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ABSTRACT

PRIORITIZED 3D SCENE RECONSTRUCTION AND
RATE-DISTORTION EFFICIENT REPRESENTATION
FOR VIDEO SEQUENCES

Imre, Evren
Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. A. Aydin Alatan

August 2007, 201 Pages

In this dissertation, a novel scheme performing 3D reconstruction of a scene from
a 2D video sequence is presented. To this aim, first, the trajectories of the salient
features in the scene are determined as a sequence of displacements via Kanade-
Lukas-Tomasi tracker and Kalman filter. Then, a tentative camera trajectory with
respect to a metric reference reconstruction is estimated. All frame pairs are
ordered with respect to their amenability to 3D reconstruction by a metric that
utilizes the baseline distances and the number of tracked correspondences between
the frames. The ordered frame pairs are processed via a sequential structure-from-
motion algorithm to estimate the sparse structure and camera matrices. The metric
and the associated reconstruction algorithm are shown to outperform their
counterparts in the literature via experiments. Finally, a mesh-based, rate-

distortion efficient representation is constructed through a novel procedure driven

v



by the error between a target image, and its prediction from a reference image and
the current mesh. At each iteration, the triangular patch, whose projection on the
predicted image has the largest error, is identified. Within this projected region
and its correspondence on the reference frame, feature matches are extracted. The
pair with the least conformance to the planar model is used to determine the
vertex to be added to the mesh. The procedure is shown to outperform the dense
depth-map representation in all tested cases, and the block motion vector

representation, in scenes with large depth range, in rate-distortion sense.

Keywords: Feature tracking, structure-from-motion, rate-distortion efficient scene

representation.
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VIDEO GORUNTULERI ICIN ONCELIKLENDIRILMIS
3B SAHNE GERI CATIMI VE HIZ-BOZULUM
BAGLAMINDA VERIMLI GOSTERIMI

Imre, Evren
Doktora, Elektrik-Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. A. Aydin Alatan

Agustos 2007, 201 sayfa

Bu tez ¢alismasinda, 2B video goriintiilerini kullanarak bir 3B sahne gerigcatimi
gerceklestiren ozgiin bir yontem onerilmistir. Onerilen yontemde, oncelikle
Kanade-Lukas-Tomasi izleyicisi ve Kalman filtresi yardimiyla sahnedeki belirgin
Ozniteliklerin bir kareler arasi yer degisiklikleri dizisi olarak temsil edilen
gezingeleri olusturulur. Ardindan, sahneyi goriintiileyen kameralar bir metrik
referans gericatimina gore yerlestirilip, videodaki her kare ¢iftinin 3B gericatima
uygunlugunu degerlendirebilmek icin temel ¢izgi ve Oznitelik cifti sayisin1 goz
Oniine alan 6zgiin bir 6lcev hesaplanir. Bu dlgeve gore siralanan kare ¢iftleri, sirali
hareketten-yap1 temelli bir algoritmayla islenip, seyrek yapt ve kamera
kestirimleri hesaplamir. Onerilen yaklasimin teknik yazindaki benzerlerinden
istlin oldugu deneylerle gosterilmistir. Son olarak, hiz-bozunum acisindan

verimli, 6rgii temelli bir 3B sahne gosterimi olusturulur. Orgii yaratim siireci, bir

vi



hedef goriintli ve onun bir Orgii ve bir referans goriintiisiinden elde edilen
kestirimi arasindaki hata tarafindan yonetilir. Hedef ve kesitim arasindaki fark
goriintiisti lizerinde yansimasi en biiyiik hatay1 iceren licgensel yama, iyilestirme
icin secilir. Bu yamanin hedef ve referans goriintiilerindeki yansimalari icinde yer
alan Oznitelik ciftleri arasindan, liggensel yamaya en az uyumlu olan cift,
gosterime eklenecek 3B diigiimii hesaplamak igin kullamlir. Onerilen ydntem
denenen tiim durumlarda sik derinlik haritasi metodundan, derinligin yiiksek
oldugu sahnelerde ise blok hareket vektorleri metodundan daha iyi sonuglar

vermistir.

