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ABSTRACT

NOISE REDUCTION IN TIME-FREQUENCY DOMAIN

Kalyoncu, Ozden

M. S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Zafer Unver

September 2007, 113 pages

In this thesis work, time-frequency filtering of nonstationary signals in noise using
Wigner-Ville Distribution is investigated. Continuous-time, discrete-time and
discrete Wigner Ville Distribution definitions, their relations, and properties are

given.

Time-Frequency Peak Filtering Method is presented. The effects of different
parameters on the performance of the method are investigated, and the results are

presented.

Time-Varying Wiener Filter is presented. Using simulations it is shown that the
performance of the filter is good at SNR levels down to -5 dB. It is proposed and
shown that the performance of the filter improves by using Support Vector

Machines.

The presented time-frequency filtering techniques are applied on test signals and on
a real world signal. The results obtained by the two methods and also by classical

zero-phase low-pass filtering are compared. It is observed that for low sampling

v



rates Time-Varying Wiener Filter, and for high sampling rates Time-Frequency

Peak Filter performs better.

Keywords : Wigner-Ville Distribution, time-frequency filtering, Support Vector

Machines
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ZAMAN-FREKANS BOLGESINDE GURULTU
AZALTIMI

Kalyoncu, Ozden

Yiiksek Lisans, Elektrik Elektronik Miihendisligi Bolimii

Tez Yoneticisi : Prof. Dr. Zafer Unver

Eyliil 2007, 113 sayfa

Bu tez calismasinda giiriiltii i¢indeki duragan olmayan sinyallerin Wigner-Ville
Dagilim1 kullanilarak zaman-frekans siizgeglenmesi arastirilmistir. Siirekli zaman,
ayrik zaman ve ayrik Wigner-Ville Dagilimi tanimlari, iliskileri ve ozellikleri

verilmistir.

Zaman-Frekans Tepe Siizgecleme Yontemi tanitilmistir. Degisik parametrelerin

yontemin basarimi tizerindeki etkileri arastirilmis ve sonucglar sunulmustur.

Zamanla Degisen Wiener Siizge¢ tamitilmistir. Yapilan benzetimlerle siizgeg
basariminin -5 dB SNR seviyesine kadar iyi oldugu gosterilmistir. Destek Vektor
Makinalarmin  kullaniminin = siizgecin basarimini iyilestirecegi Onerilmis ve

gosterilmigtir.

Sunulan zaman-frekans silizge¢leme yontemleri test sinyalleri ve gergek bir sinyal
ornegi iizerine uygulanmustir. Iki yontem tarafindan ve klasik fazi sifir algak gegiren

stizgecleme ile elde edilen sonuglar karsilastirilmistir. Diisiikk 6rnekleme hizlarinda

vi



Zamanla Degisen Wiener Siizgecinin, yiiksek 6rnekleme hizlarinda ise Zaman-

Frekans Tepe Siizgeclemenin daha basarili oldugu gézlenmistir.

Anahtar Kelimeler : Wigner-Ville Dagilimi, zaman-frekans siizgecleme, Destek

Vektor Makinalari

Vil



To My Family

viil



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Prof. Dr. Zafer Unver
for his guidance, advice, criticism, encouragement, endless patience and insight

throughout the completion of the thesis.

I am indebted to all of my friends and colleagues for their support and
encouragements. [ am also grateful to ASELSAN Inc. for the facilities that made

my work easier.

My family, no words can help me to express my feelings, but at least I can say that I

am grateful to you for the life you provide to me.

X



TABLE OF CONTENTS

ABSTRACT v
0z A%
ACKNOWLEDGEMENTS IX
TABLE OF CONTENTS X
LIST OF FIGURES XII
CHAPTER
1 INTRODUCTION 1
2 WIGNER-VILLE DISTRIBUTION 6
2.1 CONTINUOUS WIGNER-VILLE DISTRIBUTION........ccceotititiieieieiesee e 6
2.2 DISCRETE WIGNER-VILLE DISTRIBUTION .......cccoiiiiiiiiiieieeeiee e 11
2.2.1 The Discrete-Time W VD ......ooiiiiiiie ettt eneens 11
2.2.2 The DISCIete WVD ....o.oiiiiiiieiieiee ettt ettt sttt sae e e neesneens 13
3 TIME-FREQUENCY PEAK FILTERING 16
3. I BASIC CONCEPTS ...ttt ettt st b ettt e seeeaes 18
3.1.1 IF Estimation Error Bias .......c.cccocoriiiiiiiniiiiieeetcee et 18
3.1.2 Worst-Case Window Length for Reduced Error Bias.........ccooveviiiiiicienieniieiieieeiens 22
3.2 DISCRETE TIME TFPF ALGORITHM ......ccooiiiiiiiiiniieiitesieeniteeteesee et 24
3.3 THE EFFECTS OF WINDOW AND DFT LENGTHS AND THE NUMBER OF
ITERATIONS ON THE PERFORMANCE OF THE ALGORITHM........ccceoviiiinieieieiee e 26
3.3.1 Effects of Window Length on the Performance of the Algorithm ............coccoevveiininnenn. 27
3.3.2 Effects of DFT Length on the Performance of the Algorithm .............ccooceevieiiiiininnenns 29
3.3.3 Effects of Number of Iterations on the Performance of the Algorithm...............c..c......... 30
3.3.4 The Performance of the Algorithm for Different SNR Values.........cccccevvevievieciieiennnnns 32
335 RESUILS .ttt b ettt b e bt b et a et ae e enes 33



4 SUB-OPTIMAL TIME-VARYING FILTERING USING WIGNER-VILLE

DISTRIBUTION 36
4.1 TIME-VARYING WIENER FILTER.......cccitiiiiiiieieeee ettt 37
4.2 TIME-FREQUENCY FORMULATION OF THE TIME VARYING WIENER FILTER ...... 38
4.3 IF ESTIMATION OF NOISY SIGNALS USING WVD .....ooiiiiiiiieieeeeeeee e 40

4.3.1 Optimum Window Length for Pseudo DTWVD.....c..cccociiiiiiiiininininencceccceneee 41
4.3.2 Two Window Length AlGOTithm.........ccceeviuiiiiiiiiiiiiiecieeeece e 43
4.3.3 TF Estimation Using Support Vector Machines ..........ccccceevviervieenciiencieeniienieenveesveeeene 50
4.4 THE FILTERING ALGORITHM........ccoootiiieiiieiictiecieeie ettt sveesveeaeene e 56
4.4.1 The Simulation Results of the Proposed Time-Varying Filtering Algorithm .................. 58
4.5 CONCLUSION ... .oiiieitieitet et ste sttt et et e e testee s e e seenseessesneesseesseeseanseansesssesseenseeseensennnes 65

5 COMPARISON OF METHODS 67
5.1 SIMULATION 1: LINEAR FM SIGNAL, HIGH SAMPLING FREQUENCY .......ceeeeeieiiiriirineeeeeinns 69
5.2 SIMULATION 2: LINEAR FM SIGNAL, LOW SAMPLING FREQUENCY ........covveiieiiiiiiieeeeeeeinns 72
5.3 SIMULATION 3: 4-FSK SIGNAL....cccuttittrtiritentienieeieetesitesiee st et et sitesitesbeenbe et saesieeseeenaeenee 78
5.4 SIMULATION 4: REAL WORLD DATA ..ottt e 83
S S RESULTS Lottt ettt h et e ettt e bt et e bt et et e b et e e bt sbeebeeneenaeneenseabesaeas 90

6 CONCLUSIONS 92

REFERENCES 97

APPENDICES

A SOME MATHEMATICAL PROPERTIES OF WVD 102

B ML ESTIMATE OF WVD 105

C SURVEY OF THE DISCRETIZATION EFFORTS 107

xi



LIST OF FIGURES

Figure 2-1 Cross-term geometry of the WVD.......cccoiiviiiiiiiieee e 8
Figure 3-1 Discrete-time TFPF algorithm Steps.........ccccoevvievieniiienieniieieeieeeeee, 25
Figure 3-2 Error bias (green) and variance (blue) as functions of window length...27

Figure 3-3 Error bias (green) and variance (blue) as functions of window length,

SNR =29 dB. .o 28
Figure 3-4 Error Variance as a function of DFT length. .........cccooevininiininnne. 29
Figure 3-5 Error Bias as a function of DFT length. ........ccccooeniiiiniinniiniinnne 30

Figure 3-6 The variations of error variance (blue) and bias (green) as functions of
number of iterations, the window length is set to 228.........c.cccoveeviiieriieenieeenne, 31
Figure 3-7 The variations of error variance (blue) and bias (green) as functions of
number of iterations, the window length is set to 48.........cccceeeviieriieiienieeiieen. 31

Figure 3-8 The variations of error variance as a function of number of iterations for

different window 1engths. ..........cooeviiieiiiiiiiece e 32
Figure 3-9 Input SNR vs output SNR (in dB). ..cc.cooiiiiiiiiiniiiiiicccccce 33
Figure 4-1 The IF estimation algorithm Steps. ......c.cceevieriieiieniiieieeieeeeceeeeee, 45
Figure 4-2 IF of the test s1@nal. .........coooiiiiiiiiiiiii e 46
Figure 4-3 Pseudo DWVD with two window lengths, SNR =-5dB....................... 47
Figure 4-4 The original IF (red) and the IF estimate (blue) obtained using peak

detection algorithm before median filtering, SNR =-5dB. .........ccccceoiniininenn. 48
Figure 4-5 The original IF (red) and the IF estimate (blue) obtained using peak

detection after median filtering, SNR=-5dB.......cccceeviiiiiiiniiiiee 48
Figure 4-6 The original IF (red) and the IF estimate (blue) obtained using peak

detection algorithm before median filtering, SNR =-10dB. ..........cccceienennenn. 49
Figure 4-7 The original IF (red) and the IF estimate (blue) obtained using peak

detection after median filtering, SNR =-10dB........ccccccivviiiiiiiiiiiicieieee, 49
Figure 4-8 The IF estimation algorithm steps with SVM .........ccccovveviiiviiniieieenen. 53

Xii



Figure 4-9 The original IF (red) and the IF estimate (blue) obtained after SVM

method before median filtering, SNR =-5dB. ......cccccooviiiiiiiie 54
Figure 4-10 The original IF (red) and the IF estimate (blue) obtained after SVM
method before median filtering, SNR =-10dB. ......ccccoooiiiiiiiiiiiieeeee, 55
Figure 4-11 The original IF (red) and the IF estimate (blue) obtained after SVM
method after median filtering, SNR =-10dB. .......ccccoviiiiiieee 56
Figure 4-12 The time-varying filtering algorithm steps. ........ccoceeverveneeiiniencnnne 56
Figure 4-13 The original FM signal (blue), and the estimated signal (red). ............ 59
Figure 4-14 The original signal (red) and the estimated signal (blue) with known IF,
SNR = =5 dB e 59
Figure 4-15 The original signal (red) and the estimated signal (blue); IF is estimated
Without SVM; SNR = -5dB. oot 59
Figure 4-16 pDWVD after SVM method is applied, SNR =-5dB. ... 60
Figure 4-17 The original signal (red) and the estimated signal (blue); IF is estimated
using SVM; SNR =-5dB. ..o 61
Figure 4-18 The original signal (red) and the estimated signal (blue); IF is estimated
using SVM with linear interpolation; SNR =-5dB. .......cccooiiiininiine, 61
Figure 4-19 IF estimate obtained without SVM (blue); after median filter (red);
original IF (green); SNR =-10 dB......ccccoooiiiiiiiiiiiieceee e 62
Figure 4-20 The original signal (red) and the estimated signal (blue) with known IF,
SNR = =10 dB. oottt 63
Figure 4-21 pDWVD after SVM Method is applied, SNR =-10dB. ...................... 64
Figure 4-22 The original signal (red) and the estimated signal (blue); IF is estimated
using SVM; SNR = -10 dB. ..ccuiiiiiiieeee e 64
Figure 4-23 The original signal (red) and the estimated signal (blue); IF is estimated
using SVM with linear interpolation; SNR =-10dB. .......cccccooiiiniinn. 65
Figure 5-1 Magnitude spectrum of the noise free signal.........c..cccceeeeviriiniinennene. 70

Figure 5-2 The original signal (blue) and the output of the TFPF method (red),

SNR; = =5 AB e 71
Figure 5-3 The original signal (blue) and the output of the SVM based method
(red), SNR; = =5 dB .o 71

xiil



Figure 5-4 The original signal (blue) and the output of the classical zero-phase low-
pass filter (red), SNR;=-5dB. ...cooooiiiiieeeeee e 72
Figure 5-5 Magnitude spectrum of the noise free signal.........c..coccevvieviininienennnne. 73

Figure 5-6 The original signal (blue) and the output of the TFPF method (red),

SNRG = =5 B 74
Figure 5-7 The original signal (blue) and the output of the SVM based Method
(red), SNR; = =5 AB. .o e 74
Figure 5-8 The original signal (blue) and the output of the classical zero-phase low-
pass filter (red), SNR;=-5dB. ....ooooiiieiee e 75
Figure 5-9 The original signal (blue) and the output of the TFPF method (red),
SNRG = =5 dBe e 76
Figure 5-10 The original signal (blue) and the output of the SVM based Method
(red), SNRi = =5 dB. . 77
Figure 5-11 The original signal (blue) and the output of the classical zero-phase
low-pass filter (red), SNR; = -5 dB...cccoiiiiiiiiiiieeeee e 77
Figure 5-12 Magnitude spectrum of the noise free signal.........cccccecvevieiiniencnnene. 79

Figure 5-13 The original signal (blue) and the output of the TFPF method (red),

SNRi = =5 B 80
Figure 5-14 The original signal (blue) and the output of the SVM based Method
(red), SNR; = =5 AB. oo e 80
Figure 5-15 The original signal (blue) and the output of the classical zero-phase
low-pass filter (red), SNR; =-5dB.....ccooiiiiiiieieeeeee e 81
Figure 5-16 The original signal (blue) and the output of the TFPF method (red),
SNRi = =5 dB e 82
Figure 5-17 The original signal (blue) and the output of the SVM based Method
(red), SNRi = =5 dB. .o 82
Figure 5-18 The original signal (blue) and the output of the classical zero-phase
low-pass filter (red), SNR; =-5dB...cccoiiiiiiiieeee e 83
Figure 5-19 The bat Signal...........cccooiiiiiiiiiieeeeeeeeee e 84
Figure 5-20 pDWVD of the test signal. ..........ccooceeiiiiiiiiiineneeeeee e 85
Figure 5-21 Detected auto-term regions (orange) after SVM. .......cccvvveivvinieennnen. 85

Xiv



Figure 5-22 The original (blue) and the estimated (red) signals using SVM based

MNEEROM. it 86
Figure 5-23 The original (blue) and the estimated (red) signals using TFPF method.

............................................................................................................................. 86
Figure 5-24 The noisy bat S1@Nal. ........cccciieeiiieiiiieiieciee e 87
Figure 5-25 pDWVD of the noisy test signal..........cccceeeveeviiieriieenieeeie e 88
Figure 5-26 Detected auto-term regions (orange) after SVM. ........ccccvvevieviienennen. 88
Figure 5-27 The original (blue) and the estimated (red) signals using SVM based

MNEENOM. Lottt e 89
Figure 5-28 The original (blue) and the estimated (red) signals using TFPF method.

