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ABSTRACT 
 
 
 

UNSTEADY AERODYNAMIC CALCULATIONS OF FLAPPING WING 

MOTION  

 
 

AKAY, Buşra 
 

M.Sc., Department of Aerospace Engineering  
 

Supervisor: Prof. Dr. H. Nafiz Alemdaroğlu 
 

 
September 2007, 89 pages 

 
 
The present thesis aims at shedding some light for future applications of µAVs by 

investigating the hovering mode of flight by flapping motion. In this study, a detailed 

numerical investigation is performed to investigate the effect of some geometrical 

parameters, such as the airfoil profile shapes, thickness and camber distributions and 

as well as the flapping motion kinematics on the aerodynamic force coefficients and 

vortex formation mechanisms at low Reynolds number. The numerical analysis tool 

is a DNS code using the moving grid option. Laminar Navier-Stokes computations 

are done for flapping motion using the prescribed kinematics in the Reynolds number 

range of 101-103. The flow field for flapping hover flight is investigated for elliptic 

profiles having thicknesses of 12%, 9% and 1% of their chord lengths and compared 

with those of NACA 0009, NACA 0012 and SD 7003 airfoil profiles all having  

chord lengths of 0.01m for numerical computations. Computed aerodynamic force 

coefficients are compared for these profiles having different centers of rotation and 

angles of attack. NACA profiles have slightly higher lift coefficients than the ellipses 

of the same t/c ratio. And one of the most important conclusions is that the use of 

elliptic and NACA profiles with 9% and 12% thicknesses do not differ much as far 

as the aerodynamic force coefficients is concerned for this Re number regime. Also, 



 v 

two different sinusoidal flapping motions are analyzed. Force coefficients and 

vorticity contours obtained from the experiments in the literature and present study 

are compared. The validation of the present computational results with the 

experimental results available in the literature encourages us to conclude that present 

numerical method can be a reliable alternative to experimental techniques.  
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ÖZ 
 

 
 

ÇIRPAN KANAT HAREKETĐNĐN ZAMANA BA ĞLI AERODĐNAM ĐK 

HESAPLAMALARI  

 
 

Akay, Buşra 
 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 
 

Tez Yöneticisi: Prof. Dr. H. Nafiz Alemdaroğlu 
 

 
Eylül 2007, 89 sayfa  

 
 
Bu tez çırpan kanat hareketinin havada asılı kalma modunu inceleyerek gelecekteki 

mikro hava araçları uygulamalarına ışık olmayı amaçlamıştır. Bu çalışmada, düşük 

Reynolds sayısında kanat kesitinin şekli, kalınlığı, kambur dağılımı gibi geometric 

parametrelerin ve bunların yanında çırpan kanat hareketinin aerodinamik kuvvet 

katsayılarının ve girdap oluşum mekanizmasının üzerindeki etkilerini araştırmak için 

detaylı bir sayısal inceleme gerçekleştirilmi ştir. Sayısal analiz aracı hareket eden ağ 

yapısı opsiyonunu kullanabilen bir DNS koddur. Laminar, Navier-Stokes 

hesaplamaları belirlenen kinematikler kullanılarak çırpan kanat hareketleri için 101-

103 Reynolds sayısı rejimi içinde gerçekleştirilmi ştir. Çırpan kanat hareketinin 

havada asılı kalma modunda akış alanı kalınlıları vetere uzunluklarının (c=0.01m) 

%12, %9 and %1 olan eliptik profiler için araştırılmıştır ve vetere uzunlukları 0.01m 

olan NACA 0009, NACA 0012 and SD 7003 kanat kesitleri ile karşılaştırılmıştır.  

Hesaplanan aerodinamik kuvvet katsayıları bu profillerin farklı dönme noktaları ve 

hücum açıları için karşılaştırılmıştır. Aynı t/c oranı için NACA profilleri elipslerden 

biraz daha fazla kaldırma kuvveti katsayısına sahip olmuşlardır. En öenmli 

sonuçlardan biri de bu Reynolds sayısı rejimi için aerodinamik kuvvet katsayıları 

düşünüldüğünde %9 ve %12 kalınlıktaki NACA ve eliptik profil kullanmanın fazla 
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bir farkı olmadığıdır. Aynı zamanda iki farklı sinusoidal çırpan kanat hareketi 

incelenmiştir. Literatürdeki deney sonuçlarından sağlanan kuvvet katsayıları ve 

girdap konturları ile bu çalışmadan elde edilen sonuçlar karşılaştırılmıştır. Bu 

çalışmadan elde edilen sayısal sonuçların literaturdeki deneysel sonuçlar ile 

sağlanmış olması bizi ‘bu çalışmadaki sayısal metod deneysel tekniklere güvenilir bir 

alternatif olabilir’ sonucuna götürmüştür.    

 

Anahtar Kelimeler: Çırpan Kanat Hareketi, Zamana Bağlı Aerodinamik, CFD 
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CHAPTER I 

INTRODUCTION 

This thesis is about numerical analysis of two dimensional flapping motion in 

hovering mode. Direct Numerical Simulation is used to solve the flow field around 

the two dimensional wing during the flapping motion. Unsteady, laminar, 

incompressible two dimensional Navier-Stokes Equations are solved by using 

moving grid technique. After grid refinement studies, O type grids are generated 

around the profiles with grid outer boundaries chosen to be at 20 chord lengths.  

 

The flapping motion is assumed to consist of a downstroke, rotation and an upstroke. 

The length of each stroke depends on the kinematics of the defined flapping motion. 

Detailed information about flapping kinematics is given in the following chapters. 

Three types of flapping motion kinematics are analyzed during this thesis study and 

their descriptions are given in Chapter III.  

 

The first motion type is prescribed by Kurtulus et al. [1]. A parametric study is 

performed on the unsteady aerodynamics of different wing profiles at low Reynolds 

number (Re=1000) with this flapping motion kinematics [1]. An investigation is 

done to assess the importance of the shape and thickness of the 2D wing profile on 

the aerodynamic force coefficients and the vortex formation mechanisms by using 

the Direct Numerical Simulation technique. The profiles investigated are elliptic 

profiles with 12%, 9% and 1% thicknesses and NACA 0009, NACA 0012 and SD 

7003 airfoil profiles all having 0.01m chord lengths. The computed aerodynamic 

force coefficients are then compared for these profiles for different center of 

rotations and angles of attack [2].  
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The second and third flapping motion kinematics are prescribed by Wang et al. [3] 

and Freymuth [4]. A study is performed to check the computational performance of 

the present numerical method and to analyze the sinusoidal flapping motion 

aerodynamics for different Reynolds numbers in the range 101-103 by using this 

kinematics. Two different sinusoidal motions are simulated by implementing the 

sinusoidal translational and angular motions using the same numerical solver.  

 

The present thesis is composed of 5 Chapters. The theoretical background of the 

present study and a review of the literature about flapping motion are given in 

Chapter 2. In Chapter 3, the numerical method is explained by giving the 

computational details and by describing the wing models and the kinematics used. 

The computational results obtained by using the DNS code are given in Chapter 4. 

Finally, the conclusions obtained from the present investigations are given in Chapter 

5. 
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CHAPTER II 

2. BACKGROUND OF THE STUDY 

Interest in the aerodynamics of insect flights has increased in conjunction with the 

concept of Micro Air Vehicles (µAVs). Based on their size, flying insects operate in 

a wide range of Reynolds numbers; from approximately 101 to 105 [5].  Operating 

Reynolds number ranges of µAVs are similar with those of birds or insects.  Thus, 

this similarity led most of the researchers to understand the aerodynamic basis for the 

flight of birds and insects.   

 

The present study aims at shedding some light for future applications of µAVs by 

investigating the hovering mode of flight by flapping motion.    

2.1 Basic Aerodynamics of Insect Flight 

Four degrees of freedom in each wing are used to achieve flight in nature: flapping, 

lagging, feathering and spanning. Flapping is an angular movement about an axis in 

the direction of flight. Lagging is an angular movement about a vertical axis which 

effectively moves the wing forward and backward parallel to the vehicle body. 

Feathering is an angular movement about an axis around the center of the wing 

which tilts the wing to change its angle of attack. Spanning is an expanding and 

contracting of the wing span. However not all flying animals can implement all of 

these motions. Unlike birds, most insects do not use the spanning. They have very 

restricted lagging capabilities. Thus, flapping flight is possible with only two degrees 

of freedom: flapping and feathering [6].  

 

The critical characteristic in insect flight which distinguishes it from other flying 

creatures or machines is the kinematics of wing motion (except for hummingbirds). 
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Due to their smaller scale, insects differ fundamentally from birds. Insects carry out 

all of the operations at their wing roots. As a result of this kinematics, the 

aerodynamics associated with insect flight is also very different from those 

encountered in conventional fixed- and rotary-wing or even bird flight [7]. 

 

Figure 2.1 Hummingbird [8]. 

Identification of major forces is critical to understand insect flight. Conventional 

aerodynamic theory is based on rigid wings moving at constant velocity. However, it 

is observed that when insect wings are placed in a wind tunnel and tested over a 

range of air velocities, the measured forces generated by flapping their wings are 

substantially smaller than those required for active flight [9]. Thus, there is 

something more complex with the flapping motion which increases the lift produced 

by a wing. The failure of conventional steady-state theory has prompted the search 

for unsteady mechanisms that might explain the origin of these high forces produced 

during flapping motion [10].  
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2.1.1 Hovering Flight 

 “Hovering is an extreme mode of flight where the forward velocity is zero. To do 

this, insects must draw clean air from the ambient flow and get rid of the `messy 

vortices' they have created to obtain a large periodic lift” [11]. 

 

The wingstroke of an insect is divided into four stages: while the wings sweep 

through the air with a high angle of attack, two translational phases (upstroke and 

downstroke) occur; and while the wings rapidly rotate and reverse direction, two 

rotational phases (pronation and supination) occur [12]. The wing path is shown with 

a blue dotted line. Blue arrows indicate the direction of the wing motion. Lift (dark 

blue) and drag (green) aerodynamic forces are components of the total aerodynamic 

force (red).   

 

Figure 2.2 Hovering flight posture [12].   

A hovering hummer keeps its body at about a 45o angle to the ground and moves its 

wings in a more or less a “figure eight” pattern. Hummers have an extremely mobile 

shoulder joint to generate lift on both up-downstrokes. The direction of thrust 

changes between the up-downstrokes, so that they cancel each other out. Since the 

wings beat more than 20 times per second (sometimes as rapidly as 80 beats per 

second), inertia holds the bird's body essentially stationary [13]. 

 

drag 

Leading edge 
of the wing 
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However, the hovering flight is quite expensive. While weak fliers and strong flying 

birds invest about 15 and 20 percent (respectively) of the total body weight in the 

breast muscles, hummingbirds invest about 30 percent of the total body weight in the 

breast muscles [13]. 

 

The flow associated with insect flapping flight is incompressible, laminar and 

unsteady, and occurs at low Reynolds numbers (101 – 105). The enhanced 

aerodynamic performance of insects result from an interaction of some mechanisms: 

Wagner effect, delayed stall and the formation of leading edge vortex, Kramer effect, 

wake capture, and clap and fling mechanism. 

2.1.2 Wagner Effect 

There are three main features in insect’s flapping cycle. These are the wing’s 

repeated acceleration (starting), deceleration (stopping) and reversal. “This ‘start–

stop–reversal’ behavior is fundamental to the aerodynamics that makes this flight 

possible [7].” During this process, vorticity is generated and shed at the trailing edge, 

and the shed vorticity eventually rolls up in the form of a starting vortex. The 

vorticity shed at the trailing edge induces a velocity field in the vicinity of the wing. 

This velocity field counteracts the growth of circulation bound to the wing and 

therefore, has an inhibitory effect on lift-the so-called Wagner effect. Until the 

starting vortex has moved sufficiently far from the trailing edge, this effect proceeds. 

