
A GENETIC ALGORITHM FOR TSP WITH BACKHAULS BASED ON
CONVENTIONAL HEURISTICS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İLTER ÖNDER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
INFORMATION SYSTEMS

SEPTEMBER 2007

Approval of the Graduate School of Informatics.

 Prof. Dr. Nazife Baykal

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master
of Science.

Assoc. Prof. Dr. Yasemin Yardımcı

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of
Science/Doctor of Philosophy.

Assoc. Prof. Dr. Haldun Süral Prof. Dr. Nur Evin Özdemirel

Co-Superivsor Supervisor

Examination Date :

Examining Committee Members (first name belongs to the chairperson of the jury
and the second name belongs to supervisor)

Assoc. Prof. Dr. Yasemin Yardımcı (METU, IS)

Prof. Dr. Nur Evin Özdemirel (METU, IE)

Prof. Dr. Levent Kandiller (Çankaya Univ., IE)

Assoc. Prof. Dr. Haldun Süral (METU, IE)

Dr. Tuğba Temizel Taşkaya (METU, IS)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this wok.

 Name, Last Name : İlter Önder

Signature :

 iv

ABSTRACT

A GENETIC ALGORITHM FOR TSP WITH BACKHAULS BASED ON

CONVENTIONAL HEURISTICS

Önder, İlter

M.S.c., Department of Information Systems

Supervisor : Prof. Dr. Nur Evin Özdemirel

Co-supervisor : Assoc. Prof. Dr. Haldun Süral

September 2007, 107 pages

A genetic algorithm using conventional heuristics as operators is considered in this

study for the traveling salesman problem with backhauls (TSPB). Properties of a

crossover operator (Nearest Neighbor Crossover, NNX) based on the nearest

neighbor heuristic and the idea of using more than two parents are investigated in a

series of experiments. Different parent selection and replacement strategies and

generation of multiple children are tried as well. Conventional improvement

heuristics are also used as mutation operators. It has been observed that 2-edge

exchange and node insertion heuristics work well with NNX using only two parents.

The best settings among different alternatives experimented are applied on traveling

salesman problem with backhauls (TSPB). TSPB is a problem in which there are

 v

two groups of customers. The aim is to minimize the distance traveled visiting all

the cities, where the second group can be visited only after all cities in the first

group are already visited. The approach we propose shows very good performance

on randomly generated TSPB instances.

Keywords: Genetic Algorithms, Crossover operator, Mutation Operator, TSP with

Backhauls, Conventional Heuristics

 vi

ÖZ

DAĞITIM VE TOPLAMALI GÜZERGÂHI BULMA PROBLEMİ İÇİN BİLİNEN
SEZGİSELLERE DAYALI BİR GENETİK ALGORİTHMA

Önder, İlter

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi : Prof. Dr. Nur Evin Özdemirel

Tez Ortak Yöneticisi : Doç Dr. Haldun Süral

Eylül 2007, 107 sayfa

Bu çalışmada toplamalı gezgin satıcı problemi için bilinen sezgisel yöntemleri

operatör olarak kullanan bir genetik algoritma incelenmiştir. En yakın komşu

sezgiseline dayalı bir çaprazlama yönteminin (En yakın komşu çaprazlaması,

EYKÇ) özellikleri ve ikiden fazla ebeveyn kullanılması bir dizi deneyle

incelenmiştir. Farklı ebeveyn seçilimi ve birden fazla çocuk yaratma stratejileri de

kıyaslanmıştır. Bilinen sezgisel yöntemler mutasyon operatörü olarak kullanılmıştır.

2-kenar değişimi ve düğüm sokma yöntemlerinin EYKÇ ile iyi sonuçlar verdiği

gözlemlenmiştir. Farklı alternatifler arasında en iyi sonuçları veren alternatifler

Dağıtım ve Toplama Güzergâhı Bulma Problemine uygulanmıştır. DTGBP içinde

iki grup şehir bulunan bir problemdir. Amacı, ikinci gruptakiler ancak birinci

gruptakilerin tamamı gezildikten sonra gezilebilir şartını sağlayacak şekilde, tüm

şehirleri gezen en kısa yolu bulmaktır. Kullandığımız yöntem rasgele üretilmiş

DTGBP’de etkileyici sonuçlar vermiştir.

 vii

Anahtar Kelimeler: Genetik Algoritmalar, Çaprazlama Yöntemleri, Dağıtım ve Toplama

Güzergâhı Bulma Problemi (DTGBP), Sezgisel Yöntemler

 viii

DEDICATION
DEDICATION

To all members of my loving family

and
caring extended family

 ix

ACKNOWLEDGMENTS

Firstly, I would like to express my gratitude to Prof. Dr. Nur Evin Özdemirel for her

support, patient guidance, and understanding. I would like to thank to Assoc. Prof. Dr.

Haldun Süral for his guidance and enthusiasm.

I would like to thank my chairman Prof. Dr. Levent Kandiller, for his tolerance and support

for my graduate studies, and valuable comments in this thesis.

I have dedicated this work to all members of my extended family, who have always been

there for me. This page is not enough to express all my thanks to them. I present my special

thanks my dearest mom Atike Önder, my dearest dad Bünyamin Önder. I would thank my

dearest sister Emel Önder for making my life easier, for her love, understanding, support,

and care; she is the best roommate that any one can have. I would like to thank my brother

İsmail Özkan for his support and encouraging curiosity.

I would also thank my colleagues and friends Engin Topan, and İpek Seyran Topan for their

support, help, encouragement, guidance, and everything they have done to keep me focused

on this work. I would like to thank my colleagues and friends Miray Hanım Arslan, Ender

Yıldırım and Serdar Soysal for their support and help.

I would like to thank all my friends, especially Ahmet Göktaş and Rafet Ilğın for their

wonderful company. Special thanks to Aytunç Göy and Aslı Erdoğ, for their existence,

understanding, support, and care.

I am grateful to Çankaya University for making the Simulation and Modelling Laboratory

available for my studies, and good working environment provided.

I would like to thank my friends Ömer Ünal, Özgül Sökmen, my students Kubilay Volkan

Kaygısız and Kıvanç Uçar and everyone I could not mention here for sharing their CPU’s

with me. I would like to thank İrfan Nuri Karaca and Koray Kadığolu for their answers and

help in all my problems.

Thanks to everyone whoever I have shared my time, and who have helped me

become who I am now.

 x

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ ... vi

DEDICATION ..viii

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS... x

LIST OF TABLES ..xiii

LIST OF FIGURES .. xiv

CHAPTER

1. INTRODUCTION.. 1

2. REVIEW OF TSP(B) SOLUTION TECHNIQUES WITH AN EMPHESIS ON

GENETIC ALGORITHMS ... 4

2.1 Solution Methods for TSP.. 7

2.1.1 Exact Methods.. 8

2.1.2 Heuristic Methods .. 9

2.1.3 Metaheuristic Methods... 10

2.2 Genetic Algorithms for TSP .. 12

2.3 Crossover and Mutation Operators for TSP... 15

2.3.1 Crossover Operators Preserving Position or Order of Cities 15

2.3.2 Crossover Operators Preserving Edges.. 18

 xi

2.3.3 Mutation Operators .. 21

2.4 GA Applications on TSPLIB Instances ... 22

3. DEVELOPMENT OF THE EVOLUTIONARY ALGORITHM........................ 28

3.1. Nearest Neighbor Crossover (NNX) with Multiple Parents 28

3.2. Initial Experiments with NNX ... 31

3.2.1 Parameter Settings.. 32

3.2.2 Alternative Initial Population Generation .. 36

3.2.3 Alternative Crossover (NNX-a) ... 37

3.2.4 Results and Discussion of the Initial Experiments................................. 39

3.3. Mutation Operators .. 39

3.3.1 Longest Edge Mutation (LEM).. 40

3.3.2 Random Edge Mutation (REM)... 40

3.3.3 Cheapest Insertion Mutation (CIM)... 41

3.4. Further Experiments with Mutation... 41

3.4.1 Parameter Settings for Further Experiments .. 42

3.4.2 Results of Further Experiments.. 43

3.5. Discussion and Convergence Analysis .. 47

3.5.1 Convergence Analysis of pr1002... 48

3.6. The Final Algorithm... 52

3.7. Experimental Results for Large Problems ... 53

4. TSP WITH BACKHAULS.. 54

5. CONCLUSION.. 62

REFERENCES... 66

APPENDICES ... 77

A. DETAILED TABLES FOR GENETIC ALGORITHMS FOR TSP AND

EXPERIMENT RESULTS .. 77

 xii

B. ANOVA RESULTS AND RESIDUAL PLOTS FOR INITIAL EXPERIMENTS

.. 78

C. AN EXAMPLE OF CHILD GENERATION OF NNX 81

D. ANOVA RESULTS AND RESIDUAL PLOTS FOR FURTHER

EXPERIMENTS .. 82

E. CONVERGENCE ANALYSIS OF pr1002 .. 84

F .RESULTS OF PAIRED T-TESTS FOR TSPB... 105

 xiii

LIST OF TABLES

Table 2.1 Comparison of GAs with promising results conducted after 1995........... 24

Table 2.2 Problem instances used by authors, and percent deviations 26

Table 3.1 Best parameter settings for small problems .. 33

Table 3.2 Best parameter settings when only one child is generated........................ 34

Table 3.3 Deviations of the initial populations when created randomly and using NN

.. 36

Table 3.4 Results for small problems when initial population is generated using NN

Heuristic .. 37

Table 3.5 Best parameter settings for small problems using alternating parents...... 38

Table 3.6 Best parameter settings for small problems using further experiments 44

Table 3.7 Comparison of initial and further experiments with small problems........ 46

Table 3.8 Results of larger problems .. 48

Table 3.9 CPU times and deviation results of pr1002 with different mutation

operators’ combinations .. 50

Table 3.10 CPU times and results for pr1002 when non-improving moves are

allowed with a given probability after 5000th generation ... 50

Table 3.11 CPU times and results for pr1002, when non-improving moves are

allowed with a probability of 0.5 .. 51

Table 3.12 Results for larger problems ... 53

Table 4.1 Results for small TSPB compared with the results of Demir 56

Table 4.2 Results on of the GA for small TSPB problems 57

Table 4.3 Average solution values for randomly generated problems...................... 59

Table 4.4 Average CPU times of TSPB solution methods 60

 xiv

LIST OF FIGURES

Figure 2.1 Pseudo code for a simple genetic algorithm.. 13

Figure 3.1 Evolutionary algorithm for NNX... 29

Figure 3.2 Main interaction plots of the experiment parameters 35

Figure 3.3 Interaction plot of the parameters under consideration 35

Figure 3.4 Best parameter configurations after the initial experiments 39

Figure 3.5 Algorithm of longest edge mutation.. 40

Figure 3.6 Algorithm of random edge mutation ... 41

Figure 3.7 Algorithm of cheapest insertion mutation ... 41

Figure 3.8 Main effects plots of the experiment parameters..................................... 45

Figure 3.9 Interaction plots of the parameters under consideration.......................... 45

Figure 3.10 Best parameter configurations after the initial experiments 46

Figure 3.11 Best parameter configurations with mutation.. 47

Figure 3.12 The final algorithm for NNX... 52

Figure C.1 Plot of the parent I, parent II and child tours for pr1002 81

Figure E.1 Optimal solution.. 84

Figure E.2 Percent deviation vs. generations of pure NNX for S1........................... 86

Figure E.3 Percent deviation vs. generations (after 2000) of pure NNX for S1 86

Figure E.4 Percent deviation vs. generations of pure NNX for S2........................... 86

Figure E.5 Percent deviation vs. generations (after 2000) of pure NNX for S2 87

Figure E.6 Percent deviation vs. generations of LEM and CIM for S1.................... 87

Figure E.7 Percent deviation vs. generations (after 2000) of LEM and CIM for S1 87

Figure E.8 Percent deviation vs. generations of LEM and CIM for S2.................... 88

Figure E.9 Percent deviation vs. generations (after 2000) of LEM and CIM for S2 88

Figure E.10 Percent deviation vs. generations of REM and CIM for S1.................. 88

 xv

Figure E.11 Percent deviation vs. generations (after 2000) of REM and CIM for S1

... 89

Figure E.12 Percent deviation vs. generations of REM and CIM for S2.................. 89

Figure E.13 Percent deviation vs. generations (after 2000) of REM and CIM for S2

... 89

Figure E.14 Individuals that contain edges from complete graph and average number

of replacements over generations for S1 with pure NNX... 91

Figure E.15 Individuals that contain edges from complete graph and average number

of replacements over generations for S2 with pure NNX... 91

Figure E.16 Individuals that contain edges from complete graph and average number

of replacements over generations for S1 with LEM and CIM.................................. 91

Figure E.17 Individuals that contain edges from complete graph and average number

of replacements over generations for S2 with LEM and CIM.................................. 92

Figure E.18 Individuals that contain edges from complete graph and average number

of replacements over generations for S1 with REM and CIM.................................. 92

Figure E.19 Individuals that contain edges from complete graph and average number

of replacements over generations for S2 with REM and CIM.................................. 93

Figure E.20 Nodes inserted using CIM with LEM for S1 .. 93

Figure E.21 Nodes inserted using CIM with LEM for S2 .. 94

Figure E.22 Nodes inserted using CIM with REM for S1 .. 94

Figure E.23 Nodes inserted using CIM with REM for S2 .. 94

Figure E.24 Edges exchanged by LEM for S1.. 95

Figure E.25 Edges exchanged by LEM for S2.. 96

Figure E.26 Edges exchanged by REM for S1 ... 96

Figure E.27 Edges exchanged by REM for S2 ... 96

Figure E.28 Edge difference among individuals with pure NNX for S1 98

Figure E.29 Most popular edges and optimal edges for pr1002 at 3,000th generation

... 98

Figure E.30 Most popular edges and optimal edges for pr1002 at 4,000th generation

... 99

Figure E.31 Percent of optimal edges not covered by individuals with pure NNX for

S1 .. 99

Figure E.32 Edge difference among individuals with pure NNX for S1 100

Figure E.33 Percent of optimal edges not covered by individuals with pure NNX for

S2 .. 100

Figure E.34 Edge difference among individuals using LEM and CIM for S1 101

Figure E.35 Percent of optimal edges not covered by individuals with using LEM

and CIM for S1 ... 101

Figure E.36 Edge difference among individuals using LEM and CIM for S2 102

Figure E.37 Percent of optimal edges not covered by individuals with using LEM

and CIM for S2 ... 102

Figure E.38 Edge difference among individuals using REM and CIM for S1 103

Figure E.39 Percent of optimal edges not covered by individuals with using REM

and CIM for S1 ... 103

Figure E.40 Edge difference among individuals using REM and CIM for S2 104

Figure E.41 Percent of optimal edges not covered by individuals with using REM

and CIM for S2 ... 104

 xvi

CHAPTER 1

INTRODUCTION

In today’s world of globalization, logistics has become one of the areas on which we

have to focus on for achieving better living standards. Nearly all the products we use in

our daily life are brought to our homes from far distances, and the transportation /

logistics costs constitute an important portion of the costs of goods we purchase. The

efficient use of transportation systems can decrease the cost of movement and improve

the delivery timing of the goods to be transferred. In this study we focus on a variant of

the single vehicle routing problem with pick up and delivery, where the pick up

operations can be accomplished only after the deliveries are finished. The problem

arises when side loading is not possible and there are goods to be picked up after

delivery. There are cases reported in bottled goods or grocery industries, where empty

bottles must be collected back, after full ones are delivered.

This study is limited to the case where only one vehicle or carrier exists in the planning

region. It is realistic since in regional distribution environments the service region of

each vehicle can be decided prior to the routing. Then, the decision is to select the best

possible route to be traversed in order to deliver linehauls and then collect backhauls

(pickups). The problem with a single vehicle dealing with backhauls is called Traveling

Salesman Problem with Backhauls (TSPB). This problem is a constrained version of the

well-known Traveling Salesman Problem (TSP).

TSP forms a general class of problems where a salesman has a list of cities to be visited

exactly once and the salesman completes the tour back home where it has started. TSP is

 1

an NP-hard problem (Sipser, 1997). The number of possible tours for a problem with n

cities and symmetric distances is
(2)

2

n − !
 (Reinelt, 1996), when the initial city (depot) is

fixed. Gathering the solution of the problem gets harder as various side constraints are

added. There are numerous variants that arise from real life applications and can be

formulated as TSP. For instance, TSP with pickup and delivery (TSPPD) arises from

logistics of brewery or bottled product industries, where linehauls and backhauls are

served in a mixed order. TSPB is the precedence constrained case of TSPPD. TSP with

time-windows, another example, is based on applications with time limitations, like

collection or delivery of personnel according to a schedule.

The applications of TSP are not limited to transportation of goods or people. The

drilling problem of PCB, deciding of positioning for x-ray crystallography

(Michalewicz and Fogel, 2000), the sequencing problem on a single machine with order

dependent set-up times (Lenstra and Rinnooy Kan, 1975), the frequency assignment

problem in communication networks (Punnen, 2002) can all be formulated and solved

as TSP instances.

TSP is an easy to formulate but hard to solve problem. A large amount of time is

required to solve even a moderate sized TSP (Michalewicz and Fogel, 2000). The

operations research society has been working on producing good enough solutions in

reasonable amount of time since TSP was first solved by Dantzig, Fulkerson and

Johnson (1954). TSP heuristic methods that use problem specific knowledge have been

in use since 1965 (Lin, 1965). These heuristics are grouped in two broad categories:

construction heuristics trying to construct a tour from stratch, and improvement

heuristics trying to improve a given tour. Sönmez (2003) states that the heuristics are

capable of generating tours roughly 10-15% longer than the optimal tour.

Metaheuristic approaches based on natural improvement mechanisms are proposed for

solving difficult problems in the recent years. Genetic Algorithms (GAs) (Holland,

1975), which are specialized cases of Evolutionary Algorithms, are used to solve TSPs

in this study. GA is based on “survival of the fittest” idea of Charles Darwin and tries to

improve a population of solutions by the help of a set of operators. GAs exploit the

search space by generating new solutions that use solutions in the current population

(selection and crossover), and explore the space by making random changes in these

solutions (mutation).

 2

Sönmez (2003) and Demir (2004) used conventional TSP heuristics in developing GAs

based on the idea of Jog, Suh and Gucht (1989). The well known TSP heuristics are

demonstrated to giveyield better results compared to some of the GA operators used in

the literature that aim to preserve solution features.

Gendreau, Hertz, and Laporte (1996) state that “the current state of knowledge on TSPB

is still unsatisfactory and more powerful algorithms must be designed” (Ghaziri and

Osman, 2003). In this study, a solution to TSPB is sought by transforming TSPB to a

TSP. A GA that uses conventional TSP heuristics as operators is developed to solve the

resulting TSP. The conventional heuristics used in our GA implementation are nearest

neighbor, 2-edge exchange, and cheapest insertion heuristics. The basic idea of these

heuristics is preserved in developing the crossover and mutation operators. Detailed

explanation of these conventional heuristics can be found in the comprehensive book by

Reinelt (1996).

The general idea of GAs is to generate one child or two children using the edges of two

parents. However, our GA allows the preservation of good edges available in more than

two parents and generates multiple children. GA developed in this study is therefore

experimented with using multiple parents in crossover. Different numbers of parents is

used to find a point that can provide a balance between preserving good edges present in

the parents and including new edges from the complete graph. Moreover, generating

more than two children using the same parent combination is also experimented with in

order to capture the best properties of the parents.

The rest of the thesis is organized as follows. The second chapter summarizes different

solution techniques applied on TSP and TSPB. The main structure of GAs and well-

known genetic operators are also summarized in Chapter 2. More specifically, a

summary of the major GA applications for TSP since 1995 is provided and the results of

different operator combinations are compared. Chapter 3 includes the experiments

conducted to develop our operators and to calibrate GA to give the best results. The best

configuration of the algorithm obtained in Chapter 3 is used to solve TSPB test

instances in Chapter 4. Chapter 5 concludes the thesis with a discussion of the results

and our remarks about the operators used to solve TSP and TSPB.

 3

CHAPTER 2

REVIEW OF TSP(B) SOLUTION TECHNIQUES WITH AN EMPHESIS ON

GENETIC ALGORITHMS

The objective of TSP is to find the minimum weighted Hamiltonian tour over all

vertices (cities) on an undirected weighted graph G = (V, E), where V represents a finite

set of vertices and E represents weighted edges connecting these vertices. This

definition of symmetric TSP can be extended to a broad class of TSP variants.

According to Reinelt (1996), there are many variants such as multi-salesman problem,

shortest Hamiltonian path problem, rural postman problem, prize collecting TSP and

generalized TSP. Some of them impose side constraints on TSP. In TSP with pickup

and delivery (TSPPD), there are two different types of cities, called pickup and delivery

cities, to be visited in an order such that capacity constraints are not exceeded. A more

strictly constrained version of TSPPD is TSP with Backhauls (TSPB), in which the

pickup cities cannot be visited before all the delivery cities are visited. More details

about TSPB are given in the following section.

Sönmez (2003) presents a detailed history of TSPs. Sönmez (2003) mentions that TSP

in modern sense “was introduced by RAND corporation in 1948 and then the problem

became popular and well-known in operations research. In 1954, Dantzig Fulkerson and

Johnson solved a symmetric TSP instance of 49 United States cities” Today, problems

of size with 85,900 cities are solved to optimality (Reinelt, 2007). According to Reinelt

(1996), the progress in the ability to solve the problems with large sizes “is only partly

due to the increase in hardware power of computers. Above all, it was made possible by

 4

the development of mathematical theory (in particular combinatorics) and of efficient

algorithms”. However, TSP cannot be considered as an easy to solve problem, as the

complexity of the problem increases exponentially with the number of cities. TSP is a

member of NP-hard problems. Therefore, efficient and effective solution procedures are

required for the solution of practical TSPs. Among these procedures CONCORDE

(Cook, 2007) is a powerful tool for generating exact solutions for small and medium

sized problems and good lower bounds for larger problems including up to 1,904,711

cities (Applegate, 2007). More details of the solution approaches are presented in the

following sections.

TSP has a wide area of applications; Reinelt (1996) summarizes the following

application of TSP:

- Drilling of printed circuit boards: The cities are initial position of the drill and

set of holes to be drilled, and the distance corresponds to the time to move of the

head from position to position.

- X-Ray Crystallography: The cities correspond to the different positions of a

diffractometer that is used for crystallography, and the distances are the

positioning times between these positions.

- Gas turbine engines: The positioning of different gas valves in a turbine in the

best possible way is modeled as TSP.

- Order-Picking Problem: The collecting and shipping of orders in a warehouse is

modeled as TSP.

- Computer Wiring: Location of modules on a computer board is modeled as TSP.

- Clustering Data Arrays: The task of identifying highly related elements in data

is modeled as TSP.

- Seriation in Archeology: The classification of gravesites according to the

distance in between to find the chronological order is solved as TSP.

- Vehicle Routing: The route each vehicle will follow is solved as TSP when the

cluster first- route second approach is followed.

- Scheduling: Sequence of jobs with sequence dependent setups in a single

machine is modeled as TSP.

 5

- Mask Plotting in PCB Production: The moving of a mechanical plotting device

on photosensitive plates is modeled as TSP.

- Control of Robots: The control of a robot cannot be formulated exactly as TSP

yet the solution method applied for TSP gives good solution in robot control.

TSP with Backhauls (TSPB)

TSPB mainly arises from three different application areas. As mentioned before it is a

strictly constrained version of TSPPD. On the other hand, TSPB is a special case of the

vehicle routing problem with backhauls. Moreover, TSPB is also formulated as a special

case of the Clustered TSP (CTSP) (Gendreau et al., 1996). In CTSP, the cities to be

visited are partitioned into clusters and all the clusters are to be visited contiguously

(Chrisman, 1975). In this sense, TSPB is a three-cluster version of CTSP, one cluster

containing only the depot, and others containing the linehaul and backhaul customers,

separately.

Chrisman (1975) has solved CTSP by transforming the problem into a TSP, subtracting

large numbers from the inter-cluster distances. TSP is then solved without changing the

intra-cluster distances. Chrisman (1975) reports that the problems with modified

distance matrixes are solved to optimality without exceptions.

