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ABSTRACT 
 
 
 

A GENETIC ALGORITHM FOR TSP WITH BACKHAULS BASED ON 

CONVENTIONAL HEURISTICS 

 

 

 

Önder, İlter 

M.S.c., Department of Information Systems 

Supervisor : Prof. Dr. Nur Evin Özdemirel  

Co-supervisor : Assoc. Prof. Dr. Haldun Süral 

 

 

 

September 2007, 107 pages 

 

 

 

A genetic algorithm using conventional heuristics as operators is considered in this 

study for the traveling salesman problem with backhauls (TSPB). Properties of a 

crossover operator (Nearest Neighbor Crossover, NNX) based on the nearest 

neighbor heuristic and the idea of using more than two parents are investigated in a 

series of experiments. Different parent selection and replacement strategies and 

generation of multiple children are tried as well. Conventional improvement 

heuristics are also used as mutation operators. It has been observed that 2-edge 

exchange and node insertion heuristics work well with NNX using only two parents. 

The best settings among different alternatives experimented are applied on traveling 

salesman problem with backhauls (TSPB). TSPB is a problem in which there are 



 v

two groups of customers. The aim is to minimize the distance traveled visiting all 

the cities, where the second group can be visited only after all cities in the first 

group are already visited. The approach we propose shows very good performance 

on randomly generated TSPB instances. 

 

Keywords: Genetic Algorithms, Crossover operator, Mutation Operator, TSP with 

Backhauls, Conventional Heuristics 
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ÖZ 
 
 
 

DAĞITIM VE TOPLAMALI GÜZERGÂHI BULMA PROBLEMİ İÇİN BİLİNEN 
SEZGİSELLERE DAYALI BİR GENETİK ALGORİTHMA 

 
 
 

Önder, İlter 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi : Prof. Dr. Nur Evin Özdemirel 

Tez Ortak Yöneticisi : Doç Dr. Haldun Süral 

 
 
 

Eylül 2007, 107 sayfa 
 

 
 
Bu çalışmada toplamalı gezgin satıcı problemi için bilinen sezgisel yöntemleri 

operatör olarak kullanan bir genetik algoritma incelenmiştir. En yakın komşu 

sezgiseline dayalı bir çaprazlama yönteminin (En yakın komşu çaprazlaması, 

EYKÇ) özellikleri ve ikiden fazla ebeveyn kullanılması bir dizi deneyle 

incelenmiştir. Farklı ebeveyn seçilimi ve birden fazla çocuk yaratma stratejileri de 

kıyaslanmıştır. Bilinen sezgisel yöntemler mutasyon operatörü olarak kullanılmıştır. 

2-kenar değişimi ve düğüm sokma yöntemlerinin EYKÇ ile iyi sonuçlar verdiği 

gözlemlenmiştir. Farklı alternatifler arasında en iyi sonuçları veren alternatifler 

Dağıtım ve Toplama Güzergâhı Bulma Problemine uygulanmıştır. DTGBP içinde 

iki grup şehir bulunan bir problemdir. Amacı, ikinci gruptakiler ancak birinci 

gruptakilerin tamamı gezildikten sonra gezilebilir şartını sağlayacak şekilde, tüm 

şehirleri gezen en kısa yolu bulmaktır. Kullandığımız yöntem rasgele üretilmiş 

DTGBP’de etkileyici sonuçlar vermiştir.   
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

In today’s world of globalization, logistics has become one of the areas on which we 

have to focus on for achieving better living standards. Nearly all the products we use in 

our daily life are brought to our homes from far distances, and the transportation / 

logistics costs constitute an important portion of the costs of goods we purchase. The 

efficient use of transportation systems can decrease the cost of movement and improve 

the delivery timing of the goods to be transferred. In this study we focus on a variant of 

the single vehicle routing problem with pick up and delivery, where the pick up 

operations can be accomplished only after the deliveries are finished. The problem 

arises when side loading is not possible and there are goods to be picked up after 

delivery. There are cases reported in bottled goods or grocery industries, where empty 

bottles must be collected back, after full ones are delivered. 

This study is limited to the case where only one vehicle or carrier exists in the planning 

region. It is realistic since in regional distribution environments the service region of 

each vehicle can be decided prior to the routing. Then, the decision is to select the best 

possible route to be traversed in order to deliver linehauls and then collect backhauls 

(pickups). The problem with a single vehicle dealing with backhauls is called Traveling 

Salesman Problem with Backhauls (TSPB). This problem is a constrained version of the 

well-known Traveling Salesman Problem (TSP). 

TSP forms a general class of problems where a salesman has a list of cities to be visited 

exactly once and the salesman completes the tour back home where it has started. TSP is 
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an NP-hard problem (Sipser, 1997). The number of possible tours for a problem with n 

cities and symmetric distances is
( 2)

2

n − !
 (Reinelt, 1996), when the initial city (depot) is 

fixed. Gathering the solution of the problem gets harder as various side constraints are 

added. There are numerous variants that arise from real life applications and can be 

formulated as TSP. For instance, TSP with pickup and delivery (TSPPD) arises from 

logistics of brewery or bottled product industries, where linehauls and backhauls are 

served in a mixed order. TSPB is the precedence constrained case of TSPPD. TSP with 

time-windows, another example, is based on applications with time limitations, like 

collection or delivery of personnel according to a schedule. 

The applications of TSP are not limited to transportation of goods or people. The 

drilling problem of PCB, deciding of positioning for x-ray crystallography 

(Michalewicz and Fogel, 2000), the sequencing problem on a single machine with order 

dependent set-up times (Lenstra and Rinnooy Kan, 1975), the frequency assignment 

problem in communication networks (Punnen, 2002) can all be formulated and solved 

as TSP instances.  

TSP is an easy to formulate but hard to solve problem. A large amount of time is 

required to solve even a moderate sized TSP (Michalewicz and Fogel, 2000). The 

operations research society has been working on producing good enough solutions in 

reasonable amount of time since TSP was first solved by Dantzig, Fulkerson and 

Johnson (1954). TSP heuristic methods that use problem specific knowledge have been 

in use since 1965 (Lin, 1965). These heuristics are grouped in two broad categories: 

construction heuristics trying to construct a tour from stratch, and improvement 

heuristics trying to improve a given tour. Sönmez (2003) states that the heuristics are 

capable of generating tours roughly 10-15% longer than the optimal tour. 

Metaheuristic approaches based on natural improvement mechanisms are proposed for 

solving difficult problems in the recent years. Genetic Algorithms (GAs) (Holland, 

1975), which are specialized cases of Evolutionary Algorithms, are used to solve TSPs 

in this study. GA is based on “survival of the fittest” idea of Charles Darwin and tries to 

improve a population of solutions by the help of a set of operators. GAs exploit the 

search space by generating new solutions that use solutions in the current population 

(selection and crossover), and explore the space by making random changes in these 

solutions (mutation). 
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Sönmez (2003) and Demir (2004) used conventional TSP heuristics in developing GAs 

based on the idea of Jog, Suh and Gucht (1989). The well known TSP heuristics are 

demonstrated to giveyield better results compared to some of the GA operators used in 

the literature that aim to preserve solution features. 

Gendreau, Hertz, and Laporte (1996) state that “the current state of knowledge on TSPB 

is still unsatisfactory and more powerful algorithms must be designed” (Ghaziri and 

Osman, 2003). In this study, a solution to TSPB is sought by transforming TSPB to a 

TSP. A GA that uses conventional TSP heuristics as operators is developed to solve the 

resulting TSP. The conventional heuristics used in our GA implementation are nearest 

neighbor, 2-edge exchange, and cheapest insertion heuristics. The basic idea of these 

heuristics is preserved in developing the crossover and mutation operators. Detailed 

explanation of these conventional heuristics can be found in the comprehensive book by 

Reinelt (1996).  

The general idea of GAs is to generate one child or two children using the edges of two 

parents. However, our GA allows the preservation of good edges available in more than 

two parents and generates multiple children. GA developed in this study is therefore 

experimented with using multiple parents in crossover. Different numbers of parents is 

used to find a point that can provide a balance between preserving good edges present in 

the parents and including new edges from the complete graph. Moreover, generating 

more than two children using the same parent combination is also experimented with in 

order to capture the best properties of the parents. 

The rest of the thesis is organized as follows. The second chapter summarizes different 

solution techniques applied on TSP and TSPB. The main structure of GAs and well-

known genetic operators are also summarized in Chapter 2. More specifically, a 

summary of the major GA applications for TSP since 1995 is provided and the results of 

different operator combinations are compared. Chapter 3 includes the experiments 

conducted to develop our operators and to calibrate GA to give the best results. The best 

configuration of the algorithm obtained in Chapter 3 is used to solve TSPB test 

instances in Chapter 4. Chapter 5 concludes the thesis with a discussion of the results 

and our remarks about the operators used to solve TSP and TSPB. 
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CHAPTER 2 

 

 

REVIEW OF TSP(B) SOLUTION TECHNIQUES WITH AN EMPHESIS ON 

GENETIC ALGORITHMS 

 

 

 

The objective of TSP is to find the minimum weighted Hamiltonian tour over all 

vertices (cities) on an undirected weighted graph G = (V, E), where V represents a finite 

set of vertices and E represents weighted edges connecting these vertices. This 

definition of symmetric TSP can be extended to a broad class of TSP variants. 

According to Reinelt (1996), there are many variants such as multi-salesman problem, 

shortest Hamiltonian path problem, rural postman problem, prize collecting TSP and 

generalized TSP. Some of them impose side constraints on TSP. In TSP with pickup 

and delivery (TSPPD), there are two different types of cities, called pickup and delivery 

cities, to be visited in an order such that capacity constraints are not exceeded. A more 

strictly constrained version of TSPPD is TSP with Backhauls (TSPB), in which the 

pickup cities cannot be visited before all the delivery cities are visited. More details 

about TSPB are given in the following section.   

Sönmez (2003) presents a detailed history of TSPs. Sönmez (2003) mentions that TSP 

in modern sense “was introduced by RAND corporation in 1948 and then the problem 

became popular and well-known in operations research. In 1954, Dantzig Fulkerson and 

Johnson solved a symmetric TSP instance of 49 United States cities” Today, problems 

of size with 85,900 cities are solved to optimality (Reinelt, 2007). According to Reinelt 

(1996), the progress in the ability to solve the problems with large sizes “is only partly 

due to the increase in hardware power of computers. Above all, it was made possible by 
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the development of mathematical theory (in particular combinatorics) and of efficient 

algorithms”. However, TSP cannot be considered as an easy to solve problem, as the 

complexity of the problem increases exponentially with the number of cities. TSP is a 

member of NP-hard problems. Therefore, efficient and effective solution procedures are 

required for the solution of practical TSPs. Among these procedures CONCORDE 

(Cook, 2007) is a powerful tool for generating exact solutions for small and medium 

sized problems and good lower bounds for larger problems including up to 1,904,711 

cities (Applegate, 2007). More details of the solution approaches are presented in the 

following sections. 

TSP has a wide area of applications; Reinelt (1996) summarizes the following 

application of TSP:  

- Drilling of printed circuit boards: The cities are initial position of the drill and 

set of holes to be drilled, and the distance corresponds to the time to move of the 

head from position to position. 

- X-Ray Crystallography: The cities correspond to the different positions of a 

diffractometer that is used for crystallography, and the distances are the 

positioning times between these positions. 

- Gas turbine engines: The positioning of different gas valves in a turbine in the 

best possible way is modeled as TSP. 

- Order-Picking Problem: The collecting and shipping of orders in a warehouse is 

modeled as TSP. 

- Computer Wiring: Location of modules on a computer board is modeled as TSP. 

- Clustering Data Arrays: The task of identifying highly related elements in data 

is modeled as TSP. 

- Seriation in Archeology: The classification of gravesites according to the 

distance in between to find the chronological order is solved as TSP. 

- Vehicle Routing: The route each vehicle will follow is solved as TSP when the 

cluster first- route second approach is followed. 

- Scheduling: Sequence of jobs with sequence dependent setups in a single 

machine is modeled as TSP. 
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- Mask Plotting in PCB Production: The moving of a mechanical plotting device 

on photosensitive plates is modeled as TSP. 

- Control of Robots: The control of a robot cannot be formulated exactly as TSP 

yet the solution method applied for TSP gives good solution in robot control. 

TSP with Backhauls (TSPB)    

TSPB mainly arises from three different application areas. As mentioned before it is a 

strictly constrained version of TSPPD. On the other hand, TSPB is a special case of the 

vehicle routing problem with backhauls. Moreover, TSPB is also formulated as a special 

case of the Clustered TSP (CTSP) (Gendreau et al., 1996). In CTSP, the cities to be 

visited are partitioned into clusters and all the clusters are to be visited contiguously 

(Chrisman, 1975). In this sense, TSPB is a three-cluster version of CTSP, one cluster 

containing only the depot, and others containing the linehaul and backhaul customers, 

separately.  

Chrisman (1975) has solved CTSP by transforming the problem into a TSP, subtracting 

large numbers from the inter-cluster distances. TSP is then solved without changing the 

intra-cluster distances. Chrisman (1975) reports that the problems with modified 

distance matrixes are solved to optimality without exceptions. 

Gendreau et al. (1996) used GENI-US heuristic proposed by Gendreau et al. (1992) to 

solve TSPB. The heuristic basically consists of two parts. GENI (Generalized Insertion) 

tries to insert the cities to the positions by evaluating elimination of three new edges for 

each neighbor, within a p-neighborhood on a given tour; US tries to improve the tour by 

using reverse GENI operations. Gendreau et al. (1996) have experimented with six 

different GENI-US variants to solve TSPB. H1 is the GENIUS with the modified cost 

matrix where large numbers (instead of subtraction) are added to the inter-cluster 

distances. H2 is the GENIUS that first solves the linehaul and backhaul tours separately 

and then connects these subtours. H3 is similar to H2, yet the depot is not included in 

calculations. H4 is basically the cheapest insertion heuristic plus US for post 

optimization, and H5 is a GENI with Or-opt improvement heuristic. H6 is the cheapest 

insertion heuristic plus Or-opt improvement heuristic. Gendreau et al. (1996) reported 

that the best results were found by H1. 

Gendreau et al. (1997) prove that the worst-case performance ratio of 3/2 of the 

Christofides algorithm is applicable to TSPB. 

 6



 Mladenović and Hansen (1997) have improved the performance of GENIUS for TSPB, 

incorporating the variable neighborhood search (VNS). VNS is a random search 

mechanism in which an incremental length of neighborhood is processed until an 

improving move has been found. Ghaziri and Osman (2003) report that GENIUS 

combined with VNS is better than the original GENIUS by an average of 0.4% with an 

increase of 30% in running time. 

Ghaziri and Osman (2003) is the first study to develop TSPB solution techniques that 

are not based on the conventional heuristics. They use an artificial neural network to 

solve TSPB and demonstrate that 2-opt can improve the performance of the artificial 

neural network. Ghaziri and Osman (2003) report better results compared to GENIUS + 

VNS on a set of randomly generated test problems. 

Demir (2004) is the first to solve TSPB using EAs. EA developed by Demir (2004) is 

based on the nearest neighbor heuristic. He reports that the best results were obtained 

when infeasible tours were repaired after generation, instead of rejecting infeasible tours 

or constructing only feasible tours. 

The reported studies on TSPB are limited to the ones mentioned in this section, there are 

no well-known benchmark problems, and each author generated the problems randomly 

by a method proposed by Gendreau et al. (1992). The solution quality is measured in 

terms of relative quality be comparing averages present in the literature.  

The rest of this chapter concentrates on the solution of TSP as we solve TSPB by 

converting it to a TSP based on the method proposed by Chrisman (1975) and later 

improved by Gendreau et al. (1996). Gendreau et al. (1997) state that TSP that 

represents TSPB preserves the symmetry and the triangle inequality. 

2.1 Solution Methods for TSP 

The solution methods for TSP can be grouped in three categories. The exact solution 

methods aim to find a provably optimal solution to a TSP instance on hand. These 

techniques are commonly based on implicit enumeration of solutions and therefore 

require large amount of computation times. The NP-hardness of TSP forced operations 

research scholars to develop new ideas to find not the optimal but good enough 

solutions in a short enough time. Heuristic methods are the general name for such faster 

methods for solving the problems. The last category is the meta-heuristics, which are 
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optimization methods mostly based on the natural processes to solve complex problems 

in various domains. 

2.1.1 Exact Methods 

The exact methods are usually associated with the mathematical formulations (mainly 

integer programming formulations of the problem). The methods are not very effective 

in solving very large problems with single processor PCs, yet they are very useful in 

calculating lower bounds for TSPs. The lower bounds are useful in assessing the quality 

of solutions for the problems without known optimal solutions.  

Sönmez (2003) reports the most widely used mathematical model to be the Dantzig-

Fulkerson-Johnson formulation, using zero-one binary variables to represent the edges 

in the tour. The formulation has n(n-1) binary variables and 2n - 2n - 2 constraints for an 

instance with n cities. The Miller-Tucker-Zemlin formulation further improves the 

formulation with additional continuous variables limiting the number of sub-tour 

elimination constraints to n2. The power of the integer programming is limited, as the 

number of decision variables and constraints becomes very large with an increase in the 

number of cities. 

Branch and bound is perhaps the most popular approach in solving these models / 

formulations. The previous and following nodes of a starting node of a TSP tour over a 

network are represented as branches in a search tree. The branching is limited when 

there are infeasible tours or the higher lower bounds of bad tours are reached. The 

success of the branching is dependent on branching rules and lower bounds, and only 

small instances of TSP can be solved using standard branch and bounds (Sönmez, 

2003). 

According to Michalewicz and Fogel (2000), dynamic programming can also be used to 

solve TSPs. Dynamic programming “is a recursive procedure, in that each next 

intermediate point is a function of the point already visited” (Michalewicz, Fogel 2000). 

It is impractical with the current computing technology to solve more than 50 city TSP 

instances to optimality using dynamic programming. 

Another exact solution method is the A* Algorithm that resembles the branch and 

bound. Instead of branching all possible nodes, A* uses a heuristic to calculate the 

possible length of the un-branched nodes, and “tries to order the available cities to be 
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visited according to the value of the heuristic.” The cities that offer best chance of 

finding a good solution are selected first for branching (Michalewicz, Fogel 2000). The 

results are similar to the results of branch and bound, yet the A* is capable of generating 

good intermediate solutions if the heuristic function used can capture the characteristic 

of the real objective function. 

2.1.2 Heuristic Methods 

The heuristic methods used to solve TSP are grouped in two categories: construction 

heuristics and the improvement heuristics. The heuristics described in this section are 

based on the comprehensive book by Reinelt (1996). The construction heuristics form a 

tour gradually, starting from a city and adding cities to a partial tour constructed. The 

improvement heuristics try to improve a given tour by making changes on the tour.   

Construction Heuristics 

Nearest Neighbor (NN) heuristic is the simplest construction heuristic. The city nearest 

to the current city is selected to be added to the tour. There are different versions of NN, 

and the best variant gives an average deviation of 21.5% (Reinelt, 1996). Another 

important construction heuristic is the Insertion Heuristic (IH). IH inserts nodes to a 

partial tour according to some predefined criterion. A popular version is the cheapest 

insertion, where the node whose insertion causes the lowest increase in tour length is 

inserted to the partial tour. The best configuration of IH results in 17.2% deviation on 

average (Reinelt, 1996). Christofides develops a construction heuristic based on the 

spanning tree and reports an average deviation of 19.5% (Reinelt, 1996). The savings 

heuristic proposed by Clarke and Wright merges the subtours considering the savings in 

tour length. All the subtours are finally merged based on the savings to give a complete 

TSP tour. The savings heuristic has an average deviation of 11.1% from the optimal 

(Reinelt, 1996). Reinelt concludes that the savings heuristic usually gives the best 

results among all construction heuristics (1996). 

Improvement Heuristics 

Node and edge insertions are commonly used as improvement operators. A node or an 

edge is removed from the tour and is inserted in a point that reduces the total tour 

length. There are different criteria to choose the node or edge to insert, leading to 

various versions of insertion heuristic. A second class of improvement heuristics is k-
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opt (or edge exchange). In 2-opt, the two edges are deleted and the tour is reconnected 

the other way around. 3-opt eliminates at most three edges and reconnects the subtours 

to improve the tour length. Lin-Kernighan proposes a recursive search for k-opt moves. 

