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ABSTRACT
USING LEARNED AFFORDANCES FOR ROBOTIC BEHAVIOR DEVELOPMENTDo§ar, Mehmet RemziM.S
., Department of Computer EngineeringSupervisor: Asst. Prof. Dr. Erol �ahinSeptember 2007, 66 pages�Developmental roboti
s� proposes that, instead of trying to build a robot that showsintelligen
e on
e and for all, what one must do is to build robots that 
an develop [47℄. Arobot should go through 
ognitive development just like an animal baby does. These robotsshould be equipped with behaviors that are simple but enough to bootstrap the system.Then, as the robot intera
ts with its environment, it should display in
reasingly 
omplexbehaviors. Studies in developmental psy
hology [63, 28℄ and neurophysiology [56, 27, 3℄provide support for the view that, the animals start with innate simple behaviors, and developmore 
omplex behaviors through the di�erentiation, sequen
ing, and 
ombination of theseprimitive behaviors. In this thesis, we propose su
h a development s
heme for a mobile robot.J.J. Gibson's 
on
ept of �a�ordan
es� [33℄ provides the basis of this development s
heme,and we use a formalization of a�ordan
es [13℄ to make the robot learn about the dynami
sof its intera
tions with its environment. We show that an autonomous robot 
an start withpre-
oded primitive behaviors, and as it exe
utes its behaviors randomly in an environment,it 
an learn the a�ordan
e relations between the environment and its behaviors. We thenpresent two ways of using these learned stru
tures, in a
hieving more 
omplex, voluntarybehaviors. In the �rst 
ase, the robot still uses its pre-
oded primitive behaviors only, butthe sequen
ing of these are su
h that new more 
omplex behaviors emerge. In the se
ond
ase, the robot uses its pre-
oded primitive behaviors to 
reate new behaviors.iv
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ÖZ
Ö�REN�LM�� SA�LARLIKLARI KULLANARAK ROBOT DAVRANI� GEL���M�Do§ar, Mehmet RemziYüksek Lisans, Bilgisayar Mühendisli§i BölümüTez Yöneti
isi: Yrd. Doç. Dr. Erol �ahinEylül 2007, 66 sayfa�Geli³imsel Robotik�, ilk haliyle ve tek seferde zeki davran�³lar gösteren robotlar yapmayaçal�³mak yerine, geli³ebilen robotlar yapmay� savunur [47℄. Bir hayvan yavrusunun yapa
a§�gibi, bir robot da bili³sel bir geli³im geçirmelidir. Bu robotlar basit ama geli³imi ba³latmayada yeterli davran�³larla donat�lm�³ olmal�d�rlar. Daha sonra, robot çevresiyle etkile³tikçe,giderek daha karma³�k davran�³lar sergilemelidir. Geli³im psikolojisi [63, 28℄ ve nöro�zyoloji[56, 27, 3℄ alan�ndaki çal�³malar, hayvanlar�n do§u³tan gelen basit davran�³lar ile ba³lad�k-lar�, ve daha karma³�k davran�³lar� bu ilkel davran�³lar�n farkl�la³mas�, s�ralanmas� veyabirle³tirilmesi yoluyla elde ettikleri görü³ünü desteklemektedirler. Bu tezde, bir gezer robotauygulanmak üzere böyle bir geli³im biçimi öneriyoruz. J.J. Gibson'un �sa§larl�k� kavram�[33℄ bu geli³im biçiminin temelini olu³turuyor; ve biz de, robotun çevreyle olan etkile³iminindinamiklerini ö§renmesinde sa§larl�k için yap�lm�³ bir formalizasyonu [13℄ kullan�yoruz. Birotonom robotun ön
eden kodlanm�³ ilkel davran�³lardan ba³layarak, bu davran�³lar� belirlibir ortamda rasgele çal�³t�rd�kça, çevresi ve kendi davran�³lar� aras�ndaki sa§larl�k ili³kileriniö§renebildi§ini gösteriyoruz. Sonra, ö§renilmi³ olan bu yap�lar� daha karma³�k ve istemlidavran�³lar gösterebilmekte kullanmak için iki yöntem sunuyoruz. �lk yöntemde robot, halasade
e ön
eden kodlanm�³ olan ilkel davran�³lar�n� kullan�yor, ama bu ilkel davran�³lar�ns�ralanmas� yeni ve daha karma³�k bir davran�³� ortaya ç�kara
ak ³ekilde oluyor. �kin
iyöntemde ise robot, ön
eden kodlanm�³ ilkel davran�³lar�n� yeni davran�³lar ke³fetmek içinkullan�yor. vi
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CHAPTER 1INTRODUCTION
�Developmental roboti
s� is a new approa
h to �building� intelligent ma
hines [47℄. It pro-poses that, instead of trying to build a robot that shows intelligen
e on
e and for all, whatone must do is to build robots that 
an develop. An arti�
ial agent (a robot) should gothrough 
ognitive (and sometimes also physi
al) development just like an animal baby does.These robots should be equipped with sensors, a
tuators, and behaviors that are simple butenough to bootstrap the system. Then, as the robot intera
ts with its environment, it shouldgo through developmental stages during whi
h it displays in
reasingly 
omplex behavior, de-velops its own symbol system, 
on
eptual world, and learns to use its a
tuators and sensorsmore e�e
tively.Think of a baby that tries to rea
h out and make grabbing movements in every randomdire
tion when it is �rst born. These rea
hing-out and grabbing a
tions are simple innatebehaviors that bootstrap the system in order to make the baby intera
t with its environment,and develop as a result of these multiple intera
tions [28℄. In time, the baby will dis
overthe situations in whi
h the grabbing behavior has some real predi
table e�e
t, and it willbe able to use these behaviors in a 
ontrolled and goal-dire
ted manner, instead of makinguseless grabbing attempts in random dire
tions.A developing robot should also start with simple unintentional behaviors. Using thesebehaviors it should be able to intera
t with its environment and gather information aboutthis intera
tion: information about the environment, its own body, and the things that it
an 
onsistently 
hange in the environment using its body. Then, with in
reasing experien
e,it should be able to exe
ute its behaviors voluntarily to a
hieve spe
i�
 goals. It should alsobe able to demonstrate novel behaviors, or enri
hed versions of its primitive behaviors, as aresult of this development. In the end, this development should have the e�e
t of adaptingthe robot's behaviors to its environment, and gradually in
reasing the robot's performan
e.1



Obje
tives and motivationThe obje
tive of this thesis is to propose and implement a development s
heme for an au-tonomous mobile robot. That is, starting from a set of simple pre-
oded behaviors/a
tions,through intera
tion and experien
e, we aim to realize a transition from these unintentionalbehaviors to intentional voluntary behaviors for the robot. This development should alsoresult in demonstration of novel/enri
hed behaviors that are di�erent from the pre-
odedexisting behaviors.On a more 
on
eptual level, our obje
tive is to 
ontribute to the view whi
h suggeststhat robots, just like human beings and other animals, should go through a developmentalpro
ess, where they shape their �intelligen
e� through their own experien
e.In MACS proje
t 1 we aimed to build a robot 
ontrol ar
hite
ture that learns, per
eives,and uses a�ordan
es. The a�ordan
e 
on
ept, borrowed from psy
hology, provides us with atool to think about the problems of roboti
s in terms of agent-environment intera
tions. Inproposing the behavioral development of a robot through its intera
tions with the world, wealso pla
e the a�ordan
e 
on
ept at the 
ore of our study. Using a�ordan
e representationsand our formalization of the 
on
ept, the robot learned generi
 relations about its behaviorsand its intera
tion with the world.Relation to other work and 
ontributionsThis is the third in a series of theses, that used a�ordan
es to atta
k di�erent problems inroboti
s.In [81℄, U§ur made a robot learn the �traversability� a�ordan
e in an environment. Inthis study, the features in the environment that spe
ify if a spe
i�
 behavior of the robot willsu

eed or not was learned by the robot. Using these learned stru
tures, the robot was thenable to traverse in an environment su

essfully, per
eiving the a�ordan
es of the obje
ts.In a se
ond study [7℄, Çakmak used the learned a�ordan
e relations for the problem ofplanning. Based upon the learning stru
ture of U§ur's, Çakmak used an extended versionof the a�ordan
e formalization [13℄ where the robot learned the e�e
ts of its own behav-iors along with the features in the environment that support these behaviors and e�e
ts.Çakmak then mapped these learned stru
tures to the 
onventional planning stru
tures ofpre-
ondition, a
tion, and post-
ondition, and investigated how good the robot performs interms of planning.1http://www.ma
s-eu.org/ 2



In this thesis, we will investigate the problem of behavior development, using the learneda�ordan
e stru
tures. Di�erent from the previous work, we will investigate how new behav-iors 
an emerge through the learning of a�ordan
e stru
tures and the usage of pre-
odedbehaviors.We still do not know the exa
t me
hanisms of behavioral development in animals/humans(please see Chapter 4 for a dis
ussion). But one way one 
an a
hieve �new� behaviors throughinnate primitive behaviors is through the use of these primitive behaviors in a sequentialand simultaneous manner. In the development s
heme we propose, our robot will start withprimitive behaviors, and during its intera
tions with the environment, it will learn generi
a�ordan
e relations, whi
h will then be used in the sequential and simultaneous exe
utionof the primitive behaviors, so that our robot displays a more �intelligent� new behavior. Bysequential exe
ution we mean the exe
ution of the primitive behaviors one after another.In the 
ase of sequential exe
ution, the robot will be exe
uting only one of its primitivebehaviors in an instant, but the sequen
ing of these behaviors will demonstrate a higher-level behavior. By simultaneous exe
ution we mean the exe
ution of multiple of the primitivebehaviors at the same instant, and a blending of them. In the end we will see that, our robotis able to dis
over behaviors that it has never seen or experimented with before, and thatare di�erent from the primitive behaviors that it has been trained with. The bene�t is that,these �new� behaviors will improve the robot's performan
e in situations where the primitivebehaviors are not good enough.In the next 
hapter we will �rst introdu
e our key 
on
ept, �a�ordan
es�, and give somebrief information about the a�ordan
e-related studies in roboti
s. Then we will present var-ious formalizations for the 
on
ept of a�ordan
es. Next, the studies related to �behavioraldevelopment� in psy
hology, neuros
ien
e, and also in roboti
s will be presented. We willdis
uss these studies and see what they 
an o�er to our study. Then we will present the ex-perimental framework for our study. The next 
hapter will present our development s
heme,how we implemented this on our robot, and our results. Lastly, we will 
on
lude with adis
ussion of the results.

3



CHAPTER 2AFFORDANCES
Animals per
eive the world around them. They do this to a
t a

ordingly in that world.In this per
eptual pro
ess they use the information 
oming through their sensors, and thisinformation guides the animal's a
tions. Per
eiving the world and a
ting a

ordingly is keyto an animal's survival.But what is in this per
eptual information? Animals use per
eption for sele
ting andguiding their a
tions; but does the per
eptual information dire
tly spe
ify whi
h a
tionsto exe
ute to the animal? Or is it the 
ase that the per
eptual information in
ludes only avalueless des
ription of the world outside whi
h is then subje
t to the animal's interpretation,and only as a result of this interpretation an a
tion 
an be sele
ted?2.1 E
ologi
al approa
h to per
eption and �a�ordan
es�J.J. Gibson, an in�uential psy
hologist of the 20th 
entury and founder of the s
hool of e
olog-i
al psy
hology, believed that the per
eptual information in
ludes the a
tion information [33℄.A

ording to this view, we per
eive the environment in terms of a�ordan
es. A�ordan
esare a
tion possibilities in the environment that are dire
tly spe
i�ed to the agent a
ting init through some variables in the per
eptual data. Sin
e these per
eptual variables are a
tionpossibilities they are dire
tly relevant for the agent's behaviors in that environment. Somesimple examples 
an be given: a rigid, horizontal surfa
e a�ords walking on it; a small stonea�ords throwing; an opening wider than one's shoulder width a�ords passing-through it;et
.Beginning from his early studies Gibson identi�ed 
ertain �meanings� inherent in theenvironment that helped the per
eiver to a
t a

ordingly [40℄. These meanings were spe
i�edthrough 
ertain opti
al variables. For instan
e, in his studies on the air
raft pilots at the4



Ameri
an army during the Se
ond World War, he exampli�ed su
h an opti
al variable: theopti
al 
enter of expansion. Gibson argued that the point in the visual �eld of a pilot, fromwhi
h the pi
ture seems to �ow out, was an indi
ator of the dire
tion of the plane. Gibson
laimed that this point and its position relative to the horizon was an important opti
alvariable that is meaningful for the behavior of the pilot. The point was that, there are
ertain opti
al variables that are dire
tly meaningful for the behavior in a way that requiresno more mental inferen
e or 
al
ulation. It is su�
ient just to pi
k the opti
al variable. Inour 
ase, it is su�
ient for the pilot to per
eive the di�eren
e between the opti
al 
enter ofexpansion and the horizon, for a safe �ight. This line of thinking later evolved into what wetoday 
alled �a�ordan
es�.Although Gibson used the word �a�ordan
e� as early as 1966 [32℄, he proposed a de�nitionfor the term only in his last book in 1979:The a�ordan
es of the environment are what it o�ers the animal, what it providesor furnishes, either for good or ill. The verb to a�ord is found in the di
tionary,but the noun a�ordan
e is not. I have made it up. I mean by it something thatrefers to both the environment and the animal in a way that no existing termdoes. It implies the 
omplementarity of the animal and the environment. (J.J.Gibson, 1979/1986, p. 127)A

ording to the theory of a�ordan
es, for an animal there is no need to make furtherpro
essing of its per
eption in sele
ting the proper a
tions in its per
eived environment.To per
eive means to know whi
h a
tions are possible. What is in per
eption is not val-ueless/meaningless des
riptive data. Rather, it dire
tly spe
i�es whi
h a
tions to exe
ute,what the environment a�ords, without a need for further interpretation. This is known asdire
t per
eption. Quoting from J.J. Gibson himself:�The per
eiving of an a�ordan
e is not a pro
ess of per
eiving a value-free phys-i
al obje
t to whi
h meaning is somehow added in a way that no one has beenable to agree upon; it is a pro
ess of per
eiving a value-ri
h e
ologi
al obje
t.�(J.J. Gibson, 1979/1986, p. 140)This approa
h to per
eption implies a very tight per
eption-a
tion 
oupling. Classi
alapproa
h to per
eption separates the sele
tion of a
tion pro
esses from those of the per
ep-tual pro
esses. In this 
lassi
al view, �rst per
eptual data are retrieved, using these data amental model of the a
tual world is built, and then a

ording to this mental model proper5



a
tions are taken. On the 
ontrary, J.J. Gibson believed that per
eptual and motor pro
essesare highly intertwined. In a