Gendreau et al. (1996) used GENI-US heuristic proposed by Gendreau et al. (1992) to

solve TSPB. The heuristic basically consists of two parts. GENI (Generalized Insertion)

tries to insert the cities to the positions by evaluating elimination of three new edges for

each neighbor, within a p-neighborhood on a given tour; US tries to improve the tour by

using reverse GENI operations. Gendreau et al. (1996) have experimented with six

different GENI-US variants to solve TSPB. H1 is the GENIUS with the modified cost

matrix where large numbers (instead of subtraction) are added to the inter-cluster

distances. H2 is the GENIUS that first solves the linehaul and backhaul tours separately

and then connects these subtours. H3 is similar to H2, yet the depot is not included in

calculations. H4 is basically the cheapest insertion heuristic plus US for post

optimization, and H5 is a GENI with Or-opt improvement heuristic. H6 is the cheapest

insertion heuristic plus Or-opt improvement heuristic. Gendreau et al. (1996) reported

that the best results were found by H1.

Gendreau et al. (1997) prove that the worst-case performance ratio of 3/2 of the

Christofides algorithm is applicable to TSPB.

 6

 Mladenović and Hansen (1997) have improved the performance of GENIUS for TSPB,

incorporating the variable neighborhood search (VNS). VNS is a random search

mechanism in which an incremental length of neighborhood is processed until an

improving move has been found. Ghaziri and Osman (2003) report that GENIUS

combined with VNS is better than the original GENIUS by an average of 0.4% with an

increase of 30% in running time.

Ghaziri and Osman (2003) is the first study to develop TSPB solution techniques that

are not based on the conventional heuristics. They use an artificial neural network to

solve TSPB and demonstrate that 2-opt can improve the performance of the artificial

neural network. Ghaziri and Osman (2003) report better results compared to GENIUS +

VNS on a set of randomly generated test problems.

Demir (2004) is the first to solve TSPB using EAs. EA developed by Demir (2004) is

based on the nearest neighbor heuristic. He reports that the best results were obtained

when infeasible tours were repaired after generation, instead of rejecting infeasible tours

or constructing only feasible tours.

The reported studies on TSPB are limited to the ones mentioned in this section, there are

no well-known benchmark problems, and each author generated the problems randomly

by a method proposed by Gendreau et al. (1992). The solution quality is measured in

terms of relative quality be comparing averages present in the literature.

The rest of this chapter concentrates on the solution of TSP as we solve TSPB by

converting it to a TSP based on the method proposed by Chrisman (1975) and later

improved by Gendreau et al. (1996). Gendreau et al. (1997) state that TSP that

represents TSPB preserves the symmetry and the triangle inequality.

2.1 Solution Methods for TSP

The solution methods for TSP can be grouped in three categories. The exact solution

methods aim to find a provably optimal solution to a TSP instance on hand. These

techniques are commonly based on implicit enumeration of solutions and therefore

require large amount of computation times. The NP-hardness of TSP forced operations

research scholars to develop new ideas to find not the optimal but good enough

solutions in a short enough time. Heuristic methods are the general name for such faster

methods for solving the problems. The last category is the meta-heuristics, which are

 7

optimization methods mostly based on the natural processes to solve complex problems

in various domains.

2.1.1 Exact Methods

The exact methods are usually associated with the mathematical formulations (mainly

integer programming formulations of the problem). The methods are not very effective

in solving very large problems with single processor PCs, yet they are very useful in

calculating lower bounds for TSPs. The lower bounds are useful in assessing the quality

of solutions for the problems without known optimal solutions.

Sönmez (2003) reports the most widely used mathematical model to be the Dantzig-

Fulkerson-Johnson formulation, using zero-one binary variables to represent the edges

in the tour. The formulation has n(n-1) binary variables and 2n - 2n - 2 constraints for an

instance with n cities. The Miller-Tucker-Zemlin formulation further improves the

formulation with additional continuous variables limiting the number of sub-tour

elimination constraints to n2. The power of the integer programming is limited, as the

number of decision variables and constraints becomes very large with an increase in the

number of cities.

Branch and bound is perhaps the most popular approach in solving these models /

formulations. The previous and following nodes of a starting node of a TSP tour over a

network are represented as branches in a search tree. The branching is limited when

there are infeasible tours or the higher lower bounds of bad tours are reached. The

success of the branching is dependent on branching rules and lower bounds, and only

small instances of TSP can be solved using standard branch and bounds (Sönmez,

2003).

According to Michalewicz and Fogel (2000), dynamic programming can also be used to

solve TSPs. Dynamic programming “is a recursive procedure, in that each next

intermediate point is a function of the point already visited” (Michalewicz, Fogel 2000).

It is impractical with the current computing technology to solve more than 50 city TSP

instances to optimality using dynamic programming.

Another exact solution method is the A* Algorithm that resembles the branch and

bound. Instead of branching all possible nodes, A* uses a heuristic to calculate the

possible length of the un-branched nodes, and “tries to order the available cities to be

 8

visited according to the value of the heuristic.” The cities that offer best chance of

finding a good solution are selected first for branching (Michalewicz, Fogel 2000). The

results are similar to the results of branch and bound, yet the A* is capable of generating

good intermediate solutions if the heuristic function used can capture the characteristic

of the real objective function.

2.1.2 Heuristic Methods

The heuristic methods used to solve TSP are grouped in two categories: construction

heuristics and the improvement heuristics. The heuristics described in this section are

based on the comprehensive book by Reinelt (1996). The construction heuristics form a

tour gradually, starting from a city and adding cities to a partial tour constructed. The

improvement heuristics try to improve a given tour by making changes on the tour.

Construction Heuristics

Nearest Neighbor (NN) heuristic is the simplest construction heuristic. The city nearest

to the current city is selected to be added to the tour. There are different versions of NN,

and the best variant gives an average deviation of 21.5% (Reinelt, 1996). Another

important construction heuristic is the Insertion Heuristic (IH). IH inserts nodes to a

partial tour according to some predefined criterion. A popular version is the cheapest

insertion, where the node whose insertion causes the lowest increase in tour length is

inserted to the partial tour. The best configuration of IH results in 17.2% deviation on

average (Reinelt, 1996). Christofides develops a construction heuristic based on the

spanning tree and reports an average deviation of 19.5% (Reinelt, 1996). The savings

heuristic proposed by Clarke and Wright merges the subtours considering the savings in

tour length. All the subtours are finally merged based on the savings to give a complete

TSP tour. The savings heuristic has an average deviation of 11.1% from the optimal

(Reinelt, 1996). Reinelt concludes that the savings heuristic usually gives the best

results among all construction heuristics (1996).

Improvement Heuristics

Node and edge insertions are commonly used as improvement operators. A node or an

edge is removed from the tour and is inserted in a point that reduces the total tour

length. There are different criteria to choose the node or edge to insert, leading to

various versions of insertion heuristic. A second class of improvement heuristics is k-

 9

opt (or edge exchange). In 2-opt, the two edges are deleted and the tour is reconnected

the other way around. 3-opt eliminates at most three edges and reconnects the subtours

to improve the tour length. Lin-Kernighan proposes a recursive search for k-opt moves.

The node and edge insertions heuristics result in 16.6% and 17.4% deviations

respectively when used with the NN. The best results with node end edge insertions are

obtained as 8.2% and 9.7%, respectively, when the initial tours are found by the savings

heuristic (Reinelt, 1996). A recent implementation of the Lin-Kernighan heuristic report

an average deviation of 1.4% with slight modifications on the algorithm (Gamboa, Rego

and Glover, 2006).

2.1.3 Metaheuristic Methods

Metaheuristics are optimization methods trying to mimic the natural improvement

mechanisms. “A metaheuristic is an iterative generation process which guides a

subordinate heuristic by combining intelligently different concepts for exploring and

exploiting the search space, and various learning strategies are used to structure

information in order to find efficiently near optimal solutions” (Osman and Laporte,

1996). Metaheuristics are not problem dependent and they can be applied to various

problem domains by changing the subordinate heuristic.

Simulated annealing (SA) proposed by Metropolis, Rosenbluth, Rosenbloth, Teller and

Teller (1953), is a metaheuristic based on statistical physics. The annealing process in

physics seeks a good molecular structure by allowing formation of different molecular

structures depending on the rate of change in the cooling temperature. SA is a search

process controlled by a parameter, the temperature (Kirkpatrick, Gelatt Jr. and Vecchi,

1983 and Ćerny, 1985). The process is based on small changes in the current solution

and the good moves are always accepted. When a move in an undesirable direction is

encountered, the move is still accepted based on a probability depending on the

temperature. At the initial phases of the algorithm, when the temperature is high, the

algorithm accepts more non-improving moves. At the final stages when the temperature

is gradually decreased, only improving moves are accepted. The algorithm explores the

search space when the temperature is high, and exploits the current solution when the

temperature is low. Sönmez (2003) reports results that are 4% above the optimal when

SA is used for TSP.

 10

According to Larrañaga, Kuijipers, Murga, Inza, Dizdarevic (1999), Evolutionary

Algorithms (EA) were proposed for solving probabilistic search problems by

Bremermann et al. (1965) and Rechenberg (1975). Holland (1975) introduced the

Genetic Algorithms (GAs) to optimization problems. GAs are based on “survival of the

fittest” idea of Charles Darwin and genetic theory of Mendel. In GAs every solution is

coded as a chromosome and the algorithm deals with a population of solutions instead

of a single solution. These parent solutions are used to generate new children solutions

that preserve chromosomes of previous ones. According to the schemata theorem

(Holland, 1975) and building block hypothesis (Goldberg, 1989), the newly generated

solutions preserve good characteristics of their ancestors, and the algorithm eventually

converges to give good results. The computation time is not longer than the time

required to solve the problems to optimality. Larrañaga at al. (1999) report 28 different

studies that deal with developing good GA operators for TSP. Section 2.2 describes in

detail GAs tailored for TSP.

Tabu Search is a deterministic search mechanism (with a limited memory) proposed by

Glover (1986). The search is based on a hill climbing mechanism where memory is used

to escape from the local optima. Hill climbing eventually gets stuck at the local optima.

Tabu search keeps in memory the points previously visited during the hill climbing

mechanism as tabu points. Revisiting the tabu points is avoided to enforce the algorithm

to explore the search space. Sönmez (2003) mentions examples of tabu search for TSP

with solution quality of 3% above the lower bound.

Artificial neural networks are based on neural activity model of Warren McCulloch and

Walter Pitts, mimicking central neural networks of animals (Michalewicz, Fogel, 2000).

The web of natural neurons does the reasoning in all animals. A neuron is a simple

entity that gets inputs as a step function and reacts accordingly, multiplying the input

signal and adding a preset weight. The web of artificial neurons arranged in two layers

is used to solve TSP according to Michalewicz and Fogel (2000). The coordinates of

cities in TSP are input to the neural network and the network produces the tour with

unsupervised learning. Michalewicz and Fogel (2000) state that “many neural network

methods for addressing TSP are not very competitive with other heuristics.”

Another well known metaheuristic is the ant colony algorithm proposed by Colorni,

Dorigo and Maniezo in 1991 (Gendreau et al, 2001). This algorithm represents the ant

behavior to find the shortest route. When solving a TSP, a number of artificial ants

 11

move on a complete graph to find a route disposing pheromone, similar to the real ants.

The pheromone evaporates with time and the routes with highest pheromone levels are

connected to give a tour. The main idea behind the scheme is that the short edges will

have a higher level of pheromone as the ants will travel those edges in a shorter time.

The approach is relatively new and lacks well-established rules. The applications are not

very competitive with other heuristics in terms of the ability to solve large problems.

2.2 Genetic Algorithms for TSP

Holland (1975) was the first to introduce the genetic algorithms. The genetic algorithm

is a search methodology based on biological phenomenon of evolution. The algorithm

starts with a group of solutions, named as population of individuals. These solutions

represent different points in the search space. The solution an individual represents is

encoded using a representation scheme. The encoded solution is named as the genotype,

and the actual solution to which a genotype corresponds to is named as the phenotype of

that individual.

There is no single representation for TSP that keeps all the information about the edges

in a solution, and can be used with any crossover operator. There are alternative

representation schemes used. The most common representation is the path

representation. The tour is represented with a string of the numbers assigned to cities in

the order of visit.

The search in the genetic algorithm is done by two means. Individuals of the current

population (parents) are used to generate new individuals (children) that preserve the

genotype and/or phenotype of the individuals in the current population, combining good

properties of different individuals. This process is called the reproduction, which

consists of selection and crossover. The second search method is based on small

perturbations in the current solution to find points in the neighborhood of the current

solutions with a better value of the objective. The algorithms are designed to converge

to a fitness value by replacing the better individuals with worse ones. A sample genetic

algorithm adapted from Larrañaga (1999) can be seen in Figure 2.1.

Initial populations can be generated randomly or using some construction heuristics.

Authors such as Tsai, Yang, Tsai and Kao (2004a, 2004b), Maekawa, Mori, Tamaki,

Kita and Nishikawa (1996), Baraglia, Hidalgo and Perego. (2001), and Nagata and

Kobayashi (1997) report impressive results when the initial population is generated

 12

randomly. On the other hand, Mertz and Freisleben (1997), Yang (1997), Tsai et al.

(2003), and Freisleben and Mertz (1996) are some of the authors who came up with very

good solutions when the initial population is generated using a heuristic. Sönmez (2003)

experimented with different initial population settings, where the entire or a portion of

initial population is generated using conventional TSP heuristics. Sönmez (2003)

concludes that the use of heuristics does not always improve the solution quality of GA,

and the structure of the initial population has an effect depending on the crossover

operator used.

 Begin GA
 Generate initial population
 WHILE NOT stop DO
 BEGIN
 Select parents from population
 Produce children from selected parents
 Mutate the children
 Extend the population adding children to it
 Reduce the extended population
 END
 Output the best individual found
END

Figure 2.1 Pseudo code for a simple genetic algorithm

The first step of the algorithm is parent selection. Beasley, Bull and Martin (1993) state

that “the behavior of GA very much depends on how individuals are chosen to go into

the mating pool.” There are two different approaches when the mating pool is

considered. The whole population can be used as the mating pool. This approach is

named as the generational GA. In the second approach, only a pair (or a portion) of

individuals are selected as parents and they are used to generate children. In the extreme

case, the size of the mating pool is two, and this approach is named as the steady-state

reproduction. Both approaches are widely used in the literature. For instance, Tsai et al.

(2003) and Burkowski (2003) report good results using the generational GA, whereas

authors like Chen and Smith (1999) and Takenaka and Funabiki (1998) report good

results using steady state GA. Although, Goldberg and Deb (1991) found no evidence

that steady-state approach is superior to the generational approach, Demir (2004) reports

that a steady state GA can give better results than the generational GA with some

crossover operators.

 13

In both mating pool approaches, the individuals that have a better fitness value need to

be able to transfer the information encoded in their genotypes to the future generations.

Thus, the fitness or the ability to meet the pre-specified objective of an individual needs

to be assigned to differentiate between individuals that perform well and poorly. The

fitness in GAs for TSP is usually the length of the tour. The selection mechanism is

generally designed to favor the highly fit individuals, based on the biological

phenomenon that the individuals with better phenotype have a higher chance of survival

and reproduction. The selection in the generational reproduction is designed to decide

on the number of copies of an individual in the mating pool. The fitness value or

adjusted fitness values are used to apply selection pressure in choosing individuals for

reproduction in generational GA. According to Beasley at al. (1993), Grenfenstettes’s

GENESIS is an example where adjusted fitness is used for selection. Another selection

method for the generational GA is the tournament selection, where a couple of

individuals are compared with each other and the one that has better fitness value is

chosen for reproduction. The tournament selection can be modified to make the

selection probabilistic. Goldberg and Deb (1990) conclude that no selection pressure is

absolute best, and the selection schemes can be made to give similar performances.

When steady-state reproduction is implemented, the selection is simply used to select

the parents that generate the new children. The parents can be selected at random,

according to their fitness values or according to their rank in the population. Nagata and

Kobayashi (1997) and Katayama, Sakamoto and Narihisa (2000) have used random

selection, and Julstrom (1995) and Nguyen, Yoshihara and Yasunaga (2000) are two

examples where the selection based on ranking gives good results. The selection of the

individual with best fitness can cause the algorithm to converge in a short time to local

optima, spreading properties of relatively good individual throughout the population.

The algorithm will eventually converge to the point where the relatively good individual

is located, instead of the global optimal. Random selection slows the algorithm to a

degree, as non-promising individual will also be used for reproduction. Assigning

selection probabilities based on the raking used by Whitley’s (1989) GENITOR can be

used to select parents effectively.

The children are generated by crossover operators and modified by mutation operators.

A crossover basically tries to preserve good characteristics of parents, while a mutation

operator tries to find different solutions with small perturbations on a given individual.

 14

The crossover operator in general tries to improve the exploitation characteristic of GA.

Two or more individuals are taken into consideration and an intermediate solution that

preserves good characteristics of these individuals is exploited. The mutation operator

tries to explore the search space with the help of slight changes in newly generated

children. Crossover and mutation operators for TSP are described in detail in Section

2.3.

The newly generated children are added to the population on hand, and then some

individuals in the extended population are deleted to keep the population size constant.

The biological population behavior analysis states that the population in a given habitat

is limited, and keeping the population size constant is based on this fact.

2.3 Crossover and Mutation Operators for TSP

This section briefly reviews various different crossover and mutation operators that have

been used in the literature. The crossover and mutation operators are named and

classified according to the review paper of Larrañaga et al. (1999) and the study

conducted by Sönmez (2003). For detailed explanations and historical references of the

well-known operators, the reader may refer to these references and the references

therein for the operators that are not mentioned in Larrañaga et al. (1999) and Sönmez

(2003). More detailed information is given here only.

The crossover operators are grouped in two categories. The first category includes the

ones that aim to preserve the position or the order of cities in the solution.

Unfortunately, there is no single representation for TSP that encapsulates all the edge

information of the individuals and that can preserve edges when a simple crossover

operator is applied. The second category is the crossover operators that preserve the

edges in solutions. Mutation operators are presented in rough groups to include similar

operators used by different authors.

2.3.1 Crossover Operators Preserving Position or Order of Cities

The crossover operators described in this section aim to preserve sub-strings or relative

order of the values in the genotypes of an individual. The edge information is usually

not considered during the crossover procedure. The success of the operators mentioned

here is limited when compared to the crossover operators that use edge information.

 15

Partially Mapped Crossover (PMX) preserves part of a string from one parent and the

relative order of visits of the other parent. This is done by randomly selecting a

substring from the first parent and filling the remaining cities according to a mapping

created based on their absolute positions on the parents. The order in the second parent

is preserved according to the mapping. Cycle Crossover (CX) keeps the absolute

position of the cities visited in the order they are presented in the parents, selecting cities

in cycle from the two parents in a cyclic manner. In Position Based Crossover (POX),

absolute positions of randomly selected cities of one parent are inherited to the child,

where the remaining cities are inserted in the absolute order they appear on the other

parent. Alternating Position Crossover (APX) selects cities one by one from each parent

and places them in the child in the order they appear, keeping the relative order

unchanged, but loosing a great deal of edges. Alternating Edge Crossover (AEX) selects

every other edge from the parents and inserts them in the child similar to the APX. Sub-

tour Chunks Crossover (SCX) preserves subtours of random length from parents; a

subtour from a parent is followed by a subtour from the second parent. Order Preserving

Crossover (OX1) is similar to the PMX, where a substring from the first parent is copied

to the child, and the remaining cities are positioned according to their relative position

in the other parent. Starkweather, McDaniel, Whitley, Mathias and Whitley (1991)

showed that OX1 performs better than PMX, and PMX performs better than CX.

Maximal Preservative Crossover (MPX) and Order Based Crossover (OX2) use the

same basic idea of OX1, with a slight modification in copying of the string from the first

parent and filling the remaining cities in the order they appear. Rocha, Vilela and Neves

(2000) proposes a new crossover UOPX (uniform OX), and demonstrates (using eil51)

that UOPX gives better results compared to OX1, OX2, PMX, CX, ERX, MPX (to be

discussed later) (and modified MPX) when used with some of the mutations (to be

discussed later).

Wang, Maciejewski, Siegel and Roychowdhury (2006) use the gene therapy to improve

the performance of PMX with mutation operators. The good edges (eugenic genes) are

inserted to the places of bad edges (morbid genes) for the individuals generated. The

eugenic and morbid genes are found investigating the superior and poor individuals. The

method improves the performance of the crossover and mutation operators.

EMX or (Inver-over operator in Michalewicz, Fogel (2000)) is a crossover based on

only one parent, the cities on an individual are exchange in an iterative manner as long

 16

as there is an improvement in the tour length. The crossover is based on only one

individual thus can be named as a mutation operator.

Complete Edge-exchange Crossover (CSX), proposed by Katayama et al. (2000),

preserves the substrings containing the same cities regardless of the order of the cities.

All possible combinations of the substrings are listed and the remaining cities are

preserved in their relative order. The good children are selected using stochastic hill

climbing method.

Voting Edge Recombination Crossover (VEX) is proposed by Mühlenbein (1989). VEX

selects the edge positions that will be inherited to the children by voting. More than two

parents are selected and the position that is most popular among these parents is

preserved for a city. Larrañaga et al. (1999) point out that VEX is used in an

evolutionary algorithm for the quadratic assignment problem.

Črepinšek, Mernik and Žummer (2000) suggest a meta-evolutionary approach where

more than one crossover operator can be used in the GA. The authors conclude that

using PMX, OX, CX and ERX (to be discussed later) together gives results better than

any single operator. Affenzeller (2002) suggest using different crossover operators

together while selective pressure is also adapting itself when the algorithm proceeds.

Scmitt and Amini (1998) conduct a very detailed experiment with statistical analysis (of

approximately 5,000 TSP solutions) for OX1, OX2, POX, CX, PMX, and SM (to be

discussed later) as crossover operators. The authors also investigate the effects of initial

population, population size and replacement strategy. They conclude that a

configuration containing a hybrid population at the initialization (i.e. 50% of the

population is generated with a construction heuristic), a large population (over 200) in

size, a steady state evolution strategy, elitists replacement strategy, and SM or OX1 is

the best configuration. The authors also suggest the use of small population (fewer than

sixties) and CX, all other characteristic remaining the same.

The idea of preserving the position or the order of cities is not very promising.

According to the results of Larrañaga et al. (1999), Edge Recombination Crossover

(ERX) that will be discussed in the following section, performs better than APX, CX,

OX1, OX2, PMX, POX, and VEX. Moreover, none of these crossover operators is

faster than ERX according to the results of the same study.

 17

2.3.2 Crossover Operators Preserving Edges

The operators described in this section use the edge information and try to preserve the

good edges in the parents. The operators preserving edge information are seen after

1987 when Suh and Van Gucht (1987) first used edge information in the Heuristic

Crossover, according to Sönmez (2003). Heuristic Crossover (HX) is based on selecting

one of the four edges, adjacent to a city in two parents according to their lengths. A

probability distribution is defined according to the edge lengths and the edge is selected

according to this distribution. If all neighbors of a city are already visited and none of

these four edges can be used, an edge is selected randomly from the complete graph.

Larrañaga et al. (1999) report that 30% of the edges in the parents are preserved if the

probability distribution is uniform.

ERX aims to increase the ratio of the edges preserved. This crossover selects edges

based on the number of feasible neighbors that each city will hold if that city is visited

next. The algorithm visits the cities with fewer feasible neighbors, in order to avoid

getting stuck. If the current city has no unvisited neighbors, an unvisited edge is selected

randomly, to introduce a new edge from the complete graph. The edge length is not

considered at all in ERX, yet the edges in parents are tried to be preserved as long as it

is possible. Sönmez (2003) reports that about 95% of the edges are transferred to the

children. Whitley, Starkweather and D’Ann Fuquay (1989) demonstrate that ERX

performs better than PMX, CX and OX1. Six different versions of edge recombination

are developed by Nguyen et al. (2000). Nguyen et al. (2000) point out that using both

ends of a partially formed string improves the performance of ERX. Moreover breaking

the current sub-tour into parts to avoid getting an edge from the complete graph is

reported to produce better results than pure ERX.

