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ABSTRACT

SOLVING THE FORWARD PROBLEM OF ELECTRICAL SOURCE

IMAGING BY APPLYING THE RECIPROCAL APPROACH AND THE

FINITE DIFFERENCE METHOD

Ahi, Sercan Taha

Ms, Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Nevzat G. Gençer

September 2007, 74 pages

One of the goals of Electroencephalography (EEG) is to correctly localize brain

activities by the help of voltage measurements taken on scalp. However, due

to computational difficulties of the problem and technological limitations, the

accuracy level of the activity localization is not perfect and should be improved.

To increase accuracy level of the solution, realistic, i.e. patient dependent, head

models should be created. Such head models are created via assigning realistic

conductivity values of head tissues onto realistic tissue positions.

This study initially focuses on obtaining patient dependent spatial infor-

mation from T1-weighted Magnetic Resonance (MR) head images. Existing

segmentation algorithms are modified according to our needs for classifying

eye tissues, white matter, gray matter, cerebrospinal fluid, skull and scalp

from volumetric MR head images. Determination of patient dependent con-

ductivity values, on the other hand, is not considered as a part of this study,

and isotropic conductivity values anticipated in literature are assigned to each

segmented MR-voxel accordingly.
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Upon completion of the tissue classification, forward problem of EEG is

solved using the Finite Difference (FD) method employing a realistic head

model. Utilization of the FD method aims to lower computational complexity

and to simplify the process of mesh creation for brain, which has a very complex

boundary. Accuracy of the employed numerical method is investigated both

on Electrical Impedance Tomography (EIT) and EEG forward problems, for

which analytical solutions are available. The purpose of EIT forward problem

integration into this study is to evaluate reciprocal solution of the EEG forward

problem.

Keywords: Magnetic Resonance Imaging, Segmentation, EEG Forward Prob-

lem, Reciprocity, Finite Difference Method
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ÖZ

ELEKTRİKSEL KAYNAK GÖRÜNTÜLEME İLERİ PROBLEMİNİN

KARŞITLILIK YAKLAŞIMI İLE SINIRLI FARKLAR YÖNTEMİ

KULLANILARAK ÇÖZÜLMESİ

Ahi, Sercan Taha

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Nevzat G. Gençer

Eylül 2007, 74 sayfa

Elektroensefalografi (EEG)’nin amaçlarından biri, kafaderisi üzerinden kayıt

edilmiş voltaj ölçümleri ile beyin aktivitelerinin konumlarını doğru bir şekilde

belirlemektir. Fakat problemin işlemsel zorlukları ve teknik sınırlar nedeniyle

kaynak konumlandırmanın doğruluk oranı yeterli değildir ve iyileştirilmelidir.

Çözümün doğruluk oranını artırmak için gerçekçi, yani hastaya bağlı kafa mod-

ellerinin oluşturulması gerekmektedir. Gerçekçi kafa modellerinin oluşturulması

hastaya ait dokuların konum tespiti ardından doku iletkenlik değerlerinin uy-

gun ilgili noktalara tayin edilmesiyle olur.

Bu çalışma öncelikle T1-ağırlıklı Manyetik Rezonans (MR) görüntülerinden

hasta kafasına ait konumsal doku bilgisinin bulunmasına odaklanır. Hali-

hazırdaki görüntü işleme teknikleri ihtayaçlar uyarınca şekillendirilerek göz,

beyaz madde, gri madde, serebrospinal sıvı, kafatası ve kafaderisi hacimsel MR

kafa görüntülerinden bolütlenmiştir. Hastaya bağlı iletkenlik değerlerinin belir-

lenmesi ise bu çalısmanın bir parcası olarak görülmemiş, literatürdeki izotropik
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değerler dokulara uygun olarak atanmıştır.

Doku bölütlenmesi ardından EEG ileri problemi Sınırlı Farklar yöntemi ile

gerçekçi bir kafa modeli kullanılarak çözülmüştür. Sınırlı Farklar yönteminin

kullanımı ile, işlemsel karmaşayı kaldırmak ve çok girintili bir yüzeye sahip

olan beyin üzerinde ağ yaratma işlemini kolaylaştırmak amaçlamaktadır. Ter-

cih edilen sayısal modelin doğruluk oranları Elektrik Empedans Görüntüleme

(EIT) ve EEG ileri problemleri üzerinde test edilmiştir. EIT ileri problemi-

nin bu çalışmaya dahil edilmesindeki amaç EEG ileri probleminin resiprokal

çözümünü değerlendirmektir.

Anahtar Kelimeler: Manyetik Rezonans Görüntüleme, Bölütleme, EEG İleri

Problemi, Sınırlı Farklar Yöntemi
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CHAPTER 1

INTRODUCTION

Brain communicates with the rest of the body by so-called action potentials

sent via neurons. Information propagates in the form of electrical signals,

and these electrical signals cause potential differences throughout the scalp.

Potential distribution on the scalp caused by the electrical activities inside

brain is measured by Electroencephalography (EEG). One of the major aims

in measuring and monitoring this distribution is to localize sources of neuronal

activities [1].

Since the measurement is realized by a limited number of electrodes placed

on the scalp, the spatial resolution of measurements is quite low. However,

the temporal resolution depends on the limits of the signal acquisition device,

and this enables us to examine neural processes on millisecond time scales [1].

Finding locations and strengths of the unknown sources is called inverse

problem. The inverse problem is an ill-posed problem, i.e. different activity

patterns may create the same voltage distribution on the scalp. Therefore,

some restrictions should be imposed to obtain a solution [2]. To solve the

inverse problem of EEG, one should also be able to solve the forward problem,

which is calculating potential distribution on scalp given a geometry, activity

location and activity strength. However, having an extremely complex geom-

etry, human head causes a major difficulty in this task. In the earliest studies,

researchers have assumed a spherical geometry for human head and solved the

forward problem analytically. Comparing EEG source localization errors of

spherical and realistic head models, it is concluded that realistic models are
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necessary for better localization [3, 4, 5].

Figure 1.1: Flowchart of an ideal electrical source localization process.

Figure 1.1 describes an ideal EEG source localization scheme. This scheme

is composed of realistic structural information obtained through Magnetic Res-

onance Imaging (MRI), realistic anisotropic conductivity distribution obtained

through Diffusion Tensor Imaging (DTI) and electrical activity pattern ob-

tained through high channel EEG monitoring. Segmenting MRI data into a

known number of tissues, assigning them patient dependent conductivity val-

ues and incorporating this information into the forward problem forms the

basics of an ideal source localization scheme. Usually such a scheme is simpli-

fied by using single pulse sequence MRI, whose details will be explained later

in this chapter, and by ignoring tissue conductivity variation among patients.

In this study, we also follow this simplified model and employ T1-weighted

MRI data along with conductivity values determined in the previous studies.

Solving EEG forward problem using realistic head models requires numeri-

cal approaches like the Boundary Element Method (BEM), the Finite Element
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Method (FEM) and the Finite Difference Method (FDM). Among these, the

BEM provides relatively fast and accurate solutions [6, 7]. However, it does

not allow anisotropic tissue conductivities, and it depends upon accurate mesh

generation on complex geometry boundaries. On the other hand, FEM allows

anisotropic tissue conductivities in calculations, but it also depends upon cor-

rect mesh generation in complex geometries. To improve accuracy, meshes

should follow the three-dimensional geometry as much as possible. Composed

of regular grids, FDM, on the other hand, greatly simplifies mesh creation pro-

cess. Since our main concern in this study was to eliminate the requirement of

complicated meshes, we investigated FDM by employing isotropic conductivity

values.

Using the FDM in the EEG forward problem necessitates a high number

of grids to improve accuracy. However, increasing the number of grids requires

a corresponding increase in the memory consumption. In the third chapter of

this study, we will question the efficiency of FDM in EEG forward problem in

terms of accuracy, complexity and memory requirement. However, before that,

we will first give some basic information about MRI in this chapter. Then we

will present a 3D MRI data segmentation plan and introduce the details of

each block in this plan in the next chapter.

1.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality, by

which it is possible to visualize tissues by different intrinsic properties. Those

intrinsic properties being visualized are proton density (PD), which is the

concentration of hydrogen atoms per unit volume, the longitudinal relaxation

time constant (T1), and the transverse relaxation time constant (T2).

The contrast in MR images can be adjusted by changing pulse sequence

parameters. These parameters control the number, strength, shape, and tim-

ing of the RF and gradient pulses. The repetition time (TR), which is the

time interval between two consecutive 90 degree RF pulses, and the echo time

(TE), which is the time interval between the stimulating RF pulse and the
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corresponding echo signal, are the most influential parameters.

The most common pulse sequences are the PD-weighted, T1-weighted, and

T2-weighted sequences. If the data acquisition parameters are chosen such that

the proton density of tissues gains dominance, the number of protons per unit

volume determines the signal received. The higher the number of protons in

a given unit of tissue, the greater the transverse component of magnetization,

and the brighter the signal on the proton density contrast image. Conversely,

the lower the number of protons in a given unit of tissue, the less the transverse

magnetization and the darker the signal on the proton density image. If the

data acquisition parameters are chosen such that T1 and T2 relaxation time

constants of tissues gain dominance, the relaxation process of a spin system

following the application of a stimulation is characterized in the reconstructed

images.

Although each of these weighting provides different tissue contrast, T1-

weighting became the de facto standard of the Neuroimaging community for

brain segmentation and cortical surface extraction. The reason why most

groups do not rely on dual-echo spin echo (i.e., PD- and T2-weighted) volumes

[24] is that acquisition time is longer, signal-to-noise ratio (SNR) is reduced,

the risk of head movement is higher, and intensity non-uniformity is more

significant.

The last point that should be stressed about MRI is the low water content

of skull, and consequently low MRI signal obtained from that region. The

decrease in MRI signal level at skull regions causes a major problem in isolating

the skull from air regions. The two common methods to overcome this problem

is expanding and smoothing the brain surface obtained from T1-weighted MR

images [51], and employing CT images [5]. In this study, we segmented whole

skull tissue by only T1-weighted MR images.

1.2 Purpose of the Thesis

(1) Segmentation: One goal of this study is to create a modular software to

segment head tissues from MR images. The modularity is necessary, because
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identification of each tissue type may require different approaches, and if in

the future a new method is developed exclusively for some tissues, then the de-

veloped method should easily be adapted into the whole segmentation process.

(2) Finite Difference Method as a numerical solver : Boundary Element Method

(BEM) and Finite Element Method (FEM) are the two most common methods

in the solution of EEG forward problem. Finite Difference Method (FDM), on

the other hand, is usually not preferred due to its high memory requirement

and low accuracy rate. Another goal of this study is to implement an FDM

model and to investigate its computational complexity, memory requirement

and accuracy.

