
FEATURE-BASED SOFTWARE ASSET MODELING WITH DOMAIN
SPECIFIC KITS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NESİP İLKER ALTINTAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER ENGINEERING

AUGUST 2007

Approval of the thesis

FEATURE-BASED SOFTWARE ASSET MODELING WITH
DOMAIN SPECIFIC KITS

submitted by Nesip İlker Altıntaş in partial fullfillment of the requirements
for the degree of Doctor of Philosophy in Computer Engineering De-
partment, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ali H. Doğru
Supervisor, Computer Engineering Dept., METU

Dr. Semih Çetin
Co-Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. A. Ziya Aktaş
Computer Engineering Dept., Çankaya University

Assoc. Prof. Dr. Ali H. Doğru
Computer Engineering Dept., METU

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Prof. Dr. İ. Hakkı Toroslu
Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU

Date: 10.08.2007

I hereby declare that all information in this document has been ob-

tained and presented in accordance with academic rules and ethical

conduct. I also declare that, as required by these rules and conduct,

I have fully cited and referenced all material and results that are not

original to this work.

Name, Last name : Nesip İlker Altıntaş

Signature :

iii

ABSTRACT

FEATURE-BASED SOFTWARE ASSET MODELING WITH DOMAIN

SPECIFIC KITS

Altıntaş, Nesip İlker

Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali H. Doğru

Co-Supervisor: Dr. Semih Çetin

August 2007, 172 pages

This study proposes an industrialization model, Software Factory Automation, for

establishing software product lines. Major contributions of this thesis are the concep-

tualization of Domain Specific Kits (DSKs) and a domain design model for software

product lines based on DSKs. The concept of DSK has been inspired by the way other

industries have been successfully realizing factory automation for decades. DSKs, as

fundamental building blocks, have been deeply elaborated with their characteristic

properties and with several examples.

The constructed domain design model has two major activities: first, building the

product line reference architecture using DSK abstraction; and second, constructing

reusable asset model again based on DSK concept. Both activities depend on outputs

of feature-oriented analysis of product line domain. The outcome of these coupled

modeling activities is the reference architecture and asset model of the product line.

The approach has been validated by constructing software product lines for two

product families. The reusability of DSKs and software assets has also been discussed

with examples. Finally, the constructed model has been evaluated in terms of quality

improvements, and it has been compared with other software product line engineering

approaches.

iv

Keywords: Asset Modeling, Domain Specific Kits, Feature-Based Software Develop-

ment, Software Architectures, Software Factories, Software Product Lines

v

ÖZ

ALANA ÖZGÜ KİTLER İLE ÖZELLİK BAZLI YAZILIM VARLIK

MODELLEMESİ

Altıntaş, Nesip İlker

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ali H. Doğru

Ortak Tez Yöneticisi: Dr. Semih Çetin

Ağustos 2007, 172 sayfa

Bu çalışma yazılım ürün hatları kurulmasına yönelik Yazılım Fabrika Otomasyonu

olarak adlandırılan bir endüstrileşme modeli önermektedir. Bu tezin ana katkısı Alana

Özgü Kitlerin (AÖK) kavramsallaştırılması ve buna dayalı olarak yazılım ürün bant-

larına yönelik bir alan tasarım modelidir. AÖK kavramı diğer endüstrilerde yıllardır

uygulanmakta olan fabrika otomasyon modelinden esinlenmiştir. Ana yapı taşı olarak

AÖK’ler, temel nitelikleri ve örnekleri ile detaylı olarak incelenmiştir.

Geliştirilen alan tasarım modeli iki ana aktivite içermektedir: Birincisi, AÖK’ler

kullanılarak ürün hattı referans mimarisinin oluşturulması ve ikinci olarak yine AÖK

kavramına dayanarak yeniden kullanılabilir varlık modelinin geliştirilmesidir. Her iki

modelleme aktivitesi de özellik bazlı alan analizi çıktıları üzerine kurgulanmıştır. Bu

iki modelleme aktivitesi çıktıları ürün hattı referens mimarisi ve varlık modelidir.

Yaklaşım, iki farklı ürün ailesi için yazılım ürün hattı kurularak denenmiş ve

geçerlenmiştir. AÖK ve yazılım varlıklarının tekrar kullanılabilirliği örnekler ile tar-

tışılmıştır. Son olarak, geliştirilen model sağladığı kalite iyileştirmeleri açısından

değerlendirilmiş ve diğer ürün hattı mühendislik yaklaşımları ile karşılaştırılmıştır.

vi

Anahtar Kelimeler: Alana Özgü Kitler, Özellik Bazlı Yazılım Geliştirme, Varlık Mod-

elleme, Yazılım Fabrikaları, Yazılım Mimarileri, Yazılım Ürün Bantları

vii

To the Memory of my Mother and my Father...

viii

ACKNOWLEDGMENTS

Finally, this long process has come to an end. I have to thank those people who have helped

me along the way. I really don’t know how to express my deep gratitude to them.

First, I would like to thank Dr. Semih Çetin who is my co-supervisor, my boss and my

friend all at the same time. Your vision and enthusiasm, in search of better, faster and cheaper,

have contributed a lot to this study. It would have been almost impossible to finish without

your friendship, motivation, guidance and encouragement. Thank you!

I express my deep appreciation to Assoc. Prof. Dr. Ali Doğru, as my supervisor, for

letting me freely come up with new ideas each time, for his constant positive outlook and his

constructive comments. Prof. Dr. Hakkı Toroslu and Prof. Dr. Semih Bilgen guided me with

their feedback during the progress meetings throughout the study. Thank you!

Dr. Onur T. Şehitoğlu, my old friend, supported me a lot during the writing of my

dissertation. My problems in latex were solved by his intelligent tricks. Thank you!

To my former supervisors, Assoc. Prof. Dr. Cem Bozşahin and Assoc. Prof. Dr. Halit

Oğuztüzün, and my former colleagues in Department of Computer Engineering: thank you

for your contributions to my academic background.

I feel lucky to work at Cybersoft, a fruitful environment for technology and engineering.

My special thanks go to my colleagues at Cybersoft: especially to Mr. Mehmet Surav for

many discussions on the drafts of this work. Thanks to Mrs. Özgür Tüfekçi for reading drafts

of the manuscript and her constructive comments. I am also grateful to my other colleagues

which helped to overcome the challenges and hard times in our projects during which many

ideas have appeared. Thank you!

Finally to my family; your love, support and patience have smoothed my way throughout

the study. Thank you İlkay, you have stood by me all along this long road with your love,

support and encouragement. Thank you Cansu, my little daughter, for your patience during

these long days of work- especially since some of our playtime has been sacrificed for my

research. And last but not the least, thank you Pelin, for sharing the life.

Thank you all!

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATON . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF FIGURES . xiv

