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ABSTRACT 

NOISE REDUCTION IN TIME-FREQUENCY DOMAIN 

 

Kalyoncu, Özden 

 

M. S., Department of Electrical and Electronics Engineering  

Supervisor : Prof. Dr. Zafer Ünver 

 

September 2007, 113 pages 

 

In this thesis work, time-frequency filtering of nonstationary signals in noise using 

Wigner-Ville Distribution is investigated. Continuous-time, discrete-time and 

discrete Wigner Ville Distribution definitions, their relations, and properties are 

given. 

Time-Frequency Peak Filtering Method is presented. The effects of different 

parameters on the performance of the method are investigated, and the results are 

presented. 

Time-Varying Wiener Filter is presented. Using simulations it is shown that the 

performance of the filter is good at SNR levels down to -5 dB. It is proposed and 

shown that the performance of the filter improves by using Support Vector 

Machines. 

The presented time-frequency filtering techniques are applied on test signals and on 

a real world signal. The results obtained by the two methods and also by classical 

zero-phase low-pass filtering are compared. It is observed that for low sampling 
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rates Time-Varying Wiener Filter, and for high sampling rates Time-Frequency 

Peak Filter performs better. 

Keywords : Wigner-Ville Distribution, time-frequency filtering, Support Vector 

Machines 
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ÖZ 

ZAMAN-FREKANS BÖLGESĐNDE GÜRÜLTÜ 

AZALTIMI 

 

Kalyoncu, Özden 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Zafer Ünver 

 

Eylül 2007, 113 sayfa 

 

Bu tez çalışmasında gürültü içindeki durağan olmayan sinyallerin Wigner-Ville 

Dağılımı kullanılarak zaman-frekans süzgeçlenmesi araştırılmıştır. Sürekli zaman, 

ayrık zaman ve ayrık Wigner-Ville Dağılımı tanımları, ilişkileri ve özellikleri 

verilmiştir. 

Zaman-Frekans Tepe Süzgeçleme Yöntemi tanıtılmıştır. Değişik parametrelerin 

yöntemin başarımı üzerindeki etkileri araştırılmış ve sonuçlar sunulmuştur.  

Zamanla Değişen Wiener Süzgeç tanıtılmıştır. Yapılan benzetimlerle süzgeç 

başarımının -5 dB SNR seviyesine kadar iyi olduğu gösterilmiştir. Destek Vektör 

Makinalarının kullanımının süzgecin başarımını iyileştireceği önerilmiş ve 

gösterilmiştir. 

Sunulan zaman-frekans süzgeçleme yöntemleri test sinyalleri ve gerçek bir sinyal 

örneği üzerine uygulanmıştır. Đki yöntem tarafından ve klasik fazı sıfır alçak geçiren 

süzgeçleme ile elde edilen sonuçlar karşılaştırılmıştır. Düşük örnekleme hızlarında 
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Zamanla Değişen Wiener Süzgecinin, yüksek örnekleme hızlarında ise Zaman-

Frekans Tepe Süzgeçlemenin daha başarılı olduğu gözlenmiştir. 

Anahtar Kelimeler : Wigner-Ville Dağılımı, zaman-frekans süzgeçleme, Destek 

Vektör Makinaları 
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CHAPTER 1  

 

INTRODUCTION 

Nonstationary signals have great importance in our daily life, since they occur 

naturally in many real world events. In biomedical applications signals under 

concern are usually nonstationary, like brain and heart signals. In radar applications 

nonstationary signals are used in order to increase radar resolution and decrease 

probability of intercept by other systems like jammers, [35]. 

The analysis of these kinds of signals is an important topic in signal processing. In 

particular, one wants to get information about the variation of the spectral content of 

the analyzed signal with respect to time. Traditional analysis methods like Fourier 

Transform (FT) based methods are not sufficient tools; because they do not give 

any feeling about the change of the spectral content of the signal with time. Hence, 

different analysis methods are needed. 

In literature there are time-frequency analysis tools developed to analyze 

nonstationary signals. These tools are actually transformations which transform 

signal under analysis to a 2D time-frequency plane. In other words, they make an 

assignment of spectral components to time. These analysis tools can be grouped 

basically into two as linear and quadratic ones [34]. 

Linear Time Frequency Analysis Methods usually use an analysis window which 

moves in time. The signal to be analyzed is multiplied with the analysis window 

and the FT of the product is computed. Since, the analysis window suppresses      
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the signal outside of a certain region in time, the FT gives the local spectrum. The 

most known linear time frequency analysis method is the Short Time Fourier 

Transform (STFT) [37]. When the analysis window is chosen to be a Gaussian 

window, the transformation is known as Gabor Transform, because Gabor 

introduced STFT with this particular analysis window [38]. Even though the 

method and the computations are simple, the main draw back of Linear Time 

Frequency Analysis methods is the dependency of time-frequency resolution on the 

type and length of the analysis window [37]. The uncertainty principle states that 

time and frequency localizations are inversely proportional. If time localization is 

improved then frequency localization is degraded and vice versa. The window 

which gives the best frequency localization for a given time localization is the 

Gaussian window which is used by the Gabor Transform. 

Cohen introduced a general class of quadratic time-frequency distributions, where 

the time dependent auto-correlation function of the signal to be analyzed is 

multiplied with a kernel, and the FT of the product is computed [34]. The kernel is a 

function of time and frequency lags instead of time and frequency, so the 

transformation is shift invariant. Quadratic Time Frequency Distributions do not 

suffer from uncertainty principle; their time-frequency resolution is not limited. But, 

on the other hand, they suffer from the cross terms [37]. Being quadratic 

transformations the time-frequency transformation of sum of two signals is not the 

sum of the time-frequency transformations of the individual signals, but there is a 

third term known as the cross-term. The cross-term’s location is between the two 

auto terms in time and frequency. Also cross-term contains amplitude modulation 

whose modulation frequency increases when the distance between auto-terms in 

time or frequency increases. For a signal containing N auto-terms, there will be 

N*(N-1)/2 cross terms, that is the number of cross-terms increases quadratically. 

There are different methods to eliminate these cross-terms. Cohen used the kernel 

function that actually serves as a lowpass filter. It is successful in eliminating cross-

terms to some degree; its main drawback is that it decreases the time-frequency 

resolution of the transformation. When this kernel is set to unity then there is no 
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filtering and the resulting distribution is known as Wigner-Ville Distribution 

(WVD). 

Filtering of nonstationary signals in noise has been an important topic. Traditional 

filtering methods are used for filtering of nonstationary signals in noise, like 

adaptive and fixed filtering methods [36]. Although adaptive methods, like Least 

Mean Squares (LMS) approach based methods and Kalman Filter, are generally 

superior compared to fixed methods, they perform poor for nonstationary signals 

whose spectral content changes quickly with time. Additionally, adaptive methods 

need signal modeling for optimum performance; but when the structure of the 

desired signal is unknown, they will give suboptimal results and even in some cases 

wrong results. Since the spectral content of these signals changes with time, the 

information about the spectral variation with time which can be obtained by time-

frequency analysis can be used in order to improve the filtering performance. 

WVD was not used in practical applications beforehand because of its high 

computational cost. Nowadays, with the use of powerful computers WVD can be 

used in different signal processing areas. One of these application areas is the time-

varying filtering of nonstationary signals in noise [39]. A time-varying filter is the 

one whose frequency response changes with time. For signals whose spectral 

content changes with time, a time-varying filter whose frequency response variation 

adapted to the variation of the desired signal performs better as compared to the 

time-invariant filter whose frequency response is fixed. 

Time-varying filtering is also known as time-frequency filtering. When the signal 

under concern is nonstationary, it is advantageous to transform the noisy signal to 

joint time-frequency plane by using an appropriate time-frequency transformation. 

By doing so, the information about the variation of signal spectrum with time can 

be obtained. The noise spreads to entire time-frequency plane; whereas the signal 

part concentrates on certain time-frequency regions. The filtering is performed 

using the signal concentrated time-frequency regions. The filtering performance 

depends on how good the signal is localized to certain time-frequency regions and 
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how good these regions are detected. Time-frequency localization depends on the 

type of the time-frequency analysis method. The WVD is preferred in this 

application instead of linear time-frequency analysis methods because of its high 

time-frequency localization as compared to linear ones. (Linear time-frequency 

transformations have some advantages such as low computational cost and easiness 

to recover the signal [39].) 

This thesis mainly concentrates on time-frequency filtering of signals whose 

spectral content quickly changes with time using WVD. To start with, the WVD 

and its properties are investigated; the pseudo and robust forms, and discrete 

formulations of the distribution are studied. Next, computation of the WVD of a 

signal from noisy observations and estimation of the instantaneous frequency (IF) 

of the signal from the estimated WVD are studied. Two different time-frequency 

filtering methods, Time-Frequency Peak Filtering (TFPF) Method and Time-

Varying Wiener Filter (TVWF), are investigated. Both methods compute the WVD 

of the noisy signal and estimate the IF of the signal as main filtering steps.          

The TFPF method first encodes the noisy signal as an analytic frequency modulated 

signal and then performs the filtering steps, consequently the estimated IF is 

actually the signal estimate multiplied with a scalar. The TVWF uses the IF 

estimate to form a time-frequency mask and uses this mask to recover the desired 

signal. The filtering performances of the methods are compared with each other and 

with a classical zero-phase low-pass filter using frequency modulated test signals 

and real life data. The performance of the second method is improved by using 

Support Vector Machines (SVM) Method applied in IF estimation phase of the 

algorithm, which is actually a pattern recognition technique based on statistical 

learning theory. The filtering algorithms are implemented and tested in MATLAB® 

environment. 

The thesis is organized in six chapters. Chapter 2 deals with the continuous WVD 

by providing the necessary background information and with the discretization of 

WVD by giving discrete-time and discrete WVD definitions and providing the 
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relations among them. In Chapter 3, the TFPF Method is described by introducing 

the basic concepts and the discrete time algorithm. In addition, the performance of 

the algorithm is tested. In Chapter 4, the second time-frequency filtering method is 

described by introducing the derivations of the TVWF and its time-frequency 

formulation. Besides, the IF estimation of noisy signals using WVD is discussed 

and the improvement using SVM method is evaluated by comparing the simulation 

results. Chapter 5 presents and explains the simulation results in which the 

performances of the time-frequency filtering methods with each other and with a 

classical low-pass zero-phase filter are compared using different test signals and 

real-world data. Finally, Chapter 6 summarizes the thesis and presents the 

conclusions. 
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CHAPTER 2  

 

WIGNER-VILLE DISTRIBUTION 

The WVD was introduced by Wigner in the field of quantum mechanics. Then Ville 

brought the concept into the signal processing field. Claasen and Mecklenbrauker 

published three papers in which signal theoretic properties of the distribution were 

given, a proposal for discrete-time and a proposal for windowed form of the 

distribution were presented and the relation of the distribution with other time-

frequency distributions were mentioned consecutively [28]. The importance of the 

WVD arises from the fact that it combines the temporal and the spectral analyses of 

a signal by transforming the signal to a joint time-frequency plane. But there is 

something important to mention before continuing: the WVD is known as a 

distribution because it is supposed to reflect the distribution of the signal energy in 

the time-frequency plane. However, the WVD can not be interpreted pointwise as a 

distribution of energy because it can also take on negative values. (The WVD of 

Gaussian and chirp signals are always positive.) 

In the first section of this chapter continuous WVD and its properties are discussed; 

and in the second section the discussions about the discretization of WVD are 

presented. 

2.1 CONTINUOUS WIGNER-VILLE DISTRIBUTION 

The continuous WVD of a signal )(tx  is defined by 
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 ∫ −−+=
∆

τωτττω djtxtxtWxx )exp()2()2(),( *  (2-1) 

where the integral is from minus infinity to plus infinity. The dual form is 

 ∫ −+−= dvjvtvXvXtWxx )exp()2()2(21),( * ωωπω  (2-2) 

where )(ωX  is the FT of )(tx . 

Actually the WVD is the FT of the time-dependent auto-correlation of the signal 

)(tx  defined by )2()2(),( * τττ −+= txtxtRxx . ),( τtRxx  is also called a bilinear 

data product by different authors [7]. 

Some mathematical properties of WVD are given briefly in APPENDIX A. Even 

though the WVD has many desired properties, there is an important disadvantage of 

the WVD known as cross-terms which becomes visible in case of multi-component 

signals. Let )(tx  be the sum of N signals 

 ∑
=

=
N

k

k txtx
1

)()(  (2-3) 

The WVD of )(tx is 

 ∑ ∑∑
= = >

+=
N

k

N

k

N

kd

xxxxxx tWtWtW
dkkk

1 1

),(),(),( ωωω  (2-4) 

where ),( ωtW
dk xx

 is a cross WVD and known as cross-term; so the WVD of sum of 

signals consists of the WVD of the individual signals plus the cross WVDs. As the 

number of auto-terms is increased, the time-frequency plane becomes more 

complex and interpretation of the distribution becomes more difficult, because 

cross-terms and auto-terms can be located in the same time-frequency regions. 
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Figure 2-1 shows the cross-term geometry of the WVD. It has been shown that 

while the cross term’s envelope depends on the signal, the cross term’s time–

frequency location and oscillation geometry merely depend on the time–frequency 

locations of the interfering signal terms [22]. As it was mentioned above the cross-

term is located in between the auto-terms in the time-frequency plane; that is to say 

2)( 2112 ttt +=  and 2)( 2112 ωωω += ; and the cross-term contains amplitude 

modulation whose modulation frequency increases when the distance between auto-

terms in time or frequency increases. More information about cross-terms can be 

found in [23], [24]. 

 

Figure 2-1 Cross-term geometry of the WVD. 

Recall that the WVD can not be interpreted pointwise as an energy distribution 

because it can also take on negative values, which results in negative energy which 

is physically meaningless. Actually this negative energy arises from the cross-terms. 