The node and edge insertions heuristics result in 16.6% and 17.4% deviations 

respectively when used with the NN. The best results with node end edge insertions are 

obtained as 8.2% and 9.7%, respectively, when the initial tours are found by the savings 

heuristic (Reinelt, 1996). A recent implementation of the Lin-Kernighan heuristic report 

an average deviation of 1.4% with slight modifications on the algorithm (Gamboa, Rego 

and Glover, 2006). 

2.1.3 Metaheuristic Methods 

Metaheuristics are optimization methods trying to mimic the natural improvement 

mechanisms. “A metaheuristic is an iterative generation process which guides a 

subordinate heuristic by combining intelligently different concepts for exploring and 

exploiting the search space, and various learning strategies are used to structure 

information in order to find efficiently near optimal solutions” (Osman and Laporte, 

1996). Metaheuristics are not problem dependent and they can be applied to various 

problem domains by changing the subordinate heuristic.  

Simulated annealing (SA) proposed by Metropolis, Rosenbluth, Rosenbloth, Teller and 

Teller (1953), is a metaheuristic based on statistical physics. The annealing process in 

physics seeks a good molecular structure by allowing formation of different molecular 

structures depending on the rate of change in the cooling temperature. SA is a search 

process controlled by a parameter, the temperature (Kirkpatrick, Gelatt Jr. and Vecchi, 

1983 and Ćerny, 1985). The process is based on small changes in the current solution 

and the good moves are always accepted. When a move in an undesirable direction is 

encountered, the move is still accepted based on a probability depending on the 

temperature. At the initial phases of the algorithm, when the temperature is high, the 

algorithm accepts more non-improving moves. At the final stages when the temperature 

is gradually decreased, only improving moves are accepted. The algorithm explores the 

search space when the temperature is high, and exploits the current solution when the 

temperature is low. Sönmez (2003) reports results that are 4% above the optimal when 

SA is used for TSP.  
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According to Larrañaga, Kuijipers, Murga, Inza, Dizdarevic (1999), Evolutionary 

Algorithms (EA) were proposed for solving probabilistic search problems by 

Bremermann et al. (1965) and Rechenberg (1975). Holland (1975) introduced the 

Genetic Algorithms (GAs) to optimization problems. GAs are based on “survival of the 

fittest” idea of Charles Darwin and genetic theory of Mendel. In GAs every solution is 

coded as a chromosome and the algorithm deals with a population of solutions instead 

of a single solution. These parent solutions are used to generate new children solutions 

that preserve chromosomes of previous ones. According to the schemata theorem 

(Holland, 1975) and building block hypothesis (Goldberg, 1989), the newly generated 

solutions preserve good characteristics of their ancestors, and the algorithm eventually 

converges to give good results. The computation time is not longer than the time 

required to solve the problems to optimality. Larrañaga at al. (1999) report 28 different 

studies that deal with developing good GA operators for TSP. Section 2.2 describes in 

detail GAs tailored for TSP. 

Tabu Search is a deterministic search mechanism (with a limited memory) proposed by 

Glover (1986). The search is based on a hill climbing mechanism where memory is used 

to escape from the local optima. Hill climbing eventually gets stuck at the local optima. 

Tabu search keeps in memory the points previously visited during the hill climbing 

mechanism as tabu points. Revisiting the tabu points is avoided to enforce the algorithm 

to explore the search space. Sönmez (2003) mentions examples of tabu search for TSP 

with solution quality of 3% above the lower bound. 

Artificial neural networks are based on neural activity model of Warren McCulloch and 

Walter Pitts, mimicking central neural networks of animals (Michalewicz, Fogel, 2000). 

The web of natural neurons does the reasoning in all animals. A neuron is a simple 

entity that gets inputs as a step function and reacts accordingly, multiplying the input 

signal and adding a preset weight. The web of artificial neurons arranged in two layers 

is used to solve TSP according to Michalewicz and Fogel (2000). The coordinates of 

cities in TSP are input to the neural network and the network produces the tour with 

unsupervised learning. Michalewicz and Fogel (2000) state that “many neural network 

methods for addressing TSP are not very competitive with other heuristics.”  

Another well known metaheuristic is the ant colony algorithm proposed by Colorni, 

Dorigo and Maniezo in 1991 (Gendreau et al, 2001). This algorithm represents the ant 

behavior to find the shortest route. When solving a TSP, a number of artificial ants 
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move on a complete graph to find a route disposing pheromone, similar to the real ants. 

The pheromone evaporates with time and the routes with highest pheromone levels are 

connected to give a tour. The main idea behind the scheme is that the short edges will 

have a higher level of pheromone as the ants will travel those edges in a shorter time. 

The approach is relatively new and lacks well-established rules. The applications are not 

very competitive with other heuristics in terms of the ability to solve large problems. 

2.2  Genetic Algorithms for TSP 

Holland (1975) was the first to introduce the genetic algorithms. The genetic algorithm 

is a search methodology based on biological phenomenon of evolution. The algorithm 

starts with a group of solutions, named as population of individuals. These solutions 

represent different points in the search space. The solution an individual represents is 

encoded using a representation scheme. The encoded solution is named as the genotype, 

and the actual solution to which a genotype corresponds to is named as the phenotype of 

that individual. 

There is no single representation for TSP that keeps all the information about the edges 

in a solution, and can be used with any crossover operator. There are alternative 

representation schemes used. The most common representation is the path 

representation. The tour is represented with a string of the numbers assigned to cities in 

the order of visit. 

The search in the genetic algorithm is done by two means. Individuals of the current 

population (parents) are used to generate new individuals (children) that preserve the 

genotype and/or phenotype of the individuals in the current population, combining good 

properties of different individuals. This process is called the reproduction, which 

consists of selection and crossover. The second search method is based on small 

perturbations in the current solution to find points in the neighborhood of the current 

solutions with a better value of the objective. The algorithms are designed to converge 

to a fitness value by replacing the better individuals with worse ones. A sample genetic 

algorithm adapted from Larrañaga (1999) can be seen in Figure 2.1.  

Initial populations can be generated randomly or using some construction heuristics. 

Authors such as Tsai, Yang, Tsai and Kao (2004a, 2004b), Maekawa, Mori, Tamaki, 

Kita and Nishikawa (1996), Baraglia, Hidalgo and Perego. (2001), and Nagata and 

Kobayashi (1997) report impressive results when the initial population is generated 
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randomly. On the other hand, Mertz and Freisleben (1997), Yang (1997), Tsai et al. 

(2003), and Freisleben and Mertz (1996) are some of the authors who came up with very 

good solutions when the initial population is generated using a heuristic. Sönmez (2003) 

experimented with different initial population settings, where the entire or a portion of 

initial population is generated using conventional TSP heuristics. Sönmez (2003) 

concludes that the use of heuristics does not always improve the solution quality of GA, 

and the structure of the initial population has an effect depending on the crossover 

operator used. 

 Begin GA 
 Generate initial population 
 WHILE NOT stop DO 
  BEGIN 
   Select parents from population 
   Produce children from selected parents 
   Mutate the children 
   Extend the population adding children to it 
   Reduce the extended population 
  END 
 Output the best individual found 
END 

 

 

 

 

 

 

Figure 2.1 Pseudo code for a simple genetic algorithm 

The first step of the algorithm is parent selection. Beasley, Bull and Martin (1993) state 

that “the behavior of GA very much depends on how individuals are chosen to go into 

the mating pool.” There are two different approaches when the mating pool is 

considered. The whole population can be used as the mating pool. This approach is 

named as the generational GA. In the second approach, only a pair (or a portion) of 

individuals are selected as parents and they are used to generate children. In the extreme 

case, the size of the mating pool is two, and this approach is named as the steady-state 

reproduction. Both approaches are widely used in the literature. For instance, Tsai et al. 

(2003) and Burkowski (2003) report good results using the generational GA, whereas 

authors like Chen and Smith (1999) and Takenaka and Funabiki (1998) report good 

results using steady state GA. Although, Goldberg and Deb (1991) found no evidence 

that steady-state approach is superior to the generational approach, Demir (2004) reports 

that a steady state GA can give better results than the generational GA with some 

crossover operators. 
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In both mating pool approaches, the individuals that have a better fitness value need to 

be able to transfer the information encoded in their genotypes to the future generations. 

Thus, the fitness or the ability to meet the pre-specified objective of an individual needs 

to be assigned to differentiate between individuals that perform well and poorly. The 

fitness in GAs for TSP is usually the length of the tour. The selection mechanism is 

generally designed to favor the highly fit individuals, based on the biological 

phenomenon that the individuals with better phenotype have a higher chance of survival 

and reproduction. The selection in the generational reproduction is designed to decide 

on the number of copies of an individual in the mating pool. The fitness value or 

adjusted fitness values are used to apply selection pressure in choosing individuals for 

reproduction in generational GA. According to Beasley at al. (1993), Grenfenstettes’s 

GENESIS is an example where adjusted fitness is used for selection. Another selection 

method for the generational GA is the tournament selection, where a couple of 

individuals are compared with each other and the one that has better fitness value is 

chosen for reproduction. The tournament selection can be modified to make the 

selection probabilistic. Goldberg and Deb (1990) conclude that no selection pressure is 

absolute best, and the selection schemes can be made to give similar performances. 

When steady-state reproduction is implemented, the selection is simply used to select 

the parents that generate the new children. The parents can be selected at random, 

according to their fitness values or according to their rank in the population. Nagata and 

Kobayashi (1997) and Katayama, Sakamoto and Narihisa (2000) have used random 

selection, and Julstrom (1995) and Nguyen, Yoshihara and Yasunaga (2000) are two 

examples where the selection based on ranking gives good results. The selection of the 

individual with best fitness can cause the algorithm to converge in a short time to local 

optima, spreading properties of relatively good individual throughout the population. 

The algorithm will eventually converge to the point where the relatively good individual 

is located, instead of the global optimal. Random selection slows the algorithm to a 

degree, as non-promising individual will also be used for reproduction. Assigning 

selection probabilities based on the raking used by Whitley’s (1989) GENITOR can be 

used to select parents effectively. 

The children are generated by crossover operators and modified by mutation operators. 

A crossover basically tries to preserve good characteristics of parents, while a mutation 

operator tries to find different solutions with small perturbations on a given individual. 
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The crossover operator in general tries to improve the exploitation characteristic of GA. 

Two or more individuals are taken into consideration and an intermediate solution that 

preserves good characteristics of these individuals is exploited. The mutation operator 

tries to explore the search space with the help of slight changes in newly generated 

children. Crossover and mutation operators for TSP are described in detail in Section 

2.3. 

The newly generated children are added to the population on hand, and then some 

individuals in the extended population are deleted to keep the population size constant. 

The biological population behavior analysis states that the population in a given habitat 

is limited, and keeping the population size constant is based on this fact. 

2.3 Crossover and Mutation Operators for TSP 

This section briefly reviews various different crossover and mutation operators that have 

been used in the literature. The crossover and mutation operators are named and 

classified according to the review paper of Larrañaga et al. (1999) and the study 

conducted by Sönmez (2003). For detailed explanations and historical references of the 

well-known operators, the reader may refer to these references and the references 

therein for the operators that are not mentioned in Larrañaga et al. (1999) and Sönmez 

(2003). More detailed information is given here only.  

The crossover operators are grouped in two categories. The first category includes the 

ones that aim to preserve the position or the order of cities in the solution. 

Unfortunately, there is no single representation for TSP that encapsulates all the edge 

information of the individuals and that can preserve edges when a simple crossover 

operator is applied. The second category is the crossover operators that preserve the 

edges in solutions. Mutation operators are presented in rough groups to include similar 

operators used by different authors.  

2.3.1 Crossover Operators Preserving Position or Order of Cities  

The crossover operators described in this section aim to preserve sub-strings or relative 

order of the values in the genotypes of an individual. The edge information is usually 

not considered during the crossover procedure. The success of the operators mentioned 

here is limited when compared to the crossover operators that use edge information. 
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Partially Mapped Crossover (PMX) preserves part of a string from one parent and the 

relative order of visits of the other parent. This is done by randomly selecting a 

substring from the first parent and filling the remaining cities according to a mapping 

created based on their absolute positions on the parents. The order in the second parent 

is preserved according to the mapping. Cycle Crossover (CX) keeps the absolute 

position of the cities visited in the order they are presented in the parents, selecting cities 

in cycle from the two parents in a cyclic manner. In Position Based Crossover (POX), 

absolute positions of randomly selected cities of one parent are inherited to the child, 

where the remaining cities are inserted in the absolute order they appear on the other 

parent. Alternating Position Crossover (APX) selects cities one by one from each parent 

and places them in the child in the order they appear, keeping the relative order 

unchanged, but loosing a great deal of edges. Alternating Edge Crossover (AEX) selects 

every other edge from the parents and inserts them in the child similar to the APX. Sub-

tour Chunks Crossover (SCX) preserves subtours of random length from parents; a 

subtour from a parent is followed by a subtour from the second parent. Order Preserving 

Crossover (OX1) is similar to the PMX, where a substring from the first parent is copied 

to the child, and the remaining cities are positioned according to their relative position 

in the other parent. Starkweather, McDaniel, Whitley, Mathias and Whitley (1991) 

showed that OX1 performs better than PMX, and PMX performs better than CX. 

Maximal Preservative Crossover (MPX) and Order Based Crossover (OX2) use the 

same basic idea of OX1, with a slight modification in copying of the string from the first 

parent and filling the remaining cities in the order they appear. Rocha, Vilela and Neves 

(2000) proposes a new crossover UOPX (uniform OX), and demonstrates (using eil51) 

that UOPX gives better results compared to OX1, OX2, PMX, CX, ERX, MPX (to be 

discussed later) (and modified MPX) when used with some of the mutations (to be 

discussed later). 

Wang, Maciejewski, Siegel and Roychowdhury (2006) use the gene therapy to improve 

the performance of PMX with mutation operators. The good edges (eugenic genes) are 

inserted to the places of bad edges (morbid genes) for the individuals generated. The 

eugenic and morbid genes are found investigating the superior and poor individuals. The 

method improves the performance of the crossover and mutation operators. 

EMX or (Inver-over operator in Michalewicz, Fogel (2000)) is a crossover based on 

only one parent, the cities on an individual are exchange in an iterative manner as long 
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as there is an improvement in the tour length. The crossover is based on only one 

individual thus can be named as a mutation operator. 

Complete Edge-exchange Crossover (CSX), proposed by Katayama et al. (2000), 

preserves the substrings containing the same cities regardless of the order of the cities. 

All possible combinations of the substrings are listed and the remaining cities are 

preserved in their relative order. The good children are selected using stochastic hill 

climbing method. 

Voting Edge Recombination Crossover (VEX) is proposed by Mühlenbein (1989). VEX 

selects the edge positions that will be inherited to the children by voting. More than two 

parents are selected and the position that is most popular among these parents is 

preserved for a city. Larrañaga et al. (1999) point out that VEX is used in an 

evolutionary algorithm for the quadratic assignment problem. 

Črepinšek, Mernik and Žummer (2000) suggest a meta-evolutionary approach where 

more than one crossover operator can be used in the GA. The authors conclude that 

using PMX, OX, CX and ERX (to be discussed later) together gives results better than 

any single operator. Affenzeller (2002) suggest using different crossover operators 

together while selective pressure is also adapting itself when the algorithm proceeds. 

Scmitt and Amini (1998) conduct a very detailed experiment with statistical analysis (of 

approximately 5,000 TSP solutions) for OX1, OX2, POX, CX, PMX, and SM (to be 

discussed later) as crossover operators. The authors also investigate the effects of initial 

population, population size and replacement strategy. They conclude that a 

configuration containing a hybrid population at the initialization (i.e. 50% of the 

population is generated with a construction heuristic), a large population (over 200) in 

size, a steady state evolution strategy, elitists replacement strategy, and SM or OX1 is 

the best configuration. The authors also suggest the use of small population (fewer than 

sixties) and CX, all other characteristic remaining the same.   

The idea of preserving the position or the order of cities is not very promising. 

According to the results of Larrañaga et al. (1999), Edge Recombination Crossover 

(ERX) that will be discussed in the following section, performs better than APX, CX, 

OX1, OX2, PMX, POX, and VEX. Moreover, none of these crossover operators is 

faster than ERX according to the results of the same study.   
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2.3.2  Crossover Operators Preserving Edges  

The operators described in this section use the edge information and try to preserve the 

good edges in the parents. The operators preserving edge information are seen after 

1987 when Suh and Van Gucht (1987) first used edge information in the Heuristic 

Crossover, according to Sönmez (2003). Heuristic Crossover (HX) is based on selecting 

one of the four edges, adjacent to a city in two parents according to their lengths. A 

probability distribution is defined according to the edge lengths and the edge is selected 

according to this distribution. If all neighbors of a city are already visited and none of 

these four edges can be used, an edge is selected randomly from the complete graph. 

Larrañaga et al. (1999) report that 30% of the edges in the parents are preserved if the 

probability distribution is uniform.  

ERX aims to increase the ratio of the edges preserved. This crossover selects edges 

based on the number of feasible neighbors that each city will hold if that city is visited 

next. The algorithm visits the cities with fewer feasible neighbors, in order to avoid 

getting stuck. If the current city has no unvisited neighbors, an unvisited edge is selected 

randomly, to introduce a new edge from the complete graph. The edge length is not 

considered at all in ERX, yet the edges in parents are tried to be preserved as long as it 

is possible. Sönmez (2003) reports that about 95% of the edges are transferred to the 

children. Whitley, Starkweather and D’Ann Fuquay (1989) demonstrate that ERX 

performs better than PMX, CX and OX1. Six different versions of edge recombination 

are developed by Nguyen et al. (2000). Nguyen et al. (2000) point out that using both 

ends of a partially formed string improves the performance of ERX. Moreover breaking 

the current sub-tour into parts to avoid getting an edge from the complete graph is 

reported to produce better results than pure ERX. 

Ting (2004) improves the performance of ERX by incorporating tabu search into ERX, 

some edges becoming tabu edges and selecting edges alternating between parents.  

Sorted Match Crossover (SMX) tries to find a substring that includes the same cities, 

starting and ending with the same city in both parents. The order within the substring in 

a parent with shorter substring is copied to the other parent. Larrañaga et al. (1999) 

reports that SMX reduces the computation time, but it is a weak scheme for crossover. 

Freisleben and Mertz (1996) suggest the use of Distance Preserving Crossover (DPX), 

based on the observation that the two locally optimal solutions are equally distant to the 
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optimal solution. The crossover they design is similar to ERX, as the common edges in 

both parents are kept in the children, but the remaining edges are selected such that the 

child is equally different from both parents. Freisleben and Mertz (1996) report a 

deviation of 0.5% for instances as large as 3745 in size. White and Yen (2004) propose 

use of ant colony systems to generate the connections for the non-common edges in 

DPX. According to their study, the ant colony is capable of generating of good solutions 

that can improve the performance of DPX. 

Soak and Ahn (2004) propose a new crossover operator (SPX) that preserves the 

subtours in parents, and calculate the alternative connection methods. Their operator 

chooses the best connection similar to DPX. The results presented suggest that, their 

operator is superior to MPX, HX, VGX, DPX, ERX, and CSX in terms of percent 

deviation. However, the CPU time is higher compared to DPX. 

Tagawa, Kanzaki, Okada, Inoue and Haneda (1998) generalize the idea of generating 

the children equally distant from two parents and propose a crossover technique called 

harmonic crossover (H-), which uses a metric function to find the distances between 

individuals. H-PMX and H-CX are some of the operators proposed by the authors. The 

results seem to improve in terms of quality and CPU time on a problem instance of size 

53.  

Katayama et al. (1999) compare the performance of three different crossover operators 

when H-GA is used: CSX, MPX and ERX. According to the results presented, CSX 

gives the best results on 25 instances from TSPLIB (Reinelt, 2007). A deviation of 5.0% 

is observed for a problem instance of size 2392 when CSX is employed. 

The crossover designed by Yang (1997) is very similar to ERX and DPX. It is called as 

Very Greedy Crossover (VGX). The common edges in both parents are always selected. 

When a common edge cannot be found, the shortest of the parental edges is selected. 