............................................................................................................................. 89
Figure C-1 DWVD of a test signal obtained using (C-2).......ccccceevuverienieenieennnnne. 108
Figure C-2 DWVD of the test signal obtained using (C-4).......cccccecvveevcrveercreeenen. 109
Figure C-3 DWVD of the test signal obtained using (C-6)..........cccccvvevciveenreeennnen. 111
Figure C-4 DWVD of the test signal obtained using (C-9).........cccceveeriiineennnnne. 113

XV



CHAPTER 1

INTRODUCTION

Nonstationary signals have great importance in our daily life, since they occur
naturally in many real world events. In biomedical applications signals under
concern are usually nonstationary, like brain and heart signals. In radar applications
nonstationary signals are used in order to increase radar resolution and decrease

probability of intercept by other systems like jammers, [35].

The analysis of these kinds of signals is an important topic in signal processing. In
particular, one wants to get information about the variation of the spectral content of
the analyzed signal with respect to time. Traditional analysis methods like Fourier
Transform (FT) based methods are not sufficient tools; because they do not give
any feeling about the change of the spectral content of the signal with time. Hence,

different analysis methods are needed.

In literature there are time-frequency analysis tools developed to analyze
nonstationary signals. These tools are actually transformations which transform
signal under analysis to a 2D time-frequency plane. In other words, they make an
assignment of spectral components to time. These analysis tools can be grouped

basically into two as linear and quadratic ones [34].

Linear Time Frequency Analysis Methods usually use an analysis window which
moves in time. The signal to be analyzed is multiplied with the analysis window

and the FT of the product is computed. Since, the analysis window suppresses



the signal outside of a certain region in time, the FT gives the local spectrum. The
most known linear time frequency analysis method is the Short Time Fourier
Transform (STFT) [37]. When the analysis window is chosen to be a Gaussian
window, the transformation is known as Gabor Transform, because Gabor
introduced STFT with this particular analysis window [38]. Even though the
method and the computations are simple, the main draw back of Linear Time
Frequency Analysis methods is the dependency of time-frequency resolution on the
type and length of the analysis window [37]. The uncertainty principle states that
time and frequency localizations are inversely proportional. If time localization is
improved then frequency localization is degraded and vice versa. The window
which gives the best frequency localization for a given time localization is the

Gaussian window which is used by the Gabor Transform.

Cohen introduced a general class of quadratic time-frequency distributions, where
the time dependent auto-correlation function of the signal to be analyzed is
multiplied with a kernel, and the FT of the product is computed [34]. The kernel is a
function of time and frequency lags instead of time and frequency, so the
transformation is shift invariant. Quadratic Time Frequency Distributions do not
suffer from uncertainty principle; their time-frequency resolution is not limited. But,
on the other hand, they suffer from the cross terms [37]. Being quadratic
transformations the time-frequency transformation of sum of two signals is not the
sum of the time-frequency transformations of the individual signals, but there is a
third term known as the cross-term. The cross-term’s location is between the two
auto terms in time and frequency. Also cross-term contains amplitude modulation
whose modulation frequency increases when the distance between auto-terms in
time or frequency increases. For a signal containing N auto-terms, there will be
N*(N-1)/2 cross terms, that is the number of cross-terms increases quadratically.
There are different methods to eliminate these cross-terms. Cohen used the kernel
function that actually serves as a lowpass filter. It is successful in eliminating cross-
terms to some degree; its main drawback is that it decreases the time-frequency

resolution of the transformation. When this kernel is set to unity then there is no



filtering and the resulting distribution is known as Wigner-Ville Distribution

(WVD).

Filtering of nonstationary signals in noise has been an important topic. Traditional
filtering methods are used for filtering of nonstationary signals in noise, like
adaptive and fixed filtering methods [36]. Although adaptive methods, like Least
Mean Squares (LMS) approach based methods and Kalman Filter, are generally
superior compared to fixed methods, they perform poor for nonstationary signals
whose spectral content changes quickly with time. Additionally, adaptive methods
need signal modeling for optimum performance; but when the structure of the
desired signal is unknown, they will give suboptimal results and even in some cases
wrong results. Since the spectral content of these signals changes with time, the
information about the spectral variation with time which can be obtained by time-

frequency analysis can be used in order to improve the filtering performance.

WVD was not used in practical applications beforehand because of its high
computational cost. Nowadays, with the use of powerful computers WVD can be
used in different signal processing areas. One of these application areas is the time-
varying filtering of nonstationary signals in noise [39]. A time-varying filter is the
one whose frequency response changes with time. For signals whose spectral
content changes with time, a time-varying filter whose frequency response variation
adapted to the variation of the desired signal performs better as compared to the

time-invariant filter whose frequency response is fixed.

Time-varying filtering is also known as time-frequency filtering. When the signal
under concern is nonstationary, it is advantageous to transform the noisy signal to
joint time-frequency plane by using an appropriate time-frequency transformation.
By doing so, the information about the variation of signal spectrum with time can
be obtained. The noise spreads to entire time-frequency plane; whereas the signal
part concentrates on certain time-frequency regions. The filtering is performed
using the signal concentrated time-frequency regions. The filtering performance

depends on how good the signal is localized to certain time-frequency regions and



how good these regions are detected. Time-frequency localization depends on the
type of the time-frequency analysis method. The WVD is preferred in this
application instead of linear time-frequency analysis methods because of its high
time-frequency localization as compared to linear ones. (Linear time-frequency
transformations have some advantages such as low computational cost and easiness

to recover the signal [39].)

This thesis mainly concentrates on time-frequency filtering of signals whose
spectral content quickly changes with time using WVD. To start with, the WVD
and its properties are investigated; the pseudo and robust forms, and discrete
formulations of the distribution are studied. Next, computation of the WVD of a
signal from noisy observations and estimation of the instantaneous frequency (IF)
of the signal from the estimated WVD are studied. Two different time-frequency
filtering methods, Time-Frequency Peak Filtering (TFPF) Method and Time-
Varying Wiener Filter (TVWF), are investigated. Both methods compute the WVD
of the noisy signal and estimate the IF of the signal as main filtering steps.
The TFPF method first encodes the noisy signal as an analytic frequency modulated
signal and then performs the filtering steps, consequently the estimated IF is
actually the signal estimate multiplied with a scalar. The TVWF uses the IF
estimate to form a time-frequency mask and uses this mask to recover the desired
signal. The filtering performances of the methods are compared with each other and
with a classical zero-phase low-pass filter using frequency modulated test signals
and real life data. The performance of the second method is improved by using
Support Vector Machines (SVM) Method applied in IF estimation phase of the
algorithm, which is actually a pattern recognition technique based on statistical
learning theory. The filtering algorithms are implemented and tested in MATLAB®

environment.

The thesis is organized in six chapters. Chapter 2 deals with the continuous WVD
by providing the necessary background information and with the discretization of

WVD by giving discrete-time and discrete WVD definitions and providing the



relations among them. In Chapter 3, the TFPF Method is described by introducing
the basic concepts and the discrete time algorithm. In addition, the performance of
the algorithm is tested. In Chapter 4, the second time-frequency filtering method is
described by introducing the derivations of the TVWF and its time-frequency
formulation. Besides, the IF estimation of noisy signals using WVD is discussed
and the improvement using SVM method is evaluated by comparing the simulation
results. Chapter 5 presents and explains the simulation results in which the
performances of the time-frequency filtering methods with each other and with a
classical low-pass zero-phase filter are compared using different test signals and
real-world data. Finally, Chapter 6 summarizes the thesis and presents the

conclusions.



CHAPTER 2

WIGNER-VILLE DISTRIBUTION

The WVD was introduced by Wigner in the field of quantum mechanics. Then Ville
brought the concept into the signal processing field. Claasen and Mecklenbrauker
published three papers in which signal theoretic properties of the distribution were
given, a proposal for discrete-time and a proposal for windowed form of the
distribution were presented and the relation of the distribution with other time-
frequency distributions were mentioned consecutively [28]. The importance of the
WVD arises from the fact that it combines the temporal and the spectral analyses of
a signal by transforming the signal to a joint time-frequency plane. But there is
something important to mention before continuing: the WVD is known as a
distribution because it is supposed to reflect the distribution of the signal energy in
the time-frequency plane. However, the WVD can not be interpreted pointwise as a
distribution of energy because it can also take on negative values. (The WVD of

Gaussian and chirp signals are always positive.)

In the first section of this chapter continuous WVD and its properties are discussed;
and in the second section the discussions about the discretization of WVD are

presented.

2.1 CONTINUOUS WIGNER-VILLE DISTRIBUTION

The continuous WVD of a signal x(¢) is defined by



A
W_(t,w)= j x(t+7/2)x" (t - 7/2)exp(—jor)dr (2-1)
where the integral is from minus infinity to plus infinity. The dual form is
w_(t,w)=1/2x I X(w-v/2) X (@ +v/2)exp(— jvt)dv (2-2)

where X (w) is the FT of x(¢).

Actually the WVD is the FT of the time-dependent auto-correlation of the signal
x(t) defined by R_ (t,7)=x(t+7/2)x" (t—7/2). R_(t,7) is also called a bilinear

data product by different authors [7].

Some mathematical properties of WVD are given briefly in APPENDIX A. Even
though the WVD has many desired properties, there is an important disadvantage of
the WVD known as cross-terms which becomes visible in case of multi-component

signals. Let x(¢) be the sum of N signals

xX(1) =Y x, (1) (2-3)
The WVD of x(¢)1s
W (t,w)= ZN: kaxk (t, )+ ZN: ZN: kaxd (t,w) (2-4)

where W, (¢,w) is a cross WVD and known as cross-term; so the WVD of sum of

signals consists of the WVD of the individual signals plus the cross WVDs. As the
number of auto-terms is increased, the time-frequency plane becomes more
complex and interpretation of the distribution becomes more difficult, because

cross-terms and auto-terms can be located in the same time-frequency regions.



Figure 2-1 shows the cross-term geometry of the WVD. It has been shown that
while the cross term’s envelope depends on the signal, the cross term’s time—
frequency location and oscillation geometry merely depend on the time—frequency
locations of the interfering signal terms [22]. As it was mentioned above the cross-
term is located in between the auto-terms in the time-frequency plane; that is to say

t,=(@ +1,)/2 and @, =(®, +®,)/2; and the cross-term contains amplitude

modulation whose modulation frequency increases when the distance between auto-
terms in time or frequency increases. More information about cross-terms can be

found in [23], [24].

direction of oscillation

.‘]fl l

Figure 2-1 Cross-term geometry of the WVD.

Recall that the WVD can not be interpreted pointwise as an energy distribution
because it can also take on negative values, which results in negative energy which
is physically meaningless. Actually this negative energy arises from the cross-terms.

Consider a two-component signal
x(?) = a, exp(joyt) + a, exp(jo,?) (2-5)

The WVD of this signal is



W (o) =a] §(w-a)+a; 5(0-,)

o+o, (2-6)

+2a,a, cos(t (v, —w,))o(w—
The first two terms are the auto-terms and the third term is the cross-term, a cosine
wave which can take on negative values. However, the integral of this cross-term

over frequency is zero, and it does not influence the total signal energy.

In literature there is an intensive research to eliminate or at least to reduce the
effects of these cross-terms. The main approach is to use a kernel function which
actually serves as a low-pass filter to reduce the cross-terms. The design of these
kernels is not an easy topic, since the direction of oscillation and the oscillation
frequency depend on the type and the time-frequency location of the input signals
[22], [23], [24]. So, a general kernel design for all types of signals is a challenging
problem. Additionally, when the signals are located close in time or frequency or
time and frequency, the oscillation frequency decreases which means that lowpass
filter passes these cross terms. Another drawback of using smoothing kernels is that
they decrease the time-frequency resolution of the distribution by broadening the
auto (signal) terms. Finally, sometimes, use of these kernels results in loss of some
desired mathematical properties of the WVD. An interesting and different approach
is proposed in [22] which uses a nonlinear median type filter to eliminate the cross-

terms.

In literature the WVD of noisy signals is also intensively studied. It has been shown
that the WVD of such signals can not be directly used as an estimate of the WVD of
the noise free signal; this is so because the variance of WVD of a signal under
additive white Gaussian noise goes to infinity, and a time window must be used to

make the variance finite [2].

The windowed form of the WVD is known a pseudo WVD (pWVD) given as

WP (t,0) = [ (D) x(t +7/2) x" (t = 7/2) exp(=jor) d7 (2-7)



where /(7) is a real, to avoid frequency shifts, and symmetrical, to avoid time

shifts, window. The pWVD corresponds approximately to the WVD of the signal.
The relation between pWVD and WVD can be shown using (A-5) as

WP (t,0) =H(0)*W_(t,0) (2-8)

where H(w) is the FT of A(¢).

(2-8) indicates that the use of a window decreases the frequency resolution of the

distribution.

In recent years robust time-frequency signal transforms are introduced which are
concerned with the estimation of the WVD of a signal from noisy observations of
the signal. It has been shown that the WVD of a signal in additive white Gaussian
noise, computed directly, is actually the Maximum Likelihood (ML) estimate of the
WVD of the noise free signal [6], [10]. The derivations are given in APPENDIX B.
This means that for the signal in Gaussian noise the standard signal transformation
will give the best estimate of the WVD of the noise free signal. Unfortunately, the
ML estimators are quite sensitive to the variation of the noise probability density
function, which means that for a non-Gaussian noise the standard signal
transformations will give worse results as compared to the signal transformations
obtained as the ML estimate for that noise type. This fact motivates the introduction
of robust signal transformations which are introduced for a class of noises by
computing the ML estimate of the transformation for the worst noise (the noise with
the longest tail) in that class. The Laplacian noise is used with absolute error as the

loss function, since it is the worst noise for numerous forms of impulsive noises.

Robust signal transformations will give worse results compared to the ML
estimators obtained for the signals in additive Gaussian noise; on the other hand, the
improvement for impulsive noises is significant as compared to the ML estimator

for Gaussian noise.
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Robust time-frequency transformations are introduced in order to work under
impulsive noise conditions. Signals are often influenced by impulsive noise;
especially this is the case for the WVD; because, the resultant noise, after the WVD
is computed, is a mixture of impulsive and Gaussian noises even when the input
noise is purely Gaussian noise. More information about robust time-frequency

transformations can be found in [1]-[6], [10], [25], [26].
2.2 DISCRETE WIGNER-VILLE DISTRIBUTION

Several different approaches are proposed to discretize WVD to obtain alias free
discrete WVD [15]-[21]. A summary of the works done to discretize WVD are
given in APPENDIX C in a chronological order. In the first and second parts of this
section the definitions of the discrete-time and the discrete WVD and their relations

with the continuous-time WVD are given.
2.2.1 The Discrete-Time WVD

In this section the discrete-time WVD definition which is used in the thesis is given.
The continuous-time WVD can be written in the following form with a change of

variable
W, (t,0)=2]x,(t+7)x.(t—7) exp(—j207)dr (2-9)
Define
A *
P (D)=x(t+7)x.(t~7) (2-10)
with FT ® (@) where the lower script ¢ indicates the time variable; then

W, . (t0)=20,  (20) (2-11)
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Assume that ¢ _ (7) is sampled with sampling frequency o,=27/T yielding

I A * ) ) . 2 ) )
@, [k]l=x.(t+kT)x (¢t —kT) with discrete-time FT @ _(6). From the derivations

of the sampling theorem it follows that
@, (o) =% Yo, (0+rw,) (2-12)

where the summation is from minus infinity to plus infinity.

