

CONTROL AND SIMULATION STUDIES FOR A MULTICOMPONENT BATCH PACKED
DISTILLATION COLUMN

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HATİCE CEYLAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CHEMICAL ENGINEERING

AUGUST 2007

Approval of the thesis:

CONTROL AND SIMULATION STUDIES FOR A MULTICOMPONENT BATCH

PACKED DISTILLATION COLUMN

Submitted by HATİCE CEYLAN in partial fulfillment of the requirements for the degree of

Master of Science in Chemical Engineering Department, Middle East Technical

University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Nurcan Baç

Head of Department, Chemical Engineering

Prof. Dr. Canan Özgen

Supervisor, Chemical Engineering Department, METU

Examining Committee Members:

Prof. Dr. Nazife Suzan Kıncal

Chemical Engineering Department, METU

Prof. Dr. Canan Özgen

Chemical Engineering Department, METU

Prof. Dr. Kemal Leblebicioğlu

Electrical and Electronics Engineering Department, METU

Prof. Dr. Gürkan Karakaş

Chemical Engineering Department, METU

Assist. Prof. Dr. Yusuf Uludağ

Chemical Engineering Department, METU

Date: 29.08.2007

iii

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by

these rules and conduct, I have fully cited and referenced all material and results that are

not original to this work.

 Name, Last Name: Hatice CEYLAN

Signature :

iv

ABSTRACT

CONTROL AND SIMULATION STUDIES FOR A MULTICOMPONENT BATCH PACKED

DISTILLATION COLUMN

Ceylan, Hatice

M. S., Department of Chemical Engineering

Supervisor: Prof. Dr. Canan Özgen

August 2007, 150 pages

During the last decades, batch distillation is preferably used with an increasing demand over

continuous one, to separate fine chemicals in chemical and petroleum industries, due to its

advantages like, flexibility and high product purity. Consequently, packed distillation

columns, with newly generated packing materials, are advantageous compared to plate

columns because of their smaller holdups, resistivity to corrosive materials and their higher

separation efficiencies. Also, in many industrial applications, mathematical models of

distillation systems are frequently used in order to design effective control systems, to train

operating personnel and to handle fault diagnostics. Thus, the main objective of this study is

to develop a mathematical model for a multicomponent batch distillation column, which is

used to separate mixtures at low operating pressures, packed with random packing

materials. In multicomponent batch packed distillation, operation with optimum reflux ratio

profile is important for efficiency to maximize the amount of the distillate with a specified

concentration, for a given time. Therefore, it is also aimed to find the optimum reflux ratio

profile for the multicomponent batch packed distillation column.

A simulation algorithm is written with the aid of MATLAB and FORTRAN programming

languages by taking into account pressure drop and variation of physical properties. The

v

selected incremental bed height, ∆z, to be used in the simulation program has an effect on

the accuracy of the results. This is analyzed and the optimal incremental height is found to

be 3.5 cm for a 1.5m bed height. The change in distillate compositions with a given constant

reflux ratio is found to be similar with those of previous studies. The simulation code is also

used to obtain responses in distillate compositions for different reflux ratios, condenser

holdups and reboiler duties and compared with similar studies found from literature and

found to be adequate. Finally, experiments are conducted to verify simulation algorithm by

using a lab-scale packed distillation column for the separation of a polar mixture of ethanol

and water. It is observed that, there is a good agreement between the experimental and

simulation results.

After the verification of dynamic model, optimum operation policy to maximize product

amount is investigated numerically by using capacity factor approach. The column is

operated with and without recycling of the holdups of the slop cut tanks, in order to examine

the effect of recycling on capacity factor, CAP. It is observed that, recycling of the molar

holdups of the slop cut tanks is resulted in a 28% increase in the separation efficiency.

Keywords: Multicomponent Batch Distillation System, Dynamic Modeling of Packed Columns,

Optimal Operation

vi

ÖZ

ÇOK BİLEŞENLİ KESİKLİ BİR DOLGULU DAMITMA KOLONUNDA KONTROL VE BENZETİM

ÇALIŞMALARI

Ceylan, Hatice

Yüksek Lisans, Kimya Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Canan Özgen

Ağustos 2007, 150 sayfa

Son yıllarda, kimya ve petrol endüstrilerinde, özel kimyasalları ayırmak için sürekli damıtmaya

oranla, işletmede gösterdiği esneklik ve elde edilen yüksek ürün saflığı nedenleri ile kesikli

damıtma tercih edilmektedir. Özellikle, endüstride, dolgulu damıtma kolonları yeni

geliştirilmiş dolgu maddeleri ile az sıvı tutma, korozif maddelere karşı dayanıklılık ve yüksek

ayrıştırmadaki etkin olma özellikleri ile tablalı kolonlardan daha fazla kullanılmaktadırlar.

Ayrıca, birçok endüstriyel uygulamada, etkili kontrol sistemleri tasarlamak, personel eğitimi

ve arıza tanımlamaları için matematiksel damıtma modelleri yoğun olarak kullanılmaktadır.

Bu nedenle, bu çalışmanın en önemli amacı, düşük basınçlarda işletilen karışımları ayırmak

için, rasgele yerleştirilmiş dolgu maddeli çok bileşenli kesikli-dolgulu damıtma kolonu için

matematiksel bir model geliştirmektir. Ayrıca, bu çok bileşenli kesikli damıtma kolonunda,

belirli bir zamanda, damıtılan ürün miktarını maksimize etmek üzere optimum geri akış

profilinin belirlenmesi amaçlanmıştır.

Kolon için MATLAB ve FORTRAN programlama dillerini kullanarak, basınç düşmesi ve fiziksel

özelliklerin değişimi dikkate alınarak, kolon değişkenlerinin dinamik değişimini belirlemek

üzere, bir benzetim algoritması hazırlanmıştır. Dolgulu kolonda benzetim algoritmasının

çalıştırılmasında seçilen dolgulu yatak adım yüksekliği, ∆z’nin benzetimin doğruluk derecesine

vii

etkisi incelenmiş ve optimal yükseklik 1.5 m dolgulu yatak yüksekliği için 3.75 cm olarak

bulunmuştur. Benzetim kodu literatürden alınan bazı çalışmalarla, teorik olarak,

karşılaştırılmış ve belirli bir geri akış oranında, damıtma derişimlerinin davranışı önceki

çalışmalardaki ile aynı bulunmuştur. Benzetim kodu ayrıca farklı geri akış oranları,

yoğunlaştırıcıda tutulan farklı sıvı miktarları ve kazana beslenen farklı ısılar için çalıştırılmış ve

literatürdeki benzer çalışmalarla karşılaştırılarak, geçerliliği saptanmıştır. Ayrıca, benzetim

algoritmasının doğru sonuçlar verdiğini belirlemek için laboratuar ölçülerinde dolgulu bir

damıtma kolonu kullanılarak, etanol ve su karışımını ayrıştırmak için deneyler yapılmıştır.

Deney sonuçlarının benzetim kod sonuçları ile iyi bir uyum içinde olduğu görülmüştür.

Dinamik modelin doğrulanmasından sonra, ürün miktarını arttırmak için, optimum işletme

politikası, kapasite faktör yaklaşımı kullanılarak sayısal olarak araştırılmıştır. Geri dönüşümün

kapasite faktör üzerine olan etkisini incelemek için, kolon, atık tanklarında biriken miktarlar

geri döndürülerek ve döndürülmeyerek çalıştırılmıştır. Atık tanklarında biriken miktarların geri

döndürülerek damıtılmasının ayırma etkisini %28 arttırdığı görülmüştür.

Anahtar Kelimeler: Çok Bileşenli Kesikli Damıtma Sistemi, Dolgulu Kolonların Dinamik

Modellemesi, Optimal İşletme

viii

To Mehmet Ali and Hilmiye CEYLAN,

ix

ACKNOWLEDGMENTS

Firstly, I am grateful to my supervisor, Prof. Dr. Canan ÖZGEN, for guiding me not only on

my thesis but also on my life to make me a better person by being a model with her

leadership, friendship, patience, politeness and wisdom. The days when I saw her smile and

felt her encouragement were the most beautiful times of my life.

I would like to thank Almıla BAHAR for her help and giving answers by not disappointing me

to my idea, “Almıla knows the answer of this error”. I would like to thank M. Oluş ÖZBEK

due to his patient on helping me about computer technology and MATLAB software and,

Özgecan DERVİŞOĞLU who always encourage and felt me like I was at a stand up show of a

star at every meeting when I felt unhappy. I also would like to thank Uğur YILDIZ due to his

valuable discussions on batch modeling and simulation algorithms. Also, I would like to

thank to my roommates, Hulya TATAS and Nihan KARAKOC due to their valuable friendship.

I am also grateful to my best friends, Cemile KESERCİ and Mustafa SEMİZ. Their

encouragement, friendship and moral support are the best motivation for me.

I would like to thank Ferit KOYDEMİR due to his technical, financial and moral support

throughout my thesis study, this study would not end without his support.

Financial support of The Scientific and Technological Research Council of Turkey (TUBITAK)

is also acknowledged.

Last but certainly not least, I would like to thank my family, who always supported me

whatever I do and taught me how to face challenges and were felt near to me even we

were apart.

x

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... ix

TABLE OF CONTENTS .. x

LIST OF TABLES..xiii

LIST OF FIGURES .. xv

NOMENCLATURE ..xvii

CHAPTERS

1. INTRODUCTION ..1

2.LITERATURE SURVEY ..5

2.1 A Brief Description of a Packed Distillation Column ...5

2.1.1 Mass Transfer Coefficients ..6

2.1.2 Effective Interfacial Area...9

2.1.3 Pressure Drop, Loading and Flooding Capacity ..9

2.1.4 Holdup ... 11

2.1.5 Flow Maldistribution ... 12

2.2 Design Methods for Packed Columns .. 13

2.3 Dynamic Modeling of Packed Columns and Solving Model Equations................... 13

2.4 Optimal Operation Policy ... 17

3. MULTICOMPONENT BATCH PACKED DISTILLATION COLUMN MODELING 20

3.1 Model Assumptions... 20

3.2 Batch Packed Distillation Column Dynamic Modeling ... 22

3.2.1 Conservation Equations ..22

3.2.2 Determination of Flow Rates at Finite External Reflux Ratio 28

3.2.3 Determination of Flow Rates at Total Reflux.. 29

3.2.4 Determination of Loading and Flooding Points ... 30

3.2.5 Calculation of Molar Hold up and Pressure Drop .. 30

3.2.6 Predictions of Physical Properties ... 32

3.2.7 Algebraic Equations and Thermodynamics .. 32

xi

3.3 Initial Conditions for the Simulation .. 34

3.4 Storage Tank Models .. 35

3.5 Model Equations... 36

4. OPTIMAL OPERATION OF A MULTICOMPONENT BATCH PACKED DISTILLATION

COLUMN... 38

4.1 Capacity Factor .. 38

4.2 Problem Statement ... 39

4.3 Optimization Problem Formulation ..39

5. SIMULATION CODE.. 41

5.1 Main Simulation Code ... 43

5.2 Thermodynamic Library... 44

5.3 Optimization Functions.. 49

6. CASE COLUMN AND EXPERIMENTAL SET- UP.. 51

6.1 Case Study 1: Hydrocarbons .. 51

6.2 Case Study 2: Polar mixtures ... 54

6.2.1 Experimental Set – Up .. 54

6.2.2 Experimental Procedure.. 55

7. RESULTS AND DISCUSSION .. 56

7.1 Effect of Incremental Bed Height on the Results of the Simulation 56

7.2 Verification of Simulation Code by the Study of Yıldız (2002) 57

7.3 Verification of Simulation Code for Hydrocarbon Mixtures.................................. 60

7.4 Experimental Verification of Simulation Code for Polar Mixtures 72

7.5 Determination of Optimum Reflux Ratio .. 74

8. CONCLUSIONS AND RECOMMENDATIONS .. 81

REFERENCES .. 83

APPENDICES

A. MASS TRANSFER AND EFFECTIVE INTERFACIAL AREA CORRELATIONS FOR RANDOM

PACKING MATERIALS... 88

B. CONSTANTS OF PRESSURE DROP EQUATION FOR DUMPED PACKING MATERIALS ... 91

C. SIMULATION CODE.. 92

C.1 Main Program Codes... 92

C.1.1 Glob_Decs.m... 92

C.1.2 Glob_Initial.m.. 93

C.1.3 Mass_Hydrocarbons.m ... 94

C.1.4 Mass_Polar.m.. 97

C.1.5 PressureProfile.m... 98

C.1.6 Plant_File_Packed.m ..99

xii

C.2 Optimization Code .. 112

C.2.1 OptimizeR.m ... 112

C.2.2 Batch_con.m... 113

C.2.3 Batch_obj.m.. 113

C.3 Thermodynamic Library .. 113

C.3.1 thermo_Init.m... 113

C.3.2 thermo_Equilibrium_Hydrocarbons.m... 113

C.3.3 thermo_Equilibrium_Polar.m ... 114

C.3.4 thermo_Enthalpy.m ... 114

C.3.5 thermo_L_Density.m.. 114

C.3.6 thermo_G_Density.m ... 114

C.3.7 thermo_LIBRARY.f ... 115

C.3.8 thermo_LIBRARY.h .. 138

C.3.9 common_plant.h.. 138

C.3.10 parameter.h .. 139

C.3.11 thermo_data.dat .. 139

D. STUDIED CHEMICALS .. 140

E. DETAILS OF EXPERIMENTAL SET UP.. 146

E. 1. Calibration Curve of Peristaltic Pumps ... 146

E. 2. Details for the Analysis of Compound Compositions 147

xiii

LIST OF TABLES

Table 2.1 The Volumetric Mass Transfer Coefficient Correlations Used in Some Studies.8

Table 2.2 Summary of Numerical Methods Used in Different Simulation Studies. 16

Table 3.1 Important Features of Batch Distillation Column Models. 23

Table 3.2 Binary Interaction Parameters, bij. ... 34

Table 3.3 Summary of MPDC Model Equations... 36

Table 5.1 The Overall Structure of the Simulation Code. ... 42

Table 6.1 Column and Feed Specifications... 53

Table 6.2 Additional Specifications for the Packed Distillation Column Used in the

Simulation. ... 53

Table 6.3 Specifications of Used Random Packing Material. ... 54

Table 7.1 Internal Reflux Ratio Profile of the Study of Yıldız (2002)................................ 57

Table 7.2 Parameters Used in Different Simulation Runs... 61

Table 7.3 Distillate Compositions at Different Reflux Ratios at Two Hours Elapsed Time. .. 63

Table 7.4 Percentage Changes of Distillate Compositions at Different Internal Reflux Ratios.

... 63

Table 7.5 Distillate Compositions at Different Height of Packings at Two Hours Elapsed

Time. ... 64

Table 7.6 Percentage Change of Distillate Compositions at Different Height of Packings. .. 65

Table 7.7 Distillate Compositions at Different Condenser Holdups for Two Hours Elapsed

Time. ... 66

Table 7.8 Percentage Change of Distillate Compositions at Different Condenser Holdups. .67

Table 7.9 Distillate Compositions at Different Condenser Holdups for 4.5 Hours Elapsed

Time. ... 68

Table 7.10 Percentage Change of Distillate Compositions at Different Condenser Holdups.

... 69

Table 7.11 Distillate Compositions at Different Heat Loads for Two Hours Elapsed Time... 71

Table 7.12 Percentage Change of Distillate Compositions at Different Heat Loads. 71

xiv

Table 7.13 Experimentally Measured Liquid Ethanol Compositions in Mole Factions in the

Distillate. .. 72

Table 7.14 Effect of Rounded Value of Internal Reflux Ratio on Capacity Factor. 75

Table 7.15 List of Some Capacity Factor Values with Rounded Times to Switch another

Tank. ... 75

Table 7.16 Results of the Optimization Code to Maximize Distilled Product Amount for

Cyclohexane – n-Heptane – Toluene Mixture. ... 76

Table 7.17 Distillate Compositions and Amounts for the Optimum Reflux Ratio Profile. 77

Table 7.18 Simulation Results of the First Recycle Process.. 78

Table 7.19 Simulation Results of Third Distillation Phase. ... 79

Table 7.20 Summary of the Operations with Recycling. .. 80

Table A.1 Correlations for the Gas And / Or Liquid Side Mass Transfer Coefficients for

Random Packings. ... 88

Table A.2 Correlations of Effective Interfacial Area for Random Packing Materials. 90

Table B.1 Constants for Some Dumped Packing Materials. .. 91

Table D.1 Specifications for Hydrocarbons. ... 140

Table D.2 List of Correlations Used to Predict Physical Properties of the Hydrocarbons. .. 141

Table D.3 Physical Properties of Ethanol and Water Utilized in the Simulation Runs. 144

Table D.4 Specifications for Ethanol and Water.. 144

Table D.5 NRTL Model Parameters. .. 145

Table D.6 Constants for Antoine Equation. .. 145

Table D.7 Constants for Wagner Equation. .. 145

Table E.1 Specifications for GC. ... 147

Table E.2 Areas Obtained for Prepared Samples. ... 147

Table E.3 Data for Base Component Factor of Water. ... 149

xv

LIST OF FIGURES

Figure 2.1 Loading and Flooding Points for a Packed Column at Total Reflux. 10

Figure 3.1 Schematic View of Studied Batch Packed Distillation Column. 23

Figure 3.2 Schematic View of a Differential Section of the Column for Material Transfer... 24

Figure 3.3 Schematic View of a Differential Section of the Column for Energy Transfer. ... 25

Figure 4.1 STN of the Optimization Problem.. 39

Figure 4.2 Schematic View of Recycling of the Materials in Slop Cut Tank....................... 40

Figure 5.1 Simulation Chart of the Batch Packed Distillation Column. 43

Figure 5.2 Flow Chart of the Main Simulation Algorithm.. 45

Figure 5.3 Flowchart of Simulation Algorithm for Optimum Reflux Ratio Profile. 50

Figure 6.1 Residue Curve Map for Cyclohexane – n - Heptane – Toluene at 1 atm........... 52

(Jiménez et al., 2002). ... 52

Figure 6.2 Schematic View of Experimental Set – Up.. 55

Figure 7.1 Comparison of Distillate Compositions for Different Incremental Elements....... 57

Figure 7.2 Comparison of Distillate Compositions at Total Reflux. 58

Figure 7.3 Comparison of Distillate Compositions at Internal Reflux Ratio of 0.875. 59

Figure 7.4 Comparison of Distillate Compositions with a Specified Reflux Ratio Profile...... 60

Figure 7.5 Effect of Internal Reflux Ratio on the Distillate Compositions. 62

Figure 7.6 Effect of Height of Packings on the Distillate Compositions. 64

Figure 7.7 Effect of Condenser Holdups on the Distillate Compositions. 66

Figure 7.8 Effect of Condenser Holdup on the Distillate Compositions with One Hour

Startup Period. .. 68

Figure 7.9 Effect of Condenser Holdup on Distillate Compositions with 2.5 Hours Startup

Period. ... 69

Figure 7.10 Effect of Heat Load on Distillate Compositions. .. 70

Figure 7.11 Comparison of Results Obtained By Simulation and Experiments.................. 74

Figure 7.12 The Liquid Distillate Compositions Obtained under Optimum Reflux Ratio

Profile. ... 76

xvi

Figure 7.13 Schematic View of Recycle Process for the Proceeding Batch Operation. 78

Figure E.1 Calibration Curve of the Peristaltic Pumps.. 146

Figure E.2 Behavior of Base Component of Water. ... 149

xvii

NOMENCLATURE

A

Tower cross-sectional area [m2]

A1, A2, A3 Constants for Antoine equation

ae Effective interfacial area per unit volume of packing volume [1/m]

ap Specific packing surface area per unit volume of packing volume [1/m]

b Binary interaction parameter

B Constant in Equation D.6

∆B Group contribution number in Equation D.10

C1, C2, C3 Packing constants for pressure drop correlations

c Packing specific constant = 2 if dp <15 mm,

otherwise c = 5.23 in Equation 3.12 (Djebbar et al., 2002)

c Constant in Equations 3.56 and 3.57

D Distillate flow rate [mol/hr]

D Diffusion coefficient [m2/s]

dp Particle diameter [m]

fo Friction factor for flow past a single particle

f Fugacity, pure species j

Fr Froude number

g Gravitational constant [m/s2],

Interaction energy [Pa. m3 / mol] in Equation 3.66

G Specific Gibbs free energy [J/mol]

h Liquid mixture enthalpy [J/mol]

H Vapor mixture enthalpy [J/mol]

ho Liquid holdup below the loading point [m3/m3]

hL Liquid holdup in a packed bed above the loading point [m3/m3]

k Mass transfer coefficient [mol/(h.m2.mol frac)] and, in Equations 3.12 and

3.19 [m/s]

K Overall mass transfer coefficient [mol/(h.m2.mol frac)]

xviii

L Liquid flow rate [mol/hr]

M Molar holdup [mol]

M’ Molar holdup / height [mol/m]

m Slope of the equilibrium line

Mw Molecular weight [kg/mol], in Equation D.1 and D.18 [g/mol]

N Constant in Equation D.1, given by Equations D.2 and D.3

N Mass flux in Equation 3.1 [mol/(h.m2)]

No Constant in Equation D.7

P Pressure [Pa], in Equation D.18 [psia], in Equation 7.1 [mmHg]

P Product tank

Q Interaction parameter in Equation D.4

QP Heat loss per unit length [J/(h. m)]

Q Heat load [J/hr]

R External reflux ratio (L/D)

Rg Ideal gas constant [Pa.m3/(mol.K)]

Rp Internal reflux ratio (L/V)

Re Reynolds Number

S Slop cut tank

Sc Schmidt Number

t Time [hr]

T Temperature [K], in Equation D.18 [oR]

To Constant in Equation D.6

u Superficial velocity through a packed bed [m/s]

U Overall heat transfer coefficient [J/(h. K)]

W1 ... W4 Constants for Wagner equation

We Weber number

x Liquid fraction [mol/mol]

x* Equilibrium liquid mole fraction [mol/mol]

y Vapor fraction [mol/mol]

y* Equilibrium vapor mole fraction [mol/mol]

z Packing height at any time [m]

Z Total packing height [m]

V Vapor flow rate [mol/hr]

V Molar volume at the normal boiling point [cm3/gmole] in Equation D.18

Greek Letters:

α Binary parameter for NRTL model

β Base component factor

xix

∆ Increment

ε Bed void fraction (porosity) [m3/m3]

γ Activity coefficient, species j in solution

λ Latent heat of vaporization [J/mol]

κ Area of the components obtained from GC

µ Viscosity [kg/(m.s)]

φ Fugacity coefficient

ρ Density [kg.m-3], in Equations D.16 and D.17 [kmole/m3]

σ Surface tension [mN/m]

τ Binary parameter for NRTL model

Subscripts:

B Reboiler

br Reduced normal boiling

c Critical

dry Dry

f Flooding

i Discretization level number index

irr Irrigated

j Component number index

k Stage index

L Liquid

m Mixture

r Reduced

T Total

V Vapor

Superscripts:

1 State 1 in Figure 4.1

2 State 2 in Figure 4.1

** Desired purity level of component j

o Initial

feed Fresh feed at the start of the system operation

L Liquid

V Vapor

Abbreviations:

CAP Capacity Factor

DL Discretization Level

EtOH Ethanol

xx

GC Gas Chromatography

HETP Height Equivalent to a Theoretical Plate

MBPDC Multicomponent Batch Packed Distillation Column

NC Number of Components

NRTL Non Random Two Liquid

NT Number of Differential Element of Packed Section

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PR-EOS Peng Robinson Equation Of State

SA Simulated Annealing

SQP Sequential Quadratic Programming

STN State Task Network

VLE Vapor Liquid Equilibrium

Special Notation:

circumflex^

(as in jf
)

)
Denotes property of a component in a mixture

1

CHAPTER 1

INTRODUCTION

The separation operation called as distillation, which uses “gas and liquid phases at

essentially the same temperature and pressure for the coexisting zones”, is one of the most

commonly used separation processes in chemical and petroleum industries (Perry et al.,

1997).

Among the two different types of distillation columns; plate and packed, due to the increase

of contact area between liquid and gas phase, which results in high efficiency, high capacity

to resist to corrosive materials, low pressure drop and small liquid holdup, packed columns

are preferred compared to plate columns in design applications (Perry et al., 1997).

Packed columns can be filled with either structured (ordered) or random (dumped) packing

materials. Although structured packing materials are used commonly in the design of

distillation columns, as a result of the new generations, the random packing materials are

still used with an increase demand, due to the knowledge of the behavior of random packing

materials on mass transfer and interfacial area. Hence, this study is mainly focused on

packed distillation columns with random packing materials.

Random packing materials like Berl saddle, Raschig and Pall rings can be made of different

type of materials: carbon, glass, metal, etc. Difference on surface texture and material

diameter results in changes in the characteristics of the packing like porosity and interfacial

area. Therefore, during design process, those characteristics must be taken into

consideration in detail.

2

The choice of the type of operation of distillation, as batch or continuous depends on the

feed amount and on the characteristics of the feed components. Nowadays, batch distillation

is more commonly used due to its convenience for low volume fine chemicals and

biochemicals (Betlem, 2000) and its advantages like “flexibility, high product purity and

possibility of multiple fraction operation” (Li et al., 1998). The “flexibility” feature, which

provides to design different configurations of the column easily, can be utilized to overcome

uncertainties in product specification. Moreover, in batch distillation; separation of n

components can be handled in a single column by using product and slop cut tanks.

However, in continuous distillation, to separate n components, n – 1 continuous distillation

column must be used (Diwekar, 1996).

There are some disadvantages, beside advantages, related to the use of batch distillation

columns, such as, continuous change of feed stocks and complex column dynamics. The

complexity of column dynamics increases as the number of component in the feed mixture

increases from binary to multicomponent. These disadvantages reduce batch distillation

column’s competitiveness significantly and require research on optimum operating reflux

ratios. It is very difficult to determine the composition changes with time throughout the

batch distillation columns at optimum reflux ratios by performing experiments or by taking

data from the column due to complex column dynamics (Kreul et al., 1999). Fieg et al.

(1994) stated that, the dynamic behavior of an actual distillation column can be predicted at

different operating conditions by using the simulation algorithm and any malfunction of the

system can be controlled without making any unnecessary investment. Hence, preparation

of simulation algorithm and determination of optimum reflux ratio profile to maximize

amounts of products for a multicomponent batch packed distillation column are essential.

There are two aims of this study. The primary objective is to develop a dynamic model for

the simulation of a batch packed distillation column with random packing material for

multicomponent mixtures at low operating pressures. Thus, both theoretical and

experimental studies are carried out. The dynamic model is a set of equations, which rely

mainly on mass and energy transfer mechanisms and thermodynamic equations. A

simulation algorithm is prepared to solve the dynamic model with the aid of MATLAB

programming language (Version 7.0.1. 24704 (R14)). It is desired to obtain composition,

temperature and flow rate profiles for reflux – drum condenser, reboiler and packed sections

during the operation with given column specifications like diameter of the column, type of

the packing material, porosity and height of the packed section with the help of the

simulation algorithm. Also, it is aimed to obtain the irrigated and flooding pressure drop and

the value of design gas rate at specified operating conditions. Verification of simulation code

3

is conducted for hydrocarbon and polar mixtures. For the former mixtures, simulation code is

tested by comparing product compositions by nine different simulation runs, while for latter

mixtures experimental studies are carried by using ethanol and water mixture at a packed

distillation column with 0.4 m height, 5 cm diameter and filled with 5 mm glass Raschig

rings.

Second objective of this study is to determine the optimum reflux ratio profile of the

multicomponent batch packed distillation column system, to maximize the amount of

distillate of a specified concentration for a given time. Optimization is done by using capacity

factor (CAP) approach which is a function of time and composition. The optimum reflux ratio

profile and switching times between product cut and slop cut tanks will be found by utilizing

composition of the reflux - drum – condenser part and the knowledge of desired purities of

the main products. Also, the effect of recycling of molar holdups of slop cut tanks for the

next batch operation to maximize the amount of distilled products at a packed distillation

column is analyzed by finding optimum reflux ratio profile in the context for hydrocarbon

mixtures.

Among the eight chapters of the thesis, in Chapter 2, literature survey related to the work is

explained with a description of packed columns together with the discussion of the important

effect of type of random packing materials on gas phase mass transfer. Also, the parameters

related to hydrodynamics and mass transfer are explained and their experimental or

theoretical determinations are discussed. A discussion about design methods to prepare

model equations of a packed distillation column and also about numerical approaches used

by previous studies is given. Moreover, research on optimum reflux ratios is discussed. In

Chapter 3, modeling studies for a multicomponent batch packed distillation with random

packing material are given with model assumptions considering literature with correlations

related to pressure drop and physical properties with their percentage errors. Lastly, storage

tank models are discussed. In Chapter 4, optimal operation conditions are discussed to

maximize distilled product amount for specified concentrations and the optimization problem

is identified and formulated. Simulation code and its working principle are explained in detail

in Chapter 5. Experimental setup and procedure are explained in Chapter 6. Results and

discussions are given with figures and tables, in Chapter 7. The studies on the verification of

simulation code are started with comparison of findings with these of the study of Yıldız

(2002). After that, the test of the model for various cases by using cyclohexane – toluene –

n-heptane mixture is described and then, the experimental verification of simulation code is

given for ethanol and water mixture. Moreover, the optimum reflux ratio profile, related to

4

capacity factor values and recycle of molar holdups of slop cut tanks are discussed in detail.

In the last chapter, Chapter 8, conclusions and recommendations for further work are given.

5

CHAPTER 2

LITERATURE SURVEY

In this chapter, the literature survey for a packed distillation column is given in detail with a

brief description of a packed distillation column system, advantages, and hydrodynamic and

mass transfer issues. Also, design methods for packed columns which are found in literature

are given with a literature survey about dynamic modeling of packed columns. Previous

studies on optimal operation policy of a batch distillation are also given.

2.1 A Brief Description of a Packed Distillation Column

Packed columns are used in distillation, which is a commonly used unit operation in process

industries, as well as in absorption and stripping applications (Geankoplis, 2003).

There are several cases when the use of packed columns is preferred to the use of tray

columns. Some of them are stated as (Perry et al., 1997):

• If alloy – metal packing materials are not necessary, the cost of packed column is

usually less than the cost of the plate column when tower diameter less than 0.6m,

• Using resistant packing materials, caustic mixtures can be operated in packed

columns,

• Liquid holdup in packed column will be much more less than that in plate column,

• Packings have a characteristic of required efficiency for low pressure drop,

• In packed columns, liquid agitation by gas occurs lesser than the plate columns.

There are two different types of packing arrangement; random and structured. Raschig rings

and Berl saddles are known as first generation packing materials whereas Pall ring is known

as second generation packing material, where packing materials are placed in the column in

6

a random arrangement, usually by dumping. In structured packing such as Sulzer and

Flexipac, carefully installed elements are designed specifically to fit the column dimensions.

The efficiency of packing materials displays variations due to difference in void fraction and

effective surface area. Macias – Salinas and Fair (2000) studied on the axial mixing in four

packing materials: 25.4 mm ceramic Raschig rings, 25.4 mm metal Pall rings, SulzerBX

structured packing and Flexipac2 structured packing. Tracer experiments were made in a

large scale packed column (0.43 mm diameter) by changing the liquid (water) flow rates

from 3.25 to 8.5 kg / m2sec and gas (air) flow rates from 0.25 kg/m2sec to flooding point. It

is found that “axial mixing in the gas increases with both gas and liquid rates, whereas liquid

– phase axial mixing is a decreasing function of liquid rate and is sensitive to gas rate up to

the flooding point” for first – generation random packing materials. The best packing for the

axial mixing in gas phase is found to be Raschig rings whereas in the liquid phase as

Flexipac2.

Putting packing material into column brings some other considerations into account as

hydraulics and mass transfer. The issues of hydrodynamics and mass transfer are volumetric

mass transfer coefficients for liquid and gas phase, effective interfacial area, pressure drop,

loading and flooding capacity, total liquid holdup and flow maldistribution. Extensive

research has been done on the issues of packing material since 1930s. Many experiments

have been performed and correlations have been derived.

2.1.1 Mass Transfer Coefficients

Mass transfer coefficients for liquid and gas phases are represented by kL and kV,

respectively. Estimation of mass transfer coefficients for packed distillation columns can be

done by making experiments or by using correlations for film coefficients or by predicting

mass transfer film coefficients (Geankoplis, 2003). Overall mass transfer coefficients can be

measured experimentally easily. However, to determine the individual mass transfer

coefficients, kLa and kVa experiments must be designed carefully. Another way to estimate

mass transfer coefficients is to use correlations for film coefficients. There are numerous

correlations developed by several authors since 1940s. The correlations for mass transfer

coefficients are empirical and they can show deviations up to 25%. A summary of the mass

transfer correlations for random packing materials are given in Table A.1 (Appendix A)

(Wang et al., 2005). The third way of predicting mass transfer coefficients is by the use of

Equations 2.1 and 2.2 (Geankoplis, 2003):

7

35.05.05.0

678.0782.6660.0
226.0











































=

−
yx

p
Y

GGSc
f

H (2.1)
































=

−3

5.0

10*8937.0/782.6

/
372

357.0 µx

p
x

GSc
f

H (2.2)

where HY and HX are film coefficients for gas and liquid respectively [m], fp is relative mass

transfer coefficient [-], Sc is Schmidt number [-] and GY and GX are mass flow rates for gas

and liquid respectively [kg/(m.s2)].

If the table of correlations given in Appendix A is analyzed, it is seen that the individual mass

transfer coefficients kL and kV depend generally on Schmidt number(Sc), liquid and gas mass

velocities, size and shape of the packing material. The correlations for volumetric mass

transfer coefficients, kL and kV, are given by Wang et al. (2005).

The overall mass transfer coefficient correlations that are used in some studies on packed

distillation columns are given in Table 2.1.

Bravo et al. (1992) investigated the behavior of mass transfer coefficients for different

packing types and different vapor loading points. It is seen that volumetric mass transfer

coefficients are affected by rates of vapor and liquid flows. Mass transfer coefficients

increase with an increase in vapor velocity at constant liquid flow rates. If liquid flow rate

increases then, the efficiency for random packing materials in distillation column will be

higher. Moreover, it is demonstrated that the mass transfer coefficient changes sign

depending on the packing type and vapor loading. Therefore, to apply any control theory to

packed distillation columns the knowledge of the sign of mass transfer coefficient is

important.

Wagner et al. (1997) developed a model on mass transfer rates by using the formulas that is

derived by Stichlmair et al. (1989) for pressure drop and liquid holdup at packed columns.

The study is done on new random packing materials like IMTP, Fleximax and Nutter. The

results of the model were in a good agreement with the experimental data.

8

Table 2.1 The Volumetric Mass Transfer Coefficient Correlations Used in Some Studies.

Author(s) – Year
Used Packing

Material
 Used Correlation(s)

Patwardhan and Edgar - 1993 Sulzer BX)10(/AnV
m

o
y paK = (2.3)

Karacan et al. - 1998
 Raschig ring

(20 – 15 mm ID)
n

L
m

GOG VVbaK)()(= (2.4)

Attarakih et al. - 2001 Gempak 2A

33.08.0Re054.0
'

vv
v

v Sc
D

Sk
=

cevev A
RgMT
P

aKaK 







= '

LVS

LS
v

KRU
Um

vK

K
1'

'
1

1
'

+

=

(2.5)

(2.6)

(2.7)

Piché et al. (2001a) presented a detailed study using neural network models for the

hydraulics and mass transfer in randomly packed distillation columns. “A conceptual fully

predictive mechanistic model” was built up by using 10,750 data covering the 1933 - 2000

literature. The model compared with well - known correlations like Billet and Schultes (1991)

model, Onda mass transfer correlation (Wang et al., 2005), etc. It is found that, model fits

the correlations well and it is stated that without knowing packing constant, c, the model

can be used to determine mass transfer coefficients for random packing materials.

Otherwise, it is advised that, Onda mass transfer correlation (Wang et al., 2005) can be

used to determine mass transfer coefficient if packing constant, c is known.

Actually, Onda mass transfer correlation (Wang et al., 2005) is widely used in stripping

applications. However, Wang et al. (2005) stated that, this correlation can be used to

determine mass transfer coefficients for absorption, stripping, and distillation applications.

Random packing materials which are first generation packing materials, has many

investigations over the years, and to find information about them is not too difficult. Since,

the packing constants are generally known for random packing materials, in this study Onda

mass transfer correlation (Wang et al., 2005) will be used to predict mass transfer

coefficients and effective interfacial area.

9

2.1.2 Effective Interfacial Area

As in the mass transfer coefficients for gas and liquid phases, there is also an extensive

literature on effective interfacial area of random and structured packing materials. Physical

methods i.e. electroresistivity, light transmission and mass transfer measurements are the

ways of determining the effective interfacial area. However, many researchers chose the

mass transfer with a fast chemical reaction to determine effective interfacial area in

distillation, stripping and absorption applications.

Wen et al. (2001) studied the 3D profile of the liquid flow that can move horizontally or

vertically in a randomly packed distillation column by developing geometry based model. It is

demonstrated that two of the flow types, film flow, dripping flow are the main mechanisms

of packed columns.

Depending on the findings of Wen et al. (2001) and the previous works, it can be observed

that, the definition of interfacial area differs from one publication to another. The most

important interfacial area is the wetted interfacial area where mass transfer occurs. This

area may be less than the actual interfacial area. The difference between effective interfacial

area and wetted interfacial area is that, effective area includes drippings, gas bubbles and

jets while wetted interfacial area does not (Perry et al., 1997). Table A.2 (Appendix A)

tabulates effective interfacial area correlations with their investigators for random packing

materials.

Since Onda effective interfacial area correlation (Wang et al., 2005), which is the most

reliable predictive equation for packed distillation column design, is studied comprehensively

considering on hydrodynamic and liquid physical properties on the wetted surface area of

random packing materials (Wang et al., 2005).

2.1.3 Pressure Drop, Loading and Flooding Capacity

Pressure drop in a packed distillation column is affected primarily by the followings:

• fluid flow rates,

• density and viscosity of the fluids,

• size, shape and interfacial area of the packing materials.

10

Pressure drop at a packed distillation column can be calculated by using several methods,

but in the most widely used method correlations that are based on experimental data which

acquired countercurrent flow of water and air for different packing materials are used.

In estimation of pressure drop, there are two important points that must be taken into

consideration carefully; loading and flooding points. Loading point is where liquid starts to fill

up the column and is reducing the effective space for gas flow. On the other hand, flooding

point is where a liquid layer develops on the top of the packed section. Flooding point is the

upper boundary condition of the pressure drop. These points can be visualized in Figure 2.1

(Perry et al., 1997).

Figure 2.1 Loading and Flooding Points for a Packed Column at Total Reflux.

In the modeling of hydrodynamics of a packed column, either channel model or particle

model can be used. In the channel model, it is assumed that there are several small

channels for the flow of fluids throughout the packing materials. As gas flows upward

through the channels, the liquid flows down through the walls of the channels. The flow of

the liquid decreases the area for the flow of gas which causes the pressure drop. On the

other hand, in the particle model, gas flows around the packing particles instead of

channels. The presence of liquid flow reduces the void space between the packing materials.

11

Stichlmair et al. (1989) derived a pressure drop correlation for countercurrent gas – liquid

packed columns by using the particle model as in the case of Ergun equation. Friction factor,

bed porosity and operating liquid holdup are taken into consideration in developing

correlations for irrigated and flooding pressure drops. It is also shown that the liquid holdup

below loading point is a function of Froude number and the obtained relationship is valid for

liquid viscosities up to 5 centipoises.

Piché et al. (2001b) developed a flooding capacity correlation by utilizing artificial neural

network modeling. Experimental data in literature is used to validate the correlation. The

correlation shows 16.1% average relative error with standard deviation 20.6%. However,

this correlation can be used for a wide range of random packing materials since an extensive

experimental data from literature is used. Also, by this correlation it is shown that flooding

capacity depends on “liquid superficial velocity, liquid viscosity, gas density, bed porosity,

packing surface area and the column diameter”.

