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ABSTRACT 

CONTROL AND SIMULATION STUDIES FOR A MULTICOMPONENT BATCH PACKED 

DISTILLATION COLUMN  

 

 

Ceylan, Hatice 

M. S., Department of Chemical Engineering 

Supervisor: Prof. Dr. Canan Özgen 

 

August 2007, 150 pages 

 

 

During the last decades, batch distillation is preferably used with an increasing demand over 

continuous one, to separate fine chemicals in chemical and petroleum industries, due to its 

advantages like, flexibility and high product purity. Consequently, packed distillation 

columns, with newly generated packing materials, are advantageous compared to plate 

columns because of their smaller holdups, resistivity to corrosive materials and their higher 

separation efficiencies. Also, in many industrial applications, mathematical models of 

distillation systems are frequently used in order to design effective control systems, to train 

operating personnel and to handle fault diagnostics. Thus, the main objective of this study is 

to develop a mathematical model for a multicomponent batch distillation column, which is 

used to separate mixtures at low operating pressures, packed with random packing 

materials. In multicomponent batch packed distillation, operation with optimum reflux ratio 

profile is important for efficiency to maximize the amount of the distillate with a specified 

concentration, for a given time. Therefore, it is also aimed to find the optimum reflux ratio 

profile for the multicomponent batch packed distillation column.  

 

A simulation algorithm is written with the aid of MATLAB and FORTRAN programming 

languages by taking into account pressure drop and variation of physical properties. The 
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selected incremental bed height, ∆z, to be used in the simulation program has an effect on 

the accuracy of the results. This is analyzed and the optimal incremental height is found to 

be 3.5 cm for a 1.5m bed height. The change in distillate compositions with a given constant 

reflux ratio is found to be similar with those of previous studies. The simulation code is also 

used to obtain responses in distillate compositions for different reflux ratios, condenser 

holdups and reboiler duties and compared with similar studies found from literature and 

found to be adequate. Finally, experiments are conducted to verify simulation algorithm by 

using a lab-scale packed distillation column for the separation of a polar mixture of ethanol 

and water. It is observed that, there is a good agreement between the experimental and 

simulation results. 

 

After the verification of dynamic model, optimum operation policy to maximize product 

amount is investigated numerically by using capacity factor approach. The column is 

operated with and without recycling of the holdups of the slop cut tanks, in order to examine 

the effect of recycling on capacity factor, CAP. It is observed that, recycling of the molar 

holdups of the slop cut tanks is resulted in a 28% increase in the separation efficiency. 

 

Keywords: Multicomponent Batch Distillation System, Dynamic Modeling of Packed Columns, 

Optimal Operation 
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ÖZ 

ÇOK BİLEŞENLİ KESİKLİ BİR DOLGULU DAMITMA KOLONUNDA KONTROL VE BENZETİM 

ÇALIŞMALARI 

 

 

Ceylan, Hatice 

Yüksek Lisans, Kimya Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Canan Özgen 

 

Ağustos 2007, 150 sayfa 

 

 

Son yıllarda, kimya ve petrol endüstrilerinde, özel kimyasalları ayırmak için sürekli damıtmaya 

oranla, işletmede gösterdiği esneklik ve elde edilen yüksek ürün saflığı nedenleri ile kesikli 

damıtma tercih edilmektedir. Özellikle, endüstride, dolgulu damıtma kolonları yeni 

geliştirilmiş dolgu maddeleri ile az sıvı tutma, korozif maddelere karşı dayanıklılık ve yüksek 

ayrıştırmadaki etkin olma özellikleri ile tablalı kolonlardan daha fazla kullanılmaktadırlar. 

Ayrıca, birçok endüstriyel uygulamada, etkili kontrol sistemleri tasarlamak, personel eğitimi 

ve arıza tanımlamaları için matematiksel damıtma modelleri yoğun olarak kullanılmaktadır. 

Bu nedenle, bu çalışmanın en önemli amacı, düşük basınçlarda işletilen karışımları ayırmak 

için, rasgele yerleştirilmiş dolgu maddeli çok bileşenli kesikli-dolgulu damıtma kolonu için 

matematiksel bir model geliştirmektir. Ayrıca, bu çok bileşenli kesikli damıtma kolonunda, 

belirli bir zamanda, damıtılan ürün miktarını maksimize etmek üzere optimum geri akış 

profilinin belirlenmesi amaçlanmıştır.  

 

Kolon için MATLAB ve FORTRAN programlama dillerini kullanarak, basınç düşmesi ve fiziksel 

özelliklerin değişimi dikkate alınarak, kolon değişkenlerinin dinamik değişimini belirlemek 

üzere, bir benzetim algoritması hazırlanmıştır. Dolgulu kolonda benzetim algoritmasının 

çalıştırılmasında seçilen dolgulu yatak adım yüksekliği, ∆z’nin benzetimin doğruluk derecesine 
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etkisi incelenmiş ve optimal yükseklik 1.5 m dolgulu yatak yüksekliği için 3.75 cm olarak 

bulunmuştur. Benzetim kodu literatürden alınan bazı çalışmalarla, teorik olarak, 

karşılaştırılmış ve belirli bir geri akış oranında, damıtma derişimlerinin davranışı önceki 

çalışmalardaki ile aynı bulunmuştur. Benzetim kodu ayrıca farklı geri akış oranları, 

yoğunlaştırıcıda tutulan farklı sıvı miktarları ve kazana beslenen farklı ısılar için çalıştırılmış ve 

literatürdeki benzer çalışmalarla karşılaştırılarak, geçerliliği saptanmıştır. Ayrıca, benzetim 

algoritmasının doğru sonuçlar verdiğini belirlemek için laboratuar ölçülerinde dolgulu bir 

damıtma kolonu kullanılarak, etanol ve su karışımını ayrıştırmak için deneyler yapılmıştır. 

Deney sonuçlarının benzetim kod sonuçları ile iyi bir uyum içinde olduğu görülmüştür.  

 

Dinamik modelin doğrulanmasından sonra, ürün miktarını arttırmak için, optimum işletme 

politikası, kapasite faktör yaklaşımı kullanılarak sayısal olarak araştırılmıştır. Geri dönüşümün 

kapasite faktör üzerine olan etkisini incelemek için, kolon, atık tanklarında biriken miktarlar 

geri döndürülerek ve döndürülmeyerek çalıştırılmıştır. Atık tanklarında biriken miktarların geri 

döndürülerek damıtılmasının ayırma etkisini %28 arttırdığı görülmüştür.  

 

Anahtar Kelimeler: Çok Bileşenli Kesikli Damıtma Sistemi, Dolgulu Kolonların Dinamik 

Modellemesi, Optimal İşletme  
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CHAPTER 1 

INTRODUCTION 

The separation operation called as distillation, which uses “gas and liquid phases at 

essentially the same temperature and pressure for the coexisting zones”, is one of the most 

commonly used separation processes in chemical and petroleum industries (Perry et al., 

1997).  

 

Among the two different types of distillation columns; plate and packed, due to the increase 

of contact area between liquid and gas phase, which results in  high efficiency, high capacity 

to resist to corrosive materials, low pressure drop and small liquid holdup, packed columns 

are preferred compared to plate columns in design applications (Perry et al., 1997).   

 

Packed columns can be filled with either structured (ordered) or random (dumped) packing 

materials. Although structured packing materials are used commonly in the design of 

distillation columns, as a result of the new generations, the random packing materials are 

still used with an increase demand, due to the knowledge of the behavior of random packing 

materials on mass transfer and interfacial area. Hence, this study is mainly focused on 

packed distillation columns with random packing materials.  

 

Random packing materials like Berl saddle, Raschig and Pall rings can be made of different 

type of materials: carbon, glass, metal, etc. Difference on surface texture and material 

diameter results in changes in the characteristics of the packing like porosity and interfacial 

area. Therefore, during design process, those characteristics must be taken into 

consideration in detail.  
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The choice of the type of operation of distillation, as batch or continuous depends on the 

feed amount and on the characteristics of the feed components. Nowadays, batch distillation 

is more commonly used due to its convenience for low volume fine chemicals and 

biochemicals (Betlem, 2000) and its advantages like “flexibility, high product purity and 

possibility of multiple fraction operation” (Li et al., 1998). The “flexibility” feature, which 

provides to design different configurations of the column easily, can be utilized to overcome 

uncertainties in product specification.  Moreover, in batch distillation; separation of n 

components can be handled in a single column by using product and slop cut tanks. 

However, in continuous distillation, to separate n components, n – 1 continuous distillation 

column must be used (Diwekar, 1996).  

 

There are some disadvantages, beside advantages, related to the use of batch distillation 

columns, such as, continuous change of feed stocks and complex column dynamics. The 

complexity of column dynamics increases as the number of component in the feed mixture 

increases from binary to multicomponent. These disadvantages reduce batch distillation 

column’s competitiveness significantly and require research on optimum operating reflux 

ratios. It is very difficult to determine the composition changes with time throughout the 

batch distillation columns at optimum reflux ratios by performing experiments or by taking 

data from the column due to complex column dynamics (Kreul et al., 1999). Fieg et al. 

(1994) stated that, the dynamic behavior of an actual distillation column can be predicted at 

different operating conditions by using the simulation algorithm and any malfunction of the 

system can be controlled without making any unnecessary investment. Hence, preparation 

of simulation algorithm and determination of optimum reflux ratio profile to maximize 

amounts of products for a multicomponent batch packed distillation column are essential.  

 

There are two aims of this study. The primary objective is to develop a dynamic model for 

the simulation of a batch packed distillation column with random packing material for 

multicomponent mixtures at low operating pressures. Thus, both theoretical and 

experimental studies are carried out. The dynamic model is a set of equations, which rely 

mainly on mass and energy transfer mechanisms and thermodynamic equations. A 

simulation algorithm is prepared to solve the dynamic model with the aid of MATLAB 

programming language (Version 7.0.1. 24704 (R14)). It is desired to obtain composition, 

temperature and flow rate profiles for reflux – drum condenser, reboiler and packed sections 

during the operation with given column specifications like diameter of the column, type of 

the packing material, porosity and height of the packed section with the help of the 

simulation algorithm. Also, it is aimed to obtain the irrigated and flooding pressure drop and 

the value of design gas rate at specified operating conditions. Verification of simulation code 
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is conducted for hydrocarbon and polar mixtures. For the former mixtures, simulation code is 

tested by comparing product compositions by nine different simulation runs, while for latter 

mixtures experimental studies are carried by using ethanol and water mixture at a packed 

distillation column with 0.4 m height, 5 cm diameter and filled with 5 mm glass Raschig 

rings.  

 

Second objective of this study is to determine the optimum reflux ratio profile of the 

multicomponent batch packed distillation column system, to maximize the amount of 

distillate of a specified concentration for a given time. Optimization is done by using capacity 

factor (CAP) approach which is a function of time and composition. The optimum reflux ratio 

profile and switching times between product cut and slop cut tanks will be found by utilizing 

composition of the reflux - drum – condenser part and the knowledge of desired purities of 

the main products. Also, the effect of recycling of molar holdups of slop cut tanks for the 

next batch operation to maximize the amount of distilled products at a packed distillation 

column is analyzed by finding optimum reflux ratio profile in the context for hydrocarbon 

mixtures.  

 

Among the eight chapters of the thesis, in Chapter 2, literature survey related to the work is 

explained with a description of packed columns together with the discussion of the important 

effect of type of random packing materials on gas phase mass transfer. Also, the parameters 

related to hydrodynamics and mass transfer are explained and their experimental or 

theoretical determinations are discussed. A discussion about design methods to prepare 

model equations of a packed distillation column and also about numerical approaches used 

by previous studies is given. Moreover, research on optimum reflux ratios is discussed. In 

Chapter 3, modeling studies for a multicomponent batch packed distillation with random 

packing material are given with model assumptions considering literature with correlations 

related to pressure drop and physical properties with their percentage errors. Lastly, storage 

tank models are discussed. In Chapter 4, optimal operation conditions are discussed to 

maximize distilled product amount for specified concentrations and the optimization problem 

is identified and formulated. Simulation code and its working principle are explained in detail 

in Chapter 5. Experimental setup and procedure are explained in Chapter 6. Results and 

discussions are given with figures and tables, in Chapter 7. The studies on the verification of 

simulation code are started with comparison of findings with these of the study of Yıldız 

(2002). After that, the test of the model for various cases by using cyclohexane – toluene – 

n-heptane mixture is described and then, the experimental verification of simulation code is 

given for ethanol and water mixture. Moreover, the optimum reflux ratio profile, related to 
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capacity factor values and recycle of molar holdups of slop cut tanks are discussed in detail. 

In the last chapter, Chapter 8, conclusions and recommendations for further work are given.  
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CHAPTER 2 

LITERATURE SURVEY 

In this chapter, the literature survey for a packed distillation column is given in detail with a 

brief description of a packed distillation column system, advantages, and hydrodynamic and 

mass transfer issues. Also, design methods for packed columns which are found in literature 

are given with a literature survey about dynamic modeling of packed columns. Previous 

studies on optimal operation policy of a batch distillation are also given.  

 

2.1 A Brief Description of a Packed Distillation Column  

 

Packed columns are used in distillation, which is a commonly used unit operation in process 

industries, as well as in absorption and stripping applications (Geankoplis, 2003). 

 

There are several cases when the use of packed columns is preferred to the use of tray 

columns. Some of them are stated as (Perry et al., 1997): 

• If alloy – metal packing materials are not necessary, the cost of packed column is 

usually less than the cost of the plate column when tower diameter less than 0.6m, 

• Using resistant packing materials, caustic mixtures can be operated in packed 

columns,   

• Liquid holdup in packed column will be much more less than that in plate column, 

• Packings have a characteristic of required efficiency for low pressure drop,  

• In packed columns, liquid agitation by gas occurs lesser than the plate columns.  

 

There are two different types of packing arrangement; random and structured. Raschig rings 

and Berl saddles are known as first generation packing materials whereas Pall ring is known 

as second generation packing material, where packing materials are placed in the column in 
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a random arrangement, usually by dumping. In structured packing such as Sulzer and 

Flexipac, carefully installed elements are designed specifically to fit the column dimensions. 

The efficiency of packing materials displays variations due to difference in void fraction and 

effective surface area. Macias – Salinas and Fair (2000) studied on the axial mixing in four 

packing materials: 25.4 mm ceramic Raschig rings, 25.4 mm metal Pall rings, SulzerBX 

structured packing and Flexipac2 structured packing. Tracer experiments were made in a 

large scale packed column (0.43 mm diameter) by changing the liquid (water) flow rates 

from 3.25 to 8.5 kg / m2sec and gas (air) flow rates from 0.25 kg/m2sec to flooding point. It 

is found that “axial mixing in the gas increases with both gas and liquid rates, whereas liquid 

– phase axial mixing is a decreasing function of liquid rate and is sensitive to gas rate up to 

the flooding point” for first – generation random packing materials. The best packing for the 

axial mixing in gas phase is found to be Raschig rings whereas in the liquid phase as 

Flexipac2.  

 

Putting packing material into column brings some other considerations into account as 

hydraulics and mass transfer. The issues of hydrodynamics and mass transfer are volumetric 

mass transfer coefficients for liquid and gas phase, effective interfacial area, pressure drop, 

loading and flooding capacity, total liquid holdup and flow maldistribution. Extensive 

research has been done on the issues of packing material since 1930s. Many experiments 

have been performed and correlations have been derived.  

 

2.1.1 Mass Transfer Coefficients  

 

Mass transfer coefficients for liquid and gas phases are represented by kL and kV, 

respectively. Estimation of mass transfer coefficients for packed distillation columns can be 

done by making experiments or by using correlations for film coefficients or by predicting 

mass transfer film coefficients (Geankoplis, 2003). Overall mass transfer coefficients can be 

measured experimentally easily. However, to determine the individual mass transfer 

coefficients, kLa and kVa experiments must be designed carefully. Another way to estimate 

mass transfer coefficients is to use correlations for film coefficients. There are numerous 

correlations developed by several authors since 1940s. The correlations for mass transfer 

coefficients are empirical and they can show deviations up to 25%. A summary of the mass 

transfer correlations for random packing materials are given in Table A.1 (Appendix A) 

(Wang et al., 2005). The third way of predicting mass transfer coefficients is by the use of 

Equations 2.1 and 2.2 (Geankoplis, 2003): 
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where HY and HX are film coefficients for gas and liquid respectively [m], fp is relative mass 

transfer coefficient [-], Sc is Schmidt number [-] and GY and GX are mass flow rates for gas 

and liquid respectively [kg/(m.s2)].  

 

If the table of correlations given in Appendix A is analyzed, it is seen that the individual mass 

transfer coefficients kL and kV depend generally on Schmidt number(Sc), liquid and gas mass 

velocities, size and shape of the packing material. The correlations for volumetric mass 

transfer coefficients, kL and kV, are given by Wang et al. (2005). 

 

The overall mass transfer coefficient correlations that are used in some studies on packed 

distillation columns are given in Table 2.1. 

 

Bravo et al. (1992) investigated the behavior of mass transfer coefficients for different 

packing types and different vapor loading points. It is seen that volumetric mass transfer 

coefficients are affected by rates of vapor and liquid flows. Mass transfer coefficients 

increase with an increase in vapor velocity at constant liquid flow rates. If liquid flow rate 

increases then, the efficiency for random packing materials in distillation column will be 

higher. Moreover, it is demonstrated that the mass transfer coefficient changes sign 

depending on the packing type and vapor loading. Therefore, to apply any control theory to 

packed distillation columns the knowledge of the sign of mass transfer coefficient is 

important. 

 

Wagner et al. (1997) developed a model on mass transfer rates by using the formulas that is 

derived by Stichlmair et al. (1989) for pressure drop and liquid holdup at packed columns. 

The study is done on new random packing materials like IMTP, Fleximax and Nutter. The 

results of the model were in a good agreement with the experimental data.  
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Table 2.1 The Volumetric Mass Transfer Coefficient Correlations Used in Some Studies. 

 

Author(s) – Year 
Used Packing 

Material 
                  Used Correlation(s) 
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Piché et al. (2001a) presented a detailed study using neural network models for the 

hydraulics and mass transfer in randomly packed distillation columns. “A conceptual fully 

predictive mechanistic model” was built up by using 10,750 data covering the 1933 - 2000 

literature. The model compared with well - known correlations like Billet and Schultes (1991) 

model, Onda mass transfer correlation (Wang et al., 2005), etc. It is found that, model fits 

the correlations well and it is stated that without knowing packing constant, c, the model 

can be used to determine mass transfer coefficients for random packing materials. 

Otherwise, it is advised that, Onda mass transfer correlation (Wang et al., 2005) can be 

used to determine mass transfer coefficient if packing constant, c is known.  

 

Actually, Onda mass transfer correlation (Wang et al., 2005) is widely used in stripping 

applications. However, Wang et al. (2005) stated that, this correlation can be used to 

determine mass transfer coefficients for absorption, stripping, and distillation applications. 

Random packing materials which are first generation packing materials, has many 

investigations over the years, and to find information about them is not too difficult. Since, 

the packing constants are generally known for random packing materials, in this study Onda 

mass transfer correlation (Wang et al., 2005) will be used to predict mass transfer 

coefficients and effective interfacial area. 
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2.1.2 Effective Interfacial Area 

 

As in the mass transfer coefficients for gas and liquid phases, there is also an extensive 

literature on effective interfacial area of random and structured packing materials. Physical 

methods i.e. electroresistivity, light transmission and mass transfer measurements are the 

ways of determining the effective interfacial area. However, many researchers chose the 

mass transfer with a fast chemical reaction to determine effective interfacial area in 

distillation, stripping and absorption applications.  

 

Wen et al. (2001) studied the 3D profile of the liquid flow that can move horizontally or 

vertically in a randomly packed distillation column by developing geometry based model. It is 

demonstrated that two of the flow types, film flow, dripping flow are the main mechanisms 

of packed columns.  

 

Depending on the findings of Wen et al. (2001) and the previous works, it can be observed 

that, the definition of interfacial area differs from one publication to another. The most 

important interfacial area is the wetted interfacial area where mass transfer occurs. This 

area may be less than the actual interfacial area. The difference between effective interfacial 

area and wetted interfacial area is that, effective area includes drippings, gas bubbles and 

jets while wetted interfacial area does not (Perry et al., 1997). Table A.2 (Appendix A) 

tabulates effective interfacial area correlations with their investigators for random packing 

materials.  

 

Since Onda effective interfacial area correlation (Wang et al., 2005), which is the most 

reliable predictive equation for packed distillation column design, is studied comprehensively 

considering on hydrodynamic and liquid physical properties on the wetted surface area of 

random packing materials (Wang et al., 2005).  

 

2.1.3 Pressure Drop, Loading and Flooding Capacity 

 

Pressure drop in a packed distillation column is affected primarily by the followings: 

• fluid flow rates, 

• density and viscosity of the fluids, 

• size, shape and interfacial area of the packing materials. 
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Pressure drop at a packed distillation column can be calculated by using several methods, 

but in the most widely used method correlations that are based on experimental data which 

acquired countercurrent flow of water and air for different packing materials are used.  

 

In estimation of pressure drop, there are two important points that must be taken into 

consideration carefully; loading and flooding points. Loading point is where liquid starts to fill 

up the column and is reducing the effective space for gas flow. On the other hand, flooding 

point is where a liquid layer develops on the top of the packed section. Flooding point is the 

upper boundary condition of the pressure drop. These points can be visualized in Figure 2.1 

(Perry et al., 1997). 

 

 

 

Figure 2.1 Loading and Flooding Points for a Packed Column at Total Reflux.  

 

 

In the modeling of hydrodynamics of a packed column, either channel model or particle 

model can be used. In the channel model, it is assumed that there are several small 

channels for the flow of fluids throughout the packing materials. As gas flows upward 

through the channels, the liquid flows down through the walls of the channels. The flow of 

the liquid decreases the area for the flow of gas which causes the pressure drop. On the 

other hand, in the particle model, gas flows around the packing particles instead of 

channels. The presence of liquid flow reduces the void space between the packing materials.  
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Stichlmair et al. (1989) derived a pressure drop correlation for countercurrent gas – liquid 

packed columns by using the particle model as in the case of Ergun equation. Friction factor, 

bed porosity and operating liquid holdup are taken into consideration in developing 

correlations for irrigated and flooding pressure drops. It is also shown that the liquid holdup 

below loading point is a function of Froude number and the obtained relationship is valid for 

liquid viscosities up to 5 centipoises.  

 

Piché et al. (2001b) developed a flooding capacity correlation by utilizing artificial neural 

network modeling. Experimental data in literature is used to validate the correlation. The 

correlation shows 16.1% average relative error with standard deviation 20.6%. However, 

this correlation can be used for a wide range of random packing materials since an extensive 

experimental data from literature is used. Also, by this correlation it is shown that flooding 

capacity depends on “liquid superficial velocity, liquid viscosity, gas density, bed porosity, 

packing surface area and the column diameter”.  

 

2.1.4 Holdup  

 

Another issue in hydrodynamics is holdup. In packed distillation columns, holdups for liquid 

and/or vapor phase can be considered. The holdup of liquid can be taken as static, operating 

and total. Static holdup is known as the amount of liquid that remains on the packing 

material after the liquid is drained from the system. Operating liquid holdup is the amount of 

liquid that accumulated in the system when the system operates under dynamic conditions. 

The total holdup is the sum of the static and the operating holdups (Perry et al., 1997). In 

addition, the amount of total holdup depends on the operation type, whether the system is 

plate or packed distillation column. Fieg et al. (1994) determined and compared the dynamic 

behavior of the plate and packed distillation column after disturbances for the development 

of optimal strategy at product changeovers. It is stated that the type of distillation column 

has an effect on hold-ups, and packed distillation column has lesser hold-up than the plate 

distillation column, although same diameter and same column efficiency are used in the 

distillation columns. On the other hand, the holdup of vapor is generally considered as 

negligible at low pressures. Choe and Luyben (1987) investigated the importance of 

assumptions on negligible vapor holdup for distillation columns at low and high pressures. It 

is stated that assumption of negligible vapor holdup is valid for systems at moderate 

pressures (up to 10 atm). In high pressure systems, negligible vapor holdup gives 19% error 

in the time constant. 
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The amount of liquid that accumulates in the system under dynamic conditions mainly 

depends on the voidage fraction of packing material and superficial gas velocity. Actually, a 

detailed study on voidage fraction of the packing material is made by Klerk (2003). They 

investigated the voidage variation for small column by particle diameter / bed diameter 

ratios for equal sized sphere particles. Experiments were made by using nonporous glass 

beads of 0.003m diameter. Experimental results showed that the behavior of the bed 

voidage oscillates, reaches a constant value for higher column to particle ratios and there 

are multiple stable values for bed voidage. Although this is the case, for rigorous modeling 

studies the variation of voidage is neglected. On the other hand, the dependence of holdup 

on superficial gas velocity is examined by Taiwo and Fasesan (2004). The model is derived 

from the momentum balance of the liquid film, and demonstrates about 3.5% error with 

respect to experimental data obtained by using acetone / methanol / ethanol mixtures for 

different liquid and gas flow rates. It is observed that dynamic liquid holdup decreases with 

by an increase in the packing height and can be more for systems whose components have 

higher relative volatility. Moreover, the dynamic liquid holdup increases with an increase in 

gas velocity of the system components. As the gas velocity increases, the resistance to liquid 

flow through packing material increases, and then the liquid accumulates at the void spaces 

of the packed column.  

 

2.1.5 Flow Maldistribution  

 

As stated before, there are five important issues for the hydraulics and mass transfer taking 

place in packed distillation columns. The last and one of the most important issues is the 

flow maldistribution. The influence of flow maldistribution has been investigated over the 

years by several researchers.  

 

As stated by Kister and Braun (1989), the maldistribution can have three affects: pinching 

effect, lateral mixing effect and uneven flow of liquid through the packed section which 

reduces column efficiency. Pinching effect is the less delivery of liquid in some regions 

compared to the other parts of the column. This reduces the ratio of the liquid / gas flow 

rate, and causes a pinch point in the column. Lateral mixing effect is the movement of liquid 

and gas horizontally due to maldistribution. The liquid flows down from the liquid distributor 

if the top of the packed section is not irrigated by liquid. Then, liquid tends to move along 

the walls of the column. This is known as uneven flow of liquid through the packed section.  

 

Flow maldistribution is a function of packing and tower diameters, and type of the packing. 

Flow maldistribution does not depend on viscosity and density of liquid. The best liquid 
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distribution throughout the column can be obtained when ratio of tower diameter / particle 

diameter is equal to 10. In operation, the effect of lateral mixing is more important than the 

pinching effect and flow maldistribution can be handled without a serious efficiency loss. 

However, this is not the case at higher ratio of tower diameter / particle diameter (>40) 

(Kister and Braun, 1989).  In addition, columns with random packing materials gave less 

flow maldistribution than columns with structured packing materials (Hanley, B. (1999)). 

 

2.2 Design Methods for Packed Columns  

 

A packed distillation column can be designed either by considering packing as a continuous 

media or by using transfer units. Gorak and Vogelpohl (1985) have showed that use of 

Height Equivalent to a Theoretical Plate (HETP) in the design of packed distillation column 

causes very poor results. After that, Krishnamurthy and Taylor (1985) found an answer to 

the question arisen “as to how variations between component values of quantities such as 

stage – efficiency, HETP, and HTU can be taken into consideration in the simulation and 

design of a multistage or packed column” by considering packing as a continuous media in 

the design of packed column. This method has been used by several authors like Karlström 

et al. (1992), Pathwardhan and Edgar (1993), Karacan et al. (1998), Mori et al. (1999), 

Attarakih et al. (2001) and Repke et al. (2004). 

 

2.3 Dynamic Modeling of Packed Columns and Solving Model Equations 

 

In the modeling of a multicomponent batch packed distillation column, mass, energy and 

momentum balance equations and correlations for liquid and gas phase using ordinary or 

partial differential equations must be used. The system is very complex. Therefore, 

simplification of model must be done by making some assumptions.  

 

Skogestad and Morari (1988) explained in detail the behavior of the change of compositions 

at distillation columns for different cases especially with the existence of internal and 

external flows. In his study, assumptions, dynamic modeling equations and control studies 

for the cases are given. It is concluded that big reflux ratios must be applied to the 

distillation columns when the high purity columns are taken into consideration. The 

compositions in the column are affected from external flows much more than the internal 

flows.  

 

Karlström et al. (1992) presented transport phenomena and necessary thermodynamic 

equations in multicomponent packed bed distillation column. “One-film theory” is used due 
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to lack of heat accumulation in the main body of the liquid. Therefore, vapor phase is taken 

as controlling both heat and mass transfer. To simplify the model, equations are written by 

taking into account radial change only. The nonlinear model equations are also included 

when the simplified equations are likely to fail.  In the model, assuming negligible diffusion 

interactions between components, “effective diffusivity” method is used. Following this study 

Gorak (1992) argues that, the use of effective diffusivity can be recommended if the 

diffusivities of binary subsystems are almost equal and the use of Stefan-Maxwell equations 

for multicomponent mass transfer is much more applicable than the “effective diffusivity” 

method. 

 

There are two approaches that have been proposed for solving model equations as 

Krishnamurthy and Taylor (1985) recommended. In the first approach, packed section is 

divided into sections and each section is treated as a tray. In the second approach, transfer 

equations are written for a small incremental section and then balances are integrated for 

the whole column.  

 

Tommasi and Rice (1970) investigated dynamics of a random batch packed distillation when 

a step change is given to the reflux ratio. In the design of packed column the approach by 

considering packing as a continuous media is chosen. Experiments were carried out to 

validate the model by using ethanol and water mixture. A solution is developed by using 

nonlinear least - squares method to obtain the behavior of the liquid concentration after the 

step change given to the reflux ratio. The solution is given in exponential form and the 

constants in the equation depend on the components of the mixture. Moreover, it is found 

that parameters that are feature of the final steady state affect the time constants only. Any 

change of the step disturbance does not have any effect on time constants.  

 

Krishnamurthy and Taylor (1985) solved model equations by using Newton’s method and it 

is observed that there is good agreement between experimental results and simulation.  

 

Some models can include a set of partial differential equations. To solve these equations, 

there are numerous techniques. Method of orthogonal collocation is one of used methods in 

the previous studies. However, Krishnamurthy and Taylor (1985) stated that: 

 “Cho and Joseph (1983b) found the collocation method to work well for both steady 

state and dynamic simulation of relatively ideal systems (equilibrium stage model 

equations and stage efficiency were used to represent the process). However, when 

nonlinear equilibrium relationships were used along with vapor phase controlled heat 

and mass transfer rate equations to model packed-bed separation processes (the 
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packed distillation column problem of Von Rosenberg and Hadi (1980) and an 

absorption problem from Treybal, 1969), the steady state solution could not be 

directly obtained (Srivastava and Joseph, 1984).” 

 

Wajge et al. (1997) compared different numerical methods for the simulation of 

multicomponent batch distillation in packed beds. The use of finite difference method and 

orthogonal collocation method together for systems that requires higher accuracy is much 

more applicable than the use of only orthogonal collocation method. In case of using only 

orthogonal collocation method, higher order orthogonal polynomials must be used which 

increase computation time. Moreover, it is stated that, if the number of equations for 

simulation algorithm increases, necessary time to compute the behavior of the system 

increases.  

 

Karacan et al. (1998) presented the steady state and dynamic behavior of randomly packed 

distillation column with a thermo siphon reboiler to distill the binary, methanol – water 

mixture. Partial differential equations are used to model the packed column. In the model 

equations, the back mixing model is considered basing on two film theory of mass transfer. 

They are solved by orthogonal collocation on finite elements employing Legendre 

polynomials due to its power and speed. It is shown that use of orthogonal collocation 

method results in good accuracy for the system at steady state. However, this result can not 

be obtained for the unsteady state case.  

 

Mori et al. (1999) presented a simulation algorithm for a packed distillation column at total 

reflux by means of a rate – based model. Experimental results are consistent with the 

simulation results. However, the simulation is unsuccessful for evaluation of the effective 

interfacial area and liquid hold-up distribution, so necessary improvements must be done for 

a better simulation.  

 

Attarakih et al. (2001) investigated dynamics of a packed distillation system used to separate 

glycerol and water mixture. The studies on modeling and simulation are made and compared 

experimentally. The method used before by Patwardhan and Edgar (1993) is used to design 

packed distillation column. VLE concentrations are calculated by using the UNIFAC model. 

Dynamic modeling is done for three cases: a) with liquid, vapor and reflux drum holdups, b) 

liquid and reflux drum holdups and c) with reflux drum holdup only. MATLAB subroutine 

ode15s (Gear's method) is used for 1st and 2nd dynamic models due to high stiffness. In the 

third model Runge – Kutta – Merson method is used to solve set of equations due to 

existence of nonlinear equations. It is seen that, the Runge – Kutta – Merson method in the 
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third model requires more computation time and is less accurate than the other models, 

since there are more steps to compute which causes the growing of “round off and 

truncation errors”.   

 

Jiménez et al. (2002) investigated the nonlinear dynamic modeling of a structured packed 

distillation column. The experimental data of Nad and Spiegel (1987) is compared with the 

simulation results, which are conducted for a batch packed column with 167 mm diameter, 8 

m height and structured packing material by using BATCHFRACTM, CHEMCAD BATCHTM and 

HYSYS.Plant programming packages. It is stated that the use of HYSYS.Plant is much 

more efficient than the other software packages. To predict vapor liquid equilibrium 

compositions, UNIQUAC model is used. Necessary coefficients for this model are taken from 

the database of Aspen PLUS.  

 

Repke et al. (2004) worked on the simulation of nonequilibrium model. They conducted 

experimental runs for three-phase distillation in a structured packed column. The system of 

equations is solved by Newton - Raphson method and the mass transfer rates are calculated 

by using Stefan – Maxwell equations. Simulation is written for nonequilibrium and 

equilibrium model for three-phase distillation to compare each other. Results of experiments 

are agreed well with the simulation results of both equilibrium and nonequilibrium models. A 

summary of the numerical methods used in the different studies are given in Table 2.2. 

 

 

Table 2.2 Summary of Numerical Methods Used in Different Simulation Studies. 

 

Author(s) Used Method 

Krishnamurthy and Taylor (1985) Newton's Method 

Wajge et al.(1997) 
Finite difference method and orthogonal 

collocation method  

Karacan et al.(1998) Orthogonal Collocation on Finite Elements 

Mori et al.(1999) Rate Based Model 

Attarakih et al.(2001) 
MATLAB Subroutine ode15s 

Runge-Kutta-Merson Method 

Repke et al.(2004) Newton - Raphson Method 
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2.4 Optimal Operation Policy  

 

Batch distillation, which is usually preferred to separate fine chemicals and biochemicals, has 

the advantage of separating components to product and slop cut tanks by using a single 

distillation column. The number of product and slop cut tanks increases as the number of 

distilled component increases. For example, for binary distillation, two product tanks and one 

slop cut tank are necessary, while in the separation of three components, three product 

tanks and two slop cut tanks are needed. Also, it is possible to use reboiler tank to collect 

the heaviest compound as a product tank to decrease investment on tanks.  

 

In the separation of components in different product tanks optimal control criteria can be 

considered. In these optimal studies one of the following or all can be selected as criteria 

(Diwekar, 1996):  

• maximum distillate, 

• minimum time, 

• maximum profit. 

In the criteria of maximum distillate, the aim is to maximize the amount of distillate for a 

given time. For the criteria of the minimum time, the time which is necessary to separate a 

specified amount of feed for a specified concentration is minimized. Lastly, for the criteria of 

the maximum profit, a function of profit for a concentration of distillate is maximized 

(Diwekar, 1996).  

 

In batch distillation, there are several parameters that can be optimized like “the size of the 

initial charge to the still pot and the reflux ratio as a function of time” (Luyben, 1988). By 

optimizing reflux ratio, the three optimal control criteria explained above can be handled 

together in a distillation column. 

 

There have been several investigations on the problems specified above to find optimal 

operation of a batch distillation since 1960s. In almost all studies, an optimized function with 

its equality and inequality constraints is determined and solved using different solution 

approaches.  

 

The earliest study on optimal operation is carried by Converse and Gross (1963). It is 

investigated that the product maximization for a binary batch distillation by using three 

different techniques; dynamic programming, calculus of variation and Pontriagin’s maximum 

principle. It is figured out that the use dynamic programming is advantageous and more 

understandable compared to the other techniques.  
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The latter study is performed by Coward (1967) who focused on optimization of time for 

binary batch distillation by using Pontryagin principle. The aim is to find the reflux ratio 

which gives the maximum Hamiltonian for the parameters of p1, p2, B and xB. The equations 

are solved with the approach of Simpson’s Rule by using subroutines for constant 

overheads, constant reflux ratio and optimal reflux policy. The results obtained from this 

principle are compared with those obtained by utilizing the calculus of variation for different 

examples. It is concluded that the reflux ratio which gives minimum time is between the 

curves of constant reflux ratio and constant overheads operation.  

