SEMANTIC PROCESSES FOR CONSTRUCTING COMPOSITE WEB
SERVICES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

KARANI KARDAS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

AUGUST 2007

Approval of the thesis:

SEMANTIC PROCESSES FOR CONSTRUCTING COMPOSITE WEB
SERVICES

submitted byK ARAN I KARDA § in partial fulfilment of the requirements for the
degree ofMaster of Science in Computer Engineering Departmen Middle
East Technical Universityby,

Prof. Dr. Canan Ozgen
Dean, Graduate School Nfatural and Applied Sciences

Prof. Dr. Volkan Atalay
Head of DepartmenGomputer Engineering

Asst. Prof. Dr. Pinagenkul
SupervisorComputer Engineering Dept., METU

Examining Committee Members:

Prof. Dr.ismail Hakki Toroslu
Computer Engineering Dept., METU

Asst. Prof. Dr. Pinagenkul
Computer Engineering Dept., METU

Assoc. Prof. Dr. Nihan Cicekli
Computer Engineering Dept., METU

Asst. Prof. Dr. Hurevren Kilig
Computer Engineering Dept., Atilim Uni.

M.Sc. Arslan Arslan
Manager, LOGO

Date: 27.08.2007

| hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and etlal conduct. | also

declare that, as required by these rules and condticl have fully cited and

referenced all material and results that are not oiginal to this work.

Name, Last name: Karani Kagda

Signature

ABSTRACT

SEMANTIC PROCESSES FOR CONSTRUCTING COMPOSITE WEB
SERVICES

Kards, Karani
M.Sc., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Pinar Senkul

August 2007, 106 pages

In Web service composition, service discovery andlzining suitable services
through determination of interoperability amongfetiént services are important
operations. Utilizing semantics improves the qyatind facilitates automation of
these operations. There are several previous apmsafor semantic service
discovery and service matching. In this work, wplex and extend these semantic
approaches in order to make Web service compogitiocess more facilitated, less
error prone and more automated. This work incladssrvice discovery and service
interoperability checking technique which extenldls previous semantic matching
approaches. In addition to this, as a guidanceesystr the user, a new semantic
domain model is proposed that captures semantitiors between concepts in

various ontologies.

Keywords: Semantic Web Services, Semantic Web &=@omposition, Semantic
Matching, Semantic Mapping, Semantic Inference

0z

BIRLESIK WEB SERMSLERININ OLUSTURULABILMESI iCIN
ANLAMSAL ISLEMLER

Kards, Karani
Yuksek Lisans, Bilgisayar MuhendigliBolumu
Tez Yoneticisi : Yrd. Dog. Dr. Pingenkul

Agustos 2007, 106 sayfa

Web servislerinin birlgminde, servis arama ve farkli servisler arasindakte
calisabilirlik belirlenerek uygun servislerin bigdériimesi 6nemli §lerdir.
Anlamsallik birleik servis kalitesini arttirir ve buslemlerin otomasyonunu
kolaylastirir. Anlamsal servis arama ve servigeene icin ¢gitli yaklasimlar vardir.
Bu calsma, ihtiyaclari ve kisitlar katamak amaciyla, bir cok farkli web
servisinin bir araya getirilerek bigg& Web servislerinin anlamli bigekilde
olusturulabilmesi icin yapilan ¢aimalar anlatmaktadir. Bu ¢ginada; Web servis
birlesimi surecini daha kolay, daha az hataya yatkinaleadtomatik hale getirmek
icin onceki anlamsal yakfamlari kullandik ve geglettik. Bu calsma o6nceki
anlamsal gleme yontemlerini geglieten servis arama ve servis birlikte gahilirlik
yontemlerini icerir. Bunlara ek olarak, kullaniciyal gésterme amaciyla g#i
ontolojilerde yer alan kavramlar arasindaki anldnisgkileri kapsayan yeni bir

anlamsal alan modeli 6nerilgtir.

Anahtar Kelimeler: Anlamsal Web Servisleri, Anlaigéeb Servisi Birlgimi,

Anlamsal Eleme, Anlamsal Cikarsama

To My Wife and Family

Vi

ACKNOWLEDGMENTS

| would like to thank my wife and family for thegreat support and also | would
like to thank my thesis advisor Assoc. Prof. P@amkul for her guidance and help
throughout my research.

vii

TABLE OF CONTENTS

ABSTRACT ittt semree e e e e e s e e e e e e st e e e e e e e nnb et e e ennrataeaeeaas iv
(@)RR v
ACKNOWLEDGMENTS e e e et e e e e e e Vil
LIST OF FIGURES...... .ottt emeee sttt e et e e e e e snnnee e e ane X
CHAPTERS
1. INTRODUCGCTION. ...ttt s e e et e e e et e e e ean e e eatae e e ennnnneeees 1
2. PROBLEM ANALYSIS ..ot e e e e e e e e vnaas 4
2.1 WED SEIVICE ..o 4
2.2 Web Service COMPOSILION.............oommmmmeerrrrrnniniiiaieeeeeeeeeeeeerereeersrenee 6
2.3 CUrrent Problems...... ..o i 8
2.4 SeMANUC WEDcooiiiii i e e e e e e e e e e e e e e e e e nne e nnnnnnennna 9
2.5 Semantic Web SErIVICES.........uuuiiieeeeeeeeiieeeeeeeeee e 12
2.6 Semantic Web Service COMPOSItION....ccoeeeeivviiiiiiiiiiee e, 14
2.7 Related WOIKSoooiiiiiiiieee e 14
3. SEMANTIC PROCESSES FOR CONSTRUTING COMPOSITE WEB
SERVICESttt e e+ e ettt e e e e e ettt a e e e e e snre e e e e e s nnrneeeas 19
3.1 Semantic Wrapper LAYluuuuucemmmmmiiiieeeeeeeeeeeeeeeeee e 19
3.2 SemantiCc MatChiNg............u i 22
3.21 Concept MatChiNgccooii e 24
3.2.2 Service MatChing.......cooooei i 3.3
3.3 Semantic Web Service Composability CheCKa.....cccovvvvviriiiiiiiiinnnn. 44
3.4 SemMaNtiC MapPPINg.....coeieiiieeee e ceeeeeera e 51
3.5 Semantic Domain Model.............oiiiiceeeiice e 57
3.6 IMplementation ISSUES..............uvuceemmmmreneiiiieeeeeeeeereeeeeeeesnnennnn e 60
3.6.1 Created Packages..........cooeeeeiiiiieeeeeccee e 60
3.6.1.1 ONtology PACKAGE......ciiieieeee et 61
3.6.1.2 SEerViCe PACKAGE.....ccieeeee e eeiieieeeeeeee et 63

3.6.1.3 Semantic Matching package...........cmeeeeeeeeiiiiiiiiiiiiicnnnnnn.. 64

viii

3.6.1.4 Semantic Mapping PACKAGEcommmmeereerrrmnisaiieeaeeeeeeeees. 0D

3.6.1.5 Semantic Inference package........ccccoceeeiiiiiiiiiiiiiiiiiii, 66
3.6.1.6 User Interface packageccccceeeeeeeeeeeeeieeeeeeiiiiiiies 67
3.6.1.7 Other Important ClaSSES...........uuceeeeemiriiiiiiiieieeeeee e 67
3.6.2 Used TeChNOIOGIESoeiii et 67
4. EVALUATION ..o ittt e e ettt e e e e e e et e e e e e s s nnssaeeeennsenes 68
4.1 Semantic Matching Evaluation ... 69.
4.1.1 Concept Matching Evaluation...........oooiiiiiiiiiiiiiiieee e 69
4.1.2 Service Matching Evaluationcceeeeiiiiiiiiieeiiiicccees e 70
4.2 Web Service Composition Evaluationcceeee..eciiiiieeiieeeeeeeeicceeiiiiies 71
5. FUTURE WORK AND CONCLUSION......cciiiiiiiiiiemmmre e 73
REFERENGCES.o ot e e e e et aeeennnanaeees 75
APPENDIX A
Al HOUSE.OWL.coeiiiiiiiiiiiie ettt 78
A2 Travel oW ... e 80
A3 MEALOWL....ccoeeeeeeee e ——————- 92
A4 PegasuSSEerviCe.0Wl..........uuuuuiiiiiiceeeeeeiiiie e e e e 94
AL THYSEIVICE.OWL...uuiiiiiiiiiiiiiiiiiie e e 96
A6 ALlaSIEISEIVICE.OWIo et 98
A7 KAININESSEIVICE.OWI ..o 0aL
A.8 HiltONHOLEISEIrVICE.OWI.........uuiiiiiiiit e 210
A.9 HavasShuttleService.OWl ... 104

LIST OF FIGURES

Figure 2.1 Structure of Web Service [23]ccomeeeiiiiiiiiiiieee e 5
Figure 2.2 Traveling COMPOSItE SEIVICE......cummeemeiiiiieeeeeeeieeeiiieeeiee e 7
Figure 2.3 Structure of OWL-S [15]oiiiii e 13
Figure 3.1 Semantic Service QUEIYINGccccocuurrrmimriiiiieieeeeaeeeeeeaaa e eeanieee 21
Figure 3.2 Ontology Model for Food and Kebab cotgep..............cccoevvvvvvvennnnns 23
Figure 3.3 Sample Ontology Model............ocommeeeiiiiiiiici e 27
Figure 3.4 Sample Ontology Model............miiiiiiiii e 27
Figure 3.5 Sample Ontology Model............cceriiiiiiiiiiiee e 28
Figure 3.6 Sample Ontology Model............ocemeeeeeiiiiiiiicc e 28
Figure 3.7 Ontology Model for “FIoor” CONCEPL. coee.iiviieeeeiiiccieee e, 31
Figure 3.8 Ontology Model for “Room” CONCEPL ..cueeeivvrviiiiiiiieeeeeeeeeeeeeeeeeiiiiees 32
Figure 3.9 Structure of “ArrivalTime” CONCEPL . oeeevvvvveeeeeiiiii e 40
Figure 3.10 Structure of “DepartureTime” CONCEPtaue.vuvrierreeeeeeeeiieeeieeeeeieiniinnnns 40
Figure 3.11 Structure of “DeparturePlace” concept..........cccevvvvvvieiiiiiieieeeeeeeennn. 40
Figure 3.12 Structure of “DestinationPlace” concept..........ccoeeeeeiiiiiiieeiivieninnnnns 41
Figure 3.13 Structure of “THY SEIVICE” SEIVICE .o eeeiiiiiiiiiiiiiiiieieeeeeeeeee e 41
Figure 3.14 Structure of “PegasusServiCe” SErICE..........uiiiiiiiiiiieeeeeeeeareeenen. 42
Figure 3.15 Structure of “AtlasJetServiCe” SerVICe........vvveeeeeiiiieeeeeenn, 42

Figure 3.16 Ontology Model for AtlasJetArrivalTiraad AtlasJetDepartureTime

(070 167 =T 0] £ PP 43
Figure 3.17 Structure of Traveling Composite SEIVIC...........ccceevieiiiiieeeeeeenenene, 45
Figure 3.18 Structure of KAIrlINESSEIVICE....cummeeeeiiieeieeeeeieiiiieeviiiiee . 46
Figure 3.19 Structure of KAirlinesReceipt CONCept..........coevvviviiiiiiiiiiinieeeeeeeeenn, 46
Figure 3.20 Structure of HiltonHotelServicecccccccviivi e 46,
Figure 3.21 Structure of LeavingTime CONCEPL wrivivieeeiiiiiiicieiee e e e e e e e e 47

Figure 3.22 Structure of HavasShuttleService m...ccccovvvvvvvvveveiicciieeeeeee . 4
Figure 3.23 SemMantiC MapPinNgccouee s eeeesee e e e e e eeeeeeeeeeeeeeneenennnn e 52
Figure 3.24 Mapping from Price to Fiyat......cccoeiiiiiiiiiiiiiiie 54

Figure 3.25 A screen of Concept SeleCtion...cceeeeevvvveeiiiieiiiieeeeeeieeeeeiiiiiiiinns 54

Figure 3.26 A screen of Transformation additioN..........cvvvviviiiiiiiiiiiieeeeeeeeee, 55
Figure 3.27 Semantic Domain MOdelcoeeeeemmiiiee e 58
Figure 3.28 Created PacCKagescooiiieeereeeeeeeeeeeeeeee e 61
Figure 3.29 Class Diagram of Ontology Package..cccccccccoovveeiiiiiiiiiiiiiieeiin 62
Figure 3.30 Class Diagram of Service Package .ccccc......oovvvvivviiiiiiiiieeeeeeeeeee, 63
Figure 3.31 Class Diagram of Semantic Matching Bgek.............ccccovvvviiinnnnnnn. 64
Figure 3.32 Class Diagram of Semantic Mapping Pgeka................cccccvivinnnee. 65
Figure 3.33 Class Diagram of Semantic InferenC&k&ge...............ooevvvvvvvvvnnnnnnnn. 66
Figure 4.1 Time required for service COMpPOSItiOOQRSSES..........ccevvvvvvvvvvvvennnnnnnn. 72

Xi

CHAPTER 1

INTRODUCTION

Today there is large number of software requireseor enterprises. These
requirements are various and complex. To become mmompetitive, enterprises
generally prefer to concentrate on only specifibjscts, therefore there is a
tendency to use outsourcing approaches. Servianted architectures become

more popular in order to implement outsourcing teghe in information systems.

Services that are responsible for specific opemativan not cover today's complex
requirements. Therefore services come togetherotm fcomposite services. A
composite service is not transparent to the useacts like a simple service and

covers complex business requirements.

In service composition process, finding relatedvises and combining suitable
services are important required operations. Witlssrmhantic information, service
composition requires more human intervention andobmes a harder and error

prone process.

Main objective of this thesis study is to increttse service composition quality and
to automate service composition process by usingasgc techniques. For these
purposes, within the scope of this thesis, a seamamapper layer structure around
the service repository, a set of semantic matcaiggrithms and a semantic domain

model are proposed.

Semantic wrapper layer on the service repositorysisd in service discovery. It
helps to discover services that are not only syitty but also semantically

compatible with the service requirements.

Semantic matching algorithms that are proposecdis work include a concept

matching algorithm, a service matching algorithnd an service composability

checking algorithm. Proposed concept matching #hgar which is used to find

similarities between concepts, extends the previbasic semantic matching
algorithms withintersectionand semantic mappingechniques. Proposed service
matching algorithm is used in order to find sinmtias between semantic Web
services. Proposed service composability checkiggrighm is used in order to

check the interoperability between semantic Webices.

Proposed semantic domain model is developed inrdodextract more semantic
information from different ontology models. It i$sa used for guiding the user
when modeling the composition.

All of these proposed semantic processes are usedWeb service composition
framework named Composite Web Service Framework $EW7, 8]. CWSF is a
semi-automated Web service composition frameworkichvhgains semantic

capabilities by using the proposed processes.

CWSF is an environment that is used for modelind aanstruction of service
compositions under user’s constraints. It providexsleling the Web services and
resource allocation constraints in order to finéé@xable compositions fulfilling
these constraints. CWSF lets users to define coitgpos in a workflow manner

according to user needs and constraints.

The proposed semantic processes in the thesissackin CWSF for composition
modeling, service discovery and service interopétalchecking operations. In
CWSF, user defines service templates by using teposed semantic domain
model as a guide. The user creates composition flathh defining service
templates. When user selects a domain, actionswdaic be done in the domain are

presented to the user. The user selects some s@soservice templates. Required

concepts of the selected action are listed to wer by the proposed semantic
domain model for definition of user constraints.eTiiser defines constraints for
some of the attributes of required concepts. Adogrdo the constraints given by
the user, candidate services are obtained. Propese@ntic wrapper layer and
proposed matching algorithms are used to find edlatemantic Web services.
Constraint checking is done by using constraintggamming technigues. Once
appropriate concrete services are selected, cobipwsiare constructed by
considering composabilities of candidate servicgsising the proposed semantic

service composability checking algorithm.

Proposed semantic processes are used for findinarde relations to make
composition processes more automated. They coVesealantic requirements of
CWSEF. Detailed information about CWSF applicati®given in [7] and [8].

The structure of the thesis is as follows: In chaptvo, background information
and current problems of Web service composition tiia thesis aims to solve, are
presented. In addition, related studies about tigest are considered in chapter
two. In chapter three, proposed methods and maitribations are shown in detail.
Experiments and efficiency issues of the propodsgdrithms are discussed in

fourth chapter. Lastly in chapter five, conclusand future work are given.

CHAPTER 2

PROBLEM ANALYSIS

In this chapter, basic background information alibet research subject is given.
Deficiencies of today’s applications about the subjare explained and problems
are stated. Firstly, in section 2.1 and 2.2, bedgarmation about Web Services and
Web Service Compositions are given. In section @usrent problems are stated.
Basic information about Semantic Web, Semantic \Wetvices and Semantic Web
Service Composition are given in sections 2.4, dh8 2.6 respectively. Finally,

related works are discussed in section 2.7.

2.1 Web Service

Web has become an inevitable part of our daily lifecontains a large amount of
data. In addition to this, it has become a mediunene users seek services and
applications are provided to the users. Therefldtel services and service oriented

architectures are gaining popularity.

Web services can be described as standard, modéHrcontained and self-
describing applications across Web. Figure 2.1 showe basic Web service
structure [23]. As it is shown in the figure, sth&klers in Web service usage
process are service provider, service requestesarnuce broker. Service provider
provides a general purpose operation. Service stergeare service users. Service
broker is service registry which holds services halps service requesters to find
related services. A sample scenario is as folléwservice provider publishes their
service advertisements to the service broker. Aicerrequester queries service
broker to find a service that the service requesesds. The service broker sends
service provider’s address to the service requeStwice requester can access the
service provider and can begin to communicate thghservice provider by using

this address.

Service

Emker_
& ’ uDDY,
find " " publish
WsDL, wsbL)
. e
]] .
SOAP ; g@' ﬁt
Service ' Service
Requester Hind Provider

Figure 2.1 Structure of Web Service [23]

Web services standardize ways of Web based apphsatusing simple but
effective technology infrastructure. Basic techiggloof Web services includes
XML (eXtensible Markup Language) [25], UDDI (Uniwsal Description Discovery
and Integration) [21], WSDL (Web Service Descripticanguage) [24] and SOAP
(Simple Object Access Protocol) [20]. As shown igufe 2.1, these core Web
service structures allow businesses to communigéte each other without

knowing detailed structure of each other’'s systems.

