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ABSTRACT
USING LEARNED AFFORDANCES FOR ROBOTIC BEHAVIOR DEVELOPMENTDo§ar, Mehmet RemziM.S., Department of Computer EngineeringSupervisor: Asst. Prof. Dr. Erol �ahinSeptember 2007, 66 pages�Developmental robotis� proposes that, instead of trying to build a robot that showsintelligene one and for all, what one must do is to build robots that an develop [47℄. Arobot should go through ognitive development just like an animal baby does. These robotsshould be equipped with behaviors that are simple but enough to bootstrap the system.Then, as the robot interats with its environment, it should display inreasingly omplexbehaviors. Studies in developmental psyhology [63, 28℄ and neurophysiology [56, 27, 3℄provide support for the view that, the animals start with innate simple behaviors, and developmore omplex behaviors through the di�erentiation, sequening, and ombination of theseprimitive behaviors. In this thesis, we propose suh a development sheme for a mobile robot.J.J. Gibson's onept of �a�ordanes� [33℄ provides the basis of this development sheme,and we use a formalization of a�ordanes [13℄ to make the robot learn about the dynamisof its interations with its environment. We show that an autonomous robot an start withpre-oded primitive behaviors, and as it exeutes its behaviors randomly in an environment,it an learn the a�ordane relations between the environment and its behaviors. We thenpresent two ways of using these learned strutures, in ahieving more omplex, voluntarybehaviors. In the �rst ase, the robot still uses its pre-oded primitive behaviors only, butthe sequening of these are suh that new more omplex behaviors emerge. In the seondase, the robot uses its pre-oded primitive behaviors to reate new behaviors.iv
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ÖZ
Ö�REN�LM�� SA�LARLIKLARI KULLANARAK ROBOT DAVRANI� GEL���M�Do§ar, Mehmet RemziYüksek Lisans, Bilgisayar Mühendisli§i BölümüTez Yönetiisi: Yrd. Doç. Dr. Erol �ahinEylül 2007, 66 sayfa�Geli³imsel Robotik�, ilk haliyle ve tek seferde zeki davran�³lar gösteren robotlar yapmayaçal�³mak yerine, geli³ebilen robotlar yapmay� savunur [47℄. Bir hayvan yavrusunun yapaa§�gibi, bir robot da bili³sel bir geli³im geçirmelidir. Bu robotlar basit ama geli³imi ba³latmayada yeterli davran�³larla donat�lm�³ olmal�d�rlar. Daha sonra, robot çevresiyle etkile³tikçe,giderek daha karma³�k davran�³lar sergilemelidir. Geli³im psikolojisi [63, 28℄ ve nöro�zyoloji[56, 27, 3℄ alan�ndaki çal�³malar, hayvanlar�n do§u³tan gelen basit davran�³lar ile ba³lad�k-lar�, ve daha karma³�k davran�³lar� bu ilkel davran�³lar�n farkl�la³mas�, s�ralanmas� veyabirle³tirilmesi yoluyla elde ettikleri görü³ünü desteklemektedirler. Bu tezde, bir gezer robotauygulanmak üzere böyle bir geli³im biçimi öneriyoruz. J.J. Gibson'un �sa§larl�k� kavram�[33℄ bu geli³im biçiminin temelini olu³turuyor; ve biz de, robotun çevreyle olan etkile³iminindinamiklerini ö§renmesinde sa§larl�k için yap�lm�³ bir formalizasyonu [13℄ kullan�yoruz. Birotonom robotun öneden kodlanm�³ ilkel davran�³lardan ba³layarak, bu davran�³lar� belirlibir ortamda rasgele çal�³t�rd�kça, çevresi ve kendi davran�³lar� aras�ndaki sa§larl�k ili³kileriniö§renebildi§ini gösteriyoruz. Sonra, ö§renilmi³ olan bu yap�lar� daha karma³�k ve istemlidavran�³lar gösterebilmekte kullanmak için iki yöntem sunuyoruz. �lk yöntemde robot, halasadee öneden kodlanm�³ olan ilkel davran�³lar�n� kullan�yor, ama bu ilkel davran�³lar�ns�ralanmas� yeni ve daha karma³�k bir davran�³� ortaya ç�karaak ³ekilde oluyor. �kiniyöntemde ise robot, öneden kodlanm�³ ilkel davran�³lar�n� yeni davran�³lar ke³fetmek içinkullan�yor. vi
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CHAPTER 1INTRODUCTION
�Developmental robotis� is a new approah to �building� intelligent mahines [47℄. It pro-poses that, instead of trying to build a robot that shows intelligene one and for all, whatone must do is to build robots that an develop. An arti�ial agent (a robot) should gothrough ognitive (and sometimes also physial) development just like an animal baby does.These robots should be equipped with sensors, atuators, and behaviors that are simple butenough to bootstrap the system. Then, as the robot interats with its environment, it shouldgo through developmental stages during whih it displays inreasingly omplex behavior, de-velops its own symbol system, oneptual world, and learns to use its atuators and sensorsmore e�etively.Think of a baby that tries to reah out and make grabbing movements in every randomdiretion when it is �rst born. These reahing-out and grabbing ations are simple innatebehaviors that bootstrap the system in order to make the baby interat with its environment,and develop as a result of these multiple interations [28℄. In time, the baby will disoverthe situations in whih the grabbing behavior has some real preditable e�et, and it willbe able to use these behaviors in a ontrolled and goal-direted manner, instead of makinguseless grabbing attempts in random diretions.A developing robot should also start with simple unintentional behaviors. Using thesebehaviors it should be able to interat with its environment and gather information aboutthis interation: information about the environment, its own body, and the things that itan onsistently hange in the environment using its body. Then, with inreasing experiene,it should be able to exeute its behaviors voluntarily to ahieve spei� goals. It should alsobe able to demonstrate novel behaviors, or enrihed versions of its primitive behaviors, as aresult of this development. In the end, this development should have the e�et of adaptingthe robot's behaviors to its environment, and gradually inreasing the robot's performane.1



Objetives and motivationThe objetive of this thesis is to propose and implement a development sheme for an au-tonomous mobile robot. That is, starting from a set of simple pre-oded behaviors/ations,through interation and experiene, we aim to realize a transition from these unintentionalbehaviors to intentional voluntary behaviors for the robot. This development should alsoresult in demonstration of novel/enrihed behaviors that are di�erent from the pre-odedexisting behaviors.On a more oneptual level, our objetive is to ontribute to the view whih suggeststhat robots, just like human beings and other animals, should go through a developmentalproess, where they shape their �intelligene� through their own experiene.In MACS projet 1 we aimed to build a robot ontrol arhiteture that learns, pereives,and uses a�ordanes. The a�ordane onept, borrowed from psyhology, provides us with atool to think about the problems of robotis in terms of agent-environment interations. Inproposing the behavioral development of a robot through its interations with the world, wealso plae the a�ordane onept at the ore of our study. Using a�ordane representationsand our formalization of the onept, the robot learned generi relations about its behaviorsand its interation with the world.Relation to other work and ontributionsThis is the third in a series of theses, that used a�ordanes to attak di�erent problems inrobotis.In [81℄, U§ur made a robot learn the �traversability� a�ordane in an environment. Inthis study, the features in the environment that speify if a spei� behavior of the robot willsueed or not was learned by the robot. Using these learned strutures, the robot was thenable to traverse in an environment suessfully, pereiving the a�ordanes of the objets.In a seond study [7℄, Çakmak used the learned a�ordane relations for the problem ofplanning. Based upon the learning struture of U§ur's, Çakmak used an extended versionof the a�ordane formalization [13℄ where the robot learned the e�ets of its own behav-iors along with the features in the environment that support these behaviors and e�ets.Çakmak then mapped these learned strutures to the onventional planning strutures ofpre-ondition, ation, and post-ondition, and investigated how good the robot performs interms of planning.1http://www.mas-eu.org/ 2



In this thesis, we will investigate the problem of behavior development, using the learneda�ordane strutures. Di�erent from the previous work, we will investigate how new behav-iors an emerge through the learning of a�ordane strutures and the usage of pre-odedbehaviors.We still do not know the exat mehanisms of behavioral development in animals/humans(please see Chapter 4 for a disussion). But one way one an ahieve �new� behaviors throughinnate primitive behaviors is through the use of these primitive behaviors in a sequentialand simultaneous manner. In the development sheme we propose, our robot will start withprimitive behaviors, and during its interations with the environment, it will learn generia�ordane relations, whih will then be used in the sequential and simultaneous exeutionof the primitive behaviors, so that our robot displays a more �intelligent� new behavior. Bysequential exeution we mean the exeution of the primitive behaviors one after another.In the ase of sequential exeution, the robot will be exeuting only one of its primitivebehaviors in an instant, but the sequening of these behaviors will demonstrate a higher-level behavior. By simultaneous exeution we mean the exeution of multiple of the primitivebehaviors at the same instant, and a blending of them. In the end we will see that, our robotis able to disover behaviors that it has never seen or experimented with before, and thatare di�erent from the primitive behaviors that it has been trained with. The bene�t is that,these �new� behaviors will improve the robot's performane in situations where the primitivebehaviors are not good enough.In the next hapter we will �rst introdue our key onept, �a�ordanes�, and give somebrief information about the a�ordane-related studies in robotis. Then we will present var-ious formalizations for the onept of a�ordanes. Next, the studies related to �behavioraldevelopment� in psyhology, neurosiene, and also in robotis will be presented. We willdisuss these studies and see what they an o�er to our study. Then we will present the ex-perimental framework for our study. The next hapter will present our development sheme,how we implemented this on our robot, and our results. Lastly, we will onlude with adisussion of the results.
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CHAPTER 2AFFORDANCES
Animals pereive the world around them. They do this to at aordingly in that world.In this pereptual proess they use the information oming through their sensors, and thisinformation guides the animal's ations. Pereiving the world and ating aordingly is keyto an animal's survival.But what is in this pereptual information? Animals use pereption for seleting andguiding their ations; but does the pereptual information diretly speify whih ationsto exeute to the animal? Or is it the ase that the pereptual information inludes only avalueless desription of the world outside whih is then subjet to the animal's interpretation,and only as a result of this interpretation an ation an be seleted?2.1 Eologial approah to pereption and �a�ordanes�J.J. Gibson, an in�uential psyhologist of the 20th entury and founder of the shool of eolog-ial psyhology, believed that the pereptual information inludes the ation information [33℄.Aording to this view, we pereive the environment in terms of a�ordanes. A�ordanesare ation possibilities in the environment that are diretly spei�ed to the agent ating init through some variables in the pereptual data. Sine these pereptual variables are ationpossibilities they are diretly relevant for the agent's behaviors in that environment. Somesimple examples an be given: a rigid, horizontal surfae a�ords walking on it; a small stonea�ords throwing; an opening wider than one's shoulder width a�ords passing-through it;et.Beginning from his early studies Gibson identi�ed ertain �meanings� inherent in theenvironment that helped the pereiver to at aordingly [40℄. These meanings were spei�edthrough ertain optial variables. For instane, in his studies on the airraft pilots at the4