If x,(#) is bandlimited to @, rad/sec, then ¢__(7) is bandlimited to 2, rad/sec.

Therefore, if o 24w, aliasing is avoided and @ (@) can be obtained from

CiDWI (@), 1e., ¢, (7) canbe obtained from &xrxt [k].
Let
A
x[n]=x,(nT) (2-13)
then
A L . .
. [k1= 0, . (k1= x,(nT +kT) x,(nT = kT) =x,[n+ k] x.[n—k] (2-14)

The relation between the FTs of ¢, [k] and ¢, (7) is

LN () =<i>xﬂx,,r @)= %Z i (? + rz—”) (2-15)

In conclusion if o, >24w,, © ( ) can be obtained from @  (0),

X7 X,

¢, . (7) canbe obtained from ¢,  [k]

Let us now give the discrete-time WVD definition and show the relation with the

continuous-time WVD. The discrete-time WVD of sequence x[#n] is defined as
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W, In, e)izz x[n+k]x"[n - k]lexp(—j2k6) (2-16)

As seen from (2-16) the discrete-time WVD is periodic in & with period 7. To
show the relation between the continuous-time and discrete-time definitions let us

proceed as follows: since
W, [n0)=20,  (20) (2-17)

using (2-15) we obtain

W, [n,0)= %ZCDX . (E r27ﬂ) (2-18)

r

Finally by inserting (2-11) into (2-18) we obtain
W, [n0)=— ZW (nT—+r—) (2-19)

As seen from (2-19) the discrete-time WVD is composed of the replicas of the

continuous-time WVD. If x (z) is bandlimited to wrad/sec, W, (nT,®) is
bandlimited to ®, rad/sec too; therefore, if 7/T>2w, , aliasing is avoided and
w.. (nT, 0/T) can be obtained from W, . [n,0). This result also shows that the

band limited continuous-time signal must be sampled at a rate at least two times the

Nyquist rate, since the sampling frequency should be set to o, 24®, to avoid

aliasing and make reconstruction possible.
2.2.2 The Discrete WVD

Consider a sequence x[n] which is zero for n <0 and n> N where N is an even
integer. ¢, [k]=x[n +k]x"[n—k] will be zero for n<0and n>N and for

k <max{-n, n— N +1} and k >min{n, N —1-n} . Hence ¢, [k] will be possibly
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nonzero only for 0<n< N and max{-n, n—(N —-1)}<k<min{n, —n+(N —1)}.

For n=N/2-1 the maximum interval —(N/2—1)<k<N/2-1 is achieved. The

discrete WVD of x[#] is defined as

Ny

. L 27
W, [n,ml=2 %" ¢, [klexp(~jkm 7)
N

f=——"t
2

(2-20)

for 0<n<N and 0<m<N. (In (2-20) the lower limit in the summation is

decreased by 1, which has no effect.) Define a sequence s,  [p]

. N . N
s, [p1=9, . [k]‘k_ v =xn——+plx’[n+—-p]
nn nn =p 5 2 2

The discrete WVD can be defined using s, [p] as follows:

& _ N, 27
W, [n.ml=23"s,  [plexp(—j(p— E) mf)

p=0

(2-22) can be simplified to yield

” N-1 ) 27
W, [n,m=2(-D">" s, [p] exp(—jpm =)

p=0

(2-21)

(2-22)

(2-23)

The summation term in (2-23) is actually the discrete FT S, [m] of s, [p] which

is equal to

X) n

S, =2 (1" W, [,

(2-24)

So, when W, [n,m] is given, the sequence s, [p] can be obtained from S, [m]

by inverse discrete FT; and the sequence ¢, [k] can be obtained from s, [p].

Using (2-20) and (2-16) it is obvious that
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‘xﬂ ‘xﬂ

W, . [nml=W, [n,e)\gﬂ (2-25)
N

(2-25) shows that the discrete WVD can be obtained from the discrete-time WVD

by sampling the frequency in N discrete frequencies in the region 0 < d < .

15



CHAPTER 33

TIME-FREQUENCY PEAK FILTERING

In many signal processing applications, like radar, sonar and biomedical
applications, the signals under concern can not be always observed directly;
moreover, they are tried to be obtained from noisy or distorted observations. There
are a variety of approaches on the estimation of the desired signal which are mainly
based on the minimization of the estimation error energy. However, for a
nonstationary signal with rapidly varying frequency content, the estimation problem
becomes more complex, and new filtering methods have to be investigated. For this
kind of signals time-frequency filtering methods are proposed. Although there are
different time-frequency filtering algorithms, the main filtering steps are the same
and which can be summarized as follows: first a noisy signal is transformed to the
joint time-frequency plane where the noise spreads to the entire plane and the signal
is concentrated to certain time-frequency regions known as regions of support of the
signal; secondly, the signal concentrated time-frequency regions are detected; and
finally, the desired signal is synthesized using signal concentrated regions. The
main differences between different time-frequency filtering algorithms are the type
of the time-frequency distribution (TFD), and the detection and the synthesis

methods used in the algorithms.

The straightforward time-frequency filtering algorithm is performed using a 2-D
time-frequency mask which masks the noise concentrated regions and passes signal

concentrated regions. If the region of support of the signal is known beforehand, it
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can be used directly; otherwise, it has to be estimated. Although, region of support
estimation is an easy problem for high SNR cases, it is very problematic for low
SNR cases and complex algorithms have to be used to increase the filtering

performance.

In this chapter an alternative time-frequency filtering algorithm, Time-Frequency
Peak Filtering (TFPF), which is proposed by Boualem Boashash and Mostefa
Mesbah is described [7]. The difference of this algorithm from the existing ones
arises from the fact that the noisy signal is encoded as instantaneous frequency (IF)
of an analytic frequency modulated (FM) signal, and the FM signal is transformed
to the joint time-frequency plane; then to recover the desired signal, IF estimation is
performed which actually gives the desired signal estimate multiplied with a
constant scalar. To do so, an appropriate TFD is used; and since it is shown that
TFDs concentrate signal energy at and around IF on the time-frequency plane, to

get the IF estimate peak detection is used on the TFD data.

Among different TFDs, WVD is chosen in the TFPF algorithm due to its high time-
frequency resolution. However, WVD can not be used in peak detection directly,
because it is shown that when the peak detection is applied to WVD, the IF
estimates will be biased for IF laws higher than linear [7], [5]. On the other hand, it
is also shown that for deterministic band limited nonstationary multi component
signals in additive white Gaussian noise (AWGN), the IF estimation using pseudo
WVD (pWVD) will be approximately unbiased for a certain window length which
depends on the maximum signal frequency and the sampling frequency. So, pWVD

is used in TFPF algorithm to reduce the IF estimation bias.

In the first section, IF estimation error bias and variance and the reduced bias
window length are derived; in the second section, the discrete time TFPF algorithm
is given; and finally in the last section, the performance of the algorithm and the

simulation results are evaluated.
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3.1 BASIC CONCEPTS

3.1.1 IF Estimation Error Bias

Let the signal model be s(¢) = x(¢) + n(¢) , where n(¢) is AWGN. After the encoding

process z (¢) is formed as

z (t)=exp(j 27wj s(A)dA)=exp(j 27z,uj x(A)dA )exp(j 27z,uj n(A)dA)

=z,(0)z,(1)

(-1

where x4 is the frequency deviation constant (it has nothing to do with the IF

estimation; it is used to control the bandwidth of frequency modulation to avoid

aliasing).

As seen from (3-1) encoding process converts additive noise n(¢) to multiplicative

noise z,(¢) . From (A-5) the WVD of z (¢) is
W, (Lo)=W, t,0)*, W, (t,0) (3-2)

obtained from the convolution of the WVD of z (¢) and z,(¢) along frequency. It
is evident that W, (¢, ) spreads W, (¢, ®)through convolution, so the IF estimation
bias depends on both z (#) and W, (#,). In [7] it is shown that when n(¢) is
AWGN, W, (t,w) has no effect on the IF estimation bias, since W, (¢,w) 1is

lowpass with a maximum at zero frequency, and the bias only depends on x(¢).

In [5] IF estimation error bias and variance are studied in case of additive noise, and
it is shown that the IF estimation bias does not depend on the additive noise; it only

depends on the desired signal and on the window. Although, we have a
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multiplicative noise in our problem, since the encoded noise z,(¢) obtained from

AWGN has no effect on the IF estimation error bias, the results of [5] can be used.

Let

z, (1) =exp(j (1)) (3-3)
t
where ¢(t)=27zu .[ x(A)dA . Assume that the signal is sampled with period 7 .
0

The IF w,(¢) of z (t) is 2mu x(¢). The general form of shift covariant TFDs

(Cohen’s Class) in discrete time domain can be written in the following form,

C,(t,w;0) = i i(D(mTa”T) (3-4)

y(t+mT +nT)y (t+mT —nT)exp(—j2onT)

where @(t,7) is the TFD kernel in the time-lag domain, which determines the TFD

characteristics. When the kernel has finite length in both time and lag axes, it will

give the pseudo form of the TFDs. The notation

@,(mT,nT) = (7%)2 @(mT /h,nT /h) is used for a finite length kernel whose length

is /1 ; the constant term (7/h)* is used to make the sum of ¢, (mT,nT) over time and

lag & independent (this constant term has nothing to do in IF estimation; it is given
for the sake of completeness). Additionally, it is assumed that the kernel is a
symmetric function in both time and lag axes which is the case for most of the

commonly used TFD kernels.

By inserting z_(¢) instead of y(¢) following results are obtained [5]

00

C,(t,w;0,) = Z Z(ph (mT,nT) exp(—j2awnT)

Nn=—00w m=—0

exp(jo(t + mT +nT))exp(—jd(t + mt —nT))

(3-5)
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Expanding ¢(t + mT £ nT) around ¢ by the Taylor series

¢t +mT £nT) = g(t)+ ¢ ()mT £nT)+ P ()T £nT)* / 2+

(3-6)
A @ (O(MT £nT)" [ nl+...
yields
C,(t,wsp,)=[A®]" Y X0, (mT,nT) 3-7)
exp(—j [2nT (@ — ¢ (1)) = 2mnT> $° () - Ag(t,mT ,nT)))
Ag(t,mT,nT) is aresidue of phase which is equal to
Ag(t,mT,nT) = §¢<S>(t)[(mr +nT)* —(mT —nT)*]/s! (3-8)

As seen from (3-7) the TFD will have a maximum at the point @(¢) = ¢ (¢), which
is the IF of the signal z_(¢), if ¢ (#)=0 for s> 2 ; otherwise, there are oscillatory

terms. This shows that the estimated IF using peak detection will be equal to the
true IF for signals with linear or lower IF law, and for such signals the IF estimation

error bias will be zero.

Using above results the IF estimate @,(¢) can be found using
&,(t) = arglmax{C, (1, 0;9, )} (3-9)

where W = {a); 0< |a)| <x/2T } is a basic frequency interval, and (3-9) can be

solved by taking the partial derivate of C (¢, ®;¢,) with respect to @.

The IF estimation error produced at time instant ¢ is given by

Ad, (1) = ()~ &,(1) (3-10)
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It is shown in [5] that the estimation error bias can be obtained using the following

formula

£,

bias = E{A®,(t)} = 2R (0)

(3-11)

where

o0

R, ()=, i(ﬂh(mT,nT)(nT)zeXp(j2¢(2>(t)(mT)(nT)) (3-12)

N=—00 Mm=—0a0

o0

IAGEDY i(/)h(mT,nT)A¢(t,mT,nT)(nT)exp( 7202 () (mT)(nT)) (3-13)

N=—0w Mm=—00

The bias formula shows that the bias will be zero for signals with linear or lower IF

law, since P, (¢) will be zero for these signals.

This bias formula is for the general TFDs. To get the result for special TFDs, their
kernels can be inserted into the above formula. This is done for pseudo WVD

whose kernel is equal to ¢, (mT,nT) =w,(mT)o(m+n)w,(nT) where w,(nT) is
a real-valued even window function which is equal to (T'/h)w(nT/h), and the IF
estimation error bias is equal to [5]

M)

w 2

2

B,(0,4)

bias(t,h) =
65,(0,2)

w® () = é w® (H)h* (3-14)

1/2
where B, (k,)=)_> @, (mT,nT)(mT)" (nT)" and M) = j w(r)r'dr.

n m -1/2

As seen from (3-14) the error bias is directly proportional to the square of the
window length which means that to decrease the error bias the window length must
be decreased. However, the window length does not only effect the IF estimation

error bias, it also effects the time-frequency resolution of the distribution; when the
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window length is decreased the time-frequency resolution becomes worse.
Therefore, the window length can not be decreased freely. The derivations to

determine the window length in TFPF algorithm will be given in the next section.
3.1.2 Worst-Case Window Length for Reduced Error Bias

Recall that for signals with IF laws lower than quadratic, peak detection using
WVD produces unbiased IF estimates. Using this information, if the length of the
window used in pWVD is adjusted such that the IF of the signal is almost linear in
the window, then the IF estimate using pWVD will be unbiased too. For signals
whose IF changes rapidly, short windows must be used to get linear regions of the
IF. But decreasing window length results in reduced time-frequency resolution, so

how much does this window have to be shrunk?

To obtain the relation between the window length and the IF estimation bias, the

signal x{n] = cos(¢,[n]) which is encoded as

2.[n] = exp( 2y cos(@, [m1)) (3-15)

m=0

is used. Without loss of generality a rectangular window is used. It is assumed that

the window length 7%, is such that x{n]~ an+ C within the window. At the peaks
or valleys of x[n] the maximum deviation from linearity occurs and the validity of
this assumption is weak at these peak or valley points m, corresponding to f,

which is the maximum frequency of x[#n]. Since the maximum deviation of the

signal IF from linearity gives the maximum bias, this point will give the worst-case

window length.

To get the worst-case window length, encode the signal with constant frequency f,

[7]
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z (n) = exp(j27r,uzn: cos(27z%m)) (3-16)

m=0 K

The bilinear data product at time m, and lag % is obtained as

K. (m,,h)=z(m, +h/2)zi(mp —h/2)

m,+h/2 (3_17)
=exp(j2ru z cos(27z£m))
m=mp—h/2+1 f;

Using the central finite difference (CFD) estimator, the IF of K, (m,,h) is

obtained as a function of m, and & which is given as [7]

Sfi(m, . h) :ycos(27zj;—’s'mp)cos(ﬂ];—j§) (3-18)

The maximum value for 4, is obtained from the deviation of f (m,,h) from

4 x(n) which is limited as

ycos(2fz£m )cos(zr—pﬁ)—,ucos(bz&m ) < 8,ucos(27r£m ) (3-19)
£ £ L
The extent of 4, for unbiased IF estimates is obtained from (3-19) as
h
1- cos(;zé—w) <eg (3-20)
f 2

where f is the sampling frequency, f, is the maximum frequency of the signal

and ¢ is a constant chosen to limit the bias. The desired solution of (3-20) is the

smallest positive one. So /4, can be obtained from

2
1<h, <arccos(l— 5)i (3-21)
zf,
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(3-21) shows that the worst case window length is directly proportional to the

f. / S, ratio. In section 3.1.1 it is shown that to reduce the IF estimation error bias

the window must be narrowed which results in reduced time-frequency resolution.
However, (3-21) says that for a given error tolerance ¢, the worst case window

length can be increased by increasing the f| / S, ratio which results in improved

resolution and suppressed error bias below the tolerance; and the result is a better IF
estimation performance. Therefore, the sampling frequency plays an important role

on the effectiveness of the TFPF algorithm.