XML is simple, flexible text format which is usedrfdata exchanging. Its primary
purpose is to facilitate the sharing of data acffsrent information systems in a
human and machine readable format. All communioatieethods of Web service
are in XML format. Therefore different Web servidesm different sources can

communicate with each other easily. Web servicespéatform independent; they
are independent from any operating system or progniag language. For example,
Web service applications which are created witlhhngiSiava programming language
[6] can communicate with Web service applicatiortscl are created with using
C# programming language. Also Web service appboatiwhich are running on

Windows operating system can communicate with Webvise applications

running on UNIX operating system.

UDDI is a platform independent, XML based indusstandard Web service
registry. Business organisations describe theiraijmns across the Web and find
one another on the Web with using UDDI. Compani@s iegister and/or search
Web services according to their businesses withguéiDDI. UDDI defines a
protocol for publishing and discovering Web sersick can be considered as a
directory for storing Web service information. Itopides a keyword based or
category based search for Web services. Operatisadodiscovery is not provided.
UDDI describes businesses by their physical atiebisuch as name and address
and the services that they provide. With the hdlghe UDDI registries, Web
services can be found and then used. The roleeofedistry includes both storing
the advertisements of capabilities and performimga&ch between the request and

the advertisements.

WSDL and SOAP are also XML based. WSDL describesh VBervice in a
structured way. The signature of the service opmraand binding methods of
service are defined in WSDL. WSDL files are easyge and maintain. SOAP is an
extensible message format in which parameter teamsfi protocol for Web
services are defined. SOAP is a simple protocotivhéts Web service applications
exchange information. SOAP defines information exge between Web service

applications in a platform-independent manner.

2.2 Web Service Composition

The Web is moving from being a collection of pagmsard a collection of services
that interoperate through the Internet [18]. Inayd world, users have complex
requirements which may not be solved by simple atampplications. Different

applications from different vendors need to exetogether to implement complex
tasks for handling complex requirements. Orgarogatimay have a capability of
specific concerns. They may have a set of Web @es\io serve their implemented
businesses. These Web services which handle afisp@sk, compose complex

services called composite services.

A composite service is a set of services (simpt#@ncomposite) working together
to perform a goal. For example "Car Broker Commos§iervice” and “Traveling
Composite Service” can be considered as composteices. "Car Broker
Composite Service” is complete “car sale” operatwmch includes car dealer,
financing and insurance simple (or composite) ses/i “Traveling Composite
Service” includes plane reservation, hotel bookiagd shuttle reservation
operations. Figure 2.2 shows the template of TmgelComposite Service. It
includes Airlines Service, Hotel Service and Sleu8krvice in an ordered way. It

acts as a simple service but delegation to theabsauvice is done when needed.

Airlines :||> Hotel :||> Shuttle
Service Service Service

Figure 2.2 Traveling Composite Service

Web service composition operation requires interaipiéty of Web services which
takes part in the composition. According to theitms in the composition, each
service sould be interoperable between the prexaadghe next service. Parameter,

business, constraint compatibilities can be givemxamples of interoperability.

The composition of Web services requires findingbWservices based on their
capabilities and the recognition of these servibed can be matched together to
create a composition. In order to perform automMéxb service composition, a
reasoning system must order, combine and execute 3&kvices that collectively

achieve the user’s objective. Main goal of thisgeiss is dynamic binding of Web
services to existing business processes. Web servimposition operation includes
automatic selection, interoperation, compositiom @&xecution of Web services

processes. Selection operation involves serviaeodesy process. In this operation,

appropriate services are found in a set of caneliffdeb services for each task

according to user requirements and constraints. inileroperation process,
interoperability of candidate Web services for etagk is considered according to
the position of the services in composition. Conmpms process is constructing a
runnable complex Web service in such a way tharaperable set of services are
selected and ordered. Execution process is run kiehavior of composition. Web

services are executed according to their ordettseirtomposition.

2.3 Current Problems

Web service composition process involves discowrhe services that meets the
requirements of the composition and determinatibthe interoperability among
the services. It is a difficult and error pronegass which generally requires human
intervention. The difficulty in composition gendyalstems from a basic set of
problems. In this part, some of the well-known peofis in composition process are

discussed.

As it is mentioned in “Web Service Composition” se&a (section 2.2), while
composite service is being created, many simpleoorposite services are selected
for each composition task. Since there may be ntamgidate Web services for
each task, it is difficult for the user to selectitable ones according to his
requirements and constraints. In addition to thiser may not have the full
information about the composite service that helireq. Without detailed domain
information, the user can not find proper servieasily. A guiding mechanism may

be needed to handle this deficiency.

Each service of a composite service may be frorferdiht service providers that
use different information system structures suchpmxesses and models. This
makes the interoperability of services an imporfaoblem. In order to resolve this
problem, a common metadata in machine understamdi@miolm may be used.

However, in some cases it is hard to use commora maidel in different

organizations since each organization has diffepeatesses and its own legacy
systems. In order to solve this kind of meta matigtinction, mappings are needed

to define between different meta models.

It is also difficult to make Web service compogitiprocess automatic by using the
current Web service technologies. Basic Web seteickenologies which are UDDI,
WSDL and SOAP are based on XML which is only maeh®wadable and hence the
semantics of a business model can not be fullyesgad. Therefore, Web service
composition process requires the use of semantigukges like OWL [14] and
OWL-S [15]. In addition to this, currently UDDI dsenot provide means for
describing metadata and hence it allows only a kegivbased search. In addition,
UDDI is not suitable to define relationships am@egvices, so it is hard to identify
complementary services. It is also hard to fornelationship between the service
and required properties to discover services aaogprdo product instance
information like “I want a car but its model shouldd Scoda Fabia”. Also it is hard
to define properties such as second hand car éordlated services Therefore, it
needs to be augmented with additional propertiesonder to facilitate the

composition process.

Similar to UDDI, WSDL has also deficiencies for amtomated composition
process. In WSDL, only the signature of the sernoperation can be defined.
Service meaning and complex parameters meaningsatalpe defined in WSDL.
There is not any structure in WSDL to define sexvicetadata. Therefore, in order
to improve WSDL, new service definition methods hwibetter machine

understandability must be added.

As described above, the basic reason of all thesblems is the deficiency of
semantics for services. Lack of semantics leadsdoe human intervention to
composition process. By incorporating semantic rimi@tion into composition
process, computers can understand services, tigimeters, user requirements and
constraints so that compositions can be construetetbmatically or semi-

automatically and human intervention is decreased.

2.4 Semantic Web

Current Web is machine readable, not machine utadetable. As a solution for

this deficiency of current Web, semantic Web issidered as second generation

Web. Semantic Web is an extension of the currenb Wiewhich information is
given in a well defined meaning form, for this reasit is called as second (or next)

generation Internet. This enables computers ancdahumwork in cooperation.

Semantic Web is based on a vision of Tim Bernes-ltiee inventor of the World

Wide Web. The effort behind the Semantic Web isridch the Web with machine
understandable information by adding semantic atioot to Web documents. With
the help of semantics, Web becomes machine unddedite and software agents,
sophisticated search engines and Web serviceshas@/¢b more easily. Semantic
Web provides conversion of the Web from its unorgeah and human-readable
form into a machine-understandable form. Searchnesgand other programs can
understand the content of Web pages and site Wwi&hhelp of semantic. Since
semantic Web makes information more structuralprimfition searching and

information extracting becomes easier and meanin@emantic Web transforms
the Web into a medium through which data can beeshaunderstood, and

processed by automated tools.

The ultimate goal of semantic Web is full automati8emantic Web performs this
automation by giving meaning to each Web resourCestent of the Semantic
Web is represented by ontologies. With using omfies, all concepts in the Web

are defined in a computer understandable format.

Ontology is shared conceptualization of domainsaMag of data is given through
ontology which is used for semantic representat@ntology is a schema for a
domain. Domain concepts and relations between pis@e defined in ontology
documents. In short, it is used to represent m&add domain. Ontologies
represent a shared agreement on the meaning otertins. They provide more
automated reasoning power. If applications use commntologies, they can
exchange semantic information. A common ontologynds the vocabulary among

agents.

Ontology documents define and relate concepts.ralagy is generally composed

of classes, properties of classes and relationseeet classes. Classes are formal

10

descriptions of concepts in a domain. Properties faatures and attributes of
concepts. Relations are taxonomies (inheritancsjoidi relations) between
concepts. An ontology provides a vocabulary thatdbes a domain of interest and
a specification of the meaning of terms used invibeabulary. Notion of ontology
encompasses several data/conceptual models, forpéxaclassifications, database
schemas, or fully axiomatized theories. Ontologias be used in every field in
computer applications such as information integrati electronic commerce,

semantic Web services, social networks, and so on.

In order to define ontology documents ontology laamges are used. OWL (Web
Ontology Language) [14] can be cited as the mastlgd ontology language. It is
based on XML, however it extends XML to describé ooly the structure of the

data with elements and attributes, but also tordesthe data itself.

Content of a sample OWL file is shown below. Insthile “Price” concept is
defined as it has a string attribute and it hasation to the concept “Unit” which is
defined in another OWL file.

<?xml version="1.0"?>

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syn tax-ns#"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schem a#"
xmins:owl="http://www.w3.0rg/2002/07/owl#"
xmins="http://www.owl-ontologies.com/unnamed.ow I#"
xml:base="http://www.owl-ontologies.com/unnamed.o wli">

<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="Price"/>
<owl:DatatypeProperty rdf:ID="value">
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#stri ng"/>
<rdfs:domain rdf:resource="#Price"/>
</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="unit">

<rdfs:domain rdf:resource="#Price"/>

<rdfs:range
rdf:resource="file:///E://calisma/apiDeneme/sampleO wil-
SDocuments/actualServices/Unit.owl#Unit"/>

</owl:ObjectProperty>

</rdf:RDF>

11

Domains, concepts and relations between the comcem defined in OWL

documents, as shown above.

2.5 Semantic Web Services

A Web service that has a semantic model is callesemantic Web service
Semantic Web services are defined in semantic matethat they can be searched
and found more correctly according to user needhis Tfacilitates the
interoperability of the services, as well. Therefoautomated composition of
semantic Web services that includes automatic ®ehec composition,

interoperation and execution of Web services, besoeasier and more reliable.

If Web services publish their metadata by using m@m ontology documents, Web
services can be compared more easily, their deggrifpecomes more machine
understanable and software agents can easily ase gervices. Ontologies can be
used to describe services so that agents can mdvexhd discover services
according to a semantic specification of functidgallo achieve more automation,
standardization of ontologies, message content rapdsage protocols will be

necessary.

Defining domain specific ontologies facilitates dgtation of Web services.
Therefore Web services are modeled and definediolagy documents. OWL-S
(Semantic Markup for Web services) [15] can be gigs sample service ontology
language. OWL-S expresses Web service entitiedrigt@ms and constraints on
service descriptions can be expressed in OWL-Saldb provides the shared
semantics needed to achieve interoperability. OWdeScriptions are amenable to
automated reasoning. It provides appropriate sugpordata types. Flexibility is
provided by support for loosely structured deswipg. Software system (agent)
can read and utilize the OWL-S interface withoutnlan assistance, because OWL-
S provides semantic representation. It is suitétmethe automatic discovery and

composition of services.

Main parts of OWL-S file are service profile, seimodel and service grounding.
Service profile describes what the service doess lused for advertising and

12

discovering services. It represents the functidiesliof Web services. Service
model describes how the service works. It is thritkel description of a service’s
operation. Service grounding specifies the detdilsow an application can access
a service. Communication protocol is describedhis part. It provides details on

how to interoperate with a service. The structdr®W/L-S is shown in Figure 2.3

[15].

ServiceGro

Figure 2.3 Structure of OWL-S [15]

Content of sample OWL-S files are shown in Apperflix

OWL and OWL-S are used to describe Web servicesasgcally. In OWL,
businesses are defined; in OWL-S, services thatthusse business concepts are
modeled. This provides better support for serviaecavery, composition,
invocation, choreography and monitoring. With thelph of these ontology
documents Web services can find each other autoatigtiand interoperate

autonomously.

13

2.6 Semantic Web Service Composition

As it is stated in Semantic Web section (sectid), Zemantic Web makes the Web
machine understandable. Therefore, composition el ¥érvices can be done in an
automated way in semantic Web. If Web servicegjirements and constraints are
defined semantically, computers can compose Welvicesr according to
requirements and constraints with using automagesening and inference

techniques.

As it is mentioned in section 2.2, the compositdiWeb services requires finding
Web services based on their capabilities and tbegration of these services that
can be matched together to create a compositicsid8g Web service discovery, it
includes invocation, composition and interoperatiand Web service execution
processes. In Semantic Web service composition,uthemate goal is to fully

automate all of these processes.

There are four conceptually separate phases in asitqn of semantic Web
services. These are Specification, Matchmaking,e@ein, and Generation.
Specification is the definition of composition byet user. Matchmaking is
composite plan generation. Selection is selectfdrest plan according to quality of

service compositions. Generation is generatioh®ftxecutable code.

2.7 Related Works

There are several related works in the literatunesemantic modeling for web
service composition [12, 19, and 22], semantic iservepositories [10, 17] and
service matching [9, 18]. In this section theseatesl works are examined. Their

contributions to problems that are stated in Sa@i@ are determined.

In [12], an ontology based Web service compositr@thod is proposed. Instead of
a standard Web ontology language such as OWL-$, ghepose a new ontology
model in which service model is defined over WSDBL Web service composition
in order to define service attributes such as ngessservice, quality, operation and

parameter. However this new ontology brings stasidation problems.

14

Matchmaking is done by Matchmaker module accordity predefined
composability rules. Matchmaker module takes thexifigation of composition as
input and generates composition plans. Two servaxes composable if their
predefined attributes such as purposes, domainssages, operation modes and
bindings are compatible. Messages of services arapatible if number of
parameters, their data types, business roles, naitsl of services are same. Each
created composition is stored as stored templakgo Aompositions defined by
domain experts are considered as stored tempMihde a new composition is
created, it is examined whether the compositioa $sibgraph of a stored template.

If so, it is decided that the composition is useful

Best composition plan is selected from many comjosiplans according to
quality properties such as fee, security, privatye, availability and latency.

Composite service is generated from the selectad pl

Matchmaking process needs much processing timerefidre, according to their
performance tests, most of the time is spent onckithg composability in

composition process.

In METEOR-S [22], a Web service composition framekvarith features such as
dynamic failure handler and reconfiguration is megd. This framework is
proposed for configuring and executing dynamic Wedcesses. Web processes are
workflows created using Web services. They corredpto the Web service
compositions in our study. They use integer linpamgramming approach as
composition method. They define semantic modefdactional capabilities which
describe service and non functional capabilitiesctvidescribe service constraints

of Web services.

This study contains failure handling mechanism Wwhig€ not considered in the

thesis. In cases of Web service failures, an agpraa proposed which can

15

reconfigure the process at run time, without vialgtthe process constraints. Parts

of the process may be reconfigured in the caserof during invocation.

To handle data mismatches between different sugplie includes an ontology
mediator which handles the mapping between ontetogihey also implement
interaction protocol mediator for different intetiac (business) protocols of
different suppliers. Our work puts emphasis on s#maservice discovery,

matching and modeling guidance in composition cdante

In [19], a semi automatic composition generationthod is proposed. The
generated composition is directly executable thiotige WSDL grounding of the
services. It has capability to find matching seegicThe matching of two services is
done using the information in the service proflteis an OWL reasoner built on

Prolog.

In [10, 17], it is shown that OWL-S and UDDI compient each other. In order to
add semantic capabilities, a mapping is definedvéeh OWL-S document and
UDDI registry record. They map some fields betw@L-S document and UDDI
registry record. OWL-S / UDDI translator module fpem this operation. However
they do not propose a complete mechanism for secnquéries. In this work, we
propose a different approach for adding semantaluidities for Web service

registry.

In [18], a new semantic similarity algorithm is posed. It defines various degrees
on similarity on the basis of the inheritance tielatin ontology model. The result

of the match depends on the degree of similaritwéen the concepts in the match.
The degree of match is determined by the miningthdice between concepts in the
taxonomy tree. There are four kinds of similarigvels. Exact matches are
preferrable, Plug-in matches are the next best.|&ubsumes is the third best level.
Fail is the lowest level and it represents an uepiable result. The proposed
semantic matching operation in our study is basethis algorithm. We extend this

matching approach with new features.

16

In [9], Racer Description Logic reasoner is usadsmantic matching. Description
Logic reasoner is used to compare ontology basettceedescriptions. Description
Logics are knowledge representation formalisms.yTére based on the notion of
concepts (unary predicates, classes) and rolesrgbirelations), and are mainly
characterized by constructors that allow complexcepts and roles to be built from
atomic ones. A DL reasoner can be used as matcbéulmnbecause it can check
whether two concepts subsume each other. Inteosettvel is considered as a
matching level in a different manner from our amio

COSS [2] is context aware Web service composity@tesn. For service discovery
and matching, context information is utilized. Gaiitis defined as a situation of a
person, place or object that is relevant to the asd application. Location, Speed,
Time, Personal Interests, weather forecast andtatuis can be given as examples
of context. It is stated that considering the ceiht@an improve the quality of the
matching process because recall and precision nafeOve with using context
information in service discovery process. Contesdviaers are implemented to

provide context inputs. GPS and weather statioreraenples of context providers.

COSS uses ontologies to model contexts and inddiwak among them. Also
COSS uses ontologies for semantic matchmaking. magchmaking algorithm
which is based on distance operation like [18] lbandle synonyms like ‘buy’ and

‘purchase’ and homonyms like ‘order’ which has mitr@& one meaning.

COSS service matching algorithm is as follows: Titet step is considering service
types and service outputs. If one of these conwtis broken, then there is no
match. The second step is considering inputs e@iceEs. Mismatch input number is
considered and they are inspected whether theybeagathered from context
providers. As a last predefined properties likecplar price are considered as

matching criteria. According to missing attribugexl inputs; services are ranked.

17

Context input is provided by implemented contextovinlers. However
implementing or finding a previously developed exttproviders are difficult in

real applications and thus not practical.

WordNet [4] is a semantic model that captures séimaglations in English words.
It has similar features to the proposed semantmailo model. However proposed

semantic domain model is for composition purposklas many different features.