Consider a two-component signal 

 )exp()exp()( 2211 tjatjatx ωω +=  (2-5) 

The WVD of this signal is 
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)

2
())(cos(2

)()(),(

21
2121

2
2
21

2
1

ωω
ωδωω

ωωδωωδω

+
−−+

−+−=

taa

aatWxx

 (2-6) 

The first two terms are the auto-terms and the third term is the cross-term, a cosine 

wave which can take on negative values. However, the integral of this cross-term 

over frequency is zero, and it does not influence the total signal energy. 

In literature there is an intensive research to eliminate or at least to reduce the 

effects of these cross-terms. The main approach is to use a kernel function which 

actually serves as a low-pass filter to reduce the cross-terms. The design of these 

kernels is not an easy topic, since the direction of oscillation and the oscillation 

frequency depend on the type and the time-frequency location of the input signals 

[22], [23], [24]. So, a general kernel design for all types of signals is a challenging 

problem. Additionally, when the signals are located close in time or frequency or 

time and frequency, the oscillation frequency decreases which means that lowpass 

filter passes these cross terms. Another drawback of using smoothing kernels is that 

they decrease the time-frequency resolution of the distribution by broadening the 

auto (signal) terms. Finally, sometimes, use of these kernels results in loss of some 

desired mathematical properties of the WVD. An interesting and different approach 

is proposed in [22] which uses a nonlinear median type filter to eliminate the cross-

terms. 

In literature the WVD of noisy signals is also intensively studied. It has been shown 

that the WVD of such signals can not be directly used as an estimate of the WVD of 

the noise free signal; this is so because the variance of WVD of a signal under 

additive white Gaussian noise goes to infinity, and a time window must be used to 

make the variance finite [2].  

The windowed form of the WVD is known a pseudo WVD (pWVD) given as 

 τωττττω djtxtxhtW xx
p )exp()2()2()(),( * −−+= ∫  (2-7) 
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where )(τh  is a real, to avoid frequency shifts, and symmetrical, to avoid time 

shifts, window. The pWVD corresponds approximately to the WVD of the signal. 

The relation between pWVD and WVD can be shown using (A-5) as 

 ),(*)(),( ωωω tWHtW xxxx
p =  (2-8) 

where )(ωH  is the FT of )(th . 

(2-8) indicates that the use of a window decreases the frequency resolution of the 

distribution. 

In recent years robust time-frequency signal transforms are introduced which are 

concerned with the estimation of the WVD of a signal from noisy observations of 

the signal. It has been shown that the WVD of a signal in additive white Gaussian 

noise, computed directly, is actually the Maximum Likelihood (ML) estimate of the 

WVD of the noise free signal [6], [10]. The derivations are given in APPENDIX B. 

This means that for the signal in Gaussian noise the standard signal transformation 

will give the best estimate of the WVD of the noise free signal. Unfortunately, the 

ML estimators are quite sensitive to the variation of the noise probability density 

function, which means that for a non-Gaussian noise the standard signal 

transformations will give worse results as compared to the signal transformations 

obtained as the ML estimate for that noise type. This fact motivates the introduction 

of robust signal transformations which are introduced for a class of noises by 

computing the ML estimate of the transformation for the worst noise (the noise with 

the longest tail) in that class. The Laplacian noise is used with absolute error as the 

loss function, since it is the worst noise for numerous forms of impulsive noises. 

Robust signal transformations will give worse results compared to the ML 

estimators obtained for the signals in additive Gaussian noise; on the other hand, the 

improvement for impulsive noises is significant as compared to the ML estimator 

for Gaussian noise. 
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Robust time-frequency transformations are introduced in order to work under 

impulsive noise conditions. Signals are often influenced by impulsive noise; 

especially this is the case for the WVD; because, the resultant noise, after the WVD 

is computed, is a mixture of impulsive and Gaussian noises even when the input 

noise is purely Gaussian noise. More information about robust time-frequency 

transformations can be found in [1]-[6], [10], [25], [26]. 

2.2 DISCRETE WIGNER-VILLE DISTRIBUTION 

Several different approaches are proposed to discretize WVD to obtain alias free 

discrete WVD [15]-[21]. A summary of the works done to discretize WVD are 

given in APPENDIX C in a chronological order. In the first and second parts of this 

section the definitions of the discrete-time and the discrete WVD and their relations 

with the continuous-time WVD are given. 

2.2.1 The Discrete-Time WVD 

In this section the discrete-time WVD definition which is used in the thesis is given. 

The continuous-time WVD can be written in the following form with a change of 

variable 

 ∫ −−+= τωτττω djtxtxtW ccxx cc
)2exp()()(2),( *  (2-9) 

Define 

 )()()( * τττφ −+=
∆

txtx ccxx tt
 (2-10) 

with FT )(ω
tt xx

Φ  where the lower script t  indicates the time variable; then 

 )2(2),( ωω
ttcc xxxx tW Φ=  (2-11) 
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Assume that )(τφ
tt xx

 is sampled with sampling frequency Ts πω 2=  yielding 

)()(][ˆ * kTtxkTtxk ccxx tt
−+=

∆

φ  with discrete-time FT )(ˆ θ
tt xx

Φ . From the derivations 

of the sampling theorem it follows that 

 ∑ +Φ=Φ
r

sxxxx r
T

T
tttt

)(
1

)(ˆ ωωω  (2-12) 

where the summation is from minus infinity to plus infinity. 

If )(txc  is bandlimited to Nω rad/sec, then )(τφ
tt xx

 is bandlimited to Nω2 rad/sec. 

Therefore, if Ns ωω 4≥  aliasing is avoided and )(ω
tt xx

Φ  can be obtained from 

)(ˆ T
tt xx
ωΦ , i.e., )(τφ

tt xx
 can be obtained from ][ˆ k

tt xx
φ . 

Let  

 )(][ nTxnx c

∆

=  (2-13) 

then  

 ][][)()(][ˆ][ ** knxknxkTnTxkTnTxkk ccccxxxx nTnTnn
−+=−+==

∆

φφ  (2-14) 

The relation between the FTs of ][k
nnxx

φ  and )(τφ
nTnT xx  is 

 ∑ +Φ=Φ=Φ
r

xxxxxx
T

r
TT nTnTnTnTnn

)
2

(
1

)(ˆ)(
πθ

θθ  (2-15) 

In conclusion if Ns ωω 4≥ , )(
TnTnT xx

θ
Φ  can be obtained from )(θ

nnxx
Φ , i.e., 

)(τφ
nTnT xx  can be obtained from ][k

nnxx
φ . 

Let us now give the discrete-time WVD definition and show the relation with the 

continuous-time WVD. The discrete-time WVD of sequence ][nx  is defined as 
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 ∑ −−+=
∆

k

xx kjknxknxnW
nn

)2exp(][][2),[ * θθ  (2-16) 

As seen from (2-16) the discrete-time WVD is periodic in θ  with period π . To 

show the relation between the continuous-time and discrete-time definitions let us 

proceed as follows: since 

 )2(2),[ θθ
nnnn xxxx nW Φ=  (2-17) 

using (2-15) we obtain 

 ∑ +Φ=
r

xxxx
T

r
TT

nW
nTnTnn

)
22

(
2

),[
πθ

θ  (2-18) 

Finally by inserting (2-11) into (2-18) we obtain 

 ∑ +=
r

xxxx
T
r

T
nTW

T
nW

ccnn
),(

1
),[

πθ
θ  (2-19) 

As seen from (2-19) the discrete-time WVD is composed of the replicas of the 

continuous-time WVD. If )(txc  is bandlimited to Nω rad/sec, ),( ωnTW
ccxx

 is 

bandlimited to Nω rad/sec too; therefore, if NT ωπ 2≥ , aliasing is avoided and 

),( TnTW
ccxx

θ  can be obtained from ),[ θnW
nnxx

. This result also shows that the 

band limited continuous-time signal must be sampled at a rate at least two times the 

Nyquist rate, since the sampling frequency should be set to Ns ωω 4≥  to avoid 

aliasing and make reconstruction possible. 

2.2.2 The Discrete WVD 

Consider a sequence ][nx  which is zero for Nnandn ≥< 0  where N  is an even 

integer. ][][][ * knxknxk
nnxx

−+=φ  will be zero for Nnandn ≥< 0  and for 

}1,min{}1,max{ nNnkandNnnk −−>+−−< . Hence ][k
nnxx

φ  will be possibly 
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nonzero only for Nn<≤0  and )}1(,min{)}1(,max{ −+−≤≤−−− NnnkNnn . 

For 12−=Nn  the maximum interval 12)12( −≤≤−− NkN  is achieved. The 

discrete WVD of ][nx  is defined as 

 ∑
−

−=

−=
1

2

2

)
2

exp(][2],[

N

N
k

xxxx
N

jkmkmnW
nnnn

π
φ  (2-20) 

for Nn<≤0  and Nm <≤0 . (In (2-20) the lower limit in the summation is 

decreased by 1, which has no effect.) Define a sequence ][ ps
nnxx

 

 ]
2

[]
2

[][][ *

2

p
N

nxp
N

nxkps N
pk

xxxx nnnn
−++−==

−=

∆

φ  (2-21) 

The discrete WVD can be defined using ][ ps
nnxx

 as follows: 

 ∑
−

=

−−=
1

0

)
2

)
2

(exp(][2],[
N

p

xxxx
N

m
N

pjpsmnW
nnnn

π
 (2-22) 

(2-22) can be simplified to yield 

 ∑
−

=

−−=
1

0

)
2

exp(][)1(2],[
N

p

xx

m

xx
N

mjppsmnW
nnnn

π
 (2-23) 

The summation term in (2-23) is actually the discrete FT ][mS
nnxx

 of ][ ps
nnxx

 which 

is equal to 

 ],[)1(
2

1
][ mnWmS

nnnn xx

m

xx −=  (2-24) 

So, when ],[ mnW
nnxx

 is given, the sequence ][ ps
nnxx

 can be obtained from ][mS
nnxx

 

by inverse discrete FT; and the sequence ][k
nnxx

φ  can be obtained from ][ ps
nnxx

. 

Using (2-20) and (2-16) it is obvious that 
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N

mxxxx nWmnW
nnnn

π
θ

θ
=

= ),[],[  (2-25) 

(2-25) shows that the discrete WVD can be obtained from the discrete-time WVD 

by sampling the frequency in N  discrete frequencies in the region πθ <≤0 . 
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CHAPTER 3  

 

TIME-FREQUENCY PEAK FILTERING 

In many signal processing applications, like radar, sonar and biomedical 

applications, the signals under concern can not be always observed directly; 

moreover, they are tried to be obtained from noisy or distorted observations. There 

are a variety of approaches on the estimation of the desired signal which are mainly 

based on the minimization of the estimation error energy. However, for a 

nonstationary signal with rapidly varying frequency content, the estimation problem 

becomes more complex, and new filtering methods have to be investigated. For this 

kind of signals time-frequency filtering methods are proposed. Although there are 

different time-frequency filtering algorithms, the main filtering steps are the same 

and which can be summarized as follows: first a noisy signal is transformed to the 

joint time-frequency plane where the noise spreads to the entire plane and the signal 

is concentrated to certain time-frequency regions known as regions of support of the 

signal; secondly, the signal concentrated time-frequency regions are detected; and 

finally, the desired signal is synthesized using signal concentrated regions. The 

main differences between different time-frequency filtering algorithms are the type 

of the time-frequency distribution (TFD), and the detection and the synthesis 

methods used in the algorithms. 

The straightforward time-frequency filtering algorithm is performed using a 2-D 

time-frequency mask which masks the noise concentrated regions and passes signal 

concentrated regions. If the region of support of the signal is known beforehand, it 



17 

 

can be used directly; otherwise, it has to be estimated. Although, region of support 

estimation is an easy problem for high SNR cases, it is very problematic for low 

SNR cases and complex algorithms have to be used to increase the filtering 

performance. 

In this chapter an alternative time-frequency filtering algorithm, Time-Frequency 

Peak Filtering (TFPF), which is proposed by Boualem Boashash and Mostefa 

Mesbah is described [7]. The difference of this algorithm from the existing ones 

arises from the fact that the noisy signal is encoded as instantaneous frequency (IF) 

of an analytic frequency modulated (FM) signal, and the FM signal is transformed 

to the joint time-frequency plane; then to recover the desired signal, IF estimation is 

performed which actually gives the desired signal estimate multiplied with a 

constant scalar. To do so, an appropriate TFD is used; and since it is shown that 

TFDs concentrate signal energy at and around IF on the time-frequency plane, to 

get the IF estimate peak detection is used on the TFD data. 

Among different TFDs, WVD is chosen in the TFPF algorithm due to its high time-

frequency resolution. However, WVD can not be used in peak detection directly, 

because it is shown that when the peak detection is applied to WVD, the IF 

estimates will be biased for IF laws higher than linear [7], [5]. On the other hand, it 

is also shown that for deterministic band limited nonstationary multi component 

signals in additive white Gaussian noise (AWGN), the IF estimation using pseudo 

WVD (pWVD) will be approximately unbiased for a certain window length which 

depends on the maximum signal frequency and the sampling frequency. So, pWVD 

is used in TFPF algorithm to reduce the IF estimation bias. 

In the first section, IF estimation error bias and variance and the reduced bias 

window length are derived; in the second section, the discrete time TFPF algorithm 

is given; and finally in the last section, the performance of the algorithm and the 

simulation results are evaluated. 
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3.1 BASIC CONCEPTS 

3.1.1 IF Estimation Error Bias 

Let the signal model be )()()( tntxts += , where )(tn  is AWGN. After the encoding 

process )(tz s  is formed as 

 

)()(

))(2exp())(2exp())(2exp()(
000

tztz

dnjdxjdsjtz

nx

ttt

s

=

== ∫∫∫ λλπµλλπµλλπµ
 (3-1) 

where µ  is the frequency deviation constant (it has nothing to do with the IF 

estimation; it is used to control the bandwidth of frequency modulation to avoid 

aliasing). 

