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ABSTRACT 
 
 

MODELING OF GROUND-BORNE VIBRATION 
FROM UNDERGROUND RAILWAY SYSTEMS 

 
 
 

Sarıgöl, Melih 

M.Sc., Department of Mechanical Engineering 

Supervisor      : Prof. Dr. Mehmet Çalışkan 

 

August 2007, 97 pages 
 
 
 
 

Ground-borne vibration from underground rail vehicles is studied 

analytically. A previously developed model by J.A.Forrest and 

H.E.M.Hunt[24,25] is modified to account for different track and vehicle 

models. The tunnel is modeled as infinite cylindrical shell surrounded by 

viscoelastic soil. The track is coupled to the tunnel with supports of 

complex stiffness. The rails, which are modeled as infinite Euler beams, 

are supported by discrete sleepers with regular spacing, and railpads with 

complex stiffness. A modified hysteretic damping model for moving loads is 

applied to soil. Linearized Hertzian contact spring is included between the 

wheel and the rail. The solution is obtained in frequency domain using 

random process theory. Effects of improvements in the model are 

graphically presented to enable comparison with the previously developed 

model and measurements from literature.  

 
 
 
 
 

Keywords: ground-borne vibration, underground rail vehicles, random 
process theory 
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ÖZ 
 
 

YER ALTI RAYLI SİSTEMLERİNİN TİTREŞİM 
MODELLENMESİ 

 
 

 
Sarıgöl, Melih 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi          : Prof. Dr. Mehmet Çalışkan 

 
Ağustos 2007, 97 sayfa 

 
 

 

 

Bu çalışma çerçevesinde yer altı raylı sistemlerinden yayılan ve toprak 

yoluyla taşınan titreşim analitik olarak modellenmiştir. Daha önce Forrest 

ve Hunt tarafından geliştirilen model, farklı hat ve araç modellerine uygun 

olacak biçimde geliştirilmiştir. Tünel, visko-elastik toprak ortamı ile çevrilmiş 

sonsuz silindirik kabuk şeklinde modellenmiştir. Hat tünele kompleks 

esneklik katsayısına sahip yatak ile bağlanmıştır. Sonsuz Euler kirişleri 

şeklinde modellenen raylar, düzenli aralıklarla yerleştirilmiş traversler ve 

pedler sayesinde desteklenmiştir. Toprak modeline hareketli yükler için 

geliştirilmiş olan yapısal sönümleme modeli uygulanmıştır. Ayrıca modele 

yük ile hat arasında doğrusal Hertz yayı da eklenmiştir. Çözüme frekans 

alanında rasgele proses teorisi uygulanarak ulaşılmıştır. Modelde yapılan 

bütün değişiklikler, değişikliklerin etkilerinin izlenmesi amacıyla grafik 

yoluyla ayrı ayrı verilmiştir. 

 

Anahtar Kelimeler: toprak yoluyla taşınan titreşim, yer altı raylı sistemleri, 

rasgele proses teorisi   

 
 
 

 
 



 vi

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

To My Parents



 vii

 

ACKNOWLEDGMENTS 

 

 

 

The author wishes to thank deeply to his supervisor Prof.Dr. Mehmet 

Çalışkan for his guidance and open-minded approach on the subject, 

which were inspiring throughout the thesis process.  

The author also owes many thanks for technical assistance of Mr Egemen 

Varlı for his guidance in development of MathLab code and RAYTEK 

LTD.ŞTİ for their support during the studies associated with the thesis. 

 

 

 
 



 viii

 
 

TABLE OF CONTENTS 

 
 

 
PLAGIARISM........................................................................................……………… iii

ABSTRACT........................................................................................………………... iv

ÖZ........................................................................................…………………………... v

DEDICATION........................................................................................……………… vi

ACKNOWLEDGMENTS........................................................................................…. vii

TABLE OF CONTENTS........................................................................................….. viii

LIST OF TABLES........................................................................................…………. x

LIST OF FIGURES........................................................................................……….. xi

NOMENCLATURE........................................................................................………... xiii

CHAPTERS 

 1. INTRODUCTION.......................................................................................... 1

 2. LITERATURE REVIEW................................................................................. 3

 2.1. Problem Areas.....……………………………………………………..…. 3

 2.2. Modeling............................................................................................. 5

 2.3. Vehicle Models.....……………………………...…….….………………. 6

  2.3.1. Wheelset Models ……………………..…………………….……... 10

  2.3.1.1. Multibody Models ………………….……………………….. 10

  2.3.1.2. Continuum Models........................................................… 11

  2.3.1.3. Finite Element Models. ………............….………………… 11

  2.3.2. Models of Car Body and Bogie. ………………………………….. 11

 2.4. Dynamic Track Models…………………………..………………………. 12

  2.4.1. Track Structures and Components. ……………………………... 12

  2.4.2. Rails…………………………………………………………………. 13

 2.5. Rail Fastening System…………………………………………………… 16

 2.6. Sleeper models…………………………………………………………… 18

 2.7. Ballast and substrate…………………………………………………….. 19

 2.8. Floating slab………………………………………………………………. 22

 2.9. The complete track model………………………………………………. 24

 2.10. Tunnel……………………………………………………………………. 25

 2.11 Contact modeling………………………………………………………... 28

 2.12 Excitation modeling……………………………………………………… 32

  2.12.1 Vehicle Disturbances……………………………………………… 32



 ix

  2.12.2 Wheel and rail discontinuities……………………………………. 32

  2.12.3 Track irregularities………………………………………………… 34

 3. ORIGINAL MODEL ………………...………………………………. ………….. 36

3.1. Cylindrical Shell Equations……………………………………………… 36

3.2. Elastic Continuum Equations…………………………………………… 39

3.3. Applied load………………………………………………………….. 45

3.4. Modeling a thin-walled cylinder with the elastic continuum theory….. 46

3.5. Modeling a tunnel buried in soil………………………………………… 47

3.6. Adding the slab beam to the track model……………………………… 49

3.7. Adding the rail beam……………………………………………………... 53

3.8. Adding the axle masses to the complete track model………………... 54

  3.9. Random process theory applied to the full-track model……………… 56

 4. MODIFIED MODEL ……………………………………………………………... 60

4.1. Track Model………………………………………………………………. 61

4.2. Modified hysteretic damping model…………………………………….. 63

 4.2.1. Modified hysteretic damping……………………………………… 64

4.3 Vehicle model and Hertz contact………………………………………... 65

 5. RESULTS AND DISCUSSION…………………………………………………. 68

5.1 Parametric Study………………………………………………………….. 68

 5.1.1 Track model…………………………………………………………. 72

 5.1.2 Modified damping model…………………………………………… 72

 5.1.3. Modified vehicle model and Hertz contact…………….………… 73

 5.1.4. The complete modified model…………………………………….. 74

5.2 Discussion…………………………………………………………………. 77

 6. CONCLUSIONS………………………………………………………………….. 82

REFERENCES……………………………………………………………………… 84

APPENDICES 

A. SHELL AND CONTINUUM COEFFICIENTS…………………………………. 94

 
 
 
 
 
 
 
 
 



 x

 

 

LIST OF TABLES 

 

 

 
Table 1. Problem areas……………………………………………………………………. 4

Table 2. Degree-of-freedoms of wagon components used in Sun’s work…………… 10

Table 3. Effect of subway structure type on tunnel vibration levels………………….. 25

Table 4. Harmonic excitation sources…………………………………………………… 33

Table 5. Impulse excitation sources……………………………………………………… 33

Table 6. Values of the unevenness a and waviness b of vertical railway track 

irregularity for three different conditions…………………………………………………. 

 

35

Table 7. Differences between the models………………………………………………. 60

Table 8. Parameters to model the tunnel surrounded by soil…………………………. 68

Table 9. Parameters for rails, slab beam and sleepers………………………………... 69

Table 10 Parameters for the vehicle model……………………………………………... 69

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xi

 

 

LIST OF FIGURES 

 

 

 
Figure 1. The sub-systems contained in the complete model………………………… 5

Figure 2. Rail vehicle………………………………………………………………………. 7

Figure 3.10 degree-of-freedom vehicle model………………………………………….. 9

Figure 4. Different track types: ballasted track (left) and rigid track (right)…………... 12

Figure 5. A differential beam element……………………………………………………. 14

Figure 6. An infinite beam on viscoelastic foundation…………………………………. 15

Figure 7. Wave propagation modes of a UIC 60 rail…………………………………… 16

Figure 8. Rail fastening systems…………………………………………………………. 17

Figure 9. Ballast and substrate models………………………………………………….. 23

Figure 10. The first tunnel model developed by Degrande and the  first in-plane 

and out-of-plane modes of the reference cell of the Bakerloo line tunnel…………… 

 

27

Figure 11. The second tunnel model developed by Degrande and the  first in-plane 

and  out-of-plane modes of the reference cell of the RER B tunnel………………….. 

 

28

Figure 12. The moving irregularity wheel/rail interaction model………………………. 30

Figure 13. Coordinate system used for the thin-walled cylindrical-shell theory…….. 37

Figure 14. In plane ring modes varying according to n, the number of waves 

developed around the circumference……………………………………………………. 

 

39

Figure 15. Coordinate system used for the theory of an elastic continuum with 

cylindrical geometry……………………………………………………………………….. 

 

40

Figure 16. Joining an infinitely long slab beam to the tunnel and the interaction 

forces………………………………………………………………………………………... 

 

50

Figure 17. General force distribution per unit length Q(x) acting along the line of 

joining……………………………………………………………………………………….. 

 

50

Figure 18. The complete track model and the masses added in regular spacing….. 54

Figure 19. The power spectrum of irregularity………………………………………….. 59

Figure 20. New track model including rigid sleepers, rails, railpads and bearings 

represented as complex stiffness elements…………………………………………….. 

 

61

Figure 21. Three degree-of-freedom vehicle model with one contact point…………. 66

Figure 22. The MATLAB code algorithm and the lines where modifications are 

made………………………………………………………………………………………… 

 

71

Figure 23. Result of sleeper modification ………………………………………………. 72

Figure 24. Effect of modified hysteretic damping for moving load …………………… 73



 xii

Figure 25. Effect of 3 degree-of-freedom vehicle model and Hertz contact to the 

model ……………………………………………………………………………………….. 

 

74

Figure 26. Comparison between two models on displacement vibration spectra at 

θ=0, r=20m………………………………………………………………………………….. 

 

75

Figure 27. Vertical soil displacement spectrum for the modified model for different 

angles θ.…………………………………………………………………………………….. 

 

75

Figure 28. Change in vertical soil displacement spectrum at r=20 m and θ=0 for 

different vehicle speeds…………………………………………………………………… 

 

76

Figure 29. Root mean square value of vibration velocity compared with limit values 

specified in TSE 2613-2…………………………………………………………………… 

 

76

Figure 30 One-third octave band vibration levels measured on the tunnel walls for 

different vehicle speeds and results computed by the modified model ……………... 

 

79

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xiii

 

 

NOMENCLATURE 

 

 

 

u, displacement components in x direction 

v, displacement components in y direction 

w, displacement components in z direction  

ϖ, angular frequency 

ζ, angular wavenumber 

n, number of waves developed around the circumference 

a, radius of the shell 

h, thickness of the shell 

E, Young’s modulus 

ν, Poisson’s ratio 

ρ, density of the medium 

G, shear modulus 

c1, speed of pressure wave  

c2, speed of shear wave 

λ,μ, Lamé’s elastic constants 

τjk , components of stress 

ejk , components of strain  

m, beam’s mass per unit length 

kr, stiffness per unit length of the resilient layer between the rail and slab 

beams. 

ηr, loss factor for hysterical damping of the resilient layer between the rail 

and slab beams 

ks, stiffness per unit length of the resilient layer between slab beams and 

the tunnel invert 

ηs, loss factor for hysterical damping of the resilient layer between slab 

beams and the tunnel invert 



L, axle spacing 

V, vehicle speed 

N, number of axle masses 

mc, mass of 1/8 vagon 

mb, mass of bogie 

mw, mass of wheelset 
k1, primary vertical stiffness 

k2, secondary vertical stiffness 

c1, primary vertical damping 

c2, secondary vertical damping 

1
~Y , displacement along the beam due to a unit point load acting on the slab 

at x = 0. 

2
~Y , displacement along the invert due to a unit point load acting on the slab 

at x = 0. 

3
~Y , displacement in soil due to a unit point load acting on the slab at x = 0. 

11
~H , frequency response function for the response of the free beam due to 

a point load at x = 0 

22
~H , frequency response function for the response of the uncoupled tunnel 

invert due to a point load at x = 0  

32
~H , frequency response function of a particular soil displacement 

component due to a point force acting on the uncoupled tunnel invert at  

x = 0. 

aH 00
~ , frequency response function for the unjoined rail beam  

aH11
~  , frequency response function of the slab beam to the load on the slab 

before the rail is added 

aH 21
~ , frequency response function and tunnel invert due to to a load on the 

pre-rail-beam slab 

aH 31
~ , frequency response function of the soil to a load on the pre-rail-beam 

slab  

)(ωyS , power spectral density function 

 xiv



)(0 ωS , power spectral density function for the rail roughness 

)(ω
qp xxS , cross-spectral density function 

 

 

 

 xv



 1

 

 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

With growing demand for public transportation in modern urban 

cities, more urban railways and metros have been, and continue to be, 

built. These railway lines are usually constructed underground in tunnels in 

central areas of cities, due to demand for space for living. Railways, which 

are built underground to save space at the surface for living and 

environment will still generate vibrations, and these vibrations can annoy 

people near the track. Vibrations generated by the trains running in tunnels 

can propagate through the track and tunnel structure, to the surrounding 

strata and into the structure of any buildings close to the tunnels. The 

vibration of the building structure can then be radiated as noise into the 

building interior. The transportation-induced vibrations add to the static and 

other types of loads, and their specific spectral features are well 

distinguished and perceived as nuisance to people.  

With the increasing number of new tunnels built in urban cities and 

towns, the environmental impact of this specific low frequency rumbling 

noise has become an important issue that needs to be investigated. 