Then the wing attains its maximum steady circulation (see Figure 2.3). As it is seen 

in Figure 2.3, the ratio of instantaneous to steady circulation grows as the trailing 

edge vortex moves away from the airfoil, and its influence on the circulation around 

the airfoil diminishes with distance [5].  



 
7 

 

Figure 2.3 Schematic diagram of Wagner effect. Distance is non-dimensionalized 
with respect to chord lengths traveled [5]. 

2.1.3 Delayed Stall and Leading Edge Vortex 

Delayed stall occurs during the translational phase of the stroke. As the wing 

increases its angle of attack, the fluid stream going over the wing separates as it 

crosses the leading edge but reattaches before it reaches the trailing edge. In such 

cases, a leading edge vortex occupies the separation zone above the wing. Because 

the flow reattaches, the fluid continues to flow smoothly from the trailing edge and 

the Kutta condition is maintained. In this case, because the wing translates at a high 

angle of attack, a greater downward momentum is imparted to the fluid, resulting in 

substantial enhancement of lift [5]. 

 

Although many mechanisms are identified to explain the insect flight, the main 

source of the extra lift was unknown until Ellington et al. [14] discovered the leading 

edge vortex. They have visualized the airflow around the wings of the Hawkmoth 

Manduca sexta and a hovering large mechanical model –the flapper. An intense 

leading edge vortex having sufficient strength to explain the high lift forces was 

found on the downstroke. The vortex is created by dynamic stall, and not by the 

rotational lift mechanisms that have been postulated for insect flight. The schematic 

representation of delayed stall is given in Figure 2.4-(1).  
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2.1.4 Kramer Effect (Rotational Circulation) 

Insect wings generate lift during both up and down strokes by always having positive 

angle of attack. This is achieved by undergoing substantial two rotational phases 

(pronation and supination) about a spanwise axis near the end of every stroke [5]. 

The orientation of the resulting force should also depend critically on the direction of 

wing rotation. If the wing flips early, before reversing direction, then the leading 

edge rotates backward relative to translation set of simplified wing kinematics. An 

advance in rotation relative to translation results in a positive lift peak at the end of 

each half stroke, whereas a delay in rotation results in negative lift at the beginning 

of each half stroke. Thus, by properly adjusting the timing of wing rotation, an insect 

can generate lift via a rotational mechanism in excess of that produced by delayed 

stall [5].  

 

According to Dickinson et al. [10], the physics of rotating wings have two important 

consequences for the forces generated by rotational circulation due to flat insect 

wings.  First, the rotational force on a wing acts normal to its chord, not 

perpendicular to the direction of motion. Second, viscous forces within the air will 

make the flow smoothly at the sharp trailing edge. This constraint, termed the Kutta 

condition, fixes a fluid stagnation point at the trailing edge of the wing. The 

functional consequence of the Kutta condition is that the amount of circulation and 

thus force produced by a rotating wing will depend critically upon the position of the 

rotational axis [10]. The schematic representation of rotational lift is given in Figure 

2.4-(2). At its completion (see Figure 2.4-(3)), the maneuver also results in a 

powerful force propelling the insect forward.  
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Figure 2.4 Schematic representation of delayed stall and rotational lift. A fly moves 
from right to left during a downstroke of its wings (top), blue arrows indicate the 
direction of wing movement and red arrows the direction and magnitude of the forces 
generated in the stroke plane [12].   

2.1.5 Wake Capture 

The wake behind a flying object contains energy imparted to the surrounding fluid in 

the form of momentum and heat. Wing passage through the wake could, therefore, be 

a method to recover some of this lost energy (wake from previous stroke) and utilize 

it usefully for flight [6]. The schematic representation of wake capture is given in 

Figure 2.5 (1, 2). 

 

According to Dickinson et al. [10], although rotational circulation can explain one of 

the stroke reversal forces, it can not explain the large positive transient that develops 

immediately after the wing changes direction at the start of each half stroke. These 

force peaks are distinct from the rotational circulation peaks, because their timing is 

independent of the phase of wing rotation. One possible explanation for these forces 

is the mechanism of wake capture, in which the wing benefits from the shed vorticity 

of the wing at an angle that produces negative lift.  
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Figure 2.5 Schematic representation of wake capture. A fly moves from left to right 
during a upstroke (top), blue arrows indicate the direction of wing movement and red 
arrows the direction and magnitude of the forces generated in the stroke plane [12].   

2.1.6 Clap and Fling Mechanism 

The clap-and-fling mechanism was first proposed by Weis-Fogh [15] to explain the 

high lift generation in the chaliced wasp Encarsia formosa and is sometimes also 

referred to as the Weis-Fogh mechanism [5]. 

 

In this process, the wings clap together above the insect’s body and then fling apart. 

As they fling open, the air gets sucked in and creates a vortex over each wing. This 

bound vortex then moves across the wing and, in the clap, acts as the starting vortex 

for the other wing. By this method, circulation and thus lift are increased to the 

extent of being higher, in most cases, than the typical leading edge vortex mechanism 

[16]. “Although the clap and fling may be important, especially in small species, it is 

not used by all insects and thus can not represent a general solution to the enigma of 

force production [10].” In Figure 2.6 schematic representation of clap and fling 

mechanism is presented. Black lines show flow lines, and dark blue arrows show 

induced velocity. Light blue arrows show net forces acting on the airfoil.  

 

1 

1 

2 

2 
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Figure 2.6 A-C represent wing approaching each other to clap and D-F represent 
flinging apart [5].  

2.2 Advantages of Flapping Flight in MAV 

Insect-like flapping wing Micro Air Vehicles (µAVs) are small hand-held flying 

vehicles that are developed for the purpose of reconnaisance in confined spaces, for 

example, inside buildings, tunnels and shafts. To perform these applications, the 

vehicles have a stable hover and a highly maneuverable power efficient platform. 

Flying insects have this kind of performance, and hence, insect-like flapping is 

focused on by engineering means [17]. 

 

“The flapping motion of insect wings is qualitatively different from fixed airplane 

wings or even the rotation of helicopter blades.” It's perhaps not surprising, that the 

quasi-steady-state analysis that works so well for aircraft but it does not work when 

insects’ flight is considered [18]. Although flapping wing design is more complex 

than a fixed wing design, there are many reasons to explore the possibilities of 

flapping wing flight.  
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•  The size constraints: 

While the vehicle becomes smaller, the fixed wing application becomes less 

reasonable. The lift which a fixed wing generates to support the weight of the vehicle 

is directly proportional to wing area and velocity of air flow over the wing. Thus, the 

smaller the vehicle, the less lift it can supply.  

 

•  To increase lift -to support the weight of the vehicle- most designs 

increase the velocity of the vehicle. Increasing velocity is unacceptable in 

situations such as indoor missions where a µAV makes the most sense.  

 

•  A flapping wing design can rely on lift generated by airflow created by 

both vehicle speed and wing flapping to support the weight of the vehicle. 

Therefore, if the scale is reduced, the frequency of the beating can be 

increased without affecting the minimum velocity of the vehicle [6]. The 

main consequence for insect flight is generation of high lift at low speeds 

thus enabling slow, but highly maneuverable and power efficient flight 

[19].  

 

•  Ability to perform short takeoffs and landings: 

 Provided with enough power, a vehicle with flapping wings could actually takeoff 

and land vertically [6]. 

 

Figure 2.7 Sympetrum flaveolum-side (aka) [16]. 
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2.3 Literature Survey 

The aim of the present section is to combine the studies performed about the flapping 

motion in recent years. This literature survey will help to understand the 

fundamentals of the flapping flight. While surveying the literature, the studies are 

divided into three subgroups; experimental studies, numerical studies, and 

comparative studies.  

2.3.1. Numerical Studies 

The defining property of airfoil aerodynamics at low Reynolds number is laminar 

flow separation. Many applications have been performed by using Navier-Stokes 

solvers in the field of flapping motion. NACA 0012 airfoil profile has been used as 

wing section in many applications ([20]-[23]) with pure pitching and combined 

pitch-plunge oscillations. Tuncer and Kaya [20] have investigated sinusoidal plunge 

and pitching motion by using unsteady laminar and turbulent flow in a wide range of 

Re number; 104<Re<106. Young and Lai [21] have analyzed sinusoidally oscillating 

NACA 0012 airfoil in plunge motion at Re=2x104.  They have also used unsteady 

panel method (UPM) with numerical visualization using the partical tracing method.  

Later, Young [22] have used unsteady panel method and Navier-Stokes solver codes 

to analyze plunging and pitching airfoil at Re=12000. 2D airflow of a 

stationary/flapping airfoil combination in tandem has been investigated by using 

Navier-Stokes solver with Baldwin-Lomax and Baldwin-Barth turbulence models 

[23]. To provide more insight into the bioaerodynamics of insect flight for the design 

of flapping wing MAVs, Szmelter and Zbikowski [19] have analyzed 3D bibio fly 

wing at Re number higher than 9x103 by using NACA 0012 profile. The kinematic 

data used in this study was provided by Willmott and Ellington ([24]-[26]). A 

detailed analysis of free flight in the hawkmoth Manduca sexta  has revealed the 

kinematic changes as the speed increases from hovering to fast forward flight. It was 

observed that significant changes occurred in the aerodynamics of the observed 

kinematic variation, the power requirements for flight at different speeds and the 
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nature of the constraints on maximum flight speed ([24], [25]). According to 

Willmott and Ellington, a robust technique for determining the angle of attack of 

insect wings is to use a fast camera to film the free flight. To date this method has  

proved to be elusive. They reported a study describing the development of two new 

methods – the Strips and Planes techniques – which were designed to overcome 

some of the limitations experienced in previous studies ([26]).  

 

Three dimensional hovering flight of the dragonfly in tandem configuration at 

Reynolds number of the order of 103 have been analyzed by Isogai et al. [27]. They 

used a Navier-Stokes code and validated their results by comparing their simulations 

with the experimental values of total lift and stroke plane angle obtained using a 

flying robot.  

 

Wu and Sun [28] have analyzed flapping motion of the fruit fly wing with flat plate 

wing section in the range of 20<Re<1800. They analyzed the effects of varying five 

non-dimensional parameters (i.e. Reynolds number, stroke amplitude, mid-stroke 

angle of attack, non-dimensional duration of wing rotation, rotation timing) on the 

force coefficients were analyzed. 

 

Miller and Peskin [29] used immersed boundary method to solve the two-

dimensional Navier–Stokes equations for two immersed wings performing an 

idealized clap and fling stroke and a fling half-stroke in the range of 8<Re<128. 

They found that flow around the wing branches into two distinct patterns. For Re>64, 

leading and trailing edge vortices are alternately shed behind the wing forming the 

Karman vortex street. For Re<32, the leading and trailing edge vortices remain 

attached to the wing during each half stroke.  

 

Ramamurti and Sandberg [30] have used finite element flow solver to analyze 3D 

drosophila wing in flapping motion at Re=136. The effect of phasing between the 

translational and rotational motions was studied by varying the rotational motion 

prior to the stroke reversal. 
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Elliptic profiles have also been used to investigate the flapping motion characteristics 

([31]-[34]). Lan and Sun [31] explored the flapping motion at Re=1000 by using a 

Navier-Stokes solver for incompressible flow implementing moving overset grid. 

The results show that, if the insect employs a larger angle of attack or changes the 

timing of wing rotation, much greater lift can be produced for maneuvering  and for 

other purposes. 3D flapping motion of the model fruit fly wing at Re=136 has been 

investigated by Sun and Tang [32] with some insights into the unsteady aerodynamic 

force generation process from the force and flow-structure information. They 

compared their results with the model wing experimental results and fruit-fly data 

provided by Dickinson et al. [10] and Weis-Fogh [15]. Weis-Fogh [15] aimed to 

provide new material and novel solutions to make use of the large number of 

observations on freely flying animals. His major conclusion is that most insects 

perform normal hovering on the basis of the well-established principles of steady-

state flow. However, one must also realize that any type of flapping flight involves 

also non-steady periods, particularly at the reversal points where active pronation and 

supination occur. Wang ([11], [33]) has analyzed 2D hovering and flapping flight on 

elliptic wing section to identify the vortex shedding and their frequencies in the Re 

number range of 102<Re<104. Eldredge [34] has performed DNS solutions with 

viscous vortex particle method to investigate the pitching and plunging motion at 

Re=550.  