As seen from (3-1) encoding process converts additive noise )(tn  to multiplicative 

noise )(tzn . From (A-5) the WVD of )(tz s  is 

 ),(*),(),( ωωω ω tWtWtW
nxs zzz =  (3-2) 

obtained from the convolution of the WVD of )(tz x  and )(tzn  along frequency. It 

is evident that ),( ωtW
nz

 spreads ),( ωtW
xz

through convolution, so the IF estimation 

bias depends on both )(tz x  and ),( ωtW
nz

. In [7] it is shown that when )(tn  is 

AWGN, ),( ωtW
nz

 has no effect on the IF estimation bias, since ),( ωtW
xz

 is 

lowpass with a maximum at zero frequency, and the bias only depends on )(tx . 

In [5] IF estimation error bias and variance are studied in case of additive noise, and 

it is shown that the IF estimation bias does not depend on the additive noise; it only 

depends on the desired signal and on the window. Although, we have a 
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multiplicative noise in our problem, since the encoded noise )(tzn  obtained from 

AWGN has no effect on the IF estimation error bias, the results of [5] can be used. 

Let 

 ))(exp()( tjtz x φ=  (3-3) 

where ∫=
t

dxt
0

)(2)( λλπµφ . Assume that the signal is sampled with period T . 

The IF )(tiω  of )(tz x  is )(2 txπµ . The general form of shift covariant TFDs 

(Cohen’s Class) in discrete time domain can be written in the following form, 

 

)2exp()()(

),();,(

* nTjnTmTtynTmTty

nTmTtC
n m

y

ω

ϕϕω

−−+++

= ∑ ∑
∞

−∞=

∞

−∞=  (3-4) 

where ),( τϕ t  is the TFD kernel in the time-lag domain, which determines the TFD 

characteristics. When the kernel has finite length in both time and lag axes, it will 

give the pseudo form of the TFDs. The notation 

)/,/()(),( 2 hnThmT
h
TnTmTh ϕϕ =  is used for a finite length kernel whose length 

is h ; the constant term 2)( hT  is used to make the sum of ),( nTmThϕ over time and 

lag h  independent (this constant term has nothing to do in IF estimation; it is given 

for the sake of completeness). Additionally, it is assumed that the kernel is a 

symmetric function in both time and lag axes which is the case for most of the 

commonly used TFD kernels. 

By inserting )(tz x  instead of )(ty  following results are obtained [5] 

 

))(exp())(exp(

)2exp(),();,(

nTmttjnTmTtj

nTjnTmTtC
n m

hhf

−+−++

−= ∑ ∑
∞

−∞=

∞

−∞=

φφ

ωϕϕω
 (3-5) 
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Expanding )( nTmTt ±+φ  around t  by the Taylor series 

 
...!/))((...

!2/))(())(()()(
)(

2)2('

+±+

+±+±+=±+

nnTmTt

nTmTtnTmTttnTmTt

nnφ

φφφφ
 (3-6) 

yields 

 

[ ])),,()(2))((2exp(

),()();,(

)2(2'

2

nTmTttmnTtnTj

nTmTtAtC
n m

hhf

φφφω

ϕϕω

∆−−−−

= ∑ ∑
∞

−∞=

∞

−∞=  (3-7) 

),,( nTmTtφ∆  is a residue of phase which is equal to 

 !/])())[((),,(
3

)( snTmTnTmTtnTmTt
s

sss∑
∞

=

−−+=∆ φφ  (3-8) 

As seen from (3-7) the TFD will have a maximum at the point )()( ' tt φω = , which 

is the IF of the signal )(tz x , if 0)()( =tsφ  for 2≥s ; otherwise, there are oscillatory 

terms. This shows that the estimated IF using peak detection will be equal to the 

true IF for signals with linear or lower IF law, and for such signals the IF estimation 

error bias will be zero. 

Using above results the IF estimate )(ˆ tiω  can be found using 

 { }[ ]);,(maxarg)(ˆ
hx

W
i tCt ϕωω

ω∈
=  (3-9) 

where { }TW 2/0; πωω ≤≤=  is a basic frequency interval, and (3-9) can be 

solved by taking the partial derivate of );,( hx tC ϕω with respect to ω . 

The IF estimation error produced at time instant t  is given by 

 )(ˆ)()(ˆ ttt ii ωωω −=∆  (3-10) 
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It is shown in [5] that the estimation error bias can be obtained using the following 

formula 

 
)(2

)(
)}(ˆ{

tR

tP
tEbias

h

h

i =∆= ω  (3-11) 

where 

 ∑ ∑
∞

−∞=

∞

−∞=

=
n m

hh nTmTtjnTnTmTtR )))()((2exp())(,()( )2(2 φϕ  (3-12) 

 ∑ ∑
∞

−∞=

∞

−∞=

∆=
n m

hh nTmTtjnTnTmTtnTmTtP )))()((2exp())(,,(),()( )2(φφϕ  (3-13) 

The bias formula shows that the bias will be zero for signals with linear or lower IF 

law, since )(tPh  will be zero for these signals. 

This bias formula is for the general TFDs. To get the result for special TFDs, their 

kernels can be inserted into the above formula. This is done for pseudo WVD 

whose kernel is equal to )()()(),( nTwnmmTwnTmT hhh += δϕ  where )(nTwh  is 

a real-valued even window function which is equal to )()( hnTwhT , and the IF 

estimation error bias is equal to [5] 

 2)2(

2

4)2( )(
6

1
)(

)2,0(6

)4,0(
),(

2

2

htw
M

M
tw

B

B
htbias

w

w

h

h ==  (3-14) 

where ∑∑=
n m

lk

hh nTmTnTmTlkB )()(),(),( ϕ  and ∫
−

=
2/1

2/1

)( τττ dwM rw

r . 

As seen from (3-14) the error bias is directly proportional to the square of the 

window length which means that to decrease the error bias the window length must 

be decreased. However, the window length does not only effect the IF estimation 

error bias, it also effects the time-frequency resolution of the distribution; when the 
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window length is decreased the time-frequency resolution becomes worse. 

Therefore, the window length can not be decreased freely. The derivations to 

determine the window length in TFPF algorithm will be given in the next section. 

3.1.2 Worst-Case Window Length for Reduced Error Bias 

Recall that for signals with IF laws lower than quadratic, peak detection using 

WVD produces unbiased IF estimates. Using this information, if the length of the 

window used in pWVD is adjusted such that the IF of the signal is almost linear in 

the window, then the IF estimate using pWVD will be unbiased too. For signals 

whose IF changes rapidly, short windows must be used to get linear regions of the 

IF. But decreasing window length results in reduced time-frequency resolution, so 

how much does this window have to be shrunk? 

To obtain the relation between the window length and the IF estimation bias, the 

signal ])[cos(][ nnx xφ=  which is encoded as 

 )])[cos(2exp(][
0
∑
=

=
n

m

xx mjnz φπµ  (3-15) 

is used. Without loss of generality a rectangular window is used. It is assumed that 

the window length wh  is such that Cnnx +≈α][  within the window. At the peaks 

or valleys of ][nx  the maximum deviation from linearity occurs and the validity of 

this assumption is weak at these peak or valley points pm  corresponding to pf  

which is the maximum frequency of ][nx . Since the maximum deviation of the 

signal IF from linearity gives the maximum bias, this point will give the worst-case 

window length. 

To get the worst-case window length, encode the signal with constant frequency pf  

[7] 
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 ))2cos(2exp()(
0
∑
=

=
n

m s

p

x m
f

f
jnz ππµ  (3-16) 

The bilinear data product at time pm  and lag h  is obtained as 

 
))2cos(2exp(

)2/()2/(),(

2/

12/

*

∑
+

+−=

=

−+=
hm

hmm s

p

pxpxpz

p

p

x

m
f

f
j

hmzhmzhmK

ππµ
 (3-17) 

Using the central finite difference (CFD) estimator, the IF of ),( hmK pzx
 is 

obtained as a function of pm  and h  which is given as [7] 

 )
2

cos()2cos(),(
h

f

f
m

f

f
hmf

s

p

p

s

p

pi ππµ=  (3-18) 

The maximum value for wh  is obtained from the deviation of ),( hmf pi  from 

)(nxµ  which is limited as 

 )2cos()2cos()
2

cos()2cos( p

s

p

p

s

p

s

p

p

s

p
m

f

f
m

f

fh

f

f
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f
πµεπµππµ ≤−  (3-19) 

The extent of wh  for unbiased IF estimates is obtained from (3-19) as 

 επ ≤− )
2

cos(1 w

s

p h

f

f
 (3-20) 

where sf  is the sampling frequency, pf  is the maximum frequency of the signal 

and ε  is a constant chosen to limit the bias. The desired solution of (3-20) is the 

smallest positive one. So wh  can be obtained from 
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s
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f

f
h

π
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2
)1arccos(1 −≤≤  (3-21) 
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(3-21) shows that the worst case window length is directly proportional to the 

ps ff  ratio. In section 3.1.1 it is shown that to reduce the IF estimation error bias 

the window must be narrowed which results in reduced time-frequency resolution. 

However, (3-21) says that for a given error tolerance ε , the worst case window 

length can be increased by increasing the ps ff  ratio which results in improved 

resolution and suppressed error bias below the tolerance; and the result is a better IF 

estimation performance. Therefore, the sampling frequency plays an important role 

on the effectiveness of the TFPF algorithm. 

In the TFPF algorithm the worst case window length is used which results in 

decreased error bias and reduced time-frequency resolution (localization) for the 

entire signal. Since, the IF of the signal is not always high, at time instants where IF 

is low higher window lengths can be used which gives better time-frequency 

localization. Therefore, an adaptive algorithm for window length selection seems to 

perform better compared to fixed worst-case window length selection. There are 

publications in literature concerned with the adaptive and data-driven window 

length selection [1], [3], [4]; however, these publications provide solutions to the 

problem for additive white noise and try to reduce the bias and variance of the 

WVD; but in this problem the resultant noise is multiplicative and nonwhite and the 

bias and variance of the IF estimation error is tried to be decreased. 

3.2 DISCRETE TIME TFPF ALGORITHM 

The sampled noisy observed signal is modeled by the following equation 

 [ ] [ ] [ ] [ ] [ ]nwnxnwnxns
p

k

k +=+= ∑
=1

 (3-22) 

for 10 −≤≤ Nn  where [ ]nxk ’s are band limited nonstationary deterministic 

components that may have overlapping frequency spectra, [ ]nw  is AWGN and N  

is the number of signal samples. Figure 3-1 shows the algorithm steps. 
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Figure 3-1 Discrete-time TFPF algorithm steps 

From the observed signal [ ]ns , the analytic FM signal is obtained using 

 [ ] [ ])2exp(
0
∑
=

=
n

m

cs msjnz πµ  (3-23) 

where  

 [ ] [ ] [ ]
[ ] [ ]

b
msms

msms
bamsc +

−
−

−=
]min[]max[

]min[
)(  (3-24) 

is the scaled version of [ ]ms  to avoid aliasing after frequency modulation. 

The parameters satisfy [ ] [ ] 0]min[]max[5.0 ≥=>=≥ msbmsa cc  and are chosen to 

provide suitable frequency limits on the encoded signal. After this scaling, the 

signal amplitude is limited to the interval [a, b], and using the frequency deviation 

constant µ  the maximum and minimum IF frequency limits can be set. 

The discrete pWVD (pDWVD) of the analytic FM signal [ ]nz s  is computed. To do 

so, using the windowed form of the discrete WVD; first the bilinear data product 

),( hmK pzs
 at time pm  is computed for integer values 2/h  using the symmetric 

window )()( hghg −=  whose length is the worst case window length wh : 
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 )2/()2/()2/()2(),( * hghghmzhmzhmK pspspzs
−−+=  (3-25) 

and then the DFT of the ),( hmK pzs
 is computed. Finally, the peak values along 

frequency axis for time sample pm  are detected to get the IF estimate [ ]pc ms
∧

. The 

peak detection is done for 10 −≤≤ Nm p . 

The signal estimate is obtained by back scaling the obtained estimates using the 

following formula 

 [ ] [ ] [ ] [ ] [ ]]min[)/(])min[])(max[( msbamsmsbmsms c +−−−=
∧∧

 (3-26) 

In the low SNR case the algorithm is applied iteratively. After the estimated signal 

samples are obtained, filtering continues or terminates if the number of successive 

iterations is larger than a specified number or the difference between the outputs of 

the successive iterations is smaller than a specified value. 

3.3 THE EFFECTS OF WINDOW AND DFT LENGTHS AND 

THE NUMBER OF ITERATIONS ON THE PERFORMANCE OF 

THE ALGORITHM 

In this section performance of the TFPF algorithm is investigated for different 

window lengths, different DFT lengths and different number of iterations by 

simulating the algorithm. In the simulations a linear frequency modulated test signal 

[ ] )10*5.7005.0cos( 27mmmx −+=  is used; the signal length is 4096 points. The 

performance of the algorithm is evaluated using the error bias and variance after the 

TFPF filtering algorithm. 
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3.3.1 Effects of Window Length on the Performance of the 

Algorithm 

The performance of the algorithm is investigated for different window lengths in 

pDWVD computation. 

In the first simulation the noise free case is investigated. The window length is 

varied in between 10 and 400 in steps of 10, and Figure 3-2 is obtained. As seen 

from the figure the error variance increases with the increase in window length, and 

after window length reaches 200 it is almost constant. The error bias decreases in 

magnitude with the increase in window length until window length reaches to 200, 

but unlike the error variance it is not constant. 

 

Figure 3-2 Error bias (green) and variance (blue) as functions of window length. 



28 

 

In the second simulation the noisy case is investigated. Additive white Gaussian 

zero mean noise is added to the signal, the variance of the noise is adjusted such 

that the SNR is -9 dB. In this simulation the window length is varied in between 10 

and 500 in steps of 10, and Figure 3-3 is obtained. As seen from the figure, the error 

bias increases in magnitude with the increase in window length as expected; and the 

error variance decreases until window length is 170 and starts to increase after the 

window length is 250. Actually, this result says that to get the minimum error 

variance a window length close to the worst case window length which is 228 must 

be used. 