When considering the effects of ground-borne vibrations from 

underground rail transportation three main groups are distinguished due to 

their different sensitivity to vibrations; namely people, machines and 

structures. There are regulations in European countries and in Turkey 

about the maximum level of vibration exposure on the basis of human 

health. Wolf [118] researches experimentally the effects of these ground-

borne vibrations when they are transmitted to sensitive laboratory 

equipment. Underground trains generate vibrations, which are transmitted 
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through the soil and interact with the foundations of adjacent buildings, 

resulting in disturbance from vibrations (1–80 Hz) and re-radiated noise (1–

200 Hz). [20] These vibrations are caused by quasi-static and dynamic 

loading from the vehicle to the track structure and are transmitted through 

ground to the surrounding. Dynamic axle loads are mainly caused by 

wheel and rail roughness; impact excitation due to discontinuities of the 

wheels and the rails; and parametric excitation due to the periodic support 

of the rails on sleepers. Every excitation has its characteristic frequency 

range determined mainly by theoretical investigation and experimentation. 

For example the spectra of vibration caused by wheel and rail 

discontinuities lie in the frequency range from 50 Hz up to 1500 Hz. The 

main causes of wheel and rail irregularities are corrugation, deterioration of 

ballast or unround wheels.  

State-of-the-art modeling of vibrations due to trains in tunnels 

assumes that the tunnel invert and the surrounding soil are relatively stiff 

with respect to the track, resulting in a two-step approach where the 

dynamic axle forces on the rails are derived from an uncoupled track 

model and subsequently applied on a track–tunnel–soil model to compute 

the radiation of waves from the tunnel into the soil. The disturbing effect 

caused by these solid borne vibrations can be significantly mitigated by soil 

replacement of the material under the rails. 

The scope of this thesis is to model ground-borne vibrations from 

underground rail vehicles analytically by modifying the model by Forrest 

and Hunt [24,25] for different track and vehicle models. It is aimed to obtain 

results reflecting all the components of vibration spectrum within the 

frequency range of interest properly. Through the modified model, the 

frequency composition of vibration from underground railway sources is 

obtained to form a basis for the planning of underground railway tracks in 

critical urban areas. Also the current model can be used for mapping of 

vibration from those sources in urban areas. 

This work consists of literature survey, presentation of Forrest and 

Hunt’s model and the chapter for individual modifications made on the 

model; followed by parametric study, results and discussion chapters.    
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 
 

2.1. Problem areas 

 

Modeling of vibrations from rail vehicles has to be done in the 

appropriate frequency range according to the area of concern. The limit of 

the highest frequency associated with wheel/rail noise is taken as the limit 

of human hearing at about 5kHz. Problems with the running surfaces of 

wheel and rail and with track components are caused primarily by vertical 

forces, which are most significant up to about 1500Hz: Higher frequency 

loads, which arise from relatively short wavelength irregularities, are 

severely attenuated by the finite size of the contact patch between wheel 

and rail, whose diameter is typically about 15mm. Forces transmitted on 

the one hand through the Wheel inertia into the axle, bogie and vehicle, 

and on the other through the track into the ground and structure, are most 

significant up to frequencies of about 500Hz. Problems of vehicle dynamics 

occur largely at frequencies of less than 20Hz.  

Dynamic behavior with regard to stability, steering and passenger 

comfort is most significant at frequencies of only a few Hertz. At 

frequencies of more than a few Hertz the vehicle’s primary and secondary 

suspension isolate the bogie and body from the wheelset. Consequently 

the vehicle’s “unsprung mass” (comprising essentially the wheelset, 

bearings and any axle-hung traction motor and gearing) is the only 

component which significantly affects vertical dynamic loads between 

wheelset and track, and accordingly through the track itself, at high 

frequencies. The unsprung mass is indeed represented satisfactorily for 

vertical excitations as a rigid body. 
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Table 1. Problem areas [57] 

PROBLEMS OF VEHICLE/TRACK INTERACTION 

 Area of concern 
Frequency range 
[Hz] 

1 Vehicles 0-20
  
2 Bogie and unsprung mass 0-500
 a) wheel bearings 
 b) fatigue of axles, brake gear etc. 
  
3 Irregular running surfaces of wheel and rail 0-1500
 a) wheelflats 
 b) out-of-round wheels 
 c) wheel corrugation 
 d) "long wavelength" rail corrugation 
 e) "short wavelength" rail corrugation 
 f) dipped welds and joints 
 g) pitting, shelling 
  
4 Track components 0-1500
 a) fatigue of rail in bending 
 b) railpads 
 c) concrete sleepers 
 d) ballast and track geometry 
  
5 Wheel/rail noise 0-5000
 a) rolling noise 
 b) impact noise 
 c) squeal 
  
6 Structure-borne noise and vibration 0-500
 a) ground borne vibration 
 b) viaducts 

   

In order to examine the lateral vibration of the wheel, which is 

excited by forces in the plane of wheel/rail contact and normal to that 

plane, a significantly more complicated model is required because of the 

wheelset’s lateral flexibility. A satisfactory model must include the 

wheelset’s resonant behaviour in order to represent phenomena such as 

noise.    

 
 

 

 



2.2. Modeling 

 

In modeling the dynamic behavior of track and of interaction between 

the vehicle and track, it is convenient to consider six sub-systems 

1. the vehicle including the car body, bogie and wheelset; 

2. Wheel/rail contact and representation of excitation; 

3. the rail; 

4. the fastening system, including the rail fastening itself and the rail pad; 

5. the sleeper; 

6. the sleeper support, including the ballast and substrate. 

 

 

 

 
Figure 1. The sub-systems contained in the complete model [57] 
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Models should be as simple as possible and as accurate as 

necessary according to the aim of modeling. The first demand of model 

simplicity is important with respect to computational efficiency. This 

demand is fulfilled by assuming that all the displacements and strains are 

small in amplitude. Thus a linear model can be applied, which is 

accompanied by fast solution methods, which mostly work in the frequency 

domain. However, refined models often have to account for non-linear 

effects, so that Fourier transform techniques cannot be applied and, thus, a 

more time-consuming analysis has to be carried out in time domain. 

The second demand of sufficient accuracy of the model is important 

with respect to modeling errors. Such errors can be caused by neglecting 

important effects, making wrong assumptions about the loading or the 

disturbances or by applying wrong system parameters. To avoid these 

errors, identification methods have to be applied and a model validation 

has to be performed. This requires experimental investigations in any case. 

 

2.3. Vehicle Models 

 
For a classical rail vehicle, the car body rests on two bogies each 

containing two wheelsets. The spring and damping elements connecting 

the wheelset bearings and the bogie frame are called the primary 

suspension. The secondary suspension connects the bogie frame and the 

car body. 

Usually, the wheelsets of high-speed vehicles have two up to four 

brake discs mounted on the axle between the wheels. The mass of such 

wheelsets is high. In most of the designs, the longitudinal and lateral 

stiffness of the primary suspension are high. This is necessary for a stable 

running of the wheelsets. In comparison, the secondary suspension is 

much softer. Since additionally the mass of the car body is high, about 30 

tons, car body and bogies are decoupled by a frequency ratio of about 

1:10. 



 
Figure 2. Rail vehicle [88] 

 

 

 

The dynamic behavior of the vehicle itself is important with regard to 

curving, stability and, if it is a passenger vehicle passenger comfort. 

Vehicle suspensions are commonly designed to ensure that rigid body 

modes of a vehicle’s body occur below about 10 Hz in order on the one 

hand to ensure adequate isolation of passengers from vibration and on the 

other hand to reduce the effective unsprung mass, thereby reducing 

dynamic loads at the wheel/rail interface. At these frequencies the track 

behaves essentially as a relatively stiff spring. However at frequencies 

about 20 Hz, the track’s inertia becomes increasingly important while the 

vehicle’s suspension isolates all but the unsprung mass (essentially the 

wheelset, bearings and any axle-hung traction motor and gearing) from the 

remainder of the vehicle.     
At low speeds the response is quasi-static so that the track 

response due to train axle loads appears mostly downward at the point of 
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their action. On the other hand, at high speeds the train-induced response 

becomes dynamic due to the inertia generated in the track–ground system, 

so that the track vibrations appear evenly in both upward and downward 

directions. [106] 

The vehicle can be modeled mathematically according to the 

frequency range of interest. The rigid multibody models are appropriate in 

the low frequency range of about 0 Hz-50 Hz. The most important 

component is a single free wheelset. Most authors use the assumption of a 

‘quasi-stationary’ load, where it is assumed that the effect of vehicle 

convention is not important for the calculation of vibration propagation. So 

the knowledge about the wheel loads is necessary. In practice, wheel 

loads vary over a wide range; an unloaded bogie container wagon for 

example has a wheel load of about 25 kN, unloaded light rail and metro 

passenger vehicles are typically 35–40 kN, mainline passenger vehicles 

range from about 40 to 60 kN, while loaded freight vehicles have wheel 

loads in excess of 100 kN. [120] 

Krylov challenged this assumption by suggesting that trans-sonic 

effects can be expected when existing high speed trains travel on soft 

ground.[60] Train loading is basically a problem of a stationary loading 

when the speed of motion is assumed to be constant. The train geometry 

determines the periodic vibration frequencies, while other frequencies 

originating from the sleeper spacing are also essential. Hence, Krylov 

[59,60] formulated these frequencies in a unified form. Takemiya et al. 

[106] replaced the sleeper frequencies by driving frequencies for the 

moving loads. Picoux and Le’Houdec separate this constant wheel load for 

an engine and carriage unit.[87] L’Mesgoues investigated the transmission 

of vibrations over the surface of the ground, due to high-speed moving, 

vertical harmonic rectangular loads theoretically by considering constant 

rectangular load. The authors have discussed a modified hysteretic 

damping model defined in the Fourier wavenumber domain and adapted 

for the problem of moving loads [67]. 

The elastic multibody models are appropriate in the mid- and high-

frequency range of about 50 Hz-5 kHz. The existing component models 



have mainly been developed to solve acoustic problems. Of particular 

importance are elastic wheel models that can easily be extended to models 

of a wheelset. 

Young [123] uses a 9 degree-of-freedom vehicle model, where Zhai 

[124], and Lei [68] perform their models of vibration prediction based on 

the same 10 degree-of-freedom vehicle model.  

 

 

 

 
Figure 3.10 degree-of-freedom vehicle model [124] 

 

 

 

Lei [68,69] divides the vehicle and track coupling system into two 

parts; lower structure and upper structure. The vehicle as the upper 

structure in the coupling system is a whole locomotive or rolling stock with 

two layers of spring and damping system in which vertical and rolling 

motion for vehicle and bogie are involved. 

Hou [39] employs a two level suspension vehicle model, where the 

wheelset and the bogie are connected by the primary suspension while the 
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car body is supported on the bogie through the secondary suspension. He 

represents a more realistic vehicle model incorporating two wheelsets, two 

bogie side frames, and half a car body as a 10 degree-of-freedom model. 

Sheng [97] gives different vehicle models with their stiffness and mass 

matrices for passenger and freight trains consisting of different degree-of-

freedom in his work. Ren [91] and Sun[103] use 33 degree-of-freedoms in 

a passenger car model and 37 degree-of-freedoms in a three-piece freight 

car model. Sun uses in his work [104] a wagon model with 37 degree-of-

freedoms, which are given in Table 2. 

 

Table 2. Degree-of-freedoms of wagon components used in Sun’s work 

[104] 
 DOF 

Components u v w φx φy φz φPa 

Number of 

items 

Number of 

DOF 

                  

Wagon carbody X X X X X  1 5 

Bogie frame     X X 2 4 

Sideframe X X X X   4 16 

Wheelset X X   X  4 12 

     

Total DOF    37 

      

 

2.3.1. Wheelset Models 

The wheelset can be modeled according to the complexity of the 

problem as multibody, continuum or finite element models. 

2.3.1.1. Multibody Models 

The simplest one is to split the wheelset in a certain number of rigid 

bodies linked together by springs and dampers. The advantage of such a 

technique is the small number of degrees of freedom. Zheng [125] models 

each axle as a mass-spring-damper vibration unit in his work to present the 

derivation of the governing equations for the stability of vibration of an 

integrated system comprising a moving train and the railway track. 
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2.3.1.2. Continuum Models 

A continuum model is achieved by distributing the mass and inertia 

along the wheelset axis with consideration of the location of the brake 

discs. With this model, the three-dimensional deformations of the axle 

including bending and twisting can be considered. More detailed models 

should also take into account the shear deformations and the elongation of 

the axle, out-of plane deformations of the wheels including flexural and 

umbrella modes and in the high-frequency range also in-plane motions and 

shear bending. Szolc [105] models the axle as a rotating elastic beam, 

which can also be deformed torsionally. The wheels and the brake discs 

are rigid bodies, which are connected to the axle with massless 

membranes. He shows that the gyroscopic effects lead to a split of the 

natural frequencies and a quite strong coupling between bending motions 

in the vertical and lateral plane. 

2.3.1.3. Finite Element Models 

The Finite Element Method (FEM) enables a nearly unbounded 

accuracy of the model. Therefore, most FEM models of the wheelset are 

also applicable in the high frequency range. The corresponding models 

found in literature show strong deviations in their number of degrees of 

freedom. One can distinguish between full three-dimensional structures 

[76], two-dimensional structures [110], where the rotational symmetry is 

taken into account, and one dimensional structures.  

2.3.2. Models of Car Body and Bogie 

In the mid- and high-frequency range the dynamic behavior of the 

car body and the bogies is decoupled by the soft secondary suspension. 

Thus, very simple models of the car body are sufficient. Frequently it is 

even replaced by its constant weight and a kinematical constraint. An 

interesting model is developed by Young [123], where the car body is 

modeled as a Timoshenko beam with finite length and is supported at each 

side by a double–axle bogie through the secondary suspension. He treated 

each bogie as a two degree-of-freedom rigid body and is linked through the 

primary suspension with two wheelsets, which are characterized as 

unsprung masses. 



In following chapters the spectrum of applied load will be obtained 

for different models by deriving the appropriate transfer functions. 

 

2.4. Dynamic Track Models 

 

2.4.1. Track Structures and Components 

Different track systems are used to meet the requirements of trams, 

underground systems and high-speed transportation and, of course, other 

types of design are used on bridges, in urban areas and in tunnels. 

Different damping or decoupling elements like ballast mats or highly elastic 

rail supports are added to reduce vibrations and noise radiation. 