Anahtar kelimeler: Oznitelik takibi, hareketten-yapi, hiz-bozulum acisindan

verimli sahne gosterimi.

vil
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CHAPTER 1

INTRODUCTION

The relation between a 3D real world scene and its images has been studied for
centuries by painters, photographers, psychologists, mathematicians, physicists
and engineers. The interest from such an impressive array of disciplines stems
from the broad variety of applications, ranging from cartography to data
visualization and entertainment. However, among these, entertainment
applications have been one of the major driving factors behind the research in this
area, with a history dating back to the invention of stereoscopic photography in
1838. Moreover, the improvements in 3D display technologies, and the increasing
affordability of auto-stereoscopic displays for individual desktop use will
certainly accentuate the already influential role of entertainment applications, due

to increased 3D content demand.

The third dimension, despite its exciting potential, cannot yet challenge the
dominance of the 2D media in visual entertainment, due to established distribution
channels and widespread use of 2D display devices, such as television, monitor
and movie screen. This fact naturally limits the production and choice of available
of 3D content. In the future, this problem will be overcome by the positive
feedback loop between the increasing demand created by 3D displays and 3D

content for each other. Today, this limitation can be overcome by tapping into the



immensely rich repository of 2D media, by devising methods to convert it to 3D.

Such methods have two immediate applications:

e 3D TV: Online conversion of 2D TV broadcast to 3D enables a 3D TV
implementation that is totally compatible with the existing 2D content

production facilities and broadcast network.

e Recycling existing material: The first motion picture was shot in 1888,
and in 2005, only in USA, 611 movies were produced. An off-line conversion
technology for converting the existing 2D movies and archive material into
3D can inject tens of thousands of titles into an otherwise content-starved

field.

It is these potential applications, as well as the promise of an interesting research,
that prompted the author to choose 3D conversion of 2D video as the topic of his

PhD studies.

The exact problem definition and a framework for solution are reserved for the
following sections. Basically, the fundamentals of the solution remains the same
as the template laid out by the other major works in this area, such as [1], [2] and
[3], whose essential components are feature extraction and matching, sequential
sparse reconstruction, self calibration and dense reconstruction blocks. The
difference between this work and the literature lies in the shift of emphasis to

different aspects of the problem, such as:

¢ Feature extraction and matching for video: With regards to feature
extraction and matching, video sequences have two important properties that
should be exploited: Lighting and feature locations in consecutive frames do
not change substantially, i.e., there exist translation-invariant features in the

scene. However, in [2], since frame-collections are also designated as possible



inputs, affine-invariant features are used. This flexibility comes at a price, as
in video case, enforcement of unnecessary invariance conditions reduce the
number of matches [4]; hence, the quality of the camera matrix and sparse
structure estimates. In [1], corner features in consecutive frames are paired
together to form long trajectories. In Chapter 3, this approach is shown to be
inferior in the number and suitability of the recovered features for 3D
reconstruction, to a Kanade-Lukas-Tomasi tracker [16], a method employed in

[3] and this work.

¢ Frame pair prioritization: Video sequences do not suggest an inherent
processing order that can both achieve a good reconstruction, and avoid
degenerate and numerically unstable cases. Therefore, it is important to be
able to automatically select the frame pairs which offer accurate and
informative estimates of the scene and to establish a processing order, to
ensure the convergence of the sequential reconstruction algorithm to a good
solution. However, this problem is not mentioned at all in [1] and [3]. In [5], a
work closely related to [2], the problem is recognized and solved by using
geometric robust information criterion (GRIC) a metric defined in [6]. In this

work, another solution is proposed, and shown to be superior to GRIC.

e Efficient scene representation: For dense scene representation, dense
depth maps are employed in [1] and [2]. In [3], as in this work, a triangular
mesh is chosen to better utilize the available sparse structure estimate.
However, in all works sharing the scope of this thesis, only accuracy is
emphasized. In this dissertation, dense scene representation is studied in the
framework suggested in [92], i.e., as a rate-distortion problem, to obtain a not
only accurate, but also efficient representation of the scene, to facilitate its

transmission and storage.

In the following sections, the problem, a review of the relevant literature and the

basic solution approach is presented.