2.3.2. Experimental Studies 

The understanding the physics of flapping flight has long been limited due to the 

obvious experimental difficulties in studying the flow field around real insects. 

Recently, PIV and DPIV techniques have been used as novel experimental tools to 

analyze the flapping motion [35] - [37].  

 

Poelma et al. [35] have  performed a 3D Steoreoscopic PIV experiment in a mineral 

oil tank to measure the time dependent three-dimensional velocity field 

quantitatively, around a dynamically scaled robotic flapping wing at Re=256.  
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For the first time it was shown that data can also be obtained for quantitative studies, 

such as lift and the drag. Tian et al. [36] have implemented the PIV technique by 

using a fog generator in a flight cage to understand the 3D high speed stereo images 

to analyze the kinematic motion during straight and turning flights of a bat in the Re 

number range of 104<Re<105. The kinematic data revealed that, at relatively slow 

flight speeds the wing motion is quite complex, including a sharp retraction of the 

wing during the upstroke and a broad sweep of the fully extended wing during the 

downstroke. Clap and fling movement have been analyzed using dynamically scaled 

mechanical model of the small fruit fly Drosophila melanogaster (see Figure 2.8) by 

Lehmann et al. [37]. They performed 3D DPIV experiments and used force 

transducers to investigate force enhancement due to contra lateral wing interactions 

during stroke reversals (‘the clap-and-fling’) in the Reynolds number range of 

100<Re<200.  

 

Figure 2.8 Drosophila_melanogaster-side [16]. 

Figure 2.9 A, B shows time sequences of one wing stroke cycle with superimposed 

instantaneous force vectors produced by an isolated single wing. In this case, the 

mean flight force normal to the wing surface and averaged throughout the entire 

stroke cycle is approximately 0.453 N, with a peak at the beginning of the down 

stroke of 1.34 N. In comparison, a wing undergoing the same kinematic pattern along 

with a second, mirror-image symmetric wing produces a mean force of 

approximately 0.476 N, with a peak of 1.82 N (Figure 2.9 C, D). The results of this 

study on the dorsal clap-and-fling mechanism in flapping wing motion of ‘hovering’ 
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robotic fruit fly wing has revealed an unknown complexity of flight force 

modifications throughout the entire stroke [37].  

 

Figure 2.9 Wing motion of a robotic wing performing a clap-and fling kinematic 
maneuver [37]. 

Galvao et al. [38] have explored 3D mammalian flight with compliant membrane 

wing models in the range of 70000<Re<200000. They have used a low-speed, low 

turbulence wind tunnel equipped with a stereo photogrammetric system.  

 

2D biomimetic flapping-pitching wing is analyzed by Singh et al. [39] using laser 

sheet visualization method at Re=15000. Images were captured by a CCD camera, 

and the seeding was produced by vaporizing a mineral oil into a dense fog.  

 

Usherwood et al. [40] have investigated the flight of Pigeons in slow, flapping flight 

to obtain the dynamic pressure maps of their wings and tails by using accelerometers 

and differential pressure sensors. 

 

Dickinson et al. [10] have performed an experiment in a mineral oil tank with a 3D 

dynamically scaled model of the fruit fly to investigate the interaction of three 

distinct interactive mechanisms namely delayed stall, rotational circulation, and wake 

capture on the enhancement of the aerodynamic performance of insect flights. 

Experiments have been performed at Re=136. The wing was equipped with a 2D 

force transducer. Before this study, Dickinson and Götz [41] have performed similar 
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experiments in an aquarium by using a 2D impulsively moved model wing in the 

range of 10<Re<1000. The purpose of Dickinson and Götz’s [41] analysis is not to 

drive yet another nail into the quasi-steady state coffin, but rather to characterize the 

time-dependency of forces produced by impulsively moved wings and thereby 

expand the knowledge of unsteady mechanisms that might be employed by insects 

during flight. In particular, they were concerned with the time history of two 

processes: the generation of lift and the onset of stall. Time dependence of force 

production, the effect of Reynolds number on unsteady forces, effects of surface 

roughness and camber on force coefficients were analyzed. They concluded that the 

unsteady process of vortex generation at large angles of attack might contribute to 

the production of aerodynamic forces in insect flight.  

 

Spedding et al. [42] performed a study reporting on the results of an extensive series 

of experiments in measuring bird wakes over a continuous range of flight speeds in a 

closed-loop, low-turbulence wind tunnel. The measurement technique has been 

customized extensively for this particular application. A correct reconstruction of the 

most likely three-dimensional wake structure is focused on.  

 

Recent experimental and numerical unsteady aerodynamic research in the domain of 

flapping flight with applications to Micro Air Vehicles are also presented by Platzer 

and Jones [43] and the analytical models developed for insect-like flapping are 

summarized by Ansari et al. [7] with the basic aim of applying them to  flight 

dynamic problems of Micro Air Vehicles.   

2.3.3. Comparative Studies: Experimental vs. Numerical Approaches 

There are many comparative studies available in the literature used mainly to 

validate the numerical studies in the field of flapping motion to understand the 

fundamentals of the aerodynamics of the flapping motion. Some of them is analyzed 

and presented below. 
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Kurtulus et al. [1] has performed a study to understand the aerodynamic mechanisms 

and vortex shedding dynamics of flapping motion by using numerical methods, 

analytical models and experimental techniques. The numerical study was 

investigated in three sub-section namely, numerical visualization, vortex 

identification via different methods and calculation of the instantaneous aerodynamic 

forces and average lift and drag coefficient values. In the experimental part of the 

study, the dimensional analysis for the air-water comparison, description of the 

displacement system, laser plane visualization and PIV measurement procedure were 

performed. The numerical and experimental visualizations are compared in order to 

understand the vortex generation mechanism during the motion in consideration and 

to reason the unsteady effects generated by these vortices on the airfoil in terms of 

the aerodynamic force coefficients and pressure distribution. The experimental 

results are done as a part for the validation of numerical simulations. The 

visualizations and Q contours are the indirect validation of the aerodynamic force 

calculations of these numerical solutions. 

 

Pivkin et al. [44] have utilized arbitrary Lagrangian-Eulerian formulation of the 

incompressible Navier-Stokes equation to investigate the 3D airflow around the bat 

wings during flight at Re=100. They have also implemented an experiment by using 

two high speed cameras to track the infrared markers attached to the bat wings. 

 

Another comparative study was performed by Wang et al. [3]. In this study, the 

computational, experimental and quasi-steady forces in a generic hovering wing 

undergoing sinusoidal motion along a horizontal stroke plane were compared. By 

using a dynamically scaled robotic fly, both force and flow data were obtained. At 

the base of one arm was attached a 2D force sensor that measured forces parallel and 

perpendicular to the wing surface. Lift and drag forces were then calculated from the 

perpendicular shear forces measured by the sensor. Digital Particle Image 

Velocimetry (DPIV) was used to measure the flow structure in a 841 cm2 area 

centered on the wing. The oil was seeded with air forced through a ceramic water 

filter  stone, creating a dense bubble field. The computational model used is a thin 

wing element of elliptic cross section undergoing the same kinematics as performed 
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in the experiments. The computation of flow around this hovering wing employs a 

fourth-order finite difference scheme of Navier–Stokes equation in vorticity-stream 

function formulation. Here it is seen that the success and failure of a 2D model in 

capturing the forces in 3D experiments can provide important insights. In both the 

advanced and symmetrical rotation cases, the 2D forces are very similar to the 3D 

forces. A notable difference between the experimental and computational forces is 

seen in the delayed rotation, where there is a clear phase shift between the computed 

and measured lift.  
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CHAPTER III  

3.  NUMERICAL METHODS 

Any CFD, CAD or CAE system should be treated as a tool to assist the engineer in 

understanding physical phenomena. The success or failure of a fluid simulation 

depends not only on the code capabilities, but also upon the input data, such as: 

 

• Geometry of the flow domain 

• Fluid properties 

• Boundary conditions 

• Solution control parameters 

 

For a simulation to have any chance of success, such information should be 

physically realistic and correctly presented to the analysis code. 

 

By being aware of and completing these tasks, STAR-CD is chosen as a CFD tool 

and used in the numerical analysis part of this study. Direct Numerical Simulation 

(DNS) technique is used to solve the present flapping motion problems. The code has 

the capability to solve transient flow problems, use moving mesh with arbitrary 

motions, handle user defined properties and conditions by the use of user-defined 

subroutines, and it also has the capability of handling a large variety of boundary 

conditions, and offers a range of moving mesh features. 
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3.1 Flow Field Description 

Transient time domain is applied to the problem, due to nature of the simulation. The 

transient calculation starts from well defined initial and boundary conditions and 

proceeds to a new state in a series of discrete time steps. 

 

Direct Numerical Simulation is used to simulate the flow field. Because the Reynolds 

number is low, there is no need to apply a turbulence model. Simulation is performed 

for laminar, incompressible flow condition. The thermo-physical properties of the 

fluid (air) are specified as follows (see Table 3.1): 

 

  Table 3.1 Thermo-physical properties of the fluid 

Density Constant 1.225 kg/m3 

Viscosity Constant 1.781 x 10-5 kg/ms 

Specific Heat Constant 1006 J/kgK 
 

 

The acronym PISO stands for ‘Pressure Implicit Splitting of Operators’ used for time 

dependent flows. PISO is mandatory for unsteady calculations where at each 

iteration (or time step) a predictor step is performed, followed by a number of 

corrector steps, during which linear equation sets are solved iteratively for each main 

dependent variable. Therefore, in this study Transient PISO solution procedure is 

used during the calculations. Scalar solver type and implicit temporal discretization 

is used by STAR-CD during these calculations with an Upward Differencing (UD) 

scheme [45]. 

 

The mass and momentum conservation equations are solved by STAR-CD for 

general incompressible and compressible fluid flows using a moving coordinate 

frame. The ‘Navier Stokes’ equations in Cartesian tensor notation [45] are:  
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where  t  : time 

 xi  : cartesian coordinate (i=1,2,3) 

 ui  : absolute fluid velocity component in direction xi 

ju~  : uj-ucj, relative velocity between fluid and local (moving) coordinate 

frame that moves with velocity ucj 

p  : piezometric pressure = ps- ρ0 gm xm where ps is static pressure, ρ0 is 

reference density, the gm are gravitational field components and the xm are 

coordinates from a datum where ρ0 is defined 

ρ   : density 

ijτ   : stress tensor components 

Sm  : mass source 

Si  : momentum source components 

g  : determinant of metric tensor 

 

In the case of laminar flows, STAR-CD caters for Newtonian fluid that obeys the 

following constitutive relation [45]: 
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where µ is the molecular dynamic fluid viscosity and , δij, the ‘Kronecker delta’. It is 

unity when i = j and zero otherwise.  
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The rate of strain tensor is represented by Sij, and is given by: 
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3.2 Definition of Boundaries 

For unsteady flow simulation problems, specifying the location and definition of 

boundaries, transient boundary conditions and time steps are critically important. The 

boundary conditions and locations are determined as follows: 

 

•  Pressure Boundaries: In the case of pressure boundaries, the mass flow rates are 

unknown a priori and are determined as part of the solution. Pressure boundaries 

should be applied either in regions where the pressure is expected to be uniform (or 

nearly so) or where the variation is known. The farfield boundary is determined by 

pressure boundary condition. The pressures at the boundary cell faces are assumed 

known and taken to be the standard air pressure.  To obtain the velocities at these 

faces, the velocities at these cell faces are linked to the local pressure gradients by 

momentum equations, whose coefficients are equated to those at the cell centre. 