For typical track types the rails are fixed on concrete or wooden 

sleepers with different fastening systems. Between sleeper and rail, rail 

pads are located which are typically made of rubber, plastic or a composite 

material. Further components of the ballasted track are the ballast layer, 

the subgrade and the subsoil. In the case of a rigid track the ballast is 

substituted by a concrete strip. The connection between the one-block or 

two-block sleepers and this strip is established by different techniques. 

Often an elastic layer is added to increase the compliance of this structure. 

Below the concrete the rigid track consists of a hydraulically compacted 

layer and a frost protection layer. For both depicted track types the subsoil 

properties can disperse significantly. Its stiffness is quite low for wet, sandy 

soils and high for rocky ground. 

 

 

 

 
Figure 4. Track types: ballasted track (left) and rigid track (right) [88] 
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2.4.2. Rails 

For static and stability analyses which were undertaken before 

about 1960 the rail was considered to be a Bernoulli-beam and it does 

indeed appear that this model is adequate for representation of the rail’ s 

response to vertical dynamic excitation for frequencies of less than about 

500Hz. [110] Researchers working in this frequency range used the Euler-

Bernoulli beam as the rails in their models [24,25,27,38,43,45,51,53,59, 

60,65,78,85-91,94-99,106,124,125].  

However such a model is no longer adequate for the response to 

vertical forces at higher frequencies as shear deformation of the rail 

becomes increasingly important. 

The equation of motion for the bending displacement y(x, t) of an 

Euler beam loaded by a force distribution per unit length f(x, t) is given as, 
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It is straightforward to show that the displacement frequency 

response Y(x,ω) of such a beam excited by a unit point harmonic force at  

x = 0 is given by, 
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where, m is the mass per unit length of the beam  and EI is its bending 

stiffness. 

An improved beam model, taking into account the shear 

deformations and the rotatory inertia, is the Timoshenko beam model. 

Figure 5 represents the model by taking a differential beam element.  
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Figure 5. A differential beam element [15] 

 

 

 

The equation of motion of such a beam element is given as, 
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where, y is the deflection of the beam, b is the shear distortion of the 

beam, a is the bending rotation of the beam, m is the mass per unit length 

of the beam, J is the rotary inertia of the mass per unit length of the beam, 

kı A is the effective shear area and I is the second moment of area of the 

beam. 
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Figure 6. An infinite beam on viscoelastic foundation [15] 

 

 

 

The Timoshenko beam model can also be modified according to the 

frequency range of interest. According to Knothe and Grassie [57] for the 

case when only the longitudinal vibrations are of interest, the rail can be 

modeled as a single Timoshenko beam up to 2.5 kHz and for wavelengths 

greater than 0.4 m. If lateral and torsional modes are to be included in the 

model, the railhead and foot have to be modeled at least as independent 

Timoshenko beams interconnected by continuous rotational springs. Many 

researchers adapted Timoshenko beam model to their models. 

[7,15,17,27,39,74,103,104,117,119,123] Attempts have been to establish 

the frequency ranges in which different models adequately represent the 

rail’s behavior. [57] For the frequency and wavelength ranges of interest, 

five different wave propagation modes occur for a UIC 60 rail, four of which 

are shown in Figure 7: A lateral bending, B vertical bending, C and D two 

torsional modes.   
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Figure 7. Wave propagation modes of a UIC 60 rail, (A,C,D) lateral-

torsional (B) vertical [57] 

 

 
 
 

2.5. Rail Fastening System 

 

In many track systems with concrete sleepers, the rail fastening 

system is composed of a resilient spring fastening, where it is commonly 

designed in parallel with a much stiffer railpad (Figure 8a). Typically the rail 

pad is made of rubber, plastic or a composite material such as rubber-

bonded cork. The load/deflection behavior of the fastening system is non-

linear, but since its behavior when a loaded wheel is near the sleeper is of 

greatest interest, some linearization of the load/deflection behavior is 

justified. [57] 

When vertical vibration is of concern, the pad is usually modeled as 

a spring and viscous dashpot in parallel (Figure 8b). The damping shows a 

structural behavior with a constant loss factor, which is more consistent 
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with the known behavior of materials such as rubber. [52] The pad is 

represented similarly in models of the lateral dynamic behavior of track.  

For three-dimensional rail and track models it is convenient to represent 

the pad as a viscoelastic layer distributed across the railfoot (Figure 8c). In 

two-dimensional models it can be represented as acting at a point on the 

railfoot. Design of a railpad with prescribed stiffness and damping can not 

be found in literature due to the difficulty in practice to find appropriate 

values for the railpad parameters. The required values are obtained in field 

with impulse testing methods wit am impulse hammer or electromagnetic 

exciter by applying appropriate transfer functions for the track structure.  

Sato [92] has proposed in his work that the increase in pad stiffness 

with frequency should be taken into account by representing the high 

polymer rubber by three parameters rather than the conventional two.  

 

 

 
Figure 8. a) Technical drawing of rail fastening systems and b) c) d) 

different schematic representations[57] 

 

 
 

Using the rail fastening system with the appropriate representation, 

a discrete [39,38,51,65,74,85,91,103,104,119,123] or a continuous [7,45, 

48,68,69,86,95-99,119] model is obtained according to the requirements of 

the complete track model. 
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2.6. Sleeper models 

 

A ballasted railway track is commonly constructed with monoblock 

or twin-block concrete sleepers. In most of the designs monoblock 

sleepers are preferred. It is observed that in most cases the damage 

occurs from the sleepers’ resonant behaviour. 

Grassie [31] has shown that by modeling the dynamic behavior of a 

typical concrete railway sleeper, shear deformation and rotatory inertia 

should be included. Thus the most complete sleeper model is a 

Timoshenko beam of variable thickness. He proposes that a typical non-

uniform monoblock concrete sleeper can be modeled with sufficient 

accuracy for most practical purposes as an equivalent uniform beam with 

the effective flexural rigidity, cross-sectional area and the radius of gyration 

given as 

))(( cr EIEIEI =          (2.5) 

LMA ρ/=                 (2.6) 
2/1)/( AIrg =           (2.7) 

where the subscripts r and c denote the values at the railseat and sleeper 

center respectively.[31] Young [123] also adapted a Timoshenko beam in 

his model as the sleeper model. 

Another sleeper model is obtained by representing the sleeper as a 

uniform beam. [17,30,85,91,103,104] With this model, considerable 

success is obtained by correlating the response of rail and sleepers in 

track to that measured at frequencies about 700 Hz. Ren [91] modeled the 

uniform beam with uniformly distributed damping. Hou [39] modeled the 

sleeper as an Euler-Bernoulli beam. Lai [65], Zhai [123], Luo [74], 

Wu&Thompson [119], Lei [68,69], Kalker [51] and Hildebrand [38] modeled 

sleepers as rigid. Shamalta&Metrikine [94] used a Kirchhoff plate as by 

modelling the sleeper, where Karlström [53] assumed the Kirchhof plate 

being anisotropic. Krylov [59,70] considered the sleepers as point sources 

in the low frequency domain. Hence the separation of sleepers becomes 

an important parameter. 

 18
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When a continuous track model is used, the sleepers are modeled 

as a mass per unit length of track. This approach is used by the authors 

Picoux [86,87], Sheng [95,96,97,98,99], Verichev&Metrikine [117], 

Wu&Thompson [119], Gardien [27], Jones and Block. [48]  

  

2.7. Ballast and substrate 

 
The ballast is the part of the track, which deflects in a highly non-

linear manner under load. These nonlinearities are caused by gaps 

between sleeper and ballast and by the ballast properties themselves. The 

stiffness of such a granular material depends on the void ratio, on the 

loading velocity and on the stress state [32,33]. Inside the ballast strip this 

stress state is inhomogeneous even on a small length scale. 

Until about 1980 the lowest vertical natural frequency of a loaded 

track was reported to be at about 25-40 Hz. [57] However measurements 

made subsequently on BR track showed a first resonance peak for the 

track without wheelset to be 130 Hz. [29] This decreased under a vehicle 

to 50-80 Hz depending on the unsprung mass. As these measurements 

(and most of the subsequent measurements using an impulse hammer 

technique) are reliable only for frequencies greater than about 50 Hz, there 

may in fact be resonances both at 25-40 Hz and around 100 Hz: the former 

would arise from movement of both the ballast and the track above it on 

elasticity of the substrate, while the latter would arise from movement of 

the rail and sleepers on the ballast’s own resilience. Most of the ballast 

models consist of springs and dashpots in parallel. There are only few 

models where the ballast mass is included. 

Modeling of the substrate, where the vibrations are transmitted, is 

another important aspect of the whole problem. In an early paper by 

Gutowski and Dym [34], wave propagation through soil is investigated 

according to different source types and soil absorption characteristics. 

According to the authors, to properly predict excitation levels at a building 

due to an external source like surface or subsurface railway; one must be 

able to predict how much vibration, in terms of both levels and spectra, is 
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transmitted through the ground from the source. This problem has its 

complexities due to lack of enough understanding of soil behavior, the 

difficulty of determining accurate values of soil properties and the difficulty 

of modeling precisely the sources of vibration and the resulting near- and 

far-filed behavior. The railway traffic on the surface produces ground 

waves on the surface as well as beneath the surface. The tunnel as a 

source will also produce surface and body (interior) waves in principle. But 

for a buried source the strength and behavior of the surface is not well 

understood. It is convenient to say that if buried deep enough the tunnel 

will excite body waves. 

The basis of most of the work done on modeling the sources and 

the transmission paths can be found in the work of Lamb. [64] He 

investigated the response of isotropic, homogeneous elastic half-space to 

different kinds of sources like harmonic and impulsive point and line 

sources based on the laws of wave propagation in an unlimited medium 

developed by Green and Strokes and modified by the discoveries of Lord 

Rayleigh. Researchers developed solutions for different source 

characteristics. Lapwood [63] investigates the problem of the disturbance 

near the surface of a semi-infinite medium due to a buried line source 

emitting a pulse of the form of a Heaviside unit function by using double 

integral. Garvin [28] handles the same problem using Laplace transform 

techniques. Jette and Parker [47] reformulate Lapwood results for a buried 

line source of conical waves. Most of the models used to predict vibrations 

from surface and underground railway systems use this elastic half-space 

model. [1,2,35,50,67,72,94,100,101] According to Metrikine and Popp [78] 

the real subsoil possesses a viscosity and may be bounded. The visco-

elastic model is developed to consider the effect of viscosity. 

[5,8,9,10,11,13,14,19,40,78,107,125] The main difference between the 

visco-elastic and the elastic halfspace model lies in the applied damping 

model. Hunt [42] uses in an early paper the frequency response function 

for a homogeneous, isotropic, damped half-space. In this work the elastic-

viscoelastic analogy is used to apply damping to the model by writing the 

elastic moduli as complex quantities. Hao [35] applies hysteretic damping 
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theory due to its common use in practice to model soil energy loss and its 

easy application. Lefeuve-Mesgouez et.al [66] discussed a modified 

hysteretic damping model defined in the Fourier wavenumber domain and 

adapted for the problem of moving loads. The damping is added to the 

system by modifying Lame constants μ and λ. 

Theodorakopoulos [109] investigates the dynamic response of a 

poroelastic half-plane soil medium subjected to moving loads 

analytically/numerically under conditions of plane strain where hysteretic 

damping in the soil skeleton is also considered. 

Forrest and Hunt model the soil surrounding the tunnel without a 

free surface, which would both reflect impinging body waves back towards 

the top of the tunnel and have surface waves excited upon it. [24,25] They 

claim that in the far field, it is likely that buildings would receive more 

energy from such surface (Rayleigh) waves than from body waves, since 

the former decay less rapidly. Nevertheless, the surface would have much 

less influence on responses near the tunnel, especially the deeper the 

tunnel is. Special attention will be paid to the works by the these authors in 

the following chapters. 

Knothe and Grassie [57] give in their literature survey a schematic 

representation of the models for the ballast and substrate. (Figure 9) The 

Type A is a simple 2-parameter model in the vertical direction. The model 

is applicable to the phenomena in high frequency range and for the cases 

when the axle is close to the sleeper of interest. There are many variations 

of this model in literature. Lai [65], Young [123], Kalker [51] and 

Wu&Thompson [119] use this model without making any change, where 

Hou [39]models the substrate as rigid. Ono and Yamada [85] assume that 

masses and elasticities of the ballast and the roadbed are uniformly 

distributed over their whole volume.  

Another possible model is shown in Figure 9 as Type B, where the 

ballast and the substrate are considered together as elastic or visco-elastic 

half-space. [74] Karlström [53] uses this model with a layered viscoelastic 

halfspace, whereas Hildebrand [38] applies elastic halfspace.  
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To obtain better correlation between the calculated and measured 

response another sleeper support model is developed. (Type C) This 

model includes additional ballast masses below each sleeper, which are 

interconnected by springs and dashpots in shear. This model is used by 

Sun [104] and Zhai [124]. Sun uses in another paper [103] the ballast 

pyramid model based on the theory of elasticity, developed by Ahlbeck et 

al. 

A general support model is shown as type D in Figure 9 with a layer 

of ballast on a three-dimensional half-space. Note that the theoretical 

investigation of such a model is extremely difficult. The ballast and 

substrate can be modelled in continuous track system by eliminating the 

discrete sleeper support. This condition necessiates modeling the ballast 

as vertical springs and dashpots in parallel per unit length of the track 

having consistent mass and a substrate model. This continuous model is 

used by authors Bitzenbauer [7], Takemiya [106], Wu and Thompson [119] 

and Ren. [91] Lei [68,69] and Picoux [86,87] only included the ballast in 

their model, whereas Sheng uses layered halfspace with rigid foundation in 

his researches [95-99] Jones and Block [48] use in their finite element 

model a similiar layered model resting on a half-space. Gardien [27] 

extends the layered halfspace model to infinity in his finite element model 

by applying infinite boundary conditions. 

 

2.8. Floating slab 

 

A method for achieving substantial reductions in vibrations 

transmitted to tunnel structures is the use of resiliently supported track bed 

slabs (so-called “floating slabs”)-either continuous cast-in-place slabs up to 

about 21 m (70ft) long, or a series of precast slabs 0.7 to 1.5 m long. [62] 

The concrete slab supporting the two rails is mounted on rubber bearings 

or steel springs to isolate it from the tunnel invert. 