 

Figure 3-3 Error bias (green) and variance (blue) as functions of window length, 
SNR = -9 dB. 
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3.3.2 Effects of DFT Length on the Performance of the Algorithm 

The performance of the algorithm is investigated when the number of DFT points is 

changed. 

In the simulation the noise free case is investigated. Figure 3-4 and Figure 3-5 show 

the error variance and the error bias as functions of the DFT length, respectively. As 

seen from the figure both of them decrease in magnitude with the increase in DFT 

length, and after a certain value, for this example 512, they do not change much. 

In the noisy case both the error variance and the error bias show the similar 

behavior with different variance and bias values; so the results of the noisy case are 

not included. 

 

Figure 3-4 Error Variance as a function of DFT length. 
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Figure 3-5 Error Bias as a function of DFT length. 

3.3.3 Effects of Number of Iterations on the Performance of the 

Algorithm 

The performance of the algorithm is investigated when the number of iterations is 

increased. The SNR is -9 dB. 

Figure 3-6 shows the error variance and the error bias as functions of iteration 

number when the window length is set to 228. As seen from the figure, in the first 

steps of the iteration the error variance decreases, then it starts to increase. On the 

other hand, the error bias increases in magnitude with the increase in iteration 

number. 

Figure 3-7 shows the error variance and the error bias as functions of iteration 

number when the window length is set to 48. The similar behaviour is observed; but 

when the window length is decreased it takes more iterations to reach the minimum 

error variance level. 
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Figure 3-6 The variations of error variance (blue) and bias (green) as functions of 
number of iterations, the window length is set to 228. 

 

Figure 3-7 The variations of error variance (blue) and bias (green) as functions of 
number of iterations, the window length is set to 48. 
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Figure 3-8 shows the error variance as a function of number of iterations for 

different window lengths. As seen from the figure the minimum variance and the 

corresponding iteration number is different for different window lengths; 

additionally, for small window lengths it takes more iterations to attain the 

minimum variance level. 

 

Figure 3-8 The variations of error variance as a function of number of iterations for 
different window lengths. 

3.3.4 The Performance of the Algorithm for Different SNR Values 

The performance of the algorithm for different SNR values is investigated; the 

window length is set to 228 and the DFT length is set to 512 using the results of the 

previous simulations. The output SNR is )(log10 10 esP σ  where sP  is the signal 

power, and eσ  is the variance of the estimation error. 
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Figure 3-9 shows the results of the simulation; as seen from the figure the TFPF 

algorithm increases the SNR by approximately 16 dB. 

 

Figure 3-9 Input SNR vs output SNR (in dB). 

3.3.5 Results 

It is observed that as the number of iterations is increased up to a certain number, 

which depends on the window length, the error variance decreases. The error 

variance increases when the number of iterations are further increased. Therefore, 

continuing the algorithm for a predefined number of iterations or stopping the 

iterations when the difference between successive iterations is decreased to some 

predefined level may result in a poor filtering performance. This is so because the 

difference between successive iterations may never decrease to that predefined 

level, which results in infinite number of iterations, or the predefined iteration 
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number may be higher than the iteration number where the error variance starts 

increasing. In order to obtain a better performance, we propose to stop the algorithm 

when the difference between successive iterations starts to increase. 

It is observed that a further increase of the DFT length above a certain value does 

not make a significant improvement to the performance of the algorithm. Moreover, 

increasing the DFT length decreases the speed of the algorithm. Therefore, the DFT 

length should be set to a value after which its increase does not improve the 

performance very much. For the signal used in the simulations the DFT length is set 

to 512. 

For the noise free case, it is observed that the increase in the window length 

increases the error variance, and after a certain value the error variance stays 

approximately constant. However, when a signal contains AWGN, the increase in 

the window length up to the worst-case length decreases the error variance, and 

when the window length exceeds that value the error variance starts to increase. 

Window length selection is important for the performance of the algorithm. Fast 

varying signals can not be recovered using a long window; on the other hand, short 

windows degrade the performance of the TFPF method. The maximum window 

length will be equal to 1 when sp ff 4.0=  and 2.0=ε , which means that if the 

maximum frequency of the desired signal is higher than sf4.0  the estimated signal 

will be biased. Moreover, when 05.0=ε  the maximum frequency of the desired 

signal should not exceed sf2.0  in order to obtain an unbiased signal estimate. When 

short window lengths have to be used, the iterative algorithm should be preferred. 

To recover the signal the algorithm needs too much iterations as the window length 

is shortened. The number of iterations can be decreased using a signal and time 

dependent window length for a signal which stays a little time at high frequencies 

and most of the time at low frequencies. 

When the window length is decreased aliasing starts; but since the TFPF algorithm 

uses an analytic FM signal to encode the input signal, it is known that only one part 
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(positive frequency part) of the time-frequency plane is used; so aliasing is not a 

problem when the window length is small. 

Noting that the analytic FM signal is used to decode the input signal, there is no 

need to over sample the input signal by a factor of 2 in order to avoid aliasing in 

pDWVD. Nyquist sampling is sufficient in the TFPF method, but because of the 

window length selection problem, the method will give unsatisfactory results for the 

signals whose maximum frequency exceeds sf4.0  (or sf2.0  depending on ε ). 

Also, there is no cross-term elimination problem in this application because of the 

encoding procedure. Since there is only one frequency term after encoding, the 

cross-terms do not appear. 

The TFPF filtering algorithm is successful, as seen from the results, for signal 

enhancement problem. Especially the performance of the iterative algorithm is good 

at SNR levels down to -9 dB. 

It is worth adding that this method can be used as a pre-processing method; because 

the noise can be removed from the input signal using this method. However, when 

the problem is filtering one signal from a sum of signals in AWGN, this method can 

not solve the problem. 



36 

 

CHAPTER 4  

 

SUB-OPTIMAL TIME-VARYING FILTERING USING 

WIGNER-VILLE DISTRIBUTION  

Filtering of a desired signal from noisy observations is one of the most important 

problems in many signal processing applications. There are different approaches 

proposed to solve the filtering problem for different kinds of signals and application 

areas. Even though the simplest solution is the use of a classical filter whose pass-

band covers the frequency band of the desired signal, it is not always the optimum 

solution. Although, for stationary signals a better solution is the use of a Wiener 

Filter which produces the best signal estimate in the minimum mean square error 

sense, for nonstationary signals adaptive filtering methods, which are based on 

least-mean-squares, recursive-least-mean-squares or Kalman Filter, are preferable. 

However, in [7], it is claimed that adaptive filtering methods are not sufficient for 

nonstationary signals whose frequency content changes quickly with time. 

Additionally, these adaptive methods need signal modeling for optimal 

performance, but when the structure of the desired signal is unknown, they will give 

suboptimal results and even in some cases wrong results. 

In this chapter a filtering algorithm based on time-varying Wiener Filter which is 

proposed for nonstationary signals with rapidly varying frequency content is 

introduced. In the first two sections the derivations of the time-varying Wiener 

Filter and its time-frequency formulation using WVD are given; the next section 
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deals with the instantaneous frequency (IF) estimation problem. In the last section 

the proposed filtering algorithm is given, and the performance of the proposed filter 

is investigated. 

4.1 TIME-VARYING WIENER FILTER 

Consider the noisy observed signal 

 )()()( tntstx +=  (4-1) 

where s(t) is a zero-mean, nonstationary real or complex random process with 

known correlation function { })()(),( '*' tstsEttrs = , )(tn  is an additive zero-mean 

nonstationary real or complex random noise with known correlation function 

{ })()(),( '*' tntnEttrn = ; )(ts  and )(tn  are uncorrelated processes. Let H be a linear 

time-varying system with kernel ),( 'tth , then the estimated signal )(ˆ ts  is obtained 

using 

 ( ) ∫==
'

''' )(),()()(ˆ
t

dttxtthtHxts . (4-2) 

The estimation error is 

 )(ˆ)()( tstste −= . (4-3) 

The performance measure is the mean-square error as in the Wiener Filter 

derivation for stationary random processes; and as it is mentioned in [9], the 

expected error energy is minimized when the error is orthogonal to the observed 

noisy signal: 

 ( ){ } 0)())()(( * =−− τtxtHxtsE . (4-4) 

Inserting (4-1) in (4-4) we obtain 
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 { } { } 0))()(()))((())()(()( **** =++−+ tntstnsHEtntstsE . (4-5) 

Using the fact that signal and noise are uncorrelated and defining a correlation 

operator R  which is a self-adjoint, positive (semi)-definite linear operator whose 

kernel is the correlation function [8], (4-5) can be reduced to 

 0=−− nss HRHRR . (4-6) 

From (4-6) the time-varying linear system operator is obtained with minimal rank as 

 1)( −+= nss RRRH  (4-7) 

where 1)( −+ ns RR  is the pseudo inverse of )( ns RR + . 

4.2 TIME-FREQUENCY FORMULATION OF THE TIME 

VARYING WIENER FILTER 

The time-varying filtering equation (4-2) is used with a little modification, as is 

proposed in [6] and [9]. The modified filtering equation is 

 ττττ
τ

dtxtthts )()2/,2/()(ˆ +−+= ∫ . (4-8) 

The reason for the modification is: when there is no noise on the signal the ordinary 

filtering equation produces the signal with an amplitude variation and phase 

deviation; on the other hand, the modified filtering equation eliminates the phase 

deviation [9]. 

The time-varying transfer function of a linear time-varying operator H with kernel 

)2,2( ττ −+ tth  is defined as (which is actually known as the Weyl Symbol (WS) 

[8] ) 

 τωτττω djtthtLH )exp()2,2(),( −−+= ∫  (4-9) 
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The kernel can be obtained by inverse FT 

 ∫=−+ ωωτω
π

ττ djtLtth H )exp(),(
2

1
)2/,2/(  (4-10) 

Inserting (4-10) into (4-8) the following filtering equation is obtained 

 ∫= ωωωω
π

dtjXtLts H )exp()(),(
2

1
)(ˆ  (4-11) 

where )(ωX  is the FT of the observed signal )(tx . As seen from (4-11) the time-

varying filtering operation is equivalent to inverse FT of the product of the time-

varying filter transfer function with the Fourier Transform of the observed signal. 

However, in practical applications the observation time is limited and pseudo forms 

of (4-8) and (4-11) 

 

∫

∫

=

+−+=

ωωω
π

τττττ

dtSTFTtLts

dwtxtthts

xH ),(),(
2

1
)(ˆ

)()()2/,2/()(ˆ

 (4-12) 

are used, where )(tw  is the window function and ),( ωtSTFTx  is the Short Time 

Fourier Transform of the observed signal )(tx . 

As seen from (4-12) to get the estimated signal the STFT of the observed signal and 

the WS, which is actually the time-varying transfer function, of the linear time-

varying filter are needed. It is easy to compute the STFT of the observed signal; and 

for optimal filtering the WS of the filter is obtained from the time-varying Wiener 

Filter derivation. 

Recall that the time-varying Wiener Filter is obtained from (4-6) or equivalently 

from (4-7). Using these equations the time-frequency formulation of the Wiener 

Filter is proposed to be [8] 
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≈  (4-13) 

As seen from (4-13) to get the time-varying transfer function, the WVD of the 

desired signal is needed which is unknown. Therefore, for practical use (4-13) can 

be simplified as 
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),(

ω

ω
ω  (4-14) 

where sR  is the region of support of the signal, that is to say sR  is the time-

frequency region where the signal is present. (4-14) follows from the fact that on 

the time-frequency locations where the signal is dominant HL  is approximately 1, 

and on the time-frequency locations where the noise is dominant HL  is 

approximately 0. So, to get HL , the region of support of the noisy signal has to be 

determined which is equivalent to the instantaneous frequency (IF) estimation. 

Hence the problem of HL  determination can be solved using the solutions proposed 

for IF estimation of noisy signals using WVD. 

To use in implementations (4-12) can be discretized as [9] 

 ∑=
k

xH knSTFTknLns ],[],[][̂  (4-15) 

4.3 IF ESTIMATION OF NOISY SIGNALS USING WVD 

There are different publications in literature which are concerned with the problem 

of IF estimation from noisy observations using WVD [1], [3], [4], [5] and [6]. The 

main approach to obtain the IF estimates from WVD is known as the peak detection 

method in which the peak values over the frequency are detected for every time 

sample. In the following, the approach proposed in [1] is examined. 
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In [1] it is claimed that the lag window length is one of the most important 

parameters in optimizing the pseudo WVD of the discrete time noisy signals. In 

other words, it is claimed that by use of the appropriate lag window length, the 

optimum WVD can be obtained for noisy signals. However, in order to get the 

appropriate window length the unknown derivatives of the WVD are needed to get 

the bias value; and in practical applications it is useless. So, a simple adaptive 

algorithm for the efficient time-frequency representation of noisy signals which 

uses only the noisy estimate of WVD and the analytical formula for the variance of 

this estimate is proposed. 

In Section 4.3.1 the derivation of the optimum window length is given; and in 

Section 4.3.2 the proposed algorithm is presented, and the performance of the 

algorithm is evaluated. 

4.3.1 Optimum Window Length for Pseudo DTWVD 

The DTWVD of a discrete time noisy signal ][][][ nvnfnx +=  is defined as 

 ∑
−

−=

−−+=
12/

2/

* )2exp(][][],[
N

Nk

xx kjknxknxnW θθ  (4-16) 

][nf  is assumed to be deterministic and the noise is complex-valued white, 

][][][ 21 njvnvnv +=  with 

 

0}][][{

][}][][{

0}][{

2211

2*

=

−=

=

nvnvE

mnmvnvE

nvE

v δσ  (4-17) 

Let ],[],[],[ θθθ nWnWnW ffxxxx −=∆ be the estimation error; then the bias of the 

estimate is equal to 2}],[{ vxx nWE σθ =∆ . The variance of the DTWVD 

is }],[{}],[{}],[],[{ **2 θθθθσ nWEnWEnWnWE xxxxxxxxxx −= . It has two components 
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 222
vvfvxx σσσ +=  (4-18) 

where ∑
−=

−=

−++=
12/

2/

2222 )()(
Nk

Nk

vfv knfknfσσ  and 42
vvv Nσσ = . 