Ting (2004) improves the performance of ERX by incorporating tabu search into ERX,

some edges becoming tabu edges and selecting edges alternating between parents.

Sorted Match Crossover (SMX) tries to find a substring that includes the same cities,

starting and ending with the same city in both parents. The order within the substring in

a parent with shorter substring is copied to the other parent. Larrañaga et al. (1999)

reports that SMX reduces the computation time, but it is a weak scheme for crossover.

Freisleben and Mertz (1996) suggest the use of Distance Preserving Crossover (DPX),

based on the observation that the two locally optimal solutions are equally distant to the

 18

optimal solution. The crossover they design is similar to ERX, as the common edges in

both parents are kept in the children, but the remaining edges are selected such that the

child is equally different from both parents. Freisleben and Mertz (1996) report a

deviation of 0.5% for instances as large as 3745 in size. White and Yen (2004) propose

use of ant colony systems to generate the connections for the non-common edges in

DPX. According to their study, the ant colony is capable of generating of good solutions

that can improve the performance of DPX.

Soak and Ahn (2004) propose a new crossover operator (SPX) that preserves the

subtours in parents, and calculate the alternative connection methods. Their operator

chooses the best connection similar to DPX. The results presented suggest that, their

operator is superior to MPX, HX, VGX, DPX, ERX, and CSX in terms of percent

deviation. However, the CPU time is higher compared to DPX.

Tagawa, Kanzaki, Okada, Inoue and Haneda (1998) generalize the idea of generating

the children equally distant from two parents and propose a crossover technique called

harmonic crossover (H-), which uses a metric function to find the distances between

individuals. H-PMX and H-CX are some of the operators proposed by the authors. The

results seem to improve in terms of quality and CPU time on a problem instance of size

53.

Katayama et al. (1999) compare the performance of three different crossover operators

when H-GA is used: CSX, MPX and ERX. According to the results presented, CSX

gives the best results on 25 instances from TSPLIB (Reinelt, 2007). A deviation of 5.0%

is observed for a problem instance of size 2392 when CSX is employed.

The crossover designed by Yang (1997) is very similar to ERX and DPX. It is called as

Very Greedy Crossover (VGX). The common edges in both parents are always selected.

When a common edge cannot be found, the shortest of the parental edges is selected.

VGX uses a k-nearest neighbor candidate graph for selection when there is no feasible

parental edge. If VGX fails to find a feasible edge in the k-nearest neighbor list, a

feasible edge is selected randomly. Julstrom (1995) uses a similar crossover but not on

the k-nearest neighbor candidate graph.

CST/NN proposed by Chen and Smith (1999) keeps the common edges in the parents

and uses the NN heuristic to select the edges that are not common in the parents. Chen

and Smith (1999) report an average deviation of 1.8% for the instances up to 574 cities.

 19

Pullan (2003) proposes Heuristic Edge Recombination (HEX) that firstly divides the

parent tours into arcs and reconnects these arcs by using edge information. The

reconnection of these arcs also creates a degree of mutation, preserving the parental

edges.

 Edge Assembly Crossover (EAX) uses the edges present in the parents to construct AB

cycles, which consist of parental edges selected alternating by between the first and the

second parents. Then, these AB cycles are merged to obtain a grated set (E-set), which

is applied to each parent to obtain subtours that contain edges of both parents. These

sub-tours are connected calculating the minimum spanning tree. Nagata and Kobayashi

(1997) report optimal solutions for problem instances with sizes up to 3038 cities.

Moreover, Nagata and Kobayashi (1999) show that EAX handles the tradeoff between

the number of edges inherited from parents and the newly added edges better, compared

to EXX that is similar to PMX. EAX creates better children by replacing some parental

edges with the minimum spanning tree.

Jung and Moon (2002) devise a NX crossover where the tours are plotted on a graph,

that is partitioned randomly, and then the partitions from different parents are merged to

give partial tours. These partial tours are merged using the shortest edges. They argue

that the results they present are better than EAX and faster than DPX. The authors report

that EAX “showed poorer performance than the original paper (Nagata, Kobayashi,

1997)”. LK is used to improve the results of NX, and a deviation of 0.085% is obtained

for a problem instance with 11849 cities.

Merz (2002) proposes a new edge recombination (GX) operator where the probabilities

of selecting an edge inherited from the parents, and an edge to be selected from the

complete graph can be adjusted. Merz (2002) shows that GX is superior to DPX and

MPX. The results are comparable with the results of EAX for small problems.

Nearest Neighbor Crossover (NNX), which was proposed by Sönmez (2003) and

improved by Demir (2004), is based on the NN. The edges adjacent to a city in the

parents are ordered in the increasing length and the shortest feasible edge is selected.

The algorithm is totally deterministic as the shortest feasible edge from the complete

graph is selected when there is no feasible edge remaining in the parents.

Ray, Bandyopadhyay and Pal (2005) use an operator similar to NNX, but this operator

is devised to improve the individuals. They propose fragmentation of tours generated

 20

with NN heuristic and connecting the tours using the shortest edge to connect from the

cost matrix.

2.3.3 Mutation Operators

The mutation operators are generally based on conventional improvement heuristics.

This section briefly describes mutation operators designed for TSP. The classification is

based on Larrañaga et al. (1999).

Displacement Mutation (DM) operator removes a substring from the individual and

replaces the substring in another position in the individual. Exchange Mutation (EM)

randomly selects the two cities and exchanges them. Insertion Mutation (ISM) randomly

selects a city, removes it from the current individual, and places it at a random point on

the individual. Inversion Mutation (IVM) randomly selects a sub-string on the

individual and inverts it. Scramble Mutation (SM) randomly selects a sub-string and

scrambles the order of the cities in the substring. Larrañaga et al. (1999) point out that

SM is designed for use in scheduling applications.

Xiaoming, Runmin, Rong, Rui and Shao (2002) prove that GA converges to global

optima when only mutation operators are applied (e.g. EM). They argue that crossovers

that preserve the order or positions of cities are redundant in optimization. They

demonstrate that EM can find the optimal solutions for problem instances with as large

as 1002 cities. Moreover, Fox and McMahon (1991) report that PMX and ERX give

better results compared to IVM and SM and other single parent operators they have

devised, on a set of test instances.

Tsai et al. (2003) propose a mutation operator named as Neighbor-Join (NJ) Mutation.

NJ generates four different children and best child is selected. The operator randomly

selects a city, and than either selects another individual and tries to insert an edge

neighboring to a current city from the other individual, or inserts an edge among the

nearest three cities to the current city from the complete graph. If the current city cannot

connect to the city from the other individual, the shortest city inversion is applied until

one of the cities is connected.

Conventional improvement heuristics such as 2-opt, 3-opt, Or-opt and Lin-Kernighan

(LK) are often used as a form of mutation (Jog et al., 1989). k-opt heuristics try to

eliminate k edges and reconnect the resulting subtours by adding new k-edges to create

a shorter tour. The LK iteratively tries to eliminate these edges resulting in k-opt moves

 21

where k is decided by LK. Johnson (2004) implemented the method proposed by

Johnson and McGeoch (1997) where only longest 40 edges are tried as k-opt moves.

Johnson (2004) reports that 2-opt and 3-opt results in 5.9% and 4.3 % deviations

respectively on TSPLIB instances with 1000 cities. The deviations become 9.3% and

3.5% when the problems size is 85900. Chained LK is reported to end with 0.96%

deviation with problem instances of size 1000.

2.4 GA Applications on TSPLIB Instances

TSPLIB (Reinelt, 2007) is the main source of TSP benchmark instances that are

commonly used for validation of new algorithms in the literature. TSPLIB consists of

111 problem instances with sizes varying between 14 and 85900 cities with provably

optimal results. As we have demonstrated in the previous sections, the literature on GAs

for TSP consists of a large number of studies.

The studies prior to 1995 are discussed in Larrañaga et al. (1995), the major work after

1995 reported in electronically available publications is consolidated in Table 2.1. The

work of authors who use TSPLIB instances and their results or percentage deviations for

problem with more than 50 cities are given in that Table. Table 2.1 demonstrates the

year and source information for the listed work, with the crossover and mutation

operators used. Note that various authors have made slight changes on the main

operators presented in the Table. The sixth column in the Table gives the size of the

smallest and the largest problem instances solved in a study. When an author solves

only one problem from TSPLIB, only that problem size is reported. The seventh column

shows the corresponding solution quality reported by the author. Table 2.1 contains the

results of 36 different studies. The number of studies is limited as the authors usually

concentrate on the properties of the operators they propose and demonstrate the

convergence using figures instead of reporting numerical results. The results in the table

can be used to evaluate the performance of the operators. Johnson (2004) states that

only problems sizes with over 1000 are used to asses the quality of algorithms in the

webpage of “8th DIMACS Implementation Challenge: The Traveling Salesman

Problem”. Details of various solution algorithms, different from GAs, can be found in

the related reference.

 22

When the studies that solve instances with more than 1000 cities are considered, DPX,

EAX, MPX, CGA and HEX seem superior (with deviation less than 0.01%) to the other

crossovers.

Both DPX and EAX give good results to the problem instances with sizes larger than

3000 cities. The deviation with EAX is hardly above zero for large instances (like size

of 13509 cities). LK, NJ, and 3-opt give best results compared to the other mutation

operators.

Table 2.2 summarizes the problem solved by each author and the percentage deviations.

The last column in the Table presents remarks related to the results reported in the

studies. We can say that use of different problem instances can be regarded as random

choices as different scholars from different field such as electrical and electronics

engineering, computer science, operations research etc., are working in the same

domain. Although there are TSPLIB test problems like lin318 that was solved in 13

different studies, most problems are solved 2.2 times on average.

A more detailed version of tables is presented in Appendix A.

 23

Table 2.1 Comparison of GAs with promising results conducted after 1995

Authors Year Source Crossover Mutation Problem Size Deviation (%)
Julstrom 1995 Appl. Comp. VGX IVM 105 0.03
Fresleben, Merz 1996 Evol. Comp. DPX LK 51 - 1577 0.00 - 0.46
Maekawa et al. 1996 Evol. Comp. PXM 2-opt 51 - 575 0.00 - 0.08
Gorges-Schkeuter 1997 Evol. Comp. MPX LK 198 - 3795 0.00 - 0.34
Julstrom 1997 Appl. Comp. CX EM 200 - 318 0.61 -1.33
Merz, Freisleben 1997 Evol. Comp. DPX LK 198 - 3795 0.00 - 0.51
Nagata, Kobayashi 1997 ICGA EAX - 101 - 3038 0.00 - 0.03
Yang 1997 GA in Eng. Sys. VGX 2-opt, 3-opt 51 - 2392 0.00 - 2.33
Chen, Smith 1999 Found. of GA CST/NN 2-opt 198 - 574 0.87 - 2.65
Katayama et al. 1999 Sys. Comp.Jap. CSX SM 51 - 2392 0.23 - 5.00
Ho, Chen 2000 High Per. Comp. OAX (NN)† IVM 105 - 2392 5.16 - 41.69
Katayama et al. 2000 Math. And Comp. CSX 2-opt 51 - 532 0.28 -1.99
Stütze et al. 2000 IPPS DPX 3 -opt 1000 - 2392 0. 08 - 0.08
Baraglia et al. 2001 Evol. Comp. CGA‡ LK 198 - 14461 0.00 - 0.01
Yang, Stancey 2001 AI, Canada NNX - 50 - 75 0.00 - 0.00
Jung, Moon 2002 Evol. Comp. NX LK 318 - 11849 0.00 - 0.06
Merz 2002 PGEC GX LK 318 - 1002 0.00 - 0.00
Xiaoming et al. 2002 WCICA - EM 130 - 2352 0.00 -0.00
Hui et al.** 2003 Evol. Comp. EMX - 100 - 532 0.00 - 1.18
Pullan 2003 Evol. Comp. HEX 2 - opt 70 - 1060 0.04 - 0.50
Tsai, Tsai 2003 Eng. Opt. EAX NJM 101 - 3038 0.00 - 0.00
Burkowski 2004 Parallel Comp. PMX - 51 - 225 0.00 - 0.01
Nagata 2004 Evol. Comp. EAX 2-opt 532 - 1173 0.04 - 0.07
Ray et al. 2004 ICPR OX2 SM 70 - 100 1.48 - 1.04
Soak, Ahn 2004 AI and Soft Com. SPX IVM 51 - 195 0.70 - 2.4

Table 2.1 (Continued)

Authors Year Source Crossover Mutation Problem Size Deviation (%)
Tsai et al. 2004a IEEE Cyber. EAX LK 318 - 15112 0.00 - 0.14
Tsai et al. 2004b Inf. Bio-Med. EAX NJM 101 - 13509 0.00 - 0.00
Tsai et al. 2004c Soft Comp. EAX NJM 318 - 13509 0.00 - 0.00
Wang et al. 2004 ICMLC NGA RIM 105 - 1000 0.01 - 0.00
White, Yen 2004 Evol. Comp. ANT-DPX* 2 - opt 51 - 318 0.00 - 0.00
Zou et al. 2004 Evol. Comp. EAX NJM, LK 318 - 11889 0.00 - 0.00
Chan et al. 2005 IGEC EAX 2 - opt 575 - 1173 0.03 - 0.02
Ray et al. 2005 LNCS OX2 IVM 100 - 783 0.31 - 7.22
Xuan, Li, 2005 ICGC OX1 IVM, LK 51 - 442 1.40 - 0.89
Yan et al. 2005 ICMLC EMX IVM 70 - 280 0.00 - 0.00
Wang, Cui, Wan, Wang 2006 Ins. Meas. Control PMX DM, SM 51 -318 0.00 - 0.00
Wang, Han, Li, Zhao 2006 Eng. Opt. NGA RIM 105 - 1000 0.00 - 0.00

 * DPX uses Ant Colony optimization to introduce new edges.

 † OAX (NN) uses orthogonal array representation and NN heuristic to construct the decoded tours.

 ‡ CGA uses probability matrixes for representation and the algorithm proceeds by updating these matrixes.
 ** Hui et al. (2003) chooses edges from the gene library in their implementation of GA with immunology principle.

 ‡‡ Wang et al. (2004) use their own crossover (NGA) and mutation operators (RIM) designed for the representation scheme based on the permutations of positions encoded.

 26

Table 2.2 Problem instances used by authors, and percent deviations

Authors Year Problem Instances (Deviation %) Remarks
Julstrom 1995 Lin105 (0.03)

Friesleben, Merz 1996 eil51 (0.00), kroA100 (0.00), d198 (0.00), att532 (0.05),
rat783 (0.04), fl1577 (0.46)

Maekawa et al. 1996 eil51 (0.00), kroA100 (0.00), rat575 (0.08)

Gorges-Schkeuter 1997 d198 (0.00), lin318 (0.00), pcb442 (0.27), att532 (0.03),
rat783 (0.03), fl1577 (0.23), fl3795 (0.34)

Julstrom 1997 kroA200 (0.61), pr226 (0.00), pr299 (0.44), lin318
(1.33)

 best of two
replications
reported

Merz, Freisleben 1997 d198 (0.00), lin318 (0.00), pcb442 (0.27), att532 (0.04),
rat783 (0.00), fl1577 (0.21), fl3795 (0.51)

Nagata, Kobayashi 1997

eil101 (0.00), kroA200 (0.00), lin318 (0.01), fl417
(0.00), pr439 (0.03), pcb442(0.00), att532 (0.03), u574
(0.00), rat575 (0.00), p654 (0.00), d657 (0.00), u724
(0.01), rat783 (0.00), u1060 (0.00), vm1086 (0.01),
pcb1173 (0.01), nrw1379 (0.01), u1432 (0.01), vm 1748
(0.00), pr2392 (0.01), pcb3038 (0.03)

Yang 1997 eil51 (0.00), kroA100 (0.00), pa561 (1.34), pr1002
(2.33), pr2392 (2.33),

Wang et al.* 1998 kroA100 (0.0), rd100 (0.15), lin101 (0.00), pr107
(0.16), pr124 (0.00),

Chen, Smith 1999 d198 (0.87), lin318 (0.31), fl417 (1.16), pcb442 (1.22),
u574 (2.68),

Katayama et al. 1999

eil51 (0.22), pr76 (0.12), kroa100 (0.06), kroB100
(0.34), rd100 (0.33), lin105 (0.01), eil101 (0.35), pr124
(0.00), pr144 (0.00), kroA150 (0.54), kroB150 (0.41),
pr152 (0.10), pr226 (0.02), pr264 (0.20), pr299 (0.69),
lin318 (1.62), pr439 (1.17), att532 (2.14), u547 (3.10),
rat783 (3.49), pr1002 (2.91), u1060 (3.78), pr2392
(5.00)

Ho, Chen 2000 Lin105 (5.16), lin318 (16.51), pr349 (18.20), pr1002
(29.33), pr2392 (41.69)

Katayama et al. 2000
eil51 (0.28), pr76 (0.00), kroa100 (0.00), rd100 (0.15),
lin105 (0.00), pr107 (0.16), pr124 (0.00), pr226 (0.03),
pr299 (0.64), lin318 (1.62), pr439 (0.69), att532 (1.99)

Stütze et al. 2000

dsj100 (0.08), pr1002 (0.00), u1060 (0.03), vm1086
(0.20), pcb1173 (0.02), d1291 (0.04), rl1304 (0.00),
rl1323 (0.01), nrw1379 (0.07), fl1400 (0.12), u1432
(0.45), fl1577 (0.16), d1655 (0.00), vm1748 (0.05),
u1718 (14), rl1889 (0.04), d2103 (0.02), u2152 (0.18),
u2319 (1.24), pr2392 (0.08)

Baraglia et al. 2001
d198 (0.00), lin318 (0.00), pcb442 (0.00), att532 (0.00),
gr666 (0.00), rat738 (0.00), pr1002 (0.00), u2152 (0.00),
fl3795 (0.00), frl5915 (0.00), fnl14461 (0.01)

Yang, Stancey 2001 eil50 (0.00), eil75 (0.00),

Jung, Moon 2002 Lin318 (0.00), att532 (0.01), dsj1000 (0.00), d2103
(0.04), pcb3038 (0.03), fnl44461 (0.07), rl11849 (0.09),

Merz 2002 Lin318 (0.00), pcb442 (0.00), att532 (0.00), rat783
(0.00), pr1002 (0.00)

Xiaoming et al. 2002 Ch130 (0.00), tsp225 (0.00), pr1002 (0.00), pr2392
(0.00),

Hui et al. 2003
kroA100 (0.00), kroB100 (0.00), lin105 (0.00), pr124
(0.00), chc144 (0.00), pr152 (0.00), rat195 (0.00),
att532 (1.18)

uses good
common edges
to generate new
individuals,
(immunology)

 27

Table 2.2 (Continued)
Authors Year Problem Instances (Deviation %) Remarks

Pullan 2003

eil51 (0.00), st70 (0.00), eil76 (0.00), pr76 (0.00), rat99
(0.00), kroA100 (0.00), kroB100 (0.00), rd100 (0.00),
kroc100(0.00), kroD100 (0.00), kroE100 (0.00), eil101
(0.00), pr124 (0.00), bier127 (0.00), ch130 (0.00), pr136
(0.00), pr144 (0.00), kroA150 (0.00), kroB150 (0.00),
ch150 (0.00), kroB152 (0.00), pr152 (0.00), u159
(0.00), d198 (0.00), kroA200 (0.00), kroB200 (0.00),
tsp225 (0.00), pr226 (0.00), gil262 (0.00), pr264 (0.00),
a280 (0.00), pr299 (0.00), lin318 (0.00), pr439 (0.00),
att532 (0.00), p654 (0.01), d657 (0.09), u724 (0.12),
pr1002 (0.33), u1060 (0.5)

Tsai et al. 2003

eil101 (0.00), kroA200 (0.00), lin318 (0.01),
pcb442(0.00), att532 (0.00), u574 (0.00), rat575 (0.00),
u724 (0.00), rat783 (0.00), vm1086 (0.02), pcb1173
(0.01), u1432 (0.00), vm1748 (0.01), pr2392 (0.00),
pcb3038 (0.00)

Burkowski 2004
eil51 (0.00), berlin52 (0.00), kroA100 (0.03), lin105
(0.00), eil101 (0.02), ch130 (0.02), ch150 (0.03), ts225
(0.00),

Nagata 2004 att532 (0.04), rat575 (0.05), u724 (0.04), rat783 (0.05),
p1060 (0.09), vm1084 (0.13), pcb1173 (0.07)

Ray 2004 st70 (1.48), kroA100 (1.04)
best of 30
replications
reported

Soak, Ahn 2004 eil51 (0.70), rat99 (1.4), kroA100 (0.8), rat195 (2.4),

Tsai et al. 2004a
eil101 (0.00), kroA200 (0.00), lin318 (0.00), pcb442
(0.00), att532 (0.00), u574 (0.00), rat783 (0.00),
vm1084 (0.00), pcb1173 (0.00), u1432 (0.00), vm1748
(0.00), fnl4461 (0.00), usa13509 (0.00),

Tsai et al. 2004b

lin318 (0.00), pcb442 (0.00), att532 (0.00), rat783
(0.00), pr1002 (0.00), vm1086 (0.00), pcb 1173 (0.00),
u1432 (0.00), vm1748 (0.00), u2151 (0.00), pr2392
(0.00), pcb3038 (0.00), frl5915 (0.00), usa13509 (0.01),
fnl4461 (0.00), d15112 (0.01)

Tsai et al. 2004c
eil101 (0.00), kroA200 (0.00), lin318 (0.00), att532
(0.00), rat783 (0.00), vm1084 (0.00), pcb1173 (0.00),
u1432 (0.00), pr2392 (0.00), pcb3038 (0.00), fnl5915
(0.00), u13509 (0.00),

Wang et al. 2004 lin105 (0.01), lin318 (0.00), att532 (0.00), dsj1000
(0.00),

White, Yen 2004 eil51 (0.58), kroA100 (0.01), d198 (0.04), lin318 (1.3),

Zou et al. 2004
lin318 (0.00), att532 (0.00), si535 (0.00), gr666 (0.00),
rat783 (0.00), u1060 (0.00), f11400 (0.00), r11889
(0.00),

only best values
reported

Chan et al. 2005 rat575 (0.03), u724 (0.00), rat783 (0.00), vm1086
(0.07), pcb1173 (0.02),

Ray et al. 2005 kroA100 (0.31), d198 (0.31), ts225 (0.19), pcb442
(2.26), rat783 (7.22)

Xuan, Li, 2005 eil51 (1.47), eil76 (1.89), eil101 (2.26), chn150 (1.21),
gr202 (1,20), pcb442 (0.89)

Yan et al. 2005 st70 (0.00), eil76 (0.00), kroA200 (0.00), rd100 (0.00),
pr136 (0.00), pr144 (0.00), a280 (0.00),

Wang, Cui, Wan, Wang 2006 eil51 (0.00), st70 (0.00), kroA100 (0.00), ch130 (0.00),
lin318 (0.00)

uses gene
therapy to
improve the
performance

Wang, Han, Li, Zhao 2006 lin105 (0.00), lin 318 (0.00), att532 (0.00), dsj1000
(0.00)

only bests values
are reported

CHAPTER 3

DEVELOPMENT OF THE EVOLUTIONARY ALGORITHM

This chapter describes development of a GA using operators based on conventional TSP

heuristics. Specifically, we focus on the Nearest Neighbor Crossover (NNX) with

multiple parents. As the name implies, NNX is derived from the well-known TSP

heuristic called as Nearest Neighbor heuristic. We also use edge exchange and node

insertion ideas in developing mutation operators.

Throughout the chapter, alternative settings for the design of GA are described in detail,

and then the experiments conducted using these alternatives setting are reported. The

results of these experiments are used in generation of new alternatives that may improve

the performance of the NNX operator. In the initial experiments, a set of small problem

instances from TSPLIB (Reinelt, 2007) are used for testing alternative settings. Later

on, larger instances are also included, and the final form of the algorithm is reached. The

chapter concludes with reporting the best settings that are determined by the

convergence analysis conducted on a larger problem instances, and the computational

results of these settings for large problems.