Proposed matching algorithms of these studies dakeinheritance hierarchy into
consideration. However, attribute similarity is alsan important factor in
matchmaking process. For example, there is a oeldtetween camera and cell
phone with camera capability. Both of them havenglphotograph property. This
relation can not be found with matching algoriththat only takes inheritance
hierarchy into consideration, unless any inherigaratation is created. On the other
hand, defining an inheritance relation betweendhe® entities does comply with
object orientation rules. Also in inheritance relat while distance increases,
similarity decreases. Another deficiency of manyhe current semantic matching
algorithms is not to consider predefined mappir®smantic matching algorithms
can improve their precision and recall values withsidering mappings because in
real applications there is not any standard, comamtalogy. Also in these studies,
there is not any guiding mechanism for ordinaryrsisehile they are creating the

service composition.

18

CHAPTER 3

SEMANTIC PROCESSES FOR CONSTRUCTING COMPOSITE WEB
SERVICES

In this section our proposed and implemented aghemfor semantic Web service
composition are explained in detail. Basic contiiims of this work can be listed as
follows:

1- A wrapper layer around UDDI registry is addedorder to provide semantic
search capabilities.

2- For semantic service discovery and interopdatglihecking, previous semantic
matching algorithms are enhanced and augmentedimighsection and semantic
mapping techniques.

3- In order to extract more semantic informatiod &m guide the user in modeling

the composition, a semantic domain model is praghose

In this section, firstly Semantic Wrapper Layer atsdfunction are described in
Section 3.1. Then, proposed matching algorithmseapained in Section 3.2. In
Section 3.3, service composability checking is dbed and how matching
algorithms are used in service composability chegkoperation is shown. In
Section 3.4 semantic mapping method is determihedSection 3.5, proposed
inference method and its tasks are illustratedtly,as Section 3.6, implementation

issues are stated.

3.1 Semantic Wrapper Layer

As it is stated in current problems section (Secf#®), current UDDI registries are
not semantic based and can only perform keyworédasarches. Although there
is a huge effort towards development of a semaifed service registry as in [10,

17], there is not any standard semantic Web sereigistry yet. Therefore, in this

19

study, keyword based UDDI registry is used for saimaNeb services; however, it

is extended with a wrapper layer to add semanticchecapabilities.

To implement semantic service discovery, we addasgic wrapper layer which
adapts UDDI registry as a semantic registry. Ineofid keep a service’s semantic
information (OWL-S file) URI, tModel field of UDDtegistry is used. Metadata of
services can be residing in any path. Only URIsparein the service records of
UDDI registry. While service providers register\gees to registry, they set service
OWL-S file URI to “tModel” field of service recordBy this way, in the service

registry, service semantics are related with theedsed services.

Another extension that supports the semantic searopeneration of a set of
semantically close keywords from a single keywdkthen a query of Web service
is requested from the semantic wrapper layer witlkegword and a service
template, firstly, given keyword’s similar concept® obtained by using semantic
matching module. These similar concepts and thginai keyword are added to
keyword list. Thus, from a keyword, a set of keydsare obtained. For example, if
the user wants to search Vehicle; Car, Limousind @ruck are searched too
because all of them are a kind of Vehicle. Afteywerd list is prepared, UDDI
registry is queried with this set of keywords. UD&Harch finds set of candidate
Web services for each keyword in the keyword Wster candidate services are
obtained, their semantic files which are OWL-S duoeunts are accessed from the
URI which is stored in “tModel” field of the sengcrecord. Once more, semantic
matching module is used in order to find out whetbendidate services are
appropriate. In this case, semantic matching mdslglervice matching algorithm,
which compares service template and gathered seniées$ of candidate services,
is used. (Service template is a definition of dabsservice with expected inputs and

outputs.) Service discovery process is shown inrfei@.1.

20

OWL-S List{matced services)

{ owLS,} ﬁ

service template :> Sﬁmﬁntit
atcher

keyword iL ﬁ OWL-S List(candidate services)

{ OWL-S, . OWLS,)

[Semantic Wrapper Layer]

keyword list iL WS List
{ ws, . Ws, }
-
uDDI
Registry

1..'l. 1
7 ~ = =

Ontology A Ontology B

Figure 3.1 Semantic Service Querying

As it is stated above searching service operasaione in two steps: Firstly, text

based search in UDDI registry is done. This is Usedough filtering. Then OWL-
S files are accessed and matching is considered.th/ method semantic

descriptions of services can be accessed when @heyneeded. From keyword

21

based UDDI registry, semantic Web services are sseck Thus this additional

layer over UDDI allows semantic discovery.

3.2 Semantic Matching

Semantic Matching is used for finding similaritieetween semantic concepts or
semantic services. Finding similarities between cepits facilitates machine
understandability. By finding similarities betwe@oncepts, it can be inferred
whether given concepts are the same or they atacegble. Forming a keyword
based similarity considers only text based sinmiksi This method may lead to
incorrect and missing results. Semantic matchingsed in both service discovery

and service composability cheking operations.

There are many services in registries. Which ones saiitable for the user
requirements and constraints? Which ones are $itabinteroperability with each

other? These two questions show the necessity wirstc service discovery
operation in service composition process. Todaystnaf the existing service

discovery applications perform keyword based sedrbls decreases the quality of
matching and causes mismatches between requestédusnd services.

Keyword based search takes only syntactic simylanto consideration. However
by using this method, similarity can not be fourdWeen syntactically different but
semantically same or similar concepts, which atee@¢aynonyms. Therefore, this
causes finding fewer results. In addition to thigusing this method, similarity can
be found wrongly between syntactically same butassitally different concepts,

which are called homonyms.

Since semantic matching takes meaning of concapisconsideration instead of
their labels, semantic matching (capability matghiprovides discovery of more
relevant results. By using semantic matching, sinties between concepts can be
found completely and correctly. Because of all emts’ meaning is explicitly

defined, computers can understand concepts and esafuate similarities.

22

Synonyms and homonyms can be detected easily ditiGard contrary concepts can

be inferred as well.

By reasoning on ontology documents, matchingswloatid not match syntactically
can be derived. For instance, let's consider aaveaht that serves ‘meal’ (e.g.
foods, desserts). If the user wants to order adkEla syntactic mismatch occurs.
But there is a semantic relation between ‘kebalthwpood’ in domain ontology.
There is an inheritance relation between theseemiaa@s it is shown in figure 3.2.
So it is derived that ‘kebab’ is a kind of ‘food’his derivation is a semantic match.
As it is stated in [2] this requires that servieguests and service descriptions are
not described by using keywords but by their progsrwhich are related to the

concepts from the shared ontology.

Food

Kebab

Figure 3.20ntology Model for Food and Kebab concepts

In this work, semantic matching is used in bothviser discovery and service
composability operations. Proposed semantic magchimethod includes two
matching algorithms. First one is concept matchailgprithm and the second one is

service matching algorithm.

23

3.2.1 Concept Matching

Concept matching operation is finding similaritygdee between two concepts. The
proposed concept matching algorithm is based onnthaiching algorithm given
in[18], in which concepts are compared accordinghiir hierarchy in ontology
model. This hierarchy is inheritance relation betweoncepts. This algorithm is
extended in this work in such a way that the sintjlabetween attributes of
concepts and predefined mappings are considereeladf attributes are similar or
if there is a previously defined mapping, it isamed that concepts are similar.

The proposed concept matching algorithm is as valoLet G and G be given
concepts and the aim is to find similarity degré€gto G. As the first operation
inheritance relation is considered: i€ searched in ontology documents in order to
find similarities in the model hierarchy. If;@nd G are the same concepts of C
inherits G (which is “is-a relation” between,@nd G and means “€is a G”) then

the similarity degree of the match is called “exawtch”. If there is an already
available mapping from £to G, then similarity degree is considered as “maps
match”. If G still inherits G, but hierarchy path is of more than one levelnthe
similarity degree between them is considered asginh match”. On the contrary if
C; inherits G, then the similarity degree is considered as “soigsmatch”. If there

is not any hierarchy relation between concepts) teea second operation attribute
similarity is considered. If Cand G have some common/similar (this similarity
also requires running matching algorithm recursiveh attributes), then these
concepts are considered as partially overlappingthe similarity degree of match
is “intersection match”. The intersection indicateat only a part of concepts are
similar. In this case matching hit ratio is caldath to find the ratio of similar
attributes. Matching hit ratio of £to G, similarity is the ratio of the number of
similar attributes of €and G to the number of all attributes of.CIf there is not
any hierarchy and parameter similarity, then thesecepts are considered as
unmatched and their similarity degree becomesditismatch”. “maps match” and

“intersection match” methods are extensions tanhéching algorithm of [18].

24

Below, similarity degrees are listed.

e exact matching

o C;and G are same, equivalent or “Cxtends” G (one step)

* maps matching
0 There is a mapping defined from © G
* plugin matching
o if Cyis subconcept of C
* subsume matcing
o if Cyis superconcept ofiC
* intersection matching
o if there is an intersection between &d G
» disjoint matching

0 no relation between and G

Concept matching algorithm and functions that i®dusre shown below. If
concepts are not same or synonyms and there isamptdefined mapping,
maximum similarity between inheritance checking antérsection checking is

returned.

[Ithis function is for finding a similarity from c2
(01) areConceptsMatch(Concept c1, Concept c2):Match

(02) if(areConceptsSame(cl, c2)) return EXACT

(03) if(isThereAnyMapping(c2, c1)) return MAPS

(04) matchDegreeForinheritanceChecking =

(05) inheritanceChecking(c1, c2)

(06) matchDegreeForintersectionChecking =

(07) intersectionChecking(c1, c2)

(08) return maxSimilarity(matchDegreeForlnheritanc
(09) matchDegreeForintersectionChecking)
(10) }

/ltwo concepts are same if they have same names and
/I paths or they are synonyms
(01) areConceptsSame(Concept c1, Concept c2):boolea

(02) return (cl.getName().equals(c2.getName()) AND
(03) cl.getOntologyPath().

(04) equals(c2.getOntologyPath())) OR

(05) areConceptsSynonyms(c1, c2)

(06) }

/Ipredefined mappings are searched in this function
(01) isThereAnyMapping(Concept c1, Concept c2):bool
(02) for each mapping of defined mappings

25

tocl
ing Degree{

eChecking,

same ontology

n{

ean{

(03) if(mapping.from().equals(cl) AND

(04) mapping.to().equals(c2)) return true

(05) return false

(06) }

(01) areConceptsHomonyms(Concept c1, Concept c2):bo olean{
(02) return cl.getName().equals(c2.getName()) AND

(03) (NOT(cl1.getOntologyPath().

(04) equals(c2.getOntologyPath())))

(05) }

(01) areConceptsSynonyms(Concept c1, Concept c2):bo olean{
(02) return (NOT(cl.getName().equals(c2.getName()))) AND
(03) cl.getOntologyPath().equals(c2.getOntologyPa th())
(04) }

(01) inheritanceChecking(Concept c1, Concept c2):Ma tching Degree{
(02) if(areConceptsSame(cl, c2.getSuperConcept()))

(03) return EXACT

(04) for each super concept of C2

(05) if(areConceptsSame(super concept, c1)

(06) return PLUG_IN

(07) for each super concept of C1

(08) if(areConceptsSame(super concept, c2)

(09) return SUBSUME

(20) return FAIL

11) }

(01) intersectionChecking(Concept c1, Concept c2):

(02) Matching Degree, hit ratio{

(03) for each attribute of c1

(04) for each attribute of c2{

(05) matchingDegree =

(06) areConceptsMatch(attribute of c1,

(07) attribute of c2)

(08) if(matchingDegree >= ACCEPTABLE_DEGREE){
(09) matchedAttributes++

(20) break // for one “for loop”

(11) }

(12) }

(13) hit ratio = 100 * matchedAttributes /

(14) cl.getAttributeSize()

(15) if(hit ratio == 0) return FAIL

(16) return INTERSECTS, hit ratio

17 }

To illustrate the algorithm degrees, sample ontplowdels are shown in Figure
3.3,3.4,3.5and 3.6.

26

C,

C,

Figure 3.3Sample Ontology Model

In Figure 3.3, similarity degree of,@ G is exact because,@ a G. Similarity

degree of ¢€to G is subsume.

—

O—|0|—|0

Figure 3.4Sample Ontology Model

In Figure 3.4, similarity degree of,@ G, is plug in because again G a G but in
this case hierarchy path is two levels.

27

Figure 3.5Sample Ontology Model

In Figure 3.5, there is not any hierarchy relatimiween @ and G. In this case
attribute similarity is considered. There is arersection between them because
both of them have Attrl and Attr2 attributes. Hoeetheir matching hit ratios are
different. Matching hit ratio of £to G, similarity is 50% because,@an cover two

of four attributes of € Matching hit ratio of €to G similarity is 66.7% because

C: can cover two of three attributes of. C

C,

Figure 3.6 Sample Ontology Model

— Attrl | +----+
— Attr2z |+----+F
> | A3 | ¢----rooo-- +
= Attr4 “‘""‘:

28

— | Attr1 | &—
—> | Attr2 | <——
~ | Attr3 Attrs | <
= | Attrd

Attrs | &—
Attré | &——
Attr7 | e——

C,

In figure 3.6, there is not any hierarchy and isgetion relation between,@nd G.
However, there is a predefined mapping between thdrarefore these concepts

are similar.

To show how the algorithm finds results, some eXampan be given. With using
House.owl, Meal.owl and Travel.owl ontology docutsefAppendix A], the
concept matching algorithm is run for some samp@stained results are listed

below:

(In the below examples, the goal is to find theilsinty of concept?2 to the
conceptl.)

For conceptl is Room and concept2 is Room, mateemsgt is 'EXACT

For conceptl is Parquet and concept2 is Laminamtching result is 'EXACT'
For conceptl is Laminant and concept2 is Parqueticimng result is 'SUBSUME'
For conceptl is Room and concept2 is Bathroom, mmagaresult is
'INTERSECTION (Hit ratio % : 100)'

For conceptl is Floor and concept2 is Parquet, g result is 'EXACT'

For conceptl is Wooden and concept2 is Parquetciiag result is 'SUBSUME'
For conceptl is Floor and concept2 is Wooden, matchesult is 'PLUG_IN'

For conceptl is Wooden and concept2 is Floor, matchesult is 'SUBSUME'
For conceptl is Room and concept2 is Bathroom, mragcresult is
'INTERSECTION (Hit ratio % : 100)'

For conceptl is Room and concept2 is Wall, matchasglt is INTERSECTION
(Hit ratio % : 40)'

For conceptl is Wall and concept2 is Room, matchasglt is INTERSECTION
(Hit ratio % : 100)'

For conceptl is Roof and concept2 is Door, matchasylt is 'FAIL'

For conceptl is Terrace and concept2 is Room, niagatesult is INTERSECTION
(Hit ratio % : 100)'

29

For conceptl is Room and concept2 is Terrace, nragatesult is INTERSECTION
(Hit ratio % : 80)'

For conceptl is Fiyat and concept2 is Price, matghiesult is 'MAPS'

For conceptl is FruitJuice and concept?2 is Drinkataming result is 'SUBSUME'
For conceptl is Drink and concept?2 is FruitJuicatahing result is 'PLUG_IN'
For conceptl is Pizza and concept2 is Food, matchasult is 'SUBSUME'

For conceptl is Food and concept2 is Pizza, matchasult is 'EXACT'

For conceptl is OrangeJuice and concept2 is Dnmé&iching result is 'SUBSUME'
For conceptl is OrangeJuice and concept2 is Withlmathol, matching result is
'SUBSUME!

For conceptl is OrangeJuice and concept2 is Frutdumatching result is
'SUBSUME'

For conceptl is FruitJuice and concept2 is Orangedumatching result is
'EXACT

For conceptl is WithoutAlcohol and concept2 is @eduice, matching result is
'PLUG_IN'

For conceptl is Drink and concept?2 is OrangeJuiatching result is 'PLUG_IN'
For conceptl is ArrivalTime and concept2 is Depegfitime, matching result is
'INTERSECTION (Hit ratio % : 100)'

For conceptl is DestinationPlace and concept2 ipdrirePlace, matching result
is INTERSECTION (Hit ratio % : 100)'

For conceptl is Price and concept2 is DepartureBlanatching result is 'FAIL'

EXACT, PLUG-IN, SUBSUME matching results are foury considering
inheritance relation between concepts. Becausalwdritance relation is defined
clearly in House.owl ontology document, the validiff these results can be seen
from the ontology document easily. Inheritance diey of some concepts in House
ontology are shown in Figure 3.7. Considering flgare, EXACT, PLUG-IN and
SUBSUME matching results can be discovered edsdyexample, since there is a
single step inheritance relation between Parquet Eoor concepts, Parquet is
similar to Floor as EXACT matching degree. ReveiseSUBSUME matching

degree. Floor is similar to Parquet as SUBSUME hatcdegree. If there is more

30

than single step inheritance relation between quiscethe matching degree is
PLUG-IN. Laminant is similar to Floor as PLUG_IN toling degree.

Floor

Parquet Faience

ﬁ:

Laminant Woaoden

Figure 3.7 Ontology Model for “Floor” concept

Precision of inheritance based matchings are 100%erefore, all semantic
matching methods based on inheritance relationsfisaine results for EXACT,
PLUG-IN, SUBSUME matchings. However, the recalltio matching method is

low if there is limited inheritance relation betwesoncepts.

INTERSECTION matching results of the matching alidpon are based on attribute
relation between concepts. By using this methodremmumber of similarities
between concepts can be inferred and the recalevedn be improved. As it is
shown in Figure 3.8, intersection based matchiggrithms can find similarities
between Room and Wall concept pairs in which thisrenot any inheritance
relation. They have similar properties which can lo® determined by inheritance

based matching methods.

31

Room |——=| Wall |—T— |Window

| Floor L~ |Radiator

Figure 3.8 Ontology Model for “Room” concept

Matching result MAPS shows that there is a prea@efimapping for the concepts.
For example because of there is a mapping whiclefimed from Price concept to

Fiyat concept, the matching result for them is MAPS

By using intersection method, similarities can twend between irrelevant concepts.
For example by this method, similarity between Raomd Wall objects are found.
But using Wall concept instead of Room concept Imaynadequate, because Wall
concept can not cover all properties of Room conc8ut reverse is more
meaningful, Room concept can be used instead of ¥démicept because Room
concept can cover all properties of Room conceptdifferentiate this state, hit
ratio parameter is used. Hit ratio parameter shioovgs much percentage requested
concept’s parameters can be covered by found conidégh hit ratio means high
similarity. Similarities which have low hit ratiasmn be presented as suggestions to
users. For example, if user requests camera, ¢telhgs which has requested
camera capabilities can be added to the resultsaude found cell phones cover
camera’s all properties. However, if the user ratgieell phone which has camera
capabilities, cameras can be added to the resuisggestions. Because camera can

not cover cell phone’s all properties.
The proposed concept matching algorithm can alsndlea homonyms and

synonyms. In this study, data class which is coeéde concepts consists of both

concept name and ontology model of concept. Homengam be handled because

32

of they have different ontology models. If namesafcepts are same and ontology
models of them are different, they are consideresdh@amonyms. If names of
concepts are different and ontology models of theensame, they are considered as

synonyms.