As seen from the obtained results the bias is a constant for every (n,θ) pair for the 

unwindowed DTWVD and only depends on the noise; and the variance goes to 

infinity as N goes to infinity. 

When a window is used in the computation of the DTWVD (pseudo DTWVD) the 

following results are obtained for the bias and variance 

 ∑∞

−∞=
−−+−=

kxx kjknxknxkwkwNnW )2exp()()()()(];,[ * θθ  (4-19) 

 )0()2(*],[}],[{ 22wFnWnWE vwffxx σθθθ θ +=  (4-20) 

where )(θwF  is the FT of the symmetric window )()()( kwkwkwe −= ; and θ*  

denotes the convolution with respect to θ . 

As seen from (4-20) the bias term has two components; one of them depends on the 

signal and the other term depends on the noise. It is assumed that w(0) does not 

depend on N, the window length, so the noise dependent term is omitted in the 

following analysis. Using the Taylor series expansion for ],[ θnWxx  

 22

2 ],[

8

1
],[)2(*],[ m

nW
nWFnW

ff

ffwff θ

θ
θθθ θ ∂

∂
+≅  (4-21) 

where ∫
−

=
π

π

θθθ
π

dFm w )(
2

1 2
2 . 

So, the signal dependent bias term is obtained as 
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∂

∂
=  (4-22) 

For a nonrectangular window the two components of the variance in more general 

form are 

 ∑
−

−=

−++−=
12/

2/

222222 ]][][[][][
N

Nk

vfv knfknfkwkwσσ  (4-23) 

and 

 ∑
−

−=

−=
12/

2/

2222 ][][
N

Nk

vvv kwkwσσ  (4-24) 

The optimal window length is obtained by minimizing the mean squared error 

defined by 

 222 ];,[];,[ xxsignal NnbiasNne σθθ +=  (4-25) 

It is obtained for FM signal with slowly varying amplitude ][nA  as in [1] 
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As seen from the formula for optimal window length (4-26), the second derivative 

of the DWVD of the signal only part is needed which can not be obtained in 

practical applications; hence the optimal window length can not be computed in 

practical applications.  

4.3.2 Two Window Length Algorithm 

As it is shown in Section 4.3.1 to suppress the variance of the DWVD a window 

must be used in computations whose length depends on the signal and the second 
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derivative of the DWVD of the signal, the computation of which is not possible in 

practical applications where only the noisy observations of the signal are available. 

Hence an algorithm which computes the DWVD of the noisy signal for two 

different window lengths and makes a selection which depends on the differences 

between the DWVDs and the estimated variance is proposed in [1]. Actually the 

proposed algorithm uses M-many window lengths to find the one which is as close 

as possible to the optimal window length; however, in practical applications the use 

of two window lengths is sufficient. 

The general form of the algorithm which uses M-many windows can be 

summarized as follows: 

• Define a dyadic set N = {Ns | Ns = Ns-1/2, s = 1,2,3, …M}. Compute the 

DWVD for all Ns to obtain ];,[ sxx NnW θ  

• The optimal window length ],[ θnN s  for every ],[ θn  is determined by the 

largest s, s = 1,2, … J, when  

))()()((];,[];,[ 11 ++ +∆+≤− sxxsxxsxxsxx NNKKNnWNnW σσθθ   

is still satisfied. 

It is shown that for the FM signal with slowly varying amplitude ][nA , the variance 

is 

 )][2( 2222
vvwxx nAE σσσ +=  (4-27) 

As seen from (4-27) for variance computation the amplitude variation of the signal 

and the variance of the noise with the window energy are needed. The window 

energy can be computed from the type of the window used in the pseudo DWVD 

computation, but the other parameters should be estimated. For high noise case the 

following estimation can be used [1]: 
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In the two window length algorithm, the window lengths are chosen such that 

N1<<N2. For N1 the variance of the DWVD is small and for N2 the bias of the 

DWVD is small. So, depending on the difference between the DWVDs the small 

variance (N1) or the small bias (N2) is favored. The algorithm chooses the small 

window length for the regions of noise only part and chooses the large window 

length for the regions of signal part.  

If there is no noise, and the difference between the DWVDs of consecutive window 

lengths is not equal to zero, the algorithm chooses the larger window length to 

achieve higher concentration. 

Figure 4-1 shows the IF estimation algorithm steps. To get the IF estimates from the 

pseudo DWVD, the peak detection algorithm is used. The peak values along the 

frequency axis for every time sample are detected. The resultant noise on the IF 

estimate is impulsive; hence to reduce the effect of the impulsive noise 1-D median 

filter is applied to the IF estimates. Median filtering is a nonlinear technique that 

applies a sliding window to a sequence. The median filter replaces the center value 

in the window with the median value of all the points within the window. 

 

Figure 4-1 The IF estimation algorithm steps. 
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4.3.2.1 Simulation Results of the Algorithm 

The simulations are done for a linear FM signal for two different SNR levels. The 

window lengths are N1 = 64 and N2 = 512. The obtained IF estimates before and 

after the median filtering are given. 

4.3.2.1.1 Linear FM Signal 

The test signal is ][))05.0(1600exp(][ 2 ngAnTjnx +−=  

where T is the sampling period which is 1/2048 sec; ][ng is the additive white 

Gaussian noise, and A  is the amplitude of the noise which is used to adjust the 

SNR. The number of signal samples is 2048. 

Figure 4-2 shows the IF of the linear FM signal. 

 

Figure 4-2 IF of the test signal. 
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Figure 4-3 shows the output of the two window algorithm when the SNR is set to    

-5 dB. The IF estimate obtained using peak detection before median filtering is 

shown in Figure 4-4. As seen from the figure the noise on the estimated IF is 

impulsive. 

 

Figure 4-3 Pseudo DWVD with two window lengths, SNR = -5 dB. 

The obtained IF estimate after median filtering are shown in Figure 4-5. When 

Figure 4-4 and Figure 4-5 are compared it is seen that the median filter smoothes 

the estimated IF and suppresses the noise. The estimates at the beginning and at the 

end of the signal are not satisfactory; this is because of the window. At these points 

the window does not cover the signal completely; the signal sinks in noise on the 

time-frequency plane and can not be detected using peak detection. 
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Figure 4-4 The original IF (red) and the IF estimate (blue) obtained using peak 
detection algorithm before median filtering, SNR = -5 dB. 

 

Figure 4-5 The original IF (red) and the IF estimate (blue) obtained using peak 
detection after median filtering, SNR = -5 dB. 
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The obtained results when SNR is -10 dB are shown in Figure 4-6 and Figure 4-7. 

The results indicate that the method is not a satisfactory when SNR is decreased to  

-10 dB. 

 

Figure 4-6 The original IF (red) and the IF estimate (blue) obtained using peak 
detection algorithm before median filtering, SNR = -10 dB. 

 

Figure 4-7 The original IF (red) and the IF estimate (blue) obtained using peak 
detection after median filtering, SNR = -10 dB. 
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4.3.3 IF Estimation Using Support Vector Machines 

As it is shown in Section 4.3.2 the method of IF estimation from the output of the 

two window length algorithm using peak detection performs well down to SNR 

levels as low as -5 dB; but it does not give satisfactory results when SNR is 

decreased to -10 dB level. The performance of the algorithm can be improved using 

Support Vector Machines (SVM) which is actually a pattern recognition method. 

4.3.3.1 Support Vector Machines Method 

“An SVM is a general algorithm based on guaranteed risk bounds of statistical 

learning theory, i.e., the so-called structural risk minimization principle. It is a 

learning machine capable of implementing a set of functions that approximate best 

the supervisor’s response with an expected risk bounded by the sum of the empirical 

risk and the Vapnik-Chervonenkis (VC) confidence. The latter is a bound on the 

generalization ability of the learning machine that depends on the so-called VC 

dimension of the set of functions implemented by the machine. SVMs can be used to 

solve pattern recognition, regression estimation and density estimation problems. 

SVMs have found numerous applications such as in optical character recognition 

object detection, face verification, text categorization, engine knock detection, 

bioinformatics, and database marketing and so on.”[14]. 

SVMs are formed using a training data set. The training set contains the correct and 

false data vectors; from these vectors data pairs are formed. Each data pair contains 

one training vector and a constant indicating the training vector’s class (“+1” 

indicates correct class, and “-1” indicates false class). Simply, SVM is a match filter 

which matches to the correct training vectors as much as possible and mismatches 

to the false training vectors as much as possible. To find such an SVM a quadratic 

equation must be solved. Depending on the training set which must resemble the 

signal types in the real application area, the SVM can be classified as separable, 

linearly nonseparable and nonlinear SVMs. 
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In the following the SVM for linearly nonseparable case is explained. The details 

about the formulations for linear separable, nonseparable and nonlinear cases can be 

found in [12], [13] and [14]. 

Let { } Liforyx ii ,...,2,1, =  are given where ix ’s are the training vectors and 

{ }1,1−∈iy  depends on the class of the training vector. 

There exists a vector w  which satisfies 

 11 =−≥+ iii

T yforb εxw  (4-29) 

and 

 11 −=+−≤+ iii

T yforb εxw  (4-30) 

where b  is the bias term; iε  is a nonnegative slack variable Lifor ,...,2,1= ; w  is 

known as the support vector. We are trying to find the optimal hyperplane which 

maximizes the margin between itself and the vectors of two classes in the training 

set, in other words, which is equidistant from both classes. The so called 

generalized optimal hyperplane is determined by the vector 0w  that minimizes the 

functional 

 k
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where k  is a nonnegative integer. C  is a constant chosen by the user that defines 

the cost of constraint violations. For larger values of C the assigned penalty on the 

errors will be higher. 
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k  is chosen to be 1 to get advantage that neither iε  nor their Lagrange multipliers 

appear in the Wolfe dual problem. 

The Lagrangian of the optimization problem is given by 
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where iµ ’s and iα ’s are the nonnegative Lagrange multipliers. 

To find 0w  the Lagrange multipliers those maximize the Wolfe dual problem 
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0α  have to be found. 

0w  is obtained as 
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The bias term 0b is obtained as 
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where }0:{ CiI i ≤≤= α ; I  denotes the cardinality of the set I. 

4.3.3.1.1 The Proposed Algorithm 

Let us say we have an image of dimensions N1 x N2 (WVD of the test data), and a 

mask matrix which has the same dimension. The image contains the auto-term and 
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cross-term regions. The entries of the mask matrix are ±1. Let W be the image 

matrix, and M be the mask matrix. If Wnm is an element of the auto-term region, 

then Mnm is equal to 1; if Wnm is not an element of the auto-term region, then Mnm is 

equal to -1. The training vectors are formed using a KxK sub-window. By moving 

the sub-window over the image, L=K2 many values are obtained. By putting the 

columns of the sub-window one after another, the training vectors sxi ' , are formed 

for i = (n-1)*N2+m . The iy  values are obtained from Mnm for i = (n-1)*N2+m. 

Then using (4-34) the α  values are obtained. 0w  is obtained from (4-35), and ob  is 

obtained from (4-36). The equations are solved using Matlab® and its Optimization 

Toolbox.  

After the support vector 0w  and the bias term ob  are obtained, it is applied to the 

output of the two window algorithm for each time-frequency point; and the ones 

which passes the threshold are accepted as signal region, and the ones which can 

not pass the threshold are accepted as noise region and masked out to obtain a clean 

time-frequency plane. There is one point to be careful about the bias value: it has to 

be updated depending on the signal energy, because the support vector is trained 

using a signal with unity amplitude. Then peak detection is applied to the output of 

the SVM method. Figure 4-8 shows the IF estimation algorithm steps with the  

SVM method. 

 

Figure 4-8 The IF estimation algorithm steps with SVM 
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4.3.3.2 Simulation Results of the Proposed Algorithm 

The simulations are done for a linear FM signal for two different SNR levels. The 

window lengths are N1 = 64 and N2 = 512. The obtained IF estimates before and 

after median filtering are given. 

4.3.3.2.1 Linear FM Signal 

The same signal and the noise are used in the simulation as in Section 4.3.2.1.1. 

For SNR = -5 dB case the obtained IF estimate after SVM method without median 

filter is shown in Figure 4-9. As seen form the figure for SNR = -5 dB this method 

does not need median filtering, and performs better compared to the method without 

SVM. 

 

Figure 4-9 The original IF (red) and the IF estimate (blue) obtained after SVM 
method before median filtering, SNR = -5 dB. 
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For SNR = -10 dB case the obtained IF estimate after SVM method without median 

filter is shown in Figure 4-10. As seen from the figure the obtained IF estimates at 

SNR = -10 dB are comparable with the IF estimates obtained without SVM at   

SNR = -5 dB. 

Figure 4-11 shows the IF estimates with median filtering after the SVM method. 

When the obtained results from the method without SVM and from the method with 

SVM are compared, it is seen that the SVM method makes a 5 dB improvement in 

IF estimation. 

 

Figure 4-10 The original IF (red) and the IF estimate (blue) obtained after SVM 
method before median filtering, SNR = -10 dB. 
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Figure 4-11 The original IF (red) and the IF estimate (blue) obtained after SVM 
method after median filtering, SNR = -10 dB. 

4.4 THE FILTERING ALGORITHM 

There are two main steps in the proposed time-varying filtering algorithm. The first 

step concerns the time-frequency mask, ],[ knLH , computation and the second step 

concerns the reconstruction of the estimated signal from the time-frequency plane. 