 

As a different optimization approach, Luyben (1988) extended his earlier study of capacity 

factor for product maximization in binary distillation to multicomponent distillation. It is 

demonstrated that by using capacity factor, not only investments on energy and design, but 

also parameters like number of trays and reflux ratio can be optimized. Luyben (1988) 

indicated in his study the applicability of the optimal configuration. 

 

The use of capacity factor approach examined by Bonny (1999) with new operating 

parameters for a multicomponent batch distillation column by using cyclohexane – toluene – 

heptane mixtures with or without recycling of slop cuts. The maximization of amount of 

product is studied by varying reflux ratio policy. Reflux ratio is either constant or is changing 

in a piecewise constant function throughout the operation time. It is concluded that the use 

of reflux ratio as a piecewise constant function increased the production rate. Also, it is 

found that the use of recycling has no significant effect on the production rate.   

 

Increasing demand on the use of the batch distillation in industries in recent years caused 

researches to focus mostly on maximum profit problem. Kim (1999) investigated for the 

optimal design and optimal operation of a batch distillation by using dynamic model rather 

than shortcut model or quasi steady state model. Comparison between dynamic models with 

others is figured out that design with dynamic model gives higher capacity on the aspect of 

maximizing product. Also, it is demonstrated that the use of exponential reflux ratio with 

constant reflux ratio profiles improves the design of the column with respect to the use of 

constant reflux ratio only. For the optimal operation, maximum profit function is analyzed by 

using costs of feed, product and steam. 23 are found as an optimum tray number by 

examining the various data related to maximum profit obtained for different tray numbers. 

Moreover, recycling of the slop cut products to reboiler to maximize the amount of the 

product is applied and it is found that this work differ slightly the results obtained for a fresh 

feed optimization.  
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Miladi and Mujtaba (2004) searched the optimum design and operation points for a binary 

batch distillation by using simulated annealing approach (SA). The effect of vapor boil up 

rate and number of stages investigated to find optimum design, while reflux ratio and batch 

time are configured for optimum operation by fixing the demand on the amount of product. 

In the study of Miladi and Mujtaba (2004), optimization of vapor boil up rate is firstly taken 

into consideration. It is concluded that fixing of vapor boil up rate smaller or bigger than the 

optimum vapor boil up rate is important to obtain maximum profit in a given production 

time. Moreover, the studies are carried for unlimited demand of the products. The results 

demonstrated much more profit can be obtained by using unlimited demand of the products. 

However, unlimited or unplanned production of product can cause undesirable significant 

losses.  

 

A different optimal policy has been raised by Low and Sǿrensen (2005). They found that 

optimal configuration besides optimum design and operation of a batch distillation is a 

valuable tool for the estimation of reasonable design and configuration for binary and 

multicomponent systems by using genetic algorithm and penalty function approaches. There 

are three choices for optimal configuration: regular, inverted and multi vessel. The aim to 

find optimum point is to maximize profitability index, which includes “production revenue, 

capital and operational costs”. The model based on discrete – continuous dynamic 

optimization is examined for cyclohexane – toluene, n-heptane – toluene and pentane, 

hexane, heptane, octane mixtures. It is concluded that the configuration of distillation 

column is dependent on the feed composition for binary mixtures. If the feed mixture 

contains higher fraction of the light component, the use of inverted column is more 

profitable, and if the feed mixture contains higher fraction of the heavy component, then the 

use of regular column is more profitable. On the other hand, for the separation of 

multicomponent mixtures, multivessel configuration is found to be more profitable rather 

than regular and inverse column configuration.  
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CHAPTER 3 

MULTICOMPONENT BATCH PACKED DISTILLATION 

COLUMN MODELING   

In this chapter, modeling studies of a Multicomponent Batch Packed Distillation Column 

(MBPDC) with random packing material are presented. Section 3.1 is devoted to model 

assumptions. While in Section 3.2, model equations of total, component mass and energy 

balances for packed section, reflux – drum – condenser and reboiler are given together with 

the used correlations. Also, in this section, calculation of loading and flooding points, liquid 

holdups, pressure drops and solution proposal for partial differential equations and 

thermodynamic relationships are discussed in detail. In Section 3.3, information about 

required data for simulation is explained. Lastly, modeling of storage tanks is given in 

Section 3.4.  

 

3.1 Model Assumptions  

 

In the proposed batch packed distillation column model, following assumptions are 

considered (Alkaya (1990)): 

• Negligible vapor holdup throughout the system,  

• Equimolar counter diffusion between the phases, 

• Adiabatic column operation and negligible temperature change throughout the 

packed section, 

• Dominancy of overall vapor phase mass transfer coefficient to individual liquid and 

vapor film mass transfer coefficients, 

• Negligible effect of maldistribution of liquid and vapor flow rates. 
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The most important assumption that can make significant changes in dynamic modeling of a 

packed distillation is negligible vapor holdup. At low pressures, although the vapor volume is 

large, the number of moles is usually small because the vapor density is much smaller than 

the liquid density. Choe and Luyben (1987) stated that, at low pressure operations (up to 

5atm) this assumption can be made since liquid to vapor density ratio is high. However, at 

high pressure operations, this ratio is so small that with this assumption the model can be 

inaccurate.  

 

The existence of equimolar counter diffusion between phases results in constant vapor and 

liquid rates through the packed section. Also, the assumption of adiabatic operation and 

negligible temperature change in a differential element leads to omission of energy balance 

equations for the packed section (Luyben, 1989).  

 

Based on equimolar overflow, the mass flux rate (Equation 3.1) and relationship between 

mass transfer coefficients (Equation 3.2) can be written as (Geankoplis, 2003); 

)()( LILIVV xxkyykN −=−=  (3.1) 

LVV k
m

kK
+=

11
 (3.2) 

 

Patwardhan and Edgar (1993) stated that, “in distillation applications, the controlling 

resistance to mass transfer is usually in the vapor film, and the use of the overall vapor 

phase mass transfer coefficient is more common.” Therefore, effect of the liquid phase on 

the overall coefficient can be considered negligible resulting in, 

VV kK
11

=  (3.3) 

 

Maldistribution of vapor and liquid flows throughout the packed distillation column is known 

as an effect which reduces the performance of the column (Higler et al., 1999). The effect of 

liquid flow maldistribution is generally observed at the top of the packed section. Liquid flow 

on the wall can be prevented by using side wipers or redistributors and arranging the ratio 

of the diameters of the column and packing material (Perry et al., 1997). Thus, the effect of 

maldistribution of flow rates can be neglected.   

 

Additional assumptions basing on the previous studies (Alkaya (1990) and Yıldız (2002)) are 

as follows: 

• Constant liquid holdup in the reflux drum, 

• Change of composition only in z direction, and no radial variation, 
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• Perfect mixing in the reflux drum, reboiler and differential element of packed 

section, 

• Total condenser. 

 

3.2 Batch Packed Distillation Column Dynamic Modeling 

 

Modeling of batch distillation systems is complex due to unsteady state nature of the 

system. Consequently, dynamics is inherently included in any modeling issue for the batch 

system. 

 

Appropriate conservation equations, derived equations for the determination of flow rates at 

finite and total reflux operations, correlations for the prediction of dry, irrigated and flooding 

pressure drops, molar hold up and physical properties, equations for estimation of vapor 

liquid equilibrium compositions are given below.  

 

3.2.1 Conservation Equations  

 

The modeling of a batch packed distillation column is very similar to that of batch plate 

distillation column. These equations are nearly the same except with those about hydraulics. 

The important features of the model equations for a batch packed and plate column are 

given in Table 3.1 (Salimi and Depeyre, (1998), Fieg et al. (1994)).  

 

A schematic view of the studied batch packed distillation column is shown in Figure 3.1. In 

the figure the packed column with its reboiler, condenser, reflux drum and tanks are shown. 

The parameter k in Figure 3.1 defines the differential element starting with k = 1 at reboiler. 

P1 and P2 are the product tanks and S1 shows the slop cut tank. Thus, packed section is 

considered to be composed of NT differential elements whose value can be changed 

arbitrarily and will have an effect on modeling accuracy.  

 

In the present study, discrete element concept is used instead of HETP concept to 

accomplish dynamic modeling of the batch packed distillation column. In discrete element 

method, the packed section is divided by NT into segments of ∆z height (∆z = (Height of 

packed section) / NT). For each ∆z element energy and mass transfer equations are 

considered. However, in packed distillation column system transfer operations are 

continuous. Therefore, the choice of ∆z is very important and affects the accuracy of the 

results.  
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Table 3.1 Important Features of Batch Distillation Column Models. 

 

Equation Packed Plate 

1 Equilibrium 1 Equilibrium 
Thermodynamics 

2 Non - Equilibrium 2 Non - Equilibrium 

1 Differential 1 Differential 
Mass and Energy 

Balance 
2 Finite Difference 

Approximation 

2 Finite Difference 

Approximation 

1 Continuous Contact 1 Step By Step Contact 

2 Small Liquid Holdup 2 Big Liquid Holdup Hydraulics 

3 Small Total Pressure Drop 3 Big Total Pressure Drop 

 

 

 

 

Figure 3.1 Schematic View of Studied Batch Packed Distillation Column. 
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The unsteady state total mass and material balances for a packed differential element shown 

in Figure 3.2 (Jahromi et al., 1982) can be written as follows for the liquid and vapor 

phases: 

 

Liquid phase: j = 1…NC 
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Vapor phase: j = 1…NC 
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Figure 3.2 Schematic View of a Differential Section of the Column for Material Transfer. 

 

  

The unsteady state energy balances of a packed differential element which is demonstrated 

in Figure 3.3 (Jahromi, et al., 1982) are as follows; 
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Liquid phase: j = 1…NC 
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Vapor phase: j = 1…NC 
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Figure 3.3 Schematic View of a Differential Section of the Column for Energy Transfer.  

 

 

However, considering equimolar counter diffusion model, adiabatic process and constant 

temperature profile energy balance equations can be omitted and the mass transfer 

equations (Equations 3.4 - 3.7) are simplified as: 
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Liquid phase: 
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Vapor phase: 
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To evaluate KV and ae, Onda correlation (Wang et al., 2005) for volumetric mass transfer 

and effective interfacial area are used and are given as followings, respectively, 
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where,  
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The unit conversion of mass transfer coefficient from m/s to mol/ (h.m2) is done as: 

V
g

V k
TR
P

K 3600=  (3.19) 

 

Initial and boundary conditions of Equations 3.10 and 3.11 are: 

( ) ( )zxzx =0,   (3.20) 

( ) ( )zyzy =0,   (3.21) 

( ) Byty =,0   (3.22) 
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The approach used by Attarakih et al. (2001) is applied to convert partial differential 

equations (PDEs) to ordinary differential equations (ODEs) as follows: 

 

For i = 1…DL and for j = 1…NC 
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By substituting Equations 3.23, 3.24, 3.25 and 3.26 to Equations 3.10 and 3.11, one can 

obtain, 
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Then Equations 3.27 and 3.28 are arranged into state equations as; 
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Since it is assumed that there is only liquid molar holdup in the column, the subscripts of the 

liquid molar holdup may be neglected. Liquid molar holdup can be written as, 

MM L =   (3.31) 

 

Total mass, material and energy balances for the other parts of the distillation column can 

be given as;  

 

Reflux – drum – condenser system (k= NT+2):  j = 1…NC  

DLV
dt

dMNT −−=+2  (3.32) 

jNTjNTjNT
jNTNT DxLxVy

dt

xMd
,2,2,2

,22 )(
+++

++
−−=  (3.33) 



 

 

 

 

28
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where D is the distillate flow rate and QNT+2 is the heat removed from the condenser.  

 

Reboiler (k = 1): 
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where Q1
 is the heat given to the reboiler.  

 

Using the procedure given by Yıldız (2002) Equations 3.35 and 3.36 transformed into a state 

equation for compositions in the reboiler as: 
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Thus using the constant molar liquid holdup assumption in the reflux drum, Equation 3.32 

simplifies as, 

DLV +=  (3.39) 

 

Using the procedure given by Yıldız (2002) Equations 3.33 and 3.39 are transformed into a 

state equation for compositions at the distillate compositions.  
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3.2.2 Determination of Flow Rates at Finite External Reflux Ratio  

 

The knowledge of the vapor and liquid flow rates are necessary to calculate mole fractions 

of liquid and vapor phases at any location of the packed distillation column. The estimation 

of the flow rates at finite external reflux ratio will be explained below by using the procedure 

of Yıldız (2002) in rigorous modeling with the assumption of equimolar counter diffusion. 

 

Vapor rate, V, can be obtained by using the external reflux ratio definition (R = L/D) and 

Equation 3.39 as;  

)1( +=+= RDDLV  (3.41) 
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Thus, in reflux – drum – condenser, substituting Equation 3.41 into Equation 3.34 with  the 

assumption of constant hold-up and total condenser the following can be obtained;  

2221
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and inserting Equation 3.39 into Equation 3.42; 
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Equation 3.43 can be written as; 
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where ∗  is a dummy function (Yıldız (2002)).  

 

Further substituting Equation 3.41 into Equation 3.44, heat removed from the condenser can 

be written as; 

)())(1( 22212 +++++ −−+= NTtNTNTNTNT hMhHRDQ δ  (3.46) 

Total energy balance over the packed distillation column can be written as; 
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Thus, distillate rate can be obtained by substituting Equation 3.46 into Equation 3.47; 
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However, to find the distillate rate, D, one must know the liquid molar holdup for each 

section, Mn, which will be explained in Section 3.2.5. 

 

3.2.3 Determination of Flow Rates at Total Reflux  

 

In the previous section, the estimation of flow rates for finite external reflux ratio is 

described. However, to find flow rates at total reflux (R = ∞), further analysis must be done, 

since  D = 0 at total reflux and V = L from Equation 3.41. 
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If the energy balance is made on the packed distillation column without reflux – drum – 

condenser, following equation is obtained: 

dt
hMd

dt
hMd

VHLhQ NTNT
NTNT

)()( 1122
121 +=−+ ++

++  (3.49) 

Substituting V = L into Equation (3.49) gives, 
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By using Equation 3.50, flow rates at total reflux can be calculated. As stated before, to 

solve Equation 3.48 and 3.50, molar holdups at reboiler, condenser and packed section 

should be known.  

 

3.2.4 Determination of Loading and Flooding Points   

 

Operation of packed distillation column can be analyzed in three regions: preloading, loading 

and flooding. Loading and flooding points are two important operational points for the 

simulations, because pressure drop and liquid holdup throughout the column depends 

directly on these points. Flooding point is the upper limit of the packed distillation column 

operation, while loading point is a measure that demonstrates generation of high pressure 

drop. Billet and Schultes (1999) demonstrated that loading point is considered to occur 

approximately 65 – 70% of the flooding point. In this study, the occurrence of loading point 

and design gas rate are chosen as at 60% and 40% of flooding point, respectively. 

Prediction of flooding point will be explained in Section 3.2.5. 

 

3.2.5 Calculation of Molar Hold up and Pressure Drop  

 

Several investigations are made on the evaluation of liquid molar hold ups. Some of them 

include the effect of surface tension, viscosity, vapor and liquid flow rates. In this study, the 

correlation derived by Stichlmair et al. (1989) is used. Stichlmair et al. (1989) stated that 

several liquids for liquid molar holdup up to loading point show the same behavior, which is 

a function of Froude number. Equation for liquid holdup for a given packed section for 

preloading region is as follows; 

( ) MWhAM oLL /' ρ=  (3.51) 

where, 

3/1555.0 Lo Frh =  (3.52) 
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65.4
2

εg

a
uFr p
LL =  (3.53) 

 

As Stichlmair et al. (1989) stated, above the loading point holdup increases with an increase 

in gas rate at constant liquid rate. The liquid is restrained by the friction forces and static 

pressure gradient and this effect is demonstrated for liquid holdup at loading point as 

follows; 

( )2
0 ))/((201 gZPhh LirrL ρ∆+=  (3.54) 

 

In this study, design gas velocity is selected as the 40% of the flooding velocity so the 

relationship for molar holdup below loading point, ho, is used. 

 

In packed distillation column, there are three types of pressure drops: dry, irrigated and 

flooding. Correlations derived by Stichlmair et al. (1989) are used in this study and given as 

follows; 
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C1, C2 and C3 are constants related to the packing material and the constants for dumped 

ceramic packing materials are given in Table B.1 (Appendix B). At flooding point, the 

pressure is calculated from the following equation, 
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Calculation of flooding pressure drop is an iterative process. First, a gas rate is assumed and 

then, dry pressure drop is calculated and, for the same gas rate at a fixed liquid rate, 

irrigated pressure drop is calculated. Then, Equation 3.59 is checked. If Equation 3.59 is not 
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satisfied, another gas rate is assumed and the same calculations are done until the Equation 

3.59 is satisfied.  

 

Since it is assumed that design gas rate below the loading point and that the pressure drop 

profile is linear through packed section, equation for pressure drop profile can be written as;  

Z
P

zPzP irr
B

∆
+= *)(  (3.60) 

 

3.2.6 Predictions of Physical Properties 

 

Parameters like viscosity, surface tension, diffusivity coefficient are necessary to estimate 

mass transfer coefficient and effective interfacial area. These parameters generally are 

functions of temperature, the number of components in the mixture and the type of the 

components. Thus, in this study, for hydrocarbons, prediction of these parameters are done 

at low pressures by most commonly used correlations, and for polar mixtures, these 

parameters are kept constant because, correlations of physical properties for polar mixtures 

are complex and the usage of these correlations in the simulation code will not be user 

friendly. Critical surface tension of materials is given by Perry et al. (1984). A list of the 

correlations to predict physical properties for hydrocarbons at low pressures is tabulated in 

Appendix D with their percent errors (Perry et al., 1997).  

 

3.2.7 Algebraic Equations and Thermodynamics   

 

Starting point of the all the predictions of vapor – liquid equilibrium compositions is as 

follows, for j=1…NC,   

L
j

V
J ff

))

=  (3.61) 

 

In this study, there are two types of mixtures to be analyzed: hydrocarbons and polar 

mixtures. For hydrocarbons at low pressures, to predict vapor liquid equilibrium (VLE) 

relationships Peng Robinson Equation of State (PR-EOS) is utilized for both, vapor and liquid 

phases. The use of cubic equations of state for vapor and liquid phases is known as Phi- Phi 

(Φ -Φ ) approach and using Equation 3.61 equilibrium relationship can be written as, for 

j=1…NC,   
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Detailed information on calculation of VLE by using PR-EOS can be found in the studies of 

Alkaya (1990), Dokucu (2002) and Yıldız (2002). 

 

On the other hand, PR-EOS must not be used to predict vapor liquid equilibrium for liquid 

phase of polar mixtures (Sandler, 1999). Hence, for liquid phase, an activity coefficient 

model and for the vapor phase a cubic equation of state will be used and this is known as 

the Gama – Phi ( γ -φ ) approach. Then, Equation 3.61 can be written as,  

jjjjj fxPy γφ =
)

 (3.63) 

 

Bahar (2007) showed that, the use of Non Random-Two Liquid (NRTL) activity coefficient 

model gives best results for the prediction of compositions of polar mixtures. Therefore, in 

this study, for polar mixtures NRTL activity coefficient will be used to predict liquid phase 

and, PR – EOS will be used to predict vapor phase compositions at equilibrium. NRTL model 

equations for the excess Gibbs energy for condensed phase binary systems developed by 

Renon and Prausnitz (1968) are given in Equations 3.64 - 3.69 (Tester and Modell, 1997).   
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where, 
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Extension of NRTL model to multicomponent systems is given in Equation 3.70 (Tester, et. 

al., 1997).   
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NRTL model parameters used in this study for polar mixtures are given at Table D.5 (Maier, 

et al., 1998). 

 

The sum of compositions in terms of mole fractions is equal to 1.0 in liquid and vapor 

phases, as follows, 

1
1

=∑
=

NC

j
jx  (3.71) 
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=

NC

j
jy  (3.72) 

 

Binary interaction parameters that are used in the simulation code, which “has been 

introduced to obtain better agreement in mixture equation of state calculations” (Sandler, 

1999), used for this study are given in Table 3.2 (Bahar (2007), Yıldız (2002)). 

 

 

Table 3.2 Binary Interaction Parameters, bij. 

 

bij Ethanol Water Cyclohexane N - Heptane Toluene 

Ethanol 0.0 -0.935 - - - 

Water -0.935 0.0 - - - 

Cyclohexane - - 0.0 0.0 0.0 

N - Heptane - - 0.0 0.0 0.0 

Toluene - - 0.0 0.0 0.0 

 

 

3.3 Initial Conditions for the Simulation   

 

The equations given above are formulations of the mathematical model of a multicomponent 

batch packed distillation column. In order to be able to solve these equations, MATLAB and 

FORTRAN programming languages are used.  

 

Initial conditions are necessary to solve ordinary differential equations. In this study, the 

feed is charged to the column from the top at its boiling point. Therefore, at the beginning 

of the operation, whole column with its reboiler and reflux – drum – condenser part is 

assumed to have the same feed compositions (Yıldız (2002)), that is,  

 



 

 

 

 

35

feed
jij xx =  for 2...1 += NTi  

                 NCj ...1=  
(3.73) 

 

Also, the initial flow rates are estimated by using the following equations (Yıldız (2002)),  

)( 21

1

hH
Q

V i
−

=  for 2...2 += NTi  (3.74) 

2+= NTi VL  for 1...1 += NTi  (3.75) 

 

3.4 Storage Tank Models 

 

In batch distillation, distilled products can be collected at separate tanks. These tanks are 

product cut tanks and slop cut tanks. Product cut tanks are the tanks where products are 

collected at specified purity levels or amounts, while slop cut tanks are the tanks where 

waste material of the distillate is collected i.e. slop cut tanks are utilized to collect the 

distilled mixture whose purity is not at specified purity of any products.  

 

In order to start the operation, the fresh feed is introduced to the system and then 

necessary heat load is given to the reboiler. After the contents of the reboiler started to boil, 

vapor flows through the packed section and moves through the condenser. If the system 

operates for a reflux ratio other than total reflux, then, some distilled material is collected at 

the product tank 1 until the composition of contents of the product tank 1 reaches a 

specified purity level. After specified purity level of the lightest compound in product tank 1 

drops, distilled material is collected at the slop cut tank 1 until the desired purity level of the 

second compound is reached. Then, second product will be started to collect at product tank 

2. This operation continues for product tanks equal to the number of components. Reboiler 

can be used as product tank to collect the heaviest compound to decrease investment on 

product and slop cut tanks. 

 

Modeling of the storage tanks, which is same with the study of the Yıldız (2002), consists of 

calculating holdups and compositions of product and slop cut tanks. Holdup of a tank at any 

time is calculated by integrating distillate flow rate from the time of the start to the end of 

accumulating material in the tank. For the estimation of compositions in a tank, firstly, the 

multiplication of liquid composition of the distilled material with distillate flow rate is 

integrated from the time of the start to the end of accumulating material in the tank. Then, 

this integration is divided to the holdup in the tank. 
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3.5 Model Equations  

 

All the state and algebraic equations are listed in Table 3.3 in order, starting from reboiler to 

reflux-drum-condenser.  

 

 

Table 3.3 Summary of MPDC Model Equations. 
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Table 3.3 Summary of MPDC Model Equations (Cont’d). 

 

Algebraic Equations  
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CHAPTER 4 

OPTIMAL OPERATION OF A MULTICOMPONENT BATCH 

PACKED DISTILLATION COLUMN 

In this chapter, optimal operation for maximizing product amount in a multicomponent batch 

packed distillation column is explained with an approach to find optimum reflux ratio. 

Problem identification and optimal control formulation are given in Sections 4.3 and 4.4, 

respectively. 

 

4.1 Capacity Factor 

 

The approach to optimize product amount in a multicomponent batch packed distillation 

column by using capacity factor (CAP) was developed by William L. Luyben in 1971. “The 

capacity factor of the batch still is defined as the total specification products produced (Pi) 

divided by the total time of batch” (Luyben, 1988). The formula is given as; 
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 (4.1) 

 

where tT is the total operation time including total and finite reflux operations. The value of 

0.5 hour in the denominator is given for emptying and charging the feed to the still pot since 

in the study, the distillation column is considered to be operated for 24 h for all days of a 

year. The total feed fed to still pot initially is equal to the sum of the amount of product and 

slop cut tanks as given by Luyben (1988) (Equation 4.2).  
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4.2 Problem Statement 

 

The system operation can be figured out by using “a state task network (STN) where a state 

(denoted by a circle) represents a specified material, and a task (rectangular box) represents 

the operational step which transforms the input state(s) into the output state(s)” (Mujtaba, 

and Macchietto, 1993). STN of the optimization problem is given in Figure 4.1. 

 

 

 

 

Figure 4.1 STN of the Optimization Problem. 

 

 

In Figure 4.1, fresh feed, MB
o, is fed to  reboiler at the start of the system operation and it is 

desired to have maximum distilled amount for product 1, the lightest compound, at specified 

desired purity level, x1**. The remaining molar holdup of the reboiler, MB
1, is going to be 

processed until the composition of the second compound purity level in the reflux – drum – 

condenser part reaches to the desired level. Distilled material which does not have any 

specified purity level of the compounds is collected in the slop cut tank 1, S1, during step 2. 

The remaining molar holdup in the reboiler, MB
2, will be distilled until the product purity of 

the 2nd compound in the product tank 2 drops to specified purity level. This process will be 

going on to the step NC for a given feed charge with NC specifications.  

 

4.3 Optimization Problem Formulation  

 

Optimization of reflux ratio profile to maximize distilled product amount in a multicomponent 

batch packed distillation column is performed by maximizing CAP. Formulation of the 

problem necessitates the inputs as; column, feed mixture and product specifications, heat 

load and initial values (reflux ratio, pressure in the reboiler, dummy variables etc.) by using 

the following representation (Bahar, 2007): 

    max ( )xf  subject to 

10 ≤≤ pR  (4.3) 
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where Rp is the internal reflux ratio (L / V) and  

CAP= ( )
5.0
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i

 (4.4) 

 

Recycling of the materials in the slop cut tanks for the next batch may be done as shown in 

the Figure 4.2 to increase product amount. As Luyben (1988) and Bonny (1999) stated 

recycling of holdups of the slop cut tanks do not have any significant effect on CAP. 

However, it increased the product amount by 16% for multicomponent batch plate 

distillation columns. 

 

In this study, also the recycling of molar holdup of slop cut tanks for the next batch is 

examined to analyze the effect of recycle in packed distillation columns.  

 

 

 

 

Figure 4.2 Schematic View of Recycling of the Materials in Slop Cut Tank. 
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CHAPTER 5 

SIMULATION CODE  

In this chapter the simulation algorithm and its working principles are given with the 

thermodynamic library.  

 

The derived model equations of multicomponent batch packed distillation column for 

mixtures operating at low pressures are written by FORTRAN and also in programming 

language of MATLAB software and they are solved with the aid of MATLAB software. The 

files with the extension of “xxxx.m” are written using MATLAB while ones with the extension 

of “xxxx.f” are prepared by using FORTRAN programming languages. This study is a 

modification of written simulation code by Yıldız (2002) for multicomponent batch plate 

distillation column to multicomponent batch packed distillation column.  

 

The simulation code, which is given in Appendix C, consists of 9 “xxxx.m” files for main 

programs, 3 “xxxx.m” files for optimization and a library file written with FORTRAN 

programming language for thermodynamics. The m-files are “Glob_Decs.m”, 

“Glob_Initial.m”, “Mass_Hydrocarbons.m”, “Mass_Polar.m”, “PressureProfile.m”, 

“Plant_File_Packed.m”, “OptimizeR.m”, “Batch_con.m”, “Batch_obj.m” and the library file is 

“thermo_LIBRARY.dll”.  

 

The library file for prediction of physical and thermodynamics properties of hydrocarbons 

was prepared by Dokucu (2002) and some modifications were made by Yıldız (2002). Then, 

Bahar (2007) modified the written equilibrium file for polar mixtures by using NRTL activity 

coefficient model for multicomponent mixtures. In this study, one more addition, which is 

the equation of NRTL activity coefficient model for binary mixtures used in experiments, is 

prepared and thermo library file for hydrocarbons is integrated with the file for polar 
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mixtures. Now, library file has two approaches (φ−φ and γ - φ) to determine physical 

properties and VLE compositions for hydrocarbons and polar mixtures. The use of approach 

through the simulation run is determined by selecting the type of components at the start of 

the run. 

 

The overall structure of the simulation code is given in Table 5.1 as in the case of Yıldız 

(2002).  

 

 

Table 5.1 The Overall Structure of the Simulation Code. 

 

Glob_Decs.m 

Glob_Initial.m 

Plant_File_Packed.m 

PressureProfile.m 

Mass_Hydrocarbons.m 

Main Program Codes 

Mass_Polar.m 

thermo_Init.m 

thermo_Equilibrium_Hydrocarbons.m 

thermo_Equilibrium_Polar.m 

thermo_Enthalpy.m 

thermo_L_Density.m 

thermo_G_Density.m 

thermo_LIBRARY.f 

thermo_LIBRARY.h 

common_plant.h 

parameter.h 

Thermodynamic Library 

“thermo_LIBRARY.dll” 

thermo_data.dat 

OptimizeR.m 

Batch_con.m Optimization Code 

Batch_obj.m 
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5.1 Main Simulation Code  

 

As stated before, the main simulation code is a modification of the written code by Yıldız 

(2002) for plate distillation column. The differences between the plate distillation and packed 

distillation occur in hydrodynamics and in mass transfer. In plate distillation column, among 

the model equations there are ordinary differential equations (ODEs), however, in packed 

distillation if the continuous mass transfer between phases is taken into account; there are 

both partial differential equations (PDEs) and ODEs for the model equations. In the solution 

of PDEs, the approach used by Attarakih et al. (2001) is used. For the integration, a step 

size of 3 x 10-4 hours is utilized with a terminal tolerance of 9 x 10-180 to make the liquid and 

vapor component fractions zero (Yıldız, 2002).  

 

The working principle of the simulation code for modeling is demonstrated in Figure 5.1.  

 

 

 

 

Figure 5.1 Simulation Chart of the Batch Packed Distillation Column. 

 

 

“Glob_Decs.m” and “Glob_Initial.m” files are to initialize text files and identify parameters to 

be used for whole simulation algorithm. The main simulation algorithm 

“Plant_File_Packed.m” is used for determination of compositions, pressure drop, molar 

holdups of packed section and reboiler, flow rates and tank molar holdups, etc. 

Determination of pressure drop, loading and flooding points by using the approach of 
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Stichlmair et al. (1989) is an iterative process. Pressure profile is assumed as linear and the 

computations after estimation of pressure drop are made by using “PressureProfile.m” file. 

The prediction of mass transfer, interfacial area correlations and physical properties are 

written in the files of “Mass_Hydrocarbons.m” and “Mass_Polar.m”. The flow chart of the 

main simulation code is given in Figure 5.2. 

 

5.2 Thermodynamic Library  

 

Thermodynamic library consists of files written with MATLAB and FORTRAN programming 

languages. The part written in FORTRAN is prepared by Dokucu (2002) for model predictive 

controller design of an industrial distillation column and then, modified by Yıldız (2002) to be 

used in MATLAB framework. Also, Bahar (2007) modified the written equilibrium subroutine 

to predict VLE compositions by using NRTL activity coefficient model for liquid phase and PR 

EOS state for vapor phase. The details of the thermodynamic library can be found from the 

studies of Dokucu (2002), Yıldız (2002) and Bahar (2007).  

 

In this study, two modifications to this library are made: one is to obtain data on vapor 

density of the mixture besides liquid density of the mixture; the other is the addition of the 

equation of NRTL activity coefficient model for binary mixtures. Moreover, an integration of 

thermo library files written by Yıldız (2002) and Bahar (2007) is done. By using this library, 

one can determine enthalpy, liquid and gas density and average molecular weight of the 

mixture and phase equilibrium compositions by utilizing either γ - φ approach or φ - φ 

approach, with the help of m-files, “thermo_Enthalpy.m”, “thermo_Density.m”, 

“thermo_Equilibrium_Hydrocarbons.m”, and “thermo_Equilibrium_Polar.m” respectively.  
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Figure 5.2 Flow Chart of the Main Simulation Algorithm. 
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Figure 5.2 Flow Chart of the Main Simulation Algorithm (Cont’d). 
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Figure 5.2 Flow Chart of the Main Simulation Algorithm (Cont’d). 
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 Figure 5.2 Flow Chart of the Main Simulation Algorithm (Cont’d). 
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5.3 Optimization Functions 

 

In the simulation program, the function of CAP is solved with the aid of the command 

“fmincon” in the MATLAB programming language (Bahar, 2007). Since the “fmincon” is to 

find a minimum of a constrained nonlinear multivariable function starting with an initial 

estimate, it is necessary to make it as a maximization function by putting a minus sign in 

front of the equation in the simulation algorithm. Inequality constraint to find an optimal 

operation point for nonlinear optimization problem is given by Equation 4.3. In the selection 

of optimization options in the simulation code, the ones used for medium – scale algorithms 

are taken into consideration. Since there is an inequality constraint, the use of large – scale 

algorithm is impossible. “Large scale” is chosen as “off” with termination tolerance for 

optimum reflux ratio of 10-3. In the medium – scale algorithms, a sequential quadratic 

programming (SQP) method is used. In this method, for each iteration an approximation is 

performed with the Hessian of the Lagrangian function by using a quasi-Newton updating 

method and a quadratic programming sub problem is solved. Estimation of optimum reflux 

ratio for an interval is done in two steps by using written simulation code by Bahar (2007). 

An internal reflux ratio is calculated in the first step. Iterative solutions of the written 

optimization code with main simulation program are generated to reach the exact solution at 

the second step. A global optimum internal reflux ratio to collect any product or waste 

material into specified tank is found out by searching global maximum points of the capacity 

factor for each stage by using “fmincon” command. Details of the use of “fmincon” 

command can be found in the study of Bahar (2007). 

 

In determination of optimal reflux ratio, the main simulation code is changed to a sub 

function while making the optimization function as main simulation code. The procedure to 

determine optimal reflux ratio is as follows:  

1. The amount of feed is introduced to reboiler as MB with liquid compositions x1, x2, 

x3... xj.  

2. The boil up rate is set by tuning heat load. 

3. The system is adjusted to total reflux operation conditions until the steady state 

composition is reached or the composition of the lightest compound is reached to 

desired product purity.  

4. After total reflux operation, an arbitrarily initial internal reflux ratio is given to the 

system to start optimization. With the given reflux ratio first product is collected in 

the product tank until the composition in the 1st product tank is attained to specified 

purity level. When the composition of the 1st product tank drops below the purity 

level, the CAP is evaluated. Optimization program changes reflux ratio and the 
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simulation algorithm will start to search for another reflux ratio and the operation 

time will start again. This is continued until an optimum reflux ratio is obtained with 

terminal tolerance with 10-3. 

5. Then, obtained internal reflux ratio for the 1st product tank will be introduced to 

simulation algorithm and a new initial optimal reflux ratio will be given to the system 

to find an optimum reflux ratio for the 1st slop cut tank by guiding the distillate rate 

to slop cut tank. The procedure is continued until the composition of the reboiler is 

reached to the specified purity of the heaviest component. After several runs with 

assigning different values of internal reflux ratio, one which gives the maximum CAP 

is chosen as the optimum reflux ratio for each tank.   

 

The flow chart of the simulation algorithm for optimization of reflux ratio profile to maximize 

distilled product amount is given by Figure 5.3. 

 

 

 

  

Figure 5.3 Flowchart of Simulation Algorithm for Optimum Reflux Ratio Profile. 
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CHAPTER 6 

CASE COLUMN AND EXPERIMENTAL SET- UP  

Verification of simulation code is necessary to check its validity. In this study, results of the 

simulation algorithm are checked for hydrocarbons and polar mixtures. The check for 

hydrocarbons is done analytically. Experimental studies are performed for polar mixtures, by 

using a binary mixture of 60% ethanol (EtOH) and 40% water (H2O). The information about 

components of mixtures, column specifications considered during verification of simulation 

code for hydrocarbons and polar mixtures, experimental procedure and analysis of the 

experimental findings are given below.   

 

6.1 Case Study 1: Hydrocarbons 

 

Analysis of behavior of the simulation algorithm for hydrocarbons is performed by using a 

ternary mixture of cyclohexane, n-heptane and toluene. Correlations to predict physical 

properties of these hydrocarbons and the specifications of the components are given in 

Appendix D.  

 

Residue curve map, which gives information about the phase equilibrium, can be used to 

trace the azeotropy of the compounds. A residue curve map of cyclohexane, n-heptane and 

toluene is given in Figure 6.1 (Jiménez et al., 2002).  