(3) Reciprocal approach in the forward problem solutions : Source localization

may be performed in a direct way by successively solving the forward problem

of EEG, or in an indirect way by employing the theory of reciprocity, whose

details will be given at the third chapter. Previous studies [47, 54] showed that

reciprocal approach is a fast technique for source localization, as it requires

only a small number of electric field solutions. Therefore, the last goal of this

study is to incorporate the reciprocal approach into the forward problem by

employing the developed FDM model.

1.3 Significance of the Thesis

(1) To be able to perform MR image segmentation accurately, existing algo-

rithms are modified according to our needs, a modular head MRI segmenta-

tion scheme is constructed (Figure 2.1), and each module is implemented by

MATLAB r. Although there are different segmentation software packages

available, they usually specialize in some head structures, and therefore re-

searchers in the electrical source localization community need to use different

packages simultaneously for creating their problem geometry. Moreover, elec-

trical source localization community does not deeply interested in all brain

structures, as some of those structures have similar conductivity values. In-
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stead, the structures with different conductivities and with significant amount

of volumes are of major importance. Our software package presents a solu-

tion, or at least a solution model, for the needs of electrical source localization

studies.

(2) An accurate Finite Difference (FD) model [55] is implemented, its compu-

tational power requirement and its precision are investigated. Although there

are some studies evaluating the implemented model [57], to our knowledge, the

feasibility of the model is not questioned as exclusively as in this study.

(3) Reciprocal approach is incorporated into the forward problem and its accu-

racy level is tested. The test results are compared with the ones of the direct

approach (Table 3.6 and 3.7). The comparison led us to the critical decision

of employing the reciprocal approach and the implemented FD model into our

laboratory’s future source localization research. Moreover, although there are

studies that employ similar models with the Reciprocal Approach [58], to our

knowledge, the accuracy level of the model on the Reciprocal Approach is not

evaluated before.

1.4 Thesis Outline

This thesis is divided into four chapters. In the first chapter, an introduction

about the study and basics of Magnetic Resonance Imaging (MRI) are given.

The purpose of the study is also included here. In the second chapter, meth-

ods for processing the Magnetic Resonance images are summarized and details

about the general scheme followed are presented. The accuracy rate of the

applied procedure is given for brain extraction, intensity non-uniformity cor-

rection and brain tissue identification methods. The literature survey about

each segmentation block is presented accordingly. In the third chapter, EEG

forward problem is investigated and the FDM is validated. Finally in the last

chapter, conclusions and remarks of this work are stated.
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CHAPTER 2

SEGMENTATION

2.1 Introduction

Segmentation of medical images, i.e. classifying tissues into subsets accord-

ing to some predefined criteria, is a vital step for source localization research.

Structural information coming from segmentation of medical images obtained

via different imaging modalities, such as Magnetic Resonance (MR) or Com-

puterized Tomography (CT), is mounted into the electro-magnetic problem

of source localization. What is mounted into the problem is the position de-

pendent conductivity values. In this study, we acquired position information

using only MR modality. A T1-weighted MR volume is segmented into scalp,

skull, cerebrospinal fluid (CSF), gray matter (GM), white matter (WM) and

eye-ball tissues. An overview of the followed procedure is illustrated in Figure

2.1.

The whole segmentation procedure starts with extracting brain from the

head volume. This process is called skull stripping and is of major importance

due to the high conductivity value of CSF, which wraps the gray and white

matters, and the low conductivity value of skull, which wraps the brain. Mis-

classifying brain boundaries causes erroneous results during source localization.

Upon completion of brain segmentation, intensity non-uniformity is corrected.

Correction of non-uniformity is a crucial step for segmenting brain tissues. Ex-

tracting the brain and correcting its intensity non-uniformity provides us with

a comparatively simpler problem, which is brain tissue classification. After

7



solving this problem, we return to the classification of non-brain tissues. Be-

ing among non-brain tissues, eyes are extracted first. Following eye extraction,

we segment scalp along with the fat tissue. Identifying the scalp tissue, we are

able to determine the outer skull layer. Regarding the inner skull layer, it is

assumed to be the same surface with the exterior of the cortex [5]. Based on

this partially incorrect assumption a skull compartment is constructed, but it

should be noted that even such a compartment constitutes a major correction

in the creation of a volume conductor model.

MRI 
VOLUME

Skull Stripping

BRAIN 
MASK

INU Correction

Tissue Segmentation

CSF 
MASK

GM 
MASK

WM 
MASK

Eye Extraction Scalp Extraction Skull Extraction

EYE 
MASK

SCALP 
MASK

SKULL 
MASK

Figure 2.1: Flowchart of the head MRI segmentation algorithm.

In the following section, common methods used for segmenting MR images

are given. The methods form the basics of the implemented algorithms, whose

details are given in the ”Segmentation of a 3D MRI Head Volume” section.

We combined those common methods in a way that the tissue classification

task is achieved with an acceptable amount of accuracy.
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2.2 Background

2.2.1 Thresholding

Thresholding is an intensity based segmentation approach, in which selected

intensity values partition the image domain into subsets, whose intersection is

the empty set, and whose union is the whole image domain [8]. Partitioning

is performed by classifying pixels with intensities above a threshold value into

one subset and classifying pixels with intensities belove the threshold value

into another one. The approach may be represented formally as follows [8]:

Si = {x ∈ SI : Ti ≤ I(x) < Ti+1} (2.1)

In Equation (2.1), SI represents the image domain, I(x) represents po-

sitional pixel intensity, and Si represents one of the subsets formed by the

threshold values Ti and Ti+1.

Although this approach is rather simple in nature, determining a proper

value requires different perspectives. Methods for automatically specifying

thresholds are generally based on image entropy, histogram concavity or prior

knowledge [9]. Employing these methods, one can determine a proper thresh-

old value automatically. However in the segmentation of MR images, thresh-

olding is often used as an initial or intermediate step, because the method does

not consider spatial characteristics and is very sensitive to irrelevant intensity

variations throughout the image, which may be present in most MR images.

2.2.2 Region Growing

Region growing is a procedure of grouping pixels that show pre-defined simi-

larities, such as gray level, color or texture [8]. The procedure starts with an

automatic or manual seed assignment. Afterwards, pixels around the seed pixel

are aggregated until there remains no other pixel that satisfies the pre-defined

criteria.

Being a simple method like thresholding, region growing is generally used as

an intermediate step in the segmentation of MR images, as well. The method
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Figure 2.2: Thresholding applied on a T2-weighted MR image (a) Original
image (b) Image histogram (c) Original image thresholded with an intensity
value of 50
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provides us with an easy approach to extract small and simple structures, such

as eyes.

2.2.3 Laplacian of Gaussian Edge Detection

Edges are sudden changes in the image intensity. Separating continuous regions

with discontinuities, edges contain important information about the physical

extent of objects present in images. Therefore by identifying edges, the bound-

aries of objects are detected, and after carefully investigating those boundaries,

image segmentation tasks may be fulfilled.

Being directly related to intensity changes, edges are detected by checking

gradients along different directions in images. Calculation of gradients are

realized by the Finite Differences. Since accuracy of the Finite Differences is

easily affected by noise, edge detection procedures usually require noise filtering

steps. Although causing losses on the edge strength and edge localization,

filtering process is crucial (For observing the effect of the degree of Gaussian

filtering on the final edge map you may look at Figure 2.3). Most methods

overcome the edge strength loss problem by applying enhancement techniques.

Laplacian of Gaussian (LoG), also called as Marr & Hildreth, method uses a

Gaussian filter to suppress the noise. Afterwards Laplacian operator is applied

throughout the image to enhance edge strength. Lastly by checking zero-

crossings, edges are determined.
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(a) (b)

(c)

Figure 2.3: Effect of Standard Deviation (σ) parameter on the identification of
edges via Laplacian of Gaussian method. (a) Original T2-weighted MR image
(b) σ = 1 (c) σ = 2
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2.2.4 K-Means Clustering

K-means is an unsupervised clustering algorithm for classifying a data set, n,

into a known number, c, of subsets according to a given criteria [14]. Usually,

this criteria is selected as the Euclidean distance between data and subset

centers, µi. The algorithm is initialized by assigning each member of the data

set to a subset randomly. Then, corresponding cluster centers are calculated by

simply finding the mean of subset members. Afterwards, the distance between

each data and these centers is computed, and each data is reassigned to the

closest subset. Continuing in this way, an iterative procedure is generated.

Iterations continue until there is no change in the subset centers (see Figure

2.4 for details).

Being an unsupervised clustering algorithm, K-means provides the abil-

ity to perform segmentation tasks without any training data. However, the

algorithm does not incorporate spatial information into consideration, and

therefore it is susceptible to noise.

1: Knowing n and c, make an initial guess for µ1, µ2, ..., µc

2: while There is a change in µi do
3: Classify n samples according to the nearest µi

4: Recompute µi by using newly classified samples
5: end while

Figure 2.4: K-means clustering algorithm [14].

2.2.5 Mathematical Morphology

Binary images can be modeled by point sets in 2D Euclidean space, E2, and

mathematical morphology is the application of specific set operators on these

point sets [8]. Applied set operators have their roots in two basic operations,

dilation and erosion, which are defined as follows:

A⊕B , {x ∈ E2 : x = a + b, a ∈ A and b ∈ B} (2.2)

AªB , {x ∈ E2 : x ⊂ a and x + b ∈ A} (2.3)
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(a) (b)

(c) (d)

Figure 2.5: (a) K-means clustering of an MR volume into 3 clusters (b) 1.
cluster (c) 2. cluster (d) 3. cluster
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Based on dilation and erosion, new operations, such as opening and closing,

may be derived. Opening, which tears thin connections apart and eliminates

small regions, is application of erosion followed by dilation. Closing, which fills

small gaps and merges narrow regions, is application of dilation followed by

erosion.

Figure 2.6: Dilation, erosion, opening and closing operations are illustrated.
Slightly modified from [8].

2.2.6 Active Contour Models

Active contour models as introduced by Kass et al. [10] are deformable curves,

or surfaces, localizing object boundaries present in images. The localization is

realized by energy minimization. An energy functional is defined by a piecewise

smooth curve equation and by chosen image properties. Upon defining the

complete energy functional, the contour model is driven to the location where

that functional takes the minimum value.

Mathematically speaking an active contour, or snake, is a curve defined as

v(s) = (x(s), y(s)), where x and y are coordinates of the points forming the

curve. Both x and y depend on the parameter s, which takes values in the

range of [0, 1] based on the shape of the curve. Moreover, the energy functional

to be minimized is defined as:

E =

∫ 1

0

1

2
(α|v′(s)|2 + β|v′′(s)|2) + Eext(v(s))ds (2.4)
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In (2.4), α and β represent the weighting of active contour tension and

rigidity during deformation process, respectively. Eext(v(s)) represents the

chosen image properties, and it takes smaller values at places where those

properties become significant. Lastly, v’ and v” represent derivatives of v,

which is explained above.

A deformable contour that minimizes (2.4), satisfies the Euler equation, as

well [10].