1.1 3D Scene Reconstruction from Uncalibrated 2D Video
Sequences

1.1.1 Problem Definition

The “3D reconstruction from uncalibrated 2D video” problem can be formally
defined as estimating a dense 3D representation of the scene from an uncalibrated
video sequence, under the assumptions of rigid body motion, and the existence of
camera motion. The emphasis on uncalibrated video is to signify that no prior
information about the data is available, a situation commonly encountered when
processing video sequences acquired from TV broadcast, or 2D archive material.
The problem is a special case of multi-view 3D reconstruction, with the following

distinguishing features:

* Video sequence is the only source of information: No information on
the cameras or the scene is available, except for what can be extracted from
the video sequence (e.g., no calibration information, auxiliary sensor
information for camera motion, actual scale of the scene, parallelism or

perpendicularity).

e No control on data acquisition: Only passive sensors are used and
neither camera parameters nor camera motion can be controlled. Moreover,
there is a wide variety of scenes to be dealt with, ranging from textured natural
outdoor scenes and urban scenes dominated by planes and regular texture, to

indoor scenes with mostly flat, non-textured walls.

¢ Dynamic scene: In addition to a still background, a scene may contain
dynamic elements, i.e., independently moving objects. While it is possible to
isolate these elements and reconstruct them individually, scale ambiguity
prevents a precise localization in the coordinate system of the background
automatically. Still, it is possible to limit the uncertainty to some extent by

using occlusions and disocclusions.



e Causality: In an on-line 3DTV application, the data should be processed
causally or at most with a small processing delay. However, conversion of

archive material is amenable to non-causal processing.

e Computational load: 2D-3D conversion for 3DTV requires real-time
operation. However, conversion of archive material allows off-line
computation. This fact, coupled with the availability of non-causal processing
techniques, means that the conversion of archive material is a relatively less

challenging problem when compared to 3DTV.

e Supervision: The computer vision field offers the necessary tools to
completely automate the 2D-to-3D conversion chain for static scenes [10].
However, all these tools have their domains of validity, defined by their
fundamental assumptions on the input. A simple way to overcome this
limitation is to employ a man-in-the-loop, who makes the critical decisions,
and delegates the computationally intensive procedures to the computer. These
decisions include, but not limited to, identifying frames that give rise to
certain special cases, identifying parallelisms and perpendicularities in the

scene and placing dynamic elements [10].

The system proposed in this work primarily focuses on the former two of these
issues. A solution for the dynamic scene case is included for sake of
completeness, but the proposed method is basically for static scenes. The design
choices were often influenced by their implications on the computational load
however, real-time performance was never pursued. Finally causality was not
considered as a design constraint, and the possibility of supervision is forsaken in

favor of a fully-automatic system.

1.1.2 Literature Review

As mentioned above, solution approaches to 2D-3D conversion problem are

typically composed of feature tracking, self-calibration, sparse and dense



reconstruction modules. Moreover, when dynamic scene is a possibility, the
system should be enhanced with trajectory segmentation capability, to associate
the trajectories with the correct static or dynamic scene elements. Each module
performs a specific task, and is the subject of a distinct field of research, hence,

deserves an individual review of the relevant literature.

Feature Matching and Tracking

Typical scene features used in 3D reconstruction are corners, for a number of
reasons including the existence of mature and robust algorithms for their
extraction, matching and tracking, and unambiguous localization on the image.
Besides, line features, the closest rival of corners, have more severe degenerate

cases in reconstruction [10].

The basic approaches for feature extraction are using curvatures [13] and finding
the maxima of nonlinear transformations of the image gradient. The latter group
includes very successful and popular feature detectors, such as Harris corner

detector [7] and SIFT [8].

The choice of matching/tracking algorithm depends on the relative calibration
between images, such as orientation and scale variations, and the available
computational resources. A general rule of thumb can be stated as follows: The
more complex a matching procedure is, the smaller, but more reliable the
established correspondences become. In order to determine matching features,
either intensity similarity (e.g., cross correlation or affine warping) [15], or
structural similarity (e.g., neighborhood constraint) [14] is utilized. In video case,
KLT tracker successfully constructs feature trajectories [9][16]. A typical

subsequent step is the elimination of possible outliers via epipolar criterion [10].



An extensive survey of different approaches to corner detection and matching

problem can be found in [4].