 

 

 



 
Figure 9. Ballast and substrate models [57] 

 

 

 

To predict the effect of soft slab-bearings and the distribution of slab 

bearings by vibration isolation, Hussein and Hunt [44,45] use a 

comprehensive three-dimensional model of a deep underground railway 

tunnel with Euler-Bernoulli beams to account for the rails and the slab 

track. 

In another paper by Forrest and Hunt, the slab is coupled to the 

tunnel system in a similar way. Their calculations show that floating the 

track slab may in fact cause increased transmission of vibration under 

certain conditions and the desired insertion loss may not be achieved in 

this way. [25] 
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2.9. The complete track model 

 

All the mentioned track components form the complete track model. 

The main difference between track models occurs in the supporting type of 

the rails. According to the frequency range of interest, the rails can be 

modeled with continuous or discrete supports.  

When the vehicle behavior in curves, the stability or the passenger 

comfort is of primary interest, which are phenomena with frequencies 

below 20 Hz, the track behaves essentially as a relatively stiff spring. 

Continuous support models, which are strictly valid only for calculation of 

the track’s dynamic response at frequencies lower than about 500 Hz for 

vertical excitation and 400 Hz for lateral excitation, [57] are obtained by 

spreading the mass, stiffness and damping components of the discrete 

support along the track. Rails are resting on continuous viscoelastic 

foundation and a continuous layer representing the sleepers. The roots of 

the research on classical continuous models of infinite length can be found 

in Timoshenko’s papers [112,113]. He studied an infinite Bernoulli-Euler 

beam on an elastic Winkler foundation under static and dynamic loads. 

This model has been analyzed mainly using Fourier transform techniques. 

The continuous model is preferred by many authors due to its simplicity. 

[7,15,59,60,78,86,87,94-99,106,117,119,125] Forrest and Hunt show the 

inadequateness of this model by giving a comparison between their track-

tunnel-subsoil coupling model and the continuous model. [24,25] 

A discrete support appears more representative of reality for the 

majority of track, which is laid on discrete sleepers. The masses and the 

elasticities of the ballast and the roadbed are taken into consideration. In 

this model every sleeper is supported by a separate foundation, which 

represents the ballast and the roadbed. 

The inertias of different track components become important when 

dealing with higher frequencies. Thus, in the range up to 250 Hz the 

properties of ballast and subsoil have a strong effect on the track 

dynamics. For higher frequencies up to 700 Hz the properties of the pads 

are important and for frequencies above 700 Hz the geometry of the rails 
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has to be taken into account.  An important distinction between discretely 

supported track models is that the track structure can be modeled as being 

either finite or infinite in length. The type of structure is closely connected 

to the solution technique. Track structures of infinite length are commonly 

used for frequency-domain solutions whereas finite track structures are 

more appropriate for time-domain solutions, particularly if there exists 

significant non-linearities. The main problem with a finite track model is that 

boundaries may introduce undesirable effects in studying the response to a 

moving load. [57] Discrete models of finite length are usually based on the 

finite element method. 

 

2.10. Tunnel 

 
Ground-borne vibration levels from underground railway systems 

are also affected by the type of tunnel structure, its mass and tunnel wall 

thickness. According to Kurzweil [62] a doubling of the average wall 

thickness, for the same material, can lead to reductions in the wall vibration 

levels of 5 to 18 dB. 

 

Table 3. Effect of subway structure type on tunnel vibration levels [62] 

Subway structure 
Relative vibration level 

(dB) 

Cast iron or steel single tunnel +4 

Concrete single tunnel or box +2 

Double box 0 

Triple box -2 

Station -4 

 

The tunnel structure can be modeled as rigid or elastic, with or 

without wall thickness. In an early work by Krylov the tunnel diameter is 

assumed to be very small in comparison with characteristic wavelengths of 

generated ground vibration spectra. In another paper, [70] Lin and Krylov 

model generation and propagation of ground vibrations   by considering the 

tunnel diameter. In this paper an approximate analytical approach is 
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developed to predict the effect of tunnel diameter on amplitudes and 

radiation patterns of generated vibrations, based on the use of the 

reciprocity principle. 

Balendra [5] decomposes the total soil-structure interaction problem 

into a foundation radiation problem and a tunnel radiation problem. In this 

paper it is assumed that applied train loading is uniformly distributed and 

plane strain conditions would develop for reasonably uniform ground 

conditions. Also it is assumed that the foundation and the tunnel are both 

perfectly bounded with the soil.  

Gardien uses a three dimensional finite element method to model 

the tunnel and the surrounding layers, where the characteristics of the 

tunnel are determined in terms of a Timoshenko beam. [27] The model is 

statically loaded in the vertical direction at the location of the track. As a 

result of this, the tunnel deflects vertically.  

Another tunnel model is developed by Degrande. [20] In this paper 

the three-dimensional dynamic tunnel–soil interaction problem is solved 

with a subdomain formulation, using a finite element formulation for the 

tunnel and a boundary element method for the soil. The periodicity of the 

tunnel and the soil is exploited using the Floquet transform, limiting the 

discretization to a single bounded reference cell of the tunnel. The 

response of two tunnels in different sites, which are modeled using 

MATHLAB software, and the surrounding soil due to a harmonic load on 

the tunnel invert is considered. The obtained results are validated by 

means of in situ experiments.  

Forrest and Hunt develop a three-dimensional model of the tunnel 

analytically as an infinitely long, thin cylindrical shell surrounded by soil of 

infinite radial extent. [24] In this paper interaction between spacing of train 

axles, the tunnel diameter and the distance from the tunnel to nearby 

building foundations is considered; since for typical soils, the wavelengths 

of ground vibration in the frequency range 20-100 Hz are comparable with 

these parameters. 

The coupled problem is solved in the frequency domain by Fourier 

decomposition into ring modes circumferentially and a Fourier transform 



into the wavenumber domain longitudinally. The advantage of this tunnel 

model is that the model is suitable for use in combination with different 

track models to calculate the ground vibration due to excitation by running 

trains. An accompanying paper to assess the effectiveness of floating-slab 

track uses the same model. [25] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The first tunnel model developed by Degrande and the  first 

(a,b) in-plane and (c) out-of-plane modes of the reference cell of the 

Bakerloo line tunnel. 
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Figure 11. The second tunnel model developed by Degrande and the  first 

(a,b) in-plane and (c) out-of-plane modes of the reference cell of the RER 

B tunnel. 

 

 

 

2.11 Contact modeling 

 

Another important component, which is necessary to model in the 

dynamic system of vehicle track, is the wheel/rail contact. Two main types 
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of model have been used to study wheel/rail interactions. One represents a 

wheel (or wheels/vehicle) rolling over roughness on the rail. This model 

was used by Nielson and Igeland [83]. The other is a moving irregularity 

model. This model can be regarded as one in which the wheel remains in a 

fixed position on the rail, and a strip combining the roughness on the wheel 

tread and railhead is effectively pulled at a steady speed between wheel 

and rail. The combined roughness forms a relative displacement input 

between the Wheel and rail, and thus the wheel/rail interaction force 

depends on the dynamic properties of the wheel and rail (including the 

contact zone) at the contact position. The moving irregularity model has 

been widely used to investigate problems of wheel/ rail interaction and 

rolling noise, for example by Remington [89] and Grassie et al. [29]. For 

high frequency vibration of railway track, for example above 50 Hz, the 

wave speed in the rail (hundreds of meters per second) is much higher 

than the train speed (tens of meters per second), and therefore assuming 

the wheel is stationary is an acceptable approximation which brings much 

convenience for studying wheel/rail interaction and vibration. 

Figure 12 shows the form of the wheel/rail interaction using the 

moving irregularity model, in which a roughness is pulled between a 

stationary wheel and the rail. In this system there are three dynamic 

systems; the wheel and track are considered to be linear, while the contact 

stiffness is non-linear. 

For a linear system, which is not time varying, the equation of 

motion can be expressed in the frequency-domain. In a simple case of 

vertical interaction between wheel and rail, the contact force F can be 

given as in [29] 
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−=        (2.8) 

where  

R is the relative displacement (roughness) between the wheel and rail; αW, 

αC and αR are the point receptances (displacement divided by force) of the 

wheel, contact spring and rail respectively and ω is the circular frequency 

of the excitation (roughness). 
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Figure 12. The moving irregularity wheel/rail interaction model, where V is 

the train speed 

 

 

 

The contact receptance, αC, represents the local elastic deformation 

of the wheel and rail in their contact zone. In general, however, the contact 

stiffness between the wheel and rail is non-linear and can be approximated 

by the Hertz law, whereas equation (2.8) is derived based on the 

assumption of a linear contact spring. 

The representation of a non-linear wheel/rail contact force is not 

complex mathematically, it being proportional to the contact deflection to 

the power 3/2, which is given in the form 
2/3)( rxxCf rH −−= ω          (2.9) 

where, f is the wheel/rail contact force, xw and xr are the wheel and rail 

displacement respectively, r is the roughness, CH is the Hertzian constant.  

This expression is exact for cylindrical surfaces, which meet at an 

elliptical contact patch, and provides an approximation for other contact 

geometry. However, the superposition principle does not hold for a system 

containing a non-linear element and thus calculations in the time-domain 

are essential rather than in the frequency-domain. The tangent stiffness, 
 30
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 Kt = df/du, with u the contact deflection, is used in the linear model and is 

chosen according to the static load applied. 

According to Wu and Thompson [120,121] the effects of the non-

linear contact on the wheel/rail interaction are affected by the static preload 

and the dynamic properties of the wheel and rail. Under a large static 

contact load the non-linear effects on the wheel/rail dynamic interaction 

and vibration are weak and can be ignored. This is because the difference 

between the non-linear stiffness and the equivalent linear (tangent) 

stiffness is very small for a large static preload. The non-linear effects on 

the wheel/rail interaction are also not noticeable at low frequencies up to 

100 Hz because in this frequency region the wheel and rail dynamic 

stiffness is much less than the contact stiffness and thus the latter can be 

regarded as effectively rigid, so that the question of its linearity is 

unimportant here. From a practical point of view, the non-linear effects are 

also not noticeable at high frequencies (above 1 kHz) because the 

roughness level at short wavelengths is generally very low. In such a case 

the dynamic contact deflection is small and the non-linear contact force-

deflection relation can be well approximated by a linear one. The non-

linear effects are only noticeable when the roughness excitation is in the 

frequency region around 200 Hz and 900 Hz, where the dynamic stiffness 

of the wheel and rail is similar to the contact stiffness, but even so the 

difference between the non-linear and linear interactions is very limited. 

The difference is also small when a typical broad band random 

roughness excitation is applied. In the examples considered, if the wheel 

and rail surfaces are in good condition (r.m.s. amplitudes of roughness 

below 15 μm), the linear model can be used without significant error for all 

static loads down to 25 kN (equivalent to an unloaded container wagon). 

When the track is corrugated with an r.m.s. amplitude of 25 μm, good 

agreement between linear and non-linear models is obtained for static 

loads of 50 kN and above, but agreement is less good for lower loads. 

Non-linear interactions modify the force spectrum by at most 2 dB for 50 

kN; for 25 kN this increases to 4 dB. 



All the above suggests that the non-linear wheel/rail dynamic 

interaction model can be well approximated using an equivalent linear 

model when the roughness level is not extremely severe and a moderate 

static preload is applied to keep the wheel and rail in contact. Since a 

linear model can be expressed in the frequency domain, use of such a 

model greatly simplifies calculations. 

 

2.12 Excitation modeling 

 

2.12.1 Vehicle Disturbances  

For wheelsets, two kinds of disturbances are important: unround 

wheels and static and dynamic unbalances. With increasing vehicle 

velocity, the dynamic forces caused by these disturbances increase as 

well. 

Unbalances occur due to imperfect shapes or mounting of the 

wheels or the brake discs. Their effects on the system behavior have been 

investigated by Szolc. [105] To obtain a realistic distribution of such 

unbalances measurements are desirable. 

Since both, the wheel-rail contact stiffness and the mass of a 

wheelset are high, only small deviations from the ideal circular shape of a 

wheel can be tolerated. Otherwise harmful contact forces would occur. 

2.12.2 Wheel and rail discontinuities 

According to Sun [103] main cause of vibration excitation is 

discontinuities in wheel and the rail like gaps in the rail (e.g. at a switch) or 

partially flat parts of the wheel. Some discontinuities cause periodic 

excitation while others cause non-periodic or localized excitation defined 

as impulse excitation. The periodic irregularities include the rail 

corrugations, the out-of-round wheels or the rounded flat wheels and are 

represented by cosine functions. Table 4 shows some cases of the 

periodic excitation sources and the corresponding expression Wd(t).  

The non-periodic irregularities include the indentation on the 

railhead due to the spalling or the defect of welded joint and the dipped-

joint. When the excitation source is non-periodic and 222 araLd −≤ ; 
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where Ld is the wavelength of irregularity, r is the rolling radius of wheel, a 

is the wave depth of the irregularity and the wheel and the rail will not be in 

contact with the trough of the irregularity. 

For small Ld, when the flat wheel runs on the perfect rail or the 

perfect wheel runs at the defective rail, the instantaneous rotating center of 

the wheel suddenly moves down or up, inducing a vertical impact velocity. 

These excitation sources are called impulse excitation sources. Table 5 

shows various impact velocities caused by small wheel flats, the short 

length of rail shelling and spalling, and the defects from rail welded joints.  

 

Table 4. Harmonic excitation sources [103] 

 
 

Table 5. Impulse excitation sources [103] 

   
 

 
 

 33



 34

2.12.3 Track irregularities 

Small amplitude fluctuations on the surfaces of wheels and rails with 

a wide spectrum of wavelengths are always present. Such a roughness 

spectrum leads to a broadband relative displacement excitation of train and 

track, which generate high-frequency wheel-rail contact forces causing 

vibrations and rolling noise.  

According to Nielsen [84] the increase in roughness amplitudes at 

different components in the system, i.e., between wheel and rail, or 

between wheel and brake block show a different characteristics due to 

different surface interaction mechanisms. A fundamental difference lies in 

assumptions regarding the coupling of the thermal and mechanical 

phenomena at surface interaction. A coupled thermo-mechanical analysis 

is needed to simulate the evolution of roughness during braking whereas at 

wheel-rail interaction the importance of the thermal phenomena is of 

second order. Thus the mechanical behavior is generally modeled as 

uncoupled from the thermal behavior. 

Second difference is that the time scale of interaction between 

wheel and rail is of long-term nature, whereas the interaction between 

brake block and wheel is active only during the relatively short time that the 

train is braked.  