2.1.4 Holdup

Another issue in hydrodynamics is holdup. In packed distillation columns, holdups for liquid

and/or vapor phase can be considered. The holdup of liquid can be taken as static, operating

and total. Static holdup is known as the amount of liquid that remains on the packing

material after the liquid is drained from the system. Operating liquid holdup is the amount of

liquid that accumulated in the system when the system operates under dynamic conditions.

The total holdup is the sum of the static and the operating holdups (Perry et al., 1997). In

addition, the amount of total holdup depends on the operation type, whether the system is

plate or packed distillation column. Fieg et al. (1994) determined and compared the dynamic

behavior of the plate and packed distillation column after disturbances for the development

of optimal strategy at product changeovers. It is stated that the type of distillation column

has an effect on hold-ups, and packed distillation column has lesser hold-up than the plate

distillation column, although same diameter and same column efficiency are used in the

distillation columns. On the other hand, the holdup of vapor is generally considered as

negligible at low pressures. Choe and Luyben (1987) investigated the importance of

assumptions on negligible vapor holdup for distillation columns at low and high pressures. It

is stated that assumption of negligible vapor holdup is valid for systems at moderate

pressures (up to 10 atm). In high pressure systems, negligible vapor holdup gives 19% error

in the time constant.

12

The amount of liquid that accumulates in the system under dynamic conditions mainly

depends on the voidage fraction of packing material and superficial gas velocity. Actually, a

detailed study on voidage fraction of the packing material is made by Klerk (2003). They

investigated the voidage variation for small column by particle diameter / bed diameter

ratios for equal sized sphere particles. Experiments were made by using nonporous glass

beads of 0.003m diameter. Experimental results showed that the behavior of the bed

voidage oscillates, reaches a constant value for higher column to particle ratios and there

are multiple stable values for bed voidage. Although this is the case, for rigorous modeling

studies the variation of voidage is neglected. On the other hand, the dependence of holdup

on superficial gas velocity is examined by Taiwo and Fasesan (2004). The model is derived

from the momentum balance of the liquid film, and demonstrates about 3.5% error with

respect to experimental data obtained by using acetone / methanol / ethanol mixtures for

different liquid and gas flow rates. It is observed that dynamic liquid holdup decreases with

by an increase in the packing height and can be more for systems whose components have

higher relative volatility. Moreover, the dynamic liquid holdup increases with an increase in

gas velocity of the system components. As the gas velocity increases, the resistance to liquid

flow through packing material increases, and then the liquid accumulates at the void spaces

of the packed column.

2.1.5 Flow Maldistribution

As stated before, there are five important issues for the hydraulics and mass transfer taking

place in packed distillation columns. The last and one of the most important issues is the

flow maldistribution. The influence of flow maldistribution has been investigated over the

years by several researchers.

As stated by Kister and Braun (1989), the maldistribution can have three affects: pinching

effect, lateral mixing effect and uneven flow of liquid through the packed section which

reduces column efficiency. Pinching effect is the less delivery of liquid in some regions

compared to the other parts of the column. This reduces the ratio of the liquid / gas flow

rate, and causes a pinch point in the column. Lateral mixing effect is the movement of liquid

and gas horizontally due to maldistribution. The liquid flows down from the liquid distributor

if the top of the packed section is not irrigated by liquid. Then, liquid tends to move along

the walls of the column. This is known as uneven flow of liquid through the packed section.

Flow maldistribution is a function of packing and tower diameters, and type of the packing.

Flow maldistribution does not depend on viscosity and density of liquid. The best liquid

13

distribution throughout the column can be obtained when ratio of tower diameter / particle

diameter is equal to 10. In operation, the effect of lateral mixing is more important than the

pinching effect and flow maldistribution can be handled without a serious efficiency loss.

However, this is not the case at higher ratio of tower diameter / particle diameter (>40)

(Kister and Braun, 1989). In addition, columns with random packing materials gave less

flow maldistribution than columns with structured packing materials (Hanley, B. (1999)).

2.2 Design Methods for Packed Columns

A packed distillation column can be designed either by considering packing as a continuous

media or by using transfer units. Gorak and Vogelpohl (1985) have showed that use of

Height Equivalent to a Theoretical Plate (HETP) in the design of packed distillation column

causes very poor results. After that, Krishnamurthy and Taylor (1985) found an answer to

the question arisen “as to how variations between component values of quantities such as

stage – efficiency, HETP, and HTU can be taken into consideration in the simulation and

design of a multistage or packed column” by considering packing as a continuous media in

the design of packed column. This method has been used by several authors like Karlström

et al. (1992), Pathwardhan and Edgar (1993), Karacan et al. (1998), Mori et al. (1999),

Attarakih et al. (2001) and Repke et al. (2004).

2.3 Dynamic Modeling of Packed Columns and Solving Model Equations

In the modeling of a multicomponent batch packed distillation column, mass, energy and

momentum balance equations and correlations for liquid and gas phase using ordinary or

partial differential equations must be used. The system is very complex. Therefore,

simplification of model must be done by making some assumptions.

Skogestad and Morari (1988) explained in detail the behavior of the change of compositions

at distillation columns for different cases especially with the existence of internal and

external flows. In his study, assumptions, dynamic modeling equations and control studies

for the cases are given. It is concluded that big reflux ratios must be applied to the

distillation columns when the high purity columns are taken into consideration. The

compositions in the column are affected from external flows much more than the internal

flows.

Karlström et al. (1992) presented transport phenomena and necessary thermodynamic

equations in multicomponent packed bed distillation column. “One-film theory” is used due

14

to lack of heat accumulation in the main body of the liquid. Therefore, vapor phase is taken

as controlling both heat and mass transfer. To simplify the model, equations are written by

taking into account radial change only. The nonlinear model equations are also included

when the simplified equations are likely to fail. In the model, assuming negligible diffusion

interactions between components, “effective diffusivity” method is used. Following this study

Gorak (1992) argues that, the use of effective diffusivity can be recommended if the

diffusivities of binary subsystems are almost equal and the use of Stefan-Maxwell equations

for multicomponent mass transfer is much more applicable than the “effective diffusivity”

method.

There are two approaches that have been proposed for solving model equations as

Krishnamurthy and Taylor (1985) recommended. In the first approach, packed section is

divided into sections and each section is treated as a tray. In the second approach, transfer

equations are written for a small incremental section and then balances are integrated for

the whole column.

Tommasi and Rice (1970) investigated dynamics of a random batch packed distillation when

a step change is given to the reflux ratio. In the design of packed column the approach by

considering packing as a continuous media is chosen. Experiments were carried out to

validate the model by using ethanol and water mixture. A solution is developed by using

nonlinear least - squares method to obtain the behavior of the liquid concentration after the

step change given to the reflux ratio. The solution is given in exponential form and the

constants in the equation depend on the components of the mixture. Moreover, it is found

that parameters that are feature of the final steady state affect the time constants only. Any

change of the step disturbance does not have any effect on time constants.

Krishnamurthy and Taylor (1985) solved model equations by using Newton’s method and it

is observed that there is good agreement between experimental results and simulation.

Some models can include a set of partial differential equations. To solve these equations,

there are numerous techniques. Method of orthogonal collocation is one of used methods in

the previous studies. However, Krishnamurthy and Taylor (1985) stated that:

 “Cho and Joseph (1983b) found the collocation method to work well for both steady

state and dynamic simulation of relatively ideal systems (equilibrium stage model

equations and stage efficiency were used to represent the process). However, when

nonlinear equilibrium relationships were used along with vapor phase controlled heat

and mass transfer rate equations to model packed-bed separation processes (the

15

packed distillation column problem of Von Rosenberg and Hadi (1980) and an

absorption problem from Treybal, 1969), the steady state solution could not be

directly obtained (Srivastava and Joseph, 1984).”

Wajge et al. (1997) compared different numerical methods for the simulation of

multicomponent batch distillation in packed beds. The use of finite difference method and

orthogonal collocation method together for systems that requires higher accuracy is much

more applicable than the use of only orthogonal collocation method. In case of using only

orthogonal collocation method, higher order orthogonal polynomials must be used which

increase computation time. Moreover, it is stated that, if the number of equations for

simulation algorithm increases, necessary time to compute the behavior of the system

increases.

Karacan et al. (1998) presented the steady state and dynamic behavior of randomly packed

distillation column with a thermo siphon reboiler to distill the binary, methanol – water

mixture. Partial differential equations are used to model the packed column. In the model

equations, the back mixing model is considered basing on two film theory of mass transfer.

They are solved by orthogonal collocation on finite elements employing Legendre

polynomials due to its power and speed. It is shown that use of orthogonal collocation

method results in good accuracy for the system at steady state. However, this result can not

be obtained for the unsteady state case.

Mori et al. (1999) presented a simulation algorithm for a packed distillation column at total

reflux by means of a rate – based model. Experimental results are consistent with the

simulation results. However, the simulation is unsuccessful for evaluation of the effective

interfacial area and liquid hold-up distribution, so necessary improvements must be done for

a better simulation.

Attarakih et al. (2001) investigated dynamics of a packed distillation system used to separate

glycerol and water mixture. The studies on modeling and simulation are made and compared

experimentally. The method used before by Patwardhan and Edgar (1993) is used to design

packed distillation column. VLE concentrations are calculated by using the UNIFAC model.

Dynamic modeling is done for three cases: a) with liquid, vapor and reflux drum holdups, b)

liquid and reflux drum holdups and c) with reflux drum holdup only. MATLAB subroutine

ode15s (Gear's method) is used for 1st and 2nd dynamic models due to high stiffness. In the

third model Runge – Kutta – Merson method is used to solve set of equations due to

existence of nonlinear equations. It is seen that, the Runge – Kutta – Merson method in the

16

third model requires more computation time and is less accurate than the other models,

since there are more steps to compute which causes the growing of “round off and

truncation errors”.

Jiménez et al. (2002) investigated the nonlinear dynamic modeling of a structured packed

distillation column. The experimental data of Nad and Spiegel (1987) is compared with the

simulation results, which are conducted for a batch packed column with 167 mm diameter, 8

m height and structured packing material by using BATCHFRACTM, CHEMCAD BATCHTM and

HYSYS.Plant programming packages. It is stated that the use of HYSYS.Plant is much

more efficient than the other software packages. To predict vapor liquid equilibrium

compositions, UNIQUAC model is used. Necessary coefficients for this model are taken from

the database of Aspen PLUS.

Repke et al. (2004) worked on the simulation of nonequilibrium model. They conducted

experimental runs for three-phase distillation in a structured packed column. The system of

equations is solved by Newton - Raphson method and the mass transfer rates are calculated

by using Stefan – Maxwell equations. Simulation is written for nonequilibrium and

equilibrium model for three-phase distillation to compare each other. Results of experiments

are agreed well with the simulation results of both equilibrium and nonequilibrium models. A

summary of the numerical methods used in the different studies are given in Table 2.2.

Table 2.2 Summary of Numerical Methods Used in Different Simulation Studies.

Author(s) Used Method

Krishnamurthy and Taylor (1985) Newton's Method

Wajge et al.(1997)
Finite difference method and orthogonal

collocation method

Karacan et al.(1998) Orthogonal Collocation on Finite Elements

Mori et al.(1999) Rate Based Model

Attarakih et al.(2001)
MATLAB Subroutine ode15s

Runge-Kutta-Merson Method

Repke et al.(2004) Newton - Raphson Method

17

2.4 Optimal Operation Policy

Batch distillation, which is usually preferred to separate fine chemicals and biochemicals, has

the advantage of separating components to product and slop cut tanks by using a single

distillation column. The number of product and slop cut tanks increases as the number of

distilled component increases. For example, for binary distillation, two product tanks and one

slop cut tank are necessary, while in the separation of three components, three product

tanks and two slop cut tanks are needed. Also, it is possible to use reboiler tank to collect

the heaviest compound as a product tank to decrease investment on tanks.

In the separation of components in different product tanks optimal control criteria can be

considered. In these optimal studies one of the following or all can be selected as criteria

(Diwekar, 1996):

• maximum distillate,

• minimum time,

• maximum profit.

In the criteria of maximum distillate, the aim is to maximize the amount of distillate for a

given time. For the criteria of the minimum time, the time which is necessary to separate a

specified amount of feed for a specified concentration is minimized. Lastly, for the criteria of

the maximum profit, a function of profit for a concentration of distillate is maximized

(Diwekar, 1996).

In batch distillation, there are several parameters that can be optimized like “the size of the

initial charge to the still pot and the reflux ratio as a function of time” (Luyben, 1988). By

optimizing reflux ratio, the three optimal control criteria explained above can be handled

together in a distillation column.

There have been several investigations on the problems specified above to find optimal

operation of a batch distillation since 1960s. In almost all studies, an optimized function with

its equality and inequality constraints is determined and solved using different solution

approaches.

The earliest study on optimal operation is carried by Converse and Gross (1963). It is

investigated that the product maximization for a binary batch distillation by using three

different techniques; dynamic programming, calculus of variation and Pontriagin’s maximum

principle. It is figured out that the use dynamic programming is advantageous and more

understandable compared to the other techniques.

18

The latter study is performed by Coward (1967) who focused on optimization of time for

binary batch distillation by using Pontryagin principle. The aim is to find the reflux ratio

which gives the maximum Hamiltonian for the parameters of p1, p2, B and xB. The equations

are solved with the approach of Simpson’s Rule by using subroutines for constant

overheads, constant reflux ratio and optimal reflux policy. The results obtained from this

principle are compared with those obtained by utilizing the calculus of variation for different

examples. It is concluded that the reflux ratio which gives minimum time is between the

curves of constant reflux ratio and constant overheads operation.

As a different optimization approach, Luyben (1988) extended his earlier study of capacity

factor for product maximization in binary distillation to multicomponent distillation. It is

demonstrated that by using capacity factor, not only investments on energy and design, but

also parameters like number of trays and reflux ratio can be optimized. Luyben (1988)

indicated in his study the applicability of the optimal configuration.

The use of capacity factor approach examined by Bonny (1999) with new operating

parameters for a multicomponent batch distillation column by using cyclohexane – toluene –

heptane mixtures with or without recycling of slop cuts. The maximization of amount of

product is studied by varying reflux ratio policy. Reflux ratio is either constant or is changing

in a piecewise constant function throughout the operation time. It is concluded that the use

of reflux ratio as a piecewise constant function increased the production rate. Also, it is

found that the use of recycling has no significant effect on the production rate.

Increasing demand on the use of the batch distillation in industries in recent years caused

researches to focus mostly on maximum profit problem. Kim (1999) investigated for the

optimal design and optimal operation of a batch distillation by using dynamic model rather

than shortcut model or quasi steady state model. Comparison between dynamic models with

others is figured out that design with dynamic model gives higher capacity on the aspect of

maximizing product. Also, it is demonstrated that the use of exponential reflux ratio with

constant reflux ratio profiles improves the design of the column with respect to the use of

constant reflux ratio only. For the optimal operation, maximum profit function is analyzed by

using costs of feed, product and steam. 23 are found as an optimum tray number by

examining the various data related to maximum profit obtained for different tray numbers.

Moreover, recycling of the slop cut products to reboiler to maximize the amount of the

product is applied and it is found that this work differ slightly the results obtained for a fresh

feed optimization.

19

Miladi and Mujtaba (2004) searched the optimum design and operation points for a binary

batch distillation by using simulated annealing approach (SA). The effect of vapor boil up

rate and number of stages investigated to find optimum design, while reflux ratio and batch

time are configured for optimum operation by fixing the demand on the amount of product.

In the study of Miladi and Mujtaba (2004), optimization of vapor boil up rate is firstly taken

into consideration. It is concluded that fixing of vapor boil up rate smaller or bigger than the

optimum vapor boil up rate is important to obtain maximum profit in a given production

time. Moreover, the studies are carried for unlimited demand of the products. The results

demonstrated much more profit can be obtained by using unlimited demand of the products.

However, unlimited or unplanned production of product can cause undesirable significant

losses.

A different optimal policy has been raised by Low and Sǿrensen (2005). They found that

optimal configuration besides optimum design and operation of a batch distillation is a

valuable tool for the estimation of reasonable design and configuration for binary and

multicomponent systems by using genetic algorithm and penalty function approaches. There

are three choices for optimal configuration: regular, inverted and multi vessel. The aim to

find optimum point is to maximize profitability index, which includes “production revenue,

capital and operational costs”. The model based on discrete – continuous dynamic

optimization is examined for cyclohexane – toluene, n-heptane – toluene and pentane,

hexane, heptane, octane mixtures. It is concluded that the configuration of distillation

column is dependent on the feed composition for binary mixtures. If the feed mixture

contains higher fraction of the light component, the use of inverted column is more

profitable, and if the feed mixture contains higher fraction of the heavy component, then the

use of regular column is more profitable. On the other hand, for the separation of

multicomponent mixtures, multivessel configuration is found to be more profitable rather

than regular and inverse column configuration.

20

CHAPTER 3

MULTICOMPONENT BATCH PACKED DISTILLATION

COLUMN MODELING

In this chapter, modeling studies of a Multicomponent Batch Packed Distillation Column

(MBPDC) with random packing material are presented. Section 3.1 is devoted to model

assumptions. While in Section 3.2, model equations of total, component mass and energy

balances for packed section, reflux – drum – condenser and reboiler are given together with

the used correlations. Also, in this section, calculation of loading and flooding points, liquid

holdups, pressure drops and solution proposal for partial differential equations and

thermodynamic relationships are discussed in detail. In Section 3.3, information about

required data for simulation is explained. Lastly, modeling of storage tanks is given in

Section 3.4.

3.1 Model Assumptions

In the proposed batch packed distillation column model, following assumptions are

considered (Alkaya (1990)):

• Negligible vapor holdup throughout the system,

• Equimolar counter diffusion between the phases,

• Adiabatic column operation and negligible temperature change throughout the

packed section,

• Dominancy of overall vapor phase mass transfer coefficient to individual liquid and

vapor film mass transfer coefficients,

• Negligible effect of maldistribution of liquid and vapor flow rates.

21

The most important assumption that can make significant changes in dynamic modeling of a

packed distillation is negligible vapor holdup. At low pressures, although the vapor volume is

large, the number of moles is usually small because the vapor density is much smaller than

the liquid density. Choe and Luyben (1987) stated that, at low pressure operations (up to

5atm) this assumption can be made since liquid to vapor density ratio is high. However, at

high pressure operations, this ratio is so small that with this assumption the model can be

inaccurate.

The existence of equimolar counter diffusion between phases results in constant vapor and

liquid rates through the packed section. Also, the assumption of adiabatic operation and

negligible temperature change in a differential element leads to omission of energy balance

equations for the packed section (Luyben, 1989).

Based on equimolar overflow, the mass flux rate (Equation 3.1) and relationship between

mass transfer coefficients (Equation 3.2) can be written as (Geankoplis, 2003);

)()(LILIVV xxkyykN −=−= (3.1)

LVV k
m

kK
+=

11
 (3.2)

Patwardhan and Edgar (1993) stated that, “in distillation applications, the controlling

resistance to mass transfer is usually in the vapor film, and the use of the overall vapor

phase mass transfer coefficient is more common.” Therefore, effect of the liquid phase on

the overall coefficient can be considered negligible resulting in,

VV kK
11

= (3.3)

Maldistribution of vapor and liquid flows throughout the packed distillation column is known

as an effect which reduces the performance of the column (Higler et al., 1999). The effect of

liquid flow maldistribution is generally observed at the top of the packed section. Liquid flow

on the wall can be prevented by using side wipers or redistributors and arranging the ratio

of the diameters of the column and packing material (Perry et al., 1997). Thus, the effect of

maldistribution of flow rates can be neglected.

Additional assumptions basing on the previous studies (Alkaya (1990) and Yıldız (2002)) are

as follows:

• Constant liquid holdup in the reflux drum,

• Change of composition only in z direction, and no radial variation,

22

• Perfect mixing in the reflux drum, reboiler and differential element of packed

section,

• Total condenser.

3.2 Batch Packed Distillation Column Dynamic Modeling

Modeling of batch distillation systems is complex due to unsteady state nature of the

system. Consequently, dynamics is inherently included in any modeling issue for the batch

system.

Appropriate conservation equations, derived equations for the determination of flow rates at

finite and total reflux operations, correlations for the prediction of dry, irrigated and flooding

pressure drops, molar hold up and physical properties, equations for estimation of vapor

liquid equilibrium compositions are given below.

3.2.1 Conservation Equations

The modeling of a batch packed distillation column is very similar to that of batch plate

distillation column. These equations are nearly the same except with those about hydraulics.

The important features of the model equations for a batch packed and plate column are

given in Table 3.1 (Salimi and Depeyre, (1998), Fieg et al. (1994)).

A schematic view of the studied batch packed distillation column is shown in Figure 3.1. In

the figure the packed column with its reboiler, condenser, reflux drum and tanks are shown.

The parameter k in Figure 3.1 defines the differential element starting with k = 1 at reboiler.

P1 and P2 are the product tanks and S1 shows the slop cut tank. Thus, packed section is

considered to be composed of NT differential elements whose value can be changed

arbitrarily and will have an effect on modeling accuracy.

In the present study, discrete element concept is used instead of HETP concept to

accomplish dynamic modeling of the batch packed distillation column. In discrete element

method, the packed section is divided by NT into segments of ∆z height (∆z = (Height of

packed section) / NT). For each ∆z element energy and mass transfer equations are

considered. However, in packed distillation column system transfer operations are

continuous. Therefore, the choice of ∆z is very important and affects the accuracy of the

results.

23

Table 3.1 Important Features of Batch Distillation Column Models.

Equation Packed Plate

1 Equilibrium 1 Equilibrium
Thermodynamics

2 Non - Equilibrium 2 Non - Equilibrium

1 Differential 1 Differential
Mass and Energy

Balance
2 Finite Difference

Approximation

2 Finite Difference

Approximation

1 Continuous Contact 1 Step By Step Contact

2 Small Liquid Holdup 2 Big Liquid Holdup Hydraulics

3 Small Total Pressure Drop 3 Big Total Pressure Drop

Figure 3.1 Schematic View of Studied Batch Packed Distillation Column.

24

The unsteady state total mass and material balances for a packed differential element shown

in Figure 3.2 (Jahromi et al., 1982) can be written as follows for the liquid and vapor

phases:

Liquid phase: j = 1…NC

() ()
λ
P

NC

j
jjeVj

L
L

L Q
yyAaK

z
M

D
zz

L
t

M
+−−









∂

∂

∂

∂
+

∂

∂
=

∂

∂
∑

*''
 (3.4)

() () () () **''
j

P
jjeVj

jL
L

jjL x
Q

yyAaK
z

xM
D

zz

Lx

t

xM

λ
+−−













∂

∂

∂

∂
+

∂

∂
=

∂

∂
 (3.5)

Vapor phase: j = 1…NC

() ()
λ
P

NC

j
jjeVj

V
V

V Q
yyAaK

z
M

D
zz

V
t

M
−−+









∂

∂

∂

∂
+

∂

∂
−=

∂

∂
∑

*)'('
 (3.6)

() () () () **''
j

P
jjeVj

jV
V

jjV x
Q

yyAaK
z

yM
D

zz

Vy

t

yM

λ
−−+













∂

∂

∂

∂
+

∂

∂
−=

∂

∂
 (3.7)

Figure 3.2 Schematic View of a Differential Section of the Column for Material Transfer.

The unsteady state energy balances of a packed differential element which is demonstrated

in Figure 3.3 (Jahromi, et al., 1982) are as follows;

z
Q p

∆
λ

zV
z

V
V z

M
D

∂

∂ '

zz
V

V z
M

D ∆+
∂

∂ '

zzV ∆+ zzL ∆+

zL z
L

L z
M

D
∂

∂ '

∆z

zz
L

L z
M

D
∆+∂

∂ '

()∑ −∆ jjeVj yyzAaK *

25

Liquid phase: j = 1…NC

() ()

)(

)'()('

*

*

LVe
j

jj
P

NC

j
jjjeVj

j

jL
jL

L

TTUaxh
Q

yyhAaK
z

xM
hD

zz
Lh

t
hM

−++

−−












∂

∂

∂

∂
+

∂

∂
=

∂

∂

∑

∑∑

λ

 (3.8)

Vapor phase: j = 1…NC

() () ()

)(

)'('

*

*

LVe
j

jj
P

jjeVj
j

j
jV

j
jV

V

TTUaxH
Q

yyAaKH
z

yM
HD

zz
VH

t
HM

−−−

−+












∂

∂

∂

∂
+

∂

∂
−=

∂

∂

∑

∑∑

λ

 (3.9)

Figure 3.3 Schematic View of a Differential Section of the Column for Energy Transfer.

However, considering equimolar counter diffusion model, adiabatic process and constant

temperature profile energy balance equations can be omitted and the mass transfer

equations (Equations 3.4 - 3.7) are simplified as:

∑ ∆zxH
Q

jLj
P *

λ

∑ ∆− zyyHVAaK jjjeVj)(*

[]zVVH

z

jV
VjV z

yM
HD













∂

∂
∑

)'(

[] zzVVH ∆+ [] zzLLH ∆+

[]zLLH

z

jL
LjL z

xM
HD













∂

∂
∑

)'(

zz

jL
LjL z

xM
HD

∆+











∂

∂
∑

)'(

zz

jV
VjV z

yM
HD

∆+











∂

∂
∑

)'(

z∆ zQP ∆

zTTUa LVe ∆−)(

zyyHAaK jjLjeVj ∆−)(*

∑ ∆zxH
Q

jVj
P *

λ

26

Liquid phase:

()jjeVj
jj

L yyAaK
z

x
L

t

x
M −−

∂

∂
=

∂

∂ *' (3.10)

Vapor phase:

()jjeVj
j yyAaK
z

y
V −+

∂

∂
−=

*0 (3.11)

To evaluate KV and ae, Onda correlation (Wang et al., 2005) for volumetric mass transfer

and effective interfacial area are used and are given as followings, respectively,

3/17.0
2

Re VV
pp

V
V Sc

da

D
ck 













= (3.12)























−−=

− 2.005.01.0
75.0

Re45.1exp1 LLL
L

c

p

e WeFr
a
a

σ

σ
 (3.13)

where,

Lp
L Aa

LMw
µ3600

Re = (3.14)

Vp
V Aa

VMw
µ3600

Re = (3.15)

VV

V
V D

Sc
*ρ

µ
= (3.16)

() gA

MwaL
Fr

L

p
L 222

22

3600 ρ
= (3.17)

() gAa

MwL
We

Lp
L 2

22

6.1321 σρ
= (3.18)

The unit conversion of mass transfer coefficient from m/s to mol/ (h.m2) is done as:

V
g

V k
TR
P

K 3600= (3.19)

Initial and boundary conditions of Equations 3.10 and 3.11 are:

() ()zxzx =0, (3.20)

() ()zyzy =0, (3.21)

() Byty =,0 (3.22)

27

The approach used by Attarakih et al. (2001) is applied to convert partial differential

equations (PDEs) to ordinary differential equations (ODEs) as follows:

For i = 1…DL and for j = 1…NC

z
xx

z
x ii

∆

−
=

∂

∂ +1 (3.23)

z
yy

z
y ii

∆

−
=

∂

∂ +1 (3.24)

() ()
2

**
* 1++

= ii xyxy
y (3.25)

2
1 ii yy

y
+

= − (3.26)

By substituting Equations 3.23, 3.24, 3.25 and 3.26 to Equations 3.10 and 3.11, one can

obtain,

() ()
)

2

**

2
(' ,1,,,1,,1, jijijiji

ejV
jijiji

L

xyxyyy
AaK

z

xx
L

dt

dx
M

+−+ +
−

+
+

∆

−
= (3.27)

() ()
)

2

**

2
(0 ,1,,,1,,1 jijijiji

eVj
jiji xyxyyy

AaK
z

yy
V

+−+ +
−

+
−

∆

−
−= (3.28)

Then Equations 3.27 and 3.28 are arranged into state equations as;

() () ()()()jijijiji
L

ejVjiji

L

ji
xyxyyy

M

AaK

z

xx

M
L

dt

dx
,1,,,1

,,1, **
'2' +−

+
+−++

∆

−
= (3.29)

() ()
ji

jijijijieVj
ji y

xyxyyy

V

zAaK
y ,

,1,,,1
,1)

2

**

2
(+

+
−

+∆
−=

+−

+ (3.30)

Since it is assumed that there is only liquid molar holdup in the column, the subscripts of the

liquid molar holdup may be neglected. Liquid molar holdup can be written as,

MM L = (3.31)

Total mass, material and energy balances for the other parts of the distillation column can

be given as;

Reflux – drum – condenser system (k= NT+2): j = 1…NC

DLV
dt

dMNT −−=+2 (3.32)

jNTjNTjNT
jNTNT DxLxVy

dt

xMd
,2,2,2

,22)(
+++

++
−−= (3.33)

28

2221
22)(

++++
++ −−−= NTNTNTNT

NTNT QDhLhVH
dt
hMd

 (3.34)

where D is the distillate flow rate and QNT+2 is the heat removed from the condenser.

Reboiler (k = 1):

VL
dt
dM

−=1 (3.35)

jj
j VyLx

dt

xMd
,1,2

,11)(
−= (3.36)

112
11)(

QVHLh
dt
hMd

+−= (3.37)

where Q1
 is the heat given to the reboiler.

Using the procedure given by Yıldız (2002) Equations 3.35 and 3.36 transformed into a state

equation for compositions in the reboiler as:

[] 1,1,1,1,2
,1 /)()(MxyVxxL

dt

dx
jjjj

j
−−−= (3.38)

Thus using the constant molar liquid holdup assumption in the reflux drum, Equation 3.32

simplifies as,

DLV += (3.39)

Using the procedure given by Yıldız (2002) Equations 3.33 and 3.39 are transformed into a

state equation for compositions at the distillate compositions.

[] 2,2,2
,2 /)(+++

+
−= NTjNTjNT

jNT MxyV
dt

dx
 (3.40)

3.2.2 Determination of Flow Rates at Finite External Reflux Ratio

The knowledge of the vapor and liquid flow rates are necessary to calculate mole fractions

of liquid and vapor phases at any location of the packed distillation column. The estimation

of the flow rates at finite external reflux ratio will be explained below by using the procedure

of Yıldız (2002) in rigorous modeling with the assumption of equimolar counter diffusion.

Vapor rate, V, can be obtained by using the external reflux ratio definition (R = L/D) and

Equation 3.39 as;

)1(+=+= RDDLV (3.41)

29

Thus, in reflux – drum – condenser, substituting Equation 3.41 into Equation 3.34 with the

assumption of constant hold-up and total condenser the following can be obtained;

2221
2

2 ++++
+

+ −−−= NTNTNTNT
NT

NT QDhLhVH
dt

dh
M (3.42)

and inserting Equation 3.39 into Equation 3.42;

221
2

2)(+++
+

+ −−= NTNTNT
NT

NT QhHV
dt

dh
M (3.43)

Equation 3.43 can be written as;

() 22122)(+++++ −−= NTNTNTNTtNT QhHVhM δ (3.44)

and considering,

()
1

1)()(

−

−

−

∗−∗
=∗

kk

kk
t tt

tt
δ (3.45)

where ∗ is a dummy function (Yıldız (2002)).

Further substituting Equation 3.41 into Equation 3.44, heat removed from the condenser can

be written as;

)())(1(22212 +++++ −−+= NTtNTNTNTNT hMhHRDQ δ (3.46)

Total energy balance over the packed distillation column can be written as;

∑
+

=

++ =−−
2

1
221

)(NT

n

nn
NTNT dt

hMd
DhQQ (3.47)

Thus, distillate rate can be obtained by substituting Equation 3.46 into Equation 3.47;

21

2

1
1

)1(

)(

++

+

=

−+

−

=

∑

NTNT

NT

n

nn

RhHR

dt
hMd

Q

D
(3.48)

However, to find the distillate rate, D, one must know the liquid molar holdup for each

section, Mn, which will be explained in Section 3.2.5.

3.2.3 Determination of Flow Rates at Total Reflux

In the previous section, the estimation of flow rates for finite external reflux ratio is

described. However, to find flow rates at total reflux (R = ∞), further analysis must be done,

since D = 0 at total reflux and V = L from Equation 3.41.

30

If the energy balance is made on the packed distillation column without reflux – drum –

condenser, following equation is obtained:

dt
hMd

dt
hMd

VHLhQ NTNT
NTNT

)()(1122
121 +=−+ ++

++ (3.49)

Substituting V = L into Equation (3.49) gives,

()21

2211
1

)()(

++

++

−

−−

=
NTNT

NTNT

hH
dt
hMd

dt
hMd

Q
L

(3.50)

By using Equation 3.50, flow rates at total reflux can be calculated. As stated before, to

solve Equation 3.48 and 3.50, molar holdups at reboiler, condenser and packed section

should be known.

3.2.4 Determination of Loading and Flooding Points

Operation of packed distillation column can be analyzed in three regions: preloading, loading

and flooding. Loading and flooding points are two important operational points for the

simulations, because pressure drop and liquid holdup throughout the column depends

directly on these points. Flooding point is the upper limit of the packed distillation column

operation, while loading point is a measure that demonstrates generation of high pressure

drop. Billet and Schultes (1999) demonstrated that loading point is considered to occur

approximately 65 – 70% of the flooding point. In this study, the occurrence of loading point

and design gas rate are chosen as at 60% and 40% of flooding point, respectively.

Prediction of flooding point will be explained in Section 3.2.5.

3.2.5 Calculation of Molar Hold up and Pressure Drop

Several investigations are made on the evaluation of liquid molar hold ups. Some of them

include the effect of surface tension, viscosity, vapor and liquid flow rates. In this study, the

correlation derived by Stichlmair et al. (1989) is used. Stichlmair et al. (1989) stated that

several liquids for liquid molar holdup up to loading point show the same behavior, which is

a function of Froude number. Equation for liquid holdup for a given packed section for

preloading region is as follows;

() MWhAM oLL /' ρ= (3.51)

where,

3/1555.0 Lo Frh = (3.52)

31

65.4
2

εg

a
uFr p
LL = (3.53)

As Stichlmair et al. (1989) stated, above the loading point holdup increases with an increase

in gas rate at constant liquid rate. The liquid is restrained by the friction forces and static

pressure gradient and this effect is demonstrated for liquid holdup at loading point as

follows;

()2
0))/((201 gZPhh LirrL ρ∆+= (3.54)

In this study, design gas velocity is selected as the 40% of the flooding velocity so the

relationship for molar holdup below loading point, ho, is used.

In packed distillation column, there are three types of pressure drops: dry, irrigated and

flooding. Correlations derived by Stichlmair et al. (1989) are used in this study and given as

follows;

()[] pggodry dufzP //14/3/ 265.4 ρεε−=∆ (3.55)

[][]{ }
[] }





∆+−

−∆+−−
=∆∆

+−

65.42

3/)2(12

))/(201(/1

)1())/(201(/11
/

gZPh

gZPh
PP

Lirro

c
Lirro

dryirr

ρε

ερεε
 (3.56)

where,

3
2/1

21 Re/Re/ CCCf ggo ++= (3.57)

o

gg

f

CC
c

)Re2/(Re/ 2/1
21 −−

= (3.58)

C1, C2 and C3 are constants related to the packing material and the constants for dumped

ceramic packing materials are given in Table B.1 (Appendix B). At flooding point, the

pressure is calculated from the following equation,

[]() []()
0

)/(201

186

)/(2011
3

2
40

22

2

=
∆+−

−
∆++−

+

−






 ∆
−

fLirro

o

fLirro

o

fL

irr

gZPh

h

gZPh

h
c

gZ
P

ρερερ
 (3.59)

Calculation of flooding pressure drop is an iterative process. First, a gas rate is assumed and

then, dry pressure drop is calculated and, for the same gas rate at a fixed liquid rate,

irrigated pressure drop is calculated. Then, Equation 3.59 is checked. If Equation 3.59 is not

32

satisfied, another gas rate is assumed and the same calculations are done until the Equation

3.59 is satisfied.

Since it is assumed that design gas rate below the loading point and that the pressure drop

profile is linear through packed section, equation for pressure drop profile can be written as;

Z
P

zPzP irr
B

∆
+= *)((3.60)

3.2.6 Predictions of Physical Properties

Parameters like viscosity, surface tension, diffusivity coefficient are necessary to estimate

mass transfer coefficient and effective interfacial area. These parameters generally are

functions of temperature, the number of components in the mixture and the type of the

components. Thus, in this study, for hydrocarbons, prediction of these parameters are done

at low pressures by most commonly used correlations, and for polar mixtures, these

parameters are kept constant because, correlations of physical properties for polar mixtures

are complex and the usage of these correlations in the simulation code will not be user

friendly. Critical surface tension of materials is given by Perry et al. (1984). A list of the

correlations to predict physical properties for hydrocarbons at low pressures is tabulated in

Appendix D with their percent errors (Perry et al., 1997).

3.2.7 Algebraic Equations and Thermodynamics

Starting point of the all the predictions of vapor – liquid equilibrium compositions is as

follows, for j=1…NC,

L
j

V
J ff

))

= (3.61)

In this study, there are two types of mixtures to be analyzed: hydrocarbons and polar

mixtures. For hydrocarbons at low pressures, to predict vapor liquid equilibrium (VLE)

relationships Peng Robinson Equation of State (PR-EOS) is utilized for both, vapor and liquid

phases. The use of cubic equations of state for vapor and liquid phases is known as Phi- Phi

(Φ -Φ) approach and using Equation 3.61 equilibrium relationship can be written as, for

j=1…NC,

L
jj

V
jj xy φφ

))

= (3.62)

33

Detailed information on calculation of VLE by using PR-EOS can be found in the studies of

Alkaya (1990), Dokucu (2002) and Yıldız (2002).

On the other hand, PR-EOS must not be used to predict vapor liquid equilibrium for liquid

phase of polar mixtures (Sandler, 1999). Hence, for liquid phase, an activity coefficient

model and for the vapor phase a cubic equation of state will be used and this is known as

the Gama – Phi (γ -φ) approach. Then, Equation 3.61 can be written as,

jjjjj fxPy γφ =
)

 (3.63)

Bahar (2007) showed that, the use of Non Random-Two Liquid (NRTL) activity coefficient

model gives best results for the prediction of compositions of polar mixtures. Therefore, in

this study, for polar mixtures NRTL activity coefficient will be used to predict liquid phase

and, PR – EOS will be used to predict vapor phase compositions at equilibrium. NRTL model

equations for the excess Gibbs energy for condensed phase binary systems developed by

Renon and Prausnitz (1968) are given in Equations 3.64 - 3.69 (Tester and Modell, 1997).

For i = 1…NC, j = 1…NC

() 













+
+









+
=

2
1212

1212
2

2121

21
21

2
21ln

Gxx

G
Gxx

G
x

τ
τγ (3.64)

() 













+
+









+
=

2
2121

2121
2

1212

12
12

2
12ln

Gxx

G
Gxx

G
x

τ
τγ (3.65)

where,

RT

gg iiji
ji

−
=τ (3.66)

0== jjii ττ (3.67)

()jijijiG τα−= exp (3.68)

0.1== jjii GG (3.69)

Extension of NRTL model to multicomponent systems is given in Equation 3.70 (Tester, et.

al., 1997).





















−





















+=

∑

∑
∑
∑∑

∑

=

=

=

==

=

n

k
kkj

n

m
mmjmj

ij

n

j
n

k
kkj

jij
n

k
kki

n

j
jjiji

i

xG

xG

xG

xG

xG

xG

1

1

1

11

1ln

τ

τ

τ

γ (3.70)

34

NRTL model parameters used in this study for polar mixtures are given at Table D.5 (Maier,

et al., 1998).