αv′′(s)− βv′′′′(s)︸ ︷︷ ︸
Fint

−∇Eext︸ ︷︷ ︸
Fext

= 0 (2.5)

The solution to Equation (2.5), which may be considered as an equilib-

rium point of internal and external forces, is obtained iteratively. One more

parameter, time, is added to v for this purpose.

vt(s, t) = αv′′(s, t)− βv′′′′(s, t)−∇Eext (2.6)

Starting with an initial condition, v(s,0), implementing derivatives with

finite differences, and waiting for vt(s,t) to converge, a solution to (2.4) is

obtained.

The classical study of Kass et al. [10] offered image intensity, image gra-

dients and curvature of level lines as possible image properties. Cohen [11]

proposed a new force model by which the capture range of the active contour

is increased. Moreover, while increasing its capture range, the overall perfor-

mance of the contour is improved, as well. The new force model may simply

be explained with the behavior of a balloon that is inflated with air. The in-

flation force provides the contour with the ability to pass through weak image

features and stop at strong ones. However, as Xu and Prince [12, 13] noted,

this new force model does not represent a solution to the problem with bound-

ary concavities, where the active contours tend to generate erroneous results.

Defining a new force field, namely Gradient Vector Flow, they increased the

capture range and accuracy around concavities at the same time.

The vector field, v(x, y) = (u(x, y), v(x, y)) that minimizes (2.7) is selected

as a cure for the aforementioned problems associated with active contours.
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EGV F =

∫ ∫
µ(u2

x + u2
y + v2

x + v2
y) + |∇f |2|v−∇f |2dxdy (2.7)

In Equation (2.7), (u,v) defines coordinate of a point in two dimensional

space, ux, uy, vx and vy are directional derivatives of u and v, and f(u, v) is

the edge map.

2.2.7 Anisotropic Diffusion Filtering

2.2.7.1 Overview

Taking convolutions with Gaussian kernels is a common method for removing

speckle noise present in most kind of images. The idea here is that to obtain

coarser resolution images by applying a low-pass filter. Since the speckle, or

salt and pepper, noise is composed of high-frequency random variations spread

whole over the image, it is filtered after the application of the convolution.

However, while removing high-frequency random variations, this filter smooths

the edges, as well. Such kind of smoothing causes edge detection procedures

generate erroneous results.

First proposed by Perona and Malik [15] and then applied by Gerig et al.

[16] on MR images, anisotropic diffusion filters are adaptive filters that smooth

images at varying levels. The level of smoothing is determined by how similar

a pixel is to an edge. Determining the similarity of a pixel to an edge pixel is

realized by measuring the gradient of the brightness function.

2.2.7.2 Mathematical Definition

Anisotropic diffusion equation is defined as:

Idiff = ∇ · (c(x, t)∇I) = c(x, t)∇2I +∇c(x, t) · ∇I (2.8)

Here, I(x, t) is the temporal intensity function. Idiff is the diffused tem-

poral intensity function. They are ”temporal”, because as time passes, the

diffusion propagates and the intensity functions take different values. c(x, t),

the conduction coefficient, is a function that controls the smoothing level of
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the filter. Conduction coefficient is unknown and is to be determined by look-

ing at the image gradient. Perona and Malik propose two different kinds of

conduction coefficients:

c(x, t) = f(‖ ∇I ‖) = e(− ‖∇I(x,t)‖
K2 ) (2.9a)

c(x, t) = f(‖ ∇I ‖) =
1

1 + (‖∇I(x,t)‖
K

)2
(2.9b)

While these two equations have a common point, which is that they both

decrease for increasing image gradients, they have different characteristics:

(2.9a) preserves high-frequency edges and smooths out low-frequency ones;

(2.9b) preserves wide regions and smooths out small ones. Shown in the above

equation, ”K” is the diffusion constant and a user selected parameter.

W I(i,j) E

N

S

cW(i,j) cE(i,j)

cN(i,j)

cS (i,j)

I(i+1,j)I(i-1,j)

I(i,j+1)

I(i,j-1)

Figure 2.7: 5-stencil finite difference scheme for discretizing anisotropic dif-
fusion equation. I(i,j) is the intensity of the center-pixel. I(i,j+1), I(i,j-1),
I(i+1,j) and I(i-1,j) are surrounding pixels’ intensities. cN, cS, cE and cW are
directional coefficients defined by Equations (2.11) and (2.12).
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2.2.7.3 2D Implementation

Implementation of anisotropic diffusion is realized by discretizing Equation

(2.8). Discretization is performed in a 5-stencil Finite Difference scheme (see

Figure 2.7):

I t+1
diff = I t

diff + λ[cN∇NI + cS∇SI + cW∇W I + cE∇EI]ti,j (2.10)

In Equation (2.10), λ is the interval between two time instants and takes

a value between 0 and 0.25 for stability of the scheme. ”N”, ”S”, ”W” and

”E” represent direction of the gradient, namely north, south, west and east.

Selecting an internode spacing of unity, we may define the directional gradients

as follows:

∇NI t
i,j = I t

i,j+1 − I t
i,j

∇SI t
i,j = I t

i,j−1 − I t
i,j

∇W I t
i,j = I t

i+1,j − I t
i,j

∇EI t
i,j = I t

i−1,j − I t
i,j

(2.11)

Similarly:

ct
N i,j = f(‖ ∇NI t

i,j ‖)
ct
S i,j = f(‖ ∇SI t

i,j ‖)
ct
W i,j = f(‖ ∇W I t

i,j ‖)
ct
E i,j = f(‖ ∇W I t

i,j ‖)

(2.12)

2.3 Segmentation of a 3D MRI Head Volume

2.3.1 Skull-Stripping

The procedure of isolating brain from extra-cranial tissues is called skull-

stripping. The performance of this procedure depends on the age and diagnosis

of the subject, type and resolution of MR images, and level of magnetic inho-

mogeneities in the MR magnets.
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(a) Original image (b) Gaussian smoothing

(c) Anisotropic filtering

Figure 2.8: Visual comparison of Gaussian and Anisotropic smoothing. In (b),
the original 256x256 image is convolved with a 5x5 kernel. In (c), the original
image is filtered anisotropically with a diffusion constant of 25 and an iteration
number of 3.
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Among the methods shown in Table (2.1), the one proposed by Shattuck et

al. [33] is employed in this study, and a MATLAB r software module is im-

plemented. As shown in Figure 2.9, the whole procedure is mainly composed

of four steps: In the first step, the original volume is smoothed by applying an

anisotropic filter. During our experiments, we selected the diffusion constant

as 25, and repeated the filtering for a total of three times. After the smoothing

step, edges are identified by the help of Laplacian of Gaussian (LoG) method.

LoG proposes to use a Gaussian operator to suppress noise and a Laplacian

operator as edge enhancer. We selected the standard deviation as 0.62 and

radius as two, which are used in the Gaussian operator, and we marked the

voxels of the mask which were negative in the Laplacian of the filtered image

as edges. In the third step, brain region is isolated. This is realized by morpho-

logical erosion with a 3D rhombus structure of radius one. Erosion separates

some connections between brain and surrounding regions. A primitive brain

mask is obtained by selecting the largest connected component. However due

to erosion, it is rather corrupted. The obtain a better brain mask, the primi-

tive one is dilated with again a 3D rhombus structure of radius one and holes

in the interior regions are filled. Eroding with a 3D octagon structure of size

two, the final brain mask is obtained. This procedure constitutes the last step

of the algorithm.

Table 2.1: Literature on brain extraction.

Reference Method

Ségonne et al. [17] Hybrid

Atkins et al. [23] Hybrid

Smith [18] Deformable model

MacDonald et al. [20] Deformable model

Shattuck et al. [33] Edge detection

Tang et al. [21] Edge detection

Ashburner et al. [30] Atlas warping

Stokking et al. [19] Intensity analysis

Lemieux et al. [22] Intensity analysis
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MRI 
VOLUME

BRAIN 
MASK

Denoising the volume 
without edge distortion

Performing
3D edge detection

Isolating brain

Improving the outcome

Figure 2.9: Flowchart of the skull-stripping algorithm, which is implemented
by MATLAB r.

2.3.2 Correction of Intensity Non-uniformity

The general model that describes the effect of intensity non-uniformity on MR

images is as follows:

v(r) = f(r) · u(r) + n(r) (2.13)

In Equation (2.13), v(r) is the corrupted MRI intensity with respect to posi-

tion, f(r) is the modulating non-uniformity field, u(r) is the pure uncorrupted

MRI intensity and lastly n(r) is an additive noise, which is mostly assumed

to have a Gaussian distribution [30, 33]. The additive noise is accepted to be

statistically independent from u(r) and is usually neglected.

The modulation field, f(r), is assumed to vary slowly throughout the vol-

ume. This assumption prevents high tissue-intensity-contrast from being mis-

classified as the modulation function and makes it possible to decrease the

computational cost by performing calculations only on subsamples [25, 33] or

on the DCT coefficients [30] of the image.

22



(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.10: BSE steps: (a) Original volume, (b) Anisotropic filtering ap-
plied, (c) Modified LoG applied, (d) Erosion applied, (e) Largest connected
component selected, (f) Modified closing applied, (g) Final volume
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In this study, we employed the method of Ashburner et al. [30], in which

it is assumed that the non-uniformity field has multi-normal distribution with

a uniform mean and with a covariance matrix which is able to model smooth

variations. A cost function is created based on this assumption, and the field is

estimated by minimizing the sum of squared differences between original data

and the chosen model.

2.3.3 Segmentation of Brain Tissues

Although segmentation of cortex tissues is an important process, due to the

complex nature of the volume, due to the variable contrast level of MR images

and due to noises peculiar to the MR protocol, a widely accepted method

has not been developed yet. Proposed solutions to this problem is mostly

based on statistical approaches. Some researchers have applied modified fuzzy

clustering algorithms [32], some constructed Bayesian schemes [33, 34] and

some developed modified finite mixture models [31].

INU CORRECTED 
BRAIN VOLUME

CSF 
MASK

GM 
MASK

WM 
MASK

K-Means clustering

Maximum Likelihood 
classification

ICM iterations

Figure 2.11: Flowchart of the brain tissue classification algorithm, which is
implemented by MATLAB r.

For obtaining piecewise constant tissue surfaces and for eliminating speckle

noises in MR images, spatial penalty functions are added into the classification
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algorithms [28], [36], [29]. If the neighbors of a voxel are all of the same tissue

type, then it is not highly probable that the corresponding voxel is of another

tissue type. This known fact is incorporated into the segmentation procedure

with the help of penalty functions.