LIST OF TABLES . xvi

LIST OF ABBREVIATIONS . xvii

CHAPTER

1 INTRODUCTION . 1

1.1 Statement of the Problem . 1

1.2 Research Method . 4

1.3 Publications . 5

1.4 Organization of the Thesis . 7

2 BACKGROUND . 9

2.1 Reuse in Software Engineering 9

2.2 Object-Oriented Development 10

2.3 Component-Based Development 11

2.4 Model-Driven Development . 13

2.5 Service-Oriented Computing 14

2.6 Architecture-Based Development 17

2.7 Asset-Based Development . 18

2.8 Software Product Lines . 19

2.9 Feature-Based Approaches . 21

x

2.10 Software Factories . 22

2.10.1 Economies of Scale and Scope 22

2.10.2 Constituents of Software Factories 23

3 THE APPROACH: SOFTWARE FACTORY AUTOMATION 29

3.1 Overview . 30

3.2 The Concept of Domain Specific Kit (DSK) 32

3.2.1 Fundamentals of DSKs 33

3.2.2 Examples of DSKs 34

3.3 Software Factory Automation 37

3.4 Feature-Oriented Requirements Engineering 39

3.5 Reference Architecture Modeling with DSKs 44

3.5.1 The Role of Choreography Language and Engine . . 44

3.6 Software Asset Modeling with DSKs 47

3.7 How SFA fits the Vision of Software Factories 49

4 REFERENCE ARCHITECTURE MODELING WITH DOMAIN SPE-
CIFIC KITS . 53

4.1 Identifying Quality Requirements 54

4.2 Identifying Problem Domain: Utility Concern Spaces 55

4.3 Describing Solution Domain: Architectural Concern Spaces . . 57

4.4 Symmetric Alignment of Both Domains 58

4.5 Representing Components and Connectors 60

4.6 Identifying Domain Specific Engines (DSEs) 60

4.7 Case Study: Web Security Framework 62

4.8 Remarks . 70

5 SOFTWARE ASSET MODELING WITH DOMAIN SPECIFIC KITS 74

5.1 Feature-Based Asset Modeling Approach 74

5.2 Asset Capability Model (ACM) 78

5.3 Software Asset Meta Model (AMM) 81

5.4 Managing Variability in Software Assets 87

5.5 Defining and Publishing Software Assets 89

5.6 Using Software Assets . 91

5.7 Remarks . 92

xi

6 EXPERIMENTATION AND VALIDATION 95

6.1 Defining the Scope of Example Domains 95

6.1.1 Investment Banking (INV) 96

6.1.2 Financial Gateways (FGW) 98

6.2 Reference Architectures . 101

6.2.1 Domain Specific Kits for Case Studies 101

6.2.1.1 RIA Presentation Kit 101

6.2.1.2 Reporting Kit 104

6.2.1.3 Business Services Kit 104

6.2.1.4 BPM Kit 106

6.2.1.5 RUMBA Business Rules Kit 106

6.2.1.6 Persistence (POM) Kit 107

6.2.1.7 Batch Processing Kit 108

6.2.2 Reference Architectures of The Product Lines 109

6.3 Asset Models . 112

6.4 Reusability of Domain Specific Kits 115

6.5 Quality Improvements . 118

6.6 Comparison with Major Product Line Approaches 120

6.7 DSKs in Migration to Service-Oriented Computing 123

6.7.1 Migration Strategy 123

6.7.2 The Role of DSKs in Migration Strategy 125

6.7.3 Experimenting the Migration Strategy 126

6.8 Remarks . 127

7 SUMMARY AND CONCLUSIONS . 129

7.1 Summary . 129

7.2 Conclusions . 130

7.3 Future Work . 133

REFERENCES . 135

APPENDIX

A GLOSSARY . 145

B ABOUT RAMTool . 149

C EXAMPLES FROM DSKs USED IN CASE STUDIES 153

xii

D DESCRIPTION OF ASSETS IN CASE STUDIES 167

VITA . 170

xiii

LIST OF FIGURES

FIGURES

1.1 Roadmap of publications . 5

2.1 Economies of scale and scope in mass and custom markets 23
2.2 Three axes of critical innovations for software factories (from [62]) . . 25

3.1 The overview of the SFA approach . 30
3.2 Software Factory Automation and PLC analogy 32
3.3 Conceptual model of DSK . 33
3.4 RDBMS as a DSK . 34
3.5 RIA framework as a DSK . 35
3.6 BRMS as a DSK . 36
3.7 Detailed conceptual model of Software Factory Automation 38
3.8 Transforming requirements to reusable software assets 40
3.9 Notation of feature diagrams . 42
3.10 Overview of asset modeling approach 48

4.1 Reference architecture modeling approach 55
4.2 Utility Concern Spaces (UCS) . 56
4.3 Architectural Concern Spaces (ACS) 57
4.4 Symmetric alignment matrix . 58
4.5 Architectural notation (from SAAM [78]) 60
4.6 Feature diagram of the CRA security (partial) 62
4.7 Example architectural aspects on CRA security feature diagram 65
4.8 The Web security framework model . 69
4.9 The Web security framework model with DSE abstractions 71

5.1 Asset modeling approach . 75
5.2 SPL reference architecture excerpt . 77
5.3 ACM for “Document Manager” (partial) 79
5.4 Asset meta modeling levels . 81
5.5 Software Asset Meta Model (AMM) 83
5.6 Defining DSATs and DSKs in AML 84
5.7 Defining context in AML . 85
5.8 Defining constraints in AML . 85
5.9 Defining choreography rules in AML 86
5.10 Defining variability points in AML . 89

xiv

5.11 Excerpt from “Document Manager” (artifacts) 90
5.12 Excerpt from “Document Manager” (public and external artifacts) . . 91
5.13 Excerpt from “Document Manager” (variability points) 92
5.14 Instantiating software assets . 93

6.1 OCTOPODA financial gateways product family overview 99
6.2 Reference architecture of INV product line (simplified) 110
6.3 Reference architecture of FGW product line (simplified) 111
6.4 Dependency of artifact types in case studies 112
6.5 A roadmap for migration to service-oriented computing 124
6.6 Mashup reference architecture with DSEs 125

B.1 RAMTool – Definition and selection of quality attributes 149
B.2 RAMTool – Definition and selection of architectural aspects 150
B.3 RAMTool – UCS and ACS matrices 150
B.4 RAMTool – Symmetric alignment matrix 151
B.5 RAMTool – Operations on symmetric alignment matrix 151

C.1 An example EBML file (definition of structure) 155
C.2 An example EBML file (definition of events) 156
C.3 A screenshot of EDS . 157
C.4 A screen rendered by ERE . 157
C.5 A sample JRXML file . 158
C.6 A sample DSXML file . 159
C.7 A screenshot of iReport . 159
C.8 A snapshot of a generated report . 160
C.9 A screenshot of Service Editor . 160
C.10 An example service definition . 161
C.11 An example JDPL process definition 162
C.12 A screenshot of GPD (Graphical Process Designer) 163
C.13 A snapshot of a process flow . 163
C.14 A snapshot of RUMBA Editor . 164
C.15 A screenshot of PomStudio . 164
C.16 An example PomXML definition . 165
C.17 An example job definition . 166
C.18 A screenshot of Job Management Console 166

xv

LIST OF TABLES

TABLE

2.1 Reuse archetypes (from Rothenberger et al. [114]) 10

3.1 Main stakeholders in SFA approach . 31
3.2 The terminology of DSK . 33

4.1 (Step–1) Identified security requirements 63
4.2 (Step–2.1) Taxonomy of architectural aspects 64
4.3 (Step–2.2) List of quality attributes for security 65
4.4 (Step–2.3) UCS for Web security framework modeling (partial) 66
4.5 (Step–3) ACS for Web security framework modeling 67
4.6 (Step–4) Symmetric alignment of UCS and ACS 68

5.1 ACM and ACM-to-DSA/VP matrix for “Document Manager” (partial) 80
5.2 Analogy between AMM and MOF . 82

6.1 List of DSKs used in the case studies 102
6.2 RIA Presentation Kit . 103
6.3 Reporting Kit . 105
6.4 Business Services Kit . 105
6.5 Business Process Management Kit . 106
6.6 RUMBA Business Rules Kit . 107
6.7 Persistence Kit . 108
6.8 Batch Processing Kit . 109
6.9 Asset utilization within and cross product families 113
6.10 Reusability of DSKs across multiple SPLs 117
6.11 Comparison of the approaches . 122