The sum of compositions in terms of mole fractions is equal to 1.0 in liquid and vapor

phases, as follows,

1
1

=∑
=

NC

j
jx (3.71)

1
1

=∑
=

NC

j
jy (3.72)

Binary interaction parameters that are used in the simulation code, which “has been

introduced to obtain better agreement in mixture equation of state calculations” (Sandler,

1999), used for this study are given in Table 3.2 (Bahar (2007), Yıldız (2002)).

Table 3.2 Binary Interaction Parameters, bij.

bij Ethanol Water Cyclohexane N - Heptane Toluene

Ethanol 0.0 -0.935 - - -

Water -0.935 0.0 - - -

Cyclohexane - - 0.0 0.0 0.0

N - Heptane - - 0.0 0.0 0.0

Toluene - - 0.0 0.0 0.0

3.3 Initial Conditions for the Simulation

The equations given above are formulations of the mathematical model of a multicomponent

batch packed distillation column. In order to be able to solve these equations, MATLAB and

FORTRAN programming languages are used.

Initial conditions are necessary to solve ordinary differential equations. In this study, the

feed is charged to the column from the top at its boiling point. Therefore, at the beginning

of the operation, whole column with its reboiler and reflux – drum – condenser part is

assumed to have the same feed compositions (Yıldız (2002)), that is,

35

feed
jij xx = for 2...1 += NTi

 NCj ...1=
(3.73)

Also, the initial flow rates are estimated by using the following equations (Yıldız (2002)),

)(21

1

hH
Q

V i
−

= for 2...2 += NTi (3.74)

2+= NTi VL for 1...1 += NTi (3.75)

3.4 Storage Tank Models

In batch distillation, distilled products can be collected at separate tanks. These tanks are

product cut tanks and slop cut tanks. Product cut tanks are the tanks where products are

collected at specified purity levels or amounts, while slop cut tanks are the tanks where

waste material of the distillate is collected i.e. slop cut tanks are utilized to collect the

distilled mixture whose purity is not at specified purity of any products.

In order to start the operation, the fresh feed is introduced to the system and then

necessary heat load is given to the reboiler. After the contents of the reboiler started to boil,

vapor flows through the packed section and moves through the condenser. If the system

operates for a reflux ratio other than total reflux, then, some distilled material is collected at

the product tank 1 until the composition of contents of the product tank 1 reaches a

specified purity level. After specified purity level of the lightest compound in product tank 1

drops, distilled material is collected at the slop cut tank 1 until the desired purity level of the

second compound is reached. Then, second product will be started to collect at product tank

2. This operation continues for product tanks equal to the number of components. Reboiler

can be used as product tank to collect the heaviest compound to decrease investment on

product and slop cut tanks.

Modeling of the storage tanks, which is same with the study of the Yıldız (2002), consists of

calculating holdups and compositions of product and slop cut tanks. Holdup of a tank at any

time is calculated by integrating distillate flow rate from the time of the start to the end of

accumulating material in the tank. For the estimation of compositions in a tank, firstly, the

multiplication of liquid composition of the distilled material with distillate flow rate is

integrated from the time of the start to the end of accumulating material in the tank. Then,

this integration is divided to the holdup in the tank.

36

3.5 Model Equations

All the state and algebraic equations are listed in Table 3.3 in order, starting from reboiler to

reflux-drum-condenser.

Table 3.3 Summary of MPDC Model Equations.

State Equations

Reboiler

[] 1,1,1,1,2
,1 /)()(MxyVxxL

dt

dx
jjjj

j
−−−=

Packed Section

() () ()()()jijijiji
L

ejVjiji

L

ji
xyxyyy

M

AaK

z

xx

M
L

dt

dx
,1,,,1

,,1, **
'2' +−

+
+−++

∆

−
=

Reflux – Drum – Condenser

[] 2,2,2
,2 /)(+++

+
−= NTjNTjNT

jNT MxyV
dt

dx

Algebraic Equations

Composition Sums

1
1

=∑
=

NC

j
jx

1
1

=∑
=

NC

j
jy

Mass Transfer Correlation

() 3/17.0
2

Re3600 VV
pp

V

g
V Sc

da

D
c

TR
P

K 












=























−−=

− 2.005.01.0
75.0

Re45.1exp1 LLL
L

c

p

e WeFr
a
a

σ

σ

37

Table 3.3 Summary of MPDC Model Equations (Cont’d).

Algebraic Equations

Flowrates at Finite External Reflux Ratio

D
L

R =

)1(+=+= RDDLV

21

2

1
1

)1(

)(

++

+

=

−+

−

=

∑

NTNT

NT

n

nn

RhHR

dt
hMd

Q

D

Flow rates at Total Reflux

D=0

LV =

()21

2211
1

)()(

++

++

−

−−

=
NTNT

NTNT

hH
dt
hMd

dt
hMd

Q
L

Vapor Composition

() ()
ji

jijijijieVj
ji y

xyxyyy

V

zAaK
y ,

,1,,,1
,1)

2

**

2
(+

+
−

+∆
−=

+−

+

Holdup below Loading Point

3/1555.0 Lo Frh =

Holdup above Loading Point

[]2
0))/((201 gzphh LirrL ρ∆+=

Pressure Drop Profile

Z
P

zPzP irr
B

∆
∆+= *)(

Thermodynamic Models & Physical Properties

Peng Robinson EOS

NRTL Activity Coefficient Model Equations

Correlations at Appendix D

38

CHAPTER 4

OPTIMAL OPERATION OF A MULTICOMPONENT BATCH

PACKED DISTILLATION COLUMN

In this chapter, optimal operation for maximizing product amount in a multicomponent batch

packed distillation column is explained with an approach to find optimum reflux ratio.

Problem identification and optimal control formulation are given in Sections 4.3 and 4.4,

respectively.

4.1 Capacity Factor

The approach to optimize product amount in a multicomponent batch packed distillation

column by using capacity factor (CAP) was developed by William L. Luyben in 1971. “The

capacity factor of the batch still is defined as the total specification products produced (Pi)

divided by the total time of batch” (Luyben, 1988). The formula is given as;

5.0
1

+
=

∑
=

T

NC

i
P

t

M
CAP

i

 (4.1)

where tT is the total operation time including total and finite reflux operations. The value of

0.5 hour in the denominator is given for emptying and charging the feed to the still pot since

in the study, the distillation column is considered to be operated for 24 h for all days of a

year. The total feed fed to still pot initially is equal to the sum of the amount of product and

slop cut tanks as given by Luyben (1988) (Equation 4.2).

∑∑
−

==

+=
1

11

NC

i
S

NC

i
PB ii

MMM (4.2)

39

4.2 Problem Statement

The system operation can be figured out by using “a state task network (STN) where a state

(denoted by a circle) represents a specified material, and a task (rectangular box) represents

the operational step which transforms the input state(s) into the output state(s)” (Mujtaba,

and Macchietto, 1993). STN of the optimization problem is given in Figure 4.1.

Figure 4.1 STN of the Optimization Problem.

In Figure 4.1, fresh feed, MB
o, is fed to reboiler at the start of the system operation and it is

desired to have maximum distilled amount for product 1, the lightest compound, at specified

desired purity level, x1**. The remaining molar holdup of the reboiler, MB
1, is going to be

processed until the composition of the second compound purity level in the reflux – drum –

condenser part reaches to the desired level. Distilled material which does not have any

specified purity level of the compounds is collected in the slop cut tank 1, S1, during step 2.

The remaining molar holdup in the reboiler, MB
2, will be distilled until the product purity of

the 2nd compound in the product tank 2 drops to specified purity level. This process will be

going on to the step NC for a given feed charge with NC specifications.

4.3 Optimization Problem Formulation

Optimization of reflux ratio profile to maximize distilled product amount in a multicomponent

batch packed distillation column is performed by maximizing CAP. Formulation of the

problem necessitates the inputs as; column, feed mixture and product specifications, heat

load and initial values (reflux ratio, pressure in the reboiler, dummy variables etc.) by using

the following representation (Bahar, 2007):

 max ()xf subject to

10 ≤≤ pR (4.3)

40

where Rp is the internal reflux ratio (L / V) and

CAP= ()
5.0

1

+
=

∑
=

T

NC

i
P

t

M
xf

i

 (4.4)

Recycling of the materials in the slop cut tanks for the next batch may be done as shown in

the Figure 4.2 to increase product amount. As Luyben (1988) and Bonny (1999) stated

recycling of holdups of the slop cut tanks do not have any significant effect on CAP.

However, it increased the product amount by 16% for multicomponent batch plate

distillation columns.

In this study, also the recycling of molar holdup of slop cut tanks for the next batch is

examined to analyze the effect of recycle in packed distillation columns.

Figure 4.2 Schematic View of Recycling of the Materials in Slop Cut Tank.

P1 S1 P2

41

CHAPTER 5

SIMULATION CODE

In this chapter the simulation algorithm and its working principles are given with the

thermodynamic library.

The derived model equations of multicomponent batch packed distillation column for

mixtures operating at low pressures are written by FORTRAN and also in programming

language of MATLAB software and they are solved with the aid of MATLAB software. The

files with the extension of “xxxx.m” are written using MATLAB while ones with the extension

of “xxxx.f” are prepared by using FORTRAN programming languages. This study is a

modification of written simulation code by Yıldız (2002) for multicomponent batch plate

distillation column to multicomponent batch packed distillation column.

The simulation code, which is given in Appendix C, consists of 9 “xxxx.m” files for main

programs, 3 “xxxx.m” files for optimization and a library file written with FORTRAN

programming language for thermodynamics. The m-files are “Glob_Decs.m”,

“Glob_Initial.m”, “Mass_Hydrocarbons.m”, “Mass_Polar.m”, “PressureProfile.m”,

“Plant_File_Packed.m”, “OptimizeR.m”, “Batch_con.m”, “Batch_obj.m” and the library file is

“thermo_LIBRARY.dll”.

The library file for prediction of physical and thermodynamics properties of hydrocarbons

was prepared by Dokucu (2002) and some modifications were made by Yıldız (2002). Then,

Bahar (2007) modified the written equilibrium file for polar mixtures by using NRTL activity

coefficient model for multicomponent mixtures. In this study, one more addition, which is

the equation of NRTL activity coefficient model for binary mixtures used in experiments, is

prepared and thermo library file for hydrocarbons is integrated with the file for polar

42

mixtures. Now, library file has two approaches (φ−φ and γ - φ) to determine physical

properties and VLE compositions for hydrocarbons and polar mixtures. The use of approach

through the simulation run is determined by selecting the type of components at the start of

the run.

The overall structure of the simulation code is given in Table 5.1 as in the case of Yıldız

(2002).

Table 5.1 The Overall Structure of the Simulation Code.

Glob_Decs.m

Glob_Initial.m

Plant_File_Packed.m

PressureProfile.m

Mass_Hydrocarbons.m

Main Program Codes

Mass_Polar.m

thermo_Init.m

thermo_Equilibrium_Hydrocarbons.m

thermo_Equilibrium_Polar.m

thermo_Enthalpy.m

thermo_L_Density.m

thermo_G_Density.m

thermo_LIBRARY.f

thermo_LIBRARY.h

common_plant.h

parameter.h

Thermodynamic Library

“thermo_LIBRARY.dll”

thermo_data.dat

OptimizeR.m

Batch_con.m Optimization Code

Batch_obj.m

43

5.1 Main Simulation Code

As stated before, the main simulation code is a modification of the written code by Yıldız

(2002) for plate distillation column. The differences between the plate distillation and packed

distillation occur in hydrodynamics and in mass transfer. In plate distillation column, among

the model equations there are ordinary differential equations (ODEs), however, in packed

distillation if the continuous mass transfer between phases is taken into account; there are

both partial differential equations (PDEs) and ODEs for the model equations. In the solution

of PDEs, the approach used by Attarakih et al. (2001) is used. For the integration, a step

size of 3 x 10-4 hours is utilized with a terminal tolerance of 9 x 10-180 to make the liquid and

vapor component fractions zero (Yıldız, 2002).

The working principle of the simulation code for modeling is demonstrated in Figure 5.1.

Figure 5.1 Simulation Chart of the Batch Packed Distillation Column.

“Glob_Decs.m” and “Glob_Initial.m” files are to initialize text files and identify parameters to

be used for whole simulation algorithm. The main simulation algorithm

“Plant_File_Packed.m” is used for determination of compositions, pressure drop, molar

holdups of packed section and reboiler, flow rates and tank molar holdups, etc.

Determination of pressure drop, loading and flooding points by using the approach of

44

Stichlmair et al. (1989) is an iterative process. Pressure profile is assumed as linear and the

computations after estimation of pressure drop are made by using “PressureProfile.m” file.

The prediction of mass transfer, interfacial area correlations and physical properties are

written in the files of “Mass_Hydrocarbons.m” and “Mass_Polar.m”. The flow chart of the

main simulation code is given in Figure 5.2.

5.2 Thermodynamic Library

Thermodynamic library consists of files written with MATLAB and FORTRAN programming

languages. The part written in FORTRAN is prepared by Dokucu (2002) for model predictive

controller design of an industrial distillation column and then, modified by Yıldız (2002) to be

used in MATLAB framework. Also, Bahar (2007) modified the written equilibrium subroutine

to predict VLE compositions by using NRTL activity coefficient model for liquid phase and PR

EOS state for vapor phase. The details of the thermodynamic library can be found from the

studies of Dokucu (2002), Yıldız (2002) and Bahar (2007).

In this study, two modifications to this library are made: one is to obtain data on vapor

density of the mixture besides liquid density of the mixture; the other is the addition of the

equation of NRTL activity coefficient model for binary mixtures. Moreover, an integration of

thermo library files written by Yıldız (2002) and Bahar (2007) is done. By using this library,

one can determine enthalpy, liquid and gas density and average molecular weight of the

mixture and phase equilibrium compositions by utilizing either γ - φ approach or φ - φ

approach, with the help of m-files, “thermo_Enthalpy.m”, “thermo_Density.m”,

“thermo_Equilibrium_Hydrocarbons.m”, and “thermo_Equilibrium_Polar.m” respectively.

45

Figure 5.2 Flow Chart of the Main Simulation Algorithm.

46

Figure 5.2 Flow Chart of the Main Simulation Algorithm (Cont’d).

47

Figure 5.2 Flow Chart of the Main Simulation Algorithm (Cont’d).

48

 Figure 5.2 Flow Chart of the Main Simulation Algorithm (Cont’d).

49

5.3 Optimization Functions

In the simulation program, the function of CAP is solved with the aid of the command

“fmincon” in the MATLAB programming language (Bahar, 2007). Since the “fmincon” is to

find a minimum of a constrained nonlinear multivariable function starting with an initial

estimate, it is necessary to make it as a maximization function by putting a minus sign in

front of the equation in the simulation algorithm. Inequality constraint to find an optimal

operation point for nonlinear optimization problem is given by Equation 4.3. In the selection

of optimization options in the simulation code, the ones used for medium – scale algorithms

are taken into consideration. Since there is an inequality constraint, the use of large – scale

algorithm is impossible. “Large scale” is chosen as “off” with termination tolerance for

optimum reflux ratio of 10-3. In the medium – scale algorithms, a sequential quadratic

programming (SQP) method is used. In this method, for each iteration an approximation is

performed with the Hessian of the Lagrangian function by using a quasi-Newton updating

method and a quadratic programming sub problem is solved. Estimation of optimum reflux

ratio for an interval is done in two steps by using written simulation code by Bahar (2007).

An internal reflux ratio is calculated in the first step. Iterative solutions of the written

optimization code with main simulation program are generated to reach the exact solution at

the second step. A global optimum internal reflux ratio to collect any product or waste

material into specified tank is found out by searching global maximum points of the capacity

factor for each stage by using “fmincon” command. Details of the use of “fmincon”

command can be found in the study of Bahar (2007).

In determination of optimal reflux ratio, the main simulation code is changed to a sub

function while making the optimization function as main simulation code. The procedure to

determine optimal reflux ratio is as follows:

1. The amount of feed is introduced to reboiler as MB with liquid compositions x1, x2,

x3... xj.

2. The boil up rate is set by tuning heat load.

3. The system is adjusted to total reflux operation conditions until the steady state

composition is reached or the composition of the lightest compound is reached to

desired product purity.

4. After total reflux operation, an arbitrarily initial internal reflux ratio is given to the

system to start optimization. With the given reflux ratio first product is collected in

the product tank until the composition in the 1st product tank is attained to specified

purity level. When the composition of the 1st product tank drops below the purity

level, the CAP is evaluated. Optimization program changes reflux ratio and the

50

simulation algorithm will start to search for another reflux ratio and the operation

time will start again. This is continued until an optimum reflux ratio is obtained with

terminal tolerance with 10-3.

5. Then, obtained internal reflux ratio for the 1st product tank will be introduced to

simulation algorithm and a new initial optimal reflux ratio will be given to the system

to find an optimum reflux ratio for the 1st slop cut tank by guiding the distillate rate

to slop cut tank. The procedure is continued until the composition of the reboiler is

reached to the specified purity of the heaviest component. After several runs with

assigning different values of internal reflux ratio, one which gives the maximum CAP

is chosen as the optimum reflux ratio for each tank.

The flow chart of the simulation algorithm for optimization of reflux ratio profile to maximize

distilled product amount is given by Figure 5.3.

Figure 5.3 Flowchart of Simulation Algorithm for Optimum Reflux Ratio Profile.

An initial
internal

reflux ratio is
given to
system

Optimized reflux ratio
CAP

Time to change reflux ratio
“opt.txt”

INPUT

OUTPUT

NUMERICAL COMPUTATION

Optimization
Functions

“Batch_con.m”
“Batch_obj.m”
“OptimizeR.m”

Main Simulation Code
“Plant_File_Packed.m”
“PressureProfile.m”

“Mass_Hydrocarbons.m”
“Mass_Polar.m”
“Glob_Initial.m”
“Glob_Decs.m”

“thermo_LIBRARY.dll”

51

CHAPTER 6

CASE COLUMN AND EXPERIMENTAL SET- UP

Verification of simulation code is necessary to check its validity. In this study, results of the

simulation algorithm are checked for hydrocarbons and polar mixtures. The check for

hydrocarbons is done analytically. Experimental studies are performed for polar mixtures, by

using a binary mixture of 60% ethanol (EtOH) and 40% water (H2O). The information about

components of mixtures, column specifications considered during verification of simulation

code for hydrocarbons and polar mixtures, experimental procedure and analysis of the

experimental findings are given below.

6.1 Case Study 1: Hydrocarbons

Analysis of behavior of the simulation algorithm for hydrocarbons is performed by using a

ternary mixture of cyclohexane, n-heptane and toluene. Correlations to predict physical

properties of these hydrocarbons and the specifications of the components are given in

Appendix D.

Residue curve map, which gives information about the phase equilibrium, can be used to

trace the azeotropy of the compounds. A residue curve map of cyclohexane, n-heptane and

toluene is given in Figure 6.1 (Jiménez et al., 2002).

Figure 6.1 demonstrates that “the binary system of n-heptane and toluene has a high purity

binary azeotropy (0.99 mole fraction in n-heptane). This azeotropy is nonsensitive to

pressure (0.975 molar to 10 atm)” (Jiménez, et al., 2002). There is not any ternary

azeotropy in the system. Hence, this system can be thought as nonazeotropic system for the

range of pressures used in the (up to 1 atm) simulation.

52

Figure 6.1 Residue Curve Map for Cyclohexane – n - Heptane – Toluene at 1 atm

(Jiménez et al., 2002).

An experimental study could not be performed with hydrocarbons due to the damage given

by these solvents to the experimental set up. Therefore, accuracy of simulation algorithm

will be performed qualitatively as in the case of Hitch et al. (1988) by comparing nine

simulation runs with varying one parameter at each simulation run. Case column is

considered as having the same specifications of the column and feed used in the study of

Mujtaba and Macchietto (1993). Column and feed specifications are given in Tables 6.1.

The column specifications in the study of Mujtaba and Macchietto (1993) are given as tray

numbers, boil up rate, holdups of the trays, holdups of condenser-reflux-drum and pressure

drop throughout the column. Since the column used in the study of Mujtaba and Machietto

(1993) is a plate distillation column, some more specifications has to be included as inputs to

the simulation program for the packed distillation column. Thus, irrigated and flooding

pressure drop is evaluated by the simulation code using the top pressure given in Table 6.1.

Also, the design gas rate is selected to be 38% of the flooding rate for a column of 0.35m in

53

diameter with packed height of 1.5m. The calculated specifications of the column and

specifications of the used packing material are given in Tables 6.2 and 6.3, respectively.

Table 6.1 Column and Feed Specifications.

Condenser – Reflux- Drum Holdup (kmol) 0.02

Top Pressure (Pa) 101600

Maximum Boil up Rate (kmol/h) 2.75

Fresh Feed Amount (mol) 2930

Initial mole fractions at reboiler

Cyclohexane 0.407

n- Heptane 0.394

Toluene 0.199

Desired purity of the first product 0.9

Desired purity of the second product 0.8

Table 6.2 Additional Specifications for the Packed Distillation Column Used in the

Simulation.

Parameter Value

Irrigated pressure drop (Pa) 359.52

Flooding pressure drop (Pa) 2637.23

Design gas rate / Flooding Gas Rate (%) 0.38

Number of differential element, NT 40

Diameter of the column (m) 0.35

Height of packed section (m) 1.5

54

Table 6.3 Specifications of Used Random Packing Material.

Parameter Value

Packing material Ceramic Raschig ring

Diameter(m) 0.010

Specific surface area of the packing (m-1) 472

Porosity 0.655

The heat load in the selected distillation column is kept at the maximum value and internal

reflux ratio is used as the manipulated variable to understand the optimum operation to

maximize distillate product amount, since it is assumed that there is a perfect level control at

reflux –drum – condenser section (Yıldız, 2002).

6.2 Case Study 2: Polar mixtures

The accuracy of simulation algorithm is verified quantitavely by carrying out experiments on

a lab scale packed distillation column by using 60% EtOH and 40% H2O mixture. Ethanol of

≥99.99% (w/w) purity (supplied by Merck) and pure water are used to prepare the mixture.

Physical properties for polar mixtures assumed as constant in the simulation code in order to

simplify the complex calculations. Physical properties and the specifications of ethanol and

water are given in Appendix D. Azeotropy of ethanol and water mixture occurs at 78.2 oC at

1 atm (4.4% by weight water and 95.6% by weight ethanol).

6.2.1 Experimental Set – Up

The experimental set – up used in this study (Figure 6.2) consists of a packed distillation

column made of glass and with an ID of 5cm and with 0.4m packing height. Column is filled

with 5 mm diameter glass Raschig Rings. The polar mixture to be analyzed is 1000 ml

solution with 60% EtOH and 40% H2O [mol/mol]. The mixture is initially 23 moles. Heat load

is chosen as 500 W (1800000 J/h). Flow rate of condenser is 1.4 l/min. In order to reduce

heat loss to the environment, reboiler and packed column are insulated. Peristaltic pumps

are used to pump distilled material to column and product cut tanks. Calibration curve of

peristaltic pumps is given in Appendix E.

55

Figure 6.2 Schematic View of Experimental Set – Up.

6.2.2 Experimental Procedure

Analyses of the distillate samples taken in the experiments are done in the setup explained

above are measured by using Porapak - Q column in gas chromatography (GC) (Hewlett –

Packard 5890 Series II) by using nitrogen as carrier gas. First, a calibration curve is prepared

with the samples of known compositions. Details of this study and calibration equations are

given in Appendix E. Then, reboiler is filled with 1000 ml solution with 60% EtOH and 40%

H2O and the heat load is adjusted to 0.5 kW. The column is operated at total reflux for

about five hours - until the steady state is reached. The operation is continued with a finite

external reflux ratio of 0.5 for one hour. Contents of the reboiler is started to boil in 15

minutes after start and when the condensed vapor is observed at the reflux- drum, samples

are taken from the distilled product in every 5 minutes for about 0.5 hrs to observe the rise

of the ethanol composition at the reflux drum. Then, samples are taken after 0.5 hrs in

every 20 minutes, until total reflux period ends and again in every 5 minutes until distillation

stops. Then, samples are analyzed in GC. The liquid compositions of ethanol are obtained

with the use of the following equation:

() 09308.11915.20152.1
222

23
=−++− EtOHEtOHOHEtOHOHEtOHOH xx κκκκκ (6.1)

where, κH2O and κEtOH are area of the water and ethanol obtained from GC, and xEtOH is the

liquid composition of ethanol [mol/mol].

56

CHAPTER 7

RESULTS AND DISCUSSION

Verification of the simulation code for the separation of hydrocarbon and polar mixtures

using different simulation runs and experimental findings, optimum reflux ratio profile for

maximizing the amount of distillate in a specific time and recycling of molar holdups of slop

cut tank for the proceeding batch operation are given and discussed in this chapter.

7.1 Effect of Incremental Bed Height on the Results of the Simulation

The selection of the size of the incremental packing bed height of the batch packed

distillation column, ∆z (∆z = Bed Height (Z)/ Number of Incremental Element (NT)) is

important for the accuracy of the results. Thus, the effect of NT (15, 35, 40 and 50) on the

accuracy of the results is investigated first by using related study (Yıldız (2002)) found from

the literature by using an internal reflux ratio profile given in Table 7.1 . It is observed from

Figure 7.1 that, incremental element, ∆z, has an effect on the separation operation as

separation becomes more difficult (after 6 hrs of operation, separation is between n-heptane

and toluene and is more difficult than the separation of cyclohexane and n-heptane). As the

number of incremental elements increases, separation efficiency increases. However, the

effect of number of incremental element on separation efficiency levels off as the number

reaches 50. That is, there is a slight change between the results of simulation code for NT =

40 and NT = 50. Therefore, during the simulation runs in the following sections, NT is taken

as 40.

57

Table 7.1 Internal Reflux Ratio Profile of the Study of Yıldız (2002).

Time Interval [hrs] Internal Reflux Ratio (L / V)

0 – 2.04 0.875

2.04 – 3.4 0.911

3.4 – 6.17 0.933

6.17 – 6.51 0.831

6.51 – 8.00 0.876

Figure 7.1 Comparison of Distillate Compositions for Different Incremental Elements.

7.2 Verification of Simulation Code by the Study of Yıldız (2002)

The studies on the verification of the simulation code are firstly performed by comparing the

distillate compositions of the simulation results of the Yıldız (2002) in a plate distillation

column: at total reflux, at a constant internal reflux ratio of 0.875 and at the piecewise

constant internal reflux ratio profile as a function of time given in Table 7.1 (Yıldız (2002)).

This validation is done as a starting point to check whether the results of the simulation

58

code are reasonable or not. After this section, verification of the simulation code will be done

theoretically and experimentally.

Although the study of Yıldız (2002) is done in a batch plate distillation column with 20 trays

(including reboiler and condenser) for a multicomponent mixture, the distillate compositions

can be compared with the dynamic behavior of the multicomponent batch packed distillation

column which has the same feed amount, condenser hold-up and heat input. Of course

depending upon L/D ratio for the column and packing material, the separation efficiency will

be different. Nevertheless the dynamic trend is wanted to be checked in terms of distillate

compositions. In Figure 7.2, the comparison of the distillate compositions between the

results of simulation code prepared by Yıldız (2002) and those of simulation code written in

this study for total reflux period of one hour is given. It is observed that, steady state

distillate compositions for plate distillation column are slightly higher than those for packed

distillation column. However, the dynamic behavior of the composition of the components

for packed distillation is in a similar trend with the plate distillation column and the time

necessary to reach steady state is nearly the same for both cases. The difference in distillate

composition shown in Figure 7.2 can be reduced by increasing the packing height.

Figure 7.2 Comparison of Distillate Compositions at Total Reflux.

59

In Figure 7.3, simulation run performed for a constant internal reflux ratio of 0.875 is given.

Again, there is a good agreement between the dynamic behaviors of the distillate

compositions of two studies. In packed distillation column, the separation efficiency is higher

for the second lightest compound, n- heptane. Also, intersection point of the distillate

compositions of cyclohexane and n-heptane is nearly the same for both columns.

Figure 7.3 Comparison of Distillate Compositions at Internal Reflux Ratio of 0.875.

In the study of Yıldız (2002) reflux ratio profile (Table 7.1) previously evaluated and used by

Mujtaba and Macchietto (1993) was considered. Using this profile simulation results are

obtained for the dynamic behavior of the distillate compositions and are shown Figure 7.4.

As can be seen from the figure, the separation efficiency of the packed distillation column

for the second lightest compound is again higher than that of the plate distillation column

and intersection point of the lightest compound (cyclohexane) and the second lightest

compound (n-heptane) is approximately 5.1 hrs for the plate distillation column and 5.43 hrs

for the packed distillation column. Thus, the trend of the distillate compositions is again

similar for two distillation columns. Thus, the simulation code written in this study for the

batch packed distillation column is verified in trend to a certain extent.

60

Figure 7.4 Comparison of Distillate Compositions with a Specified Reflux Ratio Profile.

7.3 Verification of Simulation Code for Hydrocarbon Mixtures

Hitch and Rousseau (1988) has prepared a simulation code for a continuous packed

distillation column with random packing which was used to separate a multicomponent

system (propane, n-butane, n-hexane) at high pressures. They checked the validation of

code by performing runs to see the expected effects of different variables on the distillate

compositions.

In the hydrocarbon system studied, experiments could not be performed in the experimental

column system due to the high etching effect of the mixture on column joints made of

different plastics. Therefore, a similar approach to Hitch and Rousseau (1988) is used for the

verification of the code for hydrocarbon mixtures.

In batch distillation operation, there are two important periods: one is the startup period and

the other is the production period. In startup period, the column is operated at total reflux

until the composition at the condenser reaches a constant value. In the production period,

the composition in the condenser changes since distillate is withdrawn from the column. The

61

simulation program written in this study can handle both – startup and production periods,

and solves the state and algebraic equations to find the vapor and liquid compositions,

change of temperatures, holdups, liquid and flow rates during operation time for startup and

production periods. In the simulation runs, the column is first operated at total reflux for

about one hour and then, production period is started. The column reaches steady state in

one hour at total reflux.

In order to test the simulation code prepared, nine simulation runs are done similar to the

study done by Hitch and Rousseau (1988). During these runs, internal reflux ratio, height of

packing, condenser holdup and heat load given to the system are changed and the effect of

these variables on distillate compositions are analyzed and checked whether expected

behaviors are achieved or not. In Table 7.2 the values of the parameters that are used in

simulation runs are given. First run is chosen as the base run.

Table 7.2 Parameters Used in Different Simulation Runs.

Run

Number

Height of

Packing, m

Internal

Reflux Ratio

(L/V)

Condenser

Holdup, mol

Heat Load,

J/hr

1 1.5 0.8 20 8.15*107

2 1.5 0.75 20 8.15*107

3 1.5 0.7 20 8.15*107

4 2 0.8 20 8.15*107

5 3 0.8 20 8.15*107

6 1.5 0.8 50 8.15*107

7 1.5 0.8 80 8.15*107

8 1.5 0.8 20 6.5*107

9 1.5 0.8 20 5*107

The column is operated at constant internal reflux ratios of 0.8, 0.75 and 0.7 at the

production period for simulation runs 1, 2 and 3, respectively. Figure 7.5 demonstrates the

effect of internal reflux ratio on distillate compositions. As seen from the Figure 7.5 the

highest purity of cyclohexane is obtained after one hour of total reflux period. Steady state

distillate compositions at total reflux and distillate compositions for first, second and third

simulation runs at 2 hr elapsed time are given in Table 7.3. Since at total reflux all three

62

cases have same reflux ratio the distillate compositions are equal to each other. On the

other hand, the distillate purity in cyclohexane decreases as reflux ratio decreases at

production period. There are 8.18% and 17.45% decrease for compositions of cyclohexane

of simulation run 2 and 3 with respect to distillate compositions of simulation run 1,

respectively for the same time elapsed. Moreover, there are 37.59% and 78.05% increase at

the distillate compositions of n – heptane as reflux ratio decreases. For toluene, liquid

compositions also increase and, changes of compositions of simulation run 2 and 3 with

respect to distillate compositions of simulation run 1 are 60.14% and 150.68%, respectively.

Furthermore, in terms of n-heptane, it is observed that, maximum concentration obtained is

decreasing as reflux ratio decreases. Consequently, the time necessary to complete removal

of the heaviest compound from the reboiler increases, as the reflux ratio becomes closer to

total reflux value. Operation times are found to be 6.54, 5.478 and 4.74 hrs for the reflux

ratios with descending order, respectively. This trend is an expected one in a batch

distillation system as found also by Hitch and Rousseau (1988).

Figure 7.5 Effect of Internal Reflux Ratio on the Distillate Compositions.

63

Table 7.3 Distillate Compositions at Different Reflux Ratios at Two Hours Elapsed Time.

Liquid Compositions, mole fractions
Time [hrs]

Internal Reflux

Ratio Cyclohexane N- heptane Toluene

2.00 0.8 0.8285 0.1567 0.0148

2.00 0.75 0.7607 0.2156 0.0237

2.00 0.7 0.6839 0.2790 0.0371

Table 7.4 Percentage Changes of Distillate Compositions at Different Internal Reflux Ratios.

Compound Internal Reflux Ratio Percentage Change (%)

0.8 -

0.75 -8.18 Cyclohexane

0.7 -17.45

0.8 -

0.75 37.59 N – heptane

0.7 78.05

0.8 -

0.75 60.14 Toluene

0.7 150.68

In the second phase, height of packing is changed from 1.5m to 2m and 3m to observe its

effect on separation, while keeping other parameters constant at base run (internal reflux

ratio = 0.8, condenser holdup = 20 moles and heat load = 8.15*107 J/h). The effect of

changing height of packing on distillate compositions is shown in Figure 7.6. The total

effective interfacial area for mass transfer increases as the height of packing increases which

increases the total mass transferred. It is observed from Figure 7.6 that, the maximum

concentrations of the lightest (in total reflux period) and second lightest components (in

production period) increases as packed height increases as expected. Distillate compositions

are different from the compositions of base simulation run not only at finite reflux ratio but

also at total reflux ratio as given in Tables 7.5 and 7.6. There are 2.73% and 4.84%

increase at the distillate compositions of cyclohexane and, there are 45.20% and 82.27%

decrease for distillate compositions of n- heptane at total reflux as height of packed section

increases. Changes of percentages of distillate compositions are increased for cyclohexane

64

and decreased for n-heptane and toluene since separation efficiency of the column increases

as the height of packed section increases. Moreover, the total operation time is found to be

decreasing slightly 6.54, 6.52 and 5.976 hrs as packing height increases from 1m to 3m.

This also verifies the code.

Figure 7.6 Effect of Height of Packings on the Distillate Compositions.

Table 7.5 Distillate Compositions at Different Height of Packings at Two Hours Elapsed

Time.

Liquid Compositions, mole fractions
Time [hrs]

Height of

Packings [m] Cyclohexane N- heptane Toluene

1.00 1.5 0.9451 0.0513 0.0036

1.00 2 0.9709 0.0280 0.0011

1.00 3 0.9908 0.0091 0.0001

2.00 1.5 0.8285 0.1567 0.0148

2.00 2 0.8621 0.1301 0.0078

2.00 3 0.9031 0.0945 0.0024

65

Table 7.6 Percentage Change of Distillate Compositions at Different Height of Packings.

Percentage Change (%)
Compound Height of Packings

Time = 1 hrs Time = 2 hrs

1.5 - -

2 2.73 4.06 Cyclohexane

3 4.84 9.00

1.5 - -

2 -45.20 -16.98 N – heptane

3 -82.27 -39.7

1.5 - -

2 -69.44 -47.30 Toluene

3 -97.22 -83.78

Effect of condenser holdups on separation is demonstrated in Figure 7.7. Condenser holdup

is increased from 20 moles with 30 moles increments up to 80 moles while keeping other

parameters constant at the base run (height of packing = 1.5m, internal reflux ratio = 0.8

and heat load = 8.15*107 J/h). It is observed that, the effect of condenser holdup is only

seen during the startup period. The time necessary to reach steady state increases as the

molar holdups of the condenser increases as expected. Although, there is a slight difference

in the distillate compositions with time at the startup period due to different condenser

holdups, steady state compositions at the end of the total reflux period are nearly same for

the three runs as given in Tables 7.7 and 7.8. When given information at tables is analyzed,

the greatest change in distillate compositions occurs as 5.56% at toluene at the end of the

startup period with 80 mol condenser holdup. On the other hand, there is a slight effect of

varying molar holdups of condenser on distillate compositions during the production period.

The operation times and obtained product purities of compounds are almost the same for

the three simulation runs since the amount of fresh feed is much greater than the amount of

molar holdup of condenser.

66

Figure 7.7 Effect of Condenser Holdups on the Distillate Compositions.

Table 7.7 Distillate Compositions at Different Condenser Holdups for Two Hours Elapsed

Time.

Liquid Compositions, mole fractions
Time [hrs]

Condenser

Holdup [mol] Cyclohexane N- heptane Toluene

1.00 20 0.9451 0.0513 0.0036

1.00 50 0.9442 0.0521 0.0037

1.00 80 0.9432 0.0530 0.0038

2.00 20 0.8285 0.1567 0.0148

2.00 50 0.8265 0.1584 0.0151

2.00 80 0.8242 0.1603 0.0155

67

Table 7.8 Percentage Change of Distillate Compositions at Different Condenser Holdups.

Percentage Change (%)
Compound

Condenser

Holdups [mol] Time = 1 hr Time = 2 hr

20 - -

50 -0.10 -0.24 Cyclohexane

80 -0.20 -0.52

20 - -

50 1.56 1.09 N – heptane

80 3.31 2.30

20 - -

50 2.78 2.03 Toluene

80 5.56 4.73

In the study of Hitch and Rousseau (1988) the condenser holdup is comparable with the

fresh feed which resulted in change of composition profiles with condenser holdup. In this

study, condenser holdups of simulation run 1, 6 and 7 are too small than the total feed.

Therefore, condenser holdup is increased from 100 moles with 100 moles increments up to

300 moles to observe the effect of condenser holdup during production period while keeping

other parameters constant at the base run (height of packing = 1.5m, internal reflux ratio =

0.8 and heat load = 8.15*107 J/h). It is observed from Figure 7.8 that the steady state

compositions are not reached for the simulation runs with 200 and 300 moles of condenser

holdup during one hour startup period. Hence, the startup period, which is necessary to

reach a steady state value, is increased from one hour to 2.5 hours. It is observed from

Figure 7.9 that all simulation runs reach a steady state value in 2.5 hours. As it is stated

before, the time necessary to reach a steady state value increases as the amount of

condenser holdup increases. Steady state compositions given in Table 7.9 are nearly same

for 100, 200 and 300 moles condenser holdups. There are 0.36% and 0.80% decrease on

steady state compositions of cyclohexane, 5.79% and 12.90% increase on steady state

compositions of n-heptane and 7.90% and 15.79% increase on steady state compositions of

toluene as the amount of condenser holdup increases at startup period as stated in Table

7.10. In product period, the separation efficiency of column decreases as the amount of

condenser holdup increases. The percentage changes of distillate compositions of

cyclohexane and toluene in production period when they are compared with these of startup

period. However, this is not the case for distillate compositions of n-heptane at production

68

period. The maximum purity of n-heptane is obtained when the amount of condenser holdup

is equal to 100 moles.

Figure 7.8 Effect of Condenser Holdup on the Distillate Compositions with One Hour

Startup Period.

Table 7.9 Distillate Compositions at Different Condenser Holdups for 4.5 Hours Elapsed

Time.

Liquid Compositions, mole fractions
Time [hrs]

Condenser

Holdup [mol] Cyclohexane N- heptane Toluene

2.50 100 0.9427 0.0535 0.0038

2.50 200 0.9393 0.0566 0.0041

2.50 300 0.9351 0.0604 0.0044

4.50 100 0.6530 0.3097 0.0373

4.50 200 0.6359 0.3233 0.0408

4.50 300 0.6155 0.3398 0.0447

69

Figure 7.9 Effect of Condenser Holdup on Distillate Compositions with 2.5 Hours Startup

Period.