In our study, we employed a slightly modified version of Partial Volume

Classifier (PVC) [33], where it is assumed that intensity non-uniformity is

corrected beforehand, and the volume is composed of five classes: CSF, GM,

WM, CSF/GM (CG), and GM/WM (GW). In the original method, there is

one more type called as CSF/other, which represents non-cortex tissues like

dura-matter. However, in our implementations that class is ignored. The

probability density functions of all of these types are modeled as gaussian with

mean µ, variance σ2 and are represented by g(x;µ,σ). From the five classes

assumed to be present in the volume, density functions of the three pure ones

are modeled as:

p(xk|γ) = g(xk; µγ, σ), γ ∈ {CSF, GM,WM} (2.14)

and density functions of the remaining mixed-tissue classes are modeled as:

p(xk|γ) =

∫ 1

0

g(xk; αµA + (1− α)µB, σ)dα

=
1

2(µB − µA)
[erf(

xk − µA√
2σ

)− erf(
xk − µB√

2σ
)], γ ∈ {CG, GW}

(2.15)

In Equation (2.15), erf(x) is equal to 2√
π

∫ x

0
e−t2 dt, erf(0) = 0, and µB >

µA > 0.

Using these densities and the Bayes’ formula, a maximum a posterior prob-

ability classifier is constructed. Bayes’ formula states that a posterior prob-

ability is directly proportional to the product of likelihood and prior. The

modified version of PVC differs from the original algorithm in the specifica-

tion of ”prior”. Original algorithm defines the prior as follows:

p(Λ) =
1

Z
exp

(
−β

∑

k∈N3

∑
j∈Nk

ψk,jδ(γk, γj)

)
(2.16)
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Here, Λ = {γ1, γ1...γN3}. and Z represents a scaling constant. It provides

us with the opportunity to construct a proper density function, whose integral

between minus and plus infinities is equal to one. β represents the strength of

the prior, Nk represents the D18 neighborhood, and δ is a function that returns

-2 if labels ”k” and ”j” are identical, -1 if γk and γj have a common tissue type,

and 1 if they don’t have a common tissue type. This way, if the neighbors of a

pixel are of the same class with itself, −β
∑

k∈N3

∑
j∈Nk

ψk,jδ(γk, γj) returns a

positive value, and this increases the possibility of that pixel to belong to the

current class, i.e., no update is necessary. This is the function that penalizes

the speckle noise. The last variable, ψk,j, scales the penalization coefficients

according to the distance between the kth and jth voxels, that is ψk,j takes a of

1 if kth and jth voxels share a face, ψk,j takes a of 1√
2

if they share only an edge.

PVC assumes same in-plane and out-of plane resolutions. However, usually

this is not the case. Out-of plane resolution is mostly larger than the in-plane

resolution. Therefore, our implementation addresses this fact by modifying

the scale coefficients according to data resolution.

The Bayes’ scheme is realized with iterated conditional modes (ICM) al-

gorithm [26]. Before running the ICM algorithm, tissue labels are selected

according to maximum likelihood classification. Then an iterative updating is

initiated according to the following formula:

γn+1
k = argmaxγ[logp(xk|γn

k )− β1

∑
j∈Nk

ψk,jδ(γ
n
k , γj) + β2ϕ(k)] (2.17)

Iteration continues until there is no change in the labeling of the tissues.

2.3.4 Segmentation of Eyes

Segmentation of eyes is the simplest one among the other tasks shown in Figure

2.1. This is due to their uniform shape and due to the existence of important

information such as the approximate location and size of the structure.

Orientation of an object is identified with the line for which the sum of

distances between each object point is minimum. The angle between this line,
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which may also be defined as the medial axis of the object, and the x-axis is

mathematically defined in Equation (2.18) [37] and shown as θ. In Equation

(2.18), I(x, y) represents the image intensity at (x,y) coordinate.

tan2θ =
b

a− c

a =
∑

x

∑
y

x2I(x, y)

b = 2
∑

x

∑
y

xyI(x, y)

c =
∑

x

∑
y

y2I(x, y)

(2.18)

By the help of medial axis and the line perpendicular to the medial axis,

MR slices are divided into four regions individually. It is assumed that eyes

are lateral spherical structures with around 12mm. of radius and located in

the anterior side of the head. Based on these assumptions, each MR slice that

includes brain is processed individually. On the frontal two regions, circular

Hough transform is applied. Selecting the slice with the highest accumulator

value provides us with the ability to determine a proper slice with reason-

able eye area automatically. Determining the slice and seed locations for eyes,

region growing algorithm is applied. Since MRI intensity of eye tissue is re-

markably different from surrounding tissues no matter what the MRI weighting

is, it is a straightforward and simple task to segment it by this method. Being

dependent on intensity levels, region growing algorithm may not yield correct

results. For decreasing disturbance of the noise on this process, we applied

anisotropic filtering right at the beginning of this segmentation task.

2.3.5 Segmentation of Scalp and Skull

The procedure of scalp segmentation comprises two stages: isolation of head

volume from background voxels followed by the identification of outer skull

surface. The region between outer skull and outer scalp surfaces is deemed the

scalp volume. Isolation of head volume from background voxels is a consider-
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MRI VOLUME \ BRAIN VOLUME

EYE 
MASK

Selecting a proper slice with
a reasonable area of eyes

Locating two seed points
for each eye

Applying region growing

Figure 2.12: Flowchart of the eye-segmentation algorithm, which is imple-
mented by MATLAB r

Figure 2.13: Illustration of the eye-segmentation procedure.
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ably simple task, as the gray level change between foreground and background

volumes is rather significant.

On the contrary to the outer scalp identification, segmentation of skull

from MR images is an extremely difficult task because of the low signal level

obtained from skull tissue. In other words, MR imaging modality does not

provide us with satisfactory information about the spatial content of skull.

Therefore in studies where high resolution information is not required, CT

imaging is employed. High-resolution CT images may also be taken, yet in

such cases subjects are exposed to X-rays for a long duration, which is mostly

undesirable.

Publications focusing on skull segmentation solely from MR images are

quite few. Among these, [38] tries to determine skull volume by region grow-

ing and 3D deformable models; [39] tries to fulfill this task by mathematical

morphology, and lastly [40] estimates the surfaces by intensity clamping on

T1-weighted and T2-weighted volumes from the same subject. Utilization of

two different weighted volumes aims at distinguishing skull and CSF, which

is dark in T1-weighted and bright in T2-weighted images. Skull, on the other

hand, is generally dark in all type of MR images.

In our implementations, we followed methods proposed in [39]. The reason

is the simplicity of mathematical morphology and our goal, which is segmenting

whole volume by only T1-weighted images. Flowcharts, which are shown in

Figure 2.16 and 2.17, summarize the whole procedure of finding outer scalp

and outer skull regions. By estimating outer scalp region, will be able to

eliminate background voxels. Eliminating background voxels, we will focus on

the outer skull surface; and determining outer skull surface we will be able to

extract scalp volume. Regarding the skull volume, we will make an important

assumption that the outer brain surface represents the inner skull surface.

From source localization point of view, this assumption doesn’t create a major

error, because the conductivity of air and skull are both quite low.

Identification of outer scalp surface starts with the estimation of two thresh-

old values, namely Tskull and Tscalp. Tskull is the mean of voxels that are not
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labeled as brain and have intensities above zero. Tscalp is the mean of voxels

that are not labeled as brain and have intensities above Tskull.

Mathematically speaking:

Tskull =
1

s(Vnb)

∑

k∈Vnb

Ik (2.19)

Tscalp =
1

s(Vns)

∑

k∈Vns

Ik (2.20)

where,

Vnb = {k : k ∈ V \B, Ik > 0} (2.21)

Vns = {k : k ∈ V \B, Ik ≥ Tskull} (2.22)

Then, the procedure continues with thresholding:

Vtscalp
= {k : k ∈ V, Ik ≥ Tscalp} (2.23)

Vtscalp
, which is obtained by thresholding initial MRI volume with Tscalp,

may include some background voxels due to noise, or exclude some CSF voxels

due to low intensity level. Moreover after thresholding, some cavities around

sinus and ear canal regions form. These cavities constitute a major difficulty

in the segmentation process, because they detach connected structures. Dog-

das [39] proposes a modified closing operation to reduce the negative effect of

these cavities. The difference between the usual and modified closing opera-

tions is the application of hole filling operation between dilation and erosion

operations. They employ a O2 type structuring element for this purpose.

Vt scalp filled = Vt scalp ¯O2 (2.24)

Vt scalp filled, which is obtained by the application of modified closing oper-

ation, comprises a number of connected components. Choosing the largest one

among these components, we obtain the outer boundary of the scalp.

Identification of the outer skull surface starts with the application of anisotropic

filter followed by a thresholding procedure. Filtered MRI volume is reversely
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Figure 2.14: Structuring elements used in the scalp and skull segmentation
processes [39].

thresholded with Tskull and Vt skull is obtained. However, it is highly possi-

ble that this volume excludes some dark regions of skull and CSF. Thus to

widen the initial skull volume estimation, the brain volume is dilated after

removing brainstem, and union of these two sets are taken, producing Vu out.

Afterwards intersection of Vu out is taken with a modified head volume. The

volume is modified such that ears and nose are removed. This step is quite

important, because it is not possible to distinguish regions filled with air by

simply thresholding. Taking intersection, the resultant volume is composed of

a number of connected components. Selecting the largest component does not

complete the procedure. After this point, some other structures such as eye

sockets should be eliminated. To do this, previously modified head volume is

used. Closing the largest connected component, Vlargest, with O4 and taking

their intersection provides us with a very rough estimation of the outer skull

surface.
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Figure 2.15: Extracted scalp and skull

V_scalp _outer

Thresholding
with Tscalp

Applying modified 
closing with O 2

Selecting largest 
connected component

V_t_scalp

V_t_scalp _filled

Applying anisotropic 
diffusion

MRI 
VOLUME

V

V_filtered

Figure 2.16: Flowchart of scalp segmentation algorithm, which is implemented
by MATLAB r
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Thresholding
with Tskull

BRAIN 
VOLUME

 Applying dilation
with C2

V_scalp _outer

Applying opening
with C12

Applying erosion
with C2

Taking union

Taking intersection

Selecting largest 
connected component

Applying closing
with O4

Taking intersection

V_t_skull
V_scalp _modified

B

B_dilated

V_u_out

V_i_out

V_largest

V_skull_outer

Applying anisotropic 
diffusion

Removing 
Brainstem

MRI 
VOLUME

V

Figure 2.17: Flowchart of skull segmentation algorithm, which is implemented
by MATLAB r
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2.4 Quantitative Evaluation of the Segmenta-

tion Algorithm

The McConnell Brain Imaging Centre at Montreal Neurological Institute pro-

vides research community with an MRI simulator through which it is possible

to obtain head phantoms acquired at different pulse parameters [41], [42]. Us-

ing this simulator, it is possible to add noise and intensity non-uniformity on

MR images at desired levels. The levels of noise set for evaluation are %0, %1,

%3, %5 and %7. The percentage is determined with respect to intensity of

the brightest tissue in volume. The levels of intensity non-uniformity selected

for evaluation are 0, 20 and 40. These numbers represent some specific ranges

determined by the developers of the simulator.

