

SEMANTIC PROCESSES FOR CONSTRUCTING COMPOSITE WEB
SERVICES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

KARAN İ KARDAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2007

Approval of the thesis:

SEMANTIC PROCESSES FOR CONSTRUCTING COMPOSITE WEB
SERVICES

submitted by KARAN İ KARDA Ş in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay
Head of Department, Computer Engineering

Asst. Prof. Dr. Pınar Şenkul
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering Dept., METU

Asst. Prof. Dr. Pınar Şenkul
Computer Engineering Dept., METU

Assoc. Prof. Dr. Nihan Çiçekli
Computer Engineering Dept., METU

Asst. Prof. Dr. Hürevren Kılıç
Computer Engineering Dept., Atılım Uni.

M.Sc. Arslan Arslan
Manager, LOGO

Date: 27.08.2007

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name: Karani Kardaş

Signature :

iii

iv

ABSTRACT

SEMANTIC PROCESSES FOR CONSTRUCTING COMPOSITE WEB
SERVICES

Kardaş, Karani

M.Sc., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Pinar Senkul

August 2007, 106 pages

In Web service composition, service discovery and combining suitable services

through determination of interoperability among different services are important

operations. Utilizing semantics improves the quality and facilitates automation of

these operations. There are several previous approaches for semantic service

discovery and service matching. In this work, we exploit and extend these semantic

approaches in order to make Web service composition process more facilitated, less

error prone and more automated. This work includes a service discovery and service

interoperability checking technique which extends the previous semantic matching

approaches. In addition to this, as a guidance system for the user, a new semantic

domain model is proposed that captures semantic relations between concepts in

various ontologies.

Keywords: Semantic Web Services, Semantic Web Service Composition, Semantic

Matching, Semantic Mapping, Semantic Inference

v

ÖZ

BİRLEŞİK WEB SERVİSLERİNİN OLUŞTURULABİLMESİ İÇİN
ANLAMSAL İŞLEMLER

Kardaş, Karani

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Pınar Şenkul

Ağustos 2007, 106 sayfa

Web servislerinin birleşiminde, servis arama ve farklı servisler arasında birlikte

çalışabilirlik belirlenerek uygun servislerin birleştirilmesi önemli işlerdir.

Anlamsallık birleşik servis kalitesini arttırır ve bu işlemlerin otomasyonunu

kolaylaştırır. Anlamsal servis arama ve servis eşleme için çeşitli yaklaşımlar vardır.

Bu çalışma, ihtiyaçları ve kısıtları karşılamak amacıyla, bir çok farklı web

servisinin bir araya getirilerek birleşik Web servislerinin anlamlı bir şekilde

oluşturulabilmesi için yapılan çalışmaları anlatmaktadır. Bu çalışmada; Web servis

birleşimi sürecini daha kolay, daha az hataya yatkın ve daha otomatik hale getirmek

için önceki anlamsal yaklaşımları kullandık ve genişlettik. Bu çalışma önceki

anlamsal eşleme yöntemlerini genişleten servis arama ve servis birlikte çalışabilirlik

yöntemlerini içerir. Bunlara ek olarak, kullanıcıya yol gösterme amacıyla çeşitli

ontolojilerde yer alan kavramlar arasındaki anlamsal ili şkileri kapsayan yeni bir

anlamsal alan modeli önerilmiştir.

Anahtar Kelimeler: Anlamsal Web Servisleri, Anlamsal Web Servisi Birleşimi,

Anlamsal Eşleme, Anlamsal Çıkarsama

vi

To My Wife and Family

vii

ACKNOWLEDGMENTS

I would like to thank my wife and family for their great support and also I would

like to thank my thesis advisor Assoc. Prof. Pınar Şenkul for her guidance and help

throughout my research.

viii

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ .. v

ACKNOWLEDGMENTS..vii

LIST OF FIGURES.. x

CHAPTERS

1. INTRODUCTION.. 1

2. PROBLEM ANALYSIS .. 4

2.1 Web Service ... 4

2.2 Web Service Composition.. 6

2.3 Current Problems.. 8

2.4 Semantic Web .. 9

2.5 Semantic Web Services.. 12

2.6 Semantic Web Service Composition.. 14

2.7 Related Works.. 14

3. SEMANTIC PROCESSES FOR CONSTRUTING COMPOSITE WEB

SERVICES... 19

3.1 Semantic Wrapper Layer... 19

3.2 Semantic Matching.. 22

3.2.1 Concept Matching .. 24

3.2.2 Service Matching.. 33

3.3 Semantic Web Service Composability Check.. 44

3.4 Semantic Mapping.. 51

3.5 Semantic Domain Model.. 57

3.6 Implementation Issues.. 60

3.6.1 Created Packages.. 60

3.6.1.1 Ontology package... 61

3.6.1.2 Service package.. 63

3.6.1.3 Semantic Matching package... 64

ix

3.6.1.4 Semantic Mapping package ... 65

3.6.1.5 Semantic Inference package... 66

3.6.1.6 User Interface package... 67

3.6.1.7 Other Important Classes... 67

3.6.2 Used Technologies ... 67

4. EVALUATION.. 68

4.1 Semantic Matching Evaluation ..69

4.1.1 Concept Matching Evaluation... 69

4.1.2 Service Matching Evaluation .. 70

4.2 Web Service Composition Evaluation ... 71

5. FUTURE WORK AND CONCLUSION... 73

REFERENCES... 75

APPENDIX A

A.1 House.owl... 78

A.2 Travel.owl .. 80

A.3 Meal.owl... 92

A.4 PegasusService.owl .. 94

A.5 THYService.owl... 96

A.6 AtlasJetService.owl .. 98

A.7 KAirlinesService.owl ... 100

A.8 HiltonHotelService.owl.. 102

A.9 HavasShuttleService.owl ... 104

x

LIST OF FIGURES

Figure 2.1 Structure of Web Service [23] .. 5

Figure 2.2 Traveling Composite Service.. 7

Figure 2.3 Structure of OWL-S [15] .. 13

Figure 3.1 Semantic Service Querying .. 21

Figure 3.2 Ontology Model for Food and Kebab concepts...................................... 23

Figure 3.3 Sample Ontology Model... 27

Figure 3.4 Sample Ontology Model... 27

Figure 3.5 Sample Ontology Model... 28

Figure 3.6 Sample Ontology Model... 28

Figure 3.7 Ontology Model for “Floor” concept.. 31

Figure 3.8 Ontology Model for “Room” concept .. 32

Figure 3.9 Structure of “ArrivalTime” concept ... 40

Figure 3.10 Structure of “DepartureTime” concept ... 40

Figure 3.11 Structure of “DeparturePlace” concept... 40

Figure 3.12 Structure of “DestinationPlace” concept.. 41

Figure 3.13 Structure of “THYService” service .. 41

Figure 3.14 Structure of “PegasusService” service.. 42

Figure 3.15 Structure of “AtlasJetService” service.. 42

Figure 3.16 Ontology Model for AtlasJetArrivalTime and AtlasJetDepartureTime

concepts.. 43

Figure 3.17 Structure of Traveling Composite Service.. 45

Figure 3.18 Structure of KAirlinesService... 46

Figure 3.19 Structure of KAirlinesReceipt concept ... 46

Figure 3.20 Structure of HiltonHotelService ...46

Figure 3.21 Structure of LeavingTime concept ... 47

Figure 3.22 Structure of HavasShuttleService ... 47

Figure 3.23 Semantic Mapping .. 52

Figure 3.24 Mapping from Price to Fiyat... 54

xi

Figure 3.25 A screen of Concept Selection.. 54

Figure 3.26 A screen of Transformation addition.. 55

Figure 3.27 Semantic Domain Model .. 58

Figure 3.28 Created Packages .. 61

Figure 3.29 Class Diagram of Ontology Package.. 62

Figure 3.30 Class Diagram of Service Package ... 63

Figure 3.31 Class Diagram of Semantic Matching Package.................................... 64

Figure 3.32 Class Diagram of Semantic Mapping Package..................................... 65

Figure 3.33 Class Diagram of Semantic Inference Package 66

Figure 4.1 Time required for service composition processes................................... 72

1

CHAPTER 1

INTRODUCTION

Today there is large number of software requirements for enterprises. These

requirements are various and complex. To become more competitive, enterprises

generally prefer to concentrate on only specific subjects, therefore there is a

tendency to use outsourcing approaches. Service oriented architectures become

more popular in order to implement outsourcing technique in information systems.

Services that are responsible for specific operations can not cover today's complex

requirements. Therefore services come together to form composite services. A

composite service is not transparent to the user; it acts like a simple service and

covers complex business requirements.

In service composition process, finding related services and combining suitable

services are important required operations. Without semantic information, service

composition requires more human intervention and becomes a harder and error

prone process.

Main objective of this thesis study is to increase the service composition quality and

to automate service composition process by using semantic techniques. For these

purposes, within the scope of this thesis, a semantic wrapper layer structure around

the service repository, a set of semantic matching algorithms and a semantic domain

model are proposed.

Semantic wrapper layer on the service repository is used in service discovery. It

helps to discover services that are not only syntactically but also semantically

compatible with the service requirements.

2

Semantic matching algorithms that are proposed in this work include a concept

matching algorithm, a service matching algorithm and a service composability

checking algorithm. Proposed concept matching algorithm, which is used to find

similarities between concepts, extends the previous basic semantic matching

algorithms with intersection and semantic mapping techniques. Proposed service

matching algorithm is used in order to find similarities between semantic Web

services. Proposed service composability checking algorithm is used in order to

check the interoperability between semantic Web services.

Proposed semantic domain model is developed in order to extract more semantic

information from different ontology models. It is also used for guiding the user

when modeling the composition.

All of these proposed semantic processes are used in a Web service composition

framework named Composite Web Service Framework (CWSF) [7, 8]. CWSF is a

semi-automated Web service composition framework which gains semantic

capabilities by using the proposed processes.

CWSF is an environment that is used for modeling and construction of service

compositions under user’s constraints. It provides modeling the Web services and

resource allocation constraints in order to find executable compositions fulfilling

these constraints. CWSF lets users to define compositions in a workflow manner

according to user needs and constraints.

The proposed semantic processes in the thesis are used in CWSF for composition

modeling, service discovery and service interoperability checking operations. In

CWSF, user defines service templates by using the proposed semantic domain

model as a guide. The user creates composition flow with defining service

templates. When user selects a domain, actions which can be done in the domain are

presented to the user. The user selects some actions as service templates. Required

3

concepts of the selected action are listed to the user by the proposed semantic

domain model for definition of user constraints. The user defines constraints for

some of the attributes of required concepts. According to the constraints given by

the user, candidate services are obtained. Proposed semantic wrapper layer and

proposed matching algorithms are used to find related semantic Web services.

Constraint checking is done by using constraint programming techniques. Once

appropriate concrete services are selected, compositions are constructed by

considering composabilities of candidate services by using the proposed semantic

service composability checking algorithm.

Proposed semantic processes are used for finding semantic relations to make

composition processes more automated. They cover all semantic requirements of

CWSF. Detailed information about CWSF application is given in [7] and [8].

The structure of the thesis is as follows: In chapter two, background information

and current problems of Web service composition that the thesis aims to solve, are

presented. In addition, related studies about the subject are considered in chapter

two. In chapter three, proposed methods and main contributions are shown in detail.

Experiments and efficiency issues of the proposed algorithms are discussed in

fourth chapter. Lastly in chapter five, conclusion and future work are given.

4

CHAPTER 2

PROBLEM ANALYSIS

In this chapter, basic background information about the research subject is given.

Deficiencies of today’s applications about the subject are explained and problems

are stated. Firstly, in section 2.1 and 2.2, basic information about Web Services and

Web Service Compositions are given. In section 2.3, current problems are stated.

Basic information about Semantic Web, Semantic Web Services and Semantic Web

Service Composition are given in sections 2.4, 2.5 and 2.6 respectively. Finally,

related works are discussed in section 2.7.

2.1 Web Service

Web has become an inevitable part of our daily life. It contains a large amount of

data. In addition to this, it has become a medium where users seek services and

applications are provided to the users. Therefore, Web services and service oriented

architectures are gaining popularity.

Web services can be described as standard, modular, self-contained and self-

describing applications across Web. Figure 2.1 shows the basic Web service

structure [23]. As it is shown in the figure, stakeholders in Web service usage

process are service provider, service requester and service broker. Service provider

provides a general purpose operation. Service requesters are service users. Service

broker is service registry which holds services and helps service requesters to find

related services. A sample scenario is as follows. A service provider publishes their

service advertisements to the service broker. A service requester queries service

broker to find a service that the service requester needs. The service broker sends

service provider’s address to the service requester. Service requester can access the

service provider and can begin to communicate with the service provider by using

this address.

5

Figure 2.1 Structure of Web Service [23]

Web services standardize ways of Web based applications using simple but

effective technology infrastructure. Basic technology of Web services includes

XML (eXtensible Markup Language) [25], UDDI (Universal Description Discovery

and Integration) [21], WSDL (Web Service Description Language) [24] and SOAP

(Simple Object Access Protocol) [20]. As shown in Figure 2.1, these core Web

service structures allow businesses to communicate with each other without

knowing detailed structure of each other’s systems.

XML is simple, flexible text format which is used for data exchanging. Its primary

purpose is to facilitate the sharing of data across different information systems in a

human and machine readable format. All communication methods of Web service

are in XML format. Therefore different Web services from different sources can

communicate with each other easily. Web services are platform independent; they

are independent from any operating system or programming language. For example,

Web service applications which are created with using Java programming language

[6] can communicate with Web service applications which are created with using

C# programming language. Also Web service applications which are running on

Windows operating system can communicate with Web service applications

running on UNIX operating system.

6

UDDI is a platform independent, XML based industry standard Web service

registry. Business organisations describe their operations across the Web and find

one another on the Web with using UDDI. Companies can register and/or search

Web services according to their businesses with using UDDI. UDDI defines a

protocol for publishing and discovering Web services. It can be considered as a

directory for storing Web service information. It provides a keyword based or

category based search for Web services. Operation based discovery is not provided.

UDDI describes businesses by their physical attributes such as name and address

and the services that they provide. With the help of the UDDI registries, Web

services can be found and then used. The role of the registry includes both storing

the advertisements of capabilities and performing a match between the request and

the advertisements.

WSDL and SOAP are also XML based. WSDL describes Web service in a

structured way. The signature of the service operation and binding methods of

service are defined in WSDL. WSDL files are easy to use and maintain. SOAP is an

extensible message format in which parameter transferring protocol for Web

services are defined. SOAP is a simple protocol which lets Web service applications

exchange information. SOAP defines information exchange between Web service

applications in a platform-independent manner.

2.2 Web Service Composition

The Web is moving from being a collection of pages toward a collection of services

that interoperate through the Internet [18]. In today’s world, users have complex

requirements which may not be solved by simple atomic applications. Different

applications from different vendors need to execute together to implement complex

tasks for handling complex requirements. Organisations may have a capability of

specific concerns. They may have a set of Web services to serve their implemented

businesses. These Web services which handle a specific task, compose complex

services called composite services.

7

A composite service is a set of services (simple and/or composite) working together

to perform a goal. For example "Car Broker Composite Service” and “Traveling

Composite Service” can be considered as composite services. "Car Broker

Composite Service” is complete “car sale” operation which includes car dealer,

financing and insurance simple (or composite) services. “Traveling Composite

Service” includes plane reservation, hotel booking and shuttle reservation

operations. Figure 2.2 shows the template of Traveling Composite Service. It

includes Airlines Service, Hotel Service and Shuttle Service in an ordered way. It

acts as a simple service but delegation to the actual service is done when needed.

Figure 2.2 Traveling Composite Service

Web service composition operation requires interoperability of Web services which

takes part in the composition. According to the position in the composition, each

service sould be interoperable between the previous and the next service. Parameter,

business, constraint compatibilities can be given as examples of interoperability.

The composition of Web services requires finding Web services based on their

capabilities and the recognition of these services that can be matched together to

create a composition. In order to perform automated Web service composition, a

reasoning system must order, combine and execute Web services that collectively

achieve the user’s objective. Main goal of this process is dynamic binding of Web

services to existing business processes. Web service composition operation includes

automatic selection, interoperation, composition and execution of Web services

processes. Selection operation involves service discovery process. In this operation,

appropriate services are found in a set of candidate Web services for each task

8

according to user requirements and constraints. In interoperation process,

interoperability of candidate Web services for each task is considered according to

the position of the services in composition. Composition process is constructing a

runnable complex Web service in such a way that interoperable set of services are

selected and ordered. Execution process is run time behavior of composition. Web

services are executed according to their orders in the composition.

