

ARCHITECTURE SPECIFICATION OF SERVICE-ORIENTED SYSTEMS

THROUGH

SEMANTIC WEB TECHNOLOGIES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

VELİ BİÇER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2007

Approval of the thesis:

ARCHITECTURE SPECIFICATION OF SERVICE-ORIENTED SYSTEMS
THROUGH SEMANTIC WEB TECHNOLOGIES

submitted by VELİ BİÇER in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ali Doğru
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ali Doğru
Computer Engineering Dept., METU

Asst. Prof. Dr. Tolga Can
Computer Engineering Dept., METU

Dr. Meltem Turhan Yöndem
Computer Engineering Dept., METU

Dr. Aysu Betin Can
Informatics Institute, METU

 Date: 14 August 2007

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last name : Veli Biçer

Signature :

iv

ABSTRACT

ARCHITECTURE SPECIFICATION OF SERVICE-ORIENTED SYSTEMS
THROUGH SEMANTIC WEB TECHNOLOGIES

Biçer, Veli

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali Doğru

August 2007, 87 pages

This thesis presents a semantic-based modeling approach for describing Service-

Oriented Architectures (SOA). Ontologies are utilized as a major representation

mechanism for describing various elements available in the architecture. The

methodology proposes an architecture specification mechanism to constuct a

unified ontology that enables transition from design concerns to the modeling

elements. A multi-level modeling is also achieved by employing Model-Driven

Engineering (MDE) techniques to describe various models at different stages of

the software architecture. This aims to organize service-oriented models within a

number of architecture viewpoints in order to provide an architectural perspective

for SOA. The use of ontologies for model specification also allows us to make use

of ontology mapping to specify the transformation between different models.

Additionally, we present a case study to demonstrate the proposed methodology on

a real-world healthcare scenario.

Keywords: Service-Oriented Architecture, Model-Driven Engineering, Ontology

v

ÖZ

SEMANTİK WEB TEKNOLOJİLERİ KULLANARAK SERVİS-YÖNELİMLİ
SİSTEM MİMARİSİNİN BELİRLENMESİ

Biçer, Veli

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Assoc. Prof. Dr. Ali Doğru

Agustos 2007, 87 sayfa

Bu tezde, servis-yönelimli sistemlerin geliştirilmesi için semantik tabanlı bir

modelleme yaklaşımı sunulmaktadır. Mimaride bulunan farklı bileşenlerin

gösterimi için ontolojilerden faydalanılmıştır. Uygulanan metod, mimarinin

belirtilmesi için birleşik bir mimari ontolojisi yaratmayı öngörmektedir. Böylelikle

tasarım hedeflerinden modelleme bileşenlerine bir geçiş yapabilme hedeflenmiştir.

Ayrıca, çok katmanlı modellemede yapabilmek için model güdümlü mühendislik

tekniklerinin de kullanılması sağlanmıştır. Bu sayede farklı katmanlardaki servis-

yönelimli modeller değişik bakış açıları içinde organize edilip mimari bir yapı

sunmaktadır. Ontolojilerinin model gösterimi için kullanımı sayesinde ontoloji

dönüşüm tekniğinin model transformasyonu için kullanımı sağlanmıştır. Önerilen

metod sağlık alanında bir gerçek hayat senaryosu ile örneklendirilmiştir.

Anahtar Kelimeler: Servis Yönelimli Mimari, Model Güdümlü Mühendislik,

Ontoloji

vi

To my family

vii

ACKNOWLEDGMENTS

I thank my advisor Assoc. Prof. Dr. Ali Doğru for his guidance, expertise, and

patience throughout this research. With his support, this study has been an

invaluable learning experience for me. It has really been an honor to work with

this consummate professional.

It may be unusual to thank an institution; nevertheless I feel the need to thank

Middle East Technical University for providing such an excellent environment for

self-development. I am very grateful to the people who built this splendid

institution and put their efforts as members over the years.

I would like to express my thanks to my colleagues at Tepe International Inc.,

Erdal Özkazanç, Nejat Serpen, Ömer Hotomaroğlu, Volkan Er, İlyas

Hacıömeroğlu, Tolga Özdemir and Murat Güneş, for their help and support during

my graduate study.

I also would like to express my special thanks to my friends Buğrahan Akçay,

Cengiz Togay, Coşkun Anaç, Erkan Vural, Mustafa Diken, Şeref Arıkan and Zafer

Serbest for their morale support.

Finally, I would like to express my deepest gratitude to all members of my family,

especially my mother Gülten Biçer and my wife Kader Biçer, for their love,

understanding, and patience.

viii

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ ... v

ACKNOWLEDGMENTS...vii

TABLE OF CONTENTS...viii

LIST OF TABLES .. x

LIST OF FIGURES.. xi

LIST OF ABBREVIATIONS ..xiii

CHAPTERS .. 1

1. INTRODUCTION... 1

1.1. Status of enterprise software systems.. 2

1.2. Multitude of service-oriented technologies... 3

1.3. Related Concepts... 5

1.4. Utilizing ontologies for architecture specification of SOA..................... 6

1.5. Outline of the Thesis ... 7

2. SERVICE-ORIENTED COMPUTING .. 8

2.1. Foundations of Service-Oriented Computing ... 8

2.2. Service Composition ... 12

2.2.1. Business Process Execution Language (BPEL) 14

2.2.2. Web Services Choreography Description Language (WS-CDL) .. 15

2.2.3. ebXML Business Processes (ebBP) ... 16

2.3. Service-Oriented Management.. 17

2.4. Service-Oriented System Engineering .. 20

3. MODEL-DRIVEN ENGINEERING .. 24

3.1. Model Driven Architecture ... 25

ix

3.2. ATLAS Model Management Architecture.. 27

4. SEMANTIC WEB TECHNOLOGIES ... 31

4.1. Resource Description Framework (RDF) ... 31

4.2. RDF Schema (RDFS).. 32

4.3. Web Ontology Language (OWL).. 33

4.4. Description Logics .. 35

4.5. Sesame... 37

4.6. Protégé... 39

4.7. Ontology Mapping with OWLmt.. 40

5. SEMANTIC-BASED MODELLING OF SERVICE-ORIENTED

ARCHITECTURES .. 44

5.1. Overview of the Methodology .. 44

5.2. Architecture Specification... 48

5.3. Domain Analysis ... 52

5.4. Model Specification .. 54

5.5. Using Ontology Mappings for Model Transformations........................ 60

6. SERVICE-ORIENTED SYSTEM ENGINEERING IN PRACTICE 62

6.1. Healthcare Scenario... 62

6.2. Engineering a Service-Oriented Clinical MPOC Application

Architecture... 68

7. CONCLUSION ... 79

7.1. Future Work .. 80

REFERENCES.. 82

x

LIST OF TABLES

Table 1 Feature Comparison between ATL and OWLmt 61

Table 2 Concerns addressed by features .. 69

Table 3 IHE Patient Identifier Cross-Referencing Profile Actors.......................... 73

Table 4 IHE Patient Identifier Cross-Referencing Profile Transactions................ 73

Table 5 Top Level Similarities between IHE/UML and ebBP Concepts 76

xi

LIST OF FIGURES

Figure 1 The general service interaction pattern.. 9

Figure 2 Overview of Enterprise Service Bus connecting various platforms 11

Figure 3 Service Aggregator .. 12

Figure 4 Choreography and Orchestration ... 14

Figure 5 A Conceptual Architecture for Service-Oriented Management 18

Figure 6 Basic Autonomic Computing Architecture.. 20

Figure 7 IEEE Std 1471-2000 Conceptual Model [21].. 22

Figure 8 Definition of Models.. 25

Figure 9 Models and Transformations in MDA... 26

Figure 10 Graphical Representation of KM3 Meta-meta Model 28

Figure 11 An Example Meta-model in KM3 for specifying XML Documents..... 28

Figure 12 An example ATL Transformation ... 30

Figure 13 An example RDF graph and corresponding triples 32

Figure 14 An example RDFS ontology.. 33

Figure 15 An example OWL ontology in RDF/XML Syntax................................ 35

Figure 16 An example TBox.. 36

Figure 17 An example ABox ... 37

Figure 18 Sesame Architecture .. 38

Figure 19 An Example Select Query.. 39

Figure 20 Protégé Ontology Editor .. 40

Figure 21 Ontology Mapping Process in OWLmt ... 42

Figure 22 OWLmt GUI .. 43

Figure 23 Service-Oriented Development Hierarchy... 45

Figure 24 Overview of Methodology... 46

xii

Figure 25 Architecture Specification Process .. 48

Figure 26 Graphical Representation of Architecture Specification Ontology 50

Figure 27 Relationships among Concerns, Features and Viewpoints.................... 51

Figure 28 Cardinality-based Feature Model Example ... 53

Figure 29 Overview of Feature Model Ontology... 53

Figure 30 Kernel Meta-meta-model Class Hierarchy .. 55

Figure 31 Example XML Meta-model defined as sub-ontology 56

Figure 32 Specifying the connections among meta-model elements 57

Figure 33 Example “children” Reference from Element to Node 58

Figure 34 SeRQL query to retrieve metamodels from repository.......................... 59

Figure 35 SeRQL query to retrieve packages in XML_DSL metamodel 59

Figure 36 SeRQL query to retrieve contents of XML package 59

Figure 37 SeRQL query to retrieve the properties of Node class 60

Figure 38 An Example Process Flow of IHE Radiology Scheduled Workflow 66

Figure 39 Feature Model for Clinical Mobile Point-of-Care Application 69

Figure 40 UDDI Meta-model Classes and Viewpoint ... 70

Figure 41 Models and Levels in Radiology Service Viewpoint 71

Figure 42 The portion of UML 2.0 Meta-model around Interaction with the classes

created by extending KM3 ontology.. 72

Figure 43 IHE Patient Identifier Cross-Referencing Profile Classes..................... 74

Figure 44 ebXML Business Process classes defined by extending KM3 ontology75

Figure 45 Mapping Definition in OWLmt between IHE/UML and ebBP Meta-

models .. 76

Figure 46 Specifying Mappings among Class Properties 78

xiii

LIST OF ABBREVIATIONS

AMMA : Atlas Model Management Architecture

ATL : Atlas Transformation Language

BPEL : Business Process Execution Language

BPMN : Business Process Modeling Notation

CCOW : Clinical Context Management Specification

CCR : Continuity of Care Record

CDA : Clinical Document Architecture

CIM : Computation Independent Model

CPP/CPA : Collaboration Protocol Profile/Agreement

DICOM : Digital Imaging and Communications in Medicine

DSL : Domain-Specific Language

EBBP : Electronic Business XML Business Process

EHR : Electronic Healthcare Record

ESB : Enterprise Service Bus

HL7 : Health Level Seven

IEEE : Institute of Electrical and Electronics Engineer

IHE : Integrating Healthcare Enterprises

ISM : Implementation Specific Model

KM3 : Kernel Meta-Meta Model

MDE : Model-Driven Engineering

MDA : Model-Driven Architecture

MOF : Meta Object Facility

OMG : Object Management Group

OWL : Web Ontology Language

xiv

P2P : Peer-to-Peer

PIM : Platform Independent Model

PSM : Platform Specific Model

QVT : Query/View/Transformation

RDF : Resource Description Framework

RDFS : Resource Description Framework Schema

SOA : Service-Oriented Architecture

SOAP : Simple Object Access Protocol

SOC : Service-Oriented Computing

SOSE : Service-Oriented System Engineering

UDDI : Universal Description, Discovery and Integration

URI : Uniform Resource Identifier

W3C : World Wide Web Consortium

WSDL : Web Service Description Language

WS-CDL : Web Service Choreography Description Language

WSFL : Web Service Flow Language

WSML : Web Service Modeling Language

WSMO : Web Service Modeling Ontology

WSMX : Web Service Modeling Execution Environment

XML : Extensible Markup Language

1

CHAPTERS

1. INTRODUCTION

Service-oriented architecture (SOA) and Web service technologies are opening a

new era in computing with the promise of a complete application architecture that

can deliver its functions across World Wide Web by using the emerging standards

and a distributed system model. It is the latest software trend built on the advances

in software engineering following the way from monolithic applications into SOA,

through structured, object-oriented and component-based software development.

The first generation of SOA has already been taken place with the advent of basic

service engineering mechanisms to implement Web services to issue requests to

others and to enable publishing, description, and discovery these services[1]. A

new generation is already underway in terms of semantic Web services brings a

new vision on top of this basis in order to create more dynamic service-oriented

frameworks and increase the level of automation[2].

As presented in Section 2, there are various standards and concepts introduced

through service-orientation in order to better utilize different aspects of enterprise

systems. This situation provides some benefits such as a clear separation of

concerns in terms of service creation, provisioning, composition, and management,

but presents a complexity in the integration of the service-oriented concepts with

enterprise application architectures in a seamless way. It is mainly due to the fact

that the existence of these various technologies with their own conceptual models

necessitates an architectural view for the alignment of the models within the

enterprise systems. Additionally, it is a more challenging task than the traditional

software architecture design, since the technologies come with very distinctive

promises such as self-adaptability, runtime service binding, dynamic composition

and semantic mediation. These characteristics of SOA require a software

2

engineering methodology that allows the enterprises to effectively analysis, design

and deploy service-oriented systems.

To propose a powerful mechanism in an effort to respond to the need of defining

SOA, we develop an architecture specification infrastructure. Our approach

leverages models in different layers of SOA technology stack by utilizing

ontologies for a common foundation. This also enables the collaboration of various

techniques in architecture specification such as analyzing the domain, defining

various viewpoints and specifying the elements of the architecture. A multi-level

modeling is employed to enable the applicability of high-level models to a variety

of technologies. Although a complete methodology is foreseen and defined, this is

solely done to present a context for the main contribution of this thesis - that is

ontology-based architecture specification.

1.1. Status of enterprise software systems

Software systems have become a major part in modern enterprises providing a

number of opportunities to change the way we conduct business. Today, in almost

every domain, software is a dependable component to optimize process and

knowledge. This reliance on software makes it a core component of today’s

business environments and a major source of innovation and growth.

Despite the growing dependence, software engineering faces new challenges in

software development and maintenance due to the scale and complexity of the

software systems and ever-changing technological world. Because there is an

increasing demand from the users for modern software systems to attain precise

characteristics such as distribution, agility, reliability, sustainability, flexibility and

security, the software engineering community deals with radical paradigm shifts to

ensure the evolution and quality of the software and to integrate emerging

technologies into enterprise systems. There is a strong correlation between the

ability of an enterprise to manage the complexity of its information systems and its

capability to adapt to rapid business changes. This enables the enterprises to

pursue fundamental transformation in order to gain a competitive advantage [3].

3

In order to better cope with the complexity of software systems at enterprise level,

there is a recent trend which originates from perceiving all resources as services.

In this scope, SOA provides many opportunities as a major computation paradigm.