3.2.2 Service Matching

Proposed service matching algorithm for semanticb \Bervices compares the
capabilities provided by any of the advertised e with the capabilities needed
by the requester. Capability matching algorithms te service descriptions in the
service profile. Proposed semantic service matchahgprithm is based on

considering service’s input and output parametéiaputs and outputs of services
are similar, it is inferred that the services amailar. As they define the outcome of
a service, output parameter is more decisive anpghocess. Therefore, if outputs
are not similar, it is directly inferred that thergces are unmatched. Similarity
between outputs and inputs are determined by u$iveg concept similarity

algorithm as described above. Proposed servicehmgt@lgorithm uses proposed

concept matching to find similarity between parasret

The proposed service matching algorithm is asvVald_et S and $ be given web

services. $§is a concrete service in a service registry ang &n abstract service
requested by the user. The aim is to find simijjad#gree betweem &nd $. As the

first step, output parameters are compared. If #reynot similar, it is inferred that
the services are “unmatched”. If the outputs amglar but only some of the inputs
are partially similar, then it is inferred that tbervices “intersect”. The intersection
indicates that the services are partially similarthe outputs and all inputs are
matched (no missing inputs), then it is inferredttkthere is an “exact match”

between the services.

Below similarity degrees of service matching altjoris are listed:
= exact service matching

0 outputs and inputs are exact

33

* intersection service matching
o if outputs are exact and inputs are similar
= no service matching

0 outputs are disjoint

Service matching algorithm is shown below. For eaarameter of service,
proposed concept matching algorithm is used. Siityilaof each parameter is
compared with acceptable and min. acceptable ma¢ghees. These acceptable
degrees which includes hit ratio of intersectiares) be adjustable according to the
needs. Similarities bigger than acceptable matchrede are considered as

matchings. Similarities bigger than min. acceptabich degree are considered as

suggestions.

(01) areServicesMatch(WebServiceTemplate wsTemp, We bService ws):
(02) Service Matching Degree, service hit ratio{

(03) if(areConceptsMatch(wsTemp.getOutput(),

(04) ws.getOutput()) = FAIL)

(05) return SERVICE_FAIL, 0

(06) for each primitive ontology object of ws

(o7 for each primitive ontology object of wsTemp {
(08) concept match degree = areConceptsMatch(
(09) primitive ontology object of WSTemp,
(20) primitive ontology object of WS)

(12) if(concept match degree >=

(12) ACCEPTABLE_MATCH_DEGREE){

(13) matchedParameters++

(14) (primitive ontology object of ws).addMatch

(15) (primitive ontology object of wsTemp)

(16) }else if(concept match degree >=

a7 MIN_ACCEPTABLE_MATCH_DEGREE)
(18) (primitive ontology object of ws).

(29) addSuggestedMatch

(20) (primitive ontology object of wsTemp)

(21) }

(22) service hit ratio = 100 * matchedParameters /

34

(23) wsTemp.getParameterSize()

(24) if(service hit ratio == 0)

(25) return SERVICE_FAIL, service hit ratio

(26) else if(service hit ratio == 100)

(27) return SERVICE_EXACT, service hit ratio

(28) else return SERVICE_INTERSECTS, service hit r atio
(29) }

Semantic service matching algorithm can be usegbpiications in a different way.
In real applications it is not important whetheotaervices are similar or not. In
real applications there are some parameters angoides to find services that can
match the parameters. In other words, the mostritapbissue in service matching
is to find out whether candidate service can cogquested parameters of requested
service. This operation’s implementation is asofoB: as the first operation, all
primitive attributes of all candidate services fvend. All primitive attributes of a
service contains each parameter’s primitive attebuEach parameter has its own
primitive attributes, primitive attributes of eaciject attribute and all primitive
attributes of super concepts. The reason of fingimgpitive types is that primitive
types are the only types in which values can beAdst all primitive types of each
requested parameters are found. For each primiyiwe of service, two lists are
created. In one of them, candidate requested pvamiypes which are similar
concepts are put, in the other, suggested requesiteitive types which are not
similar but suggestable concepts are put. Eachidaiedservice’s primitive type is
compared with each requested primitive type of rabstservice by concept
matching algorithm to find similarity between thelinthere is high similarity, then
requested primitive type is put into service privattype’s candidate list. If there is
low similarity degree but service primitive typenceover requested primitive type,
then requested primitive type is put into servicamjiive type’s suggested list.
These suggested matches are presented to theoudaain user intervention when
high similar matches could not be found. If allnpitive types of service has

candidate or suggested primitives, then we cartregyservice is matched.

35

Similarity degrees of resulting matches for the position are used for
determining the quality of service composabilityer@rated service compositions

are ranked in descending similarity degrees.
With using Travel.owl ontology document and; Peg&uvice.owl,
THYService.owl and AtlasJetService.owl OWL-S filgppendix A], the service

matching algorithm is run for some samples. Thaiold results are listed below:

Requested Service Parameters

- parameterName: myArrivalTimeparameter Type: ArrivalTime.Timevalue:
14/05/2007

- parameterName: myDeparture Timg@arameter Type: DepartureTime.Time
value: 13/05/2007

- parameterName: myDestinationPlac@arameter Type: DestinationPlace.Place
value: 1zmir

- parameterName: myDeparturePlac@arameter Type: DeparturePlace.Place

value: Ankara
For given required parameters, service matchingjteeare as follows:
Matching Results:

1) For PegasusService, matching result is 'SERVEXACT'

Matched Service Parameters

Service parameterName: time parameter Type: Time.DepartureTime

Candidate concepts for service parameter :time

candidate parameterName: myDeparture Timgarameter Type:
DepartureTime.Timgalue: 13/05/2007
Suggested concepts for service parameter -time

suggested parameterName: myArrivalTimeparameter Type:
ArrivalTime.Timevalue: 14/05/2007

Service parameter Name: time parameter Type:ArrivalTime. Time

36

Candidate concepts for service parameter :time

candidate parameterName: myArrivalTimeparameter Type:
ArrivalTime.Timevalue: 14/05/2007

Suggested concepts for service parameter :time

suggested parameterName: myDeparture Tim@arameter Type:
DepartureTime.Timgalue: 13/05/2007

Service parameterName: placeparameter Type: DeparturePlace.Place

Candidate concepts for service parameter :ptace

candidate parameterName: myDeparturePlacg@arameter Type:
DeparturePlace .Placealue: Ankara
Suggested concepts for service parameter :place

suggested parameterName: myDestinationPlacearameter Type:

DestinationPlace.Placealue: [zmir

Service parameterName: placeparameter Type:DestinationPlace.Place

Candidate concepts for service parameter :ptace

candidate parameterName: myDestinationPlace
parameter Type:DestinationPlace.Placgalue: Izmir
Suggested concepts for service parameter :place

suggested parameterName: myDeparturePlacgarameter Type:

DeparturePlace.Placgalue: Ankara

2) For THYService, matching result is 'SERVICE_IRBECTION (Hit ratio % :
50)'
Matched Service Parameters

Service parameterName: placeparameter Type: DeparturePlace.Place

Candidate concepts for service parameter :ptace

candidate parameterName: myDeparturePlac@arameter Type:
DeparturePlace.Placgalue: Ankara
Suggested concepts for service parameter :place

37

suggested parameterName: myDestinationPlac@arameter Type:

DestinationPlace.Placealue: lzmir

Service parameterName: time parameter Type: Duration.DepartureTime.Time
There is not any candidate concept for serge@meter :time

Suggested concepts for service parameter time

suggested parameter Name: myArrivalTimeparameter Type:
ArrivalTime.Timevalue: 14/05/2007

suggested parameterName: myDeparture Timgarameter Type:
DepartureTime.Timgalue: 13/05/2007

Service parameter Name: time parameter Type: Duration.ArrivalTime.Time
There is not any candidate concept for serge@meter :time

Suggested concepts for service parameter :time

suggested parameterName: myArrivalTime
parameter Type:ArrivalTime.Timevalue: 14/05/2007

suggested parameterName: myDeparture Timgarameter Type:
DepartureTime. Timealue: 13/05/2007

Service parameterName: placeparameter Type: DestinationPlace.Place

Candidate concepts for service parameter :ptace

candidate parameterName: myDestinationPlac@arameter Type:
DestinationPlace.Placealue: 1zmir

Suggested concepts for service parameter :place

suggested parameterName: myDeparturePlacgarameter Type:

DeparturePlace.Placgalue: Ankara

3) For AtlasJetService, matching result is 'SERVIEEACT'

Matched Service Parameters

Service parameterName: placeparameter Type: DestinationPlace.Place

Candidate concepts for service parameter :place

38

candidate parameterName: myDestinationPlac@arameter Type:
DestinationPlace.Placealue: 1zmir
Suggested concepts for service parameter :place

suggested parameterName: myDeparturePlacarameter Type:

DeparturePlace.Placgalue: Ankara

Service parameterName: place parameter Type: DeparturePlace.Place
Candidate concepts for service parameter :ptace

candidate parameterName: myDeparturePlac@arameter Type:
DeparturePlace.Placgalue: Ankara

Suggested concepts for service parameter :place

suggested parameterName: myDestinationPlace

parameter Type:DestinationPlace.Placgalue: Izmir

Service parameterName: time parameter Type:AtlasJetArrivalTime.Time
Candidate concepts for service parameter :time

candidate parameterName: myArrivalTime
parameter Type:ArrivalTime. Timevalue: 14/05/2007

Suggested concepts for service parameter time

suggested parameterName: myDeparture Timgarameter Type:
DepartureTime.Timgalue: 13/05/2007

Service parameterName: time parameter Type: AtlasJetDepartureTime.Time
Candidate concepts for service parameter :time

candidate parameterName: myDeparture Timgarameter Type:
DepartureTime.Timgalue: 13/05/2007
Suggested concepts for service parameter :time

suggested parameterName: myArrivalTimeparameter Type: ArrivalTime.Time
value: 14/05/2007

As it is shown above, requested service parametsgs“ArrivalTime” object

parameter, “DepartureTime” object parameter, “DepaPlace” object parameter

39

and “DestinationPlace” object parameter. The stmest of these objects are shown
in Figures 3.9, 3.10, 3.11 and 3.12 respectivehArrivalTime” and
“DepartureTime” concepts has “Time” concept as objeproperty.
“DeparturePlace” and “DestinationPlace” concepts Halace” concept as object
property. Although structures of “ArrivalTime” aribepartureTime” are the same,
their semantics are different. “Time” of “Arrivalifie” is different from “Time” of
“DepartureTime”. Concept matching result for thése concepts isntersection
They can be used for one another only when therenar any other matches. If a
service parameter type is “ArrivalTime” and reqeestparameter type is
“DepartureTime”, “DepartureTime” can be added toggestion list of
“ArrivalTime”. Suggestion list can be displayed tise user in order to provide

certainity.

ArrivalTime —_— Time

Figure 3.9 Structure of “ArrivalTime” concept

DepartureTime | —— Time

Figure 3.10Structure of “DepartureTime” concept

DeparturePlace | —— Place

Figure 3.11Structure of “DeparturePlace” concept

40

DestinationPlace| ——— Place

Figure 3.12Structure of “DestinationPlace” concept

As shown in the results above, three services aued for requested concepts.
These are PegasusService, THYService and Atlasyat&eAlso mappings of the
requested parameters into the related parameténe édund services are displayed.
For each input of a service, there are two colbectiata structures. One of them
collects candidate inputs and the other one callsaggested inputs. If a requested
parameter matches with an input completedyxact match), then the requested
parameter is added to the candidate input lishefimput. If there is amtersection
matching between the requested parameter and tha, ithen the requested

parameter is added to the suggested input ligteoiriput.

The structures of found services are given in FEgRd3, Figure 3.14 and Figure

3.15 respectively.

THYService

<output= <inputs=

Cost Duration DestinationPlace DeparturePlace

— | DepartureTime

L ArrivalTime

Figure 3.13Structure of “THYService” service

41

As shown in the Figure 3.13, THYService has “Costiject as output and
“Duration”, “DestinationPlace” and “DeparturePlaaaijects as inputs. “Duration”

object has two object parameters which are “Depafime” and “ArrivalTime”.

PegasusService

<output= <inputs>

Cost

DepartureTime ArrivalTime DestinationPlace DeparturePlace

Figure 3.14 Structure of “PegasusService” service

Figure 3.14 shows structure of PegasusService sBe§arvice has “Cost” object as
output and “DepartureTime”, “ArrivalTime”, “DestiianPlace” and

“DeparturePlace” as inputs.

AtlasJetService

<output> <inputs>

|
|
|
Cost ‘ | |AtlasJetArrivalTime| ‘AtlaisJetDepanureTime‘ |Destilmti0nPInce| ‘DepnnurePlace
|
|
|

Figure 3.15Structure of “AtlasJetService” service

42

As shown in Figure 3.15, AtlasJetService has “Cosbject as output and
“AtlasJetArrivalTime”, “AtlasJetDepartureTime”, “BénationPlace” and
“DeparturePlace” as inputs. Structures of “AtladdevalTime” and
“AtlasJetDepartureTime” are shown in Figure 3.1B6efe is an inheritance relation
between “AtlasJetArrivalTime” and “ArrivalTime” ob(ts. So
“AtlasJetArrivalTime” has all attributes (in othewords capabilities) of
“ArrivalTime”. “AtlasJetDepartureTime” inherits “DmartureTime” and it “is-a”

“DepartureTime”.

ArrivalTime DepartureTime
AtlasJetArrivalTime AtlasJetDepartureTime

Figure 3.160ntology Model for AtlasJetArrivalTime and AtlagDepartureTime
concepts

As shown from the structures of concepts, all sewicover requested inputs
(“DepartureTime”, “ArrivalTime”, “DestinationPlace”and “DeparturePlace”).
PegasusService is found as SERVICE_EXACT matchiegrek because all
requested parameters are matched with the Pegagus3e inputs. But
THYService is found as SERVICE_INTERSECTION matchotegree. Although
THYService covers all requested parameters, it camt be accepted as
SERVICE_EXACT matching, because its “DepartureTinaid “ArrivalTime”
parameters are defined in “Duration” domain whichynadd different semantics.
But because of type of “Duration” 's “DepartureTiegtribute is same with the

requested “DepartureTime” and type of “Duration”“ArrivalTime” attribute is

43

same with the requested “ArrivalTime”, these maigki can be shown as
suggestions. AtlasJetService is found as SERVICEAEK matching degree.
AtlasJetService has not “ArrivalTime” and “Depadlirme” input types. Instead, it
has “AtlasJetArrivalTime” and “AtlasJetDeparture Birinput types in which there
is an inheritance relation between requested pdeameso its match is accepted as
SERVICE_EXACT matching degree.

3.3 Semantic Web Service Composability Check

Proposed matching algorithm is used for both figdmatching services and

checking the composability of the services in tbmposite service model. Services
with complementary functionalities are discover@yntactic and semantic features
of Web services are compared in order to deternmhether two services are

composable. Composability is the comparison okthgactic and semantic features
of Web services to determine whether two servicesrderoperable. It refers to the
process of checking if Web services to be compasedbe actually interact with

each other.

Services $and S such that §> S, (i.e., § precedes §, are composable if;S
input parameters can be obtained from requestedh@ers of abstract services and
the output parameters of &nd other preceding services.

Service composion algorithm is shown below. Forheservice, it is considered
whether it can be callable by using the serviceptate parameters. Each service’s
output is added to service template for the nexices.

(01) areServicesComposable (CompositeServiceTemplat e csTemp,
(02) CompositeService cs):hit ratiof{

(03) for each service of cs{

(04) match degree = areServicesMatch(csTemp,

(05) service of Cs)

(06) if(match degree >= SERVICE_MATCH_HIT_RATIO)

44

(07)
(08)
(09)
(10)
(11)
(12)

}

matchedServices++

csTemp.addParameters(cs.getOutputParameters(

hit ratio = 100 * matchedServices / cs.getSer

return hit ratio

}

)

viceSize()

With using Travel ontology, an example can be abergid. The example composite

service is “TravelingService” (Figure 3.17) andcintains “KAirlinesService”,

“HiltonHotelService” and “HavasShuttleService” siees. This order is same as

service orders in composition. The OWL-S files bége services are given in

Appendix A.

TravelingCompositeService

KAirlines
Service

E—

Structures

HiltenHotel
Service

E—

HavasShuttle
Service

Figure 3.17 Structure of Traveling Composite Service

of “KAirlinesServices”,

“HavasShuttle@er”

“HiltonHotelService” are shown in Figures 3.18,Bahd 3.22 respectively.

45

and

< o utpur=

KAirlinesReceipt

KAirlinesService

<inputs=

DepartureTime

ArrivalTime

DestinationPlace

DeparturePlace

Figure 3.18Structure of KAirlinesService

“KAirlinesService” has output parameter which is AklinesReceipt” type.

“KAirlineReceipt” has “Cost” and “Airport” object tiibutes. The structure of

“KAirlineReceipt” is shown in Figure 3.19.

< output=

KAirlinesReceipt

Cost

Cost

Airport

HiltonHotelService

Figure 3.19Structure of KAirlinesReceipt concept

<inputs=

ArrivalTime

LeavingTime

Place

RoomType

Figure 3.20Structure of HiltonHotelService

46

Structure of “HiltonHotelService” ‘s “LeavingTimegdarameter is shown in Figure
3.21.