ordan
e, per
eptual data and a
tion data are also 
oupled.J.J. Gibson's approa
h also implies a tight e
ologi
al 
oupling between the animal andits environment, hen
e the name e
ologi
al psy
hology. If per
eptual information was simplya des
ription of the world outside, it would point only one way: the environment. But ine
ologi
al approa
h, the per
eptual information in
ludes something about the animal too;the a
tion. In this sense what is in per
eption points both ways: to the environment and tothe animal. As a result, one should examine the animal-environment e
ologi
al system as awhole, and should not isolate either of them. In this sense, J.J. Gibson was very 
riti
al oflaboratory experiments in psy
hology of per
eption, sin
e the subje
ts (animals/humans) inthese experiments were highly isolated from their natural environments.2.2 A�ordan
e-related resear
hAfter J.J. Gibson introdu
ed the term, a�ordan
es has been the subje
t of many s
ien-ti�
 studies. While most of these were studies of experimental psy
hology, other s
ienti�
dis
iplines su
h as neuros
ien
e, design, and roboti
s have also shown interest in the subje
t.2.2.1 Psy
hologyIn psy
hology, the a�ordan
e related resear
h mainly 
ontinued under the s
hool of e
ologi
alpsy
hology. These were studies that investigated the me
hanisms of a�ordan
e per
eption;they tried to understand how a�ordan
es appear and disappear in the environment, whatare the relations of a�ordan
es to the physi
al world behind, and how these relate to theanimal's own body.A pioneer work in this aspe
t is [82℄, where Warren studied the per
eption of the af-fordan
e of stair-
limbing. In this work, the me
hanisms underlying the per
eption of thisa�ordan
e, and the natural basis of the a�ordan
e 
ategories �
limbable-un
limbable� wereinvestigated.In the study, using a biome
hani
al model, Warren �rst found the 
riti
al stair height(in terms of its ratio to leg-length) needed to be able to 
limb a stair. After this, in theexperiments he 
ondu
ted with human subje
ts, he showed that the transition between theper
eptual 
ategories of �
limbable� and �un
limbable� was happening at the same ratio (ofstair-height/leg-length) predi
ted by the biome
hani
al model. He named the points wherethe transitions of these per
eptual a�ordan
e 
ategories took pla
e 
riti
al points. Criti
al6



points have π values that are essentially ratios between an environmental measure and abodily measure. In this study it was the ratio between the stair-height and the leg-length ofthe subje
ts.Warren did not just �nd the 
riti
al points, but he also found the optimal points forthe a
tion using his biome
hani
al model. Optimal points 
orrespond to the values of theratio between the stair-height and leg-length, su
h that the a
tion (here, 
limbing) 
anbe exe
uted with minimum energy 
onsumption. Again in the experiments 
ondu
ted usinghuman subje
ts, he showed that the optimal points 
omputed using the biome
hani
al model
orrespond to the �preferred stair-height� judgments of the human subje
ts.In summary, in this study [82℄ Warren investigated the natural basis of the per
eptuala�ordan
e 
ategories, and expressed these in terms of 
riti
al points and optimal points. He
laimed that these 
riti
al and optimal points (ratios) are 
onstants within a spe
ies, andper
eption of a�ordan
es be
omes possible through the use of these values. This methodof using 
riti
al point and optimal point values in expressing a�ordan
es has also been usedin other subsequent studies, e.g. [83, 51℄, and opened the way to express a�ordan
es usingnumeri
al values.Me
hanisms of a�ordan
e per
eption have been investigated in many similar studies fordi�erent a
tions. In [51℄, Mark points that the per
eption of surfa
es that a�ord �sittingon� is related to the ratio of the surfa
e height to the subje
t's leg-length. Similarly, in [83℄Warren and Whang show that for walking through apertures, the aperture-to-shoulder-widthratio gives the 
riti
al and optimal points for the a�ordan
e.In summary, these experiments aimed to show that animals (mostly human) 
an per-
eive whether a spe
i�
 a
tion is do-able or not-do-able in an environment. This impliesthat, what we per
eive is not ne
essarily obje
ts (e.g. stairs, doors, 
hairs), but the a
tionpossibilities (e.g. 
limbable, passable, sitable) o�ered by the environment. These experi-ments are 
hara
terized by two main points: taking the ratio of an environmental measureand a bodily measure of the human subje
t; and, based on the value of this ratio, making abinary judgment about whether a spe
i�
 a
tion is do-able or not.The �rst point indi
ates how the experimenters interpreted a�ordan
es. Sin
e a�ordan
eswere roughly de�ned as the properties of the environment taken relative to the organism a
t-ing in it, the goal was to show that the ratio between an environmental measure and a bodilymeasure of the organism have 
onsequen
es for behavior. This ratio must also be per
eiv-able, so that the organism is aware of this measure whi
h, in a way, determines the su

essof its behavior. Thus, this relativeness of environmental properties was in
orporated into7



the experiments simply as a division operation between two metri
s, one of the environmentand one of the organism. From a 
on
eptual point of view, this is a 
rude simpli�
ationof the relation between the properties of the organism and the environment that 
omprisean a�ordan
e, but for the parti
ular a
tions and setups used in the experiments, it seemedsu�
ient.2.2.2 Neurophysiology and neuropsy
hologyA set of �ndings of neurophysiologi
al and neuropsy
hologi
al resear
h that is also asso
iatedwith the idea of a�ordan
es 
ame from studies on mirror and 
anoni
al neurons whi
h weredis
overed in the pre-motor 
ortex of the monkey brain. During experiments with monkeys[64℄ (later similar �ndings were also found for human subje
ts [21℄), mirror neurons �red bothwhen the monkey was grasping an obje
t, and when the monkey was wat
hing somebodyelse do the grasping. These �ndings implied that the same neurons were used both ways: forthe exe
ution of an a
tion as output of the system, and also for per
eiving that a
tion as aninput to the system [25℄. Their dis
overy supports the view that says a
tion and per
eptionare 
losely related. These neurons, whi
h are lo
ated in the premotor 
ortex of the monkeybrain, are thought to be responsible for the motor a
tivation of a
tions like grasping andholding.Rizzolatti and Gentilu

i [65℄ dis
overed that 
anoni
al neurons, normally 
onsideredto be motor neurons for grasping a
tions, would �re when the subje
t does not exe
ute agrasping a
tion, but only sees a graspable obje
t. Their a
tivity on su
h a purely per
eptivetask that in
luded an obje
t that a�ords that parti
ular a
tion the motor neurons wereresponsible for, indi
ated that they may be related to the 
on
ept of a�ordan
e. The resulting
on
lusions are interestingly similar to those of the e
ologi
al approa
h:�This pro
ess, in neurophysiologi
al terms, implies that the same neuron mustbe able not only to 
ode motor a
ts, but also to respond to the visual featurestriggering them. . . . 3D obje
ts, are identi�ed and di�erentiated not in relationto their mere physi
al appearan
e, but in relation to the e�e
t of the intera
tionwith an a
ting agent.� ( [24℄)Similar results were found when subje
ts were doing a highly 
ognitive task su
h as `imag-ining' that they are doing a grasping a
tion [34℄. Again the motor neurons were a
tivated,showing that the neural 
ir
uitry that is used for motor a
tivations are also utilized duringa 
ognitive task su
h as `imagining'. 8



In [37℄, Humphreys showed that, when presented with a tool, some patients, who la
kedthe ability to name the tool, had no problem in gesturing the appropriate movement forusing it. A

ording to Humphreys, this suggested a dire
t link from the visual input to themotor a
tions that is independent from more abstra
t representations of the obje
t, e.g. itsname. In another study that Humphreys presented, two groups were shown obje
t pi
tures,non-obje
t pi
tures and words. One of the groups was asked to determine if some a
tionswere appli
able to what had been presented. The other 
ontrol group was asked to makesize judgments. The brain a
tivities in both groups were 
ompared using fun
tional brainimaging. It was observed that a spe
i�
 region of the brain was a
tivated more in the �rstgroup who were to make a
tion judgments. It was also seen that this spe
i�
 region wasa
tivated more when the subje
ts were presented with pi
tures of the obje
ts rather withthan the name. This showed that a
tion related regions of the brain were a
tivated morewhen the visual input was supplied, rather than just naming it. All these �ndings suggestthat there is a strong link between per
eption and a
tion in terms of neuropsy
hologi
ala
tivity.2.2.3 DesignThe 
on
ept a�ordan
e has in�uen
ed other, seemingly unrelated, dis
iplines as well. Oneof these is the Design domain. The 
on
ept was introdu
ed to the Design 
ommunity byD. Norman's popular book, Psy
hology of Everyday Things (POET) [57℄. In his book,D. Norman dis
ussed the per
eptual information that 
an make the user aware of an obje
t'sa�ordan
es. In this 
ontext, he de�ned a�ordan
es as follows:�... a�ordan
e refers to the per
eived and a
tual properties of the thing, primarilythose fundamental properties that determine just how the thing 
ould possiblybe used.�Unlike J.J. Gibson however, D. Norman was interested in how �everyday things� 
an bedesigned su
h that the user 
an easily infer what they a�ord. He analyzed the design ofexisting everyday tools and interfa
es, identifying design prin
iples. In this respe
t, hisdis
ussion of a�ordan
es deviated from the Gibsonian de�nition of the term [52℄. In [58℄,D. Norman writes:�The designer 
ares more about what a
tions the user per
eives to be possiblethan what is true�. 9



Sin
e POET, the term a�ordan
e has been used in many ways in the Design 
ommu-nity, some in the sense that D. Norman introdu
ed, some being more loyal to J.J. Gibson'sde�nition, and others deviating from both of these and using the term in a totally new way[52℄.In a later arti
le [58℄, D. Norman, un
omfortable with the misuse of the term in the Design
ommunity, distinguished between �real a�ordan
es�, indi
ating the potentials in the envi-ronment independent from the user's per
eption, and what he 
alls �per
eived a�ordan
es�stating:�When I get around to revising POET, I will make a global 
hange, repla
ing allinstan
es of the word `a�ordan
e' with the phrase `per
eived a�ordan
e'.�2.3 A�ordan
e-related work in roboti
sThe 
on
ept of a�ordan
es is highly related to autonomous robot 
ontrol and it has in�uen
edstudies in this �eld. We believe that, for a proper dis
ussion of the relationship of thea�ordan
e 
on
ept to robot 
ontrol, the similarity of the arguments of J.J. Gibson's theoryand rea
tive/behavior-based roboti
s should �rst be noted [1℄.The 
on
ept of a�ordan
es and behavior-based roboti
s emerged in very similar ways asopposing suggestions to the then dominant paradigms in their �elds. J.J. Gibson 
onstru
tedhis theory based on 
riti
ism of the then dominant theory of per
eption and 
ognition,whi
h favored modeling and inferen
e. Likewise, behavior-based roboti
s was motivated by
riti
ism of the then dominant roboti
 ar
hite
tures, whi
h favored modeling and inferen
e.This parallelism between the two �elds suggests that they are appli
ations of the same lineof thinking to di�erent domains (p. 244, [1℄; [18℄).Opposing modeling and inferen
e, J.J. Gibson defended a more dire
t relationship be-tween the organism and the environment and suggested that a model of the environmentand 
ostly inferential pro
esses were not needed. In a similar vein, behavior-based roboti
sadvo
ated a tight 
oupling between per
eption and a
tion. Brooks, 
laiming that �the worldis its own best model�, suggested an approa
h that eliminated all modeling and internalrepresentation [5℄.J.J. Gibson suggested that only the relevant information is pi
ked up from the environ-ment, saying �per
eption is e
onomi
al�. In roboti
s a behavior is a sensory-motor mappingwhi
h 
an often be simpli�ed to a fun
tion from 
ertain sensors to 
ertain a
tuators. Inthis sense, the per
eptual part of a behavior 
an be said to implement dire
t per
eption by10



extra
ting only the relevant information from the environment for a
tion, without relying onmodeling or inferen
e. Su
h a minimality is also in agreement with the e
onomi
al per
eption
on
ept of the a�ordan
e theory.As dis
ussed above, most of the 
on
epts within a�ordan
e theory are inherently in
ludedin rea
tive roboti
s. The behaviors should be minimally designed for the task, taking intoa

ount the ni
he of the robot's working environment and the task itself. This is in agreementwith the arguments of e
ologi
al psy
hology. Some roboti
ists have already been expli
itlyusing ideas on a�ordan
es in designing behavior-based robots. For example, Murphy [54℄suggested that roboti
 design 
an bene�t from ideas in the theory of a�ordan
es su
h that
omplex per
eptual modeling 
an be eliminated without loss in 
apabilities. She studiedthree 
ase studies and drew attention to the importan
e of the e
ologi
al ni
he in the designof behaviors. Likewise, Du
hon et al. [18℄ bene�ted from J.J. Gibson's ideas on dire
tper
eption and opti
 �ow in the design of behaviors and 
oined the term e
ologi
al roboti
sfor the pra
ti
e of applying e
ologi
al prin
iples to the design of mobile robots.The use of a�ordan
es within autonomous roboti
s is mostly 
on�ned to behavior-based
ontrol of the robots, and its use in deliberation remains a rather unexplored area. This isnot a 
oin
iden
e, but a 
onsequen
e of the shortfalls in J.J. Gibson's theory. The rea
tiveapproa
h 
ould not s
ale up to 
omplex tasks in roboti
s, in the same way that the theoryof a�ordan
es in its original form was unable to explain some aspe
ts of per
eption and
ognition.Re
ently a number of roboti
 studies fo
used on the learning of a�ordan
es in robots.In these studies, a�ordan
e learning is referred to as the learning of the 
onsequen
es ofa 
ertain a
tion in a given situation [22, 74, 73℄, or learning of the invariant properties ofenvironments that a�ord a 
ertain behavior [49℄.Ma
Dorman [49℄, extra
ted invariant features of di�erent a�ordan
e 
ategories. In hisstudy, the invariant features are de�ned as image signatures that do not vary among the samea�ordan
e 
ategory but vary among di�erent a�ordan
e 
ategories. However, his a�ordan
e
ategories were de�ned in terms of internal indi
ators, su
h as tasty, poisonous, and werenot dire
tly related to the a
tions.In a re
ent study [61℄, an arti�
ial agent is used to represent the state of the worldinternally as behavioral a�ordan
es and goals. For ea
h a
tion in its repertoire, the agent hasout
ome predi
tors that 
orrespond to pre
onditions for the a
tion, and out
ome indi
atorsthat 
orrespond to post-
onditions for the a
tion. These predi
tors and indi
ators are usedto represent the internal state of the agent. 11