D.1 Description of INV product line assets 168
D.2 Description of FGW product line assets 169

xvi

LIST OF ABBREVIATIONS

ABD Architecture-Based Develop-
ment

ACM Asset Capability Model

ACS Architectural Concern Spaces

ADD Attribute-Driven Design

ADL Architecture Description Lan-
guage

ADO ActiveX Data Object

AJAX Asynchronous JavaScript and
XML

AML Asset Modeling Language

AMM Asset Meta Model

AOM Adaptive Object Model

AOP Aspect-Oriented Programming

API Application Programming In-
terface

AQAP Allied Quality Assurance Pub-
lications

ARID Active Reviews for Interme-
diate Designs

ATAM Architecture Tradeoff Anal-
ysis Method

B2B Business-to-Business

B2C Business-to-Customer

BPE Business Process Engine

BPEL Business Process Execution
Language

BPM Business Process Management

BPP Business Process Platform

BRE Business Rule Engine

BRMS Business Rule Management
System

BSE Business Service Engine

CAF Composite Application Frame-
work

CBAM Cost-Benefit Analysis Method

CBD Component-Based Develop-
ment

CDL Choreography Description Lan-
guage

CMMI Capability Maturity Model
Integration

CORBA Common Object Request Bro-
ker Architecture

CRA Central Registry Agency

DAO Data Access Object

DFM Domain Feature Model

DSA Domain Specific Artifact

DSAT Domain Specific Artifact Type

DSE Domain Specific Engine

DSK Domain Specific Kit

DSL Domain Specific Language

DSM Domain Specific Modeling

EBML Enhance Bean Markup Lan-
guage

EDS EBML Development Studio

ERE EBML Rendering Engine

ERP Enterprise Resource Planning

EIA Enterprise Internet Applica-
tion

FCL Feature-Constraint Language

FGW Financial Gateways Product
Line

xvii

FODA Feature-Oriented Domain Anal-
ysis

FODM Feature-Oriented Domain Mod-
eling Method

FORE Family-Oriented Requirements
Engineering

FORM Feature-Oriented Reuse Method

GP Generative Programming

GPD Graphical Process Designer

GUI Graphical User Interface

HL7 Health Level Seven

HTTP Hypertext Transmission Pro-
tocol

IDE Integrated Development En-
vironment

INV Investment Banking Product
Line

ISO International Standards Or-
ganization

IT Information Technology

JDBC Java Database Connectivity

JPDL jBPM Process Definition Lan-
guage

LRE Listing and Reporting En-
gine

MDA Model-Driven Architecture

MDD Model-Driven Development

MOF Meta Object Facility

MVC Model-View-Controller

MQ Message Queue

ODBC Open Database Connectiv-
ity

OO Object Orientation

OOP Object-Oriented Programming

O2R Object-to-Relational

OMG Object Management Group

OVM Orthogonal Variability Model

PIM Platform Independent Model

PLC Programmable Logic Controller

PME Persistence Management En-
gine

POM Persistent Object Model

POJO Plain Old Java Objects

PSM Platform Specific Model

QAW Quality Attribute Workshop

QoS Quality-of-Service

RAS Reusable Asset Specification

RDBMS Relational Database Manage-
ment System

RE Requirements Engineering

RIA Rich Internet Application

RISC Reduced Instruction Set Com-
puter

RUMBA Rule-based Model for Basic
Aspects

SAAM Software Architecture Anal-
ysis Method

SCA Service Component Architec-
ture

SCADA Supervisory Control and Data
Acquisition

SDLC Software Development Life
Cycle

SDO Service Data Objects

SFA Software Factory Automation

SOA Service-Oriented Architecture

SOAP Simple Object Access Pro-
tocol

SOC Service-Oriented Computing

SPI Software Process Improvement

SPICE Software Process Improvement
and Capability Determina-
tion

SPL Software Product Line

SQL Structured Query Language

UCS Utility Concern Space

UDDI Universal Description, Dis-
covery and Integration

UML Unified Modeling Language

xviii

VP Variability Point

WS-CTX Web Service Context

WS-CF Web Service Coordination Frame-
work

WS-TXM Web Services Transaction Man-
agement

WSDL Web Services Description Lan-
guage

XML Extensible Markup Language

xix

CHAPTER 1

INTRODUCTION

The software development for enterprises becomes increasingly challenging with the

unbridled evolution of Web-based presentation techniques, mobile and ambient envi-

ronments, di�erent access channels, B2B and B2C system integration requirements

(e.g., a typical banking software, an airline reservation system, or an e-government

application may require the connectivity to tens of systems and might be accessed

through diverse channels), and concurrent use of several development environments

(e.g., a 30 years old CICS software should be maintained together with a brand new

mobile device software). In spite of these, organizations need to achieve large produc-

tivity gains, improve time-to-market, maintain market presence and sustain unprece-

dented growth, improve product quality and customer satisfaction, achieve reuse goals,

and enable mass customization.

1.1 Statement of the Problem

The common characteristics of contemporary IT solutions can be overviewed as follows:

• They are usually technology or platform driven, so their focus is on the acciden-

tal di�culties, rather than essential di�culties in software engineering. Brooks

de�ned the four inherent di�culties of modern software as: �complexity�, �confor-

mity�, �changeability�, and �invisibility�. Much of the �complexity� that software

engineer has to master is arbitrary and forced by the di�ering human institu-

tions and systems, in other words the atypical business environment to which

1

the software interfaces must �conform�. The �invisibility� of software hinders the

communication among minds, particularly the minds of business and IT profes-

sionals. Worse than that software is embedded in a cultural mix of applications,

users, laws, and machine vehicles that continually change, inexorably forcing

change upon the software product. IT departments are overburdened with intol-

erable costs of �changeability� resulted from the everlasting demands of business

departments [23].

• They are labor-intensive which limits the repeatability of solutions without de-

pending on the man-power. The methods, techniques, processes, and best-

practices usually come and go away with the team; they are volatile.

• They are extremely costly with high percentage of hidden costs rather than

direct implementation costs. Understanding the business, capturing the require-

ments, design with customizability and reusability in mind, coping with technol-

ogy waves and adaptations to the most recent standards creates all hidden costs

that a software product or project must face.

• They are based on the abstractions from IT perspective. The entities, objects,

services, components, aspects, models, etc. are all the building blocks of technical

sta�.

• They are usually di�cult and expensive to adapt. Flexibility of software to

new requirements, adaptability of architectures, parameterization, managing the

variability and commonality can not simply be addressed with ad-hoc methods

or on-demand development of such abilities is excessively expensive.

• They are not tolerable to shifts and changes in business, where business needs

hand-on �exibility in accordance with the market changes.

• They usually lack in satisfying the quality targets. Quality targets for func-

tional and non-functional requirements are equally important; hence the product-

oriented and process-oriented quality models need to be in place.

In summary, one-�ts-all approach with generic processes, methods, models, archi-

tectures, frameworks and tools depends on a real craftsmanship and is labor-intensive;

hence it provides minimal reuse.

2

For the past two decades, software industry has mainly demanded personal pro-

ductivity. Instead, the software industry is now switching gears to explore technolo-

gies which automate business processes. As the industry matures, businesses look for

much richer functionalities and quicker response times. Accordingly, software industry

should surpass the techniques that brought it to this point, and embrace the industri-

alization best practices achieved by manufacturing. These include product assembly

from components, reducing labor-intensive tasks with automation, setting up the soft-

ware product lines and supply chains, formalizing the interfaces, and standardizing

architectures and processes.

The vision of improving reusability is in the heart of the problem. Improving reuse

and hence quality is critical for increasing the productivity of software teams as well

as decreasing the cost and time to market of software products. Boehm puts special

emphasis on software productivity management through systematic reuse leveraged by

three basic strategies: working faster via tools to automate the labor-intensive tasks,

working smarter with process improvement, and working less via reuse of software

artifacts [20]. The question is which strategy will produce the highest payo�? An

extensive analysis addressed this question for the US Department of Defense and con-

cluded that working less is more valuable three times than working smarter and six

times than working faster [19].

Reuse must be maximized; however managing the software reuse is not trivial. The

classes, templates, programs, executables, frameworks, architectures, domain know-

how, assets, features, etc. are all candidates to be reused, if possible all at the same

time. The higher the abstraction level of reusable item is the higher the gain in bene�ts

and improvement in the productivity in software development since it reduces the

complexity and brittleness of the software [62]. Contrarily, the powerful abstractions

also narrow down the scope of application. Since no two software installations are

exactly the same, reuse requires the management of variability and commonality, ease

of con�gurability, and e�ective means to manage the software con�gurations.