LeavingTime _ Time

Figure 3.21Structure of LeavingTime concept

HavasShuttleService

<output= <inputs=

Cost Airport DepartureTime DestinationPlace

Figure 3.22Structure of HavasShuttleService

Requested service parameters and result of congopitocess is as follows:

Requested Service Parameters

- parameterName: myArrivalTimeparameter Type: ArrivalTime.Timevalue:
14/05/2007

- parameterName: myDepartureTimgarameter Type: DepartureTime.Time
value: 13/05/2007

- parameterName: myDestinationPlac@arameter Type: DestinationPlace.Place

value: lzmir

47

- parameterName: myDeparturePlac@arameter Type: DeparturePlace.Place

value: Ankara

Matching Results:
1) For TravelingService composition, matching resul
'SERVICE_INTERSECTION (Hit ratio % : 66)’

For service: KAirlinesService

Matched Service Parameters

Service parameterName: time parameter Type: DepartureTime.Time

Candidate concepts for service parameter :time

candidate parameterName: myDeparture Timearameter Type:
DepartureTime.Timgalue: 13/05/2007

Suggested concepts for service parameter :time

suggested parameter Name: myArrivalTimeparameter Type:
ArrivalTime.Timevalue: 14/05/2007

Service parameterName: placeparameter Type: DeparturePlace.Place

Candidate concepts for service parameter :place

candidate parameterName: myDeparturePlac@arameter Type:
DeparturePlace.Placgalue: Ankara

Suggested concepts for service parameter :place

suggested parameter Name: myDestinationPlac@arameter Type:

DestinationPlace.Placealue: lzmir

Service parameterName: time parameter Type: ArrivalTime.Time

Candidate concepts for service parameter :time

candidate parameter Name: myArrivalTimeparameter Type:
ArrivalTime.Timevalue: 14/05/2007

Suggested concepts for service parameter :time

suggested parameterName: myDeparture Timgarameter Type:
DepartureTime.Timgalue: 13/05/2007

48

Service parameterName: place parameter Type: DestinationPlace.Place
Candidate concepts for service parameter :ptace

candidate parameterName: myDestinationPlac@arameter Type:
DestinationPlace.Placealue: Izmir

Suggested concepts for service parameter :place

suggested parameterName: myDeparturePlac@arameter Type:
DeparturePlace.Placgalue: Ankara

For service: HiltonHotelService

Matched Service Parameters

Service parameterName: roomTypeparameter Type: RoomType
There is not any candidate concept for serpe@ameter :roomType

There is not any suggested concept for sepacameter :roomType

Service parameterName: time parameter Type: LeavingTime.Time
There is not any candidate concept for serge@meter :time
Suggested concepts for service parameter -time

suggested parameterName: myArrivalTimeparameter Type:
ArrivalTime.Timevalue: 14/05/2007

suggested parameterName: myDeparture Timgarameter Type:
DepartureTime.Timgalue: 13/05/2007

Service parameterName: time parameter Type: ArrivalTime.Time

Candidate concepts for service parameter :time

candidate parameter Name: myArrivalTimeparameter Type:
ArrivalTime.Timevalue: 14/05/2007

Suggested concepts for service parameter :time

suggested parameterName: myDeparture Timgarameter Type:
DepartureTime.Timgalue: 13/05/2007

49

Service parameterName: place parameter Type: Place
There is not any candidate concept for serpe@meter :place

Suggested concepts for service parameter :place

suggested parameterName: myDestinationPlac@arameter Type:
DestinationPlace.Placealue: 1zmir

suggested parameterName: myDeparturePlac@arameter Type:
DeparturePlace.Placgalue: Ankara

For service: HavasShuttleService

Matched Service Parameters

Service parameterName: placeparameter Type: DestinationPlace.Place

Candidate concepts for service parameter :ptace

candidate parameterName: myDestinationPlac@arameter Type:
DestinationPlace.Placealue: 1zmir

Suggested concepts for service parameter :place

suggested parameterName: myDeparturePlacgarameter Type:
DeparturePlace.Placgalue: Ankara

Service parameterName: time parameter Type: DepartureTime.Time

Candidate concepts for service parameter :time

candidate parameterName: myDepartureTimgarameter Type:
DepartureTime.Timgalue: 13/05/2007

Suggested concepts for service parameter time

suggested parameterName: myArrivalTimeparameter Type:
ArrivalTime.Timevalue: 14/05/2007

Service parameterName: airport parameter Type: Airport
There is not any candidate concept for sergeemeter :airport

Suggested concepts for service parameter :Hirpo

50

suggested parameter Name: airportName parameter Type:

KAirlinesReceipt.Airporvalue: null

As it can be seen from the result, requested pdesseo not contain “Airport”
attribute which is required for “HavasShuttleSeelidHowever “KAirlinesService”
has “Airport” attribute in its output. Therefore AfrlinesService” and
“HavasShuttleService” can be placed in composibenause all attibutes of these
two services can be covered by all requested paeasnand “KAirlinesService™s
output attributes. But “HiltonHotelService” has “®aType” attribute which can
not be covered. So the composition “TravelingSe&Vidit ratio is 66%. Also
“LeavingTime” attribute of “HiltonHotelService” camot be covered. But
“ArrivalTime” and “DestinationTime” parameters whican cover “LeavingTime”

attribute are suggested to the user for selecting.

After composition creation operation is finishedhew OWL-S file can be created

for the composite service by using OWL-S files afle service in the composition.

3.4 Semantic Mapping

Semantic Mapping is an operation in which semastrilarities are defined
between different semantic concepts. With the halghuman intervention new
semantic similarities can be created. Then thesiasities can be used in matching
process and similarity algorithms can be run colyefor different concepts that

have the same meaning.

One domain can be defined differently in variougotogy documents. This is
mostly due to the fact that the organizations mayehtheir own ontology models
according to their business structures. This caos®sy different ontology models
for each domain. It is not easy to change ontologylels of organizations with a
common ontology model because each organizatiotaaa many legacy systems.
Therefore, it may not be possible to meet undeorancon ontology. In order to

provide interoperability and standardization, magpmust be defined between

51

these different ontologies that model similar oogeés. Ontology mapping is a
solution to the semantic heterogeneity problem ddag information management
systems. Ontology mapping finds correspondenceseaet semantically related
entities of the input ontologies. Thus, mappingotogies enables the knowledge

and data expressed in the matched ontologiesemiperate.

Ontology mapping is a key interoperability enaldlarthe semantic Web, since it
takes the ontologies as input and determines gaibabdrrespondences between the
semantically related entities of those ontologieso ontology model for the same
domain can be mapped each other. Mapping can lreeddbr each concept of one
of the model to the other. This case is showniguie 3.23. Semantic Mapper
knows two ontology documents “A.owl” and “B.owl”. Mén a concept is used from
“A.owl”, semantic mapper knows how this concept tanrepresented in “B.owl”.
By this way an application that uses one ontologydeh can communicate with

other application that uses the other ontology mode

Semantic
Mapper

CORESACD)

Figure 3.23Semantic Mapping

As Semantic Mapping can be defined between ontotmpuments, it also can be
defined between some ontology concepts. In thikwagmantic mapping between
ontology concepts is utilized in order to enhartee proposed semantic matching
algorithm.

52

Mapping operation requires human intervention. His tstudy, user can define
mappings whenever he/she wants. When a mappingfised by the user, it is
added to the mapping list. In semantic matchingg@se, mappings in this mapping
list are considered because mapping between twaeptm shows a similarity
between these concepts. For example, if a mapgirgfined from concept X to
concept Y; this shows concept X can cover all laites of concept Y; therefore,
concept X can be used in the place of concept Ynwhecessary. In semantic
matching process, mappings in the given mappirigalie considered since the

mappings indicate the similarity and replaceabibtyhe concepts.

Transformation (bridge) is important in mapping qess. It shows the

correspondence between the attributes of concelpts.this thesis, basic

transformations are implemented. Let A be an attellbbject of concept to which
mapping is defined and B be an attribute objeatasfcept from which mapping is
defined. In this work, user can define the follogvithree types of transformations
between attributes of concepts:

1.A=B
2. A = B OPERATION constant, where OPERATION = {Auioh, Subtraction,
Multiplication and Division} and constant is a numneevalue

3. A = constant, where constant is an alphanunvatice.

A is a primitive attribute object of concept to whimapping is defined. B is a
primitive attribute object of concept from which ppéng is defined. Constant can
be any value. But in the second method it musturaeric. Addition, Subtraction,

Multiplication and Division are defined operations.

Figure 3.24 shows an example mapping transformatimce” and “Fiyat” (which
means price in Turkish) are similar concepts. Tinaye the same meaning however
their currencies are different. This transformatisndefined by using mapping

screen, which is “valuelnTIl = valueln$ * foreignroency exchange rate”.

53

Price

double
valueln$

Fiyat

' double

transformations [ValuelnTL
valuelnTL = valueln$ * 1,34

Figure 3.24Mapping from Price to Fiyat

To define this mapping, user opens Semantic Mafaene. As it is shown in

Figure 3.25, firstly, user selects concepts forolvhmapping are defined.

= Semantic Mapper

FROM

- [B]X]
-

3 Concepts
[price]

@ I Food

@ [Desert
[Fivat
[salad

@ 7 Drink

\Transform
1. To=Fro
2. To=Fro

3. To = Con
|To give a na
Defined Tran

= ConceptNames E|

=

|Se|ects concept from which mapping is defined

0K

used like Constant{Costantlame)

| add

Lo

Figure 3.25A screen of Concept Selection

54

Then the user selects attributes of concepts afmkdea transformation. With using
“Add” button, transformation is checked and addedransformation list. This is

shown in Figure 3.26.

£ Semantic Mapper

FROM TO -
Price | e [Fiyat [- |

[T Primitive Atiributes 3 Primitive Atiributes
[y valuelnDollars [waluelnTurkishLiras

valuelnTurkishLiras = valuelnDaollars *1.24 || Add
Transformation Types:
Adds transformation

1. To = From

2. To = From OPERATION Constant

3. To = Constant

To give a hame for constant, Constant can be used like Constant{CostantName)
Defined Transformations :

aluelnTurkishliras = valuelnDollars * 1.34

| ox |

Figure 3.26A screen of Transformation addition

Each defined mapping is written to an XML documenhe content of this

document for the mapping described above is agvisl|

55

<?xml version="1.0" encoding="ISO-8859-9"?>

<Mappings>
<MappingDefinition>

<MappingFrom>

<OntologyPath>
file:///[E:\sampleOwIDocuments\Price.owl

</OntologyPath>
<TypeName>Price</TypeName>

</MappingFrom>

<MappingTo>
<OntologyPath>
file:///E:\sampleOwIDocuments\Fiyat.owl
</OntologyPath>
<TypeName>Fiyat</TypeName>
</MappingTo>

<Transformations>
<Transformation>
<OntologyObjectTo>
<Name>valuelnTurkishLiras</Name>
<Value></Value>
</OntologyObjectTo>

<OntologyObjectFrom>
<Name>valuelnDollars</Name>
<Value></Value>

</OntologyObjectFrom>

<Operation>4</Operation>

<Constant>
<Name>dollarCurrency</Name>
<Value>1.35</Value>
</Constant>

<Type>2</Type>
</Transformation>
</Transformations>
</MappingDefinition>
</Mappings>

Defined mappings are stored in this XML file. Whaapping application is loaded
into memory, it reads the mapping file and whenew mapping is defined, it is

written to the mapping file.

56

3.5 Semantic Domain Model

Ontology documents which are used for definition aoincepts and relations
between concepts, is not exactly adequate for siriaformation inference. More
relations should be extracted from different ongglalocuments. Also it is difficult
to define a complete ontology of a domain so dé#ifeér ontologies can have
complementary concepts. These concepts must beiredibn addition, according
to domain or action to be done, new relations g@e detween concepts in which
there is not any relation between each other. feroto model complementary
concepts and the relation between the conceptsedadant actions, and to infer
more information about these relationships, aroadbased semantic domain model
is developed. The model is action based becausemaaefine works to be done.
By considering actions, more-relevant relations leamliscovered.

Semantic domain model composes semantic relatietwgelen concepts and actions.
In ontology documents concepts and inheritanceadinbute relations are defined.
Actions must be defined or modeled as well. Anaactis an activity that is
accomplished with objects at a certain place amk.tiConcepts are modeled as
objects that are associated with actions. By ugilgymodel, actions, concepts that
can be used with actions, domains which descrilsgnbases of actions, places and
time in which actions take place are modeled. kitaxh, relations between actions
can be determined as well. It is possible to sugges, related and complementary
actions on the basis of the requested action. @rdeactions can be inferred and
ordering suggestions can be presented to the Asions are related with concepts
according to a determined domain because relagbmden an action and a concept
is meaningful only in a determined domain. To pdevithis kind of relation
DomainConcept data structure is used. The struatfirdhe model is shown in
Figure 3.27.

57

Domain

related
actions

domain

concepts

. Domain
Place |<— | Action | —— Concept

required
* #| concepts

Time Concept

Figure 3.27 Semantic Domain Model

By using this model, information extraction andeirghce becomes more easily and
semantically. Some of the information that canrferred by using this model is as
follows:

- Required concepts of an action can be inferred

- An action can be inferred if domain and requicedcepts are known

- Related actions of an action can be inferred anggested to the user as a
guidance service

- Actions that are relevant to a domain can beriate

- The place of an action can be inferred.

- Both domain guidance and action guidance carrdéadged

By using this model, different concepts in diffearemtologies can be related with
actions. For example, there is not any relationwbeh “plane” and “hotel”
concepts. However in traveling domain, hotel bogkamd plane reservation actions

are modeled as related.

As it is stated in [2]; if user request is “ordevoll”, the information that a

“restaurant is needed” should be inferred. Propmsedel can provide such kind of

58

information since “order food” is modeled as anattnd “restaurant” is a related
concept of “order food” action. In addition, compientary concepts and actions
can be defined. By this way, for example, if usants to buy a computer, buying a

printer can be suggested.

Some inference examples are shown below.

- BATH is done in BATHROOM with using WATER and BOA

These concepts can be defined in “Bath” domain thig information can be
modeled in this proposed method. “Bath” is modedéesdaction, “Bathroom” is

modeled as place, “WATER” and “SOAP” are modeledeaglired objects.

- FOOD or MEAL is EATEN in RESTAURANT or KITCHEN vAtiIFE, SPOON,
FORK

In this example, two same actions which are “Foadd “Meal” are considered.
Place information can be “Restaurant” or “Kitche#KNIFE”, “SPOON” and
“FORK” are required objects.

- ELECTRIC SOCKETS are INSTALLED

- WALL or WINDOW or DOOR or ROOM or HOUSE or RO&E DYED
- WINDOW or DOOR or RADIATOR are SET

- PARQUET is EMERIED

- ROOF is PLASTERED

- LAMINANT is PLASTERED

Some information samples for “House Constructionfndin that can be modeled

by the proposed method are shown above.

Defined relations are stored in an XML file. In erdo facilitate loading and saving
operations, its structure is same as the modelgtsitown in Figure 3.27.

This proposed method can be considered as an lietatipn of sentences.

Structures of sentences can be considered as dfasig ontology model. As we

59

know that sentences are composition of verbs, tdgs; adverbs and nouns. The
critic one is verb. Verb is the part of speech thgbresses existence, action, or
occurrence in most languages. It tells operatian p@&rform a verb, some objects
required. Also these actions are done in places.

With these capabilities, the proposed semantic domadel can be used in service
composition process. It is utilized in guidance thedeling and service discovery
steps. Web services perform an action, therefag tan be considered as actions
in semantic domain model. Web service parametersharrequired concepts of the
action. When user wants to request a service teenpieat will take part in the

composition, he/she determines an action. The teeleaction's required concepts
are listed to the user. Among this list, user dslec set of concepts that meets
his/her needs. In service discovery step, matcisimpne according to the selected
concepts to find candidate Web services. User ssmuse semantic domain model
as a guiding system. According to domain whicheiested by the user, actions are
listed. User can select the related actions (sesyirom this list. Once actions are
selected, user may ask for a list of related cotscap well. Hence, the user can

model the composite service without having detaitdéormation on the domain.

3.6 Implementation Issues

In this section, some of the main implementatiotaitte are illustrated. Models
which are created for this thesis are shown. Initeag class diagrams that are
created for implementations are shown.

3.6.1 Created Packages

In this section, created packages for implemematiwe illustrated. Package

dependencies are shown in Figure 3.28.

60

Senice Ontology User Interface
? A I
\ 7D
/ N
L |
I I
Semantic Semantic Semantic
Matching Mapping Inference

Figure 3.28Created Packages

3.6.1.1 Ontology package

This package is responsible for Ontology relatedrafons. Definition and access
of ontology concepts is implemented in this packagass diagram of Ontology

package is shown in Figure 3.29.

61

1
o Ontology Type

superOntologyClasses

0..n /j
ClassOntologyType | allontologyConcepts | ontologyModelOwner
[Som

\\ queries

~~
Ontology Provider

ontologyType
subClasses

PrimitiveOntology Type

¢0..n

PrimitiveOntologyObject OntologyClassesWithSubClasses

Figure 3.29Class Diagram of Ontology Package

OntologyType is data class for ontology concepthak two sub classes which are
PrimitiveOntologyType and ClassOntologyType. Nametb@»gyType is used for
parameters. It includes OntologyType and adds ranogerty to this data structure.
PrimitiveOntologyObject is used for instances ofinftiveOntologyType.
OntologyClassWithSubClasses is data class to fartmlagy concepts in tree order.

In ClassOntologyType, subclasses are not includdarally.

OntologyModelOwner contains all read ontology cgrisewhich are cached in the
memory. Ontology documents can be loaded beforeodirations or ontology
concepts can be lazy loaded when they are requivde an ontology concept is
loaded from an ontology document, as the first aj@n, super concepts and
concept attributes of that concept are loaded sealy by this method. Then
ontology concept's primitive parameters are loadeadded ontology concepts are
put into ModelOwner as a ClassOntologyType objbtidelOwner has all of the
read concepts. This prevents loading of the sameegis more than once. By this

62

way efficiency is increased. In ModelOwner concegache; concepts exist
according to their names and ontology file pathsctvtshow ontology files in

which concepts are defined.

When a concept is needed, ModelOwner is queriethdfconcept is found, it is
used, otherwise, the concept is loaded and thisnpitit to the ModelOwner. Super
concept or concept attribute of an ontology conagpt be in different ontology
files. In this case, while loading operation, ottwtology files are found and
needed concepts are loaded.

OntologyProvider which is one of the most importafésses is used for all
ontological operations such as loading semanticceptis and semantic Web
services. It is also used to query model ownerraeg to semantic requirements.