Amerian army during the Seond World War, he exampli�ed suh an optial variable: theoptial enter of expansion. Gibson argued that the point in the visual �eld of a pilot, fromwhih the piture seems to �ow out, was an indiator of the diretion of the plane. Gibsonlaimed that this point and its position relative to the horizon was an important optialvariable that is meaningful for the behavior of the pilot. The point was that, there areertain optial variables that are diretly meaningful for the behavior in a way that requiresno more mental inferene or alulation. It is su�ient just to pik the optial variable. Inour ase, it is su�ient for the pilot to pereive the di�erene between the optial enter ofexpansion and the horizon, for a safe �ight. This line of thinking later evolved into what wetoday alled �a�ordanes�.Although Gibson used the word �a�ordane� as early as 1966 [32℄, he proposed a de�nitionfor the term only in his last book in 1979:The a�ordanes of the environment are what it o�ers the animal, what it providesor furnishes, either for good or ill. The verb to a�ord is found in the ditionary,but the noun a�ordane is not. I have made it up. I mean by it something thatrefers to both the environment and the animal in a way that no existing termdoes. It implies the omplementarity of the animal and the environment. (J.J.Gibson, 1979/1986, p. 127)Aording to the theory of a�ordanes, for an animal there is no need to make furtherproessing of its pereption in seleting the proper ations in its pereived environment.To pereive means to know whih ations are possible. What is in pereption is not val-ueless/meaningless desriptive data. Rather, it diretly spei�es whih ations to exeute,what the environment a�ords, without a need for further interpretation. This is known asdiret pereption. Quoting from J.J. Gibson himself:�The pereiving of an a�ordane is not a proess of pereiving a value-free phys-ial objet to whih meaning is somehow added in a way that no one has beenable to agree upon; it is a proess of pereiving a value-rih eologial objet.�(J.J. Gibson, 1979/1986, p. 140)This approah to pereption implies a very tight pereption-ation oupling. Classialapproah to pereption separates the seletion of ation proesses from those of the perep-tual proesses. In this lassial view, �rst pereptual data are retrieved, using these data amental model of the atual world is built, and then aording to this mental model proper5



ations are taken. On the ontrary, J.J. Gibson believed that pereptual and motor proessesare highly intertwined. In aordane, pereptual data and ation data are also oupled.J.J. Gibson's approah also implies a tight eologial oupling between the animal andits environment, hene the name eologial psyhology. If pereptual information was simplya desription of the world outside, it would point only one way: the environment. But ineologial approah, the pereptual information inludes something about the animal too;the ation. In this sense what is in pereption points both ways: to the environment and tothe animal. As a result, one should examine the animal-environment eologial system as awhole, and should not isolate either of them. In this sense, J.J. Gibson was very ritial oflaboratory experiments in psyhology of pereption, sine the subjets (animals/humans) inthese experiments were highly isolated from their natural environments.2.2 A�ordane-related researhAfter J.J. Gibson introdued the term, a�ordanes has been the subjet of many sien-ti� studies. While most of these were studies of experimental psyhology, other sienti�disiplines suh as neurosiene, design, and robotis have also shown interest in the subjet.2.2.1 PsyhologyIn psyhology, the a�ordane related researh mainly ontinued under the shool of eologialpsyhology. These were studies that investigated the mehanisms of a�ordane pereption;they tried to understand how a�ordanes appear and disappear in the environment, whatare the relations of a�ordanes to the physial world behind, and how these relate to theanimal's own body.A pioneer work in this aspet is [82℄, where Warren studied the pereption of the af-fordane of stair-limbing. In this work, the mehanisms underlying the pereption of thisa�ordane, and the natural basis of the a�ordane ategories �limbable-unlimbable� wereinvestigated.In the study, using a biomehanial model, Warren �rst found the ritial stair height(in terms of its ratio to leg-length) needed to be able to limb a stair. After this, in theexperiments he onduted with human subjets, he showed that the transition between thepereptual ategories of �limbable� and �unlimbable� was happening at the same ratio (ofstair-height/leg-length) predited by the biomehanial model. He named the points wherethe transitions of these pereptual a�ordane ategories took plae ritial points. Critial6



points have π values that are essentially ratios between an environmental measure and abodily measure. In this study it was the ratio between the stair-height and the leg-length ofthe subjets.Warren did not just �nd the ritial points, but he also found the optimal points forthe ation using his biomehanial model. Optimal points orrespond to the values of theratio between the stair-height and leg-length, suh that the ation (here, limbing) anbe exeuted with minimum energy onsumption. Again in the experiments onduted usinghuman subjets, he showed that the optimal points omputed using the biomehanial modelorrespond to the �preferred stair-height� judgments of the human subjets.In summary, in this study [82℄ Warren investigated the natural basis of the pereptuala�ordane ategories, and expressed these in terms of ritial points and optimal points. Helaimed that these ritial and optimal points (ratios) are onstants within a speies, andpereption of a�ordanes beomes possible through the use of these values. This methodof using ritial point and optimal point values in expressing a�ordanes has also been usedin other subsequent studies, e.g. [83, 51℄, and opened the way to express a�ordanes usingnumerial values.Mehanisms of a�ordane pereption have been investigated in many similar studies fordi�erent ations. In [51℄, Mark points that the pereption of surfaes that a�ord �sittingon� is related to the ratio of the surfae height to the subjet's leg-length. Similarly, in [83℄Warren and Whang show that for walking through apertures, the aperture-to-shoulder-widthratio gives the ritial and optimal points for the a�ordane.In summary, these experiments aimed to show that animals (mostly human) an per-eive whether a spei� ation is do-able or not-do-able in an environment. This impliesthat, what we pereive is not neessarily objets (e.g. stairs, doors, hairs), but the ationpossibilities (e.g. limbable, passable, sitable) o�ered by the environment. These experi-ments are haraterized by two main points: taking the ratio of an environmental measureand a bodily measure of the human subjet; and, based on the value of this ratio, making abinary judgment about whether a spei� ation is do-able or not.The �rst point indiates how the experimenters interpreted a�ordanes. Sine a�ordaneswere roughly de�ned as the properties of the environment taken relative to the organism at-ing in it, the goal was to show that the ratio between an environmental measure and a bodilymeasure of the organism have onsequenes for behavior. This ratio must also be pereiv-able, so that the organism is aware of this measure whih, in a way, determines the suessof its behavior. Thus, this relativeness of environmental properties was inorporated into7



the experiments simply as a division operation between two metris, one of the environmentand one of the organism. From a oneptual point of view, this is a rude simpli�ationof the relation between the properties of the organism and the environment that omprisean a�ordane, but for the partiular ations and setups used in the experiments, it seemedsu�ient.2.2.2 Neurophysiology and neuropsyhologyA set of �ndings of neurophysiologial and neuropsyhologial researh that is also assoiatedwith the idea of a�ordanes ame from studies on mirror and anonial neurons whih weredisovered in the pre-motor ortex of the monkey brain. During experiments with monkeys[64℄ (later similar �ndings were also found for human subjets [21℄), mirror neurons �red bothwhen the monkey was grasping an objet, and when the monkey was wathing somebodyelse do the grasping. These �ndings implied that the same neurons were used both ways: forthe exeution of an ation as output of the system, and also for pereiving that ation as aninput to the system [25℄. Their disovery supports the view that says ation and pereptionare losely related. These neurons, whih are loated in the premotor ortex of the monkeybrain, are thought to be responsible for the motor ativation of ations like grasping andholding.Rizzolatti and Gentilui [65℄ disovered that anonial neurons, normally onsideredto be motor neurons for grasping ations, would �re when the subjet does not exeute agrasping ation, but only sees a graspable objet. Their ativity on suh a purely pereptivetask that inluded an objet that a�ords that partiular ation the motor neurons wereresponsible for, indiated that they may be related to the onept of a�ordane. The resultingonlusions are interestingly similar to those of the eologial approah:�This proess, in neurophysiologial terms, implies that the same neuron mustbe able not only to ode motor ats, but also to respond to the visual featurestriggering them. . . . 3D objets, are identi�ed and di�erentiated not in relationto their mere physial appearane, but in relation to the e�et of the interationwith an ating agent.� ( [24℄)Similar results were found when subjets were doing a highly ognitive task suh as `imag-ining' that they are doing a grasping ation [34℄. Again the motor neurons were ativated,showing that the neural iruitry that is used for motor ativations are also utilized duringa ognitive task suh as `imagining'. 8



In [37℄, Humphreys showed that, when presented with a tool, some patients, who lakedthe ability to name the tool, had no problem in gesturing the appropriate movement forusing it. Aording to Humphreys, this suggested a diret link from the visual input to themotor ations that is independent from more abstrat representations of the objet, e.g. itsname. In another study that Humphreys presented, two groups were shown objet pitures,non-objet pitures and words. One of the groups was asked to determine if some ationswere appliable to what had been presented. The other ontrol group was asked to makesize judgments. The brain ativities in both groups were ompared using funtional brainimaging. It was observed that a spei� region of the brain was ativated more in the �rstgroup who were to make ation judgments. It was also seen that this spei� region wasativated more when the subjets were presented with pitures of the objets rather withthan the name. This showed that ation related regions of the brain were ativated morewhen the visual input was supplied, rather than just naming it. All these �ndings suggestthat there is a strong link between pereption and ation in terms of neuropsyhologialativity.2.2.3 DesignThe onept a�ordane has in�uened other, seemingly unrelated, disiplines as well. Oneof these is the Design domain. The onept was introdued to the Design ommunity byD. Norman's popular book, Psyhology of Everyday Things (POET) [57℄. In his book,D. Norman disussed the pereptual information that an make the user aware of an objet'sa�ordanes. In this ontext, he de�ned a�ordanes as follows:�... a�ordane refers to the pereived and atual properties of the thing, primarilythose fundamental properties that determine just how the thing ould possiblybe used.�Unlike J.J. Gibson however, D. Norman was interested in how �everyday things� an bedesigned suh that the user an easily infer what they a�ord. He analyzed the design ofexisting everyday tools and interfaes, identifying design priniples. In this respet, hisdisussion of a�ordanes deviated from the Gibsonian de�nition of the term [52℄. In [58℄,D. Norman writes:�The designer ares more about what ations the user pereives to be possiblethan what is true�. 9



Sine POET, the term a�ordane has been used in many ways in the Design ommu-nity, some in the sense that D. Norman introdued, some being more loyal to J.J. Gibson'sde�nition, and others deviating from both of these and using the term in a totally new way[52℄.In a later artile [58℄, D. Norman, unomfortable with the misuse of the term in the Designommunity, distinguished between �real a�ordanes�, indiating the potentials in the envi-ronment independent from the user's pereption, and what he alls �pereived a�ordanes�stating:�When I get around to revising POET, I will make a global hange, replaing allinstanes of the word `a�ordane' with the phrase `pereived a�ordane'.�2.3 A�ordane-related work in robotisThe onept of a�ordanes is highly related to autonomous robot ontrol and it has in�uenedstudies in this �eld. We believe that, for a proper disussion of the relationship of thea�ordane onept to robot ontrol, the similarity of the arguments of J.J. Gibson's theoryand reative/behavior-based robotis should �rst be noted [1℄.The onept of a�ordanes and behavior-based robotis emerged in very similar ways asopposing suggestions to the then dominant paradigms in their �elds. J.J. Gibson onstrutedhis theory based on ritiism of the then dominant theory of pereption and ognition,whih favored modeling and inferene. Likewise, behavior-based robotis was motivated byritiism of the then dominant roboti arhitetures, whih favored modeling and inferene.This parallelism between the two �elds suggests that they are appliations of the same lineof thinking to di�erent domains (p. 244, [1℄; [18℄).Opposing modeling and inferene, J.J. Gibson defended a more diret relationship be-tween the organism and the environment and suggested that a model of the environmentand ostly inferential proesses were not needed. In a similar vein, behavior-based robotisadvoated a tight oupling between pereption and ation. Brooks, laiming that �the worldis its own best model�, suggested an approah that eliminated all modeling and internalrepresentation [5℄.J.J. Gibson suggested that only the relevant information is piked up from the environ-ment, saying �pereption is eonomial�. In robotis a behavior is a sensory-motor mappingwhih an often be simpli�ed to a funtion from ertain sensors to ertain atuators. Inthis sense, the pereptual part of a behavior an be said to implement diret pereption by10



extrating only the relevant information from the environment for ation, without relying onmodeling or inferene. Suh a minimality is also in agreement with the eonomial pereptiononept of the a�ordane theory.As disussed above, most of the onepts within a�ordane theory are inherently inludedin reative robotis. The behaviors should be minimally designed for the task, taking intoaount the nihe of the robot's working environment and the task itself. This is in agreementwith the arguments of eologial psyhology. Some robotiists have already been expliitlyusing ideas on a�ordanes in designing behavior-based robots. For example, Murphy [54℄suggested that roboti design an bene�t from ideas in the theory of a�ordanes suh thatomplex pereptual modeling an be eliminated without loss in apabilities. She studiedthree ase studies and drew attention to the importane of the eologial nihe in the designof behaviors. Likewise, Duhon et al. [18℄ bene�ted from J.J. Gibson's ideas on diretpereption and opti �ow in the design of behaviors and oined the term eologial robotisfor the pratie of applying eologial priniples to the design of mobile robots.The use of a�ordanes within autonomous robotis is mostly on�ned to behavior-basedontrol of the robots, and its use in deliberation remains a rather unexplored area. This isnot a oinidene, but a onsequene of the shortfalls in J.J. Gibson's theory. The reativeapproah ould not sale up to omplex tasks in robotis, in the same way that the theoryof a�ordanes in its original form was unable to explain some aspets of pereption andognition.Reently a number of roboti studies foused on the learning of a�ordanes in robots.In these studies, a�ordane learning is referred to as the learning of the onsequenes ofa ertain ation in a given situation [22, 74, 73℄, or learning of the invariant properties ofenvironments that a�ord a ertain behavior [49℄.MaDorman [49℄, extrated invariant features of di�erent a�ordane ategories. In hisstudy, the invariant features are de�ned as image signatures that do not vary among the samea�ordane ategory but vary among di�erent a�ordane ategories. However, his a�ordaneategories were de�ned in terms of internal indiators, suh as tasty, poisonous, and werenot diretly related to the ations.In a reent study [61℄, an arti�ial agent is used to represent the state of the worldinternally as behavioral a�ordanes and goals. For eah ation in its repertoire, the agent hasoutome preditors that orrespond to preonditions for the ation, and outome indiatorsthat orrespond to post-onditions for the ation. These preditors and indiators are usedto represent the internal state of the agent. 11