The abstraction level in software design plays a major role in the speci�cation of

software assets for maximizing the reuse [19]. It has also been revealed that reuse max-

imization needs the separation of both inter-asset and intra-asset concerns, and their

subsequent composition in software design. The strategy is to model the functional

3

(business) and non-functional (architectural) requirements of the problem domain and

designing the solutions domain by reusing the solution domain artifacts. Note that

solution domain artifacts are not one-to-one mapped from the problem domain, and

even their terminologies are di�erent.

The problem statement, in short, is as follows:

How can we incorporate domain speci�c abstractions to improve sys-

tematic reuse of software assets on the basis of an industrialization model in

order to enhance the software development productivity and product qual-

ity while reducing the per product development and maintenance costs?

1.2 Research Method

Typically, a research method has three phases: determination of the research question;

conducting the research and obtaining the research results; and validating the results.

For conducting research, several sub-questions can be raised in the light of above

research statement. For each sub-questions, we have employed the following particular

research steps:

Q1. Can domain specific know-how be abstracted and reused across different busi-

ness domains? To incorporate domain speci�c abstraction, Domain Speci�c Kits

(DSKs) have been devised as a basic building block to express the domain speci�c

types and artifacts. It has been validated by modeling several DSKs from dif-

ferent domains and they are checked whether they can be reused across di�erent

product families.

Q2. Can such abstractions increase the reusability of software assets? An asset mod-

eling approach has been constructed, and two product families have been modeled

using this approach. The reuse scope and reuse rates in these families have been

investigated for validation purposes.

Q3. What should be the content of reusable assets for increased reuse scope? The DSK

abstraction has been used for product line asset modeling. The domain speci�c

artifact types, their instances, their dependencies, variability mechanisms, and

contextual information have been abstracted as software assets. We have later

4

checked that the assets can be reused not only within a product family but also

in multiple product families as long as their DSK and contextual dependencies

are provided.

Q4. How do those domain specific abstractions be employed and helpful in modeling

the reference architecture of a product family? A reference architecture model-

ing approach has been constructed based on the separation of concerns both in

problem and solution domain. The concept of DSK has been successfully utilized

in product line reference architecture. This has been validated by constructing

reference architectures of di�erent domains.

Q5. Can we construct a roadmap for setting up software product lines for different

domains out of a reference model? The whole model has been named as Software

Factory Automation (SFA) approach, and it has been used experimentally to

model two distinct product families.

1.3 Publications

The results of research in this thesis have been presented in several papers in various

workshops and conferences. Figure 1.1 presents the roadmap of publications which

paves the way to the SFA approach.

TSAD 2005 [8]

TEAA 2005 [6]
ttjjjjjjjjjjjjjjjj

MORSE 2006 [34]
��

TEAA 2006 [7]
**TTTTTTTTTTTTTTTT

oo

ICPS 2007 [31]
��

ICSEA 2007 [30]
��

DPM 2006 [33]
����

��
��

��

��?
??

??
??

?
ICSEA 2006 [32]

��?
??

??
??

?

����
��

��
��

IDPT 2006 [128]
**TTTTTTTTTTTTTTTT

ttjjjjjjjjjjjjjjjj

Figure 1.1: Roadmap of publications

In [8], an in-house Software Product Line (SPL) of Cybersoft1, so-called Aurora,

has been introduced as a platform independent, service-oriented, and multi-tier Web

1 Cybersoft C/S Information Technologies Co., http://www.cybersoft.com.tr/

5

application development environment including the core infrastructure based on Rich

Internet Application (RIA) and Enterprise Internet Application (EIA) models. Besides

Aurora provides a complete roadmap to enterprise scale Web-based applications,

it also embodies the SPL by providing software process management methodology,

design and development environments, software lifecycle management techniques and

quality management tools. Essential SPL activities, such as management, core asset

development and product development, have been evaluated brie�y.

The [6] and [33] are initial steps of the constructed approach to segregate and

compose the artifacts (concerns) during software design.

In [6], an approach has been proposed to integrate Aurora with re�ective rule-

based business process modeling (RUMBA). RUMBA is a rule-based model in which

rules and rule-sets can be expressed in terms of dynamic aspects and delegated facts.

The approach mainly addresses �Re�ective Aspect� and �Re�ective Rule� patterns

for the seamless integration of Aurora and RUMBA. Both architectural patterns

introduce a �generative� approach for developing the basic aspects, dynamic rules and

rule-sets so that all can be implemented with Adaptive Object Model (AOM).

In [33], the segregation of business rules that crosscut several parts, such as work-

�ows, task assignments, and business transactions, at almost every tier of software

architecture has been further explored. Seamless integration with the rest of the pic-

ture has been presented with a practical Aspect-Oriented Framework for rule-based

business process management where all aspects, facts, rules and rule-sets can be de-

�ned and managed dynamically by means of a GUI console. Moreover, this lightweight

framework has been implemented in conformance to Adaptive Object Model to facili-

tate the process dynamism through declarative techniques and bytecode engineering.

In [32], another dimension, i.e. Architectural Modeling, of the study has been

initiated. Architectural modeling identi�es several concerns in problem domain and

associates them with design decisions in solution domain. This paper proposed a

modeling approach to address the architectural concerns in multiple concern spaces

both for problem and solution domains, and align them symmetrically. Chapter 4 is

primarily based on this paper.

In [128], the problem of business modeling has been elaborated with a new outlook

based on business process categorization, separation of concerns and loose coupling,

6

patterns of business process capturing, conceptualization of business assets in terms of

processes, services and rules, declarative de�nition and vibrant management of business

assets, and �nally proper architecture over which the quality of business assets can be

best matched with the functionality of business processes. The primary focus of the

study was how the concerns of business and IT departments can be separated so that

business goals and IT goals can be ful�lled independently; and the term �discrepancy

of the perspectives� has been de�ned for business modeling.

In [7], the SFA model has been proposed as an industrialization model for software

development. The study basically introduced the concept of Domain Speci�c Kit

(DSK) and de�ned the concept of �software factory automation� for setting up product

lines and managing reusable assets across distinct software product lines. Chapter 3

and Chapter 5 are primarily based on this paper.

In [34], the concept of DSK has been elaborated within the scope of reuse, and the

similarities of software modeling and manufacturing industries have been identi�ed. It

has tried to show how the former can bene�t from the latter for the systematic reuse

of domain speci�c models.

In [31] and [30], the DSK and choreography engine concepts have been reshaped

as an enabling technology towards migrating to the service harmonization platform

in the context of Service-Oriented Computing. This work provides a roadmap for the

migration of legacy software to Service-Oriented Computing by means of right levels

of abstraction. The proposed approach has also been exempli�ed on a simple case

problem. It has been brie�y discussed in Section 6.7 as an application of the concepts

introduced here.

1.4 Organization of the Thesis

The rest of the manuscript has been organized as follows:

In Chapter 2, the background work on software reuse and abstraction has been stud-

ied and brie�y discussed. The discussion covers a historical view starting from Object-

Oriented Development to today's Software Factory approaches. In the meantime,

Component-Based Development, Model-Driven Development, Service-Oriented Com-

puting, Architecture-Based Development, Asset-Based Development, Feature-Based

Approaches and Software Product Lines have been discussed within the scope of im-

7

proving reuse and abstraction in software engineering.

Software Factory Automation (SFA), as a software industrialization model, has

been introduced in Chapter 3. The model depends on a key conceptualization, named

Domain Speci�c Kit (DSK), to construct and reuse the domain speci�c artifacts for a

product family.

The reference architecture modeling, which is crucial for the approach, has been

introduced in Chapter 4. It includes the details of six-step roadmap and a case study

to demonstrate the applicability of the approach in Web security framework model-

ing. The chapter also includes a brief survey of architecture modeling techniques in

relevance to the proposed approach.