3.6.1.2 Service package

Service Package contains classes that are relatedWeb Services. The class
diagram of this package is shown in Figure 3.30.

CompositeWebSenice - WebSenice
01 v
/ // \
e / N
/
e / N
/
SeniceCaller - SeniceFinder - SeniceProvider
1 1

Figure 3.30Class Diagram of Service Package

63

WebService is a class which represents Web servicespositeWebService is
class which represents Web service compositionssiceginder is used search
Web services from ServiceProvider. ServiceProviglaries Web service registries

like UDDI to find web services. ServiceCaller iddo call a service.

3.6.1.3 Semantic Matching package

Semantic matching classes are in this packageclaéiss diagram of this package is
shown in Figure 3.31. SemanticMatcher is used whematching is requested.
ConceptMatcher is implementation of the concept chiag algorithm.
ServiceMatcher is implementation of the service dmaiy algorithm.
ParameterHitRatio is the data class for similardyio of intersection matching

result.

SeniceMatcher ConceptMatcher _ | ParameterHitRatio
1
! 1 - 7
/
/
/
/

SemanticMatcher

Figure 3.31Class Diagram of Semantic Matching Package

64

3.6.1.4 Semantic Mapping package

This package is used for the semantic mapping tipesa The class diagram of this
package is shown in Figure 3.32. IMappingConstats the mapping constants
which are used when writing and reading defined pivegs. Defined mappings are
saved in a mapping file which is in XML format. MapgReader is used for
reading mappings from the mapping file and Mappind®¥ is used for writing

mappings to the mapping file. MappingDefinitionaiglata class for mappings. One
mapping is defined by a MappingDefinition objectnfapping is defined between
two ClassOntologyType which is in Ontology packager parameters of these
objects transformations are defined. Transformatitass is data class to define
transformation. A transformation is defined betwé&n PrimitiveOntologyObiject

which is in Ontology package. Constant is a dats<lto define constants in
transformations. SemanticMapper is a class in whitlklefined mappings exist. It

provides other modules to access predefined mapping define new mappings.

IMappingConstants

‘7 __| MappingReader MappingWriter

/A 7/
/ 1 _— 1/ |

Q SemanticMapper Constant

|
|
|
N 7 |
|
|
|

~
\\ \/0..n7/ ‘

MappingDefinition ~| Transformation |_-

Figure 3.32Class Diagram of Semantic Mapping Package

65

3.6.1.5 Semantic Inference package

This package is created for implementation of temantic domain model. The
class diagram of this package is shown in FiguB3.3Action, Concept, Domain
and DomainConcept classes form semantic domain ImddiedelOwner class

supplies semantic domain model. When an actiorgngept or a domain class is
required, it is searched in ModelOwner. Inferenaggfi® is used for semantic
guerying like finding. Ontolog is used for adding ModelOwner and querying

ModelOwner.
relatedConcepts
relatedActions —
1
\U..n ,0..n
Domain Action DomainConcept Concept
0..II 0 I 0 T
/N /N /
0..n 0..n 0..n
allActions
allDomains
allConcepts
ModelOwner
/T\
‘ uses
Ontolog |_- InferenceEngine

Figure 3.33Class Diagram of Semantic Inference Package

66

3.6.1.6 User Interface package

This package contains user interface components ascConceptAttributesPanel
and ConceptNamesPanel. ConceptAttributesPanel &l usr displaying all
attributes of a concept. ConceptNamesPanel is tsedisplaying all concept

names in the system.

3.6.1.7 Other Important Classes

SemanticManager class is used as Facade classninofr applications which they
use these proposed methods to add semantic me®@M3E is such an application

that uses this class for all operations related s@mantic.

3.6.2 Used Technologies

This work is implemented by using Java [6] prograngnlanguage. The most
important library that is used in this study is OMBLAPI [16]. OWL-S API is a
Java based APl which provides reading, writing @&xeécuting Semantic Web
Servises described in OWL-S. Only deficiency of O\WIAPI is the definition of
complex XSLT transformations. Each object attribogeds XSLT transformations
to map Web service attributes. If the object hageaibattributes rather than

primitive attributes, transformations of the objeatises errors in OWL-S API.

67

CHAPTER 4

EVALUATION

In this section, evaluation of the proposed methedsresented. Firstly, semantic
matching algorithm is evaluated. Then, evaluatibeemantic composition method
is given. Three ontology documents for three défgrdomains are used for these
evaluations. These ontology documents are:

1) Meal.owl : In this ontology; foods and restaursystem are defined,

2) House.owl : In this ontology; House and its basructures are defined

3) Traveling.owl : In this ontology, traveling baosss is defined.
In addition, for service matching evaluation, saVeservice definition files are
used. The contents of these ontology documentgiaea in Appendix A. By using
these ontology documents, sample data sets areedrekhe similarities between
concepts are determined explicitly. Then algorittares run to evaluate the success

rates to find similairities.

Recall and precision are two basic quality pararsete evaluate the matching
algorithms. Recall is the ratio of the number @& tklevant items found to the total
number of relevant items. Precision is the ratiohef number of the relevant items
found to the total number of items retrieved. Fgaraple if there are 15 total

relevant items and an algorithm finds 8 items inchtb of them is relevant; then
we can say that recall of the algorithm is: 5/18.8%0) and precision of algorithm
is: 5/8 (67.5%). High precision and high recall desired properties for a matching
algorithm. Precision value 100% is obtained if aiigpon finds no irrelevant items.

Recall value 100% is obtained if algorithm findsralevant items.

In this section, the proposed algorithms are evatlander recall and precision.

68

4.1 Semantic Matching Evaluation

In this part semantic matching algorithms are eat&ld. Algorithms are evaluated
with respect to how good they can find a reque#&d (concept or service) by
taking similarities into consideration. Semantictechéng algorithm is evaluated in
two parts. In the first part evaluation of the sati@aconcept matching algorithm is
explained. In the second part evaluation of theas#im Web service matching

algorithm is explained.

4.1.1 Concept Matching Evaluation

In this evaluation, the aim is to find similaritieetween some relevant and some
irrelevant concepts in our ontology documents.sitekpected from the concept
matching algorithm to find similarities between ensdnt concepts and to find

dissimilarities between irrelevant concepts.

The data set contains a set of similarity candglatkere actual relevant similarity
count is 30. Total sample data count is 40 but @0lyf them are really similar. In
Table I, the results of three matching methods mlieg to recall and precision
guality parameters are given.

Actual relevant concept count: 30

Table I: Concept Matching Results

Keyword based Inheritance based Proposed Methad

Relevant 5 relevant found, | 20 relevant found, 27 relevant found,

concepts 25 missed 10 missed 3 irrelevant
Recall 16.7% 66.7 % 90 %
Precision 100 % 100 % 90 %

69

Keyword based matching is not a semantic procelsrefore, it provides only
syntactic checking. It gives no result or gives ynairelevant results. This method’s
precision is 100% on the sample data set. Howéivilrere were some homonyms
in sample data set, precision of the keyword bassdch would decrease since it
would have found irrelevant concepts as well. Téwall of this method is low since
it only does syntactic checking. The proposed agghrchas high recall than the
inheritance based matching in [18]. The proposedcinvag algorithm finds 30
relevant similarities among 40 candidate similesti But in fact 3 of them are
irrelevant. Precision of inheritance based matcloigug be considered as higher than
proposed approach however in this experiment 10@%atios are accepted. By
adjusting hit ratio property, precision and recallues of the proposed algorithm
can be increased. Precision and recall valueseogptbposed algorithm increased to
100% if intersections which have more than 80% rhiios are accepted and

intersections which have less than 80% hit rattescansidered as suggestions.

4.1.2 Service Matching Evaluation

In this evaluation, the aim is to find candidatevaees similar to the requested Web
services. Service matching degree is used as #&yqueasurement to indicate the

similarity of the requested service template arsdaliered candidate service.

Results of the experiments are shown in Table nbpBsed method is compared

with keyword based and inheritance based matchasgdtechniques.

70

Actual relevant service count: 8

Table 1I: Service Matching Results

Keyword matching

based Service

Inheritance

matching based

Proposed Service

Matching

Matching Service Matching
Relevant 2 relevant found, | 3 relevant found, 5 relevant found,
services 6 missed 5 missed 3 missed
Recall 25% 37.5% 62.5%
Precision 100 % 100 % 100 %

Proposed approach has higher precision and reaatke sit checks attribute
similarity additionally. Also in proposed servicatohing, as explained in 3.2.2 for
each parameter there are candidate list and seghkst With the help of human
intervention, the suggested list can be consideredatching process. The recall of

our approach can be increased to 100% if suggéstedre accepted.

4.2 Web Service Composition Evaluation

In Figure 4.1, service composition execution tireedisplayed with respect to the
number of requested parameters. Composite sewitEavelingService” which is

described in section 3.3. As seen from the figumest of the processing time is
used for the matching. Service composition openaticludes service matching and
service matching operation includes concept magctask. Concept matching takes
half of the total processing time. Service matclopgration time includes concept
matching operation time plus time passed for figdattributes of service and
finding hit ratio of service matching. Compositioperation time includes service

matching time plus time passed for finding compeositit ratio time.

71

0000 . o
o : composition

0: service matching
H i concept matching

)
s
[}
[=E}
W
E
2 40000 - X
@ 0
= L n]
= 6000
S 4000 | X
W
S 1000 F o
E o
S 500 [x
T 100 1000

Number of Requested Parameters

Figure 4.1 Time required for service composition processes

As shown in the figure, composition time increalsasarly with the increase in the
number of requested parameters.

The cost of loading ontology concepts is high. his texperiment there are 89
ontology concepts in the system. Although thesacepts are in the same

computer, loading of these concepts takes appra&lyn&00 milliseconds.

The experiments are conducted on a personal comptiieh has Intel P4 3GHz
processor and 1 GB of RAM.

12

CHAPTER 5

FUTURE WORK AND CONCLUSION

In this work, new semantic based techniques arpgsexd in order to facilitate the
Web service composition process. These approachelside new semantic
matching methods for finding both concept similardand service similarity.
Proposed matching algorithms can find complex sinties. A simple semantic
discovery method for semantic Web services is adtlecaddition, to improve
semantic inference, new semantic domain model whoam capture the
relationships among the concepts and between timeepts and the actions
(services) is proposed. This model can be also tmeduiding user in definition
phase of Web service composition process. A basigpmng tool is implemented

and defined mappings are used in the matching psoce

These new approaches are used in modeling the cii®p&/eb service, service
discovery and interoperability checking. With thelgh of these methods, Web
service composition process becomes easier, less@one and more automated.
Computers can understand these structures so humeamention decreases. The
experiments show that the proposed matching algostincrease the quality of

matching.

As a future work, improvement of proposed semauliicnain model can be
considered. This model is just in its early phakdevelopment. It is open to new
extensions which will increase the amount and tpalf semantic inferences.
Structure of the model can be extended and carr aikier attributes like "place”,
"time" etc. It is aimed that computers can makergveference and reach to a
decision, so they can implement operations wittmouman intervention.

73

In the future, this model can be extended with retanguage processing modules
so that the user describes the composite modedturad language and the system
analyzes the structure of sentences in order tb \farbs, objects, time and place

and considering these as actions, required objects.

Another direction for future work is addition of wecapabilities for semantic
service registry. New studies can be implementedstamantic service registry
which is not UDDI based.

In addition, semantic mapping is a subject which hmany challenging problems.
In this work, we only considered a simple mappingchanism to increase the
quality of semantic matching. This module can b&erded with more complex
mapping transformations and with automatic or sautomatic techniques for

extraction of transformation requiring less humaterivention.

74

REFERENCES

[1] B. Benatallah, M. Dumas, M. C. Fauvet and F.A. Ra®002. Towards Patterns
of Web Services Composition. In Gorlatch, S. anB#&bhi (Eds.), Patterns and
Skeletons for Parallel and Distributed Computingrirgyer Verlag (UK).

[2] T. Broens, Context-aware, Ontology based, SemaSBtcvice Discovery
(COSS), Thesis for a Master of Science degree ilenfaics from the
University of Twente, Enschede, The Netherlandly, 2004.

[3] Choco constraint programming systehitp://choco.sourceforge.ngtAugust
2007.

[4] C. Fellbaum, A Semantic Network of English: The Nt of All WordNETS,
Computers and Humanities, 209-220, 1998.

[5] D. Fensel, and C. Bussler, 2002. Semantic web edableb services. In

Proceedings of International Semantic Web Confer€ifsWC'2002), volume
2342.

[6] Javahttp://java.sun.com/August 2007.

[7] E. Karakoc, K. Kardas, and P. Senkul, A Workflovsb@d Web Service
Composition System, 2006 IEEE/WIC/ACM Internatioainference on Web
Intelligence and Intelligent Agent Technology (VAT 2006 Workshops)(WI-
IATW'06).

[8] E. Karakoc, Web Service Composition Under Resodtmation Constraints,

Thesis for a Master of Science degree in Computegirteering from the
University of METU, Turkey, April 2007

[9] L. Li and I. Horrocks, A software framework for mhmaking based on
semantic web technology. In Proceedings of the Irtfrnational Conference
on the World Wide Web, Budapest, Hungary, May 2003.

[10] D. Martin, M. Paolucci, S. Mcllraith, M. BursteinD. McDermott, D.
McGuinness, B. Parsia, T. R. Payne, M. Sabou, Nartkg N. Srinivasan, K.
Sycara (SRI, CMU, Univ. Toronto), Bringing Semastio Web Services: The
OWL-S Approach, First International Workshop on &etic Web Services

75

and Web Process Composition (SWSWPC 2004) 6-9, ,2@ah Diego,
California, USA.

[11] S. Mcllraith, T. C. Son, and H. Zeng. Semantic V8elvices. IEEE Intelligent
Systems, 16(2):46-53, March/April 2001.

[12] B. Medjahed, A. Bouguettaya, A.K. ElImagarmid, Cosipg Web services on
the Semantic Web, VLDB J. 12(4): 333-351, 2003.

[13] N. Milanovic and M. Malek, Current solutions for Weervice composition,
IEEE Internet Computing, 2004

[14] OWL, Web Ontology Languagehttp://www.w3.0rg/2004/OWL, August
2007.

[15] OWL-S, Semantic Markup for web services, OWL whitegaper,
http://www.daml.org/services/owls/1.0/owl-s.pdhugust 2007.

[16] OWL-S API, Maryland Information and Network Dynamidab Semantic

Web Agents Projechttp://www.mindswap.org/2004/owl-s/apAugust 2007.

[17] M. Paolucci, T. Kawamura, T. R. Payne, K. Sycamapdrting the Semantic
Web in UDDI, WES 2002: 225-236.

[18] M. Paolucci, T. Kawamura, T. R. Payne, K. Sycaram&ntic Matching of
Web Services Capabilities, International Semanteb\Wonference, 333-347,
2002.

[19] E. Sirin, J. Hendler, B. Parsia, Semi Automatic @osition of Web Services
using Semantic Descriptions, in: Web Services: Niade Architecture and
Infrastructure workshop in conjunction with ICEISE) 2002.

[20] SOAP, Simple Object Access Protocottp://www.w3.0rg/TR/SOAPAugust
2007.

[21] UDDI, Universal Description, Discovery and Integoat of Web Services;
http://www.uddi.org August 2007.

[22] K. Verma, K Gomadam, A. P. Sheth, J. A. Miller,\®u , The METEOR-S
Approach for Configuring and Executing Dynamic WWRilncesses, LSDIS Lab
Technical Report, University of Georgia, Athensp@ga, USA, 2004.

[23] Web Service, http://en.wikipedia.org/wiki/Web_servi August 2007

76

[24] WSDL, Web Service Description Languagbttp://www.w3.org/TR/wsdl
August 2007.
[25] XML, eXtensible Markup Languageww.w3.org/XML/, August 2007.

77

APPENDIX A

ONTOLOGY DOCUMENTS

In this section, ontology documents which are @@dbr thesis study are listed.