Trajectory Segmentation

The solution approaches for the trajectory segmentation problem can be classified
into four categories. Optical flow-based methods assume a scene that is composed
of planes at various depths, and utilize a simple clustering to achieve the desired
segmentation [17]. Another set of solutions utilizes eigen decomposition of the
affinity matrix, a structure which contains the similarity information among all
features [19]. Geometric methods exploit the constraints imposed by the epipolar
geometry and the rigid body motion assumption. While the epipolar constraint and
the fundamental matrix (F-matrix) is a popular choice [20][21], more general
model selection-based methods are also available [6]. Finally, statistical
techniques such as sequential importance sampling also have a niche in this field
[18]. Among these methods, the geometric approach enjoys a popularity

stemming from its simplicity and compatibility with the 3D nature of the problem.

Self-Calibration

The first and perhaps the best-known self-calibration technique is developed by
Fagueras et al.[22], and involves the solution of Kruppa equations [23]. In [24],
an indirect approach that upgrades a projective model first to affine, and then to
Euclidean stratum is employed, by utilizing the modulus constraints. The
constraints on the singular values of essential matrix (E-matrix) give rise to a
relatively robust technique, presented in [27]. Recently, a method that utilizes the
cheiral inequalities [10] to achieve a quasi-affine reconstruction, which is then

upgraded to metric stratum, is also proposed [28].

Another class of solutions constrains or fixes the unknown parameters, or motion.

One such technique, a remarkably simple and stable one, is described in [2], in



which, soft constraints are used to weight a linear equation system. In [25] and
[26], recovery of the unknown focal length by using only two views is shown to
be possible, through a solution of a combination of linear and non-linear
equations. A recent technique employs Grofner bases to construct a 15 degree

polynomial, solution of which yields the unknown focal length from two cameras

[29].

Sparse Reconstruction

Two-view structure-from-motion (SfM) problem has been studied for 25 years,
beginning with the seminal work of Longuet-Higgins [31], and a complete
solution for metric case was proposed as early as 1989 by Weng et al [30].
However, many aspects of the problem were further studied to yield
improvements in F-matrix estimation and triangulation. The highlights of the two-
view SfM research in the following years are the 7-point [34], and normalized 8-
point algorithms [12], robust F-matrix estimation via stochastic optimization
techniques, specifically RANSAC [33], characterization of the uncertainty of F-
matrix [35] and polynomial triangulation. [36]. The recent research in the field is
more focused on better stochastic optimization schemes that are capable of
utilizing the correspondence reliability [38][86], or that can deal with the
degenerate cases [39], and efficient estimation procedures [37]. An excellent
review of F-matrix estimation techniques can be found in [34] and [10] includes
an extensive treatment of the subject, complete with theoretical and practical

aspects.

On the other hand, the solution approaches to multi-frame extension of the SfM
problem (MESfM) can be categorized into batch and sequential algorithms. Batch
algorithms attempt to solve the MFSfM problem by processing all available data
at once. Their best known example is the factorization method, in which, the rank
constraint on trajectory matrix is exploited to factorize it into two terms,

corresponding to camera orientation and structure [40]. The algorithm is first



designed for orthographic projection, and later improved to deal with other
camera models [41][56], articulated motion [43], and independently moving
objects [42]. The most notable shortcoming of factorization algorithms is their
inability to utilize partial trajectories. Therefore, to obtain a relatively populous
sparse point cloud, it is necessary to complete the partial trajectories [44]. Finally,
the error analysis of this algorithm is presented in [45]. Another well-known
approach for MFSfM problem is bundle adjustment, a technique that attempts to
find the optimal structure and camera matrix estimates by performing a
Levenberg-Marquardt minimization of the reprojection error over these
parameters [49]. While efficient algorithms exist to reduce the computational cost
[46][47], and to improve its stability [48], this method is known to be extremely

sensitive to initial estimate [49].