2.3 Current Problems

Web service composition process involves discovery of the services that meets the

requirements of the composition and determination of the interoperability among

the services. It is a difficult and error prone process which generally requires human

intervention. The difficulty in composition generally stems from a basic set of

problems. In this part, some of the well-known problems in composition process are

discussed.

As it is mentioned in “Web Service Composition” section (section 2.2), while

composite service is being created, many simple or composite services are selected

for each composition task. Since there may be many candidate Web services for

each task, it is difficult for the user to select suitable ones according to his

requirements and constraints. In addition to this, user may not have the full

information about the composite service that he requires. Without detailed domain

information, the user can not find proper services easily. A guiding mechanism may

be needed to handle this deficiency.

Each service of a composite service may be from different service providers that

use different information system structures such as processes and models. This

makes the interoperability of services an important problem. In order to resolve this

problem, a common metadata in machine understandable form may be used.

However, in some cases it is hard to use common meta model in different

organizations since each organization has different processes and its own legacy

systems. In order to solve this kind of meta model distinction, mappings are needed

to define between different meta models.

9

It is also difficult to make Web service composition process automatic by using the

current Web service technologies. Basic Web service technologies which are UDDI,

WSDL and SOAP are based on XML which is only machine readable and hence the

semantics of a business model can not be fully expressed. Therefore, Web service

composition process requires the use of semantic languages like OWL [14] and

OWL-S [15]. In addition to this, currently UDDI does not provide means for

describing metadata and hence it allows only a keyword-based search. In addition,

UDDI is not suitable to define relationships among services, so it is hard to identify

complementary services. It is also hard to form a relationship between the service

and required properties to discover services according to product instance

information like “I want a car but its model should be Scoda Fabia”. Also it is hard

to define properties such as second hand car for the related services Therefore, it

needs to be augmented with additional properties in order to facilitate the

composition process.

Similar to UDDI, WSDL has also deficiencies for an automated composition

process. In WSDL, only the signature of the service operation can be defined.

Service meaning and complex parameters meanings can not be defined in WSDL.

There is not any structure in WSDL to define service metadata. Therefore, in order

to improve WSDL, new service definition methods with better machine

understandability must be added.

As described above, the basic reason of all these problems is the deficiency of

semantics for services. Lack of semantics leads to more human intervention to

composition process. By incorporating semantic information into composition

process, computers can understand services, their parameters, user requirements and

constraints so that compositions can be constructed automatically or semi-

automatically and human intervention is decreased.

2.4 Semantic Web

Current Web is machine readable, not machine understandable. As a solution for

this deficiency of current Web, semantic Web is considered as second generation

10

Web. Semantic Web is an extension of the current Web in which information is

given in a well defined meaning form, for this reason, it is called as second (or next)

generation Internet. This enables computers and human to work in cooperation.

Semantic Web is based on a vision of Tim Berners-Lee, the inventor of the World

Wide Web. The effort behind the Semantic Web is to enrich the Web with machine

understandable information by adding semantic annotation to Web documents. With

the help of semantics, Web becomes machine understandable and software agents,

sophisticated search engines and Web services use the Web more easily. Semantic

Web provides conversion of the Web from its unorganized and human-readable

form into a machine-understandable form. Search engines and other programs can

understand the content of Web pages and site with the help of semantic. Since

semantic Web makes information more structural, information searching and

information extracting becomes easier and meaningful. Semantic Web transforms

the Web into a medium through which data can be shared, understood, and

processed by automated tools.

The ultimate goal of semantic Web is full automation. Semantic Web performs this

automation by giving meaning to each Web resources. Content of the Semantic

Web is represented by ontologies. With using ontologies, all concepts in the Web

are defined in a computer understandable format.

Ontology is shared conceptualization of domains. Meaning of data is given through

ontology which is used for semantic representation. Ontology is a schema for a

domain. Domain concepts and relations between concepts are defined in ontology

documents. In short, it is used to represent metadata of domain. Ontologies

represent a shared agreement on the meaning on the terms. They provide more

automated reasoning power. If applications use common ontologies, they can

exchange semantic information. A common ontology defines the vocabulary among

agents.

Ontology documents define and relate concepts. An ontology is generally composed

of classes, properties of classes and relations between classes. Classes are formal

11

descriptions of concepts in a domain. Properties are features and attributes of

concepts. Relations are taxonomies (inheritance, disjoint relations) between

concepts. An ontology provides a vocabulary that describes a domain of interest and

a specification of the meaning of terms used in the vocabulary. Notion of ontology

encompasses several data/conceptual models, for example, classifications, database

schemas, or fully axiomatized theories. Ontologies can be used in every field in

computer applications such as information integration, electronic commerce,

semantic Web services, social networks, and so on.

In order to define ontology documents ontology languages are used. OWL (Web

Ontology Language) [14] can be cited as the mostly used ontology language. It is

based on XML, however it extends XML to describe not only the structure of the

data with elements and attributes, but also to describe the data itself.

Content of a sample OWL file is shown below. In this file “Price” concept is

defined as it has a string attribute and it has a relation to the concept “Unit” which is

defined in another OWL file.

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syn tax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schem a#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.owl-ontologies.com/unnamed.ow l#"
 xml:base="http://www.owl-ontologies.com/unnamed.o wl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Price"/>
 <owl:DatatypeProperty rdf:ID="value">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#stri ng"/>
 <rdfs:domain rdf:resource="#Price"/>
 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="unit">
 <rdfs:domain rdf:resource="#Price"/>
 <rdfs:range
rdf:resource="file:///E://calisma/apiDeneme/sampleO wl-
SDocuments/actualServices/Unit.owl#Unit"/>
 </owl:ObjectProperty>

</rdf:RDF>

12

Domains, concepts and relations between the concepts are defined in OWL

documents, as shown above.

2.5 Semantic Web Services

A Web service that has a semantic model is called a semantic Web service.

Semantic Web services are defined in semantic models so that they can be searched

and found more correctly according to user needs. This facilitates the

interoperability of the services, as well. Therefore, automated composition of

semantic Web services that includes automatic selection, composition,

interoperation and execution of Web services, becomes easier and more reliable.

If Web services publish their metadata by using common ontology documents, Web

services can be compared more easily, their description becomes more machine

understanable and software agents can easily use these services. Ontologies can be

used to describe services so that agents can advertise and discover services

according to a semantic specification of functionality. To achieve more automation,

standardization of ontologies, message content and message protocols will be

necessary.

Defining domain specific ontologies facilitates integration of Web services.

Therefore Web services are modeled and defined in ontology documents. OWL-S

(Semantic Markup for Web services) [15] can be given as sample service ontology

language. OWL-S expresses Web service entities. Restrictions and constraints on

service descriptions can be expressed in OWL-S. It also provides the shared

semantics needed to achieve interoperability. OWL-S descriptions are amenable to

automated reasoning. It provides appropriate support for data types. Flexibility is

provided by support for loosely structured descriptions. Software system (agent)

can read and utilize the OWL-S interface without human assistance, because OWL-

S provides semantic representation. It is suitable for the automatic discovery and

composition of services.

Main parts of OWL-S file are service profile, service model and service grounding.

Service profile describes what the service does. It is used for advertising and

13

discovering services. It represents the functionalities of Web services. Service

model describes how the service works. It is the detailed description of a service’s

operation. Service grounding specifies the details of how an application can access

a service. Communication protocol is described in this part. It provides details on

how to interoperate with a service. The structure of OWL-S is shown in Figure 2.3

[15].

Figure 2.3 Structure of OWL-S [15]

Content of sample OWL-S files are shown in Appendix A.

OWL and OWL-S are used to describe Web services semantically. In OWL,

businesses are defined; in OWL-S, services that use these business concepts are

modeled. This provides better support for service discovery, composition,

invocation, choreography and monitoring. With the help of these ontology

documents Web services can find each other automatically and interoperate

autonomously.

14

2.6 Semantic Web Service Composition

As it is stated in Semantic Web section (section 2.4), semantic Web makes the Web

machine understandable. Therefore, composition of Web services can be done in an

automated way in semantic Web. If Web services, requirements and constraints are

defined semantically, computers can compose Web services according to

requirements and constraints with using automatic reasoning and inference

techniques.

As it is mentioned in section 2.2, the composition of Web services requires finding

Web services based on their capabilities and the recognition of these services that

can be matched together to create a composition. Besides Web service discovery, it

includes invocation, composition and interoperation, and Web service execution

processes. In Semantic Web service composition, the ultimate goal is to fully

automate all of these processes.

There are four conceptually separate phases in composition of semantic Web

services. These are Specification, Matchmaking, Selection, and Generation.

Specification is the definition of composition by the user. Matchmaking is

composite plan generation. Selection is selection of best plan according to quality of

service compositions. Generation is generation of the executable code.

2.7 Related Works

There are several related works in the literature on semantic modeling for web

service composition [12, 19, and 22], semantic service repositories [10, 17] and

service matching [9, 18]. In this section these related works are examined. Their

contributions to problems that are stated in Section 2.3 are determined.

In [12], an ontology based Web service composition method is proposed. Instead of

a standard Web ontology language such as OWL-S, they propose a new ontology

model in which service model is defined over WSDL for Web service composition

in order to define service attributes such as message, service, quality, operation and

parameter. However this new ontology brings standardization problems.

15

Matchmaking is done by Matchmaker module according to predefined

composability rules. Matchmaker module takes the specification of composition as

input and generates composition plans. Two services are composable if their

predefined attributes such as purposes, domains, messages, operation modes and

bindings are compatible. Messages of services are compatible if number of

parameters, their data types, business roles, and units of services are same. Each

created composition is stored as stored template. Also compositions defined by

domain experts are considered as stored templates. While a new composition is

created, it is examined whether the composition is a subgraph of a stored template.

If so, it is decided that the composition is useful.

Best composition plan is selected from many composition plans according to

quality properties such as fee, security, privacy, time, availability and latency.

Composite service is generated from the selected plan.

Matchmaking process needs much processing time. Therefore, according to their

performance tests, most of the time is spent on checking composability in

composition process.

In METEOR-S [22], a Web service composition framework with features such as

dynamic failure handler and reconfiguration is proposed. This framework is

proposed for configuring and executing dynamic Web processes. Web processes are

workflows created using Web services. They correspond to the Web service

compositions in our study. They use integer linear programming approach as

composition method. They define semantic model for functional capabilities which

describe service and non functional capabilities which describe service constraints

of Web services.

This study contains failure handling mechanism which is not considered in the

thesis. In cases of Web service failures, an approach is proposed which can

16

reconfigure the process at run time, without violating the process constraints. Parts

of the process may be reconfigured in the case of error during invocation.

To handle data mismatches between different suppliers, it includes an ontology

mediator which handles the mapping between ontologies. They also implement

interaction protocol mediator for different interaction (business) protocols of

different suppliers. Our work puts emphasis on semantic service discovery,

matching and modeling guidance in composition context.

In [19], a semi automatic composition generation method is proposed. The

generated composition is directly executable through the WSDL grounding of the

services. It has capability to find matching services. The matching of two services is

done using the information in the service profile. It is an OWL reasoner built on

Prolog.

In [10, 17], it is shown that OWL-S and UDDI complement each other. In order to

add semantic capabilities, a mapping is defined between OWL-S document and

UDDI registry record. They map some fields between OWL-S document and UDDI

registry record. OWL-S / UDDI translator module perform this operation. However

they do not propose a complete mechanism for semantic queries. In this work, we

propose a different approach for adding semantic capabilities for Web service

registry.

In [18], a new semantic similarity algorithm is proposed. It defines various degrees

on similarity on the basis of the inheritance relation in ontology model. The result

of the match depends on the degree of similarity between the concepts in the match.

The degree of match is determined by the minimal distance between concepts in the

taxonomy tree. There are four kinds of similarity levels. Exact matches are

preferrable, Plug-in matches are the next best level. Subsumes is the third best level.

Fail is the lowest level and it represents an unacceptable result. The proposed

semantic matching operation in our study is based on this algorithm. We extend this

matching approach with new features.

17

In [9], Racer Description Logic reasoner is used for semantic matching. Description

Logic reasoner is used to compare ontology based service descriptions. Description

Logics are knowledge representation formalisms. They are based on the notion of

concepts (unary predicates, classes) and roles (binary relations), and are mainly

characterized by constructors that allow complex concepts and roles to be built from

atomic ones. A DL reasoner can be used as matcher module because it can check

whether two concepts subsume each other. Intersection level is considered as a

matching level in a different manner from our approach.

COSS [2] is context aware Web service composition system. For service discovery

and matching, context information is utilized. Context is defined as a situation of a

person, place or object that is relevant to the user and application. Location, Speed,

Time, Personal Interests, weather forecast and car status can be given as examples

of context. It is stated that considering the context can improve the quality of the

matching process because recall and precision rates improve with using context

information in service discovery process. Context providers are implemented to

provide context inputs. GPS and weather station are examples of context providers.

COSS uses ontologies to model contexts and interrelations among them. Also

COSS uses ontologies for semantic matchmaking. The matchmaking algorithm

which is based on distance operation like [18] can handle synonyms like ‘buy’ and

‘purchase’ and homonyms like ‘order’ which has more than one meaning.

COSS service matching algorithm is as follows: The first step is considering service

types and service outputs. If one of these conditions is broken, then there is no

match. The second step is considering inputs of services. Mismatch input number is

considered and they are inspected whether they can be gathered from context

providers. As a last predefined properties like place or price are considered as

matching criteria. According to missing attributes and inputs; services are ranked.

18

Context input is provided by implemented context providers. However

implementing or finding a previously developed context providers are difficult in

real applications and thus not practical.

WordNet [4] is a semantic model that captures semantic relations in English words.

It has similar features to the proposed semantic domain model. However proposed

semantic domain model is for composition purpose and has many different features.

Proposed matching algorithms of these studies take only inheritance hierarchy into

consideration. However, attribute similarity is also an important factor in

matchmaking process. For example, there is a relation between camera and cell

phone with camera capability. Both of them have taking photograph property. This

relation can not be found with matching algorithms that only takes inheritance

hierarchy into consideration, unless any inheritance relation is created. On the other

hand, defining an inheritance relation between these two entities does comply with

object orientation rules. Also in inheritance relation while distance increases,

similarity decreases. Another deficiency of many of the current semantic matching

algorithms is not to consider predefined mappings. Semantic matching algorithms

can improve their precision and recall values with considering mappings because in

real applications there is not any standard, common ontology. Also in these studies,

there is not any guiding mechanism for ordinary users while they are creating the

service composition.

19

CHAPTER 3

 SEMANTIC PROCESSES FOR CONSTRUCTING COMPOSITE WEB
SERVICES

In this section our proposed and implemented approaches for semantic Web service

composition are explained in detail. Basic contributions of this work can be listed as

follows:

 1- A wrapper layer around UDDI registry is added in order to provide semantic

search capabilities.

2- For semantic service discovery and interoperability checking, previous semantic

matching algorithms are enhanced and augmented with intersection and semantic

mapping techniques.

3- In order to extract more semantic information and to guide the user in modeling

the composition, a semantic domain model is proposed.

In this section, firstly Semantic Wrapper Layer and its function are described in

Section 3.1. Then, proposed matching algorithms are explained in Section 3.2. In

Section 3.3, service composability checking is described and how matching

algorithms are used in service composability checking operation is shown. In

Section 3.4 semantic mapping method is determined. In Section 3.5, proposed

inference method and its tasks are illustrated. Lastly, in Section 3.6, implementation

issues are stated.

3.1 Semantic Wrapper Layer

As it is stated in current problems section (Section 2.3), current UDDI registries are

not semantic based and can only perform keyword based searches. Although there

is a huge effort towards development of a semantic Web service registry as in [10,

17], there is not any standard semantic Web service registry yet. Therefore, in this

20

study, keyword based UDDI registry is used for semantic Web services; however, it

is extended with a wrapper layer to add semantic search capabilities.

To implement semantic service discovery, we add semantic wrapper layer which

adapts UDDI registry as a semantic registry. In order to keep a service’s semantic

information (OWL-S file) URI, tModel field of UDDI registry is used. Metadata of

services can be residing in any path. Only URIs are put in the service records of

UDDI registry. While service providers register services to registry, they set service

OWL-S file URI to “tModel” field of service record. By this way, in the service

registry, service semantics are related with the advertised services.