Stoythev [74, 73℄ studied learning for the so-alled `binding a�ordanes' and `tool af-fordanes', where learning binding a�ordanes orresponds to disovering the behavior se-quenes that result in the robot arm binding to di�erent kinds of objets, whereas learningtool a�ordanes orresponds to disovering tool-behavior pairs that give the desired e�ets.In this study the representation of objets is said to be grounded in the behavioral repertoireof the robot, in the sense that the robot knows what it an do with an objet using eahbehavior. However, in this study, objet identi�ation was done by assigning unique olorsto eah objet, hene leaving no way of building assoiations between the distintive featuresof the objets and their a�ordanes. Therefore, a generalization whih would make the robotrespond properly to novel objets was not possible.In [22℄, Fitzpatrik et al. studied the learning of objet a�ordanes in a roboti domain.They proposed that a robot an learn what it an do with an objet only by ating on it,`playing' with it, and observing the e�ets in the environment. For this aim, they used fourdi�erent ations of a robot arm , namely, pull in, side tap, push away, bak tap, on fourdi�erent objets. (bottle, ube, toy ar, ball). After applying eah of the ations on eahof the objets several times, the robot learned about the roll-ability1 a�ordane of theseobjets, by observing the hanges in the environment during the appliation of the ations.Then, when it needs to roll an objet, it uses this knowledge. However, similar to Stoythev'sstudy, Fitzpatrik et al. did not establish any assoiation between the visual features of theobjets and their a�ordanes, giving no room for generalization of the a�ordane knowledgeto novel objets.In both Stoythev's works [74, 73℄ and Fitzpatrik et al.'s work [22℄, the objets weredi�erentiated using their olors only. Therefore, when the learning had been done with a redtoy ar, if the robot was presented with the very same ar but this time a blue one, it wouldhave no idea about the rolling a�ordane of it. This again shows the importane of learningthe distintive features of objets, along with the e�ets that an be reated by ating onthese objets, and building the assoiation between these two learned sets, so that the robotan make preditions about the e�ets it an reate in the environment when it is presentedwith new objets that it had not seen before.
1What the robot atually learns about objets is the most probable rolling diretion of the objets withrespet to their prinipal axis. Hene, after the learning phase, the robot knows that the bottle rolls perpen-diular to its prinipal axis, and the toy ar rolls parallel to its prinipal axis.12



CHAPTER 3FORMALIZING AFFORDANCES
The disussions around the onept of a�ordanes, disussions on what a�ordanes are, andwhat kind of qualities they possess ontinued after J.J. Gibson died. One of the majorreasons was that Gibson himself de�ned term di�erently in di�erent plaes, revised thede�nition of the term onstantly, and his understanding of the term also evolved over time[13℄. Consequently, the need aroused to formalize the onept, and to ollet and organizethe properties assoiated with a�ordanes in a oherent and formal struture. In this hapterwe will present suh attempts. In the next setion we will present the previous formalizationattempts. Then we will present our proposal for formalizing a�ordanes, �rst disussed in[13℄.3.1 Prior formalizations of a�ordanesAfter J.J, Gibson, there has been a number of studies [77, 67, 35, 85, 69, 72, 10, 53℄ attemptingto larify the meaning behind the term a�ordanes and to reate a ommon understandingon whih disussions an be based. We will now review four of the proposed formalisms.3.1.1 Turvey's formalizationOne of the earliest attempts to formalize a�ordanes ame from Turvey [77℄. In his formalism,Turvey de�ned an a�ordane as a disposition. Here, a disposition is a property of a thingthat is a potential, a possibility. These potentials beome atualized if they ombine withtheir omplements (e.g. �solubility� of the salt is its disposition, and if it ombines withits omplement, whih is water's property of �being able to solve�, then they get atualized,resulting in the salt getting �dissolved�). Therefore, dispositions are de�ned in pairs, andwhen two omplement dispositions meet in spae and time, they get atualized. Basing13



his views on this aount of dispositions, Turvey de�ned a�ordanes as dispositions of theenvironment, and de�ned their omplement dispositions as the �e�etivities� of the organism.He provided this de�nition:�An a�ordane is a partiular kind of disposition, one whose omplement is adispositional property of an organism.�(M.T. Turvey, 1992, p. 179)Later in his disussion, Turvey formalized this de�nition as follows:�Let Wpq (e.g., a person-limbing-stairs system) = j(Xp, Zq) be omposed ofdi�erent things Z (person) and X (stairs). Let p be a property of X and q be aproperty of Z. Then p is said to be an a�ordane of X and q the e�etivity of Z(i.e. the omplement of p), if and only if there is a third property r suh that:
• Wpq = j(Xp, Zq) possesses r. [where j(·) is the juxtaposition funtion thatjoins Xp and Zq.℄
• Wpq = j(Xp, Zq) possesses neither p nor q.
• Neither Z nor X possesses r.�(M.T. Turvey, 1992, p. 180)Here, when the physial struture that renders the stairs limb-able (Xp), and the e�etivityof the agent (Wq) that makes it able to limb ome together (j(·)), a new dynamis -theation of limbing- (r) arise.In this formalism, although the atualization of a�ordanes requires an interation of anagent on the environment to produe a new dynamis, Turvey expliitly attahed a�ordanesto the environment that the organism is ating in.3.1.2 Sto�regen's formalizationA ritiism of Turvey's formalism ame from Sto�regen [72℄. Aording to Sto�regen, thereare two main views about a�ordanes. The �rst view plaes a�ordanes in the environmentalone, while the seond view plaes a�ordanes in the organism-environment system as awhole. Sto�regen adopts the latter view and argues that a�ordanes an not be de�nedas properties of the environment only, as Turvey did. In this line of view, Sto�regen [72℄desribed a�ordanes as:�A�ordanes are properties of the animal-environment system, that is, that theyare emergent properties that do not inhere in either the environment or theanimal.�(T.A. Sto�regen, 2003, p. 115)14



He laimed that attahing a�ordanes to the environment was problemati for their spei�-ation to the organism. The reason was that if a�ordanes belong to the environment only,and if what the organism pereives are a�ordanes, then the organism pereives things thatare only about the environment but not about itself. If this is the ase, then the agent hasto do further pereptual proessing to infer what is available for him. However, this goesagainst the basi notion of diret pereption.Based on these ritiisms, Sto�regen modi�ed Turvey's de�nition to propose a new oneto resolve these problems. He presented it in the following way:�Let Wpq (e.g., a person-limbing-stairs system) = (Xp, Zq) be omposed of dif-ferent things Z (e.g., person) and X (e.g., stairs). Let p be a property of X and
q be a property of Z. The relation between p and q, p/q, de�nes a higher orderproperty (i.e., a property of the animal−environment system), h. Then h is saidto be an a�ordane of Wpq if and only if

• Wpq = (Xp, Zq) possesses h.
• Neither Z nor X possesses h.�(T.A. Sto�regen, 2003, p. 123)Here, a�ordanes are de�ned as �properties of the animal-environment system�, rather thanas properties of the environment only.3.1.3 Chemero's formalizationChemero [10℄ also ritiized Turvey's view whih plaed a�ordanes in the environment re-garding them as environmental properties. Partially in agreement with Sto�regen's proposal,Chemero suggested that:�A�ordanes, are relations between the abilities of organisms and features of theenvironment.�(A. Chemero, 2003, p. 189)This de�nition re�nes Sto�regen's proposal in a number of ways. First, it states that af-fordanes are �relations within the animal-environment system�, rather than �properties ofthe animal-environment system�. Seond, it also notes that this relation exists between the�abilities of the organism� and the �features of the environment�, as ompared with a prop-erty (of the system) being generated through the interation between the �property of theorganism� and the �property of the environment�.Formally Chemero proposed that an a�ordane is a relation that an be represented inthe form of: 15



A�ords-φ (feature, ability), where φ is the a�orded behavior.Here the term �ability� stands for the funtional properties of the organisms that are shapedthrough the evolutionary history of the speies or the developmental history of the individual.In that respet, they are di�erent from simple body-sale measures (e.g. the leg-length), butorrespond to more general apabilities of the organism. One of the main di�erenes betweenthe two similar formalisms of Sto�regen and Chemero, whih both de�ne a�ordanes atthe organism-environment sale, is that while Sto�regen's de�nition of a�ordane does notinlude the behavior exploiting the a�ordane, Chemero's de�nition does inlude it.3.1.4 Steedman's formalizationIndependent of disussions in the eologial psyhology literature, there have also been otherattempts of formalization of a�ordanes. One of these ame from Steedman [69℄ who usedLinear Dynami Event Calulus to reah a formalization of a�ordanes. Steedman's formal-ization skips the pereptual aspet of a�ordanes (e.g. the invariants of the environment thathelp the agent pereive the a�ordanes, and the nature of these invariants and the relationof them to the bodily properties of the agent et.), but instead, it fouses on developing arepresentation where objet shemas are de�ned in relation to the events and ations thatthey are involved in. For instane, Steedman suggests that a door is linked with the a-tions of `pushing' and `going-through', and the pre-onditions and onsequenes of applyingthese ations to the door. The di�erent ations that are assoiated with a partiular kindof objet onstitute the A�ordane-set of that objet shema, and this set an be populatedvia learning. More formally, in Steedman's formalization, an objet shema is a funtionmapping objets of that kind into seond-order funtions from their a�ordanes to theirresults1. Thus, an objet instane spei�es what ations an be applied to it, under whihonditions and what onsequenes it yields. This makes the formalization also suitable forplanning, for whih Steedman argues that reative/forward-haining planning is the bestandidate. Steedman's formalization is, as far as we know, the �rst attempt to develop aformalization of a�ordanes that allows logial/omputational manipulation and planning.Steedman also believes this struture of a�ordanes to have impliations for the linguistiapability of humans.1Steedman's atual formalization requires at least a basi presentation of Linear Dynami Event Calulusand Lambda Calulus. Sine we do not have the spae for these here, we restrit ourselves to the prosede�nition. For a omplete aount of this formalization, see [69℄.16



To summarize, it an be said that Sto�regen's and Chemero's formalizations, by de�ninga�ordanes as a relation on the sale of organism-environment system, di�er from Turvey'sformalization whih de�nes a�ordanes as environmental properties. But there are also dif-ferenes between Chemero's and Sto�regen's de�nitions, one of them being the inlusionof behaviors in the de�nition of a�ordanes in Chemero's formalization. Steedman's for-malization di�ers from the other three formalizations by providing an expliit link to ationpossibilities o�ered by the environment, and by proposing the use of the onept in planning.We believe that none of the reviewed formalisms an be used as a base to develop ana�ordane-based robot ontrol arhiteture. In the next setion, we will introdue threeperspetives through whih a�ordanes an be disussed, to explain the soure of onfusionon the disussions.3.2 A new formalism for a�ordanesAlthough there are many prior formalizations of the a�ordane onept, in [13℄ we proposed anew formalization that will form the base of our study. We do not use the prior formalizationsbeause they lak ertain aspets that are ritial in building a roboti system that usesa�ordanes. Most of the prior formalizations are interpretations of the onept from apsyhologial-philosophial perspetive, and do not propose -or disuss- the onept from theperspetive of building agents that use a�ordanes. This requires thinking about the oneptagain, keeping in mind that what we need is an interpretation of the onept whih anprovide us a representation inside the agent that will help the agent pereive the a�ordanesin the environment. In other words, we need a formalization that an make it possible tointerpret the onept from the perspetive of the agent, sine what we are trying to do isbuilding an agent that makes use of a�ordanes.3.2.1 Three perspetives of a�ordanesThere is not an agreement on the de�nition of the term a�ordane, and di�erent souresde�ne it di�erently. These de�nitions are sometimes on�iting, reating a onfusion.One important disagreement on the de�nition of a�ordanes is on where to attah them.Some soures de�ne a�ordanes as properties of the environment, that an agent pereivesand uses. Other soures de�ne a�ordanes as emergent properties of the animal-environmentsystem, and laim that it an not be de�ned as an environmental property only. In the lit-erature one an �nd di�erent onfusing statements where a�ordanes are mentioned relative17
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Figure 3.1: Three perspetives to view a�ordanes. In this hypothetial sene (adapted fromErih Rome's slide depiting a similar sene), the (robot) dog is interating with a ball, andthis interation is being observed by a human(oid) who is invisible to the dog. (Image takenfrom [13℄)to an environmental objet (�an apple a�ords eating�), to an agent (�there is walkabilitya�ordane for the person�), or to the agent-environment system (�the stair a�ords limbingfor the person�)These di�erent statements are onfusing, yet not wrong. That is beause we believe thatthere are three di�erent perspetives to view a�ordanes: the agent's perspetive, the envi-ronmental perspetive, and the observer's perspetive. In these statements making expliitthe perspetive that the writer is using will be enough to solve the onfusion.The three perspetives to view a�ordanes an be explained using the sene in Figure 3.1[13℄. In this sene, the robot dog is interating with a ball, and this interation is beingobserved by a humanoid who is invisible to the dog. Here, the dog has the agent's perspe-tive in pereiving the a�ordanes of the ball, the ball has the environmental perspetive ininterating with the agent, and the human has the observer's perspetive in observing theinteration possibilities between the dog and the ball.From the agent's perspetive a�ordanes are the behaviors (and their relevant onse-quenes) o�ered to that spei� agent by its immediate environment, that is, viewing af-fordanes from the eyes of the animal living in that environment and atually using thosea�ordanes. In Figure 3.1 for example, the robot dog, using the agent's perspetive wouldsee that it an �push� the ball. In our daily lives also we make use of this view of the a�or-danes. This is also the view that is most relevant for the study of building robots that use18