In the TFPF algorithm the worst case window length is used which results in
decreased error bias and reduced time-frequency resolution (localization) for the
entire signal. Since, the IF of the signal is not always high, at time instants where IF
is low higher window lengths can be used which gives better time-frequency
localization. Therefore, an adaptive algorithm for window length selection seems to
perform better compared to fixed worst-case window length selection. There are
publications in literature concerned with the adaptive and data-driven window
length selection [1], [3], [4]; however, these publications provide solutions to the
problem for additive white noise and try to reduce the bias and variance of the
WVD; but in this problem the resultant noise is multiplicative and nonwhite and the

bias and variance of the IF estimation error is tried to be decreased.
3.2 DISCRETE TIME TFPF ALGORITHM

The sampled noisy observed signal is modeled by the following equation
s[n]= x[n]+ wln]= ixk [n]+ wn] (3-22)
k=1

for 0<n<N-1 where x,[n]’s are band limited nonstationary deterministic

components that may have overlapping frequency spectra, w[n] is AWGN and N

is the number of signal samples. Figure 3-1 shows the algorithm steps.
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Figure 3-1 Discrete-time TFPF algorithm steps

From the observed signal s[n], the analytic FM signal is obtained using

2. In]= exp(j2mud s, [m) (3-23)

where

s[m]—min[s[m]]

s [m]=(a—-b) +b (3-24)

max[s[m]] — min[s[m]]
is the scaled version of s[m] to avoid aliasing after frequency modulation.

The parameters satisfy 0.5> a = max[s,[m]] > b = min[s, [m]] > 0 and are chosen to

provide suitable frequency limits on the encoded signal. After this scaling, the
signal amplitude is limited to the interval [a, b], and using the frequency deviation

constant x the maximum and minimum IF frequency limits can be set.

The discrete pWVD (pDWVD) of the analytic FM signal z_ [n] 1s computed. To do

so, using the windowed form of the discrete WVD; first the bilinear data product

K, (m,,h) at time m, is computed for integer values //2 using the symmetric

window g(h) = g(—h) whose length 1s the worst case window length 4 :
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K, (m,,h)=z,(m,+ h/2)z:(mp —-h/2)g(h/2)g(=h/2) (3-25)

and then the DFT of the K, (m,,h) is computed. Finally, the peak values along

frequency axis for time sample m , are detected to get the IF estimate s, [m p]. The

peak detection is done for 0 <m, <N —1.

The signal estimate is obtained by back scaling the obtained estimates using the

following formula

;[m] = (SAC [m]— b)(max[s[m]] - min[s[m]]) /(a — b) + min[s[m]] (3-26)

In the low SNR case the algorithm is applied iteratively. After the estimated signal
samples are obtained, filtering continues or terminates if the number of successive
iterations is larger than a specified number or the difference between the outputs of

the successive iterations is smaller than a specified value.

3.3 THE EFFECTS OF WINDOW AND DFT LENGTHS AND
THE NUMBER OF ITERATIONS ON THE PERFORMANCE OF
THE ALGORITHM

In this section performance of the TFPF algorithm is investigated for different
window lengths, different DFT lengths and different number of iterations by
simulating the algorithm. In the simulations a linear frequency modulated test signal
x[m] = cos(0.005m +7.5%10 7 m?) is used; the signal length is 4096 points. The
performance of the algorithm is evaluated using the error bias and variance after the

TFPF filtering algorithm.
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3.3.1 Effects of Window Length on the Performance of the
Algorithm

The performance of the algorithm is investigated for different window lengths in

pDWVD computation.

In the first simulation the noise free case is investigated. The window length is
varied in between 10 and 400 in steps of 10, and Figure 3-2 is obtained. As seen
from the figure the error variance increases with the increase in window length, and
after window length reaches 200 it is almost constant. The error bias decreases in
magnitude with the increase in window length until window length reaches to 200,

but unlike the error variance it is not constant.

x 10°
1 T T T T T T ! -0.009

-0.01

Error variance
Errar Bias

0 | i i i i i i 0,011
0 50 100 150 200 250 300 350 400
Window length

Figure 3-2 Error bias (green) and variance (blue) as functions of window length.
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In the second simulation the noisy case is investigated. Additive white Gaussian
zero mean noise is added to the signal, the variance of the noise is adjusted such
that the SNR is -9 dB. In this simulation the window length is varied in between 10
and 500 in steps of 10, and Figure 3-3 is obtained. As seen from the figure, the error
bias increases in magnitude with the increase in window length as expected; and the
error variance decreases until window length is 170 and starts to increase after the
window length is 250. Actually, this result says that to get the minimum error

variance a window length close to the worst case window length which is 228 must

be used.
0.5 ! ! I ! ! ! ! ! ! 01

-0.12

@ 0.4
5 =
> 5
a 2
i 016"

. -0.18

0 | i | | | | | | |

0.2
0 50 100 150 200 250 300 350 400 450 500
Window length

Figure 3-3 Error bias (green) and variance (blue) as functions of window length,
SNR = -9 dB.
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3.3.2 Effects of DFT Length on the Performance of the Algorithm

The performance of the algorithm is investigated when the number of DFT points is

changed.

In the simulation the noise free case is investigated. Figure 3-4 and Figure 3-5 show
the error variance and the error bias as functions of the DFT length, respectively. As
seen from the figure both of them decrease in magnitude with the increase in DFT

length, and after a certain value, for this example 512, they do not change much.

In the noisy case both the error variance and the error bias show the similar
behavior with different variance and bias values; so the results of the noisy case are

not included.

Error Wariance

e P S

0
64128 256 512 1024 2048
DFT Length

Figure 3-4 Error Variance as a function of DFT length.
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Figure 3-5 Error Bias as a function of DFT length.

3.3.3 Effects of Number of Iterations on the Performance of the

Algorithm

The performance of the algorithm is investigated when the number of iterations is

increased. The SNR is -9 dB.

Figure 3-6 shows the error variance and the error bias as functions of iteration
number when the window length is set to 228. As seen from the figure, in the first
steps of the iteration the error variance decreases, then it starts to increase. On the
other hand, the error bias increases in magnitude with the increase in iteration

number.

Figure 3-7 shows the error variance and the error bias as functions of iteration
number when the window length is set to 48. The similar behaviour is observed; but
when the window length is decreased it takes more iterations to reach the minimum

error variance level.
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Figure 3-6 The variations of error variance (blue) and bias (green) as functions of

number of iterations, the window length is set to 228.
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Figure 3-7 The variations of error variance (blue) and bias (green) as functions of

number of iterations, the window length is set to 48.
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Figure 3-8 shows the error variance as a function of number of iterations for
different window lengths. As seen from the figure the minimum variance and the
corresponding iteration number is different for different window lengths;
additionally, for small window lengths it takes more iterations to attain the

minimum variance level.
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Figure 3-8 The variations of error variance as a function of number of iterations for
different window lengths.

3.3.4 The Performance of the Algorithm for Different SNR Values

The performance of the algorithm for different SNR values is investigated; the
window length is set to 228 and the DFT length is set to 512 using the results of the

previous simulations. The output SNR is 10log,, (P, /o,) where P, is the signal

s

power, and o, is the variance of the estimation error.
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Figure 3-9 shows the results of the simulation; as seen from the figure the TFPF

algorithm increases the SNR by approximately 16 dB.
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Figure 3-9 Input SNR vs output SNR (in dB).

3.3.5 Results

It is observed that as the number of iterations is increased up to a certain number,
which depends on the window length, the error variance decreases. The error
variance increases when the number of iterations are further increased. Therefore,
continuing the algorithm for a predefined number of iterations or stopping the
iterations when the difference between successive iterations is decreased to some
predefined level may result in a poor filtering performance. This is so because the
difference between successive iterations may never decrease to that predefined

level, which results in infinite number of iterations, or the predefined iteration
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number may be higher than the iteration number where the error variance starts
increasing. In order to obtain a better performance, we propose to stop the algorithm

when the difference between successive iterations starts to increase.

It is observed that a further increase of the DFT length above a certain value does
not make a significant improvement to the performance of the algorithm. Moreover,
increasing the DFT length decreases the speed of the algorithm. Therefore, the DFT
length should be set to a value after which its increase does not improve the
performance very much. For the signal used in the simulations the DFT length is set

to 512.

For the noise free case, it is observed that the increase in the window length
increases the error variance, and after a certain value the error variance stays
approximately constant. However, when a signal contains AWGN, the increase in
the window length up to the worst-case length decreases the error variance, and

when the window length exceeds that value the error variance starts to increase.

Window length selection is important for the performance of the algorithm. Fast
varying signals can not be recovered using a long window; on the other hand, short
windows degrade the performance of the TFPF method. The maximum window

length will be equal to 1 when f, =0.4f and ¢=0.2, which means that if the

maximum frequency of the desired signal is higher than 0.4 f, the estimated signal

will be biased. Moreover, when¢ = 0.05 the maximum frequency of the desired

signal should not exceed 0.2 f, in order to obtain an unbiased signal estimate. When

short window lengths have to be used, the iterative algorithm should be preferred.
To recover the signal the algorithm needs too much iterations as the window length
is shortened. The number of iterations can be decreased using a signal and time
dependent window length for a signal which stays a little time at high frequencies

and most of the time at low frequencies.

When the window length is decreased aliasing starts; but since the TFPF algorithm

uses an analytic FM signal to encode the input signal, it is known that only one part
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(positive frequency part) of the time-frequency plane is used; so aliasing is not a

problem when the window length is small.

Noting that the analytic FM signal is used to decode the input signal, there is no
need to over sample the input signal by a factor of 2 in order to avoid aliasing in
pDWVD. Nyquist sampling is sufficient in the TFPF method, but because of the
window length selection problem, the method will give unsatisfactory results for the

signals whose maximum frequency exceeds 0.4f, (or 0.2f, depending on ¢).

Also, there is no cross-term elimination problem in this application because of the
encoding procedure. Since there is only one frequency term after encoding, the

cross-terms do not appear.

The TFPF filtering algorithm is successful, as seen from the results, for signal
enhancement problem. Especially the performance of the iterative algorithm is good

at SNR levels down to -9 dB.

It is worth adding that this method can be used as a pre-processing method; because
the noise can be removed from the input signal using this method. However, when
the problem is filtering one signal from a sum of signals in AWGN, this method can

not solve the problem.
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CHAPTER 4

SUB-OPTIMAL TIME-VARYING FILTERING USING

WIGNER-VILLE DISTRIBUTION

Filtering of a desired signal from noisy observations is one of the most important
problems in many signal processing applications. There are different approaches
proposed to solve the filtering problem for different kinds of signals and application
areas. Even though the simplest solution is the use of a classical filter whose pass-
band covers the frequency band of the desired signal, it is not always the optimum
solution. Although, for stationary signals a better solution is the use of a Wiener
Filter which produces the best signal estimate in the minimum mean square error
sense, for nonstationary signals adaptive filtering methods, which are based on
least-mean-squares, recursive-least-mean-squares or Kalman Filter, are preferable.
However, in [7], it is claimed that adaptive filtering methods are not sufficient for
nonstationary signals whose frequency content changes quickly with time.
Additionally, these adaptive methods need signal modeling for optimal
performance, but when the structure of the desired signal is unknown, they will give

suboptimal results and even in some cases wrong results.

In this chapter a filtering algorithm based on time-varying Wiener Filter which is
proposed for nonstationary signals with rapidly varying frequency content is
introduced. In the first two sections the derivations of the time-varying Wiener

Filter and its time-frequency formulation using WVD are given; the next section
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deals with the instantaneous frequency (IF) estimation problem. In the last section
the proposed filtering algorithm is given, and the performance of the proposed filter

is investigated.
4.1 TIME-VARYING WIENER FILTER

Consider the noisy observed signal
x(t) = s(¢) + n(¢) (4-1)

where s(2) i1s a zero-mean, nonstationary real or complex random process with
known correlation function 7, (¢,t) = E {s(t)s*(t') }, n(t) is an additive zero-mean
nonstationary real or complex random noise with known correlation function

r(tt)=E {n(t)n*(t') }; s(t) and n(¢) are uncorrelated processes. Let H be a linear

time-varying system with kernel %(z,¢'), then the estimated signal $(¢) is obtained

using

§(t) = (HxXe) = [ (e, )x(¢ e (4-2)

The estimation error is
e(t) =s(t)—5(t). (4-3)

The performance measure is the mean-square error as in the Wiener Filter
derivation for stationary random processes; and as it is mentioned in [9], the
expected error energy is minimized when the error is orthogonal to the observed

noisy signal:

E{(S(’)_(Hx)(’)) x*(t—z-)}:()_ (4-4)

Inserting (4-1) in (4-4) we obtain
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E{s(t)(s" () +n" (6)) |= E{(H(s + n)®)) (s" (1) +n" (1)) }= 0. (4-5)

Using the fact that signal and noise are uncorrelated and defining a correlation
operator R which is a self-adjoint, positive (semi)-definite linear operator whose

kernel is the correlation function [8], (4-5) can be reduced to
R —HR —-HR =0. (4-6)
From (4-6) the time-varying linear system operator is obtained with minimal rank as
H=R (R, +R)" (4-7)

where (R, +R,)™" is the pseudo inverse of (R, +R,).

4.2 TIME-FREQUENCY FORMULATION OF THE TIME
VARYING WIENER FILTER

The time-varying filtering equation (4-2) is used with a little modification, as is

proposed in [6] and [9]. The modified filtering equation is

§()=[ht+7/2,t—7/2x(t +7)d7 . (4-8)

The reason for the modification is: when there is no noise on the signal the ordinary
filtering equation produces the signal with an amplitude variation and phase
deviation; on the other hand, the modified filtering equation eliminates the phase

deviation [9].

The time-varying transfer function of a linear time-varying operator H with kernel

h(t+7/2,t—7/2) is defined as (which is actually known as the Weyl Symbol (WS)
[8])

LH(t,a))=J.h(t+z‘/2,t—z‘/2)exp(—ja)r)dr (4-9)
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The kernel can be obtained by inverse FT

h(t+r/2,t—r/2)=2L.[LH(t,a))exp(ja)r)da) (4-10)
Vs

Inserting (4-10) into (4-8) the following filtering equation is obtained

(1) = i j L, (t,0) X (w)exp(jot)dw (4-11)

where X (w) is the FT of the observed signal x(z). As seen from (4-11) the time-
varying filtering operation is equivalent to inverse FT of the product of the time-
varying filter transfer function with the Fourier Transform of the observed signal.

However, in practical applications the observation time is limited and pseudo forms

of (4-8) and (4-11)

§() = [ht+7/2,t=7/2) x(t+ 1) w(r)dr

| (4-12)
(1) = . j L, (t,®) STFT.(t,0) do

are used, where w(¢) is the window function and STFT (¢,) is the Short Time

Fourier Transform of the observed signal x(¢).