VGX uses a k-nearest neighbor candidate graph for selection when there is no feasible 

parental edge. If VGX fails to find a feasible edge in the k-nearest neighbor list, a 

feasible edge is selected randomly. Julstrom (1995) uses a similar crossover but not on 

the k-nearest neighbor candidate graph. 

CST/NN proposed by Chen and Smith (1999) keeps the common edges in the parents 

and uses the NN heuristic to select the edges that are not common in the parents. Chen 

and Smith (1999) report an average deviation of 1.8% for the instances up to 574 cities. 
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Pullan (2003) proposes Heuristic Edge Recombination (HEX) that firstly divides the 

parent tours into arcs and reconnects these arcs by using edge information. The 

reconnection of these arcs also creates a degree of mutation, preserving the parental 

edges. 

 Edge Assembly Crossover (EAX) uses the edges present in the parents to construct AB 

cycles, which consist of parental edges selected alternating by between the first and the 

second parents. Then, these AB cycles are merged to obtain a grated set (E-set), which 

is applied to each parent to obtain subtours that contain edges of both parents. These 

sub-tours are connected calculating the minimum spanning tree. Nagata and Kobayashi 

(1997) report optimal solutions for problem instances with sizes up to 3038 cities. 

Moreover, Nagata and Kobayashi (1999) show that EAX handles the tradeoff between 

the number of edges inherited from parents and the newly added edges better, compared 

to EXX that is similar to PMX. EAX creates better children by replacing some parental 

edges with the minimum spanning tree. 

Jung and Moon (2002) devise a NX crossover where the tours are plotted on a graph, 

that is partitioned randomly, and then the partitions from different parents are merged to 

give partial tours. These partial tours are merged using the shortest edges. They argue 

that the results they present are better than EAX and faster than DPX. The authors report 

that EAX “showed poorer performance than the original paper (Nagata, Kobayashi, 

1997)”. LK is used to improve the results of NX, and a deviation of 0.085% is obtained 

for a problem instance with 11849 cities. 

Merz (2002) proposes a new edge recombination (GX) operator where the probabilities 

of selecting an edge inherited from the parents, and an edge to be selected from the 

complete graph can be adjusted. Merz (2002) shows that GX is superior to DPX and 

MPX. The results are comparable with the results of EAX for small problems. 

Nearest Neighbor Crossover (NNX), which was proposed by Sönmez (2003) and 

improved by Demir (2004), is based on the NN. The edges adjacent to a city in the 

parents are ordered in the increasing length and the shortest feasible edge is selected. 

The algorithm is totally deterministic as the shortest feasible edge from the complete 

graph is selected when there is no feasible edge remaining in the parents. 

Ray, Bandyopadhyay and Pal (2005) use an operator similar to NNX, but this operator 

is devised to improve the individuals. They propose fragmentation of tours generated 
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with NN heuristic and connecting the tours using the shortest edge to connect from the 

cost matrix. 

2.3.3 Mutation Operators 

The mutation operators are generally based on conventional improvement heuristics. 

This section briefly describes mutation operators designed for TSP. The classification is 

based on Larrañaga et al. (1999). 

Displacement Mutation (DM) operator removes a substring from the individual and 

replaces the substring in another position in the individual. Exchange Mutation (EM) 

randomly selects the two cities and exchanges them. Insertion Mutation (ISM) randomly 

selects a city, removes it from the current individual, and places it at a random point on 

the individual. Inversion Mutation (IVM) randomly selects a sub-string on the 

individual and inverts it. Scramble Mutation (SM) randomly selects a sub-string and 

scrambles the order of the cities in the substring. Larrañaga et al. (1999) point out that 

SM is designed for use in scheduling applications.  

Xiaoming, Runmin, Rong, Rui and Shao (2002) prove that GA converges to global 

optima when only mutation operators are applied (e.g. EM). They argue that crossovers 

that preserve the order or positions of cities are redundant in optimization. They 

demonstrate that EM can find the optimal solutions for problem instances with as large 

as 1002 cities. Moreover, Fox and McMahon (1991) report that PMX and ERX give 

better results compared to IVM and SM and other single parent operators they have 

devised, on a set of test instances. 

Tsai et al. (2003) propose a mutation operator named as Neighbor-Join (NJ) Mutation. 

NJ generates four different children and best child is selected. The operator randomly 

selects a city, and than either selects another individual and tries to insert an edge 

neighboring to a current city from the other individual, or inserts an edge among the 

nearest three cities to the current city from the complete graph. If the current city cannot 

connect to the city from the other individual, the shortest city inversion is applied until 

one of the cities is connected.  

Conventional improvement heuristics such as 2-opt, 3-opt, Or-opt and Lin-Kernighan 

(LK) are often used as a form of mutation (Jog et al., 1989). k-opt heuristics try to 

eliminate k edges and reconnect the resulting subtours by adding new k-edges to create 

a shorter tour. The LK iteratively tries to eliminate these edges resulting in k-opt moves 
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where k is decided by LK. Johnson (2004) implemented the method proposed by 

Johnson and McGeoch (1997) where only longest 40 edges are tried as k-opt moves. 

Johnson (2004) reports that 2-opt and 3-opt results in 5.9% and 4.3 % deviations 

respectively on TSPLIB instances with 1000 cities. The deviations become 9.3% and 

3.5% when the problems size is 85900. Chained LK is reported to end with 0.96% 

deviation with problem instances of size 1000.  

2.4 GA Applications on TSPLIB Instances 

TSPLIB (Reinelt, 2007) is the main source of TSP benchmark instances that are 

commonly used for validation of new algorithms in the literature. TSPLIB consists of 

111 problem instances with sizes varying between 14 and 85900 cities with provably 

optimal results. As we have demonstrated in the previous sections, the literature on GAs 

for TSP consists of a large number of studies.  

The studies prior to 1995 are discussed in Larrañaga et al. (1995), the major work after 

1995 reported in electronically available publications is consolidated in Table 2.1. The 

work of authors who use TSPLIB instances and their results or percentage deviations for 

problem with more than 50 cities are given in that Table. Table 2.1 demonstrates the 

year and source information for the listed work, with the crossover and mutation 

operators used. Note that various authors have made slight changes on the main 

operators presented in the Table. The sixth column in the Table gives the size of the 

smallest and the largest problem instances solved in a study. When an author solves 

only one problem from TSPLIB, only that problem size is reported. The seventh column 

shows the corresponding solution quality reported by the author. Table 2.1 contains the 

results of 36 different studies. The number of studies is limited as the authors usually 

concentrate on the properties of the operators they propose and demonstrate the 

convergence using figures instead of reporting numerical results. The results in the table 

can be used to evaluate the performance of the operators. Johnson (2004) states that 

only problems sizes with over 1000 are used to asses the quality of algorithms in the 

webpage of “8th DIMACS Implementation Challenge: The Traveling Salesman 

Problem”. Details of various solution algorithms, different from GAs, can be found in 

the related reference. 
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When the studies that solve instances with more than 1000 cities are considered, DPX, 

EAX, MPX, CGA and HEX seem superior (with deviation less than 0.01%) to the other 

crossovers.  

Both DPX and EAX give good results to the problem instances with sizes larger than 

3000 cities. The deviation with EAX is hardly above zero for large instances (like size 

of 13509 cities). LK, NJ, and 3-opt give best results compared to the other mutation 

operators.  

Table 2.2 summarizes the problem solved by each author and the percentage deviations. 

The last column in the Table presents remarks related to the results reported in the 

studies. We can say that use of different problem instances can be regarded as random 

choices as different scholars from different field such as electrical and electronics 

engineering, computer science, operations research etc., are working in the same 

domain. Although there are TSPLIB test problems like lin318 that was solved in 13 

different studies, most problems are solved 2.2 times on average.  

A more detailed version of tables is presented in Appendix A.  

 23



Table 2.1 Comparison of GAs with promising results conducted after 1995 

Authors   Year Source Crossover Mutation Problem Size Deviation (%) 
Julstrom  1995 Appl. Comp. VGX IVM 105 0.03 
Fresleben, Merz 1996 Evol. Comp. DPX LK 51 - 1577 0.00 - 0.46 
Maekawa et al. 1996 Evol. Comp. PXM 2-opt 51 - 575 0.00 - 0.08 
Gorges-Schkeuter 1997 Evol. Comp. MPX LK 198 - 3795 0.00 - 0.34 
Julstrom  1997 Appl. Comp. CX EM 200 - 318 0.61 -1.33 
Merz, Freisleben 1997 Evol. Comp. DPX LK 198 - 3795 0.00 - 0.51 
Nagata, Kobayashi 1997 ICGA EAX - 101 - 3038 0.00 - 0.03 
Yang 1997 GA in Eng. Sys. VGX 2-opt, 3-opt 51 - 2392 0.00 - 2.33 
Chen, Smith 1999 Found. of GA CST/NN 2-opt 198 - 574 0.87 - 2.65 
Katayama et al. 1999 Sys. Comp.Jap. CSX SM 51 - 2392 0.23 - 5.00 
Ho, Chen 2000 High Per. Comp. OAX (NN)† IVM 105 - 2392 5.16 - 41.69 
Katayama et al. 2000 Math. And Comp. CSX 2-opt 51 - 532 0.28 -1.99 
Stütze et al. 2000 IPPS DPX 3 -opt 1000 - 2392 0. 08 - 0.08 
Baraglia et al. 2001 Evol. Comp. CGA‡ LK 198 - 14461 0.00 - 0.01 
Yang, Stancey 2001 AI, Canada NNX - 50 - 75 0.00 - 0.00 
Jung, Moon 2002 Evol. Comp. NX LK 318 - 11849 0.00 - 0.06 
Merz 2002 PGEC GX LK 318 - 1002 0.00 - 0.00 
Xiaoming et al. 2002 WCICA - EM 130 - 2352 0.00 -0.00 
Hui et al.** 2003 Evol. Comp. EMX - 100 - 532 0.00 - 1.18 
Pullan 2003 Evol. Comp. HEX 2 - opt 70 - 1060 0.04 - 0.50 
Tsai, Tsai 2003 Eng. Opt. EAX NJM 101 - 3038 0.00 - 0.00 
Burkowski 2004 Parallel Comp. PMX - 51 - 225 0.00 - 0.01 
Nagata 2004 Evol. Comp. EAX 2-opt 532 - 1173 0.04 - 0.07 
Ray et al. 2004 ICPR OX2 SM 70 - 100 1.48 - 1.04 
Soak, Ahn 2004 AI and Soft Com. SPX IVM 51 - 195 0.70 - 2.4 

     



 

 

Table 2.1 (Continued) 

Authors   Year Source Crossover Mutation Problem Size Deviation (%) 
Tsai et al. 2004a IEEE Cyber. EAX LK 318 - 15112 0.00 - 0.14 
Tsai et al. 2004b Inf. Bio-Med. EAX NJM 101 - 13509 0.00 - 0.00 
Tsai et al. 2004c Soft Comp. EAX NJM 318 - 13509 0.00 - 0.00 
Wang et al. 2004 ICMLC NGA RIM 105 - 1000 0.01 - 0.00 
White, Yen  2004 Evol. Comp. ANT-DPX* 2 - opt 51 - 318 0.00 - 0.00 
Zou et al. 2004 Evol. Comp. EAX NJM, LK 318 - 11889 0.00 - 0.00  
Chan et al. 2005 IGEC EAX 2 - opt 575 - 1173 0.03 - 0.02 
Ray et al. 2005 LNCS OX2 IVM 100 - 783 0.31 - 7.22 
Xuan, Li, 2005 ICGC OX1 IVM, LK 51 - 442 1.40 - 0.89 
Yan et al. 2005 ICMLC EMX IVM 70 - 280 0.00 - 0.00 
Wang, Cui, Wan, Wang 2006 Ins. Meas. Control PMX DM, SM 51 -318 0.00 - 0.00 
Wang, Han, Li, Zhao 2006 Eng. Opt. NGA RIM 105 - 1000 0.00 - 0.00 

      *  DPX uses Ant Colony optimization to introduce new edges. 

      †  OAX (NN) uses orthogonal array representation and NN heuristic to construct the decoded tours.  

      ‡   CGA uses probability matrixes for representation and the algorithm proceeds by updating these matrixes.     
  **   Hui et al. (2003) chooses edges from the gene library in their implementation of GA with immunology principle. 

    ‡‡   Wang et al. (2004) use their own crossover (NGA) and mutation operators (RIM) designed for the representation scheme  based on the permutations of positions encoded. 
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Table 2.2 Problem instances used by authors, and percent deviations 

Authors Year Problem Instances (Deviation %) Remarks 
Julstrom  1995 Lin105 (0.03)   

Friesleben, Merz 1996 eil51 (0.00), kroA100 (0.00), d198 (0.00), att532 (0.05), 
rat783 (0.04),  fl1577 (0.46)   

Maekawa et al. 1996 eil51 (0.00), kroA100 (0.00), rat575 (0.08)   

Gorges-Schkeuter 1997 d198 (0.00), lin318 (0.00), pcb442 (0.27), att532 (0.03), 
rat783 (0.03), fl1577 (0.23), fl3795 (0.34)   

Julstrom  1997 kroA200 (0.61), pr226 (0.00), pr299 (0.44), lin318 
(1.33) 

 best of two 
replications 
reported 

Merz, Freisleben 1997 d198 (0.00), lin318 (0.00), pcb442 (0.27), att532 (0.04), 
rat783 (0.00), fl1577 (0.21), fl3795 (0.51)   

Nagata, Kobayashi 1997 

eil101 (0.00), kroA200 (0.00), lin318 (0.01), fl417 
(0.00), pr439 (0.03), pcb442(0.00), att532 (0.03), u574 
(0.00), rat575 (0.00), p654 (0.00), d657 (0.00), u724 
(0.01), rat783 (0.00), u1060 (0.00), vm1086 (0.01), 
pcb1173 (0.01), nrw1379 (0.01), u1432 (0.01), vm 1748 
(0.00), pr2392 (0.01), pcb3038 (0.03)   

Yang 1997 eil51 (0.00), kroA100 (0.00), pa561 (1.34), pr1002 
(2.33), pr2392 (2.33),    

Wang et al.* 1998 kroA100 (0.0), rd100 (0.15), lin101 (0.00), pr107 
(0.16), pr124 (0.00),    

Chen, Smith 1999 d198 (0.87), lin318 (0.31), fl417 (1.16), pcb442 (1.22), 
u574 (2.68),    

Katayama et al. 1999 

eil51 (0.22), pr76 (0.12), kroa100 (0.06), kroB100 
(0.34), rd100 (0.33), lin105 (0.01), eil101 (0.35), pr124 
(0.00), pr144 (0.00), kroA150 (0.54), kroB150 (0.41), 
pr152 (0.10), pr226 (0.02), pr264 (0.20), pr299 (0.69), 
lin318 (1.62), pr439 (1.17), att532 (2.14), u547 (3.10), 
rat783 (3.49), pr1002 (2.91), u1060 (3.78), pr2392 
(5.00)   

Ho, Chen 2000 Lin105 (5.16), lin318 (16.51), pr349 (18.20), pr1002 
(29.33), pr2392 (41.69)   

Katayama et al. 2000 
eil51 (0.28), pr76 (0.00), kroa100 (0.00),  rd100 (0.15), 
lin105 (0.00), pr107 (0.16), pr124 (0.00), pr226 (0.03),  
pr299 (0.64), lin318 (1.62), pr439 (0.69), att532 (1.99)   

Stütze et al. 2000 

dsj100 (0.08), pr1002 (0.00), u1060 (0.03), vm1086 
(0.20), pcb1173 (0.02), d1291 (0.04), rl1304 (0.00), 
rl1323 (0.01), nrw1379 (0.07), fl1400 (0.12), u1432 
(0.45), fl1577 (0.16), d1655 (0.00), vm1748 (0.05), 
u1718 (14), rl1889 (0.04), d2103 (0.02), u2152 (0.18), 
u2319 (1.24), pr2392 (0.08)   

Baraglia et al. 2001 
d198 (0.00), lin318 (0.00), pcb442 (0.00), att532 (0.00), 
gr666 (0.00), rat738 (0.00), pr1002 (0.00), u2152 (0.00), 
fl3795 (0.00), frl5915 (0.00), fnl14461 (0.01)   

Yang, Stancey 2001 eil50 (0.00), eil75 (0.00),   

Jung, Moon 2002 Lin318 (0.00), att532 (0.01), dsj1000 (0.00), d2103 
(0.04), pcb3038 (0.03), fnl44461 (0.07), rl11849 (0.09),   

Merz 2002 Lin318 (0.00), pcb442 (0.00), att532 (0.00), rat783 
(0.00), pr1002 (0.00)   

Xiaoming et al. 2002 Ch130 (0.00), tsp225 (0.00), pr1002 (0.00), pr2392 
(0.00),   

Hui et al. 2003 
kroA100 (0.00), kroB100 (0.00), lin105 (0.00), pr124 
(0.00), chc144 (0.00), pr152 (0.00), rat195 (0.00), 
att532 (1.18) 

uses good 
common edges 
to generate new 
individuals, 
(immunology) 
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Table 2.2 (Continued) 
Authors Year Problem Instances (Deviation %) Remarks 

Pullan 2003 

eil51 (0.00), st70 (0.00), eil76 (0.00), pr76 (0.00), rat99 
(0.00), kroA100 (0.00), kroB100 (0.00), rd100 (0.00), 
kroc100(0.00), kroD100 (0.00), kroE100 (0.00), eil101 
(0.00), pr124 (0.00), bier127 (0.00), ch130 (0.00), pr136 
(0.00), pr144 (0.00), kroA150 (0.00), kroB150 (0.00), 
ch150 (0.00),  kroB152 (0.00), pr152 (0.00), u159 
(0.00), d198 (0.00), kroA200 (0.00), kroB200 (0.00), 
tsp225 (0.00), pr226 (0.00), gil262 (0.00), pr264 (0.00),  
a280 (0.00), pr299 (0.00), lin318 (0.00), pr439 (0.00), 
att532 (0.00), p654 (0.01),  d657 (0.09), u724 (0.12), 
pr1002 (0.33), u1060 (0.5)   

Tsai et al. 2003 

eil101 (0.00), kroA200 (0.00), lin318 (0.01), 
pcb442(0.00), att532 (0.00), u574 (0.00), rat575 (0.00), 
u724 (0.00), rat783 (0.00), vm1086 (0.02), pcb1173 
(0.01), u1432 (0.00), vm1748 (0.01), pr2392 (0.00), 
pcb3038 (0.00)   

Burkowski 2004 
eil51 (0.00), berlin52 (0.00), kroA100 (0.03), lin105 
(0.00),  eil101 (0.02), ch130 (0.02), ch150 (0.03), ts225 
(0.00),    

Nagata 2004 att532 (0.04), rat575 (0.05), u724 (0.04), rat783 (0.05), 
p1060 (0.09), vm1084 (0.13), pcb1173 (0.07)   

Ray 2004 st70 (1.48), kroA100 (1.04) 
best of 30 
replications 
reported  

Soak, Ahn 2004 eil51 (0.70), rat99 (1.4), kroA100 (0.8), rat195 (2.4),   

Tsai et al. 2004a 
eil101 (0.00), kroA200 (0.00), lin318 (0.00), pcb442 
(0.00), att532 (0.00), u574 (0.00), rat783 (0.00), 
vm1084 (0.00), pcb1173 (0.00), u1432 (0.00), vm1748 
(0.00), fnl4461 (0.00), usa13509 (0.00),   

Tsai et al. 2004b 

lin318 (0.00), pcb442 (0.00), att532 (0.00), rat783 
(0.00), pr1002 (0.00), vm1086 (0.00), pcb 1173 (0.00), 
u1432 (0.00), vm1748 (0.00), u2151 (0.00), pr2392 
(0.00),  pcb3038 (0.00), frl5915 (0.00), usa13509 (0.01), 
fnl4461 (0.00), d15112 (0.01)   

Tsai et al. 2004c 
eil101 (0.00), kroA200 (0.00), lin318 (0.00), att532 
(0.00), rat783 (0.00), vm1084 (0.00), pcb1173 (0.00), 
u1432 (0.00), pr2392 (0.00), pcb3038 (0.00), fnl5915 
(0.00), u13509 (0.00),   

Wang et al. 2004 lin105 (0.01), lin318 (0.00), att532 (0.00), dsj1000 
(0.00),   

White, Yen  2004 eil51 (0.58), kroA100 (0.01), d198 (0.04), lin318 (1.3),    

Zou et al. 2004 
lin318 (0.00), att532 (0.00), si535 (0.00), gr666 (0.00), 
rat783 (0.00), u1060 (0.00), f11400 (0.00), r11889 
(0.00),  

only best values 
reported 

Chan et al. 2005 rat575 (0.03), u724 (0.00), rat783 (0.00), vm1086 
(0.07), pcb1173 (0.02),    

Ray et al. 2005 kroA100 (0.31), d198 (0.31), ts225 (0.19), pcb442 
(2.26), rat783 (7.22)   

Xuan, Li, 2005 eil51 (1.47), eil76 (1.89), eil101 (2.26), chn150 (1.21), 
gr202 (1,20), pcb442 (0.89)   

Yan et al. 2005 st70 (0.00), eil76 (0.00), kroA200 (0.00), rd100 (0.00), 
pr136 (0.00), pr144 (0.00), a280 (0.00),   

Wang, Cui, Wan, Wang 2006 eil51 (0.00), st70 (0.00), kroA100 (0.00), ch130 (0.00), 
lin318 (0.00) 

uses gene 
therapy to 
improve the 
performance 

Wang, Han, Li, Zhao 2006 lin105 (0.00), lin 318 (0.00), att532 (0.00), dsj1000 
(0.00) 

only bests values 
are reported  



CHAPTER 3 
 

 

DEVELOPMENT OF THE EVOLUTIONARY ALGORITHM 
 

 

 

This chapter describes development of a GA using operators based on conventional TSP 

heuristics. Specifically, we focus on the Nearest Neighbor Crossover (NNX) with 

multiple parents. As the name implies, NNX is derived from the well-known TSP 

heuristic called as Nearest Neighbor heuristic. We also use edge exchange and node 

insertion ideas in developing mutation operators. 