Figure 4-12 shows the time-varying filtering algorithm steps. 

 

Figure 4-12 The time-varying filtering algorithm steps. 
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],[ knLH  is obtained from the IF estimate of the noisy signal which is computed as 

explained in Section 4.3. The SVM method is used to improve the performance of 

the IF estimation part of the algorithm. However, the SVM method does not give 

the IF estimate for some time samples on which the noise is dominant. To improve 

the filtering performance the IF estimates for these time samples are obtained using 

linear interpolation. The performance of the algorithm with and without the SVM 

method and interpolation are investigated in Section 4.4.1. The bias value of the 

SVM method is found by trial and error and is not changed in the simulations for 

different SNR values. 

Estimated signal is reconstructed using equation (4-15). Even if there is no noise on 

the observed signal and the IF of the signal is perfectly known, the signal can not be 

perfectly reconstructed since the estimated signal is amplitude modulated, the 

reason of which is explained in [9]. (Recall that WVD concentrates signal energy at 

and around the IF on the time-frequency plane. At a given time instant the 

maximum energy is found on the IF frequency but this does not mean that the 

energy level at other frequencies are zero. Additionally, the energy level on the IF 

frequency changes with time which means that for different time samples the 

maximum value is different; so for a given time instant if the signal energy only at 

the IF frequency are summed, this will cause amplitude modulation. In fact to 

recover the signal at that time instant the signal energy over the entire frequency 

axis must be summed. To decrease this effect the time-frequency mask is widen 

around the IF frequency in positive and negative directions by 5 frequency samples; 

since most of the signal energy is concentrated around the IF on the time-frequency 

plane. Actually the number of frequency samples depends on the length and the 

type of the window used in the STFT computation. In this application a rectangular 

window of length 64 is used; the DFT length is 512 which results in 5 frequency 

samples.) 
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4.4.1 The Simulation Results of the Proposed Time-Varying 

Filtering Algorithm 

The sinusoidal FM signal is used in the simulations which is obtained using the 

following formulas 

]0012207.02sin[ nIF π=  

bsIFIFIFIFbsasIFc +−−−= ))min()(max())min()((  

][)][2exp(][
0

ngAmIFckjnx
n

m

f += ∑
=

π  

where 4.0=as , 1.0=bs  and 2.0=fk . ][ng  is the additive white Gaussian noise; 

A is the amplitude of the noise which is used to adjust the SNR. The simulations are 

done at SNR = -5 dB and SNR = -10 dB. 

In the first simulation the signal is estimated from the observed signal without noise 

and with apriori IF information. The time-frequency mask is widen around the IF in 

positive and negative directions by 5 frequency samples. 

Figure 4-13 shows first 850 samples of the output of the proposed algorithm when 

there is no noise on the signal. As it is described in Section 4.4 the signal is 

recovered with an amplitude modulation on it, but the frequency information is 

preserved. When the estimation error is defined as the difference between the 

estimated signal and the original signal, the output SNR with known IF is 3.8 dB. 

In the second simulation the SNR = -5 dB case is tested. Figure 4-14 shows the 

output of the filter when the IF of the signal is known apriori. Figure 4-15 shows the 

output of the filter when the IF of the signal is estimated using the two window 

algorithm, peak detection and median filtering. As seen from the figure, the result is 

acceptable when compared with the IF known case. The output SNR with IF 

estimation is 2.6 dB. 
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Figure 4-13 The original FM signal (blue), and the estimated signal (red). 

 

Figure 4-14 The original signal (red) and the estimated signal (blue) with known IF, 
SNR = -5 dB. 

 

Figure 4-15 The original signal (red) and the estimated signal (blue); IF is estimated 
without SVM; SNR = -5 dB. 
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Figure 4-16 shows the pDWVD after SVM Method is applied. As seen from the 

figure, a cleaner time-frequency plane is obtained by the help of the SVM Method; 

however there are gaps along the time axis, which are the high noise influence 

points and eliminated by SVM Method; so for these time samples IF estimates are 

not computed. 

 

Figure 4-16 pDWVD after SVM method is applied, SNR = -5 dB. 

When IF estimate obtained from SVM method is directly applied, the filter output is 

shown in Figure 4-17. As seen from the figure for some time durations the filter 

output is zero; these points are the eliminated points by SVM Method. Although 

these points are eliminated by SVM Method this does not mean that the signal is 

absent for these points; because the duration of the gaps is smaller compared to the 

window widths used in two-window algorithm; so performance of the algorithm can 

be improved if IF estimates for those time samples are obtained. This is done by 

linear interpolation; that is to say the jumps in time samples for the IF estimates are 
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detected and the IF estimates are calculated using linear interpolation for those time 

duration. The obtained result using linear interpolation is shown in Figure 4-18; as 

seen from the figure those time gaps are filled. The output SNR with IF estimation 

using SVM Method is 2.9 dB and the output SNR with IF estimation using SVM 

Method with linear interpolation is 3.6 dB. When the obtained SNR values are 

compared it is seen that the results of IF known case and IF estimated using SVM 

Method with linear interpolation case are nearly equal. 

 

Figure 4-17 The original signal (red) and the estimated signal (blue); IF is estimated 
using SVM; SNR = -5 dB. 

 

Figure 4-18 The original signal (red) and the estimated signal (blue); IF is estimated 
using SVM with linear interpolation; SNR = -5 dB. 
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In the third simulation, SNR = -10 dB case is tested. Figure 4-19 shows the IF 

estimate obtained from two window algorithm (blue signal), and after median filter 

(red signal) without SVM method. The green signal is IF of the signal, as seen from 

the figure and as it is shown in Section 4.3.2.1.1 the algorithm does not work for 

SNR = -10 dB case. 

 

Figure 4-19 IF estimate obtained without SVM (blue); after median filter (red); 
original IF (green); SNR = -10 dB. 

Figure 4-20 shows the output of the filter when the IF of the signal is known apriori. 

The output SNR of the IF known case is 3.3 dB. 
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Figure 4-20 The original signal (red) and the estimated signal (blue) with known IF, 
SNR = -10 dB. 

Figure 4-21 shows the pDWVD after SVM Method is applied as seen from the 

figure a cleaner time-frequency plane is obtained; however there are more time gaps 

compared to SNR= -5 dB case. This is also seen from Figure 4-22 which shows the 

filter output when IF estimate obtained from SVM Method is directly used in mask 

computation. The output SNR of the IF estimated using SVM Method case is       

1.9 dB. Figure 4-23 shows the output of the filter when the missing IF estimates are 

obtained using linear interpolation; as seen from the figure the time gaps are filled 

after linear interpolation which improves performance of the algorithm. The output 

SNR of the IF estimated using SVM Method with linear interpolation case is        

2.6 dB. When the output SNR obtained from IF estimated using SVM Method with 

linear interpolation case is compared with the output SNR obtained from IF known 

case, it is seen that the difference is less than 1 dB. 
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Figure 4-21 pDWVD after SVM Method is applied, SNR = -10 dB. 

 

Figure 4-22 The original signal (red) and the estimated signal (blue); IF is estimated 
using SVM; SNR = -10 dB. 
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Figure 4-23 The original signal (red) and the estimated signal (blue); IF is estimated 
using SVM with linear interpolation; SNR = -10 dB. 

4.5 CONCLUSION 

In this chapter the derivations of the time-varying Wiener Filter and its time-

frequency formulation using WVD are given. According to the derived formulas, it 

is seen that to perform filtering operation, time-varying transfer function of the 

linear time-varying filtering operator and the STFT of the noisy signal have to be 

computed. The computation of the latter is simple; however, the determination of 

the time-varying transfer function is crucial, because if it is incorrectly determined, 

the desired signal can not be filtered from noise. It is shown that the time-varying 

transfer function is approximately given by the region of support of the desired 

signal; hence the determination of time-varying transfer function is equivalent to the 

determination of region of support of the signal, which is equivalent to the 

determination of IF of the signal. (Recall that WVD distribution concentrates the 

signal energy at and around the IF of the signal on the time-frequency plane.) 

To determine the IF of the signal, the method which is proposed in [1] is 

investigated. It is shown that the method gives satisfactory results at SNR levels 

down to -5 dB. To improve the performance of the method, the use of SVM is 
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proposed. It is shown that with SVM without any need of median filtering, the 

performance of the algorithm is better at SNR levels down to -5 dB. Furthermore, it 

is shown that with SVM and median filtering the algorithm gives satisfactory results 

at SNR levels down to -10 dB. 

The main disadvantage of SVM method is that for some time samples it makes 

incorrect decisions and does not give the IF estimates. For these time samples the 

output of the filter is zero which degrades the performance of the algorithm. To 

overcome this disadvantage the missing IF estimates are obtained by linear 

interpolation. To do so the jumps in time samples for IF estimates are detected and 

these time gaps are filled by a linear curve. This improves the performance of the 

algorithm, and it is shown that at SNR levels down to -5 dB the output of this 

algorithm is comparable with the output of the filter with apriori known IF. 

Another disadvantage of the SVM method is the bias value determination. In the 

training phase of the method a bias value is computed for optimum decision; 

however, this value depends on the training signal energy. When the signal energy 

changes, the bias value has to be updated. In this work, a bias value is set by trial 

and error, which degrades the decision performance. 

The use of SVM method can improve the filtering performance for mono-

component signals. However, the SVM method increases the computational cost; 

since for every time-frequency point a decision has to be made. The performance of 

the algorithm is not tested for multi-component signals, since the use of peak 

detection allows the detection of the stronger signal. However, if the number of 

signal components is known, peak detection can also be used for multi-component 

signals. 
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CHAPTER 5  

 

COMPARISON OF METHODS  

The performances of TFPF method, SVM based method and classical zero-phase 

low-pass filter are compared using real, frequency modulated test signals. The 

performances are evaluated by comparing the output SNR values of the methods 

under the same input SNR. 

Let the continuous time test signal be of the form 

 ))(cos()( tts φ=  (5-1) 

The instantaneous frequency (IF) of )(ts  is given by 

 )(
2

1
)( t

dt

d
tf i φ

π
=  (5-2) 

Consider an FM signal 

 )')'(22cos()(
0
∫+=
t

fc dttmktfts ππ  (5-3) 

Where fk  is the frequency sensitivity; the IF of the FM signal is 

 )()( tmkftf fci +=  (5-4) 
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The frequency deviation f∆  is defined as 

 ))(max( tmkf f=∆  (5-5) 

which represents the maximum deviation of the IF of the FM signal from the carrier 

frequency cf . The ratio of the frequency deviation to the bandwidth mB  of )(tm  is 

defined as the modulation index β  which is given by 

 
mB

f∆=β  (5-6) 

The bandwidth of an FM is signal is infinite, since it contains an infinite number of 

side frequencies which are separated from the carrier frequency by integer multiples 

of mB  in positive and negative directions. However the side frequencies that are 

separated from the carrier frequency by an amount greater than the total frequency 

deviation decrease toward zero rapidly. So, the bandwidth of the signal is grater 

than the frequency deviation but it is eventually limited. For large values of β  

(compared to 1) the bandwidth of )(ts  (the FM signal) approaches and is slightly 

greater than the total frequency deviation f∆2 ; and this case is known as wide-band 

FM. On the other hand, for small values of β  (compared to 1), the spectrum of )(ts  

is effectively limited to the band mc Bf ± , and bandwidth of )(ts  approaches mB2 ; 

and this case is known as narrow-band FM. So, an approximate formula for the 

effective bandwidth of )(ts  can be defined as 

 )(2 ms BfB +∆≅  (5-7) 

which is known as Carson’s rule. 

In the following simulations discrete time test signals are used which are obtained 

from the continuous time signal which is contained in additive zero-mean white 

Gaussian noise by sampling the signal with sampling period T . 
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The discrete time test signal is of the form 

 [ ] [ ] [ ]nvnsnx +=  (5-8) 

where [ ]ns  is the desired signal with average power sP  and [ ]nv  is the additive 

zero-mean white Gaussian noise with variance 2
vσ , the SNR at the filter input is 

 )/(log10 2
10 vsi PSNR σ=  (5-9) 

The filtered signal is [ ]nx̂  and the error signal is [ ] [ ] [ ]nxnsne ˆ−=  with variance 

2
eσ , the SNR at the filter output is 

 )/(log10 2
10 eso PSNR σ=  (5-10) 

5.1 SIMULATION 1: Linear FM Signal, High Sampling Frequency 

The continuous time noise free test signal is 

 






 ≤≤+

=

−

otherwise

tfortt

ts

0

sec40960)10*5.7005.0cos(

)(

27

 (5-11) 

The effective bandwidth of the signal which is calculated using Carson’s Rule is 

0.0018Hz. Figure 5-1 shows the magnitude spectrum of the noise free signal, which 

is computed using Mathametica software. As seen from the figure, the calculated 

effective bandwidth of the signal is a sufficient bandwidth approximation for this 

signal. 

It is assumed that the signal is observed only for the time duration sec40960 ≤≤ t ; 

and sampled with sampling period sec1=T  which is approximately 250 times the 

Nyquist rate. 



70 

 

 

Figure 5-1 Magnitude spectrum of the noise free signal. 

The sampled test signal with additive zero-mean white Gaussian noise is of the 

form 

 [ ] [ ] [ ] 4095:010*5.7005.0cos2 27 =++= − nfornvnnnx  (5-12) 

The variance of [ ]nv  is adjusted such that dBSNRi 5−= . 

Figure 5-2 shows the output of the TFPF Method; the output SNR is approximately 

12 dB. Figure 5-3 shows the output of the SVM based Method; the output SNR is 

approximately 8 dB. Figure 5-4 shows the output of the zero-phase low-pass filter; 

the output SNR is approximately 7 dB. When the output SNR values are compared 

it is seen that TFPF Method performs better compared to the others methods for this 

signal and sampling rate. 
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Figure 5-2 The original signal (blue) and the output of the TFPF method (red),  
SNRi = -5 dB. 