The accompanied asset modeling approach has been introduced in Chapter 5. The

�ve-step feature-based software asset modeling roadmap depends on the architectural

model of the previous chapter. The key idea is to specify asset models with reusable

Domain Speci�c Artifacts abstracted by DSKs (composed of a domain speci�c lan-

guage, engine, and the toolset). This approach encapsulates correlated features within

more cohesive asset models and composes them through a choreography engine.

Chapter 6 presents the evaluation of the study from di�erent perspectives. For the

validation purposes, there are two case studies modeled using the proposed approach.

The results have been validated with respect to the problem de�nition and research

questions. The previous chapters also include several simpler and partial examples for

clarifying the concepts and ease of understanding.

Finally, Chapter 7 includes the summary of the work, concluding remarks and

further research areas.

8

CHAPTER 2

BACKGROUND

This chapter discusses the existing approaches for improving reuse and abstraction on

the way to industrialization of software development.

2.1 Reuse in Software Engineering

In a recent analysis of reuse strategies, Rothenberger et al. [114] have investigated

the practical reuse strategy alternatives and their e�ectiveness for a successful reuse

program. Based on the data collected from 71 software development groups all over the

world, they have performed a principal component analysis to identify the dimensions

that best describe the characteristics of software reuse settings and their potential for

reuse success. The study establishes the dimensions and classi�es the reuse settings in

�ve reuse archetypes as given in Table 2.1.

In this study, it has been concluded that the success of reuse is independent from

the choice of technology. The results are summarized as follows:

• Performing well in all reuse dimensions leads to all of the reuse bene�ts.

• Software quality can be realized by a focus on project similarity and common

architecture.

• Performing only moderately well, or poorly, across all of the dimensions only

leads to moderate or poor reuse success.

• Focusing on formalized process and project similarity can have good overall per-

formance, but not the best without the other dimensions.

9

Table 2.1: Reuse archetypes (from Rothenberger et al. [114])

Throughout the years, several proposals have been on the stage for improving the

reuse. Transition from procedures and data to object encapsulation [21, 40], later

to components [24, 50, 89], now to service and business processes are well-known ex-

amples. Recent approaches like Service-Oriented Computing [30, 107], Model Driven

Development [59, 99, 115], Architecture-Based Development [12, 13, 78, 80, 81, 117],

Asset-Based Development [88, 112], Feature-Based Approaches [45, 64, 75] and Soft-

ware Product Lines (SPL) [38, 103, 109, 111, 136], Software Factories [63, 84, 87, 94, 98]

identify the same problem with di�erent perspectives.

2.2 Object-Oriented Development

Object Orientation (OO), as a paradigm, has been used increasingly as an approach

to facilitate the reuse. The use of object-oriented programming languages, object-

oriented analysis and design methodologies, distributed object computing techniques,

and object-oriented domain modeling languages have come to scene for better quality

software and improved reuse. During the last decades, it had been sternly advocated

that OO paradigm encompassed the complete view of software engineering without

the loss of communication [21].

The idea behind object orientation assumes that we have been living in a world

of objects [3]. Modeling, understanding, and developing objects are easier since they

constitute a common vocabulary. The objects take place in nature, in human made

10

entities, in businesses, and in the products that we use. Both data and the processing

applied to that data have been encapsulated by objects. The practice of de�ning data

structures and code in the same class keeps the elements that need to be reused as a

unit within one framework, and encapsulation forces to clearly de�ne the interfaces of

each class to the outside world.

The object-oriented paradigm has been attractive to many software development

organizations with the expectation that it yields reusable classes and objects. While, at

the same time, the software components derived using the object-oriented paradigm

exhibit design characteristics (e.g. proper decomposition, functional independence,

information hiding etc.) that are associated with high-quality software [40].

Rothenberger et al. [114] have checked whether �higher levels of object technologies

are associated with higher levels of reuse program success�. Although the use of �Object

Technologies� was initially a candidate for a reuse dimension, it was determined to be

insigni�cant in explaining the reuse success. They concluded that an organization's

reuse success is not dependent on the use of object-oriented techniques. This result is

also consistent with object technology practice and research [53, 106]. Both indicate

that object-oriented methods do not always lead to high reuse. An organization may

succeed at reuse without employing object-oriented methods. A reuse program may

bene�t object-oriented methods, but it takes more than just object orientation to

succeed.

2.3 Component-Based Development

The demand for low production costs, short time to market and high quality is also

addressed by means of the rapidly emerging Component-Based Development (CBD)

approach. In CBD, software systems are built as an assembly of components already

developed and prepared for integration. This aims the development of components as

reusable entities as well as the maintenance and upgrading of systems by customizing

and replacing their components. The main advantages of the CBD approach include

e�ective management of complexity, reduced time to market, increased productivity,

a greater degree of consistency, and a wider range of usability [24].

The distinction between components and objects are as follows: in addition to

many borrowed concepts from objects, components integration capabilities are far

11

more improved, their interfaces have more power with a protocol plus lists of events

in addition to properties and methods. On the other hand, components are limited

to composition whereas objects can use inheritance [50]. Components are in general

considered as black boxes with little or no information easily accessible.

The development processes of component-based systems are separated from devel-

opment processes of the components; the components should already been developed

and possibly used in other products when the system development process starts [43].

A general process model for component-based software development starts with

system speci�cation; goes on by decomposition of system into components; proceeds

with speci�cation, search, modi�cation, and creation of components; and �nally con-

cludes with integration [50]. System decomposition is an iterative process through

alternate decomposition and composition activities until the speci�cations of mod-

ules agree with a set of components. This also requires a new activity of �nding and

evaluating the components.

Despite many foreseen advantages, there is a number of reuse challenges using

components [89]:

• Component-based applications are sensitive to evolution of the system. As com-

ponents and applications have separate lifecycles and di�erent kinds of require-

ments, there is some risk that a component will not completely satisfy the partic-

ular requirements of certain applications or that it may have characteristics not

known to the application developer. One of the most important factors for suc-

cessful reusability, in an evolving software system, is the compatibility between

di�erent versions of the components. Evolution of system requirements (func-

tional and non-functional), evolution of technology used in software products,

evolution of technology related to di�erent domains, and evolution of technology

used for the product development are all a�ect the long life products. In order

to cope with these evolutions, the components must be updated more rapidly

and the new versions must be released more frequently than the products using

them.

• When developing reusable components, the development process must consider

the development of components on di�erent platforms; development of di�er-

ent variants of components for di�erent products; independent development of

12

components and products. In order to cope with these types of problems, com-

plicated development processes are essential as well as an appropriate product

architecture and component design.

• The maintenance of reusable components process is also complex, because the

relations between components, products and systems must be carefully registered

to make possible the tracing of errors on all levels. It is even more complicated

in case of external components.

Finally, while component-based models successfully deal with functional attributes,

they provide limited support for managing quality attributes of systems or components.

The quality aspects of software products are not, however, addressed adequately by

component-based development.

2.4 Model-Driven Development

Model-Driven Development (MDD) is a model-centric software engineering approach

which aims at improving the quality and lifespan of software artifacts by focusing on

models instead of code [59]. Models are considered as �rst class entities. A system

is described by a family of models, each representing the system from a speci�c per-

spective and at a speci�c level of abstraction. Thus, working with models by means

of re�nement and transformation provides traceability between elements in di�erent

models.

The most important realization of MDD is de�nitely OMG's Model-Driven Ar-

chitecture (MDA) [99]. The MDA approach comprises the creation of a �Platform

Independent Model� (PIM), which is based on a suitable UML pro�le and represents

business functionality and behavior and, subsequently, the semi-automatic or fully au-

tomatic transformation of the PIM into a �Platform Speci�c Model� (PSM). In the

next step, code can then be generated from the PSM.

MDD brings a number of advantages. First, platform independent models hold

business semantics and functionality. Second, higher level of abstraction reduces cus-

tom code quantity and complexity. Developers only add code to specialize operations,

rules, and constraints. Third, platform speci�c design and implementation models are

more precise. Fourth, small amounts of metadata replace large amounts of custom

13

code; the generators are capable of transforming design, implementation and deploy-

ment elements into code. Fifth, the change will be in system or business con�guration

instead of writing or editing custom code.