Figure 2.18: Quantitative evaluation is performed by calculating missed, extra
segmented and overlapped volumes.

The measures used throughout the evaluation process are %O (percentage

of overlapped volume), %E (percentage of extra volume), %M (percentage of

missed volume), Similarity Index (SI) [27], [19] (see Figure 2.18) and Relative

Difference Measure [49]. Mathematical definitions of the first 4 measures are

given at Equations (2.25a) to (2.25d). Lastly, the evaluation results are given

in Tables (2.2), (2.3) and (2.4).

E , Extra

Reference Volume
x 100 (2.25a)
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M , Miss

Reference Volume
x 100 (2.25b)

O , Overlapped Volume

Reference Volume
x 100 (2.25c)

SI , 2 x Overlapped Volume

Reference Volume + Segmented Volume
(2.25d)

Table 2.2: Quantitative analysis of the implemented brain segmentation mod-
ule.

MRI %O %E %M SI

0n00rf 92.51 2.35 7.49 0.950

0n20rf 92.28 2.01 7.72 0.950

0n40rf 90.15 0.99 9.85 0.943

1n00rf 92.16 1.83 7.84 0.950

1n20rf 88.52 0.44 11.48 0.937

1n40rf 88.70 0.47 11.31 0.938

3n00rf 91.86 1.62 8.14 0.950

3n20rf 88.45 0.57 11.55 0.936

3n40rf 88.47 0.50 11.53 0.936

5n00rf 90.36 1.02 9.64 0.944

5n20rf 90.52 1.29 9.48 0.944

5n40rf 90.78 1.40 9.22 0.945

7n00rf 88.33 0.56 11.68 0.935

7n20rf 88.41 0.58 11.59 0.936

7n40rf 89.15 0.85 10.86 0.938

Mean 90.04 1.10 9.96 0.942
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Table 2.3: Quantitative analysis of intensity non-uniformity correction module.

MRI %RDM

1n20rf 0.73

1n40rf 1.44

3n20rf 0.73

3n40rf 0.95

5n20rf 1.34

5n40rf 1.32

7n20rf 2.33

7n40rf 2.03

Mean 1.36

Table 2.4: Quantitative analysis of the implemented brain tissue segmentation
module.

CSF GM WM

MRI %O %E SI %O %E SI %O %E SI

0n00rf 98.36 2.52 0.979 95.75 0.89 0.974 99.72 4.30 0.978

0n20rf 97.19 3.00 0.971 94.13 3.20 0.954 97.26 6.20 0.956

0n40rf 95.79 5.57 0.951 91.23 8.28 0.915 91.25 8.66 0.913

1n00rf 98.17 2.62 0.978 96.16 1.18 0.975 99.43 3.70 0.979

1n20rf 97.28 3.38 0.970 94.26 3.45 0.953 96.88 5.82 0.956

1n40rf 95.93 5.98 0.950 90.49 7.93 0.912 91.63 9.42 0.911

3n00rf 97.15 3.64 0.968 94.04 2.45 0.957 98.30 5.97 0.962

3n20rf 96.37 4.16 0.961 93.29 4.44 0.944 96.07 6.69 0.948

3n40rf 94.94 6.35 0.943 89.26 8.47 0.903 91.46 10.88 0.904

5n00rf 95.65 5.16 0.953 91.72 3.69 0.939 97.45 8.23 0.948

5n20rf 94.73 5.13 0.948 90.97 5.36 0.927 95.73 9.25 0.934

5n40rf 93.64 7.18 0.933 88.78 10.13 0.893 89.95 11.05 0.895

7n00rf 93.60 6.15 0.937 88.91 5.22 0.916 96.54 11.44 0.928

7n20rf 93.84 7.39 0.933 90.42 7.76 0.912 93.01 8.75 0.922

7n40rf 93.47 10.36 0.917 87.83 11.76 0.880 87.87 10.58 0.886

Mean 95.74 5.24 0.953 91.82 5.61 0.930 94.84 8.06 0.935
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CHAPTER 3

FORWARD PROBLEM

3.1 Introduction

To mathematically explain the electromagnetic phenomena that takes place

inside human brain, we will refer to the Maxwell’s equations [50].

∇× E = −∂B

∂t
(3.1a)

∇×H = J +
∂D

∂t
(3.1b)

∇ ·D = ρv (3.1c)

∇ ·B = 0 (3.1d)

Maxwell’s equations are complemented by the following definitions that

characterize the medium in which the electromagnetic fields propagate:

D = εE (3.2a)

B = µH (3.2b)

J = σE + Js (3.2c)

In the above equations, E, D, B, H, J, ρv are the electric field, electric

displacement, magnetic field, magnetic field strength, current density, and free

electric charge density respectively. The material dependent parameter ε rep-

resents the permittivity, µ represents the permeability and σ represents the

conductivity of the medium. Moreover, if we denote J in Equation (3.2c) as
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the total current density produced by the neuronal activity, we may divide it

into two components, Js and σE. In this case, Js corresponds to the primary

current, which is introduced by the neural activity within the neuronal cells,

and σE corresponds to the volume current, which is introduced by the effect

of the electric field on free charges in the conducting medium.

For biological signals, whose frequency is typically lower than 1 kHz, human

body may be considered as an inhomogeneous resistive volume conductor, and

electromagnetic fields in a purely resistive volume conductor are assumed to be

governed by the quasi-static conditions [47]. Quasi-static conditions eliminate

time-varying components of Maxwell equations. Being one of those, ∂D
∂t

is

assumed to be zero inside human body, and consequently:

∇ · J = 0 (3.3)

Using the identity E=−∇φ, taking divergence of Equation (3.2c) and sub-

stituting it into (3.3), we obtain:

∇ · (σ∇φ) = ∇ · Js in Ω (3.4)

Equation (3.4) is the the well known Poisson’s equation, and it numerically

explains how the voltage initiated by the electrical activities inside a purely

resistive volume conductor (Ω) is distributed. At the interface of two different

regions, boundary conditions are to be taken into account. Assuming δΩ is

the outer surface of Ω, the boundary condition of the EEG forward problem

is usually defined as follows [54]:

n · σ∇φ = 0 on δΩ (3.5)
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3.2 Reciprocity

Before discussing about the theory of reciprocity, it is essential to focus on the

mathematical description of the neural activities. Neural activities inside the

brain are generally modeled as a dipole source. Although there are different

descriptions of the dipole sources inside the brain [45, 46, 53], the most common

one is made by Brody and Romans in [45]. According to Brody and Romans,

the dipole is composed of a current source (+i) and a current sink (-i), which

are separated by a small distance (D) apart. Moreover, the dipole is given a

vectorial description of iD .

Based on the above description, assume there is a current dipole with

strength iD located between x and y points (Figure 3.1). This dipole causes

a potential difference between a and b. In the direct approach of the EEG for-

ward problem, the potential distribution due to such current dipoles is solved

for several times, which in turn requires a significant amount of computational

time and power. Looking at the same problem from a different point of view,

this requirement may be eliminated. Introduced into the EEG field by Rush

and Driscoll [47], the reciprocity theorem proposes to compute the lead field,

which is presented as ∇φxy in (3.6), for every measurement electrode pair. The

theorem states that after computing the lead field once, a simple dot product

produces the same result with the computation of the forward problem.

The key statement in this theorem is that the voltage difference measured

at electrodes a and b caused by a dipole source with unity strength is equal

to the voltage difference generated at the source point by applying a unit

current to the measurement electrodes. We may mathematically explain this

statement subject to the Brody and Romans’ definition as follows:

φab =
iD · ∇φxy

Iab

(3.6)

Lastly, the potential distribution in Figure 3.1b is governed by [54] the

Laplace’s equation given in (3.7) and by the Neumann boundary condition

given in Equation (3.8), which also define the forward problem of Electrical

Impedance Tomography (EIT).
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∇ · (σ∇φ) = 0 inside the volume (3.7)

n · σ∇φ =





−Iab at a (3.8)

+Iab at b

0, elsewhere

Figure 3.1: The source and measurement-point configuration both in the direct
(a) and reciprocal (b) problems.

3.3 Numerical Modeling of the Poisson’s Equa-

tion

Forward problem of EEG is solving Equation (3.4) in a given volume and with

given boundary conditions. For complex geometries, i.e. non-circular or non-

elliptical geometries, and for bodies with unevenly distributed inhomogeneities

numerical methods have to be employed. In this study the Finite Difference

Method (FDM) is chosen as the numerical solver [55]. Defining the divergence

of the volume current as Iv, and using the previously given identity E=−∇φ

yields:

∇ · (σ∇φ) = −Iv (3.9)
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Assuming point sources, Iv may be defined as Iv = Iδ(r − r+) − Iδ(r − r−),

and placing this definition into (3.9), (3.10) is obtained.

∇ · (σ∇φ) = −Iδ(r − r+) + Iδ(r − r−) (3.10)

Taking the volume integral of (3.10) in the cubic volume shown in Figure 3.2

and using Divergence Theorem, (3.11) is acquired.

∫∫∫

V0

∇ · (σ∇φ)dV = ©
∫∫

S0

σ∇φ · dS (3.11)

In cartesian coordinates, above identity may be decomposed into the following

integrals:

∫∫∫

V0

{ ∂

∂x
(σ0

∂φ

∂x
) +

∂

∂y
(σ0

∂φ

∂y
) +

∂

∂z
(σ0

∂φ

∂z
)}dV =

∫∫

front

σ0
∂φ

∂x
dydz −

∫∫

back

σ0
∂φ

∂x
dydz+

∫∫

left−side

σ0
∂φ

∂y
dxdz −

∫∫

right−side

σ0
∂φ

∂y
dxdz+

∫∫

up

σ0
∂φ

∂z
dxdy −

∫∫

down

σ0
∂φ

∂z
dxdy

(3.12)

Among these decomposed integrals, let’s just consider the ones related to the

x-direction:

∫∫∫

V0

∂

∂x
(σ0

∂φ

∂x
)dV =

∫∫

front

σ0
∂φ

∂x
dydz −

∫∫

back

σ0
∂φ

∂x
dydz (3.13)

By midpoint rule, which states that:

∫ c

d

∫ a

b

f(x, y)dxdy ∼= f(
a + b

2
,
c + d

2
)(a− b)(c− d) (3.14)

we may obtain:

∫∫

front

σ0
∂φ

∂x
dydz ∼= h2σ0

∂φ

∂x
|x=h/2, y=0, z=0 (3.15)
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Now, we will represent this quantity in terms of node voltages. For this pur-

pose, we will refer to boundary conditions, which impose the necessity of con-

tinuity in the current flow. Mathematically speaking,

σ0
∂φ

∂x
|
x=h

2

− = σ1
∂φ

∂x
|
x=h

2

+

σ0
φMx+ − φ0

∂x
= σ1

φ1 − φMx+

∂x

(3.16)

From Equation (3.16),

φMx+ =
σ0φ0 + σ1φ1

σ0 + σ1

(3.17)

Representing Equation (3.15) by finite differences and substituting Equation

(3.17) into it, we obtain:

h2σ0
∂φ

∂x
|x=h/2, y=0, z=0=

2σ0σ1h

σ0 + σ1

(φ1 − φ0) (3.18)

Following through the same procedure for the second term in (3.13) and in-

troducing the α coefficients as follows:

αi = 2h
σ0σi

σ0 + σi

α0 =
6∑

i=1

αi

(3.19)

we obtain the finite difference approximation as:

6∑
i=1

αiφi − α0φ0 = −Iδ(r − r+) + Iδ(r − r−) (3.20)

Filling the system matrix with α coefficients, we obtain the system equa-

tion, which may be represented in the form of x = A · b. Completing the fill-

ing process, the system equation should be solved with an appropriate solver,

whose details will be given next.