Another extension that supports the semantic search is generation of a set of

semantically close keywords from a single keyword. When a query of Web service

is requested from the semantic wrapper layer with a keyword and a service

template, firstly, given keyword’s similar concepts are obtained by using semantic

matching module. These similar concepts and the original keyword are added to

keyword list. Thus, from a keyword, a set of keywords are obtained. For example, if

the user wants to search Vehicle; Car, Limousine and Truck are searched too

because all of them are a kind of Vehicle. After keyword list is prepared, UDDI

registry is queried with this set of keywords. UDDI search finds set of candidate

Web services for each keyword in the keyword list. After candidate services are

obtained, their semantic files which are OWL-S documents are accessed from the

URI which is stored in “tModel” field of the service record. Once more, semantic

matching module is used in order to find out whether candidate services are

appropriate. In this case, semantic matching module’s service matching algorithm,

which compares service template and gathered semantic files of candidate services,

is used. (Service template is a definition of desired service with expected inputs and

outputs.) Service discovery process is shown in Figure 3.1.

21

Figure 3.1 Semantic Service Querying

As it is stated above searching service operation is done in two steps: Firstly, text

based search in UDDI registry is done. This is used for rough filtering. Then OWL-

S files are accessed and matching is considered. By this method semantic

descriptions of services can be accessed when they are needed. From keyword

22

based UDDI registry, semantic Web services are accessed. Thus this additional

layer over UDDI allows semantic discovery.

3.2 Semantic Matching

Semantic Matching is used for finding similarities between semantic concepts or

semantic services. Finding similarities between concepts facilitates machine

understandability. By finding similarities between concepts, it can be inferred

whether given concepts are the same or they are replaceable. Forming a keyword

based similarity considers only text based similarities. This method may lead to

incorrect and missing results. Semantic matching is used in both service discovery

and service composability cheking operations.

There are many services in registries. Which ones are suitable for the user

requirements and constraints? Which ones are suitable for interoperability with each

other? These two questions show the necessity of semantic service discovery

operation in service composition process. Today, most of the existing service

discovery applications perform keyword based search. This decreases the quality of

matching and causes mismatches between requested and found services.

Keyword based search takes only syntactic similarity into consideration. However

by using this method, similarity can not be found between syntactically different but

semantically same or similar concepts, which are called synonyms. Therefore, this

causes finding fewer results. In addition to this, by using this method, similarity can

be found wrongly between syntactically same but semantically different concepts,

which are called homonyms.

Since semantic matching takes meaning of concepts into consideration instead of

their labels, semantic matching (capability matching) provides discovery of more

relevant results. By using semantic matching, similarities between concepts can be

found completely and correctly. Because of all concepts’ meaning is explicitly

defined, computers can understand concepts and can evaluate similarities.

23

Synonyms and homonyms can be detected easily. In addition, contrary concepts can

be inferred as well.

By reasoning on ontology documents, matchings that would not match syntactically

can be derived. For instance, let’s consider a restaurant that serves ‘meal’ (e.g.

foods, desserts). If the user wants to order a ‘kebab’, a syntactic mismatch occurs.

But there is a semantic relation between ‘kebab’ with ‘food’ in domain ontology.

There is an inheritance relation between these concepts as it is shown in figure 3.2.

So it is derived that ‘kebab’ is a kind of ‘food’. This derivation is a semantic match.

As it is stated in [2] this requires that service requests and service descriptions are

not described by using keywords but by their properties which are related to the

concepts from the shared ontology.

Figure 3.2 Ontology Model for Food and Kebab concepts

In this work, semantic matching is used in both service discovery and service

composability operations. Proposed semantic matching method includes two

matching algorithms. First one is concept matching algorithm and the second one is

service matching algorithm.

24

3.2.1 Concept Matching

Concept matching operation is finding similarity degree between two concepts. The

proposed concept matching algorithm is based on the matching algorithm given

in[18], in which concepts are compared according to their hierarchy in ontology

model. This hierarchy is inheritance relation between concepts. This algorithm is

extended in this work in such a way that the similarity between attributes of

concepts and predefined mappings are considered as well. If attributes are similar or

if there is a previously defined mapping, it is inferred that concepts are similar.

The proposed concept matching algorithm is as follows: Let C1 and C2 be given

concepts and the aim is to find similarity degree of C2 to C1. As the first operation

inheritance relation is considered. C2 is searched in ontology documents in order to

find similarities in the model hierarchy. If C1 and C2 are the same concepts or C2

inherits C1 (which is “is-a relation” between C2 and C1 and means “C2 is a C1”) then

the similarity degree of the match is called “exact match”. If there is an already

available mapping from C2 to C1, then similarity degree is considered as “maps

match”. If C2 still inherits C1, but hierarchy path is of more than one level, then

similarity degree between them is considered as “plug-in match”. On the contrary if

C1 inherits C2, then the similarity degree is considered as “subsume match”. If there

is not any hierarchy relation between concepts, then as a second operation attribute

similarity is considered. If C1 and C2 have some common/similar (this similarity

also requires running matching algorithm recursively on attributes), then these

concepts are considered as partially overlapping and the similarity degree of match

is “intersection match”. The intersection indicates that only a part of concepts are

similar. In this case matching hit ratio is calculated to find the ratio of similar

attributes. Matching hit ratio of C2 to C1 similarity is the ratio of the number of

similar attributes of C1 and C2 to the number of all attributes of C1. If there is not

any hierarchy and parameter similarity, then these concepts are considered as

unmatched and their similarity degree becomes “disjoint match”. “maps match” and

“intersection match” methods are extensions to the matching algorithm of [18].

25

Below, similarity degrees are listed.

• exact matching
o C1 and C2 are same, equivalent or “C2 extends” C1 (one step)

• maps matching

o There is a mapping defined from C2 to C1
• plugin matching

o if C2 is subconcept of C1

• subsume matcing

o if C2 is superconcept of C1

• intersection matching

o if there is an intersection between C1 and C2
• disjoint matching

o no relation between C1 and C2

Concept matching algorithm and functions that is used are shown below. If
concepts are not same or synonyms and there is not any defined mapping,
maximum similarity between inheritance checking and intersection checking is
returned.

//this function is for finding a similarity from c2 to c1
(01) areConceptsMatch(Concept c1, Concept c2):Match ing Degree{
(02) if(areConceptsSame(c1, c2)) return EXACT
(03) if(isThereAnyMapping(c2, c1)) return MAPS
(04) matchDegreeForInheritanceChecking =
(05) inheritanceChecking(c1, c2)
(06) matchDegreeForIntersectionChecking =
(07) intersectionChecking(c1, c2)
(08) return maxSimilarity(matchDegreeForInheritanc eChecking,
(09) matchDegreeForIntersectionChecking)
(10) }

//two concepts are same if they have same names and same ontology
// paths or they are synonyms
(01) areConceptsSame(Concept c1, Concept c2):boolea n{
(02) return (c1.getName().equals(c2.getName()) AND
(03) c1.getOntologyPath().
(04) equals(c2.getOntologyPath())) OR
(05) areConceptsSynonyms(c1, c2)
(06) }

//predefined mappings are searched in this function
(01) isThereAnyMapping(Concept c1, Concept c2):bool ean{
(02) for each mapping of defined mappings

26

(03) if(mapping.from().equals(c1) AND
(04) mapping.to().equals(c2)) return true
(05) return false
(06) }

(01) areConceptsHomonyms(Concept c1, Concept c2):bo olean{
(02) return c1.getName().equals(c2.getName()) AND
(03) (NOT(c1.getOntologyPath().
(04) equals(c2.getOntologyPath())))
(05) }

(01) areConceptsSynonyms(Concept c1, Concept c2):bo olean{
(02) return (NOT(c1.getName().equals(c2.getName()))) AND
(03) c1.getOntologyPath().equals(c2.getOntologyPa th())
(04) }

(01) inheritanceChecking(Concept c1, Concept c2):Ma tching Degree{
(02) if(areConceptsSame(c1, c2.getSuperConcept()))
(03) return EXACT
(04) for each super concept of C2
(05) if(areConceptsSame(super concept, c1)
(06) return PLUG_IN
(07) for each super concept of C1
(08) if(areConceptsSame(super concept, c2)
(09) return SUBSUME
(10) return FAIL
(11) }

(01) intersectionChecking(Concept c1, Concept c2):
(02) Matching Degree, hit ratio{
(03) for each attribute of c1
(04) for each attribute of c2{
(05) matchingDegree =
(06) areConceptsMatch(attribute of c1,
(07) attribute of c2)
(08) if(matchingDegree >= ACCEPTABLE_DEGREE){
(09) matchedAttributes++
(10) break // for one “for loop”
(11) }
(12) }
(13) hit ratio = 100 * matchedAttributes /
(14) c1.getAttributeSize()
(15) if(hit ratio == 0) return FAIL
(16) return INTERSECTS, hit ratio
(17) }

To illustrate the algorithm degrees, sample ontology models are shown in Figure
3.3, 3.4, 3.5 and 3.6.

27

Figure 3.3 Sample Ontology Model

In Figure 3.3, similarity degree of C2 to C1 is exact because C2 is a C1. Similarity

degree of C1 to C2 is subsume.

Figure 3.4 Sample Ontology Model

In Figure 3.4, similarity degree of C2 to C1 is plug in because again C2 is a C1 but in

this case hierarchy path is two levels.

28

Figure 3.5 Sample Ontology Model

In Figure 3.5, there is not any hierarchy relation between C1 and C2. In this case

attribute similarity is considered. There is an intersection between them because

both of them have Attr1 and Attr2 attributes. However their matching hit ratios are

different. Matching hit ratio of C2 to C1 similarity is 50% because C2 can cover two

of four attributes of C1. Matching hit ratio of C1 to C2 similarity is 66.7% because

C1 can cover two of three attributes of C2.

Figure 3.6 Sample Ontology Model

29

In figure 3.6, there is not any hierarchy and intersection relation between C1 and C2.

However, there is a predefined mapping between them. Therefore these concepts

are similar.

To show how the algorithm finds results, some examples can be given. With using

House.owl, Meal.owl and Travel.owl ontology documents [Appendix A], the

concept matching algorithm is run for some samples. Obtained results are listed

below:

(In the below examples, the goal is to find the similarity of concept2 to the

concept1.)

For concept1 is Room and concept2 is Room, matching result is 'EXACT'

For concept1 is Parquet and concept2 is Laminant, matching result is 'EXACT'

For concept1 is Laminant and concept2 is Parquet, matching result is 'SUBSUME'

For concept1 is Room and concept2 is Bathroom, matching result is

'INTERSECTION (Hit ratio % : 100)'

For concept1 is Floor and concept2 is Parquet, matching result is 'EXACT'

For concept1 is Wooden and concept2 is Parquet, matching result is 'SUBSUME'

For concept1 is Floor and concept2 is Wooden, matching result is 'PLUG_IN'

For concept1 is Wooden and concept2 is Floor, matching result is 'SUBSUME'

For concept1 is Room and concept2 is Bathroom, matching result is

'INTERSECTION (Hit ratio % : 100)'

For concept1 is Room and concept2 is Wall, matching result is 'INTERSECTION

(Hit ratio % : 40)'

For concept1 is Wall and concept2 is Room, matching result is 'INTERSECTION

(Hit ratio % : 100)'

For concept1 is Roof and concept2 is Door, matching result is 'FAIL'

For concept1 is Terrace and concept2 is Room, matching result is 'INTERSECTION

(Hit ratio % : 100)'

30

For concept1 is Room and concept2 is Terrace, matching result is 'INTERSECTION

(Hit ratio % : 80)'

For concept1 is Fiyat and concept2 is Price, matching result is 'MAPS'

For concept1 is FruitJuice and concept2 is Drink, matching result is 'SUBSUME'

For concept1 is Drink and concept2 is FruitJuice, matching result is 'PLUG_IN'

For concept1 is Pizza and concept2 is Food, matching result is 'SUBSUME'

For concept1 is Food and concept2 is Pizza, matching result is 'EXACT'

For concept1 is OrangeJuice and concept2 is Drink, matching result is 'SUBSUME'

For concept1 is OrangeJuice and concept2 is WithoutAlcohol, matching result is

'SUBSUME'

For concept1 is OrangeJuice and concept2 is FruitJuice, matching result is

'SUBSUME'

For concept1 is FruitJuice and concept2 is OrangeJuice, matching result is

'EXACT'

For concept1 is WithoutAlcohol and concept2 is OrangeJuice, matching result is

'PLUG_IN'

For concept1 is Drink and concept2 is OrangeJuice, matching result is 'PLUG_IN'

For concept1 is ArrivalTime and concept2 is DepartureTime, matching result is

'INTERSECTION (Hit ratio % : 100)'

For concept1 is DestinationPlace and concept2 is DeparturePlace, matching result

is 'INTERSECTION (Hit ratio % : 100)'

For concept1 is Price and concept2 is DeparturePlace, matching result is 'FAIL'

EXACT, PLUG-IN, SUBSUME matching results are found by considering

inheritance relation between concepts. Because of inheritance relation is defined

clearly in House.owl ontology document, the validity of these results can be seen

from the ontology document easily. Inheritance hierarcy of some concepts in House

ontology are shown in Figure 3.7. Considering this figure, EXACT, PLUG-IN and

SUBSUME matching results can be discovered easily. For example, since there is a

single step inheritance relation between Parquet and Floor concepts, Parquet is

similar to Floor as EXACT matching degree. Reverse is SUBSUME matching

degree. Floor is similar to Parquet as SUBSUME matching degree. If there is more

31

than single step inheritance relation between concepts, the matching degree is

PLUG-IN. Laminant is similar to Floor as PLUG_IN matching degree.

Figure 3.7 Ontology Model for “Floor” concept

Precision of inheritance based matchings are 100%. Therefore, all semantic

matching methods based on inheritance relation finds same results for EXACT,

PLUG-IN, SUBSUME matchings. However, the recall of this matching method is

low if there is limited inheritance relation between concepts.

INTERSECTION matching results of the matching algorithm are based on attribute

relation between concepts. By using this method, more number of similarities

between concepts can be inferred and the recall value can be improved. As it is

shown in Figure 3.8, intersection based matching algorithms can find similarities

between Room and Wall concept pairs in which there is not any inheritance

relation. They have similar properties which can not be determined by inheritance

based matching methods.

32

Figure 3.8 Ontology Model for “Room” concept

Matching result MAPS shows that there is a predefined mapping for the concepts.

For example because of there is a mapping which is defined from Price concept to

Fiyat concept, the matching result for them is MAPS.

By using intersection method, similarities can be found between irrelevant concepts.

For example by this method, similarity between Room and Wall objects are found.

But using Wall concept instead of Room concept may be inadequate, because Wall

concept can not cover all properties of Room concept. But reverse is more

meaningful, Room concept can be used instead of Wall concept because Room

concept can cover all properties of Room concept. To differentiate this state, hit

ratio parameter is used. Hit ratio parameter shows how much percentage requested

concept’s parameters can be covered by found concept. High hit ratio means high

similarity. Similarities which have low hit ratios can be presented as suggestions to

users. For example, if user requests camera, cell phones which has requested

camera capabilities can be added to the results. Because found cell phones cover

camera’s all properties. However, if the user requests cell phone which has camera

capabilities, cameras can be added to the results as suggestions. Because camera can

not cover cell phone’s all properties.

The proposed concept matching algorithm can also handle homonyms and

synonyms. In this study, data class which is created for concepts consists of both

concept name and ontology model of concept. Homonyms can be handled because

33

of they have different ontology models. If names of concepts are same and ontology

models of them are different, they are considered as homonyms. If names of

concepts are different and ontology models of them are same, they are considered as

synonyms.

3.2.2 Service Matching

Proposed service matching algorithm for semantic Web services compares the

capabilities provided by any of the advertised services with the capabilities needed

by the requester. Capability matching algorithms use the service descriptions in the

service profile. Proposed semantic service matching algorithm is based on

considering service’s input and output parameters. If inputs and outputs of services

are similar, it is inferred that the services are similar. As they define the outcome of

a service, output parameter is more decisive on this process. Therefore, if outputs

are not similar, it is directly inferred that the services are unmatched. Similarity

between outputs and inputs are determined by using the concept similarity

algorithm as described above. Proposed service matching algorithm uses proposed

concept matching to find similarity between parameters.

The proposed service matching algorithm is as follows. Let S1 and S2 be given web

services. S1 is a concrete service in a service registry and S2 is an abstract service

requested by the user. The aim is to find similarity degree between S1 and S2. As the

first step, output parameters are compared. If they are not similar, it is inferred that

the services are “unmatched”. If the outputs are similar but only some of the inputs

are partially similar, then it is inferred that the services “intersect”. The intersection

indicates that the services are partially similar. If the outputs and all inputs are

matched (no missing inputs), then it is inferred that there is an “exact match”

between the services.