a�ordanes.From the environmental perspetive, a�ordanes are all the behaviors (and their relevantonsequenes) o�ered by that environment (or generally by a spei� objet in that environ-ment) to the agents living in that environment. In Figure 3.1, the ball a�ords �pushing� and�hiding� to the dog, �throwing� to the human, et. This is the most useful perspetive tode�ne an environment from a general perspetive, and relative to the living organisms in thatenvironment. In that sense one an laim that the environmental perspetive of a�ordaneshas strong onnetions with the term habitat.From the observer's perspetive a�ordanes are the behaviors (and their relevant onse-quenes) o�ered by the environment to the agent, in an agent-environment system. This isfor example the perspetive that a sientist uses when investigating an eologial system,with the environment and the organisms living in the environment taken as a whole. Alsoin Figure 3.1, the human observer sees that there is �push-ability� a�ordane in the dog-ballsystem. One an laim that, this view an also be used when one individual in a soiety isobserving a di�erent individual and its interation with the environment. This opens theway of using observer's perspetive to view a�ordanes, in explaining learning by imitation2.In the following disussion, we will ontinue disussing only the agent's perspetive ofa�ordanes, sine we believe that it gives us the view of a�ordanes suh that it an atuallybe used by a robot. You an �nd a more detailed disussion and de�nition of the otherperspetives in [13℄.3.2.2 A new a�ordane formalizationIn this new formalization [13℄, Sahin et al. de�ne a�ordanes as a relation between the agentand the environment, in line with Chemero's formalization. A�ordanes are results of arelation between ertain properties of an agent and ertain properties of its environment. Inthe formalism the properties of the agent are inluded as the behavior, and the properties ofthe environment are inluded as the entity. A third omponent, the e�et, representing theresult of the interation between the behavior of the robot with the entity in the environment,is also inluded in the relation. The expliit inlusion of e�et omponent is another pointwhere the formalism di�ers from the previous ones.The formalism is based on relation instanes of the form (e�et, (behavior, entity)).This an be read as, when the agent applies a ertain behavior on a ertain entity in theenvironment, a ertain e�et is observed. Here an entity should not be onfused with the2In this thesis, we will not go any further to investigate the use of a�ordanes in learning by imitation.19



term objet. An entity is a olletion of features in the environment, that is not neessarilyonneted to an objet. Of ourse, the set of features an orrespond to an objet, but itan also orrespond to a part of an objet, a relation between multiple objets, or featuresthat an not be onneted to any objet. The entity represents the state of the environment(and the agent's own state) as pereived by the agent. The behavior omponent representsthe atualization of the ation of the agent, inluding the bodily features of the agent andthe physial dynamis of the interation. The e�et omponent represents the atual hangereated in the environment, as a result of the appliation of the behavior on the entity aspereived by the agent. Quoting from [13℄, �a ertain behavior applied on a ertain entityshould produe a ertain e�et, e.g. a ertain pereivable hange in the environment, or inthe state of the agent. For instane, the lift-ability a�ordane impliitly assumes that, whenthe lift behavior is applied to a stone, it produes the e�et lifted, meaning that the stone'sposition, as pereived by the agent, is elevated.�Formally, in [13℄, a �rst de�nition for a�ordanes is given as:An a�ordane is an aquired relation between a ertain e�et and a (entity,behavior) tuple, suh that when the agent applies the behavior on the entity, thee�et is generated.Suh relation instanes of the form (e�et, (behavior, entity)) are aquired through theinteration of the agent with its environment. But they represent a single interation of theagent with its environment. So they are not ready to be used in making generi preditions.But a�ordanes must have preditive, antiipatory qualities.Building on top of suh relation instanes we an form generi a�ordane relations thatrepresent fats about the agent's interation with the world, rather than being a reordof single interation. Supposing that an agent interats with its environment and olletsmany relation instanes of the form (e�et, (entity, behavior)), it an then merge theserelation instanes to extrat generi a�ordane relations, generi rules about the nature ofthe interation of the agent with its environment.This an be done through the disovery of invariant properties in the olleted entities,behaviors, and e�ets, and merging them in equivalene lasses. Below, we will present thedi�erent kinds of equivalene lasses, how they are formed, and what they represent.Every behavior has some kind of an e�et. While the e�et reated in the environmentduring a ertain appliation of a behavior is never exatly the same with the e�ets of otherappliations of the behavior, some of them an be said to be equivalent. Lifting a �blue-20



an� and a �blak-an� reates di�erent e�ets in the environment as the agent pereives itbeause of the di�erent olors of the objets, but the e�et �lifted�, is internal to both of thee�ets, and hene they are equivalent with regards to the �lifting� ation. Disovering andmerging the equivalent e�ets to build e�et equivalene lasses is a �rst step in buildingother equivalene lasses and a�ordane relations.Two entities are equivalent, if, when a behavior is applied on them the interation resultsin equivalent e�ets. Keeping with the example above, if the �blue-an� and the �blak-an� entities produes equivalent e�ets when the �lift� behavior is applied, then they areequivalent entities in terms of the �lifting� behavior. We an ollet and merge suh equivalententities in entity equivalene lasses. Merging di�erent entities into entity equivalene lassesis a proess of narrowing-down to the set of features that are invariant in all the entities inthat equivalene lass. For example, for the two equivalent entities of a �blue-an� and a�blak-an�, the ommon features an be represented as �*-an�; whih basially says to therobot: �If it is a an, it a�ords lifting up, no matter what olor it is.�Two behaviors are equivalent, if, when they are applied to equivalent entities, they resultin equivalent e�ets. This an be two di�erent behaviors that produe the same result inthat ontext; or this equivalene an be understood in terms of speifying a possible rangefor parameter values of the same behavior. As an example for the former, the �lift-with-left-hand� behavior and the �lift-with-right-hand� an be seen as equivalent behaviors in liftinga �*-an�. As an example for the latter, the parameters that speify the pressure that thehand of the robot will apply to the �an� may be di�erent in di�erent relation instanes, butthe exat value may not matter if it is in a ertain range. Suh parametrized instanes ofthe same behavior an also be merged in the same behavior equivalene lass.The last equivalene lass we an form is the a�ordane equivalene lass. We an mergethe (entity, behavior) ouples that produes equivalent e�ets into an a�ordane equivalenelass. An example for this ase an be (�ground�, �walk�) and (�river�, �swim�) ouples whihboth have the e�et �traversed�.Based on this aount of equivalene lasses, Sahin et al. [13℄ revise their de�nition as:A�ordane (agent perspetive): An a�ordane is an aquired relation between a ertain<e�et> and a ertain <(entity, behavior)> tuple suh that when the agent applies a(entity, behavior) within <(entity, behavior)>, an e�et within <e�et> is generated.
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CHAPTER 4BEHAVIOR DEVELOPMENT
How behavior develops in humans and other animals have been the subjet of many sienti�studies. In psyhology, theories of development have been proposed in this area. At the levelof the sensors, entral nervous system, and motor neurons, neurosiene has investigatedbehavior ontrol, motor skills, and motor development. In robotis also, there have beene�orts to make robots learn and develop behaviors. In this hapter, we will look at theliterature on behavior development in these three sienti� areas.4.1 Behavior development in psyhologyIn psyhology, under the subdisipline of developmental psyhology, Piaget is one of themost in�uential �gures, with his theory of ognitive development. With his theory, Piagetinvestigated the harater and development of human knowledge. He tried to understandhow we aquire this knowledge, how onepts develop in our ognitive world, how these arerelated to behavioral development, and how ertain high-level operations like logi develops.Aording to Piaget the human ognitive development onsists of suessive stages [62℄.Eah stage onstitutes the base on whih the next stage will be built on. The �rst stageswhih start with sensorimotor shemata paves the way to onsious and voluntary behavior,and then to the aquisition of onepts and laws about the external world, and to formallogial thought. Aording to Piaget, in this transition from one stage to a higher stage, twobasi proesses take part: assimilation and aommodation [62℄. These are two proesses thatomplement eah other. Assimilation emphasizes that the knowledge about external worldexperienes are aquired into the human ognitive system aording to the already existingshemata in the system. In this sense, Piaget's theory is epistemologially a onstrutivisttheory. That means, the knowledge about the external world is not aquired as it is, and22



the pereptual information is not the only fore that shapes our ognitive strutures; butknowledge is aquired in aordane with - and through - the already existing strutures. Onthe other hand, aommodation expresses how these strutures hange through interationwith the world, and experiene. Beause these already existing strutures are also not theonly fator that shape human ognition of ourse; experienes take part in shaping humanognition too. So, in a sense, aommodation is the opposing proess to assimilation: it isthe proess that tries to make the existing ognitive strutures oherent with the externalworld.For Piaget, the development of behavior also ours in this framework [63℄. The newbornbaby, who has innate re�exes, exeutes and tries these re�exes and primitive behaviors, tryingto aommodate them to the environment. As the baby experiments with these behaviors,it an then use these as voluntary behaviors. To quote from Gelman [26℄For Piaget, neonates spontaneously pratie their re�exes, the e�et being thedi�erentiation of inborn re�exes into di�erent sensory-motor shemes. Ativeuse of these yields integrated ation shemes, and thus novel ways to at onthe environment. (...) (For Piaget), an infant's initial knowledge is limited toinnate re�exes and is ombined with an inlination to atively use and adaptthese as a result of repeated interations with objets. This eventually leadsto the development of interoordinated shemes and movement to ation-basedrepresentations that take the infant from an out-of-sight, out-of-mind stage tointernalized representations (...).E.J. Gibson was also interested in hild development, and she was the �rst one to inves-tigate a�ordanes in the ontext of development [76℄. She studied the mehanisms of thelearning of a�ordanes and used the eologial approah to study hild development.E.J. Gibson de�ned learning as a pereptual proess and named her theory of learning�pereptual learning�. She based the proess of learning on pereption, not on mentallyonstruted representations of the world. She argued that learning is neither the onstru-tion of representations from smaller piees, nor the assoiation of a response to a stimulus.Instead, she laimed, learning is �disovering distintive features and invariant propertiesof things and events� [28℄ or �disovering the information that spei�es an a�ordane� [30℄.Learning is not �enrihing the input�, but disovering the ritial pereptual information inthat input. She named this proess of disovery di�erentiation, and de�ned it as �narrowingdown from a vast manifold of (pereptual) information to the minimal, optimal information23



that spei�es the a�ordane of an event, objet, or layout� [30℄. E.J. Gibson suggested thatbabies use exploratory ativities, suh as mouthing, listening, reahing and shaking, to gainthis pereptual data, and that these ativities bring about �information about hanges inthe world that the ation produes� [28℄. As development proeeds, exploratory ativitiesbeome performatory and ontrolled, exeuted with a goal.4.2 Motor ontrol and learning in neurosieneIn exeuting a motor behavior, the entral nervous system ommands the musles throughthe motor neurons. It is a very omplex proess inluding driving multiple musles in asynhronized way, in the orret timing and order. To ahieve this, the entral nervoussystem must map the motor goals (for example the �nal position of the arm, the diretionor veloity of the movement) to neuron signals ontrolling the musles. This is a di�ultproblem, sine it onstitutes a mapping from a small number of variables to a large number ofvariables that drive multiple musles [3℄. The urrent studies on motor ontrol and learning,essentially investigates how to solve this problem, and how to learn this mapping.There are studies proposing that the entral nervous system solves this problem usinginverse kinematis. These are mathematial methods to determine the parameters that drivethe musles during the omplete motion, based on the �nal desired position and orientationof the joints and musles. But this point of view entails the determination of the parametersof the omplete motion from the very start, so it is not �exible and an not explain mo-mentary reations during motor behavior exeution [3℄. Another approah to the problem ofmotor ontrol suggests that the motion of the joints an be expressed in terms of transitionsbetween �equilibrium positions� that are determined by the entral nervous system. These�equilibrium positions� orresponds to positions where the fores in the opposing muslesthat drive a joint are equal [4℄.Another approah that tries to explain how omplex patterns of motor behavior emergesays that, these omplex patterns are atually the result of ombining more simple primitiveations [3℄. For example, in [56℄ Mussa-Ivaldi et al. found that when they stimulated separatemodules in the spinal ord of a frog one-by-one, they orrespond to a limited number of forepatterns and motor ations. But when they stimulated two modules simultaneously, theresulting fore pattern orresponded to the vetor summation of the individual fore patternsof eah individual module. Through this, they showed that using a linear ombination of a setof simple pre-oded fore patterns, it was possible to generate a di�erent omplex motion.24