 

Figure 6.1 demonstrates that “the binary system of n-heptane and toluene has a high purity 

binary azeotropy (0.99 mole fraction in n-heptane). This azeotropy is nonsensitive to 

pressure (0.975 molar to 10 atm)” (Jiménez, et al., 2002). There is not any ternary 

azeotropy in the system. Hence, this system can be thought as nonazeotropic system for the 

range of pressures used in the (up to 1 atm) simulation.  
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Figure 6.1 Residue Curve Map for Cyclohexane – n - Heptane – Toluene at 1 atm  

(Jiménez et al., 2002). 

 

 

An experimental study could not be performed with hydrocarbons due to the damage given 

by these solvents to the experimental set up. Therefore, accuracy of simulation algorithm 

will be performed qualitatively as in the case of Hitch et al. (1988) by comparing nine 

simulation runs with varying one parameter at each simulation run. Case column is 

considered as having the same specifications of the column and feed used in the study of 

Mujtaba and Macchietto (1993). Column and feed specifications are given in Tables 6.1.  

 

The column specifications in the study of Mujtaba and Macchietto (1993) are given as tray 

numbers, boil up rate, holdups of the trays, holdups of condenser-reflux-drum and pressure 

drop throughout the column. Since the column used in the study of Mujtaba and Machietto 

(1993) is a plate distillation column, some more specifications has to be included as inputs to 

the simulation program for the packed distillation column. Thus, irrigated and flooding 

pressure drop is evaluated by the simulation code using the top pressure given in Table 6.1. 

Also, the design gas rate is selected to be 38% of the flooding rate for a column of 0.35m in 
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diameter with packed height of 1.5m. The calculated specifications of the column and 

specifications of the used packing material are given in Tables 6.2 and 6.3, respectively. 

 

 

Table 6.1 Column and Feed Specifications. 

 

Condenser – Reflux- Drum Holdup (kmol) 0.02 

Top Pressure (Pa) 101600 

Maximum Boil up Rate (kmol/h) 2.75 

Fresh Feed Amount (mol) 2930 

Initial mole fractions at reboiler   

Cyclohexane  0.407 

n- Heptane 0.394 

Toluene  0.199 

Desired purity of the first product  0.9 

Desired purity of the second product 0.8 

 

 

Table 6.2 Additional Specifications for the Packed Distillation Column Used in the 

Simulation. 

 

Parameter Value 

Irrigated pressure drop (Pa) 359.52 

Flooding pressure drop (Pa) 2637.23 

Design gas rate / Flooding Gas Rate (%) 0.38 

Number of differential element, NT 40 

Diameter of the column (m) 0.35 

Height of packed section (m) 1.5 
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Table 6.3 Specifications of Used Random Packing Material. 

 

Parameter Value 

Packing material Ceramic Raschig ring 

Diameter(m) 0.010 

Specific surface area of the packing (m-1) 472 

Porosity 0.655 

 

 

The heat load in the selected distillation column is kept at the maximum value and internal 

reflux ratio is used as the manipulated variable to understand the optimum operation to 

maximize distillate product amount, since it is assumed that there is a perfect level control at 

reflux –drum – condenser section (Yıldız, 2002).  

 

6.2 Case Study 2: Polar mixtures  

 

The accuracy of simulation algorithm is verified quantitavely by carrying out experiments on 

a lab scale packed distillation column by using 60% EtOH and 40% H2O mixture. Ethanol of 

≥99.99% (w/w) purity (supplied by Merck) and pure water are used to prepare the mixture. 

Physical properties for polar mixtures assumed as constant in the simulation code in order to 

simplify the complex calculations. Physical properties and the specifications of ethanol and 

water are given in Appendix D. Azeotropy of ethanol and water mixture occurs at 78.2 oC at 

1 atm (4.4% by weight water and 95.6% by weight ethanol).  

 

6.2.1 Experimental Set – Up   

 

The experimental set – up used in this study (Figure 6.2) consists of a packed distillation 

column made of glass and with an ID of 5cm and with 0.4m packing height. Column is filled 

with 5 mm diameter glass Raschig Rings. The polar mixture to be analyzed is 1000 ml 

solution with 60% EtOH and 40% H2O [mol/mol]. The mixture is initially 23 moles. Heat load 

is chosen as 500 W (1800000 J/h). Flow rate of condenser is 1.4 l/min. In order to reduce 

heat loss to the environment, reboiler and packed column are insulated. Peristaltic pumps 

are used to pump distilled material to column and product cut tanks. Calibration curve of 

peristaltic pumps is given in Appendix E.  
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Figure 6.2 Schematic View of Experimental Set – Up. 

 

 

6.2.2 Experimental Procedure  

 

Analyses of the distillate samples taken in the experiments are done in the setup explained 

above are measured by using Porapak - Q column in gas chromatography (GC) (Hewlett – 

Packard 5890 Series II) by using nitrogen as carrier gas. First, a calibration curve is prepared 

with the samples of known compositions. Details of this study and calibration equations are 

given in Appendix E. Then, reboiler is filled with 1000 ml solution with 60% EtOH and 40% 

H2O and the heat load is adjusted to 0.5 kW. The column is operated at total reflux for 

about five hours - until the steady state is reached. The operation is continued with a finite 

external reflux ratio of 0.5 for one hour. Contents of the reboiler is started to boil in 15 

minutes after start and when the condensed vapor is observed at the reflux- drum, samples 

are taken from the distilled product in every 5 minutes for about 0.5 hrs to observe the rise 

of the ethanol composition at the reflux drum. Then, samples are taken after 0.5 hrs in 

every 20 minutes, until total reflux period ends and again in every 5 minutes until distillation 

stops. Then, samples are analyzed in GC. The liquid compositions of ethanol are obtained 

with the use of the following equation: 

( ) 09308.11915.20152.1
222

23
=−++− EtOHEtOHOHEtOHOHEtOHOH xx κκκκκ  (6.1) 

where, κH2O and κEtOH are area of the water and ethanol obtained from GC, and xEtOH is the 

liquid composition of ethanol [mol/mol].  
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CHAPTER 7 

RESULTS AND DISCUSSION 

Verification of the simulation code for the separation of hydrocarbon and polar mixtures 

using different simulation runs and experimental findings, optimum reflux ratio profile for 

maximizing the amount of distillate in a specific time and recycling of molar holdups of slop 

cut tank for the proceeding batch operation are given and discussed in this chapter. 

 

7.1 Effect of Incremental Bed Height on the Results of the Simulation  

 

The selection of the size of the incremental packing bed height of the batch packed 

distillation column, ∆z (∆z = Bed Height (Z)/ Number of Incremental Element (NT)) is 

important for the accuracy of the results. Thus, the effect of NT (15, 35, 40 and 50) on the 

accuracy of the results is investigated first by using related study (Yıldız (2002)) found from 

the literature by using an internal reflux ratio profile given in Table 7.1 . It is observed from 

Figure 7.1 that, incremental element, ∆z, has an effect on the separation operation as 

separation becomes more difficult (after 6 hrs of operation, separation is between n-heptane 

and toluene and is more difficult than the separation of cyclohexane and n-heptane). As the 

number of incremental elements increases, separation efficiency increases. However, the 

effect of number of incremental element on separation efficiency levels off as the number 

reaches 50. That is, there is a slight change between the results of simulation code for NT = 

40 and NT = 50. Therefore, during the simulation runs in the following sections, NT is taken 

as 40.  
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Table 7.1 Internal Reflux Ratio Profile of the Study of Yıldız (2002). 

 

Time Interval [hrs] Internal Reflux Ratio (L / V) 

0 – 2.04 0.875 

2.04 – 3.4 0.911 

3.4 – 6.17 0.933 

6.17 – 6.51  0.831 

6.51 – 8.00 0.876 

 

 

 

Figure 7.1 Comparison of Distillate Compositions for Different Incremental Elements.  

 

 

7.2 Verification of Simulation Code by the Study of Yıldız (2002) 

 

The studies on the verification of the simulation code are firstly performed by comparing the 

distillate compositions of the simulation results of the Yıldız (2002) in a plate distillation 

column: at total reflux, at a constant internal reflux ratio of 0.875 and at the piecewise 

constant internal reflux ratio profile as a function of time given in Table 7.1 (Yıldız (2002)). 

This validation is done as a starting point to check whether the results of the simulation 
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code are reasonable or not. After this section, verification of the simulation code will be done 

theoretically and experimentally.  

 

Although the study of Yıldız (2002) is done in a batch plate distillation column with  20 trays 

(including reboiler and condenser) for a multicomponent mixture, the distillate compositions 

can be compared with the dynamic behavior of the multicomponent batch packed distillation 

column which has the same feed amount, condenser hold-up and heat input. Of course 

depending upon L/D ratio for the column and packing material, the separation efficiency will 

be different. Nevertheless the dynamic trend is wanted to be checked in terms of distillate 

compositions. In Figure 7.2, the comparison of the distillate compositions between the 

results of simulation code prepared by Yıldız (2002) and those of simulation code written in 

this study for total reflux period of one hour is given. It is observed that, steady state 

distillate compositions for plate distillation column are slightly higher than those for packed 

distillation column. However, the dynamic behavior of the composition of the components 

for packed distillation is in a similar trend with the plate distillation column and the time 

necessary to reach steady state is nearly the same for both cases. The difference in distillate 

composition shown in Figure 7.2 can be reduced by increasing the packing height. 

 

 

 

Figure 7.2 Comparison of Distillate Compositions at Total Reflux.   
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In Figure 7.3, simulation run performed for a constant internal reflux ratio of 0.875 is given. 

Again, there is a good agreement between the dynamic behaviors of the distillate 

compositions of two studies. In packed distillation column, the separation efficiency is higher 

for the second lightest compound, n- heptane. Also, intersection point of the distillate 

compositions of cyclohexane and n-heptane is nearly the same for both columns. 

 

 

 

Figure 7.3 Comparison of Distillate Compositions at Internal Reflux Ratio of 0.875.   

 

 

In the study of Yıldız (2002) reflux ratio profile (Table 7.1 ) previously evaluated and used by 

Mujtaba and Macchietto (1993) was considered. Using this profile simulation results are 

obtained for the dynamic behavior of the distillate compositions and are shown Figure 7.4. 

As can be seen from the figure, the separation efficiency of the packed distillation column 

for the second lightest compound is again higher than that of the plate distillation column 

and intersection point of the lightest compound (cyclohexane) and the second lightest 

compound (n-heptane) is approximately 5.1 hrs for the plate distillation column and 5.43 hrs 

for the packed distillation column. Thus, the trend of the distillate compositions is again 

similar for two distillation columns. Thus, the simulation code written in this study for the 

batch packed distillation column is verified in trend to a certain extent. 
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Figure 7.4 Comparison of Distillate Compositions with a Specified Reflux Ratio Profile. 

 

 

7.3 Verification of Simulation Code for Hydrocarbon Mixtures  

 

Hitch and Rousseau (1988) has prepared a simulation code for a continuous packed 

distillation column with random packing which was used to separate a multicomponent 

system (propane, n-butane, n-hexane) at high pressures. They checked the validation of 

code by performing runs to see the expected effects of different variables on the distillate 

compositions.  

 

In the hydrocarbon system studied, experiments could not be performed in the experimental 

column system due to the high etching effect of the mixture on column joints made of 

different plastics. Therefore, a similar approach to Hitch and Rousseau (1988) is used for the 

verification of the code for hydrocarbon mixtures.  

 

In batch distillation operation, there are two important periods: one is the startup period and 

the other is the production period. In startup period, the column is operated at total reflux 

until the composition at the condenser reaches a constant value. In the production period, 

the composition in the condenser changes since distillate is withdrawn from the column. The 
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simulation program written in this study can handle both – startup and production periods, 

and solves the state and algebraic equations to find the vapor and liquid compositions, 

change of temperatures, holdups, liquid and flow rates during operation time for startup and 

production periods. In the simulation runs, the column is first operated at total reflux for 

about one hour and then, production period is started. The column reaches steady state in 

one hour at total reflux.  

 

In order to test the simulation code prepared, nine simulation runs are done similar to the 

study done by Hitch and Rousseau (1988). During these runs, internal reflux ratio, height of 

packing, condenser holdup and heat load given to the system are changed and the effect of 

these variables on distillate compositions are analyzed and checked whether expected 

behaviors are achieved or not. In Table 7.2 the values of the parameters that are used in 

simulation runs are given. First run is chosen as the base run.  

 

 

Table 7.2 Parameters Used in Different Simulation Runs. 

 

Run 

Number 

Height of 

Packing, m 

Internal 

Reflux Ratio 

(L/V) 

Condenser 

Holdup, mol 

Heat Load, 

J/hr 

1 1.5 0.8 20 8.15*107 

2 1.5 0.75 20 8.15*107 

3 1.5 0.7 20 8.15*107 

4 2 0.8 20 8.15*107 

5 3 0.8 20 8.15*107 

6 1.5 0.8 50 8.15*107 

7 1.5 0.8 80 8.15*107 

8 1.5 0.8 20 6.5*107 

9 1.5 0.8 20 5*107 

 

 

The column is operated at constant internal reflux ratios of 0.8, 0.75 and 0.7 at the 

production period for simulation runs 1, 2 and 3, respectively. Figure 7.5 demonstrates the 

effect of internal reflux ratio on distillate compositions. As seen from the Figure 7.5 the 

highest purity of cyclohexane is obtained after one hour of total reflux period. Steady state 

distillate compositions at total reflux and distillate compositions for first, second and third 

simulation runs at 2 hr elapsed time are given in Table 7.3. Since at total reflux all three 
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cases have same reflux ratio the distillate compositions are equal to each other. On the 

other hand, the distillate purity in cyclohexane decreases as reflux ratio decreases at 

production period. There are 8.18% and 17.45% decrease for compositions of cyclohexane 

of simulation run 2 and 3 with respect to distillate compositions of simulation run 1, 

respectively for the same time elapsed. Moreover, there are 37.59% and 78.05% increase at 

the distillate compositions of n – heptane as reflux ratio decreases. For toluene, liquid 

compositions also increase and, changes of compositions of simulation run 2 and 3 with 

respect to distillate compositions of simulation run 1 are 60.14% and 150.68%, respectively. 

Furthermore, in terms of n-heptane, it is observed that, maximum concentration obtained is 

decreasing as reflux ratio decreases. Consequently, the time necessary to complete removal 

of the heaviest compound from the reboiler increases, as the reflux ratio becomes closer to 

total reflux value. Operation times are found to be 6.54, 5.478 and 4.74 hrs for the reflux 

ratios with descending order, respectively. This trend is an expected one in a batch 

distillation system as found also by Hitch and Rousseau (1988).  

 

 

 

Figure 7.5 Effect of Internal Reflux Ratio on the Distillate Compositions. 
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Table 7.3 Distillate Compositions at Different Reflux Ratios at Two Hours Elapsed Time. 

 

Liquid Compositions, mole fractions 
Time [hrs] 

Internal Reflux 

Ratio Cyclohexane N- heptane Toluene 

2.00 0.8 0.8285 0.1567 0.0148 

2.00 0.75 0.7607 0.2156 0.0237 

2.00 0.7 0.6839 0.2790 0.0371 

 

 

Table 7.4 Percentage Changes of Distillate Compositions at Different Internal Reflux Ratios. 

 

Compound Internal Reflux Ratio Percentage Change (%) 

0.8 - 

0.75 -8.18 Cyclohexane 

0.7 -17.45 

0.8 - 

0.75 37.59 N – heptane 

0.7 78.05 

0.8 - 

0.75 60.14 Toluene 

0.7 150.68 

 

 

In the second phase, height of packing is changed from 1.5m to 2m and 3m to observe its 

effect on separation, while keeping other parameters constant at base run (internal reflux 

ratio = 0.8, condenser holdup = 20 moles and heat load = 8.15*107 J/h). The effect of 

changing height of packing on distillate compositions is shown in Figure 7.6. The total 

effective interfacial area for mass transfer increases as the height of packing increases which 

increases the total mass transferred. It is observed from Figure 7.6 that, the maximum 

concentrations of the lightest (in total reflux period) and second lightest components (in 

production period) increases as packed height increases as expected. Distillate compositions 

are different from the compositions of base simulation run not only at finite reflux ratio but 

also at total reflux ratio as given in Tables 7.5 and 7.6. There are 2.73% and 4.84% 

increase at the distillate compositions of cyclohexane and, there are 45.20% and 82.27% 

decrease for distillate compositions of n- heptane at total reflux as height of packed section 

increases. Changes of percentages of distillate compositions are increased for cyclohexane 
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and decreased for n-heptane and toluene since separation efficiency of the column increases 

as the height of packed section increases. Moreover, the total operation time is found to be 

decreasing slightly 6.54, 6.52 and 5.976 hrs as packing height increases from 1m to 3m. 

This also verifies the code.  

 

 

 

Figure 7.6 Effect of Height of Packings on the Distillate Compositions. 

 

 

Table 7.5 Distillate Compositions at Different Height of Packings at Two Hours Elapsed 

Time. 

 

Liquid Compositions, mole fractions 
Time [hrs] 

Height of 

Packings [m] Cyclohexane N- heptane Toluene 

1.00 1.5 0.9451 0.0513 0.0036 

1.00 2 0.9709 0.0280 0.0011 

1.00 3 0.9908 0.0091 0.0001 

2.00 1.5 0.8285 0.1567 0.0148 

2.00 2 0.8621 0.1301 0.0078 

2.00 3 0.9031 0.0945 0.0024 
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Table 7.6 Percentage Change of Distillate Compositions at Different Height of Packings. 

 

Percentage Change (%) 
Compound Height of Packings 

Time = 1 hrs Time = 2 hrs 

1.5 - - 

2 2.73 4.06 Cyclohexane 

3 4.84 9.00 

1.5 - - 

2 -45.20 -16.98 N – heptane 

3 -82.27 -39.7 

1.5 - - 

2 -69.44 -47.30 Toluene 

3 -97.22 -83.78 

 

 

Effect of condenser holdups on separation is demonstrated in Figure 7.7.  Condenser holdup 

is increased from 20 moles with 30 moles increments up to 80 moles while keeping other 

parameters constant at the base run (height of packing = 1.5m, internal reflux ratio = 0.8 

and heat load = 8.15*107 J/h). It is observed that, the effect of condenser holdup is only 

seen during the startup period. The time necessary to reach steady state increases as the 

molar holdups of the condenser increases as expected. Although, there is a slight difference 

in the distillate compositions with time at the startup period due to different condenser 

holdups, steady state compositions at the end of the total reflux period are nearly same for 

the three runs as given in Tables 7.7 and 7.8. When given information at tables is analyzed, 

the greatest change in distillate compositions occurs as 5.56% at toluene at the end of the 

startup period with 80 mol condenser holdup. On the other hand, there is a slight effect of 

varying molar holdups of condenser on distillate compositions during the production period. 

The operation times and obtained product purities of compounds are almost the same for 

the three simulation runs since the amount of fresh feed is much greater than the amount of 

molar holdup of condenser.  
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Figure 7.7 Effect of Condenser Holdups on the Distillate Compositions. 

 

 

Table 7.7 Distillate Compositions at Different Condenser Holdups for Two Hours Elapsed 

Time. 

 

Liquid Compositions, mole fractions 
Time [hrs] 

Condenser 

Holdup [mol] Cyclohexane N- heptane Toluene 

1.00 20 0.9451 0.0513 0.0036 

1.00 50 0.9442 0.0521 0.0037 

1.00 80 0.9432 0.0530 0.0038 

2.00 20  0.8285 0.1567 0.0148 

2.00 50  0.8265 0.1584 0.0151 

2.00 80 0.8242 0.1603 0.0155 
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Table 7.8 Percentage Change of Distillate Compositions at Different Condenser Holdups. 

 

Percentage Change (%) 
Compound 

Condenser 

Holdups [mol] Time = 1 hr Time = 2 hr 

20 - - 

50 -0.10 -0.24 Cyclohexane 

80 -0.20 -0.52 

20 - - 

50 1.56 1.09 N – heptane 

80 3.31 2.30 

20 - - 

50 2.78 2.03 Toluene 

80 5.56 4.73 

 

 

In the study of Hitch and Rousseau (1988) the condenser holdup is comparable with the 

fresh feed which resulted in change of composition profiles with condenser holdup. In this 

study, condenser holdups of simulation run 1, 6 and 7 are too small than the total feed. 

Therefore, condenser holdup is increased from 100 moles with 100 moles increments up to 

300 moles to observe the effect of condenser holdup during production period while keeping 

other parameters constant at the base run (height of packing = 1.5m, internal reflux ratio = 

0.8 and heat load = 8.15*107 J/h). It is observed from Figure 7.8 that the steady state 

compositions are not reached for the simulation runs with 200 and 300 moles of condenser 

holdup during one hour startup period. Hence, the startup period, which is necessary to 

reach a steady state value, is increased from one hour to 2.5 hours. It is observed from 

Figure 7.9 that all simulation runs reach a steady state value in 2.5 hours. As it is stated 

before, the time necessary to reach a steady state value increases as the amount of 

condenser holdup increases. Steady state compositions given in Table 7.9 are nearly same 

for 100, 200 and 300 moles condenser holdups. There are 0.36% and 0.80% decrease on 

steady state compositions of cyclohexane, 5.79% and 12.90% increase on steady state 

compositions of n-heptane and 7.90% and 15.79% increase on steady state compositions of 

toluene as the amount of condenser holdup increases at startup period as stated in Table 

7.10. In product period, the separation efficiency of column decreases as the amount of 

condenser holdup increases. The percentage changes of distillate compositions of 

cyclohexane and toluene in production period when they are compared with these of startup 

period. However, this is not the case for distillate compositions of n-heptane at production 
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period. The maximum purity of n-heptane is obtained when the amount of condenser holdup 

is equal to 100 moles.  

 

 

 

Figure 7.8 Effect of Condenser Holdup on the Distillate Compositions with One Hour 

Startup Period.  

 

 

Table 7.9 Distillate Compositions at Different Condenser Holdups for 4.5 Hours Elapsed 

Time. 

 

Liquid Compositions, mole fractions 
Time [hrs] 

Condenser 

Holdup [mol] Cyclohexane N- heptane Toluene 

2.50 100 0.9427 0.0535 0.0038 

2.50 200 0.9393 0.0566 0.0041 

2.50 300 0.9351 0.0604 0.0044 

4.50 100 0.6530 0.3097 0.0373 

4.50 200 0.6359 0.3233 0.0408 

4.50 300 0.6155 0.3398 0.0447 

 



 

 

 

 

69

 

 

Figure 7.9 Effect of Condenser Holdup on Distillate Compositions with 2.5 Hours Startup 

Period.  

 

 

Table 7.10 Percentage Change of Distillate Compositions at Different Condenser Holdups. 

 

Percentage Change (%) 
Compound 

Condenser 

Holdups [mol] Time = 2.5 hrs Time = 4.5 hrs 

100 - - 

200 -0.36 -2.62 Cyclohexane 

300 -0.80 -5.74 

100 - - 

200 5.79 4.39 N – heptane 

300 12.90 9.72 

100 - - 

200 7.90 9.38 Toluene 

300 15.79 19.84 

 

 



 

 

 

 

70

Lastly, the effect of heat load is analyzed and is given in Figure 7.10. Heat load is changed 

from 8.15*107 J/h to 6.5*107 and 5*107 J/h by keeping other parameters constant at base 

run (height of packing = 1.5m, internal reflux ratio = 0.8 and condenser holdup = 20 

moles). The highest purity of cyclohexane is again obtained at startup period. Obtained 

steady state distillate compositions of the cyclohexane, n-heptane and toluene for simulation 

run 8 and 9 alter 0.26%, 0.50%, 4.29%, 8.19%, 8.33% and 13.89% of distillate 

compositions of simulation run 1 at total reflux, respectively, as given in Table 7.11 and 

7.12. It is found that the greatest change occurs at the compositions of toluene when the 

column operates at total reflux. The change of liquid compositions of cyclohexane for 

simulation run 8 and 9 is nearly equal to the composition of cyclohexane at base run during 

startup period. This slight change increases as time elapse at production period. The percent 

increase of the composition of cyclohexane at simulation run 8 and 9 are 2.17% and 3.80% 

at the end of two hour distillation operation, respectively. 0.7975, 0.7964 and 0.7949 are the 

maximum purities of n-heptane with the heat loads descending order.  

 

 

 

Figure 7.10 Effect of Heat Load on Distillate Compositions. 

 

 

The maximum purities of the n-heptane do not change very much as the heat load is 

changed during the production period. However, the operation time is affected by the heat 
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load given to the reboiler. It is observed that, as the heat load decreases, operation time for 

separation increases as expected. Decrease in heat load causes collection of the products in 

longer time periods. Operation times are 6.54, 7.968 and 9.9963 hrs for the heat loads in 

descending order, respectively.  

 

 

Table 7.11 Distillate Compositions at Different Heat Loads for Two Hours Elapsed Time. 

 

Liquid Compositions, mole fractions 
Time [hrs] Heat Load [J /h] 

Cyclohexane N- heptane Toluene 

1.00 8.15*107 0.9451 0.0513 0.0036 

1.00 6.5*107 0.9476 0.0491 0.0033 

1.00 5*107 0.9498 0.0471 0.0031 

2.00 8.15*107 0.8285 0.1567 0.0148 

2.00 6.5*107 0.8465 0.1410 0.0125 

2.00 5*107 0.8600 0.1292 0.0108 

 

 

Table 7.12 Percentage Change of Distillate Compositions at Different Heat Loads. 

 

Percentage Change (%) 
Compound 

Heat Loads 

[J/h] Time = 1 hr Time = 2 hr 

8.15*107 - - 

6.5*107 0.26 2.17 Cyclohexane 

5*107 0.50 3.80 

8.15*107 - - 

6.5*107 -4.29 -10.02 N – heptane 

5*107 -8.19 -17.55 

8.15*107 - - 

6.5*107 -8.33 -15.54 Toluene 

5*107 -13.89 -27.03 

 

 

Considering the effect of four parameters on the operations of batch packed distillation 

system, the expected effects are observed which verifies qualitatively simulation code 

prepared.  
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7.4 Experimental Verification of Simulation Code for Polar Mixtures  

 

The experiments are performed for a binary mixture of ethanol – water as explained in 

Chapter 6 with total reflux ratio for 5 hrs and then with an external reflux ratio of 0.5 for 1 

hr. The experimental data collected for the change of distillate compositions with time are 

given in Table 7.13. Verification of simulation code for polar mixtures is achieved 

quantitatively by comparing the results of simulation with the experimental findings.  

 

 

Table 7.13 Experimentally Measured Liquid Ethanol Compositions in Mole Factions in the 

Distillate. 

 

Time 

[min] 

xEtOH 

[mol / mol] 

Time  

[min] 

xEtOH 

[mol / mol] 

0 0.6127 180 0.7244 

5 0.7177 195 0.7224 

10 0.7283 210 0.7231 

15 0.7322 225 0.7296 

25 0.7319 240 0.7361 

35 0.7393 255 0.7370 

40 0.7375 270 0.7383 

45 0.7344 285 0.7414 

60 0.7240 300 0.7476 

75 0.7256 305 0.7465 

90 0.7326 315 0.7339 

110 0.7422 320 0.7190 

120 0.7478 325 0.7137 

135 0.7359 330 0.7095 

150 0.7301 335 0.7034 

165 0.7269 340 0.6787 

 

 

Experimental findings are compared with the simulation results using two different 

predictions for the vapor pressure of the components in terms of temperature: Antoine and 

Wagner equations, as given below respectively, 
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The constants of Equations 7.1 and 7.2 are given in Appendix D (Maier et al. (1998), Reid et 

al. (1987)). 

 

The comparison of the experimentally obtained dynamic ethanol concentrations of the 

distillate and their calculated values with simulation are given in Figure 7.11. The 

experimental data is collected at constant reflux for a longer time in order to make sure that, 

steady state is attained also experimentally in the time calculated theoretically. However, as 

can be seen from Figure 7.11, the steady state is reached in 0.583 hr experimentally and in 

0.498 hr (Equation 7.1) and 0.252 hr (Equation 7.2) in simulation runs. As expected, the 

highest purity of liquid ethanol composition is obtained at total reflux both theoretically and 

experimentally. Reid et al. (1987) stated that, the most accurate results are predicted by 

using Wagner Equation. Nevertheless, in the evaluation of vapor pressure, the calculated 

values differ approximately by 3% using Equation 7.1(Antoine) or Equation 7.2 (Wagner). 

However, when used in the simulation code, the net effect, as can be seen from Figure 7.11, 

is approximately 15% using Antoine Equation and 12% in using Wagner Equation. 

 

Although distillate compositions obtained experimentally and by simulation differ in the total 

reflux period, it is observed that, the change of composition of ethanol with time in the 

production period has similar trends.  Thus, experimental verification of the simulation code 

using polar mixture has been successfully done considering the behavior of the distillate 

composition with time with an error of 12% in experimental composition values considering 

Wagner Equation in the simulation for pressure dependence. The reason of this error is 

thought to be mainly as a result of the physical properties of the used components in the 

simulation which are found at a lower temperature than the experimental column 

temperature operated. 
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Figure 7.11 Comparison of Results Obtained By Simulation and Experiments. 

 

 

7.5 Determination of Optimum Reflux Ratio  

 

One of the aims of this study is to determine optimum reflux ratio profile to maximize 

distilled product amount, as stated before. Here, the three component system (cyclohexane, 

n-heptane and toluene) is considered. CAP, which is a measure developed by Luyben (1988) 

is used to find the optimum reflux ratio profile.  

 

The number of significant figures of optimized internal reflux ratio is rounded to three while 

the numbers of significant figures of time to switch to another tank and capacity factor are 

rounded to two in order to have meaningful values for real applications. The effect of 

significant figures is analyzed by taking into consideration the calculated values to estimate 

optimum reflux ratio for the collection of lightest product into product tank 1, P1 which are 

given in Table 7.14. It is clear from the Table 7.14 that, significant figures of reflux ratio 

have effect on time to switch to another tank, the amount of molar holdup in tank and 

capacity factor. Rounding the internal reflux ratio from six to three significant figures results 

to 0.0867% decrease on time to switch another tank, 0.063% increase on the amount of 

molar holdup in P1 and 5.69 x 10-5% increase on capacity factor whereas rounding the 
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internal reflux ratio from six to one significant figure results to 18.08% increase on time to 

switch another tank, 14.18% increase on the amount of molar holdup in P1 and 1.20% 

decrease on capacity factor. Thus, rounding of the internal reflux ratio to three significant 

digits is accepted. Moreover, the effect of rounding the significant figures of time to switch 

another tank is examined for an internal reflux ratio of 0.889. Results of the simulation code 

for the first product tank with an internal reflux ratio of 0.889 for the times to switch another 

tank with different significant figures are given at Table 7.15. It is found that as the number 

of significant figures of time values decreases, the amount of holdup in P1 and capacity 

factor decrease 0.0283% and 0.0097% with the same internal reflux ratio, respectively. 

These changes are small. Therefore, time value to switch to another tank is also rounded to 

two significant figures. 

 

 

Table 7.14 Effect of Rounded Value of Internal Reflux Ratio on Capacity Factor.  

 

Internal Reflux 

Ratio 

Time to Switch 

Another Tank 

[hrs] 

Molar Holdup 

in Product 

Tank 1, P1 

[moles] 

Capacity 

Factor 

[mol/hr] 

0.889059 3.1134 634.96 175.7233 

0.889060 3.1134 634.96 175.7218 

0.889100 3.1155 635.36 175.7310 

0.889000 3.1107 634.48 175.7234 

0.890000 3.1581 642.91 175.7500 

0.900000 3.6762 725.06 173.6175 

 

 

Table 7.15 List of Some Capacity Factor Values with Rounded Times to Switch another 

Tank.  

 

Internal 

Reflux Ratio 

Time to Switch 

Another Tank 

[hrs] 

Molar Holdup in 

Product Tank 1, 

P1 [moles] 

Capacity Factor 

[mol/hr] 

0.889000 3.1107 634.48 175.7234 

0.889000 3.1110 634.57 175.7334 

0.889000 3.1100 634.30 175.7064 
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The results obtained by simulation utilizing the written optimization code by Bahar (2007) for 

maximizing product amount is given in Table 7.16 and shown in Figure 7.12. 

 

 

Table 7.16 Results of the Optimization Code to Maximize Distilled Product Amount for 

Cyclohexane – n-Heptane – Toluene Mixture. 

 

Parameter Optimization Results 

Time interval (hr) 1 - 3.11 3.11 - 5.88 5.88 - 6.60 

Optimum Reflux Ratio (L/V) 0.889 0.825 0.794 

CAP (mol/hr) 175.71 99.42 235.07 

 

 

 

Figure 7.12 The Liquid Distillate Compositions Obtained under Optimum Reflux Ratio 

Profile. 

 

 

During product period, distilled material is collected in storage tanks. Distillate compositions 

change with time. The lightest product (mostly cyclohexane) is obtained at a higher 

concentration. Then the second lightest product (mostly n- heptane) is distilled. First and 

second components are collected into Product 1 (P1) and 2 (P2) tanks, respectively. The “off-

spec” material as waste is collected at Slop cut tank 1 (S1). The heaviest product, which 
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includes toluene mostly, is withdrawn from the reboiler after distillation stops. Thus, at the 

final stage, the holdups of the packed section and condenser are also drained and collected 

in the product tank 3 (P3), reboiler.  

 

The desired purities for cyclohexane and second product, n – heptane, are obtained as 0.9 

and 0.8, respectively. Thus, the operation is continued for an internal reflux ratio of 0.889 

for about 2.11 hours to collect the distillate in the first product tank, P1, until distillate 

composition drops below 0.9. Then, the product, which is “off-spec”, is collected in slop-cut 

tank S1 for a certain period of time 2.77 hours with an internal reflux ratio of 0.825 until the 

second lightest component composition reaches 0.8. Then, the operation continues with an 

internal reflux ratio of 0.794 until the toluene composition in the reboiler reaches 0.69 for 

about 0.72 hours. The third compound, toluene is collected in the reboiler. According to 

simulation results, the purity of the heaviest compound, toluene is 0.69 at reboiler after 6.6 

hours operation. However, the purity of toluene decreases to 0.66374 due to the addition of 

the holdups of the packed section and condenser at the end of the operation. The distillate 

amounts collected in the tanks are given in Table 7.17.  

 

 

Table 7.17 Distillate Compositions and Amounts for the Optimum Reflux Ratio Profile. 

 

Liquid Compositions, mole fractions 
Tank  

Holdup 

[moles]  Cyclohexane N-heptane Toluene 

Feed  2930.0 0.407 0.394 0.199 

P1 634.3 0.8999 0.0926 0.0075 

S1 1261.0 0.4912 0.4521 0.0567 

P2 369.9 0.0393 0.8043 0.1564 

P3 664.8 0.0025 0.3338 0.6637 

Total  2930.0    

 

 

Initially, the amount of the mixture fed to the reboiler for separation is 2930 moles. After 

optimum operation by using reflux ratio profile, 56.96% of the mixture (1669 moles) is 

separated into the components with desired purities in the first phase of the distillation 

operation. The molar holdup of slop cut tank, S1, is 1261 moles and is large enough not to 

be wasted. One of the ways to maximize distilled product amount is to recycle holdups of 

slop cut tank for the next batch distillation operation. Therefore, the contents of the slop cut 

tank are fed to the reboiler as demonstrated in Figure 7.13 for the proceeding batch. 
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Figure 7.13 Schematic View of Recycle Process for the Proceeding Batch Operation. 

 

 

Table 7.18 Simulation Results of the First Recycle Process. 

 

Liquid Compositions, mole fractions 
Tank 

Molar Holdup 

[mol] Cyclohexane N-heptane Toluene 

Feed  1261.0 0.4912 0.4521 0.0567 

P1 456.9 0.9001 0.0977 0.0022 

S1 0 0 0 0 

P2 0 0 0 0 

S2 0 0 0 0 

P3 804.1 0.2570 0.6548 0.0882 

Total  1261.0    

 

 

The recycling process is also optimized to get a reflux ratio profile to maximize distilled 

product amount. It is calculated that the internal reflux ratio of 0.872 must be used for a 

time interval of 1 – 2.33 hrs after total reflux operation of 1 hour by the simulation code to 

collect cyclohexane at P1. However, for the remaining operation time, the optimum reflux 

ratio is found to be closer to the total reflux. Therefore, distillation is stopped in 2.33 hr. The 

results of the recycle process are given in Table 7.18. It is seen that, as a result of the first 

recycle the gain in the lightest compound is about 457 moles while there is still too much 
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mixture in P3, reboiler. Therefore, one more distillation of the contents of reboiler is done. 

Results are tabulated in Table 7.19. 