Below similarity degrees of service matching algorithms are listed:

� exact service matching

o outputs and inputs are exact

34

� intersection service matching

o if outputs are exact and inputs are similar
� no service matching

o outputs are disjoint

Service matching algorithm is shown below. For each parameter of service,

proposed concept matching algorithm is used. Similarity of each parameter is

compared with acceptable and min. acceptable match degrees. These acceptable

degrees which includes hit ratio of intersections, can be adjustable according to the

needs. Similarities bigger than acceptable match degree are considered as

matchings. Similarities bigger than min. acceptable match degree are considered as

suggestions.

(01) areServicesMatch(WebServiceTemplate wsTemp, We bService ws):

(02) Service Matching Degree, service hit ratio{

(03) if(areConceptsMatch(wsTemp.getOutput(),

(04) ws.getOutput()) = FAIL)

(05) return SERVICE_FAIL, 0

(06) for each primitive ontology object of ws

(07) for each primitive ontology object of wsTemp {

(08) concept match degree = areConceptsMatch(

(09) primitive ontology object of WSTemp,

(10) primitive ontology object of WS)

(11) if(concept match degree >=

(12) ACCEPTABLE_MATCH_DEGREE){

(13) matchedParameters++

(14) (primitive ontology object of ws).addMatch

(15) (primitive ontology object of wsTemp)

(16) }else if(concept match degree >=

(17) MIN_ACCEPTABLE_MATCH_DEGREE)

(18) (primitive ontology object of ws).

(19) addSuggestedMatch

(20) (primitive ontology object of wsTemp)

(21) }

(22) service hit ratio = 100 * matchedParameters /

35

(23) wsTemp.getParameterSize()

(24) if(service hit ratio == 0)

(25) return SERVICE_FAIL, service hit ratio

(26) else if(service hit ratio == 100)

(27) return SERVICE_EXACT, service hit ratio

(28) else return SERVICE_INTERSECTS, service hit r atio

(29) }

Semantic service matching algorithm can be used in applications in a different way.

In real applications it is not important whether two services are similar or not. In

real applications there are some parameters and the goal is to find services that can

match the parameters. In other words, the most important issue in service matching

is to find out whether candidate service can cover requested parameters of requested

service. This operation’s implementation is as follows: as the first operation, all

primitive attributes of all candidate services are found. All primitive attributes of a

service contains each parameter’s primitive attributes. Each parameter has its own

primitive attributes, primitive attributes of each object attribute and all primitive

attributes of super concepts. The reason of finding primitive types is that primitive

types are the only types in which values can be set. Also all primitive types of each

requested parameters are found. For each primitive type of service, two lists are

created. In one of them, candidate requested primitive types which are similar

concepts are put, in the other, suggested requested primitive types which are not

similar but suggestable concepts are put. Each candidate service’s primitive type is

compared with each requested primitive type of abstract service by concept

matching algorithm to find similarity between them. If there is high similarity, then

requested primitive type is put into service primitive type’s candidate list. If there is

low similarity degree but service primitive type can cover requested primitive type,

then requested primitive type is put into service primitive type’s suggested list.

These suggested matches are presented to the user to obtain user intervention when

high similar matches could not be found. If all primitive types of service has

candidate or suggested primitives, then we can say that service is matched.

36

Similarity degrees of resulting matches for the composition are used for

determining the quality of service composability. Generated service compositions

are ranked in descending similarity degrees.

With using Travel.owl ontology document and; PegasusService.owl,

THYService.owl and AtlasJetService.owl OWL-S files [Appendix A], the service

matching algorithm is run for some samples. The obtained results are listed below:

Requested Service Parameters

- parameterName: myArrivalTime parameterType: ArrivalTime.Time value:

14/05/2007

- parameterName: myDepartureTime parameterType: DepartureTime.Time

value: 13/05/2007

- parameterName: myDestinationPlace parameterType: DestinationPlace.Place

value: Izmir

- parameterName: myDeparturePlace parameterType: DeparturePlace.Place

value: Ankara

For given required parameters, service matching results are as follows:

Matching Results:

1) For PegasusService, matching result is 'SERVICE_EXACT'

Matched Service Parameters

Service parameterName: time parameterType: Time.DepartureTime

 Candidate concepts for service parameter :time :::

 candidate parameterName: myDepartureTime parameterType:

DepartureTime.Time value: 13/05/2007

 Suggested concepts for service parameter :time :::

 suggested parameterName: myArrivalTime parameterType:

ArrivalTime.Time value: 14/05/2007

Service parameterName: time parameterType:ArrivalTime.Time

37

 Candidate concepts for service parameter :time :::

 candidate parameterName: myArrivalTime parameterType:

ArrivalTime.Time value: 14/05/2007

 Suggested concepts for service parameter :time :::

 suggested parameterName: myDepartureTime parameterType:

DepartureTime.Time value: 13/05/2007

Service parameterName: place parameterType: DeparturePlace.Place

 Candidate concepts for service parameter :place :::

 candidate parameterName: myDeparturePlace parameterType:

DeparturePlace .Place value: Ankara

 Suggested concepts for service parameter :place :::

 suggested parameterName: myDestinationPlace parameterType:

DestinationPlace.Place value: Izmir

Service parameterName: place parameterType:DestinationPlace.Place

 Candidate concepts for service parameter :place :::

 candidate parameterName: myDestinationPlace

parameterType:DestinationPlace.Place value: Izmir

 Suggested concepts for service parameter :place :::

 suggested parameterName: myDeparturePlace parameterType:

DeparturePlace.Place value: Ankara

2) For THYService, matching result is 'SERVICE_INTERSECTION (Hit ratio % :

50)'

Matched Service Parameters

Service parameterName: place parameterType: DeparturePlace.Place

 Candidate concepts for service parameter :place :::

 candidate parameterName: myDeparturePlace parameterType:

DeparturePlace.Place value: Ankara

 Suggested concepts for service parameter :place :::

38

 suggested parameterName: myDestinationPlace parameterType:

DestinationPlace.Place value: Izmir

Service parameterName: time parameterType: Duration.DepartureTime.Time

 There is not any candidate concept for service parameter :time

 Suggested concepts for service parameter :time :::

 suggested parameterName: myArrivalTime parameterType:

ArrivalTime.Time value: 14/05/2007

 suggested parameterName: myDepartureTime parameterType:

DepartureTime.Time value: 13/05/2007

Service parameterName: time parameterType: Duration.ArrivalTime.Time

 There is not any candidate concept for service parameter :time

 Suggested concepts for service parameter :time :::

 suggested parameterName: myArrivalTime

parameterType:ArrivalTime.Time value: 14/05/2007

 suggested parameterName: myDepartureTime parameterType:

DepartureTime. Time value: 13/05/2007

Service parameterName: place parameterType: DestinationPlace.Place

 Candidate concepts for service parameter :place :::

 candidate parameterName: myDestinationPlace parameterType:

DestinationPlace.Place value: Izmir

 Suggested concepts for service parameter :place :::

 suggested parameterName: myDeparturePlace parameterType:

DeparturePlace.Place value: Ankara

3) For AtlasJetService, matching result is 'SERVICE_EXACT'

Matched Service Parameters

Service parameterName: place parameterType: DestinationPlace.Place

 Candidate concepts for service parameter :place :::

39

 candidate parameterName: myDestinationPlace parameterType:

DestinationPlace.Place value: Izmir

 Suggested concepts for service parameter :place :::

 suggested parameterName: myDeparturePlace parameterType:

DeparturePlace.Place value: Ankara

Service parameterName: place parameterType: DeparturePlace.Place

 Candidate concepts for service parameter :place :::

 candidate parameterName: myDeparturePlace parameterType:

DeparturePlace.Place value: Ankara

 Suggested concepts for service parameter :place :::

 suggested parameterName: myDestinationPlace

parameterType:DestinationPlace.Place value: Izmir

Service parameterName: time parameterType:AtlasJetArrivalTime.Time

 Candidate concepts for service parameter :time :::

 candidate parameterName: myArrivalTime

parameterType:ArrivalTime.Time value: 14/05/2007

 Suggested concepts for service parameter :time :::

 suggested parameterName: myDepartureTime parameterType:

DepartureTime.Time value: 13/05/2007

Service parameterName: time parameterType: AtlasJetDepartureTime.Time

 Candidate concepts for service parameter :time :::

 candidate parameterName: myDepartureTime parameterType:

DepartureTime.Time value: 13/05/2007

 Suggested concepts for service parameter :time :::

 suggested parameterName: myArrivalTime parameterType: ArrivalTime.Time

value: 14/05/2007

As it is shown above, requested service parameters are “ArrivalTime” object

parameter, “DepartureTime” object parameter, “DeparturePlace” object parameter

40

and “DestinationPlace” object parameter. The structures of these objects are shown

in Figures 3.9, 3.10, 3.11 and 3.12 respectively. “ArrivalTime” and

“DepartureTime” concepts has “Time” concept as object property.

“DeparturePlace” and “DestinationPlace” concepts has “Place” concept as object

property. Although structures of “ArrivalTime” and “DepartureTime” are the same,

their semantics are different. “Time” of “ArrivalTime” is different from “Time” of

“DepartureTime”. Concept matching result for these two concepts is intersection.

They can be used for one another only when there are not any other matches. If a

service parameter type is “ArrivalTime” and requested parameter type is

“DepartureTime”, “DepartureTime” can be added to suggestion list of

“ArrivalTime”. Suggestion list can be displayed to the user in order to provide

certainity.

Figure 3.9 Structure of “ArrivalTime” concept

Figure 3.10 Structure of “DepartureTime” concept

Figure 3.11 Structure of “DeparturePlace” concept

41

Figure 3.12 Structure of “DestinationPlace” concept

As shown in the results above, three services are found for requested concepts.

These are PegasusService, THYService and AtlasJetService. Also mappings of the

requested parameters into the related parameters of the found services are displayed.

For each input of a service, there are two collection data structures. One of them

collects candidate inputs and the other one collects suggested inputs. If a requested

parameter matches with an input completely (exact match), then the requested

parameter is added to the candidate input list of the input. If there is an intersection

matching between the requested parameter and the input, then the requested

parameter is added to the suggested input list of the input.

The structures of found services are given in Figure 3.13, Figure 3.14 and Figure

3.15 respectively.

Figure 3.13 Structure of “THYService” service

42

As shown in the Figure 3.13, THYService has “Cost” object as output and

“Duration”, “DestinationPlace” and “DeparturePlace” objects as inputs. “Duration”

object has two object parameters which are “DepartureTime” and “ArrivalTime”.

Figure 3.14 Structure of “PegasusService” service

Figure 3.14 shows structure of PegasusService. PegasusService has “Cost” object as

output and “DepartureTime”, “ArrivalTime”, “DestinationPlace” and

“DeparturePlace” as inputs.

Figure 3.15 Structure of “AtlasJetService” service

43

As shown in Figure 3.15, AtlasJetService has “Cost” object as output and

“AtlasJetArrivalTime”, “AtlasJetDepartureTime”, “DestinationPlace” and

“DeparturePlace” as inputs. Structures of “AtlasJetArrivalTime” and

“AtlasJetDepartureTime” are shown in Figure 3.16. There is an inheritance relation

between “AtlasJetArrivalTime” and “ArrivalTime” objects. So

“AtlasJetArrivalTime” has all attributes (in other words capabilities) of

“ArrivalTime”. “AtlasJetDepartureTime” inherits “DepartureTime” and it “is-a”

“DepartureTime”.

Figure 3.16 Ontology Model for AtlasJetArrivalTime and AtlasJetDepartureTime
concepts

As shown from the structures of concepts, all services cover requested inputs

(“DepartureTime”, “ArrivalTime”, “DestinationPlace” and “DeparturePlace”).

PegasusService is found as SERVICE_EXACT matching degree because all

requested parameters are matched with the PegasusService’s inputs. But

THYService is found as SERVICE_INTERSECTION matching degree. Although

THYService covers all requested parameters, it can not be accepted as

SERVICE_EXACT matching, because its “DepartureTime” and “ArrivalTime”

parameters are defined in “Duration” domain which may add different semantics.

But because of type of “Duration” ’s “DepartureTime” attribute is same with the

requested “DepartureTime” and type of “Duration” ’s “ArrivalTime” attribute is

44

same with the requested “ArrivalTime”, these matchings can be shown as

suggestions. AtlasJetService is found as SERVICE_EXACT matching degree.

AtlasJetService has not “ArrivalTime” and “DepartureTime” input types. Instead, it

has “AtlasJetArrivalTime” and “AtlasJetDepartureTime” input types in which there

is an inheritance relation between requested parameters. So its match is accepted as

SERVICE_EXACT matching degree.

3.3 Semantic Web Service Composability Check

Proposed matching algorithm is used for both finding matching services and

checking the composability of the services in the composite service model. Services

with complementary functionalities are discovered. Syntactic and semantic features

of Web services are compared in order to determine whether two services are

composable. Composability is the comparison of the syntactic and semantic features

of Web services to determine whether two services are interoperable. It refers to the

process of checking if Web services to be composed can be actually interact with

each other.

Services S1 and S2 such that S1 � S2, (i.e., S1 precedes S2), are composable if S2’s

input parameters can be obtained from requested parameters of abstract services and

the output parameters of S1 and other preceding services.

Service composion algorithm is shown below. For each service, it is considered

whether it can be callable by using the service template parameters. Each service’s

output is added to service template for the next services.

(01) areServicesComposable (CompositeServiceTemplat e csTemp,

(02) CompositeService cs):hit ratio{

(03) for each service of cs{

(04) match degree = areServicesMatch(csTemp,

(05) service of Cs)

(06) if(match degree >= SERVICE_MATCH_HIT_RATIO)

45

(07) matchedServices++

(08) csTemp.addParameters(cs.getOutputParameters())

(09) }

(10) hit ratio = 100 * matchedServices / cs.getSer viceSize()

(11) return hit ratio

(12) }

With using Travel ontology, an example can be considered. The example composite

service is “TravelingService” (Figure 3.17) and it contains “KAirlinesService”,

“HiltonHotelService” and “HavasShuttleService” services. This order is same as

service orders in composition. The OWL-S files of these services are given in

Appendix A.

Figure 3.17 Structure of Traveling Composite Service

Structures of “KAirlinesServices”, “HavasShuttleService” and

“HiltonHotelService” are shown in Figures 3.18, 3.20 and 3.22 respectively.

46

Figure 3.18 Structure of KAirlinesService

“KAirlinesService” has output parameter which is “KAirlinesReceipt” type.

“KAirlineReceipt” has “Cost” and “Airport” object attributes. The structure of

“KAirlineReceipt” is shown in Figure 3.19.

Figure 3.19 Structure of KAirlinesReceipt concept

Figure 3.20 Structure of HiltonHotelService

47

Structure of “HiltonHotelService” ‘s “LeavingTime” parameter is shown in Figure

3.21.