Mussa-Ivaldi et al. interprets this as [56℄: �this linear behavior is quite remarkable andprovides a strong support to the view that the entral nervous system may generate a widerepertoire of motor behaviors through the vetorial superposition of a few motor primitivesstored within the neural iruits (...).�. Aording to Bizzi [3℄, �the limited-fore pattern maybe viewed as representing an elementary alphabet from whih, through superimposition, avast number of movements ould be fashioned�.Another study that supports this position is the in�uential work of �population oding�by Georgopoulos et al. [27℄. Through experiments they onduted on rhesus monkeysGeorgopoulos et al. found that the arm movements of the monkey an be predited usingthe ativation values of a population of neurons in the monkey brain. In this population ofneurons, it was seen that eah individual neuron has a preferred diretion, and when it �resit makes the monkey arm move towards that diretion. But when multiple of these neurons�re together, it was seen that the resulting diretion of the monkey arm was a weightedsum of eah individual neuron's preferred diretion. Moreover, these weights were given bythe ativation values of eah neuron. So, the more a spei� neuron �res, the loser is thediretion of the monkey's movement to the preferred diretion of that neuron. That meanseah neuron ontributes to the resulting diretion, and the ontribution is proportional tothe ativation value of that neuron. And the monkey's movement is equal to this weightedvetorial sum.We have seen that both in the studies of developmental psyhology and in the studiesof motor ontrol and learning in neurosiene, the idea of starting from pre-oded primi-tive behaviors, and through training and development, ahieving more omplex behaviorsis aepted as a possibility. If we ombine the approah of developmental psyhologistsPiaget and E.J. Gibson (whih says that a baby starts from innate primitive re�exes andenrihes them through experiene until they beome voluntary ation) with the approah ofneurosiene (whih says that omplex patterns of motor behavior an be explained usingombination of simple pre-oded behaviors), then we believe that this presents a very goodresearh potential for roboti behavior development. In this kind of researh, one shouldinvestigate how robots equipped with simple pre-oded(innate) behaviors an develop toahieve more omplex behaviors through the usage of these simple behaviors. This atuallyonstitutes the grounds where this thesis aims to make its ontribution. But before goinginto the details of how we realized suh a development, in the next setion we will reviewthe other robotis studies onduted in this area.25



4.3 Behavior learning and development in robotisIn robotis, there have been inreasing interest in behavioral development and learning inreent years. There are studies that makes a robot learn behavior parametrization [46℄,learn to use behaviors purposively [2, 22℄, and demonstrate stages of development throughthe usage of a �xed set of behaviors [60℄. In this setion we will present some of these studies.In [44℄ Lee et al. use ase-based reasoning in seleting parameters for their behaviors,for goal-direted navigation. In this study the robot has a �ase-library�, where eah ase isindexed by environmental features and outputs a set of behavioral parameters. Aordingto the values oming from its sensors, the robot tries to �nd a best andidate among theases in the ase library, that re�ets the urrent environmental situation the most. After�nding the best-mathing ase, the behavioral parameters of that ase are used. In [44℄,the �ase library� is reated manually, whih requires extensive experimentation and tediouswork. In [46℄, Likhahev et al. extends this work by making the robot populate its aselibrary through its own experiene. In this work the robot starts with an empty ase library.It reates new ases as it pereives set of environmental features that are not similar to theases already existing in the library. But sine the proper output behavior parameters ofthese new ases are not known by the robot at the beginning, they at rather randomly. Bythe help of an expliit performane evaluator, the performane of eah ase is omputed,and a gradient-asent searh is made over the output behavior parameters of these ases. Asthe robot experienes more in the environment, the ases onverge to the orret behaviorparameters. Note that the external performane evaluator plays a ruial role in �nding theproper parameters, providing reinforement signals.Another study that uses reinforement learning is Asada et al.'s work on �purposivebehavior aquisition� [2℄. In this study, the robot has a �xed set of behaviors, and usingthese navigational behaviors it aims to shoot a ball into a goal. At the beginning the robotdoes not know when to exeute whih behavior in soring goals; that is, it does not haveany idea what its behaviors are good for. But through a reinforement learning proess, therobot learns using its behaviors purposively. Therefore, after training, the robot manages toselet the orret behaviors in di�erent situations, so that it gets loser to soring goals.In robotis, there are also studies that aims to mimi developmental stages that animalsgo through. In [60℄, Oudeyer et al. made a robot show di�erent phases of ognitive devel-opment. In what they alled �playground experiments�, Oudeyer et al. plaed a robot-dogin a playground that inluded various simple toys. In this environment, by exeuting some26



primitive behaviors randomly, the robot learned the dynamis and relation between its be-haviors, and the events in the environment. When Oudeyer et al. also provided an externalmotivation to the robot to show interest in situations whih are �neither too preditable nortoo unpreditable�, the robot autonomously went through a developmental sequene. Duringthis development, the robot's omplexity of ativities inreased at eah stage.In [14℄, Aarno et al. present a pereptual framework, using whih they aim to make arobot learn about objets by interating with them, like an human infant.It is evident from all these studies that, there is an inreasing interest in roboti behaviordevelopment and learning. Rather than the hand-oding of the behaviors of a robot by ahuman programmer, these new studies aims to make robots develop and learn their ownbehaviors.
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CHAPTER 5EXPERIMENTAL FRAMEWORK
In this hapter we will present the experimental framework of our study, before going intothe details of our development sheme in the next hapter. Here, we will �rst present therobotis and simulation platform that we have used in our study. Then we will presentthe primitive behaviors implemented on our robot and give the details of the interationenvironment where our robot will be trained. Lastly, we will present the details of thepereptual proesses using whih our robot gathers information from the environment. Wewill also see how our robot forms the entity and e�et strutures whih are at the ore oura�ordane formalization.5.1 Roboti and simulation platformThe roboti platform KURT3D1 and its simulated ounterpart are used in this study.KURT3D is a di�erential drive mobile robot equipped with a 3D laser range sanner (basedon the SICK LMS 200 2D laser sanner). Using this laser sanner, the robot is able to reatea range image of its environment. The maximum horizontal range for the sanner is 180◦,and the maximum vertial range is also 180◦. At the �nest resolution a range value for everyquarter degrees an be delivered by the sanner, both in vertial diretion and horizontaldiretion. That means, at the maximum resolution and at the widest vertial and horizontalrange, the range image has the size 720 × 720. Suh an image an be delivered in approxi-mately 45 seonds. Of ourse, the resolution, vertial range, and horizontal range values anbe set to lower values by the user. The robot also has enoders in its wheel system.The simulator we used for KURT3D is MACSim [80℄ implemented using ODE (OpenDynamis Engine2) library. The KURT3D is modeled inside the virtual world, together1URL: http://www.ais.fraunhofer.de/ARC/kurt3D/2URL:http://ode.org/ 28



(a) KURT3D (b) MACSimFigure 5.1: (a) The KURT3D. (b) A snapshot from MACSim showing the KURT3D robotfaing a box-shaped objet.Table 5.1: The motor parameter values passed by the primitive behaviors.
Behavior LeftWheel RightWheel DurationTURN_LEFT -0.25 m/s +0.25 m/s 0.7 seMOVE_FORWARD +0.25 m/s +0.25 m/s 1.7 seTURN_RIGHT +0.25 m/s -0.25 m/s 0.7 se

with its sensors and atuators. The simulator also supports reation of several types ofobjets in the virtual world of the robot, so that the robot an interat with them. You ansee a snapshot from the simulator in Figure 5.1.5.2 Primitive behaviorsWe implemented and used three primitive behaviors on the robot for our experiments. Theseare move-forward, turn-left, and turn-right behaviors. The move-forward behavior drives therobot straight ahead that plaes the robot approximately 40cm away from its initial position,if the move is not obstruted by any obstales. The turn-left, and turn-right behaviors turnsthe robot in plae for approximately 50◦. These behaviors are implemented by driving theright and left wheels of the robot at a onstant speed for a onstant duration. The valueswe used to drive the motors an be seen in Table 5.1.
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5.3 Interation environmentIn our learning phase eah trial is performed with a single objet in the environment. Theobjets are plaed randomly within a proximity of 1m to the robot, in the frontal areaspanning 180◦. The interation environment ontains four types of simple objets:
• retangular boxes ( ),
• spherial objets ( ),
• ylindrial objets, either� in upright position ( ), or� lying on the ground ( ),An example interation environment an be seen in Figure 5.1 where a box is plaed in frontof the robot.After learning, the environment that the developed behaviors are tried in is not sameenvironment, and it is luttered with many objets. We will present an example of thisenvironment in Setion 6.3.1.5.4 Pereption and representation of entities and e�etsThe robot pereives its environment mainly through its 3D sanner. It uses the rangeimages from the sanner to extrat a set of features whih onsists the robot's pereption ofthe environment. This feature-extration proess was �rst used in [81℄ by U§ur. Here, weuse the same proess to extrat shape and distane related features from the range image.The feature set is obtained in three steps as shown in Figure 5.2. The robot makes a fullresolution san of 720 × 720. First, the image is down-saled to a resolution of 360 × 360pixels. Then, it is split into grids of size 12 × 12 pixels. This means that there are 900suh grids (sine (360/12)2 = 900), in total. Then, for eah grid, distane and shape relatedfeatures are extrated. The distane related features are the distane of the losest point,distane of the furthest point, and the mean distane of all the points within a grid. Theshape related features are omputed from the normal vetors in the grid. A normal vetor foreah point in a grid is omputed using the range values. Then the diretion of eah normalvetor is reorded in two base-dimensions, ϕ and θ, in latitude and longitude. Two angularhistograms are omputed for eah of these dimensions. The histograms are slied into 1830



Figure 5.2: Phases of pereption. Distane and shape features are extrated from the sannerrange image. Also three displaement values are extrated from the enoders. (Figure takenfrom [17℄)intervals of 20◦ eah. And the frequeny values in eah of these slies of the histograms areused as the shape related features. Sine there are two hannels of 18 values eah, there are36 shape related feature for eah grid. Adding the three distane related features of a grid,there are 39 features to represent a single grid. We mentioned that there are 900 suh grids.So the total number of features to desribe the sene beomes 900×39 = 35100. In additionto the sanner features, values from the wheel-enoders are also reorded.In our formalization entity represents the state of the environment as pereived by theagent before performing a behavior. In this study it is represented with the sanner featuresobtained before the exeution of a primitive behavior by the robot.In our formalization e�et represents the pereivable hange in the environment or inthe state of the agent, produed by performing a behavior. In this study, the e�et isrepresented with the vetorial di�erene between the sanner features obtained after andbefore the exeution of a primitive behavior of the robot, together with 3 more featuresextrated from the enoder values that orrespond to the hange of the robot's position inthe forward and left-right diretions, and the hange in its orientation. (Figure 6.1)
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CHAPTER 6USING AFFORDANCES FOR ROBOTICBEHAVIOR DEVELOPMENT
In this setion we propose a behavioral development sheme on a robot. We will make useof the theory and formalization of a�ordanes in ahieving suh a development. The generia�ordane relations that are aquired by the robot will provide the basi building bloks ofthe development sheme we are going to propose.How an we realize behavioral development for a robot? The robot will start with a setof primitive behaviors. These will be simple pre-oded behaviors. Initially, the robot willnot have any more knowledge about its behaviors than to exeute them blindly. Startingfrom the set of primitive behaviors, the robot will have no initial knowledge about whento apply these behaviors, and what kind of e�ets they reate one they are applied. Therobot �rst has to learn the possible e�ets it an reate in the environment using thesebehaviors. It should also learn when to apply whih behavior to reate a spei� hange inthe environment. Disovering the uses of its primitive behaviors, the robot an then utilizethem in developing more omplex behavior patterns.In reating new more intelligent behavior from the primitive behaviors, the primitivebehaviors (that the robot has learned about, and has done its training with) an be usedin two ways as the result of development: sequentially, and simultaneously. In sequentialusage, the primitive behaviors an be used as they are: there will be one single primitivebehavior ative at an instant, but the umulative e�et of the exeution of these behaviorswill form a goal-direted intelligent behavior on a wider time-sale. In the seond way ofusing the primitive behaviors in behavior development, the simultaneous way of using theprimitive behaviors, the primitive behaviors an be ombined, suh that, at an instant itis not any of the primitive behaviors that is exeuting, but a new behavior that has never32