On the other hand, there is a number of critics for MDD approach (the discussion

has been taken from [59]): it is considered to be an inadequate starting basis for

automatic code generation due to expressional weaknesses of UML and other existing

modeling languages. Secondly, similar to source code, the models have to be veri�ed

when they are built, transformed, and used for code generation. Currently, such a

�model compiler� does not exist yet, and because of the resulting necessity to revise

and extend the generated code the desired maximum degree of reuse is not yet achieved

at all. This de�ciency can be traced back to the semi-formal nature of UML and

shortcomings with respect to modeling dynamic behavior.

Another open problem with MDD is the level of abstraction of the models. De-

pending on the focus of the approach, it ranges from concrete and �ne-grained models

to very abstract models that let business experts to build models. Finally, the prob-

lem of working with large models for practical cases is still a major problem. It is

inevitable to describe a system by several models presenting di�erent views and to

integrate them. However, a thorough analysis of how such a �super-model� can be

created in a generic way does not exist [59].

2.5 Service-Oriented Computing

Service-Oriented Computing (SOC) is a new computing paradigm that takes services as

basic elements. SOC relies on Service-Oriented Architecture (SOA) when constituting

the service model. Basic tenets of SOC are loosely coupled asynchronous interactions

on the basis of open standards to support complex business processes and transactions

as reusable and accessible services, in contrast to tightly integrated monolithic appli-

cations [107]. SOC will be presented a little bit in detail here since it o�ers higher

reuse potential and the proposed approach in this thesis relies on SOA as a paradigm

for composition.

The constituents of SOA can be providers (basic service providers and aggrega-

tors), consumers (service aggregators and end users), and brokers (middleware and

registries). Providers do advertise their services to registries and consumers query

14

registries in order to discover required services that satisfy their goals.

Adapted from [107], the crosscutting concerns of SOA can be described at three

di�erent service levels:

• Basic level includes service description portions (capability, interface, behavior,

Quality-of-Service � QoS) and basic operations on services (publication, dis-

covery, selection, binding, and invocation) for o�ering reusable, adaptable and

context-aware services to conform a constructable model.

• Composite level includes coordination activity (orchestration of services), confor-

mance (integrity insurance of interfaces), monitoring, QoS for o�ering static/dy-

namically composable, veri�ed with regard to quality concerns, and seamlessly

integrated services to conform a composable model.

• Managed level includes operations (providing control and feedback) and mar-

ket considerations for o�ering satis�ed regarding market needs, correlated and

controllable services to conform a canonical model.

The fundamental challenges of SOC are �nding the e�ective and e�cient ways

of service description, discovery, selection, composition, monitoring, and integration

while focusing on semantics those point out intelligent, dynamically adaptive, and

context sensitive services.

In the context of service composition challenge, the de�nition of service component

adds an abstraction layer to facilitate the representation of modularized service based

applications to overcome complexity. Service Component Architecture (SCA1) emerges

with a set of speci�cations describing a model for service component as a cohesive and

conceptual module which includes services assembled by wiring of service-oriented

interfaces and orchestrated according to stated business logic. SCA can be coupled

with Service Data Objects (SDO2) to provide uniform representation of business data

for accessing the messages that arrive at or are sent from components.

Internet standards assist realizing SOA with Web services through exposing them

as services that can be described, advertised, discovered, and interoperated [26]. Web

services can be described using Web Service Description Language (WSDL3), which

1 OSOA, http://www.osoa.org/display/Main/Service+Component+Architecture+Home
2 OSOA, http://www.osoa.org/display/Main/Service+Data+Objects+Home
3 WSDL Ver1.1, http://www.w3.org/TR/wsdl

15

de�nes operations along with input/output messages and data residing in messages.

The interaction between services can be achieved by an XML document whose schema

is speci�ed by Simple Object Access Protocol (SOAP4) using HTTP at transportation

layer. The universally accepted standard to facilitate the discovery of Web services is

Universal Description, Discovery, and Integration (UDDI5).

Composite services have two views complementing each other, namely, orchestra-

tion and choreography. Orchestration of Web services enables coordination of services

by assigning an orchestrator, which is a central manager responsible for invoking and

combining subactivities. However, Web service choreography de�nes inter and intra

collaboration of each service to realize the system target goal without a central mech-

anism. But any of the service composition language is su�cient to represent business

agreement support, which de�nes the contract between two parties on QoS [26]. Fur-

ther details on choreography have been discussed in Section 3.5.1.

SOA and Business Process Management (BPM) are two key technologies for Service-

Oriented Computing. BPM involves a control mechanism for de�ning, altering, or-

chestrating, executing, and monitoring business processes taking business rules into

account. BPM de�nes behavioral roles of business processes, which are seen as as-

sembly of activities realized through work�ow and business rules with the human

intervention.

Within SOC, business processes act as a conceptual player, whereas services spread

over logical layer of the picture. When appropriately represented and put into devel-

opment, business processes can provide the application-wide glue in composing Web

services. Without such processes, the SOA cannot account for the sequencing of the

service activations. The new trend currently points out networks of orchestration for

collaborating di�erent enterprise applications within and across organizational bound-

aries; context adaptive, ambient intelligence type services are spread over the network

and are accessed potentially from any device and any location [30]. The notations

for business processes modeling, visualizing, and execution have been discussed in

Section 3.5.1 during explanation of the choreography of domains.

SOC brings the services as �exible abstractions encapsulating piece of software (al-

gorithm, computation, etc.) which can be reused across di�erent compositions to form

4 SOAP Ver1.2 Working draft, http://www.w3.org/TR/soap12-part0/
5 http://www.uddi.org/

16

higher level abstractions (services). Therefore, either created brand new or wrapped

an already existing computation, services embody a high potential for reuse. Although

great achievements done, there is still a huge research agenda on service-oriented ar-

chitecture and engineering, enabling technologies, methodologies, programming tools,

management tools, the economic models, and on reducing the complexity [123].

The model presented in this thesis has been collaboratively applied on legacy mi-

gration to service-oriented computing [30, 31]. Section 6.7 includes the discussion of

how it can help in migration to service-orientation.

2.6 Architecture-Based Development

Although there are many de�nitions of software architecture, generally accepted de�-

nition is �the structure or structures of the system, which comprise software elements,

the externally visible properties of those elements, and the relationships among them�

[13]. An architecture de�nes the rationale behind the components and the structure

in relation to system stakeholders' requirement statements. Software architecture doc-

umentation facilitates communication between stakeholders, identi�es early decisions

about high-level design, and allows reuse of design components and patterns [13].

Garlan de�nes six aspects of software development that software architecture can

have signi�cant impact [57]: it simpli�es the �understanding of large systems� by pre-

senting them at a level of abstraction at which a system's high-level design are easily

comprehensible. Second, architectural descriptions support �reuse� at multiple levels.

Third, an architectural description provides a blueprint for �construction� by indicat-

ing the major components and dependencies between them. Fourth, it can expose the

dimensions along which a system is expected to �evolve� (by explicitly de�ning the

�load-bearing walls�). Fifth, it provides a basis for the analysis of the system's depen-

dency, consistency and conformance. Finally, considering a viable software architecture

as a key milestone in an industrial software development process improves the �man-

agement� of the project, understanding of requirements, implementation strategies,

and potential risks.

Software development organizations that use architecture as a fundamental part of

their way of doing business often de�ne an Architecture-Based Development (ABD)

process. Bass and Kazman describe an architecture-based development process in-

17

cluding elicitation of architectural requirements, design, documentation, analysis, re-

alization and maintenance of software architectures [12]. The architecture, itself, is

the major reusable asset, and it is a blueprint for all activities in the development life

cycle.