Track irregularities are also caused by factors such as small 

imperfections in materials, imperfections in manufacturing of rails and rail 

joints, terrain irregularities, and errors in surveying during design and 

construction. In practice, the roughness excitation is composed of 

unevenness on the wheel and rail contact surfaces having a broadband 

spectrum over a range of wavelengths.  

Since irregularities of different wavelengths are due to different 

independent factors, irregularity can be treated as a random function. 

Unevenness on the wheel and rail contact surface and the axle loads of 

the vehicles are often described as a stationary random process. [23] 

In literature different functions and power spectral density functions are 

applied to describe the irregularity phenomena. Lei [68] uses in his study 



the power spectral density function S(ω) given by the American Railway 

Standards which is given as 
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where Av and ωc are coefficients associated with line grade, which are 

given in Reference [68], k is a constant, normally taken as 0,25. 

Lai [65]  computes the effect of the dynamic forces caused by the 

unevenness of the rails on the loading spectra by using the following 

empirical relation: 
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where GD is the pressure power spectral density, ω  is the angular 

frequency, v is the train speed, A is a coefficient of quality of the track  

(A=1.558·10−7 m rad for track in good conditions, A=8.974·10−7 m rad for 

track in poor conditions), a and b are empirical constants whose values are 

a=0.8246 rad/m and b=0.0206 rad/m 

Hussein and Hunt [45] and Forrest and Hunt [25] use in their study 

Frederich’s empirical power spectral density for the rail roughness is given 

by: 

3)/(
)(

vfbv
afS

+
=δ                 (2.12) 

where a and b are constants computed by Frederich for different conditions 

of the rail, f is the frequency and v is the train speed. The important remark 

about this function is that it gives larger weights for lower frequencies. The 

coefficients for unevenness a and waviness b according to the rail 

condition are given in Table 6. 

 

Table 6. Values of the unevenness a and waviness b of vertical railway 

track irregularity for three different conditions 

  a(mm2.(1/m)2 b(1/m) 
Worst 9.39X10-1 6.89X10-2

Average 1.31X10-2 2.94X10-2

Best 1.90X10-4 9.71X10-3
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CHAPTER 3 

 

 

ORIGINAL MODEL 

 

 

 

In this work the three-dimensional tunnel model, elastic continuum 

model and the vehicle model presented by Forrest and Hunt [24] will be 

extended to be applicable to different track and loading conditions. 

In their work Forrest and Hunt conceptualize the tunnel as an 

infinitely long, thin cylindrical shell surrounded by soil of infinite radial 

extent. The advantage of the tunnel model is the applicability for use in 

combination with different track models to calculate the ground vibration 

due to irregularity excitation by running trains. The model also takes 

displacements in three dimensions into account. 

The soil is modeled by wave equations for an elastic continuum 

without free surface. This three-dimensional soil model neglects reflected 

body waves and surface waves.  

 

3.1. Cylindrical Shell Equations 

 

The three-dimensional tunnel model is obtained by using Flügge 

equations of motion for a thin cylindrical shell made of linear elastic, 

homogeneous and isotropic material. 

Equilibrium in the longitudinal direction x gives 
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Figure 13. Coordinate system used for the thin-walled cylindrical-shell 

theory, (a) the principle directions for a typical element in the shell, (b) the 

corresponding displacement components and (c) the corresponding 

surface stress components.  

 

 

 

Equilibrium in the tangential direction y gives 
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Equilibrium in the radial direction z gives 

    

0)1()1(

21
2

)3(
2

)1(
12

12
12

11

2

222

2

2

332

3

2

3

23

32

4

4

322

4

4

42

=
∂
∂−

−
−

 

 

 

 

(3.3) 

Effects of material damping can be included into the model by using 

complex material parameters in the frequency domain. Assuming the 

loading applied to an infinitely long cylindrical shell has stress components, 

which are harmonic in both space and time; 

+

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

++
∂∂

∂−
+

∂∂
∂−

−
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂∂

∂
+

∂
∂

−−
∂
∂

+
∂

t
w

E
aq

Eh
a

w
a

w
ax

v
ax

u
ax

uh

w
ax

w
ax

wahw
a

v
ax

uv

z
υρυ

θθ
υ

θ
υ

θθθ
∂

−



)(

)(

)(

)cos(~),(

)sin(~),(

)cos(~),(

xti
znz

xti
yny

xti
xnx

enQtxq

enQtxq

enQtxq

ζω

ζω

ζω

θ

θ

θ

+

+

+

=

=

=

       (3.4) 

then, the equations of motion are satisfied by the similarly harmonic 

displacement components. 
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Note that the spatial exponential term eiζx arises due to the infinitely long 

cylindrical shell assumption 

In Figure 14, ring modes are shown as they relate to three 

displacement components u, v and w. The integer n indicates the number 

of waves developed around the circumference. Hence, for inplane flexural 

modes of Figure 14(a), which are associated with radial displacement w,  

n = 0 corresponds to an expansion or ‘‘breathing’’ mode, n = 1 corresponds 

to one full wave or translation of the cross-section, n = 2 corresponds to 

two full waves or a squashed cross-section. Substituting the harmonic 

stress (3.4) and displacement (3.5) elements into equations of motion 

putting all three equations into matrix form gives 
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If the stresses { }T

znynxnn QQQQ ~~~~
= are taken as unit loading functions, 

then the displacements { }T
nnnn WVUU ~~~~ =  represent the displacement 

frequency-response functions in the wavenumber domain for a particular 

circumferential mode n. To obtain actual stresses and displacements these 

modal quantities will be linearly combined. 
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Figure 14. In plane ring modes varying according to n, the number of 

waves developed around the circumference (a) In-plane flexural ring 

modes, varying as cos(nθ) and corresponding to radial displacement w; (b) 

in-plane extensional ring modes, varying as sin(nθ) and corresponding to 

tangential displacement v; and (c) out-of-plane flexural ring modes, varying 

as cos(nθ) and corresponding to longitudinal displacement u, for different 

values of circumferential modenumber n. 

 

 

 

3.2. Elastic Continuum Equations 

 

In Forrest and Hunt’s work, the soil surrounding the tunnel is 

modeled as a three dimensional, homogeneous, isotropic elastic solid in 

the form of a thick-walled cylinder with an inner diameter equal to the 

external diameter of the tunnel, and an outer diameter of infinite extent. 

The wave equation describing motion within a 3D, homogeneous, 

isotropic, elastic, solid medium is given in equation (3.7). 

2

2
2)(

t
ufuu

∂
∂

=+∇+⋅∇∇+ ρρμμλ       (3.7) 

where λ=2νG/(1-2ν), μ=E/2(1+ν)=G are Lame’s elastic constants. 

 39



Since a solution for vibration around equilibrium is searched, body 

forces due to gravity are ignored. Since the problem has cylindrical 

geometry, the cylindrical coordinate system will be used. The coordinate, 

displacement and stress directions are given in Figure 15. Note that a 

different notation from the cylindrical shell coordinates is used where z is 

denoting the longitudinal coordinate.  

 

 

 

 
Figure 15. Coordinate system used for the theory of an elastic continuum 

with cylindrical geometry for (a) the principle directions with their unit 

vectors, (b) the corresponding displacement components and (c) the 

corresponding cylindrical-surface stress components.  

 

 

 

The wave equation (3.7) can be solved by using the field transformation 

described by scalar and vector potentials, which are called as Lame´’s 

potentials  

,Hu ×∇+∇= φ with ),( trFH =⋅∇        (3.8)   

The scalar function F(r, t) is arbitrary, due to the gauge invariance of the 

transformation. Usually H is defined by H⋅∇ =0 for convenience, but 

Forrest and Hunt use arbitrary nature of F(r,t) for the current problem. The 

wave equation (3.7) is satisfied if the potentials satisfy  
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where ρμλ /)2(1 +=c  speed of pressure wave (compression) 

and ρμ /2 =c  speed of shear wave 

It should be noted that Rayleigh waves are not considered in this model 

due to the assumption that in the model no free surface is included.  

For cylindrical coordinates, the Laplacian are 
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Using the Laplacians together with the defined potentials give the 

displacement components as 
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The components of stress τjk are given by the general stress–strain relation 

of Hooke’s law, and are 
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It is noted that Hooke’s law is defined for linear-elastic materials. 

Damping is introduced into the material due to the assumption that small 

magnitudes of vibration are considered. So, the material becomes 

viscoelastic and the stress–strain relations are still valid. The components 

of strain ejk are defined in cylindrical coordinates by 
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To obtain solutions separable in the three space variables r, θ and z, 

and the time variable t; the following forms are assumed for the potentials 

in equation (3.9). 
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It is noted that in these harmonic solution forms, variation with r is 

also included in the functions f, gr, gθ and gz (which also vary with ω, ζ and 

n). Substituting the assumed solutions (3.14) into equation (3.9) making 

use of definitions (3.10) and considering each component of the equation 

in H in turn results in four differential equations 
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where prime denotes differentiation with respect to r. 

It should be noted that the first and fourth functions of equation 

(3.15) are modified Bessel equations of order n and thus have solutions 

based on modified Bessel functions of order n.  

To define the second and third equations in a known form Forrest 

and Hunt use property of gauge invariance. One of the functions gr, gθ or gz 
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can be set arbitrarily without any loss of generality. Choosing gr = -gθ and 

substituting into the second equation of (3.15) gives 
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which is a modified Bessel equation of order (n+1). Hence solutions for the 

functions f, gr, gθ and gz can be deduced from equations (3.15) and (3.16) 

in the form of linear combinations of modified Bessel functions as 
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where α2 = ζ2 - ω2/c2
1 , β2 = ζ2 - ω2/c2

2

In and Kn are modified Bessel functions of the first and second kinds, 

of order n, respectively. The coefficients A, B, Ar, Br, Az and Bz are arbitrary 

constants, which will be determined from boundary conditions. The 

displacements and stresses can be found in terms of the functions given 

by equation (3.17). Substituting expressions for potentials (3.14) into 

equation (3.11), recalling that gr = -gθ  gives the displacements as 
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             (3.18) 

For stress elements the authors use the equation (3.12) by using 

the strain definitions (3.13) with the displacements (3.18). The most 

important stress elements are those acting on the cylindrical surface (τrr, τrθ 

and τrz), since they are involved with the boundary conditions. These 

surface stresses are given by 
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The final expressions are determined by using recurrence relations 

containing the derivatives of Bessel functions. Bringing the harmonic 

solutions in matrix form 
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where C = [A B Ar Br Az Bz]T is the vector of coefficients, determined from 

boundary conditions. 

The elements of 3X6 matrix [U] defining displacements, and the 6X6 

matrix [T] defining stresses, are given in full, in Appendix A which are 

functions varying with wavenumber ξ, frequency ω and circumferential 

mode number n, as well as radius r and the material properties. 
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Finally, the solutions are written in a similar form with cylindrical 

shell equations as follows: 
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where the 3X6 matrix [Tr] is the top half of the 6X6 matrix [T] in equation 

(3.20). 

 

3.3. Applied load 

 

Generally, the external loading applied to the tunnel will not be 

harmonic in space and time. Since steady state harmonic variation in time 

is of interest, the loading is also assumed to be harmonic. This assumption 

enables that each applied stress to be a linear combination of the spatially 

harmonic components given in equation (3.4) for the shell or equation 

(3.21) for the continuum. 

In order to obtain results in wide areas of application, authors 

investigated the case of a point load. Hence, it is possible to determine the 

response to a more complicated loading condition by superposition of 

individual point-load responses with suitable translations and rotations. 

Forrest and Hunt give the resolution of a point load in their work by 

defining the load as an appropriately scaled uniform normal stress acting 

over a small rectangular area centered on x = 0 and y = 0. The point force 

is achieved in the limit, as the area tends to zero. After defining the point 

load through Dirac Delta functions and taking the Fourier transform, 

harmonic stresses for a particular circumferential mode number n can be 

written as 

,0~
=xnP   ,0~ =ynP                (3.22) ,
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=
na
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Pzn π
π

for all ζ. Note that the longitudinal and tangential applied forces are set to 

zero.  
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If there are no loads applied on the outside surface of the shell, the 

loads Px, Py and Pz applied to the inside surface of the shell correspond to 

qx, qy and qz in equation (3.4). 

Using these harmonic stresses, harmonic displacements 

are calculated for each value of n from equation (3.6). Total 

displacements resulting from a time-harmonic unit point load are given by 

the linear combination of these spatially harmonic components as 
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The general, time-harmonic displacement response is the inverse 

Fourier transform of a sum of the circumferential modes in the 

wavenumber domain. The result in equation (3.23) holds for any type of 

time-harmonic loading condition. Loads that are not harmonic in time could 

be treated by introducing a second inverse Fourier transform from the 

frequency to time domain. 

 

3.4. Modeling a thin-walled cylinder with elastic continuum theory 

 

For an infinitely long, free cylindrical shell loaded on the inside 

surface only, the modal loading components of equation (3.4) will simply 

be the applied loading

nQ~

 nP~ . Thus, the modal displacement components can 

be calculated from equation (3.6) as 
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Note that the conventional notations used in shell theory and continuum 

theory do not correspond exactly to one another. In equations (3.25) the 

relationships between such notations for these theories are given 
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Writing the inside and outside stress components in equation (3.21) as 
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and solving for C terms and substituting in the displacement components in 

equation (3.21) brings the modal displacement components into the 

following form: 
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3.5. Modeling a tunnel buried in soil 

 

Until now general solutions for cylindrical shell and elastic 

continuum models have been presented. To model a complete tunnel-in-

soil system, the tunnel is modeled by a cylindrical shell and the soil by an 

elastic continuum of infinite extent surrounding the tunnel. To solve this 

particular problem three sets of boundary conditions are applied: 

1. Equality of loading and stresses; 

2. Radiation condition;  

3. Compatibility of displacements and equilibrium of stresses. 

According to the first boundary condition, the stresses on the inside 

of the tunnel shell are equal to the applied loading. The stresses on the 

outside of the shell are not zero, so that the first condition can be used with 

the shell results (3.6) to write 
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The second boundary condition, the radiation condition, means that 

the displacements of the soil continuum must decay to zero as the radius 

from the center of the tunnel increases towards infinity. The radiation 

condition is used to reduce the dimensions of the equations describing the 

response of the continuum by setting the appropriate coefficients of the 

boundary condition vector C to zero. The displacements u and stresses τ 

for the continuum are expressed as linear combinations of modified Bessel 

functions In(αr), Kn(αr), In(βr), Kn(βr), In+1(βr) and Kn+1(βr). It can be shown 

that, with small loss-factor damping associated with the wave speeds c1 

and c2, the principal values of the parameters α and β fall into the first 

quadrant of the complex plane. For z in this quadrant, as ∞→z  

i. Kn(z) tends to zero  

ii. In(z) increases in magnitude.  