These equations, together with the continuity constraint, effectively allow the 

magnitude and direction of the local flow (which may be inwards or outwards) to be 

calculated. The Pressure boundary location is shown in Figure 3.1. 

 

•  Symmetry Plane Boundaries: In STAR-CD, symmetry boundaries are used at 

two sides of the domain to get two dimensional solution (see Figure 3.1). No user 

input is required beyond definition of the boundary location. The normal component 

of velocity and the normal gradient of all other variables are set to zero at the 

boundary. 

 

•  Wall Boundaries: The Wall boundary condition is defined as no-slip, moving 

mesh type which is controlled by a user defined subroutine (see Figure 3.1). 
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The flapping motion kinematics is implemented on this wall boundary condition by 

using user defined subroutines. Three user defined subroutines are implemented into 

STAR-CD namely BCDEFW, UPARM, POSDAT. 

 

BCDEFW.f: This subroutine enables the user to define boundary conditions at the 

wall for U, V, W, etc. 

 

UPARM.f: Generates parameters required for moving meshes. This subroutine 

enables the user to generate parameters to be used by “prostar” when it is called 

during the execution of “egrid” in a moving mesh transient solution. Position of the 

model is determined in this subroutine. 

 

POSDAT.f: Performs special post-processing operations. This subroutine enables the 

user record data and is called at the end of each iteration/time step. Aerodynamic 

forces and the other parameters like iteration number, time, and position of the 

model, velocity and angle of attack are written in this subroutine. 

3.3 Wing Models Considered and Their Kinematics 

Three types of flapping motion are analyzed during this thesis study. In the present 

study, the flapping motion prescribed by Kurtuluş et al. [1] is called “Type A” 

flapping motion. It is analyzed and an investigation is performed to assess the 

importance of the shape and thickness of the 2D wing profile on the aerodynamic 

force coefficients and vortex formation mechanisms at low Reynolds number 

(Re=1000). The sinusoidal flapping motion defined by Wang et al. [3] is called the 

“Type B” flapping motion. It is applied to an ellipse having 12% thickness and 

0.01m chord length. The computed results are then compared with three dimensional 

experiments and empirical data [3]. Finally, the flapping motion defined by 

Freymuth [4] is called the “Type C” flapping motion is used. It is implemented to an 

elliptic wing model having a thickness of 1.6mm and a chord length of 0.0254m as in 

Freymuth’s experiments [4].  
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Generally, the motion of the flapping wing consists of three main phases: pitching 

down, rotation and translation. The translational phase consists of two half strokes- 

downstroke and upstroke (see Figure 3.2). The downstroke refers to the motion of the 

wing from its rearmost position (relative to the body) to its foremost position. The 

upstroke describes the return cycle. At either end of the half stroke, the rotational 

phases come into play, stroke reversal occurs, whereby the wing rotates rapidly and 

reverses its direction of motion for the subsequent half-stroke. During this process, 

the morphological lower surface becomes the upper surface and the leading edge 

always leads [19]. 

 

Figure 3.1 Boundaries location on the grid domain. 
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Figure 3.2 Half-strokes during an insect flapping cycle. The leading edge (thick line) 
always leads. 

3.3.1 Investigation of Wing Model Kinematics of Type A  

In this part of the study, the motion prescribed by Kurtuluş et al. [1] is implemented 

to the wing models. The wing models are SD 7003 airfoil profile, NACA 0012, 

NACA 0009 symmetric airfoil profiles and ellipses having 1%, 9% and 12% 

thickness all having 0.01m chord length. Center of rotation is at 50% chord location 

and in some cases it is changed to 25% chord (see Figure 3.3). The flow regime is 

assumed to be laminar, incompressible, and calculations are performed at low Re 

(Re=1000) number regime. For the present problem, the computations are performed 

at zero free-stream velocity in hover mode.  

 

Grid domain used in the numerical part of the present study is formed via GRIDGEN 

V15, a package programmed to generate grid domain. O-type grid domain is used 

around the profiles. According to the results of grid refinement study, 229x340 (229 

number of nodes around the profile) grid domain is used in the numerical simulation 

of this part (Figure 3.4).  

 

The domains are formed in two sub-domains, inner domain is finer. The radius of the 

whole domain is 20 chords having a total of 77292 cells.   
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Figure 3.3 Ellipse having 12% c thickness profile and center of rotation points. 

 

Figure 3.4 Inner grid domain of different wing profiles. 

While in normal hovering flight, the wing motion during the upstroke is identical to 

that during the downstroke; in forward flight, the downstroke lasts longer than the 

upstroke because of the need to generate thrust [19]. In this study, although normal 

hovering mode is analyzed, both symmetric and cambered profiles are analyzed to 

see the difference.   

 

Type A flapping motion description is represented schematically in Figure 3.5 in 

detail. Upstroke is represented by solid lines, and downstroke is represented by 

dashed lines in Figure 3.5. The profile starts its motion in the middle of the stroke (at 

x=0 and moves towards –x direction). Therefore, in the first region of the motion, the 

profile translates with a constant velocity and angle of attack until it reaches position 

-xa (angle of attack changing point) in the corresponding time interval (ta). Then it 

starts to pitch up still with a constant velocity until point -xv. The time corresponding 

to location-xv is tv. After location-xv, the profile starts to decelerate with an increasing 
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angle of attack and rotates around its center of rotation until it reaches 90o angle of 

attack. In this way, it completes one quarter of the motion and reaches location -xT/4. 

At this location the velocity of the profile becomes zero. The time corresponding the 

motion up to this location (-xT/4) is T/4 where T is the total period of one complete 

cycle of the motion. After this location, the profile starts to accelerate with a 

decreasing angle of attack up to the location -xv. After passing the location -xv, the 

profile moves with a constant velocity but still decreasing angle of attack up to 

location -xa. Until x=0, the profile translates with a constant velocity and angle of 

attack. In this way, the profile has completed one half of the motion cycle when it 

returns to the initial position of x=0. Second half of the motion is a mirror image of 

the first one. The rotation is such that the leading edge stays always as the leading 

edge during all phases of the motion. 

 

Figure 3.5 Schematic representation of flapping motion. Solid lines (    ) represents 
upstroke, dashed lines (        ) represents downstroke of the profile. 

The velocity V and the angular velocity variation ω are given in Eq. 3.5 and Eq. 3.6, 

respectively. Kurtulus et al. [1] have chosen this type of motion to ensure the 

continuity of velocities and the accelerations between the two phases of translational 

motion.  
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For the computation of the aerodynamic forces, the total forces are calculated as the 

sum of the shear force and the pressure force on the wall [1].  

pst FFF
rrr

+=                                                    (3.9) 

The shear force is: 

par

par
bws AF

ν
ν

τ v

v
v

−=                                               (3.10) 

where Ab is the elementary wall area and parv
r

 is the velocity vector component 

parallel to the wall and τw is the wall shear stress.  

 

The pressure force coefficient is given by the Equation 3.11. 
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bbbp nApF
rr

=                                                    (3.11) 

where pb is the pressure on the elementary wall area Ab and bn
r

is the outward 

pointing unit area vector.  

 

Mean aerodynamic coefficients are calculated as the time average of instantaneous 

values throughout one period (Eqs. 3.12-3.13). Mean aerodynamic coefficients are 

calculated for the 7th period of the motion to avoid the effect of impulsively starting.   
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3.3.2 Investigation of Wing Model Kinematics of Type B 

For the simulation of flapping kinematics of Wang et al. [3], an ellipse of 12% chord 

thickness is used (c=0.01m). For the ellipse (e=12%c), the same grid domain is used 

as the previous study. The wing follows a sinusoidal flapping and pitching motion 

(Eqs. 3.14-3.15, respectively) [3]. Specifically, the wing sweeps in the horizontal 

plane and pitches about its spanwise axis with a single frequency f: 

)2cos(
2

)( 0 ft
A

tx π=                                               (3.14) 

        )2sin()( 0 φπβαα ++= ftt                                         (3.15) 

where x(t) is the position of the center of the wing, and α (t) is the wing orientation 

with respect to the x-axis. By definition, the translational and angular velocities are 

given by U0(t)=dx(t)/dt and Ω (t)=dα(t)/dt. The parameters include the stroke 
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amplitude A0, the initial angle of attack α0, the amplitude of pitching angle of attack 

β, the frequency f and the phase difference φ  between x(t) and )(tα .  

 

Figure 3.6 Sinusoidal motion of the profile during one stroke. 

The translational motion of the wing is completely specified by two dimensionless 

parameters, Reynolds number, Re=Umaxc/ν = νπ /0cfA , and A0/c, where Umax is the 

maximum flapping velocity, and c is the chord length. From their steady-state 2D 

numerical data Wang et al. [3] found the approximated empirical correlations for 

both of the aerodynamic coefficients, namely, CL (Eq. 3.16) and CD (Eq. 3.17) in 

terms of angle of attackα . 

)2sin(2.1 α=LC                                                 (3.16)                         

)2cos(4.1 α−=DC                                               (3.17) 

The constants depend on the Reynolds number, details of the wing, etc. They 

implemented this empirical data (Eq. 3.16-Eq. 3.17) for all of the instantaneous angle 

of attack variations that they have investigated. For each α value, CL and CD values 

are calculated. Quasi-steady translational lift (LT) and drag forces (DT) are calculated, 

0.5ρu2CL and 0.5ρu2CD, respectively. All of the numerical and empirical forces are 

normalized by the maxima of the corresponding to quasi-steady forces as described 

in the study of Wang et al. [3].  
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3.3.3 Investigation of Wing Model Kinematics of Type C 

In this part of the study, the flapping motion as defined by Freymuth [4] is 

investigated. Freymuth [4] used a planar airfoil having a thickness of 1.6mm and a 

chord of c=2.54cm with rounded edges to execute the combined plunging and 

pitching motions in the experiments. In the present numerical investigations an 

elliptical wing having the same thickness and chord as Freymuth’s model is used. 

 

The grid domain used for the simulations of the Freymuth [4] motion kinematics is 

generated by carrying out the same procedure used in Type A and Type B motion 

solutions. 259 numbers of nodes are put on the profile. The radius of the whole 

domain is 20 chords having 82560 cells. The computational grid domain used in this 

part is presented in Figure 3.7. 

 

The airfoil performs a translating (plunging) motion [4] h in horizontal direction (Eq. 

3.18):  

)2sin( fthh a π=                                                  (3.18) 

where ha is the amplitude of linear translation, f is the frequency of sinusoidal 

oscillation and t is the time. Considering that the airfoil performs a pitching motion 

(Eq. 3.19) simultaneously, around its half chord axis: 

)2sin(0 φπααα ++= fta                                         (3.19)  

where α is the pitch angle with respect to the horizontal as shown in Figure 3.8, α0 is 

the mean pitch angle, αa is the pitch amplitude and φ  is the phase difference between 

pitching and plunging. 
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Figure 3.7 Computational Grid Domain used in Type C. 

 Dimensionless parameters of the system are: α0, αa,φ , the dimensionless plunge 

amplitude ha/c and a Reynolds number; 

νπ /2 cfhR af =                                                  (3.20) 

based on the maximum plunge speed afhπ2 and on c, where ν is the kinematic 

viscosity. 

 

Two simple modes of hovering were initially identified by Freymuth [4]: “Mode 1” 

or “water treading mode” is characterized by α0=0o and φ=90o and is sketched in 

Figure 3.8. The airfoil starts a cycle from the position of having pitch amplitude (αa) 

at middle of the downstroke (indicated as right arrow). It moves a distance 2ha to the 

right to reach its initial position. The right edge of the airfoil is leading during its 

motion to the right but when the airfoil returns left, the leading and trailing edges 

switch their roles.  