Figure 3.21 Structure of LeavingTime concept

Figure 3.22 Structure of HavasShuttleService

Requested service parameters and result of composition process is as follows:

Requested Service Parameters

- parameterName: myArrivalTime parameterType: ArrivalTime.Time value:

14/05/2007

- parameterName: myDepartureTime parameterType: DepartureTime.Time

value: 13/05/2007

- parameterName: myDestinationPlace parameterType: DestinationPlace.Place

value: Izmir

48

- parameterName: myDeparturePlace parameterType: DeparturePlace.Place

value: Ankara

Matching Results:

1) For TravelingService composition, matching result is

'SERVICE_INTERSECTION (Hit ratio % : 66)'

For service: KAirlinesService

Matched Service Parameters

Service parameterName: time parameterType: DepartureTime.Time

 Candidate concepts for service parameter :time :::

 candidate parameterName: myDepartureTime parameterType:

DepartureTime.Time value: 13/05/2007

 Suggested concepts for service parameter :time :::

 suggested parameterName: myArrivalTime parameterType:

ArrivalTime.Time value: 14/05/2007

Service parameterName: place parameterType: DeparturePlace.Place

 Candidate concepts for service parameter :place :::

 candidate parameterName: myDeparturePlace parameterType:

DeparturePlace.Place value: Ankara

 Suggested concepts for service parameter :place :::

 suggested parameterName: myDestinationPlace parameterType:

DestinationPlace.Place value: Izmir

Service parameterName: time parameterType: ArrivalTime.Time

 Candidate concepts for service parameter :time :::

 candidate parameterName: myArrivalTime parameterType:

ArrivalTime.Time value: 14/05/2007

 Suggested concepts for service parameter :time :::

 suggested parameterName: myDepartureTime parameterType:

DepartureTime.Time value: 13/05/2007

49

Service parameterName: place parameterType: DestinationPlace.Place

 Candidate concepts for service parameter :place :::

 candidate parameterName: myDestinationPlace parameterType:

DestinationPlace.Place value: Izmir

 Suggested concepts for service parameter :place :::

 suggested parameterName: myDeparturePlace parameterType:

DeparturePlace.Place value: Ankara

For service: HiltonHotelService

Matched Service Parameters

Service parameterName: roomType parameterType: RoomType

 There is not any candidate concept for service parameter :roomType

 There is not any suggested concept for service parameter :roomType

Service parameterName: time parameterType: LeavingTime.Time

 There is not any candidate concept for service parameter :time

 Suggested concepts for service parameter :time :::

 suggested parameterName: myArrivalTime parameterType:

ArrivalTime.Time value: 14/05/2007

 suggested parameterName: myDepartureTime parameterType:

DepartureTime.Time value: 13/05/2007

Service parameterName: time parameterType: ArrivalTime.Time

 Candidate concepts for service parameter :time :::

 candidate parameterName: myArrivalTime parameterType:

ArrivalTime.Time value: 14/05/2007

 Suggested concepts for service parameter :time :::

 suggested parameterName: myDepartureTime parameterType:

DepartureTime.Time value: 13/05/2007

50

Service parameterName: place parameterType: Place

 There is not any candidate concept for service parameter :place

 Suggested concepts for service parameter :place :::

 suggested parameterName: myDestinationPlace parameterType:

DestinationPlace.Place value: Izmir

 suggested parameterName: myDeparturePlace parameterType:

DeparturePlace.Place value: Ankara

For service: HavasShuttleService

Matched Service Parameters

Service parameterName: place parameterType: DestinationPlace.Place

 Candidate concepts for service parameter :place :::

 candidate parameterName: myDestinationPlace parameterType:

DestinationPlace.Place value: Izmir

 Suggested concepts for service parameter :place :::

 suggested parameterName: myDeparturePlace parameterType:

DeparturePlace.Place value: Ankara

Service parameterName: time parameterType: DepartureTime.Time

 Candidate concepts for service parameter :time :::

 candidate parameterName: myDepartureTime parameterType:

DepartureTime.Time value: 13/05/2007

 Suggested concepts for service parameter :time :::

 suggested parameterName: myArrivalTime parameterType:

ArrivalTime.Time value: 14/05/2007

Service parameterName: airport parameterType: Airport

 There is not any candidate concept for service parameter :airport

 Suggested concepts for service parameter :airport :::

51

 suggested parameterName: airportName parameterType:

KAirlinesReceipt.Airport value: null

As it can be seen from the result, requested parameters do not contain “Airport”

attribute which is required for “HavasShuttleService”. However “KAirlinesService”

has “Airport” attribute in its output. Therefore “KAirlinesService” and

“HavasShuttleService” can be placed in composition because all attibutes of these

two services can be covered by all requested parameters and “KAirlinesService”’s

output attributes. But “HiltonHotelService” has “RoomType” attribute which can

not be covered. So the composition “TravelingService”’ hit ratio is 66%. Also

“LeavingTime” attribute of “HiltonHotelService” can not be covered. But

“ArrivalTime” and “DestinationTime” parameters which can cover “LeavingTime”

attribute are suggested to the user for selecting.

After composition creation operation is finished, a new OWL-S file can be created

for the composite service by using OWL-S files of each service in the composition.

3.4 Semantic Mapping

Semantic Mapping is an operation in which semantic similarities are defined

between different semantic concepts. With the help of human intervention new

semantic similarities can be created. Then these similarities can be used in matching

process and similarity algorithms can be run correctly for different concepts that

have the same meaning.

One domain can be defined differently in various ontology documents. This is

mostly due to the fact that the organizations may have their own ontology models

according to their business structures. This causes many different ontology models

for each domain. It is not easy to change ontology models of organizations with a

common ontology model because each organization can have many legacy systems.

Therefore, it may not be possible to meet under a common ontology. In order to

provide interoperability and standardization, mapping must be defined between

52

these different ontologies that model similar ontologies. Ontology mapping is a

solution to the semantic heterogeneity problem faced by information management

systems. Ontology mapping finds correspondences between semantically related

entities of the input ontologies. Thus, mapping ontologies enables the knowledge

and data expressed in the matched ontologies to interoperate.

Ontology mapping is a key interoperability enabler for the semantic Web, since it

takes the ontologies as input and determines as output correspondences between the

semantically related entities of those ontologies. Two ontology model for the same

domain can be mapped each other. Mapping can be defined for each concept of one

of the model to the other. This case is shown in Figure 3.23. Semantic Mapper

knows two ontology documents “A.owl” and “B.owl”. When a concept is used from

“A.owl”, semantic mapper knows how this concept can be represented in “B.owl”.

By this way an application that uses one ontology model can communicate with

other application that uses the other ontology model.

Figure 3.23 Semantic Mapping

As Semantic Mapping can be defined between ontology documents, it also can be

defined between some ontology concepts. In this work, semantic mapping between

ontology concepts is utilized in order to enhance the proposed semantic matching

algorithm.

53

Mapping operation requires human intervention. In this study, user can define

mappings whenever he/she wants. When a mapping is defined by the user, it is

added to the mapping list. In semantic matching process, mappings in this mapping

list are considered because mapping between two concepts shows a similarity

between these concepts. For example, if a mapping is defined from concept X to

concept Y; this shows concept X can cover all attributes of concept Y; therefore,

concept X can be used in the place of concept Y when necessary. In semantic

matching process, mappings in the given mapping list are considered since the

mappings indicate the similarity and replaceability of the concepts.

Transformation (bridge) is important in mapping process. It shows the

correspondence between the attributes of concepts. In this thesis, basic

transformations are implemented. Let A be an attribute object of concept to which

mapping is defined and B be an attribute object of concept from which mapping is

defined. In this work, user can define the following three types of transformations

between attributes of concepts:

1. A = B

2. A = B OPERATION constant, where OPERATION = {Addition, Subtraction,

Multiplication and Division} and constant is a numeric value

3. A = constant, where constant is an alphanumeric value.

A is a primitive attribute object of concept to which mapping is defined. B is a

primitive attribute object of concept from which mapping is defined. Constant can

be any value. But in the second method it must be numeric. Addition, Subtraction,

Multiplication and Division are defined operations.

Figure 3.24 shows an example mapping transformation. “Price” and “Fiyat” (which

means price in Turkish) are similar concepts. They have the same meaning however

their currencies are different. This transformation is defined by using mapping

screen, which is “valueInTl = valueIn$ * foreign currency exchange rate”.

54

Figure 3.24 Mapping from Price to Fiyat

To define this mapping, user opens Semantic Mapper frame. As it is shown in

Figure 3.25, firstly, user selects concepts for which mapping are defined.

Figure 3.25 A screen of Concept Selection

55

Then the user selects attributes of concepts and defines a transformation. With using

“Add” button, transformation is checked and added to transformation list. This is

shown in Figure 3.26.

Figure 3.26 A screen of Transformation addition

Each defined mapping is written to an XML document. The content of this

document for the mapping described above is as follows:

56

<?xml version="1.0" encoding="ISO-8859-9"?>

<Mappings>

<MappingDefinition>
<MappingFrom>

<OntologyPath>
file:///E:\sampleOwlDocuments\Price.owl

</OntologyPath>
<TypeName>Price</TypeName>

</MappingFrom>

<MappingTo>
<OntologyPath>

file:///E:\sampleOwlDocuments\Fiyat.owl
</OntologyPath>
<TypeName>Fiyat</TypeName>

</MappingTo>

<Transformations>
<Transformation>

<OntologyObjectTo>
<Name>valueInTurkishLiras</Name>
<Value></Value>

</OntologyObjectTo>

<OntologyObjectFrom>
<Name>valueInDollars</Name>
<Value></Value>

</OntologyObjectFrom>

<Operation>4</Operation>

<Constant>
<Name>dollarCurrency</Name>
<Value>1.35</Value>

</Constant>

<Type>2</Type>
</Transformation>

</Transformations>
</MappingDefinition>

</Mappings>

Defined mappings are stored in this XML file. When mapping application is loaded

into memory, it reads the mapping file and when a new mapping is defined, it is

written to the mapping file.

57

3.5 Semantic Domain Model

Ontology documents which are used for definition of concepts and relations

between concepts, is not exactly adequate for semantic information inference. More

relations should be extracted from different ontology documents. Also it is difficult

to define a complete ontology of a domain so different ontologies can have

complementary concepts. These concepts must be combined. In addition, according

to domain or action to be done, new relations can arise between concepts in which

there is not any relation between each other. In order to model complementary

concepts and the relation between the concepts and relevant actions, and to infer

more information about these relationships, an action-based semantic domain model

is developed. The model is action based because actions define works to be done.

By considering actions, more-relevant relations can be discovered.

Semantic domain model composes semantic relations between concepts and actions.

In ontology documents concepts and inheritance and attribute relations are defined.

Actions must be defined or modeled as well. An action is an activity that is

accomplished with objects at a certain place and time. Concepts are modeled as

objects that are associated with actions. By using this model, actions, concepts that

can be used with actions, domains which describe businesses of actions, places and

time in which actions take place are modeled. In addition, relations between actions

can be determined as well. It is possible to suggest new, related and complementary

actions on the basis of the requested action. Orders of actions can be inferred and

ordering suggestions can be presented to the user. Actions are related with concepts

according to a determined domain because relation between an action and a concept

is meaningful only in a determined domain. To provide this kind of relation

DomainConcept data structure is used. The structure of the model is shown in

Figure 3.27.

58

Figure 3.27 Semantic Domain Model

By using this model, information extraction and inference becomes more easily and

semantically. Some of the information that can be inferred by using this model is as

follows:

- Required concepts of an action can be inferred

- An action can be inferred if domain and required concepts are known

- Related actions of an action can be inferred and suggested to the user as a

guidance service

- Actions that are relevant to a domain can be inferred

- The place of an action can be inferred.

- Both domain guidance and action guidance can be provided

By using this model, different concepts in different ontologies can be related with

actions. For example, there is not any relation between “plane” and “hotel”

concepts. However in traveling domain, hotel booking and plane reservation actions

are modeled as related.

As it is stated in [2]; if user request is “order food”, the information that a

“restaurant is needed” should be inferred. Proposed model can provide such kind of

59

information since “order food” is modeled as an action and “restaurant” is a related

concept of “order food” action. In addition, complementary concepts and actions

can be defined. By this way, for example, if user wants to buy a computer, buying a

printer can be suggested.

Some inference examples are shown below.

- BATH is done in BATHROOM with using WATER and SOAP

These concepts can be defined in “Bath” domain but this information can be

modeled in this proposed method. “Bath” is modeled as action, “Bathroom” is

modeled as place, “WATER” and “SOAP” are modeled as required objects.

- FOOD or MEAL is EATEN in RESTAURANT or KITCHEN with KNIFE, SPOON,

FORK

In this example, two same actions which are “Food” and “Meal” are considered.

Place information can be “Restaurant” or “Kitchen”. “KNIFE”, “SPOON” and

“FORK” are required objects.

- ELECTRIC SOCKETS are INSTALLED

- WALL or WINDOW or DOOR or ROOM or HOUSE or ROOF are DYED

- WINDOW or DOOR or RADIATOR are SET

- PARQUET is EMERIED

- ROOF is PLASTERED

- LAMINANT is PLASTERED

Some information samples for “House Construction” domain that can be modeled

by the proposed method are shown above.

Defined relations are stored in an XML file. In order to facilitate loading and saving

operations, its structure is same as the model that is shown in Figure 3.27.

This proposed method can be considered as an interpretation of sentences.

Structures of sentences can be considered as basis of our ontology model. As we

60

know that sentences are composition of verbs, adjectives, adverbs and nouns. The

critic one is verb. Verb is the part of speech that expresses existence, action, or

occurrence in most languages. It tells operation. To perform a verb, some objects

required. Also these actions are done in places.

With these capabilities, the proposed semantic domain model can be used in service

composition process. It is utilized in guidance the modeling and service discovery

steps. Web services perform an action, therefore they can be considered as actions

in semantic domain model. Web service parameters are the required concepts of the

action. When user wants to request a service template that will take part in the

composition, he/she determines an action. The selected action's required concepts

are listed to the user. Among this list, user selects a set of concepts that meets

his/her needs. In service discovery step, matching is done according to the selected

concepts to find candidate Web services. User can also use semantic domain model

as a guiding system. According to domain which is selected by the user, actions are

listed. User can select the related actions (services) from this list. Once actions are

selected, user may ask for a list of related concepts as well. Hence, the user can

model the composite service without having detailed information on the domain.

3.6 Implementation Issues

In this section, some of the main implementation details are illustrated. Models

which are created for this thesis are shown. In addition, class diagrams that are

created for implementations are shown.

3.6.1 Created Packages

In this section, created packages for implementation are illustrated. Package

dependencies are shown in Figure 3.28.

61

OntologyService

Semantic
Mapping

Semantic
Inference

User Interface

Semantic
Matching

Figure 3.28 Created Packages

3.6.1.1 Ontology package

This package is responsible for Ontology related operations. Definition and access

of ontology concepts is implemented in this package. Class diagram of Ontology

package is shown in Figure 3.29.

62

PrimitiveOntologyType

OntologyType

PrimitiveOntologyObject

OntologyProvider
NamedOntologyType

11

11

primitiveType

0..n0..n
ownerClasses

OntologyModelOwner

11

queries

ClassOntologyType

0..n0..n

superOntologyClasses

0..n0..n

primitiveParameters

0..n0..n

objectParameters

0..n0..n
allOntologyConcepts

OntologyClassesWithSubClasses

0..n0..n

subClasses

11

ontologyType

Figure 3.29 Class Diagram of Ontology Package

OntologyType is data class for ontology concepts. It has two sub classes which are

PrimitiveOntologyType and ClassOntologyType. NamedOntologyType is used for

parameters. It includes OntologyType and adds name property to this data structure.

PrimitiveOntologyObject is used for instances of PrimitiveOntologyType.

OntologyClassWithSubClasses is data class to form ontology concepts in tree order.

In ClassOntologyType, subclasses are not included naturally.

OntologyModelOwner contains all read ontology concepts, which are cached in the

memory. Ontology documents can be loaded before all operations or ontology

concepts can be lazy loaded when they are required. While an ontology concept is

loaded from an ontology document, as the first operation, super concepts and

concept attributes of that concept are loaded recursively by this method. Then

ontology concept's primitive parameters are loaded. Loaded ontology concepts are

put into ModelOwner as a ClassOntologyType object. ModelOwner has all of the

read concepts. This prevents loading of the same concepts more than once. By this

63

way efficiency is increased. In ModelOwner concept cache; concepts exist

according to their names and ontology file paths which show ontology files in

which concepts are defined.

When a concept is needed, ModelOwner is queried. If the concept is found, it is

used, otherwise, the concept is loaded and then it is put to the ModelOwner. Super

concept or concept attribute of an ontology concept can be in different ontology

files. In this case, while loading operation, other ontology files are found and

needed concepts are loaded.

OntologyProvider which is one of the most important classes is used for all

ontological operations such as loading semantic concepts and semantic Web

services. It is also used to query model owner according to semantic requirements.

3.6.1.2 Service package

Service Package contains classes that are related with Web Services. The class

diagram of this package is shown in Figure 3.30.

CompositeWebService WebService

0..n0..n

ServiceCaller ServiceFinder

1

ServiceProvider

11 1

Figure 3.30 Class Diagram of Service Package

64

WebService is a class which represents Web services. CompositeWebService is

class which represents Web service compositions. ServiceFinder is used search

Web services from ServiceProvider. ServiceProvider queries Web service registries

like UDDI to find web services. ServiceCaller is used to call a service.

3.6.1.3 Semantic Matching package

Semantic matching classes are in this package. The class diagram of this package is

shown in Figure 3.31. SemanticMatcher is used when a matching is requested.

ConceptMatcher is implementation of the concept matching algorithm.

ServiceMatcher is implementation of the service matching algorithm.

ParameterHitRatio is the data class for similarity ratio of intersection matching

result.

ParameterHitRatioServiceMatcher

SemanticMatcher

1

ConceptMatcher

1
1

1

Figure 3.31 Class Diagram of Semantic Matching Package

65

3.6.1.4 Semantic Mapping package

This package is used for the semantic mapping operations. The class diagram of this

package is shown in Figure 3.32. IMappingConstants has the mapping constants

which are used when writing and reading defined mappings. Defined mappings are

saved in a mapping file which is in XML format. MappingReader is used for

reading mappings from the mapping file and MappingWriter is used for writing

mappings to the mapping file. MappingDefinition is a data class for mappings. One

mapping is defined by a MappingDefinition object. A mapping is defined between

two ClassOntologyType which is in Ontology package. For parameters of these

objects transformations are defined. Transformation class is data class to define

transformation. A transformation is defined between two PrimitiveOntologyObject

which is in Ontology package. Constant is a data class to define constants in

transformations. SemanticMapper is a class in which all defined mappings exist. It

provides other modules to access predefined mappings or to define new mappings.