Throughout the chapter, alternative settings for the design of GA are described in detail, 

and then the experiments conducted using these alternatives setting are reported. The 

results of these experiments are used in generation of new alternatives that may improve 

the performance of the NNX operator. In the initial experiments, a set of small problem 

instances from TSPLIB (Reinelt, 2007) are used for testing alternative settings. Later 

on, larger instances are also included, and the final form of the algorithm is reached. The 

chapter concludes with reporting the best settings that are determined by the 

convergence analysis conducted on a larger problem instances, and the computational 

results of these settings for large problems. 

3.1. Nearest Neighbor Crossover (NNX) with Multiple Parents 

NNX is based on the well-known Nearest Neighbor heuristic (NN), which is based on 

visiting the nearest city to the current city every time. Sönmez (2003) mentions that NN 

usually generates tours which are around 25% longer than the optimal tour. The main 

reason of this deviation is the few but severe mistakes that are present in the solution. 

The number of feasible edges short starts to decrease during the construction of a tour, 

thus the algorithm is forced to include the forgotten cities at the expense of some long 
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edges. However, NN tours contain paths of short edges. NNX tries to eliminate these 

few severe mistakes by combining good edges that are present in the parents. In NNX, 

the edges that are present in the parents are used to create a union graph of the parents. 

Then, NN is applied on this union graph instead of the complete instance graph only if 

there are no feasible edges left in the union graph. NNX selects the shortest of all 

feasible edges from the complete graph. 

NNX has flexibility on the number of parents as there is no limitation on the number of 

edges that are included in the union graph. In the extreme case, all the edges can be 

present in the union graph, and the solution is thus identical to the NN solution. 

Mühlenbein (1989) was the first to introduce more than a pair of parents to the GAs, 

with his voting recombination operator. This operator does not resemble the NNX, yet 

the idea of p-sexual crossover is applicable to the NNX. This novice approach is 

different from the general stream of crossover operators, as they tend to preserve the 

good properties of either one parent or the other. Using more than two parents can bring 

improvement to the solution quality, as good properties of more than two individuals 

can be preserved. Yet, the effect of more than two parents cannot be easily judged, as 

the performance of NNX is affected by the number of good edges that are acquired from 

the complete graph when the algorithm gets stuck, as well as the edges that are present 

in the parents.   

The initial (prototype) evolutionary algorithm used for evaluating and improving the 

performance of NNX is given in Figure 3.1. We use path representation of our solutions, 

and the fitness value of a solution is the tour length.  

 
Figure 3.1 Evolutionary algorithm for NNX 

Generate initial population randomly 
Repeat 

Select k parents 
Apply NNX to obtain child(ren) 
Replace some population members with child(ren) 

Until Population Converges 

Sönmez (2003) has experimented with different initial populations and concluded that 

NNX gives best results when the initial population is generated randomly. Demir (2004) 

also suggests use of NNX with random initial population and reports significant 

solutions on constrained TSPs. Moreover, Larrañaga et al. (1999) reports that ERX 

operator, which is similar to the NNX, gives the best results among all the operators 

 29



when random initialization is used. Therefore, the initial population used in our initial 

experiments is generated randomly. 

The size of the population is another important factor that affects the performance of an 

EA. There are applications where different population sizes are reported to give 

promising results. Sönmez (2003) has experimented with two different population sizes, 

50 and 100, for small problems (i.e. n ≤ 250). The population size becomes an important 

factor as the problems size increases, because different members of the population 

represent different points in the solution space. In the initial experiments of our study, 

the population size is set to the problem size for small problems. For large problems, the 

population size is fixed as 200 due to computational constraints similar to Larrañaga et 

al. (1999). 

There are two popular strategies for reproduction in the literature. The first one is the 

generational approach, where the whole population reproduces and newly generated 

solutions replace in the previous population. The second reproduction strategy, which 

employed in this study, is the steady-state evolution, where only a small group of 

parents is used to generate a group of children, and the children generated are 

introduced to the population. 

Parent selection for reproduction is done using the method of GENITOR proposed by 

Whitley (1989). This method gives the possibility to experiment with different selection 

pressures without a major difference in the algorithm. The method is a rank based 

selection method where the selection pressure is adjusted using a parameter η, which 

varies between 1 and 2. The probability of selection of an individual for crossover is 

calculated using equation 3.1, where i denotes the rank of the ith individual, in a 

population with N individuals. 

          (3.1) 

   

1 12( 1)
1i

i
N N

η η⎡ − ⎤⎛ ⎞− ⎜ ⎟p = −⎢ ⎥−⎝ ⎠⎣ ⎦

The selection is totally random when η = 1, and the best individual is favored most 

when η = 2. Actually the selection probability assigned to the best individual is twice as 

large as the average when η = 2 (Larrañaga et al., 1999). Different η values are utilized 

in the initial experiments of our study, as none of the different selection probability 

assessment methods are proven to be the best for all types of settings. Assigning 

probabilities according to ranks have been practiced successfully with impressing 
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results, but there are cases when the random selection has been used and has produced 

the best result. In general, different replacement, crossover, and mutation methods affect 

the quality of the solutions interacting with the selection pressure. 

The edges present in the selected parents are used to generate the union graph. The child 

generated using the union graph is dependent on the starting point of the tour 

construction. Thus, NNX makes it possible to generate different children using the same 

parents. In this study, the starting point of each child is selected randomly, due to the 

promising results reported by Sönmez (2003) and Demir (2004). The number of 

children generated can play an important role in exploration of the search space. 

Moreover, the algorithm of EAX (Nagata, Kobayashi, 1997) also includes generation of 

more than one child. 

The replacement strategy is another important factor as the members that are replaced 

may be holding very important edges that cannot be reintroduced to the population 

easily. Replacement also affects the convergence behavior of the algorithm. The 

population can easily converge to local optima if the replacement strategy does not 

favor differences among members. There are two common replacement strategies that 

are employed in the literature. One is the family competition or Replacement of the 

Worst Parent (RWP), and the other is Replacement of the Worst Population Member 

(RWM).  Demir (2004) uses RWP, with steady-state evolution. In RWM, the best child 

generated replaces the worst population member if its fitness value is better than that 

individual. Similarly, in RWP, the child replaces the worst parent only if its fitness 

value is better. We experiment with both RWP and RWM in this study. 

The aim of the initial experiments with NNX is to improve its performance using 

suitable parameter settings. Therefore, there is no mutation operator in the EA given in 

Figure 3.1. The mutation operator will be taken into consideration after the parameters 

that give good solutions with NNX are identified. 

The number of generations is chosen as 10,000 for small problems as a convergence 

criterion. According to the results of the experiments, the algorithm has converged for 

all small problems by the end of 10,000 generations. 

3.2. Initial Experiments with NNX 

The performance of NNX is investigated using different parameter settings to improve 

the solution quality. Slight changes in the structure of initial population and NNX are 
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also implemented. Eight small instances from TSPLIB are used in these experiments. 

These instances, which are also used by Sönmez (2003), are berlin52, eil101, bier127, 

ch130, ch150, u159, kroA200, and pr226. This section concludes describing the best 

configuration for the algorithm given in Figure 3.1. 

3.2.1 Parameter Settings 

We have experimented with four parameters of the algorithm. The values for each of 

these parameters and their representations throughout the chapter are given below: 

- The Number of Parents for NNX (P): The numbers of parents tried are 2, 3 and 

6. 

- Etha (η): Values tried are 1 (random selection), 1.5 and 2 (higher selection 

pressure). 

- The Number of Children (C): The number of children is set as 1 and 10. 

- Replacement (R): Replacement with the worst parent (RWP) and replacement 

with the worst population member (RWM) are tried. 

All possible combinations of the above parameter settings are replicated 30 times for 

each problem. The solution quality is assessed using two measures. The first measure is 

“the best solution of 30 replications (Best)” is an indicator of the exploratory power of 

the algorithm. The second measure is “average of solutions of 30 replications (Avg)” 

and is a good indicator of the consistency of the solutions. The solutions obtained with 

all parameter combinations are ranked based on both quality measures. The best three 

configurations for each problem are given in Table 3.1.  

In Table 3.1, the three columns following the first column give the best three parameter 

combinations when solutions are ranked according to the best solution (Best). The last 

three columns give the best three parameter settings when the solutions are ranked 

according to the average solution (Avg). 

Observing that the best parameter settings in Table 3.1 using either quality measure 

never predict the use of a single child, the best parameter settings when only one child is 

generated are given in Table 3.2. We consider the single child case because generally 10 

children take significantly longer computational time. In Table 3.2 the second column 

gives the best parameter setting when the average deviation of 30 replications is 
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considered; the third column gives the best parameter setting when the best of 30 

replications is considered.   

Table 3.1 Best parameter settings for small problems 

  Settings for Best Settings for Avg 

  1st 2nd 3rd 1st 2nd 3rd 
P 3 2 2 3 2 2 
Etha 1 1 1 1 1 1 
C 10 10 10 10 10 10 
R RWP RWP RWM RWP RWP RWM 
Best Deviation (%) 0.00 0.00 0.00 0.00 0.00 0.00 
Avg Deviation (%) 

be
rli

n5
2 

1.18 1.24 2.12 1.18 1.24 2.12 
P 2 2 2 2 2 6 
Etha 1.5 1 1.5 1.5 1 1.5 
C 10 10 10 10 10 10 
R RWM RWP RWP RWP RWP RWM 
Best Deviation (%) 0.64 0.79 1.43 1.59 0.79 2.86 
Avg Deviation (%) 

ei
l1

01
 

5.66 4.32 4.53 4.26 4.32 4.35 
P 2 2 2 2 2 2 
Etha 2 1 1 1.5 2 1 
C 10 10 10 10 10 10 
R RWP RWP RWM RWP RWP RWP 
Best Deviation (%) 0.47 0.61 0.64 0.65 0.47 0.61 
Avg Deviation (%) 

bi
er

12
7 

1.7 1.74 1.86 1.56 1.7 1.74 
P 6 2 6 2 3 3 
Etha 1 1 2 1 1.5 1 
C 10 10 10 10 10 10 
R RWM RWP RWP RWP RWP RWP 
Best Deviation (%) 1.29 1.64 1.8 1.64 2.08 2.03 
Avg Deviation (%) 

ch
13

0 

3.8 3.12 4 3.12 3.28 3.41 
P 2 2 2 2 3 2 
Etha 1.5 1 2 1 1 1.5 
C 10 10 10 10 10 10 
R RWP RWP RWM RWP RWP RWP 
Best Deviation (%) 1.18 1.23 1.24 1.23 1.42 1.18 
Avg Deviation (%) 

ch
15

0 

2.12 1.95 2.32 1.95 2.04 2.12 
P 2 2 6 2 2 3 
Etha 1 1.5 1 1 1.5 1 
C 10 10 10 10 10 10 
R RWP RWP RWM RWP RWP RWP 
Best Deviation (%) 0.62 0.79 0.85 0.62 0.79 0.98 
Avg Deviation (%) 

u1
59

 

1.66 1.71 2.37 1.66 1.71 1.87 
P 6 6 3 3 6 2 
Etha 1.5 1 1 1 1 1 
C 10 10 10 10 10 10 
R RWP RWP RWP RWP RWP RWP 
Best Deviation (%) 0.96 1.14 1.21 1.21 1.14 1.25 
Avg Deviation (%) 

kr
oA

20
0 

2.05 1.75 1.74 1.74 1.75 1.83 
P 3 2 2 2 6 3 
Etha 1 2 1.5 1 1 1 
C 10 10 10 10 10 10 
R RWP RWP RWP RWP RWP RWP 
Best Deviation (%) 0.72 0.8 0.83 0.86 1.01 0.72 
Avg Deviation (%) 

pr
22

6 

1.57 1.77 1.6 1.44 1.51 1.57 
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The best configuration for one child according to Table 3.2 is using 2 parents, selecting 

randomly with small problems and selecting the good individuals when the problems 

size is larger. Replacement with parents is the best replacement strategy, but the 

replacement with population members is also the best strategy in some problems. Figure 

3.3 (explained in detail below) can also be used to evaluate the interaction of the 

parameter settings when only one child is generated. Generating only one child is 

discarded from further consideration in as the results are relatively poor according to the 

results in Table 3.2 and Figure 3.3. 

Table 3.2 Best parameter settings when only one child is generated 

  Avg Best    Avg Best  
P 2 2 P 6 2 
Etha 1 1 Etha 1 1 
R RWP RWP R RWM RWP 
Best Deviation (%) 0 0 Best Deviation (%) 1.95 1.46 
Avg Deviation (%) 

be
rli

n5
2 

2.28 2.28 Avg Deviation (%) 

ch
15

0 

2.69 2.7 
P 2 2 P 3 2 
Etha 1 2 Etha 1.5 1 
R RWP RWP R RWP RWP 
Best Deviation (%) 2.7 2.23 Best Deviation (%) 1.49 1.1 
Avg Deviation (%) 

ei
l1

01
 

5.53 5.8 Avg Deviation (%) 

kr
oA

20
0 

3.81 3.89 
P 2 3 P 3 3 
Etha 1.5 1.5 Etha 1.5 1.5 
R RWP RWP R RWM RWM 
Best Deviation (%) 1.07 0.89 Best Deviation (%) 1.82 1.82 
Avg Deviation (%) 

bi
er

12
7 

2.33 2.69 Avg Deviation (%) 

u1
59

 

3.12 3.12 
P 2 3 P 2 2 
Etha 1.5 1.5 Etha 2 2 
R RWP RWM R RWP RWP 
Best Deviation (%) 2.77 2.37 Best Deviation (%) 1.27 1.27 
Avg Deviation (%) 

ch
13

0 

4.51 4.98 Avg Deviation (%) 

pr
22

6 

3.72 3.72 

 
The results of individual runs that are summarized in Table 3.1 are analyzed using 

ANOVA, in order to find the optimal configuration with statistical significance. 

Appendix B summarizes the results of the ANOVA and the residual plots required to 

verify the assumptions of ANOVA. Main effect and interaction plots of the parameters 

are given in Figures 3.2 and 3.3. The number 1 stands for RWM, 2 for RWP.  

According to the results of ANOVA, all four parameters have significant effects. 

Moreover, interactions between the pairs P and η, P and R, C and η, C and R, η and R 

are also statistically significant. Thus, the decisions are mostly based on the interaction 

plot. Although 3 parents seem to give slightly the better result in the main effects plot 

(Figure 3.2), using the best configurations in terms of the children (10), η (1.5) and 

RWP as replacement strategy, the best choice is 2 parents considering all the two-way 
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interactions given in Figure 3.3. Generating 10 children gives the best results regardless 

of the interactions. Similarly, smaller values of η give better results, although not very 

obvious when interaction with the number of parents is considered. The most 

unexpected result is observed with the replacement strategy; p-sexual crossover 

dominates 2-parent crossover when the child replaces the worst population member, 

whereas two parents give the best result then RWP is used. 

 

Figure 3.2 Main interaction plots of the experiment parameters 

 

 

Figure 3.3 Interaction plot of the parameters under consideration 
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A promising configuration seems to be selecting two parents at random (η=1), and 

generating 10 children from these parents using NNX, the best of which will replace the 

worst of the parents. 

3.2.2 Alternative Initial Population Generation  

Another setting that has effect on the performance of NNX is the initial population, 

according to Sönmez (2003). She states that the best results are formed when the 

population is generated randomly. It can be seen in Table 3.3 that the randomly 

generated initial population has a very poor solution quality. A very simple alternative 

to this is to generate the initial population using NN. The initial solution with NN is 

generated starting the tour with each of the cities. The percent deviation of the initial 

population using NN is much better than the random initial population. 

Table 3.3 Deviations of the initial populations when created randomly and using NN 
  Random  Nearest Neighbor Heuristic 

Problem 
instance Optimal 

Minimum 
Deviation 

(%) 

Average 
Deviation 

(%) 

Maximum 
Deviation 

(%) 

Minimum 
Deviation 

(%) 

Average 
Deviation 

(%) 

Maximum 
Deviation 

(%) 

berlin52 7542 242.40 296.04 338.18 8.47 24.31 36.54
eil101 629 389.59 444.3 497.74 18.6 32.35 45.15
bier127 118282 384.75 431.59 473.65 13.25 23.57 32.36
ch130 6110 658.54 726.85 826.85 16.68 26.61 44.63
ch150 6528 652.05 725.38 793.24 8.96 17.53 27.90
u159 42080 859.55 969.01 1071.37 15.47 28.68 35.67
kroA200 29368 946.46 1058.96 1170.18 17.62 28.02 43.16
pr226 80396 1816.76 2009.19 2188.64 15.12 24.16 41.73

 
The algorithm starting with the alternative population generation method is tried for 

smallest two problem instances and a summary can be found in Table 3.4. The results 

suggest that NNX is not capable of escaping the local optima created by NN heuristic 

(especially see the second problem’s results in the Table). Thus, further investigation 

using NN to generate the initial population is abandoned. 

In Table 3.4, six parents can be seen in both of the problems instances even for the 

smallest two problems. NNX is forced to merge the good edges from different parents 

when used with individuals constructed using NN heuristic.  
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3.2.3 Alternative Crossover (NNX-a) 

Recombination of edges from different parents is the premise of NNX, but this cannot 

be done when one of the parents dominates the other. There are cases where all edges in 

the children come from the same parent.  

Table 3.4 Results for small problems when initial population is generated using NN 
Heuristic 
  Settings for Best Settings for Avg 

  1st 2nd 3rd 1st 2nd 3rd 
P 2 3 6 2 3 6 
Etha 1 1 1 1 1 1 
C 10 10 10 10 10 10 
R RWP RWP RWP RWP RWP RWP 
Best Deviation (%) 0.07 0.07 0.07 0.07 0.07 0.07 
Avg Deviation (%) 

be
rli

n5
2 

1.04 1.06 1.11 1.04 1.06 1.11 
P 6 6 3 3 2 2 
Etha 1 2 1.5 1 1 1.5 
C 10 10 10 10 10 10 
R RWP RWP RWP RWP RWP RWP 
Best Deviation (%) 2.86 3.34 3.5 4.61 4.61 3.82 
Avg Deviation (%) 

ei
l1

01
 

6.72 7.42 6.73 6.45 6.52 6.58 

 
An alternative worth investigation is the selection of edges from the union graph using a 

method similar to the one employed in EAX Crossover (Nagata, Kobayashi, 1997). 