been seen or demonstrated by the robot before, yet is used by it intelligently to reate e�etsin the environment that are more in aordane with its goals than any of the primitivebehaviors. This is the seond way of using the learned primitive behaviors that we will tryto demonstrate.In the following, we will present the implementation of this development sheme. In thenext setion a brief overview of the behavioral development stages as implemented will begiven. Then we will see how the robot ollets the relation instanes by interating withits environment, and how it merges them in generi a�ordane relations. After this we willpresent the usage of the learned a�ordane relations in developing goal-direted behaviors.As mentioned before, we will demonstrate two ways of doing this: sequential usage of theprimitive behaviors, and simultaneous usage of the primitive behaviors.6.1 MethodologyIn this setion we will present a brief overview of the proesses involved in using the formal-ization of a�ordanes desribed in the previous setions, in making a robot learn about itsown primitive behaviors and use them goal-diretedly. The underlying proess onsists oftwo phases: learning a�ordane relations, and ahieving goal-direted behavior.Learning a�ordane relations The phase of learning a�ordane relations in turn in-ludes two steps: data olletion (interation with the world), and forming a�ordane rela-tions using these olleted data. In the data olletion step the robot exeutes its primitivebehaviors one at a time, in a ertain environment. It pereives and reords the environmentbefore exeuting a behavior, and after exeuting it. This orresponds to olleting(e�et, (entity, behavior)) instanes. After exeuting all of its behaviors in many di�erentenvironments, the robot has a olletion many suh relation instanes. This olletion is thenused in forming the a�ordane relations. This requires forming entity equivalene lasses ande�et equivalene lasses from the relation instanes of a spei� behavior, and onnetingthem in an a�ordane relation. Pratially, these a�ordane relations are trained lassi�ersthat an then be used to reate goal-direted behavior.Ahieving goal-direted behavior In this phase the robot uses the learned a�ordanerelations to ahieve more intelligent behaviors. Pereiving the urrent environment providesa desription of the entity. Using this entity and the learned a�ordane relations(<e�et> , <(entity, behavior)> ), the robot an then exeute the behavior(s) whih will33



result in the e�et that will make the robot ahieve its goal. We will present two approahesin developing goal-direted behaviors. In the �rst approah, the robot will use its primitivebehaviors in a sequential manner to ahieve goal-direted behavior. Pratially this meansfeeding in the entity representation to the trained lassi�ers, of whih there is one for eahation. Then the preditions of eah lassi�er, whih are e�et-prototypes, are omparedto see whih e�et will be more useful in ahieving the goal. The ation, whose lassi�erpredited a better e�et, is exeuted. In the seond approah, the robot will use its primitivebehaviors simultaneously to ahieve goal-direted behavior. Pratially, this will again orre-spond to feeding in the urrent entity representation to the trained lassi�ers, of whih thereis one for eah ation. Then the preditions of eah lassi�er, whih are e�et-prototypes, areompared with the goal representation to see how similar eah behavior 's e�et preditionis to the desired e�et. The similarity values will then be used as weights for the behavioralparameters, in blending the primitive behaviors so that a new behavior emerges.6.2 Learning a�ordane relationsIn learning generi a�ordane relations, the robot �rst interats with its environment, olletsdata about the interation, and then applies ertain mahine learning proesses over the datato form generi a�ordane relations.6.2.1 Data olletion: Interating with the worldIn the interation phase, the robot ollets a�ordane relation instanes. Pereived entityand e�et instanes are linked together with the primitive behavior that was exeuted toprodue the e�et. The three onstitute a relation instane. Figure 6.1 depits the extrationof these instanes.Here, for eah trial, the robot pereives the situation before applying a primitive behaviorand stores it as the entity. It then performs one of its primitive behaviors. After that, itpereives the environment again, and extrats and stores the e�et as desribed in 5.4.In this study a total number of 3000 trials for eah primitive behavior were performed inthe simulator during the interation phase. The details of the interation environment waspresented in 5.3.
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Figure 6.1: Representation of the entity and the e�et. Distane and shape features extratedfrom the sanner image, taken before the exeution of a primitive behavior, onstitute theentity. The di�erene between the features extrated after the exeution of the behaviorand features extrated before the exeution of the behavior onstitute the representation ofe�et, together with the displaement values extrated from the enoders (see Figure 5.2).6.2.2 Forming a�ordane relationsThe aim of the this phase is to derive a�ordane relations from the set of relation instanesolleted in the interation phase, through the formation of equivalene lasses. Withinthe set of relation instanes of a behavior, similar e�ets are grouped together to get moregeneral desription of di�erent kinds of e�ets that behavior an reate. This is ahievedthrough the unsupervised lustering of the e�et instanes. This orresponds to obtaininge�et equivalene lasses. After lustering, eah e�et lass is assigned an e�et-id and thee�et prototype of the lass is alulated.Knowing the di�erent kinds of e�ets that a behavior an reate, the robot should thendisover the distintive features and invariant properties of the environments in whih thesee�ets are reated. This orresponds to obtaining entity equivalene lasses. This onsistsof two substeps. First, the robot selets the features desribing the entity whih are relevantin determining if a situation will result in one e�et or another. This is ahieved by applyinga feature seletion algorithm over the entities, using the orresponding e�et-ids as theirategories. Next, the robot learns the mapping from the entities to the e�et-ids, for theexeution of a behavior. This is ahieved by training lassi�ers with the olleted a�ordanerelation instanes. A separate lassi�er is trained for eah behavior, using the entity (whihnow inludes only the seleted relevant features) as the input, and the orresponding e�et-idof eah instane as the target ategory. 35



In the rest of this setion, we provide the details of these three steps in the learningphase.Forming e�et equivalene lasses with lusteringA primitive behavior, when applied in di�erent situations, reates di�erent kinds of e�etsin the environment. Reognizing these di�erent kind of e�ets is neessary if the robot isgoing to use the behaviors goal-diretedly.For this purpose, for eah behavior, the 3000 e�et data olleted in the interation phasewere lustered using the k-means algorithm. The k parameter was experimentally set to 10.The k-means algorithm was applied with normalized distanes to avoid the domination ofsanner originated features over enoder originated features and shape related features overdistane related features.Figure 6.2 gives an interpretation of the results of lustering. After lustering, every e�etlass is assigned an e�et-id. The e�et prototype of a lass is the mean of the individuale�ets in that lass. The set of prototypes haraterizes the di�erent kinds of e�ets eahbehavior produes.Seleting relevant featuresThe robot only needs the subset of features desribing the entity whih are important indetermining if a situation will result in one e�et or another. For this aim, we seleted therelevant features in the entity, using the orresponding e�et-ids as their labels. Seletionof relevant features is done using the ReliefF algorithm, originally proposed by Kira andRendell [43℄. This method aims to estimate the weight of eah feature in a feature set, basedon its impat on the target ategory of the samples. In ReliefF, the weight of any feature isinreased, if it has similar values for the samples in the same ategory, and if it has di�erentvalues for the samples in di�erent ategories.To speed-up this feature-seletion proess, instead of using the omplete set of interationsamples, 50 samples from every lass were randomly seleted. We used the data-miningsoftware WEKA [86℄ as an implementation of ReliefF.In Figure 6.3, the grids orresponding to the relevant features for eah behavior are given.It an be observed that the grids to whih seleted attributes belong, di�er for eah behavior.
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Figure 6.2: Interpretation of e�et lasses obtained with unsupervised lustering for theprimitive behavior move-forward. The upper image ontains the distribution of objet po-sitions in the interation phase for the samples in the resulting 10 lusters. In the enlargedpitures the types of objets an also be observed. The left image orresponds to a lusterwhose prototype e�et has a small value for �hange in the forward diretion�. It an beobserved that in the samples whih belong to this luster, the objet was plaed in front ofthe robot, and it was lose to the robot suh that that the robot would ome in ontat withthe objet during its forward motion. Moreover, the majority of these objets were boxesand upright ylinders, so that the robot's motion would be bloked by the objet. The rightimage, on the other hand, orresponds to a luster whose prototype e�et has a large hangein the forward diretion. This luster ontains interation samples in whih the objet waseither far enough, suh that the robot would not get in ontat with the objet, or it was onthe path of the robot's motion but it was a sphere or a lying ylinder, so that it would berolled away without bloking the motion. In the upper image, it an also be observed thatlusters were formed aording to the position of the objet being roughly on the right orthe left of the robot.
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Figure 6.3: Relevant grids in the range image representation for three possible primitivebehaviors: turn-left, move-forward, and turn-right. Darkness is an indiation of relevane. Itan be seen that only a small portion of all the grids are relevant for eah behavior, and mostof the grids are ompletely white, indiating no relevane. Also, for turn-left and turn-rightations, the grids on left and right, respetively, are more relevant.Linking e�ets to entitiesSupport Vetor Mahines (SVMs) are trained to lassify entities (whih now inlude onlythe 2000 most relevant features seleted in the previous step) into e�et lasses. We usedthe libSVM [8℄ library as an implementation of SVMs. For eah behavior, an SVM wastrained using the entities as the inputs, and the orresponding e�et-ids of eah instaneas the target value. These SVM lassi�ers are then used in the exeution phase, to preditwhat kind of e�et a behavior will generate, given a pereptual representation (entity) of theurrent environment.6.3 Ahieving goal-direted behaviorIn this setion we will present the two ways of ahieving goal-direted behavior, using thelearned a�ordane relations: through the sequential use of primitive behaviors, and throughthe simultaneous use of primitive behaviors.6.3.1 Ahieving goal-direted behavior through the sequential use of prim-itive behaviorsIn [17℄ we demonstrated how the learned a�ordane relations an be used in ahieving goal-direted behaviors, through the utilization of the primitive behaviors sequentially. Here therobot uses the learned a�ordane relations in seleting the proper primitive behavior in agiven ontext. Although the behaviors that are used by the robot are the same pre-odedprimitive behaviors, sine the robot now has the knowledge of what e�ets a behavior reateswhen applied in a ertain ontext, it is able to use them to more intelligently. Therefore,38



Figure 6.4: Behavior seletion. The di�erent possible e�ets prototypes are sorted aordingto the urrent desired e�et. The urrent pereption of the environment is supplied to theSVMs for eah primitive behavior. The behavior, whose SVM predits an e�et that is higherin the sorted list, is exeuted.(Figure taken from [17℄)although the behaviors are the same, when viewed on a wider time-sale the sequening ofthe behaviors displays a ertain goal-direted behavior. As a onsequene many di�erentgoal-direted behaviors an be ahieved using the same restrited set of primitive behaviors,and the same learned a�ordane relations. The robot learns the generi a�ordane relationsone, but it an use them to ahieve many di�erent goal-direted behaviors.In this setion we will �rst explain how the behavior seletion is done by the robot. Thenwe will present three examples for the goal-direted behaviors. The traverse behavior usesthe �traversability� a�ordane in the environment for navigation. The approah behaviormakes the robot go towards an objet. The avoid behavior tries to avoid any ontat withthe objets to navigate in the environment.Behavior seletionThe robot uses the learned a�ordane relations to selet the primitive behavior in ahievinggoal-direted behaviors. Given the pereptual representation of the urrent environmentas an entity, the trained lassi�ers will predit an e�et-id whih indiates the e�et lassthat the behavior, for whih the lassi�er was trained, will produe in this environment. Byomparing the e�et prototypes of the predited lasses with its desired e�et determined byits urrent goal, the robot an selet the behavior that will produe the most useful e�et in39



ahieving its goal. The behavior seletion mehanism is shown in Figure 6.4.Speifying the urrent desired goal and sorting the e�et prototypes aording to thisdesired goal is what results in di�erent behaviors. This goal spei�ation and assigning prior-ities to the possible e�ets an be done in di�erent ways. The di�erene between the urrentsituation and the desired goal gives us a desription of the desired e�et. We an then sortthe e�et prototypes aording to their similarity to this desired e�et. Another possibility isto assign priorities to ertain e�et prototypes diretly, by using a global evaluation riteria.The behaviors that will be demonstrated in the next setion use suh a method. In the nextsetion, we will present these behaviors together with the riteria we used to evaluate thepossible e�ets prototypes in ahieving these behaviors.Goal-direted BehaviorsTraverse We de�ne �traversing� as di�erent from the onventional �wandering using ob-stale avoidane�. In the obstale-avoidane approah every objet that is on the robot'spath is onsidered as an obstale. In fat suh a behavior is overly autious ompared to itsintentions. For example if the objet on its path is a ball that an be easily pushed awaythen there is no need for the robot to avoid it. Here the robot has to make the judgment ofwhether the situation a�ords �traversability� or not.Given our robot and the objets in its environment, we an say that the environmentis �traversable� for the robot, if there is an open-spae, or a sphere (sine it an be rolledaway), or a ylinder lying on the ground in a proper orientation so that it an be rolled away.The other ases of when there is a box, or a ylinder in an orientation suh that it an notbe rolled away are the �non-traversable� ases.If we want our robot to explore the environment using traversability, it should be able todrive onto (by exeuting forward motion) traversable objets and open spaes but avoid (byturn-left or turn-right) non-traversable objets. This an be ahieved by a spei� orderingof the e�et lasses. In this ase the most desired e�et is the forward displaement of therobot but without being stopped by an objet. This means that the highest priority shouldbe given to the e�et lasses whose prototypes have a forward-displaement value greaterthan a threshold. Then must ome the e�et lasses for the two turning motions turn-rightand turn-left. Lastly, as the most undesired ases, the e�et lasses of the forward motionwhose prototypes have a forward-displaement value smaller than the threshold should ome,sine this small value is an indiation of the motion's being stopped by an obstale, thus anon-traversable ase. In our implementation we set this threshold to a value just below 40cm,40