As seen from (4-12) to get the estimated signal the STFT of the observed signal and
the WS, which is actually the time-varying transfer function, of the linear time-
varying filter are needed. It is easy to compute the STFT of the observed signal; and
for optimal filtering the WS of the filter is obtained from the time-varying Wiener

Filter derivation.

Recall that the time-varying Wiener Filter is obtained from (4-6) or equivalently
from (4-7). Using these equations the time-frequency formulation of the Wiener

Filter is proposed to be [8]
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W, (o)
W, (t,0)+W,(t,0)

L, (to)~ (4-13)

As seen from (4-13) to get the time-varying transfer function, the WVD of the
desired signal is needed which is unknown. Therefore, for practical use (4-13) can

be simplified as

I, (t,w)eR,

0, (t,w)eR, (4-14)

L,(t,w)= {
where R_ is the region of support of the signal, that is to say R_ is the time-
frequency region where the signal is present. (4-14) follows from the fact that on
the time-frequency locations where the signal is dominant L, is approximately 1,
and on the time-frequency locations where the noise is dominant L, is
approximately 0. So, to getL,,, the region of support of the noisy signal has to be
determined which is equivalent to the instantaneous frequency (IF) estimation.
Hence the problem of L, determination can be solved using the solutions proposed

for IF estimation of noisy signals using WVD.

To use in implementations (4-12) can be discretized as [9]

$[n1=> L,[n,k] STFT [n,k] (4-15)

4.3 IF ESTIMATION OF NOISY SIGNALS USING WVD

There are different publications in literature which are concerned with the problem
of IF estimation from noisy observations using WVD [1], [3], [4], [5] and [6]. The
main approach to obtain the IF estimates from WVD is known as the peak detection
method in which the peak values over the frequency are detected for every time

sample. In the following, the approach proposed in [1] is examined.
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In [1] it is claimed that the lag window length is one of the most important
parameters in optimizing the pseudo WVD of the discrete time noisy signals. In
other words, it is claimed that by use of the appropriate lag window length, the
optimum WVD can be obtained for noisy signals. However, in order to get the
appropriate window length the unknown derivatives of the WVD are needed to get
the bias value; and in practical applications it is useless. So, a simple adaptive
algorithm for the efficient time-frequency representation of noisy signals which
uses only the noisy estimate of WVD and the analytical formula for the variance of

this estimate is proposed.

In Section 4.3.1 the derivation of the optimum window length is given; and in
Section 4.3.2 the proposed algorithm is presented, and the performance of the

algorithm is evaluated.

4.3.1 Optimum Window Length for Pseudo DTWVD

The DTWVD of a discrete time noisy signal x[n] = f[n]+v[n] is defined as

W_[n,0]= fo[n +k]x [n—k]exp(—j26k) (4-16)

k=—N/2

fIn] 1s assumed to be deterministic and the noise is complex-valued white,

vin]=v,[n]+ jv,[n] with

Ev[n]}=0
E{V[nv [m]}= o’ 8[n—m] (4-17)
E{v,[n]v,[n,]}=0
Let AW, [n,0]=W [n,0]-W ,[n,0]be the estimation error; then the bias of the
estimate is equal to E{AW _[n,0]}=0c.. The variance of the DTWVD

isol = E{W_[n,01W [n,01y—E{W_[n,0] E{W_[n,0]}. It has two components

41



ol = O'_/%v +ol (4-18)

XX

where o2 = o k:Nz/H [f (k) +|f(n—k)|" and o2 = No?.

k=—-N/2

As seen from the obtained results the bias is a constant for every (n,6) pair for the
unwindowed DTWVD and only depends on the noise; and the variance goes to

infinity as N goes to infinity.

When a window is used in the computation of the DTWVD (pseudo DTWVD) the

following results are obtained for the bias and variance
W _[n,0;N]= Zf}w w(k) w(=k) x(n+ k) x" (n—k)exp(-j26k) (4-19)
E{W [n,0]} =W ,[n,01%, F,(20) + o, w*(0) (4-20)

where F (6) is the FT of the symmetric window w,(k)=w(k)w(=k); and *,

denotes the convolution with respect to 4.

As seen from (4-20) the bias term has two components; one of them depends on the
signal and the other term depends on the noise. It is assumed that w(0) does not
depend on N, the window length, so the noise dependent term is omitted in the

following analysis. Using the Taylor series expansion for W _[n, 0]

1 0°W;[n,0]

Wyl O1% £, (20) =Wy [n, 0]+ 0 —— 7—m;

(4-21)

where m, =2l [o°F,0)a0.
4 -

So, the signal dependent bias term is obtained as
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bias ;,,.,[n,0; N]= (4-22)

For a nonrectangular window the two components of the variance in more general

form are
o, =0, ZW 1w =K1 [/Tn+ K1+ /T = K1) (4-23)
and
ol =0t 3wk @-24)

The optimal window length is obtained by minimizing the mean squared error

defined by
e’[n,0;N1= bias " [n,0;N]+ 07, (4-25)

It is obtained for FM signal with slowly varying amplitude A4[#n] as in [1]

4

o'W, [n,H])2

A 00
N = 4-26
o 302 (24°[n]+ o)) (4-26)

As seen from the formula for optimal window length (4-26), the second derivative
of the DWVD of the signal only part is needed which can not be obtained in
practical applications; hence the optimal window length can not be computed in

practical applications.
4.3.2 Two Window Length Algorithm

As it is shown in Section 4.3.1 to suppress the variance of the DWVD a window

must be used in computations whose length depends on the signal and the second
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derivative of the DWVD of the signal, the computation of which is not possible in
practical applications where only the noisy observations of the signal are available.
Hence an algorithm which computes the DWVD of the noisy signal for two
different window lengths and makes a selection which depends on the differences
between the DWVDs and the estimated variance is proposed in [1]. Actually the
proposed algorithm uses M-many window lengths to find the one which is as close
as possible to the optimal window length; however, in practical applications the use

of two window lengths is sufficient.

The general form of the algorithm which uses M-many windows can be

summarized as follows:

e Define a dyadic set N = {Ng | Ny = Ng.1/2, s = 1,2,3, ...M}. Compute the
DWVD for all N to obtain W_[n,60; N ]

e The optimal window length N [n,0] for every [n,0] is determined by the

largests, s =1,2, ... J, when
|Wxx[n’e;Ns]_Wxx[n’g;NsH” S (K+AK)(O-xx(Ns)+O-xx(Ns+l))

is still satisfied.
It is shown that for the FM signal with slowly varying amplitude A4[n], the variance
1s
o =E,0cl(24°[n]+0o)) (4-27)
As seen from (4-27) for variance computation the amplitude variation of the signal
and the variance of the noise with the window energy are needed. The window
energy can be computed from the type of the window used in the pseudo DWVD

computation, but the other parameters should be estimated. For high noise case the

following estimation can be used [1]:
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o2 (2A[n]+02) = (4 +af)=%{i|x[m]|2} (4-28)

In the two window length algorithm, the window lengths are chosen such that
N1<<N2. For N1 the variance of the DWVD is small and for N2 the bias of the
DWVD is small. So, depending on the difference between the DWVDs the small
variance (N1) or the small bias (N2) is favored. The algorithm chooses the small
window length for the regions of noise only part and chooses the large window

length for the regions of signal part.

If there is no noise, and the difference between the DWVDs of consecutive window
lengths is not equal to zero, the algorithm chooses the larger window length to

achieve higher concentration.

Figure 4-1 shows the IF estimation algorithm steps. To get the IF estimates from the
pseudo DWVD, the peak detection algorithm is used. The peak values along the
frequency axis for every time sample are detected. The resultant noise on the IF
estimate is impulsive; hence to reduce the effect of the impulsive noise 1-D median
filter is applied to the IF estimates. Median filtering is a nonlinear technique that
applies a sliding window to a sequence. The median filter replaces the center value

in the window with the median value of all the points within the window.

1xl
(O r—pn  otf——pn  ost——pln  Out————p((1 )
hxh 1% 1xN

Noisy Signal Estimated IF
pDVWVD Peak Detection Median Filter

Figure 4-1 The IF estimation algorithm steps.
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4.3.2.1 Simulation Results of the Algorithm

The simulations are done for a linear FM signal for two different SNR levels. The
window lengths are N1 = 64 and N2 = 512. The obtained IF estimates before and

after the median filtering are given.

4.3.2.1.1 Linear FM Signal

The test signal is x[n] = exp(j1600(nT —0.05)*) + 4 g[n]

where 7'is the sampling period which is 1/2048 sec; g[n]is the additive white

Gaussian noise, and A is the amplitude of the noise which is used to adjust the

SNR. The number of signal samples is 2048.

Figure 4-2 shows the IF of the linear FM signal.
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Figure 4-2 IF of the test signal.
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Figure 4-3 shows the output of the two window algorithm when the SNR is set to
-5 dB. The IF estimate obtained using peak detection before median filtering is
shown in Figure 4-4. As seen from the figure the noise on the estimated IF is

impulsive.

400w

a00

: 1000
0 1500

_— 2000
frequency 2500 samples

Figure 4-3 Pseudo DWVD with two window lengths, SNR = -5 dB.

The obtained IF estimate after median filtering are shown in Figure 4-5. When
Figure 4-4 and Figure 4-5 are compared it is seen that the median filter smoothes
the estimated IF and suppresses the noise. The estimates at the beginning and at the
end of the signal are not satisfactory; this is because of the window. At these points
the window does not cover the signal completely; the signal sinks in noise on the

time-frequency plane and can not be detected using peak detection.
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Figure 4-4 The original IF (red) and the IF estimate (blue) obtained using peak
detection algorithm before median filtering, SNR = -5 dB.
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Figure 4-5 The original IF (red) and the IF estimate (blue) obtained using peak
detection after median filtering, SNR = -5 dB.
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The obtained results when SNR is -10 dB are shown in Figure 4-6 and Figure 4-7.

The results indicate that the method is not a satisfactory when SNR is decreased to

-10 dB.
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Figure 4-6 The original IF (red) and the IF estimate (blue) obtained using peak
detection algorithm before median filtering, SNR =-10 dB.
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Figure 4-7 The original IF (red) and the IF estimate (blue) obtained using peak
detection after median filtering, SNR =-10 dB.
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4.3.3 IF Estimation Using Support Vector Machines

As it is shown in Section 4.3.2 the method of IF estimation from the output of the
two window length algorithm using peak detection performs well down to SNR
levels as low as -5 dB; but it does not give satisfactory results when SNR is
decreased to -10 dB level. The performance of the algorithm can be improved using

Support Vector Machines (SVM) which is actually a pattern recognition method.

4.3.3.1 Support Vector Machines Method

“An SVM is a general algorithm based on guaranteed risk bounds of statistical
learning theory, i.e., the so-called structural risk minimization principle. It is a
learning machine capable of implementing a set of functions that approximate best
the supervisor’s response with an expected risk bounded by the sum of the empirical
risk and the Vapnik-Chervonenkis (VC) confidence. The latter is a bound on the
generalization ability of the learning machine that depends on the so-called VC
dimension of the set of functions implemented by the machine. SVMs can be used to
solve pattern recognition, regression estimation and density estimation problems.
SVMs have found numerous applications such as in optical character recognition
object detection, face verification, text categorization, engine knock detection,

bioinformatics, and database marketing and so on. ’[14].

SVMs are formed using a training data set. The training set contains the correct and
false data vectors; from these vectors data pairs are formed. Each data pair contains
one training vector and a constant indicating the training vector’s class (“+1”
indicates correct class, and “-1” indicates false class). Simply, SVM is a match filter
which matches to the correct training vectors as much as possible and mismatches
to the false training vectors as much as possible. To find such an SVM a quadratic
equation must be solved. Depending on the training set which must resemble the
signal types in the real application area, the SVM can be classified as separable,

linearly nonseparable and nonlinear SVMs.
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In the following the SVM for linearly nonseparable case is explained. The details
about the formulations for linear separable, nonseparable and nonlinear cases can be

found in [12], [13] and [14].

Let {xi, yi} for i=12,..,L are given wherex,’s are the training vectors and

y; € {— 1, 1} depends on the class of the training vector.
There exists a vector w which satisfies
wix, +b>1-¢,  for y, =1 (4-29)
and
wx, +b<-1+¢,  for y, =-1 (4-30)

where b is the bias term; &, is a nonnegative slack variable for i=12,..,L; w is

known as the support vector. We are trying to find the optimal hyperplane which
maximizes the margin between itself and the vectors of two classes in the training
set, in other words, which is equidistant from both classes. The so called

generalized optimal hyperplane is determined by the vector w, that minimizes the

functional

J(W,b,8)=WTW+C(i€i)k (4-31)

i=l1
subject to

v, (W', +b)—1+&,>0

4-32
£ 20 (+32)

where k is a nonnegative integer. C is a constant chosen by the user that defines
the cost of constraint violations. For larger values of C the assigned penalty on the

errors will be higher.
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k 1is chosen to be 1 to get advantage that neither &, nor their Lagrange multipliers

appear in the Wolfe dual problem.

The Lagrangian of the optimization problem is given by

L L L
L(w,b,a,e,p)=w'wW+CY & - > a{y,(W'x, +b)+& -1} = we, (4-33)

i=1 i=1 i=l
where 4 ’s and «,’s are the nonnegative Lagrange multipliers.

To find w the Lagrange multipliers those maximize the Wolfe dual problem

1
Wa)=1"a- Z(ITH(), where H;,=yy, (xirxj) (4-34)

L
subjectto 0< e, <C fori=1.2,..,L and Zaiyi = 0 have to be found.

i=1

W, 1s obtained as

L
W, :%Zai,oyixi (4_35)
i=1
The bias term b, is obtained as
1 L
b, :EZ(yi—Zyjajx;xj) (4-36)
iel j=1

where I ={i:0< ¢, <C};

1 | denotes the cardinality of the set /.

4.3.3.1.1 The Proposed Algorithm

Let us say we have an image of dimensions N; x N, (WVD of the test data), and a

mask matrix which has the same dimension. The image contains the auto-term and
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cross-term regions. The entries of the mask matrix are £1. Let W be the image
matrix, and M be the mask matrix. If Wy, is an element of the auto-term region,
then M, is equal to 1; if Wy, is not an element of the auto-term region, then My, is
equal to -1. The training vectors are formed using a KxK sub-window. By moving
the sub-window over the image, L=K* many values are obtained. By putting the

columns of the sub-window one after another, the training vectors x,'s, are formed
for i = (n-1)*N,+m . The y, values are obtained from M, for i = (n-1)*N,+m.
Then using (4-34) the o values are obtained. w, is obtained from (4-35), and b, is

obtained from (4-36). The equations are solved using Matlab® and its Optimization

Toolbox.

After the support vector w, and the bias term b, are obtained, it is applied to the

output of the two window algorithm for each time-frequency point; and the ones
which passes the threshold are accepted as signal region, and the ones which can
not pass the threshold are accepted as noise region and masked out to obtain a clean
time-frequency plane. There is one point to be careful about the bias value: it has to
be updated depending on the signal energy, because the support vector is trained
using a signal with unity amplitude. Then peak detection is applied to the output of
the SVM method. Figure 4-8 shows the IF estimation algorithm steps with the
SVM method.
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Noisy Signal Estimated IF
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Figure 4-8 The IF estimation algorithm steps with SVM
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4.3.3.2 Simulation Results of the Proposed Algorithm

The simulations are done for a linear FM signal for two different SNR levels. The
window lengths are N1 = 64 and N2 = 512. The obtained IF estimates before and

after median filtering are given.