 

“Mode 2” or “degenerate figure eight mode” or “normal hovering mode” is sketched 

in Figure 3.9 and is characterized by α0=90o. In this mode leading, and trailing edges 

do not switch role during one cycle. Leading edge always leads. This mode 

resembles the hovering of hummingbirds and most flying insects [4].   
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Figure 3.8 Sketch of combined translating-pitching motions of the airfoil for one 
cycle of mode 1 hovering (α0=0o, φ=90o). 

 

Figure 3.9 Sketch of combined translating-pitching motions of the airfoil for one 
cycle of mode 2 hovering (α0=90o, φ=-90o). 

To characterize the time averaged thrust T on the airfoil, a thrust coefficient CT is 

defined in Reference [4]  (Eq. 3.21): 

clV

T
C

t

T 25.0 ρ
=                                                     (3.21) 

where ρ is the air density, l>>c, is the span of the airfoil and  

22 )2(5.0 at fhV π=                                                (3.22) 

is the mean square speed of the horizontal airfoil motion (Eq. 3.23). From the 

momentum theorem  

∫
∞

∞−

= dxVlT 2ρ                                                   (3.23) 
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where 2V is the mean square velocity at a sufficient distance from the airfoil. The 

thrust coefficient is found as follows (Eq. 3.24); 

∫
∞

∞−

= cfhdxVC aT
22 )/(π

                                           (3.24) 

Since thrust during actual hovering would be upward CT may also be considered as a 

lift coefficient of the hovering airfoil [4].  

3.4 Computational Grid Domain 

A grid refinement study was carried out by using NACA 0012 airfoil and ellipse 

having 12% thick profiles.  Flapping motion prescribed by Kurtulus et al. [1] is used 

at Reynolds number Re=1000, xv=2c and xa=2c, center of rotation a=0.25c and angle 

of attack α=45o. O-type grid domain is used around the profiles. The grid domains 

are 175x198 (175 points around the profile), 229x340 (229 points around the profile) 

and 260x340 (260 points around the profile).  The CL distributions of these three grid 

domains are presented in Figure 3.10. To decide which grid domain should be used 

in the numerical analysis of the problem, vorticity contours of the profiles at some 

indicated times are also compared (see Figure 3.11 and Figure 3.12). According to 

CL distributions there are no big difference between 229x340 and 260x340 grid 

domains for both NACA 0012 and Ellipse (e=12%). However, this is not sufficient to 

decide on the grid domain. As it is known, vortex shedding mechanism has an 

important role while flapping motion is investigated. Although there is a small 

difference in capturing the vorticity trace of the motion between 229x340 and 

260x340 grid domains, it is not a big difference when the CPU times are considered 

(see Figure 3.13). In Figure 3.13, CPU time spent for 5000 iterations is represented 

for three different grid domains. Therefore, it is decided that the 229x340 grid 

domain is sufficiently fine for DNS solution of the problem. Clusters used in this 

present study are Albatros N. These clusters have 2.4 GHz. CPU, 1.0 Gb RAM, and 

Xeon processor. 
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Figure 3.10 Lift Coefficient (CL) of different grid domains for NACA 0012 and 
Ellipse (e=12%) profiles. 

 

Figure 3.11 Vorticity contours of three different grid domains for NACA 0012 at 
indicated times. 
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Figure 3.11 (Cont’d) Vorticity contours of three different grid domains for NACA 
0012 at indicated times. 

 

Figure 3.12 Vorticity contours of three different grid domains for Ellipse (e=12%) at 
indicated times. 
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Figure 3.12 (Cont’d) Vorticity contours of three different grid domains for Ellipse 
(e=12%) at indicated times. 

 

CPU Time vs. Grid Domain

0

5

10

15

20

25

0 1 2 3

Grid Domain

C
P

U
 T

im
e 

(h
r)

1) 175x198

2) 229x340

3) 260x340
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CHAPTER IV  

4.  NUMERICAL RESULTS 

This chapter is devoted to the numerical analysis of different flapping motion 

kinematics for different Reynolds numbers in the range of (101-103).  Effects of some 

parameters on the aerodynamic forces and the vortex shedding mechanisms are 

investigated.  

 

The numerical solution technique defined in Chapter II is applied to three different 

flapping kinematics.  The first kinematics, designated as type A, is characterized by 

Kurtuluş et al. [1]. The second one, designated as Type B, is the one proposed by 

Wang et al. [3] and the third one, Type C, is the one suggested by Freymuth [4].  

 

An investigation is performed to understand the effects of profile shape and thickness 

on the aerodynamic force coefficients and vortex shedding mechanism by using the 

flapping motion defined by Kurtuluş et al. [1]. The effects of Reynolds number and 

stroke amplitude on the aerodynamic force coefficients are investigated by using the 

study of Wang et al. [3]. Finally, the study of Freymuth [4] is analyzed and 

experimental lift coefficient data and vortex formation is compared with the 

presented computed results.  

4.1 Parametrical Study on Unsteady Aerodynamics of Different Wing 

Profiles at   Low Reynolds Number by using Type A Flapping Motion  

In this part of the study, Type A flapping motion defined in Chapter III is 

implemented to the computations. To analyze the effects of profile shape and 

thickness, two dimensional elliptic wing profiles with varying thicknesses (e=1%, 
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e=9% and e=12%) are compared with NACA (namely NACA 0009 and NACA 

0012) and SD 7003 airfoil profiles all having the same chord length, (0.01m) [2]. 

 

The instantaneous angle of attack and velocity distributions are represented in Figure 

4.1. The different parameters studied are summarized in Table 4.1.  

 

Figure 4.1 Instantaneous velocity and angle of attack distributions of the flapping 
motion.    

Table 4.1 Different profiles and parameters investigated for Re=1000, xv=2c, xa=2c 
case 

 Initial angle of attack, αααα0 center of rotation, a 

Ellipse (9% thickness) 30°, 45°, 60° c/4,c/2 

Ellipse (12% thickness) 30°, 45°, 60° c/4, c/2 

Ellipse (1% thickness) 30°, 45°, 60° c/4, c/2 

NACA 0009 30°, 45°, 60° c/4, c/2 

NACA 0012 30°, 45°, 60° c/4, c/2 

SD 7003 30°, 45°, 60° c/4, c/2 
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4.1.1 Evolution of Instantaneous Flow for Different Profiles  

As a consequence of the kinematics of the flapping motion, due to unsteady 

separation and coherent vortex shedding, the aerodynamic loads exhibit a highly 

unsteady behavior. Lift coefficient (CL) and drag coefficient (CD) are calculated 

instantaneously during the 7th period of the flapping motion and represented in 

Figure 4.2 for elliptical profile with 12% thickness. The results are compared for 

different α0 values with the center of rotation located at the half-chord position 

(a=c/2). It is observed that for α0=30° case, the lift coefficient increases gradually 

from the beginning of the upstroke where it reaches a peak value at the end of the 

translational phase of the upstroke. Moreover, it is noted that the CL is close to zero 

at the beginning of the upstroke for this case. However, for higher angles of attack, 

namely 45° and 60°, the peaks at the beginning of the upstroke are relatively 

important. The maximum peaks of the drag coefficients occur at the beginning of the 

upstroke for all three cases. By comparing different angles, it is observed that CL 

reaches its minimum value for α0 =45° case (CL=-0.294) at t=0.612s and it reaches its 

maximum value (CL=2.10) at t=0.625s for α0 =60o case. CD reaches its absolute 

maximum value (|CD|=3.27) during upstroke at t=0.624 s for 60o initial angle of 

attack. 

 

The instantaneous vorticity contours of the same profile are represented in Figure 4.3 

for these three different starting angles of attack from the beginning to the end of the 

upstroke. At the beginning of the upstroke the lift coefficients for all of the cases are 

zero, but the highest drag coefficient (the force in the x direction) has a maximum 

value for 30° case just at the beginning of the upstroke. This peak value decays in 

time as the starting angle of attack increases. 

 

Just at the beginning of the upstroke the vortex shedding are observed to be different 

for different α0 values. The traces of the vortices from the previous downstroke are 

very strong for α0=60° case. The counter-clockwise (red) trailing edge vortex is 

increasing in magnitude for high α0 values and detaches from the airfoil surface 
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during previous downstroke (t=0.615s in Figure 4.3). The profile starts to accelerate 

at the beginning of the upstroke and reaches V(t)=0.075V0 value at t=0.615s with an 

angle of attack of α(t)= 84.2°, 85.7° and 87.1° for α0=30°,45° and 60° cases 

respectively. There is also a counter-clockwise leading edge vortex which is just 

generated at the beginning of the upstroke which pushes and deforms the clockwise 

vortex dominant at the lower surface of the airfoil.  At t=0.619s, lift and drag 

coefficients are very close to zero (CL= -0.164 and CD= 0.062) for α0=30°. At this 

instant, the lift coefficient is higher for 45° case compared to other angles and the 

drag coefficient has a similar order of magnitude compared with α0=60° (CL= 1.908 

and CD= -2.57 for α0=45° and CL= 1.166 and CD= -2.65 for α0=60°). The ellipse is 

moving with a velocity of V(t)=0.71V0  and its angle of attack is α(t)= 40.7°, 53.1° 

and 65.4° for α0=30°, 45° and 60° cases respectively. Until t=0.625, according to the 

kinematics of the motion, the velocity of the profile increases to V=V0 and its angle 

of attack decreases to α0 value. 

 

Figure 4.2 CL and CD distributions of  ellipse (e=12%c) for different angles of attack 
with center of rotation at a=c/2. 

For α0=30° case, at t=0.629s, the leading edge vortex on the upper surface of the 

airfoil stays attached to the ellipse. However, for 45° case the same leading edge 
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vortex detaches completely from the upper surface of the ellipse leaving its trace at 

the mid of the domain. For 60° case, at t=0.629s, although the same leading edge 

vortex detaches from the upper surface of the ellipse, it stays attached to the airfoil 

leading edge until t=0.639s until a clockwise vortex (blue) is formed on the mid-

upper surface of the airfoil. The airfoil enters  into the trace of the clockwise leading 

edge vortex (blue) for 60° case at t=0.629s by pushing downwards the trace of the 

counter-clockwise trailing edge vortex (red) generated during the previous 

downstroke. The lift coefficients at t=0.629s for 30° and 45° cases are very close to 

each other (CL= 0.617 for α0=30° and CL= 0.614 for α0=45°). However, CL of 60° at 

this instant is twice of these cases (CL=1.575 for α0=60°). The drag coefficients are 

also increasing with increasing α0 values at the same time instant with a highest 

value of -2.3 for α0=60°.  

 

At t=0.639s, the profile is approximately at mid-amplitude location of the flapping 

domain. The trailing edge vortex is very dominant for high angles of attack. The 

trailing and leading edge vortices are behaving relatively different for different α0 

values. The traces of both of these vortices are observable until the end of the stroke 

without any detachment for 30° case. At this time, the CL values corresponding to 

different α0 values are given as CL= 0.994 for α0=30°, CL= 1.387 for α0=45° and CL= 

0.383 for α0=60°. Corresponding drag coefficients are found to be as CD=-0.404 for 

α0=30°, CD= -0.996 for α0=45° and CD= -0.860 for α0=60°. The highest lift and drag 

occurs at 45° angle of attack. The lift coefficient is smallest for 60° angle of attack 

where two counter-rotating vortices exist on the upper surface of the airfoil. This 

vortex formation at 60° is also represented step by step in the following section for 

NACA0012 where the formations of the vortices are very similar for Re=1000. 