It utilizes the services and related service-oriented technologies to offer primary

enabling technology to realize interconnected systems working in a single

information space. Although SOA has been introduced to cope with internal and

external application integration, the potential benefits of SOA are even much

bigger in software engineering. First, SOA has successfully achieved the idea of

separation of concerns by successfully adopting different concepts from various

areas of computer science. Increasingly, the notion of service-oriented systems

marks another step away from rigid, monolithic systems towards highly flexible

dynamic and adaptive systems.

However, the availability of the technology is not the only necessary factor to

achieve the inventive potential of SOA. The real challenge actually lies in the

effective use of the service-oriented technologies to assemble systems from a set

of services and service-oriented middleware available in different contexts with

minimum effort and maximum reusability as well as maintaining the agility,

autonomy and interactivity. This is hard to achieve without a preceding strategy to

take place for the alignment of the business requirements and the technologies

offered by the platform [4].

1.2. Multitude of service-oriented technologies

SOA, in fact, depends on very basic principles: providing services through

standardized interfaces and allowing the external applications to use the distributed

functions of these services in a message-oriented way. However, the requirements

of the modern software architectures such as service composition, semantic

mediation, automatic discovery, runtime management/monitoring, security,

reliable messaging, transactions, event notification etc. bring about the need to add

many logical layers on top of the services. To provide these standardized complex

functionalities, various service-oriented middleware platforms have been

developed by open source software community [5-9] or commercial IT vendors.

As these middleware platforms continue to change and evolve and enterprise

4

application architectures tend to contain a broad mix of them, this causes a

portfolio complexity in realizing service-oriented software systems [10].

By employing these logical layers with the corresponding middleware platforms,

the service-oriented systems start with the idea of enabling a business-oriented

design where the services mainly replaces the previous idea of business

components [11] as coarse-granular software modules and service compositions

enable the specification of the business processes on top of the services. However,

it is at the enterprise level that most of the complexities of service-oriented system

engineering occur since the service-orientation is not sufficient by itself to address

many challenges of enterprise development. Over the recent years, service

engineering community has proposed various approaches to align the business

with the service-oriented architectures [12-15]. However, the research

opportunities in service-oriented computing, as stated in [16], will continue to add

many layers to the service-oriented technology stack in the future increasing the

complexity for the enterprises in the adoption and implementation of service-

oriented architectures. In order to realize an effective system development,

service-orientation should be employed as an underlying distributed computing

platform offering complex functionalities for enabling a design process. Existence

of huge and enormously complex diversity within SOA concept presents a

challenge to achieve this when applied to enterprise-wide service-oriented

systems.

Therefore, through a particular software engineering methodology, the alignment

of various service oriented models within enterprise system architecture is needed.

This is mostly due to the fact that traditional software engineering paradigms for

object-oriented and component-based development cannot be straightforwardly

applied to service-oriented systems due to the very distinctive characteristics of

SOA [16]. In addition, the design of service-oriented software architectures is a

more challenging task than the traditional software architecture design, since SOA

technologies come with the promises such as composition, ad-hoc service binding,

adaptability or semantic mediation.

5

1.3. Related Concepts

Recent advances in software engineering built around the Model-Driven

Engineering (MDE) concept provide a complementary approach to SOA that can

facilitate the development of service-oriented systems. By utilizing MDE, it is

possible to enable model-centric service-oriented system development by

introducing various service-oriented technologies as underlying platform models

in the architecture. This differs from the general-purpose modeling approaches to

service-oriented system engineering, as presented in [17, 18], which provides a

black-box modeling approach exposing only a top-level model with the particular

model compilers or tools. On the other hand, the use of MDE enables a

methodology progressing from highly specialized domain-specific models to the

service-oriented technology models. This is, in fact, a multi-level modeling

approach in which each level involves different kinds of models at different stages

of abstraction and the transition between the levels are handled with model

transformations [19]. This aims to allow a better alignment of business

requirements, domain-specific abstractions and constraints with various service-

oriented technologies.

In addition, a particular SOA implementation to be specified as a set of models is

also distinguished by the features it supports, where a feature is an increment in

system functionality. Feature Models [20] are the mostly used technique to

identify the functional capabilities based on the problem domain within a

hierarchy. Through feature modeling, we are able to capture the domain

requirements as features that are organized and classified in a formal way. The

features also drive the further steps in architecture specification by acting as a

common ground between the problem and the solution domains.

Finally, to organize this variety of information that is essential to service-oriented

system design, the previous achievements in software architecture field can be

employed. Over the last decade, software architecture has emerged as a way to

specify the overall system architecture by shifting the focus away from the

implementation issues towards a more abstract level of detail. According to [21],

we can define the software architecture as “fundamental organization of a system,

6

embodied in its components, their relationships to each other and to the

environment, and the principles guiding its design and evolution”. As the

importance of the architectural design increases over the years, the approaches to

software architecture has changed from the traditional component and connector

approach to the composition of a set of architectural design decisions [22]. This

requires the architectural decisions to be captured as first-class representations

with clear semantics in addition to the documentation as proposed in [23] and [24].

1.4. Utilizing ontologies for architecture specification of SOA

In order to achieve an architecture specification, we propose a semantic-based

modeling framework for SOAs. Ontologies play a key role in the proposed

methodology in order to describe the various stages of the service-oriented systems

engineering. They allow the system developers to capture a range of service-

oriented and domain-specific models and place them into an architecture

specification. Additionally, system features and other architectural elements can be

specified by the ontologies with their unique relationships and semantics.

By employing ontologies and related semantic Web technologies as an underlying

infrastructure, we have developed the following methodology for this thesis work:

• A two-phase methodology is proposed to develop SOAs by separating the

architecture specification and application engineering processes. Since

SOA involves a number of technologies and platforms to be precisely

aligned prior to application engineering, architecture specification is a

required step to construct systems at an enterprise-level.

• An architecture specification ontology is provided by extending the all-

purpose IEEE standard[21]. With the purpose of enabling a transition from

stakeholders’ concerns to the service-oriented models, it is supplied with

the required references to the other specifications such as features and

MDE elements.

• A feature model ontology is provided to represent the functional

capabilities of the SOA in consideration. The features in the model are also

7

referred from the architecture ontology as the elements that bridge the

stakeholders’ concerns to one or more architectural viewpoints.

• A model specification ontology is developed based on the previous

achievements in MDE to represent any service-oriented and domain-

specific model in the architecture specification. A way of managing the

models in an ontology repository is also demonstrated.

• Ontology mapping is employed in the architecture to enable the

transformation of our ontology-based models. The mapping definitions

together with the model specifications are also encapsulated in the

architecture within the viewpoints which can be regarded as basic building

blocks of SOAs.

1.5. Outline of the Thesis

In this chapter we provide a brief introduction to service-oriented system

development. In Chapter 2, we focus on the advances in SOA by introducing the

common standards and technologies available in service-oriented technology

stack. In Chapter 3, we give the idea of MDE and present the current approaches to

MDE. Semantic Web vision and technologies are also presented in Chapter 4 as

background information. In Chapter 5, we present the details of the proposed

approach by stating a two-phase methodology, namely platform engineering and

application engineering. The details of the methodology are given with the clear

motivations and illustrations. A case study is conducted in Chapter 6 in order to

show the use of the methodology and present an evaluation based on scenario in a

healthcare domain. Finally, in Chapter 7, we present our conclusions and address

directions for possible future work.

8

2. SERVICE-ORIENTED COMPUTING

As the importance of Web and distributed applications increase, Service-Oriented

Computing (SOC) has emerged as a new approach that uses the services and

service-related technologies to realize distributed and flexible architectures in

Web-enabled settings. A key outcome of this approach is expected to be the

capability to develop applications in a timely and interoperable way by

overcoming the heterogeneity-related difficulties of platforms. Services are the

basic entities in SOC as autonomous software components which can be described,

published, discovered and dynamically assembled to perform business activities

and transactions. Since services are made available in a way that is independent of

any platform, loose coupling is achieved between the service provider and service

user enabling more flexibility in software systems.[1, 16, 25]

In a broad sense, SOC covers a range of subjects that find their origins in various

disciplines of computer science. These subjects are merged together in

sophisticated ways to find potential solutions to the increasing demands of modern

enterprises[2], to open new perspectives in today dynamic business

environments[26], and to boost ongoing innovation and research[16]. This section

provides the necessary background about many concepts and technologies that

coexist within the scope of SOC, today.

2.1. Foundations of Service-Oriented Computing

As the distributed computing gains more attention, the drawbacks of the

distributed object-oriented systems become more apparent in terms of handling

latency, partial failures and concurrency and the lack of shared memory

access[27]. This means that distributed systems comprise unique characteristics

different from local computing which make the vision of unified objects of 1990s

very difficult to achieve. On the contrary, Service-Oriented Architecture supported

with Web service technologies are proposed as a new distributed system

architecture to address these characteristics such as message orientation, self-

description, platform-neutrality, or network orientation [28].

The most typical and basic scenario for service-orientation is the one depicted in

Figure 1. Here, the service provider defines a service-description to be published

to the service registry. This description is then discovered by the service consumer;

used to bind with the provider; and to interact with the service. The service

registry, consumer and provider are all software agents providing or using some

services. The interaction takes place as an exchange of the messages among these

agents.

Figure 1 The general service interaction pattern

The most promising example to realize service-oriented architectures, today, is the

Web services technologies. They rely on open Web standards such as Extensible

Markup Language (XML), Simple Object Access Protocol (SOAP) or Web

Service Description Language (WSDL). These standards enable the enterprise

software to be developed in a distributed fashion with different tools and platforms

supplied by different vendors- joining the software modules in different

organizational departments or, possibly, outside the enterprise [25]. Additionally,

the services to perform more complex business transactions can be realized,

9

10

possibly on the fly, through the combination or configuration of the available

services.

The essential Web Service specification and description depends on three basic

standards: Simple Object Access Protocol (SOAP), Web Service Description

Language (WSDL) and Universal Description, Discovery, and Integration (UDDI).

SOAP [29] is an XML-based communication protocol for exchanging information

between agents apart from their platforms. It is defined as a lightweight protocol

for exchange of structured and typed information in a decentralized, distributed

environment. It includes three main parts: an envelope to specify what is in a

message and how to process it, a set of encoding rules for expressing instances of

application-defined data types, and a convention for representing remote procedure

calls and responses. SOAP can potentially be used in combination with a variety of

other protocols; but, mainly used in combination with HTTP protocol to transport

XML-encoded data.

WSDL [30] is a service description format used to describe the details of the

service interfaces in a machine-processable XML format. It specifies the

operations, messages, and a set of endpoints operating on messages to bind to a

concrete network protocol. Although it is extensible to allow description of

endpoints and their messages regardless of what message formats or network

protocols are used to communicate, it is mainly used in conjunction with SOAP

1.1, or HTTP GET/POST. WSDL acts as a contract between the service provider

and consumer to inform the consumer agent on how to invoke a service and what

the data to be exchanged is.

UDDI [31] is another description protocol for distributed Web-based information

registries of Web services - essentially repositories that store information about

available web services. Service Providers can register information about the Web

services they offer with these registries, and this information can then be

discovered and accessed by Service Requestors. A key concept within UDDI is

UDDI business registration - an XML based file used to describe a business entity

and its Web services. Information captured within this file includes contact based

information (business address, identifiers etc), categorizations of the business and

services (using taxonomies, etc), and technical information (specifications of the

services, etc). This information can then be used to help service requestors locate

relevant services.

Although these basic standards and specifications are sufficient to realize a simple

scenario as shown in Figure 1, the requirements of the modern software systems

can be more demanding. For instance, the mediation of the exchanged messages,

management of the metadata about agents and services, dynamic discovery,

adaptation and composition are just some examples required to build more

complex distributed application architectures. Recently, a number of middleware

technologies and platforms have been developed to enable these complex

functionalities. Enterprise Service Bus (ESB) is one of these middleware

technologies aiming to provide an integration layer inserted between the service

consumer and other agents. ESB is an open-standards based message backbone

with a set of infrastructure capabilities to promote loose coupling of the systems

and to break up the integration logic into distinct manageable pieces [32].

Figure 2 Overview of Enterprise Service Bus connecting various platforms

11

Figure 2 shows a simplified view of an ESB that integrates a various applications

and technologies through a messaging backbone. In addition to the Web services

developed in different platforms, ESB architecture allows the integration of the

other applications such as Java/C# applications, mainframes, databases or portals.

These applications are integrated into ESB through service containers and

interfaces. A service container is a managed environment that hosts, manages,

dynamically deploys services and binds them to external resources, e.g., data

sources, enterprise and multi-platform applications.

2.2. Service Composition

The basic specifications of SOA enable the essential capabilities such as

description, discovery and communication. Service composition provides a higher-

level layer on top of these capabilities to allow the developers to aggregate

multiple services into a composite added value services and enables the

specification and management of integrating business processes [25]. This is an

important functionality in creating service-oriented systems since the developers

can easily create new services by combining the available basic services in order to

enable integration through business processes that span organization boundaries.

This process introduces a new role in service-oriented computing, namely service

aggregator [32], which acts both as a service consumer and service provider to

provide the combined functionality. This is depicted in Figure 3.

Figure 3 Service Aggregator

12

13

A number of specifications have emerged for service composition based on Web

service technologies, after the core Web service capabilities are fully developed.

These specifications provide different ways to define service compositions with

their own meta-models and notations. Choreography and orchestration are

introduced as two terms that describe and categorize the service composition

specifications according to their very distinctive characteristics [15, 33].

Choreography specifies the interactions among multiple parties together with the

message exchanges, rules of interaction and conditions. The coordination is

distributed in choreography differing from orchestration, which coordinates the

sequence of the interactions from the perspective of a single party based on a

central control. Choreography provides a global view of the coordination of the

service composition whereas orchestration specifies executable business logic

which is defined as a long-lived, transactional process [34]. An illustration of

choreography and orchestration is shown in Figure 4. Orchestration is mainly

addressed by the languages such as Web Service Flow Language (WSFL) [35] and

XLANG [36], but they are, then combined into a most representative language,

namely Business Process Execution Language (BPEL) [37]. In addition, a number

of standards addresses the choreography specification such as Web Services

Choreography Description Language (WS-CDL) [38], Business Process Modeling

Notation (BPMN) and ebXML Business Process (ebBP) [39] specification. In this

section, we give an overview of these widely accepted service composition

specifications.

Figure 4 Choreography and Orchestration

2.2.1. Business Process Execution Language (BPEL)

BPEL [37] is an XML-based language to describe orchestrations as a sequence of

Web service interactions from a single party’s point of view. It is built upon the

other Web service standards such as WSDL, SOAP, XML Schema and XPath. It

defines a model and grammar for specifying an executable business process based

on interactions between the party and its partners. These interactions are

coordinated to achieve a particular business goal with the specified operations and

business logic in the process.