3.1. Nearest Neighbor Crossover (NNX) with Multiple Parents

NNX is based on the well-known Nearest Neighbor heuristic (NN), which is based on

visiting the nearest city to the current city every time. Sönmez (2003) mentions that NN

usually generates tours which are around 25% longer than the optimal tour. The main

reason of this deviation is the few but severe mistakes that are present in the solution.

The number of feasible edges short starts to decrease during the construction of a tour,

thus the algorithm is forced to include the forgotten cities at the expense of some long

 28

edges. However, NN tours contain paths of short edges. NNX tries to eliminate these

few severe mistakes by combining good edges that are present in the parents. In NNX,

the edges that are present in the parents are used to create a union graph of the parents.

Then, NN is applied on this union graph instead of the complete instance graph only if

there are no feasible edges left in the union graph. NNX selects the shortest of all

feasible edges from the complete graph.

NNX has flexibility on the number of parents as there is no limitation on the number of

edges that are included in the union graph. In the extreme case, all the edges can be

present in the union graph, and the solution is thus identical to the NN solution.

Mühlenbein (1989) was the first to introduce more than a pair of parents to the GAs,

with his voting recombination operator. This operator does not resemble the NNX, yet

the idea of p-sexual crossover is applicable to the NNX. This novice approach is

different from the general stream of crossover operators, as they tend to preserve the

good properties of either one parent or the other. Using more than two parents can bring

improvement to the solution quality, as good properties of more than two individuals

can be preserved. Yet, the effect of more than two parents cannot be easily judged, as

the performance of NNX is affected by the number of good edges that are acquired from

the complete graph when the algorithm gets stuck, as well as the edges that are present

in the parents.

The initial (prototype) evolutionary algorithm used for evaluating and improving the

performance of NNX is given in Figure 3.1. We use path representation of our solutions,

and the fitness value of a solution is the tour length.

Figure 3.1 Evolutionary algorithm for NNX

Generate initial population randomly
Repeat

Select k parents
Apply NNX to obtain child(ren)
Replace some population members with child(ren)

Until Population Converges

Sönmez (2003) has experimented with different initial populations and concluded that

NNX gives best results when the initial population is generated randomly. Demir (2004)

also suggests use of NNX with random initial population and reports significant

solutions on constrained TSPs. Moreover, Larrañaga et al. (1999) reports that ERX

operator, which is similar to the NNX, gives the best results among all the operators

 29

when random initialization is used. Therefore, the initial population used in our initial

experiments is generated randomly.

The size of the population is another important factor that affects the performance of an

EA. There are applications where different population sizes are reported to give

promising results. Sönmez (2003) has experimented with two different population sizes,

50 and 100, for small problems (i.e. n ≤ 250). The population size becomes an important

factor as the problems size increases, because different members of the population

represent different points in the solution space. In the initial experiments of our study,

the population size is set to the problem size for small problems. For large problems, the

population size is fixed as 200 due to computational constraints similar to Larrañaga et

al. (1999).

There are two popular strategies for reproduction in the literature. The first one is the

generational approach, where the whole population reproduces and newly generated

solutions replace in the previous population. The second reproduction strategy, which

employed in this study, is the steady-state evolution, where only a small group of

parents is used to generate a group of children, and the children generated are

introduced to the population.

Parent selection for reproduction is done using the method of GENITOR proposed by

Whitley (1989). This method gives the possibility to experiment with different selection

pressures without a major difference in the algorithm. The method is a rank based

selection method where the selection pressure is adjusted using a parameter η, which

varies between 1 and 2. The probability of selection of an individual for crossover is

calculated using equation 3.1, where i denotes the rank of the ith individual, in a

population with N individuals.

 (3.1)

1 12(1)
1i

i
N N

η η⎡ − ⎤⎛ ⎞− ⎜ ⎟p = −⎢ ⎥−⎝ ⎠⎣ ⎦

The selection is totally random when η = 1, and the best individual is favored most

when η = 2. Actually the selection probability assigned to the best individual is twice as

large as the average when η = 2 (Larrañaga et al., 1999). Different η values are utilized

in the initial experiments of our study, as none of the different selection probability

assessment methods are proven to be the best for all types of settings. Assigning

probabilities according to ranks have been practiced successfully with impressing

 30

results, but there are cases when the random selection has been used and has produced

the best result. In general, different replacement, crossover, and mutation methods affect

the quality of the solutions interacting with the selection pressure.

The edges present in the selected parents are used to generate the union graph. The child

generated using the union graph is dependent on the starting point of the tour

construction. Thus, NNX makes it possible to generate different children using the same

parents. In this study, the starting point of each child is selected randomly, due to the

promising results reported by Sönmez (2003) and Demir (2004). The number of

children generated can play an important role in exploration of the search space.

Moreover, the algorithm of EAX (Nagata, Kobayashi, 1997) also includes generation of

more than one child.

The replacement strategy is another important factor as the members that are replaced

may be holding very important edges that cannot be reintroduced to the population

easily. Replacement also affects the convergence behavior of the algorithm. The

population can easily converge to local optima if the replacement strategy does not

favor differences among members. There are two common replacement strategies that

are employed in the literature. One is the family competition or Replacement of the

Worst Parent (RWP), and the other is Replacement of the Worst Population Member

(RWM). Demir (2004) uses RWP, with steady-state evolution. In RWM, the best child

generated replaces the worst population member if its fitness value is better than that

individual. Similarly, in RWP, the child replaces the worst parent only if its fitness

value is better. We experiment with both RWP and RWM in this study.

The aim of the initial experiments with NNX is to improve its performance using

suitable parameter settings. Therefore, there is no mutation operator in the EA given in

Figure 3.1. The mutation operator will be taken into consideration after the parameters

that give good solutions with NNX are identified.

The number of generations is chosen as 10,000 for small problems as a convergence

criterion. According to the results of the experiments, the algorithm has converged for

all small problems by the end of 10,000 generations.

3.2. Initial Experiments with NNX

The performance of NNX is investigated using different parameter settings to improve

the solution quality. Slight changes in the structure of initial population and NNX are

 31

also implemented. Eight small instances from TSPLIB are used in these experiments.

These instances, which are also used by Sönmez (2003), are berlin52, eil101, bier127,

ch130, ch150, u159, kroA200, and pr226. This section concludes describing the best

configuration for the algorithm given in Figure 3.1.

3.2.1 Parameter Settings

We have experimented with four parameters of the algorithm. The values for each of

these parameters and their representations throughout the chapter are given below:

- The Number of Parents for NNX (P): The numbers of parents tried are 2, 3 and

6.

- Etha (η): Values tried are 1 (random selection), 1.5 and 2 (higher selection

pressure).

- The Number of Children (C): The number of children is set as 1 and 10.

- Replacement (R): Replacement with the worst parent (RWP) and replacement

with the worst population member (RWM) are tried.

All possible combinations of the above parameter settings are replicated 30 times for

each problem. The solution quality is assessed using two measures. The first measure is

“the best solution of 30 replications (Best)” is an indicator of the exploratory power of

the algorithm. The second measure is “average of solutions of 30 replications (Avg)”

and is a good indicator of the consistency of the solutions. The solutions obtained with

all parameter combinations are ranked based on both quality measures. The best three

configurations for each problem are given in Table 3.1.

In Table 3.1, the three columns following the first column give the best three parameter

combinations when solutions are ranked according to the best solution (Best). The last

three columns give the best three parameter settings when the solutions are ranked

according to the average solution (Avg).

Observing that the best parameter settings in Table 3.1 using either quality measure

never predict the use of a single child, the best parameter settings when only one child is

generated are given in Table 3.2. We consider the single child case because generally 10

children take significantly longer computational time. In Table 3.2 the second column

gives the best parameter setting when the average deviation of 30 replications is

 32

considered; the third column gives the best parameter setting when the best of 30

replications is considered.

Table 3.1 Best parameter settings for small problems

 Settings for Best Settings for Avg

 1st 2nd 3rd 1st 2nd 3rd
P 3 2 2 3 2 2
Etha 1 1 1 1 1 1
C 10 10 10 10 10 10
R RWP RWP RWM RWP RWP RWM
Best Deviation (%) 0.00 0.00 0.00 0.00 0.00 0.00
Avg Deviation (%)

be
rli

n5
2

1.18 1.24 2.12 1.18 1.24 2.12
P 2 2 2 2 2 6
Etha 1.5 1 1.5 1.5 1 1.5
C 10 10 10 10 10 10
R RWM RWP RWP RWP RWP RWM
Best Deviation (%) 0.64 0.79 1.43 1.59 0.79 2.86
Avg Deviation (%)

ei
l1

01

5.66 4.32 4.53 4.26 4.32 4.35
P 2 2 2 2 2 2
Etha 2 1 1 1.5 2 1
C 10 10 10 10 10 10
R RWP RWP RWM RWP RWP RWP
Best Deviation (%) 0.47 0.61 0.64 0.65 0.47 0.61
Avg Deviation (%)

bi
er

12
7

1.7 1.74 1.86 1.56 1.7 1.74
P 6 2 6 2 3 3
Etha 1 1 2 1 1.5 1
C 10 10 10 10 10 10
R RWM RWP RWP RWP RWP RWP
Best Deviation (%) 1.29 1.64 1.8 1.64 2.08 2.03
Avg Deviation (%)

ch
13

0

3.8 3.12 4 3.12 3.28 3.41
P 2 2 2 2 3 2
Etha 1.5 1 2 1 1 1.5
C 10 10 10 10 10 10
R RWP RWP RWM RWP RWP RWP
Best Deviation (%) 1.18 1.23 1.24 1.23 1.42 1.18
Avg Deviation (%)

ch
15

0

2.12 1.95 2.32 1.95 2.04 2.12
P 2 2 6 2 2 3
Etha 1 1.5 1 1 1.5 1
C 10 10 10 10 10 10
R RWP RWP RWM RWP RWP RWP
Best Deviation (%) 0.62 0.79 0.85 0.62 0.79 0.98
Avg Deviation (%)

u1
59

1.66 1.71 2.37 1.66 1.71 1.87
P 6 6 3 3 6 2
Etha 1.5 1 1 1 1 1
C 10 10 10 10 10 10
R RWP RWP RWP RWP RWP RWP
Best Deviation (%) 0.96 1.14 1.21 1.21 1.14 1.25
Avg Deviation (%)

kr
oA

20
0

2.05 1.75 1.74 1.74 1.75 1.83
P 3 2 2 2 6 3
Etha 1 2 1.5 1 1 1
C 10 10 10 10 10 10
R RWP RWP RWP RWP RWP RWP
Best Deviation (%) 0.72 0.8 0.83 0.86 1.01 0.72
Avg Deviation (%)

pr
22

6

1.57 1.77 1.6 1.44 1.51 1.57

 33

The best configuration for one child according to Table 3.2 is using 2 parents, selecting

randomly with small problems and selecting the good individuals when the problems

size is larger. Replacement with parents is the best replacement strategy, but the

replacement with population members is also the best strategy in some problems. Figure

3.3 (explained in detail below) can also be used to evaluate the interaction of the

parameter settings when only one child is generated. Generating only one child is

discarded from further consideration in as the results are relatively poor according to the

results in Table 3.2 and Figure 3.3.

Table 3.2 Best parameter settings when only one child is generated

 Avg Best Avg Best
P 2 2 P 6 2
Etha 1 1 Etha 1 1
R RWP RWP R RWM RWP
Best Deviation (%) 0 0 Best Deviation (%) 1.95 1.46
Avg Deviation (%)

be
rli

n5
2

2.28 2.28 Avg Deviation (%)

ch
15

0

2.69 2.7
P 2 2 P 3 2
Etha 1 2 Etha 1.5 1
R RWP RWP R RWP RWP
Best Deviation (%) 2.7 2.23 Best Deviation (%) 1.49 1.1
Avg Deviation (%)

ei
l1

01

5.53 5.8 Avg Deviation (%)

kr
oA

20
0

3.81 3.89
P 2 3 P 3 3
Etha 1.5 1.5 Etha 1.5 1.5
R RWP RWP R RWM RWM
Best Deviation (%) 1.07 0.89 Best Deviation (%) 1.82 1.82
Avg Deviation (%)

bi
er

12
7

2.33 2.69 Avg Deviation (%)

u1
59

3.12 3.12
P 2 3 P 2 2
Etha 1.5 1.5 Etha 2 2
R RWP RWM R RWP RWP
Best Deviation (%) 2.77 2.37 Best Deviation (%) 1.27 1.27
Avg Deviation (%)

ch
13

0

4.51 4.98 Avg Deviation (%)

pr
22

6

3.72 3.72

The results of individual runs that are summarized in Table 3.1 are analyzed using

ANOVA, in order to find the optimal configuration with statistical significance.

Appendix B summarizes the results of the ANOVA and the residual plots required to

verify the assumptions of ANOVA. Main effect and interaction plots of the parameters

are given in Figures 3.2 and 3.3. The number 1 stands for RWM, 2 for RWP.

According to the results of ANOVA, all four parameters have significant effects.

Moreover, interactions between the pairs P and η, P and R, C and η, C and R, η and R

are also statistically significant. Thus, the decisions are mostly based on the interaction

plot. Although 3 parents seem to give slightly the better result in the main effects plot

(Figure 3.2), using the best configurations in terms of the children (10), η (1.5) and

RWP as replacement strategy, the best choice is 2 parents considering all the two-way

 34

interactions given in Figure 3.3. Generating 10 children gives the best results regardless

of the interactions. Similarly, smaller values of η give better results, although not very

obvious when interaction with the number of parents is considered. The most

unexpected result is observed with the replacement strategy; p-sexual crossover

dominates 2-parent crossover when the child replaces the worst population member,

whereas two parents give the best result then RWP is used.

Figure 3.2 Main interaction plots of the experiment parameters

Figure 3.3 Interaction plot of the parameters under consideration

 35

A promising configuration seems to be selecting two parents at random (η=1), and

generating 10 children from these parents using NNX, the best of which will replace the

worst of the parents.

3.2.2 Alternative Initial Population Generation

Another setting that has effect on the performance of NNX is the initial population,

according to Sönmez (2003). She states that the best results are formed when the

population is generated randomly. It can be seen in Table 3.3 that the randomly

generated initial population has a very poor solution quality. A very simple alternative

to this is to generate the initial population using NN. The initial solution with NN is

generated starting the tour with each of the cities. The percent deviation of the initial

population using NN is much better than the random initial population.

Table 3.3 Deviations of the initial populations when created randomly and using NN
 Random Nearest Neighbor Heuristic

Problem
instance Optimal

Minimum
Deviation

(%)

Average
Deviation

(%)

Maximum
Deviation

(%)

Minimum
Deviation

(%)

Average
Deviation

(%)

Maximum
Deviation

(%)

berlin52 7542 242.40 296.04 338.18 8.47 24.31 36.54
eil101 629 389.59 444.3 497.74 18.6 32.35 45.15
bier127 118282 384.75 431.59 473.65 13.25 23.57 32.36
ch130 6110 658.54 726.85 826.85 16.68 26.61 44.63
ch150 6528 652.05 725.38 793.24 8.96 17.53 27.90
u159 42080 859.55 969.01 1071.37 15.47 28.68 35.67
kroA200 29368 946.46 1058.96 1170.18 17.62 28.02 43.16
pr226 80396 1816.76 2009.19 2188.64 15.12 24.16 41.73

The algorithm starting with the alternative population generation method is tried for

smallest two problem instances and a summary can be found in Table 3.4. The results

suggest that NNX is not capable of escaping the local optima created by NN heuristic

(especially see the second problem’s results in the Table). Thus, further investigation

using NN to generate the initial population is abandoned.

In Table 3.4, six parents can be seen in both of the problems instances even for the

smallest two problems. NNX is forced to merge the good edges from different parents

when used with individuals constructed using NN heuristic.

 36

3.2.3 Alternative Crossover (NNX-a)

Recombination of edges from different parents is the premise of NNX, but this cannot

be done when one of the parents dominates the other. There are cases where all edges in

the children come from the same parent.

Table 3.4 Results for small problems when initial population is generated using NN
Heuristic
 Settings for Best Settings for Avg

 1st 2nd 3rd 1st 2nd 3rd
P 2 3 6 2 3 6
Etha 1 1 1 1 1 1
C 10 10 10 10 10 10
R RWP RWP RWP RWP RWP RWP
Best Deviation (%) 0.07 0.07 0.07 0.07 0.07 0.07
Avg Deviation (%)

be
rli

n5
2

1.04 1.06 1.11 1.04 1.06 1.11
P 6 6 3 3 2 2
Etha 1 2 1.5 1 1 1.5
C 10 10 10 10 10 10
R RWP RWP RWP RWP RWP RWP
Best Deviation (%) 2.86 3.34 3.5 4.61 4.61 3.82
Avg Deviation (%)

ei
l1

01

6.72 7.42 6.73 6.45 6.52 6.58

An alternative worth investigation is the selection of edges from the union graph using a

method similar to the one employed in EAX Crossover (Nagata, Kobayashi, 1997).

EAX constructs the AB cycles by selecting edges alternating between the two parents

then uses these AB cycles in creating new solutions. In our NNX-a, if two successive

nearest neighbors are from the same parent, we take the second neighbor from the other

parent, even if it is farther. This way we make sure that edges are selected by alternating

between the parents and children are different from their parents.

Table 3.5 summarizes the results for NNX-a. When we compare Tables 3.1 and 3.5, we

observe that enforcing edges from different parents does not bring any improvement in

terms of average percent deviation when more than one child is generated, and does not

have a very large impact when only one child is generated. Thus, alternating between

parents when selecting the edges is discarded from further consideration.

 37

Table 3.5 Best parameter settings for small problems using alternating parents

 Settings for Best Settings for Avg

 1st 2nd 3rd 1st 2nd 3rd
P 2 2 2 2 2 2
Etha 1 1.5 1.5 1 1.5 1.5
C 10 10 1 10 10 1
R RWP RWP RWP RWP RWP RWP
Best Deviation (%) 0.07 0.07 0.07 0.07 0.07 0.07
Avg Deviation (%)

be
rli

n5
2

1.24 1.37 1.56 1.24 1.37 1.56
P 2 2 2 2 2 2
Etha 1.5 1 1 1 1.5 2
C 10 10 1 10 10 10
R RWP RWP RWP RWP RWP RWP
Best Deviation (%) 1.27 2.07 2.23 2.07 1.27 2.54
Avg Deviation (%)

ei
l1

01

4.28 4.26 6.42 4.26 4.28 4.86
P 3 2 2 3 2 2
Etha 1 2 1.5 1.5 1 1.5
C 10 10 10 10 10 10
R RWP RWP RWM RWP RWP RWP
Best Deviation (%) 0.61 0.77 0.76 0.78 0.95 0.89
Avg Deviation (%)

bi
er

12
7

1.82 1.88 2.33 1.64 1.73 1.78
P 2 3 3 2 2 3
Etha 1.5 2 1.5 1 1.5 1
C 10 10 10 10 10 10
R RWP RWP RWM RWP RWP RWP
Best Deviation (%) 2.14 2.5 2.5 2.86 2.14 3
Avg Deviation (%)

ch
13

0

3.8 4.22 4.86 3.77 3.8 4.06
P 2 2 2 2 2 2
Etha 1 1.5 2 1 1.5 2
C 10 10 10 10 10 10
R RWM RWP RWM RWP RWP RWP
Best Deviation (%) 0.98 1.35 1.36 1.44 1.35 1.61
Avg Deviation (%)

ch
15

0

2.57 2.25 3.5 2.16 2.25 2.46
P 2 2 3 2 2 2
Etha 1.5 2 1 1 1.5 2
C 10 10 10 10 10 10
R RWP RWP RWM RWP RWP RWP
Best Deviation (%) 0.76 0.93 0.94 1.06 0.76 0.93
Avg Deviation (%)

u1
59

1.93 2.27 2.2 1.66 1.93 2.27
P 3 3 2 2 3 2
Etha 1.5 1 1 1 1 1.5
C 1 10 10 10 10 10
R RWP RWP RWP RWP RWP RWP
Best Deviation (%) 1.43 1.66 1.78 1.78 1.69 2.03
Avg Deviation (%)

kr
oA

20
0

4.57 3.56 2.72 2.72 2.96 3.41
P 3 3 2 2 2 2
Etha 1 2 2 1 1.5 2
C 10 10 10 10 10 10
R RWP RWP RWP RWP RWP RWP
Best Deviation (%) 0.82 0.94 0.95 1.01 1.04 0.95
Avg Deviation (%)

pr
22

6

1.86 2.03 1.62 1.32 1.33 1.62

 38

3.2.4 Results and Discussion of the Initial Experiments

The best settings among the possible alternatives tried to improve the performance of

NNX can be summarized as follows. NNX operator gives the best results, when the

initial population is generated randomly instead of using the NN heuristic. Using 2

parents in generating the union graph and selecting them randomly outperforms the

other alternatives. The best settings so far are given in Figure 3.4.

Initial Population: Random

P = 2

η = 1

C = 10

R = RWP

Figure 3.4 Best parameter configurations after the initial experiments

3.3. Mutation Operators

The new edges NNX operator introduces into the population are limited, as NNX

concentrates on the shortest edges in the union graph. There are cases observed that the

child generated using the shortest edges of both parents results in children that are not

better than their parents. An example where the child generated using only parental

edges and is not shorter than both of the parents is demonstrated in Appendix C.

Children get new edges from the complete graph, only when tour construction on the

union graph gets stuck. Three mutation operators are used in this study to increase the

power of NNX to explore new edges, as the edges in the optimal solution are not always

the shortest edges.

Jog et al. (1989) suggest using improvement heuristics such as 2-opt and 3-opt as

mutation operators, which makes it possible to incorporate problem specific information

into the GA (Sönmez, 2003). The first mutation that we use is based on 2-opt,

concentrating on the longest edges. The second mutation is similar to the first one, but

randomly selected edges are considered for deletion instead of the longest ones. The

third mutation is based on the cheapest insertion, another well-known TSP heuristic. We

use edge exchange and insertion for mutation because these two are fundamental

improvement moves for TSP.

 39

3.3.1 Longest Edge Mutation (LEM)

This mutation aims to eliminate the long edges in a child, which cause large increases in

the tour length. All the edges in an individual are ranked according to their lengths and

the longest edges are tried to be eliminated by restricted 2-opt moves. This mutation is

inspired from the fact that, NN tours contain paths of short edges and few severe

mistakes (long edges). Thus concentrating only on the longest edges in an individual can

bring significant improvement to the solution. The algorithm of LEM is given in Figure

3.5.

for i = 1 to 15
Choose the longest edge
for j = 1 to n-3

Delete the jth non-adjacent edges
Calculate the length of connecting the subtours

 end for
Apply the best improving (if any) of these n-3 possible exchanges

end for

Figure 3.5 Algorithm of longest edge mutation

A limitation arises as a 2-opt move takes O(n2) time, and examining all the edges in

relatively larger problems would take a very long time. Therefore, the number of 2-

exchange moves is limited to 15 at most.

2-exchange moves can be applied until the first improving move is found within the

limit of 15 trials (LEM 1), or can continue to examine all 15 longest edges in decreasing

order of length regardless of the improvements (LEM 2). As the mutation is based on an

improvement heuristic, the trade-off between computation time and solution quality

needs to be considered.

3.3.2 Random Edge Mutation (REM)

This mutation is similar edges with LEM, however it tries to eliminate randomly

selected edges by 2-opt moves instead of the longest ones. This saves the time to sort

the edges and still introduces some new edges to the tour. The algorithm of REM can be

seen in Figure 3.6.

 40

for i = 1 to 15
Choose an edge at random
for j = 1 to n-3

Delete the jth non-adjacent edges
Calculate the length of connecting the subtours

 end for
Apply the best improving (if any) of these n-3 possible exchanges

end for

Figure 3.6 Algorithm of random edge mutation

The number 2-opt moves is again limited to 15, without considering improvement in the

previous moves.