 

The constant velocity translational phase finishes at t=0.652s and after this time the 

airfoil starts to accelerate once more by increasing its angle of attack. It is observed 

that at t=0.656s another leading edge vortex grows and forces the previous one to 

detach from the ellipse’s upper surface for α0=60° case. Locally, these two leading 

edge vortices and trailing edge vortex form a similar pattern to Kármán vortex street. 
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The velocity attains a value of V(t)=0.84V0 with changing angles of attack of α(t)= 

34.5°, 48.4° and 62.3° corresponding to α0=30°, 45° and 60° cases respectively. At 

this instant, CL=1.43 for α0=30°, CL= 0.554 for α0=45° and CL= 0.636 for α0=60°. In 

the mean time, CD= -0.683 for α0=30°, CD= -0.96 for α0=45° and CD= -1.09 for 

α0=60°. As a result, at t=0.656s, the lift coefficient has its maximum value for 

α0=30° angle of attack case which is more than twice of the value attained at α0=45° 

and the lift coefficient is the lowest when compared to other angles. However the 

drag coefficient is increasing with the angle of attack where its lowest value is 

obtained at α0=30° case and its highest value at α0=60°. 

 

Close-up sequence of instantaneous vorticity contours and CL distributions of ellipse 

(e=12%c) at some instances are presented in from Figure 4.4 to Figure 4.7 for the 

same case as analyzed in Figure 4.2. Close-up views and CL distributions helped to 

investigate in detail the vortex formations. Different vortex topologies are observed 

for different α0 values. Both trailing edge vortex and leading edge vortices are very 

strong, grow very and detach quickly from the airfoil surface for high α0 values. The 

angle of attack, velocity, CL, and CD values at the indicated time instances are noted 

on the views (see Figure 4.4-Figure 4.7). 
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Figure 4.3 Instantaneous vorticity contours of ellipse (e=12%c) for different α0 with 
a=c/2. 
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Figure 4.4 Close-up view of instantaneous vorticity and CL distributions at t=0.615s, 
a=c/2.  

 

Figure 4.5 Close-up view of instantaneous vorticity and CL distributions at t=0.619s, 
a=c/2.  
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Figure 4.6 Close-up view of instantaneous vorticity and CL distributions at t=0.629s, 
a=c/2.  

 

Figure 4.7 Close-up view of instantaneous vorticity and CL distributions at t=0.639s, 
a=c/2.  

Instantaneous lift and drag coefficients are obtained during the 7th period of the 

flapping motion for three different thickness ratio ellipses (e=1%, 9% and 12%), two 

different thickness NACA profiles (NACA 0012 and NACA 0009) and one SD 7003 
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airfoil profiles for three different angles. The results are given in Figure 4.8 for 45° 

angle of attack with their centers of rotation located at c/4. 

 

The force coefficients of different thickness (e=9% and e=12%) ellipses are observed 

to have almost the same functional dependence on the angle of attack but with 

different magnitudes [33]. The lift comes from viscous forces [3], especially at this 

low Re number regime. NACA profiles give higher force coefficients at the peak 

locations. It is also noted that the aerodynamic coefficients of thinner profiles 

(especially ellipse) are slightly higher in magnitude than their thicker cases. The 

same behavior is also observed for other angles of attacks.  

 

Figure 4.8 CL and CD distributions of profiles for α0=45o, a=c/4. 

Instantaneous vorticity contours of different profiles (ellipse (e=9%), NACA 0009, 

NACA 0012) as investigated in Figure 4.8 are also represented in Figure 4.9. The 

thickness effects on the vorticity contours of the profiles are not very clearly 

distinguishable for the analyzed cases in view of the vortex shedding (see Figure 

4.9).  
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The effect of profile thicknesses is very minor for e=9% and e=12% cases. However, 

the difference between the Ellipse 9%c and NACA profiles are observable. The 

formation of the counter-clockwise leading edge vortex at the beginning of the 

upstroke and its vorticity radius are different for ellipse and NACA profiles 

(t=0.619s). Although its influence is not clearly visible in CL curves it is observable 

in CD curves at the peak locations. At t=0.639s, during the pure translation, the 

clockwise (blue) trailing edge vortex starts to detach earlier from the lower surface of 

NACA 0012 than the others’. At t=0.656s, this trailing edge vortex completely 

breaks off the new trailing edge vortex of NACA profiles. In addition, the leading 

edge vortex detaches completely from the airfoil at this time and its trace is highly 

visible until the end of the upstroke (see Figure 4.9 at t=0.661s). 

 

Instantaneous lift and drag coefficients obtained during the 7th period of the flapping 

motion of the profiles for the case of α0=60o, a=c/2 are represented in Figure 4.10. In 

this case evaluation, it is noticed that the Ellipse (e=1%c) and SD 7003 do not have 

effective CL values at the peak locations as in the case of a=c/4 and α0=45o.  

 

However, ellipse (e=1%) has absolute maximum CD values at the beginning of the 

translational phases of the upstroke ( 092.4=DC  at t=0.623s) and downstroke 

( 030.4=DC  at t=0.672s).    
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Figure 4.9 Instantaneous vorticity contours of profiles for α0=60o, a=c/4.   

 To see the camber and thickness effects on the aerodynamic force coefficients and 

on vortex shedding mechanisms more clearly, the aerodynamic force coefficients 

(see Figure 4.11) and the instantaneous vorticity contours (see Figure 4.12) of 

different profiles (ellipse (e=1%c and e=12%c), and SD 7003) are also represented 

for the case of a=c/2 and α=60o, during the 7th period of the flapping motion. The 

effect of thickness for the elliptic profiles (e=1%c and e=12%c) can be clearly 

observed at the peak locations. This result is expected as indicated in the literature 

[33]. 
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Figure 4.10 CL and CD distributions of the profiles for α0=60o, a=c/2. 

The mean aerodynamic force coefficients are calculated by using Eq. 3.12 and Eq. 

3.13 and presented in Table 4.2 for the case of a=c/2, α=60o.  Although the force 

coefficients of NACA 0012 do not have an effective value during one stroke of the 

motion, NACA 0012 has the maximum mean lift coefficient value.  

 

Table 4.2 Mean aerodynamic coefficients of profiles for a=c/2, α=60o. 

Profile LC  DC  

Ellipse (e=1%c) 0.984 0.0050 

Ellipse (e=12%c) 0.831 0.0079 

NACA 0009 1.019 0.0144 

NACA 0012 1.082 -0.0103 

SD 7003 1.052 0.0187 
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Figure 4.11 CL and CD distributions of Ellipse and SD 7003 profiles for α0=60o, 
a=c/2. 

The following explanations of vortex shedding are for Figure 4.12. The general, 

character of the vortex shedding obtained from different profiles is similar. However, 

at some regions small differences may result in effective peaks in force coefficients 

curves. The traces of the vortices left from the previous downstroke are very 

influential for all cases. The counter-clockwise (red) trailing edge vortex starts to 

detach earlier from the surface of thicker ellipse (e=12%c) than that of thinner ellipse 

(e=1%c) (at t=0.615s). The radius of the counter-clockwise leading edge vortex 

formed at t=0.615s and t=0.619s is different for ellipses and SD 7003. This 

difference is not clearly observable in CL curves but observable in CD curves at this 

instant (t=0.619s). At t=0.629s, the profiles enter to the trace of the clockwise 

leading edge vortex (blue) while pushing the trace of the counter-clockwise trailing 

edge vortex (red) generated during the dowstroke down. The counter-clockwise (red) 

leading edge vortex has started to detach from the leading edge of the profiles but it 

is observable in ellipse (e=1%c) case. The counter-clockwise (red) and clockwise 

(blue) vortices on the upper surface of SD 7003 and ellipse (e=12%c) profiles are 

adjacent to each other (t=0.629s). Clockwise vortex (blue) on the mid-upper surface 

of the profiles advances to cause the leading edge vortices to detach from the upper 

surface of the profiles (t=0.639s). This clockwise vortex on ellipse (e=12%c) is 
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stronger than on ellipse (e=1%c) and SD 7003 (see Figure 4.12, t=0.639s). During 

the rest of the upstroke, the vortex shedding is very similar for ellipses (e=1%c and 

e=12%c) and SD 7003 profiles. In addition, the leading edge and trailing edge 

vortices detach completely from the airfoil (see Figure 4.12 at t=0.664s). 

 

Figure 4.12 Instantaneous vorticity contours of profiles for a=c/2, α=60o, during the 
7th period of the flapping motion.   
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For ellipse (e=12%c) at a=c/2, a study is performed to see which initial angle of 

attack (α0) gives the best mean lift coefficient (LC ) value. LC  of the given α0 is 

presented in Table 4.3. As it is noted in Table 4.3, there is an optimum α0 value to get 

high LC  value. Up to α0=45o, LC  increases. At α0=45o,  LC  reaches its maximum 

value ( LC =1.046). Then, it drops abruptly at α0=50o and there is an increment 

between α0=50o and α0=70o. Finally, it starts to decrease and reaches LC = -0.098 at 

α0=90o. Actually, due to the nature of hovering flight DC  should be zero during one 

period of the flapping motion, but there is certainly numerical errors and this error is 

getting larger for higher α0 values. 

 

Table 4.3 Mean aerodynamic coefficients of ellipse (e=12%c) for different α0 at 
a=c/2. 

α0(deg) LC  DC  α0(deg) LC  DC  

5 0.101 -0.0011 50 0.817 -0.0021 

10 0.229 -0.0013 55 0.826 0.0890 

15 0.357 -0.0015 60 0.832 0.0079 

20 0.489 -0.0019 65 0.875 0.1673 

25 0.627 -0.0025 70 0.884 -0.2152 

30 0.767 -0.0031 75 0.764 -0.2075 

35 0.894 -0.0038 80 0.579 -0.3906 

40 1.012 -0.0032 85 0.371 -0.0448 

45 1.046 -0.0031 90 -0.098 -0.1150 

   

 

The pressure distributions on the NACA 0012 and Ellipse (e=12%c) airfoils are 

shown in Figure 4.13. For these profiles, five different time instances are represented 

during the upstroke for α0=30° and α0=60° cases with the center of rotation at c/2. 

The pressure fields are also shown superposed with the instantaneous streamlines 

during the corresponding times in Figure 4.14. 
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It is observed that, at the beginning of the upstroke, the overpressure region in the 

domain due to the vortices from the previous stroke is more dominant for the ellipse 

case compared to NACA0012 (see Figure 4.14). At this time, the upper surface of the 

profile is fully dominated with the suction region. With the translation of the airfoil, 

there is a formation of strong suction region on the upper surface of the airfoil which 

further results in an increase in the lift coefficients during the translation phase. This 

increase in suction is also observable on the pressure coefficient distribution along 

the surface of the profile (Figure 4.13). In the meantime, the overpressure region on 

the lower surface of the airfoil also increases. At the mid-amplitude of the flapping 

motion, the airfoil’s lower surface (leeward side) is entirely dominated by the 

overpressure region (red). However a small suction region is also observed at the 

lower surface of the ellipse close to the trailing edge. 

 

At the inertial reference frame, the streamlines show that there is an important 

downwash induced on the airfoil when it is translating in the flowfield created by the 

two counter rotating vortices at the left and right hand sides of the domain. These 

vortices stay approximately in their positions for a half-stroke period until the airfoil 

returns back and pushes them downwards. 

 

Figure 4.13 Pressure coefficient around the profiles (ellipse 12%c and NACA 0012) 
at different time instances during upstroke, a=c/2. 
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Figure 4.14 Instantaneous pressure coefficient (Cp) distributions for different profiles 
for α0=30°, a=c/2. 

4.1.2 Physics of Instantaneous Vortex Formation  

In order to understand the physics of the problem, the variation in the vortex 

shedding mechanism close to the flapping airfoil is examined at this section. The 

distributions of pressure coefficients around the NACA 0012 airfoil are presented in 

Figure 4.15 for different angles of attack where the center of rotation is at c/2. The 

pressure coefficient distributions in the flowfield are also shown with the 

instantaneous streamlines in Figure 4.16. Same instances are represented in Figure 

4.15 and Figure 4.16 during the upstroke. The centers of the vortices are also the 

locations for suction peak as can be observed from Figure 4.16. 
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At the beginning of the translational phase of the upstroke (2nd column in Figure 

4.16), the overpressure region at the lower surface of the airfoil is very strong for 

α0=60° and it covers the entire lower surface. This overpressure region is very weak 

for α0=30° (see Figure 4.14) and it is only visible close to the leading edge at the 

beginning. The suction pressure on the upper surface of the airfoil is highly dominant 

by the two vortices generated at the leading and trailing edges of the profile. The 

upper surface suction pressure is also very strong for α0=60° case. 