Table 7.10 Percentage Change of Distillate Compositions at Different Condenser Holdups.

Percentage Change (%)
Compound

Condenser

Holdups [mol] Time = 2.5 hrs Time = 4.5 hrs

100 - -

200 -0.36 -2.62 Cyclohexane

300 -0.80 -5.74

100 - -

200 5.79 4.39 N – heptane

300 12.90 9.72

100 - -

200 7.90 9.38 Toluene

300 15.79 19.84

70

Lastly, the effect of heat load is analyzed and is given in Figure 7.10. Heat load is changed

from 8.15*107 J/h to 6.5*107 and 5*107 J/h by keeping other parameters constant at base

run (height of packing = 1.5m, internal reflux ratio = 0.8 and condenser holdup = 20

moles). The highest purity of cyclohexane is again obtained at startup period. Obtained

steady state distillate compositions of the cyclohexane, n-heptane and toluene for simulation

run 8 and 9 alter 0.26%, 0.50%, 4.29%, 8.19%, 8.33% and 13.89% of distillate

compositions of simulation run 1 at total reflux, respectively, as given in Table 7.11 and

7.12. It is found that the greatest change occurs at the compositions of toluene when the

column operates at total reflux. The change of liquid compositions of cyclohexane for

simulation run 8 and 9 is nearly equal to the composition of cyclohexane at base run during

startup period. This slight change increases as time elapse at production period. The percent

increase of the composition of cyclohexane at simulation run 8 and 9 are 2.17% and 3.80%

at the end of two hour distillation operation, respectively. 0.7975, 0.7964 and 0.7949 are the

maximum purities of n-heptane with the heat loads descending order.

Figure 7.10 Effect of Heat Load on Distillate Compositions.

The maximum purities of the n-heptane do not change very much as the heat load is

changed during the production period. However, the operation time is affected by the heat

71

load given to the reboiler. It is observed that, as the heat load decreases, operation time for

separation increases as expected. Decrease in heat load causes collection of the products in

longer time periods. Operation times are 6.54, 7.968 and 9.9963 hrs for the heat loads in

descending order, respectively.

Table 7.11 Distillate Compositions at Different Heat Loads for Two Hours Elapsed Time.

Liquid Compositions, mole fractions
Time [hrs] Heat Load [J /h]

Cyclohexane N- heptane Toluene

1.00 8.15*107 0.9451 0.0513 0.0036

1.00 6.5*107 0.9476 0.0491 0.0033

1.00 5*107 0.9498 0.0471 0.0031

2.00 8.15*107 0.8285 0.1567 0.0148

2.00 6.5*107 0.8465 0.1410 0.0125

2.00 5*107 0.8600 0.1292 0.0108

Table 7.12 Percentage Change of Distillate Compositions at Different Heat Loads.

Percentage Change (%)
Compound

Heat Loads

[J/h] Time = 1 hr Time = 2 hr

8.15*107 - -

6.5*107 0.26 2.17 Cyclohexane

5*107 0.50 3.80

8.15*107 - -

6.5*107 -4.29 -10.02 N – heptane

5*107 -8.19 -17.55

8.15*107 - -

6.5*107 -8.33 -15.54 Toluene

5*107 -13.89 -27.03

Considering the effect of four parameters on the operations of batch packed distillation

system, the expected effects are observed which verifies qualitatively simulation code

prepared.

72

7.4 Experimental Verification of Simulation Code for Polar Mixtures

The experiments are performed for a binary mixture of ethanol – water as explained in

Chapter 6 with total reflux ratio for 5 hrs and then with an external reflux ratio of 0.5 for 1

hr. The experimental data collected for the change of distillate compositions with time are

given in Table 7.13. Verification of simulation code for polar mixtures is achieved

quantitatively by comparing the results of simulation with the experimental findings.

Table 7.13 Experimentally Measured Liquid Ethanol Compositions in Mole Factions in the

Distillate.

Time

[min]

xEtOH

[mol / mol]

Time

[min]

xEtOH

[mol / mol]

0 0.6127 180 0.7244

5 0.7177 195 0.7224

10 0.7283 210 0.7231

15 0.7322 225 0.7296

25 0.7319 240 0.7361

35 0.7393 255 0.7370

40 0.7375 270 0.7383

45 0.7344 285 0.7414

60 0.7240 300 0.7476

75 0.7256 305 0.7465

90 0.7326 315 0.7339

110 0.7422 320 0.7190

120 0.7478 325 0.7137

135 0.7359 330 0.7095

150 0.7301 335 0.7034

165 0.7269 340 0.6787

Experimental findings are compared with the simulation results using two different

predictions for the vapor pressure of the components in terms of temperature: Antoine and

Wagner equations, as given below respectively,

73

()
)

15.273
1

(10log
3

21
5

AT
AAPV

+−
−=− (7.1)

() []6
4

3
3

5.1
21

11ln XWXWXWXWX
P
P

c

V +++−=






 − (7.2)

where,









−=

cT
T

X 1 (7.3)

The constants of Equations 7.1 and 7.2 are given in Appendix D (Maier et al. (1998), Reid et

al. (1987)).

The comparison of the experimentally obtained dynamic ethanol concentrations of the

distillate and their calculated values with simulation are given in Figure 7.11. The

experimental data is collected at constant reflux for a longer time in order to make sure that,

steady state is attained also experimentally in the time calculated theoretically. However, as

can be seen from Figure 7.11, the steady state is reached in 0.583 hr experimentally and in

0.498 hr (Equation 7.1) and 0.252 hr (Equation 7.2) in simulation runs. As expected, the

highest purity of liquid ethanol composition is obtained at total reflux both theoretically and

experimentally. Reid et al. (1987) stated that, the most accurate results are predicted by

using Wagner Equation. Nevertheless, in the evaluation of vapor pressure, the calculated

values differ approximately by 3% using Equation 7.1(Antoine) or Equation 7.2 (Wagner).

However, when used in the simulation code, the net effect, as can be seen from Figure 7.11,

is approximately 15% using Antoine Equation and 12% in using Wagner Equation.

Although distillate compositions obtained experimentally and by simulation differ in the total

reflux period, it is observed that, the change of composition of ethanol with time in the

production period has similar trends. Thus, experimental verification of the simulation code

using polar mixture has been successfully done considering the behavior of the distillate

composition with time with an error of 12% in experimental composition values considering

Wagner Equation in the simulation for pressure dependence. The reason of this error is

thought to be mainly as a result of the physical properties of the used components in the

simulation which are found at a lower temperature than the experimental column

temperature operated.

74

Figure 7.11 Comparison of Results Obtained By Simulation and Experiments.

7.5 Determination of Optimum Reflux Ratio

One of the aims of this study is to determine optimum reflux ratio profile to maximize

distilled product amount, as stated before. Here, the three component system (cyclohexane,

n-heptane and toluene) is considered. CAP, which is a measure developed by Luyben (1988)

is used to find the optimum reflux ratio profile.

The number of significant figures of optimized internal reflux ratio is rounded to three while

the numbers of significant figures of time to switch to another tank and capacity factor are

rounded to two in order to have meaningful values for real applications. The effect of

significant figures is analyzed by taking into consideration the calculated values to estimate

optimum reflux ratio for the collection of lightest product into product tank 1, P1 which are

given in Table 7.14. It is clear from the Table 7.14 that, significant figures of reflux ratio

have effect on time to switch to another tank, the amount of molar holdup in tank and

capacity factor. Rounding the internal reflux ratio from six to three significant figures results

to 0.0867% decrease on time to switch another tank, 0.063% increase on the amount of

molar holdup in P1 and 5.69 x 10-5% increase on capacity factor whereas rounding the

75

internal reflux ratio from six to one significant figure results to 18.08% increase on time to

switch another tank, 14.18% increase on the amount of molar holdup in P1 and 1.20%

decrease on capacity factor. Thus, rounding of the internal reflux ratio to three significant

digits is accepted. Moreover, the effect of rounding the significant figures of time to switch

another tank is examined for an internal reflux ratio of 0.889. Results of the simulation code

for the first product tank with an internal reflux ratio of 0.889 for the times to switch another

tank with different significant figures are given at Table 7.15. It is found that as the number

of significant figures of time values decreases, the amount of holdup in P1 and capacity

factor decrease 0.0283% and 0.0097% with the same internal reflux ratio, respectively.

These changes are small. Therefore, time value to switch to another tank is also rounded to

two significant figures.

Table 7.14 Effect of Rounded Value of Internal Reflux Ratio on Capacity Factor.

Internal Reflux

Ratio

Time to Switch

Another Tank

[hrs]

Molar Holdup

in Product

Tank 1, P1

[moles]

Capacity

Factor

[mol/hr]

0.889059 3.1134 634.96 175.7233

0.889060 3.1134 634.96 175.7218

0.889100 3.1155 635.36 175.7310

0.889000 3.1107 634.48 175.7234

0.890000 3.1581 642.91 175.7500

0.900000 3.6762 725.06 173.6175

Table 7.15 List of Some Capacity Factor Values with Rounded Times to Switch another

Tank.

Internal

Reflux Ratio

Time to Switch

Another Tank

[hrs]

Molar Holdup in

Product Tank 1,

P1 [moles]

Capacity Factor

[mol/hr]

0.889000 3.1107 634.48 175.7234

0.889000 3.1110 634.57 175.7334

0.889000 3.1100 634.30 175.7064

76

The results obtained by simulation utilizing the written optimization code by Bahar (2007) for

maximizing product amount is given in Table 7.16 and shown in Figure 7.12.

Table 7.16 Results of the Optimization Code to Maximize Distilled Product Amount for

Cyclohexane – n-Heptane – Toluene Mixture.

Parameter Optimization Results

Time interval (hr) 1 - 3.11 3.11 - 5.88 5.88 - 6.60

Optimum Reflux Ratio (L/V) 0.889 0.825 0.794

CAP (mol/hr) 175.71 99.42 235.07

Figure 7.12 The Liquid Distillate Compositions Obtained under Optimum Reflux Ratio

Profile.

During product period, distilled material is collected in storage tanks. Distillate compositions

change with time. The lightest product (mostly cyclohexane) is obtained at a higher

concentration. Then the second lightest product (mostly n- heptane) is distilled. First and

second components are collected into Product 1 (P1) and 2 (P2) tanks, respectively. The “off-

spec” material as waste is collected at Slop cut tank 1 (S1). The heaviest product, which

77

includes toluene mostly, is withdrawn from the reboiler after distillation stops. Thus, at the

final stage, the holdups of the packed section and condenser are also drained and collected

in the product tank 3 (P3), reboiler.

The desired purities for cyclohexane and second product, n – heptane, are obtained as 0.9

and 0.8, respectively. Thus, the operation is continued for an internal reflux ratio of 0.889

for about 2.11 hours to collect the distillate in the first product tank, P1, until distillate

composition drops below 0.9. Then, the product, which is “off-spec”, is collected in slop-cut

tank S1 for a certain period of time 2.77 hours with an internal reflux ratio of 0.825 until the

second lightest component composition reaches 0.8. Then, the operation continues with an

internal reflux ratio of 0.794 until the toluene composition in the reboiler reaches 0.69 for

about 0.72 hours. The third compound, toluene is collected in the reboiler. According to

simulation results, the purity of the heaviest compound, toluene is 0.69 at reboiler after 6.6

hours operation. However, the purity of toluene decreases to 0.66374 due to the addition of

the holdups of the packed section and condenser at the end of the operation. The distillate

amounts collected in the tanks are given in Table 7.17.

Table 7.17 Distillate Compositions and Amounts for the Optimum Reflux Ratio Profile.

Liquid Compositions, mole fractions
Tank

Holdup

[moles] Cyclohexane N-heptane Toluene

Feed 2930.0 0.407 0.394 0.199

P1 634.3 0.8999 0.0926 0.0075

S1 1261.0 0.4912 0.4521 0.0567

P2 369.9 0.0393 0.8043 0.1564

P3 664.8 0.0025 0.3338 0.6637

Total 2930.0

Initially, the amount of the mixture fed to the reboiler for separation is 2930 moles. After

optimum operation by using reflux ratio profile, 56.96% of the mixture (1669 moles) is

separated into the components with desired purities in the first phase of the distillation

operation. The molar holdup of slop cut tank, S1, is 1261 moles and is large enough not to

be wasted. One of the ways to maximize distilled product amount is to recycle holdups of

slop cut tank for the next batch distillation operation. Therefore, the contents of the slop cut

tank are fed to the reboiler as demonstrated in Figure 7.13 for the proceeding batch.

78

Figure 7.13 Schematic View of Recycle Process for the Proceeding Batch Operation.

Table 7.18 Simulation Results of the First Recycle Process.

Liquid Compositions, mole fractions
Tank

Molar Holdup

[mol] Cyclohexane N-heptane Toluene

Feed 1261.0 0.4912 0.4521 0.0567

P1 456.9 0.9001 0.0977 0.0022

S1 0 0 0 0

P2 0 0 0 0

S2 0 0 0 0

P3 804.1 0.2570 0.6548 0.0882

Total 1261.0

The recycling process is also optimized to get a reflux ratio profile to maximize distilled

product amount. It is calculated that the internal reflux ratio of 0.872 must be used for a

time interval of 1 – 2.33 hrs after total reflux operation of 1 hour by the simulation code to

collect cyclohexane at P1. However, for the remaining operation time, the optimum reflux

ratio is found to be closer to the total reflux. Therefore, distillation is stopped in 2.33 hr. The

results of the recycle process are given in Table 7.18. It is seen that, as a result of the first

recycle the gain in the lightest compound is about 457 moles while there is still too much

79

mixture in P3, reboiler. Therefore, one more distillation of the contents of reboiler is done.

Results are tabulated in Table 7.19.

 Table 7.19 Simulation Results of Third Distillation Phase.

Liquid Compositions, mole fractions
Tank

Molar Holdup

[mol] Cyclohexane N-heptane Toluene

Feed 804.1 0.2570 0.6548 0.0882

P1 12.0 0.8993 0.0983 0.0024

S1 0.0 0.0000 0.0000 0.0000

P2 0.0 0.0000 0.0000 0.0000

S2 0.0 0.0000 0.0000 0.0000

P3 792.1 0.2230 0.6839 0.0931

Total 804.1

In this process, also, only one optimum reflux ratio is calculated as in the case of first

recycle process. Internal reflux ratio is found to be 0.2 for the time interval of 1 - 1.39 hrs

after total reflux operation of one hour. The molar holdup of separated amount after the

third distillation is 12 moles. It is obvious that further distillation will not give any

improvement with more operation time spent. Therefore, for further distillation of the

reboiler contents other methods such as addition of some fresh feed to reboiler or other

column configurations and / or other separation processes can be used. Summary of the

results for maximizing the distilled product amount are given in Table 7.20.

As a result of the study, CAP for the optimization with recycling is calculated as 188.86

mol/h. In the calculation of CAP, time necessary for emptying and charging the feed to the

reboiler is included for two times (0.5 x 2 hrs) because in the 3rd operation, reboiler contents

are distilled. The total operation time of separation process for fresh feed and further

distillations are included. It is observed that CAP which is 235.07 mol/hr without recycling

process decreases to 188.86 mol/hr. This is because; the time necessary for separation of

fresh feed and slop cut tanks increases beside the molar holdups of the product tanks.

Moreover, the overall separation efficiency is calculated as 72.96% for the fresh feed with

recycle whereas it is 56.96% without recycle. Thus, there is a 28% increase in separation

efficiency with recycling. Therefore, it can be concluded that recycling of the holdups of the

slop cut tanks increases the separation efficiency of the process, significantly.

80

Table 7.20 Summary of the Operations with Recycling.

Amount of Holdups [mol]

Tank Compound
Mole

Fractions
1st

Operation

2nd

Operation

3rd

Operation
Total

P1 Cyclohexane 0.90 634.3 456.9 12.0 1103.2

P2 N- heptane 0.80 369.9 0.0 0.0 369.9

P3 Toluene 0.66 664.8 0.0 0.0 664.8

S1
“Off – spec”

material
 1261.0 804.1 792.1 792.1

Total 2930.0

81

CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

The objectives of this study were to develop a dynamic model for the simulation of a

multicomponent batch packed distillation column with random packing material for mixtures

at low operating pressures and to determine optimum reflux ratio profile of the

multicomponent batch packed distillation in order to maximize the amount of distillate at a

specified concentration for a given time. Thus,

• a dynamic model of a multicomponent batch packed distillation column with random

packing material is developed,

• the simulation program is written which can estimate the vapor and liquid

compositions, change of temperatures, holdups, liquid and flow rates during the

startup and production periods of the distillation operation,

• the accuracy of simulation code is tested qualitatively for hydrocarbon mixtures

using a similar study from literature and it is found that, the behaviors of distillate

compositions are as expected,

• the accuracy of simulation code is verified experimentally for polar mixtures and it is

found that, the experimental findings are in good agreement with the simulation

results,

• it is found that the effect of the used vapor pressure – temperature relationship has

an important effect on simulation results and Wagner equation gives more accurate

results,

82

• the optimum reflux ratio profile is found to maximize the amount of products. It is

found that, optimal reflux ratio profile is a piecewise constant function of time,

• in recycling of holdups of slop cuts for the proceeding batch operation to increase

the amount of products, it is found that, one recycling, to collect the lightest

compound more effectively, is enough with an increase efficiency of separation

about 28%. Further recycle process do not give any further improvements on

maximizing the amount of distillate with the specified desired purity of compounds,

As future work,

• written simulation program can be modified for packed distillation column with

structured packing materials by changing only the mass transfer and effective

interfacial area correlations,

• written simulation program can be modified to be used for reactive packed

distillation system column by adding only reaction section,

• any control algorithm can be added to the simulation algorithm easily,

• optimization of reflux ratio to maximize the amount of distillate of a specified

concentration for a given time can be improved further to maximize also the profit

and to minimize the operation time,

• to increase the efficiency of the distillation operation other than the recycling of

holdups of slop cut tank, fresh feed addition to the molar holdup of the slop cut

tanks, or other column configurations and /or other separation processes may be

utilized.

83

REFERENCES

Alkaya, D., “Determination of A Suitable Measurement Structure for Better Control of

Distillation Columns”, M. Sc. Thesis, Middle East Technical University, Ankara (1990).

Attarakih, M., Fara, A. D. and Sayed, S., “Dynamic Modeling of a Packed-Bed Glycerol –

Water Distillation Column”, Ind. Eng. Chem. Res., Volume 40, pp. 4857 – 4865 (2001).

Bahar, A., “Control and Simulation Studies for a Multicomponent Reactive Batch Distillation

Column”, PhD. Thesis, Middle East Technical University, Ankara (2007).

Betlem, B.H.L., “Batch Distillation Column Low – Order Models for Quality Program Control”,

Chemical Engineering Science, Volume 55, pp. 3187 – 2194 (2000).

Billet, R., Schultes, M., “Modeling of Pressure Drop in Packed Columns”, Chem. Eng.

Technol., Volume 14, pp. 89 – 95 (1991).

Billet, R. and Schultes, M., “Prediction of Mass Transfer Columns with Dumped and Arranged

Packings”, Chemical Engineering Research and Design, Volume 77, Part A, pp.498 –
504, September (1999).

Bonny, L., “Multicomponent Batch Distillations: Study of Operating Parameters”, Ind. Eng.

Chem. Res., Volume 38, pp. 4759 – 4768 (1999).

Bravo, J. L., Patwardhan, A. A., Edgar, T. F., “Influence of Effective Interfacial Areas in the

Operation and Control of Packed Distillation Columns”, Ind. Eng. Chem. Res., Volume
31, pp. 604 – 608 (1992).

Choe, Y. S., Luyben, W. L., “Rigorous Dynamic Models of Distillation Columns”, Ind. Eng.

Chem. Res., Volume 26, pp. 2158 – 2161 (1987).

Converse, A. O., Gross, G. D., “Optimal Distillate – Rate Policy in Batch Distillation”, Ind.

Eng. Chem. Res., Volume 2, No. 3, pp. 217 - 221 (1963).

84

Coward, I., “The Time – Optimal Problem in Binary Batch Distillation”, Chemical Engineering
Science, Volume 22, pp. 503 – 516 (1967).

Diwekar, U.M., “Batch Distillation: Simulation, Optimal Design and Control”, Taylor & Francis,

Washington (1996).

Djebbar, Y., Narbaitz, R. M., “Neural Network Prediction of Air Stripping KLa”, Journal of

Environmental Engineering, pp. 451 – 460 May (2002).

Dokucu, M.T., “Multivariable Model Predictive Controller Design for an Industrial Distillation

Column”, M. Sc. Thesis, Middle East Technical University, Ankara (2002).

Fieg, G., Wozny, G., Jeromin, L. and Kruse, C., “Comparison of the Dynamic Behaviour of

Packed and Plate Distillation Columns”, Chem. Eng. Technology, Volume 17, pp. 301 –
306 (1994) .

Geankoplis, J. C., “Transport Processes and Separation Process Principles (Includes Unit

Operations)”:Fourth Edition, Prentice Hall (2003).

Gorak, A., Vogelpoh, A., “Experimental Study of Ternary Distillation in a Packed Column”,

Separation Science and Technology, Volume 20(1), pp.33–61 (1985).

Gorak, A., “Comments on “Heat, Mass and Momentum Transfer in Packed Bed Distillation

Columns” A. Karlström, C. Breitholz, M. Molander Chem. Eng. Technol. 15 (1992) No.
1, pp. 1 – 10”, Chem. Eng. Technol., Volume 15, pp. 361 – 362 (1992).

Hanley, B., “The Influence of Flow Maldistribution on The Performance of Columns

Containing Random Packings: A Model Study for Constant Relative Volatility and
Total Reflux”, Separation and Purification Technology, Volume 16, pp. 7 – 23 (1999).

Higler, A., Krishna., R. and Taylor, R., “Nonequilibrium Cell Model for Packed Distillation

Columns – The Influence of Maldistribution”, Ind. Eng. Chem. Res., Volume 38, pp.
3988 – 3999 (1999).

Hitch, D.M. and Rousseau, R. W., “Simulation of Continuous – Contact Separation Processes:

Multicomponent Batch Distillation”, Ind. Eng. Chem. Res., Volume 27, pp. 1466 –
1473 (1988).

Jahromi, M. F., Domenech, S., Guiglion C., “Modelization of a Packed Batch Distillation

Column 1. Establishment of Models”, Chemical Engineering Journal, Volume 25, No
2, pp. 125 – 135 (1982).

85

Jimenez, L., Basualdo, M.S., Gomez, J.C., Toselli, L., Rosa, M., “Nonlinear Dynamic Modeling
of Multicomponent Batch Distillation: A Case Study”, Brazilian Journal of Chemical
Engineering, Volume 19,No. 03, pp. 307 – 317, July – September (2002).

Karacan, S., Cabbar Y., Alpbaz, M., Hapoğlu H., “The Steady-State And Dynamic Analysis of

Packed Distillation Column Based on Partial Differential Approach”, Chemical
Engineering and Processing, Volume 37, pp. 379 – 388 (1998).

Karlström, A., Breitholtz, C. and Molander, M., “Heat, Mass and Momentum Transfer in

Packed Bed Distillation Columns”, Chem. Eng. Technology, Volume 15, pp. 1 – 10
(1992).

Kaye, G.W.C., “Tables of Physical and Chemical Constants, and Some Mathematical

Functions”, 13th ed., McGraw-Hill (Ford) (1969).

Kim, Y. H., “Optimal Design and Operation of a Multi-product Batch Distillation Column Using

Dynamic Model”, Chemical Engineering and Processing, Volume 38, pp. 61 – 72
(1999).

Kister, H.Z., Braun, C.F., “Distillation Operation”, Inc. New York: Mc Graw Hill, Inc. (1989).

Klerk, Arno de, “Voidage Variation in Packed Beds at Small Column to Particle Diameter

Ratio”, AIChE Journal, Volume 49, No.8, pp. 2022 – 2029, August (2003).

Kreul, L. U., Górak, A., Barton, P.I.,“Dynamic Rate – Based Model for Multicomponent Batch

Distillation”, AIChE Journal, Volume 45, No.9, pp. 1953 – 1962, September (1999).

Krishnamurthy, R., and Taylor, R., “Simulation of Packed Distillation and Absorption

Columns”, Ind. Eng. Chem. Process Des. Dev., Volume 24, pp. 513 – 524 (1985).

Li, P., Hoo H. P., Wozny G., “Efficient Simulation of Batch Distillation Processes by Using

Orthogonal Collocation”, Chem. Eng. Technol., Volume 11, pp. 853 – 862 (1998).

Low, K. H. and Sǿrensen, E., “Simultaneous Optimal Configuration, Design and Operation of

Batch Distillation”, AIChE Journal, Volume 51, No. 6, pp.1700 – 1713 June (2005).

Luyben, W. L., “Multicomponent Batch Distillation 1. Ternary Systems with Slop Recycle”,

Ind. Eng. Chem. Res., Volume 27, pp. 642 – 647 (1988).

Luyben, W. L., “Process Modeling, Simulation and Control for Chemical Engineers”, McGraw-

Hill, Singapore, 2nd edition (1989).

86

Macias – Salinas, R. and Fair, J. R., “Axial Mixing in Modern Packings, Gas, and Liquid
Phases: II. Two Phase Flow”, AIChE Journal, Volume 46, No.1, pg. 79- 91 (2000).

Maier, R. W., Brennecke, J. F. and Stadtherr, M. A., “Reliable Computation of Homogeneous

Azeotropes”, AIChE Journal, Volume 44, No. 8, pp. 1745 – 1755, August (1998).

Miladi, M. M. and Mujtaba, I. M., “Optimisation of Design and Operation Policies of Binary

Batch Distillation with Fixed Product Demand”, Computers and Chemical
Engineering, Volume 28, pp. 2377 – 2390, (2004).

Mori, H., Ito, C., Oda, A. and Aragaki, T., “Total Reflux Simulation of Packed Column

Distillation”, Journal of Chemical Engineering of Japan, Volume 32, No. 1, pp. 69 – 75
(1999).

Mujtaba, I.M. and Macchietto,S., “Optimal Operation of Multicomponent Batch Distillation –

Multiperiod Formulation and Solution”, Computers Chem. Engng., Volume 17, No.12,
pp.1191 – 1207 (1993).

Patwardhan, A. A.and Edgar, T. F., “Nonlinear Model Predictive Control of a Packed

Distillation Column”, Ind. Eng. Chem. Res., Volume 32, pp. 2345 – 2356 (1993).

Perry, R. H., Green, D. W., Maloney, J. D., “Perry’s Chemical Engineers’ Handbook”, 6th

edition, New York: McGraw – Hill (1984).

Perry, R.H., Green, D.W., Maloney, J.D., “Perry’s Chemical Engineer’s Handbook”, 7th edition,

McGraw-Hill, NewYork (1997).

Piché, S., Iliuta I., Grandjean B. P. A., Larachi F., “A Unified Approach to the Hydraulics and

Mass Transfer in Randomly Packed Towers”, Chemical Engineering Science, Volume
56, pp. 6003 – 6013 (2001a).

Piché, S., Larachi, F. and Gradnjean B. P. A., “Flooding Capacity in Packed Towers:

Database, Correlations and Analysis”, Ind. Eng. Chem. Res., Volume 40, pp. 476 – 487
(2001b).

Reid, R.C., Prausnitz, J.M., Poling B. E., “The Properties of Gases and Liquids”, 4th Edition,

(1987).

Renon, H. and Prausnitz, J.M., “Local Compositions in Thermodynamic Excess Functions for

Liquid Mixtures”, AIChE Journal, Volume 14, pp. 135 – 144 (1968).

87

Repke, J. U., Villain, O., Günter, W., “A Nonequilibrium Model For Three-Phase Distillation in
a Packed Column: Modeling and Experiments”, Computers and Chemical Engineering,
Volume 28, pp. 775 – 780 (2004).

Salimi, F., Depeyre, D., “Comparison between Dynamic Behavior of a Batch Packed and

Plate Column”, Computers Chem. Eng., Volume 22 (3), pp. 343 – 349 (1998).

Sandler, S. I., “Chemical and Engineering Thermodynamics”, 3rd Edition, John Wiley & Sons,

Inc. (1999).

Skogestad, S. and Morari , M., “Understanding the Dynamic Behavior of Distillation Column”,

Ind. Eng. Chem. Res., Volume 27, pp. 1848 – 1862 (1988).

Stichlmair, J., Bravo J.L., Fair, J.R., “General Model for the Prediction of Pressure Drop and

Capacity of Countercurrent Gas / Liquid Packed Columns”, Gas Separation and
Purification, Volume 3 (1), pp. 19 – 28, (1989).

Taiwo, E. A. and Fasesan, S. O., “Model for Dynamic Liquid Hold-up in a Packed Distillation

Column”, Ind. Eng. Chem. Res., Volume 43, pp. 197 – 202, (2004).

Tester, J. W., Modell, M., “Thermodynamics and Its Applications”, 3rd edition, Upper Saddle

River, N. J. : Prentice Hall PTR (1997).

Tommasi, G. and Rice, P., “Dynamics of Packed Tower Distillation”, Ind. Eng. Chem. Process

Des. Develop., Volume 9, No. 2, pp. 234 – 243 (1970).

Yıldız, U., “Multicomponent Batch Distillation Column Simulation and State Observer Design”,

M. Sc. Thesis, Middle East Technical Univeristy, Ankara (2002).

Wagner, I., Stichlmair, J. and Fair, J.R., “Mass Transfer in Beds of Modern, High – Efficiency

Random Packings”, Ind. Eng. Chem. Res., Volume 36, pp. 227 – 237 (1997).

Wajge, R.M., Wilson, J. M., Pekny, J. F. and Reklaitis,G.V., “Investigation of Numerical

Solution Approaches to Multicomponent Batch Distillation in Packed Beds”, Ind. Eng.
Chem. Res., Volume 36, pp. 1738 – 1746 (1997).

Wang, G. Q., Yuan, X.G., Yu, K. T., “Review of Mass Transfer Correlations for Packed

Columns”, Ind. Eng. Chem. Res., Volume 44, pp. 8715 – 8729 (2005).

Wen, X., Shu, Y., Nandakumar, K., and Chuang, K.T., “Predicting Liquid Flow Profile in

Randomly Packed Beds from Computer Simulation”, AIChE Journal, Volume 47, No. 8,
pp.1770 – 1779, August (2001).

88

APPENDIX A

MASS TRANSFER AND EFFECTIVE INTERFACIAL AREA

CORRELATIONS FOR RANDOM PACKING MATERIALS

Table A.1 Correlations for the Gas And / Or Liquid Side Mass Transfer Coefficients for

Random Packings*.

Author Correlations

Sherwood
and

Holloway

5.0
1

L

n

L

LL

e

L
L Sc

u
a
D

mk
−

















=

µ

ρ
 (A.1)

Van
Krevelen

and
Hoftijzer

3/18.02.0 G
LP

LL

c

G
G Sc

a
u

d
D

k 















=

µ

ρ

[]
3/1

3/2

3/122)/(
015.0 Sc

a
u

g

DLk
Le

LL

LL

L 







=

µ

ρ

ρµ

(A.2)

(A.3)

Shulman
and de
Grouff

() 3/265.00137.0 −
= GGGG Scuk ρ

5.0
1

L

n

L

LL

e

L
L Sc

u
a
D

mk
−

















=

µ

ρ

(A.4)

(A.5)

Shulman et
al.

3/2
36.0

)1(
195.1 −

−













−
= G

G

GGp
GG Sc

ud
uk

εµ

ρ

5.0
45.0

1.25 L
L

LLp

p

L
L Sc

ud

d
D

k 












=

µ

ρ

(A.6)

(A.7)

*
 Nomenclature related to the correlations can be found at referenced material, Wang et.al,
2005.

89

Table A.1 Correlations for the Gas And / Or Liquid Side Mass Transfer Coefficients for

Random Packings* (Cont’d).

Author Correlations

Onda et
al.Bravo
and Fair

3/1
7.0

2 G
Gp

GG

pp

G
G Sc

ua
u

da

D
ck




























=

ρ

5.0
3/23/1

4.0)(

0051.0 −

− 















= L

Le

LL

L

L

pp
L Sc

ua
ug

da
k

ρ

ρ

µ

(A.8)

(A.9)

Zech and
Mersmann

3/1
3/2

1)1()1(

12.0
G

G

pGG

p

G
GG Sc

du

d
D

Kk












−−

+
=

− µε

ρ

εε

ε

6/115.02

3
6




























=

−

peL

L

peL

pe

L
LL

gdugd

d
D

Kk
σ

ρ

π

(A.10)

(A.11)

Mangers
and Ponter

partial wetting:
27.0

2

325.03

)cos1(
)1022.3(
























−

×
=

L

peL

L

LL

e

LL
L

ghu
a

DSc
k

µ

ρ

µ

ρ

θ

α

where [] 108.02.0436.0)/()cos1(49.0 gLLL µσρθα −=

complete wetting:
183.0

2

3244.15.003.2
−























=

L

peL

L

LL

e

LL
L

ghu
a
ScD

k
µ

ρ

µ

ρ

(A.12)

(A.13)

(A.14)

Shi and
Mersmann,
Mersmann
and Deixler

3/1
3/2

G
G

peGG

pe

G
GG Sc

du

d
D

Kk 












=

µ

ρ











 −

=
4.23.04.1

22.13.03.12.1)cos93.01(6
86.0

pLL

LL

pe

L
L

av

gu
d
D

k
ρ

θεσ

π

(A.15)

(A.16)

Billet and
Schultes

3/1
4/35.0

)(
G

Gp

GG

Lh

Gp
GG Sc

ua
u

hd

Da
Ck















−
=

ρ

ε

3/15.06/1






























=

p

L

h

L

L

L
LL a

u
d
Dg

Ck
µ

ρ

(A.17)

(A.18)

Wagner et
al.

)(
45.0

t

GGG

pk

t
G h

uD
C
Z

k
−

Φ
=

−

επ

t

LLL

pk

t
L h

uD
C
Z

k
π

Φ
=

− 45.0

(A.19)

(A.20)

*
 Nomenclature related to the correlations can be found at referenced material, Wang et.al,
2005.

90

Table A.2 Correlations of Effective Interfacial Area for Random Packing Materials*.

Authors Correlations

Shulman

et al.

Ls
L

q
L

T
Lpn

GGe
AL

BL
Luma

log262.0

84.0

57.0
5.0

073.0)1(
)808(

−










−
=

σ

ρ

µ
ρ

(A.21)

Onda et

al. 





















−−=

− 2.005.01.0
75.0

Re45.1exp1 LLL
L

c

p

e WeFr
a
a

σ

σ

(A.22)

Puranik

and

Vogelpohl

182.0133.02041.0

045.1 



































=














=














=

L

c

pL

LL

pL

LL

CRp

e

EVp

e

p

w

a
u

a
u

a
a

a
a

a
a

σ

σ

σ

ρ

µ

ρ














−=

Lp

L

p

stat

a

g
a
a

σ

ρ
2

ln091.0229.0

p

stat

p

w

PAp

e

p

dyn

a
a

a
a

a
a

a

a
−=














=

(A.23)

(A.24)

(A.25)

Kolev () 42.0

196.0249.0

2
583.0 pp

pL

Lp

L

p

e da
g

au

a

g
a
a




























=

σ

υ

(A.26)

Zech and

Mersmann

45.025.0




























=

L

peL

peL

LL
Le

gd

d
u

Ka
σ

ρ

µ

ρ

(A.27)

Bravo and

Fair 4.0

5.0392.0
6

498.0
t

L

Gp

GG

L

LL

p

e

Zua
uu

a
a σρ

σ

µ













=

(A.28)

Rizzuti et

al.
326.07.039 LLe uva = (A.29)

Rizzuti et

al.

() ()

()61054.1165.0

61054.110944.2
313.0625.0

313.028.04

−×>=

−×<×=

− vuva

vuva

LLe

LLe
(A.30)

(A.31)

Linek et

al.
()

2/)cos1(407.0641.0
585.1

477.3

2
cos1

0277.0

θ
ρθ

+−





















 +
=

Lp

LL
pp

p

e

ua
u

da
a
a

 (A.32)

Costa

Novella et

al.

()
()btp

Lc

LL

pL

Lp

LL

p

e

Za

au

ua
u

a
a
a 18.0

38.0213.0
/σσ

σρ

ρ



























= (A.33)

*
 Nomenclature related to the correlations can be found at referenced material, Wang et.al,
2005.

91

APPENDIX B

CONSTANTS OF PRESSURE DROP EQUATION FOR

DUMPED PACKING MATERIALS

Table B.1 Constants for Some Dumped Packing Materials.

Packing (Ceramic) Type / size a [m2m-3] Є [-] C1 C2 C3

Raschig Rings 10 472 0.655 48 8 2.0

 10 327 0.657 10 8 1.8

 15 314 0.676 48 10 2.3

 15 264 0.698 48 8 2.0

 30 137 0.775 48 8 2.0

 35 126 0.773 48 8 2.15

Pall Rings 25 192 0.742 10 3 1.2

 25 219 0.74 1 4 1.0

 35 139 0.773 33 7 1.4

 35 165 0.76 1 6 1.1

Reflux Rings 50 120 0.78 75 15 1.6

Hiflow Rings 20 291 0.75 10 5 1.1

Berl Saddles 15 300 0.561 32 6 0.9

 35 133 0.75 33 14 1.0

Intalox Saddles 20 300 0.672 30 6 1.4

 25 183 0.732 32 7 1.0

 35 135 0.76 30 6 1.2

92

APPENDIX C

SIMULATION CODE

C.1 Main Program Codes

C.1.1 Glob_Decs.m

%==

% Date By Explanation

%==

% 2002 Yıldız Original Code

% 2006 Ceylan Modification to Packed Dist.

% ### %

% ---------------- Programming Definitions ---------------------- %

% --- %

% ==========================

% Simulation Parameters

% ==========================

% Dummy variables

global Dummy1; global Dummy2; global Dummy3; global Dummy4;

% Output Warnnings

global OUT_WARNNING;

% tolerance for the decision to make the component fraction zero

global zero_tolerance;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Output File ID

%

% Liquid Profile File

global FID_lprofile;

% Vapor Profile File

global FID_vprofile;

% Temperature Profile File

global FID_tprofile;

% Holdup Profile File

global FID_holdup;

% Liquid and Vapor Flowrate Profile File

global FID_lvflow;

% Controller Profile File

global FID_control;

% Tank Outputs Profile File

global FID_tank;

% Optimization Profile File

global FID_opt;

% ===

% --- %

% -------------- End Programming Definitions -------------------- %

% ### %

% ### %

% ---------------- Real Plant Simulation Parameters ------------------ %

% --- %

% ===================================

% Physical System Definitions

% ===================================

%%% Column Specs.

% Number of Components - in the order of volatilities :

% 1st is most volatile and last is least volatile

global NC;

% Number of packed section (increment number)

global NT;

93

% Tower cross-sectional area [m2]

global A;

% Specific packing surface area per unit volume of packing volume [m-1]

global ap;

% Packing specific constant (Onda's correlation)

global c;

% Gravitational constant [m.s-2]

global g;

% Packing height [m]

global z_total;

% Bed void fraction (porosity) [m3m-3]

global e_porosity;

% Particle diameter [m]

global dp;

% Constants for predicting pressure drop for column(given at

% J.Stichlmair et al.(1989))[Dimensionless]

global C1;

global C2;

global C3;

% Initial Time

global tstart;

% Measurement Time Step

global DeltaT;

% Displaying Time Step

global disp_DeltaT;

% Time Span of Simulation

global tfinal;

%%% Material Specifications

% Molecular Weight of Components - in the order of volatilies:

% 1st is most volatile and last is least volatile

global Mol_Weight;

% Critical Pressure [Pa]

global Pc;

% Critical Temperature [K]

global Tc;

% Boiling Temperature [K]

global Tb;

% Critical Volume [m3 /kmol]

global Vc;

% Ideal Gas Constant [Pa m3 /(mol.K)]

global R_constant;

%%% Feed Specs.