 

 

  Table 7.19 Simulation Results of Third Distillation Phase. 

 

Liquid Compositions, mole fractions 
Tank 

Molar Holdup 

[mol] Cyclohexane N-heptane Toluene 

Feed  804.1 0.2570 0.6548 0.0882 

P1 12.0 0.8993 0.0983 0.0024 

S1 0.0 0.0000 0.0000 0.0000 

P2 0.0 0.0000 0.0000 0.0000 

S2 0.0 0.0000 0.0000 0.0000 

P3 792.1 0.2230 0.6839 0.0931 

Total 804.1    

 

 

In this process, also, only one optimum reflux ratio is calculated as in the case of first 

recycle process. Internal reflux ratio is found to be 0.2 for the time interval of 1 - 1.39 hrs 

after total reflux operation of one hour. The molar holdup of separated amount after the 

third distillation is 12 moles. It is obvious that further distillation will not give any 

improvement with more operation time spent. Therefore, for further distillation of the 

reboiler contents other methods such as addition of some fresh feed to reboiler or other 

column configurations and / or other separation processes can be used. Summary of the 

results for maximizing the distilled product amount are given in Table 7.20.  

 

As a result of the study, CAP for the optimization with recycling is calculated as 188.86 

mol/h. In the calculation of CAP, time necessary for emptying and charging the feed to the 

reboiler is included for two times (0.5 x 2 hrs) because in the 3rd operation, reboiler contents 

are distilled. The total operation time of separation process for fresh feed and further 

distillations are included. It is observed that CAP which is 235.07 mol/hr without recycling 

process decreases to 188.86 mol/hr. This is because; the time necessary for separation of 

fresh feed and slop cut tanks increases beside the molar holdups of the product tanks. 

Moreover, the overall separation efficiency is calculated as 72.96% for the fresh feed with 

recycle whereas it is 56.96% without recycle. Thus, there is a 28% increase in separation 

efficiency with recycling. Therefore, it can be concluded that recycling of the holdups of the 

slop cut tanks increases the separation efficiency of the process, significantly.  
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Table 7.20 Summary of the Operations with Recycling. 

 

Amount of Holdups  [mol] 

Tank Compound 
Mole 

Fractions 
1st 

Operation 

2nd 

Operation 

3rd 

Operation 
Total 

P1 Cyclohexane 0.90 634.3 456.9 12.0 1103.2 

P2 N- heptane 0.80 369.9 0.0 0.0 369.9 

P3 Toluene 0.66 664.8 0.0 0.0 664.8 

S1 
“Off – spec” 

material 
 1261.0 804.1 792.1 792.1 

Total      2930.0 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

The objectives of this study were to develop a dynamic model for the simulation of a 

multicomponent batch packed distillation column with random packing material for mixtures 

at low operating pressures and to determine optimum reflux ratio profile of the 

multicomponent batch packed distillation in order to maximize the amount of distillate at a 

specified concentration for a given time. Thus, 

 

• a dynamic model of a multicomponent batch packed distillation column with random 

packing material is developed, 

 

• the simulation program is written which can estimate the vapor and liquid 

compositions, change of temperatures, holdups, liquid and flow rates during the 

startup and production periods of the distillation operation, 

 

• the accuracy of simulation code is tested qualitatively for hydrocarbon mixtures 

using a similar study from literature and it is found that, the behaviors of distillate 

compositions are as expected, 

 

• the accuracy of simulation code is verified experimentally for polar mixtures and it is 

found that, the experimental findings are in good agreement with the simulation 

results, 

 

• it is found that the effect of the used vapor pressure – temperature relationship has 

an important effect on simulation results and Wagner equation gives more accurate 

results, 
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• the optimum reflux ratio profile is found to maximize the amount of products. It is 

found that, optimal reflux ratio profile is a piecewise constant function of time, 

 

• in recycling of holdups of slop cuts for the proceeding batch operation to increase 

the amount of products, it is found that, one recycling, to collect the lightest 

compound more effectively, is enough with an increase efficiency of separation 

about 28%. Further recycle process do not give any further improvements on 

maximizing the amount of distillate with the specified desired purity of compounds, 

 

As future work, 

 

• written simulation program can be modified for packed distillation column with 

structured packing materials by changing only the mass transfer and effective 

interfacial area correlations, 

 

• written simulation program can be modified to be used for reactive packed 

distillation system column by adding only reaction section, 

 

• any control algorithm can be added to the simulation algorithm easily, 

 

• optimization of reflux ratio to maximize the amount of distillate of a specified 

concentration for a given time can be improved further to maximize also the profit 

and to minimize the operation time,   

 

• to increase the efficiency of the distillation operation other than the recycling of 

holdups of slop cut tank, fresh feed addition to the molar holdup of the slop cut 

tanks, or other column configurations and /or other separation processes may be 

utilized. 
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APPENDIX A 

MASS TRANSFER AND EFFECTIVE INTERFACIAL AREA 

CORRELATIONS FOR RANDOM PACKING MATERIALS 

Table A.1 Correlations for the Gas And / Or Liquid Side Mass Transfer Coefficients for 

Random Packings*. 
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*
 Nomenclature related to the correlations can be found at referenced material, Wang et.al, 
2005. 
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Table A.1 Correlations for the Gas And / Or Liquid Side Mass Transfer Coefficients for 

Random Packings* (Cont’d). 
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*
 Nomenclature related to the correlations can be found at referenced material, Wang et.al, 
2005. 
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Table A.2 Correlations of Effective Interfacial Area for Random Packing Materials*. 
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*
 Nomenclature related to the correlations can be found at referenced material, Wang et.al, 
2005. 
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APPENDIX B 

CONSTANTS OF PRESSURE DROP EQUATION FOR 

DUMPED PACKING MATERIALS 

Table B.1 Constants for Some Dumped Packing Materials. 

 
Packing (Ceramic) Type / size a [m2m-3] Є [-] C1 C2 C3 

Raschig Rings 10 472 0.655 48 8 2.0 

 10 327 0.657 10 8 1.8 

 15 314 0.676 48 10 2.3 

 15 264 0.698 48 8 2.0 

 30 137 0.775 48 8 2.0 

 35 126 0.773 48 8 2.15 

Pall Rings  25 192 0.742 10 3 1.2 

 25 219 0.74 1 4 1.0 

 35 139 0.773 33 7 1.4 

 35 165 0.76 1 6 1.1 

Reflux Rings  50 120 0.78 75 15 1.6 

Hiflow Rings 20 291 0.75 10 5 1.1 

Berl Saddles 15 300 0.561 32 6 0.9 

 35 133 0.75 33 14 1.0 

Intalox Saddles  20 300 0.672 30 6 1.4 

 25 183 0.732 32 7 1.0 

 35 135 0.76 30 6 1.2 
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APPENDIX C 

SIMULATION CODE 

C.1 Main Program Codes 

C.1.1 Glob_Decs.m 

 
%========================================================================== 

%     Date            By                 Explanation 

%========================================================================== 

%    2002            Yıldız             Original Code 

%    2006            Ceylan             Modification to Packed Dist. 

  

% ####################################################################### % 

% ----------------     Programming Definitions     ---------------------- % 

% ----------------------------------------------------------------------- % 

% ========================== 

% Simulation Parameters 

% ========================== 

% Dummy variables 

global Dummy1;  global Dummy2;  global Dummy3;  global Dummy4; 

% Output Warnnings 

global OUT_WARNNING; 

% tolerance for the decision to make the component fraction zero 

global zero_tolerance; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Output File ID 

% 

% Liquid Profile File 

global FID_lprofile; 

% Vapor Profile File 

global FID_vprofile; 

% Temperature Profile File 

global FID_tprofile; 

% Holdup Profile File 

global FID_holdup; 

% Liquid and Vapor Flowrate Profile File 

global FID_lvflow; 

% Controller Profile File 

global FID_control; 

% Tank Outputs Profile File 

global FID_tank; 

% Optimization Profile File 

global FID_opt; 

  

% ========================================================================= 

% ----------------------------------------------------------------------- % 

% --------------     End Programming Definitions     -------------------- % 

% ####################################################################### % 

  

  

 

% ####################################################################### % 

% ----------------   Real Plant Simulation Parameters  ------------------ % 

% ----------------------------------------------------------------------- % 

% =================================== 

% Physical System Definitions 

% =================================== 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Column Specs. 

% Number of Components - in the order of volatilities : 

%                       1st is most volatile and last is least volatile 

global NC; 

% Number of packed section (increment number) 

global NT; 



 

 

 

 

93

% Tower cross-sectional area [m2] 

global A; 

% Specific packing surface area per unit volume of packing volume [m-1] 

global ap; 

% Packing specific constant (Onda's correlation) 

global c; 

% Gravitational constant [m.s-2] 

global g; 

% Packing height [m] 

global z_total; 

% Bed void fraction (porosity) [m3m-3] 

global e_porosity; 

% Particle diameter [m] 

global dp; 

% Constants for predicting pressure drop for column(given at 

% J.Stichlmair et al.(1989))[Dimensionless] 

global C1; 

global C2; 

global C3; 

% Initial Time 

global tstart; 

% Measurement Time Step 

global DeltaT; 

% Displaying Time Step 

global disp_DeltaT; 

% Time Span of Simulation 

global tfinal; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Material Specifications 

% Molecular Weight of Components - in the order of volatilies: 

%                       1st is most volatile and last is least volatile 

global Mol_Weight; 

% Critical Pressure [Pa] 

global Pc; 

% Critical Temperature [K] 

global Tc; 

% Boiling Temperature [K] 

global Tb; 

% Critical Volume [m3 /kmol] 

global Vc; 

% Ideal Gas Constant [Pa m3 /(mol.K)] 

global R_constant; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Feed Specs. 

% Total amount of feed charged to the still pot (moles) 

global M_Feed; 

% Feed compositions (moles/moles) 

global X_Feed; 

% ========================================================================= 

% ----------------------------------------------------------------------- % 

% ------------------  End Real Plant Simulation Parameters  ------------- % 

% ####################################################################### % 

 

C.1.2 Glob_Initial.m 

 
%========================================================================== 

%     Date            By                 Explanation 

%========================================================================== 

%    2002            Yıldız             Original Code 

%    2006            Ceylan             Modification to Packed Dist. 

  

% ####################################################################### % 

% ---------------     Programming Initialization  ----------------------- % 

% ----------------------------------------------------------------------- % 

% ===================================== 

% Simulation Parameters Settings 

% ===================================== 

% Dummy variables 

Dummy1=0.0; Dummy2=0.0; Dummy3=0.0; Dummy4=0.0; 

% Output Warnnings 

OUT_WARNNING = 1; 

% tolerance for the decision to make the component fraction zero 

zero_tolerance = 9e-180; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Output File ID Creation 

fclose all;  Current_Directory = cd; 

% Liquid Profile file 

delete([Current_Directory '\' 'lprofile.txt']); 

FID_lprofile = fopen('lprofile.txt','at'); 

% Vapor Profile file 

delete([Current_Directory '\' 'vprofile.txt']); 

FID_vprofile = fopen('vprofile.txt','at'); 

% Temperature Profile file 

delete([Current_Directory '\' 'tprofile.txt']); 

FID_tprofile = fopen('tprofile.txt','at'); 

% Holdup Profile file 

delete([Current_Directory '\' 'holdup.txt']); 

FID_holdup = fopen('holdup.txt','at'); 

% Liquid and Vapor Flowrate Profile file 

delete([Current_Directory '\' 'lvflow.txt']); 

FID_lvflow = fopen('lvflow.txt','at'); 

% Controller Profile file 

delete([Current_Directory '\' 'control.txt']); 

FID_control = fopen('control.txt','at'); 
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% Tank Outputs Profile file 

delete([Current_Directory '\' 'tank.txt']); 

FID_tank = fopen('tank.txt','at'); 

% Optimization Profile file 

% delete([Current_Directory '\' 'opt.txt']); 

FID_opt = fopen('opt.txt','at'); 

  

% ========================================================================= 

% ----------------------------------------------------------------------- % 

% ------------------ End Programming Initialization  -------------------- % 

% ####################################################################### % 

  

  

% ####################################################################### % 

% -------------    Real Plant Simulation Initialization    -------------- % 

% ----------------------------------------------------------------------- % 

% =============================== 

% Physical System Settings 

% =============================== 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Column Specs. 

% Number of Components - in the order of volatilities : 

%                       1st is most volatile and last is least volatile 

NC = 3; 

% Packing height [m] 

z_total = 1.5; 

% Number of packed section 

NT = 40; 

% Tower crosssectional area [m2] 

D = 0.35; 

A = D^2*pi/4; 

% Specific packing surface area per unit volume of packing volume [m-1] 

ap = 472; 

% Packing specific constant (Onda's correlation) 

c = 2; 

% Gravitational constant [m.s-2] 

g = 9.81; 

% Bed void fraction (porosity) [m3m-3] 

e_porosity = 0.655; 

% Particle diameter [m] 

dp = 0.010; 

% Constants for predicting pressure drop for column(given at 

% J.Stichlmair et al.(1989))[Dimensionless] 

C1 = 48; 

C2 = 8; 

C3 = 2; 

% Initial Time 

tstart = 0.0; 

% Measurement Time Step 

DeltaT = 0.0003; 

% Displaying Time Step 

disp_DeltaT = 0.006; 

% Time Span of Simulation 

tfinal = 8; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Material Specifications 

% Molecular Weight of Components [g/moles] -in the order of volatilies: 

% 1st is most volatile and last is least volatile 

Mol_Weight = [84.161 100.204 92.141]; 

% Critical Pressure [Pa] 

Pc = [4.1000e006 2.7200e006 4.1000e006]; 

% Critical Temperature [K] 

Tc = [553.58 540.2 591.8]; 

% Boiling Temperature [K] 

Tb = [353.85 371.55 383.75]; 

% Critical Volume [m3/kmol] 

Vc = [0.308 0.428 0.314]; 

% Ideal Gas Constant [Pa m3 /(mol.K)] 

R_constant = 8.314; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Feed Specs. 

% Total amount of feed charged to the still pot (moles) 

M_Feed = 2930.0; %1083.034472;%2930.0; 

% Feed compositions (moles/moles)[cyclohexane; n-heptane;toluene] 

X_Feed = [0.407; 0.394; 0.199]; 

  

% ========================================================================= 

% ----------------------------------------------------------------------- % 

% -----------------End Real Plant Simulation Initialization ------------- % 

% ####################################################################### % 

  

 

C.1.3 Mass_Hydrocarbons.m 

 
%========================================================================== 

%     Date            By                 Explanation 

%========================================================================== 

%    2006            Ceylan            Original Code 

  

function [ae, K_G, Mu_g_mixture, Mu_l_mixture]= Mass_Hydrocarbons(i,... 

    X_frac, Y_frac, Temp, Ro_l_Density, Mw_MolWeight, L_flow, V_flow, ... 

    Press, Ro_g_Density) 

  

Glob_Decs; 

% Since the calculations and predictions of some properties is necessary 
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% only for packed section, k value is taken from 1 to NT. 

  

% Number of Packed Sections 

k = zeros(NT,1); 

  

k =i-1; 

%-------------------------------Calculation of Gas(vapor)Viscosity for Pure 

% Hydrocarbons at Low Pressures from PERRY's Handbook at Page 2- 363. 

  

% Constant in Equation 2 - 97 in Perry's Handbook (1997) 

N = zeros(1); 

% Tr = Reduced Temperature [K] 

Tr = zeros(1,NC); 

  

% Vapor Viscosity of Compounds [cp] [1 cp = 0.001 kg / (m.s)] 

Mu_g_compound = zeros(NT,NC); 

for i = 1:NC, 

    Tr(i) = Temp(k+1) / Tc(i); 

    if Tr <= 1.5 

        N = 0.0003400 * Tr(i)^0.94; 

    else 

        N = 0.0001778*(4.58*Tr(i) - 1.67)^0.625; 

    end 

    Mu_g_compound(k,i) = (4.6000e-004* N * Mol_Weight(i)^0.5*Pc(i)^(2/3))/... 

        (Tc(i)^(1/6)); 

end 

  

%---------------------Prediction of Vapor Viscosity of Gaseous Hydrocarbons 

% and Mixtures of Hydrocarbons at Low Pressures. 

  

% Vapor Viscosity of Gaseous Mixture [cp] 

Mu_g_mixture = zeros(NT,1); 

  

sum = 0; 

Mu_g_mixture(k)= 0; 

for i=1: NC, 

    for j=1:NC, 

        if j~=i 

            QW1= (Mu_g_compound(k,i)/Mu_g_compound(k,j))^0.5; 

            QW2=(Mol_Weight(j)/Mol_Weight(i))^0.25; 

            QW3 = (sqrt(8)*(1+(Mol_Weight(i)/Mol_Weight(j)))^0.5); 

            QW = (1 + (QW1*QW2)^2) / QW3; 

        else 

            QW = 0; 

        end 

        sum = QW*(X_frac(k+1,j)/X_frac(k+1,i)) + sum; 

    end 

    Mu_g_mixture(k)= Mu_g_compound(k,i)/(1 + sum)+ Mu_g_mixture(k); 

end 

Mu_g_mixture = Mu_g_mixture * 0.001; % Conversion of cp to [ kg/(m.s)] 

  

% -----------------Calculation of Liquid Viscosity of a Component 

% Equation(2-112)(Perry's handbook) for Pure Hydrocarbon and Pure 

% Nonhydrocarbon Liquids 

  

% Liquid Viscosity of Compound [kg/(m.s)] 

Mu_l_compound = zeros(NT,NC); 

% Adjusted Carbon Number 

Nstar = zeros(1,NC); 

% Constant Determined by Equations(2-114  or 2-115) in Perry's Handbook 

To = zeros(1,NC); 

% Constant Determined by Equations(2-117  or 2-118) in Perry's Handbook 

Ba = zeros(1,NC); 

% Constant Determined by Equations(2-116) in Perry's Handbook 

B = zeros(1,NC); 

% Group Contribution Number Determined from Table 2- 398 in Perry's Handbook 

del_B = zeros(1,NC); 

  

Nstar = [7.48 7 7.60]; 

del_B = [-85.5433 0 -34.6356]; 

for i=1:NC, 

    if Nstar(i) <= 20 

        To(i) = 28.86 + 37.439 * Nstar(i) - 1.3547 * Nstar(i)^2 +... 

            0.02076 * Nstar(i)^3; 

        Ba(i) = 24.79 + 66.885 * Nstar(i) - 1.3173 * Nstar(i)^2 - ... 

            0.00377 * Nstar(i)^3; 

    else 

        To(i) = 8.164 * Nstar(i) + 238.59; 

        Ba(i) = 530.59 + 13.740 * Nstar(i); 

    end 

    B(i) = Ba(i) + del_B(i); 

    Mu_l_compound(k,i) = (10^(B(i)*((1/Temp(k+1))-(1/To(i))))) * 0.001; 

end 

% Kendall and Monroe's Equation is used for determining 

% the liquid viscosity of defined hydrocarbon mixtures. (Equation 2-119) in 

% PERRY's Handbook. 

  

% Liquid Viscosity of Mixture [kg/(m.s)] 

Mu_l_mixture = zeros(NT,1); 

  

for i =1:NC, 

    Mu_l_mixture(k)= Mu_l_compound(k,i)^(1/3)*X_frac(k+1,i)+ Mu_l_mixture(k); 

end; 

Mu_l_mixture(k) = (Mu_l_mixture(k))^3; 

  

%----------------------Calculation of Liquid Surface Tension of a Component 

% by Using Equation 2 - 166 and 2- 167 in Perry's Handbook 

  



 

 

 

 

96

% Liquid Surface Tension of a Component 

Sigma_l_stensionco = zeros(NT,NC); 

% Constant in Equation (2- 167) in Perry's Handbook 

QS = zeros(NT,NC); 

% Reduced Boiling Temperature [K] 

Tbr = zeros(1,NC); 

  

for i=1:NC, 

    Tbr(i) = Tb(i) / Tc(i); 

    QS(k,i)= 0.1207 * (1+ (Tbr(i)* (log(Pc(i))-11.5261))/(1-Tbr(i))) - 0.281; 

    Sigma_l_stensionco(k,i)=(4.6010e-004)*(Pc(i)^(2/3))*(Tc(i)^(1/3))*... 

        QS(k,i)*(1-Tr(i))^(11/9); 

end; 

  

%---------------------Calculation of Liquid Surface Tension of a Mixture 

  

% Liquid Surface Tension of the Mixture [mN/m] 

Sigma_l_surfacetension = zeros(NT,1); 

% as initial point 

P1 = 0; 

  

for i=1:NC, 

    P1 = X_frac(k+1,i) / ((1e-3*Ro_l_Density(k+1))/Mw_MolWeight(k+1)) + P1; 

end 

P = 1 / P1; 

F0 = 0; 

for i =1:NC, 

    for j=1:NC, 

        F1 = P^2*(X_frac(k+1,i)/(1e-3*Ro_l_Density(k+1)/Mw_MolWeight(k+1)))... 

            *(X_frac(k+1,j)/(1e-3*Ro_l_Density(k+1)/Mw_MolWeight(k+1)))... 

            *(Sigma_l_stensionco(k,i)*(Sigma_l_stensionco(k,j)))^0.5; 

        F0 = F1 + F0; 

    end 

end 

Sigma_l_surfacetension(k) = F0; % [mN /m] 

%-------------------------------------------------------------------------- 

% Effective Interfacial Area 

%-------------------------------------------------------------------------- 

%--------------------------------------------Calculation of Reynolds Number 

% Liqud Phase Reynolds Number [Dimensionless] 

Reynolds_l = zeros(NT,1); 

% Gas Phase Reynolds Number [Dimensionless] 

Reynolds_g = zeros(NT,1); 

  

Reynolds_l(k) = (L_flow(2)*Mw_MolWeight(k+1))/(A*ap*Mu_l_mixture(k)*3600); 

Reynolds_g(k) = (V_flow(2)*Mw_MolWeight(k+1)) /(A*ap*Mu_g_mixture(k)*3600); 

  

%----------------------------------------------Calculation of Froude Number 

% Liquid Phase Froude Number [Dimensionless] 

Froude_l = zeros(NT,1); 

  

Froude_l(k) = (L_flow(2)^2 * ap*Mw_MolWeight(k+1)^2)/(Ro_l_Density(k+1)^2*A^2* g*3600*3600); 

  

%-----------------------------------------------Calculation of Weber Number 

% Liquid Phase Weber Number [Dimensionless] 

Weber_l = zeros(NT,1); 

  

Weber_l(k) = ((L_flow(2)^2*Mw_MolWeight(k+1)^2)/(ap * Ro_l_Density(k+1)*... 

    Sigma_l_surfacetension(k)*A^2*g))*(1/((3600^2)*0.0001019716213)); 

 % Critical Surface Tension of Packing Material [mN/m] 

Sigma_l_criticalsurfacetension = zeros(1); 

Sigma_l_criticalsurfacetension = 73; 

  

% Effective Interfacial Area [1/m] 

ae = zeros(k,1); 

%---------------------------------Calculation of effective interfacial area 

ae(k) = ap * (1- exp(-1*1.45*... 

    ((Sigma_l_criticalsurfacetension/Sigma_l_surfacetension(k))^0.75)* ... 

    (Reynolds_l(k)^0.1)*(Froude_l(k)^(-1*0.05))*(Weber_l(k)^0.2))); 

  

%-------------------------------------------------------------------------- 

% Mass Transfer Coefficient 

%-------------------------------------------------------------------------- 

  

%----------------------------------Calculation of Gas Diffusion Coefficient 

% Molar Volume [m3/kmol] 

V = zeros (1,NC); 

% Gas Diffusion Coefficient of the Mixture [m2 /sec] 

D_g_mixture = zeros(NT,1); 

  

sum = 0; 

for i = 1:NC, 

    for j=1:NC, 

        if i == j 

        else 

            V(i) = 0.285*(Vc(i)*1000)^1.048; 

            V(j) = 0.285*(Vc(j)*1000)^1.048; 

            D = (0.1014*((Temp(k+1)*(9/5))^1.5))*(((1/Mol_Weight(i))+... 

                (1/Mol_Weight(j)))^0.5)/(Press(k+1)*(0.0001450377377)*... 

                (((V(i)^(1/3))+(V(j)^(1/3)))^2)); 

  

            % Unit Conversion from ft2/hr to m2/sec 

            D = D*(0.09290304)/3600; 

            sum = Y_frac(k+1,j)* D^-1 +sum; 

        end 

    end; 

end; 

D_g_mixture(k) = ((1 - Y_frac(k+1,i))/(sum)); 
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%------------------------------------Calculation of Gas Phase Schmidt Number 

% Gas Phase Schmidt Number [Dimensionless] 

Schmidt_g(k) = Mu_g_mixture(k) / (Ro_g_Density(k+1) * D_g_mixture(k)); 

  

%------------------------------Calculation of Packing Efficiency Number(Er) 

% Packing Efficiency Number [Dimensionless] 

Er = zeros(1); 

  

Er = 1 / (ap * dp); 

%-------------------------------------------------------------------------- 

% Gas Phase Mass Transfer Coefficient [mol/h.m2] 

K_G = zeros(NT,1); 

  

% Constant of Onda Mass Transfer Correlation 

c = zeros(1); 

  

if dp < (15* 10^-3) 

    c = 2; 

else 

    c = 5.23; 

end; 

%-----------------------------------Calculation of Mass Tranfer Coefficient 

K_G(k) = c*3600* D_g_mixture(k)*ap*(Reynolds_g(k))^0.7 * ... 

    Schmidt_g(k) ^(1/3) * (Er)^2*[Press(k+1)/(R_constant*Temp(k+1))]; 

  

%----------------------------End of Simulation ---------------------------- 

%-------------------------------------------------------------------------- 

%========================================================================== 

  

C.1.4 Mass_Polar.m 

 
%========================================================================== 

%     Date            By                 Explanation 

%========================================================================== 

%    2006            Ceylan            Original Code 

  

function [ae, K_G, Mu_g_mixture, Mu_l_mixture]= Mass_Polar(L_flow, ... 

    V_flow, X_frac, Mw_MolWeight, Ro_l_Density, Ro_g_Density, Temp,... 

    Press, Y_frac) 

  

Glob_Decs; 

% Since the calculations and predictions of some properties is necessary 

% only for packed section, k value is taken from 1 to NT. 

  

% Number of Packed Sections 

k = zeros(NT,1); 

% Vapor Viscosity of Compounds [kg / (m.s)] [1 cp = 0.001 kg / (m.s)] 

Mu_g_compound = zeros(NT,NC); 

% Vapor Viscosity of Gaseous Mixture [cp] 

Mu_g_mixture = zeros(NT,1); 

% Liquid Viscosity of Compound [kg/(m.s)] 

Mu_l_compound = zeros(NT,NC); 

% Liquid Viscosity of Mixture [kg/(m.s)] 

Mu_l_mixture = zeros(NT,1); 

% Liquid Surface Tension of a Component [mN/m] 

Sigma_l_stensionco = zeros(NT,NC); 

% Liquid Surface Tension of the Mixture [mN/m] 

Sigma_mixture = zeros(NT,1); 

% Critical Surface Tension of Packing Material [mN/m] 

Sigma_l_criticalsurfacetension = zeros(1); 

% Liqud Phase Reynolds Number [Dimensionless] 

Reynolds_l = zeros(NT,1); 

% Gas Phase Reynolds Number [Dimensionless] 

Reynolds_g = zeros(NT,1); 

% Liquid Phase Froude Number [Dimensionless] 

Froude_l = zeros(NT,1); 

% Liquid Phase Weber Number [Dimensionless] 

Weber_l = zeros(NT,1); 

% Effective Interfacial Area [1/m] 

ae = zeros(NT,1); 

% Gas Diffusion Coefficient of the Mixture [m2 /sec] 

D_g_mixture = zeros(NT,1); 

% Gas Phase Schmidt Number [Dimensionless] 

Schmidt_g = zeros(NT,1); 

% Packing Efficiency Number [Dimensionless] 

Er = zeros(1); 

% Gas Phase Mass Transfer Coefficient [mol/h.m2] 

K_G = zeros(NT,1); 

% Constant of Onda Mass Transfer Correlation 

c = zeros(1); 

  

if dp < (15* 10^-3) 

    c = 2; 

else 

    c = 5.23; 

end; 

sum = 0; 

% k =i-1; 

for k = 1:NT, 

    Mu_g_compound(k,1) = 8.6088*10^-3  ;% T = 20 C 

    Mu_g_compound(k,2) = 125 * 10^-4 ; %T = 20C 

    for i=1:NC, 
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        for j=1:NC, 

            if j~=i 

                QW1= (Mu_g_compound(k,i)/Mu_g_compound(k,j))^0.5; 

                QW2=(Mol_Weight(j)/Mol_Weight(i))^0.25; 

                QW3 = (sqrt(8)*(1+(Mol_Weight(i)/Mol_Weight(j)))^0.5); 

                QW = (1 + (QW1*QW2)^2) / QW3; 

            else 

                QW = 0; 

            end 

            sum = QW*(X_frac(k+1,j)/X_frac(k+1,i)) + sum; 

        end 

        Mu_g_mixture(k)= Mu_g_compound(k,i)/(1 + sum)+ Mu_g_mixture(k); 

    end 

    Mu_g_mixture = Mu_g_mixture * 0.001; % Conversion of cp to [ kg/(m.s)] 

  

    Mu_l_compound(k,1) = 1.7840*10^-3;% T = 20 C 

    Mu_l_compound(k,2) =  1*10^-3   ;% T = 20 C 

  

    sum = 0; 

    for i=1:NC, 

        sum = X_frac(k+1,i)*log(Mu_l_compound(k,i))+ sum; 

    end 

    Mu_l_mixture(k,1) = exp(sum); 

  

    Sigma_l_criticalsurfacetension = 73; 

    Sigma_l_stensionco(k,1)= 22.39 ;% T = 20 C 

    Sigma_l_stensionco(k,2)= 72.75 ;% T = 20 C 

  

    % Calculation of Densities for Ethanol and Water [g/ml] 

    Density_Ethanol = zeros(1); 

    Density_Water = zeros(1); 

    Density_Ethanol = 0.0015; 

    Density_Water = 0.001; 

  

    % Calcuation of surface tension of mixture[m3/kmol] 

    Molar_Volume = zeros(1,NC); 

    Molar_Volume(1,1) = 1 / (Density_Ethanol*10^3/Mol_Weight(1,1)); 

    Molar_Volume(1,2) = 1 / (Density_Water*10^3 / Mol_Weight(1,2)); 

  

    Constant_mixture = zeros(NT,NC); 

  

    Constant_mixture(k,2)=log10([(X_frac(k+1,2)*... 

        Molar_Volume(2))/(X_frac(k+1,1)*Molar_Volume(1))]*[X_frac(k+1,2)*... 

        Molar_Volume(2)+X_frac(k+1,1)*Molar_Volume(1)]^-1)+... 

        +(44.1*2/Temp(k+1))*[Sigma_l_stensionco(k,1)*Molar_Volume(1)^(2/3)... 

        /2 - Sigma_l_stensionco(k,2)*Molar_Volume(2)^(2/3)]; 

    Constant_mixture(k,2) = Constant_mixture(k,2)/(1+Constant_mixture(k,2)); 

    Constant_mixture(k,1) = 1 - Constant_mixture(k,2); 

    Sigma_mixture(k,1)= Constant_mixture(k,1)*... 

        Sigma_l_stensionco(k,1)^(1/4) +Constant_mixture(k,2)*... 

        Sigma_l_stensionco(k,2)^(1/4); 

  

    D_g_mixture(k,1) = 1.3927*10^-5; 

  

    %----------------------------Calculation of Dimenionless Numbers 

    Reynolds_l(k)=(L_flow(2)*Mw_MolWeight(k+1))/(A*ap*Mu_l_mixture(k)*3600); 

    Reynolds_g(k)=(V_flow(2)*Mw_MolWeight(k+1)) /(A*ap*Mu_g_mixture(k)*3600); 

    Froude_l(k) = (L_flow(2)^2 * ap*Mw_MolWeight(k+1)^2)/... 

        (Ro_l_Density(k+1)^2*A^2* g*3600*3600); 

    Weber_l(k) = ((L_flow(2)^2*Mw_MolWeight(k+1)^2)/(ap * Ro_l_Density(k+1)... 

        * Sigma_mixture(k)*A^2*g))*(1/((3600^2)*0.0001019716213)); 

    Schmidt_g(k) = Mu_g_mixture(k) / (Ro_g_Density(k+1) * D_g_mixture(k)); 

    Er = 1 / (ap * dp); 

    %-------------------------------------------------------------------------- 

    % Effective Interfacial Area & Mass Transfer Coefficient 

    %-------------------------------------------------------------------------- 

    ae(k) = ap * (1- exp(-1*1.45*... 

        ((Sigma_l_criticalsurfacetension/Sigma_mixture(k))^0.75)*... 

        (Reynolds_l(k)^0.1)*(Froude_l(k)^(-1*0.05))*(Weber_l(k)^0.2))); 

    K_G(k) = c*3600* D_g_mixture(k)*ap*(Reynolds_g(k))^0.7 *... 

        Schmidt_g(k) ^(1/3) * (Er)^2*[Press(k+1)/(R_constant*Temp(k+1))]; 

end; 

%########################################################################## 

   

C.1.5 PressureProfile.m 

 
%========================================================================== 

%     Date            By                 Explanation  

%==========================================================================      

%    2002            Yıldız            Original Code   

%    2006            Ceylan            Modification to Packed Dist.  

  

%========================================================================== 

% PressureProfile 

% Return    

%           pressure profile through the column (Pa) 

% for a given 

%           Still pot and reflux drum pressures (Pa) 

%========================================================================== 

function [fP_Packed]=PressureProfile(fP_Pot,fP_Drum) 

Glob_decs; 

  

if (size(fP_Pot)~=1 | size(fP_Drum)~=1) 
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    error('fP_Pot and/or fP_Drum are not scalar(s). [PressureProfile]'); 

end; 

fP_Packed = zeros(NT,1); 

  

fdelP_Packed = (fP_Pot-fP_Drum)/NT; 

  

for i=1:NT; fP_Packed(i) = fP_Pot - i*fdelP_Packed; end; 

  

% end PressureProfile 

 

C.1.6 Plant_File_Packed.m 

 
%========================================================================== 

%     Date            By                 Explanation 

%========================================================================== 

%    2002            Yıldız            Original Code 

%    2006            Ceylan            Modification to Packed Dist. 

  

function Plant_File_Packed 

%  function [CAP] = plant_file_packed(R_first_prod) 

  

% ========================================================================= 

% Clear Command Window 

clc; 

% Include All Global Variables 

Glob_Decs; 

% Initialize thermo_LIBRARY.dll 

thermo_Init(0); 

% Initialize All Global Variables 

display('Global variables are initializing ...'); 

Glob_Initial; 

display('Global variables have been initialized.'); 

fprintf('\nEnter type of compounds that you want to study in the simulation algorithm.\n\n'); 

fprintf('Please enter 1 for hydrocarbons , enter 2 for polar mixtures...  \n\n'); 

type_of_compound = input(':: '); 

  

% ================================== 

% Step Time and Time Span 

% ================================== 

% Time Span of Simulation 

num_step = round((tfinal - tstart)/DeltaT); 

% Current Simulation Time 

t = tstart; 

% Current Displaying Time Step 

disp_t = tstart; 

  

%=================================== 

% Differential Packed Section Height 

%=================================== 

% Initial Height of Packed Section 

zstart = 0.0; 

% A Differential Packed Section Height 

DeltaZ = zeros(1); 

DeltaZ = z_total / NT; 

% Current Simulation Height 

z = zstart; 

  

% ======================================================================== 

% Initialize Real Plant 

% ======================================================================== 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Initial Operation Parameters. 

% Boiler Load [J/hour] 

Q_Boiler = 8.15e7; 

% One Over Reflux Ratio (D/L0) [dimensionless] 

R_Ratio_inv = 0.0; 

% Distillate Flow Rate [mol/hour] 

D_DistillRate = 0.0; 

% Amount of Product Distilled [moles] 

M_Distilled = 0.0; 

% Initial Still Pot, Packed Section, Reflux Drum Pressure [Pa] 

Press(1,1) = 101000.0; 

Press(NT+2,1) = 101600.0; 

Press(2:NT+1,1) = PressureProfile(Press(1), Press(NT+2)); 

fdelP_Packed = 1; 

fdelP_Packed1 =0; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Mass Transfer Coefficients 

%Effective Interfacial Area [m-1] 

ae = zeros(NT,1); 

%Mass Transfer Coefficient [mol/(h.m)] 

K_G = zeros(NT,1); 

% Rate Equation of Mass Transfer [mol/h] (Rate = KG * A * ae) 

Rate = zeros(NT,1); 

% Equivalent Diameter of Packing [m] 

dp_equi = zeros (1); 

dp_equi = 6 * (1-e_porosity)/ ap; 

  

% R_ratio_opt = R_first_prod; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% In that part, pressure drop is calculated via trial and error procedure. 