 

Figure 4.15 Pressure coefficient distributions around NACA 0012 at different time 
instances during upstroke at a=c/2. 

At the mid location of the domain (3rd row in Figure 4.16), the upper surface of the 

airfoil is less dominated by the suction regions when compared to the beginning of 

the translational phase. Specially, for 30°, the suction has its highest value at the 

leading edge and diminishes towards the trailing edge on the upper surface. For 60°, 

there is still dominance of the trailing and leading edge vortices in addition to a 

detached leading edge vortex so the suction region on the upper surface is still 

observable.  

 

At this time (t=0.637s), the overpressure region does not cover the entire lower 

surface of the airfoil for α0=60°, which was the case for α0=30°. At the end of the 

translational phase of the upstroke (4th row in Figure 4.16), the leading edge vortex 
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covers the entire upper surface of the airfoil resulting in a suction region throughout 

the upper surface for α0=30°.  

 

The suction region of the airfoil for α0=60° case at this time (t=0.639s) is obtained 

by the combination of the leading and trailing edge vortices. Overpressure regions 

under the airfoil are similar for both cases. 

 

Figure 4.16 Instantaneous pressure coefficient (Cp) distributions of NACA 0012 for 
different α0 at a=c/2. 

The vorticity contours and relative streamlines for the time interval of local 

maximum lift coefficients are represented in the first and third columns (second row) 
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and for local minimum lift locations are represented in the second column (second 

row) of Figure 4.17. The streamlines are represented relative to the airfoils 

translational velocity. In this reference frame, the vortices on the upper surface of the 

airfoil are visible.  

 

Figure 4.17 Vorticity contours represented with streamlines relative to airfoil’s 
translational velocity for NACA 0012, a=c/2, α0=60°.  

Q contours represent the centre of the vortices shown with the relative streamlines 

(Figure 4.18). These vortices cause a suction region on the upper surface of the 

airfoil. The vortices on the upper surface of the airfoil at the leading edge cause a 

decrease in the suction region when they grow with the translation of the airfoil. This 

results in minimum lift coefficient at this time instant. At the maximum lift location 

the vortices form a strong suction region on the upper surface of the airfoil and the 

whole lower surface becomes an overpressure region. 
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Figure 4.18 Vorticity, Q and CP contours represented with streamlines relative to 
airfoil’s translational velocity for NACA0012, a=c/2, α0=60°.  

Figure 4.19 shows the streamlines relative to the airfoil’s translational velocity 

during the upstroke starting from the end of the rotational phase for α0=60°. At 

t=0.622 s the profile is at the end of its pitching down motion until time t=0.625 s. 

After this time, it starts to translate with constant velocity and incidence up to 

t=0.652 s. At t= 0.654 s the profile restarts to rotate where it reaches 90o angle of 

attack at the end of the upstroke. The shedding of leading edge vortices, the dynamic 

stall processes, is analyzed to understand the lift generation mechanism during the 

flapping motion. This shedding mechanism differs widely according to the α0 

parameter. The most interesting value of α0 is found to be 60° since at this value the 

lift coefficient is very high at the beginning of the upstroke and decreases abruptly 

when compared to the smallest α0 value at the end of the upstroke where the 

shedding of the leading edge vortices are very complex and abundant. Similar 

phenomenon is observed both in elliptic and NACA profiles for Re=1000. 
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In Figure 4.19, both streamlines relative to airfoil’s translational velocity and CL 

distribution of NACA 0012, at a=c/2, α0=60° are presented. Some critical points 

during the upstroke are indicated in CL distribution (see Figure 4.19). Following 

comments are for close-up sequences of Figure 4.19 (see Figure 4.20 (a-e)). At 

t=0.622 s, a clockwise leading edge vortex (LEV2) is forming on the upper surface 

of the airfoil where the airfoil is translating with V(t)=0.91V0 and α(t)=61°. At this 

time the lift and drag coefficients are calculated as CL=2.02 and CD= -3.18 

respectively. At t=0.624s maximum lift occurs with the growth of LEV2. The first 

counter-clockwise leading edge vortex (LEV1) grows and occupies the first half of 

the upper surface of the airfoil at t=0.624 s and is still attached to all over the upper 

surface of the airfoil by surrounding LEV2 at t=0.627 s. With the growth of LEV2, 

the lift coefficient increases to a local maximum value of CL=2.32 and the drag 

coefficient decreases slightly to CD= -3.10 at t=0.624 s. As LEV2 grows, it causes 

the detachment of the LEV1 from the upper surface (leading edge) of the profile. 

Due to the effect of LEV2, LEV1 stretches and forms two counter clockwise vortices 

(figure of eight) which results once more in a single vortex with the translation of the 

airfoil at t=0.627 s. When the LEV1 covers the entire upper surface of the airfoil, the 

lift coefficient decreases to CL=2.01 with a decrease as well in the drag coefficient 

(CD= -2.57). At t=0.629s the trailing edge vortex (TV) forms. At t=0.631s LEV3 

(ccw) forms, LEV1 detaches from the upper surface with the growth of LEV2 (cw) 

and TV. At t=0.634s LEV3 grows by pushing LEV2 towards TV. Another leading 

edge vortex (LEV4-cw) forms at t=0.637, and it completes the shedding of LEV1 

from the airfoil. At t=0.639s LEV3 starts to detach from leading edge with the 

growth of LEV4. LEV2 and TV mix to form a unique vortex at t=0.642s. It is noted 

that as LEV3 (ccw) and LEV4 (cw) grow, CL increases (see Figure 4.19, t=0.644s-

t=0.649s). At t=0.649s LEV2 + TV vortex starts to detach from the trailing edge of 

the airfoil and at t=0.654s LEV2+TV vortex detaches completely from the airfoil due 

to growth of LEV3. This instant corresponds to the local CLmax value. At t=0.656s 

LEV3 covers the entire upper surface of the airfoil and CL value starts to decrease.  

 



 63 

 

Figure 4.19 Streamlines relative to airfoil translational velocity and CL distribution of 
NACA0012, a=c/2, α0=60°. 

 

Figure 4.20 (a) Close-up Sequence of streamlines relative to airfoil translational 
velocity and CL distribution of NACA0012, a=c/2, α0=60° at indicated times     (first 
row of Figure Figure 4.19). 
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Figure 4.20 (b) Close-up Sequence of streamlines relative to airfoil translational 
velocity and CL distribution of NACA0012, a=c/2, α0=60° at indicated times (second 
row of Figure 4.19). 

 

Figure 4.20 (c) Close-up Sequence of streamlines relative to airfoil translational 
velocity and CL distribution of NACA0012, a=c/2, α0=60° at indicated times    (third 
row of Figure 4.19). 
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Figure 4.20 (d) Close-up Sequence of streamlines relative to airfoil translational 
velocity and CL distribution of NACA0012, a=c/2, α0=60° at indicated times (fourth 
row of Figure 4.19). 

 

Figure 4.20 (e) Close-up Sequence of streamlines relative to airfoil translational 
velocity and CL distribution of NACA0012, a=c/2, α0=60° at indicated times    (fifth 
row of Figure 4.19). 
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A similar presentation to Figure 4.19 is done for Ellipse (e=1%c) and SD 7003 

profiles at prescribed instants (see Figure 4.21). The vortices on the upper surface 

(LEV1 and LEV2) and trailing edge (TV) of ellipse (e=1%c) is different than that of 

SD 7003 (t=0.629s-at the beginning of the translational phase of the upstroke).  

 

At t=0.637s TV forming on ellipse (e=1%c) is stronger, and a new leading edge 

vortex (LEV3) forms at this time on the profiles. At this time due to the effect of the 

vortex (LEV2) at the mid-upper surface of the profiles, LEV1 detaches from the 

upper surface.  At t=0.639s LEV2 and TV start to merge, but the vortices formed on 

the ellipse (e=1%c) mix earlier than that on SD 7003 (at t=0.642s). Also, the leading 

edge vortex formations and their growth rates are different for ellipse (e=1%c) and 

SD 7003 (t=0.639s). At t=0.656s LEV2+TV covers the entire upper surface of the 

profiles and a distinct leading edge vortex forms on the upper surface of the ellipse 

(e=1%c).  
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Figure 4.21 Streamlines relative to airfoil translational velocity for Ellipse (e=1%c) 
and SD 7003 profiles, a=c/2, α0=60°.  
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4.2 Analysis of Type B Flapping Motion [46] 

In this part of the study, “Type B” flapping motion defined in Chapter II is 

implemented to an elliptic profile (e=12%c) having 0.01m chord length.  The works 

of Wang et al. [3] cover a 2D numerical calculation and comparison with 3D 

experimental results in view of aerodynamic force coefficients.  

 

For the simulation of flapping kinematics of Wang et al. [3], an ellipse of 12% chord 

thickness is used (c=0.01m). The effects of profile shape and thickness of the profiles 

on the aerodynamic forces and vortex shedding mechanism of the prescribed 

flapping motion was analyzed in the previous study [2]. It is found that the use of 

elliptic profiles and NACA airfoil profiles with 9%c and 12%c thicknesses do not 

differ much from the aerodynamic force coefficients view point at a Re number of 

1000.  

 

Same numerical solution technique and computational grid domain as used in the 

previous study [2] is employed for all computations of the present study.  

 

An analysis on sinusoidal flapping motion [46] is performed with the described 

kinematics in order to investigate the effect of these parameters on the aerodynamic 

force coefficients.  In order to obtain the defined Re values; frequency, f, is 

calculated as f= 0/Re cAπν .  

 

      Table 4.4 Investigated Parameters 

 A0/c Re f [Hz] 

Case 1 2.8 75 1.240 

Case 2 2.8 115 1.900 

Case 3 2.8 200 3.306 

Case 4 4.8 115 1.109 
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4.2.1 Evaluation of Unsteady Flowfield and Aerodynamic Forces  

Sinusoidal angle of attack and velocity distributions of the motion for Case 2 and 

Case 4 are presented in Figure 4.22 to show the difference of the kinematics by the 

change of A0/c value. The frequency of the former is approximately twice of the later 

one.  

     

 Figure 4.22 Instantaneous velocity and angle of attack (α (t)) distribution vs. time 
for case 2 and case 4. 

In the figures below, time is non-dimensionalized with respect to the flapping period 

of the case. 

 

In Figure 4.23, the computed forces obtained from the present study are compared 

with the experimental and empirical data of Wang et al. [3]. The empirical data is 

carried out by using the Eqs. 3.18-3.19 based on the translational velocity. The forces 

are normalized by the maxima of the corresponding quasi-steady forces [3]. For lift 

coefficient distribution, although there is a slight over estimation at the mid-strokes, 

the present computations catch the CL values of the experiment during translation of 

the wing (see Figure 4.23).  Also, the present computations estimate the right rotation 

position as in the experiment. For drag coefficient, it is observed that the general 

αααα(t) 
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behavior of the distribution obtained by the present computations is very similar with 

that of the experiment [3]. Especially in the translational phase, they are very 

successful. Generally, it is noted that the present computations are very good at 

estimating the force coefficients of this problem.   