Stoyt
hev [74, 73℄ studied learning for the so-
alled `binding a�ordan
es' and `tool af-fordan
es', where learning binding a�ordan
es 
orresponds to dis
overing the behavior se-quen
es that result in the robot arm binding to di�erent kinds of obje
ts, whereas learningtool a�ordan
es 
orresponds to dis
overing tool-behavior pairs that give the desired e�e
ts.In this study the representation of obje
ts is said to be grounded in the behavioral repertoireof the robot, in the sense that the robot knows what it 
an do with an obje
t using ea
hbehavior. However, in this study, obje
t identi�
ation was done by assigning unique 
olorsto ea
h obje
t, hen
e leaving no way of building asso
iations between the distin
tive featuresof the obje
ts and their a�ordan
es. Therefore, a generalization whi
h would make the robotrespond properly to novel obje
ts was not possible.In [22℄, Fitzpatri
k et al. studied the learning of obje
t a�ordan
es in a roboti
 domain.They proposed that a robot 
an learn what it 
an do with an obje
t only by a
ting on it,`playing' with it, and observing the e�e
ts in the environment. For this aim, they used fourdi�erent a
tions of a robot arm , namely, pull in, side tap, push away, ba
k tap, on fourdi�erent obje
ts. (bottle, 
ube, toy 
ar, ball). After applying ea
h of the a
tions on ea
hof the obje
ts several times, the robot learned about the roll-ability1 a�ordan
e of theseobje
ts, by observing the 
hanges in the environment during the appli
ation of the a
tions.Then, when it needs to roll an obje
t, it uses this knowledge. However, similar to Stoyt
hev'sstudy, Fitzpatri
k et al. did not establish any asso
iation between the visual features of theobje
ts and their a�ordan
es, giving no room for generalization of the a�ordan
e knowledgeto novel obje
ts.In both Stoyt
hev's works [74, 73℄ and Fitzpatri
k et al.'s work [22℄, the obje
ts weredi�erentiated using their 
olors only. Therefore, when the learning had been done with a redtoy 
ar, if the robot was presented with the very same 
ar but this time a blue one, it wouldhave no idea about the rolling a�ordan
e of it. This again shows the importan
e of learningthe distin
tive features of obje
ts, along with the e�e
ts that 
an be 
reated by a
ting onthese obje
ts, and building the asso
iation between these two learned sets, so that the robot
an make predi
tions about the e�e
ts it 
an 
reate in the environment when it is presentedwith new obje
ts that it had not seen before.
1What the robot a
tually learns about obje
ts is the most probable rolling dire
tion of the obje
ts withrespe
t to their prin
ipal axis. Hen
e, after the learning phase, the robot knows that the bottle rolls perpen-di
ular to its prin
ipal axis, and the toy 
ar rolls parallel to its prin
ipal axis.12



CHAPTER 3FORMALIZING AFFORDANCES
The dis
ussions around the 
on
ept of a�ordan
es, dis
ussions on what a�ordan
es are, andwhat kind of qualities they possess 
ontinued after J.J. Gibson died. One of the majorreasons was that Gibson himself de�ned term di�erently in di�erent pla
es, revised thede�nition of the term 
onstantly, and his understanding of the term also evolved over time[13℄. Consequently, the need aroused to formalize the 
on
ept, and to 
olle
t and organizethe properties asso
iated with a�ordan
es in a 
oherent and formal stru
ture. In this 
hapterwe will present su
h attempts. In the next se
tion we will present the previous formalizationattempts. Then we will present our proposal for formalizing a�ordan
es, �rst dis
ussed in[13℄.3.1 Prior formalizations of a�ordan
esAfter J.J, Gibson, there has been a number of studies [77, 67, 35, 85, 69, 72, 10, 53℄ attemptingto 
larify the meaning behind the term a�ordan
es and to 
reate a 
ommon understandingon whi
h dis
ussions 
an be based. We will now review four of the proposed formalisms.3.1.1 Turvey's formalizationOne of the earliest attempts to formalize a�ordan
es 
ame from Turvey [77℄. In his formalism,Turvey de�ned an a�ordan
e as a disposition. Here, a disposition is a property of a thingthat is a potential, a possibility. These potentials be
ome a
tualized if they 
ombine withtheir 
omplements (e.g. �solubility� of the salt is its disposition, and if it 
ombines withits 
omplement, whi
h is water's property of �being able to solve�, then they get a
tualized,resulting in the salt getting �dissolved�). Therefore, dispositions are de�ned in pairs, andwhen two 
omplement dispositions meet in spa
e and time, they get a
tualized. Basing13



his views on this a

ount of dispositions, Turvey de�ned a�ordan
es as dispositions of theenvironment, and de�ned their 
omplement dispositions as the �e�e
tivities� of the organism.He provided this de�nition:�An a�ordan
e is a parti
ular kind of disposition, one whose 
omplement is adispositional property of an organism.�(M.T. Turvey, 1992, p. 179)Later in his dis
ussion, Turvey formalized this de�nition as follows:�Let Wpq (e.g., a person-
limbing-stairs system) = j(Xp, Zq) be 
omposed ofdi�erent things Z (person) and X (stairs). Let p be a property of X and q be aproperty of Z. Then p is said to be an a�ordan
e of X and q the e�e
tivity of Z(i.e. the 
omplement of p), if and only if there is a third property r su
h that:
• Wpq = j(Xp, Zq) possesses r. [where j(·) is the juxtaposition fun
tion thatjoins Xp and Zq.℄
• Wpq = j(Xp, Zq) possesses neither p nor q.
• Neither Z nor X possesses r.�(M.T. Turvey, 1992, p. 180)Here, when the physi
al stru
ture that renders the stairs 
limb-able (Xp), and the e�e
tivityof the agent (Wq) that makes it able to 
limb 
ome together (j(·)), a new dynami
s -thea
tion of 
limbing- (r) arise.In this formalism, although the a
tualization of a�ordan
es requires an intera
tion of anagent on the environment to produ
e a new dynami
s, Turvey expli
itly atta
hed a�ordan
esto the environment that the organism is a
ting in.3.1.2 Sto�regen's formalizationA 
riti
ism of Turvey's formalism 
ame from Sto�regen [72℄. A

ording to Sto�regen, thereare two main views about a�ordan
es. The �rst view pla
es a�ordan
es in the environmentalone, while the se
ond view pla
es a�ordan
es in the organism-environment system as awhole. Sto�regen adopts the latter view and argues that a�ordan
es 
an not be de�nedas properties of the environment only, as Turvey did. In this line of view, Sto�regen [72℄des
ribed a�ordan
es as:�A�ordan
es are properties of the animal-environment system, that is, that theyare emergent properties that do not inhere in either the environment or theanimal.�(T.A. Sto�regen, 2003, p. 115)14



He 
laimed that atta
hing a�ordan
es to the environment was problemati
 for their spe
i�-
ation to the organism. The reason was that if a�ordan
es belong to the environment only,and if what the organism per
eives are a�ordan
es, then the organism per
eives things thatare only about the environment but not about itself. If this is the 
ase, then the agent hasto do further per
eptual pro
essing to infer what is available for him. However, this goesagainst the basi
 notion of dire
t per
eption.Based on these 
riti
isms, Sto�regen modi�ed Turvey's de�nition to propose a new oneto resolve these problems. He presented it in the following way:�Let Wpq (e.g., a person-
limbing-stairs system) = (Xp, Zq) be 
omposed of dif-ferent things Z (e.g., person) and X (e.g., stairs). Let p be a property of X and
q be a property of Z. The relation between p and q, p/q, de�nes a higher orderproperty (i.e., a property of the animal−environment system), h. Then h is saidto be an a�ordan
e of Wpq if and only if

• Wpq = (Xp, Zq) possesses h.
• Neither Z nor X possesses h.�(T.A. Sto�regen, 2003, p. 123)Here, a�ordan
es are de�ned as �properties of the animal-environment system�, rather thanas properties of the environment only.3.1.3 Chemero's formalizationChemero [10℄ also 
riti
ized Turvey's view whi
h pla
ed a�ordan
es in the environment re-garding them as environmental properties. Partially in agreement with Sto�regen's proposal,Chemero suggested that:�A�ordan
es, are relations between the abilities of organisms and features of theenvironment.�(A. Chemero, 2003, p. 189)This de�nition re�nes Sto�regen's proposal in a number of ways. First, it states that af-fordan
es are �relations within the animal-environment system�, rather than �properties ofthe animal-environment system�. Se
ond, it also notes that this relation exists between the�abilities of the organism� and the �features of the environment�, as 
ompared with a prop-erty (of the system) being generated through the intera
tion between the �property of theorganism� and the �property of the environment�.Formally Chemero proposed that an a�ordan
e is a relation that 
an be represented inthe form of: 15



A�ords-φ (feature, ability), where φ is the a�orded behavior.Here the term �ability� stands for the fun
tional properties of the organisms that are shapedthrough the evolutionary history of the spe
ies or the developmental history of the individual.In that respe
t, they are di�erent from simple body-s
ale measures (e.g. the leg-length), but
orrespond to more general 
apabilities of the organism. One of the main di�eren
es betweenthe two similar formalisms of Sto�regen and Chemero, whi
h both de�ne a�ordan
es atthe organism-environment s
ale, is that while Sto�regen's de�nition of a�ordan
e does notin
lude the behavior exploiting the a�ordan
e, Chemero's de�nition does in
lude it.3.1.4 Steedman's formalizationIndependent of dis
ussions in the e
ologi
al psy
hology literature, there have also been otherattempts of formalization of a�ordan
es. One of these 
ame from Steedman [69℄ who usedLinear Dynami
 Event Cal
ulus to rea
h a formalization of a�ordan
es. Steedman's formal-ization skips the per
eptual aspe
t of a�ordan
es (e.g. the invariants of the environment thathelp the agent per
eive the a�ordan
es, and the nature of these invariants and the relationof them to the bodily properties of the agent et
.), but instead, it fo
uses on developing arepresentation where obje
t s
hemas are de�ned in relation to the events and a
tions thatthey are involved in. For instan
e, Steedman suggests that a door is linked with the a
-tions of `pushing' and `going-through', and the pre-
onditions and 
onsequen
es of applyingthese a
tions to the door. The di�erent a
tions that are asso
iated with a parti
ular kindof obje
t 
onstitute the A�ordan
e-set of that obje
t s
hema, and this set 
an be populatedvia learning. More formally, in Steedman's formalization, an obje
t s
hema is a fun
tionmapping obje
ts of that kind into se
ond-order fun
tions from their a�ordan
es to theirresults1. Thus, an obje
t instan
e spe
i�es what a
tions 
an be applied to it, under whi
h
onditions and what 
onsequen
es it yields. This makes the formalization also suitable forplanning, for whi
h Steedman argues that rea
tive/forward-
haining planning is the best
andidate. Steedman's formalization is, as far as we know, the �rst attempt to develop aformalization of a�ordan
es that allows logi
al/
omputational manipulation and planning.Steedman also believes this stru
ture of a�ordan
es to have impli
ations for the linguisti

apability of humans.1Steedman's a
tual formalization requires at least a basi
 presentation of Linear Dynami
 Event Cal
ulusand Lambda Cal
ulus. Sin
e we do not have the spa
e for these here, we restri
t ourselves to the prosede�nition. For a 
omplete a

ount of this formalization, see [69℄.16



To summarize, it 
an be said that Sto�regen's and Chemero's formalizations, by de�ninga�ordan
es as a relation on the s
ale of organism-environment system, di�er from Turvey'sformalization whi
h de�nes a�ordan
es as environmental properties. But there are also dif-feren
es between Chemero's and Sto�regen's de�nitions, one of them being the in
lusionof behaviors in the de�nition of a�ordan
es in Chemero's formalization. Steedman's for-malization di�ers from the other three formalizations by providing an expli
it link to a
tionpossibilities o�ered by the environment, and by proposing the use of the 
on
ept in planning.We believe that none of the reviewed formalisms 
an be used as a base to develop ana�ordan
e-based robot 
ontrol ar
hite
ture. In the next se
tion, we will introdu
e threeperspe
tives through whi
h a�ordan
es 
an be dis
ussed, to explain the sour
e of 
onfusionon the dis
ussions.3.2 A new formalism for a�ordan
esAlthough there are many prior formalizations of the a�ordan
e 
on
ept, in [13℄ we proposed anew formalization that will form the base of our study. We do not use the prior formalizationsbe
ause they la
k 
ertain aspe
ts that are 
riti
al in building a roboti
 system that usesa�ordan
es. Most of the prior formalizations are interpretations of the 
on
ept from apsy
hologi
al-philosophi
al perspe
tive, and do not propose -or dis
uss- the 
on
ept from theperspe
tive of building agents that use a�ordan
es. This requires thinking about the 
on
eptagain, keeping in mind that what we need is an interpretation of the 
on
ept whi
h 
anprovide us a representation inside the agent that will help the agent per
eive the a�ordan
esin the environment. In other words, we need a formalization that 
an make it possible tointerpret the 
on
ept from the perspe
tive of the agent, sin
e what we are trying to do isbuilding an agent that makes use of a�ordan
es.3.2.1 Three perspe
tives of a�ordan
esThere is not an agreement on the de�nition of the term a�ordan
e, and di�erent sour
esde�ne it di�erently. These de�nitions are sometimes 
on�i
ting, 
reating a 
onfusion.One important disagreement on the de�nition of a�ordan
es is on where to atta
h them.Some sour
es de�ne a�ordan
es as properties of the environment, that an agent per
eivesand uses. Other sour
es de�ne a�ordan
es as emergent properties of the animal-environmentsystem, and 
laim that it 
an not be de�ned as an environmental property only. In the lit-erature one 
an �nd di�erent 
onfusing statements where a�ordan
es are mentioned relative17
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Figure 3.1: Three perspe
tives to view a�ordan
es. In this hypotheti
al s
ene (adapted fromEri
h Rome's slide depi
ting a similar s
ene), the (robot) dog is intera
ting with a ball, andthis intera
tion is being observed by a human(oid) who is invisible to the dog. (Image takenfrom [13℄)to an environmental obje
t (�an apple a�ords eating�), to an agent (�there is walkabilitya�ordan
e for the person�), or to the agent-environment system (�the stair a�ords 
limbingfor the person�)These di�erent statements are 
onfusing, yet not wrong. That is be
ause we believe thatthere are three di�erent perspe
tives to view a�ordan
es: the agent's perspe
tive, the envi-ronmental perspe
tive, and the observer's perspe
tive. In these statements making expli
itthe perspe
tive that the writer is using will be enough to solve the 
onfusion.The three perspe
tives to view a�ordan
es 
an be explained using the s
ene in Figure 3.1[13℄. In this s
ene, the robot dog is intera
ting with a ball, and this intera
tion is beingobserved by a humanoid who is invisible to the dog. Here, the dog has the agent's perspe
-tive in per
eiving the a�ordan
es of the ball, the ball has the environmental perspe
tive inintera
ting with the agent, and the human has the observer's perspe
tive in observing theintera
tion possibilities between the dog and the ball.From the agent's perspe
tive a�ordan
es are the behaviors (and their relevant 
onse-quen
es) o�ered to that spe
i�
 agent by its immediate environment, that is, viewing af-fordan
es from the eyes of the animal living in that environment and a
tually using thosea�ordan
es. In Figure 3.1 for example, the robot dog, using the agent's perspe
tive wouldsee that it 
an �push� the ball. In our daily lives also we make use of this view of the a�or-dan
es. This is also the view that is most relevant for the study of building robots that use18