A composition defined in BPEL is represented with the process element including

several element groups such as:

• Partner links: definition of a relationship with a partner by defining the

message and port types used in the interactions in both directions.

• Variables and intermediate data operations: Variables are the way of

managing the state of the business process by holding messages exchanged

with the partners. Various tasks can also be performed on variables such as

assign, or copy within the logic of the business process.

• Structural Activities: These activities define the order in which the basic

activities occur. They include the sequential control activities such as

14

15

sequence, switch and while as well as the concurrency and synchronization

with flow and event-handling with pick.

• Call activities: These are the activities to use (i.e. invoke) a Web service

provided by a partner or to provide a Web service operation with receive

and reply activities.

• Error handling: Errors are handled by using the fault handlers to catch and

deal with faults and the compensation handlers used to undo already

completed activities.

2.2.2. Web Services Choreography Description Language (WS-CDL)

WS-CDL [38] is an XML-based choreography language that describes cross-

enterprise collaborations of Web Services by defining their publicly visible

behavior. It provides a high level coordination layer by filling the choreography

gap that BPEL does not support. This enables the means to describe the

collaborations precisely by specifying the rules of engagements among the

partners. A WS-CDL model involves the following entities to specify the

choreographies:

• Role types, relationship types and participant types: These types describe

how the parties are capable of engaging in collaborations. The participants

are abstracted by the participant types and the observable behaviors

exhibited by the participant are represented as role types. All interactions

that occur between roles are also constrained by relationship types.

• Information type, variable and token: A variable contains information

about commonly observable objects in collaboration, such as the

information exchanged or the observable information of the role types

involved. A token is an alias that can be used to reference parts of a

variable. Information exchange variables, state capturing variables and

tokens have information types that define the type of information the

variable contains or the token references

16

• Choreography and choreography life-line: Choreography defines

collaborations between interacting participant types. The choreography

life-line expresses the progression of these collaborations.

• Channel type: A channel realizes a point of collaboration between

participant types by specifying where and how information is exchanged.

• Activities and ordering structures: Activities describe the actions

performed within choreography. Ordering structures combine activities

with other ordering structures in a nested structure to express the ordering

rules of actions performed within choreography.

2.2.3. ebXML Business Processes (ebBP)

ebBP [39] specification aims to describe choreographies among different partners

based on the ebXML architecture. It facilitates the business processes as follows:

• In order for enterprises to collaborate with each other, they must first

discover each other and the products and services they offer. ebXML

provides a registry/repository architecture specification where such

information can be published and discovered. A repository is a location (or

a set of distributed locations) where a document pointed at by the registry

resides and can be retrieved by conventional means (e.g., http or ftp). The

repository is capable of storing any type of electronic content, while the

registry is capable of storing metadata that describes content. The content

within the repository is referred as “repository items” while the metadata

within the registry is referred as “registry objects”.

• An enterprise needs to determine which business processes and documents

are necessary to communicate with a potential partner. Registry metadata

can be used for searching relevant documents and business processes. A

Collaboration Protocol Profile (CPP) provides the details of how an

organization is able to conduct business electronically. It specifies such

items as how to locate contact and other information about the

organization, the types of network and file transport protocols it uses,

17

network addresses, security implementations, and how it does business by

providing a reference to a Business Process Specification. A Business

Process Specification Schema (ebBP) in ebXML provides the definition of

an XML document that describes how an organization conducts its

business. While the CPA/CPP deals with the technical aspects of how to

conduct business electronically, the ebBP deals with the actual business

process.

• After the enterprises discover each other, they need to determine how to

exchange information. The Collaboration Protocol Agreement (CPA)

specifies the details of how two organizations have agreed to conduct

electronic business. It is formed by combining the CPPs of the two

organizations.

2.3. Service-Oriented Management

Management in a SOA environment is a required functionality in order to better

monitor and utilize the distributed resources and facilitate the management tasks.

Unlike the conventional computing, in which the management operation mostly

deals with the operation of the hardware resources, service-oriented management

enables the management of various distributed information technology resources

ranging from services, service platforms and business processes to the autonomous

systems as stated in the vision of autonomic computing [40]. Therefore, this is a

more complex task since it considers various factors such as economic activities,

failure detection, service-level agreements, capacity planning and policy

matchmaking [2].

A generic conceptual architecture for the service-oriented management is

introduced in [41] as shown in Figure 5. Each managed resource in the architecture

is exposed by a management interface which provides the required operations,

properties and events to the management applications. Managed resource is

supplied with the metadata and other support mechanism in order to specify the

resource properties and relationships and provide APIs for performing various

tasks. The interface is used by the resource manager for performing management

operations such as monitoring, analyzing planning and execution.

Figure 5 A Conceptual Architecture for Service-Oriented Management

This conceptual architecture is addressed by many specifications currently in use.

Web Services Management Framework (WSMF) [42] is one of these

specifications aiming to provide a logical architecture for the management of

resources through Web services. A managed object in WSMF provides a set of

management capabilities by implementing management interfaces described using

WSDL. Therefore, a managed object provides a management Web service to

enable a number of management functions, including:

• Discovery of the management Web service descriptions

• Discovery of the capabilities and event notifications

• Subscription to the events and notifications

• Expose additional management operations for six core categories such as

monitoring, discovery, control, performance, configuration, and security

The use of Web service technologies in WSMF offers a platform-neutral model for

management. WSMF provides the required data type schemas, WSDL templates

and guidelines for describing manageability information (WSMF-Foundation),

rules for advertising, subscribing, producing and consuming events (WS-Events),

18

19

and an execution environment architecture to perform management (WS-

Management).

Web Services Distributed Management (WSDM) is another specification which

aims to combine service management and application channels developed in

accordance with SOA principles. It delivers two sets of specifications:

Management Using Web Services (MUWS) addresses the use of Web services

technologies as the foundation of a modern distributed systems management

framework to facilitate interactions between managed resources and management

applications. Management of Web Services (MOWS), on the other hand, addresses

the specific requirements for managing Web services themselves. In WSDM, Web

services are the platform for providing essential distributed computing

functionality, interoperability, loose coupling, and implementation independence.

The MOWS specification is mainly based on the MUWS specification’s concepts

and definitions.

Recently, the WSDM specification is mostly used to realize the vision of

autonomic computing [43]. It mainly provides a solid base to specify the

touchpoints which are autonomic computing system building blocks implementing

sensors and effectors and exposing them through a manageability interface.

Autonomic computing architecture extends this by building a autonomic manager

which consists of one or more control loops to dynamically manage various

aspects of a computing infrastructure. This is illustrated in Figure 6.

Figure 6 Basic Autonomic Computing Architecture

2.4. Service-Oriented System Engineering

The primary aim of service-oriented computing is to utilize services and the

related technologies in order to support the development of low-cost, flexible,

distributed and business oriented software systems. Beside some uses of Web

service technologies for application integration at inter-enterprise level, the real

potential of the service-oriented computing is enabled when the enterprises

effectively build software architectures by using the emerging service-oriented

concepts and platforms [16]. Service-Oriented System Engineering (SOSE) is

concerned with methodologies and tools to build enterprise applications through

employment and coordination of loosely-coupled, distributed services and

available service-oriented concepts, standards and middleware. As service-oriented

technologies gain significant acceptance by software industry, this becomes a

critical issue in order to productively design large systems, and profit from the

benefits of service-orientation.

As any other software system, a service-oriented system requires an architectural

design. This is mainly due to the fact that the complexity of the service-oriented

systems can be huge considering the very distinctive characteristics of the service-

oriented computing such as the number of existing standards and middleware

20

21

platforms, distributed nature of execution context, transaction management, inter-

organizational security and trust, service provisioning, composition, discovery and

coordination. A generic conceptual framework has been provided by [21] as a

formal standard to address architectural description of software-intensive systems.

It establishes the following main goals for the architectural design:

• Introducing the various stakeholders of the system, each with specific

concerns (i.e. functionality, security, performance or reliability),

• Providing the architectural descriptions which contain particular design

artifacts and architectural views,

• Formalizing the views of the system, each of which address one or more

concerns of the system stakeholders,

• Linking each view to a viewpoint in order to establish the conventions and

determine the languages, models, modeling methods and analysis

techniques.

In the conceptual model as depicted in Figure 7, each system has an architecture

which is described by an architectural description. The system also evolves in an

environment and fulfils a specific mission. The architectural description contains

views and models for the organization of the system.

The concepts of view and viewpoint are very crucial in this model since the system

actors analyze the problem and solution domains by considering many viewpoints.

This process is also called viewpoint hopping in which different subjects at

different level of abstractions are explored during system analysis and design [44].

However, IEEE Std 1471-2000 does not specify any fixed set of viewpoints but

provides a reference to define them.

Figure 7 IEEE Std 1471-2000 Conceptual Model [21]

Service-oriented architecture, on the other hand, classifies a number of viewpoints

available during design process. Although these viewpoints are closely related

with each other, their definitions differ according to scope, context and the

concerns of the actors in system engineering process. Based on the technologies

and concepts presented in this chapter, we identify the following viewpoints:

• Service Component Viewpoint

• Service Data Viewpoint

• Service Choreography Viewpoint

• Service Orchestration Viewpoint

• Service Semantics Viewpoint

• Quality of Service Viewpoint

22

23

• Service Management Viewpoint

The activity of service-oriented system engineering utilizes these viewpoints to

offer mechanisms for the system integrators to perform the functional stages of the

system development. For design and development of the system, these stages

involve the service specification, composition, discovery and testing. For the

deployment, this involves the publication of the services. During runtime, the

execution, management and adaptation stages can be performed.

24

3. MODEL-DRIVEN ENGINEERING

With the aim of improving the productivity, assuring the quality and reliability,

and better managing complexity, Model-Driven Engineering (MDE) has emerged

as a new software development paradigm that leverages many approaches in a

synergistic way to meet the requirements in the development of modern software

systems. MDE uses the models and model technologies in order to provide the

level of abstraction for the system architects and developers to create software in a

simplified and standardized way [45]. This level of abstraction also leads to the

separation of concerns from business neutral descriptions and technology specific

implementations by expressing specific aspects of the system under development

as a set of models.

The basic entity in MDE is the model. A model is an abstraction specifying a

certain aspect of the system by formalizing the entities and the relationships in a

well-defined modeling language. A modeling language is used to express the

models with its well-defined, abstract syntax. This syntax, which is also

represented as a model, is called the meta-model of the model. In this respect, each

model conforms to its meta-model for its formal definition. Similarly, the meta-

models also conform to meta-meta-model which provides generic abstractions and

syntax for defining meta-models. A meta-meta-model can be stated as a model

which is its own reference model (i.e. it conforms to itself) [46]. This model

specification hierarchy is depicted in Figure 8.

In addition to the models, model transformations play a key role in MDE in order

to generate new or changed models from existing ones increasing the productivity

and decreasing development time. With the help of the meta-modeling technique,

the abstract syntax and semantics of the source and target models are clearly

defined, which is one of initial requirements to generalize a model transformation

approach. Based on the meta-models, a model transformation can be specified to

automate mapping of all source models to the target models. Although the idea of

transformation is not relatively new in computer science and software engineering,

MDE proposes a more generic and automatic approach supported with general

patterns and tools [47].

Figure 8 Definition of Models

3.1. Model Driven Architecture

A typical realization of MDE is provided by Object Management Group (OMG) in

its Model Driven Architecture (MDA) specification [48]. MDA is defined to have

a set of layers and transformations that provide a conceptual framework and

vocabulary for system development. There are four kinds of models as depicted in

Figure 9:

• Computation Independent Model (CIM) is used to specify the domain

model of the problem domain from a computation independent viewpoint.

25

• Platform Independent Model (PIM) specifies a view of the system in a

technology-neutral way.

• Platform Specific Model (PSM) represents the system with the details and

mechanisms of particular implementation platform.

• Implementation Specific Model (ISM) specifies the implementation of the

system using a particular programming environment and tools.

In order to introduce the models in MDA through their meta-models, Meta-Object

Facility (MOF) standard of OMG is used as a meta-meta model. The MOF

specification is used to model itself as well as other meta-models. It specifies the

shared structure, and semantics of models in a concrete syntax based on XMI.

Additionally, the new 2.0 version includes additional capabilities defined in

separate packages including support for identifiers, additional primitive types,

reflection, and simple extensibility through name-value pairs.

Figure 9 Models and Transformations in MDA

26

27

For the model transformations, MDA proposes the Query/View/Transformation

(QVT) specification which offers a declarative language with both textual and

graphical representations. A QVT transformation consists of one or more relations

to relate the source and target model elements by declaring the constraints that

must be satisfied by the elements. When the transformation is executed, these

relations are verified and enforced by manipulating the target model.

MDA approach provides a new perspective in software development by using the

model transformations to move from abstract descriptions of some aspects of a

system to more detailed and concrete models, and eventually to the code. It

classifies different kinds of models allowing the system architects and developers

to view the system from different perspectives. By separating the PSMs from the

domain and analysis models, it also aims to increase the long-term productivity of

high-level PIMs and CIMs by keeping them away from the refinements on the

platforms [49].

3.2. ATLAS Model Management Architecture

Another successful MDE implementation is the ATLAS Model Management

Architecture (AMMA) which presents a complete set of tools and technologies to

support the modeling process in software development [50]. It defines a

lightweight architecture similar to a software factory as described in [51]. In order

to introduce models to the AMMA, a Kernel Meta-meta-model (KM3) is specified

for describing meta-models. KM3 mainly aims to specify the domain-specific

languages (DSL) which are designed to be used for a particular set of tasks in a

domain, in contrast to general-purpose languages used for multiple application

domains[46]. A graphical representation of KM3 constructs is illustrated in Figure

10. Each meta-model based on KM3 is specified as a Metamodel instance, which

may include one or more Packages. Each package, then, includes a number of

ModelElements to be defined in the modeling process. An example meta-model in

KM3 textual format for specifying XML documents is shown in Figure 11.

Figure 10 Graphical Representation of KM3 Meta-meta Model

28

package XML {
 abstract class Node {

attribute startLine[0-1] : Integer;
 attribute startColumn[0-1] : Integer;
 attribute endLine[0-1] : Integer;
 attribute endColumn[0-1] : Integer;
 attribute name : String;
 attribute value : String;
 reference parent[0-1] : Element oppositeOf children;
 }

 class Attribute extends Node {}

 class Text extends Node {}

 class Element extends Node {
 reference children[*] ordered container :

 Node oppositeOf parent;
 }

 class Root extends Element {}
}

package PrimitiveTypes {
 datatype Boolean;
 datatype Integer;
 datatype String;
}

Figure 11 An Example Meta-model in KM3 for specifying XML Documents

29

Once the models are specified through their meta-models in KM3 format, AMMA

utilizes the model transformations in ATLAS Model Transformation Language

(ATL). The abstract syntax of ATL is defined by its own meta-model which

presents a hybrid language including declarative and imperative constructs to

specify unidirectional transformations [52].