% To predict, first trial for pressure drop, initial assumptions are made  

% by taking Yıldız (2002) as reference. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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while (fdelP_Packed)- fdelP_Packed1 > 0.001, 

    fdelP_Packed1 = fdelP_Packed; 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Liquid Compositions 

    %Abbreviation for Still Pot, Packed Section, Reflux Drum =(Sp-Ps-Rd) 

    % Instantaneous (Sp-Ps-Rd) Liquid Compositions [moles/moles] 

    X_frac = zeros(NT+2,NC); 

    % Initially (Sp-Ps-Rd) Liquid Compositions (equal to that of the feed) 

    for i=1:NT+2; 

        X_frac(i,:) = X_Feed.'; 

    end; 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Temperature 

    % Instantaneous (Sp-Ps-Rd) Temperature [K] 

    Temp = zeros(NT+2,1); 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Vapor Compositions 

    % Instantaneous (Sp-Ps-Rd) Vapor Compositions [moles/moles] 

    Y_frac = zeros(NT+2,NC); 

    % Equilibrium Compositions of Vapor 

    Y_frac_eqm = zeros(NT+2,NC); 

     

    % ---------------------------------------------Bubble Point Calculation 

    Dummy1 = 360.0; 

    for i=1:NT+2; 

        if (type_of_compound == 1) 

            [Temp(i), Dummy3] = ... 

                thermo_Equilibrium_Hydrocarbons(Dummy1, Press(i), X_frac(i,:)); 

        else 

            [Temp(i), Dummy3] = ... 

                thermo_Equilibrium_Polar(Dummy1, Press(i), X_frac(i,:)); 

        end; 

        Y_frac_eqm(i,:) = Dummy3; 

        Y_frac(i,:) = Y_frac_eqm(i,:); 

    end; 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Physical Properties 

    % Instantaneous (Sp-Ps-Rd) Liquid Phase Enthalpy [J/moles] 

    H_l_Enthalpy = zeros(NT+2,1); 

    % Instantaneous (Sp-Ps-Rd) Vapor Phase Enthalpy [J/moles] 

    H_v_Enthalpy = zeros(NT+2,1); 

    % Instantaneous (Sp-Ps-Rd) Liquid Phase Average Density [kg/m3] 

    Ro_l_Density = zeros(NT+2,1); 

    % Instantaneous (Sp-Ps-Rd) Vapor Phase Average Density [kg/m3] 

    Ro_g_Density = zeros(NT+2,1); 

    % Instantaneous (Sp-Ps-Rd) Average Molecular Weight [kg/mol] 

    Mw_MolWeight = zeros(NT+2,1); 

  

    % ----------------------------------Calculate Specific Phase Enthalpies 

    for i=1:NT+2; 

        [H_l_Enthalpy(i), H_v_Enthalpy(i)] = ... 

            thermo_Enthalpy(Temp(i), Press(i), X_frac(i,:), Y_frac(i,:)); 

    end; 

  

    % ----------Calculate Liquid Phase Average Density and Average Molecular Weight 

    for i=1:NT+2; 

        [Mw_MolWeight(i), Ro_l_Density(i)] = ... 

            thermo_L_Density(Temp(i), Press(i), X_frac(i,:)); 

    end; 

    for i=1:NT+2; 

        [Mw_MolWeight(i), Ro_g_Density(i)] = ... 

            thermo_G_Density(Temp(i), Press(i), X_frac(i,:)); 

    end; 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Liquid and Vapor Flowrates 

    % Instantaneous Liquid Flow Rates Leaving Packed Section and Reflux Drum [moles/hour] 

    % L_flow(1) : dummy 

    L_flow = zeros(NT+2,1); 

    % Instantaneous Vapor Flow Rates Leaving Still Pot and Packed Section [moles/hour] 

    % V_flow(NT+2) : dummy 

    V_flow = zeros(NT+2,1); 

    % --------------------------------Calculate Vapor and Liquid Flow Rates 

    % Calculate Still Pot Vapor Flow Rate 

    V_flow(1) = Q_Boiler/(H_v_Enthalpy(1) - H_l_Enthalpy(2)); 

  

    % Initialize Packed Section Vapor Flow Rates 

    % V_flow(NT+2) : dummy 

    for i=2:NT+1; 

        V_flow(i) = V_flow(1); 

    end; 

  

    % Initialize Packed Section and Reflux Drum Liquid Flow Rates 

    % L_flow(1) : dummy 

    for i=2:NT+2; 

        L_flow(i) = V_flow(1); 

    end; 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Liquid Holdups 

    % Instantaneous (Sp-Ps-Rd) Total Holdup Amount [moles] 

    M_Holdup = zeros(NT+2,1); 

    % ---------------------------------------Calculate Initial Molar Holdups 

    % Initial Reflux Drum Liquid Holdup [moles] 

    M_Holdup(NT+2) = 20.0; % 

    % Liquid Holdup throughout Packed Section[-] 

    ho = zeros(1); 

    %Froude Number [-] 

    Fr = zeros(1); 

  

    % Calculate Packed Section Molar Holdup [mol] 

    for i=2:NT+1; 

        Fr = (((L_flow(2)*Mw_MolWeight(i)) / (Ro_l_Density(i)*A*3600))^2)*... 

            (ap/(g*e_porosity^(4.65))); 
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        ho = 0.555 * ((Fr)^(1/3)); 

        M_Holdup(i)= ((A * ho * Ro_l_Density(i)*DeltaZ))/(Mw_MolWeight(i)); 

    end; 

    % Calculate Still Pot Molar Holdup [mol] 

    M_Holdup(1) = M_Feed - sum(M_Holdup(2:NT+2)); 

    %Calculation of Liquid and Gas Velocities [m/sec] 

    % Liquid Velocity [m/sec] 

    UL = zeros(NT+2,1); 

    % Gas Velocity [m/sec] 

    UG = zeros(NT+2,1); 

    % Design Liquid Velocity [m/sec] 

    UL_design = zeros(NT+2,1); 

    % Design Gas Velocity [m/sec] 

    UG_design = zeros(NT+2,1); 

    % Liquid Kinematic Viscosity [m2/sec] 

    v_l = zeros(NT+2,1); 

    % Gas Kinematic Viscosity [m2/sec] 

    v_g = zeros(NT+2,1); 

  

    for i=2:NT+1, 

        UL_design(i) = (L_flow(2)*Mw_MolWeight(i)) / (Ro_l_Density(i)*A*3600); 

        UG_design(i) = (V_flow(2)*Mw_MolWeight(i)) / (Ro_g_Density(i)*A*3600); 

        if (type_of_compound == 1) 

            [ae, K_G,Mu_g_mixture, Mu_l_mixture] = Mass_Hydrocarbons(i,... 

                X_frac, Y_frac, Temp, Ro_l_Density, Mw_MolWeight, L_flow,... 

                V_flow, Press, Ro_g_Density); 

        else 

            [ae, K_G, Mu_g_mixture, Mu_l_mixture]= Mass_Polar(L_flow, ... 

                V_flow, X_frac, Mw_MolWeight, Ro_l_Density, Ro_g_Density,... 

                Temp, Press, Y_frac); 

        end; 

        v_l(i) = Mu_l_mixture(i-1) / Ro_l_Density(i); 

        v_g(i) = Mu_g_mixture(i-1)/ Ro_g_Density(i); 

    end; 

  

    UL = UL_design; 

    UG = UG_design; 

  

    % Calculation of Reynolds Number 

    [Re_G]= P_reynolds(UG, dp_equi, v_g); 

    % Calculation of Friction Factor for a Single Particle 

    [fo] = P_friction(C1,C2,C3,Re_G); 

    % Calculation of Dry Pressure Drop 

    [del_p_dry ]= P_dry_pressure_drop(fo, e_porosity, Ro_g_Density, z_total, UG, dp_equi); 

    % Calcuation of liquid holdup below the loading point 

    [ho, FrL]= P_holdup(UL, ap, g, e_porosity); 

    % Calcuation of exponent constant at Equation 10 given by J.Stichlmair et al.(1989) 

    [c_exp]= P_constant_exp(C1,C2,Re_G,fo); 

    %Calculation of irrigated pressure drop 

    [fdelP_Packed]= P_pressure_drop_irrigated(del_p_dry,Ro_l_Density,... 

        z_total,ho,e_porosity,c_exp,g); 

  

    Press(NT+2,1) = 101600.0; 

    Press(1,1) = Press(NT+2,1) - fdelP_Packed; 

    Press(2:NT+1,1) = PressureProfile(Press(1), Press(NT+2)); 

  

end 

fprintf('\n\n\nThe irrigated pressure drop is %f (Pa).\n',fdelP_Packed) 

  

%--------------Prediction of flooding point by using correlation given by 

%J. Stichlmair et al.(1989) 

% Abbreviation for Equation (18) given by J. Stichlmair et. al.(1989) 

Abbreviation = zeros(1); 

Abbreviation = (fdelP_Packed /(Ro_l_Density(2) * g * z_total))^2; 

  

% Rearranged Equation(18) given by J. Stichlmair et. al.(1989) 

B_Rearranged = zeros(1); 

B_Rearranged = (1 / Abbreviation)-[(40*(2+c_exp)/3)*ho/(1-e_porosity+ho*... 

    [1+20*Abbreviation])]-[(186*ho)/(e_porosity-ho*[1+20*Abbreviation])]; 

  

% Flooding Point Liquid Velocity [m/sec] 

UL_flooding = zeros(NT+2,1); 

% Flooding Point Gas Velocity [m/sec] 

UG_flooding = zeros(NT+2,1); 

% Flooding Pressure [N/m2] 

fdelP_Packed_flooding = zeros(1); 

  

UG_flooding = UG_design;% Initial assumption 

  

UG = UG_flooding; 

while B_Rearranged > zero_tolerance, 

    UG(2) = UG(2) + 0.001; 

    fdelP_Packed1 = 1; 

    while fdelP_Packed - fdelP_Packed1>0.01 

        fdelP_Packed1 = fdelP_Packed; 

        % Calculation of Reynolds Number 

        [Re_G]= P_reynolds(UG, dp_equi, v_g); 

        % Calculation of Friction Factor for a Single Particle 

        [fo] = P_friction(C1,C2,C3,Re_G); 

        % Calculation of Dry Pressure Drop 

        [del_p_dry ]= P_dry_pressure_drop(fo, e_porosity, Ro_g_Density,... 

            z_total, UG, dp_equi); 

        % Calcuation of liquid holdup below the loading point 

        [ho, FrL]= P_holdup(UL, ap, g, e_porosity); 

        % Calcuation of exponent constant at Equation 10 given by J.Stichlmair et al.(1989) 

        [c_exp]= P_constant_exp(C1,C2,Re_G,fo); 

        %Calculation of irrigated pressure drop 

        [fdelP_Packed]= P_pressure_drop_irrigated(del_p_dry,Ro_l_Density,... 
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            z_total,ho,e_porosity,c_exp,g); 

    end 

    Abbreviation = (fdelP_Packed /(Ro_l_Density(2) * g * z_total))^2; 

    B_Rearranged = (1 / Abbreviation)-[(40*(2+c_exp)/3)*ho/(1-e_porosity+ho... 

        *[1+20*Abbreviation])]-[(186*ho)/(e_porosity-ho*[1+20*Abbreviation])]; 

end 

%-----------------------------------End of Pressure Drop Prediction ------- 

fdelP_Packed_flooding = fdelP_Packed; 

for i=1:NT+2, 

    UG_flooding(i)= UG(2); 

end 

% Percent of flooding [Dimensionless] 

percent = zeros(1); 

  

percent = (UG_design(2) / UG_flooding(2))*100; 

fprintf('The flooding pressure drop is %f (Pa).\n',fdelP_Packed_flooding) 

fprintf('The design gas rate is %f percent of flooding.\n\n', percent) 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Define and Initialize storage tank compositions 

% Instantaneous compositions in storage tanks (moles/moles) (2*(NC-1)xNC) 

Tank_X_frac = zeros(2*(NC-1)+1, NC); 

% Instantaneous total holdup amount in storage tanks (moles) 

Tank_M_Holdup = zeros(2*(NC-1)+1, 1); 

% ============================ 

% Initialize Controller 

% ============================ 

% CONT_SetPoints        : Controller Set Points of Product Specifications 

% CONT_Num_Oper_Stage   : Number of different operation stage 

% CONT_DistillProfile   : Distillate Flow rate values of different operation stages (Products and/or Slopcuts) 

[CONT_SetPoints, CONT_Num_Oper_Stage, CONT_DistillProfile] = INIT_CONTROL; 

% Define Controller Outputs 

CONT_QBoiler = zeros(1,1); 

CONT_RRatio_inv = zeros(1,1); 

% Initialize Activated Tank Index 

Tank_Activated = 0; 

% Initialize Current Stage Number (startup:0, ) 

CONT_Curr_Stage = 0; 

% ========================================================================= 

% Integration Starts 

% ========================================================================= 

for i=0:num_step 

    if t >= disp_t; 

        % Write Plant Data to Screen 

        write_plant_to_scr(t, X_frac, R_Ratio_inv); 

  

        % Write Plant Data to File 

        write_plant_to_file(t, X_frac, Y_frac, Temp, M_Holdup, L_flow, V_flow); 

  

        % Write estimator and controller data to file 

        write_estcont_to_file(t, CONT_QBoiler, CONT_RRatio_inv); 

  

        % Write tank compositions and holdups 

        write_tank_to_file(t, Tank_X_frac, Tank_M_Holdup); 

        %Tank_X_frac 

        %D_DistillRate 

  

        disp_t = disp_t + disp_DeltaT; 

    end; 

  

  

  

    % Real Plant Variables 

    % % % % % % % % % % % % X_frac, Y_frac, Temp, Y_frac_eqm, t,z 

    % % % % % % % % % % % % H_l_Enthalpy, H_v_Enthalpy, Ro_l_Density, Mw_MolWeight,Ro_g_Density 

    % % % % % % % % % % % % M_Holdup, L_flow, V_flow, 

    % % % % % % % % % % % % Q_Boiler, D_DistillRate, R_Ratio_inv, M_Distilled, Press, 

    % % % % % % % % % % % % t_prv, M_Holdup_prv, H_l_Enthalpy_prv, z_prv 

    % % % % % % % % % % % % Del_M_Holdup, Del_H_l_Enthalpy, Del_M_Hl 

  

    % Keep Current Parameters for Future Use 

    [t_prv, M_Holdup_prv, H_l_Enthalpy_prv, X_frac_prv, Y_frac_prv] = ... 

        P_Keep_Current_Vars(t, M_Holdup, H_l_Enthalpy, X_frac, Y_frac); 

  

    % Find Derivatives 

    [DX_frac, DY_frac] = P_f(t, X_frac, Y_frac, Temp, H_l_Enthalpy, ... 

        H_v_Enthalpy, Ro_l_Density, Ro_g_Density,Mw_MolWeight, M_Holdup,... 

        L_flow, V_flow, Q_Boiler, D_DistillRate, R_Ratio_inv, Press,... 

        t_prv, M_Holdup_prv, H_l_Enthalpy_prv, Y_frac_eqm, DeltaT, ... 

        DeltaZ,X_frac_prv, type_of_compound); 

  

  

    % Take Integration 

    [t,z, X_frac, Y_frac] = P_Int_Euler(t, z, DeltaT, DeltaZ, X_frac, ... 

        DX_frac, Y_frac, DY_frac, Y_frac_eqm); 

  

    % Normalizes Plant States 

    % Vapor Phase 

    [Y_frac] = P_Normalize_States_Y(z, Y_frac); 

    % Liquid Phase 

    [X_frac] = P_Normalize_States_X(t, X_frac); 

  

    % Run controller (Find new real plant inputs) 

    if (t>= 0 & t < 1.0) 

        % Run the open-loop system with using predefined switching 

        % times and corresponding distillate flowrates (or reflux ratios) 

        [CONT_QBoiler, CONT_RRatio_inv,Tank_Activated] = CONTROL(t, ... 

            X_frac, Q_Boiler, CONT_SetPoints, CONT_Num_Oper_Stage, CONT_DistillProfile); 

    else 



 

 

 

 

103 

        % Run the closed-loop system with the actual composition feed-back 

        [CONT_QBoiler, CONT_RRatio_inv, Tank_Activated, CONT_Curr_Stage] = CONTROL_real(t,... 

            X_frac, Q_Boiler, R_Ratio_inv, CONT_SetPoints, CONT_Num_Oper_Stage,... 

            CONT_DistillProfile, Tank_Activated, Tank_X_frac, CONT_Curr_Stage); 

        %  if (CONT_Curr_Stage == 5) 

        %     if (Tank_Activated==3) 

        %         Tank_M_Holdup(5,1) = M_Holdup(1,1) + sum(M_Holdup(2:NT+1)) + M_Holdup(NT+2); 

        %         sum1 = zeros(1,NC); 

        %         sum2= zeros(1, NC); 

        %         for i=2:NT+1; 

        %             sum2 = M_Holdup(i)*X_frac(i,:); 

        %             sum1 = sum2 + sum1; 

        %         end 

        %         Tank_X_frac(5,:)= [(X_frac(1,:)*M_Holdup(1,1) + sum1 + ... 

        %            M_Holdup(NT+2)*X_frac(NT+2,:))] / [Tank_M_Holdup(5,1)]; 

        %     end 

        % end 

    end 

  

    % Manuplate real plant inputs by controller outputs 

    Q_Boiler = CONT_QBoiler; 

    R_Ratio_inv = CONT_RRatio_inv; 

  

    % Stop simulation when the distillation finishes 

    if (Tank_Activated == -1) 

        break; 

    end; 

    % Find New Physical Variables 

    [Y_frac_eqm, Temp, H_l_Enthalpy, H_v_Enthalpy, Ro_l_Density, Mw_MolWeight] = ... 

        P_Calc_New_Phys_Vars(t, X_frac, Press, Temp, Y_frac, type_of_compound); 

  

    % Calculate New Packed Section Molar Holdups 

    [M_Holdup] =  P_Calc_New_Mol_Packed_Section_Holdup(t, Ro_l_Density,... 

        Mw_MolWeight, M_Holdup, L_flow); 

  

    % Calculate New Reflux-Drum Molar Holdup 

    [M_Holdup] = P_Calc_New_Mol_Drum_Holdup(t, M_Holdup); 

  

    % Calculate New Approximated Derivatives 

    [Del_M_Holdup, Del_H_l_Enthalpy, Del_M_Hl] = P_Calc_New_Apprx_Deriv(t, ... 

        M_Holdup, H_l_Enthalpy, t_prv, M_Holdup_prv, H_l_Enthalpy_prv); 

  

    % Calculate New Distillate, Vapor and Liquid Flow Rates 

    if R_Ratio_inv == 0; %% For Total Reflux Condition 

        [D_DistillRate, L_flow, V_flow] = P_Calc_LV_for_Total_Reflux(t, ... 

            H_l_Enthalpy, H_v_Enthalpy, M_Holdup, Del_M_Holdup, ... 

            Del_H_l_Enthalpy, Del_M_Hl, Q_Boiler, R_Ratio_inv); 

    else  %% For Distillate Withdrawal 

        [D_DistillRate, L_flow, V_flow] = P_Calc_LV_for_Finite_Reflux(t, ... 

            H_l_Enthalpy, H_v_Enthalpy, M_Holdup, Del_M_Holdup, ... 

            Del_H_l_Enthalpy, Del_M_Hl, Q_Boiler, R_Ratio_inv); 

    end; 

  

    % Calculate current holdup amount and composition in storage tanks 

    [Tank_X_frac, Tank_M_Holdup] = P_Calc_Tanks(t, DeltaT, Tank_X_frac, ... 

        Tank_M_Holdup, X_frac(NT+2,:), D_DistillRate, Tank_Activated); 

  

    % Calculate New Amount of Product Distilled 

    [M_Distilled] = P_Calc_New_Distilled_Amount(t, t_prv, D_DistillRate, M_Distilled); 

  

    % Calculate New Still Pot Holdup 

    [M_Holdup] = P_Calc_New_Mol_Still_Holdup(t, M_Holdup, M_Distilled); 

  

end; 

  

if (R_ratio_opt == 1) 

    CAP = 0; 

else 

    CAP = (Tank_M_Holdup(1,1) + Tank_M_Holdup(3,1)+ Tank_M_Holdup(5,1)) / (t+0.5);     

end; 

cap_fact = CAP; 

  

% Write optimization results to file 

write_opt_to_file(t,R_ratio_opt,Tank_M_Holdup(1,1),Tank_M_Holdup(2,1),... 

    Tank_M_Holdup(3,1),Tank_M_Holdup(4,1),Tank_M_Holdup(5,1),cap_fact); 

  

% ================================================== 

% Close Output Files 

% ================================================== 

% Liquid Profile file 

fclose(FID_lprofile); 

% Vapor Profile file 

fclose(FID_vprofile); 

% Temperature Profile file 

fclose(FID_tprofile); 

% Holdup Profile file 

fclose(FID_holdup); 

% Liquid and Vapor Flowrate Profile file 

fclose(FID_lvflow); 

% Controller Outputs file 

fclose(FID_control); 

% Tank Outputs file 

fclose(FID_tank); 

% Optimization Outputs file 

fclose(FID_opt); 

  

% ================================================== 

% Simulation finishes 
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% ================================================== 

fprintf('Simulation finished successfully.\n\n'); 

  

% -------------------------End of Main Program function Plant_File_Packed 

  

% ####################################################################### % 

% -----------------Real Plant Simulation Functions----------------------- % 

% ----------------------------------------------------------------------- % 

%========================================================================== 

% Predict Pressure Drop (Dry, Irrigated and Flooding) 

%========================================================================== 

%-------------------------------------------------------------------------- 

function [Re_G] = P_reynolds(UG, dp_equi, v_g) 

% Reynolds Number of Gas Calculated by Equivalent Diameter of Packing% 

Re_G = zeros(1); 

Re_G = (UG(2)*dp_equi)/v_g(2); 

%end_P_reynolds 

%-------------------------------------------------------------------------- 

function [fo] = P_friction(C1,C2,C3,Re_G) 

% Friction Factor [Dimensionless] 

fo = zeros(1); 

fo = (C1 / Re_G)+(C2/(Re_G^0.5))+ C3; 

%end_P_friction 

%-------------------------------------------------------------------------- 

function [del_p_dry ]= P_dry_pressure_drop(fo, e_porosity, Ro_g_Density, ... 

    z_total, UG, dp_equi) 

% Dry Pressure Drop [N/m2] 

del_p_dry = zeros(1); 

del_p_dry = (3/4)*fo*((1-e_porosity)/(e_porosity^4.65))* Ro_g_Density(2)*... 

    z_total * UG(2)^2 / dp_equi; 

% end_P_dry_pressure_drop 

%-------------------------------------------------------------------------- 

function [ho, FrL]= P_holdup(UL, ap, g, e_porosity); 

% Liquid Froude Number 

FrL = zeros(1); 

% Liquid Holdup 

ho = zeros(1); 

FrL = ((UL(2)^2)*ap) /(g * e_porosity^4.65); 

ho = 0.555*FrL^(1/3); 

%end_P_holdup 

%-------------------------------------------------------------------------- 

function [c_exp]=P_constant_exp(C1,C2,Re_G,fo) 

%Exponent c for Calculation of the Irrigated Pressure Drop Constant 

%at Equation 10 given by J.Stichlmair et al.(1989) 

c_exp = zeros(1); 

c_exp = ((-C1/Re_G)+(-C2/(2*Re_G^(1/2))))/fo; 

%end_P_constant_exp 

%-------------------------------------------------------------------------- 

function [fdelP_Packed]=P_pressure_drop_irrigated(del_p_dry,Ro_l_Density,... 

    z_total,ho,e_porosity,c_exp,g) 

  

del_p_irrigated1 = del_p_dry; 

A1 = (del_p_irrigated1/(Ro_l_Density(2)*g*z_total)); 

A2 = (1 + 20 * (A1^2)); 

A3 = (ho/e_porosity)*A2; 

A4 = (1-e_porosity*(1-A3)); 

A5 = (A4/(1-e_porosity))^((2+c_exp)/3); 

A6 = (1-A3)^(-1*4.65); 

fdelP_Packed = del_p_dry*A5*A6; 

  

while del_p_irrigated1 - fdelP_Packed > 0.001; 

    fdelP_Packed = del_p_irrigated1; 

    A1 = (del_p_irrigated1/(Ro_l_Density(2)*g*z_total)); 

    A2 = (1 + 20 * (A1^2)); 

    A3 = (ho/e_porosity)*A2; 

    A4 = (1-e_porosity*(1-A3)); 

    A5 = (A4/(1-e_porosity))^((2+c_exp)/3); 

    A6 = (1-A3)^(-4.65); 

    del_p_irrigated1 = del_p_dry*A5*A6; 

end 

%end_P_pressure_drop_irrigated 

%========================================================================== 

% P_f 

% Return the derivatives for the continuous states. 

%========================================================================== 

%-------------------------------------------------------------------------- 

  

function  [DX_frac, DY_frac] = P_f(t, X_frac, Y_frac, Temp, H_l_Enthalpy,... 

    H_v_Enthalpy, Ro_l_Density, Ro_g_Density, Mw_MolWeight,M_Holdup,... 

    L_flow, V_flow,Q_Boiler, D_DistillRate, R_Ratio_inv, Press, t_prv, M_Holdup_prv,... 

    H_l_Enthalpy_prv, Y_frac_eqm, DeltaT, DeltaZ,X_frac_prv,type_of_compound) 

Glob_Decs; 

% Instantaneous (Sp-Ps-Rd)Liquid and Vapor Compositions Derivatives [moles/moles/hour] 

DX_frac = zeros(size(X_frac)); 

DY_frac = zeros(size(Y_frac)); 

  

%---------------------------------Calculation of Mass Transfer Coefficient 

for i =2:NT+1; 

    if (type_of_compound == 1) 

        [ae, K_G,Mu_g_mixture, Mu_l_mixture] = Mass_Hydrocarbons(i,X_frac,... 

            Y_frac, Temp, Ro_l_Density, Mw_MolWeight, L_flow, V_flow, Press, Ro_g_Density); 

    else 

        [ae, K_G, Mu_g_mixture, Mu_l_mixture]= Mass_Polar(L_flow, V_flow,... 

            X_frac, Mw_MolWeight, Ro_l_Density, Ro_g_Density, Temp, Press, Y_frac); 

    end; 

    Rate(i-1) = K_G(i-1)*A*ae(i-1); 

end; 

%------------------------------Calculation of derivatives for compositions 
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for j=1:NC; 

    % Still Pot 

    DX_frac(1,j) = ( L_flow(2)*(X_frac(2,j)-X_frac(1,j)) - V_flow(1)*... 

        (Y_frac_eqm(1,j)-X_frac(1,j)) ) / M_Holdup(1); 

    Y_frac(1,j) = Y_frac_eqm(1,j); 

  

    % Packed Section 

    for i = 2:NT+1, 

        C = zeros(1); 

        C = (-Rate(i-1)/V_flow(i)); 

        DY_frac(i,j)= C* (Y_frac(i,j) - Y_frac_eqm(i,j)); 

    end; 

    % Following equation is a pde written for a packed differential 

    % section. The approximation to (del_x / del_z) was made by using the 

    % upward Euler method.{(x(i+1)-x(i))/deltaZ} 

    for i=2:NT+1, 

        DX_frac(i,j) = Rate(i-1)*(Y_frac(i,j)-Y_frac_eqm(i,j))/[(M_Holdup(i)/DeltaZ)]+ ... 

            (L_flow(i)/(M_Holdup(i)/DeltaZ))*[(X_frac(i+1,j)- X_frac(i,j))/(DeltaZ)]; 

    end; 

    % Reflux Drum 

    DX_frac(NT+2,j) = ( V_flow(NT+1)*(Y_frac(NT+1,j)-X_frac(NT+2,j))) / M_Holdup(NT+2); 

end 

% end mdlDerivatives 

%========================================================================== 

% P_Int_Euler 

% Return 

%           Take integral 

% given 

%           Time: t; 

%           Integration Step: delta_t; 

%           Previous States: X_frac; 

%           Derivatives: DX_frac; 

%========================================================================== 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%In that part, for the prediction of the new liquid and vapor compositions 

% upward Euler method is used as an approximation method for ordinary and 

% partial differential equations. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [t_new, z_new, X_frac_new, Y_frac_new] = P_Int_Euler(t,z,DeltaT, ... 

    DeltaZ, X_frac, DX_frac, Y_frac, DY_frac, Y_frac_eqm) 

Glob_Decs; 

t_new = t + DeltaT; 

z_new = z + DeltaZ; 

  

% New Liquid Compositions 

X_frac_new = X_frac+ DX_frac*DeltaT; 

  

% New Vapor Compositions 

for j=1:NC, 

    Y_frac(1,j) = Y_frac_eqm(1,j); 

    for i = 2:NT+1, 

        Y_frac(i,j) = Y_frac(i,j)+ DeltaZ* DY_frac(i,j); 

        Y_frac(i,j) = (Y_frac(i-1,j)+Y_frac(i,j))/2; 

    end 

    Y_frac(NT+2,j) = Y_frac(NT+1,j); 

end 

Y_frac_new = Y_frac; 

  

%end Int_Euler 

%========================================================================== 

% P_Keep_Current_Vars 

% Return 

%           Keeps current parameters for future use 

% given 

%           Time: t; Variables at t: ...; 

%========================================================================== 

function [t_prv, M_Holdup_prv, H_l_Enthalpy_prv, X_frac_prv, Y_frac_prv] = ... 

    P_Keep_Current_Vars(t, M_Holdup, H_l_Enthalpy, X_frac, Y_frac); 

% Previous step time 

t_prv = t; 

% Previous step (Sp-Ps-Rd) total holdup amount (moles) 

M_Holdup_prv = M_Holdup; 

% Previous step (Sp-Ps-Rd) liquid phase enthalpy (J/moles) 

H_l_Enthalpy_prv = H_l_Enthalpy; 

% Previous step (Sp-Ps-Rd) liquid phase composition (mol / mol) 

X_frac_prv = X_frac; 

% Previous step (Sp-Ps-Rd) vapor phase composition (mol / mol) 

Y_frac_prv = Y_frac; 

  

%end P_Keep_Current_Vars 

%========================================================================== 

% P_Normalize_States_Y 

% Return 

%           Normalizes Plant States for Vapor Phase 

% given 

%           Time: t;    States: Y_frac_Pr; 

%========================================================================== 

function [Y_frac] = P_Normalize_States_Y(t, Y_frac_Pr) 

Glob_Decs; 

  

% Set size 

Y_frac = Y_frac_Pr; 

  

% %%%%%%%%%%%%%%%%%%%%%%Make the low compositions zero%%%%%%%%%%%%%%%%%%%%% 

% Check for (Sp-Ps-Rd) vapor compositions (moles/moles) 

for i=1:NT+2; 

    for j=1:NC; 

        if isnan(Y_frac_Pr(i,j)); 
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            error(['Stage no ', num2str(i) ,' component ', num2str(j),... 

                ' vapor fraction is Nan'] ); 

        end; 

        if Y_frac_Pr(i,j) < zero_tolerance; 

            % display(['Stage no ',num2str(i),' composition of comp. ',... 

            % num2str(j), ' ( ',num2str(Y_frac_Pr(i,j)),' )  made zero']); 

            Y_frac(i,j) = 0.0; 

        end; 

    end; 

end; 

  

% %%%%%%%%%%%%%%%%%Normalize the vapor compositions (moles/moles)%%%%%%%%%% 

% Normalize (Sp-Ps-Rd) vapor compositions (moles/moles) 

for i=1:NT+2; 

    dummy1 = sum(Y_frac_Pr(i,:)); 

    if ~(dummy1 > 0.0); 

        %         error(['Sum of comp. vapor fraction in the Stage no  ',... 

        % num2str(i),'      is zero.     ', num2str(Y_frac_Pr(i,:)) ]); 

    else 

        Y_frac(i,:) = Y_frac_Pr(i,:) / dummy1; 

    end; 

end; 

  

% %%%%%%%%%%%%%%%% Check compositions are in the limit of [0,1] %%%%%%%%%%% 

% Check (Sp-Ps-Rd) vapor compositions (moles/moles) 

for i=1:NT+2; 

    for i=1:NC; 

        if (Y_frac(i,j)<0 | Y_frac(i,j)>1); 

          %   error(['Vapor Composition out of limit ! - [Normalize_States]  Y_frac(',... 

          %       num2str(i),',:) = ', num2str(Y_frac(i,:))] ); 

        end; 

    end; 

end; 

  

%end P_Normalize_States_Y 

%========================================================================== 

% P_Normalize_States 

% Return 

%           Normalizes Plant States for Liquid Phase 

% given 

%           Time: t;    States: X_frac_Pr; 

%========================================================================== 

function [X_frac] = P_Normalize_States_X(t, X_frac_Pr) 

Glob_Decs; 

  

% Set Size 

X_frac = X_frac_Pr; 

  

% %%%%%%%%%%%%%%%%%%%Make the low compositions zero%%%%%%%%%%%%%%%%%%%%%%%% 

% Check for (Sp-Ps-Rd) liquid compositions (moles/moles) 

for i=1:NT+2; 

    for j=1:NC; 

        if isnan(X_frac_Pr(i,j)); 

            error(['Stage no ', num2str(i) ,' component ', num2str(j),... 

                ' liquid fraction is Nan'] ); 

        end; 

        if X_frac_Pr(i,j) < zero_tolerance; 

            % display(['Stage no ',num2str(i),' composition of comp. ',... 

            % num2str(j), ' ( ',num2str(X_frac_Pr(i,j)),' )  made zero']); 

            X_frac(i,j) = 0.0; 

        end; 

    end; 

end; 

  

% %%%%%%%%%%%%%%%Normalize the liquid compositions(moles/moles)%%%%%%%%%%%% 

% Normalize (Sp-Ps-Rd) liquid compositions (moles/moles) 

for i=1:NT+2; 

    dummy1 = sum(X_frac_Pr(i,:)); 

    if ~(dummy1 > 0.0); 

        error(['Sum of comp. fraction in the     Stage no  ',... 

            num2str(i),'      is zero.     ', num2str(X_frac_Pr(i,:)) ]); 

    else 

        X_frac(i,:) = X_frac_Pr(i,:) / dummy1; 

    end; 

end; 

  

% %%%%%%%%%%%%%%%%%Check compositions are in the limit of [0,1]%%%%%%%%%%%% 

% Check (Sp-Ps-Rd) liquid compositions (moles/moles) 

for i=1:NT+2; 

    for i=1:NC; 

        if (X_frac(i,j)<0 | X_frac(i,j)>1); 

            error(['Composition out of limit ! - [Normalize_States]  X_frac(',... 

                num2str(i),',:) = ', num2str(X_frac(i,:))] ); 

        end; 

    end; 

end; 

  

%end P_Normalize_States_X 

%========================================================================== 

% P_Calc_New_Phys_Vars 

% Return 

%       Find New Physical Variables 

% given 

%       Time, t; Previous system variables (Temp at previous time step is for initial guess) 

%========================================================================== 

function [Y_frac_eqm, Temp, H_l_Enthalpy, H_v_Enthalpy, Ro_l_Density, Mw_MolWeight] = ... 

    P_Calc_New_Phys_Vars(t, X_frac, Press, TempPr, Y_frac, type_of_compound) 

Glob_Decs; 
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% Set Sizes 

Y_frac_eqm = zeros(size(X_frac)); 

Temp = zeros(size(TempPr)); 

H_l_Enthalpy = zeros(size(TempPr)); 

H_v_Enthalpy = zeros(size(TempPr)); 

Ro_l_Density = zeros(size(TempPr)); 

Mw_MolWeight = zeros(size(TempPr)); 

  

%--------------------------------------------------Bubble Point Calculation 

% Calculate (Sp-Ps-Rd) Temperature and Vapor Compositions [moles/moles] 

for i=1:NT+2; 

    if (type_of_compound == 1) 

        [Temp(i), Dummy3] = thermo_Equilibrium_Hydrocarbons(TempPr(i), Press(i), X_frac(i,:)); 

    else 

        [Temp(i), Dummy3] = thermo_Equilibrium_Polar(TempPr(i), Press(i), X_frac(i,:)); 

    end; 

    Y_frac_eqm(i,:) = Dummy3; 

end; 

for j = 1:NC, 

    for i=2:NT+1, 

        Y_frac_eqm(i,j) = [Y_frac_eqm(i,j) + Y_frac_eqm(i+1,j)]/2; 

    end 

end 

  

%---------------------------------------Calculate Specific Phase Enthalpies 

% Calculate (Sp-Ps-Rd)Liquid and Vapor Phase Enthalpies [J/moles] 

for i=1:NT+2, 

    [H_l_Enthalpy(i), H_v_Enthalpy(i)] = thermo_Enthalpy(Temp(i), Press(i), X_frac(i,:), Y_frac(i,:)); 

end; 

%-------Calculate Liquid Phase Average Density and Average Molecular Weight 

% Calculate (Sp-Ps-Rd) Liquid and Gas Phase Average Densities [kg/m3] 

% Calculate (Sp-Ps-Rd) Average Molecular Weight [kg/mol] 

for i=1:NT+2; 

    [Mw_MolWeight(i), Ro_l_Density(i)] = thermo_L_Density(Temp(i), Press(i), X_frac(i,:)); 

    [Mw_MolWeight(i), Ro_g_Density(i)] = thermo_G_Density(Temp(i), Press(i), X_frac(i,:)); 

end; 

  

%end P_Calc_New_Phys_Vars 

%========================================================================== 

% P_Calc_New_Mol_Packed Section_Holdup 

% Return 

%       Calculate Packed Section Molar Holdups 

% given 

%       Time, t; 

%========================================================================== 

function [M_Holdup] = P_Calc_New_Mol_Packed_Section_Holdup(t, Ro_l_Density,... 