a�ordan
es.From the environmental perspe
tive, a�ordan
es are all the behaviors (and their relevant
onsequen
es) o�ered by that environment (or generally by a spe
i�
 obje
t in that environ-ment) to the agents living in that environment. In Figure 3.1, the ball a�ords �pushing� and�hiding� to the dog, �throwing� to the human, et
. This is the most useful perspe
tive tode�ne an environment from a general perspe
tive, and relative to the living organisms in thatenvironment. In that sense one 
an 
laim that the environmental perspe
tive of a�ordan
eshas strong 
onne
tions with the term habitat.From the observer's perspe
tive a�ordan
es are the behaviors (and their relevant 
onse-quen
es) o�ered by the environment to the agent, in an agent-environment system. This isfor example the perspe
tive that a s
ientist uses when investigating an e
ologi
al system,with the environment and the organisms living in the environment taken as a whole. Alsoin Figure 3.1, the human observer sees that there is �push-ability� a�ordan
e in the dog-ballsystem. One 
an 
laim that, this view 
an also be used when one individual in a so
iety isobserving a di�erent individual and its intera
tion with the environment. This opens theway of using observer's perspe
tive to view a�ordan
es, in explaining learning by imitation2.In the following dis
ussion, we will 
ontinue dis
ussing only the agent's perspe
tive ofa�ordan
es, sin
e we believe that it gives us the view of a�ordan
es su
h that it 
an a
tuallybe used by a robot. You 
an �nd a more detailed dis
ussion and de�nition of the otherperspe
tives in [13℄.3.2.2 A new a�ordan
e formalizationIn this new formalization [13℄, Sahin et al. de�ne a�ordan
es as a relation between the agentand the environment, in line with Chemero's formalization. A�ordan
es are results of arelation between 
ertain properties of an agent and 
ertain properties of its environment. Inthe formalism the properties of the agent are in
luded as the behavior, and the properties ofthe environment are in
luded as the entity. A third 
omponent, the e�e
t, representing theresult of the intera
tion between the behavior of the robot with the entity in the environment,is also in
luded in the relation. The expli
it in
lusion of e�e
t 
omponent is another pointwhere the formalism di�ers from the previous ones.The formalism is based on relation instan
es of the form (e�e
t, (behavior, entity)).This 
an be read as, when the agent applies a 
ertain behavior on a 
ertain entity in theenvironment, a 
ertain e�e
t is observed. Here an entity should not be 
onfused with the2In this thesis, we will not go any further to investigate the use of a�ordan
es in learning by imitation.19



term obje
t. An entity is a 
olle
tion of features in the environment, that is not ne
essarily
onne
ted to an obje
t. Of 
ourse, the set of features 
an 
orrespond to an obje
t, but it
an also 
orrespond to a part of an obje
t, a relation between multiple obje
ts, or featuresthat 
an not be 
onne
ted to any obje
t. The entity represents the state of the environment(and the agent's own state) as per
eived by the agent. The behavior 
omponent representsthe a
tualization of the a
tion of the agent, in
luding the bodily features of the agent andthe physi
al dynami
s of the intera
tion. The e�e
t 
omponent represents the a
tual 
hange
reated in the environment, as a result of the appli
ation of the behavior on the entity asper
eived by the agent. Quoting from [13℄, �a 
ertain behavior applied on a 
ertain entityshould produ
e a 
ertain e�e
t, e.g. a 
ertain per
eivable 
hange in the environment, or inthe state of the agent. For instan
e, the lift-ability a�ordan
e impli
itly assumes that, whenthe lift behavior is applied to a stone, it produ
es the e�e
t lifted, meaning that the stone'sposition, as per
eived by the agent, is elevated.�Formally, in [13℄, a �rst de�nition for a�ordan
es is given as:An a�ordan
e is an a
quired relation between a 
ertain e�e
t and a (entity,behavior) tuple, su
h that when the agent applies the behavior on the entity, thee�e
t is generated.Su
h relation instan
es of the form (e�e
t, (behavior, entity)) are a
quired through theintera
tion of the agent with its environment. But they represent a single intera
tion of theagent with its environment. So they are not ready to be used in making generi
 predi
tions.But a�ordan
es must have predi
tive, anti
ipatory qualities.Building on top of su
h relation instan
es we 
an form generi
 a�ordan
e relations thatrepresent fa
ts about the agent's intera
tion with the world, rather than being a re
ordof single intera
tion. Supposing that an agent intera
ts with its environment and 
olle
tsmany relation instan
es of the form (e�e
t, (entity, behavior)), it 
an then merge theserelation instan
es to extra
t generi
 a�ordan
e relations, generi
 rules about the nature ofthe intera
tion of the agent with its environment.This 
an be done through the dis
overy of invariant properties in the 
olle
ted entities,behaviors, and e�e
ts, and merging them in equivalen
e 
lasses. Below, we will present thedi�erent kinds of equivalen
e 
lasses, how they are formed, and what they represent.Every behavior has some kind of an e�e
t. While the e�e
t 
reated in the environmentduring a 
ertain appli
ation of a behavior is never exa
tly the same with the e�e
ts of otherappli
ations of the behavior, some of them 
an be said to be equivalent. Lifting a �blue-20




an� and a �bla
k-
an� 
reates di�erent e�e
ts in the environment as the agent per
eives itbe
ause of the di�erent 
olors of the obje
ts, but the e�e
t �lifted�, is internal to both of thee�e
ts, and hen
e they are equivalent with regards to the �lifting� a
tion. Dis
overing andmerging the equivalent e�e
ts to build e�e
t equivalen
e 
lasses is a �rst step in buildingother equivalen
e 
lasses and a�ordan
e relations.Two entities are equivalent, if, when a behavior is applied on them the intera
tion resultsin equivalent e�e
ts. Keeping with the example above, if the �blue-
an� and the �bla
k-
an� entities produ
es equivalent e�e
ts when the �lift� behavior is applied, then they areequivalent entities in terms of the �lifting� behavior. We 
an 
olle
t and merge su
h equivalententities in entity equivalen
e 
lasses. Merging di�erent entities into entity equivalen
e 
lassesis a pro
ess of narrowing-down to the set of features that are invariant in all the entities inthat equivalen
e 
lass. For example, for the two equivalent entities of a �blue-
an� and a�bla
k-
an�, the 
ommon features 
an be represented as �*-
an�; whi
h basi
ally says to therobot: �If it is a 
an, it a�ords lifting up, no matter what 
olor it is.�Two behaviors are equivalent, if, when they are applied to equivalent entities, they resultin equivalent e�e
ts. This 
an be two di�erent behaviors that produ
e the same result inthat 
ontext; or this equivalen
e 
an be understood in terms of spe
ifying a possible rangefor parameter values of the same behavior. As an example for the former, the �lift-with-left-hand� behavior and the �lift-with-right-hand� 
an be seen as equivalent behaviors in liftinga �*-
an�. As an example for the latter, the parameters that spe
ify the pressure that thehand of the robot will apply to the �
an� may be di�erent in di�erent relation instan
es, butthe exa
t value may not matter if it is in a 
ertain range. Su
h parametrized instan
es ofthe same behavior 
an also be merged in the same behavior equivalen
e 
lass.The last equivalen
e 
lass we 
an form is the a�ordan
e equivalen
e 
lass. We 
an mergethe (entity, behavior) 
ouples that produ
es equivalent e�e
ts into an a�ordan
e equivalen
e
lass. An example for this 
ase 
an be (�ground�, �walk�) and (�river�, �swim�) 
ouples whi
hboth have the e�e
t �traversed�.Based on this a

ount of equivalen
e 
lasses, Sahin et al. [13℄ revise their de�nition as:A�ordan
e (agent perspe
tive): An a�ordan
e is an a
quired relation between a 
ertain<e�e
t> and a 
ertain <(entity, behavior)> tuple su
h that when the agent applies a(entity, behavior) within <(entity, behavior)>, an e�e
t within <e�e
t> is generated.
21



CHAPTER 4BEHAVIOR DEVELOPMENT
How behavior develops in humans and other animals have been the subje
t of many s
ienti�
studies. In psy
hology, theories of development have been proposed in this area. At the levelof the sensors, 
entral nervous system, and motor neurons, neuros
ien
e has investigatedbehavior 
ontrol, motor skills, and motor development. In roboti
s also, there have beene�orts to make robots learn and develop behaviors. In this 
hapter, we will look at theliterature on behavior development in these three s
ienti�
 areas.4.1 Behavior development in psy
hologyIn psy
hology, under the subdis
ipline of developmental psy
hology, Piaget is one of themost in�uential �gures, with his theory of 
ognitive development. With his theory, Piagetinvestigated the 
hara
ter and development of human knowledge. He tried to understandhow we a
quire this knowledge, how 
on
epts develop in our 
ognitive world, how these arerelated to behavioral development, and how 
ertain high-level operations like logi
 develops.A

ording to Piaget the human 
ognitive development 
onsists of su

essive stages [62℄.Ea
h stage 
onstitutes the base on whi
h the next stage will be built on. The �rst stageswhi
h start with sensorimotor s
hemata paves the way to 
ons
ious and voluntary behavior,and then to the a
quisition of 
on
epts and laws about the external world, and to formallogi
al thought. A

ording to Piaget, in this transition from one stage to a higher stage, twobasi
 pro
esses take part: assimilation and a

ommodation [62℄. These are two pro
esses that
omplement ea
h other. Assimilation emphasizes that the knowledge about external worldexperien
es are a
quired into the human 
ognitive system a

ording to the already existings
hemata in the system. In this sense, Piaget's theory is epistemologi
ally a 
onstru
tivisttheory. That means, the knowledge about the external world is not a
quired as it is, and22



the per
eptual information is not the only for
e that shapes our 
ognitive stru
tures; butknowledge is a
quired in a

ordan
e with - and through - the already existing stru
tures. Onthe other hand, a

ommodation expresses how these stru
tures 
hange through intera
tionwith the world, and experien
e. Be
ause these already existing stru
tures are also not theonly fa
tor that shape human 
ognition of 
ourse; experien
es take part in shaping human
ognition too. So, in a sense, a

ommodation is the opposing pro
ess to assimilation: it isthe pro
ess that tries to make the existing 
ognitive stru
tures 
oherent with the externalworld.For Piaget, the development of behavior also o

urs in this framework [63℄. The newbornbaby, who has innate re�exes, exe
utes and tries these re�exes and primitive behaviors, tryingto a

ommodate them to the environment. As the baby experiments with these behaviors,it 
an then use these as voluntary behaviors. To quote from Gelman [26℄For Piaget, neonates spontaneously pra
ti
e their re�exes, the e�e
t being thedi�erentiation of inborn re�exes into di�erent sensory-motor s
hemes. A
tiveuse of these yields integrated a
tion s
hemes, and thus novel ways to a
t onthe environment. (...) (For Piaget), an infant's initial knowledge is limited toinnate re�exes and is 
ombined with an in
lination to a
tively use and adaptthese as a result of repeated intera
tions with obje
ts. This eventually leadsto the development of inter
oordinated s
hemes and movement to a
tion-basedrepresentations that take the infant from an out-of-sight, out-of-mind stage tointernalized representations (...).E.J. Gibson was also interested in 
hild development, and she was the �rst one to inves-tigate a�ordan
es in the 
ontext of development [76℄. She studied the me
hanisms of thelearning of a�ordan
es and used the e
ologi
al approa
h to study 
hild development.E.J. Gibson de�ned learning as a per
eptual pro
ess and named her theory of learning�per
eptual learning�. She based the pro
ess of learning on per
eption, not on mentally
onstru
ted representations of the world. She argued that learning is neither the 
onstru
-tion of representations from smaller pie
es, nor the asso
iation of a response to a stimulus.Instead, she 
laimed, learning is �dis
overing distin
tive features and invariant propertiesof things and events� [28℄ or �dis
overing the information that spe
i�es an a�ordan
e� [30℄.Learning is not �enri
hing the input�, but dis
overing the 
riti
al per
eptual information inthat input. She named this pro
ess of dis
overy di�erentiation, and de�ned it as �narrowingdown from a vast manifold of (per
eptual) information to the minimal, optimal information23



that spe
i�es the a�ordan
e of an event, obje
t, or layout� [30℄. E.J. Gibson suggested thatbabies use exploratory a
tivities, su
h as mouthing, listening, rea
hing and shaking, to gainthis per
eptual data, and that these a
tivities bring about �information about 
hanges inthe world that the a
tion produ
es� [28℄. As development pro
eeds, exploratory a
tivitiesbe
ome performatory and 
ontrolled, exe
uted with a goal.4.2 Motor 
ontrol and learning in neuros
ien
eIn exe
uting a motor behavior, the 
entral nervous system 
ommands the mus
les throughthe motor neurons. It is a very 
omplex pro
ess in
luding driving multiple mus
les in asyn
hronized way, in the 
orre
t timing and order. To a
hieve this, the 
entral nervoussystem must map the motor goals (for example the �nal position of the arm, the dire
tionor velo
ity of the movement) to neuron signals 
ontrolling the mus
les. This is a di�
ultproblem, sin
e it 
onstitutes a mapping from a small number of variables to a large number ofvariables that drive multiple mus
les [3℄. The 
urrent studies on motor 
ontrol and learning,essentially investigates how to solve this problem, and how to learn this mapping.There are studies proposing that the 
entral nervous system solves this problem usinginverse kinemati
s. These are mathemati
al methods to determine the parameters that drivethe mus
les during the 
omplete motion, based on the �nal desired position and orientationof the joints and mus
les. But this point of view entails the determination of the parametersof the 
omplete motion from the very start, so it is not �exible and 
an not explain mo-mentary rea
tions during motor behavior exe
ution [3℄. Another approa
h to the problem ofmotor 
ontrol suggests that the motion of the joints 
an be expressed in terms of transitionsbetween �equilibrium positions� that are determined by the 
entral nervous system. These�equilibrium positions� 
orresponds to positions where the for
es in the opposing mus
lesthat drive a joint are equal [4℄.Another approa
h that tries to explain how 
omplex patterns of motor behavior emergesays that, these 
omplex patterns are a
tually the result of 
ombining more simple primitivea
tions [3℄. For example, in [56℄ Mussa-Ivaldi et al. found that when they stimulated separatemodules in the spinal 
ord of a frog one-by-one, they 
orrespond to a limited number of for
epatterns and motor a
tions. But when they stimulated two modules simultaneously, theresulting for
e pattern 
orresponded to the ve
tor summation of the individual for
e patternsof ea
h individual module. Through this, they showed that using a linear 
ombination of a setof simple pre-
oded for
e patterns, it was possible to generate a di�erent 
omplex motion.24