A transformation starts with the module specification indicating the source and

target models. Then, a number of helpers can optionally be specified in order to

perform navigation over source models or associate read-only named values to

source model elements. The main components in an ATL specification are the

transformation rules which are used to express the actual transformation logic. A

rule states the source and target patterns to be matched in the models. During the

execution of the transformation, the source pattern is evaluated to a set of matches

in source models and the corresponding target pattern is created in the target

model. Figure 12 illustrates an example transformation from a class model to a

relational database.

module Class2Relational;
create OUT : Relational from IN : Class;

helper context String def: firstToLower() : String =
 self.substring(1, 1).toLower() +
 self.substring(2, self.size());

helper def: objectIdType : Relational!Type =
 Class!DataType.allInstances()
 ->select(e | e.name = 'Integer')->first();

rule Class2Table {
 from
 c : Class!Class
 to
 out : Relational!Table (
 name <- c.name,
 col <- Sequence {key}
 ->union(c.attr->select(e | not e.multiValued)),
 key <- Set {key}
),
 key : Relational!Column (
 name <- 'objectId',
 type <- thisModule.objectIdType
)
}

rule DataType2Type {
 from
 dt : Class!DataType
 to
 out : Relational!Type (name <- dt.name)
}
…

Figure 12 An example ATL Transformation

30

31

4. SEMANTIC WEB TECHNOLOGIES

The Semantic Web [53] technologies allow the information to be represented and

exchanged through formal techniques facilitating the processing of the descriptions

on the Web. Semantic Web adopts the idea of ontology, which is previously used

in Artificial Intelligence and Database communities, in order to formally model a

conceptualization and enable knowledge sharing between information resources

[54].

The recent demand in Semantic Web ontologies has increased as a result of the

growing need for knowledge management on a global scale. The studies to

provide a standard ontology language for Web have been pioneered by the World-

Wide Web Consortium (W3C). Based on the existing Web standards such as

Extensible Markup Language (XML), Unicode and Uniform Resource Identifier

(URI), various Semantic Web languages for ontology specification (e.g. RDF(S),

OWL), query (e.g. SPARQL, RDQL), and rules languages (e.g. SWRL, F-Logic)

are specified. In this section, an overview of these languages is provided as the

foundations of the Semantic Web. Later, the logic languages that form the

backbone of the Semantic Web languages are introduced. Additionally, existing

tools and platforms are presented in order to guide the semantic-based software

development.

4.1. Resource Description Framework (RDF)

The Resource Description Framework (RDF) [55] is the first language developed

specifically for the Semantic Web. It uses XML for syntactical representation and

URI for resource identification. As the name implies, RDF aims to add a machine-

processable metadata to the resources on the Web.

RDF describes the resources by the RDF-statements, which are actually the

subject–predicate–object triples. Subject identifies the thing the statement is about.

The property or characteristics of the subject is called the predicate which relates

the subject to a value of that property. This value is, then, called the object.

An object of a triple can, in turn, function as the subject of another triple, yielding

a directed labeled graph, where resources (subjects and objects) correspond to

nodes, and predicates correspond to edges. An example RDF graph and the

corresponding triples are shown in Figure 13.

#velibicer hasAddress #addressofveli
#addressofveli city “Ankara”
#addressofveli street “1050 Red Avenue”
#addressofveli country “Turkey”

Figure 13 An example RDF graph and corresponding triples

4.2. RDF Schema (RDFS)

RDF Schema (RDFS) provides the basic axioms and concepts to define a

lightweight ontology to describe RDF vocabularies [56]. Actually, it extends the

RDF with the expressions to define classes, class hierarchies, properties, property

hierarchies and some restrictions. Each RDF document, therefore, can be

interpreted according to the RDFS ontology it conforms. An example is-a

hierarchy is depicted in Figure 14.

32

Figure 14 An example RDFS ontology

RDFS depends on the RDF and XML as a representation mechanism. Although

the definitions of basic concepts such as classes, properties and is-a hierarchies can

be easily defined in RDFS, it is not very expressive compared with many other

ontology languages. This is the main motivation for developing more expressive

languages (e.g. Web Ontology Language) based on RDFS principles.

4.3. Web Ontology Language (OWL)

The Web Ontology Language (OWL) [57] extends the RDFS and RDF languages

in order to provide an expressive ontology language for Semantic Web. Unlike the

RDF(S) triples, it provides additional constructs and vocabularies as axioms or

assertions. OWL describes the structure of a domain in terms of classes and

properties. Classes can be names (URIs) or expressions. Furthermore, the

following set of constructors is also provided for building more complex class

expressions:

• owl:intersectionOf is used to link a class to a list of class descriptions as

their intersection. In other words, the intersection class represents the

individuals that are also the instances of all class descriptions in the list.

• owl:unionOf is used to link a class to a list of class descriptions as their

union.The union class represents the individuals that are also the instances

of at least one of classes in the list.

• owl:complementOf is used to state a class that represent exactly those

individuals that do not belong to the class that is the object of the

statement.

33

34

In OWL, properties can have multiple domains and multiple ranges. Multiple

domain (range) expressions restrict the domain (range) of a property to the

intersection of the class expressions. Two types of properties exists according to

the range: Object property links a class to another whereas data type property links

a class to a data value.

Additional axioms are used to make it possible to assert subsumption or

equivalence with respect to classes or properties. The following are the some of

axioms used in OWL: rdfs:subClassOf, owl:equivalentClass, rdfs:subPropertyOf,

owl:equivalentProperty, owl:disjointWith, owl:sameAs, owl:differentFrom,

owl:inverseOf, owl:transitiveProperty, owl:functionalProperty,

owl:inverseFunctionalProperty.

OWL has three sublanguages with different power of expressiveness- OWL Lite,

OWL DL, and OWL Full:

• OWL Lite is the least expressive sublanguage of OWL which is mainly

used for the classification and simple constraint specification. It supports

basic cardinality restrictions, local range restrictions, existential

restrictions, equality, and various types of properties (inverse, transitive,

and symmetric).

• OWL DL adds full support for (classical) negation, disjunction, cardinality

restrictions, enumerations, and value restrictions compared to OWL Lite.

The element “DL” comes from the resemblance to an expressive

description logic language.

• OWL Full allows both the specification of classes-as-instances and the use

of language constructs in the language itself, which thereby modifies the

language.

OWL uses RDF/XML as its normative syntax. An example ontology is shown in

Figure 15.

35

<rdf:RDF>
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Engineer">
 <rdfs:subClassOf rdf:resource="#Person"/>
 </owl:Class>
 <owl:Class rdf:ID="MScStudent">
 <rdfs:subClassOf rdf:resource="#Student"/>
 </owl:Class>
 <owl:Class rdf:ID="Person"/>
 <owl:Class rdf:ID="Student"/>
 <MScStudent rdf:ID="velibicer"/>
 <Engineer rdf:ID="velibicer2">
 <owl:sameAs rdf:resource="#velibicer"/>
 </Engineer>
</rdf:RDF>

Figure 15 An example OWL ontology in RDF/XML Syntax

4.4. Description Logics

The current Semantic Web ontologies mainly depend on a number of formal

specification techniques that have been studied over the years by using the logical

languages for knowledge representation. The use of logic languages provides

various benefits in terms of capturing and processing the information. First, this

provides expressiveness and machine-processability to enable the derivation of the

implicit knowledge from the existing one. Additionally, logical languages enable

the specification of the unambiguous statements and allow the application of the

formal rules defined in the language during the derivation of implicit information.

More importantly, the previous research achieved in the areas of Databases and

Artificial Intelligence is reused to form a logical basis for Semantic Web

ontologies. Although a number of logical languages, including First-Order Logic

(FOL) are proposed as a basis for Semantic Web ontology specifications, the most

notable one is the Description Logics (DL) which is a family of languages

representing strict subsets of FOL [58].

DL [59] mainly revolves around concepts, roles, and role restrictions. Since it is

actually based on FOL, concepts can be seen as unary predicates, whereas roles

can be seen as binary predicates. A knowledge base in the basic DL has two parts:

the TBox and the ABox. TBox introduces the terminology, i.e., the vocabulary of

an application domain, while the ABox contains assertions about named

individuals in terms of this vocabulary.

Elementary descriptions are atomic concepts and atomic roles. Complex

descriptions can be built from them inductively with concept constructors. In

abstract notation, we use the letter A for atomic concepts, the letter R for atomic

roles, and the letters C and D for concept descriptions. In basic DL, concept

descriptions are formed according to the following syntax rule:

C, D → A ⏐ (atomic concept) (1)

T ⏐ (universal concept)

⊥ ⏐ (bottom concept)

C ∩ D⏐ (intersection)

C ∪ D⏐ (union)

¬C⏐ (negation)

∀R.C⏐ (existential restriction)

∃R.C⏐ (universal restriction)

Additionally, there are concept axioms which make statements about how concepts

are related to each other: C⊆D (concept inclusion) indicates that D is more general

than C and C≡D (concept equivalence) can be interpreted as C⊆D and D⊆C. TBox

of knowledge base, actually, involves a number of these axioms to specify a

vocabulary. An example TBox is given in Figure 16.

36

Person ≡ ∀hasChild.Person ⊓ ∃hasFather.Father⊓ ∃hasMother.Mother
Person ≡ Man ⊔ Woman
Parent ≡ ∃ hasChild.⊤
Mother ≡ Woman ⊓ Parent
Father ≡ Man ⊓ Parent

Figure 16 An example TBox

The individuals in a DL knowledge base are specified as assertions in the ABox.

They are of the form i ∈ C or <i,j>∈R, where i,j are individuals, C is an concept

and R is a role. An example ABox for the TBox specified in Figure 16 can be

written as shown in Figure 17.

37

john ∈ Person
<john, susan> ∈ hasChild
susan ∈ Woman

Figure 17 An example ABox

4.5. Sesame

Sesame [60] provides an architecture for the storage and retrieval of RDF data. As

shown in Figure 18, the Sesame architecture is built on top of a number of storage

mechanisms such as relational databases, memory storage or native files for the

persistent storage. In order to enable this independency from storage devices, a

layer, called Storage And Inference Layer (SAIL) is added to the architecture.

Actually, SAIL is an interface offering RDF specific methods to the upper layers

and handling the conversion from RDF’s triple-based representation mechanism to

the specific storage devices.

The functional modules of the Sesame uses the SAIL interface in order to support

further functionalities to the client applications. Currently, there exist four

functional modules which are SeRQL query engine, RQL query engine, admin

module and RDF export module.

Figure 18 Sesame Architecture

Among the query languages supported by Sesame, SeRQL is the most powerful

and expressive one which combines the strongest features of the existing query

languages. The SQL-like syntax of SeRQL allows us to specify two types of

queries: Select and Construct. Select queries return tables of values, or sets of

variable-value bindings whereas construct queries return RDF graphs as a set of

triples. The values are returned according to the parameters specified with the six

clauses of the query, which are SELECT, FROM, WHERE, LIMIT, OFFSET and

USING NAMESPACE. Construct queries also use these clauses, but replace the

SELECT clause with CONSTRUCT. The first clause in the queries (i.e. SELECT

or CONSTRUCT) determines which values should be returned and in what order.

FROM clause is used to specify the paths in RDF so that the values are filtered

according to the path expression. The third clause in a query is the WHERE clause

that is used to specify Boolean constraints on variables. LIMIT and OFFSET

enables the retrieval of smaller portions of the results that are generated by the

query. Finally, USING NAMESPACE is used to define short prefixes for

namespaces, which can then be used in the parameters specified with other

clauses. An example select query is specified in Figure 19 in order to select the

city of the M.Sc students based on the path expressions defined in Figure 13 and

Figure 14.
38

SELECT Person, City
FROM {Person} hasAddress {Address};
 {Address} city {City};
 {Person} rdf:type {MScStudent}

Figure 19 An Example Select Query

Sesame Access API provides access to the Sesame functionalities through HTTP,

SOAP, and RMI. This interface can be used either by a client program (e.g. Java

application) or another Sesame server for enabling the federation with multiple

servers.

4.6. Protégé

The Protégé is a well-known, latest tool for ontology development and knowledge

management that has been evolving for over the last decade. It provides a

graphical and interactive ontology-design and knowledge-base development

environment helping knowledge engineers and domain experts to perform

knowledge-management tasks. Currently, it supports the development of

ontologies in various languages such as RDFS, OWL, Protégé Ontology, rule

languages such as SWRL. In addition to highly usable interface and features, two

other important features distinguish Protégé from most ontology-editing

environments: its scalability and extensibility. Developers have successfully

employed Protégé to build and use ontologies consisting of 150,000 frames.

Furthermore, the Protégé architecture is constructed in an open, modular fashion.

Its component-based architecture enables system builders to add new functionality

by creating appropriate plugins. The Protégé Plugin Library contains contributions

from developers all over the world. A screenshot of the Protégé is shown in Figure

20.

39

Figure 20 Protégé Ontology Editor

4.7. Ontology Mapping with OWLmt

The use of ontology languages such as OWL for representing the information in a

machine-understandable way is not enough to achieve interoperability. In an open

environment such as Web, it would not be so practical to use very few ontologies

shared by many parties. Therefore, there will be many heterogeneous ontologies

with overlapping content. Because of this decentralized nature of the Web, each

community should have the freedom to use its own ontology definitions to

represent the information. This will lead to many ontologies - possibly one for

every party- which requires mediation among them by using some new

mechanisms. In order to implement this mediation, there is a need for a tool which

can specify the ontology mappings between these ontologies. This semantic

mapping is an inevitable operation to establish interoperability between agents or

services using different ontologies.

40

41

OWLmt[61] is developed as a generic tool to specify the mappings between OWL

ontologies. Ontology mapping is the process whereby two ontologies are

semantically related at conceptual level, and the source ontology instances are

transformed into the target ontology entities according to those semantic relations.

In this process, we specify the semantic matching between the source ontology and

the target ontology which share an overlapping content. It includes the matching

between the entities which are concepts, relations and properties such as classes,

object properties, or data type properties in OWL. In addition, the ontology can

have instances which are defined according to the corresponding ontology to

include the actual data in the process. We refer to this collection of instances as

Instance Base.

The mapping process is based on the possible operations that can be defined

between the source ontology and the target ontology. These operations can include

functionalities such as relating two or more classes to a target class, transforming

the data values to the corresponding values in target ontology or constructing new

relations between the instances in the target ontology according to a specified path

in the source ontology. To define this set of functionalities, we create a mapping

schema which specifies the features of the mapping process such as the definitions

of the possible operations, representations of the entities and the relationships

among them. The mapping schema is also defined in OWL since it should be

machine-processable and able to represent the domain of the mapping process. The

mapping definitions, conforming to mapping schema, are defined through the

OWLmt GUI and executed by the mapping engine to transform source ontology

instance base to the target ontology instance base. This process is illustrated in

Figure 21. The main screen of the tool is also shown in Figure 22.