 

Figure 5-3 The original signal (blue) and the output of the SVM based method 
(red), SNRi = -5 dB. 
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Figure 5-4 The original signal (blue) and the output of the classical zero-phase low-
pass filter (red), SNRi = -5 dB. 

5.2 SIMULATION 2: Linear FM Signal, Low Sampling Frequency 

The continuous time noise free test signal is 

 






 ≤≤+

=

otherwise

tfortt

ts

0

sec20480)4096/7754.001.0cos(

)(

2

 (5-13) 

The effective bandwidth of the signal which is calculated using Carson’s Rule is 

0.125Hz. Figure 5-5 shows the magnitude spectrum of the noise free signal, which 

is computed using Mathametica software. As seen from the figure, the calculated 

effective bandwidth of the signal is a sufficient bandwidth approximation for this 

signal. 
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Figure 5-5 Magnitude spectrum of the noise free signal. 

It is assumed that the signal is observed only for the time duration sec20480 ≤≤ t ; 

and sampled with sampling period sec4/1=T  which is approximately 16 times the 

Nyquist rate. 

The sampled test signal with additive zero-mean white Gaussian noise is of the 

form 

 [ ] [ ] 8191:0
16*4096

7754.0

4

01.0
cos2 2 =+




 += nfornvnnnx  (5-14) 

The variance of [ ]nv  is adjusted such that dBSNRi 5−= . 

The maximum IF of the signal is 0.125Hz, and the worst case window length of the 

TFPF method is 16. 

Figure 5-6 shows the output of the TFPF method. The output SNR is 5 dB.  
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Figure 5-6 The original signal (blue) and the output of the TFPF method (red),  
SNRi = -5 dB. 

Figure 5-7 shows the output of the SVM based method. The output SNR is 

approximately 4.9 dB. 

 

Figure 5-7 The original signal (blue) and the output of the SVM based Method 
(red), SNRi = -5 dB. 
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Figure 5-8 shows the output of the classical zero-phase low-pass filter. The output 

SNR is approximately 5 dB. 

 

Figure 5-8 The original signal (blue) and the output of the classical zero-phase low-
pass filter (red), SNRi = -5 dB. 

It is now assumed that the signal is observed only for the time duration 

sec20480 ≤≤ t ; and sampled with sampling period sec1=T  which is 

approximately 4 times the Nyquist rate. For this simulation the sampling rate is 

decreased to see the effects of the sampling rate on the performances of the 

algorithms. 

The sampled test signal with additive zero-mean white Gaussian noise is of the 

form 

 [ ] [ ] 2047:0
4096

7754.0
01.0cos2 2 =+




 += nfornvnnnx  (5-15) 

The variance of [ ]nv  is adjusted such that dBSNRi 5−= . 
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Notice that the sampling rate is lowered 4 times but it is still 4 times higher than the 

Nyquist rate and still avoids aliasing. The same simulations are done for this lower 

sampling rate. This time the worst case window length of TFPF method is reduced 

to 4 from 16. 

Figure 5-9 shows the output of the TFPF Method; the output SNR is approximately 

-1.7 dB. Figure 5-10 shows the output of the SVM based method; the output SNR is 

approximately 4.2 dB. Figure 5-11 shows the output of the zero-phase low-pass 

filter; the output SNR is approximately 0 dB. 

 

Figure 5-9 The original signal (blue) and the output of the TFPF method (red),  
SNRi = -5 dB. 
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Figure 5-10 The original signal (blue) and the output of the SVM based Method 
(red), SNRi = -5 dB. 

 

Figure 5-11 The original signal (blue) and the output of the classical zero-phase 
low-pass filter (red), SNRi = -5 dB. 
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As seen from the obtained results when the sampling rate is decreased to 41  of the 

original sampling rate, the output SNR of the TFPF Method decreases by 

approximately 7 dB, the output of zero-phase low-pass filter decreases by 

approximately 5 dB; on the other hand the output SNR of the SVM based method 

does not change more than 1 dB. 

5.3 SIMULATION 3: 4-FSK Signal 

The continuous time noise free test signal is a 4-FSK signal which is of the form 

 ∑
=

−+=
P

k

ckkc kTtwtfatfts
1

)()22cos(2)( ππ  (5-16) 

where P  is the number of hops which is set to 8 in the simulation, cf  is the carrier 

frequency which is set to 0, cT  is the duration between hops which is set to 40ms, 

kf  is the minimum frequency change which is set to 100Hz, )(tw  is a rectangular 

pulse of length cT , and ka ’s are integers in between 1 and 4 for 4-FSK which are 

set to 1, 2, 1, 4, 4, 3, 1 and 2. 

The effective bandwidth of the signal which is calculated using Carson’s Rule is 

approximately 400Hz. Figure 5-12 shows the magnitude spectrum of the noise free 

signal, which is computed using Mathametica software. As seen from the figure, the 

calculated effective bandwidth of the signal is a sufficient bandwidth approximation 

for this signal. 
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Figure 5-12 Magnitude spectrum of the noise free signal. 

It is assumed that the signal is observed only for the time duration mst 3200 ≤≤ ; 

and sampled with sampling period sec50µ=T . The sampled test signal with 

additive zero-mean white Gaussian noise is of the form 

 [ ] [ ] 6399:0)*650()*6502cos(2
1

=+−−−= ∑
=

nfornvkTtewnefans
P

k

ckk π (5-17) 

The variance of [ ]nv  is adjusted such that dBSNRi 5−= . 

The maximum IF of the signal is 400Hz, and the worst case window length of the 

TFPF method is 20. 

Figure 5-13 shows the output of the TFPF method. The output SNR is 6.8 dB. 
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Figure 5-13 The original signal (blue) and the output of the TFPF method (red), 
SNRi = -5 dB. 

Figure 5-14 shows the output of the SVM based method, the output SNR is 4.9 dB. 

Figure 5-15 shows the output of the classical zero-phase low-pass filter. The output 

SNR is 4.8 dB. 

 

Figure 5-14 The original signal (blue) and the output of the SVM based Method 
(red), SNRi = -5 dB. 
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Figure 5-15 The original signal (blue) and the output of the classical zero-phase 
low-pass filter (red), SNRi = -5 dB. 

It is now assumed that the signal is observed only for the time duration 

mst 3200 ≤≤ ; and sampled with sampling period sec100µ=T . 

The sampled test signal with additive zero-mean white Gaussian noise is of the 

form 

 [ ] [ ] 3199:0)*6100()*61002cos(2
1

=+−−−= ∑
=

nfornvkTtewnefans
P

k

ckk π (5-18) 

Notice that the sampling rate is lowered 2 times but it is still higher than the Nyquist 

rate and still avoids aliasing. The same simulations are done for this lower sampling 

rate. This time the worst case window length of TFPF method is reduced to 10 from 

20. 

Figure 5-16 shows the output of the TFPF method when the sampling rate is 

reduced to half, the output SNR is 2.9 dB. Recall that the output SNR was 6.8 dB, 

so, reducing sampling rate to half results in approximately 4 dB SNR decrease. 



82 

 

 

Figure 5-16 The original signal (blue) and the output of the TFPF method (red), 
SNRi = -5 dB. 

Figure 5-17 shows the output of the SVM based method, the output SNR is 4.15 dB. 

Recall that the output SNR was 4.9 dB, so reducing the sampling rate does not 

make a significant degradation in the performance of the SVM based method. 

 

Figure 5-17 The original signal (blue) and the output of the SVM based Method 
(red), SNRi = -5 dB. 
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Figure 5-18 shows the output of the classical zero-phase low-pass filter, the output 

SNR is 2.5 dB. Recall that the output SNR was approximately 5 dB, so reducing the 

sampling rate results in approximately 2.5 dB SNR decrease. 

 

Figure 5-18 The original signal (blue) and the output of the classical zero-phase 
low-pass filter (red), SNRi = -5 dB. 

When the results for high and low sampling rates are compared it is seen that the 

output SNR’s of the TFPF method and classical zero-phase low-pass filter decrease 

when the sampling rate is decreased, on the other hand the decrease in the output 

SNR of the SVM based method is negligible compared to the decrease in the output 

SNR of the TFPF method and low-pass filter. 

5.4 SIMULATION 4: Real World Data 

In this simulation a real world data which is digitized echolocation pulse emitted by 

the Large Brown Bat, Eptesicus Fuscus is used. There are 400 samples; the 

sampling period was 7 microseconds. However, the signal was sampled at the 

Nyquist rate and to avoid aliasing its rate is increased using interpolation. The 
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signal has two simultaneous frequency components. Therefore, SVM based method 

is modified in order to work with multi-component signals; and it is assumed that 

the number of simultaneous frequency components is known beforehand. The test 

signal is very clean and it can be assumed that it is noise free. Although, in the first 

part of the simulation the signal is used directly, in the second part of the simulation 

noise is added to the signal to see the performances of the algorithms under noisy 

case. Figure 5-19 shows the test signal. 

 

Figure 5-19 The bat signal. 

Figure 5-20 shows the pDWVD of the test signal. Figure 5-21 shows the detected 

auto-term regions (actually the IF of the test signal) after SVM method is applied; 

as seen from the figure region of support of the signal is correctly detected. 
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Figure 5-20 pDWVD of the test signal. 

 

Figure 5-21 Detected auto-term regions (orange) after SVM. 
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Figure 5-22 shows the estimated and the original signals. Although, the region of 

support information is correctly found, the signal is estimated with an amplitude 

modulation as expected. 

 

Figure 5-22 The original (blue) and the estimated (red) signals using SVM based 
method. 

Figure 5-23 shows the original signal and the estimated signal using TFPF method. 

Although, the worst case window length is too small because of the low sampling 

rate, the signal is correctly estimated since there is no noise on the signal. When the 

performances of the algorithms are compared, it is seen that TFPF method is a 

better choice when there is no noise on the signal, because SVM based method 

produces amplitude modulated estimates, on the other hand, TFPF method not. 

 

Figure 5-23 The original (blue) and the estimated (red) signals using TFPF method. 
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To compare the methods under noisy case, noise is added to the test signal; the SNR 

is approximately -5 dB. Figure 5-24 shows the noisy bat signal. 

 

Figure 5-24 The noisy bat signal. 

Figure 5-25 shows the pDWVD of the noisy test signal; and Figure 5-26 shows the 

detected auto-term regions after SVM method. When compared to the noise free 

case there are extra detected regions in the noisy case. 
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Figure 5-25 pDWVD of the noisy test signal. 

 

Figure 5-26 Detected auto-term regions (orange) after SVM. 
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Figure 5-27 shows the output of the SVM based method. The output SNR is 

approximately 1.6 dB. 

 

Figure 5-27 The original (blue) and the estimated (red) signals using SVM based 
method. 

Figure 5-28 shows the output of the TFPF method. The output SNR is 

approximately -1dB. 

 

Figure 5-28 The original (blue) and the estimated (red) signals using TFPF method. 

In the noisy case SVM based method performs better than the TFPF method. 
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5.5 RESULTS 

Although the simulations are done to determine the best filtering method over the 

investigated methods, the results show that it can not be concluded that one of the 

methods performs better than the others under all conditions. The best method is 

determined by the sampling rate (not by the signal and/or the noise type). 

It is observed that for high sampling rates the TFPF method performs better than the 

other methods; and the performances of the SVM based method and the zero-phase 

low-pass filter are close to each other. For low sampling rates the performance of 

the SVM based method is the best, and the performance of the TFPF method is the 

worst among them. 

It is also observed that the performance of the TFPF method mainly depends on the 

window length which is directly proportional to the sampling rate and inversely 

proportional to the maximum frequency of the desired signal. When the maximum 

frequency of the desired signal is kept constant and the sampling rate is increased, 

the worst-case window length is increased improving the performance; on the other 

hand, when the sampling rate is decreased, the worst-case window length is 

decreased degrading the performance. It is seen that the output SNR is 

approximately decreased by 4 dB when the sampling rate is halved. In addition, it is 

observed that the performance of the SVM based method is less affected from the 

sampling rate changes as compared to the performances of the TFPF method and 

the zero-phase low-pass filter. (The decrease in the output SNR of the SVM based 

method is less than 1 dB when the sampling rate is halved.) 

In case of multi-component signals which contain simultaneous frequency 

components, the SVM based method needs modification; on the other hand, the 

TFPF method does not. Actually, the modification is simple and the peak searching 

is applied to find the peaks where the number of peaks is equal to the number of the 

simultaneous frequency components, instead of searching for a single peak. So, the 

number of simultaneous frequency components must be known beforehand, or it 
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must be detected. In this thesis it is assumed that it is known apriori. It is observed 

that for the signals which contain many simultaneous frequency components, like 

brain, heart or sound signals, the performance of the SVM based method degrades. 

The main reasons for this performance degradation are the number of cross terms 

which make the time-frequency plane complicated and the differences between the 

energy levels of the frequency components. However, the SVM based method is not 

proposed for such signals. Therefore, the real world data, the bat signal, used in the 

simulation is chosen carefully to make a fair comparison. The bat signal contains 

only two simultaneous frequency components, it is almost noise free and the 

frequency components are continuous, i.e., there are no gaps. The obtained results 

are consistent with the results obtained from the test signals. 



92 

 

CHAPTER 6  

 

CONCLUSIONS  

The main interest of this thesis is on the time-frequency filtering of nonstationary 

signals using WVD. As a first step the WVD is investigated and its properties, 

advantages and disadvantages are presented. The discrete-time and discrete WVD 

definitions are given and the relations between them and between continuous-time 

WVD are shown. 

The WVD of noisy signals and the robust and the pseudo forms of the WVD are 

investigated. The obtained results are presented: the ML estimate of the WVD of a 

signal under Gaussian noise is equal to the WVD itself; the variance of the discrete-

time WVD of a signal under Gaussian noise goes to infinity as the number of signal 

samples used in the computation goes to infinity; and the pseudo form of the WVD 

must be used to make variance finite. 