4.3.3.2.1 Linear FM Signal

The same signal and the noise are used in the simulation as in Section 4.3.2.1.1.

For SNR = -5 dB case the obtained IF estimate after SVM method without median
filter is shown in Figure 4-9. As seen form the figure for SNR = -5 dB this method
does not need median filtering, and performs better compared to the method without

SVM.
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Figure 4-9 The original IF (red) and the IF estimate (blue) obtained after SVM
method before median filtering, SNR = -5 dB.
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For SNR = -10 dB case the obtained IF estimate after SVM method without median
filter is shown in Figure 4-10. As seen from the figure the obtained IF estimates at

SNR = -10 dB are comparable with the IF estimates obtained without SVM at
SNR =-5 dB.

Figure 4-11 shows the IF estimates with median filtering after the SVM method.
When the obtained results from the method without SVM and from the method with
SVM are compared, it is seen that the SVM method makes a 5 dB improvement in

IF estimation.

250 F------ S e g o T

150" EF""' ' ==

frequency

100 |

Il

LML O L I ) L S
200 400 600 800 1000 1200 1400 1600 1800 2000
samples

'_l"l i.ll

Figure 4-10 The original IF (red) and the IF estimate (blue) obtained after SVM
method before median filtering, SNR =-10 dB.
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Figure 4-11 The original IF (red) and the IF estimate (blue) obtained after SVM
method after median filtering, SNR =-10 dB.

4.4 THE FILTERING ALGORITHM

There are two main steps in the proposed time-varying filtering algorithm. The first
step concerns the time-frequency mask, L, [n,k], computation and the second step
concerns the reconstruction of the estimated signal from the time-frequency plane.

Figure 4-12 shows the time-varying filtering algorithm steps.
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Figure 4-12 The time-varying filtering algorithm steps.
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L,[n,k] is obtained from the IF estimate of the noisy signal which is computed as

explained in Section 4.3. The SVM method is used to improve the performance of
the IF estimation part of the algorithm. However, the SVM method does not give
the IF estimate for some time samples on which the noise is dominant. To improve
the filtering performance the IF estimates for these time samples are obtained using
linear interpolation. The performance of the algorithm with and without the SVM
method and interpolation are investigated in Section 4.4.1. The bias value of the
SVM method is found by trial and error and is not changed in the simulations for

different SNR values.

Estimated signal is reconstructed using equation (4-15). Even if there is no noise on
the observed signal and the IF of the signal is perfectly known, the signal can not be
perfectly reconstructed since the estimated signal is amplitude modulated, the
reason of which is explained in [9]. (Recall that WVD concentrates signal energy at
and around the IF on the time-frequency plane. At a given time instant the
maximum energy is found on the IF frequency but this does not mean that the
energy level at other frequencies are zero. Additionally, the energy level on the IF
frequency changes with time which means that for different time samples the
maximum value is different; so for a given time instant if the signal energy only at
the IF frequency are summed, this will cause amplitude modulation. In fact to
recover the signal at that time instant the signal energy over the entire frequency
axis must be summed. To decrease this effect the time-frequency mask is widen
around the IF frequency in positive and negative directions by 5 frequency samples;
since most of the signal energy is concentrated around the IF on the time-frequency
plane. Actually the number of frequency samples depends on the length and the
type of the window used in the STFT computation. In this application a rectangular
window of length 64 is used; the DFT length is 512 which results in 5 frequency

samples.)
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4.4.1 The Simulation Results of the Proposed Time-Varying
Filtering Algorithm

The sinusoidal FM signal is used in the simulations which is obtained using the

following formulas

IF=5in[270.0012207 n]

IFc = (as — bs)(IF — min(IF))/(max({F) — min(IF)) + bs

x[n] =exp( j27k, Zn:IFc[m]) + Ag[n]

m=0

where as =0.4, bs =0.1 and k, =0.2. g[n] is the additive white Gaussian noise;

A 1s the amplitude of the noise which is used to adjust the SNR. The simulations are

done at SNR =-5 dB and SNR =-10 dB.

In the first simulation the signal is estimated from the observed signal without noise
and with apriori IF information. The time-frequency mask is widen around the IF in

positive and negative directions by 5 frequency samples.

Figure 4-13 shows first 850 samples of the output of the proposed algorithm when
there is no noise on the signal. As it is described in Section 4.4 the signal is
recovered with an amplitude modulation on it, but the frequency information is
preserved. When the estimation error is defined as the difference between the

estimated signal and the original signal, the output SNR with known IF is 3.8 dB.

In the second simulation the SNR = -5 dB case is tested. Figure 4-14 shows the
output of the filter when the IF of the signal is known apriori. Figure 4-15 shows the
output of the filter when the IF of the signal is estimated using the two window
algorithm, peak detection and median filtering. As seen from the figure, the result is
acceptable when compared with the IF known case. The output SNR with IF

estimation is 2.6 dB.
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The ariginal FM signal (blue), and the estimated signal (red)
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Figure 4-13 The original FM signal (blue), and the estimated signal (red).

The original signal {red) and the estimated signal (blue) with known IF, SNR = -5 dB
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Figure 4-14 The original signal (red) and the estimated signal (blue) with known IF,
SNR =-5 dB.

The original signal {red) and the estimated signal {blue); IF is estimated without 5%k, SKNR = -5 dB
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Figure 4-15 The original signal (red) and the estimated signal (blue); IF is estimated
without SVM; SNR = -5 dB.
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Figure 4-16 shows the pDWVD after SVM Method is applied. As seen from the
figure, a cleaner time-frequency plane is obtained by the help of the SVM Method;
however there are gaps along the time axis, which are the high noise influence
points and eliminated by SVM Method; so for these time samples IF estimates are

not computed.
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Figure 4-16 pDWVD after SVM method is applied, SNR = -5 dB.

When IF estimate obtained from SVM method is directly applied, the filter output is
shown in Figure 4-17. As seen from the figure for some time durations the filter
output is zero; these points are the eliminated points by SVM Method. Although
these points are eliminated by SVM Method this does not mean that the signal is
absent for these points; because the duration of the gaps is smaller compared to the
window widths used in two-window algorithm; so performance of the algorithm can
be improved if IF estimates for those time samples are obtained. This is done by

linear interpolation; that is to say the jumps in time samples for the IF estimates are
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detected and the IF estimates are calculated using linear interpolation for those time
duration. The obtained result using linear interpolation is shown in Figure 4-18; as
seen from the figure those time gaps are filled. The output SNR with IF estimation
using SVM Method is 2.9 dB and the output SNR with IF estimation using SVM
Method with linear interpolation is 3.6 dB. When the obtained SNR values are
compared it is seen that the results of IF known case and IF estimated using SVM

Method with linear interpolation case are nearly equal.
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Figure 4-17 The original signal (red) and the estimated signal (blue); IF is estimated
using SVM; SNR = -5 dB.

The original signal (red) and the estimated signal (blue); IF is estimated using SYM with linear interpolation; SNR = -5 dB
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Figure 4-18 The original signal (red) and the estimated signal (blue); IF is estimated
using SVM with linear interpolation; SNR = -5 dB.
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In the third simulation, SNR = -10 dB case is tested. Figure 4-19 shows the IF
estimate obtained from two window algorithm (blue signal), and after median filter
(red signal) without SVM method. The green signal is IF of the signal, as seen from
the figure and as it is shown in Section 4.3.2.1.1 the algorithm does not work for

SNR =-10 dB case.
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Figure 4-19 IF estimate obtained without SVM (blue); after median filter (red);
original IF (green); SNR =-10 dB.

Figure 4-20 shows the output of the filter when the IF of the signal is known apriori.
The output SNR of the IF known case is 3.3 dB.
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The original signal (red) and the estimated signal (blue) with known IF, SNR =-10 dB
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Figure 4-20 The original signal (red) and the estimated signal (blue) with known IF,
SNR =-10 dB.

Figure 4-21 shows the pDWVD after SVM Method is applied as seen from the
figure a cleaner time-frequency plane is obtained; however there are more time gaps
compared to SNR= -5 dB case. This is also seen from Figure 4-22 which shows the
filter output when IF estimate obtained from SVM Method is directly used in mask
computation. The output SNR of the IF estimated using SVM Method case is
1.9 dB. Figure 4-23 shows the output of the filter when the missing IF estimates are
obtained using linear interpolation; as seen from the figure the time gaps are filled
after linear interpolation which improves performance of the algorithm. The output
SNR of the IF estimated using SVM Method with linear interpolation case is
2.6 dB. When the output SNR obtained from IF estimated using SVM Method with
linear interpolation case is compared with the output SNR obtained from IF known

case, it is seen that the difference is less than 1 dB.
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Figure 4-21 pDWVD after SVM Method is applied, SNR = -10 dB.

The original signal (red) and the estimated signal (blue); IF is estimated using S%M; SMR = -10 dB
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Figure 4-22 The original signal (red) and the estimated signal (blue); IF is estimated
using SVM; SNR =-10 dB.
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The original signal (red) and the estimated signal (blug); IF is estimated using S%M with linear interpolation; SNR =-10 dB
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Figure 4-23 The original signal (red) and the estimated signal (blue); IF is estimated
using SVM with linear interpolation; SNR = -10 dB.

4.5 CONCLUSION

In this chapter the derivations of the time-varying Wiener Filter and its time-
frequency formulation using WVD are given. According to the derived formulas, it
is seen that to perform filtering operation, time-varying transfer function of the
linear time-varying filtering operator and the STFT of the noisy signal have to be
computed. The computation of the latter is simple; however, the determination of
the time-varying transfer function is crucial, because if it is incorrectly determined,
the desired signal can not be filtered from noise. It is shown that the time-varying
transfer function is approximately given by the region of support of the desired
signal; hence the determination of time-varying transfer function is equivalent to the
determination of region of support of the signal, which is equivalent to the
determination of IF of the signal. (Recall that WVD distribution concentrates the

signal energy at and around the IF of the signal on the time-frequency plane.)

To determine the IF of the signal, the method which is proposed in [1] is
investigated. It is shown that the method gives satisfactory results at SNR levels

down to -5 dB. To improve the performance of the method, the use of SVM is
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proposed. It is shown that with SVM without any need of median filtering, the
performance of the algorithm is better at SNR levels down to -5 dB. Furthermore, it
is shown that with SVM and median filtering the algorithm gives satisfactory results

at SNR levels down to -10 dB.

The main disadvantage of SVM method is that for some time samples it makes
incorrect decisions and does not give the IF estimates. For these time samples the
output of the filter is zero which degrades the performance of the algorithm. To
overcome this disadvantage the missing IF estimates are obtained by linear
interpolation. To do so the jumps in time samples for IF estimates are detected and
these time gaps are filled by a linear curve. This improves the performance of the
algorithm, and it is shown that at SNR levels down to -5 dB the output of this

algorithm is comparable with the output of the filter with apriori known IF.

Another disadvantage of the SVM method is the bias value determination. In the
training phase of the method a bias value is computed for optimum decision;
however, this value depends on the training signal energy. When the signal energy
changes, the bias value has to be updated. In this work, a bias value is set by trial

and error, which degrades the decision performance.

The use of SVM method can improve the filtering performance for mono-
component signals. However, the SVM method increases the computational cost;
since for every time-frequency point a decision has to be made. The performance of
the algorithm is not tested for multi-component signals, since the use of peak
detection allows the detection of the stronger signal. However, if the number of
signal components is known, peak detection can also be used for multi-component

signals.
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CHAPTER 5

COMPARISON OF METHODS

The performances of TFPF method, SVM based method and classical zero-phase

low-pass filter are compared using real, frequency modulated test signals. The

performances are evaluated by comparing the output SNR values of the methods

under the same input SNR.

Let the continuous time test signal be of the form
s(1) = cos(4(2))

The instantaneous frequency (IF) of s(¢) is given by
1 d
() =——0o(t
1@ o i é(1)
Consider an FM signal

s(t) =cos(2nf .t + 2ﬂkfjm(t')dt')

Where &, is the frequency sensitivity; the IF of the FM signal is

Ji@©) = fo+k,m)
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The frequency deviation Af is defined as
Af =k, max(m(?)) (5-5)

which represents the maximum deviation of the IF of the FM signal from the carrier

frequency f.. The ratio of the frequency deviation to the bandwidth B, of m(t) is

defined as the modulation index £ which is given by

The bandwidth of an FM is signal is infinite, since it contains an infinite number of
side frequencies which are separated from the carrier frequency by integer multiples
of B, in positive and negative directions. However the side frequencies that are
separated from the carrier frequency by an amount greater than the total frequency
deviation decrease toward zero rapidly. So, the bandwidth of the signal is grater
than the frequency deviation but it is eventually limited. For large values of S
(compared to 1) the bandwidth of s(z) (the FM signal) approaches and is slightly
greater than the total frequency deviation 2Af ; and this case is known as wide-band
FM. On the other hand, for small values of f (compared to 1), the spectrum of s(z)

1s effectively limited to the band f, = B, , and bandwidth of s(¢) approaches 2B, ;

and this case is known as narrow-band FM. So, an approximate formula for the

effective bandwidth of s(¢) can be defined as
B, =2(Af +B,) (5-7)
which is known as Carson’s rule.

In the following simulations discrete time test signals are used which are obtained
from the continuous time signal which is contained in additive zero-mean white

Gaussian noise by sampling the signal with sampling period 7.
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The discrete time test signal is of the form
xfn]= sfn]+vn] (5-8)

where S[I’l] is the desired signal with average power P, and v[n] is the additive

zero-mean white Gaussian noise with variance o, the SNR at the filter input is
SNR,=10log,,(P, /5?) (5-9)

The filtered signal is x[n] and the error signal is e[n]=s[n]-[n] with variance

o, the SNR at the filter output is

SNR,=10log,,(P,/c?) (5-10)

5.1 SIMULATION 1: Linear FM Signal, High Sampling Frequency

The continuous time noise free test signal is

c0s(0.005¢ +7.5*1077¢7) for 0<¢<4096sec
s(t) = (5-11)

0 otherwise

The effective bandwidth of the signal which is calculated using Carson’s Rule is
0.0018Hz. Figure 5-1 shows the magnitude spectrum of the noise free signal, which
is computed using Mathametica software. As seen from the figure, the calculated
effective bandwidth of the signal is a sufficient bandwidth approximation for this

signal.

It is assumed that the signal is observed only for the time duration 0 <¢<4096sec;

and sampled with sampling period 7= 1sec which is approximately 250 times the

Nyquist rate.
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Figure 5-1 Magnitude spectrum of the noise free signal.

The sampled test signal with additive zero-mean white Gaussian noise is of the

form
x[n]=2¢0s[0.0057 +7.5%10 7 n> |+ v[n] for n=0:4095 (5-12)
The variance of v[n] is adjusted such that SNR, = —5dB .