Many architecture-centric analysis and design methods have been created in the

last decade. Starting with Software Architecture Analysis Method (SAAM) [78], the

fundamental ones are Architecture Tradeo� Analysis Method (ATAM) [79, 80], Qual-

ity Attribute Workshop (QAW) [10], Cost-Bene�t Analysis Method (CBAM) [77],

Active Reviews for Intermediate Designs (ARID) [39], and Attribute-Driven Design

(ADD) [13]. These architecture-centric methods are scenario-driven; directed by op-

erationalized quality attribute models; focus on documenting the rationale behind the

decisions made; and involve stakeholders so that multiple views of quality are elicited,

prioritized, and embodied in the architecture [81].

These architecture-centric methods can in�uence a wide variety of activities through-

out the Software Development Life Cycle (SDLC). As these methods have taken place

as standalone methods, Kazman et al. [81] link these methods with the SDLC, in-

cluding all the steps of understanding of business needs and constraints, elicitation

and collection of requirements, architecture design, detailed design, implementation,

testing, deployment, and maintenance.

In [117], Shaw and Clements analyze two decades of software architecture research

by examining the maturation of the software architecture research area by tracing

the evolution of research questions and results through their maturation cycle. They

show how early qualitative results set the stage for later precision, formality, and

automation, how results have built up over time, and how the research results have

moved into practice.

Further details, such as Architecture Description Languages (ADLs), quality at-

tributes, etc., have been discussed in relevant sections of Chapter 4 during the presen-

tation of reference architecture modeling approach.

2.7 Asset-Based Development

Asset-Based Development organizes the software-related investments, requirements,

models, code, tests, and deployment scripts to be used for future software project

18

activities [88]. The processes, standards, tools and assets are four major constituents

of Asset-Based Development. The following asset de�nition has been quoted from

Larsen [88]:

An asset is a collection of artifacts that provides a solution to a problem.

An asset has instructions on how it should be used and is reusable in one

or more contexts, such as a development or a runtime context. It may also

be extended and customized through variability points.

As it is clearly indicated, this broad de�nition of asset includes any piece of artifact

(e.g. models, requirements, tests, plans, binaries, etc.), those that are not executable

and those that are useful to personnel in di�erent roles and those that are relevant

to di�erent points in the development life cycle. Typically, the life cycle of assets

includes the following major work�ows: asset identi�cation, production, management

and consumption. A model is �rst identi�ed as a candidate asset and then produced

into a reusable asset for a speci�ed context. It is then reviewed, the version is updated,

and it is published as part of asset management. Finally, the model is searched,

browsed, reused, and rated as part of asset consumption.

Asset-Based Development can be considered as a sub-methodology in the software

development process. Though being not a complete software development process,

asset-based development is a set of processes, activities and standards that facilitate

the reuse of assets. Asset-based development is architecture centric [112].

2.8 Software Product Lines

A Software Product Line (SPL) is a set of software-intensive systems sharing a common,

managed set of features that satis�es the speci�c needs of a particular market segment

or mission and that are developed from a common set of core assets in a prescribed

way [38]. A product line's scope is a description of the products that constitute the

product line or what the product line is capable of producing. Within that scope, the

disciplined reuse of core assets, such as requirements, designs, test cases, and other

software development artifacts greatly reduces the cost of development.

The key objectives of SPLs are to capitalize on commonality and manage variation

thus reduce the time, e�ort, cost, and complexity of creating and maintaining a di�er-

ent product line of similar software systems. Therefore, with the disciplined reuse of

19

core assets and commonalities, SPLs can address problems such as dissatisfaction with

current project performance, reduce cost and schedule, decrease complexity of manag-

ing and maintaining product variants, and quickly respond to customer / marketplace

demands.

The key component enabling the e�ective resolution of these problems is the use of

a product line architecture that allows an organization to identify and reuse software

artifacts for the e�cient creation of products sharing some commonality, but varying

in known and managed ways. The architecture, in a sense, is the glue that holds the

product line together [136].

The operation of a product line involves core asset development and product devel-

opment using the core assets, both under sponsorship of technical and organizational

management. In this sense, a SPL requires three essential activities [103]:

• The Core Asset Development is the ongoing activity of developing core asset base

of product line. Its outputs are the core assets used in the family of products,

and a production plan that tells how to use or tailor the core assets to produce

a product.

• The Product Development is the engineering activity of turning out products

using the core assets as prescribed by the production plan.

• The Management is the activities of technical and organizational management,

without which the product line eventually will collapse.

Core asset development and product development from the core assets can occur

in either order: new products are built from core assets, or core assets are extracted

from existing products. There is a strong feedback loop between the core assets and

the products. Core assets are refreshed as new products are developed. Use of core

assets is tracked, and the results are fed back to the core asset development activity. In

addition, value of the core assets is realized through the products that are developed

from them. As a result, core assets are made more generic by considering the potential

new products in sight. There is a constant need for strong, visionary management to

invest resources in developing and sustaining the core assets.

SPLs have gained a lot of attention [103] since they provide the e�ective reuse

of software artifacts; bene�t from the validated architecture that is being used by

20

di�erent products; enable to focus on the truly unique aspects of products; facilitate

the software integration since working with components whose integration has already

been tested; enable e�ective workforce management based on a proven production

plan; and realization of software product quality. An SPL may depend on an asset

base ranging from the architecture itself to software components, from the development

tools to test cases and test plans.

Domain Engineering and Application Engineering are two key complementary pro-

cesses that are performed in product line approaches [109, 130, 133]. The domain engi-

neering (design-for-reuse) is to provide the reusable platform and core assets that are

exploited during application engineering when assembling or customizing individual

applications. It includes domain analysis, domain design and domain realization and

testing. Complementarily, application engineering (design-with-reuse) is to develop

individual products using the platform and core asset base established in domain

engineering. It covers the application requirements engineering, application design,

application realization and testing. Further details of software product line approach

have been discussed in relevant sections of the text.

2.9 Feature-Based Approaches

Feature-based approaches has been used extensively in domain engineering of software

product lines to capture the common and variable parts of a family of similar products

[45, 64, 75]. The use of features in domain analysis helped by providing a common

vocabulary among di�erent stakeholders, identifying and expressing the variability/-

commonality of di�erent products.

Features are any prominent and distinctive concepts or characteristics that are

visible to various stakeholders [93]. It can be a structural property, the components of

the designed object, a con�guration, a set of relationships, a behavior, a function, or

a property of a behavior or of a function [25]. In other words, it is an elaboration or

augmentation of an entity that introduces a new service, capability or relation [15].

A feature model should represent the requirements of a product, its behavior,

the quality attributes, and constraints that need to be satis�ed. The most common

representation of features is with FODA-style feature diagrams [74]. The notation for

feature diagrams has been depicted in Figure 3.9 in Section 3.4.

21

Feature-Oriented Domain Analysis (FODA) [74] has been proposed as a conceptual

model to express the business domain in terms of features. Later, Feature-Oriented

Reuse Method (FORM) [75] has extended FODA to the software design phase and pre-

scribes how the feature model is used to develop domain architectures and components

for reuse.

Lee et al. [93] describe the concepts and guidelines for feature modeling; it starts

from domain planning and continues with feature identi�cation, categorization, or-

ganization and �nally re�nement with practical guidance. However, unless applied

cautiously, even such propositions might direct its practitioners to monolithic and

complex feature models with crosscutting relations, which may then constrain reuse

maximization [17, 27]. Further discussion of feature-oriented requirements engineering

has been discussed in Section 3.4.

2.10 Software Factories

Mainly for past two decades, software industry has demanded personal productivity

and now it turns its vision to the technologies that automate business processes. As the

industry matures, businesses look for much richer functionalities and quicker response

times. Accordingly, software industry should surpass the techniques that brought it to

this point, and embrace the industrialization best practices achieved by manufacturing.

These include product assembly from components, reducing labor-intensive tasks with

automation, setting up the software product lines and supply chains, formalizing the

interfaces, and standardizing architectures and processes. In short, such a vision is

known to be the �software factory� approach.