Source Ontology Target OntologyMapping Definition

Source Instace
Base

Conforms to

Target Instace
Base

Refers Refers

Mapping EngineReads Writes

Executes

Mapping Schema

Conforms to

 Figure 21 Ontology Mapping Process in OWLmt

The following capabilities are provided in OWLmt mapping tool:

• Matching the source ontology classes to the target ontology classes: We

have developed the following four conceptual mapping patterns to

represent the matching between the classes of the source and target

ontology classes: EquivalentTo, SimilarTo, IntersectionOf, and UnionOf.

The identical classes are mapped through EquivalentTo pattern. SimilarTo

implies that the involved classes have overlapping content. How similar

classes are further related is described through property mapping patterns.

The IntersectionOf pattern creates the corresponding instances of the target

class as the intersection of the declared source class instances. Similarly,

the UnionOf pattern implies the union of the source classes’ instances to

create the corresponding instances of the target class.

• Matching the source ontology object properties to target ontology object

properties: ObjectPropertyTransform pattern is used to define the

matching from one or more object properties in the source ontology to one

or more object properties in the target ontology.

• Matching source ontology data properties to target ontology data

properties: Through the DatatypePropertyTransform pattern, the data type

properties of an instance in the source ontology are mapped to

corresponding target ontology instance data type properties. OWLmt

supports a set of basic XPath [62] functions and operators such as concat,

split, and substring. In some cases, there is a further need for a

programmatic approach in order to specify complex functions (e.g., need to
42

use if-then-else, switch-case, or for-next). Therefore, we have introduced

JavaScript support to OWLmt. By specifying the JavaScript to be used in

the DatatypePropertyTransform pattern, the complex functions (enriched

by the Java SDK libraries) can be applied in the value transformations.

Figure 22 OWLmt GUI

43

44

5. SEMANTIC-BASED MODELLING OF SERVICE-

ORIENTED ARCHITECTURES

In this chapter, a process for service-oriented architecture design is presented. So

far we have identified the existing technologies and approaches in related fields. In

order to present the approach, we start by providing an overview of the complete

methodology proposed in this thesis for embedding the modeling approach and

introduce the possible steps to be taken to create architectural descriptions.

Specifically, the basic steps of the architecture specification process are presented

by utilizing many technologies and concepts in a combination.

5.1. Overview of the Methodology

We suggest lifting various service-oriented concepts to be represented as ontology-

based models in the design process and create an architecture-driven model-based

development process by utilizing semantic Web technologies. A range of layers

considered in this methodology is depicted in Figure 23. Currently, legacy systems

and service-components can be exposed as services as the initial step to construct

service-oriented systems. These services are complemented with the upper layer

service-oriented technologies like composition to create more operational and

business oriented functions. As introduced in previous chapters, the crosscutting

layers like management, security and the related middleware technologies are also

major parts of the architecture.

Software engineering layers to be detailed in following sections extend this picture

by enabling a design from a system engineering perspective. Software architecture

layer on the top of Figure 23 enables an abstract view of the system in which the

associated service-oriented technologies can be grouped into the corresponding

architectural viewpoints. The MDE layer, on the other hand, allows us to represent

any service-oriented model and draw connections between the domain-specific

abstractions and service-oriented platform. Furthermore, we employ a range of

semantic Web techniques and tools such as OWL, Sesame Server, or OWLmt in

order to facilitate the description of SOA through ontologies.

Figure 23 Service-Oriented Development Hierarchy

Within the scope of this idea, the service-oriented technologies and platforms can

be viewed as a valuable set of reusable assets to be used in realizing distributed

enterprise software architectures. To facilitate this, a two-fold methodology is

employed as depicted in Figure 24: Platform engineering, which is also the main

topic of this thesis, is used to define the features of the platform to construct,

collect, and organize existing domain experience and to create a service-oriented

architecture specification for building enterprise systems in the form of reusable

service-oriented assets [63]. This is a required step, prior to application

development, in order to align the existing assets in a particular architecture,

produce a service-oriented platform and use the service-oriented technologies

effectively during application design. In addition, application engineering is

utilized to use the service-oriented platform created as a result of platform

engineering to create service-oriented systems based on the business requirements.

45

Figure 24 Overview of Methodology

The platform and application engineering processes are mostly knowledge-driven

activities where various artifacts such as the requirements, architecture, service-

oriented design models, platform specifications, and model transformations are

needed to be defined in a precise and unambiguous way. The use of ontologies

play a key role in this development in terms of ontology-driven development and

ontology-enabled architectures [64]. An ontology-based system engineering

process offers the following benefits in various stages of the service-oriented

system engineering:

46

• Meta-programming: The latest trend in software engineering research on

product lines, model-driven engineering, and generative programming is to

utilize the automation of software development with the aim of regarding

programming as a computation. This requires a meta-application level

process, also named as meta-programming, that uses the metadata of the

applications to construct, and operate on application level artifacts. Today,

47

Semantic Web ontologies are the most well-known way of capturing and

managing this meta-data in terms of concepts and the relationships among

them.

• Mega-modeling: In addition to models and meta-models of MDE to

represent the system design such as business process or data models, the

service-oriented tools, platforms, registries, policies and other entities

should also be considered in the system development lifecycle.

Considering all these entities as resources, Mega-modeling approach aims

to enable resource management by representing these global entities as

models [50]. Ontologies provide very generic means to represent any entity

that is supposed to exist in software development process.

• Traceability: Traceability helps stakeholders and system developers

understand the many associations and dependencies that exist among

various software artifacts created or reused during a software development

process. Providing various ontologies to represent these artifacts provides a

new way of establishing and using traceability information.

• Tool Support: Since the introduction of Semantic Web vision, a number

of tools such as parsers, ontology repositories, reasoners and ontology

mapping tools are provided in order to support semantic-based application

frameworks. By employing a semantic-based infrastructure for software

development, enterprise will be able to benefit from these tools in standard

and consistent way.

• Access to the information in a global scale: The representation of models

and related elements through standardized ontologies will enable the

enterprises to store the domain knowledge and models in a sharable and

processable way. This will enable the enterprises to share these ontologies

through special networks (e.g. ecosystems over P2P networks) enabling a

model-level reusability.

5.2. Architecture Specification

The activity of creating a service-oriented architecture requires the organization of

essential concepts and principles in a precise way with the aim of building an

architectural description. Although this process shows similarities with the studies

achieved in software architecture field since 1990s [65], the development of the

emerging approaches and technologies both in service-oriented computing and

software engineering requires an expansion in the architecture methodology.

Essentially, creating architecture is a transformation from the problem domain to

the solution domain [44] where the service-oriented technologies are a part of the

solution domain as a set of reusable assets. According to our proposed

methodology, an architecture description is created by considering the

stakeholders’ concerns, problem domain, existing domain knowledge and the

solution domain (including SOA assets). This description mainly drives the system

development process in the application engineering. This is depicted in Figure 25.

Figure 25 Architecture Specification Process

In order to better utilize the architecture specification process, an architecture

ontology is developed as illustrated in Figure 26. The benefits of this ontological

approach are threefold: First, it offers a formal way to place any service-oriented

and software engineering concept in the architecture by specifying the

48

49

relationships among them. This allows us to use various concepts and approaches

ranging from domain analysis to model specification which are clearly linked with

each other in a well-defined way. Additionally, it is an initial requirement in

automating the system development, since the ontology enables the machine-

processability supported by the standard-based tools and platforms. Finally, the

existence of a representation mechanism is a necessity for better documentation in

the software architecture, otherwise, the design decisions, which are implicitly

present, can be quickly lost [22].

We extend the IEEE Std 1471-2000 [21] specification by referring to the

ontologies specifically designed for the sub-processes of the platform engineering

such as feature models, MDE meta-models or ontology mapping definitions. In

fact, the architecture ontology is a higher level abstraction level which stands on

top of these ontologies allowing the system architect to unify the efforts from

different perspectives. In addition, the logical layers in service-oriented

architecture stack are represented as a specific viewpoint in the architecture

ontology. For brevity, the upper classes of the IEEE Std 1471-2000 are ignored in

Figure 26.

Figure 26 Graphical Representation of Architecture Specification Ontology

The platform architecture is driven by the stakeholders’ goals and concerns which

are represented as instances of the Concern class. Two subclasses are also created

for representing the platform specific concerns and application specific concerns,

namely ApplicationConcern and ArchietecturalConcern. Each architectural

concern is then mapped to one or more features in the feature model to specify

distinctive, user-visible aspect, quality or characteristic of the service-oriented

platform. Features are created as instances of FeatureModelNode class that is

included in the feature model ontology presented in the next section. The feature

modeling based on the stakeholders’ concerns is a good technique to define the

scope of the service-oriented platform since it does not intend to solve all the

problems of the domain but specifically the ones addressed by the stakeholders. By

mapping the features to the corresponding viewpoints, realization of the features is

accomplished from an architectural point of view. Figure 27 illustrates these

relationships among the concerns, features and viewpoints.

50

Figure 27 Relationships among Concerns, Features and Viewpoints

Viewpoints are used to organize the tools, processes, and assets in the architecture

description. Although IEEE Std 1471-2000 provides a standardized way to specify

the viewpoints, it does not define a fixed set of viewpoints for any specific

methodology. Therefore, we extend this approach by identifying particular

viewpoints that may exist in a service-oriented context. First, considering the

platform independent and platform specific focus on system aspects, we identify

two types of viewpoints, namely Domain and Platform. Furthermore, five main

service-oriented viewpoints are specified as subclasses of the Platform viewpoint

based on the common logical layers in service-oriented stack and analysis

provided in [33] since we consider the service-oriented technologies and

specification as a platform to realize service-oriented systems.

As the application of a model-driven approach, a viewpoint is organized as a set of

MDE elements such as meta-models and transformations among them. Each model

specification is introduced to the platform as semantic-based meta-models based

on KM3 meta-meta model of AMMA platform [46]. Transformations among the

meta-models are also implemented as ontology mapping since the meta-models

and models are captured as ontologies. The details of the modeling approach are

presented in the following sections.

51

52

5.3. Domain Analysis

The first sub-process of the architecture specification is the domain analysis which

encompasses the activities for specifying the requirements of the service-oriented

platform. These requirements, however, differs from the requirements of a

particular application to be realized in the application engineering process. The

output of the domain analysis sub-process is very crucial to decide the capabilities

of service-oriented platform during the creation of the architecture.

For domain analysis, we use the feature models to represent the service-oriented

platform features in a hierarchy. It is a well-known technique which is extensively

used for domain analysis to scope and develop software product lines [20, 66] or

domain-specific languages [51, 63]. In order to represent the feature models, a

semantic-based approach is used as described in [67, 68].

Cardinality-based feature models aims to identify the system properties by

extending a number of already existing approaches to the feature modeling[69].

An example feature model is depicted in Figure 28 which shows the capabilities of

a clinical mobile application designed for doctors. It consists of a number of nodes

and links that bind these nodes to form a hierarchy. The features can be classified

according to their position in the model: Root, solitary, and group. Similarly, the

links can be grouped into two, namely sub-feature link and group link. A sub-

feature link associates a solitary feature to its parent, whereas group link associates

a group feature to the features to be included in the link. There are also two types

of cardinalities: Feature cardinality is used to qualify a solitary feature to specify

how often the solitary feature can be copied. Group cardinality, on the other hand,

is used to indicate the number of the features to be chosen in a group. In feature

model diagram, [m..n] is used to indicate feature cardinalities and <m..n> is used

to specify group cardinalities, where m and n are integer numbers.

Figure 28 Cardinality-based Feature Model Example

In order to capture the system features, we provide a feature model ontology as

presented in Figure 29. Every node in a feature model is represented as a sub-type

of the model node class. There are three types of specialization for the model node

class in the meta-ontology which are the root node, feature node, and group node

to represent the root features, solitary features and the feature groups as proposed

in cardinality-based feature models. In addition to these, any possible extension to

the nodes in the feature models can also be included as a subclass of the model

node class.

Figure 29 Overview of Feature Model Ontology

53

54

For the representation of the links in the feature model, an abstract model link class

is also created. It is the basis for all the relationships among the nodes of the

feature model. One of the crucial associations in a feature model is the sub-feature

link through which the parent-child relation between the features is represented.

Therefore, we derive a class from the model link, namely sub-feature link, in our

meta-ontology to denote this connection. The sub-feature link class has two

important properties: The “hasSubFeature” property relates the sub-feature link

class to a particular solitary feature which can be of type feature node or group

node. Additionally, “hasCardinality” property associates the link with the

corresponding feature cardinality. This is required due to the fact that cardinality-

based feature models requires the solitary features to be specified with the feature

cardinalities in order to indicate the number of times a feature can occur in the

configuration. The properties are also similar for the group link class which is used

to relate nodes in a feature group. However, some of its properties are ignored in

the figure for the brevity. Observe that “hasCardinality” points to another subclass

of Cardinality, namely group cardinality, since it is specified with only one

interval whereas the feature cardinality may include more than one interval.

Feature cardinality refers to a sequence of intervals in which the minimum and

maximum values of the interval is denoted. The Cardinality class has a

“hasInterval” property whose range points to another class called Interval to

specify the minimum and maximum values of the cardinality.

The feature model ontology enables us to specify the feature models in a formal

way to represent the system properties. In fact, architecture ontology refers to this

ontology to associate the concerns with the features. Therefore, we can draw

equivalence between the feature model node class of architecture ontology and

model node of feature model ontology to connect them

(arch:FeatureModelNode≡fm:ModelNode).

5.4. Model Specification

Model-Driven Engineering offers a new perspective in software development by

replacing the previous idea of object composition with model transformation.

MDE is an ideal complement to the service-oriented computing in order to better

utilize the service-oriented technologies and concepts for enterprise software

development. It provides the means to create service-oriented models and rules for

the management within system architecture. We develop a semantic-based meta-

modeling architecture to specify and design service-oriented systems as a set of

DSLs. The DSLs are used within the architectural viewpoints as shown in Figure

26.

In order to specify the DSLs, KM3 meta-meta model [46] of AMMA platform is

represented in OWL as depicted in Figure 30. This is a generic ontology

introducing the basic concepts and relations in order to specify any meta-model as

sub-ontology. The Metamodel class encapsulates one or more Packages which

includes the actual content to be defined in the meta-model in terms of Classifiers

and StructuralFeatures. Therefore, the Metamodel class, containing one or more

Packages, represents a DSL as a modeling asset in an architectural viewpoint.

Figure 30 Kernel Meta-meta-model Class Hierarchy

Figure 31 shows how an XML DSL meta-model is defined as sub-ontology of

KM3. Each meta-model element to be specified in XML DSL is defined as a

subclass (rdfs:subClassOf) of its type in KM3. For example, the classes to be

included in XML DSL (e.g. Node, Element, Attribute, Text, and Root) are all

inherited from the km3:Class which specifies their type in the meta-model.