3.3.3 Cheapest Insertion Mutation (CIM)

The third mutation has the advantage of bringing in new edges randomly, whereas both

the NNX operator and LEM use edge lengths to find good edges. CIM is used as an

alternative mutation, where a node is selected randomly and removed from the

individual. All possibilities are checked for insertion of removed node to find the

insertion point that causes the minimum increase in the tour length. The algorithm runs

in O(n2logn) time, therefore we limit the number of insertions in order to have an

efficient mutation operator. The algorithm of CIM can be seen in Figure 3.7

for i = 1 to 15
Choose one node at random
Try inserting it in every possible place in the tour
Apply best improving (if any) of these n-2 insertions

end for

Figure 3.7 Algorithm of cheapest insertion mutation

The number of nodes that are selected for CIM is limited to 15. Another decision is

whether to stop the algorithm if an improvement is found (CIM 1) or continue for 15

different nodes regardless of the improvements found (CIM 2).

3.4. Further Experiments with Mutation

The behavior of NNX combined with the mutation operators is to be investigated, yet

the idea of p-sexual crossover is still worth further consideration. A slightly modified

replacement strategy is also implemented in further experiments.

 41

LEM is used in the further experiments as it is promising with for eliminating the

longest edges. On the other hand, CIM is included, as the edges CIM brings in are not

easily incorporated with NNX or LEM. For each child generated either LEM or CIM is

used for mutation with equal chances. REM is considered at a later stage as an

alternative to LEM.

The idea of replacing the parents with their children only if the children are better than

their parents results in waste of children. An alternative scheme is to replace worst half

of the parents without considering if the children are better than them (RWH).

It is possible that more than half of the children are better than the parents that are used

to generate them. Another alternative replacement strategy can be continuation of the

replacements as long as the children are better than the parents, and replacing the

parents that fall behind the children in fitness.

 In this part of the study, every new child generated starts from the last node visited in

the previous child as implemented by Demir (2004), to ensure that children are different

from each other.

3.4.1 Parameter Settings for Further Experiments

The parameters that we consider in these experiments are the number of parents and

children, mutation and the new replacement strategy (RWH). The number of parents and

the number of children are selected to be equal, as the new replacement strategy aims to

replace at least half of the parents with half of the newly generated children. The

experimental values for each of these parameters are:

- The Number of Parents (P) and Children (C): The values tried are 2, 4, 6 and 12.

- Longest Edge Mutation (LEM): Stopping after the first improvement (1) and

trying all 15 longest edges (2).

- Cheapest Insertion Mutation (CIM): Stopping after the first improvement (1)

and trying to insert 15 different random nodes (2)

- Replacement (R): Replacing worst half of the parents with the best half of

children (1) and replacing more than half of the parents with children as long as

the children have better fitness values (2).

 42

All possible combinations of the above parameter settings are replicated 30 times. The

termination condition is again set as 10,000 generations.

The parent selection is done randomly in these experiments as increases in η cause

larger deviation from the optimal and, according to the results of the ANOVA, η has a

statistically significant effect on the deviation.

Table 3.6 is designed similar to Table 3.1. The decision parameters are the number of

children (equal to the number of parents), the type of LEM operator, the type of CIM

operator and the type of replacement. The Table suggests that better results are observed

when the number of children is small (2 or 4), LEM and CIM are continued 15 times

regardless of the improvement and replacement is continued as long as the children are

better than their parents after half of the parents are replaced.

3.4.2 Results of Further Experiments

The results obtained with the above parameter combinations are analyzed using

ANOVA, in order to find the optimal configuration with statistical significance.

Appendix D summarizes the results of the ANOVA and the residual plots required to

verify the assumptions of ANOVA. According to ANOVA, parameters C and LEM

have significant effect as well as the interaction between this pair. Main effect plots of

the parameters for percent deviation are given in Figure 3.9, and interaction plots are

given in Figure 3.10.

The previous observations in Section 3.2.4 support that generating more children

improves the solution quality. However, we do not see this in Figure 3.9 because of the

deterioration of the solution due to the increase in the number of parents. The best

solutions are obtained when only two parents are used to generate two children. A

reason for this observation may the fact that the number of edges borrowed from the

complete graph starts to decrease when the number of parents is larger. The edges that

are brought in by the children with poor fitness values may also contribute this.

Trying to improve all the 15 longest edges using LEM is better than quitting at the first

improvement. Inserting 15 random nodes with CIM instead of ending trials when an

improvement is found gives better results, although the difference is not statistically

significant. Replacement does not have any effect on the deviation from the optimal.

 43

Table 3.6 Best parameter settings for small problems using further experiments

 Settings for Best Settings for Avg

 1st 2nd 3rd 1st 2nd 3rd
3 2 2 3 2 2 P
1 1 1 1 1 1 Etha

C 10 10 10 10 10 10
R RWP RWP RWM RWP RWP RWM
Best Deviation (%) 0 0 0 0 0 0
Avg Deviation (%)

be
rli

n5
2

1.18 1.24 2.12 1.18 1.24 2.12
P 2 2 2 2 2 6
Etha 1.5 1 1.5 1.5 1 1.5
C 10 10 10 10 10 10
R RWM RWP RWP RWP RWP RWM
Best Deviation (%) 0.64 0.79 1.43 1.59 0.79 2.86
Avg Deviation (%)

ei
l1

01

5.66 4.32 4.53 4.26 4.32 4.35
P 2 2 2 2 2 2
Etha 2 1 1 1.5 2 1
C 10 10 10 10 10 10
R RWP RWP RWM RWP RWP RWP
Best Deviation (%) 0.47 0.61 0.64 0.65 0.47 0.61
Avg Deviation (%)

bi
er

12
7

1.7 1.74 1.86 1.56 1.7 1.74
P 6 2 6 2 3 3
Etha 1 1 2 1 1.5 1
C 10 10 10 10 10 10
R RWM RWP RWP RWP RWP RWP
Best Deviation (%) 1.29 1.64 1.8 1.64 2.08 2.03
Avg Deviation (%)

ch
13

0

3.8 3.12 4 3.12 3.28 3.41
P 2 2 2 2 3 2
Etha 1.5 1 2 1 1 1.5
C 10 10 10 10 10 10
R RWP RWP RWM RWP RWP RWP
Best Deviation (%) 1.18 1.23 1.24 1.23 1.42 1.18
Avg Deviation (%)

ch
15

0

2.12 1.95 2.32 1.95 2.04 2.12
P 2 2 6 2 2 3
Etha 1 1.5 1 1 1.5 1
C 10 10 10 10 10 10
R RWP RWP RWM RWP RWP RWP
Best Deviation (%) 0.62 0.79 0.85 0.62 0.79 0.98
Avg Deviation (%)

u1
59

1.66 1.71 2.37 1.66 1.71 1.87
P 6 6 3 3 6 2
Etha 1.5 1 1 1 1 1
C 10 10 10 10 10 10
R RWP RWP RWP RWP RWP RWP
Best Deviation (%) 0.96 1.14 1.21 1.21 1.14 1.25
Avg Deviation (%)

kr
oA

20
0

2.05 1.75 1.74 1.74 1.75 1.83
P 3 2 2 2 6 3
Etha 1 2 1.5 1 1 1
C 10 10 10 10 10 10
R RWP RWP RWP RWP RWP RWP
Best Deviation (%) 0.72 0.8 0.83 0.86 1.01 0.72
Avg Deviation (%)

pr
22

6

1.57 1.77 1.6 1.44 1.51 1.57

The interaction between the parameter C and LEM is statistically significant. According

to the interaction plot in Figure 3.10 LEM gives better results as the number of parents

 44

and children decreases. According to the Figures 3.9 and 3.10, the best strategy is to

generate 2 children from 2 parents and to apply LEM and CIM for 15 trials regardless of

the improvement.

Figure 3.8 Main effects plots of the experiment parameters

Figure 3.9 Interaction plots of the parameters under consideration

The best settings among the alternatives tried in further experiments are given in Figure

3.8.

 45

Initial Population: Random

P = C= 2

η = 1

LEM = CIM=15

R = RWH

Figure 3.10 Best parameter configurations after the initial experiments

Table 3.7 compares the results of the initial and further experiments. The best deviation

and average deviation gives the best and average of 30 replications. Note that the RWH

with P = 2 is equivalent to RWP with P = 2 in Section 3.2. Both performance measures

support that the mutation operators bring in significant improvement.

Table 3.7 Comparison of initial and further experiments with small problems

 Initial Experiments Further Experiments
 P = 2, η = 1, C = 10, R = RWP P = C =2, η = 1, LEM = CIM = 15, R = RHW

Problem

Best
Deviation

(%)

Avg
Deviation

(%)

Best Deviation
(%)

Avg Deviation
(%)

berlin52 0.00 1.24 0.00 0.10
eil101 0.79 4.32 0.00 1.60
bier127 0.61 1.74 0.28 0.43
ch130 1.64 3.12 0.49 1.08
ch150 1.23 1.95 0.32 0.46
u159 1.30 5.09 0.00 0.15
kroA200 1.25 1.83 0.14 0.63
pr266 0.86 1.44 0.35 0.79
Average 0.96 2.59 0.20 0.65

According to the results although C = 10 in initial experiments is reduced to C = 2 in

further experiments, the solution quality is improved. This is mainly due to the mutation

operators used.

The computation times vary between 6 and 38.97 seconds in the initial experiments, and

between 3.7 and 16.8 in the further experiments on a PC with AMP Turion 64 x2 1.6

GHz processor having 512 MB or RAM. This suggests that improvements on the

solution quality do not require extra computational times. They are even fast runner for

this experiment.

 46

3.5. Discussion and Convergence Analysis

The results of the both experimental investigations are consolidated in Figure 3.11.

However, the sizes of the test problems used so far are relatively small, and the

convergence of this best configuration when the increase in problems size needs to be

investigated. Thus, the NNX configuration by which the best results are obtained is

tested with larger problems to find out the effect of the increase in problem size on the

convergence behavior of the algorithm. The instances are again selected form TSPLIB

(pcb442, rat575, pr1002).

The number of parents is fixed as 2, the best value when all the experiments are

considered. However, according to Figures 3.2 and 3.3, the best results are obtained

when the number of children is large. A method that uses a limited number of parents

yet generates numerous children is necessary; therefore, we adopt the child generation

scheme proposed by Nagata and Kobayashi (1997). In our modified scheme, at most 10

children are generated using the same parents (union graph) as done in the initial

experiments, but the first improving child is accepted and generation is terminated. The

reason for generating more than one child is that the number of children with fitness

values that are better than their parents’ decreases as the population starts to converge.

When a pair of parents fails to generate a child that is better than at least one of the

parents in these 10 trials, a new pair is selected. At most 10 randomly chosen parent

pairs are used until an improving child is found.

LEM and CIM are tested on the first improving child with equal probabilities. LEM

tries to find a 2-opt move that results in improvement by deleting 15 longest edges in the

child. CIM tries to improve the place of 15 randomly selected nodes in the child. Then,

the child replaces worse of the two parents.

Initial Population: Random
P = 2
η = 1
C = 10
LEM = 15 trials
CIM = 15 trials
 R = RWP

Figure 3.11 Best parameter configurations with mutation

 47

The results for the larger problems with the configuration in Figure 3.11 can be seen in

Table 3.8. The population size is fixed as 200 for these instances. It can be seen that the

deviation for problem pr1002 (with more than 1000 cities) is high. Further analysis of

these runs is required.

Table 3.8 Results of larger problems

Problem CPU
Time

Best
Deviation

(%)

Avg
Deviation

(%)
LEM / R CIM / R C / Gen P / Gen

pcb442 313.5 2.96 3.09 0.83 0.7 56.5496 6.1
rat575 453.8 2.24 2.21 0.95 0.8 57.0934 6.1

pr1002* 906.0 7.92 9.51 0.99 1.0 61.5173 6.5
* Results of 10 replications of pr1002 are reported due to large time requirements.

In Table 3.8, when the generation limit of 10,000 is reached, in every generation six

pairs of parents (see P / Gen) are used to generate the union graph, which would be at

most 10, and 60 children (see C / Gen) are generated on the average. Hence, it can be

concluded that 10 parent pairs and 100 child generation trials are adequate, there is no

need to increase the number of parents tried and the number of children generated from

a union graph.

If an improving child is found in every generation, then the number of 2-opt trials by

LEM and the number of node insertion trials by CIM should be 15 / 2 = 7.5 per

generation, on average. These numbers however decrease to 4.03 for LEM and 4.04 for

CIM, as finding an improving child becomes more difficult towards the end. The

number of successful 2-opt moves is 0.92 (see LEM / R) and the number of successful

insertions is 0.83 (see CIM /R) per replacement.

3.5.1 Convergence Analysis of pr1002

A detailed convergence analysis of pr1002 is conducted to investigate the factors that

cause large deviation from the optimal solution, and low utilization of the mutation

operators. Two different replications are investigated in detail. The convergence plots,

the plots of percentage of individuals that contain edges taken from complete graph,

plots of the replacement percentages, and a plot showing the percentage of optimal

edges included in the solutions are given in Appendix E.

The algorithm brings substantial improvement at the initial phase when no mutation

operator is used. Remember that the solution quality of the randomly generated initial

population was very poor. Therefore, the deviation from the optimal solution drops from

 48

22000% to 15% in the initial 5000 generations. However, the improvement after this

initial phase is not very significant.

The plots in Appendix E suggest that the poor results are due to the slowing effect of

mutation operators. The percentage of individuals that contain edges borrowed from the

complete graph in the pure NNX algorithm has a major peak after the algorithm starts to

converge, during which the newly borrowed edges are spread around the population.

However, when LEM and CIM operators are employed, the peak where the population

converges is spread in time. In other words, LEM and CIM slow the convergence

making it possible to observe improvements at even after 30,000th generation.

The success of mutation operators can be measured with average number or exchanges

per generation. The average number of exchanges per generation is expected to be

around 7.5, as 15 moves are to be tried with probability of 0.5. The number of

successive exchange moves of LEM drops to 0.05 per replacement after 15,000

generations. This mutation is quite time consuming. When there are 1002 edges present,

it is possible to observe up to 300,000 sorting operations in the worst case, at least

40,000 sorting operations in the best case. Moreover, there is an exhaustive search for a

second edge to replace the current one. Thus, the limitation of number of exchanges to

15 does not guarantee shorter CPU times.

The convergence behavior of REM and CIM combination is also investigated in

Appendix E. REM and CIM combination preserves the peak observed in the pure NNX,

avoiding the delay of convergence of the population. Moreover, the algorithm with

REM and CIM converges to a better value.

A simple summary of the convergence analysis based on the performance of mutations

on the problem instance pr1002 is summarized throughout Tables 3.9 – 3.11. Detailed

results of two different replications are reported in these tables. The results of the first

replication (S1) were the worst results during the replications Table 3.8, and the results

of the second replication (S2) were average results.

The mutation operators do not affect the relative solution quality between two initial

conditions, as S1 results in poorer results compared to S2 in both the presence and

absence of mutation operators.

 49

Table 3.9 CPU times and deviation results of pr1002 with different mutation operators’
combinations

 S1 S2

Gen CPU

Time
Deviation

(%)
CPU
Time

Deviation
(%)

5000 252 14.92 260 15.45
10000 575 8.72 657 7.28
20000 1881 7.80 1780 6.26
30000 3411 7.80 3270 6.26

No Mut.

40000 5094 7.80 4760 6.26
5000 539 13.04 556 13.76

10000 1143 5.90 1422 9.01
20000 1830 3.51 2563 3.72
30000 3253 3.42 3815 3.07

LEM
and CIM

40000 4824 3.39 5332 2.92
5000 208 15.82 196 14.39

10000 597 10.29 514 8.58
20000 1128 3.81 860 2.67
30000 1565 2.73 1281 2.26

REM
and CIM

40000 2086 2.71 1769 2.24

In Table 3.9, REM and CIM combination gives better results; moreover, it is also better

in term of CPU times. This combination dominates the other alternative combinations,

including the case without mutation. The high CPU time in the case without mutation is

Table 3.10 CPU times and results for pr1002 when non-improving moves are allowed
with a given probability after 5000th generation

 S1 S2

 Acceptance
Probability

Gen
CPU
Time

Deviation
(%)

CPU
Time

Deviation
(%)

5000 200 14.13 209 15.14
10000 391 11.44 382 10.69
20000 670 6.5 655 5.61
30000 894 3.27 906 4.31

LEM and
CIM Pr = 0.05

40000 1147 2.88 1164 3.58
5000 203 15.82 187 14.4

10000 407 12.31 375 12.04
20000 766 9.06 693 8.03
30000 1038 5.42 932 3.96

REM
and CIM Pr = 0.05

40000 1268 3.75 1168 3.58
5000 200 15.82 186 14.4

10000 320 14.06 302 12.46
20000 539 11.58 518 11.29
30000 742 9.88 719 9.01

REM
and CIM Pr = 0.20

40000 944 8.09 904 6.81

 50

not surprising, as the solution without mutation does not improve after 20,000

generations, enforcing 100 children at each generation. This child generation increases

the CPU time to the values much larger than the time used by the mutation operator.

Compared to REM, the sorting of solutions to find the longest edges in LEM consumes

a great deal of time, while bringing in a limited improvement.

The results of convergence analysis (in Appendix E) suggest that the average number of

replacements per generation decreases rapidly at the 5000th generation, regardless of the

presence of a mutation operator. Furthermore, the percentage of individuals that contain

edges taken from the complete graph per replacement has a steady decrease as the

algorithm proceeds. The decrease in the average number individuals that contain of

edges taken from complete graph may be compensated by accepting some non-

improving children with a given probability. The results for two different acceptance

probabilities (Pr) are compared in Table 3.10.

Table 3.11 CPU times and results for pr1002, when non-improving moves are allowed with
a probability of 0.5

 S1 S2
Generations
and Accept.

Pr.* Gen
CPU
Time

Deviation
(%)

CPU
Time

Deviation
(%)

5000 197 15.82 203 14.4
10000 580 10.7 662 8.59
20000 810 10.03 994 5.74
30000 1029 9.72 1294 4.82

Gen ≥ 10000
Pr = 0.05

40000 1237 8.74 1470 3.89
5000 204 15.82 189 14.4

10000 587 10.3 498 8.59
20000 1231 5.29 844 2.89
30000 1439 4.89 1031 2.6

Gen ≥ 20000
Pr = 0.05

40000 1631 4.45 1203 2.58
5000 262 15.82 191 14.4

10000 884 10.3 501 8.59
20000 1530 5.29 847 2.89
30000 2195 2.77 1736 2.56

Gen ≥ 30000
Pr = 0.05

40000 2388 2.68 1923 2.56
* Number of Generations after which non-imptoving children are acepted,

with given acceptance probability

The results of LEM and CIM improve if non-improving children are accepted after

5000th generation (Gen), yet the results are not as good as REM and CIM, accepting

only improving children. The best value obtained is 2.88, while REM and CIM resulted

in 2.41 (See Table 3.9). The limited improvement possibility and high computa tion

time requirements made us to discard LEM and CIM from further consideration.

 51

REM and CIM combination does not yield any improvement when non-improving

moves are accepted after 5,000th generation. In fact, REM and CIM combination seems

to have a peak in the percentage of edges borrowed from complete graph later than 5000

generations, thus accepting non-improving children later can bring an improvement for

REM and CIM combination. REM and CIM are still in a phase that is capable of finding

good children at 5000 generations. Some improvement can be observed if non-

improving children are accepted when the ability of REM and CIM combinations to

generate improving children is decreased. In Table 3.11 different three alternative

generation levels for accepting non-improving moves are experimented and the results

are given.

According to Table 3.11, increasing the number of generations after which the non-

improving children are accepted improves the results with REM and CIM. Yet, the

results when non-improving children are accepted are not as good as the result when

only children that are better than their parents replace their parents. The non-improving

moves are taken out of consideration.

3.6. The Final Algorithm

The detailed algorithm containing the best parameter settings resulting from the

experiments conducted is given in Figure 3.12. The algorithm is designed starting with

the algorithm in Figure 3.1. The population size is equal to the problem size for small

problems (n ≥ 250), and 200 for larger problems.

Generate initial population randomly
Size = n for small problems (n < 250)
Size = 200 for problems with n ≥ 250

for g = 1 to G
for i = 1 to I

Select k parents at random
for j = 0 to J

Generate a child using NNX on union graph of parents
If the child is better than the worse parent go to mut

end for
end for

mut Apply REM or CIM (with equal chances) to the child

Replace the worse parent with the mutated child
end for

Figure 3.12 The final algorithm for NNX

 52

 53

The termination condition (G) is the number of generations, which is set as 10,000 for

small problems, and 40,000 for problems with size larger than 250. The termination

condition is to be modified parallel to the problems size for larger problems. The

number of parent pairs (I) tried if no improving child is generated is limited to 10. The

number of children (J) generated from the same union graph if an improving child is not

generated is limited to 10.

The mutation operator is applied to children only if they are better than their worst

parent. REM and CIM are applied with equal probability. The child generated after the

mutation operators replaces the worst parent.

This algorithm is further experimented on problems with larger size.

3.7. Experimental Results for Large Problems

The final algorithm is experimented with five larger problems from TSPLIB (Reinelt,

2007). The problems selected are pr1002, nrw1379, u2152, u2392 and pcb3038. The

percent deviations, the CPU time, and the number of generations the algorithm runs

given as the averages of 15 replications in Table 3.12. The percent deviations are high

compared to the results in experiments with small problems, and no optimal solutions

are found.

Table 3.12 Results for larger problems

Problem Gen CPU
Time

Best
Deviation

(%)

Avg
Deviation

(%)
pr1002 40000 1698.60 2.82 3.47
Nrw1379 40000 4535.27 6.19 7.95
u2152 60000 7052.27 2.04 2.21
pr2392 60000 12588.60 6.36 7.99
Pcb3038 80000 31703.50 13.16 15.12

The percent deviation of the problem nrw1379 is higher than the problems with larger

number of cities. The structure of the problem is different compared to the other

problems. All the problems except nrw1379 are clustered and there are relatively long

edges between the clusters, on the other hand, the nrw1379 is relatively uniform. The

plots of the coordinates of all problems are given in Appendix A. The ability of NNX

with REM and CIM to find good solutions to clustered problems makes it attractive to

be used in TSPB, where there are three main clusters when the distance matrix is

converted to a TSP. The increase in deviation for larger problems is not very significant

as the largest TSPB problems in literature consist of 1000 cities.

CHAPTER 4

TSP WITH BACKHAULS

TSP with Backhauls (TSPB) arises in three different applications. It is a constrained

version of TSPPD (Lenstra and Rinnoy Kan, 1975), the single vehicle case of VRPB

(Goeschalckx and Jacobs-Blecha, 1989), and the three-cluster version of the CTSP

(Chrisman, 1975). The solution approaches for these problems can be modified to solve

TSPB.

The number of studies concentrating on TSPB is limited and they can be grouped in two

categories. The first group aims to solve TSPB imposing the backhaul constraints on

TSP where as the second group transforms an instance of TSPB to an instance of TSP

and solves the corresponding the TSP instance.

Experiments with heuristics that take into account service for backhauls as the

constraints to solve TSPB are very limited. Gendreau et al. (1997) work on the

Christofides TSP heuristic and prove that the algorithm results in 3/2 of the optimal

solution in the worst case. Ghaziri and Osman (2003) used an artificial neural network

to solve TSPB. They report results comparable to those of solution methods that

transform TSPB to TSP.

Gendreau et al (1996) use the GENIUS heuristic, which is designed for TSP, to solve

TSPB. The best configuration experimented by Gendreau et al. (1996) deviates on

average 3-4% from the lower bound. This configuration is based on the idea of

modifying TSPB cost matrix to convert it to TSP (Chrisman, 1975). Chrisman (1975)

subtracted a large number (10 times the longest distance in the cost matrix) from the

inter-cluster distances, leaving the intra-cluster distances the same. The triangle

 54

inequality was still valid and the symmetry of the cost matrix was not disturbed.

Chrisman (1975) reported optimal results with the modified cost matrix, compared to

the constrained problem with side constraints.