While sequential algorithms initially comprised a separate branch, currently, it is
common practice to use them to find a good initial estimate for bundle adjustment
(or equivalently, to refine their results with bundle adjustment). The first
sequential algorithms were formulated via extended Kalman filter [51][52], to
estimate the unknown state vector composed of camera and structure parameters,
by using the 2D correspondences, or essential matrices as observations [55].
However, these algorithms require accurate initial estimates. A similar method
employs particle filters to estimate the posterior probability density of the state
vector, given the observations [53]. The estimate-fusion approach leads to
sequential algorithms that integrate two- or multiple-view sub-estimates of camera
and structure parameters [2][57]. With a proper weighting scheme, this class of
algorithms yields successful results. The bias and variance of sub-estimates [53]

can be used to determine such a weighting scheme.

Dense Reconstruction
A dense 3D reconstruction can be described either by a point-based

representation, as a depth-map defined on the same lattice with the reference



frame, or as a mesh-based piecewise planar surface, or by a volumetric
representation, such as voxels [58]. A good review of voxel based and depth-map
based methods can be found in [58] and [59]. Depth map-based representations
have the advantage of exploiting the existing image and video coding techniques
for compression. However, multiple depth-maps of the same scene from different
views have an inherent redundancy due to overlapping parts, making other 3D
representations more desirable. One of these 3D representations, voxels, is known
to achieve high resolution, whereas demanding in terms of the computational
resources. On the other hand, piecewise planar representations offer an efficient
alternative for many man-made and natural real world scenes that can be well-
approximated by planes. Besides, a piecewise planar representation is a natural
extension of a sparse point cloud, therefore, facilitate interaction between the

other modules of the reconstruction chain.

The considerable body of research on piecewise planar scene representations can
be presented in two major classes. In the first approach, a planar surface is fit onto
an irregular 3D point cloud. A good example is presented in [61], in which the
point cloud is divided into cells and a dominant plane is identified in each cell via
RANSAC. An equivalent procedure is described in [60] to determine the

homographies induced by scene planes from 2D correspondences.

The use of triangular meshes, specifically Delaunay triangulation, due to its
certain optimality properties [62] and compact representation as a sequence of
vertices [77], characterizes the second approach. There exist successful algorithms
that can construct a triangular mesh from an irregular 3D point cloud [63].
However, image-based triangulation (IBT) techniques [64] are one step beyond,
as they are also capable of incorporating the intensity information. The basic
algorithm utilizes edge swaps on a triangular mesh, to minimize the intensity
prediction error of an image of the scene, acquired by a known camera matrix

[64]. In [65], a simulated annealing procedure, that is equipped with a rich arsenal
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of tools in addition to edge swap, is employed. In the algorithm proposed in [66],
a similar idea is used to represent a disparity map. However, it differs from the
others by adding vertices to locations where the prediction error is largest, instead

of simplifying a complex mesh.

1.1.3 Overview of the Proposed Solution

The input to the proposed system is an uncalibrated 2D video sequence depicting,
preferably, a static scene and the output is the dense 3D reconstruction of the
scene observed in the sequence, represented as a mesh. The first step of the
reconstruction chain is the establishment of feature correspondences between the
frames. To this aim, in each frame, salient features are extracted by Harris corner
detector [7], and tracked by KLT tracker [9][16] that is assisted by a Kalman
filter. This module also determines the key-frames -frames of a video sequence
with significant 3D information content- using GRIC. These frames are later used

in segmentation, self-calibration and sparse reconstruction modules.

The next step is the segmentation of the trajectories into sets corresponding to the
static and dynamic elements in the scene. This can be performed via geometric
means, by utilizing the fact that for each rigid 3D motion in the scene, there is a
corresponding fundamental matrix [10], and each fundamental matrix (F-matrix)
defines an epipolar constraint [10] for the corresponding motion. If a feature pair
belongs to a rigid motion, it should conform to the associated epipolar constraint.
Therefore, it is possible to label the trajectories by successively estimating a
sequence of fundamental matrices from the feature pairs rejected by the previous
iteration. Fundamental matrix estimation is performed by normalized 8-point
algorithm [12] and RANSAC [11], as discussed in [10]. This block is included for
sake completeness, and demonstrated to work in synthetic and controlled

sequences [85].
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Once the motion segmentation is complete, the next stage is the estimation of the
internal calibration parameters via the key-frames that are determined in the
segmentation module. This is accomplished using the linear self-calibration

algorithm described in [2].