55

Figure 31 Example XML Meta-model defined as sub-ontology

The relationships among the meta-model elements are achieved by applying the

OWL restrictions on the inherited properties from KM3 ontology. For example,

the km3:contents property, which relates a Metamodel to its Package contents, is

restricted for the XML_DSL class to have some of its contents in the types of XML

and PrimitiveTypes at the model level (instance-level). This is stated as a

owl:someValuesFrom restriction (∃km3:contents.(XML∪PrimitiveTypes)) as

shown in Figure 32 with the corresponding RDF triples. Considering this

restriction, we can define the XML_DSL meta-model class in DL as:

XML_DSL ⊆ ∃km3:contents.(XML∪PrimitiveTypes) ∩ km3:Metamodel (2)

56

#XML_DSL rdfs:subClassOf km3:Metamodel
#XML rdfs:subClassOf km3:Package
#PrimitiveTypes rdfs:subClassOf km3:Package
#XML_DSL rdfs:subClassOf #C1
#C1 owl:onProperty km3:contents
#C1 owl:someValuesFrom #XML
#C1 owl:someValuesFrom #PrimitiveTypes

Figure 32 Specifying the connections among meta-model elements

Similarly, XML class, which is a Package in XML DSL specification, includes a

number of Classifiers as basic building elements of the XML documents. The

XML Package is defined with the following definitions:

XML ⊆ ∃km3:packageContents.(Node ∪ Element ∪ Attribute ∪ Text ∪ Root) (3)

XML ⊆ km3:Package (4)

Additionally, the properties of the meta-model elements are defined as

StructuralFeatures which can be in two types, namely Attribute and Reference.

These property classes refers a km3:Class definition (i.e. owner of the property) to

a range which can be another km3:Class or a km3:DataType. For example, in

XML DSL, an Element can contain one or more Nodes as its children allowing us

to create hierarchies in XML documents. For this purpose, we specify a children

class as a subclass of Reference and specify the required restrictions to relate the

Elements to the Nodes as shown in Figure 33. Thus, the children reference can be

defined as:

children ⊆ ∀ km3:type.Node ∩ km3:Reference (5)

57

Figure 33 Example “children” Reference from Element to Node

Once the meta-models are specified in OWL based on KM3, they can be managed

through an ontology repository for storing, querying and managing the modeling

metadata. Sesame Server is employed for this purpose to map the model

specifications to a persistent repository and provide the functionality for the

management of the model data.

As Sesame Server stores the ontologies as RDF triples (subject, predicate, object),

the models defined in OWL can be submitted to the repository through the Sesame

GUI or API. Thus, Sesame acts as a metadata database and provides distinct query

capabilities as described in section 4.5 in order to enable the enterprises to build

software development tools and frameworks on top of it.

Before submitting any model to the repository, however, it should be populated

with the base KM3 ontology depicted in Figure 30 because any model

specification derives from this ontology. We can also query the repository based

on this ontology to gather the metadata about the model specifications available.

For instance, in order to get a list of the meta-models, a query to retrieve the

subclasses of Metamodel class of KM3 ontology can be specified as shown in

Figure 34. Additionally, to retrieve the Packages included in a particular

Metamodel (i.e. XML_DSL in this case) can be retrieved with the query given in

Figure 35. In these queries, we introduce the namespaces of the metamodel

58

ontologies with the USING NAMESPACE directive assuming that each ontology

is described with a unique namespace.

59

SELECT DISTINCT
 Metamodel
FROM
 {Metamodel} rdfs:subClassOf {km3:Metamodel}
USING NAMESPACE
 km3 = <http://sodia.metu.edu.tr/km3#>

Figure 34 SeRQL query to retrieve metamodels from repository

SELECT DISTINCT
 Pck
FROM
 {xml:XML_DSL} rdfs:subClassOf {K}

owl:onProperty {km3:metamodelcontents},
 {xml:XML_DSL} rdfs:subClassOf {K} owl:someValuesFrom {Pck}
USING NAMESPACE
 km3 = <http://sodia.metu.edu.tr/km3#>,
 xml = <http://sodia.metu.edu.tr/xml#>

Figure 35 SeRQL query to retrieve packages in XML_DSL metamodel

Similarly, we can obtain the Package concepts or class properties with the queries

shown in Figure 36 and Figure 37, respectively.

SELECT DISTINCT
 Content
FROM
 {xml:XML} rdfs:subClassOf {K} owl:onProperty {km3:contents},
 {xml:XML} rdfs:subClassOf {K} owl:someValuesFrom {Content}
USING NAMESPACE
 km3 = <http://sodia.metu.edu.tr/km3#>,
 xml = <http://sodia.metu.edu.tr/xml#>

Figure 36 SeRQL query to retrieve contents of XML package

SELECT DISTINCT
 P
FROM
 {xml:Node} rdfs:subClassOf {K}

owl:onProperty {km3:structuralFeatures},
 {xml:Node} rdfs:subClassOf {K} owl:someValuesFrom {P}
USING NAMESPACE
 km3 = <http://sodia.metu.edu.tr/km3#>,
 xml = <http://sodia.metu.edu.tr/xml#>

Figure 37 SeRQL query to retrieve the properties of Node class

5.5. Using Ontology Mappings for Model Transformations

By representing the meta-models and models through the ontologies, we can

employ the semantic Web technologies in MDE. Ontology mapping provides a

generic methodology to define the transformations between the models by lifting

the transformation idea to the semantic Web techniques. This presents a new area

of use for ontology mapping in addition to mapping healthcare data and P2P

network messages as presented in [70, 71].

OWLmt tool is used to define the mappings between the meta-models defined

according to KM3 ontology. This results in a mapping definition to be executed

for transforming any model conforming to the source meta-model into the target

model. This is possible since the model transformations, actually, utilizes the idea

of pattern matching (i.e. rules in ATL) in order to query the source model and

create the corresponding elements in target meta-model. This is similar to the

semantic queries in OWLmt created as a result of the class and property

relationships. A comparison between ATL and the current version of OWLmt in

terms of the model transformation features introduced in [47] is given in Table 1.

60

61

Table 1 Feature Comparison between ATL and OWLmt

Feature ATL OWLmt
Domain Language KM3 OWL

Directionality Unidirectional Unidirectional

Transformation
Specification

Module Mapping Definition

Source-Target
Relationship

In, Out, In/Out In, Out

Traceability Links Dedicated Automatic Support User Based

Rule Application
Strategy

Non-deterministic Interactive

Rule Iteration Recursion Not supported

Rule Selection Rule Source Guard Explicit Condition plus Reasoning

Rule Scheduling Form Implicit, Explicit Implicit

Syntax Textual Textual, Graphical

Code Reuse Helper Libraries Javascript Libraries

OWLmt uses OWL as a domain language. Similar to ATL, it supports

unidirectional transformation providing one-way mapping by creating target

ontologies based on the source. Although some features are not currently

supported, one of the most important benefits for using OWLmt is its semantic-

based structure to represent the transformations as ontologies and to complete the

architecture presented in this section. A mapping specification is presented in the

following chapter.

62

6. SERVICE-ORIENTED SYSTEM ENGINEERING IN

PRACTICE

The aim of this research is to provide a semantic-based model driven design for

realizing SOAs that better utilizes the service-oriented technologies and concepts

throughout the development lifecycle. In this chapter, we will present a case study

for the healthcare domain in order to show the use of our method. To begin with,

we present an overview of the healthcare informatics in order to show how it can

be so heterogeneous due to various standards and systems coexisting in a hospital

setting. We also introduce an application requirement for the healthcare

professionals to perform various tasks in their daily job. Using the method to

design this sample system architecture is presented in the last section.

6.1. Healthcare Scenario

Healthcare is one of the few domains in which the software systems play a key

role in terms of optimizing the processes, facilitating the information sharing and

enabling the coordination and management of healthcare services. Healthcare

information systems are evolving in a rapid pace resulting from the paradigm

shifts both in healthcare domain and IT technologies. Since the introduction of the

Hospital Information Systems (HIS) two decades ago, the change has taken place

from the isolated systems that store and retrieve data to the interconnected

healthcare infrastructures utilizing cross-enterprise processes and information

sharing. Today, the increasing demands of the healthcare domain such as enabling

patient mobility, downsizing the hospitals, and improving the patient care raises

the needs for institutional and (inter-)national healthcare information system

strategies and deploying new architectural styles as addressed in [72]. In other

words, a healthcare information system infrastructure, today, can be regarded as an

evolving, dynamic entity that is being continually shaped by economic, political,

technological, and social forces.

63

Over the years, various types of systems have been incorporated into the

mainstream healthcare in order to solve particular problems. These systems,

however, are mostly interdependent in terms of healthcare data and processes - that

is, requiring high-level of interoperability mainly addressed by the healthcare

initiatives through their standards [70, 71, 73]. We identify the following groups

by classifying the health information systems according to their functionalities

[74]:

• Hospital Information Systems: Hospital information systems (HIS) are just

one, but crucial, instance of health information systems, to manage the

administrative tasks and information flow within a hospital. The aim of

hospital information systems is to contribute to a high-quality, efficient

patient care and hospital management. The relevance of HISs for high-level

quality of care is obvious, as without having appropriate access to relevant

data, practically no decisions on diagnostic, therapeutic or other procedures

can be made. Therefore, we can recognize the relevance of systematically

processing data, information and knowledge for the quality and efficiency

of healthcare.

• Clinical Systems: These systems mainly involve the administration of

direct patient care using ICT to be used by general practitioners,

pharmacists and dentists. In order to fulfill the needs of specific

departments, they offer complex functionalities and information

management capabilities. Various kinds of e-health systems such as

Radiology Information Systems (RIS), Laboratory Information Systems

(LIS), Cardiology Information Systems (CIS), Pathology Information

Systems (PIS), E-Prescription and PACS can all be included in this

category.

• Health Information Portals: These applications provide health-related

information for patients and health professionals, and additionally they

may provide possibilities for consultation or for buying pharmaceuticals or

other health-related products.

64

• Home-care Systems: Systems that are used to deliver care services via

telecommunication or wireless technologies to the patient at home.

Examples of such systems are “remote vital signs monitoring systems” that

enable the patient to receive targeted treatment and medication without the

need to visit an outpatient clinic or occupy a hospital bed. These kinds of

systems are particularly well developed in diabetes medicine, hypertension

management, asthma monitoring and home dialysis.

• Clinical Decision Support Systems: Clinical decision support systems form

a significant part of the field of clinical knowledge management

technologies through their capacity to support the clinical process and use

of knowledge, from diagnosis and investigation through treatment and

long-term care. They can be defined as "active knowledge systems which

use two or more items of patient data to generate case-specific advice".

They are typically designed to integrate a medical knowledge base, patient

data and an inference engine to generate case specific advice.

• Electronic Healthcare Records (EHR) Systems: Identical electronic patient

information should not be stored redundantly. Unfortunately, at the present

time, the same patient information tends to exist in many different forms

and in many different locations. EHR systems mainly aim to collect, store,

and maintain the healthcare data. This data can then be abstracted,

reformatted, and rationally organized to support other e-health systems for

their infrastructural and informational needs. EHR (also the central

repository for patient information updates, further data analysis, and

privacy controls) represents a major resource to fulfill these needs.

Implementation of reliable EHR will provide a convenient and easy way to

access timely, relevant, and accurate information. Transformation of the

traditional health care system into e-health care relies on transformation of

the management of health information and health information flow. EHR

may thus be considered the lifeblood of e-health care.

• Hospital Management, Supply Ordering, and Electronic Claim Processing

Systems: Considering the hospitals as enterprises, various hospital

65

management systems also exist in order to manage the healthcare

accounting and supply chain. Enterprise Resource Planning, Accounting,

Booking systems can be considered in this category. These systems mainly

interact with HISs in order to optimize the healthcare processes and

eliminate paper-based transactions.

In a heterogeneous environment like healthcare, the standards are necessary for the

integration and interoperability of these systems. The standards provides a basis

and domain knowledge for creating healthcare information systems in terms of

health and patient information, clinical knowledge and workflow, messaging,

interfacing, knowledge and data representation, and security (e.g. data privacy,

confidentiality, individual and organization identifiers). These standards include

the messaging standards such as the Health Level 7 (HL7) [75], Digital Imaging

and Communications in Medicine (DICOM) [76]; data representation standards

such as the Continuity of Care Record (CCR) [77], HL7 Clinical Document

Architecture (CDA) [78]; medical terminologies such as SNOMED [79] , LOINC

[80]; clinical context management standards such as HL7 Clinical Context

Management Specification (CCOW) [81]; and electronic healthcare standards such

as CEN EN 13606 EHRcom[82] , and openEHR [83]. However, using these

standards in the realization of modern healthcare information systems to meet

manage the increasing complexity in terms of data types, functionality, user types

and emerging technologies [72] is not a straightforward task. In order to handle

this issue, an initiative, Integrating the Healthcare Enterprise (IHE) [84], is formed

to stimulate the integration of the information systems that support modern

healthcare institutions. Its main objective is to support the use of existing standards

and provide technical frameworks for the implementation of established standards

to achieve specific clinical goals. Each technical framework includes a number of

integration profiles which are business processes offering a common language for

vendors and healthcare professionals for the implementation of healthcare

infrastructures to manage real-world scenarios. For example, Figure 38 illustrates a

process flow of Radiology Scheduled Workflow integration profile [85] together

with its actors and transactions in order to place a radiology order. Currently, the

following technical frameworks are provided to specify profiles for various areas

in a healthcare environment; and they are expanded annually, after a period of

public review, and maintained regularly by the IHE Technical Committees:

• IT Infrastructure Technical Framework

• Cardiology Technical Framework

• Eye Care Technical Framework

• Laboratory Technical Framework

• Pathology Technical Framework

• Patient Care Coordination Technical Framework

• Patient Care Devices Technical Framework

• Radiation Oncology Technical Framework

• Radiology Technical Framework

Figure 38 An Example Process Flow of IHE Radiology Scheduled Workflow

66

67

However, in realizing healthcare information systems which benefit from the

existing standards as domain knowledge, there is a need to effectively coordinate

several profiles to build the required system architecture. Although how to move

from these highly specialized domain-specific profiles to service-oriented

architecture is addressed in [15], a more feasible solution should be to consider the

IHE profiles as domain-specific models and place them to the corresponding

viewpoints in the architecture. This model-driven methodology enables a business-

oriented design by directly enabling the system developers to create an architecture

based on domain artifacts and facilitating the transition from the domain models to

the platform through ontology mappings.