IMappingConstants

MappingReader MappingWriter

SemanticMapper

11 11

MappingDefinition

0..n0..n

Transformation
0..n0..n

Constant

11

Figure 3.32 Class Diagram of Semantic Mapping Package

66

3.6.1.5 Semantic Inference package

This package is created for implementation of the semantic domain model. The

class diagram of this package is shown in Figure 3.33. Action, Concept, Domain

and DomainConcept classes form semantic domain model. ModelOwner class

supplies semantic domain model. When an action, a concept or a domain class is

required, it is searched in ModelOwner. InferenceEngine is used for semantic

querying like finding. Ontolog is used for adding to ModelOwner and querying

ModelOwner.

DomainConceptAction

0..n

0..n

InferenceEngineOntolog

1

Domain

0..n

1

ModelOwner

0..n0..n

Concept

0..n

0..n

0..n

uses

1

allConcepts

allDomains

allActions

0..n 0..n0..n

1

0..n

0..n

relatedActions

0..n 0..n

0..n

relatedConcepts

Figure 3.33 Class Diagram of Semantic Inference Package

67

3.6.1.6 User Interface package

This package contains user interface components such as ConceptAttributesPanel

and ConceptNamesPanel. ConceptAttributesPanel is used for displaying all

attributes of a concept. ConceptNamesPanel is used for displaying all concept

names in the system.

3.6.1.7 Other Important Classes

SemanticManager class is used as Facade class in front of applications which they

use these proposed methods to add semantic methods. CWSF is such an application

that uses this class for all operations related with semantic.

3.6.2 Used Technologies

This work is implemented by using Java [6] programming language. The most

important library that is used in this study is OWL-S API [16]. OWL-S API is a

Java based API which provides reading, writing and executing Semantic Web

Servises described in OWL-S. Only deficiency of OWL-S API is the definition of

complex XSLT transformations. Each object attribute needs XSLT transformations

to map Web service attributes. If the object has object attributes rather than

primitive attributes, transformations of the object causes errors in OWL-S API.

68

CHAPTER 4

 EVALUATION

In this section, evaluation of the proposed methods is presented. Firstly, semantic

matching algorithm is evaluated. Then, evaluation of semantic composition method

is given. Three ontology documents for three different domains are used for these

evaluations. These ontology documents are:

1) Meal.owl : In this ontology; foods and restaurant system are defined,

2) House.owl : In this ontology; House and its basic structures are defined

3) Traveling.owl : In this ontology, traveling business is defined.

In addition, for service matching evaluation, several service definition files are

used. The contents of these ontology documents are given in Appendix A. By using

these ontology documents, sample data sets are created. The similarities between

concepts are determined explicitly. Then algorithms are run to evaluate the success

rates to find similairities.

Recall and precision are two basic quality parameters to evaluate the matching

algorithms. Recall is the ratio of the number of the relevant items found to the total

number of relevant items. Precision is the ratio of the number of the relevant items

found to the total number of items retrieved. For example if there are 15 total

relevant items and an algorithm finds 8 items in which 5 of them is relevant; then

we can say that recall of the algorithm is: 5/15 (33.3%) and precision of algorithm

is: 5/8 (67.5%). High precision and high recall are desired properties for a matching

algorithm. Precision value 100% is obtained if algorithm finds no irrelevant items.

Recall value 100% is obtained if algorithm finds all relevant items.

In this section, the proposed algorithms are evaluated under recall and precision.

69

4.1 Semantic Matching Evaluation

In this part semantic matching algorithms are evaluated. Algorithms are evaluated

with respect to how good they can find a requested item (concept or service) by

taking similarities into consideration. Semantic matching algorithm is evaluated in

two parts. In the first part evaluation of the semantic concept matching algorithm is

explained. In the second part evaluation of the semantic Web service matching

algorithm is explained.

4.1.1 Concept Matching Evaluation

In this evaluation, the aim is to find similarities between some relevant and some

irrelevant concepts in our ontology documents. It is expected from the concept

matching algorithm to find similarities between relevant concepts and to find

dissimilarities between irrelevant concepts.

The data set contains a set of similarity candidates where actual relevant similarity

count is 30. Total sample data count is 40 but only 30 of them are really similar. In

Table I, the results of three matching methods according to recall and precision

quality parameters are given.

Actual relevant concept count: 30

Table I: Concept Matching Results

 Keyword based Inheritance based Proposed Method

Relevant

concepts

5 relevant found,

25 missed

20 relevant found,

10 missed

27 relevant found,

3 irrelevant

Recall 16.7% 66.7 % 90 %

Precision 100 % 100 % 90 %

70

Keyword based matching is not a semantic process. Therefore, it provides only

syntactic checking. It gives no result or gives many irrelevant results. This method’s

precision is 100% on the sample data set. However, if there were some homonyms

in sample data set, precision of the keyword based search would decrease since it

would have found irrelevant concepts as well. The recall of this method is low since

it only does syntactic checking. The proposed approach has high recall than the

inheritance based matching in [18]. The proposed matching algorithm finds 30

relevant similarities among 40 candidate similarities. But in fact 3 of them are

irrelevant. Precision of inheritance based matching can be considered as higher than

proposed approach however in this experiment 100% hit ratios are accepted. By

adjusting hit ratio property, precision and recall values of the proposed algorithm

can be increased. Precision and recall values of the proposed algorithm increased to

100% if intersections which have more than 80% hit ratios are accepted and

intersections which have less than 80% hit ratios are considered as suggestions.

4.1.2 Service Matching Evaluation

In this evaluation, the aim is to find candidate services similar to the requested Web

services. Service matching degree is used as a quality measurement to indicate the

similarity of the requested service template and discovered candidate service.

Results of the experiments are shown in Table II. Proposed method is compared

with keyword based and inheritance based matching based techniques.

71

Actual relevant service count: 8

Table II: Service Matching Results

 Keyword matching

based Service

Matching

Inheritance

matching based

Service Matching

Proposed Service

Matching

Relevant

services

2 relevant found,

6 missed

3 relevant found,

5 missed

5 relevant found,

3 missed

Recall 25 % 37.5 % 62.5 %

Precision 100 % 100 % 100 %

Proposed approach has higher precision and recall since it checks attribute

similarity additionally. Also in proposed service matching, as explained in 3.2.2 for

each parameter there are candidate list and suggested list. With the help of human

intervention, the suggested list can be considered in matching process. The recall of

our approach can be increased to 100% if suggested lists are accepted.

4.2 Web Service Composition Evaluation

In Figure 4.1, service composition execution time is displayed with respect to the

number of requested parameters. Composite service is “TravelingService” which is

described in section 3.3. As seen from the figure, most of the processing time is

used for the matching. Service composition operation includes service matching and

service matching operation includes concept matching task. Concept matching takes

half of the total processing time. Service matching operation time includes concept

matching operation time plus time passed for finding attributes of service and

finding hit ratio of service matching. Composition operation time includes service

matching time plus time passed for finding composition hit ratio time.

72

Figure 4.1 Time required for service composition processes

As shown in the figure, composition time increases linearly with the increase in the

number of requested parameters.

The cost of loading ontology concepts is high. In this experiment there are 89

ontology concepts in the system. Although these concepts are in the same

computer, loading of these concepts takes approximately 500 milliseconds.

The experiments are conducted on a personal computer which has Intel P4 3GHz

processor and 1 GB of RAM.

73

CHAPTER 5

FUTURE WORK AND CONCLUSION

In this work, new semantic based techniques are proposed in order to facilitate the

Web service composition process. These approaches include new semantic

matching methods for finding both concept similarity and service similarity.

Proposed matching algorithms can find complex similarities. A simple semantic

discovery method for semantic Web services is added. In addition, to improve

semantic inference, new semantic domain model which can capture the

relationships among the concepts and between the concepts and the actions

(services) is proposed. This model can be also used for guiding user in definition

phase of Web service composition process. A basic mapping tool is implemented

and defined mappings are used in the matching process.

These new approaches are used in modeling the composite Web service, service

discovery and interoperability checking. With the help of these methods, Web

service composition process becomes easier, less error prone and more automated.

Computers can understand these structures so human intervention decreases. The

experiments show that the proposed matching algorithms increase the quality of

matching.

As a future work, improvement of proposed semantic domain model can be

considered. This model is just in its early phase of development. It is open to new

extensions which will increase the amount and quality of semantic inferences.

Structure of the model can be extended and can cover other attributes like "place",

"time" etc. It is aimed that computers can make every inference and reach to a

decision, so they can implement operations without human intervention.

74

In the future, this model can be extended with natural language processing modules

so that the user describes the composite model in natural language and the system

analyzes the structure of sentences in order to find verbs, objects, time and place

and considering these as actions, required objects so on.

Another direction for future work is addition of new capabilities for semantic

service registry. New studies can be implemented for semantic service registry

which is not UDDI based.

In addition, semantic mapping is a subject which has many challenging problems.

In this work, we only considered a simple mapping mechanism to increase the

quality of semantic matching. This module can be extended with more complex

mapping transformations and with automatic or semi-automatic techniques for

extraction of transformation requiring less human intervention.

75

REFERENCES

[1] B. Benatallah, M. Dumas, M. C. Fauvet and F.A. Rabhi, 2002. Towards Patterns

of Web Services Composition. In Gorlatch, S. and F. Rabhi (Eds.), Patterns and

Skeletons for Parallel and Distributed Computing. Springer Verlag (UK).

[2] T. Broens, Context-aware, Ontology based, Semantic Service Discovery

(COSS), Thesis for a Master of Science degree in Telematics from the

University of Twente, Enschede, The Netherlands, July 2004.

[3] Choco constraint programming system, http://choco.sourceforge.net/, August

2007.

[4] C. Fellbaum, A Semantic Network of English: The Mother of All WordNETs,

Computers and Humanities, 209-220, 1998.

[5] D. Fensel, and C. Bussler, 2002. Semantic web enabled web services. In

Proceedings of International Semantic Web Conference (ISWC'2002), volume

2342.

[6] Java, http://java.sun.com/, August 2007.

[7] E. Karakoc, K. Kardas, and P. Senkul, A Workflow-based Web Service

Composition System, 2006 IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology (WI-IAT 2006 Workshops)(WI-

IATW'06).

[8] E. Karakoc, Web Service Composition Under Resource Allocation Constraints,

Thesis for a Master of Science degree in Computer Engineering from the

University of METU, Turkey, April 2007

[9] L. Li and I. Horrocks, A software framework for matchmaking based on

semantic web technology. In Proceedings of the 12th International Conference

on the World Wide Web, Budapest, Hungary, May 2003.

[10] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D.

McGuinness, B. Parsia, T. R. Payne, M. Sabou, M. Solanki, N. Srinivasan, K.

Sycara (SRI, CMU, Univ. Toronto), Bringing Semantics to Web Services: The

OWL-S Approach, First International Workshop on Semantic Web Services

76

and Web Process Composition (SWSWPC 2004) 6-9, 2004, San Diego,

California, USA.

[11] S. McIlraith, T. C. Son, and H. Zeng. Semantic Web services. IEEE Intelligent

Systems, 16(2):46–53, March/April 2001.

[12] B. Medjahed, A. Bouguettaya, A.K. Elmagarmid, Composing Web services on

the Semantic Web, VLDB J. 12(4): 333-351, 2003.

[13] N. Milanovic and M. Malek, Current solutions for Web service composition,

IEEE Internet Computing, 2004

[14] OWL, Web Ontology Language, http://www.w3.org/2004/OWL , August

2007.

[15] OWL-S, Semantic Markup for web services, OWL white paper,

http://www.daml.org/services/owls/1.0/owl-s.pdf , August 2007.

[16] OWL-S API, Maryland Information and Network Dynamics Lab Semantic

Web Agents Project, http://www.mindswap.org/2004/owl-s/api , August 2007.

[17] M. Paolucci, T. Kawamura, T. R. Payne, K. Sycara, Importing the Semantic

Web in UDDI, WES 2002: 225-236.

[18] M. Paolucci, T. Kawamura, T. R. Payne, K. Sycara, Semantic Matching of

Web Services Capabilities, International Semantic Web Conference, 333-347,

2002.

[19] E. Sirin, J. Hendler, B. Parsia, Semi Automatic Composition of Web Services

using Semantic Descriptions, in: Web Services: Modeling, Architecture and

Infrastructure workshop in conjunction with ICEIS2003, 2002.

[20] SOAP, Simple Object Access Protocol; http://www.w3.org/TR/SOAP, August

2007.

[21] UDDI, Universal Description, Discovery and Integration of Web Services;

http://www.uddi.org, August 2007.

[22] K. Verma, K Gomadam, A. P. Sheth, J. A. Miller, Z. Wu , The METEOR-S

Approach for Configuring and Executing Dynamic Web Processes, LSDIS Lab

Technical Report, University of Georgia, Athens, Georgia, USA, 2004.

[23] Web Service, http://en.wikipedia.org/wiki/Web_service, August 2007

77

[24] WSDL, Web Service Description Language; http://www.w3.org/TR/wsdl,

August 2007.

[25] XML, eXtensible Markup Language, www.w3.org/XML/, August 2007.

78

APPENDIX A

ONTOLOGY DOCUMENTS

In this section, ontology documents which are created for thesis study are listed.

A.1 House.owl

<?xml version="1.0"?>
<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syn tax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schem a#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns="http://www.owl-ontologies.com/unnamed.ow l#"

 xml:base="http://www.owl-ontologies.com/House.o wl">

 <owl:Class rdf:ID="House"/>

 <owl:Class rdf:ID="Wall"/>

 <owl:Class rdf:ID="Roof"/>

 <owl:Class rdf:ID="HFloor"/>

 <owl:Class rdf:ID="Tavan"/>

 <owl:Class rdf:ID="Window"/>

 <owl:Class rdf:ID="Parquet"/>

 <owl:Class rdf:about="#Parquet">

 <rdfs:subClassOf rdf:resource="#HFloor"/>

 </owl:Class>

 <owl:Class rdf:ID="Laminant">

 <rdfs:subClassOf rdf:resource="#Parquet"/>

 </owl:Class>

 <owl:Class rdf:ID="Wooden">

 <rdfs:subClassOf rdf:resource="#Parquet"/>

 </owl:Class>

 <owl:Class rdf:ID="Bathroom"/>

 <owl:Class rdf:ID="Faience">

 <rdfs:subClassOf rdf:resource="#HFloor"/>

 </owl:Class>

79

 <owl:Class rdf:ID="Radiator"/>

 <owl:Class rdf:ID="Terrace"/>

 <owl:Class rdf:ID="Door"/>

 <owl:Class rdf:ID="Room"/>

 <owl:ObjectProperty rdf:ID="tDuvar">

 <rdfs:domain rdf:resource="#Terrace"/>

 <rdfs:range rdf:resource="#Wall"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="bDuvar">

 <rdfs:domain rdf:resource="#Bathroom"/>

 <rdfs:range rdf:resource="#Wall"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="pencere">

 <rdfs:range rdf:resource="#Window"/>

 <rdfs:domain rdf:resource="#Wall"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="kalorifer">

 <rdfs:domain rdf:resource="#Wall"/>

 <rdfs:range rdf:resource="#Radiator"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="oda">

 <rdfs:domain rdf:resource="#House"/>

 <rdfs:range rdf:resource="#Room"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="duvar">

 <rdfs:domain rdf:resource="#Room"/>

 <rdfs:range rdf:resource="#Wall"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="bTaban">

 <rdfs:range rdf:resource="#HFloor"/>

 <rdfs:domain rdf:resource="#Bathroom"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="cati">

 <rdfs:range rdf:resource="#Roof"/>

 <rdfs:domain rdf:resource="#House"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="tTaban">

 <rdfs:range rdf:resource="#HFloor"/>

 <rdfs:domain rdf:resource="#Terrace"/>

80

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="bTavan">

 <rdfs:range rdf:resource="#Tavan"/>

 <rdfs:domain rdf:resource="#Bathroom"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="kapi">

 <rdfs:range rdf:resource="#Door"/>

 <rdfs:domain rdf:resource="#House"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="tavan">

 <rdfs:domain rdf:resource="#Room"/>

 <rdfs:range rdf:resource="#Tavan"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="taban">

 <rdfs:domain rdf:resource="#Room"/>

 <rdfs:range rdf:resource="#HFloor"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="Cins">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#stri ng"/>

 <rdfs:domain rdf:resource="#Parquet"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Alan">

 <rdfs:domain rdf:resource="#HFloor"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#stri ng"/>

 </owl:DatatypeProperty>

</rdf:RDF>

A.2 Travel.owl

<?xml version="1.0"?>

<rdf:RDF

 xmlns="http://www.owl-ontologies.com/travel.owl #"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syn tax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schem a#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