In this study, we modify TSPB cost matrix to solve TSPB as a TSP using the GA

developed in Chapter 3. The only study that uses a GA to solve CTSP is conducted by

Potvin and Guertin (1996). Potvin and Guertin (1996) use ERX as the crossover

operator and 2-opt as the mutation operator. They use ERX in two phases, the inter-

cluster edges are preserved in the first phase, and the intra-cluster edges are preserved in

the second phase. 2-opt mutation is applied within clusters. The results are reported to

be better than GENIUS. To the best of our knowledge, the first study solving TSPB with

a GA is the study conducted by Demir (2004). Our algorithm will initially be compared

to that of Demir (2004), based on his problem instances.

Demir (2004) also use NNX crossover to solve TSPB without changing the distance

matrix. His first approach is repairing infeasible solutions after they are generated by

NNX. Secondly, he keeps generating children until a feasible child is obtained. His third

strategy is to generate two paths (one for linehaul and one for backhaul customers) and

connect them to obtain a feasible child. The fourth and fifth strategies are based on

penalizing the infeasible solutions. The penalty in the first case is based on the cost that

will be incurred to repair the infeasible tour. The second is based on increasing the

penalty over the iterations, forcing the algorithm to generate feasible solutions. The

algorithm that penalizes the cost of repair gives better results compared to the results of

the algorithm that increases the penalty incrementally. The best results in terms of

percent deviation are observed using the repairing strategy.

We have added a very large number (one million) to the inter-cluster distances in the

distance matrix to solve TSPB with our GA. A sample modification of the matrix is

demonstrated in Demir (2004). Other than this, we have not imposed any explicit

constraints to make sure that all linehaul customers are visited before backhaul

customers. The results of the GA can be seen in Table 4.2 for small test problems. The

first column of the table gives the problem values number assigned by Demir (2004).

The second and the third columns list the problem size and the optimal solution found

by Demir (2004) calculated using the modified distance matrix in CONCORDE (Cook,

2007). The fourth column gives the average number of generations, which can be

10,000 at most. The maximum number of generations hardly reaches 10,000 since the

 55

problems sizes are small and the algorithm is fully converged (i.e. the population best is

equal to the population average) in the most of replications for 18 problems. “Best”

represents the best solution value among the results of 30 replications. “Avg” represents

the average of the best solution values. The population average (Pop Avg) is also

reported in the Table, as it is a good indicator of the convergence of population. Table

4.2 shows that 10 out of 20 problems are solved to optimality in all 30 runs, and three

problems are never solved to optimality by the algorithm. The average deviation for all

20 problems is 0.18%.

Table 4.1 compares our results with the results reported by Demir (2004). The results of

the best strategy of Demir (2004) and the corresponding CPU times are reported in

Table 4.1. Demir use no mutation operators and use NNX by imposing side constraints

to solve the problem. Our results are reported in two columns, the first one is the pure

NNX (indicated by “No Mut”), and the second column stands for the final algorithm

where REM and CIM are applied with equal probabilities (indicated by “Mut”). Both

pure NNX and NNX with mutations are reported to make clear the contribution of

mutations. Note that we modified the distance matrix instead of imposing side

constraints.

Demir (2004) did not report the results at 10,000th iteration, but when his algorithm is

fully converged. Our results are 90% better compared to those of Demir (2004).

Moreover, the CPU times are improved 30% on average. CPU times are expected to be

equivalent as Demir (2004) used a Pentium 4 1.6 GHz processor and we employed an

AMD Turion with dual 1.6 GHz processors where only one of the processors was fully

utilized.

Table 4.1 Results for small TSPB compared with the results of Demir (2004)
Best

Deviation
(%)

Avg
Deviation

(%)

Pop Avg
Deviation

(%)

Worst*
Deviation

(%)
CPU Time

Gen
No
Mut Mut No

Mut Mut No
Mut Mut No

Mut Mut No
Mut Mut

Demir's
Avg
Dev
(%)

Demir's
CPU
Time

2000 1.24 0.09 3.51 0.21 4.02 0.38 4.93 1.26 0.49 1.39 2.16 2.52
4000 0.79 0.07 3.03 0.18 3.10 0.28 3.37 1.11 2.34 3.87
5000 0.79 0.07 3.06 0.19 3.08 0.28 3.31 1.09 3.48 5.07 1.83 6.3

80000 0.79 0.07 3.01 0.18 3.03 0.27 3.24 1.02 6.79 8.74 1.81 10.09
10000 0.79 0.07 3.01 0.18 3.03 0.27 3.24 1.00 9.06 11.17 1.79† 17.3†
* Average of the worst member in the population in 30 replications
† The results are averages at full convergence (17,133.26 generations)

 56

 Table 4.2 Results on of the GA for small TSPB problems

Problem
Size Optimal # of Gen1 Best2 Avg3 Pop Avg4

Best
Deviation

(%)

Avg
Deviation

(%)

Pop Avg
Deviation (%)

CPU
Time

 p00 22 385 69.37 385 385 385 0.00 0.00 0.00 0.00
 p01 33 580 492.50 580 580 580 0.00 0.00 0.00 0.20
 p02 51 589 9678.13 589 589 590 0.00 0.00 0.14 8.93
 p03 101 808 4635.20 808 810 811 0.00 0.26 0.32 7.43
 p04 45 904 668.50 904 904 904 0.00 0.01 0.02 0.27
 p05 121 870 8702.43 870 870 870 0.00 0.00 0.02 20.80
 p06 30 123 111.63 124 124 124 0.81 0.81 0.81 0.00
 p07 20 68 49.50 68 68 68 0.00 0.00 0.00 0.00
 p08 30 128 111.14 128 128 128 0.00 0.00 0.00 0.00
 p09 25 6244 84.65 6244 6247 6247 0.00 0.05 0.05 0.00
 p10 23 652 2385.33 652 652 652 0.00 0.00 0.03 1.07
 p11 30 530 110.00 530 530 530 0.00 0.00 0.00 0.00
 p12 151 1067 10000.00 1071 1081 1085 0.37 1.28 1.70 35.23
 p13 76 779 9477.50 779 780 781 0.00 0.09 0.26 14.87
 p14 72 321 1829.07 321 321 321 0.00 0.00 0.00 1.63
 p15 135 1151 10000.00 1154 1154 1155 0.26 0.29 0.32 25.47
 p16 101 859 5398.27 859 860 860 0.00 0.14 0.15 8.23
 p17 48 45697 9361.70 45697 45902 45963 0.00 0.45 0.58 8.20
 p18 34 659 9343.63 659 660 664 0.00 0.11 0.69 5.70
 p19 36 477 6422.53 477 477 478 0.00 0.07 0.21 3.93

Average 3144.55 4446.55 3144.95 3156.13 3156.13 0.07 0.18 0.27 7.10
1 Average of 30 replications
2 Best of 30 replications
3 Average of the bests of 30 replications
4 Average of the population averages in 30 replications

Table 4.1 also includes the population averages and the averages of the worst solution in

the population in 30 replications. These figures are included to demonstrate that even

the averages of worst solutions in the populations are better compared to Demir’s results

when mutation operators are employed.

 Using pure NNX with modified cost matrix does not give better results compared to the

strategies proposed by Demir (2004). The mutation operators reduce the deviation by

95% with a 23% increase in the CPU Time.

TSPB does not have a well-defined benchmark problem set. The second set of TSPB

instances that have been solved with our GA is generated randomly based on the method

proposed by Gendreau et al. (1996). The same method is used by Mladenović and

Hansen (1997) and Ghaziri and Osman (2003), thus the results of these studies are

comparable in terms of the averages over problem instances. 750 test instances are

generated as follows. The coordinates of customers and depots are generated in the

interval [0,100] assuming continuous uniform distribution. The problems size (n) is the

first decision parameter and the ratio of backhaul customers to the number of linehaul

customers (p) is the second decision parameter. 30 instances are generated for each pair

(n, p) where n = 100, 200, 300, 500 and 1000 and p = 0.1, 0.2, 0.3, 0.4 and 0.5. When p

= 0.1, 10% of the total customers are assumed to be backhaul customers.

Table 4.3 presents the averages of 30 replications reported by different authors for

randomly generated instances. GENI gives the results of the heuristic developed by

Gendreau et al. (1992), while GENIUS gives the results when an improvement method

is applied after GENI, and GENIUS-VNS is the variable neighborhood search procedure

applied on GENIUS (Mladenovic and Hansen, 1997). VNS systematically tries to

improve the results of GENIUS by searching the immediate neighborhood of the

solution point. The neighborhood is formed by node exchange moves, a node is deleted

from a tour and inserted at a point that improves the tour length. The next two columns

are the results of a self-organizing feature map type neural network, SOFM. SOFM*

corresponds to the solutions when the results of SOFM are improved with 2-opt

(Ghaziri and Osman, 2003).The last two columns represent the results of NNX with

LEM and CIM mutations. The GA is run for 10,000 generations for problems n= 100,

200, 300; for 20,000 generations for problems with n = 500 and 30,000 generations for

problems with n =1000. The Best column in Table 4.3 represents the averages over 30

different problems, of the best replication among five different replications. The Avg

 58

column represents the mean of the average results of 30 different problems and five

different replications for each problem.

Table 4.3 Average solution values for randomly generated problems

n p GENI GENIUS GEN- VNS SOFM SOFM* Best Avg

100 0.1 1012.50 994.12 987.11 1043.56 996.13 994.18 994.57
 0.2 1068.70 1047.01 1044.66 1072.30 1052.71 1052.06 1052.30
 0.3 1109.66 1088.09 1085.34 1108.54 1092.07 1089.04 1089.85
 0.4 1125.63 1106.69 1102.29 1131.83 1106.97 1100.51 1101.02
 0.5 1133.87 1114.34 1108.68 1123.29 1112.37 1103.16 1104.31

Average 1090.07 1070.05 1065.62 1095.90 1072.05 1067.79 1068.41

200 0.1 1418.63 1387.22 1378.80 1436.12 1381.15 1381.17 1381.85
 0.2 1498.83 1470.95 1464.88 1489.91 1462.32 1467.57 1467.85
 0.3 1550.52 1525.26 1519.93 1545.00 1523.71 1502.41 1502.99
 0.4 1585.76 1555.26 1548.73 1554.69 1551.48 1521.97 1522.78
 0.5 1586.93 1554.13 1546.97 1553.90 1549.61 1534.64 1535.90

Average 1528.13 1498.56 1491.86 1515.92 1493.65 1481.55 1482.27

300 0.1 1720.82 1683.76 1675.82 1702.60 1680.93 1668.96 1671.28
 0.2 1824.62 1784.80 1782.62 1787.14 1784.90 1773.81 1774.43
 0.3 1886.48 1854.86 1849.05 1877.15 1854.30 1830.29 1832.32
 0.4 1903.29 1874.43 1865.75 1876.49 1866.84 1868.45 1869.54
 0.5 1927.34 1892.20 1887.35 1891.39 1888.92 1873.38 1874.08

Average 1852.51 1818.01 1812.12 1826.95 1815.18 1802.98 1804.33

500 0.1 2197.16 2158.79 2156.61 2168.59 2161.07 2139.06 2142.44
 0.2 2342.99 2297.11 2292.04 2310.70 2297.35 2279.95 2285.57
 0.3 2409.80 2370.45 2363.16 2398.49 2376.73 2342.80 2347.55
 0.4 2443.12 2399.35 2388.07 2441.94 2397.06 2392.52 2398.11
 0.5 2464.11 2418.20 2405.55 2428.72 2410.81 2405.93 2411.29

Average 2371.44 2328.78 2321.09 2349.69 2328.60 2312.05 2316.99

1000 0.1 3099.17 3042.60 3029.76 3083.59 3048.69 3035.92 3044.569
 0.2 3281.34 3232.65 3213.61 3279.02 3228.44 3212.79 3216.77
 0.3 3366.07 3314.80 3302.93 3327.04 3312.38 3323.03 3328.28
 0.4 3451.02 3387.43 3366.23 3392.17 3371.28 3358.36 3366.75
 0.5 3455.69 3388.16 3379.67 3408.41 3386.50 3398.27 3403.74

Average 3330.66 3273.13 3258.44 3298.05 3269.46 3265.68 3272.02

Overall 2034.56 1997.71 1989.82 2017.30 1995.79 1986.01 1987.54

 59

Table 4.4 Average CPU times of TSPB solution methods

n p GENIUS GEN - VNS SOFM SOFM*
Actual CPU

Time

100 0.1 4.7 5.4 23.5 23.7 20.5
 0.2 4.8 5.8 22.1 22.8 18.5
 0.3 4.8 5.5 21.2 21.6 17.9
 0.4 5.1 5.4 27.6 28.0 17.3
 0.5 4.4 5.6 23.1 23.8 17.2

Average 4.8 5.5 23.5 24.0 18.3

200 0.1 36.3 31.6 61.1 61.7 38.0
 0.2 32.4 35.9 63.6 64.3 38.7
 0.3 31.7 30.7 71.3 71.9 35.8
 0.4 31.2 38.8 72.9 73.8 35.6
 0.5 39.6 43.1 62.1 62.6 35.2

Average 34.2 36.0 66.2 66.9 36.6

300 0.1 106.4 109.3 237.9 239.2 68.5
 0.2 105.9 87.2 278.3 283.6 65.4
 0.3 70.9 100.1 286.3 287.8 68.8
 0.4 69.6 105.6 365.0 371.0 68.7
 0.5 72.3 101.1 354.0 360.3 66.2

Average 85.0 100.7 304.3 308.4 67.5

500 0.1 325.6 343.6 732.0 749.7 317.4
 0.2 289.5 248.1 729.0 751.9 300.5
 0.3 317.7 383.3 798.0 821.5 321.4
 0.4 374.0 326.1 802.0 834.2 343.1
 0.5 405.9 472.2 852.0 872.0 295.4

Average 342.5 354.7 782.6 805.9 315.6

1000 0.1 1130.3 1417.9 1398 1428.1 1933.7
 0.2 1211.1 1637.2 1423 1495.3 1921.4
 0.3 1019.8 1643.1 1412 1432.1 1829.1
 0.4 1302.8 1898.3 1435 1470.5 1776.9
 0.5 1324.6 1762.6 1402 1440 1832.9

Average 1197.7 1671.8 1414.0 1453.2 1858.8

Overall 332.9 433.7 518.1 531.7 459.4

 60

The algorithms are coded in different languages and are run on computers with different

processors. According to Ghaziri and Osman (2003), GENI, GENIUS, and GENIUS-

VNS are coded in C++ and run on a SUN SPARC 10 computer by Mladenovic and

Hansen (1997). SOFM and SOFM* are coded in FORTRAN and run on Intel Pentium

MMX 233 MHz PC. Ghaziri and Osman (2003) used the benchmark results of Dongarra

(2007) to calculate the relative computing time if they had utilized SUN SPARC 10.

Our GA was coded in C and run on a PC AMD Turion 64 1.6 Ghz PC, and the actual

CPU times are reported in the last column of Table 4.4. Choi and Tcha (2005) state that

performance comparison in terms of CPU time is not always recommended, owing to

other influencing factors such as cache, main memory and compilers have been subject

to vast changes with the changes in the CPU architectures.

A paired t-test on the difference of the overall averages between Avg versus GENI,

GENIUS, SOFM, SOFM* and GENIUS-VNS. The GA is significantly better than

GENI (p-value = 0.000), GENIUS (p-value = 0.001), SOFM (p-value = 0.000) and

SOFM* (p-value = 0.006). Results of the paired t-tests are given in Appendix F. The

average results are better than GENIUS -VNS, but the difference is relatively small to

derive a statistically significant result (p-value = 0.692). When the Best results and

GENIUS-VNS’s results are compared, p-value becomes 0.122.

When the problems with size n ≤ 500 are considered, the test for the difference of

overall averages between Avg (our GA) and GENI, GENIUS, SOFM, SOFM* and

GENIUS-VNS indicates that our GA is statistically the best algorithm among all

alternatives. The p-value for GENIUS-VNS and Avg (Best) comparison is 0.056

(0.011).

The results of the random TSPB instances indicate that our GA with LEM and CIM

mutations gives better results compared to the competitors, except GENIUS-VNS. The

application of GA is simple and the constraint handling is eliminated as the algorithm

can effectively find good solutions just by making the necessary modifications in the

distance matrix.

 61

CHAPTER 5

CONCLUSION

In this research, a genetic algorithm (GA) that uses well-known TSP heuristics is

developed and an application of this algorithm for solving TSPB is presented. The

proposed GA uses Nearest Neighbor Crossover (NNX), which is based on the well

known nearest neighbor heuristic. The mutation operators use 2-edge exchange and

node insertion. Our aim is to investigate the performance of the mentioned crossover

mechanisms when running with more than two parents and different child

generation schemes, in order to develop a GA that can be used to solve TSP and its

variants like TSPB in reasonable times.

NNX is a crossover operator available in the literature, which uses the nearest

parental edge as long as it is feasible. The shortest edge in the complete graph is

selected if no parental edge is feasible. NNX is deterministic as it concentrates only

on the shortest edges. On the other hand, NNX is powerful as it is capable of adding

new edges to the gene pool, as the algorithm is usually stacked when generating a

child. About 70% of the offspring generated by NNX contain edges from the

complete graph for a problem instance with 1000 cities until the 20,000th generation.

NNX is experimented with in a steady state fashion, where only two parents are

considered for reproduction. The results of this study suggest that NNX gives better

results compared to Sönmez (2003), when steady state evolution is used.

 62

Different parent numbers are also experimented as NNX makes it possible to

generate children that preserve the characteristics of more than two parents.

Although more parents as large as twelve parents are experimented, our experiments

show that using more than two parents brings in some improvement occasionally,

but the impact is not very significant. Using two parents with NNX better balances

the edges that are inherited from the parents and the ones taken from the complete

graph.

The selection scheme that gives the best results with NNX is random selection when

the child is generated from two parents and replaces their worst parents. Favoring

the best individual does not improve the results, and replacement with worst

population member causes a premature convergence of GA.

Random initial population gives the best results with NNX, and NNX cannot

generate better solutions when NN is used as to initialize the population.

Enforcing NNX to take edges from alternating parents is experimented to avoid only

one parent being very dominant during the generation of an offspring. The edge that

follows an edge that is present only in one parent is enforced to be selected from the

other parent or the complete graph to increase the exploratory power of NNX. The

results are not as good as the unrestricted NNX, while good edges are usually

observed to be in chains and enforcing false moves in every other edge deteriorates

the solution quality.

NNX is highly dependent on the initial starting point when a child is to be generated,

similar to the NN heuristic. Therefore, NNX gives best results when more than one

child is generated from a pair of parents and using different starting points. This is

done by generating a number of children until there is an improvement, and

changing the parent pair if no improvement is observed for a number of trials.

Three different mutation operators are used in this research. The first one (Longest

Edge Mutation) concentrates on the longest edges and tries to eliminate 15 longest

edges by 2-edge exchange moves. The success of this mutation is limited becuse the

mutation consumes a great deal of computing time; it is highly deterministic in edge

deletion. Random Edge Mutation, that deletes 15 randomly selected edges and

reconnects the subtours by 2-edge exchange moves, shows a better performance.

 63

Another mutation operator that is not limited to a single edge is the Cheapest

Insertion Mutation where the insertion of a node that has been removed from the

current tour is considered. This results in deletion of three edges and addition of

three new edges.

Convergence of NNX is analyzed in detail on two replications of a problem instance

with 1002 cities. It has been observed that NNX is capable of generating good

alternative solutions in problem instances with clusters. The results of NNX for such

problem instances are around 3% close to the optimal solution, but NNX is capable

of finding only 75% of the edges that are present in the optimal solution. The ability

of NNX to generate solutions 3% above optimum, although it misses 25% of the

“optimal edges” implies the power to discover alternative solutions for clustered

problems.

We have also demonstrated that it is possible to generate a child that is worse than

both of its parents when it is entirely generated using the shortest edges in the

parents. The myopic strategy that concentrates only on the length of the next edge

makes NNX to pick longer edges at the final stages of the edge search. It has been

observed that in some cases it is not possible to generate children better than their

parents as long as no edge from the complete graph is introduced.

Our GA has been implemented on TSPB instances after the algorithm is finalized

based on the above observations. The TSPB instances are converted to the

symmetric TSP instances by adding a very large number to the inter-cluster

distances. The GA can then solve the intra and inter cluster problems to obtain a

feasible solution. TSPB is experimented on two different benchmark sets. To the

best of our knowledge, there is no published work with results on TSPB solved

using a GA; except the study is conducted by Demir (2004) in his master’s thesis.

TSPB instances of Demir (2004) have been used, and it has been demonstrated that

NNX with REM and CIM mutation operators gives better results compared to the

results when side constraints are imposed. Demir (2004) actually introduced

different penalty or generation schemes that imposed on the backhaul constraints

instead of modifying the distances. Our GA with modified distances is demonstrated

to give better results in a shorter time when the mutation operators are used.

 64

TSPB instances that are generated as suggested by Gendreau et al. (1996) has been

used as the second set. According to the results on these randomly generated

problems, our GA is significantly better than four out of the five algorithms

published in the literature. Moreover, it gives the best results on problem instances

with less than 1000 cities, among all.

For future research, NNX can be further improved to become faster in solving large

problems in shorter time. The exhaustive search for the shortest edge when the

algorithm gets stuck during the child generation process can be improved. A k-

nearest neighbor subgraph as used by Yang (1997) can be employed to improve the

computational time.

Another research topic can be implementation of NNX with the mentioned mutation

operators to vehicle routing problems (VRP), as the GA applications in the VRP

domain usually use crossover operators that reserve position or order of the cities in

the parents. It has been demonstrated that the crossover operators that preserve edges

in the parents give significantly better results.

Another interesting research area is solving and comparing the results of TSPB

problems with using different crossover operators such as EAX (Nagata, Kobayashi,

1997) or DPX (Freisleben, Merz, 1996).

Other conventional TSP heuristics can also be used to come up with different GA

operators.

 65

REFERENCES

Affenzeller, M. (2002). A generic evolutionary computation approach based upon

genetic algorithms and evolution strategies. Systems Science, 28(2), 59–71.

Applegate, D. (2007). World traveling salesman problem. Georgia Institute of

Technology. Retrieved August 3, 2007 from http://www.tsp.gatech.edu/world/.

Baraglia, R., Hidalgo, J.I. & Perego, R. (2001). A hybrid heuristic for the travelling

salesman problem. IEEE Transactions on Evolutionary Computation, 5(6), 613 –

622.

Beasley, D., Bull, D.R. & Martin, R. R., (1993). An Overview of Genetic Algorithms:

Part 1 Fundamentals, University Computing, 15(2), 58 – 69.

Burkowski, F.J., (2003). Proximity and priority: applying a gene expression algorithm

to the Traveling Salesperson Problem. Parallel Computing, 30 (5-6), 803-816.

Černy, V., (1985). Thermodynamical approach to the traveling salesman problem: an

efficient simulation algorithm. J. Opt. Theory Appl, 45, 41-51.

Chan, C., Lee, S.A., Kao, C.Y. & Tsai, H.K., (2005). Improving EAX with restricted 2-

opt. Proceedings of the 2005 conference on Genetic and Evolutionary

Computation, 1471 – 1476.

Chen, S. & Smith, S. (1999). Putting the "genetics" back into genetic algorithms

(reconsidering the role of crossover in hybrid operators). Foundations of Genetic

Algorithms 5, Morgan Kaufmann, 1999.

 66

http://www.tsp.gatech.edu/world/

Chisman, J. A. (1975). The clustered traveling salesman problem. Computers and

Operations Research, 2, 115–119.

Choi, E. & Tcha, D.W. (2005). A column generation approach to the heterogeneous

fleet vehicle routing problem. Computers and Operations Research, 34 (7), 2080

– 2095.

Cohoon, J.P., Karro, J.E., Martin, W. N., Niebel, W.D. & Nagel, K., (1998).

Perturbation method for probabilistic search for the traveling salesperson problem.

Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary

Computation, Proc. SPIE (3455) p. 118-127.

Colorni, A., Dorigo, M. & Maniezzo, V., (1991) Distributed optimization by ant

colonies. Varela, F., Bourgine, P., (Ed.) Proceedings of European Conference on

Artificial Life, Elsevier, Amsterdam.

Cook, W. (2007) Concorde home. Georgia Institute of Technology. Retrieved August 3,

2007 from http://www.tsp.gatech.edu/concorde.html.