(a) Traverse behavior (b) Avoid behavior
() Approah behaviorFigure 6.5: Three di�erent behaviors ahieved using the same three primitive behaviorsand their learned a�ordane relations. In (a), the robot wanders around pereiving thetraversability a�ordane of the objets. When there is a sphere or a ylinder in a rollableorientation on its way, the robot rolls it away and ontinues forward-motion. When thereis a box or a ylinder in non-rollable orientation on its way, the robot avoids it by turningleft or right. In (b), the robot displays a more typial obstale-avoidane behavior, where itavoids all the objets, whether it is rollable or not. In (), an example path where the robotfollows an objet using its approah behavior is shown. The plus signs marks the plaes thatobjets appear. The line shows the robot's path.
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Figure 6.6: Snapshot from the arena where the performane of the behavior was measured.Here, only a small portion of the whole arena an be seen.whih is the distane the robot overs when it exeutes an unobstruted MOVE_FORWARDbehavior.We have tested the traverse behavior by plaing the robot in an environment randomly�lled with multiple traversable and non-traversable objets. The robot suessfully exploredthe environment and also used the traversability a�ordane of the objets by rolling awaythe traversable objets on its way, and avoiding the non-traversable ones. One example pathof the robot an be seen in Figure 6.5(a).We also measured the performane of the traverse behavior for di�erent number of inter-ations in training the robot and analyzed the e�et of the inreasing number of interations(inreasing experiene) on the performane of the robot.We measured the performane of the traversability behavior as follows: In the simulator,we plaed the robot in a retangular arena of 44m×48m. The arena was luttered with 1000simple objets randomly. You an see a portion of a sample arena in Figure 6.6. The robotstarted its trial at the enter of this arena and exeuted the traverse behavior. The ationsthe robot exeuted and the distane it overed was reorded at eah step. The exeution ofa trial stopped when the robot got stuk to an obstale when exeuting the move-forwardbehavior (it is not possible for the robot to get stuk when exeuting turn-left or turn-rightsine they simply make the robot turn in plae). When the robot got stuk the total distane42
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Figure 6.7: Performane for di�erent number of training interations. As the robot interatswith the environment more, the developed behavior performs better. When there are a fewhundreds of interations, the inrease in the performane is not too lear, but when the robotreahes thousands of interations it begins to perform remarkably better.the robot has overed so far in that trial was reorded. If the robot got out of the arenaborders without getting stuk, it was plaed at the enter again with a di�erent distributionof objets in the arena, and the trial was ontinued until the robot got stuk.We manipulated the number of training interations the robot did with the environmentto see its e�et on the performane. For example when training the robot, we stopped atthe 50th interation, went through the learning proess to form the a�ordane relations,and measured the performane of the robot. Then the robot ontinued to experiene withthe environment until 100th interation, where we again measured the robot's performane.We did this at the 50th, 100th, 250th, 500th, 1000th, 2000th, and 3000th interations. For43



measuring the performane at eah ase we onduted 40 trials in the arena. One ansay that the number of interations orresponds to the �experiene� of the robot during itsdevelopment. So one expets an inreasing performane with experiene. In Figure 6.7 wean see that this is indeed the ase. In this �gure we an see an inrease in the performaneof the robot as its number of interations inrease. In fat, when there are a few hundredsof interations, the inrease in the performane is not too lear. But when the robot reahesthousands of interations the robot begins to perform remarkably better.Approah Approahing an objet means going forward if the objet is ahead, turning rightif the objet is on the right, and turning left if the objet is on the left. In this view, the mostdesired e�et would be to see an appearane, or approah, of objets in the middle portionof the 3D-sanning �eld. Reall that the 3D san �eld is a 30× 30 grid in our representationof the e�et. We seleted the horizontally middle portion of this grid. For every e�et lass,these grids holds the information about the hange in the values of the features in the frontalregion of the robot, when the orresponding behavior is exeuted. The priority of an e�etlass is assigned based on the sum of the hange in the mean-distane features in these grids.Sine the distane value is smaller when an objet is lose, the higher priorities are givengiven to those lasses with the most negative value of this sum. This way the e�et lasses,whih orrespond to approahing or turning to an objet so that it is ahead, beomes higherin the sorted e�et list.We have tried this approah behavior �rst by plaing objets to random plaes in frontof the robot. It was observed that the robot was able to make the orret deision of goingahead if the objet is in the front, turning right if the objet is on the right, and turning leftif the objet is on the left. Next we have simulated a slowly moving objet in front of therobot, by plaing the objet on random positions in front of the robot as the robot made itsmoves. An example path of the objet and the robot an be seen in Figure 6.5().Avoid As a third behavior a more traditional approah to the traversability problem wasemployed. The rollability of ertain objets was not taken into onsideration and the robottried to avoid ontat with any objet in the environment. To ahieve this behavior thepriority of an e�et was assigned in exatly the opposite way as it was in the approahbehavior. So the sorting of the e�et lasses was based on the sum of the hange in themean-distane features in the frontal region of the robot, whih is the horizontally middleportion of the 30 × 30 grid in our representation of the e�et. This way, the e�et lasses44



Figure 6.8: Three ases in whih di�erent goal-direted behaviors (traverse, avoid, approah)make use of di�erent primitive behaviors (move-forward, turn-right, turn-left) in the samesetting of the environment.whih orrespond to turning away from an objet that is ahead beomes higher in the sortedlist of e�ets; and the e�et lasses, whih orrespond to approahing or turning to an objetso that it is ahead, beomes lowest in the sorted list of e�ets. But this riteria was notenough to make the robot wander around, sine it always tried to turn away from objets(by exeuting turn-left or turn-right) even if they were very far away, and never exeutedmove-forward. So we disabled this sorting when there were no objets lose in front of therobot, and made the robot exeute the move-forward behavior in these ases. The path ofthe robot with this behavior is given in Figure 6.5(b).The three goal-direted behaviors were also realized on a real robot. The trained on-trollers were transferred to a real KURT3D robot, and everyday objets like balls, trashbins, et. were plaed in front of the robot to test the behaviors. The robot was able topereive the traversability of objets, so it rolled away the balls on its way, and avoidednon-traversable objets like trash-bins. The robot was also able to display the approahand avoid behaviors as desribed in the previous setions. Figure 6.8 shows how the threegoal-direted behaviors reat in di�erent environments 1.6.3.2 Ahieving goal-direted behavior through the simultaneous use ofprimitive behaviorsIn the previous setion the robot was able to use a set of primitive behaviors suh that whenviewed on a wider time-sale the robot's behavior orresponded to goal-direted intelligentbehaviors. But while we laimed that in ahieving suh kind of goal-direted behavior therobot made use of a generalization over the e�ets it an reate, and a generalization overthe features of the entities it interats with, it an not be said that the robot made use1For a omplete demonstration of the behaviors on the real robot, please see the video athttp://kovan.eng.metu.edu.tr/�mehmet/iros07.mpeg.45



of a generalization over the behaviors. At any given moment the robot exeuted a singleprimitive behavior, and these primitive behaviors were the same behaviors that it also usedduring the training interations, and they were programmed into the robot.In this setion we will try to ahieve behavioral generalization (or more orretly, ageneralization over the motor ontrol parameters of the behaviors), so that, after training,the robot will not be onstrained with the �xed set of pre-programmed behaviors but will beable to demonstrate novel behaviors. While the robot will still have a limited set of behaviorsduring training, after training it will reat to situations with new behaviors, that are moree�etive than the primitive behaviors in reating the desired e�et in the environment.To be able to do that, the robot needs to make a generalization over the motor param-eters that it uses for the behaviors, and relate these to the e�ets it an reate with theseparameters. Then, when it needs to reate a spei� e�et in the environment, the robotan hoose the orret set of parameters to reate the e�et.We ahieved this generalization using a weighted sum of the motor ontrol parametersof the primitive behaviors, where the weights are determined aording to the similarity oftheir e�ets to the desired e�et. The inspiration for this approah omes from the work onpopulation oding (See Setion 4.2).In the next setion a general desription of the method used for behavioral generalizationwill be given. Then, a onrete implementation of this method for a spei� behavior willbe presented.MethodThe method proposed uses motor parameter values of the primitive behaviors in determininga new value for that motor parameter. Eah primitive behavior passes values to the motorsas ontrol parameters, and these values are �xed by the programmer for eah behavior. Forexample, the TURN_LEFT behavior passes -0.25 m/s as the left-wheel-speed and +0.25m/s as the right-wheel-speed, and the TURN_RIGHT behavior passes +0.25 m/s as theleft-wheel-speed, and -0.25 m/s as the right-wheel-speed, et.. During training only oneprimitive behavior is ative, so the values that are passed to the motors are the ones of thatbehavior. After training these �xed values of the primitive behaviors are again used, butthis time, at an instant, all the primitive behaviors ontribute to the value that is atuallypassed to the motor. The weight of eah primitive behavior's ontribution is determined bythe similarity of the predited e�et of that primitive behavior to the desired e�et. As aresult if the predited e�et of a primitive behavior is very similar to the desired e�et, then46



it ontributes more to the values passed to the motors and vie versa.Suppose that there are n primitive behaviors B1, B2, ..., Bn, and eah behavior Bi hasa set of motor parameter values vi1, vi2, ..., vim for eah of the m motors M1, M2, ..., Mm.Further suppose that D is the desired e�et prototype, and p1, p2, ..., pn are the preditede�et-ategory prototypes in the urrent environment for eah of the n behaviors. Also, let'ssay that there is a similarity funtion S that takes two e�et prototypes as arguments andreturns a value indiating the similarity between these two prototypes. Then, in an arbitraryenvironment, we an �nd the new value v′j to be passed to motor Mj as:
v′j =

n∑

i=1

S(D, pi)∑n
k=1

S(D, pk)
∗ vij (6.1)That is, the resulting motor parameter value is the sum of eah behavior's ontributionfor that parameter, and this ontribution is proportional to the similarity of the preditede�et for that behavior to the desired e�et. Note that, other than the learned a�ordanerelations, we also need to de�ne a similarity funtion that would indiate how similar apredited e�et is to the desired e�et.ImplementationAn implementation of the proposed approah has been tried on the approah behavior. Inthe approah behavior presented in the previous hapter, the robot was using its primitivebehavior TURN_LEFT when an objet was on its left, TURN_RIGHT when an objetwas on its right, and MOVE_FORWARD when an objet was ahead. While this approahsueeded in making the robot approah to objets, the robot was limited with the useof these three behaviors only. In this setion we will present the results of applying thebehavioral generalization method to the approah behavior. In this ase, the robot is stilltrained with the same three behaviors, but after training it is able to demonstrate novelbehaviors that enables it to reate its desired e�et more suessfully than any of the primitivebehaviors that it has been trained with.The three primitive behaviors that the robot is trained with are TURN_LEFT,MOVE_FORWARD, and TURN_RIGHT. Table 6.1 shows the motors and the parametervalues eah behavior uses.All three behaviors use the left wheel and right wheel motors with di�erent parametervalues. The robot is trained with these primitive behaviors as desribed in Se. 6.2.For the behavioral generalization approah, we also need to de�ne a similarity funtion47