Mussa-Ivaldi et al. interprets this as [56℄: �this linear behavior is quite remarkable andprovides a strong support to the view that the 
entral nervous system may generate a widerepertoire of motor behaviors through the ve
torial superposition of a few motor primitivesstored within the neural 
ir
uits (...).�. A

ording to Bizzi [3℄, �the limited-for
e pattern maybe viewed as representing an elementary alphabet from whi
h, through superimposition, avast number of movements 
ould be fashioned�.Another study that supports this position is the in�uential work of �population 
oding�by Georgopoulos et al. [27℄. Through experiments they 
ondu
ted on rhesus monkeysGeorgopoulos et al. found that the arm movements of the monkey 
an be predi
ted usingthe a
tivation values of a population of neurons in the monkey brain. In this population ofneurons, it was seen that ea
h individual neuron has a preferred dire
tion, and when it �resit makes the monkey arm move towards that dire
tion. But when multiple of these neurons�re together, it was seen that the resulting dire
tion of the monkey arm was a weightedsum of ea
h individual neuron's preferred dire
tion. Moreover, these weights were given bythe a
tivation values of ea
h neuron. So, the more a spe
i�
 neuron �res, the 
loser is thedire
tion of the monkey's movement to the preferred dire
tion of that neuron. That meansea
h neuron 
ontributes to the resulting dire
tion, and the 
ontribution is proportional tothe a
tivation value of that neuron. And the monkey's movement is equal to this weightedve
torial sum.We have seen that both in the studies of developmental psy
hology and in the studiesof motor 
ontrol and learning in neuros
ien
e, the idea of starting from pre-
oded primi-tive behaviors, and through training and development, a
hieving more 
omplex behaviorsis a

epted as a possibility. If we 
ombine the approa
h of developmental psy
hologistsPiaget and E.J. Gibson (whi
h says that a baby starts from innate primitive re�exes andenri
hes them through experien
e until they be
ome voluntary a
tion) with the approa
h ofneuros
ien
e (whi
h says that 
omplex patterns of motor behavior 
an be explained using
ombination of simple pre-
oded behaviors), then we believe that this presents a very goodresear
h potential for roboti
 behavior development. In this kind of resear
h, one shouldinvestigate how robots equipped with simple pre-
oded(innate) behaviors 
an develop toa
hieve more 
omplex behaviors through the usage of these simple behaviors. This a
tually
onstitutes the grounds where this thesis aims to make its 
ontribution. But before goinginto the details of how we realized su
h a development, in the next se
tion we will reviewthe other roboti
s studies 
ondu
ted in this area.25



4.3 Behavior learning and development in roboti
sIn roboti
s, there have been in
reasing interest in behavioral development and learning inre
ent years. There are studies that makes a robot learn behavior parametrization [46℄,learn to use behaviors purposively [2, 22℄, and demonstrate stages of development throughthe usage of a �xed set of behaviors [60℄. In this se
tion we will present some of these studies.In [44℄ Lee et al. use 
ase-based reasoning in sele
ting parameters for their behaviors,for goal-dire
ted navigation. In this study the robot has a �
ase-library�, where ea
h 
ase isindexed by environmental features and outputs a set of behavioral parameters. A

ordingto the values 
oming from its sensors, the robot tries to �nd a best 
andidate among the
ases in the 
ase library, that re�e
ts the 
urrent environmental situation the most. After�nding the best-mat
hing 
ase, the behavioral parameters of that 
ase are used. In [44℄,the �
ase library� is 
reated manually, whi
h requires extensive experimentation and tediouswork. In [46℄, Likha
hev et al. extends this work by making the robot populate its 
aselibrary through its own experien
e. In this work the robot starts with an empty 
ase library.It 
reates new 
ases as it per
eives set of environmental features that are not similar to the
ases already existing in the library. But sin
e the proper output behavior parameters ofthese new 
ases are not known by the robot at the beginning, they a
t rather randomly. Bythe help of an expli
it performan
e evaluator, the performan
e of ea
h 
ase is 
omputed,and a gradient-as
ent sear
h is made over the output behavior parameters of these 
ases. Asthe robot experien
es more in the environment, the 
ases 
onverge to the 
orre
t behaviorparameters. Note that the external performan
e evaluator plays a 
ru
ial role in �nding theproper parameters, providing reinfor
ement signals.Another study that uses reinfor
ement learning is Asada et al.'s work on �purposivebehavior a
quisition� [2℄. In this study, the robot has a �xed set of behaviors, and usingthese navigational behaviors it aims to shoot a ball into a goal. At the beginning the robotdoes not know when to exe
ute whi
h behavior in s
oring goals; that is, it does not haveany idea what its behaviors are good for. But through a reinfor
ement learning pro
ess, therobot learns using its behaviors purposively. Therefore, after training, the robot manages tosele
t the 
orre
t behaviors in di�erent situations, so that it gets 
loser to s
oring goals.In roboti
s, there are also studies that aims to mimi
 developmental stages that animalsgo through. In [60℄, Oudeyer et al. made a robot show di�erent phases of 
ognitive devel-opment. In what they 
alled �playground experiments�, Oudeyer et al. pla
ed a robot-dogin a playground that in
luded various simple toys. In this environment, by exe
uting some26



primitive behaviors randomly, the robot learned the dynami
s and relation between its be-haviors, and the events in the environment. When Oudeyer et al. also provided an externalmotivation to the robot to show interest in situations whi
h are �neither too predi
table nortoo unpredi
table�, the robot autonomously went through a developmental sequen
e. Duringthis development, the robot's 
omplexity of a
tivities in
reased at ea
h stage.In [14℄, Aarno et al. present a per
eptual framework, using whi
h they aim to make arobot learn about obje
ts by intera
ting with them, like an human infant.It is evident from all these studies that, there is an in
reasing interest in roboti
 behaviordevelopment and learning. Rather than the hand-
oding of the behaviors of a robot by ahuman programmer, these new studies aims to make robots develop and learn their ownbehaviors.
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CHAPTER 5EXPERIMENTAL FRAMEWORK
In this 
hapter we will present the experimental framework of our study, before going intothe details of our development s
heme in the next 
hapter. Here, we will �rst present theroboti
s and simulation platform that we have used in our study. Then we will presentthe primitive behaviors implemented on our robot and give the details of the intera
tionenvironment where our robot will be trained. Lastly, we will present the details of theper
eptual pro
esses using whi
h our robot gathers information from the environment. Wewill also see how our robot forms the entity and e�e
t stru
tures whi
h are at the 
ore oura�ordan
e formalization.5.1 Roboti
 and simulation platformThe roboti
 platform KURT3D1 and its simulated 
ounterpart are used in this study.KURT3D is a di�erential drive mobile robot equipped with a 3D laser range s
anner (basedon the SICK LMS 200 2D laser s
anner). Using this laser s
anner, the robot is able to 
reatea range image of its environment. The maximum horizontal range for the s
anner is 180◦,and the maximum verti
al range is also 180◦. At the �nest resolution a range value for everyquarter degrees 
an be delivered by the s
anner, both in verti
al dire
tion and horizontaldire
tion. That means, at the maximum resolution and at the widest verti
al and horizontalrange, the range image has the size 720 × 720. Su
h an image 
an be delivered in approxi-mately 45 se
onds. Of 
ourse, the resolution, verti
al range, and horizontal range values 
anbe set to lower values by the user. The robot also has en
oders in its wheel system.The simulator we used for KURT3D is MACSim [80℄ implemented using ODE (OpenDynami
s Engine2) library. The KURT3D is modeled inside the virtual world, together1URL: http://www.ais.fraunhofer.de/ARC/kurt3D/2URL:http://ode.org/ 28



(a) KURT3D (b) MACSimFigure 5.1: (a) The KURT3D. (b) A snapshot from MACSim showing the KURT3D robotfa
ing a box-shaped obje
t.Table 5.1: The motor parameter values passed by the primitive behaviors.
Behavior LeftWheel RightWheel DurationTURN_LEFT -0.25 m/s +0.25 m/s 0.7 se
MOVE_FORWARD +0.25 m/s +0.25 m/s 1.7 se
TURN_RIGHT +0.25 m/s -0.25 m/s 0.7 se


with its sensors and a
tuators. The simulator also supports 
reation of several types ofobje
ts in the virtual world of the robot, so that the robot 
an intera
t with them. You 
ansee a snapshot from the simulator in Figure 5.1.5.2 Primitive behaviorsWe implemented and used three primitive behaviors on the robot for our experiments. Theseare move-forward, turn-left, and turn-right behaviors. The move-forward behavior drives therobot straight ahead that pla
es the robot approximately 40cm away from its initial position,if the move is not obstru
ted by any obsta
les. The turn-left, and turn-right behaviors turnsthe robot in pla
e for approximately 50◦. These behaviors are implemented by driving theright and left wheels of the robot at a 
onstant speed for a 
onstant duration. The valueswe used to drive the motors 
an be seen in Table 5.1.
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5.3 Intera
tion environmentIn our learning phase ea
h trial is performed with a single obje
t in the environment. Theobje
ts are pla
ed randomly within a proximity of 1m to the robot, in the frontal areaspanning 180◦. The intera
tion environment 
ontains four types of simple obje
ts:
• re
tangular boxes ( ),
• spheri
al obje
ts ( ),
• 
ylindri
al obje
ts, either� in upright position ( ), or� lying on the ground ( ),An example intera
tion environment 
an be seen in Figure 5.1 where a box is pla
ed in frontof the robot.After learning, the environment that the developed behaviors are tried in is not sameenvironment, and it is 
luttered with many obje
ts. We will present an example of thisenvironment in Se
tion 6.3.1.5.4 Per
eption and representation of entities and e�e
tsThe robot per
eives its environment mainly through its 3D s
anner. It uses the rangeimages from the s
anner to extra
t a set of features whi
h 
onsists the robot's per
eption ofthe environment. This feature-extra
tion pro
ess was �rst used in [81℄ by U§ur. Here, weuse the same pro
ess to extra
t shape and distan
e related features from the range image.The feature set is obtained in three steps as shown in Figure 5.2. The robot makes a fullresolution s
an of 720 × 720. First, the image is down-s
aled to a resolution of 360 × 360pixels. Then, it is split into grids of size 12 × 12 pixels. This means that there are 900su
h grids (sin
e (360/12)2 = 900), in total. Then, for ea
h grid, distan
e and shape relatedfeatures are extra
ted. The distan
e related features are the distan
e of the 
losest point,distan
e of the furthest point, and the mean distan
e of all the points within a grid. Theshape related features are 
omputed from the normal ve
tors in the grid. A normal ve
tor forea
h point in a grid is 
omputed using the range values. Then the dire
tion of ea
h normalve
tor is re
orded in two base-dimensions, ϕ and θ, in latitude and longitude. Two angularhistograms are 
omputed for ea
h of these dimensions. The histograms are sli
ed into 1830



Figure 5.2: Phases of per
eption. Distan
e and shape features are extra
ted from the s
annerrange image. Also three displa
ement values are extra
ted from the en
oders. (Figure takenfrom [17℄)intervals of 20◦ ea
h. And the frequen
y values in ea
h of these sli
es of the histograms areused as the shape related features. Sin
e there are two 
hannels of 18 values ea
h, there are36 shape related feature for ea
h grid. Adding the three distan
e related features of a grid,there are 39 features to represent a single grid. We mentioned that there are 900 su
h grids.So the total number of features to des
ribe the s
ene be
omes 900×39 = 35100. In additionto the s
anner features, values from the wheel-en
oders are also re
orded.In our formalization entity represents the state of the environment as per
eived by theagent before performing a behavior. In this study it is represented with the s
anner featuresobtained before the exe
ution of a primitive behavior by the robot.In our formalization e�e
t represents the per
eivable 
hange in the environment or inthe state of the agent, produ
ed by performing a behavior. In this study, the e�e
t isrepresented with the ve
torial di�eren
e between the s
anner features obtained after andbefore the exe
ution of a primitive behavior of the robot, together with 3 more featuresextra
ted from the en
oder values that 
orrespond to the 
hange of the robot's position inthe forward and left-right dire
tions, and the 
hange in its orientation. (Figure 6.1)
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CHAPTER 6USING AFFORDANCES FOR ROBOTICBEHAVIOR DEVELOPMENT
In this se
tion we propose a behavioral development s
heme on a robot. We will make useof the theory and formalization of a�ordan
es in a
hieving su
h a development. The generi
a�ordan
e relations that are a
quired by the robot will provide the basi
 building blo
ks ofthe development s
heme we are going to propose.How 
an we realize behavioral development for a robot? The robot will start with a setof primitive behaviors. These will be simple pre-
oded behaviors. Initially, the robot willnot have any more knowledge about its behaviors than to exe
ute them blindly. Startingfrom the set of primitive behaviors, the robot will have no initial knowledge about whento apply these behaviors, and what kind of e�e
ts they 
reate on
e they are applied. Therobot �rst has to learn the possible e�e
ts it 
an 
reate in the environment using thesebehaviors. It should also learn when to apply whi
h behavior to 
reate a spe
i�
 
hange inthe environment. Dis
overing the uses of its primitive behaviors, the robot 
an then utilizethem in developing more 
omplex behavior patterns.In 
reating new more intelligent behavior from the primitive behaviors, the primitivebehaviors (that the robot has learned about, and has done its training with) 
an be usedin two ways as the result of development: sequentially, and simultaneously. In sequentialusage, the primitive behaviors 
an be used as they are: there will be one single primitivebehavior a
tive at an instant, but the 
umulative e�e
t of the exe
ution of these behaviorswill form a goal-dire
ted intelligent behavior on a wider time-s
ale. In the se
ond way ofusing the primitive behaviors in behavior development, the simultaneous way of using theprimitive behaviors, the primitive behaviors 
an be 
ombined, su
h that, at an instant itis not any of the primitive behaviors that is exe
uting, but a new behavior that has never32



been seen or demonstrated by the robot before, yet is used by it intelligently to 
reate e�e
tsin the environment that are more in a