% Total amount of feed charged to the still pot (moles)

global M_Feed;

% Feed compositions (moles/moles)

global X_Feed;

% ===

% --- %

% ------------------ End Real Plant Simulation Parameters ------------- %

% ### %

C.1.2 Glob_Initial.m

%==

% Date By Explanation

%==

% 2002 Yıldız Original Code

% 2006 Ceylan Modification to Packed Dist.

% ### %

% --------------- Programming Initialization ----------------------- %

% --- %

% =====================================

% Simulation Parameters Settings

% =====================================

% Dummy variables

Dummy1=0.0; Dummy2=0.0; Dummy3=0.0; Dummy4=0.0;

% Output Warnnings

OUT_WARNNING = 1;

% tolerance for the decision to make the component fraction zero

zero_tolerance = 9e-180;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Output File ID Creation

fclose all; Current_Directory = cd;

% Liquid Profile file

delete([Current_Directory '\' 'lprofile.txt']);

FID_lprofile = fopen('lprofile.txt','at');

% Vapor Profile file

delete([Current_Directory '\' 'vprofile.txt']);

FID_vprofile = fopen('vprofile.txt','at');

% Temperature Profile file

delete([Current_Directory '\' 'tprofile.txt']);

FID_tprofile = fopen('tprofile.txt','at');

% Holdup Profile file

delete([Current_Directory '\' 'holdup.txt']);

FID_holdup = fopen('holdup.txt','at');

% Liquid and Vapor Flowrate Profile file

delete([Current_Directory '\' 'lvflow.txt']);

FID_lvflow = fopen('lvflow.txt','at');

% Controller Profile file

delete([Current_Directory '\' 'control.txt']);

FID_control = fopen('control.txt','at');

94

% Tank Outputs Profile file

delete([Current_Directory '\' 'tank.txt']);

FID_tank = fopen('tank.txt','at');

% Optimization Profile file

% delete([Current_Directory '\' 'opt.txt']);

FID_opt = fopen('opt.txt','at');

% ===

% --- %

% ------------------ End Programming Initialization -------------------- %

% ### %

% ### %

% ------------- Real Plant Simulation Initialization -------------- %

% --- %

% ===============================

% Physical System Settings

% ===============================

%%% Column Specs.

% Number of Components - in the order of volatilities :

% 1st is most volatile and last is least volatile

NC = 3;

% Packing height [m]

z_total = 1.5;

% Number of packed section

NT = 40;

% Tower crosssectional area [m2]

D = 0.35;

A = D^2*pi/4;

% Specific packing surface area per unit volume of packing volume [m-1]

ap = 472;

% Packing specific constant (Onda's correlation)

c = 2;

% Gravitational constant [m.s-2]

g = 9.81;

% Bed void fraction (porosity) [m3m-3]

e_porosity = 0.655;

% Particle diameter [m]

dp = 0.010;

% Constants for predicting pressure drop for column(given at

% J.Stichlmair et al.(1989))[Dimensionless]

C1 = 48;

C2 = 8;

C3 = 2;

% Initial Time

tstart = 0.0;

% Measurement Time Step

DeltaT = 0.0003;

% Displaying Time Step

disp_DeltaT = 0.006;

% Time Span of Simulation

tfinal = 8;

%%% Material Specifications

% Molecular Weight of Components [g/moles] -in the order of volatilies:

% 1st is most volatile and last is least volatile

Mol_Weight = [84.161 100.204 92.141];

% Critical Pressure [Pa]

Pc = [4.1000e006 2.7200e006 4.1000e006];

% Critical Temperature [K]

Tc = [553.58 540.2 591.8];

% Boiling Temperature [K]

Tb = [353.85 371.55 383.75];

% Critical Volume [m3/kmol]

Vc = [0.308 0.428 0.314];

% Ideal Gas Constant [Pa m3 /(mol.K)]

R_constant = 8.314;

%% Feed Specs.

% Total amount of feed charged to the still pot (moles)

M_Feed = 2930.0; %1083.034472;%2930.0;

% Feed compositions (moles/moles)[cyclohexane; n-heptane;toluene]

X_Feed = [0.407; 0.394; 0.199];

% ===

% --- %

% -----------------End Real Plant Simulation Initialization ------------- %

% ### %

C.1.3 Mass_Hydrocarbons.m

%==

% Date By Explanation

%==

% 2006 Ceylan Original Code

function [ae, K_G, Mu_g_mixture, Mu_l_mixture]= Mass_Hydrocarbons(i,...

 X_frac, Y_frac, Temp, Ro_l_Density, Mw_MolWeight, L_flow, V_flow, ...

 Press, Ro_g_Density)

Glob_Decs;

% Since the calculations and predictions of some properties is necessary

95

% only for packed section, k value is taken from 1 to NT.

% Number of Packed Sections

k = zeros(NT,1);

k =i-1;

%-------------------------------Calculation of Gas(vapor)Viscosity for Pure

% Hydrocarbons at Low Pressures from PERRY's Handbook at Page 2- 363.

% Constant in Equation 2 - 97 in Perry's Handbook (1997)

N = zeros(1);

% Tr = Reduced Temperature [K]

Tr = zeros(1,NC);

% Vapor Viscosity of Compounds [cp] [1 cp = 0.001 kg / (m.s)]

Mu_g_compound = zeros(NT,NC);

for i = 1:NC,

 Tr(i) = Temp(k+1) / Tc(i);

 if Tr <= 1.5

 N = 0.0003400 * Tr(i)^0.94;

 else

 N = 0.0001778*(4.58*Tr(i) - 1.67)^0.625;

 end

 Mu_g_compound(k,i) = (4.6000e-004* N * Mol_Weight(i)^0.5*Pc(i)^(2/3))/...

 (Tc(i)^(1/6));

end

%---------------------Prediction of Vapor Viscosity of Gaseous Hydrocarbons

% and Mixtures of Hydrocarbons at Low Pressures.

% Vapor Viscosity of Gaseous Mixture [cp]

Mu_g_mixture = zeros(NT,1);

sum = 0;

Mu_g_mixture(k)= 0;

for i=1: NC,

 for j=1:NC,

 if j~=i

 QW1= (Mu_g_compound(k,i)/Mu_g_compound(k,j))^0.5;

 QW2=(Mol_Weight(j)/Mol_Weight(i))^0.25;

 QW3 = (sqrt(8)*(1+(Mol_Weight(i)/Mol_Weight(j)))^0.5);

 QW = (1 + (QW1*QW2)^2) / QW3;

 else

 QW = 0;

 end

 sum = QW*(X_frac(k+1,j)/X_frac(k+1,i)) + sum;

 end

 Mu_g_mixture(k)= Mu_g_compound(k,i)/(1 + sum)+ Mu_g_mixture(k);

end

Mu_g_mixture = Mu_g_mixture * 0.001; % Conversion of cp to [kg/(m.s)]

% -----------------Calculation of Liquid Viscosity of a Component

% Equation(2-112)(Perry's handbook) for Pure Hydrocarbon and Pure

% Nonhydrocarbon Liquids

% Liquid Viscosity of Compound [kg/(m.s)]

Mu_l_compound = zeros(NT,NC);

% Adjusted Carbon Number

Nstar = zeros(1,NC);

% Constant Determined by Equations(2-114 or 2-115) in Perry's Handbook

To = zeros(1,NC);

% Constant Determined by Equations(2-117 or 2-118) in Perry's Handbook

Ba = zeros(1,NC);

% Constant Determined by Equations(2-116) in Perry's Handbook

B = zeros(1,NC);

% Group Contribution Number Determined from Table 2- 398 in Perry's Handbook

del_B = zeros(1,NC);

Nstar = [7.48 7 7.60];

del_B = [-85.5433 0 -34.6356];

for i=1:NC,

 if Nstar(i) <= 20

 To(i) = 28.86 + 37.439 * Nstar(i) - 1.3547 * Nstar(i)^2 +...

 0.02076 * Nstar(i)^3;

 Ba(i) = 24.79 + 66.885 * Nstar(i) - 1.3173 * Nstar(i)^2 - ...

 0.00377 * Nstar(i)^3;

 else

 To(i) = 8.164 * Nstar(i) + 238.59;

 Ba(i) = 530.59 + 13.740 * Nstar(i);

 end

 B(i) = Ba(i) + del_B(i);

 Mu_l_compound(k,i) = (10^(B(i)*((1/Temp(k+1))-(1/To(i))))) * 0.001;

end

% Kendall and Monroe's Equation is used for determining

% the liquid viscosity of defined hydrocarbon mixtures. (Equation 2-119) in

% PERRY's Handbook.

% Liquid Viscosity of Mixture [kg/(m.s)]

Mu_l_mixture = zeros(NT,1);

for i =1:NC,

 Mu_l_mixture(k)= Mu_l_compound(k,i)^(1/3)*X_frac(k+1,i)+ Mu_l_mixture(k);

end;

Mu_l_mixture(k) = (Mu_l_mixture(k))^3;

%----------------------Calculation of Liquid Surface Tension of a Component

% by Using Equation 2 - 166 and 2- 167 in Perry's Handbook

96

% Liquid Surface Tension of a Component

Sigma_l_stensionco = zeros(NT,NC);

% Constant in Equation (2- 167) in Perry's Handbook

QS = zeros(NT,NC);

% Reduced Boiling Temperature [K]

Tbr = zeros(1,NC);

for i=1:NC,

 Tbr(i) = Tb(i) / Tc(i);

 QS(k,i)= 0.1207 * (1+ (Tbr(i)* (log(Pc(i))-11.5261))/(1-Tbr(i))) - 0.281;

 Sigma_l_stensionco(k,i)=(4.6010e-004)*(Pc(i)^(2/3))*(Tc(i)^(1/3))*...

 QS(k,i)*(1-Tr(i))^(11/9);

end;

%---------------------Calculation of Liquid Surface Tension of a Mixture

% Liquid Surface Tension of the Mixture [mN/m]

Sigma_l_surfacetension = zeros(NT,1);

% as initial point

P1 = 0;

for i=1:NC,

 P1 = X_frac(k+1,i) / ((1e-3*Ro_l_Density(k+1))/Mw_MolWeight(k+1)) + P1;

end

P = 1 / P1;

F0 = 0;

for i =1:NC,

 for j=1:NC,

 F1 = P^2*(X_frac(k+1,i)/(1e-3*Ro_l_Density(k+1)/Mw_MolWeight(k+1)))...

 *(X_frac(k+1,j)/(1e-3*Ro_l_Density(k+1)/Mw_MolWeight(k+1)))...

 (Sigma_l_stensionco(k,i)(Sigma_l_stensionco(k,j)))^0.5;

 F0 = F1 + F0;

 end

end

Sigma_l_surfacetension(k) = F0; % [mN /m]

%--

% Effective Interfacial Area

%--

%--Calculation of Reynolds Number

% Liqud Phase Reynolds Number [Dimensionless]

Reynolds_l = zeros(NT,1);

% Gas Phase Reynolds Number [Dimensionless]

Reynolds_g = zeros(NT,1);

Reynolds_l(k) = (L_flow(2)*Mw_MolWeight(k+1))/(A*ap*Mu_l_mixture(k)*3600);

Reynolds_g(k) = (V_flow(2)*Mw_MolWeight(k+1)) /(A*ap*Mu_g_mixture(k)*3600);

%--Calculation of Froude Number

% Liquid Phase Froude Number [Dimensionless]

Froude_l = zeros(NT,1);

Froude_l(k) = (L_flow(2)^2 * ap*Mw_MolWeight(k+1)^2)/(Ro_l_Density(k+1)^2*A^2* g*3600*3600);

%---Calculation of Weber Number

% Liquid Phase Weber Number [Dimensionless]

Weber_l = zeros(NT,1);

Weber_l(k) = ((L_flow(2)^2*Mw_MolWeight(k+1)^2)/(ap * Ro_l_Density(k+1)*...

 Sigma_l_surfacetension(k)*A^2*g))*(1/((3600^2)*0.0001019716213));

 % Critical Surface Tension of Packing Material [mN/m]

Sigma_l_criticalsurfacetension = zeros(1);

Sigma_l_criticalsurfacetension = 73;

% Effective Interfacial Area [1/m]

ae = zeros(k,1);

%---------------------------------Calculation of effective interfacial area

ae(k) = ap * (1- exp(-1*1.45*...

 ((Sigma_l_criticalsurfacetension/Sigma_l_surfacetension(k))^0.75)* ...

 (Reynolds_l(k)^0.1)*(Froude_l(k)^(-1*0.05))*(Weber_l(k)^0.2)));

%--

% Mass Transfer Coefficient

%--

%----------------------------------Calculation of Gas Diffusion Coefficient

% Molar Volume [m3/kmol]

V = zeros (1,NC);

% Gas Diffusion Coefficient of the Mixture [m2 /sec]

D_g_mixture = zeros(NT,1);

sum = 0;

for i = 1:NC,

 for j=1:NC,

 if i == j

 else

 V(i) = 0.285*(Vc(i)*1000)^1.048;

 V(j) = 0.285*(Vc(j)*1000)^1.048;

 D = (0.1014*((Temp(k+1)*(9/5))^1.5))*(((1/Mol_Weight(i))+...

 (1/Mol_Weight(j)))^0.5)/(Press(k+1)*(0.0001450377377)*...

 (((V(i)^(1/3))+(V(j)^(1/3)))^2));

 % Unit Conversion from ft2/hr to m2/sec

 D = D*(0.09290304)/3600;

 sum = Y_frac(k+1,j)* D^-1 +sum;

 end

 end;

end;

D_g_mixture(k) = ((1 - Y_frac(k+1,i))/(sum));

97

%------------------------------------Calculation of Gas Phase Schmidt Number

% Gas Phase Schmidt Number [Dimensionless]

Schmidt_g(k) = Mu_g_mixture(k) / (Ro_g_Density(k+1) * D_g_mixture(k));

%------------------------------Calculation of Packing Efficiency Number(Er)

% Packing Efficiency Number [Dimensionless]

Er = zeros(1);

Er = 1 / (ap * dp);

%--

% Gas Phase Mass Transfer Coefficient [mol/h.m2]

K_G = zeros(NT,1);

% Constant of Onda Mass Transfer Correlation

c = zeros(1);

if dp < (15* 10^-3)

 c = 2;

else

 c = 5.23;

end;

%-----------------------------------Calculation of Mass Tranfer Coefficient

K_G(k) = c*3600* D_g_mixture(k)*ap*(Reynolds_g(k))^0.7 * ...

 Schmidt_g(k) ^(1/3) * (Er)^2*[Press(k+1)/(R_constant*Temp(k+1))];

%----------------------------End of Simulation ----------------------------

%--

%==

C.1.4 Mass_Polar.m

%==

% Date By Explanation

%==

% 2006 Ceylan Original Code

function [ae, K_G, Mu_g_mixture, Mu_l_mixture]= Mass_Polar(L_flow, ...

 V_flow, X_frac, Mw_MolWeight, Ro_l_Density, Ro_g_Density, Temp,...

 Press, Y_frac)

Glob_Decs;

% Since the calculations and predictions of some properties is necessary

% only for packed section, k value is taken from 1 to NT.

% Number of Packed Sections

k = zeros(NT,1);

% Vapor Viscosity of Compounds [kg / (m.s)] [1 cp = 0.001 kg / (m.s)]

Mu_g_compound = zeros(NT,NC);

% Vapor Viscosity of Gaseous Mixture [cp]

Mu_g_mixture = zeros(NT,1);

% Liquid Viscosity of Compound [kg/(m.s)]

Mu_l_compound = zeros(NT,NC);

% Liquid Viscosity of Mixture [kg/(m.s)]

Mu_l_mixture = zeros(NT,1);

% Liquid Surface Tension of a Component [mN/m]

Sigma_l_stensionco = zeros(NT,NC);

% Liquid Surface Tension of the Mixture [mN/m]

Sigma_mixture = zeros(NT,1);

% Critical Surface Tension of Packing Material [mN/m]

Sigma_l_criticalsurfacetension = zeros(1);

% Liqud Phase Reynolds Number [Dimensionless]

Reynolds_l = zeros(NT,1);

% Gas Phase Reynolds Number [Dimensionless]

Reynolds_g = zeros(NT,1);

% Liquid Phase Froude Number [Dimensionless]

Froude_l = zeros(NT,1);

% Liquid Phase Weber Number [Dimensionless]

Weber_l = zeros(NT,1);

% Effective Interfacial Area [1/m]

ae = zeros(NT,1);

% Gas Diffusion Coefficient of the Mixture [m2 /sec]

D_g_mixture = zeros(NT,1);

% Gas Phase Schmidt Number [Dimensionless]

Schmidt_g = zeros(NT,1);

% Packing Efficiency Number [Dimensionless]

Er = zeros(1);

% Gas Phase Mass Transfer Coefficient [mol/h.m2]

K_G = zeros(NT,1);

% Constant of Onda Mass Transfer Correlation

c = zeros(1);

if dp < (15* 10^-3)

 c = 2;

else

 c = 5.23;

end;

sum = 0;

% k =i-1;

for k = 1:NT,

 Mu_g_compound(k,1) = 8.6088*10^-3 ;% T = 20 C

 Mu_g_compound(k,2) = 125 * 10^-4 ; %T = 20C

 for i=1:NC,

98

 for j=1:NC,

 if j~=i

 QW1= (Mu_g_compound(k,i)/Mu_g_compound(k,j))^0.5;

 QW2=(Mol_Weight(j)/Mol_Weight(i))^0.25;

 QW3 = (sqrt(8)*(1+(Mol_Weight(i)/Mol_Weight(j)))^0.5);

 QW = (1 + (QW1*QW2)^2) / QW3;

 else

 QW = 0;

 end

 sum = QW*(X_frac(k+1,j)/X_frac(k+1,i)) + sum;

 end

 Mu_g_mixture(k)= Mu_g_compound(k,i)/(1 + sum)+ Mu_g_mixture(k);

 end

 Mu_g_mixture = Mu_g_mixture * 0.001; % Conversion of cp to [kg/(m.s)]

 Mu_l_compound(k,1) = 1.7840*10^-3;% T = 20 C

 Mu_l_compound(k,2) = 1*10^-3 ;% T = 20 C

 sum = 0;

 for i=1:NC,

 sum = X_frac(k+1,i)*log(Mu_l_compound(k,i))+ sum;

 end

 Mu_l_mixture(k,1) = exp(sum);

 Sigma_l_criticalsurfacetension = 73;

 Sigma_l_stensionco(k,1)= 22.39 ;% T = 20 C

 Sigma_l_stensionco(k,2)= 72.75 ;% T = 20 C

 % Calculation of Densities for Ethanol and Water [g/ml]

 Density_Ethanol = zeros(1);

 Density_Water = zeros(1);

 Density_Ethanol = 0.0015;

 Density_Water = 0.001;

 % Calcuation of surface tension of mixture[m3/kmol]

 Molar_Volume = zeros(1,NC);

 Molar_Volume(1,1) = 1 / (Density_Ethanol*10^3/Mol_Weight(1,1));

 Molar_Volume(1,2) = 1 / (Density_Water*10^3 / Mol_Weight(1,2));

 Constant_mixture = zeros(NT,NC);

 Constant_mixture(k,2)=log10([(X_frac(k+1,2)*...

 Molar_Volume(2))/(X_frac(k+1,1)*Molar_Volume(1))]*[X_frac(k+1,2)*...

 Molar_Volume(2)+X_frac(k+1,1)*Molar_Volume(1)]^-1)+...

 +(44.1*2/Temp(k+1))*[Sigma_l_stensionco(k,1)*Molar_Volume(1)^(2/3)...

 /2 - Sigma_l_stensionco(k,2)*Molar_Volume(2)^(2/3)];

 Constant_mixture(k,2) = Constant_mixture(k,2)/(1+Constant_mixture(k,2));

 Constant_mixture(k,1) = 1 - Constant_mixture(k,2);

 Sigma_mixture(k,1)= Constant_mixture(k,1)*...

 Sigma_l_stensionco(k,1)^(1/4) +Constant_mixture(k,2)*...

 Sigma_l_stensionco(k,2)^(1/4);

 D_g_mixture(k,1) = 1.3927*10^-5;

 %----------------------------Calculation of Dimenionless Numbers

 Reynolds_l(k)=(L_flow(2)*Mw_MolWeight(k+1))/(A*ap*Mu_l_mixture(k)*3600);

 Reynolds_g(k)=(V_flow(2)*Mw_MolWeight(k+1)) /(A*ap*Mu_g_mixture(k)*3600);

 Froude_l(k) = (L_flow(2)^2 * ap*Mw_MolWeight(k+1)^2)/...

 (Ro_l_Density(k+1)^2*A^2* g*3600*3600);

 Weber_l(k) = ((L_flow(2)^2*Mw_MolWeight(k+1)^2)/(ap * Ro_l_Density(k+1)...

 * Sigma_mixture(k)*A^2*g))*(1/((3600^2)*0.0001019716213));

 Schmidt_g(k) = Mu_g_mixture(k) / (Ro_g_Density(k+1) * D_g_mixture(k));

 Er = 1 / (ap * dp);

 %--

 % Effective Interfacial Area & Mass Transfer Coefficient

 %--

 ae(k) = ap * (1- exp(-1*1.45*...

 ((Sigma_l_criticalsurfacetension/Sigma_mixture(k))^0.75)*...

 (Reynolds_l(k)^0.1)*(Froude_l(k)^(-1*0.05))*(Weber_l(k)^0.2)));

 K_G(k) = c*3600* D_g_mixture(k)*ap*(Reynolds_g(k))^0.7 *...

 Schmidt_g(k) ^(1/3) * (Er)^2*[Press(k+1)/(R_constant*Temp(k+1))];

end;

%##

C.1.5 PressureProfile.m

%==

% Date By Explanation

%==

% 2002 Yıldız Original Code

% 2006 Ceylan Modification to Packed Dist.

%==

% PressureProfile

% Return

% pressure profile through the column (Pa)

% for a given

% Still pot and reflux drum pressures (Pa)

%==

function [fP_Packed]=PressureProfile(fP_Pot,fP_Drum)

Glob_decs;

if (size(fP_Pot)~=1 | size(fP_Drum)~=1)

99

 error('fP_Pot and/or fP_Drum are not scalar(s). [PressureProfile]');

end;

fP_Packed = zeros(NT,1);

fdelP_Packed = (fP_Pot-fP_Drum)/NT;

for i=1:NT; fP_Packed(i) = fP_Pot - i*fdelP_Packed; end;

% end PressureProfile

C.1.6 Plant_File_Packed.m

%==

% Date By Explanation

%==

% 2002 Yıldız Original Code

% 2006 Ceylan Modification to Packed Dist.

function Plant_File_Packed

% function [CAP] = plant_file_packed(R_first_prod)

% ===

% Clear Command Window

clc;

% Include All Global Variables

Glob_Decs;

% Initialize thermo_LIBRARY.dll

thermo_Init(0);

% Initialize All Global Variables

display('Global variables are initializing ...');

Glob_Initial;

display('Global variables have been initialized.');

fprintf('\nEnter type of compounds that you want to study in the simulation algorithm.\n\n');

fprintf('Please enter 1 for hydrocarbons , enter 2 for polar mixtures... \n\n');

type_of_compound = input(':: ');

% ==================================

% Step Time and Time Span

% ==================================

% Time Span of Simulation

num_step = round((tfinal - tstart)/DeltaT);

% Current Simulation Time

t = tstart;

% Current Displaying Time Step

disp_t = tstart;

%===================================

% Differential Packed Section Height

%===================================

% Initial Height of Packed Section

zstart = 0.0;

% A Differential Packed Section Height

DeltaZ = zeros(1);

DeltaZ = z_total / NT;

% Current Simulation Height

z = zstart;

% ==

% Initialize Real Plant

% ==

%%Initial Operation Parameters.

% Boiler Load [J/hour]

Q_Boiler = 8.15e7;

% One Over Reflux Ratio (D/L0) [dimensionless]

R_Ratio_inv = 0.0;

% Distillate Flow Rate [mol/hour]

D_DistillRate = 0.0;

% Amount of Product Distilled [moles]

M_Distilled = 0.0;

% Initial Still Pot, Packed Section, Reflux Drum Pressure [Pa]

Press(1,1) = 101000.0;

Press(NT+2,1) = 101600.0;

Press(2:NT+1,1) = PressureProfile(Press(1), Press(NT+2));

fdelP_Packed = 1;

fdelP_Packed1 =0;

%%%Mass Transfer Coefficients

%Effective Interfacial Area [m-1]

ae = zeros(NT,1);

%Mass Transfer Coefficient [mol/(h.m)]

K_G = zeros(NT,1);

% Rate Equation of Mass Transfer [mol/h] (Rate = KG * A * ae)

Rate = zeros(NT,1);

% Equivalent Diameter of Packing [m]

dp_equi = zeros (1);

dp_equi = 6 * (1-e_porosity)/ ap;

% R_ratio_opt = R_first_prod;

%%%

% In that part, pressure drop is calculated via trial and error procedure.

% To predict, first trial for pressure drop, initial assumptions are made

% by taking Yıldız (2002) as reference.

%%%

100

while (fdelP_Packed)- fdelP_Packed1 > 0.001,

 fdelP_Packed1 = fdelP_Packed;

 %%Liquid Compositions

 %Abbreviation for Still Pot, Packed Section, Reflux Drum =(Sp-Ps-Rd)

 % Instantaneous (Sp-Ps-Rd) Liquid Compositions [moles/moles]

 X_frac = zeros(NT+2,NC);

 % Initially (Sp-Ps-Rd) Liquid Compositions (equal to that of the feed)

 for i=1:NT+2;

 X_frac(i,:) = X_Feed.';

 end;

 %%%Temperature

 % Instantaneous (Sp-Ps-Rd) Temperature [K]

 Temp = zeros(NT+2,1);

 %%%Vapor Compositions

 % Instantaneous (Sp-Ps-Rd) Vapor Compositions [moles/moles]

 Y_frac = zeros(NT+2,NC);

 % Equilibrium Compositions of Vapor

 Y_frac_eqm = zeros(NT+2,NC);

 % ---Bubble Point Calculation

 Dummy1 = 360.0;

 for i=1:NT+2;

 if (type_of_compound == 1)

 [Temp(i), Dummy3] = ...

 thermo_Equilibrium_Hydrocarbons(Dummy1, Press(i), X_frac(i,:));

 else

 [Temp(i), Dummy3] = ...

 thermo_Equilibrium_Polar(Dummy1, Press(i), X_frac(i,:));

 end;

 Y_frac_eqm(i,:) = Dummy3;

 Y_frac(i,:) = Y_frac_eqm(i,:);

 end;

 %%Physical Properties

 % Instantaneous (Sp-Ps-Rd) Liquid Phase Enthalpy [J/moles]

 H_l_Enthalpy = zeros(NT+2,1);

 % Instantaneous (Sp-Ps-Rd) Vapor Phase Enthalpy [J/moles]

 H_v_Enthalpy = zeros(NT+2,1);

 % Instantaneous (Sp-Ps-Rd) Liquid Phase Average Density [kg/m3]

 Ro_l_Density = zeros(NT+2,1);

 % Instantaneous (Sp-Ps-Rd) Vapor Phase Average Density [kg/m3]

 Ro_g_Density = zeros(NT+2,1);

 % Instantaneous (Sp-Ps-Rd) Average Molecular Weight [kg/mol]

 Mw_MolWeight = zeros(NT+2,1);

 % ----------------------------------Calculate Specific Phase Enthalpies

 for i=1:NT+2;

 [H_l_Enthalpy(i), H_v_Enthalpy(i)] = ...

 thermo_Enthalpy(Temp(i), Press(i), X_frac(i,:), Y_frac(i,:));

 end;

 % ----------Calculate Liquid Phase Average Density and Average Molecular Weight

 for i=1:NT+2;

 [Mw_MolWeight(i), Ro_l_Density(i)] = ...

 thermo_L_Density(Temp(i), Press(i), X_frac(i,:));

 end;

 for i=1:NT+2;

 [Mw_MolWeight(i), Ro_g_Density(i)] = ...

 thermo_G_Density(Temp(i), Press(i), X_frac(i,:));

 end;

 %%%Liquid and Vapor Flowrates

 % Instantaneous Liquid Flow Rates Leaving Packed Section and Reflux Drum [moles/hour]

 % L_flow(1) : dummy

 L_flow = zeros(NT+2,1);

 % Instantaneous Vapor Flow Rates Leaving Still Pot and Packed Section [moles/hour]

 % V_flow(NT+2) : dummy

 V_flow = zeros(NT+2,1);

 % --------------------------------Calculate Vapor and Liquid Flow Rates

 % Calculate Still Pot Vapor Flow Rate

 V_flow(1) = Q_Boiler/(H_v_Enthalpy(1) - H_l_Enthalpy(2));

 % Initialize Packed Section Vapor Flow Rates

 % V_flow(NT+2) : dummy

 for i=2:NT+1;

 V_flow(i) = V_flow(1);

 end;

 % Initialize Packed Section and Reflux Drum Liquid Flow Rates

 % L_flow(1) : dummy

 for i=2:NT+2;

 L_flow(i) = V_flow(1);

 end;

 %%%Liquid Holdups

 % Instantaneous (Sp-Ps-Rd) Total Holdup Amount [moles]

 M_Holdup = zeros(NT+2,1);

 % ---------------------------------------Calculate Initial Molar Holdups

 % Initial Reflux Drum Liquid Holdup [moles]

 M_Holdup(NT+2) = 20.0; %

 % Liquid Holdup throughout Packed Section[-]

 ho = zeros(1);

 %Froude Number [-]

 Fr = zeros(1);

 % Calculate Packed Section Molar Holdup [mol]

 for i=2:NT+1;

 Fr = (((L_flow(2)*Mw_MolWeight(i)) / (Ro_l_Density(i)*A*3600))^2)*...

 (ap/(g*e_porosity^(4.65)));

101

 ho = 0.555 * ((Fr)^(1/3));

 M_Holdup(i)= ((A * ho * Ro_l_Density(i)*DeltaZ))/(Mw_MolWeight(i));

 end;

 % Calculate Still Pot Molar Holdup [mol]

 M_Holdup(1) = M_Feed - sum(M_Holdup(2:NT+2));

 %Calculation of Liquid and Gas Velocities [m/sec]

 % Liquid Velocity [m/sec]

 UL = zeros(NT+2,1);

 % Gas Velocity [m/sec]

 UG = zeros(NT+2,1);

 % Design Liquid Velocity [m/sec]

 UL_design = zeros(NT+2,1);

 % Design Gas Velocity [m/sec]

 UG_design = zeros(NT+2,1);

 % Liquid Kinematic Viscosity [m2/sec]

 v_l = zeros(NT+2,1);

 % Gas Kinematic Viscosity [m2/sec]

 v_g = zeros(NT+2,1);

 for i=2:NT+1,

 UL_design(i) = (L_flow(2)*Mw_MolWeight(i)) / (Ro_l_Density(i)*A*3600);

 UG_design(i) = (V_flow(2)*Mw_MolWeight(i)) / (Ro_g_Density(i)*A*3600);

 if (type_of_compound == 1)

 [ae, K_G,Mu_g_mixture, Mu_l_mixture] = Mass_Hydrocarbons(i,...

 X_frac, Y_frac, Temp, Ro_l_Density, Mw_MolWeight, L_flow,...

 V_flow, Press, Ro_g_Density);

 else

 [ae, K_G, Mu_g_mixture, Mu_l_mixture]= Mass_Polar(L_flow, ...

 V_flow, X_frac, Mw_MolWeight, Ro_l_Density, Ro_g_Density,...

 Temp, Press, Y_frac);

 end;

 v_l(i) = Mu_l_mixture(i-1) / Ro_l_Density(i);

 v_g(i) = Mu_g_mixture(i-1)/ Ro_g_Density(i);

 end;

 UL = UL_design;

 UG = UG_design;

 % Calculation of Reynolds Number

 [Re_G]= P_reynolds(UG, dp_equi, v_g);

 % Calculation of Friction Factor for a Single Particle

 [fo] = P_friction(C1,C2,C3,Re_G);

 % Calculation of Dry Pressure Drop

 [del_p_dry]= P_dry_pressure_drop(fo, e_porosity, Ro_g_Density, z_total, UG, dp_equi);

 % Calcuation of liquid holdup below the loading point

 [ho, FrL]= P_holdup(UL, ap, g, e_porosity);

 % Calcuation of exponent constant at Equation 10 given by J.Stichlmair et al.(1989)

 [c_exp]= P_constant_exp(C1,C2,Re_G,fo);

 %Calculation of irrigated pressure drop

 [fdelP_Packed]= P_pressure_drop_irrigated(del_p_dry,Ro_l_Density,...

 z_total,ho,e_porosity,c_exp,g);

 Press(NT+2,1) = 101600.0;

 Press(1,1) = Press(NT+2,1) - fdelP_Packed;

 Press(2:NT+1,1) = PressureProfile(Press(1), Press(NT+2));

end

fprintf('\n\n\nThe irrigated pressure drop is %f (Pa).\n',fdelP_Packed)

%--------------Prediction of flooding point by using correlation given by

%J. Stichlmair et al.(1989)

% Abbreviation for Equation (18) given by J. Stichlmair et. al.(1989)

Abbreviation = zeros(1);

Abbreviation = (fdelP_Packed /(Ro_l_Density(2) * g * z_total))^2;

% Rearranged Equation(18) given by J. Stichlmair et. al.(1989)

B_Rearranged = zeros(1);

B_Rearranged = (1 / Abbreviation)-[(40*(2+c_exp)/3)*ho/(1-e_porosity+ho*...

 [1+20*Abbreviation])]-[(186*ho)/(e_porosity-ho*[1+20*Abbreviation])];

% Flooding Point Liquid Velocity [m/sec]

UL_flooding = zeros(NT+2,1);

% Flooding Point Gas Velocity [m/sec]

UG_flooding = zeros(NT+2,1);

% Flooding Pressure [N/m2]

fdelP_Packed_flooding = zeros(1);

UG_flooding = UG_design;% Initial assumption

UG = UG_flooding;

while B_Rearranged > zero_tolerance,

 UG(2) = UG(2) + 0.001;

 fdelP_Packed1 = 1;

 while fdelP_Packed - fdelP_Packed1>0.01

 fdelP_Packed1 = fdelP_Packed;

 % Calculation of Reynolds Number

 [Re_G]= P_reynolds(UG, dp_equi, v_g);

 % Calculation of Friction Factor for a Single Particle

 [fo] = P_friction(C1,C2,C3,Re_G);

 % Calculation of Dry Pressure Drop

 [del_p_dry]= P_dry_pressure_drop(fo, e_porosity, Ro_g_Density,...

 z_total, UG, dp_equi);

 % Calcuation of liquid holdup below the loading point

 [ho, FrL]= P_holdup(UL, ap, g, e_porosity);

 % Calcuation of exponent constant at Equation 10 given by J.Stichlmair et al.(1989)

 [c_exp]= P_constant_exp(C1,C2,Re_G,fo);

 %Calculation of irrigated pressure drop

 [fdelP_Packed]= P_pressure_drop_irrigated(del_p_dry,Ro_l_Density,...

102

 z_total,ho,e_porosity,c_exp,g);

 end

 Abbreviation = (fdelP_Packed /(Ro_l_Density(2) * g * z_total))^2;

 B_Rearranged = (1 / Abbreviation)-[(40*(2+c_exp)/3)*ho/(1-e_porosity+ho...

 *[1+20*Abbreviation])]-[(186*ho)/(e_porosity-ho*[1+20*Abbreviation])];

end

%-----------------------------------End of Pressure Drop Prediction -------

fdelP_Packed_flooding = fdelP_Packed;

for i=1:NT+2,

 UG_flooding(i)= UG(2);

end

% Percent of flooding [Dimensionless]

percent = zeros(1);

percent = (UG_design(2) / UG_flooding(2))*100;

fprintf('The flooding pressure drop is %f (Pa).\n',fdelP_Packed_flooding)

fprintf('The design gas rate is %f percent of flooding.\n\n', percent)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Define and Initialize storage tank compositions

% Instantaneous compositions in storage tanks (moles/moles) (2*(NC-1)xNC)

Tank_X_frac = zeros(2*(NC-1)+1, NC);

% Instantaneous total holdup amount in storage tanks (moles)

Tank_M_Holdup = zeros(2*(NC-1)+1, 1);

% ============================

% Initialize Controller

% ============================

% CONT_SetPoints : Controller Set Points of Product Specifications

% CONT_Num_Oper_Stage : Number of different operation stage

% CONT_DistillProfile : Distillate Flow rate values of different operation stages (Products and/or Slopcuts)

[CONT_SetPoints, CONT_Num_Oper_Stage, CONT_DistillProfile] = INIT_CONTROL;

% Define Controller Outputs

CONT_QBoiler = zeros(1,1);

CONT_RRatio_inv = zeros(1,1);

% Initialize Activated Tank Index

Tank_Activated = 0;

% Initialize Current Stage Number (startup:0,)

CONT_Curr_Stage = 0;

% ===

% Integration Starts

% ===

for i=0:num_step

 if t >= disp_t;

 % Write Plant Data to Screen

 write_plant_to_scr(t, X_frac, R_Ratio_inv);

 % Write Plant Data to File

 write_plant_to_file(t, X_frac, Y_frac, Temp, M_Holdup, L_flow, V_flow);

 % Write estimator and controller data to file

 write_estcont_to_file(t, CONT_QBoiler, CONT_RRatio_inv);

 % Write tank compositions and holdups

 write_tank_to_file(t, Tank_X_frac, Tank_M_Holdup);

 %Tank_X_frac

 %D_DistillRate

 disp_t = disp_t + disp_DeltaT;

 end;

 % Real Plant Variables

 % % % % % % % % % % % % X_frac, Y_frac, Temp, Y_frac_eqm, t,z

 % % % % % % % % % % % % H_l_Enthalpy, H_v_Enthalpy, Ro_l_Density, Mw_MolWeight,Ro_g_Density

 % % % % % % % % % % % % M_Holdup, L_flow, V_flow,

 % % % % % % % % % % % % Q_Boiler, D_DistillRate, R_Ratio_inv, M_Distilled, Press,

 % % % % % % % % % % % % t_prv, M_Holdup_prv, H_l_Enthalpy_prv, z_prv

 % % % % % % % % % % % % Del_M_Holdup, Del_H_l_Enthalpy, Del_M_Hl

 % Keep Current Parameters for Future Use

 [t_prv, M_Holdup_prv, H_l_Enthalpy_prv, X_frac_prv, Y_frac_prv] = ...

 P_Keep_Current_Vars(t, M_Holdup, H_l_Enthalpy, X_frac, Y_frac);

 % Find Derivatives

 [DX_frac, DY_frac] = P_f(t, X_frac, Y_frac, Temp, H_l_Enthalpy, ...

 H_v_Enthalpy, Ro_l_Density, Ro_g_Density,Mw_MolWeight, M_Holdup,...

 L_flow, V_flow, Q_Boiler, D_DistillRate, R_Ratio_inv, Press,...

 t_prv, M_Holdup_prv, H_l_Enthalpy_prv, Y_frac_eqm, DeltaT, ...

 DeltaZ,X_frac_prv, type_of_compound);

 % Take Integration

 [t,z, X_frac, Y_frac] = P_Int_Euler(t, z, DeltaT, DeltaZ, X_frac, ...

 DX_frac, Y_frac, DY_frac, Y_frac_eqm);

 % Normalizes Plant States

 % Vapor Phase

 [Y_frac] = P_Normalize_States_Y(z, Y_frac);

 % Liquid Phase

 [X_frac] = P_Normalize_States_X(t, X_frac);

 % Run controller (Find new real plant inputs)

 if (t>= 0 & t < 1.0)

 % Run the open-loop system with using predefined switching

 % times and corresponding distillate flowrates (or reflux ratios)

 [CONT_QBoiler, CONT_RRatio_inv,Tank_Activated] = CONTROL(t, ...

