4 and red region at 4655 detaches from the airfoll
surface quicker (Figure 4.26). Drag coefficienaidgts maximum at this time instant
and lift coefficient is approximately zero. Thed&sy edge vortex grows quicker for
higher amplitudes as can be seen at t/T=4.1 tirsam during downstroke and at
t/T=4.6 during upstroke. The quick growth of thadang edge vortex towards the
trailing edge pushes more translational vortex ffam the airfoil surface (red
contours at t/T=4.3 and blue contours at t/T=4A8)the end of the stroke airfoil
enters to the trace of trailing edge vortex gemelait the beginning of the stroke.
And this trace is more dominant fop/8=2.8 then A/c=4.8 (last row in Figure 4.26).
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Figure 4.26 Instantaneous vorticity contours and@mamic force coefficients for
case of A/c= 4.8 and g/lc= 2.8 at Re=115p=0 during # period.
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A comparison between computation and experiment8Vahg et al. [3] and the
present computational results is will be preserfadthe case of &c=4.8 and

Re=115. In the first column of Figure 4.27 2D conmgpional results [3]; in the
second column 3D experimental results in a 2D sht®.65R taken from DPIV
measurements [3] and in the third column 2D contputal results of the present
study are represented respectively in columns 3 & Figure 4.27. Ten different
time sequences are shown during the fourth strokeedmh case. Time is non-

dimensionalized with the flapping period of theecas

The vorticity contours are presented (see Figu2&)4o show the major features of
vortex dynamics through a complete stroke cycle.eWlkhe three results at each
indicated time steps are compared, it is seen t@atmajor features of vortex
dynamics are similar. The color scale for vortiaifycomputation and experiments
[3] did not correspond to the exact same contolwes Due to lack of the color
scale of vorticity contours achieved by Wang et @], the figure of our
computational results and their results should lssved more qualitatively than
quantitatively.

Notice that even though the kinematics of left agtit strokes is identical, the flow
fields for each case differ slightly for the comgidnal results of Wang et al. [3].
However, this discrepancy in the flow field is maiserved in our computational
results.
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Cotnputation [3] Ezp 't, Present study

Figure 4.27 Instantaneous vorticity contour forecasAy/c= 4.8, Re=115p=0. First
two columns are the results of Wang et al. [3] #relthird column is the results of
the present study.
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Computation [ 3] Experiment [3] i Present smﬂy

Figure 4.27 (Cont'd)nstantaneous vorticity contour for case qfox 4.8, Re=115,
¢=0. First two columns are the results of Wang ef3land the third column is the
results of the present study.

Also a comparative study is performed between kygpfng motions prescribed by
Kurtulus et al. [1] (Case A) and Wang et al. [3pg€ B) for the same Re number of
1000 by keeping the mid-stroke amplitude angle ttdc oo and A/c constant.
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Flapping motions are applied to an ellipse wingisachaving ¢=0.01m chord length

and e=12%c thickness. Present grid domain is usedbdth computations. Some
parameters used in computations and calcul@edaind C_ values are presented in

Table 4.5. Mean lift and drag coefficient§,(and C, ) are calculated for*7period

of both motions according to Eqgs. 3.12-3.13. Fonesd&re number, amplitude ¢&)
and same 45° angle at the mid-stroke, it is folnad the mean lift coefficient of Case
A is twice that of Case B.

Table 4.5 Investigated Parameters

Case A Case B
Kurtulus et al. [1] Wang et al. [3]

Re 1000 1000

Period, T [sec] 0.098 0.130
Ad/c 6 6
ao[] 45° 45

C, 1.046 0.501

C, -0.0031 0.0083
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4.3 Analysis of Type C Flapping Motion

In this part of the present study, “Type C” flappimotion defined in Chapter Il is
implemented to an elliptical wing section havin@grim thickness and 0.0254m
chord length. Freymuth [4] performed a three-din@msl experimental study to
analyze the dynamic stall vortices and the thrusffecient which may also be
considered as a lift coefficient of the hoveringal motion since thrusting during
actual hovering would be upward. A planar airfalving a thickness 1.6mm with
rounded edges, chord length 2.54 cm and span |=38cosed in the experiments.
Density is less than 1kgfat Boulder where experiments were performed.

4.3.1 Evaluation of Unsteady Flowfield and Aerodynamic Forces

Sinusoidal variations angle of attack and velodisgtributions of the motion for
mode 1 are presented in Figure 4.28. Mode 1 andeNaitapping motion prescribed
by Freymuth [4] (Figure 3.8-Figure 3.9) are appltedthe wing model. In Figure
4.29 and Figure 4.30, force coefficient computedusing the present numerical
method is compared with the experimental data efifuth [4]. The computed lift is
non-dimensionalized according to Eqgs. 3.21 and.Ik2 to some differences (e.qg.
wing model, density etc.) between the present sty Freymuth’s experiment [4],
most efficacious consistency is not provided. Tikibecause of three dimensional
effect of the experiments [4]. Especially, due tghhfrequency there is more
numeric error. The present computation is genegdlyd at estimating the ralue
of the experiment (see Figure 4.29 and Figure 4.30)
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Figure 4.28 Instantaneous angle of attadk) and velocity distribution vs. time for

mode 1 hovering.
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Figure 4.30 Lift coefficient comparison between evment [4] and present
computation for mode 2,=25", 0=90, ¢=-90 and R=1700.