A.1 House.owl

<?xml version="1.0"?>
<rdf:RDF

xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syn
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schem
xmins:owl="http://www.w3.0rg/2002/07/owl#"
xmins="http://www.owl-ontologies.com/unnamed.ow
xml:base="http://www.owl-ontologies.com/House.o

<owl:Class rdf:ID="House"/>
<owl:Class rdf:ID="Wall"/>
<owl:Class rdf:ID="Roof"/>
<owl:Class rdf:ID="HFloor"/>
<owl:Class rdf:ID="Tavan"/>
<owl:Class rdf:ID="Window"/>

<owl:Class rdf:ID="Parquet"/>

<owl:Class rdf:about="#Parquet">
<rdfs:subClassOf rdf:resource="#HFloor"/>

</owl:Class>

<owl:Class rdf:ID="Laminant">
<rdfs:subClassOf rdf:resource="#Parquet"/>

</owl:Class>

<owl:Class rdf:ID="Wooden">
<rdfs:subClassOf rdf:resource="#Parquet"/>

</owl:Class>

<owl:Class rdf:ID="Bathroom"/>

<owl:Class rdf:ID="Faience">
<rdfs:subClassOf rdf:resource="#HFloor"/>

</owl:Class>

78

tax-ns#"
a#"

#"

WI||>

<owl:Class rdf:ID="Radiator"/>
<owl:Class rdf:ID="Terrace"/>
<owl:Class rdf:ID="Door"/>
<owl:Class rdf:ID="Room"/>
<owl:ObjectProperty rdf:ID="tDuvar">
<rdfs:domain rdf:resource="#Terrace"/>
<rdfs:range rdf:resource="#Wall"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="bDuvar">
<rdfs:domain rdf:resource="#Bathroom"/>
<rdfs:range rdf:resource="#Wall"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="pencere">
<rdfs:range rdf:resource="#Window"/>
<rdfs:domain rdf:resource="#Wall"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="kalorifer">
<rdfs:domain rdf:resource="#Wall"/>
<rdfs:range rdf:resource="#Radiator"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="oda">
<rdfs:domain rdf:resource="#House"/>
<rdfs:range rdf:resource="#Room"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="duvar">
<rdfs:domain rdf:resource="#Room"/>
<rdfs:range rdf:resource="#Wall"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="bTaban">
<rdfs:range rdf:resource="#HFloor"/>
<rdfs:domain rdf:resource="#Bathroom"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="cati">
<rdfs:range rdf:resource="#Roof"/>
<rdfs:domain rdf:resource="#House"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="tTaban">
<rdfs:range rdf:resource="#HFloor"/>
<rdfs:domain rdf:resource="#Terrace"/>

79

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="bTavan">
<rdfs:range rdf:resource="#Tavan"/>
<rdfs:domain rdf:resource="#Bathroom"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="kapi">
<rdfs:range rdf:resource="#Door"/>
<rdfs:domain rdf:resource="#House"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="tavan">
<rdfs:domain rdf:resource="#Room"/>
<rdfs:range rdf:resource="#Tavan"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="taban">
<rdfs:domain rdf:resource="#Room"/>
<rdfs:range rdf:resource="#HFloor"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="Cins">
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchematstri
<rdfs:domain rdf:resource="#Parquet"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="Alan">
<rdfs:domain rdf:resource="#HFloor"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemad#stri
</owl:DatatypeProperty>
</rdf:RDF>

A.2 Travel.owl

<?xml version="1.0"?>

<rdf:RDF
xmins="http://www.owl-ontologies.com/travel.owl
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syn
xmlins:rdfs="http://www.w3.0rg/2000/01/rdf-schem
xmins:owl="http://www.w3.0rg/2002/07/owl#"

80

ng"/>

ngu/>

#
tax-ns#"
a#II

xmlns:daml="http://www.daml.org/2001/03/daml+oi I#"
xml:base="http://www.owl-ontologies.com/travel.ow [">
<owl:Class rdf:ID="Activity"/>
<owl:Class rdf:ID="Museums">

<rdfs:subClassOf>

<owl:Class rdf:ID="Sightseeing"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="BudgetHotelDestination">

<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collecti on">
<owl:Class rdf:ID="Destination"/>
<owl:Restriction>
<owl:someValuesFrom>

<owl:Class>
<owl:intersectionOf rdf:parseType=" Collection">
<owl:Class rdf:ID="BudgetAccommod ation"/>

<owl:Class rdf:ID="Hotel"/>
</owl:intersectionOf>

</owl:Class>
</owl:someValuesFrom>
<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasAccomm odation"/>
</owl:onProperty>

</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

</owl:equivalentClass>

</owl:Class>
<owl:Class rdf:ID="Capital">
<rdfs:subClassOf>
<owl:Class rdf:ID="City"/>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom rdf:resource="#Museums" />
<owl:onProperty>

81

<owl:ObjectProperty rdf:ID="hasActivity"/
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Vehicle"/>
<owl:Class rdf:ID="Beach">
<rdfs:subClassOf rdf:resource="#Destination"/>
</owl:Class>
<owl:Class rdf:ID="Sunbathing">
<rdfs:subClassOf>
<owl:Class rdf:ID="Relaxation"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="NationalPark">
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom>
<owl:Class rdf:ID="Hiking"/>
</owl:someValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasActivi
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class rdf:ID="RuralArea"/>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasAccomm
</owl:onProperty>
<owl:someValuesFrom>
<owl:Class rdf:ID="Campground"/>
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

82

ty"/>

odation"/>

<owl:Class rdf:ID="BackpackersDestination">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collecti
<owl:Class rdf:about="#Destination"/>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasAc
</owl:onProperty>
<owl:someValuesFrom>
<owl:Class rdf:about="#BudgetAccommod
</owl:someValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:someValuesFrom>
<owl:Class>
<owl:unionOf rdf:parseType="Collect
<owl:Class rdf:ID="Sports"/>
<owl:Class rdf:ID="Adventure"/>
</owl:unionOf>
</owl:Class>
</owl:someValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasAc
</owl:onProperty>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

</owl:equivalentClass>

</owl:Class>
<owl:Class rdf:about="#Sightseeing">
<owl:disjointWith>
<owl:Class rdf:about="#Relaxation"/>
</owl:disjointWith>
<owl:disjointWith>
<owl:Class rdf:about="#Sports"/>
</owl:disjointWith>

<rdfs:subClassOf rdf:resource="#Activity"/>

83

on'>

commodation"/>

ation"/>

ion">

tivity"/>

<owl:disjointWith>
<owl:Class rdf:about="#Adventure"/>
</owl:disjointWith>
</owl:Class>
<owl:Class rdf:ID="RetireeDestination">

<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collecti
<owl:Class rdf:about="#Destination"/>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasAc
</owl:onProperty>
<owl:someValuesFrom>
<owl:Restriction>
<owl:hasValue>
<AccommodationRating rdf:ID="Thre
<owl.differentFrom>
<AccommodationRating rdf:ID="
<owl:differentFrom>
<AccommodationRating
rdf:ID="OneStarRating">
<owl:differentFrom
rdf:resource="#ThreeStarRating"/>
<owl:differentFrom
rdf:resource="#TwoStarRating"/>
</AccommodationRating>
</owl:differentFrom>
<owl:differentFrom
rdf:resource="#ThreeStarRating"/>
</AccommodationRating>
</owl:differentFrom>
<owl:differentFrom
rdf:resource="#OneStarRating"/>
</AccommodationRating>
</owl:hasValue>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasRa

84

on">

commodation"/>

eStarRating">

TwoStarRating">

ting"/>

</owl:onProperty>
</owl:Restriction>
</owl:someValuesFrom>
</owl:Restriction>
<owl:Restriction>

<owl:someValuesFrom rdf:resource="#Sigh
<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasAc
</owl:onProperty>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="AccommodationRating">
<owl:equivalentClass>

<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<AccommodationRating rdf:about="#OneStarR

<AccommodationRating rdf:about="#TwoStarR

<AccommodationRating rdf:about="#ThreeSta
</owl:oneOf>

</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="UrbanArea">
<rdfs:subClassOf rdf:resource="#Destination"/>
<owl:disjointWith>
<owl:Class rdf:about="#RuralArea"/>
</owl:disjointWith>
</owl:Class>
<owl:Class rdf:about="#Campground">
<owl:disjointWith>
<owl:Class rdf:ID="BedAndBreakfast'"/>
</owl:disjointWith>
<rdfs:subClassOf>
<owl:Class rdf:ID="Accommodation"/>
</rdfs:subClassOf>
<rdfs:subClassOf>

85

tseeing"/>

tivity"/>

ating"/>
ating"/>

rRating"/>

<owl:Restriction>
<owl:hasValue rdf:resource="#OneStarRating"
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasRating
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith>
<owl:Class rdf:about="#Hotel"/>
</owl:disjointWith>
</owl:Class>
<owl:Class rdf:about="#City">
<rdfs:subClassOf rdf:resource="#UrbanArea"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasAccomm
</owl:onProperty>
<owl:someValuesFrom>
<owl:Class rdf:ID="LuxuryHotel"/>
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Safari">
<rdfs:subClassOf rdf:resource="#Sightseeing"/>
<rdfs:subClassOf>
<owl:Class rdf:about="#Adventure"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="QuietDestination">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collecti
<owl:Class rdf:about="#Destination"/>
<owl:Class>
<owl:complementOf>
<owl:Class rdf:ID="FamilyDestination"
</owl:complementOf>

86

/>

||/>

odation"/>

on'>

/>

</owl:Class>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#Hiking">
<rdfs:subClassOf>
<owl:Class rdf:about="#Sports"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#Relaxation">
<owl:disjointWith rdf:resource="#Sightseeing"/>
<owl:disjointWith>
<owl:Class rdf:about="#Adventure"/>
</owl:disjointWith>
<owl:disjointWith>
<owl:Class rdf:about="#Sports"/>
</owl:disjointWith>
<rdfs:subClassOf rdf:resource="#Activity"/>
</owl:Class>
<owl:Class rdf:about="#FamilyDestination">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collecti
<owl:Class rdf:about="#Destination"/>
<owl:Restriction>
<owl:minCardinality
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int"
>1</owl:minCardinality>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasAc
</owl:onProperty>
</owl:Restriction>
<owl:Restriction>
<owl:minCardinality
rdf.datatype="http://www.w3.0rg/2001/XMLSchema#int"
>2</owl:minCardinality>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasAc

87

on">

commodation"/>

tivity"/>

</owl:onProperty>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#Adventure">
<owl:disjointWith>
<owl:Class rdf:about="#Sports"/>
</owl:disjointWith>
<owl:disjointWith rdf:resource="#Relaxation"/>
<owl:disjointWith rdf:resource="#Sightseeing"/>
<rdfs:subClassOf rdf:resource="#Activity"/>
</owl:Class>
<owl:Class rdf:ID="Yoga">
<rdfs:subClassOf rdf:resource="#Relaxation"/>
</owl:Class>
<owl:Class rdf:about="#Sports">
<rdfs:subClassOf rdf:resource="#Activity"/>
<owl:disjointWith rdf:resource="#Adventure"/>
<owl:disjointWith rdf:resource="#Sightseeing"/>
<owl:disjointWith rdf:resource="#Relaxation"/>
</owl:Class>
<owl:Class rdf:about="#Hotel">
<owl:disjointWith rdf:resource="#Campground"/>
<owl.disjointWith>
<owl:Class rdf:about="#BedAndBreakfast"/>
</owl:disjointWith>
<rdfs:subClassOf>
<owl:Class rdf:about="#Accommodation"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Town">
<rdfs:subClassOf rdf:resource="#UrbanArea"/>
</owl:Class>
<owl:Class rdf:about="#RuralArea">
<rdfs:subClassOf rdf:resource="#Destination"/>
<owl:disjointWith rdf:resource="#UrbanArea"/>
</owl:Class>

88

<owl:Class rdf:about="#Accommodation">
</owl:Class>
<owl:Class rdf:ID="Surfing">
<rdfs:subClassOf rdf:resource="#Sports"/>
</owl:Class>
<owl:Class rdf:about="#BudgetAccommodation">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collecti
<owl:Class rdf:about="#Accommodation"/>
<owl:Restriction>
<owl:someValuesFrom>
<owl:Class>
<owl:oneOf rdf:parseType="Collectio
<AccommodationRating rdf:about="#
<AccommodationRating rdf:about="#
</owl:oneOf>
</owl:Class>
</owl:someValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasRa
</owl:onProperty>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#BedAndBreakfast">
<owl:disjointWith rdf:resource="#Hotel"/>
<rdfs:subClassOf rdf:resource="#Accommodation"/
<owl:disjointWith rdf:resource="#Campground"/>
</owl:Class>
<owl:Class rdf:ID="BunjeeJumping">
<rdfs:subClassOf rdf:resource="#Adventure"/>
</owl:Class>
<owl:Class rdf:about="#LuxuryHotel">
<rdfs:subClassOf rdf:resource="#Hotel"/>
<rdfs:subClassOf>

<owl:Restriction>

89

on">

n">
OneStarRating"/>
TwoStarRating"/>

ting"/>

<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasRating ">
</owl:onProperty>
<owl:hasValue rdf:resource="#ThreeStarRatin g"l>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="bus">
<rdfs:subClassOf rdf:resource="#Vehicle"/>
</owl:Class>
<owl:Class rdf:ID="Farmland">
<rdfs:subClassOf rdf:resource="#RuralArea"/>
</owl:Class>
<owl:Class rdf:ID="Contact"/>
<owl:Class rdf:ID="plane">
<rdfs:subClassOf rdf:resource="#Vehicle"/>
</owl:Class>
<owl:ObjectProperty rdf:about="#hasActivity">
<owl:inverseOf>
<owl:ObjectProperty rdf:ID="isOfferedAt"/>
</owl:inverseOf>
<rdfs:range rdf:resource="#Activity"/>
<rdfs:domain rdf:resource="#Destination"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasRating">
<rdfs:domain rdf:resource="#Accommodation"/>
<rdfs:range rdf:resource="#AccommodationRating" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasContact">
<rdfs:range rdf:resource="#Contact"/>
<rdfs:domain rdf:resource="#Activity"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#isOfferedAt">
<rdfs:range rdf:resource="#Destination"/>
<owl:inverseOf rdf:resource="#hasActivity"/>
<rdfs:domain rdf:resource="#Activity"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasAccommodation" >
<rdfs:range rdf:resource="#Accommodation"/>

90

<rdfs:domain rdf:resource="#Destination"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasPart">
<rdfs:domain rdf:resource="#Destination"/>
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#Transit
<rdfs:range rdf:resource="#Destination"/>
</owl:ObjectProperty>
<owl:FunctionalProperty rdf:ID="hasCity">
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemad#stri
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#Datatyp
<rdfs:domain rdf:resource="#Contact"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="hasZipCode">
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#Datatyp
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#int"
<rdfs:domain rdf:resource="#Contact"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="hasStreet">
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#stri
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#Datatyp
<rdfs:domain rdf:resource="#Contact"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="hasEMail">
<rdfs:domain rdf:resource="#Contact"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#stri
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#Datatyp
</owl:FunctionalProperty>
<RuralArea rdf:ID="Woomera"/>
<Beach rdf:ID="BondiBeach"/>
<NationalPark rdf:ID="BlueMountains"/>

91

iveProperty"/>

ngu/>

eProperty"/>

eProperty"/>

/>

ng"/>

eProperty"/>

ng"/>

eProperty"/>

<NationalPark rdf:ID="Warrumbungles"/>

<Capital rdf:ID="Canberra"/>

<Beach rdf:ID="CurrawongBeach"/>

<LuxuryHotel rdf:ID="FourSeasons"/>

<Capital rdf:ID="Sydney">
<hasPart rdf:resource="#BondiBeach"/>
<hasAccommodation rdf:resource="#FourSeasons"/>
<hasPart rdf:resource="#CurrawongBeach"/>

</Capital>

<RuralArea rdf:ID="CapeYork"/>

<Town rdf:ID="Coonabarabran"/>

<City rdf:ID="Cairns"/>

</rdf:RDF>

A.3 Meal.owl

<?xml version="1.0"?>

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syn tax-ns#"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schem a#"
xmins:owl="http://www.w3.0rg/2002/07/owl#"
xmins="http://www.owl-ontologies.com/unnamed.ow I#"
xml:base="http://www.owl-ontologies.com/unnamed.o wl">

<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="Pizza">
<rdfs:subClassOf>
<owl:Class rdf:ID="Food"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="AppleJuice">
<rdfs:subClassOf>
<owl:Class rdf:ID="FruitJuice"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Chicken">

<rdfs:subClassOf rdf:resource="#Food"/>

92

</owl:Class>
<owl:Class rdf:ID="OrangeJuice">
<rdfs:subClassOf>
<owl:Class rdf:about="#FruitJuice"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Rice-pudding">
<rdfs:subClassOf>
<owl:Class rdf:ID="WithMilk"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Ayran">
<rdfs:subClassOf>
<owl:Class rdf:ID="WithoutAlcohol"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Coke">
<rdfs:subClassOf>
<owl:Class rdf:about="#WithoutAlcohol"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Ice-cream">
<rdfs:subClassOf>
<owl:Class rdf:about="#WithMilk"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Meat">
<rdfs:subClassOf rdf:resource="#Food"/>
</owl:Class>
<owl:Class rdf:ID="WithAlcohol">
<rdfs:subClassOf>
<owl:Class rdf:ID="Drink"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Desert"/>
<owl:Class rdf:ID="Baklava">
<rdfs:subClassOf>
<owl:Class rdf:ID="WithoutMilk"/>
</rdfs:subClassOf>

93

</owl:Class>

<owl:Class rdf:about="#WithMilk">
<rdfs:subClassOf rdf:resource="#Desert"/>

</owl:Class>

<owl:Class rdf:ID="Fish">
<rdfs:subClassOf rdf:resource="#Food"/>

</owl:Class>

<owl:Class rdf:ID="Salad"/>

<owl:Class rdf:ID="Kadayif">
<rdfs:subClassOf>

<owl:Class rdf:about="#WithoutMilk"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#WithoutAlcohol">
<rdfs:subClassOf rdf:resource="#Drink"/>

</owl:Class>

<owl:Class rdf:about="#FruitJuice">
<rdfs:subClassOf rdf:resource="#WithoutAlcohol" />

</owl:Class>

<owl:Class rdf:about="#WithoutMilk">
<rdfs:subClassOf rdf:resource="#Desert"/>

</owl:Class>

</rdf:RDF>

A.4 PegasusService.owl

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE uridef [

<IENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-sy ntax-ns">

<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-sche ma">

<IENTITY owl "http://www.w3.0rg/2002/07/owl">

<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema">

<IENTITY service "http://www.daml.org/services/ow I-
s/1.1/Service.owl">

<IENTITY profile "http://www.daml.org/services/ow I-
s/1.1/Profile.owl">

<IENTITY process "http://www.daml.org/services/ow I-
s/1.1/Process.owl!">

<IENTITY grounding "http://www.daml.org/services/ owl-
s/1.1/Grounding.owl!">
1>

94

<rdf:RDF
xmins:rdf="&rdf;#"
xmins:rdfs="&rdfs;#"
xmlins:owl="&owl;#"
xmlins:xsd="&xsd;#"
xmins:service="&service;#"
xmins:profile="&profile;#"
xmlns:process="&process;#"
xmins:grounding="&grounding;#"

>

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="&service;"/>
<owl:imports rdf:resource="&profile;"/>
<owl:imports rdf:resource="&process;"/>
<owl:imports rdf:resource="&grounding;"/>
</owl:Ontology>

<!-- Service description -->
<service:Service rdf:ID="PegasusServiceService">
<service:presents rdf:resource="#PegasusServicePro

<service:describedBYy rdf:resource="#PegasusService

<service:supports rdf:resource="#PegasusServiceGro
</service:Service>

<!-- Profile description -->

<profile:Profile rdf:ID="PegasusServiceProfile">
<service:isPresentedBy

rdf:resource="#PegasusServiceService"/>

<profile:serviceName
xml:lang="en">PegasusService</profile:serviceName>

<profile:textDescription
xml:lang="en">PegasusServiceService</profile:textDe

<profile:haslInput rdf:resource="#departureTime"/>

<profile:haslnput rdf:resource="#arrivalTime"/>

<profile:hasinput rdf:resource="#destination"/>

<profile:hasinput rdf:resource="#departure"/>

<profile:hasOutput rdf:resource="#cost"/>
</profile:Profile>

<!-- Process description -->
<process:AtomicProcess rdf:ID="PegasusServiceProces
<service:describes rdf:resource="#PegasusServiceSe

<process:haslInput rdf:resource="#departureTime"/>
<process:haslInput rdf:resource="#arrivalTime"/>
<process:hasinput rdf:resource="#destination"/>
<process:haslinput rdf:resource="#departure"/>