The self-calibration stage is followed by sparse reconstruction, individually for
the static and the dynamic elements of the scene (if any exists). To this aim,
tentative pose estimates are computed for all frames, and camera locations and the
number of corresponding feature pairs are used to determine a processing order
for all available pairs. Then, a projective sequential reconstruction algorithm,
along the lines of the one described in [2], is employed. However, the proposed
algorithm is more sophisticated than its progenitor, as it is able to maintain
multiple reconstructions instead of a single one. Each of these reconstructions are
automatically created, propagated, and merged with each other. If a metric
reconstruction is desired, the projective camera matrix estimates can be used to

further refine the internal calibration parameters of the camera.

The final stage of the proposed system is the dense reconstruction of the scene.
This is performed by gradually building a mesh-based piecewise-planar
representation by using the sparse reconstruction and camera matrix estimates that
are supplied by the previous stage. This module is capable of operating in the
projective stratum, and seeks to obtain a rate-distortion efficient representation.
The algorithm is designed to explore the promise of obtaining a rate-distortion
efficient representation for a piecewise planar reconstruction; hence, it is only
capable of processing static scenes. The representation is obtained by minimizing
the intensity error between a frame and its prediction from another frame,

therefore the algorithm has also applications in stereo image coding.

The proposed system requires user interaction only to place the (sparse)

reconstructions of the dynamic elements in the scene; therefore, it is fully
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automatic for the static scenes. Figure 1.1 is a graphical illustration of the

proposed system.

Before concluding the overview, it should be emphasized that while the proposed
system accommodates for the dynamic scenes, its focus is definitely on static
scenes. The sparse reconstruction stage lacks the means to automatically place the
dynamic elements in the scene. Moreover, the dense reconstruction stage does not
have the capability to segment out the image parts corresponding to the dynamic
elements of the scene, hence to produce a mesh-based representation for them.
Therefore, it should be kept in mind that the algorithm has only a not-completely-
materialized promise of handling dynamic scenes. The work included on this topic

is not beyond a preliminary study.

1.2 Major Contributions

Major contributions of this thesis to the existing body of knowledge can be

summarized as follows:

¢ Prioritized Sequential Reconstruction [82]: A novel sequential sub-
estimate fusion algorithm is proposed for sparse reconstruction. The
algorithm is capable of assessing all frame pairs in a video sequence
according to their information content and amenability to 3D
reconstruction, to establish a processing order. The algorithm maintains
multiple sequential reconstructions, and supervises the progress and fusion

of each reconstruction.

¢ Rate-Distortion Efficient Piecewise Planar Scene Representation [83]:
A rate-distortion efficient piecewise planar dense scene reconstruction
algorithm for static scenes is proposed. The algorithm features a coarse-to-

fine approach to generate a mesh, by starting from an 8-point mesh and
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Figure 1.1: Block diagram of the proposed system
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refining it at regions where the distortion is highest. The distortion is
measured by the error between an image of the scene and its prediction. The
coupling of mesh refinement with distortion enables rate-distortion efficient

operation. The algorithm operates in projective stratum for added robustness.

1.3 Outline of the Thesis

The organization of the thesis follows the overview in Section 1.1.3. In Chapter 2,
feature extraction, matching and tracking processes are explained, and the
assumptions and models are presented. In order to solve the track-feature
association problem, auction [67], a well-known tool in radar tracking literature is
introduced. Finally, various performance evaluation metrics are discussed and
different tracking approaches are experimentally compared. The material

presented in this chapter is not specific to MFSfM problem.

Chapter 3 presents the work towards the solution of MFSfM problem. To this aim,
first, two-view and multi-view 3D reconstruction methods are discussed. Then,
trajectory segmentation and self-calibration problems and their solutions are
briefly mentioned. The frame pair prioritization problem is presented, and a
solution is proposed. Finally, prioritized sequential 3D reconstruction, a novel
sequential sub-estimate fusion sparse 3D reconstruction algorithm is described.

The chapter is concluded with experiments on various prioritization alternatives.