Entire cycle of airfoil flapping in Mode 1 with,=66°, h/c=1.5 is shown in Figure
4.31 (a-b). Black and white pictures belong to Rmath’'s experiment [4]. Flow
visualization was by means of the titanium-tetrbootle method described by
Freymuth et al. [47]. Colorful pictures are resudfsthe present study. Frames are
ordered into columns from top to bottom and coluraresordered from left to right.
Time between consecutive framesAis=1/16s. One should analyze the pictures by
following the first and second columns togetherstHiow of left two columns show
the farthest right position of the airfoil (loweagit corner of the frames). From this
position to the bottom of the third and fourth acuohs, the airfoil moves its left
position. During this movement, airfoil creates lackwise (blue) rotating vortex
which is very similar with the experiment [4] (sBgure 4.31 (a)-indicated in the
last row). In columns 1 and 2 of Figure 4.31 (bg airfoil moves to the right. The
previously generated clockwise (blue) rotating err{see Figure 4.31 (a)-indicated
in the last row) starts to detach from the uppefase of the airfoil and moves
upward. And a new counterclockwise (red) rotatiogtex is formed and grows (see
Figure 4.31 (b)-indicated in the last row). Thisgess repeats during each cycle and
results in an upward moving vortex street. Theggexdormations were observed in

the experiment also [4].
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Ezperiment [4] Present study Ezperiment [4] FPresent study

Figure 4.31(a) Instantaneous vorticity contoursNmrde 1. Black and white pictures
are results of Freymuth [4] and the colorful piewiare results of the present study.
0=66", hy/c=1.5, R=340, f=1Hz. At=1/16s.
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Experiment [4] Present study Experiment [4] Prezent study

Figure 4.31 (b) Instantaneous vorticity contours Mode 1. Black and white
pictures are results of Freymuth [4] and the colgsfctures are results of the present
study.o,=66, hy/c=1.5, R=340, f=1Hz. At=1/16s.
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CHAPTER V

CONCLUSION

In this study, a detailed numerical investigatiopésformed to investigate the effect
of some geometrical parameters, such as the apfoiile shapes, thickness and
camber distributions and as well as the flappingtiomo kinematics on the

aerodynamic force coefficients and vortex formatinachanisms at low Reynolds

number.

The numerical analysis tool is a DNS code usingnioeing grid option. Laminar
Navier-Stokes computations are done for flappingtionousing the prescribed
kinematics in the Reynolds number regime of 1000e Tlbw field for flapping
hover flight is investigated for (defined by Kumsglet al. [1]) elliptic profiles having
thicknesses of 12%, 9% and 1% of their chord lengtits compared with those of
NACA 0009, NACA 0012 and SD 7003 airfoil profiled Baving chord lengths of
0.01m for numerical computations. Computed aerodyndorce coefficients are
compared for these profiles having different centdrrotation and angles of attack.
The vortex formation, interaction of the leading amdiling edge vortices are
represented with vorticiy, pressure coefficient asetond invariant of velocity
gradient (Q) contours in addition to the streandin€he shedding of the vortices
especially which are coming from the leading edgeehdifferent mechanisms for
differentap parameters, so the aerodynamic force coefficiemsrarstly influenced
by the effect of the angle of attack. NACA profilbswve slightly higher lift
coefficients than the ellipses of the same t/corafind one of the most important
conclusions is that the use of elliptic and NACAoffes with 9% and 12%
thicknesses do not differ much as far as the a@@uyic force coefficients is
concerned for this Re number regime. But more exmtal and computational

work is required to understand the thickness efi@ceven smallest thickness ratios

2].
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Another study [46] is performed to analyze theeatiht sinusoidal flapping motion
kinematics defined by Wang et al. [3] and Freym[#h for different Reynolds
numbers in the range of #Q0° by implementation of the sinusoidal translational
and angular motions. Force coefficients and voyticiontours obtained from the

experiments [3], [4] and present study are compared.

The sinusoidal motion defined by Wang et al. [Jjplied to a thin wing element of
elliptic cross section having a thickness of 12%tefchord. The effects of stroke
amplitude and Reynolds number on the aerodynamrcefocoefficients are
investigated. It is observed that the effect ablegramplitude is more than the effect
of Reynolds number on drag coefficient. The computertes and vorticity
distribution obtained from the present study anmpgared with 3D experimental, 2D
numerical and empirical data of Wang et al. [3].dtabserved that the present
computational method is good at estimating the oroefficients and the major
features of vortex dynamics of the problem. For shene Re number, amplitude
(Ao/c) and same 45° angle at the mid-stroke, a cortiparatudy is performed
between the flapping motions prescribed by Kurtidusl. [1] and Wang et al. [3]

and it is found that the mean lift coefficient of [1] is d¢withat of [3].

The sinusoidal flapping motion defined by Freymuthi$ implemented to an elliptic
profile having 1.6mm thickness and 0.0254m chord tlengorce coefficients and
vortex dynamics obtained from the experiments @&yRuth [4] and present study
are compared. Although some parameters are diffefent numerical and

experimental tests good agreement is observed betwesntiine studies.

In this present study the effects of some paramdeeg. profile shape, thickness, Re,
amplitude, etc.) on aerodynamics of flapping motiorhover is put into evidence.
The validation of the present computational resulith the experimental results
available in the literature encourages us to caleclinat present numerical method
can be a reliable alternative to experimental teghes. The results obtained from
the present numerical investigations provided adgdescription of the unsteady
aerodynamic mechanisms for the generation of hitl @rag during the flapping

motion in hover.
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