<process:hasOutput rdf:resource="#cost"/>
</process:AtomicProcess>

<process:Input rdf:ID="departureTime">

95

file"/>
Process"/>
unding"/>
scription>
SII>
rvice"/>

<process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e
eTime.owl#DepartureTime</process:parameterType>
<rdfs:label>departureTime</rdfs:label>
</process:Input>
<process:Input rdf:ID="arrivalTime">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
ime.owl#ArrivalTime</process:parameterType>
<rdfs:label>arrivalTime</rdfs:label>
</process:Input>
<process:Input rdf:ID="destination">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
ionPlace.owl#DestinationPlace</process:parameterTyp
<rdfs:label>destination</rdfs:label>
</process:Input>
<process:Input rdf:ID="departure">
<process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e
ePlace.owl#DeparturePlace</process:parameterType>
<rdfs:label>departure</rdfs:label>
</process:Input>

<process:Output rdf:ID="cost">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
#Cost</process:parameterType>
<rdfs:label>cost</rdfs:label>
</process:Output>

</rdf:RDF>

A5 THYService.owl

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE uridef [
<IENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-sy
<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-sche
<IENTITY owl "http://www.w3.0rg/2002/07/owl">
<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema">
<IENTITY service "http://www.daml.org/services/ow
s/1.1/Service.owl">
<IENTITY profile "http://www.daml.org/services/ow
s/1.1/Profile.owl">
<IENTITY process "http://www.daml.org/services/ow
s/1.1/Process.owl!">
<IENTITY grounding "http://www.daml.org/services/
s/1.1/Grounding.owl!">
1>

<rdf:RDF

xmins:rdf="&rdf;#"
xmins:rdfs="&rdfs;#"

96

xamples/Departur

xamples/ArrivalT

xamples/Destinat

e>

xamples/Departur

xamples/Cost.owl

ntax-ns">
maII>

xmins:owl="&owl;#"

xmins:xsd="&xsd;#"

xmins:service="&service;#"

xmins:profile="&profile;#"

xmins:process="&process;#"

xmins:grounding="&grounding;#"
>

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="&service;"/>
<owl:imports rdf:resource="&profile;"/>
<owl:imports rdf:resource="&process;"/>
<owl:imports rdf:resource="&grounding;"/>
</owl:Ontology>

<l-- Service description -->
<service:Service rdf:ID="THY ServiceService">
<service:presents rdf:resource="#THY ServiceProfile

<service:describedBy rdf:resource="#THY ServiceProc

<service:supports rdf:resource="#THY ServiceGroundi
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="THY ServiceProfile">
<service:isPresentedBy rdf:resource="#THY ServiceSe

<profile:serviceName

xml:lang="en">THY Service</profile:serviceName>
<profile:textDescription

xml:lang="en">THY ServiceService</profile:textDescri

<profile:haslnput rdf:resource="#duration"/>

<profile:haslinput rdf:resource="#destination"/>

<profile:hasinput rdf:resource="#departure"/>

<profile:hasOutput rdf:resource="#cost"/>
</profile:Profile>

<!-- Process description -->
<process:AtomicProcess rdf:ID="THY ServiceProcess">
<service:describes rdf:resource="#THY ServiceServic

<process:haslInput rdf:resource="#duration"/>
<process:haslInput rdf:resource="#destination"/>
<process:haslinput rdf:resource="#departure"/>

<process:hasOutput rdf:resource="#cost"/>
</process:AtomicProcess>

<process:Input rdf:ID="duration">
<process:parameterType

rdf.datatype="&xsd;#anyURI">http://localhost:8080/e

.owl#Duration</process:parameterType>
<rdfs:label>duration</rdfs:label>

</process:Input>

<process:Input rdf:ID="destination">

97

ll/>
ess"/>

ngu/>

rvice"/>

ption>

e||/>

xamples/Duration

<process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e
ionPlace.owl#DestinationPlace</process:parameterTyp
<rdfs:label>destination</rdfs:label>
</process:Input>
<process:Input rdf:ID="departure">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
ePlace.owl#DeparturePlace</process:parameterType>
<rdfs:label>departure</rdfs:label>
</process:Input>

<process:Output rdf:ID="cost">
<process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e
#Cost</process:parameterType>
<rdfs:label>cost</rdfs:label>
</process:Output>

</rdf:RDF>

A.6 AtlasJetService.owl

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE uridef [
<IENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-sy
<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-sche
<IENTITY owl "http://www.w3.0rg/2002/07/owl">
<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema">
<IENTITY service "http://www.daml.org/services/ow
s/1.1/Service.owl">
<IENTITY profile "http://www.daml.org/services/ow
s/1.1/Profile.owl">
<IENTITY process "http://www.daml.org/services/ow
s/1.1/Process.owl">
<IENTITY grounding "http://www.daml.org/services/
s/1.1/Grounding.owl">
1>

<rdf:RDF
xmins:rdf="&rdf;#"
xmins:rdfs="&rdfs;#"
xmins:owl="&owl;#"
xmins:xsd="&xsd;#"
xmins:service="&service;#"
xmins:profile="&profile;#"
xmins:process="&process;#"
xmlins:grounding="&grounding;#"

>

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="&service;"/>
<owl:imports rdf:resource="&profile;"/>

98

xamples/Destinat
e>

xamples/Departur

xamples/Cost.owl

ntax-ns">
ma">

<owl:imports rdf:resource="&process;"/>
<owl:imports rdf:resource="&grounding;"/>
</owl:Ontology>

<!-- Service description -->
<service:Service rdf:ID="AtlasJetServiceService">
<service:presents rdf:resource="#AtlasJetServicePr

<service:describedBy rdf:resource="#AtlasJetServic

<service:supports rdf:resource="#AtlasJetServiceGr
</service:Service>

<!-- Profile description -->

<profile:Profile rdf:ID="AtlasJetServiceProfile">
<service:isPresentedBy

rdf:resource="#AtlasJetServiceService"/>

<profile:serviceName
xml:lang="en">AtlasJetService</profile:serviceName>

<profile:textDescription
xml:lang="en">AtlasJetServiceService</profile:textD

<profile:haslnput rdf:resource="#departureTime"/>

<profile:haslnput rdf:resource="#arrivalTime"/>

<profile:haslinput rdf:resource="#destination"/>

<profile:hasinput rdf:resource="#departure"/>

<profile:hasOutput rdf:resource="#cost"/>
</profile:Profile>

<!-- Process description -->
<process:AtomicProcess rdf:ID="AtlasJetServiceProce
<service:describes rdf:resource="#AtlasJetServiceS

<process:haslInput rdf:resource="#departureTime"/>
<process:haslinput rdf:resource="#arrivalTime"/>
<process:hasinput rdf:resource="#destination"/>
<process:haslinput rdf:resource="#departure"/>

<process:hasOutput rdf:resource="#cost"/>
</process:AtomicProcess>

<process:Input rdf:ID="departureTime">
<process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e
DepartureTime.owl#AtlasJetDepartureTime</process:pa
<rdfs:label>departureTime</rdfs:label>
</process:Input>
<process:Input rdf:ID="arrivalTime">
<process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e
ArrivalTime.owl#AtlasJetArrivalTime</process:parame
<rdfs:label>arrivalTime</rdfs:label>
</process:Input>
<process:Input rdf:ID="destination">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
ionPlace.owl#DestinationPlace</process:parameterTyp

99

ofile"/>

eProcess"/>

ounding"/>
escription>
SSII>

ervice"/>

xamples/AtlasJet
rameterType>

xamples/AtlasJet
terType>

xamples/Destinat
e>

<rdfs:label>destination</rdfs:label>
</process:Input>
<process:Input rdf:ID="departure">
<process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Departur
ePlace.owl#DeparturePlace</process:parameterType>
<rdfs:label>departure</rdfs:label>
</process:Input>

<process:Output rdf:ID="cost">
<process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Cost.owl
#Cost</process:parameterType>
<rdfs:label>cost</rdfs:label>
</process:Output>

</rdf:RDF>

A7 KAirlinesService.owl

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE uridef [

<IENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-sy ntax-ns">

<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-sche ma">

<IENTITY owl "http://www.w3.0rg/2002/07/owl">

<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema">

<IENTITY service "http://www.daml.org/services/ow I-
s/1.1/Service.owl">

<IENTITY profile "http://www.daml.org/services/ow I-
s/1.1/Profile.owl">

<IENTITY process "http://www.daml.org/services/ow I-
s/1.1/Process.owl!">

<IENTITY grounding "http://www.daml.org/services/ owl-
s/1.1/Grounding.owl!">
1>

<rdf:RDF
xmins:rdf="&rdf;#"
xmins:rdfs="&rdfs;#"
xmins:owl="&owl;#"
xmins:xsd="&xsd;#"
xmins:service="&service;#"
xmins:profile="&profile;#"
xmlns:process="&process;#"
xmins:grounding="&grounding;#"

>

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="&service;"/>
<owl:imports rdf:resource="&profile;"/>
<owl:imports rdf:resource="&process;"/>
<owl:imports rdf:resource="&grounding;"/>
</owl:Ontology>

100

<l-- Service description -->
<service:Service rdf:ID="KAirlinesServiceService">
<service:presents rdf:resource="#KAirlinesServiceP

<service:describedBy
rdf:resource="#KAirlinesServiceProcess"/>

<service:supports rdf:resource="#KAirlinesServiceG
</service:Service>

<!-- Profile description -->

<profile:Profile rdf:ID="KAirlinesServiceProfile">
<service:isPresentedBy

rdf:resource="#KAirlinesServiceService"/>

<profile:serviceName
xml:lang="en">KAirlinesService</profile:serviceName

<profile:textDescription
xml:lang="en">KAirlinesServiceService</profile:text

<profile:hasinput rdf:resource="#departureTime"/>

<profile:haslnput rdf:resource="#arrivalTime"/>

<profile:haslnput rdf:resource="#destination"/>

<profile:haslnput rdf:resource="#departure"/>

<profile:hasOutput rdf:resource="#kAirlinesReceipt
</profile:Profile>

<!-- Process description -->
<process:AtomicProcess rdf:ID="KAirlinesServiceProc
<service:describes rdf:resource="#KAirlinesService

<process:haslInput rdf:resource="#departureTime"/>
<process:haslInput rdf:resource="#arrivalTime"/>
<process:haslInput rdf:resource="#destination"/>
<process:hasinput rdf:resource="#departure"/>

<process:hasOutput rdf:resource="#kAirlinesReceipt
</process:AtomicProcess>

<process:Input rdf:ID="departureTime">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
eTime.owl#DepartureTime</process:parameterType>
<rdfs:label>departureTime</rdfs:label>
</process:Input>
<process:Input rdf:ID="arrivalTime">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
ime.owl#ArrivalTime</process:parameterType>
<rdfs:label>arrivalTime</rdfs:label>
</process:Input>
<process:Input rdf:ID="destination">
<process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e
ionPlace.owl#DestinationPlace</process:parameterTyp
<rdfs:label>destination</rdfs:label>
</process:Input>

101

rofile"/>

rounding"/>

>

Description>

||/>

ess">
Service"/>

||/>

xamples/Departur

xamples/ArrivalT

xamples/Destinat
e>

<process:Input rdf:ID="departure">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
ePlace.owl#DeparturePlace</process:parameterType>
<rdfs:label>departure</rdfs:label>
</process:Input>

<process:Output rdf:ID="kAirlinesReceipt">
<process:parameterType

rdf:datatype="&xsd;#anyURI">http://localhost:8080/e

sReceipt.owl#KAirlinesReceipt</process:parameterTyp
<rdfs:label>cost</rdfs:label>

</process:Output>

</rdf:RDF>

A.8 HiltonHotelService.owl

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE uridef [
<IENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-sy
<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-sche
<IENTITY owl "http://www.w3.0rg/2002/07/owl">
<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema">
<IENTITY service "http://www.daml.org/services/ow
s/1.1/Service.owl">
<IENTITY profile "http://www.daml.org/services/ow
s/1.1/Profile.owl">
<IENTITY process "http://www.daml.org/services/ow
s/1.1/Process.owl">
<IENTITY grounding "http://www.daml.org/services/
s/1.1/Grounding.owl">
1>

<rdf:RDF
xmins:rdf="&rdf;#"
xmins:rdfs="&rdfs;#"
xmlins:owl="&owl;#"
xmins:xsd="&xsd;#"
xmins:service="&service;#"
xmins:profile="&profile;#"
xmins:process="&process;#"
xmlins:grounding="&grounding;#"

>

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="&service;"/>
<owl:imports rdf:resource="&profile;"/>
<owl:imports rdf:resource="&process;"/>
<owl:imports rdf:resource="&grounding;"/>
</owl:Ontology>

<l-- Service description -->

102

xamples/Departur

xamples/KAirline
e>

ntax-ns">
ma">

<service:Service rdf:ID="HiltonHotelServiceService"
<service:presents rdf:resource="#HiltonHotelServic

<service:describedBy
rdf:resource="#HiltonHotelServiceProcess"/>

<service:supports
rdf:resource="#HiltonHotelServiceGrounding"/>
</service:Service>

<!-- Profile description -->

<profile:Profile rdf:ID="HiltonHotelServiceProfile"
<service:isPresentedBy

rdf:resource="#HiltonHotelServiceService"/>

<profile:serviceName
xml:lang="en">HiltonHotelService</profile:serviceNa

<profile:textDescription
xml:lang="en">HiltonHotelServiceService</profile:te

<profile:haslnput rdf:resource="#arrivalTime"/>

<profile:haslnput rdf:resource="#leavingTime"/>

<profile:haslnput rdf:resource="#place"/>

<profile:haslnput rdf:resource="#roomType"/>

<profile:hasOutput rdf:resource="#cost"/>
</profile:Profile>

<!-- Process description -->

<process:AtomicProcess rdf:ID="HiltonHotelServicePr
<service:describes

rdf:resource="#HiltonHotelServiceService"/>

<process:hasinput rdf:resource="#arrivalTime"/>
<process:haslnput rdf:resource="#leavingTime"/>
<process:haslInput rdf:resource="#place"/>
<process:hasinput rdf:resource="#roomType"/>

<process:hasOutput rdf:resource="#cost"/>
</process:AtomicProcess>

<process:Input rdf:ID="arrivalTime">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
ime.owl#ArrivalTime</process:parameterType>
<rdfs:label>duration</rdfs:label>
</process:Input>
<process:Input rdf:ID="leavingTime">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
ime.owl#LeavingTime</process:parameterType>
<rdfs:label>destination</rdfs:label>
</process:Input>
<process:Input rdf:ID="place">
<process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e
[#Place</process:parameterType>
<rdfs:label>departure</rdfs:label>
</process:Input>

103

eProfile"/>

me>

xtDescription>

ocess'>

xamples/ArrivalT

xamples/LeavingT

xamples/Place.ow

<process:Input rdf:ID="roomType">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
.owl#RoomType</process:parameterType>
<rdfs:label>departure</rdfs:label>
</process:Input>

<process:Output rdf:ID="cost">
<process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e
#Cost</process:parameterType>
<rdfs:label>cost</rdfs:label>
</process:Output>

</rdf:RDF>

A.9 HavasShuttleService.owl

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE uridef [
<IENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-sy
<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-sche
<IENTITY owl "http://www.w3.0rg/2002/07/owl">

<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema">

<IENTITY service "http://www.daml.org/services/ow
s/1.1/Service.owl">

<IENTITY profile "http://www.daml.org/services/ow
s/1.1/Profile.owl">

<IENTITY process "http://www.daml.org/services/ow
s/1.1/Process.owl">

<IENTITY grounding "http://www.daml.org/services/
s/1.1/Grounding.owl">
1>

<rdf:RDF
xmins:rdf="&rdf;#"
xmins:rdfs="&rdfs;#"
xmlins:owl="&owl;#"
xmins:xsd="&xsd;#"
xmins:service="&service;#"
xmins:profile="&profile;#"
xmins:process="&process;#"
xmlins:grounding="&grounding;#"

>

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="&service;"/>
<owl:imports rdf:resource="&profile;"/>
<owl:imports rdf:resource="&process;"/>
<owl:imports rdf:resource="&grounding;"/>
</owl:Ontology>

<l-- Service description -->

104

xamples/RoomType

xamples/Cost.owl

ntax-ns">
ma">

<service:Service rdf:ID="HavasShuttleServiceService
<service:presents
rdf:resource="#HavasShuttleServiceProfile"/>

<service:describedBy
rdf:resource="#HavasShuttleServiceProcess"/>

<service:supports
rdf:resource="#HavasShuttleServiceGrounding"/>
</service:Service>

<!-- Profile description -->

<profile:Profile rdf:ID="HavasShuttleServiceProfile
<service:isPresentedBy

rdf:resource="#HavasShuttleServiceService"/>

<profile:serviceName
xml:lang="en">HavasShuttleService</profile:serviceN

<profile:textDescription
xml:lang="en">HavasShuttleServiceService</profile:t

<profile:haslnput rdf:resource="#airport"/>

<profile:haslInput rdf:resource="#destinationHotel"
<profile:haslnput rdf:resource="#departureTime"/>

<profile:hasOutput rdf:resource="#cost"/>
</profile:Profile>

<!-- Process description -->

<process:AtomicProcess rdf:ID="HavasShuttleServiceP
<service:describes

rdf:resource="#HavasShuttleServiceService"/>

<process:haslnput rdf:resource="#airport"/>

<process:haslnput rdf:resource="#destinationHotel"
<process:haslInput rdf:resource="#departureTime"/>

<process:hasOutput rdf:resource="#cost"/>
</process:AtomicProcess>

<process:Input rdf:ID="airport">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
owl#Airport</process:parameterType>
<rdfs:label>airport</rdfs:label>
</process:Input>
<process:Input rdf:ID="destinationHotel">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
ionPlace.owl#DestinationPlace</process:parameterTyp
<rdfs:label>destinationHotel</rdfs:label>
</process:Input>
<process:Input rdf:ID="departureTime">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
eTime.owl#DepartureTime</process:parameterType>
<rdfs:label>departureTime</rdfs:label>
</process:Input>

105

ame>

extDescription>

/>

rocess">

/>

xamples/Airport.

xamples/Destinat
e>

xamples/Departur

<process:Output rdf:ID="cost">
<process:parameterType
rdf.datatype="&xsd;#anyURI">http://localhost:8080/e
#Cost</process:parameterType>
<rdfs:label>cost</rdfs:label>
</process:Output>

</rdf:RDF>

106

xamples/Cost.owl