Črepinšek, M., Mernik, M. & Žummer, V., (2000). A metaevolutionaty approach for the

travelling salesman problem. 22nd International Conference on Information

Technology Interfaces (ITI).

Dantzig, G., Fulkerson, D., Johnson, S. (1954). Solution of large-scale traveling-

salesman problem. Operations Research, 2, 93 – 410.

Demir, E. (2004). Analysis of Evolutionary Algorithms for Constrained Routings

Problems., MSc Thesis, Ankara, METU.

Dongarra, J. (2007) Performance of Various Computers Using Standard Linear

Equations Software, University of Tennessee, Knoxville TN, 37996, Computer

Science Technical Report Number CS - 89 – 85, Retrieved on August 3rd, 2007

from: http://www.netlib.org/benchmark/performance.ps.

Freisleben, B. & Merz, P. (1996). A genetic local search algorithm for solving

symmetric and asymmetric traveling salesman problems. Proceedings of IEEE

International Conference on Evolutionary Computation.

 67

http://www.tsp.gatech.edu/concorde.html
http://www.netlib.org/benchmark/performance.ps

Fox, B. R. & McMahon, M.B. (1991), Genetic operators for sequencing problems,

Foundations of Genetic Algorithms.

Gamboa, D., Rego, C. & Glover, F., (2006) Implementation analysis of efficient

heuristic algorithms for the traveling salesman problem. Computers and

Operations Research, 33 (4).

Gendreau, G., Hertz, A. & Laporte, G. (1992). New insertion and post-optimization

procedures for the traveling salesman problem. Operations Research, 40: 1086–

1094.

Gendreau, G., Hertz, A. & Laporte, G. (1996). The traveling salesman problem with

backhauls. Computers and OperationsResearch, 23, 501–508.

Gendreau, G., Laporte, G. & Hertz, A., (1997). An approximation algorithm for the

traveling salesman problem with backhauls. Operations Research, 45 (4), 639 –

641.

Gendreau, M., Laporte, G. & Potvin, J. Y. (2001). Metaheuristics for the capacitated

vrp. The Vehicle Routing Problem, Ed. Toth, P., Vigo, D., SIAM monographs on

discrete mathematics. Society of Industrial and Applied Mathematics.

Philedelphia. 129 – 154.

Ghaziri, H. & Osman, I.H. (2003). A neural network algorithm for the traveling

salesman problem with backhauls. Computers and Industrial Engineering, 44(2),

267 - 281.

Glover, F., (1986). Future paths for integer programming and links to artificial

intelligence. Computers and Operations Research, 13, 533 – 549.

Goetschalckx M. & Jacobs-Blecha C. (1989). The vehicle routing problem with

backhauls. European Journal of Operational Research, 42, 39–51.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley Publishing Company, Reading, MA.

Goldberg, D. E. & Deb, K (1990). A comparative analysis of selection schemes used in

genetic algorithms. Foundations of Genetic Algorithms, 69 – 93.

 68

Gorges-Schleuter, M. (1997). Asparagos96 and the travelling salesman problem,

Proceedings of IEEE International Conference on Evolutionary Computation.

Gorges-Schleuter, M. (1997) On the power of evolutionary optimization at the example

of ATSP and large TSP Problems. European Conference on Artificial Life.

Ho, S.Y. & Chen J.H., (2000). A GA-based systematic reasoning approach for solving

travelingsalesman problems using an orthogonal array crossover. Proceedings The

Fourth International Conference/Exhibition on High Performance Computing in

the Asia-Pacific Region, 2 (2), 659 - 663.

Holland, J. (1975) Adaptation in Natural and Artificial Systems, University of Michigan

Press, Ann Harbor, MI.

Homaifar, A. Guan, S. & Liepins, G.E. (1993). A new approach on the travelling

salesman problem by genetic algorithms. Proceedings of the 5th International

Conference on Genetic Algorithms, 460 – 466.

Hui, Y. Kang, L. Yan, Z. & Zou, X. (2003). Guiding genetic operators with

immunology principle: a case study in TSP. The 2003 Congress on Evolutionary

Computation.

Jog P., Suh J.Y. & Gucht D.V. (1989). The effects of population size, heuristic

crossover and local improvement on genetic algorithms for traveling salesman

problem. Schaffer D.J. San Mateo (Ed.), Proceedings 36 of the Third

International Conference of Genetic Algorithms. Ca, Morgan Kaufmann

Publishers, 110 – 115.

Johnson, D. S. & McGeoch, L. A. (1997). The traveling salesman problem: a case study

in local optimization. Local Search in Combinatorial Optimization, E. H. L. Aarts

and J. K. Lenstra (editors), John Wiley and Sons, Ltd. pp. 215 – 310.

Johnson, D.S. (2004). 8th DIMACS Implementation Challenge: The Traveling Salesman

Problem. Retrieved 10 August, 2007 from: http://www.research.att.com/~dsj/

chtsp/index.html

 69

http://www.research.att.com/

Julstrom, B.A. (1995). Very greedy crossover in a genetic algorithm for the traveling

salesman problem. Proceedings of the 1995 ACM Symposium on Applied

Computing.

Jultsrom, B. A. (1998). Comparing decoding algorithms in a weigh-coded GA for TSP.

Proceedings of the 1998 ACM Sumposium on Applied Computing, 313 – 317.

Julstrom, B.A.(1999) Coding TSP tours as permutations via an insertion heuristic.

Proceedings of the 1999 ACM symposium on Applied computing. 297-301

Jung, S. & Moon, B.R., (2002) Toward minimal restriction of genetic encoding and

crossovers for the two-dimensional Euclidean TSP. IEEE transactions on

evolutionary computation, 6 (6).

Katayama, K., Hirabayashi, H. & Narihisa, H., (1999). Performance analysis for

crossover operators of genetic algortihm. Systems and Computer in Japan, 30 (2),

20 – 30.

Katayama, K., Sakamoto, H. & Narihisa, H. (2000). The efficient irbid mutation genetic

algorithm for the travelling salesman problem. Mathematical and Computer

Modelling, (31), 197 – 203.

Kirkpatrick, S., Gelatt Jr., C. D. & Vecchi, M. P.,(1983) Optimization by Simulated

Annealing. Science. 220 (4598), 671 – 680.

Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., & Dizdarevic, S., (1999).

Genetic algorithms for the travelling salesman problem: a review of

representations and operators. Artificial Intelligence Review, 13, 129–170.

Lenstra, J. K. & Rinooy Kan, A. H. G. (1975). Some simple applications of the

travelling salesman problem. Operations Research Quarterly, (26), 717-733.

Pergamon Press.

Lin, S. (1965) Computer Solutions of the Traveling Salesman Problem, Bell systems

Technologies Journal. 44,2245 – 2269.

Maekawa, K., Mori, N., Tamaki, H., Kita, H. & Nishikawa, Y. (1996). A genetic

solution for the traveling salesman problem by means of a thermodynamical

 70

selection rule. Proceedings of IEEE International Conference on Evolutionary

Computation, 529 – 534.

Merz, P. & Freisleben, B. (1997). Genetic local search for tsp: new results. Proceedings

of IEEE International Conference on Evolutionary Computation, 159 – 164.

 Merz, P., (2002) A comparison of memetic recombination operators for the traveling

salesman problem. Proceedings of the Genetic and Evolutionary Computation

Conference, 472 - 479.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N. , Teller, A.H. & Teller E., (1953).

Equations of state calculations by fast computing machines. Journal of Chemical

Physics, 21(6):1087-1092.

Michalewicz, Z. & Fogel, D.B. (2000). Michalewicz, Z. & Fogel, D.B (Eds.) How to

Solve It: Modern Heuristics. Germany Springer-Verlag.

Mladenovic, N. & Hansen, P. (1997). Variable neighborhood search. Computers and

Operations Research, 24, 1097–1100.

Mühlenbein, H. (1989). Parallel genetic algorithms, population genetics and

combinatorial optimization. In Schaffer, J. (Ed.) Proceedings on the Third

International Conference on Genetic Algorithms. pp. 416-421. Los Altos, CA:

Morgan Kaufmann Publishers.

Nagata, Y. & Kobayashi, S. (1997) Edge assembly crossover: a high-power genetic

algorithm for the traveling salesman problem. Proceedings of the 7th International

Conference on Genetic Algorithms, 450-457.

Nagata, Y. & Kobayashi, S., (1999). An analysis of edge assembly crossover for the

traveling salesman problem. IEEE International Conference on Systems, Man, and

Cybernetics, 628 – 633.

Nagata, Y., (2004). Criteria for designing crossovers for TSP. Congress on Evolutionary

Computation, 1465 – 1472

 71

Nguyen, H.D., Yoshihara, I. & Yasunaga, M. (2000). Modified edge recombination

operators of genetic algorithms for the traveling salesman problem. IECON 2000

26th Annual Conference of the IEEE Industrial Electronics Society. 2815-2820.

Osman, I. H. & Laporte, G., (1996). Metaheuristics: A bibliography. Annals of

Operations Research, 63: 511-623.

Potvin, J. Y., & Guertin, F. (1996). The clustered traveling salesman problem: A genetic

approach. (Eds.) Osman, I. H., Kelly, J. P., Meta-heuristics theory, and

applications (pp. 619-631). Boston: Kluwers Academic Publishers.

Pullan, W. (2003). Adapting the genetic algorithm to the travelling salesman problem.

The 2003 Congress on Evolutionary Computation, 1029 – 1035.

Punnen, A.P. (2002). The traveling Salesman Problem: Applications, Formulations and

Variations. The Traveling Salesman Problem and Its Variations (Ed. Gutin, G.,

Punnen, A.P.) Dordrecht, Kluwer Academic Publishers.

Ray, S. S., Bandyopadhyay, S. & Pal, S. K., (2004). New operators of genetic

algorithms for traveling salesman problem. Proceedings of the 17th International

Conference on Pattern Recognition.

Ray, S. S., Bandyopadhyay, S. & Pal, S.K., (2005). New genetic operators for solving

tsp: application to microarray gene ordering. Lecture notes in computer science,

3776, 605 – 610.

Reinelt, G (1996). The trevelling salesman problem: computational solutions for tsp

applications. Goos, G., Hartmanis, J.. (Eds.) Lecture Notes in Computer Science

Springer Verlag.

Reinelt, G. (2007). TSPLIB. Retrieved August 10th, 2007 from http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/

Rocha, M., Vilela C. & Neves, J. (2000) A study of order based genetic and

evolutionary algorithms in combinatorial optimization problems. proceedings:

intelligent problem solving. Methodologies and Approaches: 13th International

 72

Conference on Industrial and Engineering Applications of Artificial Intelligence

and Expert Systems. Lecture Notes in Computer Science. 601 – 611.

Ronald, S., Kirkby, S. & Eklund, P., (1997) Multi-chromosome mixed encodings for

heterogeneous problems. IEEE International Conference on Evolutionary

Computation.

Sipser, M. (1997). Introduction to the Theory of Computation. PWS-Kent, Belmont,

California.

Smitt, L.J. & Amini, M.M. (1998). Performance characteristics of alternative genetic

algorithmic approaches to the traveling salesman problem using path

representation: An empirical study. European Journal of Operational Research,

108 (3), 551-570.

Soak, S.M. & Ahn, B.H. (2004). New genetic crossover operator for the tsp. Artificial

Intelligence and Soft Computing - Lecture Notes in Computer Science, 481 – 485.

Sönmez, M. (2003). An Evolutionary Approach to TSP: Crossover with Conventional

Heuristics, MSc Thesis, Ankara, METU.

Starkweather, T., McDaniel, S., Whitley, C., Mathias, K. & Whitley, D., (1991). A

Comparison of Genetic Sequencing Operators, Proceedings of the Fourth

International Conference on Genetic Algorithms, 69 – 76.

Stützle,T., Grün,A ., Linke, S. & Rüttger,M., (2000) A comparison of nature inspired

heuristic on the traveling salesman problem, In Deb et al. (eds) In Proceeding of

PPSNVI, Sixth International Conference on Parallel Problem Solving from

Nature, 1917: 661-670

Tagawa, K., Kanzaki, Y., Okada, D., Inoue, K. & Haneda, H., (1998). A new metric

function and harmonic crossover for symmetric and asymmetric traveling

salesman problem. IEEE World Congress on Computational Intelligence, The

1998 IEEE International Conference on Evolutionary Computation Proceedings,

822- 827.

 73

Takenaka, Y. & Funabiki, N., (1998). An improved genetic algorithm using the convex

hull for traveling salesman problem. IEEE Transactions on Systems, Man, and

Cybernetics.

Ting, C.K., (2004). Improving edge recombination through alternate inheritance and

greedy manner. Lecture Notes in Computer Science, 210 – 219.

Tsai, H.K., Yang, J.M., Tsai, Y.F. & Kao, C.Y., (2003). Heterogeneous selection

genetic algorithm for traveling salesman problems. Engineering Optimization, 35

(3), 297 – 311.

Tsai, H.K., Yang, J.M., Tsai, Y.F. & Kao, C.Y., (2004a). An evolutionary approach for

large traveling salesman problems. IEEE Transactions on Systems, Man, and

Cybernetics – Part B: Cybernetics, 34 (4), 1718 – 1727.

Tsai, H.K., Yang, J.M., Tsai, Y.F. & Kao, C.Y. (2004b). Some issues of designing

genetic algorithms for traveling salesman problems. Soft Computing, 8, 689–697.

Tsai, H.K., Yang, J.M., Tsai, Y.F. & Kao, C.Y. (2004c). An evolutionary approach for

gene expression patterns. IEEE Transactions on Information Technology in

Biomedicine, 8(2), 1089-7771.

Wang, L., Maciejewski, A.A., Siegel, H.J. & Roychowdhury, V.P. (1998). A

comparative study of five parallel genetic algorithms using the traveling salesman

problem. Proceedings of the First Merged International Parallel Processing

Symposium and Symposium on Parallel and Distributed Processing, IEEE.

Wang, Y.P., Li, Y. H. & Dang, C.Y.,(2004). A novel globally convergent hybrid

evolutionary algorithm for traveling salesman problems. Proceedings of the Third

International Conference on Machine Learning and Cybernetics, 2485-2489.

Wang, X.,C, Cui, D.W., Wan, D. S. & Wang, L. (2006). A novel genetic algorithm

based on gene therapy theory. Transactions of the Institute of Measurement and

Control, 28 (3), 253- 262.

Wang, Y., Han, L., Li, Y. & Zhao, S. (2006). A new encoding based genetic algorithm

for the traveling salesman problem. Engineering Optimization, 38 (1), 1–13.

 74

Waslaw, C., (2002). A multilevel approach to the travelling salesman problem.

Operations Research, INFORMS, 862 – 877.

Watabe, H. & Kawaoka, T.,(2000). Application of multi-step GA to the traveling

salesman problem. Proceedings of Fourth International Conference on

Knowledge-Based Intelligent Engineering Systems and Allied Technologies.

White, C.M. & Yen, G. G. (2004), A hybrid evolutionary algorithm for traveling

salesman problem. CEC2004 Congress on Evolutionary Computation. 1473 -

1378.

Whiteley, D. (1989). The GENITOR algorithm and selection pressure: why rank--based

allocation of reproductive trials is best. Proceedings of the Third International

Conference on Genetic Algorithms, San Mateo, California, USA, 116-121.

Whitley, D. Starkweather, T. & D’Ann Fuquay (1989). Scheduling problems and

travelling salesman: the genetic edge recombination operator. Schaffer, J., (Ed.)

Proceedings on the Third International Conference on Genetic Algorithms. 133-

140. Los Altos, CA: Morgan Kaufmann Publishers.

Xiaoming, D., Runmin, Z., Rong, S., Rui, F. & Shao, H. (2002).Convergence properties

of non-crossover genetic algorithm. Proceedings of the 4~ World Congress on

Intelligent Control and Automation. 1822-1826.

Xuan, W., & Li, Y. (2005) Solving traveling salesman problem by using a local

evolutionary algorithm. IEEE International Conference on Granular Computing,

318 – 321.

Yan, X. S., Li, H., Cai, Z. H. & Kang, L. S., (2005). Fast evolutionary algorithm for

combinatorial optimization problems. Proceedings of the Fourth International

Conference On Machine Learning And Cybernetic, 3288 -3292.

Yang, R. (1997). Solving large travelling salesman problems with small population.

Genetic Algorithms in Engineering Systems: Innovations and Applications,

Conference Publication No. 466. IEEE.

 75

Yang, L. & Stacey, D. A. (2001) Solving the traveling salesman problem using the

enhanced genetic algorithm. Proceedings: Advances in Artificial Intelligence:

14th Biennial Conference of the Canadian Society for Computational Studies of

Intelligence, 307 – 316.

Zou, P., Zhou, Z., Chen, G, Yao, X. & Hefei, C.,(2004). A novel memetic algorithm

with random multi-local-search: a case study of TSP. Congress on Evolutionary

Computation, 2335 – 2340.

 76

APPENDICES

A. DETAILED TABLES FOR GENETIC ALGORITHMS FOR TSP AND

EXPERIMENT RESULTS

The tables and graphics of this appendix are provided in the CD appended at the back

cover. The CD includes folders containing data of all the runs for initial experiments,

initial experiments with alternating parents, further experiments, and the prots of the

most common edges using in convergence analysis. A fine containing details of the GA

applications on TSP electronically available in the literature is also given.

 77

 78

B. ANOVA RESULTS AND RESIDUAL PLOTS FOR INITIAL EXPERIMENTS

ANOVA Table for the Parameters
General Linear Model: Deviation versus Problem; Parents; ...

Factor Type Levels Values
Problem fixed (8) 1 2 3 4 5 6 7 8
Parents fixed (3) 2 3 6
Children fixed (2) 1 10
Etha fixed (3) 1,0 1,5 2,0
Replc. fixed (2) 1 2

Analysis of Variance for Deviation, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Problem 7 0,647442 0,671209 0,095887 540,84 0,000
Parents 2 0,010072 0,013079 0,006540 36,89 0,000
Children 1 0,490198 0,468050 0,468050 2639,99 0,000
Etha 2 0,032811 0,030376 0,015188 85,67 0,000
Replc. 1 0,061018 0,061012 0,061012 344,13 0,000
Parents*Children 2 0,000545 0,000466 0,000233 1,31 0,269
Parents*Etha 4 0,001947 0,001690 0,000423 2,38 0,049
Parents*Replc. 2 0,020516 0,020515 0,010257 57,86 0,000
Children*Etha 2 0,004488 0,004047 0,002023 11,41 0,000
Children*Replc. 1 0,007121 0,007127 0,007127 40,20 0,000
Etha*Replc. 2 0,001875 0,001874 0,000937 5,28 0,005
Parents*Child*Etha 4 0,001274 0,001272 0,000318 1,79 0,127
Parents*Child*Repl 2 0,000828 0,000828 0,000414 2,34 0,097
Parents*Etha*Replc. 4 0,000757 0,000757 0,000189 1,07 0,371
Children*Etha*Replc. 2 0,000854 0,000854 0,000427 2,41 0,090
Error 8601 1,524891 1,524891 0,000177
Total 8639 2,806638

 79

Residuals vs. Fits Plot

Normal Probability Plot of the Residuals

The residual and normality plots suggest tha the residuals show hetero-stochasticity and

the assumptions of ANOVA cannot be verified. More detailed analysis with some

transformation of the residuals in required.

Histogram of the Residuals

 80

C. AN EXAMPLE OF CHILD GENERATION OF NNX

The edges of parent I and parent II are used to generate the child given in Figure D.1.

The length of the tour represented by parent I is 287597 and the length of the tour

represented by parent II is 286918. The child generated by NNX has a length of 287648.

Figure D.1 represents both of the parent tours, and the child tour. The common edges on

the parents are given in the color of parent II. It can be seen that the child is generated

completely by the edges of the parents, thus trying to get the best edges in parents

results in a length worse than both of the parents.

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

X

Y

Parent I
Parent II
Child

Figure C.1 Plot of the parent I, parent II and child tours for pr1002

The length of the child generated is highly dependent on the starting node when the

child is being constructed from the union graph. When this specific parent pair is

considered, 159 out of the possible 1002 children does not take any edge from the

complete graph. None of these 159 children are better than any of the parents while 99

out of these 159 have a tour longer than both of the parents. 92 out of possible 1002

children result in a tour shorter than both of the parents, all taking edges from the

complete graph.

 81

 D. ANOVA RESULTS AND RESIDUAL PLOTS FOR FURTHER
EXPERIMENTS

The detailed results can be seen in the worksheets provided in the CD, at the back cover.

General Linear Model: Deviation versus File; Child; Mut 1; Mut 2; Replc

Factor Type Levels Values
Problem fixed (8) 1 2 3 4 5 6 7 8
Child fixed (4) 2 4 6 12
Mut 1 fixed (2) 1 2
Mut 2 fixed (2) 1 2
Replc fixed (2) 1 2

Analysis of Variance for Deviatio, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
File 7 0,2223711 0,2223711 0,0317673 570,80 0,000
Child 3 0,1031509 0,1031509 0,0343836 617,81 0,000
LEM 1 0,0139632 0,0139632 0,0139632 250,89 0,000
CIM 1 0,0001237 0,0001237 0,0001237 2,22 0,136
Replc 1 0,0000000 0,0000000 0,0000000 0,00 0,985
Child * LEM 3 0,0029806 0,0029806 0,0009935 17,85 0,000
Child * CIM 3 0,0002519 0,0002519 0,0000840 1,51 0,210
Child * Replc 3 0,0001166 0,0001166 0,0000389 0,70 0,553
LEM * CIM 1 0,0000021 0,0000021 0,0000021 0,04 0,844
LEM * Replc 1 0,0001342 0,0001342 0,0001342 2,41 0,121
CIM * Replc 1 0,0000157 0,0000157 0,0000157 0,28 0,595
Child * LEM * CIM 3 0,0010367 0,0010367 0,0003456 6,21 0,000
Child * LEM * Replc 3 0,0000415 0,0000415 0,0000138 0,25 0,862
Child * CIM * Replc 3 0,0000333 0,0000333 0,0000111 0,20 0,897
LEM * CIM * Replc 1 0,0000003 0,0000003 0,0000003 0,00 0,946
Error 7644 0,4254173 0,4254173 0,0000557
Total 7679 0,7696391

 82

Residuals vs. Fits Plot

Normal Probability Plot of the Residuals

Histogram of the Residuals

 83

 E. CONVERGENCE ANALYSIS OF pr1002

This Appendix concentrates on the convergence behavior of the NNX on pr1002 The

problem shows a pattern, where the same basic structure is repeated three times. Figure

E.1 demonstrates the structure and the optimal solution of the problem.

Figure E.1 Optimal solution

Two representative solutions are selected among 10 different replications results (Table

3.8). The first replication (S1) is a relatively poor solution; the second replication (S2)

gives the results of an average solution when LEM and CIM is applied.

All of the figures in the Appendix represent the results obtained during 40,000

generations. These figures are based on the averages taken in each 100 generation

interval (i.e. 400 different measurements are plotted in each figure).

The population size is kept as 200. The first section demonstrates the graphical results

of percentage deviation for different settings of the EA. The percentage of individuals

that contain edges taken from the complete graph and percentage of replacements per

generation are reported with the average edge difference among individuals in the

following section. The performance of mutations is demonstrated by the figures of

 84

successive mutations in the next section E.3 and E.4. This appendix ends with

percentages of successive mutation trials and percentages of optimal edges covered by

the individuals.

Every section contains results of three different configurations for both of the

replications. The fist one contains NNX without any mutation. The second contains

NNX with LEM and CIM mutations applied with equal probabilities. The last one is

REM and CIM combination again with equal probabilities. The results of LEM and

REM are expected to give similar results as LEM is a special of REM and the edges

these mutation operators bring in are similar.

E.1. Deviation from the Optimal

The percentage deviation of the best, average, and worst individuals in the population

are plot with respect to the number of generations.