ordan
e with its goals than any of the primitivebehaviors. This is the se
ond way of using the learned primitive behaviors that we will tryto demonstrate.In the following, we will present the implementation of this development s
heme. In thenext se
tion a brief overview of the behavioral development stages as implemented will begiven. Then we will see how the robot 
olle
ts the relation instan
es by intera
ting withits environment, and how it merges them in generi
 a�ordan
e relations. After this we willpresent the usage of the learned a�ordan
e relations in developing goal-dire
ted behaviors.As mentioned before, we will demonstrate two ways of doing this: sequential usage of theprimitive behaviors, and simultaneous usage of the primitive behaviors.6.1 MethodologyIn this se
tion we will present a brief overview of the pro
esses involved in using the formal-ization of a�ordan
es des
ribed in the previous se
tions, in making a robot learn about itsown primitive behaviors and use them goal-dire
tedly. The underlying pro
ess 
onsists oftwo phases: learning a�ordan
e relations, and a
hieving goal-dire
ted behavior.Learning a�ordan
e relations The phase of learning a�ordan
e relations in turn in-
ludes two steps: data 
olle
tion (intera
tion with the world), and forming a�ordan
e rela-tions using these 
olle
ted data. In the data 
olle
tion step the robot exe
utes its primitivebehaviors one at a time, in a 
ertain environment. It per
eives and re
ords the environmentbefore exe
uting a behavior, and after exe
uting it. This 
orresponds to 
olle
ting(e�e
t, (entity, behavior)) instan
es. After exe
uting all of its behaviors in many di�erentenvironments, the robot has a 
olle
tion many su
h relation instan
es. This 
olle
tion is thenused in forming the a�ordan
e relations. This requires forming entity equivalen
e 
lasses ande�e
t equivalen
e 
lasses from the relation instan
es of a spe
i�
 behavior, and 
onne
tingthem in an a�ordan
e relation. Pra
ti
ally, these a�ordan
e relations are trained 
lassi�ersthat 
an then be used to 
reate goal-dire
ted behavior.A
hieving goal-dire
ted behavior In this phase the robot uses the learned a�ordan
erelations to a
hieve more intelligent behaviors. Per
eiving the 
urrent environment providesa des
ription of the entity. Using this entity and the learned a�ordan
e relations(<e�e
t> , <(entity, behavior)> ), the robot 
an then exe
ute the behavior(s) whi
h will33



result in the e�e
t that will make the robot a
hieve its goal. We will present two approa
hesin developing goal-dire
ted behaviors. In the �rst approa
h, the robot will use its primitivebehaviors in a sequential manner to a
hieve goal-dire
ted behavior. Pra
ti
ally this meansfeeding in the entity representation to the trained 
lassi�ers, of whi
h there is one for ea
ha
tion. Then the predi
tions of ea
h 
lassi�er, whi
h are e�e
t-prototypes, are 
omparedto see whi
h e�e
t will be more useful in a
hieving the goal. The a
tion, whose 
lassi�erpredi
ted a better e�e
t, is exe
uted. In the se
ond approa
h, the robot will use its primitivebehaviors simultaneously to a
hieve goal-dire
ted behavior. Pra
ti
ally, this will again 
orre-spond to feeding in the 
urrent entity representation to the trained 
lassi�ers, of whi
h thereis one for ea
h a
tion. Then the predi
tions of ea
h 
lassi�er, whi
h are e�e
t-prototypes, are
ompared with the goal representation to see how similar ea
h behavior 's e�e
t predi
tionis to the desired e�e
t. The similarity values will then be used as weights for the behavioralparameters, in blending the primitive behaviors so that a new behavior emerges.6.2 Learning a�ordan
e relationsIn learning generi
 a�ordan
e relations, the robot �rst intera
ts with its environment, 
olle
tsdata about the intera
tion, and then applies 
ertain ma
hine learning pro
esses over the datato form generi
 a�ordan
e relations.6.2.1 Data 
olle
tion: Intera
ting with the worldIn the intera
tion phase, the robot 
olle
ts a�ordan
e relation instan
es. Per
eived entityand e�e
t instan
es are linked together with the primitive behavior that was exe
uted toprodu
e the e�e
t. The three 
onstitute a relation instan
e. Figure 6.1 depi
ts the extra
tionof these instan
es.Here, for ea
h trial, the robot per
eives the situation before applying a primitive behaviorand stores it as the entity. It then performs one of its primitive behaviors. After that, itper
eives the environment again, and extra
ts and stores the e�e
t as des
ribed in 5.4.In this study a total number of 3000 trials for ea
h primitive behavior were performed inthe simulator during the intera
tion phase. The details of the intera
tion environment waspresented in 5.3.
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Figure 6.1: Representation of the entity and the e�e
t. Distan
e and shape features extra
tedfrom the s
anner image, taken before the exe
ution of a primitive behavior, 
onstitute theentity. The di�eren
e between the features extra
ted after the exe
ution of the behaviorand features extra
ted before the exe
ution of the behavior 
onstitute the representation ofe�e
t, together with the displa
ement values extra
ted from the en
oders (see Figure 5.2).6.2.2 Forming a�ordan
e relationsThe aim of the this phase is to derive a�ordan
e relations from the set of relation instan
es
olle
ted in the intera
tion phase, through the formation of equivalen
e 
lasses. Withinthe set of relation instan
es of a behavior, similar e�e
ts are grouped together to get moregeneral des
ription of di�erent kinds of e�e
ts that behavior 
an 
reate. This is a
hievedthrough the unsupervised 
lustering of the e�e
t instan
es. This 
orresponds to obtaininge�e
t equivalen
e 
lasses. After 
lustering, ea
h e�e
t 
lass is assigned an e�e
t-id and thee�e
t prototype of the 
lass is 
al
ulated.Knowing the di�erent kinds of e�e
ts that a behavior 
an 
reate, the robot should thendis
over the distin
tive features and invariant properties of the environments in whi
h thesee�e
ts are 
reated. This 
orresponds to obtaining entity equivalen
e 
lasses. This 
onsistsof two substeps. First, the robot sele
ts the features des
ribing the entity whi
h are relevantin determining if a situation will result in one e�e
t or another. This is a
hieved by applyinga feature sele
tion algorithm over the entities, using the 
orresponding e�e
t-ids as their
ategories. Next, the robot learns the mapping from the entities to the e�e
t-ids, for theexe
ution of a behavior. This is a
hieved by training 
lassi�ers with the 
olle
ted a�ordan
erelation instan
es. A separate 
lassi�er is trained for ea
h behavior, using the entity (whi
hnow in
ludes only the sele
ted relevant features) as the input, and the 
orresponding e�e
t-idof ea
h instan
e as the target 
ategory. 35



In the rest of this se
tion, we provide the details of these three steps in the learningphase.Forming e�e
t equivalen
e 
lasses with 
lusteringA primitive behavior, when applied in di�erent situations, 
reates di�erent kinds of e�e
tsin the environment. Re
ognizing these di�erent kind of e�e
ts is ne
essary if the robot isgoing to use the behaviors goal-dire
tedly.For this purpose, for ea
h behavior, the 3000 e�e
t data 
olle
ted in the intera
tion phasewere 
lustered using the k-means algorithm. The k parameter was experimentally set to 10.The k-means algorithm was applied with normalized distan
es to avoid the domination ofs
anner originated features over en
oder originated features and shape related features overdistan
e related features.Figure 6.2 gives an interpretation of the results of 
lustering. After 
lustering, every e�e
t
lass is assigned an e�e
t-id. The e�e
t prototype of a 
lass is the mean of the individuale�e
ts in that 
lass. The set of prototypes 
hara
terizes the di�erent kinds of e�e
ts ea
hbehavior produ
es.Sele
ting relevant featuresThe robot only needs the subset of features des
ribing the entity whi
h are important indetermining if a situation will result in one e�e
t or another. For this aim, we sele
ted therelevant features in the entity, using the 
orresponding e�e
t-ids as their labels. Sele
tionof relevant features is done using the ReliefF algorithm, originally proposed by Kira andRendell [43℄. This method aims to estimate the weight of ea
h feature in a feature set, basedon its impa
t on the target 
ategory of the samples. In ReliefF, the weight of any feature isin
reased, if it has similar values for the samples in the same 
ategory, and if it has di�erentvalues for the samples in di�erent 
ategories.To speed-up this feature-sele
tion pro
ess, instead of using the 
omplete set of intera
tionsamples, 50 samples from every 
lass were randomly sele
ted. We used the data-miningsoftware WEKA [86℄ as an implementation of ReliefF.In Figure 6.3, the grids 
orresponding to the relevant features for ea
h behavior are given.It 
an be observed that the grids to whi
h sele
ted attributes belong, di�er for ea
h behavior.
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Figure 6.2: Interpretation of e�e
t 
lasses obtained with unsupervised 
lustering for theprimitive behavior move-forward. The upper image 
ontains the distribution of obje
t po-sitions in the intera
tion phase for the samples in the resulting 10 
lusters. In the enlargedpi
tures the types of obje
ts 
an also be observed. The left image 
orresponds to a 
lusterwhose prototype e�e
t has a small value for �
hange in the forward dire
tion�. It 
an beobserved that in the samples whi
h belong to this 
luster, the obje
t was pla
ed in front ofthe robot, and it was 
lose to the robot su
h that that the robot would 
ome in 
onta
t withthe obje
t during its forward motion. Moreover, the majority of these obje
ts were boxesand upright 
ylinders, so that the robot's motion would be blo
ked by the obje
t. The rightimage, on the other hand, 
orresponds to a 
luster whose prototype e�e
t has a large 
hangein the forward dire
tion. This 
luster 
ontains intera
tion samples in whi
h the obje
t waseither far enough, su
h that the robot would not get in 
onta
t with the obje
t, or it was onthe path of the robot's motion but it was a sphere or a lying 
ylinder, so that it would berolled away without blo
king the motion. In the upper image, it 
an also be observed that
lusters were formed a

ording to the position of the obje
t being roughly on the right orthe left of the robot.
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Figure 6.3: Relevant grids in the range image representation for three possible primitivebehaviors: turn-left, move-forward, and turn-right. Darkness is an indi
ation of relevan
e. It
an be seen that only a small portion of all the grids are relevant for ea
h behavior, and mostof the grids are 
ompletely white, indi
ating no relevan
e. Also, for turn-left and turn-righta
tions, the grids on left and right, respe
tively, are more relevant.Linking e�e
ts to entitiesSupport Ve
tor Ma
hines (SVMs) are trained to 
lassify entities (whi
h now in
lude onlythe 2000 most relevant features sele
ted in the previous step) into e�e
t 
lasses. We usedthe libSVM [8℄ library as an implementation of SVMs. For ea
h behavior, an SVM wastrained using the entities as the inputs, and the 
orresponding e�e
t-ids of ea
h instan
eas the target value. These SVM 
lassi�ers are then used in the exe
ution phase, to predi
twhat kind of e�e
t a behavior will generate, given a per
eptual representation (entity) of the
urrent environment.6.3 A
hieving goal-dire
ted behaviorIn this se
tion we will present the two ways of a
hieving goal-dire
ted behavior, using thelearned a�ordan
e relations: through the sequential use of primitive behaviors, and throughthe simultaneous use of primitive behaviors.6.3.1 A
hieving goal-dire
ted behavior through the sequential use of prim-itive behaviorsIn [17℄ we demonstrated how the learned a�ordan
e relations 
an be used in a
hieving goal-dire
ted behaviors, through the utilization of the primitive behaviors sequentially. Here therobot uses the learned a�ordan
e relations in sele
ting the proper primitive behavior in agiven 
ontext. Although the behaviors that are used by the robot are the same pre-
odedprimitive behaviors, sin
e the robot now has the knowledge of what e�e
ts a behavior 
reateswhen applied in a 
ertain 
ontext, it is able to use them to more intelligently. Therefore,38



Figure 6.4: Behavior sele
tion. The di�erent possible e�e
ts prototypes are sorted a

ordingto the 
urrent desired e�e
t. The 
urrent per
eption of the environment is supplied to theSVMs for ea
h primitive behavior. The behavior, whose SVM predi
ts an e�e
t that is higherin the sorted list, is exe
uted.(Figure taken from [17℄)although the behaviors are the same, when viewed on a wider time-s
ale the sequen
ing ofthe behaviors displays a 
ertain goal-dire
ted behavior. As a 
onsequen
e many di�erentgoal-dire
ted behaviors 
an be a
hieved using the same restri
ted set of primitive behaviors,and the same learned a�ordan
e relations. The robot learns the generi
 a�ordan
e relationson
e, but it 
an use them to a
hieve many di�erent goal-dire
ted behaviors.In this se
tion we will �rst explain how the behavior sele
tion is done by the robot. Thenwe will present three examples for the goal-dire
ted behaviors. The traverse behavior usesthe �traversability� a�ordan
e in the environment for navigation. The approa
h behaviormakes the robot go towards an obje
t. The avoid behavior tries to avoid any 
onta
t withthe obje
ts to navigate in the environment.Behavior sele
tionThe robot uses the learned a�ordan
e relations to sele
t the primitive behavior in a
hievinggoal-dire
ted behaviors. Given the per
eptual representation of the 
urrent environmentas an entity, the trained 
lassi�ers will predi
t an e�e
t-id whi
h indi
ates the e�e
t 
lassthat the behavior, for whi
h the 
lassi�er was trained, will produ
e in this environment. By
omparing the e�e
t prototypes of the predi
ted 
lasses with its desired e�e
t determined byits 
urrent goal, the robot 
an sele
t the behavior that will produ
e the most useful e�e
t in39



a
hieving its goal. The behavior sele
tion me
hanism is shown in Figure 6.4.Spe
ifying the 
urrent desired goal and sorting the e�e
t prototypes a

ording to thisdesired goal is what results in di�erent behaviors. This goal spe
i�
ation and assigning prior-ities to the possible e�e
ts 
an be done in di�erent ways. The di�eren
e between the 
urrentsituation and the desired goal gives us a des
ription of the desired e�e
t. We 
an then sortthe e�e
t prototypes a

ording to their similarity to this desired e�e
t. Another possibility isto assign priorities to 
ertain e�e
t prototypes dire
tly, by using a global evaluation 
riteria.The behaviors that will be demonstrated in the next se
tion use su
h a method. In the nextse
tion, we will present these behaviors together with the 
riteria we used to evaluate thepossible e�e
ts prototypes in a
hieving these behaviors.Goal-dire
ted BehaviorsTraverse We de�ne �traversing� as di�erent from the 
onventional �wandering using ob-sta
le avoidan
e�. In the obsta
le-avoidan
e approa
h every obje
t that is on the robot'spath is 
onsidered as an obsta
le. In fa
t su
h a behavior is overly 
autious 
ompared to itsintentions. For example if the obje
t on its path is a ball that 
an be easily pushed awaythen there is no need for the robot to avoid it. Here the robot has to make the judgment ofwhether the situation a�ords �traversability� or not.Given our robot and the obje
ts in its environment, we 
an say that the environmentis �traversable� for the robot, if there is an open-spa
e, or a sphere (sin
e it 
an be rolledaway), or a 
ylinder lying on the ground in a proper orientation so that it 
an be rolled away.The other 
ases of when there is a box, or a 
ylinder in an orientation su
h that it 
an notbe rolled away are the �non-traversable� 
ases.If we want our robot to explore the environment using traversability, it should be able todrive onto (by exe
uting forward motion) traversable obje
ts and open spa
es but avoid (byturn-left or turn-right) non-traversable obje
ts. This 
an be a
hieved by a spe
i�
 orderingof the e�e
t 
lasses. In this 
ase the most desired e�e
t is the forward displa
ement of therobot but without being stopped by an obje
t. This means that the highest priority shouldbe given to the e�e
t 
lasses whose prototypes have a forward-displa
ement value greaterthan a threshold. Then must 
ome the e�e
t 
lasses for the two turning motions turn-rightand turn-left. Lastly, as the most undesired 
ases, the e�e
t 
lasses of the forward motionwhose prototypes have a forward-displa
ement value smaller than the threshold should 
ome,sin
e this small value is an indi
ation of the motion's being stopped by an obsta
le, thus anon-traversable 
ase. In our implementation we set this threshold to a value just below 40cm,40