EAX constructs the AB cycles by selecting edges alternating between the two parents 

then uses these AB cycles in creating new solutions. In our NNX-a, if two successive 

nearest neighbors are from the same parent, we take the second neighbor from the other 

parent, even if it is farther. This way we make sure that edges are selected by alternating 

between the parents and children are different from their parents. 

Table 3.5 summarizes the results for NNX-a. When we compare Tables 3.1 and 3.5, we 

observe that enforcing edges from different parents does not bring any improvement in 

terms of average percent deviation when more than one child is generated, and does not 

have a very large impact when only one child is generated. Thus, alternating between 

parents when selecting the edges is discarded from further consideration. 
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Table 3.5 Best parameter settings for small problems using alternating parents 

  Settings for Best Settings for Avg 

  1st 2nd 3rd 1st 2nd 3rd 
P 2 2 2 2 2 2 
Etha 1 1.5 1.5 1 1.5 1.5 
C 10 10 1 10 10 1 
R RWP RWP RWP RWP RWP RWP 
Best Deviation (%) 0.07 0.07 0.07 0.07 0.07 0.07 
Avg Deviation (%) 

be
rli

n5
2 

1.24 1.37 1.56 1.24 1.37 1.56 
P 2 2 2 2 2 2 
Etha 1.5 1 1 1 1.5 2 
C 10 10 1 10 10 10 
R RWP RWP RWP RWP RWP RWP 
Best Deviation (%) 1.27 2.07 2.23 2.07 1.27 2.54 
Avg Deviation (%) 

ei
l1

01
 

4.28 4.26 6.42 4.26 4.28 4.86 
P 3 2 2 3 2 2 
Etha 1 2 1.5 1.5 1 1.5 
C 10 10 10 10 10 10 
R RWP RWP RWM RWP RWP RWP 
Best Deviation (%) 0.61 0.77 0.76 0.78 0.95 0.89 
Avg Deviation (%) 

bi
er

12
7 

1.82 1.88 2.33 1.64 1.73 1.78 
P 2 3 3 2 2 3 
Etha 1.5 2 1.5 1 1.5 1 
C 10 10 10 10 10 10 
R RWP RWP RWM RWP RWP RWP 
Best Deviation (%) 2.14 2.5 2.5 2.86 2.14 3 
Avg Deviation (%) 

ch
13

0 

3.8 4.22 4.86 3.77 3.8 4.06 
P 2 2 2 2 2 2 
Etha 1 1.5 2 1 1.5 2 
C 10 10 10 10 10 10 
R RWM RWP RWM RWP RWP RWP 
Best Deviation (%) 0.98 1.35 1.36 1.44 1.35 1.61 
Avg Deviation (%) 

ch
15

0 

2.57 2.25 3.5 2.16 2.25 2.46 
P 2 2 3 2 2 2 
Etha 1.5 2 1 1 1.5 2 
C 10 10 10 10 10 10 
R RWP RWP RWM RWP RWP RWP 
Best Deviation (%) 0.76 0.93 0.94 1.06 0.76 0.93 
Avg Deviation (%) 

u1
59

 

1.93 2.27 2.2 1.66 1.93 2.27 
P 3 3 2 2 3 2 
Etha 1.5 1 1 1 1 1.5 
C 1 10 10 10 10 10 
R RWP RWP RWP RWP RWP RWP 
Best Deviation (%) 1.43 1.66 1.78 1.78 1.69 2.03 
Avg Deviation (%) 

kr
oA

20
0 

4.57 3.56 2.72 2.72 2.96 3.41 
P 3 3 2 2 2 2 
Etha 1 2 2 1 1.5 2 
C 10 10 10 10 10 10 
R RWP RWP RWP RWP RWP RWP 
Best Deviation (%) 0.82 0.94 0.95 1.01 1.04 0.95 
Avg Deviation (%) 

pr
22

6 

1.86 2.03 1.62 1.32 1.33 1.62 
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3.2.4  Results and Discussion of the Initial Experiments 

The best settings among the possible alternatives tried to improve the performance of 

NNX can be summarized as follows. NNX operator gives the best results, when the 

initial population is generated randomly instead of using the NN heuristic. Using 2 

parents in generating the union graph and selecting them randomly outperforms the 

other alternatives. The best settings so far are given in Figure 3.4. 

 

Initial Population: Random 

P = 2 

η = 1 

C = 10 

R = RWP 

Figure 3.4 Best parameter configurations after the initial experiments 

3.3. Mutation Operators  

The new edges NNX operator introduces into the population are limited, as NNX 

concentrates on the shortest edges in the union graph. There are cases observed that the 

child generated using the shortest edges of both parents results in children that are not 

better than their parents. An example where the child generated using only parental 

edges and is not shorter than both of the parents is demonstrated in Appendix C. 

Children get new edges from the complete graph, only when tour construction on the 

union graph gets stuck. Three mutation operators are used in this study to increase the 

power of NNX to explore new edges, as the edges in the optimal solution are not always 

the shortest edges.  

Jog et al. (1989) suggest using improvement heuristics such as 2-opt and 3-opt as 

mutation operators, which makes it possible to incorporate problem specific information 

into the GA (Sönmez, 2003). The first mutation that we use is based on 2-opt, 

concentrating on the longest edges. The second mutation is similar to the first one, but 

randomly selected edges are considered for deletion instead of the longest ones. The 

third mutation is based on the cheapest insertion, another well-known TSP heuristic. We 

use edge exchange and insertion for mutation because these two are fundamental 

improvement moves for TSP. 
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3.3.1 Longest Edge Mutation (LEM) 

This mutation aims to eliminate the long edges in a child, which cause large increases in 

the tour length. All the edges in an individual are ranked according to their lengths and 

the longest edges are tried to be eliminated by restricted 2-opt moves. This mutation is 

inspired from the fact that, NN tours contain paths of short edges and few severe 

mistakes (long edges). Thus concentrating only on the longest edges in an individual can 

bring significant improvement to the solution. The algorithm of LEM is given in Figure 

3.5. 

 

for i = 1 to 15 
Choose the longest edge 
for j = 1 to n-3 

Delete the jth non-adjacent edges  
Calculate the length of connecting the subtours 

 end for 
Apply the best improving (if any) of these n-3 possible exchanges 

end for 

Figure 3.5 Algorithm of longest edge mutation 

A limitation arises as a 2-opt move takes O(n2) time, and examining all the edges in 

relatively larger problems would take a very long time. Therefore, the number of 2-

exchange moves is limited to 15 at most. 

2-exchange moves can be applied until the first improving move is found within the 

limit of 15 trials (LEM 1), or can continue to examine all 15 longest edges in decreasing 

order of length regardless of the improvements (LEM 2). As the mutation is based on an 

improvement heuristic, the trade-off between computation time and solution quality 

needs to be considered. 

3.3.2  Random Edge Mutation (REM) 

This mutation is similar edges with LEM, however it tries to eliminate randomly 

selected edges by 2-opt moves instead of the longest ones. This saves the time to sort 

the edges and still introduces some new edges to the tour. The algorithm of REM can be 

seen in Figure 3.6. 
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for i = 1 to 15 
Choose an edge at random 
for j = 1 to n-3 

Delete the jth non-adjacent edges  
Calculate the length of connecting the subtours 

 end for 
Apply the best improving (if any) of these n-3 possible exchanges 

end for 

Figure 3.6 Algorithm of random edge mutation 

The number 2-opt moves is again limited to 15, without considering improvement in the 

previous moves.  

3.3.3 Cheapest Insertion Mutation (CIM) 

The third mutation has the advantage of bringing in new edges randomly, whereas both 

the NNX operator and LEM use edge lengths to find good edges. CIM is used as an 

alternative mutation, where a node is selected randomly and removed from the 

individual. All possibilities are checked for insertion of removed node to find the 

insertion point that causes the minimum increase in the tour length. The algorithm runs 

in O(n2logn) time, therefore we limit the number of insertions in order to have an 

efficient mutation operator. The algorithm of CIM can be seen in Figure 3.7 

 

for i = 1 to 15 
Choose one node at random 
Try inserting it in every possible place in the tour 
Apply best improving (if any) of these n-2 insertions 

end for 

Figure 3.7 Algorithm of cheapest insertion mutation 

The number of nodes that are selected for CIM is limited to 15. Another decision is 

whether to stop the algorithm if an improvement is found (CIM 1) or continue for 15 

different nodes regardless of the improvements found (CIM 2).  

3.4. Further Experiments with Mutation 

The behavior of NNX combined with the mutation operators is to be investigated, yet 

the idea of p-sexual crossover is still worth further consideration. A slightly modified 

replacement strategy is also implemented in further experiments.  
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LEM is used in the further experiments as it is promising with for eliminating the 

longest edges. On the other hand, CIM is included, as the edges CIM brings in are not 

easily incorporated with NNX or LEM. For each child generated either LEM or CIM is 

used for mutation with equal chances. REM is considered at a later stage as an 

alternative to LEM. 

The idea of replacing the parents with their children only if the children are better than 

their parents results in waste of children. An alternative scheme is to replace worst half 

of the parents without considering if the children are better than them (RWH).   

It is possible that more than half of the children are better than the parents that are used 

to generate them. Another alternative replacement strategy can be continuation of the 

replacements as long as the children are better than the parents, and replacing the 

parents that fall behind the children in fitness. 

 In this part of the study, every new child generated starts from the last node visited in 

the previous child as implemented by Demir (2004), to ensure that children are different 

from each other.  

3.4.1 Parameter Settings for Further Experiments 

The parameters that we consider in these experiments are the number of parents and 

children, mutation and the new replacement strategy (RWH). The number of parents and 

the number of children are selected to be equal, as the new replacement strategy aims to 

replace at least half of the parents with half of the newly generated children. The 

experimental values for each of these parameters are: 

- The Number of Parents (P) and Children (C): The values tried are 2, 4, 6 and 12. 

- Longest Edge Mutation (LEM): Stopping after the first improvement (1) and 

trying all 15 longest edges (2).  

- Cheapest Insertion Mutation (CIM): Stopping after the first improvement (1) 

and trying to insert 15 different random nodes (2)  

- Replacement (R): Replacing worst half of the parents with the best half of 

children (1) and replacing more than half of the parents with children as long as 

the children have better fitness values (2).  
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All possible combinations of the above parameter settings are replicated 30 times. The 

termination condition is again set as 10,000 generations.  

The parent selection is done randomly in these experiments as increases in η cause 

larger deviation from the optimal and, according to the results of the ANOVA, η has a 

statistically significant effect on the deviation. 

Table 3.6 is designed similar to Table 3.1. The decision parameters are the number of 

children (equal to the number of parents), the type of LEM operator, the type of CIM 

operator and the type of replacement. The Table suggests that better results are observed 

when the number of children is small (2 or 4), LEM and CIM are continued 15 times 

regardless of the improvement and replacement is continued as long as the children are 

better than their parents after half of the parents are replaced. 

3.4.2 Results of Further Experiments 

The results obtained with the above parameter combinations are analyzed using 

ANOVA, in order to find the optimal configuration with statistical significance. 

Appendix D summarizes the results of the ANOVA and the residual plots required to 

verify the assumptions of ANOVA. According to ANOVA, parameters C and LEM 

have significant effect as well as the interaction between this pair. Main effect plots of 

the parameters for percent deviation are given in Figure 3.9, and interaction plots are 

given in Figure 3.10. 

The previous observations in Section 3.2.4 support that generating more children 

improves the solution quality. However, we do not see this in Figure 3.9 because of the 

deterioration of the solution due to the increase in the number of parents. The best 

solutions are obtained when only two parents are used to generate two children. A 

reason for this observation may the fact that the number of edges borrowed from the 

complete graph starts to decrease when the number of parents is larger. The edges that 

are brought in by the children with poor fitness values may also contribute this.  

Trying to improve all the 15 longest edges using LEM is better than quitting at the first 

improvement. Inserting 15 random nodes with CIM instead of ending trials when an 

improvement is found gives better results, although the difference is not statistically 

significant. Replacement does not have any effect on the deviation from the optimal. 
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Table 3.6 Best parameter settings for small problems using further experiments 

  Settings for Best Settings for Avg 

  1st 2nd 3rd 1st 2nd 3rd 
3 2 2 3 2 2 P 
1 1 1 1 1 1 Etha 

C 10 10 10 10 10 10 
R RWP RWP RWM RWP RWP RWM 
Best Deviation (%) 0 0 0 0 0 0 
Avg Deviation (%) 

be
rli

n5
2 

1.18 1.24 2.12 1.18 1.24 2.12 
P 2 2 2 2 2 6 
Etha 1.5 1 1.5 1.5 1 1.5 
C 10 10 10 10 10 10 
R RWM RWP RWP RWP RWP RWM 
Best Deviation (%) 0.64 0.79 1.43 1.59 0.79 2.86 
Avg Deviation (%) 

ei
l1

01
 

5.66 4.32 4.53 4.26 4.32 4.35 
P 2 2 2 2 2 2 
Etha 2 1 1 1.5 2 1 
C 10 10 10 10 10 10 
R RWP RWP RWM RWP RWP RWP 
Best Deviation (%) 0.47 0.61 0.64 0.65 0.47 0.61 
Avg Deviation (%) 

bi
er

12
7 

1.7 1.74 1.86 1.56 1.7 1.74 
P 6 2 6 2 3 3 
Etha 1 1 2 1 1.5 1 
C 10 10 10 10 10 10 
R RWM RWP RWP RWP RWP RWP 
Best Deviation (%) 1.29 1.64 1.8 1.64 2.08 2.03 
Avg Deviation (%) 

ch
13

0 

3.8 3.12 4 3.12 3.28 3.41 
P 2 2 2 2 3 2 
Etha 1.5 1 2 1 1 1.5 
C 10 10 10 10 10 10 
R RWP RWP RWM RWP RWP RWP 
Best Deviation (%) 1.18 1.23 1.24 1.23 1.42 1.18 
Avg Deviation (%) 

ch
15

0 

2.12 1.95 2.32 1.95 2.04 2.12 
P 2 2 6 2 2 3 
Etha 1 1.5 1 1 1.5 1 
C 10 10 10 10 10 10 
R RWP RWP RWM RWP RWP RWP 
Best Deviation (%) 0.62 0.79 0.85 0.62 0.79 0.98 
Avg Deviation (%) 

u1
59

 

1.66 1.71 2.37 1.66 1.71 1.87 
P 6 6 3 3 6 2 
Etha 1.5 1 1 1 1 1 
C 10 10 10 10 10 10 
R RWP RWP RWP RWP RWP RWP 
Best Deviation (%) 0.96 1.14 1.21 1.21 1.14 1.25 
Avg Deviation (%) 

kr
oA

20
0 

2.05 1.75 1.74 1.74 1.75 1.83 
P 3 2 2 2 6 3 
Etha 1 2 1.5 1 1 1 
C 10 10 10 10 10 10 
R RWP RWP RWP RWP RWP RWP 
Best Deviation (%) 0.72 0.8 0.83 0.86 1.01 0.72 
Avg Deviation (%) 

pr
22

6 

1.57 1.77 1.6 1.44 1.51 1.57 

 

The interaction between the parameter C and LEM is statistically significant. According 

to the interaction plot in Figure 3.10 LEM gives better results as the number of parents 
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and children decreases. According to the Figures 3.9 and 3.10, the best strategy is to 

generate 2 children from 2 parents and to apply LEM and CIM for 15 trials regardless of 

the improvement.  

 

Figure 3.8 Main effects plots of the experiment parameters 

 

 

Figure 3.9 Interaction plots of the parameters under consideration 

The best settings among the alternatives tried in further experiments are given in Figure 

3.8. 
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Initial Population: Random 

P = C= 2 

η = 1 

LEM = CIM=15 

R = RWH 

Figure 3.10 Best parameter configurations after the initial experiments 

Table 3.7 compares the results of the initial and further experiments. The best deviation 

and average deviation gives the best and average of 30 replications. Note that the RWH 

with P = 2 is equivalent to RWP with P = 2 in Section 3.2. Both performance measures 

support that the mutation operators bring in significant improvement. 

Table 3.7 Comparison of initial and further experiments with small problems 

 Initial Experiments  Further Experiments 
 P = 2, η = 1, C = 10, R = RWP  P = C =2, η = 1, LEM = CIM = 15, R = RHW 

Problem 

Best 
Deviation 

(%) 

Avg 
Deviation 

(%)  

Best Deviation 
(%) 

Avg Deviation 
(%) 

berlin52 0.00 1.24  0.00 0.10 
eil101 0.79 4.32  0.00 1.60 
bier127 0.61 1.74  0.28 0.43 
ch130 1.64 3.12  0.49 1.08 
ch150 1.23 1.95  0.32 0.46 
u159 1.30 5.09  0.00 0.15 
kroA200 1.25 1.83  0.14 0.63 
pr266 0.86 1.44   0.35 0.79 
Average 0.96 2.59  0.20 0.65 

According to the results although C = 10 in initial experiments is reduced to C = 2 in 

further experiments, the solution quality is improved. This is mainly due to the mutation 

operators used.  

The computation times vary between 6 and 38.97 seconds in the initial experiments, and 

between 3.7 and 16.8 in the further experiments on a PC with AMP Turion 64  x2  1.6 

GHz processor having 512 MB or RAM. This suggests that improvements on the 

solution quality do not require extra computational times. They are even fast runner for 

this experiment. 
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3.5. Discussion and Convergence Analysis  

The results of the both experimental investigations are consolidated in Figure 3.11. 

However, the sizes of the test problems used so far are relatively small, and the 

convergence of this best configuration when the increase in problems size needs to be 

investigated. Thus, the NNX configuration by which the best results are obtained is 

tested with larger problems to find out the effect of the increase in problem size on the 

convergence behavior of the algorithm. The instances are again selected form TSPLIB 

(pcb442, rat575, pr1002).  

The number of parents is fixed as 2, the best value when all the experiments are 

considered. However, according to Figures 3.2 and 3.3, the best results are obtained 

when the number of children is large. A method that uses a limited number of parents 

yet generates numerous children is necessary; therefore, we adopt the child generation 

scheme proposed by Nagata and Kobayashi (1997). In our modified scheme, at most 10 

children are generated using the same parents (union graph) as done in the initial 

experiments, but the first improving child is accepted and generation is terminated. The 

reason for generating more than one child is that the number of children with fitness 

values that are better than their parents’ decreases as the population starts to converge. 

When a pair of parents fails to generate a child that is better than at least one of the 

parents in these 10 trials, a new pair is selected. At most 10 randomly chosen parent 

pairs are used until an improving child is found. 

LEM and CIM are tested on the first improving child with equal probabilities. LEM 

tries to find a 2-opt move that results in improvement by deleting 15 longest edges in the 

child. CIM tries to improve the place of 15 randomly selected nodes in the child. Then, 

the child replaces worse of the two parents. 

 

Initial Population: Random 
P = 2 
η = 1 
C = 10 
LEM = 15 trials 
CIM = 15 trials 
 R = RWP 

Figure 3.11 Best parameter configurations with mutation 
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The results for the larger problems with the configuration in Figure 3.11 can be seen in 

Table 3.8. The population size is fixed as 200 for these instances. It can be seen that the 

deviation for problem pr1002 (with more than 1000 cities) is high. Further analysis of 

these runs is required. 

Table 3.8 Results of larger problems 

Problem CPU 
Time 

Best 
Deviation 

(%) 

Avg 
Deviation 

(%) 
LEM / R CIM / R C / Gen P / Gen 

pcb442 313.5 2.96 3.09 0.83 0.7 56.5496 6.1
rat575 453.8 2.24 2.21 0.95 0.8 57.0934 6.1

pr1002* 906.0 7.92 9.51 0.99 1.0 61.5173 6.5
* Results of 10 replications of pr1002 are reported due to large time requirements. 

In Table 3.8, when the generation limit of 10,000 is reached, in every generation six 

pairs of parents (see P / Gen) are used to generate the union graph, which would be at 

most 10, and 60 children (see C / Gen) are generated on the average. Hence, it can be 

concluded that 10 parent pairs and 100 child generation trials are adequate, there is no 

need to increase the number of parents tried and the number of children generated from 

a union graph. 