Figure 5-2 shows the output of the TFPF Method; the output SNR is approximately
12 dB. Figure 5-3 shows the output of the SVM based Method; the output SNR is
approximately 8 dB. Figure 5-4 shows the output of the zero-phase low-pass filter;
the output SNR is approximately 7 dB. When the output SNR values are compared
it is seen that TFPF Method performs better compared to the others methods for this

signal and sampling rate.
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Figure 5-2 The original signal (blue) and the output of the TFPF method (red),
SNR; =-5 dB.

The ariginal signal {blue) and the output of the SWM based method (red), SNRi= -5 dB
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Figure 5-3 The original signal (blue) and the output of the SVM based method
(red), SNR; = -5 dB.
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The original signal (blue) and the output of the classical zero-phase low-pass filter {red), SNRi= -5 dB
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Figure 5-4 The original signal (blue) and the output of the classical zero-phase low-
pass filter (red), SNR; = -5 dB.

5.2 SIMULATION 2: Linear FM Signal, Low Sampling Frequency

The continuous time noise free test signal is

c0s(0.01¢ +0.7754/ 4096¢*) for 0<1<2048sec
s(t) = (5-13)

0 otherwise

The effective bandwidth of the signal which is calculated using Carson’s Rule is
0.125Hz. Figure 5-5 shows the magnitude spectrum of the noise free signal, which
is computed using Mathametica software. As seen from the figure, the calculated
effective bandwidth of the signal is a sufficient bandwidth approximation for this

signal.
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Figure 5-5 Magnitude spectrum of the noise free signal.

It is assumed that the signal is observed only for the time duration 0 <7 < 2048sec;

and sampled with sampling period 7=1/4sec which is approximately 16 times the

Nyquist rate.

The sampled test signal with additive zero-mean white Gaussian noise is of the

form

x[n]:2cos 0'01n+ 0.7754 n’ +v[n]f0r n=0:8191 (5-14)
4 4096 *16

The variance of v[n] is adjusted such that SNR, = —5dB..

The maximum IF of the signal is 0.125Hz, and the worst case window length of the

TFPF method is 16.

Figure 5-6 shows the output of the TFPF method. The output SNR is 5 dB.
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The ariginal signal (hiue) and the autput of the TFPF method (red), SHRi=-5dB
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Figure 5-6 The original signal (blue) and the output of the TFPF method (red),
SNR; =-5 dB.

Figure 5-7 shows the output of the SVM based method. The output SNR is
approximately 4.9 dB.

The original zignal (hlue) and the output of the WM based Method (red), SMRi = -5 dB
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Figure 5-7 The original signal (blue) and the output of the SVM based Method
(red), SNR; = -5 dB.
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Figure 5-8 shows the output of the classical zero-phase low-pass filter. The output

SNR is approximately 5 dB.
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Figure 5-8 The original signal (blue) and the output of the classical zero-phase low-
pass filter (red), SNR; = -5 dB.

It is now assumed that the signal is observed only for the time duration

0<7r<2048sec; and sampled with sampling period 7=1Isec which is

approximately 4 times the Nyquist rate. For this simulation the sampling rate is
decreased to see the effects of the sampling rate on the performances of the

algorithms.

The sampled test signal with additive zero-mean white Gaussian noise is of the

form

x[n]= ZCOS|:0.01n +%nz} + v[n]for n=0:2047 (5-15)

The variance of v[n] is adjusted such that SNR, = —5dB .
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Notice that the sampling rate is lowered 4 times but it is still 4 times higher than the
Nyquist rate and still avoids aliasing. The same simulations are done for this lower
sampling rate. This time the worst case window length of TFPF method is reduced

to 4 from 16.

Figure 5-9 shows the output of the TFPF Method; the output SNR is approximately
-1.7 dB. Figure 5-10 shows the output of the SVM based method; the output SNR is
approximately 4.2 dB. Figure 5-11 shows the output of the zero-phase low-pass
filter; the output SNR is approximately 0 dB.

The original signal (blue) and the output of the TFPF method (red), SMNRi=-5dB
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Figure 5-9 The original signal (blue) and the output of the TFPF method (red),
SNR; =-5 dB.
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Figure 5-10 The original signal (blue) and the output of the SVM based Method
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The original signal (blue) and the output of the classical zero-phase low-pass filter (red), SNRi= -5 dB

(red), SNR; = -5 dB.
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Figure 5-11 The original signal (blue) and the output of the classical zero-phase

low-pass filter (red), SNR; = -5 dB.
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As seen from the obtained results when the sampling rate is decreased to 1/4 of the

original sampling rate, the output SNR of the TFPF Method decreases by
approximately 7 dB, the output of zero-phase low-pass filter decreases by
approximately 5 dB; on the other hand the output SNR of the SVM based method

does not change more than 1 dB.
5.3 SIMULATION 3: 4-FSK Signal

The continuous time noise free test signal is a 4-FSK signal which is of the form
P
s(t) =2 cos(2xf.t +a, 2af, )w(t — kT,) (5-16)
k=1

where P is the number of hops which is set to 8 in the simulation, f, is the carrier

C

frequency which is set to 0, 7, is the duration between hops which is set to 40ms,
f, 1s the minimum frequency change which is set to 100Hz, w(¢) is a rectangular

pulse of length 7, and a,’s are integers in between 1 and 4 for 4-FSK which are

setto1,2,1,4,4,3,1and 2.

The effective bandwidth of the signal which is calculated using Carson’s Rule is
approximately 400Hz. Figure 5-12 shows the magnitude spectrum of the noise free
signal, which is computed using Mathametica software. As seen from the figure, the
calculated effective bandwidth of the signal is a sufficient bandwidth approximation

for this signal.
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Figure 5-12 Magnitude spectrum of the noise free signal.

It is assumed that the signal is observed only for the time duration 0 <7 <320ms ;

and sampled with sampling period 7=50usec. The sampled test signal with

additive zero-mean white Gaussian noise is of the form
P
s[n]= 23" cos(a, 27f, 50e — 6 * m)w(50e — 6 *t — kT, )+ v[n]  for n=0:6399(5-17)
k=1

The variance of v[n] is adjusted such that SNR, = —5dB..

The maximum IF of the signal is 400Hz, and the worst case window length of the

TFPF method is 20.

Figure 5-13 shows the output of the TFPF method. The output SNR is 6.8 dB.
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The original signal (blu=) and the output of the TFPF method (red), SHRi = -5 dB
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Figure 5-13 The original signal (blue) and the output of the TFPF method (red),
SNR; =-5 dB.

Figure 5-14 shows the output of the SVM based method, the output SNR is 4.9 dB.
Figure 5-15 shows the output of the classical zero-phase low-pass filter. The output

SNR is 4.8 dB.
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Figure 5-14 The original signal (blue) and the output of the SVM based Method
(red), SNR; = -5 dB.
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5 The orginal signal (blue) and the output of the classical zero-phase low-pass fiter (red), SMEi = -5 dB
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Figure 5-15 The original signal (blue) and the output of the classical zero-phase
low-pass filter (red), SNR; = -5 dB.

It is now assumed that the signal is observed only for the time duration

0 <¢ <320ms ; and sampled with sampling period 7=100xsec .

The sampled test signal with additive zero-mean white Gaussian noise is of the

form

P
s[n]=2>"cos(a, 27f,100e — 6 * n)w(100e — 6 *t —kT,) +v[n] ~ for n=0:3199(5-18)
k=1
Notice that the sampling rate is lowered 2 times but it is still higher than the Nyquist
rate and still avoids aliasing. The same simulations are done for this lower sampling

rate. This time the worst case window length of TFPF method is reduced to 10 from

20.

Figure 5-16 shows the output of the TFPF method when the sampling rate is
reduced to half, the output SNR is 2.9 dB. Recall that the output SNR was 6.8 dB,

so, reducing sampling rate to half results in approximately 4 dB SNR decrease.
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The original signal (blue) and the output of the TFPF method (red), SHRi = -5 dB
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Figure 5-16 The original signal (blue) and the output of the TFPF method (red),
SNR; =-5 dB.

Figure 5-17 shows the output of the SVM based method, the output SNR is 4.15 dB.
Recall that the output SNR was 4.9 dB, so reducing the sampling rate does not

make a significant degradation in the performance of the SVM based method.

The ariginal signal (blue) and the output of the SYM based Method (red), SMRi= -5 dB
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Figure 5-17 The original signal (blue) and the output of the SVM based Method
(red), SNR; = -5 dB.
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Figure 5-18 shows the output of the classical zero-phase low-pass filter, the output
SNR is 2.5 dB. Recall that the output SNR was approximately 5 dB, so reducing the

sampling rate results in approximately 2.5 dB SNR decrease.

The original zignal (blue) and the output of the classical zero-phaze low-pazs fitter (rad), SMRi= -5 dB
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Figure 5-18 The original signal (blue) and the output of the classical zero-phase
low-pass filter (red), SNR; = -5 dB.

When the results for high and low sampling rates are compared it is seen that the
output SNR’s of the TFPF method and classical zero-phase low-pass filter decrease
when the sampling rate is decreased, on the other hand the decrease in the output
SNR of the SVM based method is negligible compared to the decrease in the output
SNR of the TFPF method and low-pass filter.

5.4 SIMULATION 4: Real World Data

In this simulation a real world data which is digitized echolocation pulse emitted by
the Large Brown Bat, Eptesicus Fuscus is used. There are 400 samples; the
sampling period was 7 microseconds. However, the signal was sampled at the

Nyquist rate and to avoid aliasing its rate is increased using interpolation. The
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signal has two simultaneous frequency components. Therefore, SVM based method
i1s modified in order to work with multi-component signals; and it is assumed that
the number of simultaneous frequency components is known beforehand. The test
signal is very clean and it can be assumed that it is noise free. Although, in the first
part of the simulation the signal is used directly, in the second part of the simulation
noise is added to the signal to see the performances of the algorithms under noisy

case. Figure 5-19 shows the test signal.

BECKMAN BAT PLULSE
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time

Figure 5-19 The bat signal.

Figure 5-20 shows the pDWVD of the test signal. Figure 5-21 shows the detected
auto-term regions (actually the IF of the test signal) after SVM method is applied;

as seen from the figure region of support of the signal is correctly detected.
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Figure 5-20 pDWVD of the test signal.
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Figure 5-21 Detected auto-term regions (orange) after SVM.
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Figure 5-22 shows the estimated and the original signals. Although, the region of
support information is correctly found, the signal is estimated with an amplitude

modulation as expected.

The original (blue) and the estimated (red) signals using S%M based method
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Figure 5-22 The original (blue) and the estimated (red) signals using SVM based
method.

Figure 5-23 shows the original signal and the estimated signal using TFPF method.
Although, the worst case window length is too small because of the low sampling
rate, the signal is correctly estimated since there is no noise on the signal. When the
performances of the algorithms are compared, it is seen that TFPF method is a
better choice when there is no noise on the signal, because SVM based method

produces amplitude modulated estimates, on the other hand, TFPF method not.

The ariginal (blue) and the estimated (red) signals using TFPF method
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Figure 5-23 The original (blue) and the estimated (red) signals using TFPF method.
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To compare the methods under noisy case, noise is added to the test signal; the SNR

is approximately -5 dB. Figure 5-24 shows the noisy bat signal.
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Figure 5-24 The noisy bat signal.

Figure 5-25 shows the pDWVD of the noisy test signal; and Figure 5-26 shows the
detected auto-term regions after SVM method. When compared to the noise free

case there are extra detected regions in the noisy case.
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Figure 5-25 pDWVD of the noisy test signal.
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Figure 5-26 Detected auto-term regions (orange) after SVM.
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Figure 5-27 shows the output of the SVM based method. The output SNR is
approximately 1.6 dB.

The original (blug) and the estimated (red) signals using SvM based method
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Figure 5-27 The original (blue) and the estimated (red) signals using SVM based
method.

Figure 5-28 shows the output of the TFPF method. The output SNR is
approximately -1dB.
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Figure 5-28 The original (blue) and the estimated (red) signals using TFPF method.

In the noisy case SVM based method performs better than the TFPF method.
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5.5 RESULTS

Although the simulations are done to determine the best filtering method over the
investigated methods, the results show that it can not be concluded that one of the
methods performs better than the others under all conditions. The best method is

determined by the sampling rate (not by the signal and/or the noise type).

It is observed that for high sampling rates the TFPF method performs better than the
other methods; and the performances of the SVM based method and the zero-phase
low-pass filter are close to each other. For low sampling rates the performance of
the SVM based method is the best, and the performance of the TFPF method is the

worst among them.

It is also observed that the performance of the TFPF method mainly depends on the
window length which is directly proportional to the sampling rate and inversely
proportional to the maximum frequency of the desired signal. When the maximum
frequency of the desired signal is kept constant and the sampling rate is increased,
the worst-case window length is increased improving the performance; on the other
hand, when the sampling rate is decreased, the worst-case window length is
decreased degrading the performance. It is seen that the output SNR is
approximately decreased by 4 dB when the sampling rate is halved. In addition, it is
observed that the performance of the SVM based method is less affected from the
sampling rate changes as compared to the performances of the TFPF method and
the zero-phase low-pass filter. (The decrease in the output SNR of the SVM based
method is less than 1 dB when the sampling rate is halved.)

In case of multi-component signals which contain simultaneous frequency
components, the SVM based method needs modification; on the other hand, the
TFPF method does not. Actually, the modification is simple and the peak searching
is applied to find the peaks where the number of peaks is equal to the number of the
simultaneous frequency components, instead of searching for a single peak. So, the

number of simultaneous frequency components must be known beforehand, or it
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must be detected. In this thesis it is assumed that it is known apriori. It is observed
that for the signals which contain many simultaneous frequency components, like
brain, heart or sound signals, the performance of the SVM based method degrades.
The main reasons for this performance degradation are the number of cross terms
which make the time-frequency plane complicated and the differences between the
energy levels of the frequency components. However, the SVM based method is not
proposed for such signals. Therefore, the real world data, the bat signal, used in the
simulation is chosen carefully to make a fair comparison. The bat signal contains
only two simultaneous frequency components, it is almost noise free and the
frequency components are continuous, i.e., there are no gaps. The obtained results

are consistent with the results obtained from the test signals.
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CHAPTER 6

CONCLUSIONS

The main interest of this thesis is on the time-frequency filtering of nonstationary
signals using WVD. As a first step the WVD is investigated and its properties,
advantages and disadvantages are presented. The discrete-time and discrete WVD
definitions are given and the relations between them and between continuous-time

WVD are shown.

The WVD of noisy signals and the robust and the pseudo forms of the WVD are
investigated. The obtained results are presented: the ML estimate of the WVD of a
signal under Gaussian noise is equal to the WVD itself; the variance of the discrete-
time WVD of a signal under Gaussian noise goes to infinity as the number of signal
samples used in the computation goes to infinity; and the pseudo form of the WVD

must be used to make variance finite.

Two time-frequency filtering methods are investigated and the performances of the
methods are compared using test signals and real world data. Both methods use the
pseudo WVD as the time-frequency analysis tool and peak detection to estimate the
IF from the pseudo WVD. The main difference between them is on the signal

detection and the reconstruction.