(a) Traverse behavior (b) Avoid behavior
(
) Approa
h behaviorFigure 6.5: Three di�erent behaviors a
hieved using the same three primitive behaviorsand their learned a�ordan
e relations. In (a), the robot wanders around per
eiving thetraversability a�ordan
e of the obje
ts. When there is a sphere or a 
ylinder in a rollableorientation on its way, the robot rolls it away and 
ontinues forward-motion. When thereis a box or a 
ylinder in non-rollable orientation on its way, the robot avoids it by turningleft or right. In (b), the robot displays a more typi
al obsta
le-avoidan
e behavior, where itavoids all the obje
ts, whether it is rollable or not. In (
), an example path where the robotfollows an obje
t using its approa
h behavior is shown. The plus signs marks the pla
es thatobje
ts appear. The line shows the robot's path.
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Figure 6.6: Snapshot from the arena where the performan
e of the behavior was measured.Here, only a small portion of the whole arena 
an be seen.whi
h is the distan
e the robot 
overs when it exe
utes an unobstru
ted MOVE_FORWARDbehavior.We have tested the traverse behavior by pla
ing the robot in an environment randomly�lled with multiple traversable and non-traversable obje
ts. The robot su

essfully exploredthe environment and also used the traversability a�ordan
e of the obje
ts by rolling awaythe traversable obje
ts on its way, and avoiding the non-traversable ones. One example pathof the robot 
an be seen in Figure 6.5(a).We also measured the performan
e of the traverse behavior for di�erent number of inter-a
tions in training the robot and analyzed the e�e
t of the in
reasing number of intera
tions(in
reasing experien
e) on the performan
e of the robot.We measured the performan
e of the traversability behavior as follows: In the simulator,we pla
ed the robot in a re
tangular arena of 44m×48m. The arena was 
luttered with 1000simple obje
ts randomly. You 
an see a portion of a sample arena in Figure 6.6. The robotstarted its trial at the 
enter of this arena and exe
uted the traverse behavior. The a
tionsthe robot exe
uted and the distan
e it 
overed was re
orded at ea
h step. The exe
ution ofa trial stopped when the robot got stu
k to an obsta
le when exe
uting the move-forwardbehavior (it is not possible for the robot to get stu
k when exe
uting turn-left or turn-rightsin
e they simply make the robot turn in pla
e). When the robot got stu
k the total distan
e42
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Figure 6.7: Performan
e for di�erent number of training intera
tions. As the robot intera
tswith the environment more, the developed behavior performs better. When there are a fewhundreds of intera
tions, the in
rease in the performan
e is not too 
lear, but when the robotrea
hes thousands of intera
tions it begins to perform remarkably better.the robot has 
overed so far in that trial was re
orded. If the robot got out of the arenaborders without getting stu
k, it was pla
ed at the 
enter again with a di�erent distributionof obje
ts in the arena, and the trial was 
ontinued until the robot got stu
k.We manipulated the number of training intera
tions the robot did with the environmentto see its e�e
t on the performan
e. For example when training the robot, we stopped atthe 50th intera
tion, went through the learning pro
ess to form the a�ordan
e relations,and measured the performan
e of the robot. Then the robot 
ontinued to experien
e withthe environment until 100th intera
tion, where we again measured the robot's performan
e.We did this at the 50th, 100th, 250th, 500th, 1000th, 2000th, and 3000th intera
tions. For43



measuring the performan
e at ea
h 
ase we 
ondu
ted 40 trials in the arena. One 
ansay that the number of intera
tions 
orresponds to the �experien
e� of the robot during itsdevelopment. So one expe
ts an in
reasing performan
e with experien
e. In Figure 6.7 we
an see that this is indeed the 
ase. In this �gure we 
an see an in
rease in the performan
eof the robot as its number of intera
tions in
rease. In fa
t, when there are a few hundredsof intera
tions, the in
rease in the performan
e is not too 
lear. But when the robot rea
hesthousands of intera
tions the robot begins to perform remarkably better.Approa
h Approa
hing an obje
t means going forward if the obje
t is ahead, turning rightif the obje
t is on the right, and turning left if the obje
t is on the left. In this view, the mostdesired e�e
t would be to see an appearan
e, or approa
h, of obje
ts in the middle portionof the 3D-s
anning �eld. Re
all that the 3D s
an �eld is a 30× 30 grid in our representationof the e�e
t. We sele
ted the horizontally middle portion of this grid. For every e�e
t 
lass,these grids holds the information about the 
hange in the values of the features in the frontalregion of the robot, when the 
orresponding behavior is exe
uted. The priority of an e�e
t
lass is assigned based on the sum of the 
hange in the mean-distan
e features in these grids.Sin
e the distan
e value is smaller when an obje
t is 
lose, the higher priorities are givengiven to those 
lasses with the most negative value of this sum. This way the e�e
t 
lasses,whi
h 
orrespond to approa
hing or turning to an obje
t so that it is ahead, be
omes higherin the sorted e�e
t list.We have tried this approa
h behavior �rst by pla
ing obje
ts to random pla
es in frontof the robot. It was observed that the robot was able to make the 
orre
t de
ision of goingahead if the obje
t is in the front, turning right if the obje
t is on the right, and turning leftif the obje
t is on the left. Next we have simulated a slowly moving obje
t in front of therobot, by pla
ing the obje
t on random positions in front of the robot as the robot made itsmoves. An example path of the obje
t and the robot 
an be seen in Figure 6.5(
).Avoid As a third behavior a more traditional approa
h to the traversability problem wasemployed. The rollability of 
ertain obje
ts was not taken into 
onsideration and the robottried to avoid 
onta
t with any obje
t in the environment. To a
hieve this behavior thepriority of an e�e
t was assigned in exa
tly the opposite way as it was in the approa
hbehavior. So the sorting of the e�e
t 
lasses was based on the sum of the 
hange in themean-distan
e features in the frontal region of the robot, whi
h is the horizontally middleportion of the 30 × 30 grid in our representation of the e�e
t. This way, the e�e
t 
lasses44



Figure 6.8: Three 
ases in whi
h di�erent goal-dire
ted behaviors (traverse, avoid, approa
h)make use of di�erent primitive behaviors (move-forward, turn-right, turn-left) in the samesetting of the environment.whi
h 
orrespond to turning away from an obje
t that is ahead be
omes higher in the sortedlist of e�e
ts; and the e�e
t 
lasses, whi
h 
orrespond to approa
hing or turning to an obje
tso that it is ahead, be
omes lowest in the sorted list of e�e
ts. But this 
riteria was notenough to make the robot wander around, sin
e it always tried to turn away from obje
ts(by exe
uting turn-left or turn-right) even if they were very far away, and never exe
utedmove-forward. So we disabled this sorting when there were no obje
ts 
lose in front of therobot, and made the robot exe
ute the move-forward behavior in these 
ases. The path ofthe robot with this behavior is given in Figure 6.5(b).The three goal-dire
ted behaviors were also realized on a real robot. The trained 
on-trollers were transferred to a real KURT3D robot, and everyday obje
ts like balls, trashbins, et
. were pla
ed in front of the robot to test the behaviors. The robot was able toper
eive the traversability of obje
ts, so it rolled away the balls on its way, and avoidednon-traversable obje
ts like trash-bins. The robot was also able to display the approa
hand avoid behaviors as des
ribed in the previous se
tions. Figure 6.8 shows how the threegoal-dire
ted behaviors rea
t in di�erent environments 1.6.3.2 A
hieving goal-dire
ted behavior through the simultaneous use ofprimitive behaviorsIn the previous se
tion the robot was able to use a set of primitive behaviors su
h that whenviewed on a wider time-s
ale the robot's behavior 
orresponded to goal-dire
ted intelligentbehaviors. But while we 
laimed that in a
hieving su
h kind of goal-dire
ted behavior therobot made use of a generalization over the e�e
ts it 
an 
reate, and a generalization overthe features of the entities it intera
ts with, it 
an not be said that the robot made use1For a 
omplete demonstration of the behaviors on the real robot, please see the video athttp://kovan.
eng.metu.edu.tr/�mehmet/iros07.mpeg.45



of a generalization over the behaviors. At any given moment the robot exe
uted a singleprimitive behavior, and these primitive behaviors were the same behaviors that it also usedduring the training intera
tions, and they were programmed into the robot.In this se
tion we will try to a
hieve behavioral generalization (or more 
orre
tly, ageneralization over the motor 
ontrol parameters of the behaviors), so that, after training,the robot will not be 
onstrained with the �xed set of pre-programmed behaviors but will beable to demonstrate novel behaviors. While the robot will still have a limited set of behaviorsduring training, after training it will rea
t to situations with new behaviors, that are moree�e
tive than the primitive behaviors in 
reating the desired e�e
t in the environment.To be able to do that, the robot needs to make a generalization over the motor param-eters that it uses for the behaviors, and relate these to the e�e
ts it 
an 
reate with theseparameters. Then, when it needs to 
reate a spe
i�
 e�e
t in the environment, the robot
an 
hoose the 
orre
t set of parameters to 
reate the e�e
t.We a
hieved this generalization using a weighted sum of the motor 
ontrol parametersof the primitive behaviors, where the weights are determined a

ording to the similarity oftheir e�e
ts to the desired e�e
t. The inspiration for this approa
h 
omes from the work onpopulation 
oding (See Se
tion 4.2).In the next se
tion a general des
ription of the method used for behavioral generalizationwill be given. Then, a 
on
rete implementation of this method for a spe
i�
 behavior willbe presented.MethodThe method proposed uses motor parameter values of the primitive behaviors in determininga new value for that motor parameter. Ea
h primitive behavior passes values to the motorsas 
ontrol parameters, and these values are �xed by the programmer for ea
h behavior. Forexample, the TURN_LEFT behavior passes -0.25 m/s as the left-wheel-speed and +0.25m/s as the right-wheel-speed, and the TURN_RIGHT behavior passes +0.25 m/s as theleft-wheel-speed, and -0.25 m/s as the right-wheel-speed, et
.. During training only oneprimitive behavior is a
tive, so the values that are passed to the motors are the ones of thatbehavior. After training these �xed values of the primitive behaviors are again used, butthis time, at an instant, all the primitive behaviors 
ontribute to the value that is a
tuallypassed to the motor. The weight of ea
h primitive behavior's 
ontribution is determined bythe similarity of the predi
ted e�e
t of that primitive behavior to the desired e�e
t. As aresult if the predi
ted e�e
t of a primitive behavior is very similar to the desired e�e
t, then46



it 
ontributes more to the values passed to the motors and vi
e versa.Suppose that there are n primitive behaviors B1, B2, ..., Bn, and ea
h behavior Bi hasa set of motor parameter values vi1, vi2, ..., vim for ea
h of the m motors M1, M2, ..., Mm.Further suppose that D is the desired e�e
t prototype, and p1, p2, ..., pn are the predi
tede�e
t-
ategory prototypes in the 
urrent environment for ea
h of the n behaviors. Also, let'ssay that there is a similarity fun
tion S that takes two e�e
t prototypes as arguments andreturns a value indi
ating the similarity between these two prototypes. Then, in an arbitraryenvironment, we 
an �nd the new value v′j to be passed to motor Mj as:
v′j =

n∑

i=1

S(D, pi)∑n
k=1

S(D, pk)
∗ vij (6.1)That is, the resulting motor parameter value is the sum of ea
h behavior's 
ontributionfor that parameter, and this 
ontribution is proportional to the similarity of the predi
tede�e
t for that behavior to the desired e�e
t. Note that, other than the learned a�ordan
erelations, we also need to de�ne a similarity fun
tion that would indi
ate how similar apredi
ted e�e
t is to the desired e�e
t.ImplementationAn implementation of the proposed approa
h has been tried on the approa
h behavior. Inthe approa
h behavior presented in the previous 
hapter, the robot was using its primitivebehavior TURN_LEFT when an obje
t was on its left, TURN_RIGHT when an obje
twas on its right, and MOVE_FORWARD when an obje
t was ahead. While this approa
hsu

eeded in making the robot approa
h to obje
ts, the robot was limited with the useof these three behaviors only. In this se
tion we will present the results of applying thebehavioral generalization method to the approa
h behavior. In this 
ase, the robot is stilltrained with the same three behaviors, but after training it is able to demonstrate novelbehaviors that enables it to 
reate its desired e�e
t more su

essfully than any of the primitivebehaviors that it has been trained with.The three primitive behaviors that the robot is trained with are TURN_LEFT,MOVE_FORWARD, and TURN_RIGHT. Table 6.1 shows the motors and the parametervalues ea
h behavior uses.All three behaviors use the left wheel and right wheel motors with di�erent parametervalues. The robot is trained with these primitive behaviors as des
ribed in Se
. 6.2.For the behavioral generalization approa
h, we also need to de�ne a similarity fun
tion47