Thus only the modified Bessel functions of the second kind Kn and 

Kn+1 satisfy the radiation condition as ∞→r  and the coefficients of the 

modified Bessel functions of the first kind In and In+1 in equation (3.20) must 

be set to zero, so that 
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===
              (3.29) 

Thus, the application of the second boundary condition results in 

dropping out the terms containing Bessel functions In and In+1 in matrices 

[U] and [T] ,that is, the first, third and fifth elements of each row of the 

equation. 

The condition of compatibility can be used with the radiation 

condition expressed by equation (3.29), considering the differences 

between the shell and continuum coordinate systems given by equation 

(3.25). So, the displacements at the tunnel-soil interface can be written as 
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while equilibrium means that the stresses at the interface are given by 
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Eliminating the stresses acting on the outside of the shell tunnel by 

substituting equation (3.31) into equation (3.28) and using equation (3.30), 

the unknown displacements and coefficients can be found. The solution 

takes after some rearrangement the following form: 
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where [I] is a 3x3 identity matrix. The displacements { T
nnnn WVUU }~~~~ =  at the 

interface can directly be found from equation (3.32), whereas the 

displacements at some radius R elsewhere in the soil have to be 

calculated using the coefficients B from equation (3.32) as 

[ ] BUU RrRrn ⋅= =∞=

~                 (3.33) 

 

 

3.6. Addition of slab beam to the track model 

 

In an accompanying paper [25] Forrest and Hunt add a track model 

to the previously developed three-dimensional tunnel model to obtain the 

effectiveness of floating-slab track. All the couplings are achieved through 

interaction forces between the layers. The slab beam coupled to the tunnel 

as an infinitely long, continuous slab beam, in the wavenumber domain, 

with the slab bearings represented by an elastic layer. 
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Figure 16. Joining an infinitely long slab beam to the tunnel and the 

interaction forces [25] 

 

 

 

As shown in Figure 16, the slab beam and tunnel are joined along a 

single continuous line running longitudinally along the bottom of the tunnel 

invert.  G(x) and –G(x) represent the interaction forces acting on the tunnel 

and its equal and opposite counterpart. External loading applied to the slab 

beam F(x) is shown here as a point force. 

 

 

 

 
Figure 17. General force distribution per unit length Q(x) acting along the 

line of joining [25] 

 

 

 

Figure 17 shows a general continuous distribution of time-harmonic 

force per unit length Q(x). Defining the train of point loads represented by 

pulses of infinitesimal width d(χ) and magnitude Q(χ), the increment of the 

time-harmonic displacement response Y(x) to one of these point loads is 

dY(x) = H(x-χ)Q(χ) dχ, where H(x) is the frequency-response function 

(FRF) for Y(x) to a point load acting at x = 0. Integrating Y(x) over the 
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whole length of the infinite joining line gives the total displacement 

response as: 

∫
∞

∞−

−= χχχ dQxHxY )()()(                 (3.34) 

Equation (3.34) is a convolution integral in space, which is 

equivalent to a Green’s function formulation for the response, where H(x-χ) 

is Green’s function. Taking the Fourier transform of both sides using the 

transform pair given in equation (3.35), 
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where ξ is angular wavenumber and the tilde indicates wavenumber-

domain quantities, equation (3.34) is written as: 

),(~)(~)(~ ξξξ QHY =                 (3.36) 

Applying equation (3.36) to the coupled slab beam and tunnel invert 

to write the displacements yield 
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222 =

where the index denotes the lines along the slab as (1), the tunnel invert as 

(2) the soil as (3) and the line along the rail beam by 0 (zero). The 

displacements  along the beam and  along the invert are responses 

due to a unit point load acting on the slab at x = 0. The functions  and 

 are the frequency response functions for the response of the free 

beam to a point load at x = 0 and for the response of the uncoupled tunnel 

invert to a point load at x = 0 respectively in the wavenumber domain. 
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The joining of the slab beam can be achieved by either joining the 

beam directly to the tunnel invert, or by supporting it to the invert with 

resilient slab bearings. For direct joining, the equality of the displacements 

of the slab and invert yield in the wavenumber domain 

21
~~ YY =                   (3.38) 

Using equation (3.38) with equation (3.37) to eliminate G~ gives 
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Joining the slab to the invert with resilient slab bearings, adds extra 

terms to the definition of the interaction force. The interaction force G~  is 

determined by the difference of displacements and the stiffness of the 

bearings. Modeling the bearings as a continuous resilient layer of stiffness 

k per unit length gives 

)~~(~
21 YYkG −=                  (3.40) 

Using equation (3.40) with equation (3.37) to eliminate G~ gives 
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Applying the equation (3.36) and using the displacement , the 

displacement along a line in the soil parallel to the joining line can be found 

as 
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for either joining method, where H32 is the FRF of a particular soil-

displacement component Y3 to a point force acting on the uncoupled tunnel 

invert at x = 0. 

The frequency response functions in equations (3.37)-(3.42) are 

associated with the displacements calculated from the tunnel in soil model 

for unit point load condition.  
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The FRF of the slab beam is determined through the equation of motion of 

an Euler beam as 
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where m is the beam’s mass per unit length, EI is the bending stiffness, 

and f(x,t) is the applied force per unit length. Assuming a harmonic solution 

in the form  with a force  yields for unit spatial 

forcing at x=0 
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The solution of this form is treated as the free slab beam FRF. Thus 

YFHH ~~
11 =                  (3.46) 

 

3.7. Adding the rail beam 

 

The rail beam is added to the track model by using the principle of 

convolution in space. Using the previously defined notation, 
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where  is the FRF for the unjoined rail beam,  is the FRF of the 

slab beam to the load on the slab before the rail is added in wavenumber 

domain, and k

aH 00
~

aH11
~

r is the stiffness per unit length of the resilient layer between 

the rail and slab beams. To achieve joining of the rail beam to the slab and 

tunnel model again the concept of interaction force is used. In this case the 

coupling interaction force is defined by the response of the slab in the new 

combined model divided by its pre-rail-beam FRF,  as . Using 

the coupling interaction force, the responses  along the tunnel invert 

and  in the soil can be determined as: 
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where  and  are the FRF’s of the tunnel invert and the soil to a 

load on the pre-rail-beam slab in wavenumber domain. The FRF’s in 

equations (3.47)-(3.48) are associated with the displacements calculated 

from the tunnel in soil model for unit point load condition. The FRF for the 

rail beam is again found from the equation of motion of an Euler beam and 

is given in equation (3.45) with the properties of the two rails instead of the 

slab. Thus, 
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3.8. Addition of axle masses to the complete track model 

 

The vehicle dynamics are taken into account by adding axle masses 

to the track model at regular spacing[25]. The complete track model 

developed is shown in Figure 18. The tunnel, the simple slab beam 

supporting the rail beam with masses placed at intervals to represent the 

axle–wheel assemblies of a train are presented in this figure clearly. 

 

 

 

 
Figure 18. Complete track model with masses added at regular spacing 

[25] 

 

 

 

The axle masses are the simplest model of a railway vehicle where only 

the unsprung mass of the train is considered by assuming that the primary 

suspension isolates the rest of each vehicle in the train. 

The problem of finding the response at a single point in the soil due 

to a series of input loads along the rails is handled using shifting principle. 

Using the infinite structure assumption, it is concluded that the load and the 

observation point can be shifted longitudinally while maintaining their 

separation.  The response at the observation point will not change. Thus, 

finding the set of FRF’s for the soil response at x = 0 to a set of loads at 

various positions on the rail is equal to find the FRF’s for the soil at those 

various longitudinal positions to a single load at x = 0. After scaling and 
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phasing properly, the total soil response due to all axle loads acting 

simultaneously can be calculated by linearly combining all the FRF’s for an 

input at x = 0. Also note that the problem is reduced to a two-dimensional 

geometry due to infinitely long train and random inputs assumption. The 

linear combination of FRF’s represents the response anywhere along the 

soil line and thus the three dimensional problem represented by the 

individual FRF’s reduces to a two-dimensional problem of determining the 

vibration level at a particular point in the cross-section of the tunnel and 

soil. 

Adding axle masses to the complete model is done in the space 

domain. This can be obtained by inverse Fourier transform of the ξ-domain 

responses along the rail from equation (3.47) and along a line in the soil 

parallel to the joining line from equation (3.48) to x-domain as 
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which represent the FRF of the rail and the soil to a point load acting at x = 

0 at a particular frequency ω, respectively. It should be noted that 

can be defined according to the desired component u, v, or w of soil 

displacement. 

)(~
3 ξaY

The rail responses at the positions of the masses are to formed into 

an FRF matrix as 

[ ] 000 FHY =                   (3.51) 

where Y0 is the vector of rail displacements at the positions where masses 

are added, and F0 is the vector of interaction forces between the masses 

and the rail acting at those positions. The elements of H0 matrix are 

derived from rail response FRF in x-domain in equation (3.50) for a regular 

axle spacing L as 
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It is noted that the authors presented the case of adding five 

masses as an example to the general approach[25]. The number of axle 

masses can be extended to give the convergence necessary to model an 

infinitely long train. 

To add the axle masses the FRF matrix in equation (3.51) is inverted to 

obtain a dynamic stiffness matrix as 

[ ] [ ] 000
1

00 YKYHF == −                 (3.53) 

Axles are added to the model in the form of concentrated masses 

ma by adding inertia terms of the form -maω2Y, where Y is the displacement 

at the axle’s station, to the appropriate diagonal elements of the dynamic-

stiffness matrix [K0]. An axle mass is added to the free center station 

assuming a roughness displacement d = Δeiωt. Then, matrix equation (3.52) 

becomes 
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  (3.54) 

After calculating the vector of displacements of the rail at the axle 

masses from equation (3.53), the corresponding interaction forces F0 

acting on the rail at the mass stations is determined by substituting the 

vector of displacements back into equation (3.25). The interaction forces 

acting on the rail are used to find the soil displacements Y3 from equation 

(3.50). Writing these FRF’s in matrix form 

[ ] 033 FHY =                  (3.55) 

 

3.9. Random Process Theory Applied to the Full-Track Model 

 

Physical phenomena like roughness and other irregularities of rail 

and wheel surface profiles show a random distribution in reality. The 

response of the wheels to this randomly distributed surface irregularity will 
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also be considered as a random process. The soil responses will be 

calculated using the theory of random vibration described by Newland [82]. 

A random process is considered as stationary if the probability 

distributions obtained for the ensemble do not depend on absolute time. In 

the current system the inputs xj, axle inputs provided by a train, are 

considered as stationary random inputs. According to the random process 

theory, the output y, the displacement response of a particular point in the 

soil is also stationary and random. The power spectral density (PSD), Sy(ω) 

of the output process y is then given by 

∑∑
= =

=
N

p

N

q
xxqpy qp

SHHS
1 1

* )()()()( ωωωω               (3.56) 

where Hp(ω) and Hq(ω) are the FRF’s of y to the inputs xp and xq, 

respectively, )(ω
qp xxS  is the cross-spectral density function between two 

inputs. It should be noted that the asterix above Hp(ω) denotes the complex 

conjugate of the FRF. This expression is the most general form of power 

spectral density. For special cases some simplifications will be made 

according to the statistical properties of inputs, especially in cross-spectral 

density term. Two input processes have the same statistical properties, 

that is, have the same spectrum S0(ω), since the axles are running on the 

same rail profile. Considering that one lags the other such that x2(t) = x1(t-

T), the cross-spectral density is given by 

,)()( 021

ti
xx eSS ωωω −=                (3.57) ,)()( 012

ti
xx eSS ωωω =

To apply equation (3.57) Forrest and Hunt [25] assume that the 

wheels of the trains are perfectly smooth. This assumption consequents 

that all irregularities are contained in the rail surface, so that the axle inputs 

differ by a time delay only. This assumption ignores the effect of wheel 

irregularities that are existent on trains in reality. Applying the time delay 

between two adjacent axles as T = L/V, where L is the axle spacing and V 

is the speed of the train, to equation (3.57) and substituting into equation 

(3.56) yields 

∑∑
= =

−−=
N

p

N

q

vLpqi
qpy eSHHS

1 1

/)(
0

* )()()()( ωωωωω             (3.58) 
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The use of equation (3.58) requires another assumption regarding to the 

constant axle spacing. The FRF’s Hp(ω) and Hq(ω) in equation (3.58) are 

obtained from the appropriate elements of the soil-response vector Y3 in 

equation (3.55), which are due to an input at the center axle mass only. 

Note that N indicates the number of axle masses. Also, Doppler effects are 

ignored due to very low train speeds when compared to the speeds of 

pressure and shear waves in the soil.  

Another assumption to consider the process as stationary is that the 

observer is at a distance from the tunnel longer than the axle spacing. At 

this distance a hypothetical observer will not realize individual axles as 

they pass. The observer will hear a continuous noise instead. 

Under these assumptions, equation (3.58) gives a reasonable 

estimate of the vibration spectrum at a stationary observation point in the 

soil. The PSD given in equation (3.58) shows a symmetric distribution for 

frequencies from - to +∞ ∞ . Since practically spectra are defined for 

positive frequencies, the PSD in equation (3.58) is converted to single-

sided spectra for frequencies in cycles using the following equation: 

)2(4)( fSfS yy πωπ ==                  (3.59) 

Forrest and Hunt [25] use in their study Frederich’s empirical power 

spectral density for irregularity based on many measurements of the track 

geometry of different surface roughness which is given by equation (2.12). 