In Chapter 4, rate-distortion efficient scene representation problem is introduced
and an algorithm capable of constructing such a representation for static scenes
via Delaunay triangulation is proposed. Various design decisions are
experimentally validated, and the representation is compared with its alternatives,
dense depth map and block motion vectors, in terms of rate-distortion

performance.
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Chapter 5 concludes the dissertation with a summary of the work done, a

discussion of the results and pointers for future research.
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CHAPTER 2

FEATURE EXTRACTION AND TRACKING

SfM techniques for 3D reconstruction problem invariably require identification of
3D scene points (landmarks) in the images of the scene, to estimate the relative
orientations of the cameras observing these landmarks, and the positions of the
landmarks themselves. These 3D scene points should be distinguishable enough
for accurate localization of their projections on the image plane, i.e., the
corresponding image features. Besides, they should be easily identifiable from
considerably different viewpoints, as, loosely, dissimilar views allow more
accurate camera pose and structure estimates. In video case, the latter requirement
is less stringent, as it is often possible to track a feature in a sequence of slowly
changing views. However, this task still requires landmarks that generate features
distinct enough for unambiguous matches across these views. Therefore, it is
essential to determine a set of salient features that can be precisely located and

accurately tracked throughout the video sequence.

The merits of corners as 2D image features were mentioned in Chapter 1. Harris
corner detector is a mature algorithm for this task, hence is employed in this
work. As for tracking, it can be accomplished in two ways, either by corner-to-
corner tracking, or any optical flow estimation method, such as Kanade-Lukas-
Tomasi tracker (KLT). The former involves associating the corners in each frame

with those in the next frame, and chaining these associations together into
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trajectories. The latter employs optical flow equation to estimate the
displacements of the corners in successive frames. The following section first
introduces the elementary building blocks for the feature tracking problem. Then,
an example of each tracking approach is presented and their relative performances

are experimentally analyzed.

2.1 Feature Extraction

2.1.1 Harris Corner Detector

Harris corner detector [7] models a corner as a point with low self-similarity, i.e.,
there should be a strong dissimilarity between an image patch centered on a
corner and on its neighbors. A common dissimilarity measure is sum-of-squared-

differences (SSD), defined for discrete images as

SSD= Y (I(i—x,j—y)=I(i—u,j—v)), 2.1)
i,jeN

where N denotes the support of the patch, 7, the image, (x,y) and (u,v), the centers
of the patches. The Hessian of SSD equals

Swli My g Xwli )y ) G )

C= i,jeN i,jeN : (2'2)
S wli, j)y G, )1y (i, ) S wli, Iy (i, )
i,jeN i,jeN
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where Iy and Iy are the image gradients in the horizontal and vertical directions,
and w is a weighting kernel, typically Gaussian for isotropic operation. The image

gradients are often computed by the Sobel operator, a high-pass filter defined as

-1 0 1
1 0 1 (2.3)
Sy =Sh

for horizontal and vertical directions, respectively.

C matrix in Equation 2.2 is known as cornerness matrix and its eigenvalues, A;

and A,, have the following properties:

e If both eigenvalues are small, the point in question is not a significant

image feature.
e If only one of the eigenvalues is large, the point is on an edge.

e If both eigenvalues are large, the point is a corner.

A cornerness metric that reflects the above observations is defined as

cornerness = A, — k(A4 + 4, )

(2.4)
= |C| — kTrace(C)z.
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In the original work [7], the value 0.04 is suggested for k for detecting corner

features.

In order to locate the corners, Harris corner detector evaluates the cornerness
metric at each pixel. If a pixel has a cornerness score above a certain threshold,
and it is the local maximum in the cornerness domain within its neighborhood, it
is declared as a corner. The size of the neighborhood should not be chosen smaller
than the weighting window w, to prevent strong corners from pulling weak
maxima above the cornerness threshold, giving rise to false detections. A corner

detection example is illustrated in Figure 2.1.

2.1.2 Subpixel Refinement

The original algorithm evaluates cornerness scores at pixels on an integer grid;
therefore, it has only pixel-level (integer) resolution. However, SfM problem
demands a finer resolution. Subpixel resolution can be achieved via interpolating
for the intermediate values in the cornerness domain, to find the local maximum
more precisely. Bi-quadratic polynomials offer an easy and robust way to

implement this interpolation in a patch around the integer-resolution maximum.