81

 xmlns:daml="http://www.daml.org/2001/03/daml+oi l#"

 xml:base="http://www.owl-ontologies.com/travel.ow l">

 <owl:Class rdf:ID="Activity"/>

 <owl:Class rdf:ID="Museums">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Sightseeing"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="BudgetHotelDestination">

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collecti on">

 <owl:Class rdf:ID="Destination"/>

 <owl:Restriction>

 <owl:someValuesFrom>

 <owl:Class>

 <owl:intersectionOf rdf:parseType=" Collection">

 <owl:Class rdf:ID="BudgetAccommod ation"/>

 <owl:Class rdf:ID="Hotel"/>

 </owl:intersectionOf>

 </owl:Class>

 </owl:someValuesFrom>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasAccomm odation"/>

 </owl:onProperty>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:ID="Capital">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="City"/>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom rdf:resource="#Museums" />

 <owl:onProperty>

82

 <owl:ObjectProperty rdf:ID="hasActivity"/ >

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Vehicle"/>

 <owl:Class rdf:ID="Beach">

 <rdfs:subClassOf rdf:resource="#Destination"/>

 </owl:Class>

 <owl:Class rdf:ID="Sunbathing">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Relaxation"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="NationalPark">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom>

 <owl:Class rdf:ID="Hiking"/>

 </owl:someValuesFrom>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasActivi ty"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="RuralArea"/>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasAccomm odation"/>

 </owl:onProperty>

 <owl:someValuesFrom>

 <owl:Class rdf:ID="Campground"/>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

83

 <owl:Class rdf:ID="BackpackersDestination">

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collecti on">

 <owl:Class rdf:about="#Destination"/>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasAc commodation"/>

 </owl:onProperty>

 <owl:someValuesFrom>

 <owl:Class rdf:about="#BudgetAccommod ation"/>

 </owl:someValuesFrom>

 </owl:Restriction>

 <owl:Restriction>

 <owl:someValuesFrom>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collect ion">

 <owl:Class rdf:ID="Sports"/>

 <owl:Class rdf:ID="Adventure"/>

 </owl:unionOf>

 </owl:Class>

 </owl:someValuesFrom>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasAc tivity"/>

 </owl:onProperty>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:about="#Sightseeing">

 <owl:disjointWith>

 <owl:Class rdf:about="#Relaxation"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:about="#Sports"/>

 </owl:disjointWith>

 <rdfs:subClassOf rdf:resource="#Activity"/>

84

 <owl:disjointWith>

 <owl:Class rdf:about="#Adventure"/>

 </owl:disjointWith>

 </owl:Class>

 <owl:Class rdf:ID="RetireeDestination">

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collecti on">

 <owl:Class rdf:about="#Destination"/>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasAc commodation"/>

 </owl:onProperty>

 <owl:someValuesFrom>

 <owl:Restriction>

 <owl:hasValue>

 <AccommodationRating rdf:ID="Thre eStarRating">

 <owl:differentFrom>

 <AccommodationRating rdf:ID=" TwoStarRating">

 <owl:differentFrom>

 <AccommodationRating

rdf:ID="OneStarRating">

 <owl:differentFrom

rdf:resource="#ThreeStarRating"/>

 <owl:differentFrom

rdf:resource="#TwoStarRating"/>

 </AccommodationRating>

 </owl:differentFrom>

 <owl:differentFrom

rdf:resource="#ThreeStarRating"/>

 </AccommodationRating>

 </owl:differentFrom>

 <owl:differentFrom

rdf:resource="#OneStarRating"/>

 </AccommodationRating>

 </owl:hasValue>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasRa ting"/>

85

 </owl:onProperty>

 </owl:Restriction>

 </owl:someValuesFrom>

 </owl:Restriction>

 <owl:Restriction>

 <owl:someValuesFrom rdf:resource="#Sigh tseeing"/>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasAc tivity"/>

 </owl:onProperty>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:ID="AccommodationRating">

 <owl:equivalentClass>

 <owl:Class>

 <owl:oneOf rdf:parseType="Collection">

 <AccommodationRating rdf:about="#OneStarR ating"/>

 <AccommodationRating rdf:about="#TwoStarR ating"/>

 <AccommodationRating rdf:about="#ThreeSta rRating"/>

 </owl:oneOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:ID="UrbanArea">

 <rdfs:subClassOf rdf:resource="#Destination"/>

 <owl:disjointWith>

 <owl:Class rdf:about="#RuralArea"/>

 </owl:disjointWith>

 </owl:Class>

 <owl:Class rdf:about="#Campground">

 <owl:disjointWith>

 <owl:Class rdf:ID="BedAndBreakfast"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Accommodation"/>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

86

 <owl:Restriction>

 <owl:hasValue rdf:resource="#OneStarRating" />

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasRating "/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <owl:disjointWith>

 <owl:Class rdf:about="#Hotel"/>

 </owl:disjointWith>

 </owl:Class>

 <owl:Class rdf:about="#City">

 <rdfs:subClassOf rdf:resource="#UrbanArea"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasAccomm odation"/>

 </owl:onProperty>

 <owl:someValuesFrom>

 <owl:Class rdf:ID="LuxuryHotel"/>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Safari">

 <rdfs:subClassOf rdf:resource="#Sightseeing"/>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Adventure"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="QuietDestination">

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collecti on">

 <owl:Class rdf:about="#Destination"/>

 <owl:Class>

 <owl:complementOf>

 <owl:Class rdf:ID="FamilyDestination" />

 </owl:complementOf>

87

 </owl:Class>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:about="#Hiking">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Sports"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#Relaxation">

 <owl:disjointWith rdf:resource="#Sightseeing"/>

 <owl:disjointWith>

 <owl:Class rdf:about="#Adventure"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:about="#Sports"/>

 </owl:disjointWith>

 <rdfs:subClassOf rdf:resource="#Activity"/>

 </owl:Class>

 <owl:Class rdf:about="#FamilyDestination">

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collecti on">

 <owl:Class rdf:about="#Destination"/>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasAc commodation"/>

 </owl:onProperty>

 </owl:Restriction>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >2</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasAc tivity"/>

88

 </owl:onProperty>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:about="#Adventure">

 <owl:disjointWith>

 <owl:Class rdf:about="#Sports"/>

 </owl:disjointWith>

 <owl:disjointWith rdf:resource="#Relaxation"/>

 <owl:disjointWith rdf:resource="#Sightseeing"/>

 <rdfs:subClassOf rdf:resource="#Activity"/>

 </owl:Class>

 <owl:Class rdf:ID="Yoga">

 <rdfs:subClassOf rdf:resource="#Relaxation"/>

 </owl:Class>

 <owl:Class rdf:about="#Sports">

 <rdfs:subClassOf rdf:resource="#Activity"/>

 <owl:disjointWith rdf:resource="#Adventure"/>

 <owl:disjointWith rdf:resource="#Sightseeing"/>

 <owl:disjointWith rdf:resource="#Relaxation"/>

 </owl:Class>

 <owl:Class rdf:about="#Hotel">

 <owl:disjointWith rdf:resource="#Campground"/>

 <owl:disjointWith>

 <owl:Class rdf:about="#BedAndBreakfast"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Accommodation"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Town">

 <rdfs:subClassOf rdf:resource="#UrbanArea"/>

 </owl:Class>

 <owl:Class rdf:about="#RuralArea">

 <rdfs:subClassOf rdf:resource="#Destination"/>

 <owl:disjointWith rdf:resource="#UrbanArea"/>

 </owl:Class>

89

 <owl:Class rdf:about="#Accommodation">

 </owl:Class>

 <owl:Class rdf:ID="Surfing">

 <rdfs:subClassOf rdf:resource="#Sports"/>

 </owl:Class>

 <owl:Class rdf:about="#BudgetAccommodation">

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collecti on">

 <owl:Class rdf:about="#Accommodation"/>

 <owl:Restriction>

 <owl:someValuesFrom>

 <owl:Class>

 <owl:oneOf rdf:parseType="Collectio n">

 <AccommodationRating rdf:about="# OneStarRating"/>

 <AccommodationRating rdf:about="# TwoStarRating"/>

 </owl:oneOf>

 </owl:Class>

 </owl:someValuesFrom>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasRa ting"/>

 </owl:onProperty>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:about="#BedAndBreakfast">

 <owl:disjointWith rdf:resource="#Hotel"/>

 <rdfs:subClassOf rdf:resource="#Accommodation"/ >

 <owl:disjointWith rdf:resource="#Campground"/>

 </owl:Class>

 <owl:Class rdf:ID="BunjeeJumping">

 <rdfs:subClassOf rdf:resource="#Adventure"/>

 </owl:Class>

 <owl:Class rdf:about="#LuxuryHotel">

 <rdfs:subClassOf rdf:resource="#Hotel"/>

 <rdfs:subClassOf>

 <owl:Restriction>

90

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasRating "/>

 </owl:onProperty>

 <owl:hasValue rdf:resource="#ThreeStarRatin g"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="bus">

 <rdfs:subClassOf rdf:resource="#Vehicle"/>

 </owl:Class>

 <owl:Class rdf:ID="Farmland">

 <rdfs:subClassOf rdf:resource="#RuralArea"/>

 </owl:Class>

 <owl:Class rdf:ID="Contact"/>

 <owl:Class rdf:ID="plane">

 <rdfs:subClassOf rdf:resource="#Vehicle"/>

 </owl:Class>

 <owl:ObjectProperty rdf:about="#hasActivity">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="isOfferedAt"/>

 </owl:inverseOf>

 <rdfs:range rdf:resource="#Activity"/>

 <rdfs:domain rdf:resource="#Destination"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasRating">

 <rdfs:domain rdf:resource="#Accommodation"/>

 <rdfs:range rdf:resource="#AccommodationRating" />

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasContact">

 <rdfs:range rdf:resource="#Contact"/>

 <rdfs:domain rdf:resource="#Activity"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isOfferedAt">

 <rdfs:range rdf:resource="#Destination"/>

 <owl:inverseOf rdf:resource="#hasActivity"/>

 <rdfs:domain rdf:resource="#Activity"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasAccommodation" >

 <rdfs:range rdf:resource="#Accommodation"/>

91

 <rdfs:domain rdf:resource="#Destination"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasPart">

 <rdfs:domain rdf:resource="#Destination"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#Transit iveProperty"/>

 <rdfs:range rdf:resource="#Destination"/>

 </owl:ObjectProperty>

 <owl:FunctionalProperty rdf:ID="hasCity">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#stri ng"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#Datatyp eProperty"/>

 <rdfs:domain rdf:resource="#Contact"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="hasZipCode">

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#Datatyp eProperty"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#int" />

 <rdfs:domain rdf:resource="#Contact"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="hasStreet">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#stri ng"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#Datatyp eProperty"/>

 <rdfs:domain rdf:resource="#Contact"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="hasEMail">

 <rdfs:domain rdf:resource="#Contact"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#stri ng"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#Datatyp eProperty"/>

 </owl:FunctionalProperty>

 <RuralArea rdf:ID="Woomera"/>

 <Beach rdf:ID="BondiBeach"/>

 <NationalPark rdf:ID="BlueMountains"/>

92

 <NationalPark rdf:ID="Warrumbungles"/>

 <Capital rdf:ID="Canberra"/>

 <Beach rdf:ID="CurrawongBeach"/>

 <LuxuryHotel rdf:ID="FourSeasons"/>

 <Capital rdf:ID="Sydney">

 <hasPart rdf:resource="#BondiBeach"/>

 <hasAccommodation rdf:resource="#FourSeasons"/>

 <hasPart rdf:resource="#CurrawongBeach"/>

 </Capital>

 <RuralArea rdf:ID="CapeYork"/>

 <Town rdf:ID="Coonabarabran"/>

 <City rdf:ID="Cairns"/>

</rdf:RDF>

A.3 Meal.owl

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syn tax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schem a#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns="http://www.owl-ontologies.com/unnamed.ow l#"

 xml:base="http://www.owl-ontologies.com/unnamed.o wl">

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="Pizza">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Food"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="AppleJuice">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="FruitJuice"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Chicken">

 <rdfs:subClassOf rdf:resource="#Food"/>

93

 </owl:Class>

 <owl:Class rdf:ID="OrangeJuice">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#FruitJuice"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Rice-pudding">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="WithMilk"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Ayran">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="WithoutAlcohol"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Coke">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#WithoutAlcohol"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Ice-cream">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#WithMilk"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Meat">

 <rdfs:subClassOf rdf:resource="#Food"/>

 </owl:Class>

 <owl:Class rdf:ID="WithAlcohol">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Drink"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Desert"/>

 <owl:Class rdf:ID="Baklava">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="WithoutMilk"/>

 </rdfs:subClassOf>

94

 </owl:Class>

 <owl:Class rdf:about="#WithMilk">

 <rdfs:subClassOf rdf:resource="#Desert"/>

 </owl:Class>

 <owl:Class rdf:ID="Fish">

 <rdfs:subClassOf rdf:resource="#Food"/>

 </owl:Class>

 <owl:Class rdf:ID="Salad"/>

 <owl:Class rdf:ID="Kadayif">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#WithoutMilk"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#WithoutAlcohol">

 <rdfs:subClassOf rdf:resource="#Drink"/>

 </owl:Class>

 <owl:Class rdf:about="#FruitJuice">

 <rdfs:subClassOf rdf:resource="#WithoutAlcohol" />

 </owl:Class>

 <owl:Class rdf:about="#WithoutMilk">

 <rdfs:subClassOf rdf:resource="#Desert"/>

 </owl:Class>

</rdf:RDF>

A.4 PegasusService.owl

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE uridef [
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-sy ntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-sche ma">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY service "http://www.daml.org/services/ow l-
s/1.1/Service.owl">
 <!ENTITY profile "http://www.daml.org/services/ow l-
s/1.1/Profile.owl">
 <!ENTITY process "http://www.daml.org/services/ow l-
s/1.1/Process.owl">
 <!ENTITY grounding "http://www.daml.org/services/ owl-
s/1.1/Grounding.owl">
]>

95

<rdf:RDF
 xmlns:rdf="&rdf;#"
 xmlns:rdfs="&rdfs;#"
 xmlns:owl="&owl;#"
 xmlns:xsd="&xsd;#"
 xmlns:service="&service;#"
 xmlns:profile="&profile;#"
 xmlns:process="&process;#"
 xmlns:grounding="&grounding;#"
 >

<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="&service;"/>
 <owl:imports rdf:resource="&profile;"/>
 <owl:imports rdf:resource="&process;"/>
 <owl:imports rdf:resource="&grounding;"/>
</owl:Ontology>

<!-- Service description -->
<service:Service rdf:ID="PegasusServiceService">
 <service:presents rdf:resource="#PegasusServicePro file"/>

 <service:describedBy rdf:resource="#PegasusService Process"/>

 <service:supports rdf:resource="#PegasusServiceGro unding"/>
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="PegasusServiceProfile">
 <service:isPresentedBy
rdf:resource="#PegasusServiceService"/>

 <profile:serviceName
xml:lang="en">PegasusService</profile:serviceName>
 <profile:textDescription
xml:lang="en">PegasusServiceService</profile:textDe scription>

 <profile:hasInput rdf:resource="#departureTime"/>
 <profile:hasInput rdf:resource="#arrivalTime"/>
 <profile:hasInput rdf:resource="#destination"/>
 <profile:hasInput rdf:resource="#departure"/>
 <profile:hasOutput rdf:resource="#cost"/>
</profile:Profile>

<!-- Process description -->
<process:AtomicProcess rdf:ID="PegasusServiceProces s">
 <service:describes rdf:resource="#PegasusServiceSe rvice"/>

 <process:hasInput rdf:resource="#departureTime"/>
 <process:hasInput rdf:resource="#arrivalTime"/>
 <process:hasInput rdf:resource="#destination"/>
 <process:hasInput rdf:resource="#departure"/>

 <process:hasOutput rdf:resource="#cost"/>
</process:AtomicProcess>

<process:Input rdf:ID="departureTime">

96

 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Departur
eTime.owl#DepartureTime</process:parameterType>
 <rdfs:label>departureTime</rdfs:label>
</process:Input>
<process:Input rdf:ID="arrivalTime">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/ArrivalT
ime.owl#ArrivalTime</process:parameterType>
 <rdfs:label>arrivalTime</rdfs:label>
</process:Input>
<process:Input rdf:ID="destination">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Destinat
ionPlace.owl#DestinationPlace</process:parameterTyp e>
 <rdfs:label>destination</rdfs:label>
</process:Input>
<process:Input rdf:ID="departure">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Departur
ePlace.owl#DeparturePlace</process:parameterType>
 <rdfs:label>departure</rdfs:label>
</process:Input>