Table 6.1: The motor parameter values passed by the primitive behaviors for behavioralgeneralization.
Behavior LeftWheel RightWheel DurationTURN_LEFT -0.25 m/s +0.25 m/s 0.7 seMOVE_FORWARD +0.25 m/s +0.25 m/s 0.7 seTURN_RIGHT +0.25 m/s -0.25 m/s 0.7 se

that will return higher values for e�et-prototypes that are similar to our desired e�et. Sinethe goal of the behavior is approahing the objet we used the same funtion we de�ned toassign priorities to e�et-prototypes in Se. 6.3.1. The robot should be approahing objets,so the most desired e�et would be to see an appearane, or approah, of objets in themiddle portion of the 3D-sanning �eld. And sine the 3D san �eld is a 30 × 30 grid inour representation of the e�et, we seleted the horizontally middle portion of this grid. Forevery e�et lass, these grids holds the information about the hange in the values of thefeatures in the frontal region of the robot, when the orresponding behavior is exeuted. So,the similarity value of an e�et prototype is assigned based on the sum of the hange in themean-distane features in these grids. Sine the distane value is smaller when an objetis lose, the higher similarity values are given to those lasses with the most negative valueof this sum. This way the e�et prototypes, whih orrespond to approahing or turningto an objet so that it is ahead, gets higher similarity values. Before using these similarityvalues as weights for the motor parameters, we mapped the lowest similarity value to 0 andnormalized the values for eah primitive behavior to the range [0, 1].The results of applying this behavioral generalization approah an be seen in Fig-ure 6.9, Figure 6.10, and Figure 6.11. In these �gures the robot's reation to di�erentsituations are shown, for the two strategies of using only primitive behaviors, and usingbehavioral generalization. It an be seen that the behavior generalization approah enablesthe robot to disover new behaviors di�erent than the primitive behaviors, and these newbehaviors improves the robot's performane in situations where the primitive behaviors arenot good enough. An exeption is the ase in Figure 6.11 where the objet is plaed diretlyahead of the robot. In this ase the primitive behavior MOVE_FORWARD approahes theobjet better than the behavior exeuted using the behavior generalization method. Butnote that the plae where the objet is plaed in this ase is exatly the right position for48



Figure 6.9: The objet is plaed 20◦ to the right of the robot, at a distane of 30cm. Whenusing only the primitive behaviors to approah the objet, the robot hooses to exeuteMOVE_FORWARD behavior. When using the behavioral generalization method, the robotmakes a smoother motion towards the objet whih approahes the objet more suessfully.Atually this movement is a blending of the MOVE_FORWARD and TURN_RIGHT prim-itive behaviors, where the ontribution of the MOVE_FORWARD behavior is more thanTURN_RIGHT behavior.
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Figure 6.10: The objet is plaed 45◦ to the right of the robot, at a distane of 30cm.When it uses only the primitive behaviors, the robot hooses the TURN_RIGHT behaviorto approah the objet. When it uses the behavior generalization method the robot againmakes a smoother motion towards the objet whih approahes the objet more suess-fully. This movement is also a blending of the MOVE_FORWARD and TURN_RIGHTprimitive behaviors, but di�erent from the ase in Figure 6.9, this time the ontributionof the TURN_RIGHT behavior is more than the ontribution of the MOVE_FORWARDbehavior.
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Figure 6.11: The objet is plaed diretly ahead of the robot. This time the primitive behav-ior exeuted seems to be more suessful than the behavioral generalization strategy, sinethe purity of the MOVE_FORWARD behavior seems to be tempered by some ontributionfrom the TURN_RIGHT behavior.MOVE_FORWARD behavior, and while the positions like these are limited with the num-ber of primitive behaviors, there are in�nitely many positions where the primitive behaviorswill not su�e and behavioral generalization will perform better.This an be seen more learly in Figure 6.12. In this �gure it an be seen that, whenompared with using only the primitive behaviors, the behavioral generalization approahspans the same angular range in turning towards the objet, but it does so in a more �nermanner, spanning whole of the angular range. The trade-o� is some lose of preision in thediretions of the original primitive behaviors.To see the behavior of the proposed approah on a more global sale, we plaed a spherein front of the robot let the robot exeute its behaviors many times. What emerged was abehavior where the robot dribbles the sphere(ball) in front of it. The path of the robot whenit rolls the ball an be seen in Figure 6.13.
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(a) (b)Figure 6.12: Robot's reation to di�erent situations using the two di�erent strategies ofusing only primitive behaviors, and using behavioral generalization. The arrows show therobot's position and heading diretion after exeuting the behavior. The irles denote theobjet's position in eah di�erent ase. If a irle and an arrow are of the same olor, thismeans that when the objet is in the loation indiated by the irle, the robot's headingdiretion and position after exeuting the hosen behavior is indiated by the arrow of thesame olor. In (a) the robot uses only the primitive behaviors in approahing the objet.Therefore, in the �gure, there are only three arrows, representing the robot's position andheading diretion after exeuting eah of these three behaviors. It an be seen that therobot is able to approah the objet and selet the orret primitive behavior. But one analso notie that these primitive behaviors are very rude in turning towards the objet. In(b) the robot uses the behavioral generalization strategy in turning towards the objets. Inthis �gure there are eight arrows, orresponding to eight di�erent reations of the robot todi�erent situations. Here again the robot is suessful in turning towards the objet, butthis time it makes more detailed movements towards the objets showing an improvementover the ase of using only the primitive behaviors.
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(a) (b)Figure 6.13: Robot dribbling a ball using the learned a�ordane relations. In the simulatorarti�ial perturbations are applied to the ball while it is rolling, so that it does not rollperfetly in one diretion when the robot hits it. In (a) the path when robot uses only thethree primitive behaviors. In (b) the behavioral generalization method is employed. It anbe seen that this results in a smoother trajetory for the robot.
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CHAPTER 7DISCUSSIONS AND CONCLUSION
In this thesis we proposed a behavior development sheme for a mobile robot. We believethat, instead of trying to build intelligent mahines from srath, we should build robotsthat are equipped with simple apabilities that an bootstrap the system. Then, the robotshould interat with its environment and ollet its own experienes. As a result of thisinteration the robot should develop apabilities and behaviors that were not oded into theinitial system.J.J. Gibson's onept of �a�ordanes� [33℄ provided the basis of our proposed developmentsheme. We used a formalization of a�ordanes [13℄ to make the robot learn about thedynamis of its interations with its environment. In this formalization, every interationof the robot with the environment are represented as (e�et, (entity, behavior)) triples.Colleting suh a�ordane relation instanes from the environment, our robot was thenable to extrat generi a�ordane relations pertaining to the relation between itself andthe environment. Using these learned a�ordane relations our robot displayed higher-levelbehaviors.In this thesis we implemented suh a development sheme using three pre-oded behav-iors: move_forward, turn_left, and turn_right. Using these primitive behaviors, our robotinterated with simple objets like boxes, ylinders, and spheres. Then, using the data itolleted during its interations with the environment, our robot formed a�ordane relations.In our implementation this pratially orresponded to training SVMs that an predit thee�ets that will be reated in the environment if a ertain behavior is exeuted, in the urrentenvironment. Then, these trained SVMs were used by the robot to display more intelligentbehaviors in the environment.We tried two di�erent methods in ahieving more omplex behaviors using the threesimple pre-oded behaviors. As the �rst method we used the sequential exeution of the54



primitive behaviors. In this ase, the robot uses its pre-oded primitive behaviors only, butthe sequening of these primitive behaviors were suh that new more omplex behaviorsemerged. As the seond method we used the simultaneous exeution of primitive behaviors.Here, the robot uses its pre-oded primitive behaviors to generate new behaviors that aremore e�etive in reahing its goal than any of the primitive behaviors, through blending ofthe primitive behaviors. This is ahieved by driving the motors of the robot using a valuewhih is equal to the weighted sum of the motor parameters of eah primitive behavior.The weight (ontribution) of eah primitive behavior is proportional to the similarity of thepredited e�et for that behavior to the desired e�et the robot wants to reate.We showed that using these strategies, our robot was able to develop di�erent higher-level behaviors using its three primitive behaviors and the learned a�ordane relations. Firstour robot demonstrated the �traverse� behavior, using whih it was able to wander aroundpereiving the �traversability� of the objets in the environment. We also showed that theperformane of this behavior inreased with the number of training interations. As a seondexample, the robot demonstrated a lassial obstale-avoidane behavior. Here, it avoidedontat with any objet in the environment while wandering around. The third behaviorwas the �approah� behavior, where the robot approahed and drove towards the objets.We also showed that using the simultaneous exeution of the primitive behaviors, our robotwas able to develop novel behaviors in approahing the objet.Disussion and omparison with other roboti behavior learning approahesLastly, we will ompare the framework and the behavior development sheme we have pro-posed, with the other approahes in robotis and mahine learning in general. This will beoneptual disussion rather than a quantitative omparison. In mahine learning, there arethree main learning paradigms: unsupervised learning, supervised learning, and reinfore-ment learning [19℄. We will disuss where our study falls in the spae that these three axesof learning paradigms onstitute, and its pros and ons in relation to them.Unsupervised learning [19℄ is the name given to a set of methods, that are used in forminglusters in a olletion of data, aording to some similarity measure. Even though unsuper-vised learning is used in robotis studies in various ways, these are mostly at the pereptuallevel, restrited to the methods used on pereptual feature data, and the ation data arenot used. Therefore, if the aim is to make the robot learn some behaviors/ations, thenunsupervised learning methods do not prove enough by themselves. In this restrited way,we also made use of an unsupervised lustering method (k-means), as a part of our learning55



framework.In supervised learning [19℄ there is a teaher, that gives the orret answers to the learningagent, in the ourse of the training. Even if it is possible to use supervised methods in robotibehavior learning, the implementation of these training shemes requires a very tedious work.That is beause the robot will need a teaher that tells it what reation to give in whihsituation, and generally, this teaher is either a human ontrolling the robot ontinuously,or a ontrol program that is already demonstrating the behavior that we are trying to makethe robot learn. Moreover, in suh a learning sheme, the behavior that the robot learnedwould be one that is trying to imitate the performane of the human or the program thatis ontrolling it, but that ould not ever over-perform it. These issues reate di�ultyin making use of totally supervised approahes in training robots. Even so, this type ofsupervised methods are used, for example in bootstrapping reinforement learning [68℄.In our learning framework, supervised learning exists, not as the diret supervised teah-ing of a spei� behavior, but as the usage of a supervised learning method: SVMs aretrained, suh that, given a desription of the environment they tell the robot what kindof an e�et it will be able to reate in the environment, if it exeutes a spei� primitivebehavior. But in our framework the target values that are supplied during the training of theSVMs (that is, the supervision), are not supplied by a human or some �intelligent� ontroller.In this proess, the strutures that the robot uses are extrated using an unsupervised lus-tering method over the e�et data it olleted during its interations. In this respet, ourrobot learns its behaviors in an autonomous way, without the need of an external teaher.Reinforement learning [75℄ is the most widely used paradigm in roboti behavior learning[2, 50, 41℄, among the three learning paradigms we have disussed. In reinforement learning,there is not a teaher that tells the agent what to do in whih situation, but rather, the robotgets �rewards� when it reahes ertain states, and �punishments� when it reahes some otherstates. The agent's main goal is to maximize the total amount of rewards it reeives in thelong-term.In reinforement learning, the robot has to be trained separately for eah di�erent be-havior it is to exeute, whereas this is not the ase for our behavioral development sheme.In reinforement learning, even if a robot is trained very well and is very suessful for aspei� behavior, one will still need to train it for di�erent behaviors, sine the training istask-dependent. The primary di�erene of our work from the studies that use reinforementlearning to make a robot learn a behavior is that, rather than aiming to make the robotlearn a spei� behavior, our work proposes a generi development sheme. This di�erene56



beomes obvious when one noties that, the training our robot goes through is independentfrom the behaviors that it is able to display at the end. That beomes possible, beauseduring training, our robot learns generi relations about the interations of its body and theenvironment. These strutures are task-independent, and holds the atual information aboutthe e�ets the robot an reate in its environment, using its primitive behaviors. Thereforethese strutures an then be used to ahieve several di�erent behaviors.The struture and utilization of state representations in reinforement learning also di�erfrom the way the state representations are used in our learning framework. For reinforementlearning to take plae, one has to map the situations of the environment to state representa-tions. Ideally, these state representations are disrete, and as in [2℄, this is ahieved throughthe mapping of environmental situations to a set of disrete states by the human programmer,employing domain knowledge. In our learning framework, the omplete entity representa-tion onsist of 35100 raw features, and these raw representations are also mapped to disretestate representations (entity equivalene lasses) impliitly. But this mapping is not due to ahuman programmer who has the expert knowledge as in reinforement learning. Instead, thismapping is disovered by the robot itself, using the lustered e�et representations whihinludes similar e�ets that the robot an reate in the environment.In reinforement learning, the `utility' values of eah state are learned by the agent,whereas in our study the atual e�ets the robot an reate at eah state are learned.The `utility' values in reinforement learning are meaningful only for a spei� behavior,and indiates the amount of reward the robot an reeive from that state. But in ourdevelopment framework, by using an e�et representation that is uni�able with the staterepresentation (entities), our robot is able to predit the future hanges in the environment,and this onstitutes also a base for planning [7℄.Lastly, our work is not an isolated behavior learning study, but is the part of a biggerdevelopmental framework for robotis [6℄, whih inludes robot ontrol, learning, planning,and oneptual development. In this framework, by making a robot learn generi a�ordanerelations between its behaviors and the environment, we investigate how suh an approahwould perform in solving various problems in robotis [13, 79, 17, 78, 81, 7℄.
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