If an improving child is found in every generation, then the number of 2-opt trials by 

LEM and the number of node insertion trials by CIM should be 15 / 2 = 7.5 per 

generation, on average. These numbers however decrease to 4.03 for LEM and 4.04 for 

CIM, as finding an improving child becomes more difficult towards the end. The 

number of successful 2-opt moves is 0.92 (see LEM / R) and the number of successful 

insertions is 0.83 (see CIM /R) per replacement. 

3.5.1 Convergence Analysis of pr1002 

A detailed convergence analysis of pr1002 is conducted to investigate the factors that 

cause large deviation from the optimal solution, and low utilization of the mutation 

operators. Two different replications are investigated in detail. The convergence plots, 

the plots of percentage of individuals that contain edges taken from complete graph, 

plots of the replacement percentages, and a plot showing the percentage of optimal 

edges included in the solutions are given in Appendix E. 

The algorithm brings substantial improvement at the initial phase when no mutation 

operator is used. Remember that the solution quality of the randomly generated initial 

population was very poor. Therefore, the deviation from the optimal solution drops from 

 48



22000% to 15% in the initial 5000 generations. However, the improvement after this 

initial phase is not very significant.  

The plots in Appendix E suggest that the poor results are due to the slowing effect of 

mutation operators. The percentage of individuals that contain edges borrowed from the 

complete graph in the pure NNX algorithm has a major peak after the algorithm starts to 

converge, during which the newly borrowed edges are spread around the population. 

However, when LEM and CIM operators are employed, the peak where the population 

converges is spread in time. In other words, LEM and CIM slow the convergence 

making it possible to observe improvements at even after 30,000th generation. 

The success of mutation operators can be measured with average number or exchanges 

per generation. The average number of exchanges per generation is expected to be 

around 7.5, as 15 moves are to be tried with probability of 0.5. The number of 

successive exchange moves of LEM drops to 0.05 per replacement after 15,000 

generations. This mutation is quite time consuming. When there are 1002 edges present, 

it is possible to observe up to 300,000 sorting operations in the worst case, at least 

40,000 sorting operations in the best case. Moreover, there is an exhaustive search for a 

second edge to replace the current one. Thus, the limitation of number of exchanges to 

15 does not guarantee shorter CPU times.  

The convergence behavior of REM and CIM combination is also investigated in 

Appendix E. REM and CIM combination preserves the peak observed in the pure NNX, 

avoiding the delay of convergence of the population. Moreover, the algorithm with 

REM and CIM converges to a better value.  

A simple summary of the convergence analysis based on the performance of mutations 

on the problem instance pr1002 is summarized throughout Tables 3.9 – 3.11. Detailed 

results of two different replications are reported in these tables. The results of the first 

replication (S1) were the worst results during the replications Table 3.8, and the results 

of the second replication (S2) were average results.    

The mutation operators do not affect the relative solution quality between two initial 

conditions, as S1 results in poorer results compared to S2 in both the presence and 

absence of mutation operators. 
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Table 3.9 CPU times and deviation results of pr1002 with different mutation operators’ 
combinations 

  S1 S2 

  
Gen CPU 

Time 
Deviation 

(%) 
CPU 
Time 

Deviation 
(%) 

5000 252 14.92 260 15.45 
10000 575 8.72 657 7.28 
20000 1881 7.80 1780 6.26 
30000 3411 7.80 3270 6.26 

No Mut. 

40000 5094 7.80 4760 6.26 
5000 539 13.04 556 13.76 

10000 1143 5.90 1422 9.01 
20000 1830 3.51 2563 3.72 
30000 3253 3.42 3815 3.07 

LEM 
and CIM 

40000 4824 3.39 5332 2.92 
5000 208 15.82 196 14.39 

10000 597 10.29 514 8.58 
20000 1128 3.81 860 2.67 
30000 1565 2.73 1281 2.26 

REM 
and CIM 

40000 2086 2.71 1769 2.24 

 

In Table 3.9, REM and CIM combination gives better results; moreover, it is also better 

in term of CPU times. This combination dominates the other alternative combinations, 

including the case without mutation.  The high CPU time in the case without mutation is  

Table 3.10 CPU times and results for pr1002 when non-improving moves are allowed 
with a given probability after 5000th generation 

   S1 S2 

  

 Acceptance 
Probability 

Gen 
CPU 
Time 

Deviation 
(%) 

CPU 
Time 

Deviation 
(%) 

5000 200 14.13 209 15.14 
10000 391 11.44 382 10.69 
20000 670 6.5 655 5.61 
30000 894 3.27 906 4.31 

LEM and 
CIM Pr = 0.05 

40000 1147 2.88 1164 3.58 
5000 203 15.82 187 14.4 

10000 407 12.31 375 12.04 
20000 766 9.06 693 8.03 
30000 1038 5.42 932 3.96 

REM 
and CIM Pr = 0.05 

40000 1268 3.75 1168 3.58 
5000 200 15.82 186 14.4 

10000 320 14.06 302 12.46 
20000 539 11.58 518 11.29 
30000 742 9.88 719 9.01 

REM 
and CIM Pr = 0.20 

40000 944 8.09 904 6.81 
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not surprising, as the solution without mutation does not improve after 20,000 

generations, enforcing 100 children at each generation. This child generation  increases 

the CPU  time to  the values much larger than the  time used by the mutation operator. 

Compared to REM, the sorting of solutions to find the longest edges in LEM consumes 

a great deal of time, while bringing in a limited improvement.  

The results of convergence analysis (in Appendix E) suggest that the average number of 

replacements per generation decreases rapidly at the 5000th generation, regardless of the 

presence of a mutation operator. Furthermore, the percentage of individuals that contain 

edges taken from the complete graph per replacement has a steady decrease as the 

algorithm proceeds. The decrease in the average number individuals that contain of 

edges taken from complete graph may be compensated by accepting some non-

improving children with a given probability. The results for two different acceptance 

probabilities (Pr) are compared in Table 3.10.   

Table 3.11 CPU times and results for pr1002, when non-improving moves are allowed with 
a probability of 0.5  

  S1 S2 
Generations 
and Accept. 

Pr.* Gen 
CPU 
Time 

Deviation 
(%) 

CPU 
Time 

Deviation 
(%) 

5000 197 15.82 203 14.4 
10000 580 10.7 662 8.59 
20000 810 10.03 994 5.74 
30000 1029 9.72 1294 4.82 

Gen ≥ 10000     
Pr = 0.05  

40000 1237 8.74 1470 3.89 
5000 204 15.82 189 14.4 

10000 587 10.3 498 8.59 
20000 1231 5.29 844 2.89 
30000 1439 4.89 1031 2.6 

Gen ≥ 20000     
Pr =  0.05  

40000 1631 4.45 1203 2.58 
5000 262 15.82 191 14.4 

10000 884 10.3 501 8.59 
20000 1530 5.29 847 2.89 
30000 2195 2.77 1736 2.56 

Gen ≥ 30000     
Pr = 0.05 

40000 2388 2.68 1923 2.56 
* Number of Generations after which non-imptoving children are acepted, 

with given acceptance probability 

The results of LEM and CIM improve if non-improving children are accepted after 

5000th generation (Gen), yet the results are not as good as REM and CIM, accepting 

only improving children. The best value obtained is 2.88, while REM and CIM resulted 

in 2.41 (See Table 3.9). The limited improvement possibility and high computa tion 

time requirements made us to discard LEM and CIM from further consideration.  
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REM and CIM combination does not yield any improvement when non-improving 

moves are accepted after 5,000th generation. In fact, REM and CIM combination seems 

to have a peak in the percentage of edges borrowed from complete graph later than 5000 

generations, thus accepting non-improving children later can bring an improvement for 

REM and CIM combination. REM and CIM are still in a phase that is capable of finding 

good children at 5000 generations. Some improvement can be observed if non-

improving children are accepted when the ability of REM and CIM combinations to 

generate improving children is decreased. In Table 3.11 different three alternative 

generation levels for accepting non-improving moves are experimented and the results 

are given. 

According to Table 3.11, increasing the number of generations after which the non-

improving children are accepted improves the results with REM and CIM. Yet, the 

results when non-improving children are accepted are not as good as the result when 

only children that are better than their parents replace their parents. The non-improving 

moves are taken out of consideration.  

3.6. The Final Algorithm 

The detailed algorithm containing the best parameter settings resulting from the 

experiments conducted is given in Figure 3.12. The algorithm is designed starting with 

the algorithm in Figure 3.1. The population size is equal to the problem size for small 

problems (n ≥ 250), and 200 for larger problems. 

 

Generate initial population randomly 
Size = n for small problems (n < 250) 
Size = 200 for problems with n ≥ 250 

for g = 1 to G 
for i = 1 to I 

Select k parents at random 
for j = 0 to J 

Generate a child using NNX on union graph of parents 
If the child is better than the worse parent go to mut 

end for 
end for 

 
mut      Apply REM or CIM (with equal chances) to the child 

Replace the worse parent with the mutated child 
end for 

Figure 3.12 The final algorithm for NNX 
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The termination condition (G) is the number of generations,  which is set as 10,000 for 

small problems, and 40,000 for problems with size larger than 250. The termination 

condition is to be modified parallel to the problems size for larger problems. The 

number of parent pairs (I) tried if no improving child is generated is limited to 10. The 

number of children (J) generated from the same union graph if an improving child is not 

generated is limited to 10. 

The mutation operator is applied to children only if they are better than their worst 

parent. REM and CIM are applied with equal probability. The child generated after the 

mutation operators replaces the worst parent.  

This algorithm is further experimented on problems with larger size. 

3.7. Experimental Results for Large Problems  

The final algorithm is experimented with five larger problems from TSPLIB (Reinelt, 

2007). The problems selected are pr1002, nrw1379, u2152, u2392 and pcb3038. The 

percent deviations, the CPU time, and the number of generations the algorithm runs 

given as the averages of 15 replications in Table 3.12. The percent deviations are high 

compared to the results in experiments with small problems, and no optimal solutions 

are found. 

Table 3.12 Results for larger problems 

Problem Gen CPU 
Time  

Best 
Deviation 

(%) 

Avg 
Deviation 

(%) 
pr1002 40000 1698.60 2.82 3.47 
Nrw1379 40000 4535.27 6.19 7.95 
u2152 60000 7052.27 2.04 2.21 
pr2392 60000 12588.60 6.36 7.99 
Pcb3038 80000 31703.50 13.16 15.12 

The percent deviation of the problem nrw1379 is higher than the problems with larger 

number of cities. The structure of the problem is different compared to the other 

problems. All the problems except nrw1379 are clustered and there are relatively long 

edges between the clusters, on the other hand, the nrw1379 is relatively uniform. The 

plots of the coordinates of all problems are given in Appendix A. The ability of NNX 

with REM and CIM to find good solutions to clustered problems makes it attractive to 

be used in TSPB, where there are three main clusters when the distance matrix is 

converted to a TSP. The increase in deviation for larger problems is not very significant 

as the largest TSPB problems in literature consist of 1000 cities.  



CHAPTER 4 
 

 

TSP WITH BACKHAULS 
 

 

 

TSP with Backhauls (TSPB) arises in three different applications. It is a constrained 

version of TSPPD (Lenstra and Rinnoy Kan, 1975), the single vehicle case of VRPB 

(Goeschalckx and Jacobs-Blecha, 1989), and the three-cluster version of the CTSP 

(Chrisman, 1975). The solution approaches for these problems can be modified to solve 

TSPB. 

The number of studies concentrating on TSPB is limited and they can be grouped in two 

categories. The first group aims to solve TSPB imposing the backhaul constraints on 

TSP where as the second group transforms an instance of TSPB to an instance of TSP 

and solves the corresponding the TSP instance.  

Experiments with heuristics that take into account service for backhauls as the 

constraints to solve TSPB are very limited. Gendreau et al. (1997) work on the 

Christofides TSP heuristic and prove that the algorithm results in 3/2 of the optimal 

solution in the worst case. Ghaziri and Osman (2003) used an artificial neural network 

to solve TSPB. They report results comparable to those of solution methods that 

transform TSPB to TSP. 

Gendreau et al (1996) use the GENIUS heuristic, which is designed for TSP, to solve 

TSPB. The best configuration experimented by Gendreau et al. (1996) deviates on 

average 3-4% from the lower bound. This configuration is based on the idea of 

modifying TSPB cost matrix to convert it to TSP (Chrisman, 1975). Chrisman (1975) 

subtracted a large number (10 times the longest distance in the cost matrix) from the 

inter-cluster distances, leaving the intra-cluster distances the same. The triangle 
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inequality was still valid and the symmetry of the cost matrix was not disturbed. 

Chrisman (1975) reported optimal results with the modified cost matrix, compared to 

the constrained problem with side constraints.  

In this study, we modify TSPB cost matrix to solve TSPB as a TSP using the GA 

developed in Chapter 3. The only study that uses a GA to solve CTSP is conducted by 

Potvin and Guertin (1996). Potvin and Guertin (1996) use ERX as the crossover 

operator and 2-opt as the mutation operator. They use ERX in two phases, the inter-

cluster edges are preserved in the first phase, and the intra-cluster edges are preserved in 

the second phase. 2-opt mutation is applied within clusters. The results are reported to 

be better than GENIUS. To the best of our knowledge, the first study solving TSPB with 

a GA is the study conducted by Demir (2004). Our algorithm will initially be compared 

to that of Demir (2004), based on his problem instances. 

Demir (2004) also use NNX crossover to solve TSPB without changing the distance 

matrix. His first approach is repairing infeasible solutions after they are generated by 

NNX. Secondly, he keeps generating children until a feasible child is obtained. His third 

strategy is to generate two paths (one for linehaul and one for backhaul customers) and 

connect them to obtain a feasible child. The fourth and fifth strategies are based on 

penalizing the infeasible solutions. The penalty in the first case is based on the cost that 

will be incurred to repair the infeasible tour. The second is based on increasing the 

penalty over the iterations, forcing the algorithm to generate feasible solutions. The 

algorithm that penalizes the cost of repair gives better results compared to the results of 

the algorithm that increases the penalty incrementally. The best results in terms of 

percent deviation are observed using the repairing strategy. 

We have added a very large number (one million) to the inter-cluster distances in the 

distance matrix to solve TSPB with our GA. A sample modification of the matrix is 

demonstrated in Demir (2004). Other than this, we have not imposed any explicit 

constraints to make sure that all linehaul customers are visited before backhaul 

customers. The results of the GA can be seen in Table 4.2 for small test problems. The 

first column of the table gives the problem values number assigned by Demir (2004). 

The second and the third columns list the problem size and the optimal solution found 

by Demir (2004) calculated using the modified distance matrix in CONCORDE (Cook, 

2007). The fourth column gives the average number of generations, which can be 

10,000 at most. The maximum number of generations hardly reaches 10,000 since the 
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problems sizes are small and the algorithm is fully converged (i.e. the population best is 

equal to the population average) in the most of replications for 18 problems. “Best” 

represents the best solution value among the results of 30 replications. “Avg” represents 

the average of the best solution values. The population average (Pop Avg) is also 

reported in the Table, as it is a good indicator of the convergence of population. Table 

4.2 shows that 10 out of 20 problems are solved to optimality in all 30 runs, and three 

problems are never solved to optimality by the algorithm. The average deviation for all 

20 problems is 0.18%. 

Table 4.1 compares our results with the results reported by Demir (2004). The results of 

the best strategy of Demir (2004) and the corresponding CPU times are reported in 

Table 4.1. Demir use no mutation operators and use NNX by imposing side constraints 

to solve the problem. Our results are reported in two columns, the first one is the pure 

NNX (indicated by “No Mut”), and the second column stands for the final algorithm 

where REM and CIM are applied with equal probabilities (indicated by “Mut”). Both 

pure NNX and NNX with mutations are reported to make clear the contribution of 

mutations. Note that we modified the distance matrix instead of imposing side 

constraints.  

Demir (2004) did not report the results at 10,000th iteration, but when his algorithm is 

fully converged. Our results are 90% better compared to those of Demir (2004). 

Moreover, the CPU times are improved 30% on average. CPU times are expected to be 

equivalent as Demir (2004) used a Pentium 4 1.6 GHz processor and we employed an 

AMD Turion with dual 1.6 GHz processors where only one of the processors was fully 

utilized.  

Table 4.1 Results for small TSPB compared with the results of Demir (2004) 
Best 

Deviation 
(%) 

Avg 
Deviation 

(%) 

Pop Avg 
Deviation 

(%) 

Worst* 
Deviation 

(%) 
CPU Time 

Gen 
No 
Mut Mut No 

Mut Mut No 
Mut Mut No 

Mut Mut No 
Mut Mut 

Demir's 
Avg  
Dev 
(%) 

Demir's 
CPU 
Time 

2000 1.24 0.09 3.51 0.21 4.02 0.38 4.93 1.26 0.49 1.39 2.16 2.52 
4000 0.79 0.07 3.03 0.18 3.10 0.28 3.37 1.11 2.34 3.87     
5000 0.79 0.07 3.06 0.19 3.08 0.28 3.31 1.09 3.48 5.07 1.83 6.3 

80000 0.79 0.07 3.01 0.18 3.03 0.27 3.24 1.02 6.79 8.74 1.81 10.09 
10000 0.79 0.07 3.01 0.18 3.03 0.27 3.24 1.00 9.06 11.17 1.79† 17.3† 
* Average of the worst member in the population in 30 replications 
† The results are averages at full convergence (17,133.26 generations) 
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 Table 4.2 Results on of the GA for small TSPB problems 

 

Problem 
Size Optimal # of Gen1 Best2 Avg3 Pop Avg4

Best 
Deviation 

(%) 

Avg 
Deviation 

(%) 

Pop Avg 
Deviation (%)

CPU 
Time 

 p00 22 385 69.37 385 385 385 0.00 0.00 0.00 0.00
 p01 33 580 492.50 580 580 580 0.00 0.00 0.00 0.20
  p02 51 589 9678.13 589 589 590 0.00 0.00 0.14 8.93
  p03 101 808 4635.20 808 810 811 0.00 0.26 0.32 7.43
 p04 45 904 668.50 904 904 904 0.00 0.01 0.02 0.27
 p05 121 870 8702.43 870 870 870 0.00 0.00 0.02 20.80
 p06 30 123 111.63 124 124 124 0.81 0.81 0.81 0.00
 p07 20 68 49.50 68 68 68 0.00 0.00 0.00 0.00
 p08 30 128 111.14 128 128 128 0.00 0.00 0.00 0.00
 p09 25 6244 84.65 6244 6247 6247 0.00 0.05 0.05 0.00
  p10 23 652 2385.33 652 652 652 0.00 0.00 0.03 1.07
 p11 30 530 110.00 530 530 530 0.00 0.00 0.00 0.00
  p12 151 1067 10000.00 1071 1081 1085 0.37 1.28 1.70 35.23
  p13 76 779 9477.50 779 780 781 0.00 0.09 0.26 14.87
 p14 72 321 1829.07 321 321 321 0.00 0.00 0.00 1.63
  p15 135 1151 10000.00 1154 1154 1155 0.26 0.29 0.32 25.47
  p16 101 859 5398.27 859 860 860 0.00 0.14 0.15 8.23
  p17 48 45697 9361.70 45697 45902 45963 0.00 0.45 0.58 8.20
  p18 34 659 9343.63 659 660 664 0.00 0.11 0.69 5.70
  p19 36 477 6422.53 477 477 478 0.00 0.07 0.21 3.93

Average   3144.55 4446.55 3144.95 3156.13 3156.13 0.07 0.18 0.27 7.10
1 Average of 30 replications 
2 Best of 30 replications 
3 Average of the bests of 30 replications 
4 Average of the population averages in 30 replications 



Table 4.1 also includes the population averages and the averages of the worst solution in 

the population in 30 replications. These figures are included to demonstrate that even 

the averages of worst solutions in the populations are better compared to Demir’s results 

when mutation operators are employed. 

 Using pure NNX with modified cost matrix does not give better results compared to the 

strategies proposed by Demir (2004). The mutation operators reduce the deviation by 

95% with a 23% increase in the CPU Time. 