The important remark about this function is that it gives higher weights for 

lower frequencies as it can be seen in Figure 19. The coefficients for 

unevenness a and waviness b according to the rail condition are given in 

Table 6. The empirical power spectral density for irregularity will be used in 

equation (3.58) as input spectrum S0(ω).  
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Figure 19. The power spectrum of irregularity for the worst (red), average 

(blue) and best (green) rail conditions, given by equation (2.12).  
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CHAPTER 4 
 

 

MODIFIED MODEL  

 

 

 

In this chapter, a new model based on Forrest and Hunt’s work will 

be explained in detail. Differences between these two models will be 

described for each aspect by introducing theoretical background on the 

subject. Changes in track, vehicle and damping models are made due to 

applicability of Forrest and Hunt’s tunnel and soil model to different track 

structures and loading conditions. In Table 7, these differences are 

summed up in four subjects. 

 

Table 7. Differences between the models 

Subject Forrest & Hunt[24,25] Modification 

   

Track 
Rail+Railpad+Floating 

Slab Rail+Railpad+Sleepers 

Vehicle Model Axle masses 3  degrees of freedom 

Damping Model Hysteretic 

New model described by 

L'Mesquez [66,67] for 

moving loads . 

Hertz Contact No Yes 

 

 

 

 

 



 

 

 

Figure 20. New track model including rigid sleepers, rails, railpads and 

bearings represented as complex stiffness elements. 

 

 

 

4.1. Track Model 

 

In previously developed model, the track model consists of two 

infinite Euler beams for floating slab and for rails with railpads between 

these beams. This model is mainly developed to evaluate the effectiveness 

of floating slab system by calculating the power spectral density of vibration 

at a specific point in the soil. Forrest and Hunt claim that it is possible to 

apply the tunnel and infinite soil model to different track models [25]. 

In this work the floating slab system will be replaced by rigid 

sleepers. The reason behind the sleeper adjustment is that in many 

existing subway systems like Istanbul and Ankara subways, sleepers are 

constructed under rails. The sleepers are modeled as concrete monoblock 

type sleepers. This model assumes that the sleepers are rigid. Each 

sleeper is supported by bearings of complex stiffness elements to include 

damping on the tunnel invert. (Figure 20) The rigid sleeper assumption is 
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verified by authors Lai [65], Luo [74], Kalker [51], Krylov [59, 70] and 

Hildebrand [38], for the frequency range of interest sought in this work, i.e. 

1-200 Hz. 

In this sleeper model; the sleepers are considered to provide 

discrete loads to the ground with a time, and therefore phase difference 

corresponding to the sleeper spacing and the train speed. Each sleeper 

acts as a vertical force applied to the underneath foundation during the 

time necessary for the deflection curve to pass through the sleeper. Thus, 

an individual sleeper can be regarded as a point source, which can radiate 

elastic waves. Also shifting principle is applied by using the infinite 

structure assumption to reduce the size of calculations. As in the original 

model, the load and the observation point can be shifted longitudinally 

while maintaining their separation.  The response at the observation point 

will not change. Thus, finding the set of FRF’s for the soil response at x = 0 

to a set of loads at various positions on the rail is equal to find the FRF’s 

for the soil at those various longitudinal positions to a single load at x = 0. 

The power spectral density function of ground vibration displacement at a 

designated observation point in soil is a superposition of the contributions 

from all sleepers.  

The equations derived to obtain FRF’s of the slab beam are 

modified according to the new model to include sleepers by setting =1. 

Thus, the pre-rail-beam FRF of the slab beam will be expressed as: 

11
~H

aH11
~

)~1(1

~1~~

22

22
111 Hk

HkYH a ++
+

==         (4.1) 

where k represents the bearings of complex stiffness elements. 

Also, the power spectral density equation (3.58) will be modified by 

defining the parameter L as the sleeper spacing. Hence, the time delay 

between two adjacent sleepers is given as T = L/V, where L is the sleeper 

spacing. The results of sleeper modification will be discussed in the next 

chapter in detail. 
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4.2. Modified hysteretic damping model 

 

Forrest and Hunt use in their work [24,25] two different damping 

models. The Rayleigh (proportional) material damping governed by the two 

parameters αR and βR is used to compare results with the chosen finite 

element model.  Later in these works material damping based on loss-

factor concept is used by modeling the material damping and the track 

elements. In this damping model, the effects of material damping are 

included by using complex material parameters in the frequency domain. 

It is assumed that all energy dissipation due to material damping in 

the soil occurs through shear motion. Thus, material damping in soil is 

mainly characterized by the shear modulus G, with no losses in volumetric 

expansion, which is defined by the bulk modulus K=E/3(1-2ν). In original 

model, the soil damping is included in the model by using the complex 

material parameters G*=G(1+iηG) and K*=K(1+iηG) in the frequency 

domain, where ηG is the constant hysteretic loss factor and ηK is the factor 

for non-zero volumetric damping. The constant hysteretic factor is derived 

based on Hunt’s previous works for 100 Hz. This model also enables the 

contribution of volumetric deformations for saturated soil types through the 

parameter ηK. 

The authors achieve their material damping model in soil by 

introducing a complex Poisson’s ratio ν* to obtain the damped Lamé’s 

constant λ* [24,25]. Thus, the complex damping relations become: 

)3/()23(
2
1 ***** GKGK +−=ν                  (4.2) 

** G=μ           (4.3) 

)21/(2 **** ννλ −= G         (4.4) 

For the material damping in the tunnel invert, it is assumed that no 

damping occurs in the tunnel invert, since the material damping of the 

concrete is negligible compared to that of the soil[24,25]. 
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Damping in the springs is taken as hysteretic, described by a 

constant loss factor. Therefore, complex stiffness k(1+iη) is used in 

railpads and bearings [24,25].  

4.2.1. Modified hysteretic damping 

For stationary load and for a hysteretic damping model where the 

material exhibits damping characterized by a loss factor η, the complex 

Lamé are constants are given by [66]. 

)21)(1(
)1(
νν

ηυλ
++

+
=

iE , 
)1(2
)1(

ν
ημ

+
+

=
iE        (4.5) 

It is necessary to consider a suitable damping model for vibration 

problems in unbounded domains due to moving loads. In this thesis, a 

modified hysteretic damping model in the Fourier wavenumber domain will 

be used for moving harmonic loads derived by L’Mesgoues.[66] The 

modification is achieved by modifying Lamé constants by tracking the 

location of poles and branch points of the Rayleigh function for a stationary 

harmonic force, given in equation (4.6), for various load speeds, in the 

complex plane. 
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The Lamé constants are modified with a factor (1+iηf(k,βm)) where 

f(k,βm)=sign(k- βm), m=1,2 denoting the number of the pole in wavenumber 

domain, and k=ω/V is the wavenumber  corresponing to the moving load, 

with ω the excitation frequency and V the speed of the train. Thus, the 

expressions for Lamé constants (4.5), become 

))/1(1(
)21)(1(

)1( ksigniiE βη
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ηυλ −+
++

+
= , ))/1(1(
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)1( ksigniiE βη

ν
ημ −+

+
+

=   (4.7) 

The choice of this damping model is evident through examination of 

the propagating Rayleigh waves. 
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4.3 Vehicle model and Hertz contact 

 

In Forrest and Hunt’s work, the contribution of vehicle dynamics is 

added to the system by adding masses in dynamic stiffness matrix (3.54) 

as inertia terms. This model considers the vehicle as single degree-of-

freedom masses to stand for axles [24,25]. Real train vehicles have pairs 

of axles attached to bogies, which also contribute to the low-frequency 

interaction with the rail (below and around the primary natural frequency of 

suspensions, that is, below about 10 Hz). Thus, the vehicle model will be 

modified by including the contribution of primary and secondary 

suspensions together with the bogie. It is aimed to investigate the behavior 

of the system in the low frequency range in more detail with a three 

degree-of-freedom vehicle model by lumping the whole car body in 1/8 

vehicle mass and considering one contact point as seen in Figure 21.  

For undamped single degree-of-freedom systems, with the 

characteristic frequency ωn, the frequency-response function due to road 

displacement input y(t) and vehicle-displacement response x(t) is derived 

as 

])/(1/[1)(/)()( 2
nxy YXH ωωωωω −==       (4.8) 

The frequency-response function for the force applied to the 

roadway, xmtf &&=)( , is derived assuming that a harmonic road profile input 

y(t) = Yeiwt results in a harmonic output displacement x(t) = Xeiwt

])/(1/[)(/)()( 22
nfy mYFH ωωωωωω −−==                (4.9) 

which describes the corresponding harmonic output force Feiwt to the road 

profile. It is noted that in Forrest and Hunt’s work, the upper part of the 

division in equation (4.9) is added as inertia terms to the dynamic stiffness 

matrix.  

For a three-degree-of-freedom vehicle such as that shown in Figure 

21, an equation similar to equation (4.9) can be derived in frequency 

domain using the relation between vertical wheel displacement and normal 

force as:  
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)()()( ωω YwkF w=                  (4.10) 

where kw(ω) can be gained using the impedance relations given in (4.11). 

 
Figure 21. Three-degree-of-freedom model with one contact point [7] 
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For a single-axle vehicle model with any degrees of freedom, the 

expression  applies generally, and that the 

acceleration term is fixed, when the ratio of masses and the 

characteristic frequencies within the vehicle are fixed. Wheel forces 

generated by vehicles with identical mass ratios and characteristic 

frequencies traveling at a given speed along a particular roadway will 

therefore be in direct proportion to the vehicles’ mass alone. The 

impedance relations given in equation (4.11) are rearranged to the basic 

form to be applicable into the dynamic stiffness expression in terms of 

inertia. In practice, suspensions in the vehicle may have nonlinear 

behavior. However, to enable analysis in the frequency domain, each non-

linear suspension is modeled as linear spring.  

)(/)()( ωωω YZmH fy
&&=

)(ωZ&&

Also, Hertz contact is handled together with vehicle model. Forrest 

and Hunt neglected Hertz contact spring between each wheel and the rail, 
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due to the claim that Hertz contact does not have a significant effect on rail 

response below 750 Hz [17], which is above the frequency range of 

interest. In this thesis the effect of Hertz contact will be investigated by 

choosing comparable values for stiffness of the contact spring and the 

bearings.  

Assuming that the roughness level in wheel and rails is not 

extremely severe and that moderate static preload is applied to keep the 

wheel and rail in contact; the nonlinear wheel/rail dynamic interaction 

model is approximated using an equivalent linear model. (Figure 12, 20) 

The use of a linear contact model also simplifies calculations, since a linear 

model can be expressed in the frequency domain. 

Hertz contact is added to the model by considering its energy 

storing character i.e. subtracting linear Hertz contact spring elements from 

inertia terms in the dynamic-stiffness expression (3.54).  
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CHAPTER 5 

 

 

RESULTS AND DISCUSSION 

 

 

 

5.1 Parametric Study 

 

In this chapter the results obtained using software prepared in 

MATLAB will be presented according to each change done in the model. 

To allow comparison with the original model developed by Forrest and 

Hunt, the parameters used in their work will be adapted to the modified 

model. For the parameters of modified vehicle and track model, realistic 

values are chosen from the literature. In Tables 8,9 and 10, these 

parameters are illustrated: 

 

Table 8. Parameters to model the tunnel surrounded by soil [25] 
Tunnel (cylindrical shell) Soil (elastic continuum) 

E=50 X 109 Pa E=550 X 106 Pa 

υ=0.3 υ=0.44 

ρ=2500 kg/m3 ρ=2000 kg/m3

a=3.0 m λ=1.400 X 109 Pa 

h=0.25 m μ=G=191 X 106 Pa 

Zero damping K=1.528 X 109 Pa 

  c1=944 m/s 

  c2=309 m/s 

  ηG=0.06 

   ηK=0 

 

 

 



 

Table 9. Parameters for rails, slab beam and sleepers [25] 
Slab beam Rail beam Sleepers 

EI=1430 X 106 Pa m4 EIr=10 X 106 Pa m4 L=0.6 m 

m=3500 kg/m mr=100 kg/m Rigid sleepers 

ks=1262 X 106 N/m2 (fn=60 Hz) kr=400 X 106 N/m2

ηs=0.5 ηr=0.3 

 

Table 10. Parameters for the vehicle model [25,7] 
Vehicle  

ma=500 kg 

L=20 m 

Mass of 1/8 vagon(mc)=5075 kg 

mass of bogie(mb)=745 kg 

mass of wheelset(mw)=880 kg 

primary vertical stiffness(k1)=9.72 X 105 N/m 

secondary vertical stiffness(k2)=3.52 X 105 N/m 

primary vertical damping(c1)=1.2 X 104 Ns/m 

secondary vertical damping(c2)=1 X 104 Ns/m 

Hertzian contact stiffness=2,7 X 109 N/m 

 

 It should be noted that for the chosen vehicle, these parameters 

satisfy the condition that the natural frequency of primary suspension 

system ( Hz
m
kf

w
n 3.5

2
1 1 ==
π

) lies below 10 Hz. Also, the primary 

suspension system is much stiffer than the secondary suspension system. 

All the calculations are carried for the vehicle speed of 40 km/h. The 

number of contributing axles and sleepers is important since the 

convenient forcing vector must be used to model the response in the soil 

correctly. In the original model, it is claimed that 25 axles are sufficient for 

convergence. When modeling the track with rigid sleepers, the number of 

axles is substituted with the number of sleepers. The choice of the number 

of sleepers is dependent on the length of wavenumber and consequently 

space domain. 
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The MATLAB code creates 5-dimensional matrix of equation (3.32) 

whose components are given in Appendix A. Note there is a span of 18 

orders of magnitude in the values of the matrix, which means that the 

assembled matrix is so badly scaled that numerical solution of the problem 

can produce inaccurate results. Therefore, row and column normalisation 

is used to reduce magnitudes of the elements in the assembled matrix to 

between zero and unity before attempting numerical solution. 

Displacements in wavenumber and frequency domain are added for each 

value of n to calculate the displacement at the interface and at a specified 

point in the soil. Inverse discrete Fourier transform is taken to transform the 

wavenumber domain to space domain. The frequency response functions 

and dynamic stiffness matrix are formed and the power spectral density 

function of displacement at a desired point in the soil is calculated. The 

algorithm of the code is given in Figure 22.  