First filtering method is the TFPF. In this method the noisy signal is encoded as the
IF of an analytic FM signal, and the FM signal is transformed to the time-frequency

plane using the pseudo WVD. Then to recover the desired signal, the IF estimation
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is performed which actually gives the desired signal estimate multiplied with a
constant scalar. So, the desired signal is obtained from the estimated IF data without
using the signal synthesis from the time-frequency plane methods which decreases
the complexity of the TFPF and increases the signal reconstruction performance.
The cross-terms are not a problem for this method, since it works on analytic
signals. The effects of different parameters on the performance of the method are
investigated and the results are presented. The most important parameter of the
method is the length of the window used in the pseudo WVD which is inversely
proportional to the maximum frequency of the desired signal and directly

proportional to the sampling frequency.

The IF estimation error bias is directly proportional to the window length; on the
other hand, the time-frequency resolution is inversely proportional to this length.
The window length is computed to limit the error bias; and it is tried to be
decreased. However, for a given error bias tolerance, by increasing the sampling
frequency the window length can be increased, which results in an increase in the
time-frequency resolution at the same time keeping the error bias low. It is observed

that by doing so the performance of the method can be improved.

It is shown that to obtain the minimum error variance, the window length must be
close to the worst case window length; lower or higher window lengths result in
higher error variances. It is also shown that as the number of iterations is increased,
the error variance starts to increase after an iteration number which depends on the
window length; and it is proposed to stop the iterations when the difference between

successive iterations starts to increase to obtain a better performance.

Although the performance of the method is good at low SNR levels, to compute the
worst case window length the maximum frequency of the desired signal must be
known. In the thesis it is assumed that it is known beforehand. However, when there
is no apriori information about the desired signal, the maximum frequency of the
desired signal has to be estimated from the noisy observation which requires

additional computation.
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In the first part of the method the noisy signal is encoded using FM modulation. To
limit the effective bandwidth of the FM signal the maximum and the minimum
values of the noisy signal must be known; since the effective bandwidth of an FM

signal is directly proportional to the maximum value of the modulating signal.

The TFPF method is suitable for multi-component signals which contain

simultaneous frequency components.

The second filtering method is the sub-optimal time-varying Wiener filter. In this
method the noisy signal is transformed to the time-frequency plane using the pseudo
WVD, and then peak detection is performed to detect the desired signal’s region of
support. From the detected region of support a time-frequency mask is computed
and applied to the STFT of the noisy signal; and the desired signal is obtained by
summing the magnitude squares of the STFT (spectrogram) along the frequency

axis.

The time-varying Wiener filter and the time-frequency formulation of the filter are
presented and it is shown that the time-varying transfer function of the filter can be
reduced to a time-frequency mask which is equal to 1 on the region of support of

the signal and 0 otherwise which gives a sub-optimal result.

The window length used in the pseudo WVD is important, since the variance of the
WVD is directly and the bias of the WVD is inversely proportional to the window
length. It is shown that to get the optimum window length the unknown derivatives
of the WVD of the desired signal are needed. However, in practical applications it is
impossible to compute the window length. Therefore, the pseudo WVD is computed
for two different window lengths and by comparing their difference and the

estimated variance value, one of them is favored.

It is shown that for an analytic mono-component signal, the performance of the
method is good for SNR levels down to -5 dB. To increase the performance of the
method, the SVM method is applied to the IF estimation phase of the algorithm

which is actually a pattern recognition technique. It is shown that for SNR levels
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down to -5 dB the estimated signal which is obtained using the SVM method is
comparable to the estimated signal which is obtained with known region of support.
It is also shown that the method gives satisfactory results at SNR levels down to
-10 dB. The main drawback of the method is the threshold setting. In the training
phase of the SVM an optimum threshold value is computed. However, this value
depends on the signal energy and it must be updated for signals with different

energies.

The SVM method increases the computational cost of the algorithm, since for every
time-frequency point a decision is made and the noise regions are tried to be
masked out. For some time-frequency points the SVM method can make wrong
decisions depending on the noise influence, and for these points time gaps or sharp
jumps in the IF estimation occur. The sharp jumps are smoothed using median
filter, and the time gaps are filled using linear interpolation. However, time gaps
also occur when there is no signal at these time instants. Therefore, a decision has to
be made to fill or not to fill the time gaps. The decision is made depending on the
length of the time gap; if it is lower than half of the minimum window length used
in the pseudo WVD computation, the time gaps are filled. By doing so the

performance of the algorithm is improved.

Another drawback of the algorithm is the method used in signal reconstruction.
Even if there is no noise on the signal, the estimated signal is amplitude modulated.
This is because of the masking in STFT of the signal. The signal energy is spread to
entire time-frequency plane, and to obtain the signal correctly it has to be summed
over the entire frequency axis; however, because of the masking only the masked

regions are summed.

The algorithm needs modification to work with multi-component signals which
contain simultaneous frequency components. The simplest modification is
searching for the peaks whose number is equal to the number of simultaneous

components.
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The performances of the filtering algorithms are compared using test signals and
real world data. It is seen that when the sampling frequency is increased the TFPF
method performs better than the time-varying Wiener filter with SVM method; on
the other hand, when the sampling frequency is decreased the SVM based method is
better. The TFPF method is also better in high SNR cases, since the output of the
SVM based method contains an amplitude modulation even if there is no noise on

the signal.
Some of the topics remained as future work are noted below:

e Computing worst case window length in the TFPF method by taking the IF

estimation error variance into account.
e Computing an adaptive worst case window length in the TFPF method.

e Estimating the maximum frequency of the desired signal from the noisy

observations automatically in the TFPF method.
e Improving the signal synthesis method in time-varying Wiener filter.

e Setting the threshold of the SVM method automatically.
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APPENDIX A

SOME MATHEMATICAL PROPERTIES OF WVD

Some mathematical properties of WVD will be given briefly;

e WVD of an arbitrary signal is always real. If the signal is also real then the

transform is an even function of frequency.

wW_(t,w)= W); (t,w)

(A-1)
if x(t)=x(t), then W_(t,w)=W_(t,w)=W_(t,—w)
e [ts integral over frequency gives the temporal energy density.
()" =127 j W._(t,w)dw (A-2)
e [ts integral over time gives the energy density spectrum.
[X(w)|" = j W (t,w)dt (A-3)
e [ts integral over time and frequency gives the signal energy.
E, = [|x(@)| dt =127 [ [ W, (¢, w)dwdt (A-4)
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The WVD of product of two signals is equal to the convolution of the
WVD’s of the individual signals with respect to frequency.

if z(t) = x(0)y(t)

then W_(6,1)= [W,.(t.) W, (t.f ~pdy =W, e.N)*, W, 0. /) O

The WVD of convolution of two signals is equal to the convolution of the

WVD’s of the individual signals with respect to time

if z(t) = x()* y(1)

then W_(t,1)= [ Wz, )W, (t— 7, Nz =W, (6. )% W, 0. /) OO

If the signal is restricted only to a certain time interval, then the WVD of the
signal is also restricted to that time interval.

if  x(t)=0 for t<t, and/or t>t,,

(A-7)
then W _(t,w)=0 for t<t and/or t>t,

If the signal is restricted only to a certain frequency interval, then the WVD

of the signal is also restricted to that frequency interval.

if  Xw)=0 for w<w, and/or w>w,,

then W _(t,w)=0 for w<w, and/or w>w, (A-8)
A time shift of the signal leads to a time shift of the WVD.
xX(t—t) >W_(t—t,,w) (A-9)
A modulation of the signal leads to a frequency shift of the WVD.
x(@)exp(jwyt) > W _(t,w—w,) (A-10)
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WVD satisfies the Moyal’s Formula, which shows that the squared
magnitude of the inner product of two signals is equivalent to the inner

product of WVD’s of the signals.

2

~+00

j x(t)y" (t)dt

—0

=127 TTWH (t, W, (t, w)dtdw (A-11)

—00—00

The signal can be perfectly reconstructed from the WVD by an inverse
Fourier Transform along frequency but with a constant x (0) multiplicative

term.
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APPENDIX B

ML ESTIMATE OF WVD

Let the noisy signal be
x(t)=s(t)+v(¢) (B-1)
The aim is the obtain f(¢) = s(¢) ,so minimize the function
L[ F(| (- x(7)|)d7 (B-2)
where F'(.)1s loss function. To obtain the ML estimator,
F(e) =—log(p,(e)) (B-3)

is used as the loss function, where p, (e)is the PDF of the noise, [27]. For Gaussian

noises the loss function reduces to
F(e)=|e|’ (B-4)
To obtain the ML estimate forms of the WVD, consider the following error function
e(t,w,t) = x(t +7/2)x" (t —7/2) — mexp(jwr) (B-5)

and minimize
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L(t, w;m) = j F(e(t,w,7))dr (B-6)
with respect to m .

OL(t,w;m)
m*

=0 (B-7)

m=W (t,w)

Insert the Gaussian noise loss function into (B-6) to get
L(t,w,7) = I ‘x(t +7/2)x (¢ —1/2) - mexp(jwr) ‘Zdr (B-8)

To obtain the complex derivative letm = a + jb, then

OL(t,w;m) _ OL(t,w;m) ny OL(t,w;m) _

0 B-9
m a b (B-9)
The derivatives with respect to a and b are
OL(t,w;7) . )
— = t+7/2)x (t—1/2 -
20 = [+ o/ (= /2) exp(=we) 510

—x"(t+7/2)x(t - 7/2) exp(jwz')] dr+2a

w = ”jx(t +17/2)x (t—1/2)exp(—jwr)

(B-11)
— jx (t+7/2)x(t-1/2) exp(jwr)]dr +j2b
Insert (B-10) and (B-11) into (B-9) to obtain
My = [ X +T/2)x (= /2)exp(-jwr)dT (B-12)

So, the ML estimate of the WVD of a signal in additive Gaussian noise is equal to

the WVD of the noisy signal.
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APPENDIX C

SURVEY OF THE DISCRETIZATION EFFORTS

Discrete time WVD (DTWVD) of a sampled signal was first defined by Claasen
and Mecklenbriuker [15], [16]. It is proposed that, real signals must be over
sampled at least by a factor of 2 times the Nyquist rate in order to avoid aliasing.
This means that in order to obtain alias free DTWVD, the number of signal samples
have to be doubled, which results in an increase in the computations of DTWVD by

a factor of 4.

The DTWVD definition proposed in [15], [16] is

WM () =2) x[n+k]x'[n—k]exp(—j2ke) (C-1)

The discrete WVD of a finite length signal x[n] can be obtained from (C-1) by

discretizing the frequency as

N/2-1
WM [n,m]= 2 > xn+klx"[n—klexp(- j%mk} (C-2)

k=—N/2+1

which is computed for 0<n< N -1 and 0<m <M —1, where N is the number of

signal samples and M (>N) is an appropriate number of discrete frequencies.

Figure C-1 shows the DWVD of a test signal obtained using (C-2).
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Figure C-1 DWVD of a test signal obtained using (C-2).

Another important contribution came from Peyrin and Prost who shown that it is
necessary to sample the signal at least twice the Nyquist rate in order to obtain alias
free Discrete WVD (DWVD) in 1986, [17]. In [17], discrete-time, discrete-
frequency and discrete-time discrete-frequency (discrete) definitions for WVD are

proposed. The proposed DWVD definition is of the form:

Let x, be a periodic signal restricted to an interval of length NT

x ()= Zx(t —-NIT) and x, =x, (kT) (C-3)

Then discrete time, discrete frequency WVD (DWVD) of x is
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WPPxx[n,m]— Zxk L exp(— ]—(Zk n))

Figure C-2 shows the DWVD of a test signal obtained using (C-4).

Peyrin & Prost Farmulation

i ‘Hm

time 0 300 frequency

Figure C-2 DWVD of the test signal obtained using (C-4).

(C-4)

The distribution is computed for 0<n<2N-1 and 0<m<2N-1.

Fortunately, because of the form of the proposed definition it is sufficient to

compute the distribution on an N by N grid. The remaining parts of the distribution

can be obtained from this N by N grid by multiplying corresponding entries with a

phase term which results in #1.

In 1990, Nuttall proposed to use the dual form of the continuous time WVD to

derive discrete-time and discrete-frequency definition of the distribution, [18]. The

Nyquist rate sampled signal is used in the computation and the number of signal
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samples is doubled in the DFT computation phase of the algorithm by zero padding
the signal. In [19], it is shown that the proposed definition is always alias free for a

signal sampled at the Nyquist rate.

The proposed definition is of the form:

Given the signal samples x[n] for 0<n<M —1 and a suitable DFT length
N > M ,the DFT X[k] of signal x[n] is computed using

X[k]= Mz_lx[n]exp(—jZﬂn%) for —N<kE<N-1 (C-5)

Then DWVD of x[n] is

nT k _1

/8|

/
. n
, X[k+11X [k—1]exp(—j2mm—
> OINT Nn;z[ 1X [k —I]exp(-j 2N)

N—-k-1 for k=0 (C-6)

for =
N+k for k<O

The distribution is computed for 0<n<2N-1 and -N<k<N-1.
Figure C-3 shows the DWVD of a test signal obtained using (C-6).

110



Muttall OWWD

0.5

1 003 time

narmalized frequency

Figure C-3 DWVD of the test signal obtained using (C-6).

In 1998 Michael S. Richman, Thomas W. Parks, and Ramachandra G. Shenoy,
proposed to obtain the discrete time discrete frequency definition for WVD using
Group Representation Theory, [20]. The distribution is computed on an N by N grid
(N is the number of signal samples) and the resulting distribution is a full band
representation that is to say the frequency components are computed in the
normalized range [-1/2,1/2]. The main drawback of the definition is, it depends on
the signal length; for even length and odd length signals it gives different results.
Additionally the resultant distribution also depends on the signal frequency for odd
length signal. The definition works well for odd length signals with frequency at
1/M where M is an integer and divides N (N is the length of the signal). For even
length signal the resultant distribution contains cross-terms at every point of the

distribution but it does not depend on the frequency content of the signal.
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The proposed definition is of the form

N-1IN-1N-1

WO wlnk]= %Z D> PN exp(— j% (nv + kz —vl))x(mod(! + 7, N))x" (1) (C-7)

7=0 v=0 [=

where pN is a phase term which is defined as

for N=odd pN =exp( j%mod(%, N))
(C-8)
LT N
exp(j Nmod(vr, N)) for mod(vr,N) < 5
for N =even pN =
exp( j%(mod(vr, N)-N)) for mod(vz,N)> %

In 2005, John O' Toole, Mostefa Mesbah and Boualem Boashash proposed a new
definition to obtain DWVD which is based on the definition offered by Peyrin and
Prost, [21]. To obtain the modified definition it is assumed that the signal is not

periodic.

The proposed definition is of the form

kf. V4 L . 2
WY L, “=exp(j—hkn) Y x[m]x [n—m]exp(—j— km C-9
[2fs 2N] p(JN );j[][ ]p(JN ) (C-9)
for I, = max{0,n — (N —1)}and [, = min{n, N —1}. Figure C-4 shows the DWVD of
a test signal obtained using (C-9). When the resultant distribution is compared to the

distribution obtained using (C-4), it is seen that it gives a cleaner time-frequency

plane for the same test signal.
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Figure C-4 DWVD of the test signal obtained using (C-9).

The discrete-time discrete-frequency WVD definitions explained in this section are
only a limited number of the proposed definitions; interested readers can refer to

[29]-[33], for more information in discretization of WVD.
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