TSPB does not have a well-defined benchmark problem set. The second set of TSPB 

instances that have been solved with our GA is generated randomly based on the method 

proposed by Gendreau et al. (1996). The same method is used by Mladenović and 

Hansen (1997) and Ghaziri and Osman (2003), thus the results of these studies are 

comparable in terms of the averages over problem instances. 750 test instances are 

generated as follows. The coordinates of customers and depots are generated in the 

interval [0,100] assuming continuous uniform distribution. The problems size (n) is the 

first decision parameter and the ratio of backhaul customers to the number of linehaul 

customers (p) is the second decision parameter. 30 instances are generated for each pair 

(n, p) where n = 100, 200, 300, 500 and 1000 and p = 0.1, 0.2, 0.3, 0.4 and 0.5. When p 

= 0.1, 10% of the total customers are assumed to be backhaul customers.  

Table 4.3 presents the averages of 30 replications reported by different authors for 

randomly generated instances. GENI gives the results of the heuristic developed by 

Gendreau et al. (1992), while GENIUS gives the results when an improvement method 

is applied after GENI, and GENIUS-VNS is the variable neighborhood search procedure 

applied on GENIUS (Mladenovic and Hansen, 1997). VNS systematically tries to 

improve the results of GENIUS by searching the immediate neighborhood of the 

solution point. The neighborhood is formed by node exchange moves, a node is deleted 

from a tour and inserted at a point that improves the tour length. The next two columns 

are the results of a self-organizing feature map type neural network, SOFM. SOFM* 

corresponds to the solutions when the results of SOFM are improved with 2-opt 

(Ghaziri and Osman, 2003).The last two columns represent the results of NNX with 

LEM and CIM mutations. The GA is run for 10,000 generations for problems n= 100, 

200, 300; for 20,000 generations for problems with n = 500 and 30,000 generations for 

problems with n =1000. The Best column in Table 4.3 represents the averages over 30 

different problems, of the best replication among five different replications. The Avg 
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column represents the mean of the average results of 30 different problems and five 

different replications for each problem. 

Table 4.3 Average solution values for randomly generated problems 

n p GENI GENIUS GEN- VNS SOFM SOFM* Best Avg 

100 0.1 1012.50 994.12 987.11 1043.56 996.13 994.18 994.57 
 0.2 1068.70 1047.01 1044.66 1072.30 1052.71 1052.06 1052.30 
 0.3 1109.66 1088.09 1085.34 1108.54 1092.07 1089.04 1089.85 
 0.4 1125.63 1106.69 1102.29 1131.83 1106.97 1100.51 1101.02 
 0.5 1133.87 1114.34 1108.68 1123.29 1112.37 1103.16 1104.31 
         

Average  1090.07 1070.05 1065.62 1095.90 1072.05 1067.79 1068.41 
         

200 0.1 1418.63 1387.22 1378.80 1436.12 1381.15 1381.17 1381.85 
 0.2 1498.83 1470.95 1464.88 1489.91 1462.32 1467.57 1467.85 
 0.3 1550.52 1525.26 1519.93 1545.00 1523.71 1502.41 1502.99 
 0.4 1585.76 1555.26 1548.73 1554.69 1551.48 1521.97 1522.78 
 0.5 1586.93 1554.13 1546.97 1553.90 1549.61 1534.64 1535.90 
         

Average  1528.13 1498.56 1491.86 1515.92 1493.65 1481.55 1482.27 
         

300 0.1 1720.82 1683.76 1675.82 1702.60 1680.93 1668.96 1671.28 
 0.2 1824.62 1784.80 1782.62 1787.14 1784.90 1773.81 1774.43 
 0.3 1886.48 1854.86 1849.05 1877.15 1854.30 1830.29 1832.32 
 0.4 1903.29 1874.43 1865.75 1876.49 1866.84 1868.45 1869.54 
 0.5 1927.34 1892.20 1887.35 1891.39 1888.92 1873.38 1874.08 
         

Average  1852.51 1818.01 1812.12 1826.95 1815.18 1802.98 1804.33 
         

500 0.1 2197.16 2158.79 2156.61 2168.59 2161.07 2139.06 2142.44 
 0.2 2342.99 2297.11 2292.04 2310.70 2297.35 2279.95 2285.57 
 0.3 2409.80 2370.45 2363.16 2398.49 2376.73 2342.80 2347.55 
 0.4 2443.12 2399.35 2388.07 2441.94 2397.06 2392.52 2398.11 
 0.5 2464.11 2418.20 2405.55 2428.72 2410.81 2405.93 2411.29 
         

Average  2371.44 2328.78 2321.09 2349.69 2328.60 2312.05 2316.99 
         

1000 0.1 3099.17 3042.60 3029.76 3083.59 3048.69 3035.92 3044.569 
 0.2 3281.34 3232.65 3213.61 3279.02 3228.44 3212.79 3216.77 
 0.3 3366.07 3314.80 3302.93 3327.04 3312.38 3323.03 3328.28 
 0.4 3451.02 3387.43 3366.23 3392.17 3371.28 3358.36 3366.75 
 0.5 3455.69 3388.16 3379.67 3408.41 3386.50 3398.27 3403.74 
         

Average  3330.66 3273.13 3258.44 3298.05 3269.46 3265.68 3272.02 
         

Overall   2034.56 1997.71 1989.82 2017.30 1995.79 1986.01 1987.54 
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Table 4.4 Average CPU times of TSPB solution methods 

n p GENIUS GEN - VNS SOFM SOFM* 
Actual CPU 

Time 

100 0.1 4.7 5.4 23.5 23.7 20.5 
 0.2 4.8 5.8 22.1 22.8 18.5 
 0.3 4.8 5.5 21.2 21.6 17.9 
 0.4 5.1 5.4 27.6 28.0 17.3 
 0.5 4.4 5.6 23.1 23.8 17.2 
       

Average  4.8 5.5 23.5 24.0 18.3 
       

200 0.1 36.3 31.6 61.1 61.7 38.0 
 0.2 32.4 35.9 63.6 64.3 38.7 
 0.3 31.7 30.7 71.3 71.9 35.8 
 0.4 31.2 38.8 72.9 73.8 35.6 
 0.5 39.6 43.1 62.1 62.6 35.2 
       

Average  34.2 36.0 66.2 66.9 36.6 
       

300 0.1 106.4 109.3 237.9 239.2 68.5 
 0.2 105.9 87.2 278.3 283.6 65.4 
 0.3 70.9 100.1 286.3 287.8 68.8 
 0.4 69.6 105.6 365.0 371.0 68.7 
 0.5 72.3 101.1 354.0 360.3 66.2 
       

Average  85.0 100.7 304.3 308.4 67.5 
       

500 0.1 325.6 343.6 732.0 749.7 317.4 
 0.2 289.5 248.1 729.0 751.9 300.5 
 0.3 317.7 383.3 798.0 821.5 321.4 
 0.4 374.0 326.1 802.0 834.2 343.1 
 0.5 405.9 472.2 852.0 872.0 295.4 
       

Average  342.5 354.7 782.6 805.9 315.6 
       

1000 0.1 1130.3 1417.9 1398 1428.1 1933.7 
 0.2 1211.1 1637.2 1423 1495.3 1921.4 
 0.3 1019.8 1643.1 1412 1432.1 1829.1 
 0.4 1302.8 1898.3 1435 1470.5 1776.9 
 0.5 1324.6 1762.6 1402 1440 1832.9 
       

Average  1197.7 1671.8 1414.0 1453.2 1858.8 
       

Overall   332.9 433.7 518.1 531.7 459.4 
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The algorithms are coded in different languages and are run on computers with different 

processors. According to Ghaziri and Osman (2003), GENI, GENIUS, and GENIUS-

VNS are coded in C++ and run on a SUN SPARC 10 computer by Mladenovic and 

Hansen (1997). SOFM and SOFM* are coded in FORTRAN and run on Intel Pentium 

MMX 233 MHz PC. Ghaziri and Osman (2003) used the benchmark results of Dongarra 

(2007) to calculate the relative computing time if they had utilized SUN SPARC 10. 

Our GA was coded in C and run on a PC AMD Turion 64 1.6 Ghz PC, and the actual 

CPU times are reported in the last column of Table 4.4. Choi and Tcha (2005) state that 

performance comparison in terms of CPU time is not always recommended, owing to 

other influencing factors such as cache, main memory and compilers have been subject 

to vast changes with the changes in the CPU architectures. 

A paired t-test on the difference of the overall averages between Avg versus GENI, 

GENIUS, SOFM, SOFM* and GENIUS-VNS. The GA is significantly better than 

GENI (p-value = 0.000), GENIUS (p-value = 0.001), SOFM (p-value = 0.000) and 

SOFM* (p-value = 0.006). Results of the paired t-tests are given in Appendix F. The 

average results are better than GENIUS -VNS, but the difference is relatively small to 

derive a statistically significant result (p-value = 0.692). When the Best results and 

GENIUS-VNS’s results are compared, p-value becomes 0.122.  

When the problems with size n ≤ 500 are considered, the test for the difference of 

overall averages between Avg (our GA) and GENI, GENIUS, SOFM, SOFM* and 

GENIUS-VNS indicates that our GA is statistically the best algorithm among all 

alternatives. The p-value for GENIUS-VNS and Avg (Best) comparison is 0.056 

(0.011).  

The results of the random TSPB instances indicate that our GA with LEM and CIM 

mutations gives better results compared to the competitors, except GENIUS-VNS. The 

application of GA is simple and the constraint handling is eliminated as the algorithm 

can effectively find good solutions just by making the necessary modifications in the 

distance matrix. 
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CHAPTER 5 
 

 

CONCLUSION 
 

 

 

In this research, a genetic algorithm (GA) that uses well-known TSP heuristics is 

developed and an application of this algorithm for solving TSPB is presented. The 

proposed GA uses Nearest Neighbor Crossover (NNX), which is based on the well 

known nearest neighbor heuristic. The mutation operators use 2-edge exchange and 

node insertion. Our aim is to investigate the performance of the mentioned crossover 

mechanisms when running with more than two parents and different child 

generation schemes, in order to develop a GA that can be used to solve TSP and its 

variants like TSPB in reasonable times. 

NNX is a crossover operator available in the literature, which uses the nearest 

parental edge as long as it is feasible. The shortest edge in the complete graph is 

selected if no parental edge is feasible. NNX is deterministic as it concentrates only 

on the shortest edges. On the other hand, NNX is powerful as it is capable of adding 

new edges to the gene pool, as the algorithm is usually stacked when generating a 

child. About 70% of the offspring generated by NNX contain edges from the 

complete graph for a problem instance with 1000 cities until the 20,000th generation. 

NNX is experimented with in a steady state fashion, where only two parents are 

considered for reproduction. The results of this study suggest that NNX gives better 

results compared to Sönmez (2003), when steady state evolution is used. 
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Different parent numbers are also experimented as NNX makes it possible to 

generate children that preserve the characteristics of more than two parents. 

Although more parents as large as twelve parents are experimented, our experiments 

show that using more than two parents brings in some improvement occasionally, 

but the impact is not very significant. Using two parents with NNX better balances 

the edges that are inherited from the parents and the ones taken from the complete 

graph.  

The selection scheme that gives the best results with NNX is random selection when 

the child is generated from two parents and replaces their worst parents. Favoring 

the best individual does not improve the results, and replacement with worst 

population member causes a premature convergence of GA. 

Random initial population gives the best results with NNX, and NNX cannot 

generate better solutions when NN is used as to initialize the population. 

Enforcing NNX to take edges from alternating parents is experimented to avoid only 

one parent being very dominant during the generation of an offspring. The edge that 

follows an edge that is present only in one parent is enforced to be selected from the 

other parent or the complete graph to increase the exploratory power of NNX. The 

results are not as good as the unrestricted NNX, while good edges are usually 

observed to be in chains and enforcing false moves in every other edge deteriorates 

the solution quality. 

NNX is highly dependent on the initial starting point when a child is to be generated, 

similar to the NN heuristic. Therefore, NNX gives best results when more than one 

child is generated from a pair of parents and using different starting points. This is 

done by generating a number of children until there is an improvement, and 

changing the parent pair if no improvement is observed for a number of trials.  

Three different mutation operators are used in this research. The first one (Longest 

Edge Mutation) concentrates on the longest edges and tries to eliminate 15 longest 

edges by 2-edge exchange moves. The success of this mutation is limited becuse the 

mutation consumes a great deal of computing time; it is highly deterministic in edge 

deletion. Random Edge Mutation, that deletes 15 randomly selected edges and 

reconnects the subtours by 2-edge exchange moves, shows a better performance. 
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Another mutation operator that is not limited to a single edge is the Cheapest 

Insertion Mutation where the insertion of a node that has been removed from the 

current tour is considered. This results in deletion of three edges and addition of 

three new edges.  

Convergence of NNX is analyzed in detail on two replications of a problem instance 

with 1002 cities. It has been observed that NNX is capable of generating good 

alternative solutions in problem instances with clusters. The results of NNX for such 

problem instances are around 3% close to the optimal solution, but NNX is capable 

of finding only 75% of the edges that are present in the optimal solution. The ability 

of NNX to generate solutions 3% above optimum, although it misses 25% of the 

“optimal edges” implies the power to discover alternative solutions for clustered 

problems. 

We have also demonstrated that it is possible to generate a child that is worse than 

both of its parents when it is entirely generated using the shortest edges in the 

parents. The myopic strategy that concentrates only on the length of the next edge 

makes NNX to pick longer edges at the final stages of the edge search. It has been 

observed that in some cases it is not possible to generate children better than their 

parents as long as no edge from the complete graph is introduced.  

Our GA has been implemented on TSPB instances after the algorithm is finalized 

based on the above observations. The TSPB instances are converted to the 

symmetric TSP instances by adding a very large number to the inter-cluster 

distances. The GA can then solve the intra and inter cluster problems to obtain a 

feasible solution. TSPB is experimented on two different benchmark sets. To the 

best of our knowledge, there is no published work with results on TSPB solved 

using a GA; except the study is conducted by Demir (2004) in his master’s thesis. 

TSPB instances of Demir (2004) have been used, and it has been demonstrated that 

NNX with REM and CIM mutation operators gives better results compared to the 

results when side constraints are imposed. Demir (2004) actually introduced 

different penalty or generation schemes that imposed on the backhaul constraints 

instead of modifying the distances. Our GA with modified distances is demonstrated 

to give better results in a shorter time when the mutation operators are used. 
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TSPB instances that are generated as suggested by Gendreau et al. (1996) has been 

used as the second set. According to the results on these randomly generated 

problems, our GA is significantly better than four out of the five algorithms 

published in the literature. Moreover, it gives the best results on problem instances 

with less than 1000 cities, among all.  

For future research, NNX can be further improved to become faster in solving large 

problems in shorter time. The exhaustive search for the shortest edge when the 

algorithm gets stuck during the child generation process can be improved. A k-

nearest neighbor subgraph as used by Yang (1997) can be employed to improve the 

computational time.  

Another research topic can be implementation of NNX with the mentioned mutation 

operators to vehicle routing problems (VRP), as the GA applications in the VRP 

domain usually use crossover operators that reserve position or order of the cities in 

the parents. It has been demonstrated that the crossover operators that preserve edges 

in the parents give significantly better results.  

Another interesting research area is solving and comparing the results of TSPB 

problems with using different crossover operators such as EAX (Nagata, Kobayashi, 

1997) or DPX (Freisleben, Merz, 1996). 

Other conventional TSP heuristics can also be used to come up with different GA 

operators.
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APPENDICES 
 

 

A. DETAILED TABLES FOR GENETIC ALGORITHMS FOR TSP AND 

EXPERIMENT RESULTS 

 

 

 

The tables and graphics of this appendix are provided in the CD appended at the back 

cover. The CD includes folders containing data of all the runs for initial experiments, 

initial experiments with alternating parents, further experiments, and the prots of the 

most common edges using in convergence analysis. A fine containing details of the GA 

applications on TSP electronically available in the literature is also given. 
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B. ANOVA RESULTS AND RESIDUAL PLOTS FOR INITIAL EXPERIMENTS  
 
ANOVA Table for the Parameters 
General Linear Model: Deviation versus Problem; Parents; ... 
 
 
Factor     Type Levels Values  
Problem   fixed      (8) 1 2 3 4 5 6 7 8 
Parents   fixed      (3) 2 3 6 
Children  fixed      (2)  1 10 
Etha      fixed      (3) 1,0 1,5 2,0 
Replc.    fixed      (2) 1 2 
 
Analysis of Variance for Deviation, using Adjusted SS for Tests 
 
Source               DF     Seq SS     Adj SS     Adj MS  F      P 
Problem              7   0,647442   0,671209   0,095887  540,84  0,000 
Parents              2   0,010072   0,013079   0,006540   36,89  0,000 
Children             1   0,490198   0,468050   0,468050 2639,99  0,000 
Etha                 2   0,032811   0,030376   0,015188   85,67  0,000 
Replc.               1   0,061018   0,061012   0,061012  344,13  0,000 
Parents*Children     2   0,000545   0,000466   0,000233    1,31  0,269 
Parents*Etha         4   0,001947   0,001690   0,000423    2,38  0,049 
Parents*Replc.       2   0,020516   0,020515   0,010257   57,86  0,000 
Children*Etha        2   0,004488   0,004047   0,002023   11,41  0,000 
Children*Replc.      1   0,007121   0,007127   0,007127   40,20  0,000 
Etha*Replc.          2   0,001875   0,001874   0,000937    5,28  0,005 
Parents*Child*Etha  4   0,001274   0,001272   0,000318    1,79  0,127 
Parents*Child*Repl 2   0,000828   0,000828   0,000414    2,34  0,097 
Parents*Etha*Replc.  4   0,000757   0,000757   0,000189    1,07  0,371 
Children*Etha*Replc. 2   0,000854   0,000854   0,000427    2,41  0,090 
Error               8601 1,524891  1,524891   0,000177 
Total               8639 2,806638   
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Residuals vs. Fits Plot  

 
Normal Probability Plot of the Residuals 

 
The residual and normality plots suggest tha the residuals show hetero-stochasticity and 

the assumptions of ANOVA cannot be verified. More detailed analysis with some 

transformation of the residuals in required. 

Histogram of the Residuals 
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C. AN EXAMPLE OF CHILD GENERATION OF NNX 

 

 

 

The edges of parent I and parent II are used to generate the child given in Figure D.1. 

The length of the tour represented by parent I is 287597 and the length of the tour 

represented by parent II is 286918. The child generated by NNX has a length of 287648. 

Figure D.1 represents both of the parent tours, and the child tour. The common edges on 

the parents are given in the color of parent II. It can be seen that the child is generated 

completely by the edges of the parents, thus trying to get the best edges in parents 

results in a length worse than both of the parents.  
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Figure C.1 Plot of the parent I, parent II and child tours for pr1002 

 
The length of the child generated is highly dependent on the starting node when the 

child is being constructed from the union graph. When this specific parent pair is 

considered, 159 out of the possible 1002 children does not take any edge from the 

complete graph. None of these 159 children are better than any of the parents while 99 

out of these 159 have a tour longer than both of the parents. 92 out of possible 1002 

children result in a tour shorter than both of the parents, all taking edges from the 

complete graph. 
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 D. ANOVA RESULTS AND RESIDUAL PLOTS FOR FURTHER 
EXPERIMENTS 

 

 

 

The detailed results can be seen in the worksheets provided in the CD, at the back cover. 
 