    Mw_MolWeight, M_Holdup_pr, L_flow) 

Glob_Decs; 

  

% Set Size 

M_Holdup = M_Holdup_pr; 

  

% Calculate Packed Section Molar Holdup [mol] 

for i=2:NT+1; 

    Fr = (((L_flow (2)*Mw_MolWeight(i))/(Ro_l_Density(i)*A*3600))^2)*(ap/(g*(e_porosity^4.65))); 

    ho = 0.555 * ((Fr)^(1/3)); 

    M_Holdup(i)= ((A * ho * Ro_l_Density(i)*z_total)/NT)/(Mw_MolWeight(i)); 

end; 

  

%end P_Calc_New_Mol_Packed Section_Holdup 

%========================================================================== 

% P_Calc_New_Mol_Drum_Holdup 

% Return 

%       Calculate new Reflux-Drum molar holdup 

% given 

%       Time, t; 

%========================================================================== 

function [M_Holdup] = P_Calc_New_Mol_Drum_Holdup(t, M_Holdup_pr) 

Glob_Decs; 

  

% Set Size 

M_Holdup = M_Holdup_pr; 

  

% Reflux Drum Molar holdup is constant 

M_Holdup(NT+2) = M_Holdup_pr(NT+2); 

  

%end P_Calc_New_Mol_Drum_Holdup 

%========================================================================== 

% P_Calc_New_Apprx_Deriv 

% Return 

%       Calculate Approximated derivatives 

% given 

%       Time, t; 

%========================================================================== 

function [Del_M_Holdup, Del_H_l_Enthalpy, Del_M_Hl] = P_Calc_New_Apprx_Deriv(t,... 

    M_Holdup, H_l_Enthalpy, t_prv, M_Holdup_prv, H_l_Enthalpy_prv) 

Glob_Decs; 

  

% Set Sizes 

Del_M_Holdup = zeros(size(M_Holdup)); 

Del_H_l_Enthalpy = zeros(size(H_l_Enthalpy)); 

Del_M_Hl = zeros(size(M_Holdup)); 

  

% Calculate Step Size 

del_t = t - t_prv; 

% d(M_Holdup)/dt approximated by forward differentiation 

Del_M_Holdup = (M_Holdup - M_Holdup_prv) / del_t; 
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for i = 2: NT+1; 

    Del_M_Holdup(i) = 0; 

end 

  

% d(H_l_Enthalpy)/dt approximated by forward differentiation 

Del_H_l_Enthalpy = (H_l_Enthalpy - H_l_Enthalpy_prv) / del_t; 

for i = 2: NT+1; 

    Del_H_l_Enthalpy(i) = 0; 

end 

  

% d(M_Holdup*H_l_Enthalpy)/dt approximated by forward differentiation 

Del_M_Hl = (M_Holdup.*H_l_Enthalpy - M_Holdup_prv.*H_l_Enthalpy_prv) / del_t; 

for i = 2: NT+1; 

    Del_M_Hl(i) = 0; 

end 

  

%end P_Calc_New_Apprx_Deriv 

%========================================================================== 

% P_Calc_LV_for_Total_Reflux 

% Return 

%           Calculates Liquid and Vapor Flow Rates for Total Reflux Condition 

%           or for D=0 

% given 

%           Time, t; 

%========================================================================== 

function [D_DistillRate, L_flow, V_flow] = P_Calc_LV_for_Total_Reflux(t,... 

    H_l_Enthalpy, H_v_Enthalpy, M_Holdup, Del_M_Holdup, Del_H_l_Enthalpy,... 

    Del_M_Hl, Q_Boiler, R_Ratio_inv) 

Glob_Decs; 

  

% Set Sizes 

D_DistillRate = zeros(size(1,1)); 

L_flow = zeros(size(M_Holdup)); 

V_flow = zeros(size(M_Holdup)); 

  

% Calculate Distillate Flow Rate 

D_DistillRate = 0.0; 

  

% Calculate Liquid Flow Rate from Reflux Drum 

sum_Del_M_Holdup = sum( Del_M_Holdup(2:NT+1) ); 

sum_Del_M_Hl     = sum( Del_M_Hl(2:NT+1) ); 

L_flow(NT+2)   = ( Q_Boiler - H_l_Enthalpy(1)*Del_M_Holdup(1) - M_Holdup(1)... 

    *Del_H_l_Enthalpy(1) - sum_Del_M_Hl )/ ( H_v_Enthalpy(NT+1) - H_l_Enthalpy(NT+2)); 

  

% Calculate Vapor Flow Rate from Top Section 

V_flow(NT+1) = L_flow(NT+2); 

  

% Calculate Other Vapor and Liquid Flow Rates 

%(Since equimolar counter diffusion assumed) 

for i= NT+1:-1:2; 

    V_flow(i-1) = V_flow(NT+1); 

    L_flow(i) = L_flow(NT+2); 

end 

  

%end P_Calc_LV_for_Total_Reflux 

%========================================================================== 

% P_Calc_LV_for_Finite_Reflux 

% Return 

%           Calculates Liquid and Vapor Flow Rates for Distillate Withdrawal 

%           or for D!=0 or D Different than Zero. 

% given 

%           Time, t; 

%========================================================================== 

function [D_DistillRate, L_flow, V_flow] = P_Calc_LV_for_Finite_Reflux(t,... 

    H_l_Enthalpy, H_v_Enthalpy, M_Holdup, Del_M_Holdup, Del_H_l_Enthalpy, ... 

    Del_M_Hl, Q_Boiler, R_Ratio_inv) 

Glob_Decs; 

  

% Set Sizes 

D_DistillRate = zeros(size(1,1)); 

L_flow = zeros(size(M_Holdup)); 

V_flow = zeros(size(M_Holdup)); 

  

% Calculate Distillate Flow Rate 

R = 1 / R_Ratio_inv; 

Dummy1 =  sum(Del_M_Hl(1:NT+1)); 

D_DistillRate = ( Q_Boiler - Dummy1 ) / ( (R+1)*H_v_Enthalpy(NT+1) - R*H_l_Enthalpy(NT+2) ); 

  

% Calculate Vapor Flow Rate from Top Section 

V_flow(NT+1) = D_DistillRate * (R+1); 

% Calculate Liquid Flow Rate from Reflux Drum 

L_flow(NT+2) = D_DistillRate * R; 

  

% Calculate Other Vapor and Liquid Flow Rates 

%(Since equimolar counter diffusion assumed) 

for i=NT+1:-1:2; 

    V_flow(i-1) = V_flow(i); 

    L_flow(i) = L_flow(i+1); 

end; 

  

%end P_Calc_LV_for_Finite_Reflux 

%========================================================================== 

% P_Calc_Tanks 

% Return 

%           Storage Tank Holdups and Compositions 

%========================================================================== 

function [X, M] = P_Calc_Tanks(t, DeltaT, X, M, X_Drum, D_Rate, Active); 
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if Active~=0; 

    % Calculate increase in holdup 

    deltaM = D_Rate*DeltaT; 

  

    % Calculate tank's composition 

    if ((deltaM == 0) & M(Active, 1)==0) 

        X(Active, :) = zeros(size(X(Active, :))); 

    else 

        X(Active, :) = (X(Active, :)* M(Active, 1)+X_Drum(1, :)*deltaM)/ (M(Active,1)+deltaM); 

    end; 

  

    % Calculate tank's current holdup 

    M(Active, 1) = M(Active, 1) + D_Rate*DeltaT; 

end; 

  

%end P_Calc_Tanks 

%========================================================================== 

% P_Calc_New_Distilled_Amount 

% Return 

%       Calculate New Amount of Product Distilled 

% given 

%       Time, t; 

%========================================================================== 

function [M_Distilled] = P_Calc_New_Distilled_Amount(t, t_prv, D_DistillRate, M_Distilled_pr) 

Glob_Decs; 

  

% Set Size 

M_Distilled = 0.0; 

  

% Calculate Amount of Product Distilled 

M_Distilled = M_Distilled_pr + D_DistillRate*(t-t_prv); 

  

%end P_Calc_New_Distilled_Amount 

%========================================================================== 

% P_Calc_New_Mol_Still_Holdup 

% Return 

%       Calculate Still Pot Holdup 

% given 

%       Time, t; 

%========================================================================== 

function [M_Holdup] = P_Calc_New_Mol_Still_Holdup(t, M_Holdup_pr, M_Distilled); 

Glob_Decs; 

  

% Set Sizes 

M_Holdup = M_Holdup_pr; 

  

% Instantaneous Still Pot Total Holdup Amount [moles/hour] 

M_Holdup(1) = M_Feed - sum(M_Holdup_pr(2:NT+1)) - M_Holdup_pr(NT+2) - M_Distilled; 

  

%end P_Calc_New_Mol_Still_Holdup 

% ----------------------------------------------------------------------- % 

% -----------------End Real Plant Simulation Functions------------------- % 

% ####################################################################### % 

% ####################################################################### % 

% -------------------  Controller Functions  ---------------------------- % 

% ----------------------------------------------------------------------- % 

%========================================================================== 

% INIT_CONTROL           (don't MODIFY GLOBAL VARIABLES not owned by this function) 

% perform 

%           Initilialize controller 

% given 

%           All Global variables 

% output 

%           any output required 

%========================================================================== 

function [SetPoints, Num_Oper_Stage, DistillProfile] = INIT_CONTROL 

Glob_Decs; 

  

% Controller Set Points of Product Specifications 

SetPoints       =  zeros(NC,1); 

SetPoints       = [ 0.9; 0.8; 0.69]; 

  

% Number of different operation stage 

Num_Oper_Stage  =  5; 

  

% Distillate Flow rate values of different operation stages (Products and/or Slopcuts) 

DistillProfile  =  zeros(Num_Oper_Stage,1); 

%DistillProfile  =  []; 

  

%end INIT_CONTROL 

%========================================================================== 

% CONTROL           (don't MODIFY GLOBAL VARIABLES not owned by this function) 

% perform 

%           Controls the system 

% given 

%           Current Time, t; All Global variables at time t; 

% output 

%           any output required 

%========================================================================== 

function [CONT_QBoiler, CONT_RRatio_inv,Tank_Activated] = CONTROL(t, X_frac,... 

    Q_Boiler_pr, CONT_SetPoints, CONT_Num_Oper_Stage, CONT_DistillProfile) 

Glob_Decs; 

R_Ratio = zeros(1); 

% Find new Reflux ratio (L0/D) 

if (t>= 0 & t < 1.0) 

    CONT_RRatio_inv = 0.0; 

    Tank_Activated = 1; 

elseif (t >= 1.0 & t< 3.1134) 
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    R_Ratio = 0.889/ (1.0 - 0.889); 

    CONT_RRatio_inv = 1.0 / R_Ratio; 

    Tank_Activated = 1; 

elseif (t>=3.1134 & t< 5.8782) 

    R_Ratio = 0.825/ (1.0 - 0.825); 

    CONT_RRatio_inv = 1.0 / R_Ratio; 

    Tank_Activated = 2; 

elseif (t>=5.8782 & t<6.6039) 

    R_Ratio = 0.8/ (1.0 - 0.8); 

    CONT_RRatio_inv = 1.0 / R_Ratio; 

    Tank_Activated = 3; 

elseif (t >= 6.6039 ) 

    R_Ratio = 0.8/ (1.0 - 0.8); 

    CONT_RRatio_inv = 1.0 / R_Ratio; 

    Tank_Activated = 3; 

end; 

  

% Find Reboiler load (J/hour) 

% Constant Reboiler Load 

CONT_QBoiler = Q_Boiler_pr; 

  

%end CONTROL 

%========================================================================== 

% CONTROL_real           (don't MODIFY GLOBAL VARIABLES not owned by this function) 

% perform 

%           Controls the system 

% given 

%           Current Time, t; All Global variables at time t; 

% output 

%           any output required 

%========================================================================== 

function [Q_Boiler, R_Ratio_inv, Tank_Active, CONT_Curr_Stage_new] = CONTROL_real(t,... 

    X_frac, Q_Boiler_pr, R_Ratio_inv_pr, CONT_SetPoints, CONT_Num_Oper_Stage,... 

    CONT_DistillProfile, Tank_Active_prv, X_tank, CONT_Curr_Stage) 

Glob_Decs; 

R_Ratio = zeros(1); 

% Find new Reflux ratio (L0/D) 

  

if (CONT_Curr_Stage==0)  %----------- Total Reflux operation 

    if (X_frac(NT+2,1)<CONT_SetPoints(1,1)) 

        R_Ratio_inv = 0.0; 

        Tank_Active = 0; 

        CONT_Curr_Stage = 0; 

    elseif (X_frac(NT+2,1)>=CONT_SetPoints(1,1)) 

        '0->1' 

        %pause; 

        CONT_Curr_Stage = 1; 

    end; 

end; 

  

if (CONT_Curr_Stage==1)   %----------- 1st product-cut distillation to 1st product-cut tank 

    if ((X_tank(1,1)==0) | (X_tank(1,1)>=CONT_SetPoints(1,1))) 

        if ((R_ratio_opt == 1)  | (R_ratio_opt == 0)) 

            R_Ratio = -1; 

            Tank_Active = -1; 

        else 

            %        R_Ratio = R_ratio_opt / (1.0 - R_ratio_opt); 

            R_Ratio = 0.889/ (1.0 - 0.889); 

            Tank_Active = 1; 

        end; 

        CONT_Curr_Stage = 1; 

    elseif (X_tank(1,1)<CONT_SetPoints(1,1)) 

        '1->2' 

        % pause; 

        CONT_Curr_Stage = 2; 

    end; 

end; 

  

  

if (CONT_Curr_Stage==2)      %----------- 1st slop-cut distillation to 1st slop-cut tank 

    if (X_frac(NT+2,2)<CONT_SetPoints(2,1)) 

        if ((R_ratio_opt == 1)  | (R_ratio_opt == 0)) 

            R_Ratio = -1; 

            Tank_Active = -1; 

        else 

            %       R_Ratio = R_ratio_opt / (1.0 - R_ratio_opt); 

            R_Ratio = 0.825/ (1.0 - 0.825); 

            Tank_Active = 2; 

        end; 

        CONT_Curr_Stage = 2; 

    elseif (X_frac(NT+2,2)>=CONT_SetPoints(2,1)) 

        '2->3' 

        %pause; 

        CONT_Curr_Stage = 3; 

    end; 

end; 

  

  

if (CONT_Curr_Stage==3)     %----------- 2nd product-cut distillation to 2nd product-cut tank 

    if ((X_tank(3,2)==0) | (X_tank(3,2)>=CONT_SetPoints(2,1))) 

        if ((R_ratio_opt == 1)  | (R_ratio_opt == 0)) 

            R_Ratio = -1; 

            Tank_Active = -1; 

        else 

            R_Ratio = R_ratio_opt / (1.0 - R_ratio_opt); 

            %          R_Ratio = 0.8 / (1.0 - 0.8); 

            Tank_Active = 3; 

        end; 
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        CONT_Curr_Stage = 3; 

    elseif (X_tank(3,2)<CONT_SetPoints(2,1)) 

        '3->4' 

        %pause; 

        CONT_Curr_Stage = 4; 

    end; 

end; 

  

if (CONT_Curr_Stage==4)      %----------- 2nd slop-cut distillation to 2nd slop-cut tank 

    if (X_frac(1,3)<CONT_SetPoints(3,1)) 

        if ((R_ratio_opt == 1)  | (R_ratio_opt == 0)) 

            R_Ratio = -1; 

            Tank_Active = -1; 

        else 

            R_Ratio = R_ratio_opt / (1.0 - R_ratio_opt); 

            Tank_Active = -1; 

        end; 

        CONT_Curr_Stage = 4; 

    elseif (X_frac(1,3)>=CONT_SetPoints(3,1)) 

        '4->5' 

        %pause; 

        CONT_Curr_Stage = 5; 

    end; 

end; 

if (X_frac(1,3)>=CONT_SetPoints(3,1)) 

    '4->5' 

    %pause; 

    CONT_Curr_Stage = 5; 

end; 

if (CONT_Curr_Stage==5)         %----------- Distillation stops 

    R_Ratio = 1/R_Ratio_inv_pr; 

    Tank_Active = -1; 

end; 

  

  

% Keep Current Stage # 

CONT_Curr_Stage_new = CONT_Curr_Stage; 

  

% Convert Reflux ratio (L0/D) to One Over Reflux ratio (D/L0) 

if (R_Ratio==-1) 

    R_Ratio_inv = 0; 

else 

    R_Ratio_inv = 1.0 / R_Ratio; 

end; 

  

% Find Reboiler load (J/hour) 

% Constant Reboiler Load 

Q_Boiler = Q_Boiler_pr; 

  

%end CONTROL_real 

  

% ----------------------------------------------------------------------- % 

% -----------------------End Controller Functions------------------------ % 

% ####################################################################### % 

  

% ####################################################################### % 

% ------------------Simulation loop control user interface functions------% 

% ------------------------------------------------------------------------% 

%========================================================================== 

% write_plant_to_scr 

%========================================================================== 

function write_plant_to_scr(t, X_frac, R_Ratio_inv) 

Glob_Decs; 

  

% Reflux Drum Liquid Composition 

data = X_frac(NT+2,:); 

y = X_frac(1,3); 

l = prod(size(data)); 

formats = ''; 

for i=1:l; 

    formats = [formats ' %f']; 

end; 

fprintf(['%9.4f' formats '\n'], t, reshape(data, 1, prod(size(data))), R_Ratio_inv,y); 

  

%end write_plant_to_scr 

  

%========================================================================== 

% write_plant_to_file 

%========================================================================== 

function  write_plant_to_file(t, X_frac, Y_frac, Temp, M_Holdup, L_flow, V_flow) 

Glob_Decs; 

  

% Liquid Profile File 

l = prod(size(X_frac)); 

formats = ''; 

for i=1:l; 

    formats = [formats '; %f']; 

end; 

fprintf(FID_lprofile, ['%9.4f' formats '\n'], t, reshape(X_frac, 1, l)); 

  

% Vapor Profile File 

l = prod(size(Y_frac)); 

formats = ''; 

for i=1:l; 

    formats = [formats '; %f']; 

end; 

fprintf(FID_vprofile, ['%9.4f' formats '\n'], t, reshape(Y_frac, 1, l)); 
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% Temperature Profile File 

l = prod(size(Temp)); 

formats = ''; 

for i=1:l; formats = [formats '; %f']; 

end; 

fprintf(FID_tprofile, ['%9.4f' formats '\n'], t, reshape(Temp, 1, l)); 

  

% Holdup Profile File 

l = prod(size(M_Holdup)); 

formats = ''; 

for i=1:l; 

    formats = [formats '; %f']; 

end; 

fprintf(FID_holdup, ['%9.4f' formats '\n'], t, reshape(M_Holdup, 1, l)); 

  

% Liquid and Vapor Flowrate Profile File 

l = prod(size(L_flow)) +  prod(size(V_flow)); 

formats = ''; 

for i=1:l; 

    formats = [formats '; %f']; 

end; 

fprintf(FID_lvflow, ['%9.4f' formats '\n'], t, reshape([L_flow; V_flow], 1, l)); 

  

%end write_plant_to_file 

%========================================================================== 

% write_estcont_to_file : Write estimator and controller data to file 

%========================================================================== 

function write_estcont_to_file(t, CONT_QBoiler, CONT_RRatio_inv); 

Glob_Decs; 

  

% Controller Outputs file 

l = prod(size(CONT_QBoiler)) + prod(size(CONT_RRatio_inv)); 

formats = ''; for i=1:l; formats = [formats '; %f']; end; 

fprintf(FID_control, ['%9.4f ' formats '\n'], t, CONT_QBoiler, CONT_RRatio_inv); 

  

%end write_estcont_to_file 

  

%========================================================================== 

% write_tank_to_file : Write tank data to file 

%========================================================================== 

function write_tank_to_file(t, X_actual, M_actual); 

Glob_Decs; 

  

l = prod(size(X_actual)) + prod(size(M_actual)); 

formats = ''; for i=1:l; formats = [formats '; %f']; end; 

fprintf(FID_tank, ['%9.4f ' formats '\n'], t, reshape(X_actual, 1, prod(size(X_actual))),... 

    reshape(M_actual, 1, prod(size(M_actual)))); 

  

%end write_tank_to_file 

  

%========================================================================== 

% write_opt_to_file : Write optimization data to file 

%========================================================================== 

function write_opt_to_file(t, R_ratio_opt,Tank1_Holdup,Tank2_Holdup,Tank3_Holdup,... 

    Tank4_Holdup,M_Holdup,cap_fact); 

Glob_Decs; 

  

l = prod(size(R_ratio_opt))+ prod(size(Tank1_Holdup))+prod(size(Tank2_Holdup))+... 

    prod(size(Tank3_Holdup))+prod(size(Tank4_Holdup))+prod(size(M_Holdup)),prod(size(cap_fact)); 

formats = ''; for i=1:l; formats = [formats '; %f']; end; 

fprintf(FID_opt, ['%9.4f ' formats '\n'], t, reshape(R_ratio_opt, 1, prod(size(R_ratio_opt))),... 

    reshape(Tank1_Holdup, 1, prod(size(Tank1_Holdup))),... 

    reshape(Tank2_Holdup, 1, prod(size(Tank2_Holdup))),... 

    reshape(Tank3_Holdup, 1, prod(size(Tank3_Holdup))),... 

    reshape(Tank4_Holdup, 1, prod(size(Tank4_Holdup))),... 

    reshape(M_Holdup, 1, prod(size(M_Holdup))),... 

    reshape(cap_fact, 1, prod(size(cap_fact)))); 

%end write_opt_to_file 

% ----------------------------------------------------------------------- % 

% ------------End Simulation loop control user interface functions------- % 

% ####################################################################### % 

 

 

C.2 Optimization Code 

C.2.1 OptimizeR.m 

 
%========================================================================== 

%     Date            By                 Explanation  

%==========================================================================      

%    2006            Bahar            Original Code   

  

function Optimum_R = OptimizeR(Rinitial) 

  

x0 = Rinitial;     % Make a starting guess at the solution 

%options = optimset('LargeScale','off'); 

options = optimset('LargeScale','off','TolX',1e-3); 

[x, fval] = fmincon(@Batch_obj,x0,[],[],[],[],[],[],@Batch_con,options) 

%[x, fval] = fmincon(@Batch_obj,x0,[],[],[],[],0,1,[],options) 

  

Optimum_R = x; 

save 

%########################################################################## 
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C.2.2 Batch_con.m 

 
%========================================================================== 

%     Date            By                 Explanation  

% ========================================================================= 

%     2006            Bahar              Original Code  

  

function [c, ceq] = Batch_con(x) 

% Nonlinear inequality constraints 

c = [ -x(1) ;  x(1)-1 ]; 

% Nonlinear equality constraints 

ceq = []; 

%########################################################################## 

  

C.2.3 Batch_obj.m 

 

%========================================================================== 

%     Date                By                 Explanation  

%========================================================================== 

%     2006                Bahar              Original Code 

%     2006                Ceylan             Modified to packed distillation 

  

function [CAPfromOBJ] = Batch_obj(RfromOPT) 

  

% Include all global variables 

Glob_Decs; 

  

% Rum simulation 

CAPfromOBJ = plant_file_packed(RfromOPT); 

  

%CAPfromOBJ = CAPtoOPT; 

CAPfromOBJ = -cap_fact;     

%########################################################################## 

 

 

C.3 Thermodynamic Library 

C.3.1 thermo_Init.m 
%========================================================================== 

%     Date            By                 Explanation 

%========================================================================== 

%    2002            Yıldız             Original Code 

  

function thermo_Init(check_input_parameters) 

% function thermo_Init(check_input_parameters) 

% Thermophysical and physical property calculation MEX File Interface 

% 

% ------------- Initialization routine ------------- 

%  if check_input_parameters = 1 then initialization routine writes the  

%  input parameters read from 'plant_data.dat' to 'plant_data_check.dat' 

  

thermo_LIBRARY('init',check_input_parameters); 

 

C.3.2 thermo_Equilibrium_Hydrocarbons.m 

 
%========================================================================== 

%     Date            By                 Explanation 

%========================================================================== 

%    2002            Yıldız             Original Code 

%    2006            Ceylan             Modification to Packed Dist. 

 
function [Tequi, y] = thermo_Equilibrium_Hydrocarbons(T,P,x) 

% function [Tequi, y] = thermo_Equilibrium(T,P,x) 

% Thermophysical and physical property calculation MEX File Interface 

% 

% ------------- Equilibrium routine ------------- 

%  [Tequi, y]   : Equilibrium temperature(K), Equilibrium vapor phase fractions(mol/mol) 

%  (T,P,x)      : Initial Equilibrium temperature guess(K), Pressure(Pa), Liquid phase fractions(mol/mol)  

  

[Tequi, y] = thermo_LIBRARY('equilibrium_hydrocarbons',T,P,x); 
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C.3.3 thermo_Equilibrium_Polar.m 

 
%========================================================================== 

%     Date            By                 Explanation 

%========================================================================== 

%    2002            Yıldız             Original Code 

%    2006            Ceylan             Modification to Packed Dist. 

  

function [Tequi, y] = thermo_Equilibrium_Polar(T,P,x) 

% function [Tequi, y] = thermo_Equilibrium(T,P,x) 

% Thermophysical and physical property calculation MEX File Interface 

% 

% ------------- Equilibrium routine ------------- 

%  [Tequi, y]   : Equilibrium temperature(K), Equilibrium vapor phase fractions(mol/mol) 

%  (T,P,x)      : Initial Equilibrium temperature guess(K), Pressure(Pa), Liquid phase fractions(mol/mol)  

  

[Tequi, y] = thermo_LIBRARY('equilibrium_polar',T,P,x); 

 

C.3.4 thermo_Enthalpy.m 

 
%========================================================================== 

%     Date            By                 Explanation 

%========================================================================== 

%    2002            Yıldız             Original Code 

%    2006            Ceylan             Modification to Packed Dist. 

  

function [hl,hv] = thermo_Enthalpy(T,P,x,y) 

% function [hl,hv] = thermo_Enthalpy(T,P,x,y) 

% Thermophysical and physical property calculation MEX File Interface 

% 

% ------------- Enthalpy routine ------------- 

%  [hl,hv]      : Liquid and Vapor phase specific enthalpy (J/mol) 

%  (T,P,x,y)    : Initial Equilibrium temperature guess(K), Pressure(Pa), 

%                 Liquid phase fractions(mol/mol), vapor phase fractions(mol/mol) 

  

[hl,hv] = thermo_LIBRARY('enthalpy',T,P,x,y); 

 

C.3.5 thermo_L_Density.m 

 
%========================================================================== 

%     Date            By                 Explanation 

%========================================================================== 

%    2002            Yıldız             Original Code 

%    2006            Ceylan             Modification to Packed Dist. 

  

function [mwa, densa] = thermo_L_Density(T,P,x) 

% function [mwa, densa] = thermo_L_Density(T,P,x) 

% Thermophysical and physical property calculation MEX File Interface 

% 

% ------------- Density routine ------------- 

%  [mwa, densa] : Average molecular weight (kg/mol), Average liquid phase density %(kg/m3) 

%  (T,P,x)      : Initial Equilibrium temperature guess(K), Pressure(Pa), Liquid %phase fractions(mol/mol)  

  

[mwa, densa] = thermo_LIBRARY('l_density',T,P,x); 

 

C.3.6 thermo_G_Density.m 

 
%========================================================================== 

%     Date            By                 Explanation 

%========================================================================== 

%    2002            Yıldız             Original Code 

%    2006            Ceylan             Modification to Packed Dist. 

  

function [mwa, densa] = thermo_G_Density(T,P,x) 

% function [mwa, densa] = thermo_G_Density(T,P,x) 

% Thermophysical and physical property calculation MEX File Interface 

% 

% ------------- Density routine ------------- 

%  [mwa, densa] : Average molecular weight (kg/mol), Average vapor phase density (kg/m3) 

%  (T,P,x)      : Initial Equilibrium temperature guess(K), Pressure(Pa), Liquid phase fractions(mol/mol)  

  

[mwa, densa] = thermo_LIBRARY('g_density',T,P,x); 
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C.3.7 thermo_LIBRARY.f 
 

C --------------------------------------------------------------------------------------- 

C --------------------------------------------------------------------------------------- 

C MEX File Gateway implementation for Plant_Subroutines  

C Date : 08-05-2001       

C by Uğur YILDIZ 

C --------------------------------------------------------------------------------------- 

C --------------------------------------------------------------------------------------- 

      subroutine mexFunction(nlhs, plhs, nrhs, prhs) 

 include 'thermo_LIBRARY.h' 

      include 'parameter.h' 

      integer plhs(*), prhs(*)   ! pointer to left-hand and right-hand side variables 

      integer nlhs, nrhs     ! # of variables in plhs, prhs 

      integer mxCreateFull, mxGetString    ! mx Functions declarations  

      integer mxGetM, mxGetN, mxIsNumeric, mxIsString ! mx Functions declarations  

      integer m, n, size, status, alloc_err   ! Dummy variables 

      integer Func_name_ptr    ! Function name fortran pointers 

      character*100 Func_name    ! Function name for fortran use 

c ------------------------------------------------------------------------------------- Input fortran pointers 

 integer Input1_pr, Input2_pr, Input3_pr, Input4_pr, Input5_pr, Input6_pr, x_pr, y_pr, z_pr 

c ------------------------------------------------------------------------------------- Output fortran pointers 

 integer Output1_pr, Output2_pr, Output3_pr, Output4_pr, Output5_pr, Output6_pr 

c ------------------------------------------------------------------------------------- Input arguments for fortran use 

 integer,allocatable, dimension (:) :: int_Input1, int_Input2, int_Input3, int_Input4, int_Input5, int_Input6 

 real*8,allocatable, dimension (:) ::  real_Input1, real_Input2, real_Input3, real_Input4, real_Input5, real_Input6 

 integer Input1_sz,Input2_sz,Input3_sz,Input4_sz,Input5_sz,Input6_sz 

c ------------------------------------------------------------------------------------- Output arguments for fortran use 

 integer,allocatable, dimension (:) :: int_Output1, int_Output2, int_Output3, int_Output4, int_Output5, int_Output6 

      real*8,allocatable, dimension (:) ::  real_Output1, real_Output2, real_Output3, real_Output4, real_Output5, real_Output6 

      integer Output1_sz,Output2_sz,Output3_sz,Output4_sz,Output5_sz,Output6_sz 

    real*8  x, y(3,3), z(3,3), ugur  

C     ----------------------------------------------------- Check for at least one function is requested.  

 if (nrhs .lt. 1) then 

  call mexErrMsgTxt('Not a proper function selected. - [thermo_LIBRARY.dll]') 

      endif 

 if (mxIsString(prhs(1)) .ne. 1) then 

  call mexErrMsgTxt('Function name parameter must be a valid string. - [thermo_LIBRARY.dll]') 

 endif 

      m = mxGetM(prhs(1)) 

      n = mxGetN(prhs(1)) 

 if (m .ne. 1) then 

  call mexErrMsgTxt('Function name parameter must be a row vector. - [thermo_LIBRARY.dll]') 

 endif 

C     ----------------------------------------------------- Call the requested function. 