Before closing the numerical model discussion, an important remark should

be made. The differential equations that govern the reciprocal problem of
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Figure 3.2: Employed finite difference model is composed of equally spaced
nodes. The distance between each node is shown as ”h”. Here you may see a
sample node whose location is assumed to be the origin and whose surrounding
cubic volume is represented by V0 [55].

the EEG, and the forward problem of EIT (the lead field problem of EEG)

are given in Equations (3.7) and (3.8). While implementing the Neumann

boundary condition by the Finite Differences, definition of the surface normal

may be problematic. It may be undefined as in the case of the current source

& sink nodes shown in Figure 3.3, or it may cause extra computational power

demand. To overcome these problems, we employed the same numerical model

that we used during the direct approach and assigned applied currents through

the midpoint of the nodes. In other words, we followed Equation (3.20) for

solving both direct and reciprocal problems.

3.4 System Solution

For selecting a method to solve a system of equations, properties of the system

matrix should be investigated first. Looking at the system matrix that is

generated by the coefficients of Equation (3.19) in more detail, four important

characteristics should be noted:

The first one is sparsity. Due to the nature of finite differences, derivative

at a point may be represented by only a limited number of neighbors, and

this generates a huge number of zero coefficients in the system matrix. The
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Figure 3.3: Location of current source and sink in the reciprocal problem.

second one is symmetry. The symmetry property arises from the fact that

coefficients for two neighbors are identical in their corresponding rows. The

third characteristics is directly related to the rank of the system matrix, which

is equal to the total number of equations in the system minus one. This fact

causes singularity, and systems of equations that have singular system matrices

have an infinite number of solutions. Finally, the fourth characteristics, as

shown by Mohr and Vanrumste [60], is that the system matrix is positive

semi-definite.

For the solution of such equations, where the system matrix is sparse, sym-

metric, singular and positive semi-definite, it is practical to employ iterative

methods. As the name implies, iterative methods try to estimate the solu-

tion to a linear system of equations iteratively. At each step, an estimation

is generated by previous estimates or previous residuals or both. Investigat-

ing previous estimates or residuals, a new search direction is determined and

another estimation is created. This recursive procedure continues until a pre-

defined iteration number is reached or until a predefined residual is obtained.

In this study, two different iterative methods, Successive Overrelaxation

(SOR) and Conjugate Gradients (CG), are employed; their computational

power and memory requirements are investigated. With this investigation

we checked the feasibility of Finite Difference Method as a numerical solver in

the EEG forward problem.
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SOR [59] is based on the well-known Gauss-Seidel method, where the com-

putations are performed in a serial fashion, and consequently each new variable

update depends on the previous variables’ updates. Not allowing simultaneous

renewals, both SOR and Gauss-Seidel methods depend on the ordering of the

equations. This property gains critical importance in sparse systems, because

presence of zeros may drastically change effect of nonzero coefficients. Conse-

quently, the rate of convergence is affected, as well. Successive Overrelaxation

method incorporates an extrapolation variable through which weighted aver-

age of Gauss-Seidel iterate and previous iterate is taken. This variable aims at

increasing the convergence rate, but it is not possible to compute the optimum

extrapolation degree in advance. As Mohr and Vanrumste [60] highlighted, in

our Finite Difference system different extrapolation degrees produce different

solutions. However, all those solutions differ only by an additive constant. In-

vestigating pseudo-code of SOR in Figure 3.4, it is seen that only two vectors

of length N (number of unknowns) and the system matrix need to be stored

in memory. Regarding the distribution of operations per iteration, only one

SAXPY, i.e. Scalar Alpha X Plus Y, (line 12) and one matrix-vector product

is required.

CG [59] differs from Successive Overrelaxation method mainly in update

methodology. Former method involves adaptive information, by which estima-

tions to the exact solution are generated. Following estimations, corresponding

residuals are computed. Lastly, based on estimations and residuals new search

directions are determined. Investigating pseudocode of CG in Figure 3.5, we

can see that 5 vectors of length N (number of unknowns) and the system matrix

is to be stored in memory. As far as operations per iteration is concerned, two

inner products (lines 3,11), three SAXPY (lines 8,12,13) and one matrix-vector

product (line 10) have to be taken at each step.

Despite higher memory requirement and higher processing power demand,

in this study CG is preferred to SOR, because CG necessitate no parameter

estimation and converges to more desirable solutions.
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1: For some initial guess x(0)

2: for k = 1, 2... do
3: for i = 1, 2, ..., n do
4: σ = 0
5: for j = 1, 2, ..., i− 1 do
6: σ = σ + a(i,j) xk

j

7: end for
8: for j = i + 1, ..., n do
9: σ = σ + a(i,j) x

(k−1)
j

10: end for
11: σ = (bi − σ)/a(i,i)

12: xk
i = x

(k−1)
i + ω(σ − x

(k−1)
i )

13: end for
14: Check convergence, continue if necessary
15: end for

Figure 3.4: Successive Overrelaxation Method [59]. It is used for solving equa-
tions in the form of A · x = b. a(i,j), xi, bi, w, σ are entity of a square A
matrix, entity of x vector, entity of b vector, user specific relaxation factor
and a temporarily utilized variable respectively.

1: Compute r(0) = b− Ax(0) for some initial guess x(0)

2: for i = 1, 2... do
3: ρ(i−1) = r(i−1)T

r(i−1)

4: if i=1 then
5: p(1) = r(0)

6: else
7: β(i−1) = ρ(i−1)/ρ(i−2)

8: p(i) = r(i−1) + β(i−1)p
(i−1)

9: end if
10: q(i) = Ap(i)

11: α(i) = ρ(i−1)/p
(i)T

q(i)

12: x(i) = x(i−1) + α(i)p
(i)

13: r(i) = r(i−1) + α(i)q
(i)

14: Check convergence, continue if necessary
15: end for

Figure 3.5: Conjugate Gradient Method [59]. It is used for solving equations
in the form of A · x = b. a(i,j), xi, bi are entity of a square A matrix, entity
of x vector and entity of b vector respectively. r, α, β, p, q and ρ are all
temporarily utilized variables.
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3.5 Validation of the Numerical Model

The accuracy rate of the numerical model is tested on both EEG and EIT

forward problems. EIT forward problem is included into the validation process,

because reciprocal EEG forward problem is analogous to the EIT forward

problem. The accuracy rates are determined by using Relative Difference

Measure (RDM) and RDM* metrics [49].

%RDM =

√∑N
i=1(Vai

− Vni
)2

∑N
i=1(Vai

)2
x 100 (3.21)

RDM∗ =

√√√√√
N∑

i=1


 Vai√∑N

i=1(Vai
)2

− Vni√∑N
i=1(Vni

)2




2

(3.22)

In (3.21) and (3.22), Va represents the analytical solution, Vn represents

the numerical solution, and N represents the number of test points.

Figure 3.6: Geometry on which EEG and 3D EIT forward problems are solved
both analytically and numerically.
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3.5.1 EEG Forward Problem with the Direct Approach

EEG forward problem is solved analytically [48] and numerically by the direct

approach for a spherical geometry shown in Figure 3.6. The spherical volume

is composed of three shells, representing brain, skull and scalp tissues. Brain

and scalp tissue conductivities are assumed to be equal and skull conductivity

is chosen as (i) same as soft tissue conductivity (ii) 1/15th of the soft tissue

conductivity [52] and (iii) 1/80th of the soft tissue conductivity [47]. Numeri-

cally computed voltages at nodes on the upper surface are compared with the

analytical ones, and results of this test is presented in Figure 3.7. In addition,

effect of inter-node spacing is investigated, as well. For a skull conductivity /

soft tissue conductivity ratio of 15, forward problem is solved numerically for

10 tangential and for 10 radial dipoles at 1mm, 2mm, 3mm and 6mm node

resolutions. Results of this tests are presented in Figures 3.8 and 3.9.
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Figure 3.7: %RDM values due to a radial dipole at varying eccentricities and
skull conductivity / soft tissue conductivity ratios. The inter-node spacing is
selected as 1mm.

Based on Figure 3.7, we may conclude that the numerical solution devi-

ates from the correct solution with increasing skull conductivity / soft tissue
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Figure 3.8: %RDM values due to 10 tangential dipoles at varying eccentricities
and inter-node spacings. The skull conductivity / soft tissue conductivity ratio
is assumed to be 15 [52].
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Figure 3.9: %RDM values due to 10 radial dipoles at varying eccentricities and
inter-node spacings. The skull conductivity / soft tissue conductivity ratio is
assumed to be 15 [52].
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conductivity ratio. As the conductivity difference between hard tissue and

its neighboring regions increases, the potential distribution shows great alter-

ations at the interfaces, and the numerical solution becomes unable to follow

it. Moreover, Figures 3.8 and 3.9 show us that the distance between two FD

nodes has also great importance. Employing closer nodes yields more accurate

results. However, we realized that the improvement in the numerical results

saturate after some point, and it might not be feasible to decrease the intern-

ode spacing too much.

3.5.2 EIT Forward Problem

For the EIT forward problem, 2D circular and 3D spherical geometries are

chosen. Analytical solution of the 2D EIT forward problem, for both homo-

geneous and inhomogeneous cases, are obtained by solving Poisson’s equation

subject to the governing boundary conditions (see Appendix A for details on

the analytical solution). Analytical solutions of the 3D homogeneous and in-

homogeneous EIT forward problems are obtained from [47]. Results of related

tests are given in Tables (3.1) to (3.4).

Table 3.1: %RDM and RDM* values for the 2D EIT forward problem, which is
solved for a disk with 90mm radius. The disk is assumed to have homogeneous
conductivity.

Internode Spacing(mm) RDM(%) RDM*

1.0 1.66 0.015

2.0 3.21 0.029

3.0 4.54 0.040

5.0 7.14 0.063

6.0 8.21 0.071
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Table 3.2: %RDM and RDM* values for the 2D EIT forward problem, which is
solved for a disk with 90mm radius. The disk has a concentric inhomogeneity
with a radius of 60mm.