A bi-quadric polynomial is an expression of the form

Ic(x,y)zax2+by2+cxy+dx+ey+f, (2.5)

where I¢ stands for the image keeping cornerness scores. The maximum of this

surface is located at
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Figure 2.1: Corner detection. Top: Corners. Middle: Cornerness image. Cornerness values are
logarithmically scaled.
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Figure 2.2: Interpolation of the cornerness values. The spikes correspond to the cornerness
values on the integer grid, and the surface is the bi-quadric polynomial fitted to these values.
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Even six cornerness values on the integer-resolution grid are sufficient to compute
a unique model, whereas more equations improve the accuracy of the model
parameters. On the other hand, a bi-quadric polynomial is not guaranteed to be a
satisfactory model of local cornerness values, and in larger patches, the
probability of model failure increases. In a successful interpolation, the sub-pixel-
resolution maximum should lie reasonably close to the pixel-resolution maximum.

Figure 2.2 depicts a sample bi-quadric fit.

2.1.3 Corner Reliability Heuristics

Cornerness score is a straightforward way to evaluate the quality of a corner.
However, the corner extraction procedure offers some more heuristics to measure
reliability, supplementary to naive thresholding. During the course of the work,

the following heuristics emerged as useful.

e Cornerness contrast: Cornerness contrast is defined as the difference
between a local maximum in cornerness domain and the second largest
cornerness value in its neighborhood. A high contrast indicates the
insensitivity of the location of the maximum to the changes in the intensity
values. Therefore, this heuristic corresponds to noise margin in the pixel-

resolution corner localization.

e NMSE: This measure is defined as the normalized mean square error
(NMSE) of the bi-quadric polynomial model for local cornerness,

evaluated at integer grid and normalized by the total energy of the surface
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patch fitted to the grid. It measures the accuracy of the subpixel-resolution

corner localization.

Condition number of the cornerness matrix: Computation of the optical
flow involves the solution of a linear equation, whose coefficient matrix is
identical to C, given the same neighborhood radius. Therefore, the fitness
of the corner for tracking purposes can be inferred from the condition
number of this matrix. Condition number indicates the stability of the
solution under perturbations, possibly caused by noise; hence, the

reliability of the optical flow estimates.

Below is a summary of the Harris corner detection algorithm, as employed in this

work.

Algorithm: Harris Corner Detector

Input: Image on which the corner extraction is to be performed.

Output: Corner locations.

1.

2.

Compute the vertical and the horizontal gradients.
Evaluate the cornerness score at each pixel.
Determine the maxima above cornerness threshold.
Refine the maxima to subpixel-resolution

Eliminate the maxima failing the reliability heuristics described in Section

2.13

2.2 Feature Matching

Given two sets of features belonging to two frames, a feature matching algorithm

seeks to associate the elements of one set with those of the other, while

maximizing a quality measure for the entire assignment. The assignment is subject
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to the constraints that only one-to-one assignments are allowed and only a subset
of all possible associations is admissible. A solution to this problem is
characterized by the quality metric, and the association strategy. Both of these

issues are discussed in the following sections.

2.2.1 Similarity Metrics

Normalized Cross-Correlation

Normalized cross-correlation (NCC) between two image patches is defined as

[68]

_ E{(li _:ui)(lj _,Uj)}

2.7

where I; and I; denote the image patches, 4, their means, and o, their standard
deviations. NCC simply measures the intensity similarity between the two image
patches. Assuming that the intensity values of a feature and its neighborhood are
essentially constant, a high NCC score often implies a good match. NCC performs
well in case of translational motion, but it is not robust to repetitive texture,

rotation and affine deformations.

If the images are taken from similar positions, such as successive frames of a
video sequence, the positions of the corresponding features are likely to be close.
NCC can be enhanced with a proximity term to accommodate for this observation
in the similarity assessment. The proximity between feature i and feature j can be

defined as
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K; = , (2.8)

where dj; stands for the Euclidean distance between two points from different sets.

The final similarity metric is

Snce (i, j) = pj T K- (2.9)

Neighborhood Constraint

Consider the features i and j in the first and second sets, respectively. Let N(i) be
the set of features within a certain neighborhood of feature i. N(j)is defined
similarly for feature j. Let feature k be a member of the first set, and fe