C Get the string contents (dereference the input integer). 

 status = mxGetString(prhs(1),Func_name,100) 

C Check if mxGetString is successful. 

 if (status .ne. 0) then 

  call mexErrMsgTxt('String length must be less than 100. - [thermo_LIBRARY.dll]') 

 endif 

c ------------------------------------------------------------------------------ ! Call initialization function   

 if (Func_name.eq.'init') then 

  status = 1 

  if (nrhs .ne. 2) then 

        call mexErrMsgTxt('One input (number of components) is required for the initialization. - (init) [thermo_LIBRARY.dll]') 

       endif 

  if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a numeric. - (init) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(2)) 

  n = mxGetN(prhs(2)) 

  if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - (init) [thermo_LIBRARY.dll]') 
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  Input1_pr = mxGetPr(prhs(2)) 

  status = 0 

  allocate (int_Input1(1),STAT = alloc_err) 

  status = status + alloc_err  

  if (status .ne. 0) then 

   if (allocated(int_Input1)) deallocate(int_Input1) 

   call mexErrMsgTxt('Memory allocation error. - (init) [thermo_LIBRARY.dll]') 

  endif  

  call mxCopyPtrToInteger4(Input1_pr,int_Input1,1) 

  status = 1 

  call init(int_Input1,status) 

  if (status.eq.0) then  

   call mexPrintf('thermo_LIBRARY is initialized. - (init) [thermo_LIBRARY.dll]') 

  else 

   call mexErrMsgTxt('thermo_LIBRARY can not be initialized. - (init) [thermo_LIBRARY.dll]') 

  endif 

c ------------------------------------------------------------------------------- ! Call enthalpy function 

 elseif ((Func_name.eq.'enthalpy') .and. (lib_Inited.eq.1)) then 

  if (nrhs .ne. 5) then 

        call mexErrMsgTxt('Four inputs (T,P,x,y) is required. - (enthalpy) [thermo_LIBRARY.dll]') 

       elseif (nlhs .ne. 2) then 

        call mexErrMsgTxt('Two outputs (liquid and vapor entalphies) are required. - (enthalpy) [thermo_LIBRARY.dll]') 

       endif 

  if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a numeric. - (enthalpy) [thermo_LIBRARY.dll]') 

  if (mxIsNumeric(prhs(3)) .ne. 1) call mexErrMsgTxt('Input #2 is not a numeric. - (enthalpy) [thermo_LIBRARY.dll]') 

  if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsgTxt('Input #3 is not a numeric. - (enthalpy) [thermo_LIBRARY.dll]') 

       if (mxIsNumeric(prhs(5)) .ne. 1) call mexErrMsgTxt('Input #4 is not a numeric. - (enthalpy) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(2)) 

  n = mxGetN(prhs(2)) 

  Input1_sz = m*n 

  if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - (enthalpy) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(3)) 

  n = mxGetN(prhs(3)) 

  Input2_sz = m*n 

  if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #2 is not a scalar. - (enthalpy) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(4)) 

  n = mxGetN(prhs(4)) 

  Input3_sz = m*n 

  if (n .ne. nj .or. m .ne. 1) call mexErrMsgTxt('Input #3 is not a NC-element row vector. - (enthalpy) [thermo_LIBRARY.dll]') 

       m = mxGetM(prhs(5)) 

  n = mxGetN(prhs(5)) 

  Input4_sz = m*n 

  if (n .ne. nj .or. m .ne. 1) call mexErrMsgTxt('Input #4 is not a NC-element row vector. - (enthalpy) [thermo_LIBRARY.dll]') 

  Input1_pr = mxGetPr(prhs(2)) 

  Input2_pr = mxGetPr(prhs(3)) 

  Input3_pr = mxGetPr(prhs(4)) 

  Input4_pr = mxGetPr(prhs(5)) 

  plhs(1) = mxCreateFull(1,1,0) 

  plhs(2) = mxCreateFull(1,1,0) 

       Output1_pr = mxGetPr(plhs(1)) 

  Output2_pr = mxGetPr(plhs(2)) 

  status = 0 

  allocate (real_Input1(1),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Input2(1),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Input3(nj),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Input4(nj),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Output1(1),STAT = alloc_err) 

  status = status + alloc_err  
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  allocate (real_Output2(1),STAT = alloc_err) 

  status = status + alloc_err  

  if (status .ne. 0) then 

   if (allocated(real_Input1)) deallocate(real_Input1) 

   if (allocated(real_Input2)) deallocate(real_Input2) 

   if (allocated(real_Input3)) deallocate(real_Input3) 

   if (allocated(real_Input4)) deallocate(real_Input4) 

   if (allocated(real_Output1)) deallocate(real_Output1) 

   if (allocated(real_Output2)) deallocate(real_Output2) 

   call mexErrMsgTxt('Memory allocation error. - (enthalpy) [thermo_LIBRARY.dll]') 

  endif  

  call mxCopyPtrToReal8(Input1_pr,real_Input1,Input1_sz) 

  call mxCopyPtrToReal8(Input2_pr,real_Input2,Input2_sz) 

  call mxCopyPtrToReal8(Input3_pr,real_Input3,Input3_sz) 

  call mxCopyPtrToReal8(Input4_pr,real_Input4,Input4_sz) 

  call enth(real_Input1, real_Input2, real_Input3, real_Input4, real_Output1, real_Output2) 

  call mxCopyReal8ToPtr(real_Output1,Output1_pr,1) 

  call mxCopyReal8ToPtr(real_Output2,Output2_pr,1) 

c ------------------------------------------------------------------------------- ! Call liquid density function 

 elseif ((Func_name.eq.'l_density') .and. (lib_Inited.eq.1)) then 

  if (nrhs .ne. 4) then 

        call mexErrMsgTxt('Three inputs (T,P,x) is required. - (density) [thermo_LIBRARY.dll]') 

       elseif (nlhs .ne. 2) then 

        call mexErrMsgTxt('Two outputs (Avg. mol. weight and density) are required. - (density) [thermo_LIBRARY.dll]') 

       endif 

  if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a numeric. - (density) [thermo_LIBRARY.dll]') 

  if (mxIsNumeric(prhs(3)) .ne. 1) call mexErrMsgTxt('Input #2 is not a numeric. - (density) [thermo_LIBRARY.dll]') 

  if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsgTxt('Input #3 is not a numeric. - (density) [thermo_LIBRARY.dll]') 

       m = mxGetM(prhs(2)) 

  n = mxGetN(prhs(2)) 

  Input1_sz = m*n 

  if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - (density) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(3)) 

  n = mxGetN(prhs(3)) 

  Input2_sz = m*n 

  if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #2 is not a scalar. - (density) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(4)) 

  n = mxGetN(prhs(4)) 

  Input3_sz = m*n 

  if (n .ne. nj .or. m .ne. 1) call mexErrMsgTxt('Input #3 is not a NC-element row vector. - (density) [thermo_LIBRARY.dll]')   

  Input1_pr = mxGetPr(prhs(2)) 

  Input2_pr = mxGetPr(prhs(3)) 

  Input3_pr = mxGetPr(prhs(4)) 

  plhs(1) = mxCreateFull(1,1,0) 

  plhs(2) = mxCreateFull(1,1,0) 

       Output1_pr = mxGetPr(plhs(1)) 

  Output2_pr = mxGetPr(plhs(2)) 

  status = 0 

  allocate (real_Input1(1),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Input2(1),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Input3(nj),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Output1(1),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Output2(1),STAT = alloc_err) 

  status = status + alloc_err  

  if (status .ne. 0) then 

   if (allocated(real_Input1)) deallocate(real_Input1) 

   if (allocated(real_Input2)) deallocate(real_Input2) 

   if (allocated(real_Input3)) deallocate(real_Input3) 
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   if (allocated(real_Output1)) deallocate(real_Output1) 

   if (allocated(real_Output2)) deallocate(real_Output2) 

   call mexErrMsgTxt('Memory allocation error. - (density) [thermo_LIBRARY.dll]') 

  endif  

  call mxCopyPtrToReal8(Input1_pr,real_Input1,Input1_sz) 

  call mxCopyPtrToReal8(Input2_pr,real_Input2,Input2_sz) 

  call mxCopyPtrToReal8(Input3_pr,real_Input3,Input3_sz) 

c subroutine pr_dens_l(t,p,x,mwa,densa) 

  call pr_dens_l(real_Input1, real_Input2, real_Input3, real_Output1, real_Output2)   

  call mxCopyReal8ToPtr(real_Output1,Output1_pr,1) 

  call mxCopyReal8ToPtr(real_Output2,Output2_pr,1) 

c ------------------------------------------------------------------------------- ! Call vapor density function   

 elseif ((Func_name.eq.'g_density') .and. (lib_Inited.eq.1)) then 

  if (nrhs .ne. 4) then 

        call mexErrMsgTxt('Three inputs (T,P,x) is required. - (density) [thermo_LIBRARY.dll]') 

       elseif (nlhs .ne. 2) then 

        call mexErrMsgTxt('Two outputs (Avg. mol. weight and density) are required. - (density) [thermo_LIBRARY.dll]') 

       endif 

  if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a numeric. - (density) [thermo_LIBRARY.dll]') 

  if (mxIsNumeric(prhs(3)) .ne. 1) call mexErrMsgTxt('Input #2 is not a numeric. - (density) [thermo_LIBRARY.dll]') 

  if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsgTxt('Input #3 is not a numeric. - (density) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(2)) 

  n = mxGetN(prhs(2)) 

  Input1_sz = m*n 

  if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - (density) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(3)) 

  n = mxGetN(prhs(3)) 

  Input2_sz = m*n 

  if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #2 is not a scalar. - (density) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(4)) 

  n = mxGetN(prhs(4)) 

  Input3_sz = m*n 

  if (n .ne. nj .or. m .ne. 1) call mexErrMsgTxt('Input #3 is not a NC-element row vector. - (density) [thermo_LIBRARY.dll]') 

  Input1_pr = mxGetPr(prhs(2)) 

  Input2_pr = mxGetPr(prhs(3)) 

  Input3_pr = mxGetPr(prhs(4)) 

  plhs(1) = mxCreateFull(1,1,0) 

  plhs(2) = mxCreateFull(1,1,0) 

       Output1_pr = mxGetPr(plhs(1)) 

  Output2_pr = mxGetPr(plhs(2)) 

  status = 0 

  allocate (real_Input1(1),STAT = alloc_err) 

  status = status + alloc_err 

  allocate (real_Input2(1),STAT = alloc_err) 

  status = status + alloc_err 

  allocate (real_Input3(nj),STAT = alloc_err) 

  status = status + alloc_err 

  allocate (real_Output1(1),STAT = alloc_err) 

  status = status + alloc_err 

  allocate (real_Output2(1),STAT = alloc_err) 

  status = status + alloc_err 

  if (status .ne. 0) then 

   if (allocated(real_Input1)) deallocate(real_Input1) 

   if (allocated(real_Input2)) deallocate(real_Input2) 

   if (allocated(real_Input3)) deallocate(real_Input3) 

   if (allocated(real_Output1)) deallocate(real_Output1) 

   if (allocated(real_Output2)) deallocate(real_Output2) 

   call mexErrMsgTxt('Memory allocation error. - (density) [thermo_LIBRARY.dll]') 

  endif 

  call mxCopyPtrToReal8(Input1_pr,real_Input1,Input1_sz) 

  call mxCopyPtrToReal8(Input2_pr,real_Input2,Input2_sz) 

  call mxCopyPtrToReal8(Input3_pr,real_Input3,Input3_sz) 
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c subroutine pr_dens_g(t,p,x,mwa,densa) 

  call pr_dens_g(real_Input1, real_Input2, real_Input3, real_Output1, real_Output2) 

  call mxCopyReal8ToPtr(real_Output1,Output1_pr,1) 

  call mxCopyReal8ToPtr(real_Output2,Output2_pr,1) 

c ------------------------------------------------------------------------------- ! Call equilibrium function_hydrocarbons 

 elseif ((Func_name.eq.'equilibrium_hydrocarbons') .and. (lib_Inited.eq.1)) then  

  if (nrhs .ne. 4) then 

        call mexErrMsgTxt('Three inputs (T, P, x) is required. - (equilibrium) [thermo_LIBRARY.dll]') 

       elseif (nlhs .ne. 2) then 

        call mexErrMsgTxt('Two outputs (T and vapor comp.) are required. - (equilibrium) [thermo_LIBRARY.dll]') 

       endif 

  if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a numeric. - (equilibrium) [thermo_LIBRARY.dll]') 

  if (mxIsNumeric(prhs(3)) .ne. 1) call mexErrMsgTxt('Input #2 is not a numeric. - (equilibrium) [thermo_LIBRARY.dll]') 

  if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsgTxt('Input #3 is not a numeric. - (equilibrium) [thermo_LIBRARY.dll]')    

  m = mxGetM(prhs(2)) 

  n = mxGetN(prhs(2)) 

  Input1_sz = m*n 

  if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - (equilibrium) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(3)) 

  n = mxGetN(prhs(3)) 

  Input2_sz = m*n 

  if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #2 is not a scalar. - (equilibrium) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(4)) 

  n = mxGetN(prhs(4)) 

  Input3_sz = m*n 

  if (n .ne. nj .or. m .ne. 1)  

     &  call mexErrMsgTxt('Input #3 is not a NC-element row vector. - (equilibrium) [thermo_LIBRARY.dll]')       

  Input1_pr = mxGetPr(prhs(2)) 

  Input2_pr = mxGetPr(prhs(3)) 

  Input3_pr = mxGetPr(prhs(4)) 

  plhs(1) = mxCreateFull(1,1,0) 

  plhs(2) = mxCreateFull(1,nj,0) 

       Output1_pr = mxGetPr(plhs(1)) 

  Output2_pr = mxGetPr(plhs(2)) 

  status = 0 

  allocate (real_Input1(1),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Input2(1),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Input3(nj),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Output1(1),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Output2(nj),STAT = alloc_err) 

  status = status + alloc_err  

  if (status .ne. 0) then 

   if (allocated(real_Input1)) deallocate(real_Input1) 

   if (allocated(real_Input2)) deallocate(real_Input2) 

   if (allocated(real_Input3)) deallocate(real_Input3) 

   if (allocated(real_Output1)) deallocate(real_Output1) 

   if (allocated(real_Output2)) deallocate(real_Output2) 

   call mexErrMsgTxt('Memory allocation error. - (equilibrium) [thermo_LIBRARY.dll]') 

  endif  

  call mxCopyPtrToReal8(Input1_pr,real_Input1,Input1_sz) 

  call mxCopyPtrToReal8(Input2_pr,real_Input2,Input2_sz) 

  call mxCopyPtrToReal8(Input3_pr,real_Input3,Input3_sz)   

c subroutine pr_equil_hydrocarbons(t,p,x,yy)    ' t is also an output 

  call pr_equil_hydrocarbons(real_Input1, real_Input2, real_Input3, real_Output2) 

  real_Output1 = real_Input1 

  call mxCopyReal8ToPtr(real_Output1,Output1_pr,1) 

  call mxCopyReal8ToPtr(real_Output2,Output2_pr,nj) 

c ------------------------------------------------------------------------------- ! Call equilibrium function_polar 
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 elseif ((Func_name.eq.'equilibrium_polar') .and. (lib_Inited.eq.1)) then  

  if (nrhs .ne. 4) then 

        call mexErrMsgTxt('Three inputs (T, P, x) is required. - (equilibrium) [thermo_LIBRARY.dll]') 

       elseif (nlhs .ne. 2) then 

        call mexErrMsgTxt('Two outputs (T and vapor comp.) are required. - (equilibrium) [thermo_LIBRARY.dll]') 

       endif 

  if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a numeric. - (equilibrium) [thermo_LIBRARY.dll]') 

  if (mxIsNumeric(prhs(3)) .ne. 1) call mexErrMsgTxt('Input #2 is not a numeric. - (equilibrium) [thermo_LIBRARY.dll]') 

  if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsgTxt('Input #3 is not a numeric. - (equilibrium) [thermo_LIBRARY.dll]')   

  m = mxGetM(prhs(2)) 

  n = mxGetN(prhs(2)) 

  Input1_sz = m*n 

  if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - (equilibrium) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(3)) 

  n = mxGetN(prhs(3)) 

  Input2_sz = m*n 

  if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #2 is not a scalar. - (equilibrium) [thermo_LIBRARY.dll]') 

  m = mxGetM(prhs(4)) 

  n = mxGetN(prhs(4)) 

  Input3_sz = m*n 

  if (n .ne. nj .or. m .ne. 1)  

     &  call mexErrMsgTxt('Input #3 is not a NC-element row vector. - (equilibrium) [thermo_LIBRARY.dll]')     

  Input1_pr = mxGetPr(prhs(2)) 

  Input2_pr = mxGetPr(prhs(3)) 

  Input3_pr = mxGetPr(prhs(4)) 

  plhs(1) = mxCreateFull(1,1,0) 

  plhs(2) = mxCreateFull(1,nj,0) 

       Output1_pr = mxGetPr(plhs(1)) 

  Output2_pr = mxGetPr(plhs(2)) 

  status = 0 

  allocate (real_Input1(1),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Input2(1),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Input3(nj),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Output1(1),STAT = alloc_err) 

  status = status + alloc_err  

  allocate (real_Output2(nj),STAT = alloc_err) 

  status = status + alloc_err  

  if (status .ne. 0) then 

   if (allocated(real_Input1)) deallocate(real_Input1) 

   if (allocated(real_Input2)) deallocate(real_Input2) 

   if (allocated(real_Input3)) deallocate(real_Input3) 

   if (allocated(real_Output1)) deallocate(real_Output1) 

   if (allocated(real_Output2)) deallocate(real_Output2) 

   call mexErrMsgTxt('Memory allocation error. - (equilibrium) [thermo_LIBRARY.dll]') 

  endif  

  call mxCopyPtrToReal8(Input1_pr,real_Input1,Input1_sz) 

  call mxCopyPtrToReal8(Input2_pr,real_Input2,Input2_sz) 

  call mxCopyPtrToReal8(Input3_pr,real_Input3,Input3_sz)  

c subroutine pr_equil_polar(t,p,x,yy)    ' t is also an output 

  call pr_equil_polar(real_Input1, real_Input2, real_Input3, real_Output2) 

  real_Output1 = real_Input1 

  call mxCopyReal8ToPtr(real_Output1,Output1_pr,1) 

  call mxCopyReal8ToPtr(real_Output2,Output2_pr,nj) 

c ------------------------------------------------------------------------------- ! No relevant function 

 else 

 call mexErrMsgTxt('Library is not initialized or No relevant function is requested. - [thermo_LIBRARY.dll]') 

 endif 

c ------------------------------------------------------------------------------- ! Memory deallocation  

      if (allocated(real_Input1)) deallocate(real_Input1) 
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 if (allocated(real_Input2)) deallocate(real_Input2) 

 if (allocated(real_Input3)) deallocate(real_Input3) 

 if (allocated(real_Input4)) deallocate(real_Input4) 

 if (allocated(real_Input5)) deallocate(real_Input5) 

 if (allocated(real_Input6)) deallocate(real_Input6) 

 if (allocated(int_Input1)) deallocate(int_Input1) 

 if (allocated(int_Input2)) deallocate(int_Input2) 

 if (allocated(int_Input3)) deallocate(int_Input3) 

 if (allocated(int_Input4)) deallocate(int_Input4) 

 if (allocated(int_Input5)) deallocate(int_Input5) 

 if (allocated(int_Input6)) deallocate(int_Input6) 

 if (allocated(real_Output1)) deallocate(real_Output1) 

 if (allocated(real_Output2)) deallocate(real_Output2) 

 if (allocated(real_Output3)) deallocate(real_Output3) 

 if (allocated(real_Output4)) deallocate(real_Output4) 

 if (allocated(real_Output5)) deallocate(real_Output5) 

 if (allocated(real_Output6)) deallocate(real_Output6) 

 if (allocated(int_Output1)) deallocate(int_Output1) 

 if (allocated(int_Output2)) deallocate(int_Output2) 

 if (allocated(int_Output3)) deallocate(int_Output3) 

 if (allocated(int_Output4)) deallocate(int_Output4) 

 if (allocated(int_Output5)) deallocate(int_Output5) 

 if (allocated(int_Output6)) deallocate(int_Output6) 

      return 

      end 

C --------------------------------------------------------------------------------------- 

C ------------------------------------------------- thermo_LIBRARY Initialization routine 

C --------------------------------------------------------------------------------------- 

 subroutine init(check_input,st) 

 integer check_input, st 

 include 'thermo_LIBRARY.h'   

  include 'parameter.h' 

 include 'common_plant.h' 

C ------ Initialization of the 'plant' common statement in 'common_plant.h' ----------------- 

C ------ written by MTD (Revised by Uğur Yıldız) 

      integer :: i,j,I_O_err  

 integer :: thermo_LIBRARY_dummy_pr, thermo_LIBRARY_dummy_pi 

C tolerance = 1.d-7 

      open(5,file='thermo_data.dat',IOSTAT=I_O_err, ERR = 100) 

 read(5,*) 

 read(5,*) tolerance 

 read(5,*) 

 read(5,*) 

 do i=1,nj 

   read(5,*) mw(i),tc(i),tboil(i),pc(i),wc(i) 

 enddo 

 read(5,*) 

 read(5,*) 

 do i=1,nj 

   read(5,*) (del(i,j),j=1,nj) 

 enddo 

      read(5,*) 

      read(5,*) 

 do i=1,nj 

   read(5,*) cenh1(i),cenh2(i),cenh3(i),cenh4(i) 

 enddo 

 close(5) 

C -------------------------------------------------------------------------------------------- 

 if (check_input .eq. 1) then 

  open(6,file='thermo_data_check.dat') 

  write(6,*) 'tolerance' 

  write(6,1) tolerance 
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  write(6,*) 

  write(6,*) 'Mw(kg/mol)      Tc(K)      Tboil(K)    Pc(Pa)            w' 

  do i=1,nj 

   write(6,2) mw(i),tc(i),tboil(i),pc(i),wc(i) 

  enddo 

  write(6,*) 

  write(6,*) 'del(binary interaction parameters)' 

  do i=1,nj 

   write(6,3) (del(i,j),j=1,nj) 

  enddo 

  write(6,*) 

  write(6,*) '   cenh1         cenh2          cenh3       cenh4(J/molK)' 

  do i=1,nj 

   write(6,4) cenh1(i),cenh2(i),cenh3(i),cenh4(i) 

  enddo 

  close(6) 

 endif 

 lib_Inited = 1 

 st = 0 

 return 

100 if (I_O_err.ne.0) then  

  call mexErrMsgTxt('"thermo_data.dat" couldn"t be opened. - (init) [thermo_LIBRARY.dll]') 

  lib_Inited = 0 

  st = 1  

  return 

 endif 

1 format(d11.3) 

2 format(5d15.3) 

3 format(d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1) 

4 format(4d15.3) 

 end subroutine 

C --------------------------------------------------------------------------------------- 

C  Write statements in these routines are exchanged with mexErrMsgTxt and mexPrintf 

c  and also 'parameter.h' and 'plant_data.dat' are modified. 

C --------------------------------------------------------------------------------------- 

C --------------------------------------------------------------------------------------- 

C Peng-Rabinson EOS Subroutines Written by Mustafa T. DOKUCU 

C Date : 16-05-2001 

C --------------------------------------------------------------------------------------- 

c --------------------------------------------------------------------------------------- 

 subroutine enth(t,p,x,y,hl,hv) 

 !Usage: 

 ! to calculate the ideal gas mixture enthalpy 

 !Record of revisions: 

 ! date  programmer   description of change 

 !   ====  ==========   ===================== 

 ! 18/03/2001    MTD        original code 

 ! 

 implicit none 

      include 'parameter.h' 

      include 'common_plant.h' 

      !                         Inputs 

 !                        ======== 

 real*8 :: t                         !temperature                      

 real*8 :: p                         !pressure 

 real*8 :: x(nj)                     !liquid phase fractions 

 real*8 :: y(nj)                     !vapour phase fractions 

 !                         Locals 

 !                        ======== 

 real*8 :: hl1                       !ideal liquid mixture enthalpy             

 real*8 :: hv1                       !ideal vapour mixture enthalpy 

 real*8 :: dhl                       !liquid enthalpy departure  
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 real*8 :: dhv                       !vapour enthalpy departure 

      real*8 :: enigl                     !ideal gas enthalpy 

      real*8 :: enigv                     !ideal gas enthalpy 

 real*8 :: cl1,cv1 

 real*8 :: cl2,cv2 

 real*8 :: cl3,cv3 

 real*8 :: cl4,cv4 

 integer:: i 

 integer:: ifase  

 !                         Outputs 

 !                        ========= 

 real*8 ::  hl                      !liquid enthalpy 

 real*8 ::  hv                      !vapour enthalpy 

 cl1  = 0.d0 

 cv1  = 0.d0 

 cl2  = 0.d0 

 cv2  = 0.d0 

 cl3  = 0.d0 

 cv3  = 0.d0 

 cl4  = 0.d0 

 cv4  = 0.d0 

 do i = 1,nj 

              cl1 = cl1 + cenh1(i) * x(i)  

        cl2 = cl2 + cenh2(i) * x(i) 

        cl3 = cl3 + cenh3(i) * x(i) 

        cl4 = cl4 + cenh4(i) * x(i) 

   cv1 = cv1 + cenh1(i) * y(i) 

        cv2 = cv2 + cenh2(i) * y(i) 

   cv3 = cv3 + cenh3(i) * y(i) 

        cv4 = cv4 + cenh4(i) * y(i) 

 enddo 

               enigl = cl1 * (t-trf) +  

     &         + (1.d0/2.d0) * cl2 * (t**2 - trf**2)  

     &         + (1.d0/3.d0) * cl3 * (t**3 - trf**3) 

     &         +(1.d0/4.d0) * cl4 * (t**4 - trf**4) 

     enigv = cv1 * (t-trf) +  

     &         + (1.d0/2.d0) * cv2 * (t**2 - trf**2)  

     &         + (1.d0/3.d0) * cv3 * (t**3 - trf**3) 

     &         + (1.d0/4.d0) * cv4 * (t**4 - trf**4)       

      ifase = 0 

 call pr_enth(t,p,x,ifase,dhl) 

 ifase = 1 

 call pr_enth(t,p,y,ifase,dhv) 

 hl = enigl + dhl + 20000.d0 

      hv = enigv + dhv + 20000.d0  

      return 

 end subroutine 

c --------------------------------------------------------------------------------------- 

 subroutine pr_compr(a_mixture,b_mixture,z_liq,z_vap) 

 !Usage: 

 ! to solve the cubic eqution for the liquid and vapor  

 !compressibility factors used for the estimation of species 

 !fugacities   

 !Record of revisions: 

 ! date  programmer   description of change 

 !   ====  ==========   ===================== 

 ! 14/02/2001    MTD        original code  

 implicit none 

      include 'parameter.h' 

      include 'common_plant.h' 

 !                         Inputs 

 !                        ======== 
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 real*8 :: a_mixture 

      real*8 :: b_mixture 

 !                         Locals 

 !                        ======== 

 complex*8:: z_vap_cplx 

 complex*8:: z_liq_cplx 

 complex*8:: s1 

 complex*8:: a 

 complex*8:: b 

 !                         Outputs 

 !                        ========= 

 real*8:: z_vap 

      real*8:: z_liq 

 !convert the type declaration of the input variables to complex 

 a = cmplx(a_mixture,0.d0) 

 b = cmplx(b_mixture,0.d0) 

 !calculate the liquid phase compressibility 

 s1 = -(-36.0d0*a+144.0d0*a*b-48.0d0*b**2-224.0d0*b**3+48.0d0*b+8.0d0+12.0d0*sqrt(24.0d0*a*b-24.0d0*b** 

     &2-192.0d0*b**3+264.0d0*a*b**2-3.0d0*a**2+24.0d0*a**2*b**2-120.0d0*a**2*b-48.0d0*a*b**4+336.0d0 

     &*a*b**3-480.0d0*b**4+12.0d0*a**3-96.0d0*b**6-384.0d0*b**5))**(1.d0/3.d0)/12.0d0+(a-10. 

     &d0/3.d0*b**2-4.d0/3.d0*B-1.d0/3.d0)/(-36.0d0*a+144.0d0*a*b-48.0d0*b**2-224.0d0*b** 

     &3.0d0+48.0d0*b+8.0d0+12.0d0*sqrt(24.0d0*a*b-24.0d0*b**2-192.0d0*b**3+264.0d0*a*b**2-3.0d0*a**2+24.0d0*a**2 

     &*b**2-120.0d0*a**2*b-48.0d0*a*b**4+336.0d0*a*b**3-480.0d0*b**4+12.0d0*a**3-96.0d0*b**6-384.0d0 

     &*B**5))**(1.d0/3.d0) 

 z_liq_cplx = s1+1.d0/3.d0-b/3.d0+cmplx(0.d0,1.d0)*sqrt(3.d0)*((-36.d0*a+144.d0*a*b- 

     &48.d0*b**2-224.d0*b**3+48.d0*b+8.d0+12*sqrt(24.d0*a*b-24.d0*b**2-192.d0*b**3+264.d0*a*b**2 

     &-3.d0*a**2+24.d0*a**2*b**2-120.d0*a**2*b-48.d0*a*b**4+336.d0*a*b**3-480.d0*b**4+12.d0*a 

     &**3-96.d0*b**6-384.d0*b**5))**(1.d0/3.d0)/6.d0+(2.d0*a-20.d0/3.d0*b**2-8.d0/3. 

     &d0*b-2.d0/3.d0)/(-36.d0*a+144.d0*a*b-48.d0*b**2-224.d0*b**3+48.d0*b+8+12.d0*sqrt(24.d0* 

     &a*b-24.d0*b**2-192.d0*b**3+264.d0*a*b**2-3.d0*a**2+24.d0*a**2*b**2-120.d0*a**2*b-48.d0* 

     &a*b**4+336.d0*a*b**3-480.d0*b**4+12.d0*a**3-96.d0*b**6-384.d0*b**5))**(1.d0/3.d0) 

     &)/2.d0 

 !calculate the vapor phase compressibility 

 z_vap_cplx =(-36.d0*a+144.d0*a*b-48.d0*b**2-224.d0*b**3+48.d0*b+8.d0+12.d0*sqrt(24.d0*a*b-24.d0*b**2 

     &-192.d0*b**3+264.d0*a*b**2-3.d0*a**2+24.d0*a**2*b**2-120.d0*a**2*b-48.d0*a*b**4+336.d0* 

     &a*b**3-480.d0*b**4+12.d0*a**3-96.d0*b**6-384.d0*b**5))**(1.d0/3.d0)/6.d0-(2.d0*a-20. 

     &d0/3.d0*b**2-8.d0/3.d0*b-2.d0/3.d0)/(-36.d0*a+144.d0*a*b-48.d0*b**2-224.d0*b** 

     &3+48.d0*b+8.d0+12.d0*sqrt(24.d0*a*b-24.d0*b**2-192.d0*b**3+264.d0*a*b**2-3.d0*a**2+24.d0*a**2 

     &*b**2-120.d0*a**2*b-48.d0*a*b**4+336.d0*a*b**3-480.d0*b**4+12.d0*a**3-96.d0*b**6-384.d0 

     &*b**5))**(1.d0/3.d0)+1.d0/3.d0-b/3.d0 

 !there is no liquid phase if the liquid compressibility root is a complex # 

 !in this case the compressibility root returned as equal to vapor phase  

 !compressibility 

 if (aimag(z_liq_cplx) > tolerance) then  

   z_liq = real(z_vap_cplx) 

 else 

   z_liq = real(z_liq_cplx) 

 endif 

 !the root found for the vapor compressibility is erronaeous if it is  

 !a complex # in this case the compressibility root returned as zero to  

 !the mainprogram 

 if (aimag(z_vap_cplx) > tolerance) then 

    call mexPrintf('vapor phase compressibility can not be calculated. - (pr_compr) [thermo_LIBRARY.dll]\n') 

c        write(*,*) 'vapor phase compressibility can not be calculated' 

   z_vap = 0.d0 

 else 

        z_vap = real(z_vap_cplx) 

 endif 

      return 

 end subroutine 

c --------------------------------------------------------------------------------------- 

 subroutine pr_cons(t,a,aij,b) 
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 !Usage: 

 ! to calculate the constants A and B of the   

 !Peng-Robinson EOS which is explained in p239 (Sandler) 

 !Record of revisions: 

 ! date  programmer   description of change 

 !   ====  ==========   ===================== 

 ! 12/03/2001    MTD        original code 

 implicit none 

      include 'parameter.h' 

      include 'common_plant.h' 

 !                         Inputs 

 !                        ======== 

 real*8:: t                        !temperature [K] 

 ! 

 !                         Locals 

 !                        ======== 

 real*8 :: ac(nj)                   !constant 

 real*8 :: xk                       !constant 

 real*8 :: alsqr                    !constant 

 real*8 :: alpha                    !constant  

 real*8 :: tr                       !reduced temperature  

 integer:: i 

 integer:: j 

 !                         Outputs 

 !                        ========= 

 real*8 :: a(nj)                    !a of the species 

 real*8 :: b(nj)                    !b of the species 

 real*8 :: aij(nj,nj)               !interacting a's of the species 

 do i=1,nj 

        ac(i) = 0.457235529d0 * ((rg * tc(i))**2) / pc(i)           !eqn 4.7-1(first part) 

   b(i)  = 7.779607400000001d-2 * rg * tc(i) / pc(i)           !eqn 4.7-2  

   xk    = 0.37464d0 + (1.54226d0 - 0.26992d0 * wc(i)) * wc(i) !eqn 4.7-4 

   tr    = t / tc(i) 

   alsqr = 1.d0 + xk * (1.d0 - dsqrt(tr)) 

   alpha = alsqr * alsqr                                       !eqn 4.7-3 

        a(i)  = alpha * ac(i)                                       !eqn 4.7-1(whole) 

 enddo 

 do i=1,(nj-1) 

   do j=(i+1),nj 

     aij(i,j) = (1.d0 - del(i,j)) * dsqrt(a(i) * a(j))         !eqn 7.4-9 

     aij(j,i) = aij(i,j) 

   enddo 

 enddo    

 return 

 end subroutine 

c --------------------------------------------------------------------------------------- 

      subroutine pr_dens_l(t,p,x,mwa,densa) 

 !Usage: 

 ! to calculate the average molecular weight and the     

 !density of the liquid phase using Peng-Robinson EOS  

 !Record of revisions: 

 ! date  programmer   description of change 

 !   ====  ==========   ===================== 

 ! 25/03/2001    MTD        original code 

 ! 20/11/2006       HC                   modification to liquid density 

      implicit none 

 include 'parameter.h' 

 include 'common_plant.h' 

      !                         Inputs 

 !                        ======== 

 real*8 :: t 

 real*8 :: p  
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 real*8 :: x(nj) 

 !                         Locals 

 !                        ======== 

 real*8 :: aa 

 real*8 :: bb 

      real*8 :: ca 

 real*8 :: cb 

      real*8 :: a(nj) 

 real*8 :: b(nj) 

 real*8 :: zx(nj) 

      real*8 :: aij(nj,nj) 

 real*8 :: z_liq 

 real*8 :: z_vap 

 real*8 :: zz 

 real*8 :: vv 

 real*8 :: sumx 

      integer:: i 

 integer:: j 

 !                         Outputs 

 !                        ========= 

 real*8 :: mwa 

 real*8 :: densa 

 mwa  = 0.d0 

 sumx = 0.d0 

      do i = 1,nj 

        sumx = sumx + x(i) 

 enddo 

 do i = 1,nj 

   zx(i) = x(i) / sumx 

 enddo 

 

 do i = 1,nj 

        mwa = mwa + mw(i) * zx(i) 

 enddo 

 call pr_cons(t,a,aij,b) 

 aa = 0.d0 

 bb = 0.d0 

 do i = 1,nj 

        bb = bb + zx(i) * b(i) 

     do j = 1,nj 

       if (i == j) then 

         aa = aa + zx(i) * zx(i) * a(i) 

       else 

      aa = aa + zx(i) * zx(j) * aij(i,j) 

       endif 

     enddo 

      enddo   

      ca = aa * p / ((rg * t)**2) 

 cb = bb * p /  (rg * t) 

      call pr_compr(ca,cb,z_liq,z_vap) 

      zz    = z_liq 

      vv    = zz * rg * t / p 

      densa = mwa / vv   

      return  

 end subroutine 

c --------------------------------------------------------------------------------------- 

      subroutine pr_dens_g(t,p,x,mwa,densa) 

 !Usage: 

 ! to calculate the average molecular weight and the 

 !density of the vapor phase using Peng-Robinson EOS 

 !Record of revisions: 

 ! date  programmer   description of change 
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 !   ====  ==========   ===================== 

 ! 25/03/2001    MTD        original code 

 ! 20/11/2006       HC                   modification to vapor density 

      implicit none 

 include 'parameter.h' 

 include 'common_plant.h' 

 !                         Inputs 

 !                        ======== 

 real*8 :: t 

 real*8 :: p 

 real*8 :: x(nj) 

 !                         Locals 

 !                        ======== 

 real*8 :: aa 

 real*8 :: bb 

      real*8 :: ca 

 real*8 :: cb 

      real*8 :: a(nj) 

 real*8 :: b(nj) 

 real*8 :: zx(nj) 

      real*8 :: aij(nj,nj) 

 real*8 :: z_liq 

 real*8 :: z_vap 

 real*8 :: zz 

 real*8 :: vv 

 real*8 :: sumx 

      integer:: i 

 integer:: j 

 !                         Outputs 

 !                        ========= 

 real*8 :: mwa 

 real*8 :: densa 

 mwa  = 0.d0 

 sumx = 0.d0 

      do i = 1,nj 

        sumx = sumx + x(i) 

 enddo 

 do i = 1,nj 

   zx(i) = x(i) / sumx 

 enddo 

 do i = 1,nj 

        mwa = mwa + mw(i) * zx(i) 

 enddo 

 call pr_cons(t,a,aij,b) 

 aa = 0.d0 

 bb = 0.d0 

 do i = 1,nj 

        bb = bb + zx(i) * b(i) 

     do j = 1,nj 

       if (i == j) then 

         aa = aa + zx(i) * zx(i) * a(i) 

       else 

      aa = aa + zx(i) * zx(j) * aij(i,j) 

       endif 

     enddo 

      enddo 

      ca = aa * p / ((rg * t)**2) 

 cb = bb * p /  (rg * t) 

      call pr_compr(ca,cb,z_liq,z_vap) 

      zz    = z_vap 

      vv    = zz * rg * t / p 

      densa = mwa / vv 
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      return 

 end subroutine 

c -------------------------------------------------------------------------------------- 

      subroutine pr_enth(t,p,zx,ifase,dh) 

      !Usage:                                                                             

      !to calculate the enthalpy departure of a mixture                                               

      !as explained in Sandler p425                                                       

      !Peng-Robinson EOS is explained in p239                                        

      !Record of revisions:                                                          

      !   date  programmer          description of change                          

 !   ====        ==========         =======================  

      !12/03/2001        MTD                  original code                                                                                                         

 implicit none 

      include 'parameter.h' 

      include 'common_plant.h' 

 !                         Inputs 

 !                        ======== 

 real*8 :: t 

 real*8 :: p 

 real*8 :: zx(nj) 

 !                         Locals 

 !                        ======== 

 real*8 :: zz 

 real*8 :: a(nj) 

 real*8 :: b(nj) 

 real*8 :: xk(nj) 

 real*8 :: aij(nj,nj) 

 real*8 :: c1,c2,c3,c4,c5,c6,c7,c8,c9 

 real*8 :: a1,a2,a3,a4 

 real*8 :: anum,aden 

 real*8 :: cnum,cden 

 real*8 :: damdt 

 real*8 :: aa 

 real*8 :: ca 

 real*8 :: bb 

 real*8 :: cb 

 real*8 :: z_liq 

 real*8 :: z_vap 

 real*8 :: tr(nj) 

 real*8 :: dh0,dh1,dh2 

 integer:: i 

      integer:: j 

      integer:: ifase 

 !                         Outputs 

 !                        ========= 

 real*8:: dh  

 call pr_cons(t,a,aij,b) 

 aa = 0.d0 

 bb = 0.d0 

 do i = 1,nj 

        bb = bb + zx(i) * b(i) 

     do j = 1,nj 

       if (i == j) then 

         aa = aa + zx(i) * zx(i) * a(i) 

       else 

      aa = aa + zx(i) * zx(j) * aij(i,j) 

       endif 

  enddo 

      enddo   

      ca = aa * p / ((rg * t)**2) 

 cb = bb * p / (rg * t) 

 call pr_compr(ca,cb,z_liq,z_vap) 
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 if (ifase == 0) then 

        zz = z_liq 

 else 

        zz = z_vap 

 endif 

 do i = 1,nj   

        xk(i) = 0.37464d0 + (1.54226d0 - 0.26992d0 * wc(i)) * wc(i) !eqn 4.7-4 

 enddo 

 damdt = 0.d0 

      do i= 1,nj 

   do j = 1,nj  

          tr(i) = t / tc(i) 

     tr(j) = t / tc(j) 

     c1 = (-0.457235529d0/2.d0) * (-1 + del(i,j)) * rg**4  

     c2 =   tc(i) * (-1.d0 - xk(i) + xk(i) * dsqrt(tr(i))) 

     c3 =   tc(j) * (-1.d0 - xk(j) + xk(j) * dsqrt(tr(j))) 

          c4 =  -tc(j) * xk(i) * dsqrt(tr(j))  

     &    -tc(j) * xk(i) * dsqrt(tr(j)) * xk(j) 

     c5 =   2.d0 * xk(i) * t * xk(j) 

     &          -tc(i) * xk(j) * dsqrt(tr(i))  

     c6 =  -tc(i) * xk(j) * dsqrt(tr(i)) * xk(i) 

  c7 = (-1.d0 - xk(i) + xk(i) * dsqrt(tr(i)))**2 

  c8 = (-1.d0 - xk(j) + xk(j) * dsqrt(tr(j)))**2 / pc(i) / pc(j)    

     c9 =   pc(i) * pc(j) * dsqrt(tr(i)) * dsqrt(tr(j)) 

     cnum = c4 + c5 + c6 

  cden = dsqrt(rg**4 * tc(i)**2 * c7 * tc(j)**2 * c8)  

     &           * pc(i) * pc(j) * dsqrt(tr(i)) * dsqrt(tr(j)) 

          damdt = damdt + zx(i) * zx(j) * (c1 * c2 * c3 * cnum / cden) 

        enddo 

  enddo    

      a1 = dsqrt(2.d0) 

 a2 = a1 + 1.d0 

 a3 = a1 - 1.d0 

 a4 = a1 * 2.d0 

 anum = zz + (a2 * cb) 

 aden = zz - (a3 * cb) 

 dh0 = (rg * t)*(zz -1.d0) 

      dh1 = (t*damdt - aa)/a4/bb  

 dh2 = dlog(anum/aden) 

 dh  = (dh0 + dh1*dh2)     

      return  

 end subroutine 

c --------------------------------------------------------------------------------------- 

 subroutine pr_equil_hydrocarbons(t,p,x,yy) 

 !Usage: 

 ! to calculate the bubble point temperature using  

 !Peng-Robinson EOS similar to VLMU.BAS of Sandler 

 !Record of revisions: 

 ! date  programmer   description of change 

 !   ====  ==========   ===================== 

 ! 12/03/2001    MTD        original code 

 ! 12/06/2001 UGUR    to be able to find equilibrium staff  

 !     when a zero-fraction component exist. 