Internode Spacing(mm) RDM(%) RDM*

1.0 0.89 0.008

2.0 1.61 0.014

3.0 2.56 0.018

5.0 3.83 0.033

6.0 5.00 0.044

Table 3.3: %RDM and RDM* values for the 3D EIT forward problem, which
is solved for a sphere with 90mm radius. The sphere is assumed to have
homogeneous conductivity. The measurement is made at spherical region of
78mm radius.

Internode Spacing(mm) RDM(%) RDM*

2.0 3.54 0.013

3.0 4.88 0.018

6.0 10.07 0.035

Table 3.4: %RDM and RDM* values for the 3D EIT forward problem, which
is solved for a sphere with 90mm radius. The sphere has concentric inhomo-
geneities with 84mm and 78mm radii. The comparison is made only at the
inner-most region. Region conductivities have a ratio of 15:1:15.

Internode Spacing(mm) RDM(%) RDM*

2.0 3.01 0.012

3.0 5.49 0.022

6.0 11.66 0.049
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3.5.3 EEG Forward Problem with the Reciprocal Ap-

proach

Validation of the reciprocal approach is of highest importance throughout the

evaluation process of the numerical method, because it is this approach that

will be employed later on the inverse problem solution, and consequently in

the electrical source localization. The reciprocal approach is evaluated by solv-

ing EEG forward problem analytically [48], by solving EIT forward problem

numerically and by applying Equation (3.6) accordingly. The procedure is

repeated for varying radial dipole positions on a spherical geometry shown in

Figure 3.6. Two electrodes on the y-plane are selected as test electrodes. One

of these electrodes makes 30 degrees, and the other one makes 120 degrees

with the y-axis. The first electrode is selected as a unit current source, and

the latter is selected as a unit current sink. The internode spacing is selected

as 1mm, 2mm, 3mm and 6mm. Number of corresponding grid nodes over

which the potential distribution is solved may be seen in Table (3.5). In Table

(3.5), the average matrix filling time and the average system solution time

for an Intel Core2Duo 2.66 GHz CPU with 2 GB RAM of computer are also

given. The actual potential difference between the test electrodes, which is

calculated by the analytical method, and the estimated one by the reciprocal

approach are compared and the RDM value is computed. These RDM values

are presented in Figure 3.10 and in Figure 3.11.

Table 3.5: Number of grid nodes, average time required for matrix filling
and average time required for system solution at varying internode spac-
ing values are given. The average durations are based on implemented
MATLABr source code run on an Intel Core2Duo 2.66 GHz CPU with 2
GB RAM of PC.

Internode Total number of Average matrix Average system

Spacing grid nodes filling time solution time

6mm 16,567 0.05 sec 0.10 sec

3mm 121,769 0.38 sec 2.64 sec

2mm 401,735 1.30 sec 14.92 sec

1mm 3,130,725 31.32 sec 520.23 sec
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Figure 3.10: RDM values due to a radial dipole at varying eccentricities and
inter-node spacings. The skull conductivity / soft tissue conductivity ratio is
assumed to be 15 [52].
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Figure 3.11: RDM values due to a radial dipole at varying eccentricities and
inter-node spacings. The skull conductivity / soft tissue conductivity ratio is
assumed to be 80 [47].
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3.5.4 Comparison of Direct and Reciprocal Approaches

To be able to compare direct and reciprocal approaches correctly, aforemen-

tioned test results are not satisfactory, because the number and location of test

points are not the same. To eliminate this drawback, one last validation step

is added into the study. The reciprocal approach for the EEG forward problem

is analyzed by first selecting two electrodes on the spherical geometry shown

in Figure 3.6 and then computing the RDM value for radial and tangential

dipoles with different eccentricities. The dipoles are moved from 12mm up

to 66mm. Without changing the location of selected electrodes and selected

dipole eccentricities, the RDM value of the numerical method that follows the

direct technique is calculated as well, and the results are presented along with

the ones of reciprocal technique.

Table 3.6: Reciprocal and direct approaches are compared based on %RDM
values calculated for 10 tangential dipoles and one specific electrode pair.

Internode %RDM for the %RDM for the

Spacing Reciprocal Approach Direct Approach

6mm 1.68 % 1.68 %

3mm 2.07 % 2.48 %

2mm 0.88 % 0.86 %

1mm 0.51 % 0.57 %

Table 3.7: Reciprocal and direct approaches are compared based on %RDM
values calculated for 10 radial dipoles and one specific electrode pair.

Internode %RDM for the %RDM for the

Spacing Reciprocal Approach Direct Approach

6mm 57.78 % 57.78 %

3mm 14.60 % 14.60 %

2mm 9.57 % 8.74 %

1mm 4.68 % 4.68 %

Looking at Tables (3.7) and (3.6), some critical observations could be made.

The first important point here is that accuracy levels of both reciprocal and

direct approaches are very similar. Moreover, at low inter-node spacings the
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FD method provides us enough precision during computation of potential dis-

tribution. Both statements help us conclude that the FD method based on

reciprocal approach might be a feasible choice for source localization proce-

dures. In addition to the direct approach & reciprocal approach comparison,

the difference between the RDM values for radial and tangential dipoles takes

attention, too. The comparatively high inaccuracy of radial dipoles stems from

the fact that the test electrodes are placed close to the radial axis of the ra-

dial dipoles. Since the dot product in Equation (3.6) is expected to be low in

those cases, the error becomes high. However, in the case of tangential dipoles,

this dot product is high, and consequently lower accuracy is obtained. Lastly,

looking at the above tables one more time, one can question why the RDM

value for 3mm spacing is higher than the one for the 6mm spacing. We believe

that this situation is caused by discreet modeling of the test geometry, and it

is, therefore, of little importance.

3.6 Solutions on a Realistic Head Model

Formerly described Finite Difference scheme is applied on a realistic head

model. To obtain the model, initially head of a healthy subject is scanned

in 3D, and axial T1-weighted MR images are acquired using 1.5 T General

Electric system with TR=540 ms, TE=12 ms. In-plane-resolution is chosen

as about 1 cm, which corresponds to 256x256 image size, and out-of-plane

resolution is chosen as about 3 cm, which corresponds to 72 slices. Following

acquisition, the volume is segmented into 7 compartments (air, scalp, skull,

eyeballs, cerebrospinal fluid, gray matter and white matter) automatically by

the software whose theatrical principles are given in the previous chapter. One

axial and one coronal slice of the segmented volume may be seen in Figure 3.12.

(At this point please note that in-plane-resolution is about one third of out-

of-plane resolution, and therefore, the staircase affect is much more evident

on the coronal view) We have assigned homogeneous conductivity values into

each voxel. Values are selected from [56] and are listed in Table (3.8). Finally,

we placed radial and tangential dipoles at two different depths one by one.
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The difference between deep and shallow dipoles are around 6 cm, and the

shallow dipole is around 3.6 cm below the brain surface. Resultant voltage

distributions as seen from the inner half and upper scalp are presented in

Figure 3.14.

Table 3.8: Homogeneous tissue conductivities [56]

Compartment Conductivity (Ωm)−1

Air 0.0000

Scalp 0.2725

Skull 0.0132

Eyeballs 0.5000

CSF 1.7900

GM 0.3300

WM 0.2000
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(a) (b)

Figure 3.12: Realistic model (a) Axial view (b) Coronal view

(a) (b)

Figure 3.13: (a) Radial dipole about 9.6 cm below the scalp (b) Radial dipole
about 3.6 cm below the scalp
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(a) (b)

(c) (d)

Figure 3.14: (a) Absolute value of the voltage distribution inside human head
due to a radial dipole placed about 9.6 cm below the scalp (b) Absolute value of
the voltage distribution inside human head due to a radial dipole placed about
3.6 cm below the scalp (c) Scalp voltage distribution due to a tangential dipole
placed at a deep location (d) Scalp voltage distribution due to a tangential
dipole placed at a near surface location
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CHAPTER 4

CONCLUSIONS

This study focuses on three main points: The first one is segmentation of

Magnetic Resonance (MR) images into cerebrospinal fluid, gray matter, white

matter, eye, skull and scalp tissues. A general framework is created for this pur-

pose, and tissue-specific segmentation methods are selected and implemented

accordingly. During segmentation process, only T1-weighted images are used,

because compared to dual-spin echo (i.e., PD- and T2-weighted) imaging its

acquisition time is shorter, signal-to-noise ratio (SNR) is higher, intensity non-

uniformity is less and also possibility of motion artifacts is lower [24].

Among the tissues listed above, skull represents the major difficulty in the

whole segmentation process. The reason is that skull has a very low intensity

at MR images and often tends to be misclassified as air. However despite

this difficulty, we avoided employing Computerized Tomography (CT) images

in this study to protect patients from X-ray exposure and to refrain from

registration problem.

Applied segmentation methods are tested on synthetic MR data, whose

ground truth is available. Tests are carried out under different noise levels.

Quantitative analysis of brain segmentation procedure showed that the over-

lapped region ratio between ground truth and automatic segmentation is in

average 89.15%; mean RDM value for intensity non-uniformity correction pro-

cedure is 1.36%, and lastly, minimum mean ratio of overlapped region for brain

tissue classification procedure is 91.82%. These results prove that selected al-

gorithms provide us with a satisfactory amount of accuracy.
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Regarding the future of MRI segmentation studies, there are two differ-

ent approaches that need attention most. One of these two main concepts is

implanting MR physics into the algorithm, so that resistance to acquisition

parameter variance is obtained [43]. The other concept is investigating avail-

able MR protocols and determine the most appropriate one for tissue specific

delineation [44].

The second focus of interest in this thesis study was using the Finite Dif-

ference Method (FDM) in the forward problem of Electroencephalography

(EEG). We implemented a successful FD scheme, and validated its accuracy

rate on the direct approach. For a skull conductivity / soft tissue conductivity

ratio of 15 [52], 13.29 % mean RDM, 0.0613 RDM* is obtained for 10 radial

dipoles, and 1.02 % mean RDM, 0.0091 RDM* is obtained for 10 tangential

dipoles located from 12mm to 66mm above origin. We realized that FDM

solves the forward problem accurately, and the accuracy increases with de-

creasing internode spacing. However, we also realized that the improvement in

the accuracy saturates with decreasing of internode spacing. Based on our ex-

periments, dividing the problem geometry into 400,000 grid nodes is a feasible

choice in terms of computational load versus correctness balance.