General Linear Model: Deviation versus File; Child; Mut 1; Mut 2; Replc 
 
 
Factor     Type Levels Values  
Problem  fixed      (8) 1 2 3 4 5 6 7 8 
Child     fixed      (4) 2 4 6 12 
Mut 1     fixed      (2) 1 2 
Mut 2     fixed      (2) 1 2 
Replc     fixed      (2) 1 2 
 
Analysis of Variance for Deviatio, using Adjusted SS for Tests 
 
Source              DF     Seq SS     Adj SS     Adj MS       F      P 
File                 7  0,2223711  0,2223711  0,0317673  570,80  0,000 
Child                3  0,1031509  0,1031509  0,0343836  617,81  0,000 
LEM   1  0,0139632 0,0139632  0,0139632  250,89  0,000 
CIM   1  0,0001237  0,0001237  0,0001237    2,22  0,136 
Replc                1  0,0000000  0,0000000  0,0000000    0,00  0,985 
Child * LEM   3  0,0029806  0,0029806  0,0009935   17,85  0,000 
Child * CIM   3  0,0002519  0,0002519  0,0000840    1,51  0,210 
Child * Replc        3  0,0001166  0,0001166  0,0000389    0,70  0,553 
LEM * CIM    1  0,0000021  0,0000021  0,0000021    0,04  0,844 
LEM * Replc          1  0,0001342  0,0001342  0,0001342    2,41  0,121 
CIM * Replc          1  0,0000157  0,0000157  0,0000157    0,28  0,595 
Child * LEM * CIM  3  0,0010367  0,0010367  0,0003456    6,21  0,000 
Child * LEM * Replc  3  0,0000415  0,0000415  0,0000138    0,25  0,862 
Child * CIM * Replc  3  0,0000333  0,0000333  0,0000111    0,20  0,897 
LEM * CIM * Replc    1  0,0000003  0,0000003  0,0000003    0,00  0,946 
Error             7644  0,4254173  0,4254173  0,0000557 
Total             7679  0,7696391   
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Residuals vs. Fits Plot  
 

 
Normal Probability Plot of the Residuals 

 
 
Histogram of the Residuals 
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 E. CONVERGENCE ANALYSIS OF pr1002 
 

 

 

This Appendix concentrates on the convergence behavior of the NNX on pr1002 The 

problem shows a pattern, where the same basic structure is repeated three times. Figure 

E.1 demonstrates the structure and the optimal solution of the problem. 

 

 
Figure E.1 Optimal solution 

 

Two representative solutions are selected among 10 different replications results (Table 

3.8). The first replication (S1) is a relatively poor solution; the second replication (S2) 

gives the results of an average solution when LEM and CIM is applied.  

All of the figures in the Appendix represent the results obtained during 40,000 

generations. These figures are based on the averages taken in each 100 generation 

interval (i.e. 400 different measurements are plotted in each figure).  

The population size is kept as 200. The first section demonstrates the graphical results 

of percentage deviation for different settings of the EA. The percentage of individuals 

that contain edges taken from the complete graph and percentage of replacements per 

generation are reported with the average edge difference among individuals in the 

following section. The performance of mutations is demonstrated by the figures of 
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successive mutations in the next section E.3 and E.4. This appendix ends with 

percentages of successive mutation trials and percentages of optimal edges covered by 

the individuals. 

Every section contains results of three different configurations for both of the 

replications. The fist one contains NNX without any mutation. The second contains 

NNX with LEM and CIM mutations applied with equal probabilities. The last one is 

REM and CIM combination again with equal probabilities. The results of LEM and 

REM are expected to give similar results as LEM is a special of REM and the edges 

these mutation operators bring in are similar. 

E.1. Deviation from the Optimal 

The percentage deviation of the best, average, and worst individuals in the population 

are plot with respect to the number of generations. 

There is a sudden decrease in the first 2,000 generations (Figures E.2, E.4, E.6, E.8, 

E.10, E.12), so the convergences after 2,000th generations are plotted in separate Figures 

to ease detailed investigation. When no mutation is present, the algorithm is fully 

converged after 17,000th generation (Figures E.3, E.5); the population average is very 

close to population best after the 12,000th generation. When LEM and CIM pair is 

considered, the algorithm cannot be considered (Figures E.7, E.9) as converged at all, as 

there is a significant difference between the deviations of the best and average 

individuals at the end of the runs. Improvements are observed at 39,000th generation 

(Figure E.7). Moreover, 40,000 generations are larger than twice the number of 

generations required for the convergence of S1 without the mutation operators. With 

REM and CIM combination, the rate of population average convergence slows after 

7000th generation, and gets faster again after 17,000th generation (Figures E.11, E.13). 

The population average converge the population best after 17,000th generation forming 

an S-shaped curve. There are minor improvements after 30,000th generation. The 

algorithm can be assumed as fully converged after 37,000th generations since the 

population average is very close to the population best. The REM and CIM combination 

converges at 40,000 iterations to a lower value compared to the pure NNX. LEM and 

CIM combination still has room for improvement, as the population average is not close 

to the population best. 
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Figure E.2 Percent deviation vs. generations of pure NNX for S1 
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Figure E.3 Percent deviation vs. generations (after 2000) of pure NNX for S1 
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Figure E.4 Percent deviation vs. generations of pure NNX for S2 
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Figure E.5 Percent deviation vs. generations (after 2000) of pure NNX for S2 
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Figure E.6 Percent deviation vs. generations of LEM and CIM for S1 
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Figure E.7 Percent deviation vs. generations (after 2000) of LEM and CIM for S1 
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Figure E.8 Percent deviation vs. generations of LEM and CIM for S2 
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Figure E.9 Percent deviation vs. generations (after 2000) of LEM and CIM for S2 
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Figure E.10 Percent deviation vs. generations of REM and CIM for S1 
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Figure E.11 Percent deviation vs. generations (after 2000) of REM and CIM for S1 
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Figure E.12 Percent deviation vs. generations of REM and CIM for S2 
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Figure E.13 Percent deviation vs. generations (after 2000) of REM and CIM for S2 

E.2. New Edge Introduction and Replacement 

Percentage of individuals that contain edges borrowed from complete graph and 

percentage of replacements can be seen in the following figures. The number of 
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replacements is the average number of replacements per generation, calculated in every 

100 generations. The percentages of replacement an be used to explain the convergence 

of population average to the best solution, while edges borrowed from complete 

displays the exploratory power of that NNX configuration. 

In pure NNX (Figures E.14, E.15), the replacement ratio is very high at the initial stages 

of the algorithm where the very bad edges that are generated randomly in the initial 

population are eliminated. There is a decrease between 5,000th and 10,000th in the 

percentage of replacements. At this stage, it becomes relatively hard to find good 

individuals using the edges present in the individuals. When an individual with 

relatively superior fitness is found, the replacement ratio increases again. This 

penetration of the good edges generated by NNX to the whole population causes the 

increase in the average number of replacement per generation.  

With LEM and CIM combination (Figures E.16, E.17), the replacement does not 

increase back to 100% following a drop after the 5,000th generation. Replacement 

continues at a rate around 15%. The convergence of the population is spread in time, 

thus the edges from complete graph continue to come up as long as the algorithm 

continues.  

REM and CIM (Figures E.18, E.19) combination preserves the edge replacement 

characteristic of pure NNX as the average number of replacements per generation 

decreases after 5,000th generation, but average increases back after 15,000th generation 

until 30,000th generation (Figure E.19). The replacement ratio never reaches 100% 

again, but the second peak is obvious. S2 results in two peaks after the initial decrease in 

percentage of replacements. It can be seen that the population average converges the 

population best in the period of the second peak (between 15,000th and 20,000th 

generations) from Figure E.13. These peaks correspond to the points where the number 

of most popular edges in the population changes according to the results of Figure E.41. 

There are edges borrowed from the complete graph until 17,000th generation with REM 

and CIM (Figure E.19), which ended at 12,000th generation in no mutation case (Figure 

E.15).  
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Figure E.14 Individuals that contain edges from complete graph and average number of 
replacements over generations for S1 with pure NNX 
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Figure E.15 Individuals that contain edges from complete graph and average number of 

replacements over generations for S2 with pure NNX  
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Figure E.16 Individuals that contain edges from complete graph and average number of 

replacements over generations for S1 with LEM and CIM  
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Figure E.17 Individuals that contain edges from complete graph and average number of 

replacements over generations for S2 with LEM and CIM  
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Figure E.18 Individuals that contain edges from complete graph and average number of 

replacements over generations for S1 with REM and CIM 
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Figure E.19 Individuals that contain edges from complete graph and average number of 

replacements over generations for S2 with REM and CIM 

E.3. Node Insertion of CIM 

The nodes inserted by CIM per generation are plotted in the Figures C.20 – 23. CIM is 

experimented with LEM and REM. The nodes inserted by LEM and CIM (Figures E.20, 

E.21) combination vary around 0.5 per replacement and 0.01 per generation after the 

5,000th generation. When REM is used with CIM (Figures E.22, E.23), the nodes 

inserted per generation loose importance after 25,000th generation, and increase 

significantly again after 32,500th iteration. Nodes inserted per generation are similar 

when both LEM and REM are used. 
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Figure E.20 Nodes inserted using CIM with LEM for S1 
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Figure E.21 Nodes inserted using CIM with LEM for S2 
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Figure E.22 Nodes inserted using CIM with REM for S1 
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Figure E.23 Nodes inserted using CIM with REM for S2 
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E.4. Edge Exchanges 

Edges exchanged are plotted in Figures E. 24 – 25. LEM and REM are both combined 

with CIM in all alternatives. The number of edges exchanged per replacement using 

LEM (Figures E.24, E.25) varies around 1, and on average 0.1 edge is replaced in each 

generation. On the other hand, the number of edges exchanged per replacement varies 

around 2.5 until 12,000th generation when REM is used (Figures E.26, E.27). After 

12,000th generation, the average number of edges exchanged per replacement decreases 

to 0.5. Average number of edges inserted per replacement looses importance after 

20,000th generation. The figures suggest that concentrating on the longest edge limits 

the power of edge exchange. The REM has a higher number of edges exchanged per 

generation and the deviation from the optimal in the resulting population is less when 

REM is used. 
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Figure E.24 Edges exchanged by LEM for S1 
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Figure E.25 Edges exchanged by LEM for S2 
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Figure E.26 Edges exchanged by REM for S1 
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Figure E.27 Edges exchanged by REM for S2 
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E.5. Optimal Edge Discovery and Preservation 

A powerful genetic algorithm must have the ability to discover optimal edges and keep 

them in the population. Figures E. 28 – 41 are prepared to measure the ability to 

discover new edges and to keep them within the population.  

The edge difference among individuals is plotted with respect to the number of 

generations. The edge difference is calculated using the most common 1002 edges in the 

population. The percent of edges that are not in the popular list on each individual are 

used as the difference measure. The fact that most popular 1002 edges will give the 

common tour in a fully converged population is the main rationale behind this 

difference measure. The individual with minimum percent of edges different from the 

most popular edges, the average percent of different edges, and individual with the 

maximum percentage of edges different from the most popular edges are plotted in 

Figures E.28, E.32, E.34, E.36 and E.38. The percentage of edges that are present in the 

optimal solution but are not included in each individual is plot in Figures E.31, E.33, 

E.35, E.37, and E.39. The individual that contains minimum and maximum number of 

optimal edges are plotted with the average number of optimal edges missed in these 

figures. The inflection points correspond to point where the most popular edges change. 

For instance in the NNX without mutation with S1 (Figure E.28), the slope of the 

average difference changes between 3000th and 4000th generations. The edge difference 

decreases suddenly parallel to the edges borrowed from the complete graph (Figure 

E.14); the inflection point at 4000 is possibly due to a change in the most popular edges. 

The plots of the most popular 1002 edges at 30,000th and 4,000th generations can be seen 

in Figures E.29 and E.30. 

 In the edge difference percentages, there are 3 different points in which the most 

popular edges change, the effect of these changes can be the possible reason of the small 

fluctuations in the average number of different edges per individual. Moreover, the edge 

difference decreases fast for 3,000 generations, and then the difference rate decreases 

steadily until 10,000. The individual with maximum difference suddenly decreases at 

13,000, and then a 1% increase is observed. The result of this sudden decrease is the 

change in the most popular edges. 
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Figure E.28 Edge difference among individuals with pure NNX for S1 

 
 

Optimal Coordinates Common Edges
 

Figure E.29 Most popular edges and optimal edges for pr1002 at 3,000th generation 
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Optimal Coordinates Common Edges
 

Figure E.30 Most popular edges and optimal edges for pr1002 at 4,000th generation 
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Figure E.31 Percent of optimal edges not covered by individuals with pure NNX for S1 
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Figure E.32 Edge difference among individuals with pure NNX for S1 
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Figure E.33 Percent of optimal edges not covered by individuals with pure NNX for S2 
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Figure E.34 Edge difference among individuals using LEM and CIM for S1 
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Figure E.35 Percent of optimal edges not covered by individuals with using LEM and 

CIM for S1 
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Figure E.36 Edge difference among individuals using LEM and CIM for S2 
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Figure E.37 Percent of optimal edges not covered by individuals with using LEM and 

CIM for S2 
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Figure E.38 Edge difference among individuals using REM and CIM for S1 
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Figure E.39 Percent of optimal edges not covered by individuals with using REM and 

CIM for S1 
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Figure E.40 Edge difference among individuals using REM and CIM for S2 
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Figure E.41 Percent of optimal edges not covered by individuals with using REM and 

CIM for S2 
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 F .RESULTS OF PAIRED T-TESTS FOR TSPB  
 

 

 

Results for All Problems 
 
Paired T-Test and CI: GENI versus Best of our GA 
 
Paired T for GENI - Best 
 
 N      Mean     StDev   SE Mean 
GENI             25      2035       792       158 
Best             25      1986       779       156 
Difference       25     48,55     18,20      3,64 
 
95% CI for mean difference: (41,04; 56,06) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 13,34  P-Value = 0,000 
 
Paired T-Test and CI: GENIUS versus Best of our GA 
 
Paired T for GENIUS - Best 
 
 N      Mean     StDev   SE Mean 
GENIUS           25      1998       779       156 
Best             25      1986       779       156 
Difference       25     11,70     11,66      2,33 
 
95% CI for mean difference: (6,89; 16,51) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 5,02  P-Value = 0,000 
 
Paired T-Test and CI: GEN- VNS versus Best of our GA 
 
Paired T for GEN- VNS - Best 
 
 N      Mean     StDev   SE Mean 
GEN- VNS         25      1990       776       155 
Best    25      1986       779       156 
Difference       25      3,82     11,89      2,38 
 
95% CI for mean difference: (-1,09; 8,72) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 1,60  P-Value = 0,122 
 
Paired T-Test and CI: SOFM versus Best of our GA 
 
Paired T for SOFM - Best 
 
 N      Mean     StDev   SE Mean 
SOFM             25      2017       780       156 
Best             25      1986       779       156 
Difference       25     31,29     16,58      3,32 
 
95% CI for mean difference: (24,45; 38,14) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 9,43  P-Value = 0,000 
 
Paired T-Test and CI: SOFM* versus Best of our GA 
 
Paired T for SOFM* - Best 
 
 N      Mean     StDev   SE Mean 
SOFM*            25      1996  778       156 
Best             25      1986       779       156 
Difference       25      9,78     11,59      2,32 
 
95% CI for mean difference: (5,00; 14,56) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 4,22  P-Value = 0,000 
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Paired T-Test and CI: GENI versus Avg of our GA 
 
Paired T for GENI - Avg 
 
 N      Mean     StDev   SE Mean 
GENI             25      2035       792       158 
Avg              25      1989       781       156 
Difference       25     45,76     16,47      3,29 
 
95% CI for mean difference: (38,96; 52,55) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 13,89  P-Value = 0,000 
 
 
Paired T-Test and CI: GENIUS versus Avg of our GA 
 
Paired T for GENIUS - Avg 
 
 N      Mean     StDev   SE Mean 
GENIUS           25      1998       779       156 
Avg              25      1989       781       156 
Difference       25      8,90     11,75      2,35 
 
95% CI for mean difference: (4,05; 13,75) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 3,79  P-Value = 0,001 
 
 
Paired T-Test and CI: GEN- VNS versus Avg of our GA 
 
Paired T for GEN- VNS - Avg 
 
 N      Mean     StDev   SE Mean 
GEN- VNS         25      1990       776       155 
Avg              25      1989       781       156 
Difference  25      1,02     12,68      2,54 
 
95% CI for mean difference: (-4,22; 6,25) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 0,40  P-Value = 0,691 
 
 
Paired T-Test and CI: SOFM versus Avg of our GA 
 
Paired T for SOFM - Avg 
 
 N    Mean     StDev   SE Mean 
SOFM             25      2017       780       156 
Avg              25      1989       781       156 
Difference       25     28,50     16,33      3,27 
 
95% CI for mean difference: (21,76; 35,24) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 8,73  P-Value = 0,000 
 
 
Paired T-Test and CI: SOFM* versus Avg of our GA 
 
Paired T for SOFM* - Avg 
 
 N      Mean     StDev   SE Mean 
SOFM*            25      1996       778       156 
Avg              25      1989       781       156 
Difference       25      6,98     11,79      2,36 
 
95% CI for mean difference: (2,12; 11,85) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 2,96  P-Value = 0,007 
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Results for problems of size 500 and less 
Paired T-Test and CI: GENI versus AVG of our GA 
 
Paired T for GENI - AVG 
 
 N      Mean     StDev   SE Mean 
GENI             20      1711       486       109 
AVG              20      1668       474       106 
Difference       20     42,54     15,01      3,36 
 
95% CI for mean difference: (35,51; 49,56) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 12,67  P-Value = 0,000 
 
 
 
Paired T-Test and CI: GENIUS versus AVG of our GA 
 
Paired T for GENIUS - AVG 
 
 N      Mean     StDev   SE Mean 
GENIUS         20      1679       477       107 
AVG              20      1668       474       106 
Difference       20     10,85      9,81      2,19 
 
95% CI for mean difference: (6,26; 15,44) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 4,94  P-Value = 0,000 
 
 
 
Paired T-Test and CI: GENIUS- VNS versus AVG of our GA 
 
Paired T for GEN- VNS - AVG 
 
 N      Mean     StDev   SE Mean 
GEN- VNS         20      1673       476       106 
AVG              20      1668       474       106 
Difference       20 4,67     10,26      2,29 
 
95% CI for mean difference: (-0,13; 9,47) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 2,04  P-Value = 0,056 
 
 
 
Paired T-Test and CI: SOFM versus AVG of our GA 
 
Paired T for SOFM - AVG 
 
 N      Mean StDev   SE Mean 
SOFM             20      1697       475       106 
AVG              20      1668       474       106 
Difference       20     29,12     13,91      3,11 
 
95% CI for mean difference: (22,60; 35,63) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 9,36  P-Value = 0,000 
 
 
 
Paired T-Test and CI: SOFM* versus AVG of our GA 
 
Paired T for SOFM* - AVG 
 
 N      Mean     StDev   SE Mean 
SOFM*            20      1677       477       107 
AVG              20      1668       474    106 
Difference       20      9,37     10,45      2,34 
 
95% CI for mean difference: (4,48; 14,26) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 4,01  P-Value = 0,001 
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Paired T-Test and CI: GENI versus BEST of our GA 
 
Paired T for GENI - BEST 
 
 N      Mean     StDev   SE Mean 
GENI             20      1711       486       109 
BEST             20      1666       472       106 
Difference       20     44,44     16,13      3,61 
 
95% CI for mean difference: (36,90; 51,99) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 12,33  P-Value = 0,000 
 
 
 
Paired T-Test and CI: GENIUS versus BEST of our GA 
 
Paired T for GENIUS - BEST 
 
 N      Mean     StDev   SE Mean 
GENIUS           20      1679       477       107 
BEST    20      1666       472       106 
Difference       20     12,76     10,19      2,28 
 
95% CI for mean difference: (7,99; 17,53) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 5,60  P-Value = 0,000 
 
 
 
Paired T-Test and CI: GENIUS- VNS versus BEST of our GA 
 
Paired T for GEN- VNS - BEST 
 
 N      Mean     StDev   SE Mean 
GEN- VNS         20      1673       476       106 
BEST             20      1666       472       106 
Difference       20      6,58     10,37      2,32 
 
95% CI for mean difference: (1,73; 11,43) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 2,84  P-Value = 0,011 
 
 
 
Paired T-Test and CI: SOFM versus BEST of our GA 
 
Paired T for SOFM - BEST 
 
 N      Mean     StDev   SE Mean 
SOFM             20      1697       475       106 
BEST             20      1666       472       106 
Difference       20     31,02     14,35      3,21 
 
95% CI for mean difference: (24,31; 37,74) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 9,67  P-Value = 0,000 
 
 
 
Paired T-Test and CI: SOFM* versus BEST of our GA 
 
Paired T for SOFM* - BEST 
 
 N      Mean     StDev   SE Mean 
SOFM*            20      1677       477       107 
BEST             20      1666       472       106 
Difference       20     11,28 10,86      2,43 
 
95% CI for mean difference: (6,19; 16,36) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 4,64  P-Value = 0,000 
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