 X_frac, Q_Boiler, CONT_SetPoints, CONT_Num_Oper_Stage, CONT_DistillProfile);

 else

103

 % Run the closed-loop system with the actual composition feed-back

 [CONT_QBoiler, CONT_RRatio_inv, Tank_Activated, CONT_Curr_Stage] = CONTROL_real(t,...

 X_frac, Q_Boiler, R_Ratio_inv, CONT_SetPoints, CONT_Num_Oper_Stage,...

 CONT_DistillProfile, Tank_Activated, Tank_X_frac, CONT_Curr_Stage);

 % if (CONT_Curr_Stage == 5)

 % if (Tank_Activated==3)

 % Tank_M_Holdup(5,1) = M_Holdup(1,1) + sum(M_Holdup(2:NT+1)) + M_Holdup(NT+2);

 % sum1 = zeros(1,NC);

 % sum2= zeros(1, NC);

 % for i=2:NT+1;

 % sum2 = M_Holdup(i)*X_frac(i,:);

 % sum1 = sum2 + sum1;

 % end

 % Tank_X_frac(5,:)= [(X_frac(1,:)*M_Holdup(1,1) + sum1 + ...

 % M_Holdup(NT+2)*X_frac(NT+2,:))] / [Tank_M_Holdup(5,1)];

 % end

 % end

 end

 % Manuplate real plant inputs by controller outputs

 Q_Boiler = CONT_QBoiler;

 R_Ratio_inv = CONT_RRatio_inv;

 % Stop simulation when the distillation finishes

 if (Tank_Activated == -1)

 break;

 end;

 % Find New Physical Variables

 [Y_frac_eqm, Temp, H_l_Enthalpy, H_v_Enthalpy, Ro_l_Density, Mw_MolWeight] = ...

 P_Calc_New_Phys_Vars(t, X_frac, Press, Temp, Y_frac, type_of_compound);

 % Calculate New Packed Section Molar Holdups

 [M_Holdup] = P_Calc_New_Mol_Packed_Section_Holdup(t, Ro_l_Density,...

 Mw_MolWeight, M_Holdup, L_flow);

 % Calculate New Reflux-Drum Molar Holdup

 [M_Holdup] = P_Calc_New_Mol_Drum_Holdup(t, M_Holdup);

 % Calculate New Approximated Derivatives

 [Del_M_Holdup, Del_H_l_Enthalpy, Del_M_Hl] = P_Calc_New_Apprx_Deriv(t, ...

 M_Holdup, H_l_Enthalpy, t_prv, M_Holdup_prv, H_l_Enthalpy_prv);

 % Calculate New Distillate, Vapor and Liquid Flow Rates

 if R_Ratio_inv == 0; %% For Total Reflux Condition

 [D_DistillRate, L_flow, V_flow] = P_Calc_LV_for_Total_Reflux(t, ...

 H_l_Enthalpy, H_v_Enthalpy, M_Holdup, Del_M_Holdup, ...

 Del_H_l_Enthalpy, Del_M_Hl, Q_Boiler, R_Ratio_inv);

 else %% For Distillate Withdrawal

 [D_DistillRate, L_flow, V_flow] = P_Calc_LV_for_Finite_Reflux(t, ...

 H_l_Enthalpy, H_v_Enthalpy, M_Holdup, Del_M_Holdup, ...

 Del_H_l_Enthalpy, Del_M_Hl, Q_Boiler, R_Ratio_inv);

 end;

 % Calculate current holdup amount and composition in storage tanks

 [Tank_X_frac, Tank_M_Holdup] = P_Calc_Tanks(t, DeltaT, Tank_X_frac, ...

 Tank_M_Holdup, X_frac(NT+2,:), D_DistillRate, Tank_Activated);

 % Calculate New Amount of Product Distilled

 [M_Distilled] = P_Calc_New_Distilled_Amount(t, t_prv, D_DistillRate, M_Distilled);

 % Calculate New Still Pot Holdup

 [M_Holdup] = P_Calc_New_Mol_Still_Holdup(t, M_Holdup, M_Distilled);

end;

if (R_ratio_opt == 1)

 CAP = 0;

else

 CAP = (Tank_M_Holdup(1,1) + Tank_M_Holdup(3,1)+ Tank_M_Holdup(5,1)) / (t+0.5);

end;

cap_fact = CAP;

% Write optimization results to file

write_opt_to_file(t,R_ratio_opt,Tank_M_Holdup(1,1),Tank_M_Holdup(2,1),...

 Tank_M_Holdup(3,1),Tank_M_Holdup(4,1),Tank_M_Holdup(5,1),cap_fact);

% ==

% Close Output Files

% ==

% Liquid Profile file

fclose(FID_lprofile);

% Vapor Profile file

fclose(FID_vprofile);

% Temperature Profile file

fclose(FID_tprofile);

% Holdup Profile file

fclose(FID_holdup);

% Liquid and Vapor Flowrate Profile file

fclose(FID_lvflow);

% Controller Outputs file

fclose(FID_control);

% Tank Outputs file

fclose(FID_tank);

% Optimization Outputs file

fclose(FID_opt);

% ==

% Simulation finishes

104

% ==

fprintf('Simulation finished successfully.\n\n');

% -------------------------End of Main Program function Plant_File_Packed

% ### %

% -----------------Real Plant Simulation Functions----------------------- %

% --- %

%==

% Predict Pressure Drop (Dry, Irrigated and Flooding)

%==

%--

function [Re_G] = P_reynolds(UG, dp_equi, v_g)

% Reynolds Number of Gas Calculated by Equivalent Diameter of Packing%

Re_G = zeros(1);

Re_G = (UG(2)*dp_equi)/v_g(2);

%end_P_reynolds

%--

function [fo] = P_friction(C1,C2,C3,Re_G)

% Friction Factor [Dimensionless]

fo = zeros(1);

fo = (C1 / Re_G)+(C2/(Re_G^0.5))+ C3;

%end_P_friction

%--

function [del_p_dry]= P_dry_pressure_drop(fo, e_porosity, Ro_g_Density, ...

 z_total, UG, dp_equi)

% Dry Pressure Drop [N/m2]

del_p_dry = zeros(1);

del_p_dry = (3/4)*fo*((1-e_porosity)/(e_porosity^4.65))* Ro_g_Density(2)*...

 z_total * UG(2)^2 / dp_equi;

% end_P_dry_pressure_drop

%--

function [ho, FrL]= P_holdup(UL, ap, g, e_porosity);

% Liquid Froude Number

FrL = zeros(1);

% Liquid Holdup

ho = zeros(1);

FrL = ((UL(2)^2)*ap) /(g * e_porosity^4.65);

ho = 0.555*FrL^(1/3);

%end_P_holdup

%--

function [c_exp]=P_constant_exp(C1,C2,Re_G,fo)

%Exponent c for Calculation of the Irrigated Pressure Drop Constant

%at Equation 10 given by J.Stichlmair et al.(1989)

c_exp = zeros(1);

c_exp = ((-C1/Re_G)+(-C2/(2*Re_G^(1/2))))/fo;

%end_P_constant_exp

%--

function [fdelP_Packed]=P_pressure_drop_irrigated(del_p_dry,Ro_l_Density,...

 z_total,ho,e_porosity,c_exp,g)

del_p_irrigated1 = del_p_dry;

A1 = (del_p_irrigated1/(Ro_l_Density(2)*g*z_total));

A2 = (1 + 20 * (A1^2));

A3 = (ho/e_porosity)*A2;

A4 = (1-e_porosity*(1-A3));

A5 = (A4/(1-e_porosity))^((2+c_exp)/3);

A6 = (1-A3)^(-1*4.65);

fdelP_Packed = del_p_dry*A5*A6;

while del_p_irrigated1 - fdelP_Packed > 0.001;

 fdelP_Packed = del_p_irrigated1;

 A1 = (del_p_irrigated1/(Ro_l_Density(2)*g*z_total));

 A2 = (1 + 20 * (A1^2));

 A3 = (ho/e_porosity)*A2;

 A4 = (1-e_porosity*(1-A3));

 A5 = (A4/(1-e_porosity))^((2+c_exp)/3);

 A6 = (1-A3)^(-4.65);

 del_p_irrigated1 = del_p_dry*A5*A6;

end

%end_P_pressure_drop_irrigated

%==

% P_f

% Return the derivatives for the continuous states.

%==

%--

function [DX_frac, DY_frac] = P_f(t, X_frac, Y_frac, Temp, H_l_Enthalpy,...

 H_v_Enthalpy, Ro_l_Density, Ro_g_Density, Mw_MolWeight,M_Holdup,...

 L_flow, V_flow,Q_Boiler, D_DistillRate, R_Ratio_inv, Press, t_prv, M_Holdup_prv,...

 H_l_Enthalpy_prv, Y_frac_eqm, DeltaT, DeltaZ,X_frac_prv,type_of_compound)

Glob_Decs;

% Instantaneous (Sp-Ps-Rd)Liquid and Vapor Compositions Derivatives [moles/moles/hour]

DX_frac = zeros(size(X_frac));

DY_frac = zeros(size(Y_frac));

%---------------------------------Calculation of Mass Transfer Coefficient

for i =2:NT+1;

 if (type_of_compound == 1)

 [ae, K_G,Mu_g_mixture, Mu_l_mixture] = Mass_Hydrocarbons(i,X_frac,...

 Y_frac, Temp, Ro_l_Density, Mw_MolWeight, L_flow, V_flow, Press, Ro_g_Density);

 else

 [ae, K_G, Mu_g_mixture, Mu_l_mixture]= Mass_Polar(L_flow, V_flow,...

 X_frac, Mw_MolWeight, Ro_l_Density, Ro_g_Density, Temp, Press, Y_frac);

 end;

 Rate(i-1) = K_G(i-1)*A*ae(i-1);

end;

%------------------------------Calculation of derivatives for compositions

105

for j=1:NC;

 % Still Pot

 DX_frac(1,j) = (L_flow(2)*(X_frac(2,j)-X_frac(1,j)) - V_flow(1)*...

 (Y_frac_eqm(1,j)-X_frac(1,j))) / M_Holdup(1);

 Y_frac(1,j) = Y_frac_eqm(1,j);

 % Packed Section

 for i = 2:NT+1,

 C = zeros(1);

 C = (-Rate(i-1)/V_flow(i));

 DY_frac(i,j)= C* (Y_frac(i,j) - Y_frac_eqm(i,j));

 end;

 % Following equation is a pde written for a packed differential

 % section. The approximation to (del_x / del_z) was made by using the

 % upward Euler method.{(x(i+1)-x(i))/deltaZ}

 for i=2:NT+1,

 DX_frac(i,j) = Rate(i-1)*(Y_frac(i,j)-Y_frac_eqm(i,j))/[(M_Holdup(i)/DeltaZ)]+ ...

 (L_flow(i)/(M_Holdup(i)/DeltaZ))*[(X_frac(i+1,j)- X_frac(i,j))/(DeltaZ)];

 end;

 % Reflux Drum

 DX_frac(NT+2,j) = (V_flow(NT+1)*(Y_frac(NT+1,j)-X_frac(NT+2,j))) / M_Holdup(NT+2);

end

% end mdlDerivatives

%==

% P_Int_Euler

% Return

% Take integral

% given

% Time: t;

% Integration Step: delta_t;

% Previous States: X_frac;

% Derivatives: DX_frac;

%==

%%%

%In that part, for the prediction of the new liquid and vapor compositions

% upward Euler method is used as an approximation method for ordinary and

% partial differential equations.

%%%

function [t_new, z_new, X_frac_new, Y_frac_new] = P_Int_Euler(t,z,DeltaT, ...

 DeltaZ, X_frac, DX_frac, Y_frac, DY_frac, Y_frac_eqm)

Glob_Decs;

t_new = t + DeltaT;

z_new = z + DeltaZ;

% New Liquid Compositions

X_frac_new = X_frac+ DX_frac*DeltaT;

% New Vapor Compositions

for j=1:NC,

 Y_frac(1,j) = Y_frac_eqm(1,j);

 for i = 2:NT+1,

 Y_frac(i,j) = Y_frac(i,j)+ DeltaZ* DY_frac(i,j);

 Y_frac(i,j) = (Y_frac(i-1,j)+Y_frac(i,j))/2;

 end

 Y_frac(NT+2,j) = Y_frac(NT+1,j);

end

Y_frac_new = Y_frac;

%end Int_Euler

%==

% P_Keep_Current_Vars

% Return

% Keeps current parameters for future use

% given

% Time: t; Variables at t: ...;

%==

function [t_prv, M_Holdup_prv, H_l_Enthalpy_prv, X_frac_prv, Y_frac_prv] = ...

 P_Keep_Current_Vars(t, M_Holdup, H_l_Enthalpy, X_frac, Y_frac);

% Previous step time

t_prv = t;

% Previous step (Sp-Ps-Rd) total holdup amount (moles)

M_Holdup_prv = M_Holdup;

% Previous step (Sp-Ps-Rd) liquid phase enthalpy (J/moles)

H_l_Enthalpy_prv = H_l_Enthalpy;

% Previous step (Sp-Ps-Rd) liquid phase composition (mol / mol)

X_frac_prv = X_frac;

% Previous step (Sp-Ps-Rd) vapor phase composition (mol / mol)

Y_frac_prv = Y_frac;

%end P_Keep_Current_Vars

%==

% P_Normalize_States_Y

% Return

% Normalizes Plant States for Vapor Phase

% given

% Time: t; States: Y_frac_Pr;

%==

function [Y_frac] = P_Normalize_States_Y(t, Y_frac_Pr)

Glob_Decs;

% Set size

Y_frac = Y_frac_Pr;

% %%%%%%%%%%%%%%%%%%%%%%Make the low compositions zero%%%%%%%%%%%%%%%%%%%%%

% Check for (Sp-Ps-Rd) vapor compositions (moles/moles)

for i=1:NT+2;

 for j=1:NC;

 if isnan(Y_frac_Pr(i,j));

106

 error(['Stage no ', num2str(i) ,' component ', num2str(j),...

 ' vapor fraction is Nan']);

 end;

 if Y_frac_Pr(i,j) < zero_tolerance;

 % display(['Stage no ',num2str(i),' composition of comp. ',...

 % num2str(j), ' (',num2str(Y_frac_Pr(i,j)),') made zero']);

 Y_frac(i,j) = 0.0;

 end;

 end;

end;

% %%%%%%%%%%%%%%%%%Normalize the vapor compositions (moles/moles)%%%%%%%%%%

% Normalize (Sp-Ps-Rd) vapor compositions (moles/moles)

for i=1:NT+2;

 dummy1 = sum(Y_frac_Pr(i,:));

 if ~(dummy1 > 0.0);

 % error(['Sum of comp. vapor fraction in the Stage no ',...

 % num2str(i),' is zero. ', num2str(Y_frac_Pr(i,:))]);

 else

 Y_frac(i,:) = Y_frac_Pr(i,:) / dummy1;

 end;

end;

% %%%%%%%%%%%%%%%% Check compositions are in the limit of [0,1] %%%%%%%%%%%

% Check (Sp-Ps-Rd) vapor compositions (moles/moles)

for i=1:NT+2;

 for i=1:NC;

 if (Y_frac(i,j)<0 | Y_frac(i,j)>1);

 % error(['Vapor Composition out of limit ! - [Normalize_States] Y_frac(',...

 % num2str(i),',:) = ', num2str(Y_frac(i,:))]);

 end;

 end;

end;

%end P_Normalize_States_Y

%==

% P_Normalize_States

% Return

% Normalizes Plant States for Liquid Phase

% given

% Time: t; States: X_frac_Pr;

%==

function [X_frac] = P_Normalize_States_X(t, X_frac_Pr)

Glob_Decs;

% Set Size

X_frac = X_frac_Pr;

% %%%%%%%%%%%%%%%%%%%Make the low compositions zero%%%%%%%%%%%%%%%%%%%%%%%%

% Check for (Sp-Ps-Rd) liquid compositions (moles/moles)

for i=1:NT+2;

 for j=1:NC;

 if isnan(X_frac_Pr(i,j));

 error(['Stage no ', num2str(i) ,' component ', num2str(j),...

 ' liquid fraction is Nan']);

 end;

 if X_frac_Pr(i,j) < zero_tolerance;

 % display(['Stage no ',num2str(i),' composition of comp. ',...

 % num2str(j), ' (',num2str(X_frac_Pr(i,j)),') made zero']);

 X_frac(i,j) = 0.0;

 end;

 end;

end;

% %%%%%%%%%%%%%%%Normalize the liquid compositions(moles/moles)%%%%%%%%%%%%

% Normalize (Sp-Ps-Rd) liquid compositions (moles/moles)

for i=1:NT+2;

 dummy1 = sum(X_frac_Pr(i,:));

 if ~(dummy1 > 0.0);

 error(['Sum of comp. fraction in the Stage no ',...

 num2str(i),' is zero. ', num2str(X_frac_Pr(i,:))]);

 else

 X_frac(i,:) = X_frac_Pr(i,:) / dummy1;

 end;

end;

% %%%%%%%%%%%%%%%%%Check compositions are in the limit of [0,1]%%%%%%%%%%%%

% Check (Sp-Ps-Rd) liquid compositions (moles/moles)

for i=1:NT+2;

 for i=1:NC;

 if (X_frac(i,j)<0 | X_frac(i,j)>1);

 error(['Composition out of limit ! - [Normalize_States] X_frac(',...

 num2str(i),',:) = ', num2str(X_frac(i,:))]);

 end;

 end;

end;

%end P_Normalize_States_X

%==

% P_Calc_New_Phys_Vars

% Return

% Find New Physical Variables

% given

% Time, t; Previous system variables (Temp at previous time step is for initial guess)

%==

function [Y_frac_eqm, Temp, H_l_Enthalpy, H_v_Enthalpy, Ro_l_Density, Mw_MolWeight] = ...

 P_Calc_New_Phys_Vars(t, X_frac, Press, TempPr, Y_frac, type_of_compound)

Glob_Decs;

107

% Set Sizes

Y_frac_eqm = zeros(size(X_frac));

Temp = zeros(size(TempPr));

H_l_Enthalpy = zeros(size(TempPr));

H_v_Enthalpy = zeros(size(TempPr));

Ro_l_Density = zeros(size(TempPr));

Mw_MolWeight = zeros(size(TempPr));

%--Bubble Point Calculation

% Calculate (Sp-Ps-Rd) Temperature and Vapor Compositions [moles/moles]

for i=1:NT+2;

 if (type_of_compound == 1)

 [Temp(i), Dummy3] = thermo_Equilibrium_Hydrocarbons(TempPr(i), Press(i), X_frac(i,:));

 else

 [Temp(i), Dummy3] = thermo_Equilibrium_Polar(TempPr(i), Press(i), X_frac(i,:));

 end;

 Y_frac_eqm(i,:) = Dummy3;

end;

for j = 1:NC,

 for i=2:NT+1,

 Y_frac_eqm(i,j) = [Y_frac_eqm(i,j) + Y_frac_eqm(i+1,j)]/2;

 end

end

%---------------------------------------Calculate Specific Phase Enthalpies

% Calculate (Sp-Ps-Rd)Liquid and Vapor Phase Enthalpies [J/moles]

for i=1:NT+2,

 [H_l_Enthalpy(i), H_v_Enthalpy(i)] = thermo_Enthalpy(Temp(i), Press(i), X_frac(i,:), Y_frac(i,:));

end;

%-------Calculate Liquid Phase Average Density and Average Molecular Weight

% Calculate (Sp-Ps-Rd) Liquid and Gas Phase Average Densities [kg/m3]

% Calculate (Sp-Ps-Rd) Average Molecular Weight [kg/mol]

for i=1:NT+2;

 [Mw_MolWeight(i), Ro_l_Density(i)] = thermo_L_Density(Temp(i), Press(i), X_frac(i,:));

 [Mw_MolWeight(i), Ro_g_Density(i)] = thermo_G_Density(Temp(i), Press(i), X_frac(i,:));

end;

%end P_Calc_New_Phys_Vars

%==

% P_Calc_New_Mol_Packed Section_Holdup

% Return

% Calculate Packed Section Molar Holdups

% given

% Time, t;

%==

function [M_Holdup] = P_Calc_New_Mol_Packed_Section_Holdup(t, Ro_l_Density,...

 Mw_MolWeight, M_Holdup_pr, L_flow)

Glob_Decs;

% Set Size

M_Holdup = M_Holdup_pr;

% Calculate Packed Section Molar Holdup [mol]

for i=2:NT+1;

 Fr = (((L_flow (2)*Mw_MolWeight(i))/(Ro_l_Density(i)*A*3600))^2)*(ap/(g*(e_porosity^4.65)));

 ho = 0.555 * ((Fr)^(1/3));

 M_Holdup(i)= ((A * ho * Ro_l_Density(i)*z_total)/NT)/(Mw_MolWeight(i));

end;

%end P_Calc_New_Mol_Packed Section_Holdup

%==

% P_Calc_New_Mol_Drum_Holdup

% Return

% Calculate new Reflux-Drum molar holdup

% given

% Time, t;

%==

function [M_Holdup] = P_Calc_New_Mol_Drum_Holdup(t, M_Holdup_pr)

Glob_Decs;

% Set Size

M_Holdup = M_Holdup_pr;

% Reflux Drum Molar holdup is constant

M_Holdup(NT+2) = M_Holdup_pr(NT+2);

%end P_Calc_New_Mol_Drum_Holdup

%==

% P_Calc_New_Apprx_Deriv

% Return

% Calculate Approximated derivatives

% given

% Time, t;

%==

function [Del_M_Holdup, Del_H_l_Enthalpy, Del_M_Hl] = P_Calc_New_Apprx_Deriv(t,...

 M_Holdup, H_l_Enthalpy, t_prv, M_Holdup_prv, H_l_Enthalpy_prv)

Glob_Decs;

% Set Sizes

Del_M_Holdup = zeros(size(M_Holdup));

Del_H_l_Enthalpy = zeros(size(H_l_Enthalpy));

Del_M_Hl = zeros(size(M_Holdup));

% Calculate Step Size

del_t = t - t_prv;

% d(M_Holdup)/dt approximated by forward differentiation

Del_M_Holdup = (M_Holdup - M_Holdup_prv) / del_t;

108

for i = 2: NT+1;

 Del_M_Holdup(i) = 0;

end

% d(H_l_Enthalpy)/dt approximated by forward differentiation

Del_H_l_Enthalpy = (H_l_Enthalpy - H_l_Enthalpy_prv) / del_t;

for i = 2: NT+1;

 Del_H_l_Enthalpy(i) = 0;

end

% d(M_Holdup*H_l_Enthalpy)/dt approximated by forward differentiation

Del_M_Hl = (M_Holdup.*H_l_Enthalpy - M_Holdup_prv.*H_l_Enthalpy_prv) / del_t;

for i = 2: NT+1;

 Del_M_Hl(i) = 0;

end

%end P_Calc_New_Apprx_Deriv

%==

% P_Calc_LV_for_Total_Reflux

% Return

% Calculates Liquid and Vapor Flow Rates for Total Reflux Condition

% or for D=0

% given

% Time, t;

%==

function [D_DistillRate, L_flow, V_flow] = P_Calc_LV_for_Total_Reflux(t,...

 H_l_Enthalpy, H_v_Enthalpy, M_Holdup, Del_M_Holdup, Del_H_l_Enthalpy,...

 Del_M_Hl, Q_Boiler, R_Ratio_inv)

Glob_Decs;

% Set Sizes

D_DistillRate = zeros(size(1,1));

L_flow = zeros(size(M_Holdup));

V_flow = zeros(size(M_Holdup));

% Calculate Distillate Flow Rate

D_DistillRate = 0.0;

% Calculate Liquid Flow Rate from Reflux Drum

sum_Del_M_Holdup = sum(Del_M_Holdup(2:NT+1));

sum_Del_M_Hl = sum(Del_M_Hl(2:NT+1));

L_flow(NT+2) = (Q_Boiler - H_l_Enthalpy(1)*Del_M_Holdup(1) - M_Holdup(1)...

 *Del_H_l_Enthalpy(1) - sum_Del_M_Hl)/ (H_v_Enthalpy(NT+1) - H_l_Enthalpy(NT+2));

% Calculate Vapor Flow Rate from Top Section

V_flow(NT+1) = L_flow(NT+2);

% Calculate Other Vapor and Liquid Flow Rates

%(Since equimolar counter diffusion assumed)

for i= NT+1:-1:2;

 V_flow(i-1) = V_flow(NT+1);

 L_flow(i) = L_flow(NT+2);

end

%end P_Calc_LV_for_Total_Reflux

%==

% P_Calc_LV_for_Finite_Reflux

% Return

% Calculates Liquid and Vapor Flow Rates for Distillate Withdrawal

% or for D!=0 or D Different than Zero.

% given

% Time, t;

%==

function [D_DistillRate, L_flow, V_flow] = P_Calc_LV_for_Finite_Reflux(t,...

 H_l_Enthalpy, H_v_Enthalpy, M_Holdup, Del_M_Holdup, Del_H_l_Enthalpy, ...

 Del_M_Hl, Q_Boiler, R_Ratio_inv)

Glob_Decs;

% Set Sizes

D_DistillRate = zeros(size(1,1));

L_flow = zeros(size(M_Holdup));

V_flow = zeros(size(M_Holdup));

% Calculate Distillate Flow Rate

R = 1 / R_Ratio_inv;

Dummy1 = sum(Del_M_Hl(1:NT+1));

D_DistillRate = (Q_Boiler - Dummy1) / ((R+1)*H_v_Enthalpy(NT+1) - R*H_l_Enthalpy(NT+2));

% Calculate Vapor Flow Rate from Top Section

V_flow(NT+1) = D_DistillRate * (R+1);

% Calculate Liquid Flow Rate from Reflux Drum

L_flow(NT+2) = D_DistillRate * R;

% Calculate Other Vapor and Liquid Flow Rates

%(Since equimolar counter diffusion assumed)

for i=NT+1:-1:2;

 V_flow(i-1) = V_flow(i);

 L_flow(i) = L_flow(i+1);

end;

%end P_Calc_LV_for_Finite_Reflux

%==

% P_Calc_Tanks

% Return

% Storage Tank Holdups and Compositions

%==

function [X, M] = P_Calc_Tanks(t, DeltaT, X, M, X_Drum, D_Rate, Active);

109

if Active~=0;

 % Calculate increase in holdup

 deltaM = D_Rate*DeltaT;

 % Calculate tank's composition

 if ((deltaM == 0) & M(Active, 1)==0)

 X(Active, :) = zeros(size(X(Active, :)));

 else

 X(Active, :) = (X(Active, :)* M(Active, 1)+X_Drum(1, :)*deltaM)/ (M(Active,1)+deltaM);

 end;

 % Calculate tank's current holdup

 M(Active, 1) = M(Active, 1) + D_Rate*DeltaT;

end;

%end P_Calc_Tanks

%==

% P_Calc_New_Distilled_Amount

% Return

% Calculate New Amount of Product Distilled

% given

% Time, t;

%==

function [M_Distilled] = P_Calc_New_Distilled_Amount(t, t_prv, D_DistillRate, M_Distilled_pr)

Glob_Decs;

% Set Size

M_Distilled = 0.0;

% Calculate Amount of Product Distilled

M_Distilled = M_Distilled_pr + D_DistillRate*(t-t_prv);

%end P_Calc_New_Distilled_Amount

%==

% P_Calc_New_Mol_Still_Holdup

% Return

% Calculate Still Pot Holdup

% given

% Time, t;

%==

function [M_Holdup] = P_Calc_New_Mol_Still_Holdup(t, M_Holdup_pr, M_Distilled);

Glob_Decs;

% Set Sizes

M_Holdup = M_Holdup_pr;

% Instantaneous Still Pot Total Holdup Amount [moles/hour]

M_Holdup(1) = M_Feed - sum(M_Holdup_pr(2:NT+1)) - M_Holdup_pr(NT+2) - M_Distilled;

%end P_Calc_New_Mol_Still_Holdup

% --- %

% -----------------End Real Plant Simulation Functions------------------- %

% ### %

% ### %

% ------------------- Controller Functions ---------------------------- %

% --- %

%==

% INIT_CONTROL (don't MODIFY GLOBAL VARIABLES not owned by this function)

% perform

% Initilialize controller

% given

% All Global variables

% output

% any output required

%==

function [SetPoints, Num_Oper_Stage, DistillProfile] = INIT_CONTROL

Glob_Decs;

% Controller Set Points of Product Specifications

SetPoints = zeros(NC,1);

SetPoints = [0.9; 0.8; 0.69];

% Number of different operation stage

Num_Oper_Stage = 5;

% Distillate Flow rate values of different operation stages (Products and/or Slopcuts)

DistillProfile = zeros(Num_Oper_Stage,1);

%DistillProfile = [];

%end INIT_CONTROL

%==

% CONTROL (don't MODIFY GLOBAL VARIABLES not owned by this function)

% perform

% Controls the system

% given

% Current Time, t; All Global variables at time t;

% output

% any output required

%==

function [CONT_QBoiler, CONT_RRatio_inv,Tank_Activated] = CONTROL(t, X_frac,...

 Q_Boiler_pr, CONT_SetPoints, CONT_Num_Oper_Stage, CONT_DistillProfile)

Glob_Decs;

R_Ratio = zeros(1);

% Find new Reflux ratio (L0/D)

if (t>= 0 & t < 1.0)

 CONT_RRatio_inv = 0.0;

 Tank_Activated = 1;

elseif (t >= 1.0 & t< 3.1134)

110

 R_Ratio = 0.889/ (1.0 - 0.889);

 CONT_RRatio_inv = 1.0 / R_Ratio;

 Tank_Activated = 1;

elseif (t>=3.1134 & t< 5.8782)

 R_Ratio = 0.825/ (1.0 - 0.825);

 CONT_RRatio_inv = 1.0 / R_Ratio;

 Tank_Activated = 2;

elseif (t>=5.8782 & t<6.6039)

 R_Ratio = 0.8/ (1.0 - 0.8);

 CONT_RRatio_inv = 1.0 / R_Ratio;

 Tank_Activated = 3;

elseif (t >= 6.6039)

 R_Ratio = 0.8/ (1.0 - 0.8);

 CONT_RRatio_inv = 1.0 / R_Ratio;

 Tank_Activated = 3;

end;

% Find Reboiler load (J/hour)

% Constant Reboiler Load

CONT_QBoiler = Q_Boiler_pr;

%end CONTROL

%==

% CONTROL_real (don't MODIFY GLOBAL VARIABLES not owned by this function)

% perform

% Controls the system

% given

% Current Time, t; All Global variables at time t;

% output

% any output required

%==

function [Q_Boiler, R_Ratio_inv, Tank_Active, CONT_Curr_Stage_new] = CONTROL_real(t,...

 X_frac, Q_Boiler_pr, R_Ratio_inv_pr, CONT_SetPoints, CONT_Num_Oper_Stage,...

 CONT_DistillProfile, Tank_Active_prv, X_tank, CONT_Curr_Stage)

Glob_Decs;

R_Ratio = zeros(1);

% Find new Reflux ratio (L0/D)

if (CONT_Curr_Stage==0) %----------- Total Reflux operation

 if (X_frac(NT+2,1)<CONT_SetPoints(1,1))

 R_Ratio_inv = 0.0;

 Tank_Active = 0;

 CONT_Curr_Stage = 0;

 elseif (X_frac(NT+2,1)>=CONT_SetPoints(1,1))

 '0->1'

 %pause;

 CONT_Curr_Stage = 1;

 end;

end;

if (CONT_Curr_Stage==1) %----------- 1st product-cut distillation to 1st product-cut tank

 if ((X_tank(1,1)==0) | (X_tank(1,1)>=CONT_SetPoints(1,1)))

 if ((R_ratio_opt == 1) | (R_ratio_opt == 0))

 R_Ratio = -1;

 Tank_Active = -1;

 else

 % R_Ratio = R_ratio_opt / (1.0 - R_ratio_opt);

 R_Ratio = 0.889/ (1.0 - 0.889);

 Tank_Active = 1;

 end;

 CONT_Curr_Stage = 1;

 elseif (X_tank(1,1)<CONT_SetPoints(1,1))

 '1->2'

 % pause;

 CONT_Curr_Stage = 2;

 end;

end;

if (CONT_Curr_Stage==2) %----------- 1st slop-cut distillation to 1st slop-cut tank

 if (X_frac(NT+2,2)<CONT_SetPoints(2,1))

 if ((R_ratio_opt == 1) | (R_ratio_opt == 0))

 R_Ratio = -1;

 Tank_Active = -1;

 else

 % R_Ratio = R_ratio_opt / (1.0 - R_ratio_opt);

 R_Ratio = 0.825/ (1.0 - 0.825);

 Tank_Active = 2;

 end;

 CONT_Curr_Stage = 2;

 elseif (X_frac(NT+2,2)>=CONT_SetPoints(2,1))

 '2->3'

 %pause;

 CONT_Curr_Stage = 3;

 end;

end;

if (CONT_Curr_Stage==3) %----------- 2nd product-cut distillation to 2nd product-cut tank

 if ((X_tank(3,2)==0) | (X_tank(3,2)>=CONT_SetPoints(2,1)))

 if ((R_ratio_opt == 1) | (R_ratio_opt == 0))

 R_Ratio = -1;

 Tank_Active = -1;

 else

 R_Ratio = R_ratio_opt / (1.0 - R_ratio_opt);

 % R_Ratio = 0.8 / (1.0 - 0.8);

 Tank_Active = 3;

 end;

111

 CONT_Curr_Stage = 3;

 elseif (X_tank(3,2)<CONT_SetPoints(2,1))

 '3->4'

 %pause;

 CONT_Curr_Stage = 4;

 end;

end;

if (CONT_Curr_Stage==4) %----------- 2nd slop-cut distillation to 2nd slop-cut tank

 if (X_frac(1,3)<CONT_SetPoints(3,1))

 if ((R_ratio_opt == 1) | (R_ratio_opt == 0))

 R_Ratio = -1;

 Tank_Active = -1;

 else

 R_Ratio = R_ratio_opt / (1.0 - R_ratio_opt);

 Tank_Active = -1;

 end;

 CONT_Curr_Stage = 4;

 elseif (X_frac(1,3)>=CONT_SetPoints(3,1))

 '4->5'

 %pause;

 CONT_Curr_Stage = 5;

 end;

end;

if (X_frac(1,3)>=CONT_SetPoints(3,1))

 '4->5'

 %pause;

 CONT_Curr_Stage = 5;

end;

if (CONT_Curr_Stage==5) %----------- Distillation stops

 R_Ratio = 1/R_Ratio_inv_pr;

 Tank_Active = -1;

end;

% Keep Current Stage #

CONT_Curr_Stage_new = CONT_Curr_Stage;

% Convert Reflux ratio (L0/D) to One Over Reflux ratio (D/L0)

if (R_Ratio==-1)

 R_Ratio_inv = 0;

else

 R_Ratio_inv = 1.0 / R_Ratio;

end;

% Find Reboiler load (J/hour)

% Constant Reboiler Load

Q_Boiler = Q_Boiler_pr;

%end CONTROL_real

% --- %

% -----------------------End Controller Functions------------------------ %

% ### %

% ### %

% ------------------Simulation loop control user interface functions------%

% --%

%==

% write_plant_to_scr

%==

function write_plant_to_scr(t, X_frac, R_Ratio_inv)

Glob_Decs;

% Reflux Drum Liquid Composition

data = X_frac(NT+2,:);

y = X_frac(1,3);

l = prod(size(data));

formats = '';

for i=1:l;

 formats = [formats ' %f'];

end;

fprintf(['%9.4f' formats '\n'], t, reshape(data, 1, prod(size(data))), R_Ratio_inv,y);

%end write_plant_to_scr

%==

% write_plant_to_file

%==

function write_plant_to_file(t, X_frac, Y_frac, Temp, M_Holdup, L_flow, V_flow)

Glob_Decs;

% Liquid Profile File

l = prod(size(X_frac));

formats = '';

for i=1:l;

 formats = [formats '; %f'];

end;

fprintf(FID_lprofile, ['%9.4f' formats '\n'], t, reshape(X_frac, 1, l));

% Vapor Profile File

l = prod(size(Y_frac));

formats = '';

for i=1:l;

 formats = [formats '; %f'];

end;

fprintf(FID_vprofile, ['%9.4f' formats '\n'], t, reshape(Y_frac, 1, l));

112

% Temperature Profile File

l = prod(size(Temp));

formats = '';

for i=1:l; formats = [formats '; %f'];

end;

fprintf(FID_tprofile, ['%9.4f' formats '\n'], t, reshape(Temp, 1, l));

% Holdup Profile File

l = prod(size(M_Holdup));

formats = '';

for i=1:l;

 formats = [formats '; %f'];

end;

fprintf(FID_holdup, ['%9.4f' formats '\n'], t, reshape(M_Holdup, 1, l));

% Liquid and Vapor Flowrate Profile File

l = prod(size(L_flow)) + prod(size(V_flow));

formats = '';

for i=1:l;

 formats = [formats '; %f'];

end;

fprintf(FID_lvflow, ['%9.4f' formats '\n'], t, reshape([L_flow; V_flow], 1, l));

%end write_plant_to_file

%==

% write_estcont_to_file : Write estimator and controller data to file

%==

function write_estcont_to_file(t, CONT_QBoiler, CONT_RRatio_inv);

Glob_Decs;

% Controller Outputs file

l = prod(size(CONT_QBoiler)) + prod(size(CONT_RRatio_inv));

formats = ''; for i=1:l; formats = [formats '; %f']; end;

fprintf(FID_control, ['%9.4f ' formats '\n'], t, CONT_QBoiler, CONT_RRatio_inv);

%end write_estcont_to_file

%==

% write_tank_to_file : Write tank data to file

%==

function write_tank_to_file(t, X_actual, M_actual);

Glob_Decs;

l = prod(size(X_actual)) + prod(size(M_actual));

formats = ''; for i=1:l; formats = [formats '; %f']; end;

fprintf(FID_tank, ['%9.4f ' formats '\n'], t, reshape(X_actual, 1, prod(size(X_actual))),...

 reshape(M_actual, 1, prod(size(M_actual))));

%end write_tank_to_file

%==

% write_opt_to_file : Write optimization data to file

%==

function write_opt_to_file(t, R_ratio_opt,Tank1_Holdup,Tank2_Holdup,Tank3_Holdup,...