 !     some checks were performed before calculation. 

 implicit none 

      include 'parameter.h' 

      include 'common_plant.h' 

 !                         Inputs 

 !                        ======== 

 real*8:: t                ! t is also an output                            

 real*8:: p                               

 real*8:: x(nj)                           
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 !                         Locals 

 !                        ======== 

 real*8 :: s(2),sum,sumy                   

 real*8 :: dt1,dt2                         

 real*8 :: dlnp                            

 real*8 :: ps(nj)                          

 real*8 :: xk1(nj)                         

 real*8 :: a(nj)                           

 real*8 :: aij(nj,nj)                      

 real*8 :: b(nj)                           

 real*8 :: zx(nj)                          

 real*8 :: fugacity(nj)  

 real*8 :: f1(nj),f2(nj)  

 real*8 :: zz,zz1,zz2   

 real*8 :: y1(nj),y2(nj) 

 real*8 :: yk   

 real*8 :: test,ttest  

 real*8 :: dsdt,dlt,dd 

 real*8 :: neg_dd,neg_dlt                      

 real*8 :: tbg,tcg 

 integer:: i 

 integer:: j 

 integer:: k 

 integer:: nc 

 integer:: kkk 

 integer:: nloop 

 integer:: iconv 

 integer:: ifase 

 integer:: itest 

 integer:: kvalue 

 logical:: reguess   

 !                         Outputs 

 !                        =========                         

 real*8 yy(nj) 

 integer:: comp_index(nj) 

 common /nc/ nc 

 ! zero component check 

 j=0 

 do i=1,nj 

  if (x(i).gt.0.0d0) then 

   j=j+1 

   comp_index(j) = i 

  else 

   yy(i) = 0.0d0 

  endif 

 end do 

 nc = j 

 k       = 0 

 kvalue  = 0 

 iconv   = 0 

 sum     = 0.d0 

 reguess = .false. 

  

 do i = 1,nc 

   sum = sum + x(comp_index(i)) 

 enddo 

 do i = 1,nc  

   x(comp_index(i)) = x(comp_index(i))/sum  

 enddo 

 !Initial guess procedure for Ki = yi / xi and yi 

3870 if (k > 30) then 

   call mexErrMsgTxt('too many calculations. - (pr_equil) [thermo_LIBRARY.dll]')    
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c        write(*,*) 'too many calculations' 

   goto 4880 

 endif 

 do i = 1,nc 

   if (kvalue == 1) then 

          yy(comp_index(i))  = x(comp_index(i)) * xk1(comp_index(i))     

   else 

     dt1    = (1.d0 / t) - (1.d0 / tboil(comp_index(i))) 

     dt2    = (1.d0 / tc(comp_index(i))) - (1.d0 / tboil(comp_index(i))) 

     dlnp   = dlog(pc(comp_index(i))) 

     ps(comp_index(i))  = dexp(dlnp * dt1 / dt2) 

          xk1(comp_index(i)) = ps(comp_index(i)) / p 

          yy(comp_index(i))  = x(comp_index(i)) * xk1(comp_index(i))     

        endif 

      enddo 

 !Calculation of liquid fugacities 

 kkk   = 0 

3980 nloop = 1 

 if (t < 50.d0) goto 4590 

 if (t > 1200.d0) goto 4590 

 k = k + 1 

 !call pr_cons 

4020  call pr_cons(t,a,aij,b) 

      do i=1,nc 

   zx(comp_index(i)) = x(comp_index(i)) 

 enddo 

 !phase liquid 1 

 ifase = 1 

 !call pr_fuga  

 {UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR} 

       call pr_fuga(t,p,ifase,zx,zz,a,aij,b,fugacity) 

 !{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{U

GUR}{UGUR} 

 do i = 1,nc 

   f1(comp_index(i)) = fugacity(comp_index(i))  

 enddo      

 zz1  = zz 

 sumy = 0.d0 

      do i = 1,nc 

   y2(comp_index(i)) = yy(comp_index(i)) 

   sumy  = sumy + yy(comp_index(i)) 

 enddo 

      do i = 1,nc 

   yy(comp_index(i)) = yy(comp_index(i)) / sumy 

 enddo  

4160 sumy = 0.d0 

4170 kkk  = kkk + 1 

 do i = 1,nc 

   zx(comp_index(i)) = yy(comp_index(i))  

 enddo 

 !phase vapor 0 

 ifase = 0 

 !call pr_fuga  

 {UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR} 

 call pr_fuga(t,p,ifase,zx,zz,a,aij,b,fugacity) 

 !{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{UGUR}{U

GUR}{UGUR} 

 do i = 1,nc 

   f2(comp_index(i)) = fugacity(comp_index(i))  

 enddo  

 zz2 = zz 

 do i = 1,nc 
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   yy(comp_index(i)) = f1(comp_index(i)) * yy(comp_index(i)) / f2(comp_index(i)) 

   y1(comp_index(i)) = yy(comp_index(i)) 

   sumy = sumy + yy(comp_index(i)) 

 enddo 

 itest = 0 

 do i = 1,nc 

   test = dabs(y1(comp_index(i)) - y2(comp_index(i))) 

     if (test > tolerance) then  

       itest = itest +1 

     endif 

   yy(comp_index(i)) = yy(comp_index(i)) / sumy  

 enddo  

 if (kkk > 25) goto 4400 

 if (itest <= 0) goto 4400 

 do i = 1,nc 

   y2(comp_index(i)) = y1(comp_index(i)) 

 enddo 

 goto 4160 

4400 s(nloop) = sumy 

 kkk = 0 

 if ((nloop - 1) > 0) goto 4460 

 nloop = 2 

 t = t - 0.005d0 

 goto 4020  

4460 dsdt = (s(2) - s(1)) / (0.005d0)  

 if (dabs(dsdt) < tolerance) goto 4590 

 dlt = (s(1) - 1.d0) / dsdt 

 if (dabs(dlt) < 0.0026) goto 4670 

 if (k > 50) goto 4650 

 if (k < 11) then 

   dd = 20.d0 

 endif 

 if (k >= 11) then 

   dd = 5.d0 

 endif 

      if (dlt > dd) then 

   t = t + dd 

 endif 

 if (dlt > dd) goto 3980 

 neg_dd = -1.d0 * dd 

 if (dlt < neg_dd) then 

   t = t - dd 

 endif 

 neg_dlt = -1.d0 * dlt 

 if (neg_dlt > dd) goto 3980 

 t = t + dlt + 0.0025 

 goto 3980 

4590 if (k > 2) goto 4630 

      if (zz1 >= 0.307d0) then  

  t = t - 10.d0 

 endif 

      if (zz1 <= 0.307d0) then 

  t = t + 10.d0 

 endif 

 goto 3980 

4630   call mexErrMsgTxt('not converging: one-phase region or poor initial guess. - (pr_equil) [thermo_LIBRARY.dll]') 

c4630  write(*,*) 'not converging: one-phase region or poor initial guess' 

 if (reguess == .false.) then 

   reguess = .true. 

        tbg = 0.d0 

   tcg = 0.d0 

   do i = 1,nc  
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     tbg = tbg + x(comp_index(i)) * tboil(comp_index(i))   

     tcg = tcg + x(comp_index(i)) * tc(comp_index(i)) 

        enddo 

     t   = 0.5d0 * (tbg + tcg) 

  call mexPrintf('it should print "t" here. - (pr_equil) [thermo_LIBRARY.dll]') 

c   write(*,*) t 

   goto 3870 

 else  

   goto 4880  

      endif   

4650  call mexErrMsgTxt('bubble point temperature calculation did not converge. - (pr_equil) [thermo_LIBRARY.dll]') 

c4650  write(*,*) 'bubble point temperature calculation did not converge' 

      goto 4880 

4670 yk = k 

 ttest = (zz1 - zz2)**2 

 if (ttest > tolerance) goto 4730 

 if (zz1 >= 0.307d0) then 

   t = t - 25.d0 / dsqrt(yk) 

      endif 

 if (zz1 < 0.307d0) then 

   t = t + 25.d0 / dsqrt(yk) 

      endif 

 kvalue = 0 

 goto 3870 

4730 do i = 1,nc 

   xk1(comp_index(i)) = yy(comp_index(i)) / x(comp_index(i)) 

 enddo 

 return 

4880  call mexErrMsgTxt('unsuccessful bubble point calculation. - (pr_equil) [thermo_LIBRARY.dll]')    

c4880  write(*,*) 'unsuccessful bubble point calculation' 

 end subroutine   

c --------------------------------------------------------------------------------------- 

 subroutine pr_equil_polar(t,p,x,yy) 

 !Usage: 

 ! to calculate the bubble point temperature using  

 !Peng-Robinson EOS similar to VLMU.BAS of Sandler 

 !Record of revisions: 

 ! date  programmer   description of change 

 !   ====  ==========   ===================== 

 ! 12/03/2001 MTD        original code 

 ! 12/06/2001 UGUR    to be able to find equilibrium staff  

 !      when a zero-fraction component exist. 

 !      some checks were performed before calculation. 

 !  ALMILA    gama-fi approach using NRTL activity coeff. model 

 ! 05/03/2007 HATİCE              modification of calculation of vapor pressure and 

 !                                   predictions of binary interaction parameters for ethanol and water 

 implicit none 

      include 'parameter.h' 

      include 'common_plant.h' 

 !                         Inputs 

 !                        ======== 

 real*8:: t                ! t is also an output                            

 real*8:: p                               

 real*8:: x(nj)                           

 !                         Locals 

 !                        ======== 

 real*8 :: s(2),sum,sumy                   

 real*8 :: dt1,dt2                         

 real*8 :: dlnp                            

 real*8 :: ps(nj)                          

 real*8 :: xk1(nj)                         

 real*8 :: a(nj)                           



 

 

 

 

134 

 real*8 :: aij(nj,nj)                      

 real*8 :: b(nj)         

 real*8 :: zx(nj)                          

 real*8 :: fugacity(nj)  

 real*8 :: f1(nj),f2(nj)  

 real*8 :: zz,zz1,zz2   

 real*8 :: y1(nj),y2(nj) 

 real*8 :: yk   

 real*8 :: test,ttest  

 real*8 :: dsdt,dlt,dd 

 real*8 :: neg_dd,neg_dlt                      

 real*8 :: tbg,tcg 

 integer:: i 

 integer:: j 

 integer:: k 

 integer:: nc 

 integer:: kkk 

 integer:: nloop 

 integer:: iconv 

 integer:: ifase 

 integer:: itest 

 integer:: kvalue 

 logical:: reguess  

 real*8 :: ant_cons_a(nj),ant_cons_b(nj),ant_cons_c(nj), ant_cons_d(nj)  

 real*8 :: gama(nj),sumy1 

 integer:: loop 

 real*8 :: alact(nj),tagx1,tagx2,total,xgkj,xgij1 

 real*8 :: alp(nj,nj),ta(nj,nj),gij(nj,nj),x_pr(nj) 

 real*8 :: rg_cal 

 !                         Outputs 

 !                        =========                         

 real*8 yy(nj) 

 integer:: comp_index(nj) 

 common /nc/ nc 

 ! zero component check 

 j=0 

 do i=1,nj 

  if (x(i).gt.0.0d0) then 

   j=j+1 

   comp_index(j) = i 

  else 

   yy(i) = 0.0d0 

  endif 

 end do 

 nc = j 

c     (1) ethanol (2) water !Wagner equation constants  

 ant_cons_a(1) = -8.51838d0 

 ant_cons_a(2) = -7.76451d0 

 ant_cons_b(1) = 0.34163d0 

 ant_cons_b(2) = 1.45838d0 

 ant_cons_c(1) = -5.73683d0 

 ant_cons_c(2) = -2.77580d0 

 ant_cons_d(1) = 8.32581d0 

      ant_cons_d(2) = -1.23303d0 

 sum = 0.0d0 

 do i = 1,nc 

   sum = sum + x(comp_index(i)) 

 enddo 

 do i = 1,nc  

   x(comp_index(i)) = x(comp_index(i))/sum  

 enddo 

 loop = 0 
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10 loop = loop+1 

 if (loop .gt. 1800) go to 4630 

 sumy = 0.0d0 

c Activity coeffients calculation from NRTL model 

c (1) ethanol (2) water  

 aij(1,2) =-175.0164d0 

 aij(2,1) =  1440.3479d0 

 alp(1,2) = 0.2959d0 

 do i=1,nj-1 

 do j=i+1,nj 

 alp(j,i) = alp(i,j) 

 enddo  

 enddo 

c do i=1,nj 

c ta(i,i) = 0.0d0 

c enddo  

      rg_cal = rg/4.184  !gas constant [cal/(mol.K)] 

 do i=1,nj 

 do j=1,nj 

 if (i .eq. j) then 

 ta(i,j) = 0.0d0 

 else 

 ta(i,j) = aij(i,j) /(rg_cal * t) 

 endif 

 gij(i,j) = dexp(-alp(i,j)*ta(i,j)) 

 enddo 

 enddo 

      if (nc .eq. 2) then  

      do i=1,nc 

 do j=1,nc 

 if (i .eq. j) then  

 else  

    gama(comp_index(i)) = x(comp_index(j))**2*(ta(j,i) 

     & *(gij(comp_index(j),comp_index(i))/(x(comp_index(i)) 

     &    +x(comp_index(j))*gij(comp_index(j),comp_index(i))))**2  

     & + ta(i,j)* gij(comp_index(i),comp_index(j))/ (x(comp_index(j))  

     & + x(comp_index(i)) * gij(comp_index(i),comp_index(j)))**2) 

      gama(comp_index(i)) = dexp(gama(comp_index(i))) 

 endif 

      enddo  

 enddo 

      else  

 do i=1,nc 

 tagx1 = 0.0d0 

 xgij1 = 0.0d0 

 do j = 1,nc 

       tagx1 = tagx1 + ta(comp_index(j),comp_index(i))*gij(comp_index(j),comp_index(i))*x(comp_index(j)) 

        xgij1 = xgij1 + x(comp_index(j))*gij(comp_index(j),comp_index(i)) 

 enddo 

 total = 0.0d0 

 do j=1,nc 

       xgkj = 0.0d0 

        do k=1,nc 

            xgkj = xgkj + x(comp_index(k))*gij(comp_index(k),comp_index(j)) 

        enddo 

        tagx2 = 0.0d0 

        do k=1,nc 

            tagx2 = tagx2 + x(comp_index(k))*ta(comp_index(k),comp_index(j))*gij(comp_index(k),comp_index(j)) 

        enddo 

        total = total + x(comp_index(j))*gij(comp_index(i),comp_index(j))/xgkj* 

     &(ta(comp_index(i),comp_index(j)) - tagx2/xgkj) 

 enddo 



 

 

 

 

136 

 alact(comp_index(i)) = tagx1 / xgij1 + total 

 gama(comp_index(i)) = dexp(alact(comp_index(i))) 

 enddo 

 

 endif  

c End of activity coefficients calculation 

! Vapor Pressure calculation 

      do i=1,nc 

      x_pr(comp_index(i))= (1 - t / tc(comp_index(i))) 

 ps(comp_index(i))= (1-x_pr(comp_index(i)))**(-1) 

     &  *((ant_cons_a(comp_index(i)) * x_pr(comp_index(i))) 

     & + ( ant_cons_b(comp_index(i))* x_pr(comp_index(i))**(15/10) ) 

     & +( ant_cons_c(comp_index(i))* x_pr(comp_index(i))**3 ) 

     & +( ant_cons_d(comp_index(i))* x_pr(comp_index(i))**6 )) 

 ps(comp_index(i)) = dexp(ps(comp_index(i))) 

      ps(comp_index(i))= ps(comp_index(i))*pc(comp_index(i)) 

      enddo 

! End of vapor pressure calculation 

 do i=1,nc 

 yy(comp_index(i)) = x(comp_index(i))*gama(comp_index(i))*ps(comp_index(i))/p 

 sumy = sumy + yy(comp_index(i)) 

 enddo 

 do j=1,nc 

 y2(comp_index(j)) = yy(comp_index(j))*1.0d0/sumy 

 yy(comp_index(j)) = y2(comp_index(j)) 

 enddo 

 !call pr_cons 

 call pr_cons(t,a,aij,b) 

11 do i = 1,nc 

   zx(comp_index(i)) = yy(comp_index(i))  

 enddo 

 !phase vapor 0 

 ifase = 0 

 !call pr_fuga 

 call pr_fuga(t,p,ifase,zx,zz,a,aij,b,fugacity) 

 do i = 1,nc 

   f2(comp_index(i)) = fugacity(comp_index(i))  

 enddo  

  sumy1 = 0.0d0 

 do i=1,nc 

 !y*p*fiv=x*gama*pvap 

 yy(comp_index(i)) = x(comp_index(i))*gama(comp_index(i))*ps(comp_index(i))*yy(comp_index(i))/f2(comp_index(i)) 

 if (yy(comp_index(i)) .lt. 1.0d-16) yy(comp_index(i))=0.0d0 

 if (yy(comp_index(i)) .gt. 1.0d0)   yy(comp_index(i))=1.0d0 

 enddo 

 do i=1,nc 

 sumy1 = sumy1+yy(comp_index(i)) 

 enddo 

 dsdt = (sumy-sumy1)/0.005d0 

 if ((sumy-sumy1) .lt. tolerance) go to 12 

 sumy=sumy1 

 do i=1,nc 

 yy(comp_index(i)) = yy(comp_index(i))*1.0d0/sumy1 

 enddo 

 go to 11 

12 if (dabs((sumy1-1.0d0)/dsdt) < 0.0026d0) return 

 dlt = (sumy1-1.0d0)/dsdt 

 dd = 5.0d0 

 if (dlt > dd) then 

 t = t+dd 

 endif 

 if (dlt > dd) go to 10 
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 neg_dd = -1.d0 * dd 

 if (dlt < neg_dd) then 

 t = t-dd 

 endif 

 neg_dlt = -1.0d0 * dlt 

 if (neg_dlt > dd) go to 10 

 t = t + dlt + 0.0025d0 

 go to 10 

4630   call mexErrMsgTxt('not converging: one-phase region or poor initial guess. - (pr_equil) [thermo_LIBRARY.dll]') 

 return 

 end subroutine   

c --------------------------------------------------------------------------------------- 

 subroutine pr_fuga(t,p,ifase,zx,zz,a,aij,b,fugacity) 

      !Usage:                                                                            

      !to calculate the species fugacity f(T,P,xi)                                       

      !as explained in Sandler p409                                                      

      !Peng-Robinson EOS is explained in p239                                             

 !Record of revisions:                                                              

 !  date       programmer            description of change                           

 !  ====    ==========   =====================                          

 !12/03/2001       MTD        original code                              

 ! 12/06/2001 UGUR    to be able to find equilibrium staff  

 !      when a zero-fraction component exist. 

 !     some checks were performed before calculation. 

 implicit none 

      include 'parameter.h' 

      include 'common_plant.h' 

 !                         Inputs 

 !                        ======== 

 real*8 :: t                             

 real*8 :: p                             

 real*8 :: zx(nj)                        

 real*8 :: a(nj)                         

 real*8 :: b(nj)                         

 real*8 :: aij(nj,nj) 

      integer:: ifase                    

 !                         Locals 

 !                        ======== 

 real*8 :: c1                            

 real*8 :: c2                            

 real*8 :: c3                            

 real*8 :: sa(nj)                        

 real*8 :: aa                            

 real*8 :: bb                                                    

 real*8 :: cb                            

 real*8 :: ca                            

 real*8 :: zz 

 real*8 :: z_liq 

 real*8 :: z_vap 

 real*8 :: fox(nj) 

 real*8 :: ag1 

 real*8 :: ag2 

 real*8 :: ag3 

 integer:: nc 

 integer:: i 

 integer:: j 

 !                         Outputs 

 !                        ========= 

 real*8 ::fugacity(nj)                  

 integer:: comp_index(nj) 

 common /nc/ nc 

 ! zero component check 
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 j=0 

 do i=1,nj 

  if (zx(i) .gt. 0.d0) then 

   j=j+1 

   comp_index(j) = i 

  endif 

 end do 

 nc = j 

 c1 = dsqrt(2.d0) 

 c2 = 1.d0 + c1 

 c3 = c1 - 1.d0 

 do i = 1,nc 

   sa(comp_index(i)) = 0.d0 

 enddo 

 aa = 0.d0 

 bb = 0.d0 

 do i = 1,nc 

        bb = bb + zx(comp_index(i)) * b(comp_index(i)) 

     do j = 1,nc 

       if (i == j) then 

         aa    = aa + zx(comp_index(i)) * zx(comp_index(i)) * a(comp_index(i)) 

      sa(comp_index(j)) = sa(comp_index(j)) + zx(comp_index(j)) * a(comp_index(j)) 

       else 

      aa    = aa + zx(comp_index(i)) * zx(comp_index(j)) * aij(comp_index(i),comp_index(j)) 

         sa(comp_index(j)) = sa(comp_index(j)) + zx(comp_index(i)) * aij(comp_index(i),comp_index(j)) 

       endif 

     enddo 

      enddo   

      ca = aa * p / ((rg*t)**2) 

 cb = bb * p / (rg*t) 

 call pr_compr(ca,cb,z_liq,z_vap) 

 if (ifase == 0) then 

   zz  = z_vap 

 else 

   zz  = z_liq 

 endif 

      ag1 = (zz + c2 * cb) / (zz - c3 * cb) 

 ag1 = dlog(ag1) 

 ag2 = ca / (2.d0 * cb * c1) 

 do i = 1,nc 

   ag3    = (2.d0 * sa(comp_index(i)) / aa) - (b(comp_index(i)) / bb) 

   fox(comp_index(i)) = (b(comp_index(i)) * (zz-1.d0) / bb)-dlog(zz - cb) - ag1 * ag2 * ag3 

   fox(comp_index(i)) = dexp(fox(comp_index(i))) 

   fugacity(comp_index(i)) = zx(comp_index(i)) * p * fox(comp_index(i)) 

 enddo  

 return 

 end subroutine 

C.3.8 thermo_LIBRARY.h 

 

common /thermo_LIBRARY/ lib_Inited 

      integer :: lib_Inited   ! Toggle for checking whether thermo_LIBRARY.dll is initialized. 

 

C.3.9 common_plant.h 

 
      common /plant/  

     &       whs,whr,ds,dr,wls,wlr,mvb,mvd,tolerance, 

     &       mw(nj),tc(nj),tboil(nj),pc(nj),wc(nj),del(nj,nj), 

     &       cenh1(nj),cenh2(nj),cenh3(nj),cenh4(nj) 

      real*8 :: whs,whr,ds,dr,wls,wlr,mvb,mvd,tolerance 
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      real*8 :: mw,tc,tboil,pc,wc,del 

      real*8 :: cenh1,cenh2,cenh3,cenh4 

 

C.3.10 parameter.h 

 

C ------------ This parameters were modified as the common statement labeled as 'parameter'   

C   integer,parameter:: nt = 100                  ! number of trays 

C   

C   integer,parameter:: nj = 3                   ! number of components 

C ---------------------------------------------------------------------------------------------------------- 

  

 

                integer ,parameter :: nj = 3     ! number of components 

     real*8 ,parameter :: rg = 8.313999999999999d0 ! ideal gas constant  

c   real*8 ,parameter :: trf= 0.0d0            ! reference temperature 

   real*8 ,parameter :: trf= 273.15d0            ! reference temperature 

 

C.3.11 thermo_data.dat 

 
tolerance (Component order: cyclohexane, n-Heptane, toluene) 
  1.000d-7 
 
Mw(kg/mol)      Tc(K)      Tboil(K)    Pc(Pa)            w 
 84.141d-3     553.68d0    353.15d0   4.100d6       0.212d0 
100.204d-3     540.20d0    371.55d0   2.736d6       0.346d0 
 92.141d-3     591.80d0    383.95d0   4.113d6       0.262d0 
  
del(binary interaction parameters) ( for NC = 3 , 3x3 ; for NC = 4 , 4x4 ) 
  0.0d0     0.0d0     0.0d0 
  0.0d0     0.0d0     0.0d0 
  0.0d0     0.0d0     0.0d0 
   cenh1         cenh2          cenh3       cenh4(J/molK) 
 -66.672040d0  68.843536d-2  -38.50535d-5  80.62568d-9 
 -12.717000d0  70.802000d-2  -40.14000d-5  90.00000d-9 
 -34.363192d0  55.885688d-2  -34.43432d-5  80.33280d-9 
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APPENDIX D 

STUDIED CHEMICALS  

Table D.1 Specifications for Hydrocarbons. 

 

 Cyclohexane n- Heptane Toluene 

Boiling Temp(@ 1 atm) 353.85 K 371.55 K 383.75 K 

Melting Temp 279.75 K 182.55 K 178.15 K 

MW (g /mole) 84.161 100.204 92.141 

Heat Capacity Coefficient, (J / mole.K) 

a
pC  -66.672040 -12.717000 -34.363192 

b
pC  

210843536.68 −×

 

210802000.70 −×

 
210885688.55 −×  

c
pC  

51050535.38 −×−

 

51014000.40 −×−

 

51043432.34 −×−

 

d
pC  91062568.80 −×  91000000.90 −×  91033280.80 −×  

Tc, K  553.58 540.2 591.8 

Pc (Pa) 4.10*10-6 2.72*10-6 4.10 *10-6 

Vc (m
3 / kmole) 0.308 0.428 0.314 

Zc 0.274 0.259 0.262 

w 0.212 0.346 0.262 

 

 

 



 

 

 

 

141

Table D.2 List of Correlations Used to Predict Physical Properties of the Hydrocarbons. 

 

Physical property 

that will be 

predicted 

Author(s) Correlation(s) Equation number Error 

6/1

3/22/1
71060.4

c

c

T

PNMw−×=µ  (D.1) 

94.00003400.0 rTN = for 5.1≤rT  (D.2) 
Gas viscosity of pure 

hydrocarbons at low 

pressure (below Tr 

of 0.6) 

Stiel and Thodos 

(1961) 

( ) 625.067.158.40001778.0 −= rTN for 5.1>Tr  (D.3) 

The average error is 

about 3 percent for 

hydrocarbons below 

ten carbon atoms. 

The percentage of 

the error increases to 

5 – 10 percent for 

heavier hydrocarbons 
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Error related to that 

correlation is about 3 

percent. 
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Table D.2 List of Correlations Used to Predict Physical Properties of the Hydrocarbons (Cont’d). 

 

Physical property 

that will be 

predicted 

Author(s) Correlation(s) Equation number Error 









−=

oTT
B

11
)001.0*log(µ  (D.6) 

∑∆+= i
o NNN  (D.7) 

20≤oN
32

02076.03547.1439.3786.28 ooo
o NNNT +−+=  (D.8) 

20>oN 59.238164.8 += o
o NT  (D.9) 

∑∆+= ia BBB  (D.10) 

20≤o
N

32
00377.03173.1885.6679.24 ooo

a NNNB −−+=  (D.11) 

Liquid viscosity of 

pure hydrocarbon 

liquids 

van Velzen et 

al.(1972) 

20>
o

N  o
a NB 740.1359.530 +=  (D.12) 

Errors are average 

15 percent for 

several compounds. 

Liquid viscosity of 

hydrocarbon 

mixtures 

Kendall and Monroe 

(1917) 

3

1

3/1














= ∑

=

NC

i
iim x µµ  (D.13) 

Errors change for 3 

– 15 percent. 

9/113/13/24 )1(10601.4 rcc TQTP −×= −σ  (D.14) 
Surface tension of a 

component 

Brock and Bird 

(1955) 281.0
1

)5261.11(ln
11207.0 −









−

−
+=
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cbr

T
PT
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Errors in that 

correlation are less 

than 5 percent. 
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Table D.2 List of Correlations Used to Predict Physical Properties of the Hydrocarbons (Cont’d). 

 

Physical property that 

will be predicted 
Author(s) Correlation(s) Equation number Error 

( )
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Surface tension for 

mixture 

Winterfeld, Scriven 

and Davis (1978) 
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n
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1

1
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 (D.17) 

Error is about 3 - 5 

percent. 

Gas diffusivity of binary 

hydrocarbon – 

hydrocarbon gas systems 

at low pressures  

(below 500 psia = 3.5 

MPa) 

Gilliland (1934) 

( )23/1
2
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The error of the 

method of Gilliand 

is less than 4 

percent. 

 

Molar volume at the 

normal boiling point 

Tyn and Calus 

(1975) 

048.1285.0
ici VV =  (D.19) Not stated 

Gas phase diffusion 

coefficients in 

multicomponent 

hydrocarbon systems 

Wilke (1950) ∑
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−
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Errors are about 5 

percent  
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Table D.3 Physical Properties of Ethanol and Water Utilized in the Simulation Runs. 

 

Physical Property EtOH Water Temperature [K] Reference 

Gaseous Viscosity 

[kg / (m.s)] 
8.6088 x 10-3 125 x 10-4 293.15 

Perry et. al., 

1997 

Liquid Viscosity  

[kg / (m.s)] 
1.7840 x 10-3 1 x 10-3 293.15 

Perry et. al., 

1997 

Surface Tension 

[mN / m] 
22.39 72.75 293.15 Kaye, 1969  

 

 

Table D.4 Specifications for Ethanol and Water. 

 

 Ethanol Water  

Boiling Temp(@ 1 atm) 351.6 K 373.15 K 

Melting Temp 158.8 K 273.15 K 

MW (g /mole) 46.069 18.015 

Heat Capacity Coefficient, (J / mole.K) 

a
pC  19.875 32.218 

b
pC  210946.20 −×  210192.0 −×  

c
pC  510372.10 −×−  510055.1 −×  

d
pC  910042.20 −×  910593.3 −×−  

Tc, K  513.92 647.13 

Pc (Pa) 6.12 *10-6 21.94 *10-6 

Vc (m
3 / kmole) 0.168 0.056 

Zc 0.240 0.228 

w 0.643 0.343 
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Table D.5 NRTL Model Parameters. 

 

Component i EtOH H2O 

Component j H2O EtOH 

∆gij (cal / mol) -175.0164 1440.3479 

ijα  0.2959 0.2959 

 

 

Table D.6 Constants for Antoine Equation. 

 

 A1 A2 A3 

Ethanol 5.33675 1648.220 230.918 

Water 5.11564 1687.537 230.170 

 

 

Table D.7 Constants for Wagner Equation. 

 

 W1 W2 W3 W4 

Ethanol -8.51838 0.34163 -5.73683 8.32581 

Water -7.76451 1.45838 -2.77580 -1.23303 
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APPENDIX E 

DETAILS OF EXPERIMENTAL SET UP 

E. 1. Calibration Curve of Peristaltic Pumps 

 

 

 

 

Figure E.1 Calibration Curve of the Peristaltic Pumps. 
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Value on the peristaltic pump is estimated by using the calibration equation of the peristaltic 

pump which is given as follows,  

 
(E.1) 

 

 

E. 2. Details for the Analysis of Compound Compositions  

 

Samples are analyzed by using Poropak - Q column at gas chromatography (GC) (Hewlett – 

Packard 5890 Series II). Used temperatures for GC and areas obtained for samples, whose 

compositions are known, are tabulated at Table E.1 and E.2, respectively.  

 

 

Table E.1 Specifications for GC. 

 

 Temperature (oC) 

Oven 150 

Injection  170 

Det A  180 

 

  

 

Table E.2 Areas Obtained for Prepared Samples. 

 

Area 
Sample Percentages 

Water Ethanol 

15% EtOH – 85%H2O 26542 7624 

30% EtOH – 70%H2O 19890 11586 

50% EtOH – 50%H2O 12736 13865 

60% EtOH – 40%H2O 10050 14927 

70% EtOH – 30%H2O 7664 15900 

 

 

Compositions of the samples taken during experiment are calculated by using Equations E.2 

and E.3.  

OHOHEtOHEtOH

EtOHEtOH
EtOHx

22
βκβκ

βκ

+
=  (E.2) 
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OHOHEtOHEtOH

OHOH
OHx

22

22

2 βκβκ

βκ

+
=  (E.3) 

                                           

Since ethanol is more volatile than water, ethanol is chosen as a base component. 

Therefore, base component factor of the ethanol is equal to 1 as follows, 

1=EtOHβ  (E.4) 

To calculate base component factor of water, OH 2
β  Equation E.2 and E.3 are analyzed with 

information tabulated at Table E.2. For each sample with known compositions, only 

unknown value is base component factor of water in Equations E.2 and E.3. 

 

For sample 15%EtOH and 85%H2O 

OH 2
)26542()1)(7624(

)1)(7624(
15.0

β+
=   ⇒   6277.1

2
=OHβ  

For sample 30%EtOH and 70%H2O 

OH2
)19890()1)(11586(

)1)(11586(
30.0

β+
=   ⇒   35917.1

2
=OHβ  

For sample 50%EtOH and 50%H2O 

OH 2
)12736()1)(13865(

)1)(13865(
50.0

β+
=   ⇒   088.1

2
=OHβ  

For sample 60%EtOH and 40%H2O 

OH2
)10050()1)(14927(

)1)(14927(
60.0

β+
=   ⇒   9901.0

2
=OHβ  

For sample 70%EtOH and 30%H2O 

OH 2
)7664()1)(15900(

)1)(15900(
70.0

β+
=   ⇒   8891.0

2
=OHβ  

 

OH2
β shows parabolic behavior with respect to water composition. The data is given at Table 

E.3 and behavior can be observed by Figure E.2. 
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Table E.3 Data for Base Component Factor of Water. 

 

xH2O βH2O 

0,85 1,6277 

0,7 1,35917 

0,5 1,088 

0,4 0,9901 

0,3 0,8891 

 

 

 

 

Figure E.2 Behavior of Base Component of Water. 

 

 

By fitting the values at Table E.3, following equation is obtained to estimate base component 

of water,  

7545.01611.00152.1
222

2
++= OHOHOH xxβ  (E.5) 
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Then, Equation E.2 can be rewritten as follows: 

)7545.01611.00152.1(
222

2
+++

=

OHOHOHEtOHEtOH

EtOHEtOH
EtOH

xx
x

κβκ

βκ
 (E.6) 

and,  

1
2

=+ OHEtOH xx  (E.7) 

By rearranging Equation E.6, following equation is obtained to estimate liquid composition of 

ethanol.  

( ) 09308,11915,20152,1
222

23
=−++− EtOHEtOHOHEtOHOHEtOHOH xx κκκκκ  (E.8) 

 