In order to utilize a semantic-based service-oriented design with the proposed

methodology, we introduce a clinical mobile point-of-care (MPOC) application as

a case study. It is a personalized application, deployed to a mobile device, which

supports the physicians and nurses to perform their daily tasks at point-of-care in a

motion intensive environment like hospitals. Data, such as patient records, clinical

information, laboratory results, and diagnoses are also dynamic and should be

accessed, updated and delivered to the place wherever it’s needed based on the

clinical workflows. The solution incorporates integrated healthcare information

system services and uses the standards for the interoperability. Some of the

essential tasks to be performed through the application can be stated as follows:

• Accurate access to patient identity and demographics

• Current episode information of the patient

• Summary of patient medical history

• Ordering Tests / Accessing Lab Results, Radiology and Pathology Reports

• RSS feeds from LIS, RIS when results are available

• Access to recent radiological images of the patient

• Viewing and updating of patient status, vital signs and diagnoses

• Placing of nursing orders

68

• Accessing Prescriptions

• Hospital / Clinic announcements as alerts or RSS feeds

• Accessing Drug Information

• Issuing Prescriptions

The underlying motivation for the MPOC application is to demonstrate and

measure the benefits of utilizing services within a hospital. It aims to improve

timely decision-making by making patient information, diagnostic data and expert

decision support instantly accessible at the point-of-care. It is also intended to

eliminate manual process barriers and multiple human interventions in patient

care, and reduce medication errors by making use of right and accurate

information access at the right place and at the right time. The study aims to

provide the healthcare personnel a seamless environment to utilize IT services in

order to offer more time to provide medical services. SOA is a good fit to realize

such architecture in heterogeneous healthcare environments [86].

6.2. Engineering a Service-Oriented Clinical MPOC Application

Architecture

Designing the MPOC system architecture based on service-oriented architecture

starts with the specification of the system and the identification of the stakeholders

in the architecture ontology. Besides the system architect, many people can be

interested in the construction of the system. In our case, the clinicians, nurses,

medical informatics experts can be stated as other stakeholders in the systems. As

depicted in Figure 27, we derive the overall system architecture starting from the

stakeholders’ concerns. These concerns are, then, addressed by one or more

features specified in the feature model of the system in order to enable a direct

mapping from the problem domain to the architecture. Based on the problem

description given above, a list of concerns and the corresponding features are

specified in Table 2.

Table 2 Concerns addressed by features

Concern Feature(Type)
Create a MPOC System Architecture MPOC System (Root)

Manage Patient Information Patient (Feature), Get/Update Patient
Demographics (Feature), ID Management
(Feature), Get History (Feature)

Retrieve Patient Episodes Episode (Feature)

Enable Radiology Orders, Appointments
and Result Access

Radiology (Feature), Rad. Order Placing
(Feature), Rad. Appointment Booking (Feature)

Enable Laboratory Orders, Appointments
and Result Access Results

Laboratory (Feature), Lab. Order Placing
(Feature), Lab. Appointment Booking (Feature)

Issue Prescriptions Prescription (Feature), Submit Prescription
(Feature)

Access Drug Information Get Drug Info (Feature)

Manage RSS Feeds RSS (Feature), Hospital RSS (Feature), Portal
RSS (Feature)

The domain analysis process starts with the specification of the concerns and

identifying the concern-feature mappings. These features are organized in a feature

model by specifying a hierarchy among the features, and constraints such as

cardinalities. A feature model with the essential functionalities can be drawn as

depicted in Figure 39. This model represents the result of the domain analysis

process.

Figure 39 Feature Model for Clinical Mobile Point-of-Care Application

69

The specification of the MPOC architecture continues by realizing the system

features with the viewpoints in the architecture ontology. Various kinds of

viewpoints can be specified for different features. Viewpoints are basic

architectural elements that encapsulate the other architecture components such as

models and mappings. The identification of the viewpoints mostly depends on the

architectural decisions to be made such as the chosen service-oriented

technologies, platforms, existing architecture and other abilities of the

development team. Assuming all the existing services from other systems in the

healthcare setting is published to a UDDI registry, the basic features such as

retrieving or updating the patient data, for example, can be achieved by consuming

HIS services providing the required functionality. Therefore, a service discovery

meta-model to allow the application developers specify the services to be

discovered during application engineering are described as an element within a

UDDI Discovery Viewpoint inherited from the Discovery viewpoint in the

architecture ontology. The class hierarchy of the viewpoint and UDDI meta-model

with the association between them is illustrated in Figure 40.

Figure 40 UDDI Meta-model Classes and Viewpoint

70

Although realizing some features in MPOC architecture can be straightforward,

others may require a more complex utilization of models in different levels of

abstractions together with mappings among these levels. As indicated in [15],

modeling a radiology order process, for instance, requires the interaction with

many systems as well as considering various standard profiles for interoperability.

In addition, the modeling of the process should be achieved by using domain-

specific models in order to better capture the requirements.

In order to achieve this, a multi-level modeling structure is needed in the

viewpoint that realizes the Radiology services in the application. Based on the

model description and mapping mechanisms presented in Chapter 5, it is possible

to create a modeling structure as illustrated in Figure 41. This will allow the

application developers of MPOC system to use the domain standards and domain-

specific models to model the radiology ordering processes and enable a stepwise

transition from the domain to the service-oriented technologies and platforms.

UML Interactions

IHE Patient Identifier
Cross-Referencing

IHE Cross-Enterprise
Document Sharing

IHE Radiology Scheduled Workflow

ebXML Business Process

BPEL

WSDL

SOAP

Domain
Specific
Models

Service
Composition

ebXML Registy

UDDI
Service

Figure 41 Models and Levels in Radiology Service Viewpoint

IHE Profiles utilizes the UML 2.0 Interaction Diagrams [87] as a platform

independent models for specifying the healthcare processes. Therefore, we start

the model specification process by introducing the UML 2.0 interaction model as

illustrated in Figure 42. The Interaction class of this package encapsulates other

71

elements that mainly define the interaction. The most visible aspects of the

interaction are the lifelines representing the interacting parties and the messages

exchanged between them. A sequence of EventOccurences is also used to

represent the trace of the messages in the interaction. By using the interaction

model, one can define several different types of interaction diagrams, including the

sequence diagrams as it is the case for IHE Profiles.

Figure 42 The portion of UML 2.0 Meta-model around Interaction with the classes created by

extending KM3 ontology

IHE Profiles extends the UML 2.0 Interactions by defining the common actors and

transactions available in a healthcare setting. Although each profile separately

specifies its own actors and transactions, they need to be used in collaboration in

order to meet the requirements of the healthcare systems [15]. For example, in our

MPOC application, three profiles, namely Radiology Scheduled Workflow Profile,

Patient Identifier Cross-Referencing Profile and Cross-Enterprise Document

Sharing Profile, are used to specify the process and information flow with the

radiology department, to transmit the patient identity information between

departments, and to manage the sharing of healthcare documents, respectively.

72

73

Therefore, we complete our domain-specific model specification by extending the

interaction model with the IHE actors and transactions. Each IHE actor is defined

as a subclass of Lifeline class, while the IHE transaction extends the Message with

specific constraints. For example, Patient Identifier Cross-Referencing Profile

specifies a number of actors (Table 3) and transactions (Table 4) which can be

defined in the model as shown in Figure 43. Therefore, the MPOC application

queries the Cross-Reference Manager in order to obtain the patient identifiers

before placing a radiology order by using the appropriate transactions.

Table 3 IHE Patient Identifier Cross-Referencing Profile Actors

Actor Description

Identity Source Provides notification to the Cross-reference Manager for any
patient identification related events

Cross Reference Manager Manages the cross-referencing of patient identifiers across
various domains

Cross Reference Consumer Uses patient identifiers provided by the Cross-reference
Manager to track patient identity

Table 4 IHE Patient Identifier Cross-Referencing Profile Transactions

Transaction Description

Patient Identity Feed Communicates patient information, including corroborating
demographic data, after a patient’s identity is established

Query Involves a request by the Cross-Reference Consumer Actor for
a list of patient identifiers that correspond to a patient identifier
known by the consumer

Update Notification Involves the Cross-reference Manager Actor providing
notification of updates to cross-reference associations

Figure 43 IHE Patient Identifier Cross-Referencing Profile Classes

Additionally, for the mapping of the domain-specific model to the service-oriented

platform, the service composition models should be defined. We capture the

ebXML Business Process (ebBP) schema as an ontology in order to represent the

more abstract models in as ebXML choreographies (Figure 44). This model

together with the other domain-specific and service-oriented models is included in

the Radiology Service Viewpoint in the architecture description.

74

Figure 44 ebXML Business Process classes defined by extending KM3 ontology

With the aim of realizing our domain-specific models over SOA, a transformation

from the IHE-based models to the ebBP should also be defined within the

Radiology Service viewpoint of the architecture. Although a direct mapping from

IHE profiles to ebBP has been achieved in [15], this presents a number of

limitations from a software engineering perspective. Since it eliminates the highly

specialized models obtained from domain knowledge, it resembles a black-box

modeling approach involving just one model specification (ebBP schema) to create

the architecture. More importantly, it requires the specification of the domain with

the particular SOA model. In order to manage this, we provide two different levels

of models and specify the transformation from one to another through ontology

mapping in OWLmt.

75

The mapping definition is specified at meta-model level by loading the ontologies

of two model specifications into the OWLmt as shown in Figure 45. Firstly, the

conceptual similarities between the model elements are specified in order to relate

the ontologies at conceptual level. For this purpose, we identify the similarities at

top level as shown in Table 5.

Figure 45 Mapping Definition in OWLmt between IHE/UML and ebBP Meta-models

Table 5 Top Level Similarities between IHE/UML and ebBP Concepts

IHE/UML ebBP
IHE Actor, Lifeline Authorized Role

IHE Transaction, Message Business Transaction

Interaction Multiparty Collaboration, Binary
Collaboration

Message Argument Business Document

76

77

The similarities are captured in OWLmt with SimilarTo pattern to relate the

classes of two ontologies. Every Interaction defined in the source model can be

represented as business collaborations in ebBP, which can have a type of

MultipartyCollaboration and BinaryCollaboration. A Business Collaboration

consists of a set of roles that represent business partners. AuthorizedRole class,

therefore, represents the IHE actors and Lifelines in ebBP side. Similarly, the IHE

transactions and the Messages exchanged between the actors are mapped to the

BusinessTransaction class. In addition, we can map any subclass of IHE

Transaction to a particular pattern of BusinessTransaction which are specified in

ebBP specification as Commercial Transaction, Notification, Information

Distribution, Query/Response, Request/Confirm, Request/Response, or Data

Exchange.

In addition to transforming the main model elements, the relations and attributes

can be mapped to the corresponding elements in the target ontology. In order to

achieve this, the object properties and data type properties are mapped within each

mapping specification. For instance, for each Lifeline or Message contained within

an Interaction, we need to create the required associations among the

MultipartyCollaboration, AuthorizedRoles and Business Transactions. The

OWLmt GUI to define these mappings is also shown in Figure 46.

Once the mappings are defined between the meta-models, they are also included

within the corresponding architectural viewpoints in order to complete the

architecture specification process. During the application engineering phase, the

developers can model the application based on the meta-model specifications and

the business requirements of a particular healthcare organization. The mapping

definitions are also executed to convert these domain-specific models into a SOA.

We consider that IT vendors or enterprises to choose from various service-oriented

technologies and platforms; to construct an architecture once for a particular

product type by specifying the architecture ontology, meta-models and mappings;

to implement tools and editors for the selected models to ease the development;

and to use conventional software engineering methodologies such as agile

methodology or unified process for application development.

Figure 46 Specifying Mappings among Class Properties

78

79

7. CONCLUSION

In this research, we tried to show how to exploit the semantic Web technologies to

create SOAs in a model-driven way. The use of ontologies for the representation

of the architecture description enables a way for metadata management by

exploiting the existing technologies. The ontologies to represent architecture,

features and the models provides better means to clearly specify the connections

among various elements that are supposed to co-exist in the architecture.

By extending IEEE architecture standard, we recommend an architecture

description ontology that enables a transition from stakeholders’ concerns to the

model specifications. This ontology refers to other sub-ontologies that define the

architectural elements in detail to let the architects define the system specification

within a two-phase methodology. This is a required step for SOAs since SOA

involves a number of technologies and platforms to be precisely aligned prior to

application engineering.

The utilization of the ontologies to facilitate a model-driven design is also another

contribution presented in this thesis. The representation of KM3 meta-meta model

in OWL facilitates a bridge between the AMMA modeling space and the Semantic

Web modeling space. This allows us to utilize other semantic Web technologies

such as ontology repositories, query languages and ontology mapping to manage

the models and model transformations. Although ontology mapping tool, OWLmt,

is previously employed to semantically mediate healthcare messages and

electronic healthcare records, its use for model transformations provides a new

perspective for enterprise system development. A comparison between ATL and

OWLmt is given in order to support this idea by showing the features of the

proposed approach. The case study indicates that approach can be useful in

defining multi-level architectures and transition from domain-specific models to

service-oriented technologies.

80

7.1. Future Work

Our analysis and research on service-oriented system engineering show that this is

an evolving area and fertile ground for research. The following tracks of research

are suggested:

• Service-oriented architectures provide a set of specifications and

technologies built on top of the services in a loosely-coupled way leading

to the separation of concerns in different models. The model composition

techniques can be developed to create a composition framework by

facilitating the aspect-oriented programming on service-oriented runtime in

order to cleanly modularize the crosscutting concerns like security,

management, mediation as aspects.

• With the aim of enabling the exchange and reuse of the model

specifications among the enterprises, a collaboration network can be

provided to semantically query, discover and obtain the model

specifications in a peer-to-peer network infrastructure for domain level

cooperation.

• The effects of globalization are forcing the enterprises to explore ways to

diversify and deliver software in a timely and productive manner. In order

to achieve this, Software Product Lines (SPL) have emerged as one of the

most promising software development paradigms over the last decade by

utilizing a number of core assets in product-line architecture to create a set

of software products for a particular domain. However, creating SPL

architectures require upfront investment for core asset development and

introduce complexities in terms of scoping, variability management,

evolution and testing. Actually, if they are complemented with a domain

engineering approach, current service-oriented technologies constitute a

unique set of core assets in order to foster the enterprise level reuse and

product-line development increasing the return-of-investment for

enterprises. By utilizing a SPL approach, service-oriented domain-specific

platforms can be created for the enterprises to build systems over SOA.

81

We believe that this track of research requires further attention and insights gained

through such studies that will result in discovering new service-oriented system

development methodologies.

82

REFERENCES

[1] A. Arsanjani, B. Hailpern, J. Martin, and P. L.Tarr, "Web Services:
Promises and Compromises," IBM 2002.

[2] M. Brodie, C. Bussler, J. d. Brujin, T. Fahringer, D. Fensel, M. Hepp, H.
Lausen, D. Roman, T. Strang, H. Werthner, and M. Zaremba,
"Semantically Enabled ServiceOriented Architectures: A Manifesto and a
Paradigm Shift in Computer Science," DERI 2005.