 Tank4_Holdup,M_Holdup,cap_fact);

Glob_Decs;

l = prod(size(R_ratio_opt))+ prod(size(Tank1_Holdup))+prod(size(Tank2_Holdup))+...

 prod(size(Tank3_Holdup))+prod(size(Tank4_Holdup))+prod(size(M_Holdup)),prod(size(cap_fact));

formats = ''; for i=1:l; formats = [formats '; %f']; end;

fprintf(FID_opt, ['%9.4f ' formats '\n'], t, reshape(R_ratio_opt, 1, prod(size(R_ratio_opt))),...

 reshape(Tank1_Holdup, 1, prod(size(Tank1_Holdup))),...

 reshape(Tank2_Holdup, 1, prod(size(Tank2_Holdup))),...

 reshape(Tank3_Holdup, 1, prod(size(Tank3_Holdup))),...

 reshape(Tank4_Holdup, 1, prod(size(Tank4_Holdup))),...

 reshape(M_Holdup, 1, prod(size(M_Holdup))),...

 reshape(cap_fact, 1, prod(size(cap_fact))));

%end write_opt_to_file

% --- %

% ------------End Simulation loop control user interface functions------- %

% ### %

C.2 Optimization Code

C.2.1 OptimizeR.m

%==

% Date By Explanation

%==

% 2006 Bahar Original Code

function Optimum_R = OptimizeR(Rinitial)

x0 = Rinitial; % Make a starting guess at the solution

%options = optimset('LargeScale','off');

options = optimset('LargeScale','off','TolX',1e-3);

[x, fval] = fmincon(@Batch_obj,x0,[],[],[],[],[],[],@Batch_con,options)

%[x, fval] = fmincon(@Batch_obj,x0,[],[],[],[],0,1,[],options)

Optimum_R = x;

save

%##

113

C.2.2 Batch_con.m

%==

% Date By Explanation

% ===

% 2006 Bahar Original Code

function [c, ceq] = Batch_con(x)

% Nonlinear inequality constraints

c = [-x(1) ; x(1)-1];

% Nonlinear equality constraints

ceq = [];

%##

C.2.3 Batch_obj.m

%==

% Date By Explanation

%==

% 2006 Bahar Original Code

% 2006 Ceylan Modified to packed distillation

function [CAPfromOBJ] = Batch_obj(RfromOPT)

% Include all global variables

Glob_Decs;

% Rum simulation

CAPfromOBJ = plant_file_packed(RfromOPT);

%CAPfromOBJ = CAPtoOPT;

CAPfromOBJ = -cap_fact;

%##

C.3 Thermodynamic Library

C.3.1 thermo_Init.m
%==

% Date By Explanation

%==

% 2002 Yıldız Original Code

function thermo_Init(check_input_parameters)

% function thermo_Init(check_input_parameters)

% Thermophysical and physical property calculation MEX File Interface

%

% ------------- Initialization routine -------------

% if check_input_parameters = 1 then initialization routine writes the

% input parameters read from 'plant_data.dat' to 'plant_data_check.dat'

thermo_LIBRARY('init',check_input_parameters);

C.3.2 thermo_Equilibrium_Hydrocarbons.m

%==

% Date By Explanation

%==

% 2002 Yıldız Original Code

% 2006 Ceylan Modification to Packed Dist.

function [Tequi, y] = thermo_Equilibrium_Hydrocarbons(T,P,x)

% function [Tequi, y] = thermo_Equilibrium(T,P,x)

% Thermophysical and physical property calculation MEX File Interface

%

% ------------- Equilibrium routine -------------

% [Tequi, y] : Equilibrium temperature(K), Equilibrium vapor phase fractions(mol/mol)

% (T,P,x) : Initial Equilibrium temperature guess(K), Pressure(Pa), Liquid phase fractions(mol/mol)

[Tequi, y] = thermo_LIBRARY('equilibrium_hydrocarbons',T,P,x);

114

C.3.3 thermo_Equilibrium_Polar.m

%==

% Date By Explanation

%==

% 2002 Yıldız Original Code

% 2006 Ceylan Modification to Packed Dist.

function [Tequi, y] = thermo_Equilibrium_Polar(T,P,x)

% function [Tequi, y] = thermo_Equilibrium(T,P,x)

% Thermophysical and physical property calculation MEX File Interface

%

% ------------- Equilibrium routine -------------

% [Tequi, y] : Equilibrium temperature(K), Equilibrium vapor phase fractions(mol/mol)

% (T,P,x) : Initial Equilibrium temperature guess(K), Pressure(Pa), Liquid phase fractions(mol/mol)

[Tequi, y] = thermo_LIBRARY('equilibrium_polar',T,P,x);

C.3.4 thermo_Enthalpy.m

%==

% Date By Explanation

%==

% 2002 Yıldız Original Code

% 2006 Ceylan Modification to Packed Dist.

function [hl,hv] = thermo_Enthalpy(T,P,x,y)

% function [hl,hv] = thermo_Enthalpy(T,P,x,y)

% Thermophysical and physical property calculation MEX File Interface

%

% ------------- Enthalpy routine -------------

% [hl,hv] : Liquid and Vapor phase specific enthalpy (J/mol)

% (T,P,x,y) : Initial Equilibrium temperature guess(K), Pressure(Pa),

% Liquid phase fractions(mol/mol), vapor phase fractions(mol/mol)

[hl,hv] = thermo_LIBRARY('enthalpy',T,P,x,y);

C.3.5 thermo_L_Density.m

%==

% Date By Explanation

%==

% 2002 Yıldız Original Code

% 2006 Ceylan Modification to Packed Dist.

function [mwa, densa] = thermo_L_Density(T,P,x)

% function [mwa, densa] = thermo_L_Density(T,P,x)

% Thermophysical and physical property calculation MEX File Interface

%

% ------------- Density routine -------------

% [mwa, densa] : Average molecular weight (kg/mol), Average liquid phase density %(kg/m3)

% (T,P,x) : Initial Equilibrium temperature guess(K), Pressure(Pa), Liquid %phase fractions(mol/mol)

[mwa, densa] = thermo_LIBRARY('l_density',T,P,x);

C.3.6 thermo_G_Density.m

%==

% Date By Explanation

%==

% 2002 Yıldız Original Code

% 2006 Ceylan Modification to Packed Dist.

function [mwa, densa] = thermo_G_Density(T,P,x)

% function [mwa, densa] = thermo_G_Density(T,P,x)

% Thermophysical and physical property calculation MEX File Interface

%

% ------------- Density routine -------------

% [mwa, densa] : Average molecular weight (kg/mol), Average vapor phase density (kg/m3)

% (T,P,x) : Initial Equilibrium temperature guess(K), Pressure(Pa), Liquid phase fractions(mol/mol)

[mwa, densa] = thermo_LIBRARY('g_density',T,P,x);

115

C.3.7 thermo_LIBRARY.f

C ---

C ---

C MEX File Gateway implementation for Plant_Subroutines

C Date : 08-05-2001

C by Uğur YILDIZ

C ---

C ---

 subroutine mexFunction(nlhs, plhs, nrhs, prhs)

 include 'thermo_LIBRARY.h'

 include 'parameter.h'

 integer plhs(*), prhs(*) ! pointer to left-hand and right-hand side variables

 integer nlhs, nrhs ! # of variables in plhs, prhs

 integer mxCreateFull, mxGetString ! mx Functions declarations

 integer mxGetM, mxGetN, mxIsNumeric, mxIsString ! mx Functions declarations

 integer m, n, size, status, alloc_err ! Dummy variables

 integer Func_name_ptr ! Function name fortran pointers

 character*100 Func_name ! Function name for fortran use

c --- Input fortran pointers

 integer Input1_pr, Input2_pr, Input3_pr, Input4_pr, Input5_pr, Input6_pr, x_pr, y_pr, z_pr

c --- Output fortran pointers

 integer Output1_pr, Output2_pr, Output3_pr, Output4_pr, Output5_pr, Output6_pr

c --- Input arguments for fortran use

 integer,allocatable, dimension (:) :: int_Input1, int_Input2, int_Input3, int_Input4, int_Input5, int_Input6

 real*8,allocatable, dimension (:) :: real_Input1, real_Input2, real_Input3, real_Input4, real_Input5, real_Input6

 integer Input1_sz,Input2_sz,Input3_sz,Input4_sz,Input5_sz,Input6_sz

c --- Output arguments for fortran use

 integer,allocatable, dimension (:) :: int_Output1, int_Output2, int_Output3, int_Output4, int_Output5, int_Output6

 real*8,allocatable, dimension (:) :: real_Output1, real_Output2, real_Output3, real_Output4, real_Output5, real_Output6

 integer Output1_sz,Output2_sz,Output3_sz,Output4_sz,Output5_sz,Output6_sz

 real*8 x, y(3,3), z(3,3), ugur

C --- Check for at least one function is requested.

 if (nrhs .lt. 1) then

 call mexErrMsgTxt('Not a proper function selected. - [thermo_LIBRARY.dll]')

 endif

 if (mxIsString(prhs(1)) .ne. 1) then

 call mexErrMsgTxt('Function name parameter must be a valid string. - [thermo_LIBRARY.dll]')

 endif

 m = mxGetM(prhs(1))

 n = mxGetN(prhs(1))

 if (m .ne. 1) then

 call mexErrMsgTxt('Function name parameter must be a row vector. - [thermo_LIBRARY.dll]')

 endif

C --- Call the requested function.

C Get the string contents (dereference the input integer).

 status = mxGetString(prhs(1),Func_name,100)

C Check if mxGetString is successful.

 if (status .ne. 0) then

 call mexErrMsgTxt('String length must be less than 100. - [thermo_LIBRARY.dll]')

 endif

c -- ! Call initialization function

 if (Func_name.eq.'init') then

 status = 1

 if (nrhs .ne. 2) then

 call mexErrMsgTxt('One input (number of components) is required for the initialization. - (init) [thermo_LIBRARY.dll]')

 endif

 if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a numeric. - (init) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(2))

 n = mxGetN(prhs(2))

 if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - (init) [thermo_LIBRARY.dll]')

116

 Input1_pr = mxGetPr(prhs(2))

 status = 0

 allocate (int_Input1(1),STAT = alloc_err)

 status = status + alloc_err

 if (status .ne. 0) then

 if (allocated(int_Input1)) deallocate(int_Input1)

 call mexErrMsgTxt('Memory allocation error. - (init) [thermo_LIBRARY.dll]')

 endif

 call mxCopyPtrToInteger4(Input1_pr,int_Input1,1)

 status = 1

 call init(int_Input1,status)

 if (status.eq.0) then

 call mexPrintf('thermo_LIBRARY is initialized. - (init) [thermo_LIBRARY.dll]')

 else

 call mexErrMsgTxt('thermo_LIBRARY can not be initialized. - (init) [thermo_LIBRARY.dll]')

 endif

c --- ! Call enthalpy function

 elseif ((Func_name.eq.'enthalpy') .and. (lib_Inited.eq.1)) then

 if (nrhs .ne. 5) then

 call mexErrMsgTxt('Four inputs (T,P,x,y) is required. - (enthalpy) [thermo_LIBRARY.dll]')

 elseif (nlhs .ne. 2) then

 call mexErrMsgTxt('Two outputs (liquid and vapor entalphies) are required. - (enthalpy) [thermo_LIBRARY.dll]')

 endif

 if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a numeric. - (enthalpy) [thermo_LIBRARY.dll]')

 if (mxIsNumeric(prhs(3)) .ne. 1) call mexErrMsgTxt('Input #2 is not a numeric. - (enthalpy) [thermo_LIBRARY.dll]')

 if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsgTxt('Input #3 is not a numeric. - (enthalpy) [thermo_LIBRARY.dll]')

 if (mxIsNumeric(prhs(5)) .ne. 1) call mexErrMsgTxt('Input #4 is not a numeric. - (enthalpy) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(2))

 n = mxGetN(prhs(2))

 Input1_sz = m*n

 if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - (enthalpy) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(3))

 n = mxGetN(prhs(3))

 Input2_sz = m*n

 if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #2 is not a scalar. - (enthalpy) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(4))

 n = mxGetN(prhs(4))

 Input3_sz = m*n

 if (n .ne. nj .or. m .ne. 1) call mexErrMsgTxt('Input #3 is not a NC-element row vector. - (enthalpy) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(5))

 n = mxGetN(prhs(5))

 Input4_sz = m*n

 if (n .ne. nj .or. m .ne. 1) call mexErrMsgTxt('Input #4 is not a NC-element row vector. - (enthalpy) [thermo_LIBRARY.dll]')

 Input1_pr = mxGetPr(prhs(2))

 Input2_pr = mxGetPr(prhs(3))

 Input3_pr = mxGetPr(prhs(4))

 Input4_pr = mxGetPr(prhs(5))

 plhs(1) = mxCreateFull(1,1,0)

 plhs(2) = mxCreateFull(1,1,0)

 Output1_pr = mxGetPr(plhs(1))

 Output2_pr = mxGetPr(plhs(2))

 status = 0

 allocate (real_Input1(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Input2(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Input3(nj),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Input4(nj),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Output1(1),STAT = alloc_err)

 status = status + alloc_err

117

 allocate (real_Output2(1),STAT = alloc_err)

 status = status + alloc_err

 if (status .ne. 0) then

 if (allocated(real_Input1)) deallocate(real_Input1)

 if (allocated(real_Input2)) deallocate(real_Input2)

 if (allocated(real_Input3)) deallocate(real_Input3)

 if (allocated(real_Input4)) deallocate(real_Input4)

 if (allocated(real_Output1)) deallocate(real_Output1)

 if (allocated(real_Output2)) deallocate(real_Output2)

 call mexErrMsgTxt('Memory allocation error. - (enthalpy) [thermo_LIBRARY.dll]')

 endif

 call mxCopyPtrToReal8(Input1_pr,real_Input1,Input1_sz)

 call mxCopyPtrToReal8(Input2_pr,real_Input2,Input2_sz)

 call mxCopyPtrToReal8(Input3_pr,real_Input3,Input3_sz)

 call mxCopyPtrToReal8(Input4_pr,real_Input4,Input4_sz)

 call enth(real_Input1, real_Input2, real_Input3, real_Input4, real_Output1, real_Output2)

 call mxCopyReal8ToPtr(real_Output1,Output1_pr,1)

 call mxCopyReal8ToPtr(real_Output2,Output2_pr,1)

c --- ! Call liquid density function

 elseif ((Func_name.eq.'l_density') .and. (lib_Inited.eq.1)) then

 if (nrhs .ne. 4) then

 call mexErrMsgTxt('Three inputs (T,P,x) is required. - (density) [thermo_LIBRARY.dll]')

 elseif (nlhs .ne. 2) then

 call mexErrMsgTxt('Two outputs (Avg. mol. weight and density) are required. - (density) [thermo_LIBRARY.dll]')

 endif

 if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a numeric. - (density) [thermo_LIBRARY.dll]')

 if (mxIsNumeric(prhs(3)) .ne. 1) call mexErrMsgTxt('Input #2 is not a numeric. - (density) [thermo_LIBRARY.dll]')

 if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsgTxt('Input #3 is not a numeric. - (density) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(2))

 n = mxGetN(prhs(2))

 Input1_sz = m*n

 if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - (density) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(3))

 n = mxGetN(prhs(3))

 Input2_sz = m*n

 if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #2 is not a scalar. - (density) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(4))

 n = mxGetN(prhs(4))

 Input3_sz = m*n

 if (n .ne. nj .or. m .ne. 1) call mexErrMsgTxt('Input #3 is not a NC-element row vector. - (density) [thermo_LIBRARY.dll]')

 Input1_pr = mxGetPr(prhs(2))

 Input2_pr = mxGetPr(prhs(3))

 Input3_pr = mxGetPr(prhs(4))

 plhs(1) = mxCreateFull(1,1,0)

 plhs(2) = mxCreateFull(1,1,0)

 Output1_pr = mxGetPr(plhs(1))

 Output2_pr = mxGetPr(plhs(2))

 status = 0

 allocate (real_Input1(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Input2(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Input3(nj),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Output1(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Output2(1),STAT = alloc_err)

 status = status + alloc_err

 if (status .ne. 0) then

 if (allocated(real_Input1)) deallocate(real_Input1)

 if (allocated(real_Input2)) deallocate(real_Input2)

 if (allocated(real_Input3)) deallocate(real_Input3)

118

 if (allocated(real_Output1)) deallocate(real_Output1)

 if (allocated(real_Output2)) deallocate(real_Output2)

 call mexErrMsgTxt('Memory allocation error. - (density) [thermo_LIBRARY.dll]')

 endif

 call mxCopyPtrToReal8(Input1_pr,real_Input1,Input1_sz)

 call mxCopyPtrToReal8(Input2_pr,real_Input2,Input2_sz)

 call mxCopyPtrToReal8(Input3_pr,real_Input3,Input3_sz)

c subroutine pr_dens_l(t,p,x,mwa,densa)

 call pr_dens_l(real_Input1, real_Input2, real_Input3, real_Output1, real_Output2)

 call mxCopyReal8ToPtr(real_Output1,Output1_pr,1)

 call mxCopyReal8ToPtr(real_Output2,Output2_pr,1)

c --- ! Call vapor density function

 elseif ((Func_name.eq.'g_density') .and. (lib_Inited.eq.1)) then

 if (nrhs .ne. 4) then

 call mexErrMsgTxt('Three inputs (T,P,x) is required. - (density) [thermo_LIBRARY.dll]')

 elseif (nlhs .ne. 2) then

 call mexErrMsgTxt('Two outputs (Avg. mol. weight and density) are required. - (density) [thermo_LIBRARY.dll]')

 endif

 if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a numeric. - (density) [thermo_LIBRARY.dll]')

 if (mxIsNumeric(prhs(3)) .ne. 1) call mexErrMsgTxt('Input #2 is not a numeric. - (density) [thermo_LIBRARY.dll]')

 if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsgTxt('Input #3 is not a numeric. - (density) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(2))

 n = mxGetN(prhs(2))

 Input1_sz = m*n

 if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - (density) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(3))

 n = mxGetN(prhs(3))

 Input2_sz = m*n

 if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #2 is not a scalar. - (density) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(4))

 n = mxGetN(prhs(4))

 Input3_sz = m*n

 if (n .ne. nj .or. m .ne. 1) call mexErrMsgTxt('Input #3 is not a NC-element row vector. - (density) [thermo_LIBRARY.dll]')

 Input1_pr = mxGetPr(prhs(2))

 Input2_pr = mxGetPr(prhs(3))

 Input3_pr = mxGetPr(prhs(4))

 plhs(1) = mxCreateFull(1,1,0)

 plhs(2) = mxCreateFull(1,1,0)

 Output1_pr = mxGetPr(plhs(1))

 Output2_pr = mxGetPr(plhs(2))

 status = 0

 allocate (real_Input1(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Input2(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Input3(nj),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Output1(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Output2(1),STAT = alloc_err)

 status = status + alloc_err

 if (status .ne. 0) then

 if (allocated(real_Input1)) deallocate(real_Input1)

 if (allocated(real_Input2)) deallocate(real_Input2)

 if (allocated(real_Input3)) deallocate(real_Input3)

 if (allocated(real_Output1)) deallocate(real_Output1)

 if (allocated(real_Output2)) deallocate(real_Output2)

 call mexErrMsgTxt('Memory allocation error. - (density) [thermo_LIBRARY.dll]')

 endif

 call mxCopyPtrToReal8(Input1_pr,real_Input1,Input1_sz)

 call mxCopyPtrToReal8(Input2_pr,real_Input2,Input2_sz)

 call mxCopyPtrToReal8(Input3_pr,real_Input3,Input3_sz)

119

c subroutine pr_dens_g(t,p,x,mwa,densa)

 call pr_dens_g(real_Input1, real_Input2, real_Input3, real_Output1, real_Output2)

 call mxCopyReal8ToPtr(real_Output1,Output1_pr,1)

 call mxCopyReal8ToPtr(real_Output2,Output2_pr,1)

c --- ! Call equilibrium function_hydrocarbons

 elseif ((Func_name.eq.'equilibrium_hydrocarbons') .and. (lib_Inited.eq.1)) then

 if (nrhs .ne. 4) then

 call mexErrMsgTxt('Three inputs (T, P, x) is required. - (equilibrium) [thermo_LIBRARY.dll]')

 elseif (nlhs .ne. 2) then

 call mexErrMsgTxt('Two outputs (T and vapor comp.) are required. - (equilibrium) [thermo_LIBRARY.dll]')

 endif

 if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a numeric. - (equilibrium) [thermo_LIBRARY.dll]')

 if (mxIsNumeric(prhs(3)) .ne. 1) call mexErrMsgTxt('Input #2 is not a numeric. - (equilibrium) [thermo_LIBRARY.dll]')

 if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsgTxt('Input #3 is not a numeric. - (equilibrium) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(2))

 n = mxGetN(prhs(2))

 Input1_sz = m*n

 if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - (equilibrium) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(3))

 n = mxGetN(prhs(3))

 Input2_sz = m*n

 if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #2 is not a scalar. - (equilibrium) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(4))

 n = mxGetN(prhs(4))

 Input3_sz = m*n

 if (n .ne. nj .or. m .ne. 1)

 & call mexErrMsgTxt('Input #3 is not a NC-element row vector. - (equilibrium) [thermo_LIBRARY.dll]')

 Input1_pr = mxGetPr(prhs(2))

 Input2_pr = mxGetPr(prhs(3))

 Input3_pr = mxGetPr(prhs(4))

 plhs(1) = mxCreateFull(1,1,0)

 plhs(2) = mxCreateFull(1,nj,0)

 Output1_pr = mxGetPr(plhs(1))

 Output2_pr = mxGetPr(plhs(2))

 status = 0

 allocate (real_Input1(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Input2(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Input3(nj),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Output1(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Output2(nj),STAT = alloc_err)

 status = status + alloc_err

 if (status .ne. 0) then

 if (allocated(real_Input1)) deallocate(real_Input1)

 if (allocated(real_Input2)) deallocate(real_Input2)

 if (allocated(real_Input3)) deallocate(real_Input3)

 if (allocated(real_Output1)) deallocate(real_Output1)

 if (allocated(real_Output2)) deallocate(real_Output2)

 call mexErrMsgTxt('Memory allocation error. - (equilibrium) [thermo_LIBRARY.dll]')

 endif

 call mxCopyPtrToReal8(Input1_pr,real_Input1,Input1_sz)

 call mxCopyPtrToReal8(Input2_pr,real_Input2,Input2_sz)

 call mxCopyPtrToReal8(Input3_pr,real_Input3,Input3_sz)

c subroutine pr_equil_hydrocarbons(t,p,x,yy) ' t is also an output

 call pr_equil_hydrocarbons(real_Input1, real_Input2, real_Input3, real_Output2)

 real_Output1 = real_Input1

 call mxCopyReal8ToPtr(real_Output1,Output1_pr,1)

 call mxCopyReal8ToPtr(real_Output2,Output2_pr,nj)

c --- ! Call equilibrium function_polar

120

 elseif ((Func_name.eq.'equilibrium_polar') .and. (lib_Inited.eq.1)) then

 if (nrhs .ne. 4) then

 call mexErrMsgTxt('Three inputs (T, P, x) is required. - (equilibrium) [thermo_LIBRARY.dll]')

 elseif (nlhs .ne. 2) then

 call mexErrMsgTxt('Two outputs (T and vapor comp.) are required. - (equilibrium) [thermo_LIBRARY.dll]')

 endif

 if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a numeric. - (equilibrium) [thermo_LIBRARY.dll]')

 if (mxIsNumeric(prhs(3)) .ne. 1) call mexErrMsgTxt('Input #2 is not a numeric. - (equilibrium) [thermo_LIBRARY.dll]')

 if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsgTxt('Input #3 is not a numeric. - (equilibrium) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(2))

 n = mxGetN(prhs(2))

 Input1_sz = m*n

 if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - (equilibrium) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(3))

 n = mxGetN(prhs(3))

 Input2_sz = m*n

 if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #2 is not a scalar. - (equilibrium) [thermo_LIBRARY.dll]')

 m = mxGetM(prhs(4))

 n = mxGetN(prhs(4))

 Input3_sz = m*n

 if (n .ne. nj .or. m .ne. 1)

 & call mexErrMsgTxt('Input #3 is not a NC-element row vector. - (equilibrium) [thermo_LIBRARY.dll]')

 Input1_pr = mxGetPr(prhs(2))

 Input2_pr = mxGetPr(prhs(3))

 Input3_pr = mxGetPr(prhs(4))

 plhs(1) = mxCreateFull(1,1,0)

 plhs(2) = mxCreateFull(1,nj,0)

 Output1_pr = mxGetPr(plhs(1))

 Output2_pr = mxGetPr(plhs(2))

 status = 0

 allocate (real_Input1(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Input2(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Input3(nj),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Output1(1),STAT = alloc_err)

 status = status + alloc_err

 allocate (real_Output2(nj),STAT = alloc_err)

 status = status + alloc_err

 if (status .ne. 0) then

 if (allocated(real_Input1)) deallocate(real_Input1)

 if (allocated(real_Input2)) deallocate(real_Input2)

 if (allocated(real_Input3)) deallocate(real_Input3)

 if (allocated(real_Output1)) deallocate(real_Output1)

 if (allocated(real_Output2)) deallocate(real_Output2)

 call mexErrMsgTxt('Memory allocation error. - (equilibrium) [thermo_LIBRARY.dll]')

 endif

 call mxCopyPtrToReal8(Input1_pr,real_Input1,Input1_sz)

 call mxCopyPtrToReal8(Input2_pr,real_Input2,Input2_sz)

 call mxCopyPtrToReal8(Input3_pr,real_Input3,Input3_sz)

c subroutine pr_equil_polar(t,p,x,yy) ' t is also an output

 call pr_equil_polar(real_Input1, real_Input2, real_Input3, real_Output2)

 real_Output1 = real_Input1

 call mxCopyReal8ToPtr(real_Output1,Output1_pr,1)

 call mxCopyReal8ToPtr(real_Output2,Output2_pr,nj)

c --- ! No relevant function

 else

 call mexErrMsgTxt('Library is not initialized or No relevant function is requested. - [thermo_LIBRARY.dll]')

 endif

c --- ! Memory deallocation

 if (allocated(real_Input1)) deallocate(real_Input1)

121

 if (allocated(real_Input2)) deallocate(real_Input2)

 if (allocated(real_Input3)) deallocate(real_Input3)

 if (allocated(real_Input4)) deallocate(real_Input4)

 if (allocated(real_Input5)) deallocate(real_Input5)

 if (allocated(real_Input6)) deallocate(real_Input6)

 if (allocated(int_Input1)) deallocate(int_Input1)

 if (allocated(int_Input2)) deallocate(int_Input2)

 if (allocated(int_Input3)) deallocate(int_Input3)

 if (allocated(int_Input4)) deallocate(int_Input4)

 if (allocated(int_Input5)) deallocate(int_Input5)

 if (allocated(int_Input6)) deallocate(int_Input6)

 if (allocated(real_Output1)) deallocate(real_Output1)

 if (allocated(real_Output2)) deallocate(real_Output2)

 if (allocated(real_Output3)) deallocate(real_Output3)

 if (allocated(real_Output4)) deallocate(real_Output4)

 if (allocated(real_Output5)) deallocate(real_Output5)

 if (allocated(real_Output6)) deallocate(real_Output6)

 if (allocated(int_Output1)) deallocate(int_Output1)

 if (allocated(int_Output2)) deallocate(int_Output2)

 if (allocated(int_Output3)) deallocate(int_Output3)

 if (allocated(int_Output4)) deallocate(int_Output4)

 if (allocated(int_Output5)) deallocate(int_Output5)

 if (allocated(int_Output6)) deallocate(int_Output6)

 return

 end

C ---

C --- thermo_LIBRARY Initialization routine

C ---

 subroutine init(check_input,st)

 integer check_input, st

 include 'thermo_LIBRARY.h'

 include 'parameter.h'

 include 'common_plant.h'

C ------ Initialization of the 'plant' common statement in 'common_plant.h' -----------------

C ------ written by MTD (Revised by Uğur Yıldız)

 integer :: i,j,I_O_err

 integer :: thermo_LIBRARY_dummy_pr, thermo_LIBRARY_dummy_pi

C tolerance = 1.d-7

 open(5,file='thermo_data.dat',IOSTAT=I_O_err, ERR = 100)

 read(5,*)

 read(5,*) tolerance

 read(5,*)

 read(5,*)

 do i=1,nj

 read(5,*) mw(i),tc(i),tboil(i),pc(i),wc(i)

 enddo

 read(5,*)

 read(5,*)

 do i=1,nj

 read(5,*) (del(i,j),j=1,nj)

 enddo

 read(5,*)

 read(5,*)

 do i=1,nj

 read(5,*) cenh1(i),cenh2(i),cenh3(i),cenh4(i)

 enddo

 close(5)

C --

 if (check_input .eq. 1) then

 open(6,file='thermo_data_check.dat')

 write(6,*) 'tolerance'

 write(6,1) tolerance

122

 write(6,*)

 write(6,*) 'Mw(kg/mol) Tc(K) Tboil(K) Pc(Pa) w'

 do i=1,nj

 write(6,2) mw(i),tc(i),tboil(i),pc(i),wc(i)

 enddo

 write(6,*)

 write(6,*) 'del(binary interaction parameters)'

 do i=1,nj

 write(6,3) (del(i,j),j=1,nj)

 enddo

 write(6,*)

 write(6,*) ' cenh1 cenh2 cenh3 cenh4(J/molK)'

 do i=1,nj

 write(6,4) cenh1(i),cenh2(i),cenh3(i),cenh4(i)

 enddo

 close(6)

 endif

 lib_Inited = 1

 st = 0

 return

100 if (I_O_err.ne.0) then

 call mexErrMsgTxt('"thermo_data.dat" couldn"t be opened. - (init) [thermo_LIBRARY.dll]')

 lib_Inited = 0

 st = 1

 return

 endif

1 format(d11.3)

2 format(5d15.3)

3 format(d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1)

4 format(4d15.3)

 end subroutine

C ---

C Write statements in these routines are exchanged with mexErrMsgTxt and mexPrintf

c and also 'parameter.h' and 'plant_data.dat' are modified.

C ---

C ---

C Peng-Rabinson EOS Subroutines Written by Mustafa T. DOKUCU

C Date : 16-05-2001

C ---

c ---

 subroutine enth(t,p,x,y,hl,hv)

 !Usage:

 ! to calculate the ideal gas mixture enthalpy

 !Record of revisions:

 ! date programmer description of change

 ! ==== ========== =====================

 ! 18/03/2001 MTD original code

 !

 implicit none

 include 'parameter.h'

 include 'common_plant.h'

 ! Inputs

 ! ========

 real*8 :: t !temperature

 real*8 :: p !pressure

 real*8 :: x(nj) !liquid phase fractions

 real*8 :: y(nj) !vapour phase fractions

 ! Locals

 ! ========

 real*8 :: hl1 !ideal liquid mixture enthalpy

 real*8 :: hv1 !ideal vapour mixture enthalpy

 real*8 :: dhl !liquid enthalpy departure

123

 real*8 :: dhv !vapour enthalpy departure

 real*8 :: enigl !ideal gas enthalpy

 real*8 :: enigv !ideal gas enthalpy

 real*8 :: cl1,cv1

 real*8 :: cl2,cv2

 real*8 :: cl3,cv3

 real*8 :: cl4,cv4

 integer:: i

 integer:: ifase

 ! Outputs

 ! =========

 real*8 :: hl !liquid enthalpy

 real*8 :: hv !vapour enthalpy

 cl1 = 0.d0

 cv1 = 0.d0

 cl2 = 0.d0

 cv2 = 0.d0

 cl3 = 0.d0

 cv3 = 0.d0

 cl4 = 0.d0

 cv4 = 0.d0

 do i = 1,nj

 cl1 = cl1 + cenh1(i) * x(i)

 cl2 = cl2 + cenh2(i) * x(i)

 cl3 = cl3 + cenh3(i) * x(i)

 cl4 = cl4 + cenh4(i) * x(i)

 cv1 = cv1 + cenh1(i) * y(i)

 cv2 = cv2 + cenh2(i) * y(i)

 cv3 = cv3 + cenh3(i) * y(i)

 cv4 = cv4 + cenh4(i) * y(i)

 enddo

 enigl = cl1 * (t-trf) +

 & + (1.d0/2.d0) * cl2 * (t**2 - trf**2)

 & + (1.d0/3.d0) * cl3 * (t**3 - trf**3)

 & +(1.d0/4.d0) * cl4 * (t**4 - trf**4)

 enigv = cv1 * (t-trf) +

 & + (1.d0/2.d0) * cv2 * (t**2 - trf**2)

 & + (1.d0/3.d0) * cv3 * (t**3 - trf**3)

 & + (1.d0/4.d0) * cv4 * (t**4 - trf**4)

 ifase = 0

 call pr_enth(t,p,x,ifase,dhl)

 ifase = 1

 call pr_enth(t,p,y,ifase,dhv)

 hl = enigl + dhl + 20000.d0

 hv = enigv + dhv + 20000.d0

 return

 end subroutine

c ---

 subroutine pr_compr(a_mixture,b_mixture,z_liq,z_vap)

 !Usage:

 ! to solve the cubic eqution for the liquid and vapor

 !compressibility factors used for the estimation of species

 !fugacities

 !Record of revisions:

 ! date programmer description of change

 ! ==== ========== =====================

 ! 14/02/2001 MTD original code

 implicit none

 include 'parameter.h'

 include 'common_plant.h'

 ! Inputs

 ! ========

124

 real*8 :: a_mixture

 real*8 :: b_mixture

 ! Locals

 ! ========

 complex*8:: z_vap_cplx

 complex*8:: z_liq_cplx

 complex*8:: s1

 complex*8:: a

 complex*8:: b

 ! Outputs

 ! =========

 real*8:: z_vap

 real*8:: z_liq

 !convert the type declaration of the input variables to complex

 a = cmplx(a_mixture,0.d0)

 b = cmplx(b_mixture,0.d0)

 !calculate the liquid phase compressibility

 s1 = -(-36.0d0*a+144.0d0*a*b-48.0d0*b**2-224.0d0*b**3+48.0d0*b+8.0d0+12.0d0*sqrt(24.0d0*a*b-24.0d0*b**

 &2-192.0d0*b**3+264.0d0*a*b**2-3.0d0*a**2+24.0d0*a**2*b**2-120.0d0*a**2*b-48.0d0*a*b**4+336.0d0

 &*a*b**3-480.0d0*b**4+12.0d0*a**3-96.0d0*b**6-384.0d0*b**5))**(1.d0/3.d0)/12.0d0+(a-10.

 &d0/3.d0*b**2-4.d0/3.d0*B-1.d0/3.d0)/(-36.0d0*a+144.0d0*a*b-48.0d0*b**2-224.0d0*b**

 &3.0d0+48.0d0*b+8.0d0+12.0d0*sqrt(24.0d0*a*b-24.0d0*b**2-192.0d0*b**3+264.0d0*a*b**2-3.0d0*a**2+24.0d0*a**2

 &*b**2-120.0d0*a**2*b-48.0d0*a*b**4+336.0d0*a*b**3-480.0d0*b**4+12.0d0*a**3-96.0d0*b**6-384.0d0

 &*B**5))**(1.d0/3.d0)

 z_liq_cplx = s1+1.d0/3.d0-b/3.d0+cmplx(0.d0,1.d0)*sqrt(3.d0)*((-36.d0*a+144.d0*a*b-

 &48.d0*b**2-224.d0*b**3+48.d0*b+8.d0+12*sqrt(24.d0*a*b-24.d0*b**2-192.d0*b**3+264.d0*a*b**2

 &-3.d0*a**2+24.d0*a**2*b**2-120.d0*a**2*b-48.d0*a*b**4+336.d0*a*b**3-480.d0*b**4+12.d0*a

 &**3-96.d0*b**6-384.d0*b**5))**(1.d0/3.d0)/6.d0+(2.d0*a-20.d0/3.d0*b**2-8.d0/3.

 &d0*b-2.d0/3.d0)/(-36.d0*a+144.d0*a*b-48.d0*b**2-224.d0*b**3+48.d0*b+8+12.d0*sqrt(24.d0*

 &a*b-24.d0*b**2-192.d0*b**3+264.d0*a*b**2-3.d0*a**2+24.d0*a**2*b**2-120.d0*a**2*b-48.d0*

 &a*b**4+336.d0*a*b**3-480.d0*b**4+12.d0*a**3-96.d0*b**6-384.d0*b**5))**(1.d0/3.d0)

 &)/2.d0

 !calculate the vapor phase compressibility

 z_vap_cplx =(-36.d0*a+144.d0*a*b-48.d0*b**2-224.d0*b**3+48.d0*b+8.d0+12.d0*sqrt(24.d0*a*b-24.d0*b**2

 &-192.d0*b**3+264.d0*a*b**2-3.d0*a**2+24.d0*a**2*b**2-120.d0*a**2*b-48.d0*a*b**4+336.d0*

 &a*b**3-480.d0*b**4+12.d0*a**3-96.d0*b**6-384.d0*b**5))**(1.d0/3.d0)/6.d0-(2.d0*a-20.

 &d0/3.d0*b**2-8.d0/3.d0*b-2.d0/3.d0)/(-36.d0*a+144.d0*a*b-48.d0*b**2-224.d0*b**

 &3+48.d0*b+8.d0+12.d0*sqrt(24.d0*a*b-24.d0*b**2-192.d0*b**3+264.d0*a*b**2-3.d0*a**2+24.d0*a**2

 &*b**2-120.d0*a**2*b-48.d0*a*b**4+336.d0*a*b**3-480.d0*b**4+12.d0*a**3-96.d0*b**6-384.d0

 &*b**5))**(1.d0/3.d0)+1.d0/3.d0-b/3.d0

 !there is no liquid phase if the liquid compressibility root is a complex #

 !in this case the compressibility root returned as equal to vapor phase

 !compressibility

 if (aimag(z_liq_cplx) > tolerance) then

 z_liq = real(z_vap_cplx)

 else

 z_liq = real(z_liq_cplx)

 endif

 !the root found for the vapor compressibility is erronaeous if it is

 !a complex # in this case the compressibility root returned as zero to

 !the mainprogram

 if (aimag(z_vap_cplx) > tolerance) then

 call mexPrintf('vapor phase compressibility can not be calculated. - (pr_compr) [thermo_LIBRARY.dll]\n')

c write(*,*) 'vapor phase compressibility can not be calculated'

 z_vap = 0.d0

 else

 z_vap = real(z_vap_cplx)

 endif

 return

 end subroutine

c ---

 subroutine pr_cons(t,a,aij,b)

125

 !Usage:

 ! to calculate the constants A and B of the

 !Peng-Robinson EOS which is explained in p239 (Sandler)

 !Record of revisions:

 ! date programmer description of change

 ! ==== ========== =====================

 ! 12/03/2001 MTD original code

 implicit none

 include 'parameter.h'

 include 'common_plant.h'

 ! Inputs

 ! ========

 real*8:: t !temperature [K]

 !