The third and a critical focus of interest of this study was application of

reciprocity with the FD method in EEG forward problem. Since the Electrical

Impedance Tomography (EIT) forward problem and the reciprocal problem of

EEG show great analogy, we included EIT forward problem into the validation

process, and the test geometry along with the results are given in Tables (3.1)

to (3.4). Moreover, the accuracy rate of the reciprocal approach is measured

for a single electrode pair, as well. The main conclusion that may be reached

by Table (3.5), Figure 3.10 and Figure 3.11 is that 1mm of internode spacing

value produces a highly accurate estimate in less than 10 minutes. Even for a

skull conductivity / soft tissue conductivity ratio of 80 [47], a mean RDM value

of 10.99 % is obtained at 1mm internode spacing, which in turn necessitates

calculation of potential distribution on 3,130,725 numbers of grid nodes. This

mean RDM value is computed at 4 different radial dipole locations.
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Before making a final statement on the comparison of direct and reciprocal

approaches, we made one more test on the same geometry shown in Figure

3.6. Selecting two specific electrodes and 10 radial, 10 tangential dipoles, we

computed the error rates for both approaches and realized that they generate

almost the same and considerably low RDM values. Considering the main

goal of source localization, which requires solving the inverse problem either

by successive forward problem solutions or by reciprocal problem solutions,

we concluded that the FD method with the reciprocal approach is capable of

fulfilling this task by a significant amount of accuracy. The RDM value of the

reciprocal approach is determined as 4.68 % for 10 radial dipoles, and 0.51

% for 10 tangential dipoles. This accuracy is achieved by 1 mm of internode

distance. One more critical remark here to be made is the change in the error

rate with respect to the grid spacing. Figures 3.10 and 3.11 reveal that the

error increases exponentially with decreasing number of FD nodes.

We also evaluated the memory requirement and complexity of adapted FD

scheme. Best method for evaluating the general scheme is to investigate the

procedure used for solving the system equation. We compared Conjugate Gra-

dients (CG) and Succesive Overrelaxation (SOR) procedures for this purpose,

and based on this comparison we favored CG over SOR, because CG does not

require any parameter estimation and converges more acceptable solutions.

Looking into CG in more detail, it may be showed that number of operations

per iteration is 2 inner products, 3 SAXPY and one matrix-vector product.

Moreover, the memory requirement is 5 times the number of unknowns, which

do not create a problem for current computer systems.
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APPENDIX A

Analytic Solutions to the Forward Problem of

Electrical Impedance Tomography

A.1 Solution for a Two Dimensional Homoge-

neous Disc

General form of the solution:

V (r, θ) =
∞∑

n=0

rn{ancos(nθ) + bnsin(nθ)} (A.1)

Boundary conditions of the problem:

V (r = 0, θ) = 0 (A.2a)

σ
∂V (r, θ)

∂r
|r=R = J(θ), (A.2b)

where J(θ) is the applied current density and defined as:

J(θ) =





+I

Rβ
, for α1 − β

2
≤ θ ≤ α1 + β

2
(A.3)

−I

Rβ
, for α2 − β

2
≤ θ ≤ α2 + β

2

0, elsewhere

In the above definition, β represents the angular electrode width. From (A.2a):

V (r = 0, θ) = a0 = 0 (A.4)
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Therefore, Equation A.1 becomes:

V (r, θ) =
∞∑

n=1

rn{ancos(nθ) + bnsin(nθ)} (A.5)

From (A.2b):

J(θ) = σ

∞∑
n=1

nRn−1{ancos(nθ) + bnsin(nθ)} (A.6)

Multiplying both sides of (A.6) with cos(mθ) and taking the integral in [0,2π]:

∫ 2π

0

J(θ)cos(mθ)dθ = σ

∞∑
n=1

nRn−1

∫ 2π

0

{ancos(nθ) + bnsin(nθ)}cos(mθ)dθ

(A.7)

Using definition of J(θ), the left hand side of the above equation may be shown

as:

∫ 2π

0

J(θ)cos(mθ)dθ =

∫ α1+β/2

α1−β/2

I

Rβ
cos(mθ)dθ −

∫ α2+β/2

α2−β/2

I

Rβ
cos(mθ)dθ

=
2I

mRβ
sin(

mβ

2
)[cos(mα1)− cos(mα2)]

(A.8)

Knowing the identities,

∫ 2π

0

cos(nθ)cos(mθ)dθ =

{
π, for n = m (A.9)

0, otherwise

∫ 2π

0

sin(nθ)cos(mθ)dθ = 0 everywhere (A.10)

and combining (A.7) with (A.8) we obtain:

an =
2I

πβσn2Rn
sin(nθ){cos(nα1)− cos(nα2)} (A.11)

bn =
2I

πβσn2Rn
sin(nθ){sin(nα1)− sin(nα2)} (A.12)
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Substituting equations (A.11) and (A.12) into (A.1) yields:

V (r, θ) =
2I

πβσ
=

∞∑
n=1

rnsin(nβ/2)

n2Rn
{cos(n(α1 − θ))− cos(n(α2 − θ))} (A.13)

A.2 Solution for a Two Dimensional Two Shell

Disc with Concentric Inhomogeneity

General form of the solution for the inner shell:

Vi(r, θ) =
∞∑

n=1

rn{ancos(nθ) + bnsin(nθ)} (A.14)

General form of the solution for the outer shell:

Vo(r, θ) =
∞∑

n=1

{(rncn + r−ndn)cos(nθ)+

(rnen + r−nfn)sin(nθ)}
(A.15)

Boundary conditions of the problem:

σo
∂Vo(r, θ)

∂r
|r=Ro = J(θ) (A.16a)

σi
∂Vi(r, θ)

∂r
|r=Ri

= σo
∂Vo(r, θ)

∂r
|r=Ri

(A.16b)

Vo(Ri, θ) = Vi(Ri, θ), (A.16c)

where J(θ) is the applied current density and defined as:

J(θ) =





+I

Roβ
, for α1 − β

2
≤ θ ≤ α1 + β

2

−I

Roβ
, for α2 − β

2
≤ θ ≤ α2 + β

2

0, elsewhere

In the above definition, β represents the angular electrode width. From (A.16a):
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J(θ) = σo

∞∑
n=1

n{(Rn−1
o cn −R−n−1

o dn)cos(nθ)

+ (Rn−1
o en −R−n−1

o fn)sin(nθ)}
(A.17)

Multiplying both sides of (A.17) with cos(mθ) and taking the integral in [0,2π]:

∫ 2π

0

J(θ)cos(mθ)dθ = σ0

∞∑
n=1

n

{(Rn−1
o cn −R−n−1

o dn)

∫ 2π

0

cos(nθ)cos(mθ)dθ+

(Rn−1
o en −R−n−1

o fn)

∫ 2π

0

sin(nθ)cos(mθ)dθ}

(A.18)

Using definition of J(θ), the left hand side of the above equation may be

calculated as:

∫ 2π

0

J(θ)cos(mθ)dθ =

∫ α1+β/2

α1−β/2

I

Roβ
cos(mθ)dθ −

∫ α2+β/2

α2−β/2

I

Roβ
cos(mθ)dθ

=
2I

mRoβ
sin(

mβ

2
)[cos(mα1)− cos(mα2)]

, K1
m

(A.19)

Since:

∫ 2π

0

cos(nθ)cos(mθ)dθ =

{
π, for n = m

0, otherwise

and
∫ 2π

0
sin(nθ)cos(mθ)dθ = 0 everywhere, we come up with the following

equation:

σom(Rm−1
o cm −R−m−1

o dm)π = K1
m

=> Rm
o cm −R−m

o dm =
K1

mRo

σomπ

(A.20)

From (A.16b):
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σiR
m
i am = σo(R

m
i cm −R−m

i dm) (A.21)

From (A.16c):

Rimam = Rm
i cm + R−m

i dm (A.22)

=> From (A.21) and (A.22):

(σi − σo)R
m
i cm + (σi + σo)R

−m
i dm = 0 (A.23)

=> dm =
(σo − σi)R

2m
i cm

(σo + σi)

= µR2m
i cm ,where µ , (σo − σi)

(σo + σi)

(A.24)

Substituting (A.24) into (A.20):

Rm
o cm −R−m

o µR2m
i cm =

K1
mRo

σomπ

=> (Rm
o −R−m

o µR2m
i )cm =

K1
mRo

σomπ

=> cm =
K1

mRo

(Rm
o −R−m

o µR2m
i )σomπ

(A.25)

=> dm =
K1

mRoµR2m
i

(Rm
o −R−m

o µR2m
i )σomπ

(A.26)

Substituting (A.25) and (A.26) into (A.22):

am =
K1

mRo(1 + µ)

(Rm
o −R−m

o µR2m
i )σomπ

(A.27)

Multiplying both sides of (A.17) with sin(mθ), taking the integral in [0,2π] and

following aforementioned procedure:
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em =
K2

mRo

(Rm
o −R−m

o µR2m
i )σomπ

(A.28)

fm =
K2

mRoµR2m
i

(Rm
o −R−m

o µR2m
i )σomπ

(A.29)

bm =
K2

mRo(1 + µ)

(Rm
o −R−m

o µR2m
i )σomπ

(A.30)

where K2
m , 2I

mRoβ
sin(

mβ

2
)[sin(mα1)− sin(mα2)]
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APPENDIX B

Segmentation Software GUI

Figure B.1: Whole head MRI segmentation software Graphical User Interface.

During the course of this study, we prepared a MATLAB (Version 7.1.0)

r software for segmenting T1-weighted MR volumes into cerebrospinal fluid

(CSF), gray matter (GM), white matter (WM), scalp, skull, and eye-ball tis-

sues. For convenience, a Graphical User Interface (GUI) to the implemented

algorithms is created as well (Figure B.1). The graphical interface functions

based on the flowchart shown in Figure 2.1.
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Initially, an Analyze 7.5 format image volume is loaded into the system by

clicking the Load button. Loading the input volume, BSE [33] is activated

for skull stripping. This module takes 4 inputs. The first one is number of

anisotropic diffusion iterations. The second one is diffusion constant. Both

variables are adjusted according to the noise level of the input data. For noisy

data, number of iterations should be increased. The third parameter is the

edge constant used in the Laplacian of Gaussian edge detection, and the last

parameter is the size of the structuring element used during erosion operation.

Edge detection and erosion steps are quite important for separating brain and

surrounding tissues. Deciding on the appropriate parameters skull stripping

starts by clicking the Start button.

Finalizing skull stripping, intensity non-uniformity (INU) correction mod-

ule becomes activated. For correcting the INU present in almost all MR im-

ages, SPM software package [30] is integrated into the program. This package

is capable of computing the Discreet Cosine Transformation coefficients of the

non-uniformity field without any user intervention.

After the INU correction step, PVC [33] module becomes activated. The

only adjustable parameter here is the spatial prior given in Equation (2.17).

It controls the affect of neighbors on the final classification of a voxel. If there

is a high amount of noise in the volume, a smaller prior should be selected.

We intuitively selected radius of a human eye as 12mm. Eye segmentation

module works according to this assumption. It computes circular Hough trans-

form and located the center of eyes. If another eye radius is to be selected,

then Eye Radius parameter should be adjusted accordingly.

The final step in the whole head MRI segmentation is the extraction of scalp

and skull tissues. At this stage, there are only 2 parameters to be selected.

These parameters are intensity threshold values that clamp skull and skull

tissues. If the user does not have any prior guess for these thresholds, they

could be estimated automatically.
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