<process:Output rdf:ID="cost">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Cost.owl
#Cost</process:parameterType>
 <rdfs:label>cost</rdfs:label>
</process:Output>

</rdf:RDF>

A.5 THYService.owl

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE uridef [
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-sy ntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-sche ma">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY service "http://www.daml.org/services/ow l-
s/1.1/Service.owl">
 <!ENTITY profile "http://www.daml.org/services/ow l-
s/1.1/Profile.owl">
 <!ENTITY process "http://www.daml.org/services/ow l-
s/1.1/Process.owl">
 <!ENTITY grounding "http://www.daml.org/services/ owl-
s/1.1/Grounding.owl">
]>

<rdf:RDF
 xmlns:rdf="&rdf;#"
 xmlns:rdfs="&rdfs;#"

97

 xmlns:owl="&owl;#"
 xmlns:xsd="&xsd;#"
 xmlns:service="&service;#"
 xmlns:profile="&profile;#"
 xmlns:process="&process;#"
 xmlns:grounding="&grounding;#"
 >

<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="&service;"/>
 <owl:imports rdf:resource="&profile;"/>
 <owl:imports rdf:resource="&process;"/>
 <owl:imports rdf:resource="&grounding;"/>
</owl:Ontology>

<!-- Service description -->
<service:Service rdf:ID="THYServiceService">
 <service:presents rdf:resource="#THYServiceProfile "/>

 <service:describedBy rdf:resource="#THYServiceProc ess"/>

 <service:supports rdf:resource="#THYServiceGroundi ng"/>
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="THYServiceProfile">
 <service:isPresentedBy rdf:resource="#THYServiceSe rvice"/>

 <profile:serviceName
xml:lang="en">THYService</profile:serviceName>
 <profile:textDescription
xml:lang="en">THYServiceService</profile:textDescri ption>

 <profile:hasInput rdf:resource="#duration"/>
 <profile:hasInput rdf:resource="#destination"/>
 <profile:hasInput rdf:resource="#departure"/>
 <profile:hasOutput rdf:resource="#cost"/>
</profile:Profile>

<!-- Process description -->
<process:AtomicProcess rdf:ID="THYServiceProcess">
 <service:describes rdf:resource="#THYServiceServic e"/>

 <process:hasInput rdf:resource="#duration"/>
 <process:hasInput rdf:resource="#destination"/>
 <process:hasInput rdf:resource="#departure"/>

 <process:hasOutput rdf:resource="#cost"/>
</process:AtomicProcess>

<process:Input rdf:ID="duration">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Duration
.owl#Duration</process:parameterType>
 <rdfs:label>duration</rdfs:label>
</process:Input>
<process:Input rdf:ID="destination">

98

 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Destinat
ionPlace.owl#DestinationPlace</process:parameterTyp e>
 <rdfs:label>destination</rdfs:label>
</process:Input>
<process:Input rdf:ID="departure">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Departur
ePlace.owl#DeparturePlace</process:parameterType>
 <rdfs:label>departure</rdfs:label>
</process:Input>

<process:Output rdf:ID="cost">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Cost.owl
#Cost</process:parameterType>
 <rdfs:label>cost</rdfs:label>
</process:Output>

</rdf:RDF>

A.6 AtlasJetService.owl

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE uridef [
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-sy ntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-sche ma">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY service "http://www.daml.org/services/ow l-
s/1.1/Service.owl">
 <!ENTITY profile "http://www.daml.org/services/ow l-
s/1.1/Profile.owl">
 <!ENTITY process "http://www.daml.org/services/ow l-
s/1.1/Process.owl">
 <!ENTITY grounding "http://www.daml.org/services/ owl-
s/1.1/Grounding.owl">
]>

<rdf:RDF
 xmlns:rdf="&rdf;#"
 xmlns:rdfs="&rdfs;#"
 xmlns:owl="&owl;#"
 xmlns:xsd="&xsd;#"
 xmlns:service="&service;#"
 xmlns:profile="&profile;#"
 xmlns:process="&process;#"
 xmlns:grounding="&grounding;#"
 >

<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="&service;"/>
 <owl:imports rdf:resource="&profile;"/>

99

 <owl:imports rdf:resource="&process;"/>
 <owl:imports rdf:resource="&grounding;"/>
</owl:Ontology>

<!-- Service description -->
<service:Service rdf:ID="AtlasJetServiceService">
 <service:presents rdf:resource="#AtlasJetServicePr ofile"/>

 <service:describedBy rdf:resource="#AtlasJetServic eProcess"/>

 <service:supports rdf:resource="#AtlasJetServiceGr ounding"/>
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="AtlasJetServiceProfile">
 <service:isPresentedBy
rdf:resource="#AtlasJetServiceService"/>

 <profile:serviceName
xml:lang="en">AtlasJetService</profile:serviceName>
 <profile:textDescription
xml:lang="en">AtlasJetServiceService</profile:textD escription>

 <profile:hasInput rdf:resource="#departureTime"/>
 <profile:hasInput rdf:resource="#arrivalTime"/>
 <profile:hasInput rdf:resource="#destination"/>
 <profile:hasInput rdf:resource="#departure"/>
 <profile:hasOutput rdf:resource="#cost"/>
</profile:Profile>

<!-- Process description -->
<process:AtomicProcess rdf:ID="AtlasJetServiceProce ss">
 <service:describes rdf:resource="#AtlasJetServiceS ervice"/>

 <process:hasInput rdf:resource="#departureTime"/>
 <process:hasInput rdf:resource="#arrivalTime"/>
 <process:hasInput rdf:resource="#destination"/>
 <process:hasInput rdf:resource="#departure"/>

 <process:hasOutput rdf:resource="#cost"/>
</process:AtomicProcess>

<process:Input rdf:ID="departureTime">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/AtlasJet
DepartureTime.owl#AtlasJetDepartureTime</process:pa rameterType>
 <rdfs:label>departureTime</rdfs:label>
</process:Input>
<process:Input rdf:ID="arrivalTime">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/AtlasJet
ArrivalTime.owl#AtlasJetArrivalTime</process:parame terType>
 <rdfs:label>arrivalTime</rdfs:label>
</process:Input>
<process:Input rdf:ID="destination">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Destinat
ionPlace.owl#DestinationPlace</process:parameterTyp e>

100

 <rdfs:label>destination</rdfs:label>
</process:Input>
<process:Input rdf:ID="departure">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Departur
ePlace.owl#DeparturePlace</process:parameterType>
 <rdfs:label>departure</rdfs:label>
</process:Input>

<process:Output rdf:ID="cost">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Cost.owl
#Cost</process:parameterType>
 <rdfs:label>cost</rdfs:label>
</process:Output>

</rdf:RDF>

A.7 KAirlinesService.owl

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE uridef [
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-sy ntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-sche ma">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY service "http://www.daml.org/services/ow l-
s/1.1/Service.owl">
 <!ENTITY profile "http://www.daml.org/services/ow l-
s/1.1/Profile.owl">
 <!ENTITY process "http://www.daml.org/services/ow l-
s/1.1/Process.owl">
 <!ENTITY grounding "http://www.daml.org/services/ owl-
s/1.1/Grounding.owl">
]>

<rdf:RDF
 xmlns:rdf="&rdf;#"
 xmlns:rdfs="&rdfs;#"
 xmlns:owl="&owl;#"
 xmlns:xsd="&xsd;#"
 xmlns:service="&service;#"
 xmlns:profile="&profile;#"
 xmlns:process="&process;#"
 xmlns:grounding="&grounding;#"
 >

<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="&service;"/>
 <owl:imports rdf:resource="&profile;"/>
 <owl:imports rdf:resource="&process;"/>
 <owl:imports rdf:resource="&grounding;"/>
</owl:Ontology>

101

<!-- Service description -->
<service:Service rdf:ID="KAirlinesServiceService">
 <service:presents rdf:resource="#KAirlinesServiceP rofile"/>

 <service:describedBy
rdf:resource="#KAirlinesServiceProcess"/>

 <service:supports rdf:resource="#KAirlinesServiceG rounding"/>
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="KAirlinesServiceProfile">
 <service:isPresentedBy
rdf:resource="#KAirlinesServiceService"/>

 <profile:serviceName
xml:lang="en">KAirlinesService</profile:serviceName >
 <profile:textDescription
xml:lang="en">KAirlinesServiceService</profile:text Description>

 <profile:hasInput rdf:resource="#departureTime"/>
 <profile:hasInput rdf:resource="#arrivalTime"/>
 <profile:hasInput rdf:resource="#destination"/>
 <profile:hasInput rdf:resource="#departure"/>
 <profile:hasOutput rdf:resource="#kAirlinesReceipt "/>
</profile:Profile>

<!-- Process description -->
<process:AtomicProcess rdf:ID="KAirlinesServiceProc ess">
 <service:describes rdf:resource="#KAirlinesService Service"/>

 <process:hasInput rdf:resource="#departureTime"/>
 <process:hasInput rdf:resource="#arrivalTime"/>
 <process:hasInput rdf:resource="#destination"/>
 <process:hasInput rdf:resource="#departure"/>

 <process:hasOutput rdf:resource="#kAirlinesReceipt "/>
</process:AtomicProcess>

<process:Input rdf:ID="departureTime">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Departur
eTime.owl#DepartureTime</process:parameterType>
 <rdfs:label>departureTime</rdfs:label>
</process:Input>
<process:Input rdf:ID="arrivalTime">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/ArrivalT
ime.owl#ArrivalTime</process:parameterType>
 <rdfs:label>arrivalTime</rdfs:label>
</process:Input>
<process:Input rdf:ID="destination">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Destinat
ionPlace.owl#DestinationPlace</process:parameterTyp e>
 <rdfs:label>destination</rdfs:label>
</process:Input>

102

<process:Input rdf:ID="departure">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Departur
ePlace.owl#DeparturePlace</process:parameterType>
 <rdfs:label>departure</rdfs:label>
</process:Input>

<process:Output rdf:ID="kAirlinesReceipt">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/KAirline
sReceipt.owl#KAirlinesReceipt</process:parameterTyp e>
 <rdfs:label>cost</rdfs:label>
</process:Output>

</rdf:RDF>

A.8 HiltonHotelService.owl

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE uridef [
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-sy ntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-sche ma">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY service "http://www.daml.org/services/ow l-
s/1.1/Service.owl">
 <!ENTITY profile "http://www.daml.org/services/ow l-
s/1.1/Profile.owl">
 <!ENTITY process "http://www.daml.org/services/ow l-
s/1.1/Process.owl">
 <!ENTITY grounding "http://www.daml.org/services/ owl-
s/1.1/Grounding.owl">
]>

<rdf:RDF
 xmlns:rdf="&rdf;#"
 xmlns:rdfs="&rdfs;#"
 xmlns:owl="&owl;#"
 xmlns:xsd="&xsd;#"
 xmlns:service="&service;#"
 xmlns:profile="&profile;#"
 xmlns:process="&process;#"
 xmlns:grounding="&grounding;#"
 >

<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="&service;"/>
 <owl:imports rdf:resource="&profile;"/>
 <owl:imports rdf:resource="&process;"/>
 <owl:imports rdf:resource="&grounding;"/>
</owl:Ontology>

<!-- Service description -->

103

<service:Service rdf:ID="HiltonHotelServiceService" >
 <service:presents rdf:resource="#HiltonHotelServic eProfile"/>

 <service:describedBy
rdf:resource="#HiltonHotelServiceProcess"/>

 <service:supports
rdf:resource="#HiltonHotelServiceGrounding"/>
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="HiltonHotelServiceProfile" >
 <service:isPresentedBy
rdf:resource="#HiltonHotelServiceService"/>

 <profile:serviceName
xml:lang="en">HiltonHotelService</profile:serviceNa me>
 <profile:textDescription
xml:lang="en">HiltonHotelServiceService</profile:te xtDescription>

 <profile:hasInput rdf:resource="#arrivalTime"/>
 <profile:hasInput rdf:resource="#leavingTime"/>
 <profile:hasInput rdf:resource="#place"/>
 <profile:hasInput rdf:resource="#roomType"/>
 <profile:hasOutput rdf:resource="#cost"/>
</profile:Profile>

<!-- Process description -->
<process:AtomicProcess rdf:ID="HiltonHotelServicePr ocess">
 <service:describes
rdf:resource="#HiltonHotelServiceService"/>

 <process:hasInput rdf:resource="#arrivalTime"/>
 <process:hasInput rdf:resource="#leavingTime"/>
 <process:hasInput rdf:resource="#place"/>
 <process:hasInput rdf:resource="#roomType"/>

 <process:hasOutput rdf:resource="#cost"/>
</process:AtomicProcess>

<process:Input rdf:ID="arrivalTime">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/ArrivalT
ime.owl#ArrivalTime</process:parameterType>
 <rdfs:label>duration</rdfs:label>
</process:Input>
<process:Input rdf:ID="leavingTime">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/LeavingT
ime.owl#LeavingTime</process:parameterType>
 <rdfs:label>destination</rdfs:label>
</process:Input>
<process:Input rdf:ID="place">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Place.ow
l#Place</process:parameterType>
 <rdfs:label>departure</rdfs:label>
</process:Input>

104

<process:Input rdf:ID="roomType">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/RoomType
.owl#RoomType</process:parameterType>
 <rdfs:label>departure</rdfs:label>
</process:Input>

<process:Output rdf:ID="cost">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Cost.owl
#Cost</process:parameterType>
 <rdfs:label>cost</rdfs:label>
</process:Output>

</rdf:RDF>

A.9 HavasShuttleService.owl

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE uridef [
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-sy ntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-sche ma">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY service "http://www.daml.org/services/ow l-
s/1.1/Service.owl">
 <!ENTITY profile "http://www.daml.org/services/ow l-
s/1.1/Profile.owl">
 <!ENTITY process "http://www.daml.org/services/ow l-
s/1.1/Process.owl">
 <!ENTITY grounding "http://www.daml.org/services/ owl-
s/1.1/Grounding.owl">
]>

<rdf:RDF
 xmlns:rdf="&rdf;#"
 xmlns:rdfs="&rdfs;#"
 xmlns:owl="&owl;#"
 xmlns:xsd="&xsd;#"
 xmlns:service="&service;#"
 xmlns:profile="&profile;#"
 xmlns:process="&process;#"
 xmlns:grounding="&grounding;#"
 >

<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="&service;"/>
 <owl:imports rdf:resource="&profile;"/>
 <owl:imports rdf:resource="&process;"/>
 <owl:imports rdf:resource="&grounding;"/>
</owl:Ontology>

<!-- Service description -->

105

<service:Service rdf:ID="HavasShuttleServiceService ">
 <service:presents
rdf:resource="#HavasShuttleServiceProfile"/>

 <service:describedBy
rdf:resource="#HavasShuttleServiceProcess"/>

 <service:supports
rdf:resource="#HavasShuttleServiceGrounding"/>
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="HavasShuttleServiceProfile ">
 <service:isPresentedBy
rdf:resource="#HavasShuttleServiceService"/>

 <profile:serviceName
xml:lang="en">HavasShuttleService</profile:serviceN ame>
 <profile:textDescription
xml:lang="en">HavasShuttleServiceService</profile:t extDescription>

 <profile:hasInput rdf:resource="#airport"/>
 <profile:hasInput rdf:resource="#destinationHotel" />
 <profile:hasInput rdf:resource="#departureTime"/>
 <profile:hasOutput rdf:resource="#cost"/>
</profile:Profile>

<!-- Process description -->
<process:AtomicProcess rdf:ID="HavasShuttleServiceP rocess">
 <service:describes
rdf:resource="#HavasShuttleServiceService"/>

 <process:hasInput rdf:resource="#airport"/>
 <process:hasInput rdf:resource="#destinationHotel" />
 <process:hasInput rdf:resource="#departureTime"/>

 <process:hasOutput rdf:resource="#cost"/>
</process:AtomicProcess>

<process:Input rdf:ID="airport">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Airport.
owl#Airport</process:parameterType>
 <rdfs:label>airport</rdfs:label>
</process:Input>
<process:Input rdf:ID="destinationHotel">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Destinat
ionPlace.owl#DestinationPlace</process:parameterTyp e>
 <rdfs:label>destinationHotel</rdfs:label>
</process:Input>
<process:Input rdf:ID="departureTime">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Departur
eTime.owl#DepartureTime</process:parameterType>
 <rdfs:label>departureTime</rdfs:label>
</process:Input>

106

<process:Output rdf:ID="cost">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">http://localhost:8080/e xamples/Cost.owl
#Cost</process:parameterType>
 <rdfs:label>cost</rdfs:label>
</process:Output>

</rdf:RDF>