[3] W. B. Rouse, "A theory of enterprise transformation," Systems Engineering
vol. 8, pp. 279 - 295, 2005.

[4] Z. Stojanovic and A. Dahanayake, Service-Oriented Software System
Engineering: Challenges and Practices. Hershey-London: Idea Group
Publishing, 2005.

[5] WSMO-WSMX, "Web Service Modelling Execution
Environment(WSMX)", Last access date: July 2007, from
http://www.wsmx.org/

[6] Apache-Tuscany, "Apache Tuscany Project", Last access date: July 2007,
from http://incubator.apache.org/tuscany/home.html

[7] Apache-WS, "Apache Web Services Project", Last access date: July 2007,
from http://ws.apache.org/

[8] Mule, "Mule Open Source Enterprise Service Bus", Last access date: July
2007, from http://mule.codehaus.org/

[9] ActiveBPEL, "ActiveBPEL Open Source WS-BPEL Engine Project", Last
access date: July 2007, from http://www.active-endpoints.com/open-
source-active-bpel-Intro.htm

[10] A. Colyer, G. Blair, and A. Rashid, "Managing Complexity In
Middleware," in The Second AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software (ACP4IS), 2003.

[11] P. Herzum and O. Sims, Business Component Factory: A Comprehensive
Overview of Component-Based Development for the Enterprise: John
Wiley & Sons, 2000.

[12] T. Margaria and B. Steffen, "Service Engineering:Linking Business and
IT," IEEE Computer, vol. 39, pp. 45-55, 2006.

[13] G. Kotonya, J. Hutchinson, and B. Bloin, "A Method for Formulating and
Architecting Component- and Service-Oriented Systems," in Service-
Oriented Software System Engineering: Challenges and Practices, Z.
Stojanovic and A. Dahanayake, Eds.: Idea Group Publishing, 2005, pp.
155-181.

[14] J. Zdravkovic, M. Henkel, and P. Johannesson, "Moving from Business to
Technology with Service-Based Processes," IEEE Internet Computing, vol.
9, pp. 73-81, 2005.

[15] A. Dogac, V. Bicer, and A. Okcan, "Collaborative Business Process
Support in IHE XDS through ebXML Business Processes " presented at
International Conference on Data Engineering (ICDE), Atlanta, USA,
2006.

http://www.wsmx.org/
http://incubator.apache.org/tuscany/home.html
http://ws.apache.org/
http://mule.codehaus.org/
http://www.active-endpoints.com/open-source-active-bpel-Intro.htm
http://www.active-endpoints.com/open-source-active-bpel-Intro.htm

83

[16] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and B. J. Kramer,
"Service-Oriented Computing: A Research Roadmap," presented at Service
Oriented Computing (SOC) 2005, Schloss Dagstuhl, Germany, 2006.

[17] OMG-BPMN, "Business Process Modeling Notation Specification," OMG
2006.

[18] M. Colombo, E. D. Nitto, M. D. Penta, D. Distante, and M. Zuccala,
"Speaking a Common Language: A Conceptual Model for Describing
Service-Oriented Systems," presented at International Conference on
Service Oriented Computing(ICSOC), Amsterdam, Netherlands, 2005.

[19] K. Czarnecki, M. Antkiewicz, and C. H. P. Kim, "Multi-Level
Customization In Application Engineering: Developing mechanisms for
mapping features to analysis models," Communications of the ACM, vol.
49, pp. 61-65, 2006.

[20] K. C. Kang, J. Lee, and P. Donohoe, "Feature Oriented Product Line
Software Engineering: Principles and Guidelines," in Domain Oriented
Systems Development: Perspectives and Practices: Taylor & Francis, 2003.

[21] IEEE, "IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems," vol. IEEE Std 1471-2000: IEEE Architecture
Working Group, 2000.

[22] J. Bosch, "Software Architecture: The Next Step," presented at European
Workshop on Software Architecture, St Andrews, UK, 2004.

[23] F. Bachmann, L. Bass, J. Carriere, P. Clements, D. Garlan, J. Ivers, R.
Nord, and R. Little, "Software Architecture Documentation in Practice:
Documenting Architectural Layers," Carnegie Mellon University Software
Engineering Institute 2000.

[24] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,
and J. Stafford, Documenting Software Architectures: Views and Beyond
Addison-Wesley Professional, 2002.

[25] M. P. Papazoglou, "Web Services Technologies and Standards," ACM
Computing Surveys, vol. Submitted for publication, 2006.

[26] A. P. Barros and M. Dumas, "The Rise of Web Service Ecosystems," IEEE
Computer, vol. 8 pp. p31-37, 2006.

[27] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, "A Note on Distributed
Computing," Sun Microsystems Laboratories, Mountain View, CA, USA
1994.

[28] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,
and D. Orchard, "Web Services Architecture", Last access date: from
http://www.w3.org/TR/ws-arch/

[29] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer, "Simple Object Access Protocol (SOAP)
1.1 ", Last access date: July 2007, from
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[30] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, "Web
Services Description Language (WSDL) 1.1", Last access date: July 2007,
from http://www.w3.org/TR/wsdl

[31] L. Clement, A. Hately, C. v. Riegen, and T. Rogers, "UDDI Version 3.0.2",
Last access date: July 2007, from http://uddi.org/pubs/uddi_v3.htm

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/wsdl
http://uddi.org/pubs/uddi_v3.htm

84

[32] M. P. Papazoglou and W.-J. Heuvel, "Service oriented architectures:
approaches, technologies and research issues," The International Journal
on Very Large Data Bases (VLDB Journal), vol. 16 pp. 389 - 415, 2007.

[33] V. Bicer, C. Togay, and A. H. Dogru, "A Model-Driven Approach for
Service-Centric System Development," presented at Integrated Design and
Process Technology, IDPT-2007, Antalya, Turkey, 2007.

[34] C. Peltz, "Web Services Orchestration and Choreography," IEEE
Computer, vol. 36, pp. 46-52, 2003.

[35] F. Leymann, "Web Services Flow Language," IBM 2001.
[36] S. Thatte, "XLANG: Web Services for Business Process Design,"

Microsoft 2001.
[37] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K.

Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana,
"Business Process Execution Language for Web Services, Version 1.1,"
BEA, IBM, Microsoft, SAP, Siebel 2003.

[38] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C.
Barreto, "Web Services Choreography Description Language, Version
1.0", Last access date: July 2007, from http://www.w3.org/TR/ws-cdl-10/

[39] J.-J. Dubray, S. S. Amand, and M. J. Martin, "ebXML Business Process
Specification Schema Technical Specification v2.0.4," OASIS Standard
2006.

[40] J. O. Kephart and D. M. Chess, "The Vision of Autonomic Computing,"
IEEE Computer, vol. 36, pp. 41-50, 2003.

[41] M. P.Papazoglou and W.-J. v. d. Heuvel, "Web Services Management: A
Survey," IEEE Internet Computing, vol. 9, pp. 58-64, 2005.

[42] N. Catania, P. Kumar, B. Murray, H. Pourhedari, W. Vambenepe, and K.
Wurster, "Web Services Management Framework - Overview Version
2.0," 2003.

[43] H. Kreger and T. Studwell, "Autonomic computing and Web Services
Distributed Management," IBM, 2005.

[44] G. Muller, "Architectural Reasoning Explained," Embedded Systems
Institute, Eindhoven, The Netherlands 2006.

[45] B. Hailpern and P. Tarr, "Model-driven development: The good, the bad,
and the ugly," IBM Systems Journal, vol. 45, pp. 451-461, 2006.

[46] F. Jouault and J. Bézivin, "KM3: A DSL for Metamodel Specification,"
presented at 8th IFIP International Conference on Formal Methods for
Open Object-Based Distributed Systems, Bologna, Italy, 2006.

[47] K. Czarnecki and S. Helsen, "Feature-based Survey of Model
Transformation Approaches," IBM Systems Journal, vol. 45, pp. 621-645,
2006.

[48] OMG-MDA, "Model Driven Architecture", Last access date: July 2007,
from http://www.omg.org/mda/

[49] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development: Springer-Verlag, 2005.

[50] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez, "Modeling in the
Large and Modeling in the Small," presented at European MDA
Workshops: Foundations and Applications, MDAFA Twente, The
Netherlands and Linköping, Sweden, 2003/2004.

http://www.w3.org/TR/ws-cdl-10/
http://www.omg.org/mda/

85

[51] J. Greenfield and K. Short, Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools: John Wiley & Sons 2004.

[52] F. Jouault and I. Kurtev, "Transforming Models with ATL," presented at
MoDELS Satellite Events 2005, Montego Bay, Jamaica, 2005.

[53] T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic Web," Scientific
American, vol. 284, pp. 34-43, 2001.

[54] T. R. Gruber, "Toward Principles for the Design of Ontologies Used for
Knowledge Sharing," International Journal of Human Computer Studies,
vol. 43, pp. 907-928, 1995.

[55] G. Klyne and J. J. Carroll, "Resource Description Framework (RDF):
Concepts and Abstract Syntax", Last access date: July 2007, from
http://www.w3.org/TR/rdf-concepts/

[56] D. Brickley and R. V. Guha, "Resource Description Framework (RDF)
Schema Specification 1.0", Last access date: July 2007, from
http://www.w3.org/TR/rdf-schema

[57] D. L. McGuinness and F. v. Harmelen, "OWL Web Ontology Language
Overview ", Last access date: July 2007, from http://www.w3.org/TR/owl-
features/

[58] J. d. Brujin, "Logics for the Semantic Web," DERI 2006.
[59] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-

Schneider, The description logic handbook: Cambridge University Press,
2003.

[60] J. Broekstra, A. Kampman, and F. v. Harmelen, "Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema," presented
at International Semantic Web Conference(ISWC), Sardinia, Italy,, 2002.

[61] V. Bicer, "OWLmt: An OWL Mapping Tool - Technical Report," METU
2004.

[62] XQuery-XPath-Functions, "XQuery 1.0 and XPath 2.0 Functions and
operators", Last access date: July 2007, from http://www.w3.org/TR/xpath-
functions/

[63] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications: Addison-Wesley, 2000.

[64] H.-J. Happel and S. Seedorf, "Applications of Ontologies in Software
Engineering," presented at 2nd International Workshop on Semantic Web
Enabled Software Engineering (SWESE 2006), Athens, GA, U.S.A., 2006.

[65] P. Kruchten, H. Obbink, and J. Stafford, "The Past, Present and Future of
Software Architecture," IEEE Software, vol. 23, pp. 22-30, 2006.

[66] G. Chastek, P. Donohoe, K. C. Kang, and S. Thiel, "Product Line Analysis:
A Practical Introduction," Carnegie Mellon Software Engineering Institute
2001.

[67] V. Bicer and C. Togay, "Representing Feature Models with Semantic Web
Ontologies," presented at First Turkish Software Architecture Design
Conference, Istanbul, Turkey, 2006.

[68] H. Wang, L. Y. Fang, J. Sun, H. Zhang, and J. Pan, "A Semantic Web
Approach to Feature Modeling and Verification," presented at Workshop
on Semantic Web Enabled Software Engineering (SWESE 2005), Galway,
Ireland, 2005.

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath-functions/

86

[69] K. Czarnecki, S. Helsen, and U. Eisenecker, "Formalizing Cardinality-
based Feature Models and their Specialization," Software Process
Improvement and Practice, John Wiley & Sons, vol. 10, pp. 7-29, 2005.

[70] V. Bicer, G. B. Laleci, A. Dogac, and Y. Kabak, "Artemis Message
Exchange Framework: Semantic Interoperability of Exchanged Messages
in the Healthcare Domain," ACM Sigmod Record, vol. 34, 2005.

[71] V. Bicer, O. Kilic, A. Dogac, and G. B. Laleci, "Archetype-based Semantic
Interoperability of Web Service Messages in the Healthcare Domain,"
International Journal on Semantic Web and Information Systems, vol. 1,
pp. 1-22, 2005.

[72] R. Haux, "Health Information Systems - Past, Present, Future,"
International Journal of Medical Informatics, vol. 75, pp. 268-281, 2006.

[73] V. Bicer, G. B. Laleci, A. Dogac, and Y. Kabak, "Providing Semantic
Interoperability in the Healthcare Domain through Ontology Mapping,"
presented at eChallenges 2005, Ljubljana, Slovenia, 2005.

[74] J. Tan, E-Health Care Information Systems: Jossey-Bass, 2005.
[75] HL7, "Health Level 7 (HL7)", Last access date: July 2007, from

http://www.hl7.org/
[76] DICOM, "Digital Imaging and Communications in Medicine (DICOM)",

Last access date: July 2007, from http://medical.nema.org/
[77] ASTM-CCR, "ASTM The Continuity of Care Records(CCR)", Last access

date: July 2007, from
http://www.astm.org/COMMIT/E31_ConceptPaper.doc

[78] HL7-CDA-Release2.0, "The HL7 Version 3 Standard: Clinical Data
Architecture," ANSI Standard, 2005.

[79] SNOMED., "The Systematized Nomenclature of Medicine(SNOMED)
Clinical Terms."

[80] LOINC, "Logical Observation Identifiers Names and Codes (LOINC)",
Last access date: July 2007, from http://www.loinc.org/

[81] HL7-CCOW, "HL7 Clinical Context Management Specification
(CCOW)", Last access date: July 2007, from
http://www.hl7.org.au/CCOW.htm

[82] CEN-PREN-13606-1, "Health informatics-Electronic health record
communication-Part 1: Reference model. Draft European Standard for
CEN Enquiry prEN 13606-1," European Committee for Standardization,
Brussels, Belgium 2004.

[83] openEHR, "openEHR Community", Last access date: July 2007, from
http://www.openehr.org/

[84] IHE, "Integrating the healthcare enterprise (IHE)", Last access date: July
2007, from http://www.ihe.net/

[85] IHE-Radiology, "IHE Radiology Technical Framework Rev. 7.0.
Integration Profiles", Last access date: July 2007, from
http://www.ihe.net/Technical_Framework/upload/ihe_tf_rev7.pdf

[86] E. D. Valle, D. Cerizza, V. Bicer, Y. Kabak, G. B. Laleci, and H. Lausen,
"The Need for Semantic Web Service in the eHealth," presented at W3C
workshop on Frameworks for Semantics in Web Services, Innsbruck,
Austria, 2005.

http://www.hl7.org/
http://medical.nema.org/
http://www.astm.org/COMMIT/E31_ConceptPaper.doc
http://www.loinc.org/
http://www.hl7.org.au/CCOW.htm
http://www.openehr.org/
http://www.ihe.net/
http://www.ihe.net/Technical_Framework/upload/ihe_tf_rev7.pdf

87

[87] UML2.0-Superstructure, "Unified Modeling Language 2.0:
Superstructure," OMG 2007.