Table 6.1: The motor parameter values passed by the primitive behaviors for behavioralgeneralization.
Behavior LeftWheel RightWheel DurationTURN_LEFT -0.25 m/s +0.25 m/s 0.7 se
MOVE_FORWARD +0.25 m/s +0.25 m/s 0.7 se
TURN_RIGHT +0.25 m/s -0.25 m/s 0.7 se


that will return higher values for e�e
t-prototypes that are similar to our desired e�e
t. Sin
ethe goal of the behavior is approa
hing the obje
t we used the same fun
tion we de�ned toassign priorities to e�e
t-prototypes in Se
. 6.3.1. The robot should be approa
hing obje
ts,so the most desired e�e
t would be to see an appearan
e, or approa
h, of obje
ts in themiddle portion of the 3D-s
anning �eld. And sin
e the 3D s
an �eld is a 30 × 30 grid inour representation of the e�e
t, we sele
ted the horizontally middle portion of this grid. Forevery e�e
t 
lass, these grids holds the information about the 
hange in the values of thefeatures in the frontal region of the robot, when the 
orresponding behavior is exe
uted. So,the similarity value of an e�e
t prototype is assigned based on the sum of the 
hange in themean-distan
e features in these grids. Sin
e the distan
e value is smaller when an obje
tis 
lose, the higher similarity values are given to those 
lasses with the most negative valueof this sum. This way the e�e
t prototypes, whi
h 
orrespond to approa
hing or turningto an obje
t so that it is ahead, gets higher similarity values. Before using these similarityvalues as weights for the motor parameters, we mapped the lowest similarity value to 0 andnormalized the values for ea
h primitive behavior to the range [0, 1].The results of applying this behavioral generalization approa
h 
an be seen in Fig-ure 6.9, Figure 6.10, and Figure 6.11. In these �gures the robot's rea
tion to di�erentsituations are shown, for the two strategies of using only primitive behaviors, and usingbehavioral generalization. It 
an be seen that the behavior generalization approa
h enablesthe robot to dis
over new behaviors di�erent than the primitive behaviors, and these newbehaviors improves the robot's performan
e in situations where the primitive behaviors arenot good enough. An ex
eption is the 
ase in Figure 6.11 where the obje
t is pla
ed dire
tlyahead of the robot. In this 
ase the primitive behavior MOVE_FORWARD approa
hes theobje
t better than the behavior exe
uted using the behavior generalization method. Butnote that the pla
e where the obje
t is pla
ed in this 
ase is exa
tly the right position for48



Figure 6.9: The obje
t is pla
ed 20◦ to the right of the robot, at a distan
e of 30cm. Whenusing only the primitive behaviors to approa
h the obje
t, the robot 
hooses to exe
uteMOVE_FORWARD behavior. When using the behavioral generalization method, the robotmakes a smoother motion towards the obje
t whi
h approa
hes the obje
t more su

essfully.A
tually this movement is a blending of the MOVE_FORWARD and TURN_RIGHT prim-itive behaviors, where the 
ontribution of the MOVE_FORWARD behavior is more thanTURN_RIGHT behavior.
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Figure 6.10: The obje
t is pla
ed 45◦ to the right of the robot, at a distan
e of 30cm.When it uses only the primitive behaviors, the robot 
hooses the TURN_RIGHT behaviorto approa
h the obje
t. When it uses the behavior generalization method the robot againmakes a smoother motion towards the obje
t whi
h approa
hes the obje
t more su

ess-fully. This movement is also a blending of the MOVE_FORWARD and TURN_RIGHTprimitive behaviors, but di�erent from the 
ase in Figure 6.9, this time the 
ontributionof the TURN_RIGHT behavior is more than the 
ontribution of the MOVE_FORWARDbehavior.
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Figure 6.11: The obje
t is pla
ed dire
tly ahead of the robot. This time the primitive behav-ior exe
uted seems to be more su

essful than the behavioral generalization strategy, sin
ethe purity of the MOVE_FORWARD behavior seems to be tempered by some 
ontributionfrom the TURN_RIGHT behavior.MOVE_FORWARD behavior, and while the positions like these are limited with the num-ber of primitive behaviors, there are in�nitely many positions where the primitive behaviorswill not su�
e and behavioral generalization will perform better.This 
an be seen more 
learly in Figure 6.12. In this �gure it 
an be seen that, when
ompared with using only the primitive behaviors, the behavioral generalization approa
hspans the same angular range in turning towards the obje
t, but it does so in a more �nermanner, spanning whole of the angular range. The trade-o� is some lose of pre
ision in thedire
tions of the original primitive behaviors.To see the behavior of the proposed approa
h on a more global s
ale, we pla
ed a spherein front of the robot let the robot exe
ute its behaviors many times. What emerged was abehavior where the robot dribbles the sphere(ball) in front of it. The path of the robot whenit rolls the ball 
an be seen in Figure 6.13.
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(a) (b)Figure 6.12: Robot's rea
tion to di�erent situations using the two di�erent strategies ofusing only primitive behaviors, and using behavioral generalization. The arrows show therobot's position and heading dire
tion after exe
uting the behavior. The 
ir
les denote theobje
t's position in ea
h di�erent 
ase. If a 
ir
le and an arrow are of the same 
olor, thismeans that when the obje
t is in the lo
ation indi
ated by the 
ir
le, the robot's headingdire
tion and position after exe
uting the 
hosen behavior is indi
ated by the arrow of thesame 
olor. In (a) the robot uses only the primitive behaviors in approa
hing the obje
t.Therefore, in the �gure, there are only three arrows, representing the robot's position andheading dire
tion after exe
uting ea
h of these three behaviors. It 
an be seen that therobot is able to approa
h the obje
t and sele
t the 
orre
t primitive behavior. But one 
analso noti
e that these primitive behaviors are very 
rude in turning towards the obje
t. In(b) the robot uses the behavioral generalization strategy in turning towards the obje
ts. Inthis �gure there are eight arrows, 
orresponding to eight di�erent rea
tions of the robot todi�erent situations. Here again the robot is su

essful in turning towards the obje
t, butthis time it makes more detailed movements towards the obje
ts showing an improvementover the 
ase of using only the primitive behaviors.
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(a) (b)Figure 6.13: Robot dribbling a ball using the learned a�ordan
e relations. In the simulatorarti�
ial perturbations are applied to the ball while it is rolling, so that it does not rollperfe
tly in one dire
tion when the robot hits it. In (a) the path when robot uses only thethree primitive behaviors. In (b) the behavioral generalization method is employed. It 
anbe seen that this results in a smoother traje
tory for the robot.
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CHAPTER 7DISCUSSIONS AND CONCLUSION
In this thesis we proposed a behavior development s
heme for a mobile robot. We believethat, instead of trying to build intelligent ma
hines from s
rat
h, we should build robotsthat are equipped with simple 
apabilities that 
an bootstrap the system. Then, the robotshould intera
t with its environment and 
olle
t its own experien
es. As a result of thisintera
tion the robot should develop 
apabilities and behaviors that were not 
oded into theinitial system.J.J. Gibson's 
on
ept of �a�ordan
es� [33℄ provided the basis of our proposed developments
heme. We used a formalization of a�ordan
es [13℄ to make the robot learn about thedynami
s of its intera
tions with its environment. In this formalization, every intera
tionof the robot with the environment are represented as (e�e
t, (entity, behavior)) triples.Colle
ting su
h a�ordan
e relation instan
es from the environment, our robot was thenable to extra
t generi
 a�ordan
e relations pertaining to the relation between itself andthe environment. Using these learned a�ordan
e relations our robot displayed higher-levelbehaviors.In this thesis we implemented su
h a development s
heme using three pre-
oded behav-iors: move_forward, turn_left, and turn_right. Using these primitive behaviors, our robotintera
ted with simple obje
ts like boxes, 
ylinders, and spheres. Then, using the data it
olle
ted during its intera
tions with the environment, our robot formed a�ordan
e relations.In our implementation this pra
ti
ally 
orresponded to training SVMs that 
an predi
t thee�e
ts that will be 
reated in the environment if a 
ertain behavior is exe
uted, in the 
urrentenvironment. Then, these trained SVMs were used by the robot to display more intelligentbehaviors in the environment.We tried two di�erent methods in a
hieving more 
omplex behaviors using the threesimple pre-
oded behaviors. As the �rst method we used the sequential exe
ution of the54



primitive behaviors. In this 
ase, the robot uses its pre-
oded primitive behaviors only, butthe sequen
ing of these primitive behaviors were su
h that new more 
omplex behaviorsemerged. As the se
ond method we used the simultaneous exe
ution of primitive behaviors.Here, the robot uses its pre-
oded primitive behaviors to generate new behaviors that aremore e�e
tive in rea
hing its goal than any of the primitive behaviors, through blending ofthe primitive behaviors. This is a
hieved by driving the motors of the robot using a valuewhi
h is equal to the weighted sum of the motor parameters of ea
h primitive behavior.The weight (
ontribution) of ea
h primitive behavior is proportional to the similarity of thepredi
ted e�e
t for that behavior to the desired e�e
t the robot wants to 
reate.We showed that using these strategies, our robot was able to develop di�erent higher-level behaviors using its three primitive behaviors and the learned a�ordan
e relations. Firstour robot demonstrated the �traverse� behavior, using whi
h it was able to wander aroundper
eiving the �traversability� of the obje
ts in the environment. We also showed that theperforman
e of this behavior in
reased with the number of training intera
tions. As a se
ondexample, the robot demonstrated a 
lassi
al obsta
le-avoidan
e behavior. Here, it avoided
onta
t with any obje
t in the environment while wandering around. The third behaviorwas the �approa
h� behavior, where the robot approa
hed and drove towards the obje
ts.We also showed that using the simultaneous exe
ution of the primitive behaviors, our robotwas able to develop novel behaviors in approa
hing the obje
t.Dis
ussion and 
omparison with other roboti
 behavior learning approa
hesLastly, we will 
ompare the framework and the behavior development s
heme we have pro-posed, with the other approa
hes in roboti
s and ma
hine learning in general. This will be
on
eptual dis
ussion rather than a quantitative 
omparison. In ma
hine learning, there arethree main learning paradigms: unsupervised learning, supervised learning, and reinfor
e-ment learning [19℄. We will dis
uss where our study falls in the spa
e that these three axesof learning paradigms 
onstitute, and its pros and 
ons in relation to them.Unsupervised learning [19℄ is the name given to a set of methods, that are used in forming
lusters in a 
olle
tion of data, a

ording to some similarity measure. Even though unsuper-vised learning is used in roboti
s studies in various ways, these are mostly at the per
eptuallevel, restri
ted to the methods used on per
eptual feature data, and the a
tion data arenot used. Therefore, if the aim is to make the robot learn some behaviors/a
tions, thenunsupervised learning methods do not prove enough by themselves. In this restri
ted way,we also made use of an unsupervised 
lustering method (k-means), as a part of our learning55



framework.In supervised learning [19℄ there is a tea
her, that gives the 
orre
t answers to the learningagent, in the 
ourse of the training. Even if it is possible to use supervised methods in roboti
behavior learning, the implementation of these training s
hemes requires a very tedious work.That is be
ause the robot will need a tea
her that tells it what rea
tion to give in whi
hsituation, and generally, this tea
her is either a human 
ontrolling the robot 
ontinuously,or a 
ontrol program that is already demonstrating the behavior that we are trying to makethe robot learn. Moreover, in su
h a learning s
heme, the behavior that the robot learnedwould be one that is trying to imitate the performan
e of the human or the program thatis 
ontrolling it, but that 
ould not ever over-perform it. These issues 
reate di�
ultyin making use of totally supervised approa
hes in training robots. Even so, this type ofsupervised methods are used, for example in bootstrapping reinfor
ement learning [68℄.In our learning framework, supervised learning exists, not as the dire
t supervised tea
h-ing of a spe
i�
 behavior, but as the usage of a supervised learning method: SVMs aretrained, su
h that, given a des
ription of the environment they tell the robot what kindof an e�e
t it will be able to 
reate in the environment, if it exe
utes a spe
i�
 primitivebehavior. But in our framework the target values that are supplied during the training of theSVMs (that is, the supervision), are not supplied by a human or some �intelligent� 
ontroller.In this pro
ess, the stru
tures that the robot uses are extra
ted using an unsupervised 
lus-tering method over the e�e
t data it 
olle
ted during its intera
tions. In this respe
t, ourrobot learns its behaviors in an autonomous way, without the need of an external tea
her.Reinfor
ement learning [75℄ is the most widely used paradigm in roboti
 behavior learning[2, 50, 41℄, among the three learning paradigms we have dis
ussed. In reinfor
ement learning,there is not a tea
her that tells the agent what to do in whi
h situation, but rather, the robotgets �rewards� when it rea
hes 
ertain states, and �punishments� when it rea
hes some otherstates. The agent's main goal is to maximize the total amount of rewards it re
eives in thelong-term.In reinfor
ement learning, the robot has to be trained separately for ea
h di�erent be-havior it is to exe
ute, whereas this is not the 
ase for our behavioral development s
heme.In reinfor
ement learning, even if a robot is trained very well and is very su

essful for aspe
i�
 behavior, one will still need to train it for di�erent behaviors, sin
e the training istask-dependent. The primary di�eren
e of our work from the studies that use reinfor
ementlearning to make a robot learn a behavior is that, rather than aiming to make the robotlearn a spe
i�
 behavior, our work proposes a generi
 development s
heme. This di�eren
e56



be
omes obvious when one noti
es that, the training our robot goes through is independentfrom the behaviors that it is able to display at the end. That be
omes possible, be
auseduring training, our robot learns generi
 relations about the intera
tions of its body and theenvironment. These stru
tures are task-independent, and holds the a
tual information aboutthe e�e
ts the robot 
an 
reate in its environment, using its primitive behaviors. Thereforethese stru
tures 
an then be used to a
hieve several di�erent behaviors.The stru
ture and utilization of state representations in reinfor
ement learning also di�erfrom the way the state representations are used in our learning framework. For reinfor
ementlearning to take pla
e, one has to map the situations of the environment to state representa-tions. Ideally, these state representations are dis
rete, and as in [2℄, this is a
hieved throughthe mapping of environmental situations to a set of dis
rete states by the human programmer,employing domain knowledge. In our learning framework, the 
omplete entity representa-tion 
onsist of 35100 raw features, and these raw representations are also mapped to dis
retestate representations (entity equivalen
e 
lasses) impli
itly. But this mapping is not due to ahuman programmer who has the expert knowledge as in reinfor
ement learning. Instead, thismapping is dis
overed by the robot itself, using the 
lustered e�e
t representations whi
hin
ludes similar e�e
ts that the robot 
an 
reate in the environment.In reinfor
ement learning, the `utility' values of ea
h state are learned by the agent,whereas in our study the a
tual e�e
ts the robot 
an 
reate at ea
h state are learned.The `utility' values in reinfor
ement learning are meaningful only for a spe
i�
 behavior,and indi
ates the amount of reward the robot 
an re
eive from that state. But in ourdevelopment framework, by using an e�e
t representation that is uni�able with the staterepresentation (entities), our robot is able to predi
t the future 
hanges in the environment,and this 
onstitutes also a base for planning [7℄.Lastly, our work is not an isolated behavior learning study, but is the part of a biggerdevelopmental framework for roboti
s [6℄, whi
h in
ludes robot 
ontrol, learning, planning,and 
on
eptual development. In this framework, by making a robot learn generi
 a�ordan
erelations between its behaviors and the environment, we investigate how su
h an approa
hwould perform in solving various problems in roboti
s [13, 79, 17, 78, 81, 7℄.
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