 

Figure 4.23 Lift and Drag coefficients comparison between experiment [3], present 
computation and quasi-steady estimations [3] for symmetric (φ=0) rotation, Re=75, 
and A0/c=2.8. Time is non-dimensionalized with the flapping period of the case 1.  
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The lift and drag coefficient distributions of the two cases are represented in Figure 

4.24. The effect of stroke amplitude on the aerodynamic force coefficients is 

observed by keeping the Reynolds number constant to Re=115. While CL 

distributions converge to each other in time, same behavior is not observed for CD 

distributions. By keeping the stroke amplitude constant (A0/c=2.8), the effect of 

Reynolds number on the aerodynamic force coefficients (CL and CD) is analyzed in 

Figure 4.25. It is noticed that the effect of stroke amplitude is more significant than 

the effect of Reynolds number on drag coefficients. This effect is also observed in 

vorticity distribution (Figure 4.26). 

 

Figure 4.24 Computational lift and drag coefficients Re=115, A0/c=2.8 and 4.8. 

 

Figure 4.25 Computational lift and drag coefficients for A0/c=2.8, Re=115 and 200.  
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It is found that as the amplitude increases, trailing edge vortex trace at the end of the 

stroke (blue region at t/T=4 and red region at t/T=4.5) detaches from the airfoil 

surface quicker (Figure 4.26). Drag coefficient is at its maximum at this time instant 

and lift coefficient is approximately zero. The leading edge vortex grows quicker for 

higher amplitudes as can be seen at t/T=4.1 time instant during downstroke and at 

t/T=4.6 during upstroke. The quick growth of the leading edge vortex towards the 

trailing edge pushes more translational vortex far from the airfoil surface (red 

contours at t/T=4.3 and blue contours at t/T=4.8). At the end of the stroke airfoil 

enters to the trace of trailing edge vortex generated at the beginning of the stroke. 

And this trace is more dominant for A0/c=2.8 then A0/c=4.8 (last row in Figure 4.26). 
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Figure 4.26 Instantaneous vorticity contours and aerodynamic force coefficients for 
case of A0/c= 4.8 and A0/c= 2.8 at Re=115, φ=0 during 5th period. 
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A comparison between computation and experiments of Wang et al. [3] and the 

present computational results is will be presented for the case of A0/c=4.8 and 

Re=115. In the first column of Figure 4.27 2D computational results [3]; in the 

second column 3D experimental results in a 2D slice at 0.65R taken from DPIV 

measurements [3] and in the third column 2D computational results of the present 

study are represented respectively in columns 1 to 3 of Figure 4.27. Ten different 

time sequences are shown during the fourth stroke for each case. Time is non-

dimensionalized with the flapping period of the case.   

 

The vorticity contours are presented (see Figure 4.27) to show the major features of 

vortex dynamics through a complete stroke cycle. When the three results at each 

indicated time steps are compared, it is seen that the major features of vortex 

dynamics are similar. The color scale for vorticity of computation and experiments 

[3] did not correspond to the exact same contour values. Due to lack of the color 

scale of vorticity contours achieved by Wang et al. [3], the figure of our 

computational results and their results should be viewed more qualitatively than 

quantitatively.  

 

Notice that even though the kinematics of left and right strokes is identical, the flow 

fields for each case differ slightly for the computational results of Wang et al. [3]. 

However, this discrepancy in the flow field is not observed in our computational 

results.   
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Figure 4.27 Instantaneous vorticity contour for case of A0/c= 4.8, Re=115, φ=0. First 
two columns are the results of Wang et al. [3] and the third column is the results of 
the present study. 
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Figure 4.27 (Cont’d) Instantaneous vorticity contour for case of A0/c= 4.8, Re=115, 
φ=0. First two columns are the results of Wang et al. [3] and the third column is the 
results of the present study.  

Also a comparative study is performed between the flapping motions prescribed by 

Kurtulus et al. [1] (Case A) and Wang et al. [3] (Case B) for the same Re number of 

1000 by keeping the mid-stroke amplitude angle of attack α0 and A0/c constant. 
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Flapping motions are applied to an ellipse wing section having c=0.01m chord length 

and e=12%c thickness. Present grid domain is used for both computations. Some 

parameters used in computations and calculated LC  and DC  values are presented in 

Table 4.5. Mean lift and drag coefficients (LC and DC ) are calculated for 7th period 

of both motions according to Eqs. 3.12-3.13. For same Re number, amplitude (A0/c) 

and same 45° angle at the mid-stroke, it is found that the mean lift coefficient of Case 

A is twice that of Case B. 

  

 

          Table 4.5 Investigated Parameters 

 
Case A 

Kurtulus et al. [1]  
Case B 

Wang et al. [3] 

Re 1000 1000 

Period, T [sec] 0.098 0.130 

A0/c 6 6 

α0 [
o] 45o 45o 

LC  1.046 0.501 

DC  -0.0031 0.0083 
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4.3 Analysis of Type C Flapping Motion  

In this part of the present study, “Type C” flapping motion defined in Chapter II is 

implemented to an elliptical wing section having 1.6mm thickness and 0.0254m 

chord length. Freymuth [4] performed a three-dimensional experimental study to 

analyze the dynamic stall vortices and the thrust coefficient which may also be 

considered as a lift coefficient of the hovering airfoil motion since thrusting during 

actual hovering would be upward. A planar airfoil having a thickness 1.6mm with 

rounded edges, chord length 2.54 cm and span l=30cm  is used in the experiments. 

Density is less than 1kg/m3 at Boulder where experiments were performed. 

4.3.1 Evaluation of Unsteady Flowfield and Aerodynamic Forces  

Sinusoidal variations angle of attack and velocity distributions of the motion for 

mode 1 are presented in Figure 4.28. Mode 1 and Mode 2 flapping motion prescribed 

by Freymuth [4] (Figure 3.8-Figure 3.9) are applied to the wing model. In Figure 

4.29 and Figure 4.30, force coefficient computed by using the present numerical 

method is compared with the experimental data of Freymuth [4]. The computed lift is 

non-dimensionalized according to Eqs. 3.21 and 3.22. Due to some differences (e.g. 

wing model, density etc.) between the present study and Freymuth’s experiment [4], 

most efficacious consistency is not provided. This is because of three dimensional 

effect of the experiments [4]. Especially, due to high frequency there is more 

numeric error. The present computation is generally good at estimating the CL value 

of the experiment (see Figure 4.29 and Figure 4.30). 
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Figure 4.28 Instantaneous angle of attack (α(t)) and velocity distribution vs. time for 

mode 1 hovering. 

   

Figure 4.29 Lift coefficient comparison between experiment [4] and present 
computation for mode 1, αa=66o, α0=0, φ=90 and Rf=1700. 
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Figure 4.30 Lift coefficient comparison between experiment [4] and present 
computation for mode 2, αa=25o, α0=90, φ=-90 and Rf=1700. 

Entire cycle of airfoil flapping in Mode 1 with αa=66o, ha/c=1.5 is shown in Figure 

4.31 (a-b). Black and white pictures belong to Freymuth’s experiment [4]. Flow 

visualization was by means of the titanium-tetra-chloride method described by 

Freymuth et al. [47]. Colorful pictures are results of the present study. Frames are 

ordered into columns from top to bottom and columns are ordered from left to right. 

Time between consecutive frames is ∆t=1/16s. One should analyze the pictures by 

following the first and second columns together. First row of left two columns show 

the farthest right position of the airfoil (lower right corner of the frames). From this 

position to the bottom of the third and fourth columns, the airfoil moves its left 

position. During this movement, airfoil creates a clockwise (blue) rotating vortex 

which is very similar with the experiment [4] (see Figure 4.31 (a)-indicated in the 

last row). In columns 1 and 2 of Figure 4.31 (b), the airfoil moves to the right. The 

previously generated clockwise (blue) rotating vortex (see Figure 4.31 (a)-indicated 

in the last row) starts to detach from the upper surface of the airfoil and moves 

upward. And a new counterclockwise (red) rotating vortex is formed and grows (see 

Figure 4.31 (b)-indicated in the last row). This process repeats during each cycle and 

results in an upward moving vortex street. These vortex formations were observed in 

the experiment also [4]. 
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Figure 4.31(a) Instantaneous vorticity contours for Mode 1. Black and white pictures 
are results of Freymuth [4] and the colorful pictures are results of the present study. 
αa=66o, ha/c=1.5, Rf=340, f=1Hz., ∆t=1/16s.  
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Figure 4.31 (b) Instantaneous vorticity contours for Mode 1. Black and white 
pictures are results of Freymuth [4] and the colorful pictures are results of the present 
study. αa=66o, ha/c=1.5, Rf=340, f=1Hz., ∆t=1/16s. 
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CHAPTER V  

CONCLUSION 

In this study, a detailed numerical investigation is performed to investigate the effect 

of some geometrical parameters, such as the airfoil profile shapes, thickness and 

camber distributions and as well as the flapping motion kinematics on the 

aerodynamic force coefficients and vortex formation mechanisms at low Reynolds 

number.  

 

The numerical analysis tool is a DNS code using the moving grid option. Laminar 

Navier-Stokes computations are done for flapping motion using the prescribed 

kinematics in the Reynolds number regime of 1000. The flow field for flapping 

hover flight is investigated for (defined by Kurtuluş et al. [1]) elliptic profiles having 

thicknesses of 12%, 9% and 1% of their chord lengths and compared with those of 

NACA 0009, NACA 0012 and SD 7003 airfoil profiles all having  chord lengths of 

0.01m for numerical computations. Computed aerodynamic force coefficients are 

compared for these profiles having different centers of rotation and angles of attack. 

The vortex formation, interaction of the leading and trailing edge vortices are 

represented with vorticiy, pressure coefficient and second invariant of velocity 

gradient (Q) contours in addition to the streamlines. The shedding of the vortices 

especially which are coming from the leading edge have different mechanisms for 

different α0 parameters, so the aerodynamic force coefficients are mostly influenced 

by the effect of the angle of attack. NACA profiles have slightly higher lift 

coefficients than the ellipses of the same t/c ratio. And one of the most important 

conclusions is that the use of elliptic and NACA profiles with 9% and 12% 

thicknesses do not differ much as far as the aerodynamic force coefficients is 

concerned for this Re number regime. But more experimental and computational 

work is required to understand the thickness effect for even smallest thickness ratios 

[2]. 
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Another study [46] is performed to analyze the different sinusoidal flapping motion 

kinematics defined by Wang et al. [3] and Freymuth [4] for different Reynolds 

numbers in the range of 101-103 by implementation of the sinusoidal translational 

and angular motions. Force coefficients and vorticity contours obtained from the 

experiments [3], [4] and present study are compared.  

  

The sinusoidal motion defined by Wang et al. [3] is applied to a thin wing element of 

elliptic cross section having a thickness of 12% of its chord. The effects of stroke 

amplitude and Reynolds number on the aerodynamic force coefficients are 

investigated. It is observed that the effect of stroke amplitude is more than the effect 

of Reynolds number on drag coefficient. The computed forces and vorticity 

distribution obtained from the present study are compared with 3D experimental, 2D 

numerical and empirical data of Wang et al. [3]. It is observed that the present 

computational method is good at estimating the force coefficients and the major 

features of vortex dynamics of the problem. For the same Re number, amplitude 

(A0/c) and same 45° angle at the mid-stroke, a comparative study is performed 

between the flapping motions prescribed by Kurtulus et al. [1] and Wang et al. [3] 

and it is found that the mean lift coefficient of [1] is twice that of [3]. 

 

The sinusoidal flapping motion defined by Freymuth [4] is implemented to an elliptic 

profile having 1.6mm thickness and 0.0254m chord length. Force coefficients and 

vortex dynamics obtained from the experiments of Freymuth [4] and present study 

are compared. Although some parameters are different for numerical and 

experimental tests good agreement is observed between these two studies. 

 

In this present study the effects of some parameters (e.g. profile shape, thickness, Re, 

amplitude, etc.) on aerodynamics of flapping motion in hover is put into evidence. 

The validation of the present computational results with the experimental results 

available in the literature encourages us to conclude that present numerical method 

can be a reliable alternative to experimental techniques. The results obtained from 

the present numerical investigations provided a good description of the unsteady 

aerodynamic mechanisms for the generation of lift and drag during the flapping 

motion in hover.   
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