 ! Locals

 ! ========

 real*8 :: ac(nj) !constant

 real*8 :: xk !constant

 real*8 :: alsqr !constant

 real*8 :: alpha !constant

 real*8 :: tr !reduced temperature

 integer:: i

 integer:: j

 ! Outputs

 ! =========

 real*8 :: a(nj) !a of the species

 real*8 :: b(nj) !b of the species

 real*8 :: aij(nj,nj) !interacting a's of the species

 do i=1,nj

 ac(i) = 0.457235529d0 * ((rg * tc(i))**2) / pc(i) !eqn 4.7-1(first part)

 b(i) = 7.779607400000001d-2 * rg * tc(i) / pc(i) !eqn 4.7-2

 xk = 0.37464d0 + (1.54226d0 - 0.26992d0 * wc(i)) * wc(i) !eqn 4.7-4

 tr = t / tc(i)

 alsqr = 1.d0 + xk * (1.d0 - dsqrt(tr))

 alpha = alsqr * alsqr !eqn 4.7-3

 a(i) = alpha * ac(i) !eqn 4.7-1(whole)

 enddo

 do i=1,(nj-1)

 do j=(i+1),nj

 aij(i,j) = (1.d0 - del(i,j)) * dsqrt(a(i) * a(j)) !eqn 7.4-9

 aij(j,i) = aij(i,j)

 enddo

 enddo

 return

 end subroutine

c ---

 subroutine pr_dens_l(t,p,x,mwa,densa)

 !Usage:

 ! to calculate the average molecular weight and the

 !density of the liquid phase using Peng-Robinson EOS

 !Record of revisions:

 ! date programmer description of change

 ! ==== ========== =====================

 ! 25/03/2001 MTD original code

 ! 20/11/2006 HC modification to liquid density

 implicit none

 include 'parameter.h'

 include 'common_plant.h'

 ! Inputs

 ! ========

 real*8 :: t

 real*8 :: p

126

 real*8 :: x(nj)

 ! Locals

 ! ========

 real*8 :: aa

 real*8 :: bb

 real*8 :: ca

 real*8 :: cb

 real*8 :: a(nj)

 real*8 :: b(nj)

 real*8 :: zx(nj)

 real*8 :: aij(nj,nj)

 real*8 :: z_liq

 real*8 :: z_vap

 real*8 :: zz

 real*8 :: vv

 real*8 :: sumx

 integer:: i

 integer:: j

 ! Outputs

 ! =========

 real*8 :: mwa

 real*8 :: densa

 mwa = 0.d0

 sumx = 0.d0

 do i = 1,nj

 sumx = sumx + x(i)

 enddo

 do i = 1,nj

 zx(i) = x(i) / sumx

 enddo

 do i = 1,nj

 mwa = mwa + mw(i) * zx(i)

 enddo

 call pr_cons(t,a,aij,b)

 aa = 0.d0

 bb = 0.d0

 do i = 1,nj

 bb = bb + zx(i) * b(i)

 do j = 1,nj

 if (i == j) then

 aa = aa + zx(i) * zx(i) * a(i)

 else

 aa = aa + zx(i) * zx(j) * aij(i,j)

 endif

 enddo

 enddo

 ca = aa * p / ((rg * t)**2)

 cb = bb * p / (rg * t)

 call pr_compr(ca,cb,z_liq,z_vap)

 zz = z_liq

 vv = zz * rg * t / p

 densa = mwa / vv

 return

 end subroutine

c ---

 subroutine pr_dens_g(t,p,x,mwa,densa)

 !Usage:

 ! to calculate the average molecular weight and the

 !density of the vapor phase using Peng-Robinson EOS

 !Record of revisions:

 ! date programmer description of change

127

 ! ==== ========== =====================

 ! 25/03/2001 MTD original code

 ! 20/11/2006 HC modification to vapor density

 implicit none

 include 'parameter.h'

 include 'common_plant.h'

 ! Inputs

 ! ========

 real*8 :: t

 real*8 :: p

 real*8 :: x(nj)

 ! Locals

 ! ========

 real*8 :: aa

 real*8 :: bb

 real*8 :: ca

 real*8 :: cb

 real*8 :: a(nj)

 real*8 :: b(nj)

 real*8 :: zx(nj)

 real*8 :: aij(nj,nj)

 real*8 :: z_liq

 real*8 :: z_vap

 real*8 :: zz

 real*8 :: vv

 real*8 :: sumx

 integer:: i

 integer:: j

 ! Outputs

 ! =========

 real*8 :: mwa

 real*8 :: densa

 mwa = 0.d0

 sumx = 0.d0

 do i = 1,nj

 sumx = sumx + x(i)

 enddo

 do i = 1,nj

 zx(i) = x(i) / sumx

 enddo

 do i = 1,nj

 mwa = mwa + mw(i) * zx(i)

 enddo

 call pr_cons(t,a,aij,b)

 aa = 0.d0

 bb = 0.d0

 do i = 1,nj

 bb = bb + zx(i) * b(i)

 do j = 1,nj

 if (i == j) then

 aa = aa + zx(i) * zx(i) * a(i)

 else

 aa = aa + zx(i) * zx(j) * aij(i,j)

 endif

 enddo

 enddo

 ca = aa * p / ((rg * t)**2)

 cb = bb * p / (rg * t)

 call pr_compr(ca,cb,z_liq,z_vap)

 zz = z_vap

 vv = zz * rg * t / p

 densa = mwa / vv

128

 return

 end subroutine

c --

 subroutine pr_enth(t,p,zx,ifase,dh)

 !Usage:

 !to calculate the enthalpy departure of a mixture

 !as explained in Sandler p425

 !Peng-Robinson EOS is explained in p239

 !Record of revisions:

 ! date programmer description of change

 ! ==== ========== =======================

 !12/03/2001 MTD original code

 implicit none

 include 'parameter.h'

 include 'common_plant.h'

 ! Inputs

 ! ========

 real*8 :: t

 real*8 :: p

 real*8 :: zx(nj)

 ! Locals

 ! ========

 real*8 :: zz

 real*8 :: a(nj)

 real*8 :: b(nj)

 real*8 :: xk(nj)

 real*8 :: aij(nj,nj)

 real*8 :: c1,c2,c3,c4,c5,c6,c7,c8,c9

 real*8 :: a1,a2,a3,a4

 real*8 :: anum,aden

 real*8 :: cnum,cden

 real*8 :: damdt

 real*8 :: aa

 real*8 :: ca

 real*8 :: bb

 real*8 :: cb

 real*8 :: z_liq

 real*8 :: z_vap

 real*8 :: tr(nj)

 real*8 :: dh0,dh1,dh2

 integer:: i

 integer:: j

 integer:: ifase

 ! Outputs

 ! =========

 real*8:: dh

 call pr_cons(t,a,aij,b)

 aa = 0.d0

 bb = 0.d0

 do i = 1,nj

 bb = bb + zx(i) * b(i)

 do j = 1,nj

 if (i == j) then

 aa = aa + zx(i) * zx(i) * a(i)

 else

 aa = aa + zx(i) * zx(j) * aij(i,j)

 endif

 enddo

 enddo

 ca = aa * p / ((rg * t)**2)

 cb = bb * p / (rg * t)

 call pr_compr(ca,cb,z_liq,z_vap)

129

 if (ifase == 0) then

 zz = z_liq

 else

 zz = z_vap

 endif

 do i = 1,nj

 xk(i) = 0.37464d0 + (1.54226d0 - 0.26992d0 * wc(i)) * wc(i) !eqn 4.7-4

 enddo

 damdt = 0.d0

 do i= 1,nj

 do j = 1,nj

 tr(i) = t / tc(i)

 tr(j) = t / tc(j)

 c1 = (-0.457235529d0/2.d0) * (-1 + del(i,j)) * rg**4

 c2 = tc(i) * (-1.d0 - xk(i) + xk(i) * dsqrt(tr(i)))

 c3 = tc(j) * (-1.d0 - xk(j) + xk(j) * dsqrt(tr(j)))

 c4 = -tc(j) * xk(i) * dsqrt(tr(j))

 & -tc(j) * xk(i) * dsqrt(tr(j)) * xk(j)

 c5 = 2.d0 * xk(i) * t * xk(j)

 & -tc(i) * xk(j) * dsqrt(tr(i))

 c6 = -tc(i) * xk(j) * dsqrt(tr(i)) * xk(i)

 c7 = (-1.d0 - xk(i) + xk(i) * dsqrt(tr(i)))**2

 c8 = (-1.d0 - xk(j) + xk(j) * dsqrt(tr(j)))**2 / pc(i) / pc(j)

 c9 = pc(i) * pc(j) * dsqrt(tr(i)) * dsqrt(tr(j))

 cnum = c4 + c5 + c6

 cden = dsqrt(rg**4 * tc(i)**2 * c7 * tc(j)**2 * c8)

 & * pc(i) * pc(j) * dsqrt(tr(i)) * dsqrt(tr(j))

 damdt = damdt + zx(i) * zx(j) * (c1 * c2 * c3 * cnum / cden)

 enddo

 enddo

 a1 = dsqrt(2.d0)

 a2 = a1 + 1.d0

 a3 = a1 - 1.d0

 a4 = a1 * 2.d0

 anum = zz + (a2 * cb)

 aden = zz - (a3 * cb)

 dh0 = (rg * t)*(zz -1.d0)

 dh1 = (t*damdt - aa)/a4/bb

 dh2 = dlog(anum/aden)

 dh = (dh0 + dh1*dh2)

 return

 end subroutine

c ---

 subroutine pr_equil_hydrocarbons(t,p,x,yy)

 !Usage:

 ! to calculate the bubble point temperature using

 !Peng-Robinson EOS similar to VLMU.BAS of Sandler

 !Record of revisions:

 ! date programmer description of change

 ! ==== ========== =====================

 ! 12/03/2001 MTD original code

 ! 12/06/2001 UGUR to be able to find equilibrium staff

 ! when a zero-fraction component exist.

 ! some checks were performed before calculation.

 implicit none

 include 'parameter.h'

 include 'common_plant.h'

 ! Inputs

 ! ========

 real*8:: t ! t is also an output

 real*8:: p

 real*8:: x(nj)

130

 ! Locals

 ! ========

 real*8 :: s(2),sum,sumy

 real*8 :: dt1,dt2

 real*8 :: dlnp

 real*8 :: ps(nj)

 real*8 :: xk1(nj)

 real*8 :: a(nj)

 real*8 :: aij(nj,nj)

 real*8 :: b(nj)

 real*8 :: zx(nj)

 real*8 :: fugacity(nj)

 real*8 :: f1(nj),f2(nj)

 real*8 :: zz,zz1,zz2

 real*8 :: y1(nj),y2(nj)

 real*8 :: yk

 real*8 :: test,ttest

 real*8 :: dsdt,dlt,dd

 real*8 :: neg_dd,neg_dlt

 real*8 :: tbg,tcg

 integer:: i

 integer:: j

 integer:: k

 integer:: nc

 integer:: kkk

 integer:: nloop

 integer:: iconv

 integer:: ifase

 integer:: itest

 integer:: kvalue

 logical:: reguess

 ! Outputs

 ! =========

 real*8 yy(nj)

 integer:: comp_index(nj)

 common /nc/ nc

 ! zero component check

 j=0

 do i=1,nj

 if (x(i).gt.0.0d0) then

 j=j+1

 comp_index(j) = i

 else

 yy(i) = 0.0d0

 endif

 end do

 nc = j

 k = 0

 kvalue = 0

 iconv = 0

 sum = 0.d0

 reguess = .false.

 do i = 1,nc

 sum = sum + x(comp_index(i))

 enddo

 do i = 1,nc

 x(comp_index(i)) = x(comp_index(i))/sum

 enddo

 !Initial guess procedure for Ki = yi / xi and yi

3870 if (k > 30) then

 call mexErrMsgTxt('too many calculations. - (pr_equil) [thermo_LIBRARY.dll]')

131

c write(*,*) 'too many calculations'

 goto 4880

 endif

 do i = 1,nc

 if (kvalue == 1) then

 yy(comp_index(i)) = x(comp_index(i)) * xk1(comp_index(i))

 else

 dt1 = (1.d0 / t) - (1.d0 / tboil(comp_index(i)))

 dt2 = (1.d0 / tc(comp_index(i))) - (1.d0 / tboil(comp_index(i)))

 dlnp = dlog(pc(comp_index(i)))

 ps(comp_index(i)) = dexp(dlnp * dt1 / dt2)

 xk1(comp_index(i)) = ps(comp_index(i)) / p

 yy(comp_index(i)) = x(comp_index(i)) * xk1(comp_index(i))

 endif

 enddo

 !Calculation of liquid fugacities

 kkk = 0

3980 nloop = 1

 if (t < 50.d0) goto 4590

 if (t > 1200.d0) goto 4590

 k = k + 1

 !call pr_cons

4020 call pr_cons(t,a,aij,b)

 do i=1,nc

 zx(comp_index(i)) = x(comp_index(i))

 enddo

 !phase liquid 1

 ifase = 1

 !call pr_fuga

 {UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}

 call pr_fuga(t,p,ifase,zx,zz,a,aij,b,fugacity)

 !{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{U

GUR}{UGUR}

 do i = 1,nc

 f1(comp_index(i)) = fugacity(comp_index(i))

 enddo

 zz1 = zz

 sumy = 0.d0

 do i = 1,nc

 y2(comp_index(i)) = yy(comp_index(i))

 sumy = sumy + yy(comp_index(i))

 enddo

 do i = 1,nc

 yy(comp_index(i)) = yy(comp_index(i)) / sumy

 enddo

4160 sumy = 0.d0

4170 kkk = kkk + 1

 do i = 1,nc

 zx(comp_index(i)) = yy(comp_index(i))

 enddo

 !phase vapor 0

 ifase = 0

 !call pr_fuga

 {UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}

 call pr_fuga(t,p,ifase,zx,zz,a,aij,b,fugacity)

 !{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{U

GUR}{UGUR}

 do i = 1,nc

 f2(comp_index(i)) = fugacity(comp_index(i))

 enddo

 zz2 = zz

 do i = 1,nc

132

 yy(comp_index(i)) = f1(comp_index(i)) * yy(comp_index(i)) / f2(comp_index(i))

 y1(comp_index(i)) = yy(comp_index(i))

 sumy = sumy + yy(comp_index(i))

 enddo

 itest = 0

 do i = 1,nc

 test = dabs(y1(comp_index(i)) - y2(comp_index(i)))

 if (test > tolerance) then

 itest = itest +1

 endif

 yy(comp_index(i)) = yy(comp_index(i)) / sumy

 enddo

 if (kkk > 25) goto 4400

 if (itest <= 0) goto 4400

 do i = 1,nc

 y2(comp_index(i)) = y1(comp_index(i))

 enddo

 goto 4160

4400 s(nloop) = sumy

 kkk = 0

 if ((nloop - 1) > 0) goto 4460

 nloop = 2

 t = t - 0.005d0

 goto 4020

4460 dsdt = (s(2) - s(1)) / (0.005d0)

 if (dabs(dsdt) < tolerance) goto 4590

 dlt = (s(1) - 1.d0) / dsdt

 if (dabs(dlt) < 0.0026) goto 4670

 if (k > 50) goto 4650

 if (k < 11) then

 dd = 20.d0

 endif

 if (k >= 11) then

 dd = 5.d0

 endif

 if (dlt > dd) then

 t = t + dd

 endif

 if (dlt > dd) goto 3980

 neg_dd = -1.d0 * dd

 if (dlt < neg_dd) then

 t = t - dd

 endif

 neg_dlt = -1.d0 * dlt

 if (neg_dlt > dd) goto 3980

 t = t + dlt + 0.0025

 goto 3980

4590 if (k > 2) goto 4630

 if (zz1 >= 0.307d0) then

 t = t - 10.d0

 endif

 if (zz1 <= 0.307d0) then

 t = t + 10.d0

 endif

 goto 3980

4630 call mexErrMsgTxt('not converging: one-phase region or poor initial guess. - (pr_equil) [thermo_LIBRARY.dll]')

c4630 write(*,*) 'not converging: one-phase region or poor initial guess'

 if (reguess == .false.) then

 reguess = .true.

 tbg = 0.d0

 tcg = 0.d0

 do i = 1,nc

133

 tbg = tbg + x(comp_index(i)) * tboil(comp_index(i))

 tcg = tcg + x(comp_index(i)) * tc(comp_index(i))

 enddo

 t = 0.5d0 * (tbg + tcg)

 call mexPrintf('it should print "t" here. - (pr_equil) [thermo_LIBRARY.dll]')

c write(*,*) t

 goto 3870

 else

 goto 4880

 endif

4650 call mexErrMsgTxt('bubble point temperature calculation did not converge. - (pr_equil) [thermo_LIBRARY.dll]')

c4650 write(*,*) 'bubble point temperature calculation did not converge'

 goto 4880

4670 yk = k

 ttest = (zz1 - zz2)**2

 if (ttest > tolerance) goto 4730

 if (zz1 >= 0.307d0) then

 t = t - 25.d0 / dsqrt(yk)

 endif

 if (zz1 < 0.307d0) then

 t = t + 25.d0 / dsqrt(yk)

 endif

 kvalue = 0

 goto 3870

4730 do i = 1,nc

 xk1(comp_index(i)) = yy(comp_index(i)) / x(comp_index(i))

 enddo

 return

4880 call mexErrMsgTxt('unsuccessful bubble point calculation. - (pr_equil) [thermo_LIBRARY.dll]')

c4880 write(*,*) 'unsuccessful bubble point calculation'

 end subroutine

c ---

 subroutine pr_equil_polar(t,p,x,yy)

 !Usage:

 ! to calculate the bubble point temperature using

 !Peng-Robinson EOS similar to VLMU.BAS of Sandler

 !Record of revisions:

 ! date programmer description of change

 ! ==== ========== =====================

 ! 12/03/2001 MTD original code

 ! 12/06/2001 UGUR to be able to find equilibrium staff

 ! when a zero-fraction component exist.

 ! some checks were performed before calculation.

 ! ALMILA gama-fi approach using NRTL activity coeff. model

 ! 05/03/2007 HATİCE modification of calculation of vapor pressure and

 ! predictions of binary interaction parameters for ethanol and water

 implicit none

 include 'parameter.h'

 include 'common_plant.h'

 ! Inputs

 ! ========

 real*8:: t ! t is also an output

 real*8:: p

 real*8:: x(nj)

 ! Locals

 ! ========

 real*8 :: s(2),sum,sumy

 real*8 :: dt1,dt2

 real*8 :: dlnp

 real*8 :: ps(nj)

 real*8 :: xk1(nj)

 real*8 :: a(nj)

134

 real*8 :: aij(nj,nj)

 real*8 :: b(nj)

 real*8 :: zx(nj)

 real*8 :: fugacity(nj)

 real*8 :: f1(nj),f2(nj)

 real*8 :: zz,zz1,zz2

 real*8 :: y1(nj),y2(nj)

 real*8 :: yk

 real*8 :: test,ttest

 real*8 :: dsdt,dlt,dd

 real*8 :: neg_dd,neg_dlt

 real*8 :: tbg,tcg

 integer:: i

 integer:: j

 integer:: k

 integer:: nc

 integer:: kkk

 integer:: nloop

 integer:: iconv

 integer:: ifase

 integer:: itest

 integer:: kvalue

 logical:: reguess

 real*8 :: ant_cons_a(nj),ant_cons_b(nj),ant_cons_c(nj), ant_cons_d(nj)

 real*8 :: gama(nj),sumy1

 integer:: loop

 real*8 :: alact(nj),tagx1,tagx2,total,xgkj,xgij1

 real*8 :: alp(nj,nj),ta(nj,nj),gij(nj,nj),x_pr(nj)

 real*8 :: rg_cal

 ! Outputs

 ! =========

 real*8 yy(nj)

 integer:: comp_index(nj)

 common /nc/ nc

 ! zero component check

 j=0

 do i=1,nj

 if (x(i).gt.0.0d0) then

 j=j+1

 comp_index(j) = i

 else

 yy(i) = 0.0d0

 endif

 end do

 nc = j

c (1) ethanol (2) water !Wagner equation constants

 ant_cons_a(1) = -8.51838d0

 ant_cons_a(2) = -7.76451d0

 ant_cons_b(1) = 0.34163d0

 ant_cons_b(2) = 1.45838d0

 ant_cons_c(1) = -5.73683d0

 ant_cons_c(2) = -2.77580d0

 ant_cons_d(1) = 8.32581d0

 ant_cons_d(2) = -1.23303d0

 sum = 0.0d0

 do i = 1,nc

 sum = sum + x(comp_index(i))

 enddo

 do i = 1,nc

 x(comp_index(i)) = x(comp_index(i))/sum

 enddo

 loop = 0

135

10 loop = loop+1

 if (loop .gt. 1800) go to 4630

 sumy = 0.0d0

c Activity coeffients calculation from NRTL model

c (1) ethanol (2) water

 aij(1,2) =-175.0164d0

 aij(2,1) = 1440.3479d0

 alp(1,2) = 0.2959d0

 do i=1,nj-1

 do j=i+1,nj

 alp(j,i) = alp(i,j)

 enddo

 enddo

c do i=1,nj

c ta(i,i) = 0.0d0

c enddo

 rg_cal = rg/4.184 !gas constant [cal/(mol.K)]

 do i=1,nj

 do j=1,nj

 if (i .eq. j) then

 ta(i,j) = 0.0d0

 else

 ta(i,j) = aij(i,j) /(rg_cal * t)

 endif

 gij(i,j) = dexp(-alp(i,j)*ta(i,j))

 enddo

 enddo

 if (nc .eq. 2) then

 do i=1,nc

 do j=1,nc

 if (i .eq. j) then

 else

 gama(comp_index(i)) = x(comp_index(j))**2*(ta(j,i)

 & *(gij(comp_index(j),comp_index(i))/(x(comp_index(i))

 & +x(comp_index(j))*gij(comp_index(j),comp_index(i))))**2

 & + ta(i,j)* gij(comp_index(i),comp_index(j))/ (x(comp_index(j))

 & + x(comp_index(i)) * gij(comp_index(i),comp_index(j)))**2)

 gama(comp_index(i)) = dexp(gama(comp_index(i)))

 endif

 enddo

 enddo

 else

 do i=1,nc

 tagx1 = 0.0d0

 xgij1 = 0.0d0

 do j = 1,nc

 tagx1 = tagx1 + ta(comp_index(j),comp_index(i))*gij(comp_index(j),comp_index(i))*x(comp_index(j))

 xgij1 = xgij1 + x(comp_index(j))*gij(comp_index(j),comp_index(i))

 enddo

 total = 0.0d0

 do j=1,nc

 xgkj = 0.0d0

 do k=1,nc

 xgkj = xgkj + x(comp_index(k))*gij(comp_index(k),comp_index(j))

 enddo

 tagx2 = 0.0d0

 do k=1,nc

 tagx2 = tagx2 + x(comp_index(k))*ta(comp_index(k),comp_index(j))*gij(comp_index(k),comp_index(j))

 enddo

 total = total + x(comp_index(j))*gij(comp_index(i),comp_index(j))/xgkj*

 &(ta(comp_index(i),comp_index(j)) - tagx2/xgkj)

 enddo

136

 alact(comp_index(i)) = tagx1 / xgij1 + total

 gama(comp_index(i)) = dexp(alact(comp_index(i)))

 enddo

 endif

c End of activity coefficients calculation

! Vapor Pressure calculation

 do i=1,nc

 x_pr(comp_index(i))= (1 - t / tc(comp_index(i)))

 ps(comp_index(i))= (1-x_pr(comp_index(i)))**(-1)

 & *((ant_cons_a(comp_index(i)) * x_pr(comp_index(i)))

 & + (ant_cons_b(comp_index(i))* x_pr(comp_index(i))**(15/10))

 & +(ant_cons_c(comp_index(i))* x_pr(comp_index(i))**3)

 & +(ant_cons_d(comp_index(i))* x_pr(comp_index(i))**6))

 ps(comp_index(i)) = dexp(ps(comp_index(i)))

 ps(comp_index(i))= ps(comp_index(i))*pc(comp_index(i))

 enddo

! End of vapor pressure calculation

 do i=1,nc

 yy(comp_index(i)) = x(comp_index(i))*gama(comp_index(i))*ps(comp_index(i))/p

 sumy = sumy + yy(comp_index(i))

 enddo

 do j=1,nc

 y2(comp_index(j)) = yy(comp_index(j))*1.0d0/sumy

 yy(comp_index(j)) = y2(comp_index(j))

 enddo

 !call pr_cons

 call pr_cons(t,a,aij,b)

11 do i = 1,nc

 zx(comp_index(i)) = yy(comp_index(i))

 enddo

 !phase vapor 0

 ifase = 0

 !call pr_fuga

 call pr_fuga(t,p,ifase,zx,zz,a,aij,b,fugacity)

 do i = 1,nc

 f2(comp_index(i)) = fugacity(comp_index(i))

 enddo

 sumy1 = 0.0d0

 do i=1,nc

 !y*p*fiv=x*gama*pvap

 yy(comp_index(i)) = x(comp_index(i))*gama(comp_index(i))*ps(comp_index(i))*yy(comp_index(i))/f2(comp_index(i))

 if (yy(comp_index(i)) .lt. 1.0d-16) yy(comp_index(i))=0.0d0

 if (yy(comp_index(i)) .gt. 1.0d0) yy(comp_index(i))=1.0d0

 enddo

 do i=1,nc

 sumy1 = sumy1+yy(comp_index(i))

 enddo

 dsdt = (sumy-sumy1)/0.005d0

 if ((sumy-sumy1) .lt. tolerance) go to 12

 sumy=sumy1

 do i=1,nc

 yy(comp_index(i)) = yy(comp_index(i))*1.0d0/sumy1

 enddo

 go to 11

12 if (dabs((sumy1-1.0d0)/dsdt) < 0.0026d0) return

 dlt = (sumy1-1.0d0)/dsdt

 dd = 5.0d0

 if (dlt > dd) then

 t = t+dd

 endif

 if (dlt > dd) go to 10

137

 neg_dd = -1.d0 * dd

 if (dlt < neg_dd) then

 t = t-dd

 endif

 neg_dlt = -1.0d0 * dlt

 if (neg_dlt > dd) go to 10

 t = t + dlt + 0.0025d0

 go to 10

4630 call mexErrMsgTxt('not converging: one-phase region or poor initial guess. - (pr_equil) [thermo_LIBRARY.dll]')

 return

 end subroutine

c ---

 subroutine pr_fuga(t,p,ifase,zx,zz,a,aij,b,fugacity)

 !Usage:

 !to calculate the species fugacity f(T,P,xi)

 !as explained in Sandler p409

 !Peng-Robinson EOS is explained in p239

 !Record of revisions:

 ! date programmer description of change

 ! ==== ========== =====================

 !12/03/2001 MTD original code

 ! 12/06/2001 UGUR to be able to find equilibrium staff

 ! when a zero-fraction component exist.

 ! some checks were performed before calculation.

 implicit none

 include 'parameter.h'

 include 'common_plant.h'

 ! Inputs

 ! ========

 real*8 :: t

 real*8 :: p

 real*8 :: zx(nj)

 real*8 :: a(nj)

 real*8 :: b(nj)

 real*8 :: aij(nj,nj)

 integer:: ifase

 ! Locals

 ! ========

 real*8 :: c1

 real*8 :: c2

 real*8 :: c3

 real*8 :: sa(nj)

 real*8 :: aa

 real*8 :: bb

 real*8 :: cb

 real*8 :: ca

 real*8 :: zz

 real*8 :: z_liq

 real*8 :: z_vap

 real*8 :: fox(nj)

 real*8 :: ag1

 real*8 :: ag2

 real*8 :: ag3

 integer:: nc

 integer:: i

 integer:: j

 ! Outputs

 ! =========

 real*8 ::fugacity(nj)

 integer:: comp_index(nj)

 common /nc/ nc

 ! zero component check

138

 j=0

 do i=1,nj

 if (zx(i) .gt. 0.d0) then

 j=j+1

 comp_index(j) = i

 endif

 end do

 nc = j

 c1 = dsqrt(2.d0)

 c2 = 1.d0 + c1

 c3 = c1 - 1.d0

 do i = 1,nc

 sa(comp_index(i)) = 0.d0

 enddo

 aa = 0.d0

 bb = 0.d0

 do i = 1,nc

 bb = bb + zx(comp_index(i)) * b(comp_index(i))

 do j = 1,nc

 if (i == j) then

 aa = aa + zx(comp_index(i)) * zx(comp_index(i)) * a(comp_index(i))

 sa(comp_index(j)) = sa(comp_index(j)) + zx(comp_index(j)) * a(comp_index(j))

 else

 aa = aa + zx(comp_index(i)) * zx(comp_index(j)) * aij(comp_index(i),comp_index(j))

 sa(comp_index(j)) = sa(comp_index(j)) + zx(comp_index(i)) * aij(comp_index(i),comp_index(j))

 endif

 enddo

 enddo

 ca = aa * p / ((rg*t)**2)

 cb = bb * p / (rg*t)

 call pr_compr(ca,cb,z_liq,z_vap)

 if (ifase == 0) then

 zz = z_vap

 else

 zz = z_liq

 endif

 ag1 = (zz + c2 * cb) / (zz - c3 * cb)

 ag1 = dlog(ag1)

 ag2 = ca / (2.d0 * cb * c1)

 do i = 1,nc

 ag3 = (2.d0 * sa(comp_index(i)) / aa) - (b(comp_index(i)) / bb)

 fox(comp_index(i)) = (b(comp_index(i)) * (zz-1.d0) / bb)-dlog(zz - cb) - ag1 * ag2 * ag3

 fox(comp_index(i)) = dexp(fox(comp_index(i)))

 fugacity(comp_index(i)) = zx(comp_index(i)) * p * fox(comp_index(i))

 enddo

 return

 end subroutine

C.3.8 thermo_LIBRARY.h

common /thermo_LIBRARY/ lib_Inited

 integer :: lib_Inited ! Toggle for checking whether thermo_LIBRARY.dll is initialized.

C.3.9 common_plant.h

 common /plant/

 & whs,whr,ds,dr,wls,wlr,mvb,mvd,tolerance,

 & mw(nj),tc(nj),tboil(nj),pc(nj),wc(nj),del(nj,nj),

 & cenh1(nj),cenh2(nj),cenh3(nj),cenh4(nj)

 real*8 :: whs,whr,ds,dr,wls,wlr,mvb,mvd,tolerance

139

 real*8 :: mw,tc,tboil,pc,wc,del

 real*8 :: cenh1,cenh2,cenh3,cenh4

C.3.10 parameter.h

C ------------ This parameters were modified as the common statement labeled as 'parameter'

C integer,parameter:: nt = 100 ! number of trays

C

C integer,parameter:: nj = 3 ! number of components

C --

 integer ,parameter :: nj = 3 ! number of components

 real*8 ,parameter :: rg = 8.313999999999999d0 ! ideal gas constant

c real*8 ,parameter :: trf= 0.0d0 ! reference temperature

 real*8 ,parameter :: trf= 273.15d0 ! reference temperature

C.3.11 thermo_data.dat

tolerance (Component order: cyclohexane, n-Heptane, toluene)
 1.000d-7

Mw(kg/mol) Tc(K) Tboil(K) Pc(Pa) w
 84.141d-3 553.68d0 353.15d0 4.100d6 0.212d0
100.204d-3 540.20d0 371.55d0 2.736d6 0.346d0
 92.141d-3 591.80d0 383.95d0 4.113d6 0.262d0

del(binary interaction parameters) (for NC = 3 , 3x3 ; for NC = 4 , 4x4)
 0.0d0 0.0d0 0.0d0
 0.0d0 0.0d0 0.0d0
 0.0d0 0.0d0 0.0d0
 cenh1 cenh2 cenh3 cenh4(J/molK)
 -66.672040d0 68.843536d-2 -38.50535d-5 80.62568d-9
 -12.717000d0 70.802000d-2 -40.14000d-5 90.00000d-9
 -34.363192d0 55.885688d-2 -34.43432d-5 80.33280d-9

140

APPENDIX D

STUDIED CHEMICALS

Table D.1 Specifications for Hydrocarbons.

 Cyclohexane n- Heptane Toluene

Boiling Temp(@ 1 atm) 353.85 K 371.55 K 383.75 K

Melting Temp 279.75 K 182.55 K 178.15 K

MW (g /mole) 84.161 100.204 92.141

Heat Capacity Coefficient, (J / mole.K)

a
pC -66.672040 -12.717000 -34.363192

b
pC

210843536.68 −×

210802000.70 −×

210885688.55 −×

c
pC

51050535.38 −×−

51014000.40 −×−

51043432.34 −×−

d
pC 91062568.80 −× 91000000.90 −× 91033280.80 −×

Tc, K 553.58 540.2 591.8

Pc (Pa) 4.10*10-6 2.72*10-6 4.10 *10-6

Vc (m
3 / kmole) 0.308 0.428 0.314

Zc 0.274 0.259 0.262

w 0.212 0.346 0.262

141

Table D.2 List of Correlations Used to Predict Physical Properties of the Hydrocarbons.

Physical property

that will be

predicted

Author(s) Correlation(s) Equation number Error

6/1

3/22/1
71060.4

c

c

T

PNMw−×=µ (D.1)

94.00003400.0 rTN = for 5.1≤rT (D.2)
Gas viscosity of pure

hydrocarbons at low

pressure (below Tr

of 0.6)

Stiel and Thodos

(1961)

() 625.067.158.40001778.0 −= rTN for 5.1>Tr (D.3)

The average error is

about 3 percent for

hydrocarbons below

ten carbon atoms.

The percentage of

the error increases to

5 – 10 percent for

heavier hydrocarbons

∑
∑=

≠
=














+

=
NC

i
NC

j
j i

j
ij

i
m

x

x
Q1

1
1

1

µ
µ

(D.4)

Gas viscosity for

multicomponent

mixtures of

hydrocarbons

Bromley and Wilke

(1951)

2/1

2
4/12/1

18

1












+










































+

=

j

i

i

j

j

i

ij

Mw
Mw

Q
µ

µ

µ

µ

 (D.5)

Error related to that

correlation is about 3

percent.

142

Table D.2 List of Correlations Used to Predict Physical Properties of the Hydrocarbons (Cont’d).

Physical property

that will be

predicted

Author(s) Correlation(s) Equation number Error









−=

oTT
B

11
)001.0*log(µ (D.6)

∑∆+= i
o NNN (D.7)

20≤oN
32

02076.03547.1439.3786.28 ooo
o NNNT +−+= (D.8)

20>oN 59.238164.8 += o
o NT (D.9)

∑∆+= ia BBB (D.10)

20≤o
N

32
00377.03173.1885.6679.24 ooo

a NNNB −−+= (D.11)

Liquid viscosity of

pure hydrocarbon

liquids

van Velzen et

al.(1972)

20>
o

N o
a NB 740.1359.530 += (D.12)

Errors are average

15 percent for

several compounds.

Liquid viscosity of

hydrocarbon

mixtures

Kendall and Monroe

(1917)

3

1

3/1














= ∑

=

NC

i
iim x µµ (D.13)

Errors change for 3

– 15 percent.

9/113/13/24)1(10601.4 rcc TQTP −×= −σ (D.14)
Surface tension of a

component

Brock and Bird

(1955) 281.0
1

)5261.11(ln
11207.0 −









−

−
+=

br

cbr

T
PT

Q (D.15)

Errors in that

correlation are less

than 5 percent.

143

Table D.2 List of Correlations Used to Predict Physical Properties of the Hydrocarbons (Cont’d).

Physical property that

will be predicted
Author(s) Correlation(s) Equation number Error

()








































Ρ= ∑∑

= =

)2/1(

1 1

2
ji

Lj

j
n

i

n

j iL

i
m

xx
σσ

ρρ
σ (D.16)

Surface tension for

mixture

Winterfeld, Scriven

and Davis (1978)

∑
=

=
Ρ

n

i Li

ix

1

1
ρ

 (D.17)

Error is about 3 - 5

percent.

Gas diffusivity of binary

hydrocarbon –

hydrocarbon gas systems

at low pressures

(below 500 psia = 3.5

MPa)

Gilliland (1934)

()23/1
2

3/1
1

5.0

21

5.1

12

11
1014.0

VVP

MwMw
T

D
+









+

= (D.18)

The error of the

method of Gilliand

is less than 4

percent.

Molar volume at the

normal boiling point

Tyn and Calus

(1975)

048.1285.0
ici VV = (D.19) Not stated

Gas phase diffusion

coefficients in

multicomponent

hydrocarbon systems

Wilke (1950) ∑
≠

−
=

1

/

1

j
j

ijj

i
m

Dy

y
D

(D.20)
Errors are about 5

percent

144

Table D.3 Physical Properties of Ethanol and Water Utilized in the Simulation Runs.

Physical Property EtOH Water Temperature [K] Reference

Gaseous Viscosity

[kg / (m.s)]
8.6088 x 10-3 125 x 10-4 293.15

Perry et. al.,

1997

Liquid Viscosity

[kg / (m.s)]
1.7840 x 10-3 1 x 10-3 293.15

Perry et. al.,

1997

Surface Tension

[mN / m]
22.39 72.75 293.15 Kaye, 1969

Table D.4 Specifications for Ethanol and Water.

 Ethanol Water

Boiling Temp(@ 1 atm) 351.6 K 373.15 K

Melting Temp 158.8 K 273.15 K

MW (g /mole) 46.069 18.015

Heat Capacity Coefficient, (J / mole.K)

a
pC 19.875 32.218

b
pC 210946.20 −× 210192.0 −×

c
pC 510372.10 −×− 510055.1 −×

d
pC 910042.20 −× 910593.3 −×−

Tc, K 513.92 647.13

Pc (Pa) 6.12 *10-6 21.94 *10-6

Vc (m
3 / kmole) 0.168 0.056

Zc 0.240 0.228

w 0.643 0.343

145

Table D.5 NRTL Model Parameters.

Component i EtOH H2O

Component j H2O EtOH

∆gij (cal / mol) -175.0164 1440.3479

ijα 0.2959 0.2959

Table D.6 Constants for Antoine Equation.

 A1 A2 A3

Ethanol 5.33675 1648.220 230.918

Water 5.11564 1687.537 230.170

Table D.7 Constants for Wagner Equation.

 W1 W2 W3 W4

Ethanol -8.51838 0.34163 -5.73683 8.32581

Water -7.76451 1.45838 -2.77580 -1.23303

146

APPENDIX E

DETAILS OF EXPERIMENTAL SET UP

E. 1. Calibration Curve of Peristaltic Pumps

Figure E.1 Calibration Curve of the Peristaltic Pumps.

147

Value on the peristaltic pump is estimated by using the calibration equation of the peristaltic

pump which is given as follows,

(E.1)

E. 2. Details for the Analysis of Compound Compositions

Samples are analyzed by using Poropak - Q column at gas chromatography (GC) (Hewlett –

Packard 5890 Series II). Used temperatures for GC and areas obtained for samples, whose

compositions are known, are tabulated at Table E.1 and E.2, respectively.

Table E.1 Specifications for GC.

 Temperature (oC)

Oven 150

Injection 170

Det A 180

Table E.2 Areas Obtained for Prepared Samples.

Area
Sample Percentages

Water Ethanol

15% EtOH – 85%H2O 26542 7624

30% EtOH – 70%H2O 19890 11586

50% EtOH – 50%H2O 12736 13865

60% EtOH – 40%H2O 10050 14927

70% EtOH – 30%H2O 7664 15900

Compositions of the samples taken during experiment are calculated by using Equations E.2

and E.3.

OHOHEtOHEtOH

EtOHEtOH
EtOHx

22
βκβκ

βκ

+
= (E.2)

148

OHOHEtOHEtOH

OHOH
OHx

22

22

2 βκβκ

βκ

+
= (E.3)

Since ethanol is more volatile than water, ethanol is chosen as a base component.

Therefore, base component factor of the ethanol is equal to 1 as follows,

1=EtOHβ (E.4)

To calculate base component factor of water, OH 2
β Equation E.2 and E.3 are analyzed with

information tabulated at Table E.2. For each sample with known compositions, only

unknown value is base component factor of water in Equations E.2 and E.3.

For sample 15%EtOH and 85%H2O

OH 2
)26542()1)(7624(

)1)(7624(
15.0

β+
= ⇒ 6277.1

2
=OHβ

For sample 30%EtOH and 70%H2O

OH2
)19890()1)(11586(

)1)(11586(
30.0

β+
= ⇒ 35917.1

2
=OHβ

For sample 50%EtOH and 50%H2O

OH 2
)12736()1)(13865(

)1)(13865(
50.0

β+
= ⇒ 088.1

2
=OHβ

For sample 60%EtOH and 40%H2O

OH2
)10050()1)(14927(

)1)(14927(
60.0

β+
= ⇒ 9901.0

2
=OHβ

For sample 70%EtOH and 30%H2O

OH 2
)7664()1)(15900(

)1)(15900(
70.0

β+
= ⇒ 8891.0

2
=OHβ

OH2
β shows parabolic behavior with respect to water composition. The data is given at Table

E.3 and behavior can be observed by Figure E.2.

149

Table E.3 Data for Base Component Factor of Water.

xH2O βH2O

0,85 1,6277

0,7 1,35917

0,5 1,088

0,4 0,9901

0,3 0,8891

Figure E.2 Behavior of Base Component of Water.

By fitting the values at Table E.3, following equation is obtained to estimate base component

of water,

7545.01611.00152.1
222

2
++= OHOHOH xxβ (E.5)

150

Then, Equation E.2 can be rewritten as follows:

)7545.01611.00152.1(
222

2
+++

=

OHOHOHEtOHEtOH

EtOHEtOH
EtOH

xx
x

κβκ

βκ
 (E.6)

and,

1
2

=+ OHEtOH xx (E.7)

By rearranging Equation E.6, following equation is obtained to estimate liquid composition of

ethanol.

() 09308,11915,20152,1
222

23
=−++− EtOHEtOHOHEtOHOHEtOHOH xx κκκκκ (E.8)