Two time-frequency filtering methods are investigated and the performances of the 

methods are compared using test signals and real world data. Both methods use the 

pseudo WVD as the time-frequency analysis tool and peak detection to estimate the 

IF from the pseudo WVD. The main difference between them is on the signal 

detection and the reconstruction. 

First filtering method is the TFPF. In this method the noisy signal is encoded as the 

IF of an analytic FM signal, and the FM signal is transformed to the time-frequency 

plane using the pseudo WVD. Then to recover the desired signal, the IF estimation 
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is performed which actually gives the desired signal estimate multiplied with a 

constant scalar. So, the desired signal is obtained from the estimated IF data without 

using the signal synthesis from the time-frequency plane methods which decreases 

the complexity of the TFPF and increases the signal reconstruction performance. 

The cross-terms are not a problem for this method, since it works on analytic 

signals. The effects of different parameters on the performance of the method are 

investigated and the results are presented. The most important parameter of the 

method is the length of the window used in the pseudo WVD which is inversely 

proportional to the maximum frequency of the desired signal and directly 

proportional to the sampling frequency. 

The IF estimation error bias is directly proportional to the window length; on the 

other hand, the time-frequency resolution is inversely proportional to this length. 

The window length is computed to limit the error bias; and it is tried to be 

decreased. However, for a given error bias tolerance, by increasing the sampling 

frequency the window length can be increased, which results in an increase in the 

time-frequency resolution at the same time keeping the error bias low. It is observed 

that by doing so the performance of the method can be improved. 

It is shown that to obtain the minimum error variance, the window length must be 

close to the worst case window length; lower or higher window lengths result in 

higher error variances. It is also shown that as the number of iterations is increased, 

the error variance starts to increase after an iteration number which depends on the 

window length; and it is proposed to stop the iterations when the difference between 

successive iterations starts to increase to obtain a better performance. 

Although the performance of the method is good at low SNR levels, to compute the 

worst case window length the maximum frequency of the desired signal must be 

known. In the thesis it is assumed that it is known beforehand. However, when there 

is no apriori information about the desired signal, the maximum frequency of the 

desired signal has to be estimated from the noisy observation which requires 

additional computation. 
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In the first part of the method the noisy signal is encoded using FM modulation. To 

limit the effective bandwidth of the FM signal the maximum and the minimum 

values of the noisy signal must be known; since the effective bandwidth of an FM 

signal is directly proportional to the maximum value of the modulating signal. 

The TFPF method is suitable for multi-component signals which contain 

simultaneous frequency components. 

The second filtering method is the sub-optimal time-varying Wiener filter. In this 

method the noisy signal is transformed to the time-frequency plane using the pseudo 

WVD, and then peak detection is performed to detect the desired signal’s region of 

support. From the detected region of support a time-frequency mask is computed 

and applied to the STFT of the noisy signal; and the desired signal is obtained by 

summing the magnitude squares of the STFT (spectrogram) along the frequency 

axis. 

The time-varying Wiener filter and the time-frequency formulation of the filter are 

presented and it is shown that the time-varying transfer function of the filter can be 

reduced to a time-frequency mask which is equal to 1 on the region of support of 

the signal and 0 otherwise which gives a sub-optimal result. 

The window length used in the pseudo WVD is important, since the variance of the 

WVD is directly and the bias of the WVD is inversely proportional to the window 

length. It is shown that to get the optimum window length the unknown derivatives 

of the WVD of the desired signal are needed. However, in practical applications it is 

impossible to compute the window length. Therefore, the pseudo WVD is computed 

for two different window lengths and by comparing their difference and the 

estimated variance value, one of them is favored. 

It is shown that for an analytic mono-component signal, the performance of the 

method is good for SNR levels down to -5 dB. To increase the performance of the 

method, the SVM method is applied to the IF estimation phase of the algorithm 

which is actually a pattern recognition technique. It is shown that for SNR levels 
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down to -5 dB the estimated signal which is obtained using the SVM method is 

comparable to the estimated signal which is obtained with known region of support. 

It is also shown that the method gives satisfactory results at SNR levels down to      

-10 dB. The main drawback of the method is the threshold setting. In the training 

phase of the SVM an optimum threshold value is computed. However, this value 

depends on the signal energy and it must be updated for signals with different 

energies. 

The SVM method increases the computational cost of the algorithm, since for every 

time-frequency point a decision is made and the noise regions are tried to be 

masked out. For some time-frequency points the SVM method can make wrong 

decisions depending on the noise influence, and for these points time gaps or sharp 

jumps in the IF estimation occur. The sharp jumps are smoothed using median 

filter, and the time gaps are filled using linear interpolation. However, time gaps 

also occur when there is no signal at these time instants. Therefore, a decision has to 

be made to fill or not to fill the time gaps. The decision is made depending on the 

length of the time gap; if it is lower than half of the minimum window length used 

in the pseudo WVD computation, the time gaps are filled. By doing so the 

performance of the algorithm is improved. 

Another drawback of the algorithm is the method used in signal reconstruction. 

Even if there is no noise on the signal, the estimated signal is amplitude modulated. 

This is because of the masking in STFT of the signal. The signal energy is spread to 

entire time-frequency plane, and to obtain the signal correctly it has to be summed 

over the entire frequency axis; however, because of the masking only the masked 

regions are summed. 

The algorithm needs modification to work with multi-component signals which 

contain simultaneous frequency components. The simplest modification is 

searching for the peaks whose number is equal to the number of simultaneous 

components. 
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The performances of the filtering algorithms are compared using test signals and 

real world data. It is seen that when the sampling frequency is increased the TFPF 

method performs better than the time-varying Wiener filter with SVM method; on 

the other hand, when the sampling frequency is decreased the SVM based method is 

better. The TFPF method is also better in high SNR cases, since the output of the 

SVM based method contains an amplitude modulation even if there is no noise on 

the signal. 

Some of the topics remained as future work are noted below: 

• Computing worst case window length in the TFPF method by taking the IF 

estimation error variance into account. 

• Computing an adaptive worst case window length in the TFPF method. 

• Estimating the maximum frequency of the desired signal from the noisy 

observations automatically in the TFPF method. 

• Improving the signal synthesis method in time-varying Wiener filter. 

• Setting the threshold of the SVM method automatically. 
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APPENDIX A  

 

SOME MATHEMATICAL PROPERTIES OF WVD  

Some mathematical properties of WVD will be given briefly; 

• WVD of an arbitrary signal is always real. If the signal is also real then the 

transform is an even function of frequency. 
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• Its integral over frequency gives the temporal energy density. 
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• Its integral over time gives the energy density spectrum. 
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• Its integral over time and frequency gives the signal energy. 
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• The WVD of product of two signals is equal to the convolution of the 

WVD’s of the individual signals with respect to frequency. 
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• The WVD of convolution of two signals is equal to the convolution of the 

WVD’s of the individual signals with respect to time 
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• If the signal is restricted only to a certain time interval, then the WVD of the 

signal is also restricted to that time interval. 
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• If the signal is restricted only to a certain frequency interval, then the WVD 

of the signal is also restricted to that frequency interval. 
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• A time shift of the signal leads to a time shift of the WVD. 

 ),()( 00 wttWttx xx −→−  (A-9) 

• A modulation of the signal leads to a frequency shift of the WVD. 

 ),()exp()( 00 wwtWtjwtx xx −→  (A-10) 
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• WVD satisfies the Moyal’s Formula, which shows that the squared 

magnitude of the inner product of two signals is equivalent to the inner 

product of WVD’s of the signals. 

 dwdtwtWwtWdttytx yyxx∫ ∫∫
+∞

∞−
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• The signal can be perfectly reconstructed from the WVD by an inverse 

Fourier Transform along frequency but with a constant x*(0) multiplicative 

term. 
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APPENDIX B  

 

ML ESTIMATE OF WVD  

Let the noisy signal be 

 )()()( tvtstx +=  (B-1) 

The aim is the obtain )()( tstf ≈ ,so minimize the function 

 ∫ −= ττ dxtfFL ))()((  (B-2) 

where (.)F is loss function. To obtain the ML estimator,  

 ))(log()( epeF v−=  (B-3) 

is used as the loss function, where )(epv is the PDF of the noise, [27]. For Gaussian 

noises the loss function reduces to 

 
2

)( eeF =  (B-4) 

To obtain the ML estimate forms of the WVD, consider the following error function 

 )exp()2()2(),,( * ττττ jwmtxtxwte −−+=  (B-5) 

and minimize  
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 ττ dwteFmwtL ∫= )),,(();,(  (B-6) 

with respect to m . 
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Insert the Gaussian noise loss function into (B-6) to get 
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To obtain the complex derivative let jbam += , then 
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The derivatives with respect to a and b are 

 
[

] adjwtxtx

jwtxtx
a

wtL

2)exp()2()2(

)exp()2()2(
);,(

*

*

+−+−

−−+=
∂

∫
ττττ

τττ
τ

 (B-10) 

 
[

] bjdjwtxtjx

jwtxtjx
b

wtL

2)exp()2()2(

)exp()2()2(
);,(

*

*

+−+−

−−+=
∂

∫
ττττ

τττ
τ

 (B-11) 

Insert (B-10) and (B-11) into (B-9) to obtain 
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So, the ML estimate of the WVD of a signal in additive Gaussian noise is equal to 

the WVD of the noisy signal. 
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APPENDIX C  

 

SURVEY OF THE DISCRETIZATION EFFORTS 

Discrete time WVD (DTWVD) of a sampled signal was first defined by Claasen 

and Mecklenbräuker [15], [16]. It is proposed that, real signals must be over 

sampled at least by a factor of 2 times the Nyquist rate in order to avoid aliasing. 

This means that in order to obtain alias free DTWVD, the number of signal samples 

have to be doubled, which results in an increase in the computations of DTWVD by 

a factor of 4. 

The DTWVD definition proposed in [15], [16] is 

 ∑ −−+=
k

xx
CM kjknxknxnW )2exp(][][2),( * ωω  (C-1) 

The discrete WVD of a finite length signal ][nx  can be obtained from (C-1) by 

discretizing the frequency as 

 ∑
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which is computed for 10 −≤≤ Nn  and 10 −≤≤ Mm , where N is the number of 

signal samples and M (≥N) is an appropriate number of discrete frequencies. 

Figure C-1 shows the DWVD of a test signal obtained using (C-2). 



108 

 

 

Figure C-1 DWVD of a test signal obtained using (C-2). 

Another important contribution came from Peyrin and Prost who shown that it is 

necessary to sample the signal at least twice the Nyquist rate in order to obtain alias 

free Discrete WVD (DWVD) in 1986, [17]. In [17], discrete-time, discrete-

frequency and discrete-time discrete-frequency (discrete) definitions for WVD are 

proposed. The proposed DWVD definition is of the form: 

Let rx  be a periodic signal restricted to an interval of length NT  

 )()()( kTxxandNlTtxtx rk

l

r =−=∑  (C-3) 

Then discrete time, discrete frequency WVD (DWVD) of x  is 
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Figure C-2 shows the DWVD of a test signal obtained using (C-4). 

 

Figure C-2 DWVD of the test signal obtained using (C-4). 

The distribution is computed for 120120 −≤≤−≤≤ NmandNn . 

Fortunately, because of the form of the proposed definition it is sufficient to 

compute the distribution on an N by N grid. The remaining parts of the distribution 

can be obtained from this N by N grid by multiplying corresponding entries with a 

phase term which results in ±1. 

In 1990, Nuttall proposed to use the dual form of the continuous time WVD to 

derive discrete-time and discrete-frequency definition of the distribution, [18]. The 

Nyquist rate sampled signal is used in the computation and the number of signal 
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samples is doubled in the DFT computation phase of the algorithm by zero padding 

the signal. In [19], it is shown that the proposed definition is always alias free for a 

signal sampled at the Nyquist rate. 

The proposed definition is of the form: 

Given the signal samples 10][ −≤≤ Mnfornx  and a suitable DFT length 

MN > , the DFT ][kX  of signal ][nx  is computed using 
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Then DWVD of ][nx  is 
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The distribution is computed for 1120 −≤≤−−≤≤ NkNandNn .        

Figure C-3 shows the DWVD of a test signal obtained using (C-6). 
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Figure C-3 DWVD of the test signal obtained using (C-6). 

In 1998 Michael S. Richman, Thomas W. Parks, and Ramachandra G. Shenoy, 

proposed to obtain the discrete time discrete frequency definition for WVD using 

Group Representation Theory, [20]. The distribution is computed on an N by N grid 

(N is the number of signal samples) and the resulting distribution is a full band 

representation that is to say the frequency components are computed in the 

normalized range [-1/2,1/2]. The main drawback of the definition is, it depends on 

the signal length; for even length and odd length signals it gives different results. 

Additionally the resultant distribution also depends on the signal frequency for odd 

length signal. The definition works well for odd length signals with frequency at 

1/M where M is an integer and divides N (N is the length of the signal). For even 

length signal the resultant distribution contains cross-terms at every point of the 

distribution but it does not depend on the frequency content of the signal. 
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The proposed definition is of the form 
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where pN is a phase term which is defined as 
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In 2005, John O' Toole, Mostefa Mesbah and Boualem Boashash proposed a new 

definition to obtain DWVD which is based on the definition offered by Peyrin and 

Prost, [21]. To obtain the modified definition it is assumed that the signal is not 

periodic. 

The proposed definition is of the form 
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for { })1(,0max1 −−= Nnl and { }1,min2 −= Nnl . Figure C-4 shows the DWVD of 

a test signal obtained using (C-9). When the resultant distribution is compared to the 

distribution obtained using (C-4), it is seen that it gives a cleaner time-frequency 

plane for the same test signal. 
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Figure C-4 DWVD of the test signal obtained using (C-9). 

The discrete-time discrete-frequency WVD definitions explained in this section are 

only a limited number of the proposed definitions; interested readers can refer to 

[29]-[33], for more information in discretization of WVD. 