Due to requirements of high computational power and memory 

capacity, calculations could not be performed by the same number of 

variables in the original work. Only five circumferential modes could be 

included and the discrete Fourier Transform (DFT) is calculated using 128 

points which correspond to a length of 64 meters in longitudinal direction. It 

is expected that, the program is able to yield the general characteristics of 

vertical displacement spectrum with less detail due to limitations on 

computational power. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. The MATLAB code algorithm and the lines where modifications 

are made 

 

 

 

Each modification in the system will be compared with the original 

model where the track is modeled with slab beams on slab support 

stiffness defined for fn=60 Hz according to the vertical displacement 

spectrum at θ=0 and r=20 m, considering the best rail conditions at the 

vehicle speed of 40 km/h. 
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5.1.1 Track model 

Modifications made in the track model affect the part where the 

definitions of frequency response functions are presented in the code. The 

rigid sleeper assumption changes H11, originally the FRF of the slab beam 

as unity. Also L, axle spacing is redefined as the sleeper spacing. Note that 

the value of L and the length of wavenumber domain affect the number of 

contributing sleepers. Taking L=0.6 enables (length of x-domain)/L-2 

sleepers i.e.105 sleepers to be included in the length of space domain. 

 

 

 
Figure 23. Result of sleeper modification (green: original system, blue: 

sleeper modification) 

 

 

 

5.1.2 Modified damping model 
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The modified damping model changes the definition of Lamé 

constants in the code. In the modified model, λ and μ are variables 

changing in wavenumber domain with frequency and the vehicle speed. 

Accordingly Lamé constants are placed in the part where main matrices in 

equation (3.32) are created as seen in Figure 22.   



 
Figure 24. Effect of modified hysteretic damping for moving load (green: 

original system, blue: damping modification) 

 

 

 

5.1.3. Modified vehicle model and Hertz contact 

Modified vehicle model is added to the system by introducing inertia 

term of equation (4.10) instead of axle masses to the dynamic stiffness 

matrix (3.54). The vehicle parameters are chosen to reflect a realistic 

vehicle model. Damping is incorporated into the suspension by introducing 

viscous dampers. Also, Hertzian contact is included in the system by 

adding linear stiffness terms to dynamic stiffness expression considering 

the energy storing characteristic of spring elements.   
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Figure 25. Effect of 3 degree-of-freedom vehicle model and Hertz contact 

on the model (green: original system, blue: vehicle modification) 

 

 

 

5.1.4. The complete modified model 

 74

The complete model is obtained by including each modification to 

the original model developed by Forrest and Hunt. Thus the modified 

model takes new track, damping and vehicle model with Hertz contact 

spring into account to calculate the power spectral density function at a 

desired point in soil using Random Process Theory. The program is 

operated to give useful information about the ground borne vibration due to 

underground railway vehicles. In Figure 27 the isogram of spectral density 

function of vertical displacement for different positional angles is shown. In 

Figure 28, response in the soil at a distance of 20 meters from the tunnel 

centerline is evaluated for different vehicle speeds. In Figure 29, the 

change in root mean square value of vibration velocity with respect to 

distance from the tunnel centerline and frequency is shown. Calculations 

are performed in the frequency range of 1 to 80 Hz and the vibration 

velocity levels are compared with the limits specified in TS ISO 2631-2 

standards.  



 

 
Figure 26. Comparison between two models on displacement vibration 

spectra at θ=0 and r=20m (green: original system, blue: combined modified 

system).   

 

 

 
Figure 27. Vertical soil displacement spectrum for the modified model for 

different angles θ. 
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Figure 28. Change in vertical soil displacement spectrum at θ=0 and  

r=20m for different vehicle speeds. 

 

 

 

 
Figure 29. Root mean square value of vibration velocity compared with 

limit values specified in TS ISO 2631-2.  
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5.2 Discussion 

 

For predictions of ground-borne vibration accurately it is necessary 

to represent both the discrete nature of the track support and 

characteristics of the vehicle as realistically as possible. The periodicity in 

the track model geometry gives rise to the transmission of vibration at 

characteristic frequencies into the ground. The aim of the modified model 

is to take the discrete nature of supports, and a more appropriate and/or 

sophisticated vehicle model with higher degrees of freedom into 

consideration. Modified damping model and Hertzian contact are included 

into the system model to study effects of these modifications. In Figures 

23-26 results are presented for each modification in the system separately 

to enable comparison with those of the original model. In all the figures, it 

is observed that the original model underestimates vibration levels at low 

frequencies. This underlines the necessity and importance of a appropriate 

vehicle model.  

In Figures 23 and 26, different effects of sleeper support and axle 

passing is detected in terms of sleeper passing frequency and axle spacing 

frequency. In the original model axle spacing plays an important role, 

which is defined as 

d
Uf A =           (5.1) 

where U is the vehicle speed in m/s and d is the axle spacing in meters. 

The effect of axle spacing is reflected onto the spectrum as troughs of 5 Hz 

intervals conceptualized as wheelbase filtering due to coincidence of 

roughness wavelength with the axle spacing on the track. The same 

characteristics are also obtained in the original model. Forrest and Hunt 

explain this phenomenon with the motion of axle masses.[25]. It is claimed 

that, crests occur when all the axle masses move up and down in phase 

and troughs when they move out of phase. For the train speed of 40km/h 

(11.1 m/s) and axle spacing of 20 m, the expected frequency interval 

between peaks of in-phase force transmitted to the tunnel invert is 0.5 Hz, 

which is not clear in original model spectrum Figures 23-26. Main reason 
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for this is that the computations are performed for a frequency step of 1 Hz, 

this implies a resolution too coarse to show fluctuation at periods of 0.5 Hz. 

Thus, the fluctuation can only be observed at integer multiples of the 

fundamental frequency interval. 

Generally, sleepers are considered to provide discrete loads to the 

ground with a time delay, and therefore associated phase difference 

corresponding to the sleeper spacing and the train speed. The sleeper 

passing frequency is defined as  

d
Uf s =            (5.2) 

where U is the vehicle speed in m/s and d is the sleeper spacing in meters.  

In the current model the sleeper support modification is validated 

through sleeper passing frequency and wheel-track resonance frequency. 

As seen in Figure 30, the axle passing frequency has an effect in low 

frequency range, where sleeper passing frequency is more dominant at 

higher frequencies. The common peak at different vehicle speeds is 

designated by fR/S, which is the range of wheel – track resonance.  

To compare the results of the modified model, the power spectral 

density is calculated at tunnel walls and converted to root mean square of 

vertical vibration velocity. The results are evaluated in decibel scale where 

the reference is taken as 5 x 10-8 m/s and illustrated in Figure 30 in 1/3-

octave bands together with experimentally measured values.  

For a vehicle traveling at U=11.1 m/s on a track with sleeper support 

spacing of 0.6 meter, the first peak in the vertical vibration velocity 

spectrum is expected at the sleeper support frequency equal to 18 Hz. In 

Figure 23, representing the contribution of sleeper modification alone and 

in Figure 26 representing the combined modified model; the first jump in 

spectrum is detected around 18 Hz indeed. At higher frequencies, the 

figure takes a repeating shape with an interval of 18 Hz, the sleeper 

passing frequency. This characteristic form is consistent with the measured 

one-third octave vibration velocity level as shown in Figure 30. As seen in 

Figure 30 the wheel – track resonance of the modified model occurs at 63 

Hz. A similar result has been observed in the measurements Heckl 
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conducted [36] on the tunnel walls. In Figure 27, the rise in power spectral 

density function around 60-80 Hz, obtained from the modified model at 20 

meters distance from the track centerline can be explained with the same 

phenomenon. 

 

 

 

 
Figure 30. One-third octave band vibration levels measured on the tunnel 

walls for different vehicle speeds. and results computed by the modified 

model(in red) at U=40 km/h (1. U=30 km/h, fs=14 Hz, 2. U=60 km/h fs=28 

Hz, 3. U=120 km/h fs=56 Hz )[36]. 

 

 

 

A moving load on surface irregularity approach is used in the model. 

This necessitates a convenient damping model in the soil to be applied. 

With the modified damping model, where the soil damping parameters 

depend on the wavenumber, vehicle speed and frequency, little difference 
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from the original model is observed. At higher frequencies than 50 Hz, 

modified damping model results in overestimated values due to 

dependence of damping on frequency.   

The vehicle is modeled as a three degree-of-freedom system taking 

primary and secondary suspension system, wheelset, bogie and 1/8 

lumped vehicle mass and Hertzian contact into account. It is assumed that 

at low frequency region the vehicle’s primary and secondary suspension 

isolate the bogie and body from the wheelset. Consequently the vehicle’s 

“unsprung mass” is the only component which significantly affects vertical 

dynamic loads between wheelset and track, which is lumped in 1/8 vehicle 

mass. Thus unsprung mass can be represented satisfactorily for vertical 

excitations as a rigid body. As seen In Figure 25, vehicle modification with 

Hertzian contact results with a reasonable characteristic in the low 

frequency region where dynamic behavior of the vehicle with regard to 

stability, steering and passenger comfort is significant. Around the 

resonance of primary suspension system, i.e. 5.3 Hz, the peaks can be 

detected. With increasing frequency the values of power spectrum 

decrease retaining the repeating form due to axle spacing. 

In general, the excitation of railway vehicles is distinguished in three 

completely different parts: the regular static part, the irregular static part 

(due to the scattering of the axle impulses) and the regular dynamic part 

(due to the sleeper passage). It is known that to model the tracks behavior 

at very low frequencies and at the near-field of the track, the regular static 

part, which is also called the quasi-static part, must be added to the 

system. In this thesis the ground vibration near railway lines is considered 

to be caused by dynamic loads due to irregularities of the vehicle and track 

or due to the regular track variation with sleeper passing frequency. 

Track structures of infinite length are commonly used for frequency 

domain solutions. Practically, it is not possible to obtain a solution where 

infinite number of data is involved and generally a satisfactory 

convergence is aimed. In this work, due to limitations on computational 

power it is assumed that convergence is reached with less number of 

variables than in the original work. In Forrest and Hunt’s work, the number 
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of contributing circumferential modes is taken as ten where in this thesis 

only five modes are considered. Also calculations are performed on a 

shorter wavenumber domain due to limitations in computer memory. 

However, by comparing the results with measurements, it is concluded that 

the modified model gives quite a realistic characteristic for vibration 

spectrum due to underground rail vehicles. It should be noted that, the 

modified model gives underestimated results in 1-18 Hz range, where it 

gives overestimated results in 18-200 Hz range. 

The modified model has been operated for different angles θ to give 

vertical displacement spectrum, which is shown in Figure 27. The spectrum 

of vertical displacement has minima at θ=00 and θ=900. Note that for all the 

positional angles, the same general characteristics like sleeper passing 

frequency or wheel – track resonance are apparent.  

In Figure 28, the variation of power spectral density function of 

vibration displacement in terms of different vehicle speeds is given. With 

the increase in train speed, vibration amplitudes of the vehicle excited by 

the random irregularity of the track do not change significantly. Depending 

on the change of sleeper passage frequency, the number of generated 

peaks changes. With increasing vehicle speed, less number of peaks is 

observed in the spectrum and peak frequencies shift up to higher 

frequencies.  

In Figure 29, a real situation is modeled and the calculated vibration 

velocity levels are compared with the limit values specified in TS ISO 2631-

2. Considering that the soil type surrounding the tunnel is clay stone and 

the vehicle speed is 80 km/h, calculations are performed to estimate the 

change in velocity level due to distance from the track and frequency. As 

seen in Figure 29, the peak around 37 Hz is attenuated under the limit 

values at 9 meters whereas the peak around 74 Hz is attenuated at 7 

meters. The reason for that is that the soil damping is more efficient at 

higher frequencies. 
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

 

In this thesis, ground-borne vibration from underground rail vehicles 

is modeled, by modifying a previously developed model by Forrest and 

Hunt. In the same frequency range with the original work, modifications are 

made in four areas: track model, vehicle model, damping and contact 

model. The track is modeled with rigid sleepers together with railpads, the 

vehicle as a moving three-degree-of-freedom 1/8 vehicle. Modified 

hysteretic damping for moving loads in soil and Hertzian contact are 

included into the model for compliance with the real situation. In the 

frequency range of interest, effect of sleeper modification with modified 

hysteretic damping is found to be more essential. The characteristic 

component in the vibration spectrum, sleeper passing frequency is 

represented satisfactorily through the modifications made. Also 

comparison with the measurements from literature gives quite good 

agreement with the computed results by the modified model. All the 

calculations are performed and presented graphically for each modification 

separately to represent each effect in detail. Also, graphical results for 

vertical vibration displacement spectra of the system for different vehicle 

speeds and positional angles are included; a realistic case is studied by 

comparing vibration velocity levels with limit values specified in TS ISO 

2631-2. 

Throughout the modeling process, assumptions are made to 

simplify calculations without losing integrity with the real problem. The 

whole structure, which is surrounded by viscoelastic soil without free 

surface, is assumed to be infinite in extent. All calculations are performed 
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in frequency domain using random process theory by assuming that the 

model is completely linear. However, it is already known that there are 

several nonlinearities present in the system. The most significant of these 

is unloading of the wheel/rail contact. The contact stiffness itself is 

nonlinear, and other phenomena such as periodic rolling and slipping are 

inherently nonlinear. In practice, there are many irregularities in the 

structure of railway track, such as poorly supported sleepers, missing or 

defective railpads and fastenings, non-uniform sleeper spacing. A further 

study can cover all these defects by modifying the current track and vehicle 

model by representing these irregularities with the help of random process 

theory.  

Frequency range of interest can be extended, since phenomena like 

noise, corrugation formation and other types of damage to the vehicle 

occur in high frequency range up to 5 kHz.  Extension of the frequency 

range requires the vehicle and track model to be modeled more detailed. 

The vehicle model has to include dynamics of the complete vehicle. In 

higher frequency range it is more appropriate to model the rails as 

Timoshenko beams and the sleepers with finite stiffness need to be taken 

into account.  

In conclusion, by entering correct parameters for wave speed in soil 

and stiffness elements to the prepared MATLAB code, real situation can be 

modeled with sufficient accuracy for prediction and mapping of vibration 

from underground rail vehicles in urban areas.  It is also possible to design 

specific track elements like pads, mats and other types of support to meet 

the specified standards for ground –borne vibration like ISO 2631-2 or TS 

ISO 2631-2 or other possible vibration limits specified by authorities and/or 

legal documents. 
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SHELL AND CONTINUUM COEFFICIENTS 

 

Below the coefficients for cylindrical shell form Flügge equations 

and elastic continuum equations are given. [24] 

For the elements of [A] matrix: 
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For the elements of [U] matrix: 
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