There is a sudden decrease in the first 2,000 generations (Figures E.2, E.4, E.6, E.8,

E.10, E.12), so the convergences after 2,000th generations are plotted in separate Figures

to ease detailed investigation. When no mutation is present, the algorithm is fully

converged after 17,000th generation (Figures E.3, E.5); the population average is very

close to population best after the 12,000th generation. When LEM and CIM pair is

considered, the algorithm cannot be considered (Figures E.7, E.9) as converged at all, as

there is a significant difference between the deviations of the best and average

individuals at the end of the runs. Improvements are observed at 39,000th generation

(Figure E.7). Moreover, 40,000 generations are larger than twice the number of

generations required for the convergence of S1 without the mutation operators. With

REM and CIM combination, the rate of population average convergence slows after

7000th generation, and gets faster again after 17,000th generation (Figures E.11, E.13).

The population average converge the population best after 17,000th generation forming

an S-shaped curve. There are minor improvements after 30,000th generation. The

algorithm can be assumed as fully converged after 37,000th generations since the

population average is very close to the population best. The REM and CIM combination

converges at 40,000 iterations to a lower value compared to the pure NNX. LEM and

CIM combination still has room for improvement, as the population average is not close

to the population best.

 85

0%

50000%

100000%

150000%

200000%

250000%

300000%

0 5 10 15 20 25 30 35

Generation (1000)

D
ev

ia
tio

n
(%

)

Best
Average
Worst

Figure E.2 Percent deviation vs. generations of pure NNX for S1

0%

1000%

2000%

3000%

4000%

5000%

6000%

2 5 8 11 14 17 20 23 26 29 32 35 38

Generation (1000)

D
ev

ia
tio

n
(%

)

Best
Average
Worst

Figure E.3 Percent deviation vs. generations (after 2000) of pure NNX for S1

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

Generation (1000)

De
vi

at
io

n
(%

)

Best
Average
Worst

Figure E.4 Percent deviation vs. generations of pure NNX for S2

 86

0

10

20

30

40

50

60

2 5 8 11 14 17 20 23 26 29 32 35 38

Generation (1000)

D
ev

ia
tio

n
(%

)

Best
Average
Worst

Figure E.5 Percent deviation vs. generations (after 2000) of pure NNX for S2

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

Generation (1000)

De
vi

at
io

n
(%

)

Best
Average
Worst

Figure E.6 Percent deviation vs. generations of LEM and CIM for S1

0

5

10

15

20

25

30

35

40

45

2 5 8 11 14 17 20 23 26 29 32 35 38

Generation (1000)

D
ev

ia
tio

n
(%

)

Best
Average
Worst

Figure E.7 Percent deviation vs. generations (after 2000) of LEM and CIM for S1

 87

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

Generation (1000)

De
vi

at
io

n
(%

)

Best
Average
Worst

Figure E.8 Percent deviation vs. generations of LEM and CIM for S2

0

5
10

15

20

25
30

35

40
45

50

2 5 8 11 14 17 20 23 26 29 32 35 38

Generation (1000)

D
ev

ia
tio

n
(%

)

Best
Average
Worst

Figure E.9 Percent deviation vs. generations (after 2000) of LEM and CIM for S2

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

Generation (1000)

De
vi

at
io

n
(%

)

Best
Average
Worst

Figure E.10 Percent deviation vs. generations of REM and CIM for S1

 88

0

5
10

15

20

25
30

35

40
45

50

2 5 8 11 14 17 20 23 26 29 32 35 38

Generation (1000)

D
ev

ia
tio

n
(%

)

Best
Average
Worst

Figure E.11 Percent deviation vs. generations (after 2000) of REM and CIM for S1

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

Generation (1000)

De
vi

at
io

n
(%

)

Best
Average
Worst

Figure E.12 Percent deviation vs. generations of REM and CIM for S2

0

10

20

30

40

50

60

2 5 8 11 14 17 20 23 26 29 32 35 38

Generation (1000)

D
ev

ia
tio

n
(%

)

Best
Average
Worst

Figure E.13 Percent deviation vs. generations (after 2000) of REM and CIM for S2

E.2. New Edge Introduction and Replacement

Percentage of individuals that contain edges borrowed from complete graph and

percentage of replacements can be seen in the following figures. The number of

 89

replacements is the average number of replacements per generation, calculated in every

100 generations. The percentages of replacement an be used to explain the convergence

of population average to the best solution, while edges borrowed from complete

displays the exploratory power of that NNX configuration.

In pure NNX (Figures E.14, E.15), the replacement ratio is very high at the initial stages

of the algorithm where the very bad edges that are generated randomly in the initial

population are eliminated. There is a decrease between 5,000th and 10,000th in the

percentage of replacements. At this stage, it becomes relatively hard to find good

individuals using the edges present in the individuals. When an individual with

relatively superior fitness is found, the replacement ratio increases again. This

penetration of the good edges generated by NNX to the whole population causes the

increase in the average number of replacement per generation.

With LEM and CIM combination (Figures E.16, E.17), the replacement does not

increase back to 100% following a drop after the 5,000th generation. Replacement

continues at a rate around 15%. The convergence of the population is spread in time,

thus the edges from complete graph continue to come up as long as the algorithm

continues.

REM and CIM (Figures E.18, E.19) combination preserves the edge replacement

characteristic of pure NNX as the average number of replacements per generation

decreases after 5,000th generation, but average increases back after 15,000th generation

until 30,000th generation (Figure E.19). The replacement ratio never reaches 100%

again, but the second peak is obvious. S2 results in two peaks after the initial decrease in

percentage of replacements. It can be seen that the population average converges the

population best in the period of the second peak (between 15,000th and 20,000th

generations) from Figure E.13. These peaks correspond to the points where the number

of most popular edges in the population changes according to the results of Figure E.41.

There are edges borrowed from the complete graph until 17,000th generation with REM

and CIM (Figure E.19), which ended at 12,000th generation in no mutation case (Figure

E.15).

 90

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generations (1000)

Ed
ge

s
fro

m
 C

G
 (%

)

0
10
20
30
40
50
60
70
80
90
100

Re
pl

ac
em

en
t (

%
)

Edges from CG Replacement (%)

Figure E.14 Individuals that contain edges from complete graph and average number of
replacements over generations for S1 with pure NNX

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generations (1000)

Ed
ge

s
fro

m
 C

G
 (%

)

0
10
20
30
40
50
60
70
80
90
100

Re
pl

ac
em

en
t (

%
)

Edges from CG Replacement (%)

Figure E.15 Individuals that contain edges from complete graph and average number of

replacements over generations for S2 with pure NNX

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generations (1000)

Ed
ge

s
fro

m
 C

G
 (%

)

0
10
20
30
40
50
60
70
80
90
100

Re
pl

ac
em

en
t (

%
)

Edges from CG Replacement (%)

Figure E.16 Individuals that contain edges from complete graph and average number of

replacements over generations for S1 with LEM and CIM

 91

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generations (1000)

Ed
ge

s
fro

m
 C

G
 (%

)

0
10
20
30
40
50
60
70
80
90
100

Re
pl

ac
em

en
t (

%
)

Edges from CG Replacement (%)

Figure E.17 Individuals that contain edges from complete graph and average number of

replacements over generations for S2 with LEM and CIM

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generations (1000)

Ed
ge

s
fro

m
 C

G
 (%

)

0
10
20
30
40
50
60
70
80
90
100

Re
pl

ac
em

en
t (

%
)

Edges from CG Replacement (%)

Figure E.18 Individuals that contain edges from complete graph and average number of

replacements over generations for S1 with REM and CIM

 92

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generations (1000)

Ed
ge

s
fro

m
 C

G
 (%

)

0
10
20
30
40
50
60
70
80
90
100

Re
pl

ac
em

en
t (

%
)

Edges from CG Replacement (%)

Figure E.19 Individuals that contain edges from complete graph and average number of

replacements over generations for S2 with REM and CIM

E.3. Node Insertion of CIM

The nodes inserted by CIM per generation are plotted in the Figures C.20 – 23. CIM is

experimented with LEM and REM. The nodes inserted by LEM and CIM (Figures E.20,

E.21) combination vary around 0.5 per replacement and 0.01 per generation after the

5,000th generation. When REM is used with CIM (Figures E.22, E.23), the nodes

inserted per generation loose importance after 25,000th generation, and increase

significantly again after 32,500th iteration. Nodes inserted per generation are similar

when both LEM and REM are used.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

0 5 10 15 20 25 30 35

Generation (1000)

N
od

e
In

se
rt

ed

Node Insertion per Replacement Node Insertion per Generation

Figure E.20 Nodes inserted using CIM with LEM for S1

 93

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

0 5 10 15 20 25 30 35

Generation (1000)

N
od

e
In

se
rt

ed

Node Insertion per Replacement Node Insertion per Generation

Figure E.21 Nodes inserted using CIM with LEM for S2

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

0 5 10 15 20 25 30 35

Generation (1000)

N
od

e
In

se
rt

ed

Node Insertion per Replacement Node Insertion per Generation

Figure E.22 Nodes inserted using CIM with REM for S1

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

0 5 10 15 20 25 30 35

Generation (1000)

No
de

 In
se

rte
d

Node Insertion per Replacement Node Insertion per Generation

Figure E.23 Nodes inserted using CIM with REM for S2

 94

E.4. Edge Exchanges

Edges exchanged are plotted in Figures E. 24 – 25. LEM and REM are both combined

with CIM in all alternatives. The number of edges exchanged per replacement using

LEM (Figures E.24, E.25) varies around 1, and on average 0.1 edge is replaced in each

generation. On the other hand, the number of edges exchanged per replacement varies

around 2.5 until 12,000th generation when REM is used (Figures E.26, E.27). After

12,000th generation, the average number of edges exchanged per replacement decreases

to 0.5. Average number of edges inserted per replacement looses importance after

20,000th generation. The figures suggest that concentrating on the longest edge limits

the power of edge exchange. The REM has a higher number of edges exchanged per

generation and the deviation from the optimal in the resulting population is less when

REM is used.

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35

Generation (1000)

Ed
ge

s
Ex

ch
an

ge
d

Edge Exchange per Replacement Edge Exchange per Generation

Figure E.24 Edges exchanged by LEM for S1

 95

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35

Generation (1000)

E
dg

es
 E

xc
ha

ng
ed

Edge Exchange per Replacement Edge Exchange per Generation

Figure E.25 Edges exchanged by LEM for S2

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35

Generation

E
dg

es
 E

xc
ha

ng
ed

Edge Exchange per Replacement Edge Exchange per Generation

Figure E.26 Edges exchanged by REM for S1

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35

Generation (1000)

Ed
ge

s
Ex

ch
an

ge
d

Edge Exchange per Replacement Edge Exchange per Generation

Figure E.27 Edges exchanged by REM for S2

 96

E.5. Optimal Edge Discovery and Preservation

A powerful genetic algorithm must have the ability to discover optimal edges and keep

them in the population. Figures E. 28 – 41 are prepared to measure the ability to

discover new edges and to keep them within the population.

The edge difference among individuals is plotted with respect to the number of

generations. The edge difference is calculated using the most common 1002 edges in the

population. The percent of edges that are not in the popular list on each individual are

used as the difference measure. The fact that most popular 1002 edges will give the

common tour in a fully converged population is the main rationale behind this

difference measure. The individual with minimum percent of edges different from the

most popular edges, the average percent of different edges, and individual with the

maximum percentage of edges different from the most popular edges are plotted in

Figures E.28, E.32, E.34, E.36 and E.38. The percentage of edges that are present in the

optimal solution but are not included in each individual is plot in Figures E.31, E.33,

E.35, E.37, and E.39. The individual that contains minimum and maximum number of

optimal edges are plotted with the average number of optimal edges missed in these

figures. The inflection points correspond to point where the most popular edges change.

For instance in the NNX without mutation with S1 (Figure E.28), the slope of the

average difference changes between 3000th and 4000th generations. The edge difference

decreases suddenly parallel to the edges borrowed from the complete graph (Figure

E.14); the inflection point at 4000 is possibly due to a change in the most popular edges.

The plots of the most popular 1002 edges at 30,000th and 4,000th generations can be seen

in Figures E.29 and E.30.

 In the edge difference percentages, there are 3 different points in which the most

popular edges change, the effect of these changes can be the possible reason of the small

fluctuations in the average number of different edges per individual. Moreover, the edge

difference decreases fast for 3,000 generations, and then the difference rate decreases

steadily until 10,000. The individual with maximum difference suddenly decreases at

13,000, and then a 1% increase is observed. The result of this sudden decrease is the

change in the most popular edges.

 97

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generation (1000)

Ed
ge

 D
iff

er
en

ce
 (%

)

Min Average Max

Figure E.28 Edge difference among individuals with pure NNX for S1

Optimal Coordinates Common Edges

Figure E.29 Most popular edges and optimal edges for pr1002 at 3,000th generation

 98

Optimal Coordinates Common Edges

Figure E.30 Most popular edges and optimal edges for pr1002 at 4,000th generation

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

0 5 10 15 20 25 30 35

Generation (1000)

N
on

-O
pt

. E
dg

es
 (%

)

Min Average Max

Figure E.31 Percent of optimal edges not covered by individuals with pure NNX for S1

 99

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generation (1000)

Ed
ge

 D
iff

er
en

ce
 (%

)

Min Average Max

Figure E.32 Edge difference among individuals with pure NNX for S1

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generations (1000)

N
on

-O
pt

. E
dg

es
 (%

)

Min Average Max

Figure E.33 Percent of optimal edges not covered by individuals with pure NNX for S2

 100

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generation (1000)

Ed
ge

 D
iff

er
en

ce
 (%

)

Min Average Max

Figure E.34 Edge difference among individuals using LEM and CIM for S1

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generation (1000)

N
on

-O
pt

. E
dg

es
 (%

)

Min Average Max

Figure E.35 Percent of optimal edges not covered by individuals with using LEM and

CIM for S1

 101

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generation (1000)

Ed
ge

 D
iff

er
en

ce
 (%

)

Min Average Max

Figure E.36 Edge difference among individuals using LEM and CIM for S2

0
100
200
300
400
500
600
700
800
900

1000

0 5 10 15 20 25 30 35

Generation (1000)

N
on

-O
pt

. E
dg

es
 (%

)

Min Average Max

Figure E.37 Percent of optimal edges not covered by individuals with using LEM and

CIM for S2

 102

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generation (1000)

Ed
ge

 D
iff

er
en

ce
 (%

)

Min Average Max

Figure E.38 Edge difference among individuals using REM and CIM for S1

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generation (1000)

N
on

-O
pt

. E
dg

es
 (%

)

Min Average Max

Figure E.39 Percent of optimal edges not covered by individuals with using REM and

CIM for S1

 103

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generation (1000)

Ed
ge

 D
iff

er
en

ce
 (%

)

Min Average Max

Figure E.40 Edge difference among individuals using REM and CIM for S2

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

Generation (1000)

N
on

-O
pt

. E
dg

es
 (%

)

Min Average Max

Figure E.41 Percent of optimal edges not covered by individuals with using REM and

CIM for S2

 104

 F .RESULTS OF PAIRED T-TESTS FOR TSPB

Results for All Problems

Paired T-Test and CI: GENI versus Best of our GA

Paired T for GENI - Best

 N Mean StDev SE Mean
GENI 25 2035 792 158
Best 25 1986 779 156
Difference 25 48,55 18,20 3,64

95% CI for mean difference: (41,04; 56,06)
T-Test of mean difference = 0 (vs not = 0): T-Value = 13,34 P-Value = 0,000

Paired T-Test and CI: GENIUS versus Best of our GA

Paired T for GENIUS - Best

 N Mean StDev SE Mean
GENIUS 25 1998 779 156
Best 25 1986 779 156
Difference 25 11,70 11,66 2,33

95% CI for mean difference: (6,89; 16,51)
T-Test of mean difference = 0 (vs not = 0): T-Value = 5,02 P-Value = 0,000

Paired T-Test and CI: GEN- VNS versus Best of our GA

Paired T for GEN- VNS - Best

 N Mean StDev SE Mean
GEN- VNS 25 1990 776 155
Best 25 1986 779 156
Difference 25 3,82 11,89 2,38

95% CI for mean difference: (-1,09; 8,72)
T-Test of mean difference = 0 (vs not = 0): T-Value = 1,60 P-Value = 0,122

Paired T-Test and CI: SOFM versus Best of our GA

Paired T for SOFM - Best

 N Mean StDev SE Mean
SOFM 25 2017 780 156
Best 25 1986 779 156
Difference 25 31,29 16,58 3,32

95% CI for mean difference: (24,45; 38,14)
T-Test of mean difference = 0 (vs not = 0): T-Value = 9,43 P-Value = 0,000

Paired T-Test and CI: SOFM* versus Best of our GA

Paired T for SOFM* - Best

 N Mean StDev SE Mean
SOFM* 25 1996 778 156
Best 25 1986 779 156
Difference 25 9,78 11,59 2,32

95% CI for mean difference: (5,00; 14,56)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4,22 P-Value = 0,000

 105

Paired T-Test and CI: GENI versus Avg of our GA

Paired T for GENI - Avg

 N Mean StDev SE Mean
GENI 25 2035 792 158
Avg 25 1989 781 156
Difference 25 45,76 16,47 3,29

95% CI for mean difference: (38,96; 52,55)
T-Test of mean difference = 0 (vs not = 0): T-Value = 13,89 P-Value = 0,000

Paired T-Test and CI: GENIUS versus Avg of our GA

Paired T for GENIUS - Avg

 N Mean StDev SE Mean
GENIUS 25 1998 779 156
Avg 25 1989 781 156
Difference 25 8,90 11,75 2,35

95% CI for mean difference: (4,05; 13,75)
T-Test of mean difference = 0 (vs not = 0): T-Value = 3,79 P-Value = 0,001

Paired T-Test and CI: GEN- VNS versus Avg of our GA

Paired T for GEN- VNS - Avg

 N Mean StDev SE Mean
GEN- VNS 25 1990 776 155
Avg 25 1989 781 156
Difference 25 1,02 12,68 2,54

95% CI for mean difference: (-4,22; 6,25)
T-Test of mean difference = 0 (vs not = 0): T-Value = 0,40 P-Value = 0,691

Paired T-Test and CI: SOFM versus Avg of our GA

Paired T for SOFM - Avg

 N Mean StDev SE Mean
SOFM 25 2017 780 156
Avg 25 1989 781 156
Difference 25 28,50 16,33 3,27

95% CI for mean difference: (21,76; 35,24)
T-Test of mean difference = 0 (vs not = 0): T-Value = 8,73 P-Value = 0,000

Paired T-Test and CI: SOFM* versus Avg of our GA

Paired T for SOFM* - Avg

 N Mean StDev SE Mean
SOFM* 25 1996 778 156
Avg 25 1989 781 156
Difference 25 6,98 11,79 2,36

95% CI for mean difference: (2,12; 11,85)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2,96 P-Value = 0,007

 106

Results for problems of size 500 and less
Paired T-Test and CI: GENI versus AVG of our GA

Paired T for GENI - AVG

 N Mean StDev SE Mean
GENI 20 1711 486 109
AVG 20 1668 474 106
Difference 20 42,54 15,01 3,36

95% CI for mean difference: (35,51; 49,56)
T-Test of mean difference = 0 (vs not = 0): T-Value = 12,67 P-Value = 0,000

Paired T-Test and CI: GENIUS versus AVG of our GA

Paired T for GENIUS - AVG

 N Mean StDev SE Mean
GENIUS 20 1679 477 107
AVG 20 1668 474 106
Difference 20 10,85 9,81 2,19

95% CI for mean difference: (6,26; 15,44)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4,94 P-Value = 0,000

Paired T-Test and CI: GENIUS- VNS versus AVG of our GA

Paired T for GEN- VNS - AVG

 N Mean StDev SE Mean
GEN- VNS 20 1673 476 106
AVG 20 1668 474 106
Difference 20 4,67 10,26 2,29

95% CI for mean difference: (-0,13; 9,47)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2,04 P-Value = 0,056

Paired T-Test and CI: SOFM versus AVG of our GA

Paired T for SOFM - AVG

 N Mean StDev SE Mean
SOFM 20 1697 475 106
AVG 20 1668 474 106
Difference 20 29,12 13,91 3,11

95% CI for mean difference: (22,60; 35,63)
T-Test of mean difference = 0 (vs not = 0): T-Value = 9,36 P-Value = 0,000

Paired T-Test and CI: SOFM* versus AVG of our GA

Paired T for SOFM* - AVG

 N Mean StDev SE Mean
SOFM* 20 1677 477 107
AVG 20 1668 474 106
Difference 20 9,37 10,45 2,34

95% CI for mean difference: (4,48; 14,26)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4,01 P-Value = 0,001

 107

Paired T-Test and CI: GENI versus BEST of our GA

Paired T for GENI - BEST

 N Mean StDev SE Mean
GENI 20 1711 486 109
BEST 20 1666 472 106
Difference 20 44,44 16,13 3,61

95% CI for mean difference: (36,90; 51,99)
T-Test of mean difference = 0 (vs not = 0): T-Value = 12,33 P-Value = 0,000

Paired T-Test and CI: GENIUS versus BEST of our GA

Paired T for GENIUS - BEST

 N Mean StDev SE Mean
GENIUS 20 1679 477 107
BEST 20 1666 472 106
Difference 20 12,76 10,19 2,28

95% CI for mean difference: (7,99; 17,53)
T-Test of mean difference = 0 (vs not = 0): T-Value = 5,60 P-Value = 0,000

Paired T-Test and CI: GENIUS- VNS versus BEST of our GA

Paired T for GEN- VNS - BEST

 N Mean StDev SE Mean
GEN- VNS 20 1673 476 106
BEST 20 1666 472 106
Difference 20 6,58 10,37 2,32

95% CI for mean difference: (1,73; 11,43)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2,84 P-Value = 0,011

Paired T-Test and CI: SOFM versus BEST of our GA

Paired T for SOFM - BEST

 N Mean StDev SE Mean
SOFM 20 1697 475 106
BEST 20 1666 472 106
Difference 20 31,02 14,35 3,21

95% CI for mean difference: (24,31; 37,74)
T-Test of mean difference = 0 (vs not = 0): T-Value = 9,67 P-Value = 0,000

Paired T-Test and CI: SOFM* versus BEST of our GA

Paired T for SOFM* - BEST

 N Mean StDev SE Mean
SOFM* 20 1677 477 107
BEST 20 1666 472 106
Difference 20 11,28 10,86 2,43

95% CI for mean difference: (6,19; 16,36)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4,64 P-Value = 0,000

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	REVIEW OF TSP(B) SOLUTION TECHNIQUES WITH AN EMPHESIS ON GEN
	Solution Methods for TSP
	Exact Methods
	Heuristic Methods
	Metaheuristic Methods

	Genetic Algorithms for TSP
	Crossover and Mutation Operators for TSP
	Crossover Operators Preserving Position or Order of Cities
	Crossover Operators Preserving Edges
	Mutation Operators

	GA Applications on TSPLIB Instances

	CHAPTER 3
	DEVELOPMENT OF THE EVOLUTIONARY ALGORITHM
	Nearest Neighbor Crossover (NNX) with Multiple Parents
	Initial Experiments with NNX
	Parameter Settings
	Alternative Initial Population Generation
	Alternative Crossover (NNX-a)
	Results and Discussion of the Initial Experiments

	Mutation Operators
	Longest Edge Mutation (LEM)
	Random Edge Mutation (REM)
	Cheapest Insertion Mutation (CIM)

	Further Experiments with Mutation
	Parameter Settings for Further Experiments
	Results of Further Experiments

	Discussion and Convergence Analysis
	Convergence Analysis of pr1002

	The Final Algorithm
	Experimental Results for Large Problems

	CHAPTER 4
	TSP WITH BACKHAULS
	CHAPTER 5
	CONCLUSION
	REFERENCES
	APPENDICES
	A. DETAILED TABLES FOR GENETIC ALGORITHMS FOR TSP AND EXPERI
	B. ANOVA RESULTS AND RESIDUAL PLOTS FOR INITIAL EXPERIMENTS
	C. AN EXAMPLE OF CHILD GENERATION OF NNX
	D. ANOVA RESULTS AND RESIDUAL PLOTS FOR FURTHER EXPERIMENTS
	E. CONVERGENCE ANALYSIS OF pr1002
	F .RESULTS OF PAIRED T-TESTS FOR TSPB