The concept of SPL has been extended to de�ne Software Factories that con�gure

extensible tools, processes, and content using a software factory template based on

a software factory schema to automate the development and maintenance of variants

of an archetypical product by adapting, assembling, and con�guring framework based

components [63].

2.10.1 Economies of Scale and Scope

In comparison to the other industries, the distinction between the economies of scale

and economies of scope is critical. Economies of scale arise in the production of multiple

22

implementations of a single design, while economies of scope arise in the production

of multiple designs and their initial implementations [62]. Economies of scope arise

by using the same styles, patterns and processes in development of multiple related

designs, and again using the same languages, libraries and tools in development of

their initial implementations [45]. Second distinction is the mass markets where the

same product can be sold many times, and the custom markets where each product is

unique [62].

In custom markets, economies of scope can be realized in software production, as

in commercial construction, through systematic reuse, by using the same assets to

develop multiple unique but similar products (similar to the construction of bridges

or skyscrapers) [62]. The added-value of realizing economies of scale and scope in

mass/custom custom markets has been depicted in Figure 2.1. Typical situation that

software industry is facing is the realization of economies of scope in custom markets.

Economies of
Scale

Economies of
Scope

Mass
Markets

Custom
Markets

+ +

+ +

+

+

Economies of
Scale

Economies of
Scope

Mass
Markets

Custom
Markets

+ +

+ +

+

+

Figure 2.1: Economies of scale and scope in mass and custom markets

2.10.2 Constituents of Software Factories

The vision of software factories requires the following steps to be undertaken in meth-

ods, tools and economics of software development [62]:

• Development by Assembly : Most of the development will be component assembly,

involving customization, adaptation and extension.

• Software Supply Chains: Supply chains will emerge to create, package, consume

and assemble the components speci�ed using standard speci�cation formats, de-

veloped by using standard techniques, methods, tools and processes.

23

• Relationship Management : Managing relationships between suppliers and con-

sumers will increase the role of requirements engineering from the product de-

livery to warranty periods.

• Domain Specific Assets: Organizations with domain knowledge will be key play-

ers of software development and they can encapsulate and sell their knowledge

as reusable assets. The tools will use abstractions and appropriate best practices

encoded as domain speci�c languages, patterns and frameworks.

• Mass Customization: This is a long-term vision that can be realized after the

wide adoption of software factories. Mass customization requires a value chain

that integrates processes like customer relationship management, demand man-

agement, product de�nition, product design, product assembly and supply chain

management.

• Organizational Change: The stakeholders will face with a new world at every

phase of software development, acquisition and usage. The quicker the organi-

zational change is the higher the bene�ts will appear.

The early projects for the industrialization of software development had come in

late 80's like European [116], Japanese [2], or Brazilian [120] models. However, these

attempts were too early to be successful without the help of contemporary research in

systems modeling and software reuse.

The results of research on component orientation, generative approaches, and soft-

ware product lines have guided the concept of Software Factories. The three axes of

critical innovations for software factories have been depicted in Figure 2.2. The �gure

and discussion have been taken from [62].

Three axes are Abstraction, Granularity and Specificity. The critical innovations in

abstraction are the development of model-driven techniques for model construction and

transformation and abstraction provided by Domain Speci�c Languages (DSLs). In

terms of granularity, speci�cation of components with interface speci�cations (hidden

implementations) and their composition [50] and later orchestration of coarse-grained

Web services increased the size of software constructs used as vehicles of abstraction.

Finally, speci�city de�nes the scope of reuse. The value of abstraction increases with

its speci�city to some problem domain [70]. More speci�c abstractions can be used in

24

Figure 2.2: Three axes of critical innovations for software factories (from [62])

fewer products, but they contribute more to their development. On the other hand,

more general abstractions can be used in more products, but they contribute less to

their development. Higher levels of speci�city allow more systematic reuse [62].

Software factories signi�cantly increase the level of automation in application de-

velopment. The approach recognizes that domain knowledge may exist at di�erent

maturity levels and thus a wide range of concepts, such as patterns, architectures,

frameworks, components, aspects, and domain speci�c languages, etc., may be re-

quired for adequately packaging the knowledge as reusable assets. It does not use

the Uni�ed Modeling Language (UML), a general purpose modeling language which

de�nes too many di�erent and incompatible ways to describe abstractions, without

de�ning enough semantics to make any of them usable for actual development [62].

Software factories make use of models based on highly tuned DSLs and XML as

source artifacts, to capture life cycle metadata, and to support high �delity model

transformation, code generation and other forms of automation. DSLs are focused

and speci�c to a domain and describes the concepts that a new framework o�ers.

In [63], a Software Schema is de�ned which describes the set of speci�cations that

must be developed to produce a software product; and a software scheme corresponds

to the product line scope. Schema is developed by the product line designer. Software

Template, on the other hand, is the combination of a software schema for a product

family, the processes for capturing and using the information it describes, and the tools

used to automate that process. Within a software template, there exists patterns,

models, frameworks and tools. Once a software template is loaded into an Integrated

25

Development Environment (IDE) then it is named as a software factory for producing

members of the family.

Lenz and Wienands [94] present a software factory implementation in .NET en-

vironment and guides through a practical case study of building a Software Factory.

The example covers major constituents of software factories: software product lines,

architectural frameworks, model-driven development, and guidance in context.

Kulkarni et al. [84] propose a model-driven software factory for enterprise business

application product family. They have enlarged their vision using multi-dimensional

separation of concerns focusing on the organizational issues of software development.

They reported that aspect-oriented restructuring has enabled them to organize the

development team along two independent streams namely technology platform experts

and design experts. Separation of design strategies has enabled leaner technology

platform teams. However, they have employed a completely model-driven way where

the approach proposed in this thesis study di�ers by being more architecture-driven.

Regio and Green�eld [113] report their experience gathered in designing and imple-

menting a software factory for healthcare systems based on Health Level Seven (HL7)

standard using the factory vision given in [62, 63]. Their experience in developing a

factory for HL7 collaboration ports has shown that it is crucial to de�ne better frame-

works, tools and processes to specify the factory schema, manage factory con�guration

in a �exible and extensible way, and better understand how/when domain speci�c lan-

guages should be used. They also point out that toolkit support in software factory

infrastructure will be helpful.

Frankel, in his idea paper [55], de�nes a Business Process Platform (BPP) on top

of traditional technical software platform. This platform contains the frameworks of

executable services and business process components. Users of the platform compose

specialized applications that support custom services, business processes, and analyt-

ics. A further proposal was Business Process Factories that enable the de�nition of

individual BPPs. However, the idea paper just elaborates the initial concepts and does

not report any �nding. In comparison to this study, the proposed model in the next

chapter has similar abstractions with concrete baseline and results are investigated

with case studies.

26

MDSoFa [87], standing for Model-Driven Software Factory, is a software factory

environment based on the generative technique to produce languages, frameworks and

tools in series. Four core technologies participate in the MDSoFa foundation. (i) Lan-

guages are described with MOF-level meta models, and a mapping notation allows

expressing correspondence between languages, e.g. MOF to UML, DSL to DSL map-

pings. (ii) A rule-based language allows expressing patterns. (iii) A template-based

language, for the rule implementation part, allows code expansion of template-based

expressions with language, mapping, and rule information. (iv) In order to avoid

monolithic production, production results are separated by concerns, e.g. separating

model management from model checking concern.

Neema et al. [102] argue that it is essential to incorporate analytical techniques in

software factories to assist with the architectural decisions. They have illustrated how

architectural analysis can be done in a software factory setting, through an example.

They have reported that analysis, especially quantitative analysis should be part of a

software factory in order to validate architectural decisions in the design. The results

of their study is in favor of the proposed approach here that incorporates the reference

architecture modeling with the product line asset modeling in tandem.

While the ideas behind software factories are platform independent, Microsoft has

been developing a family of Domain Speci�c Modeling (DSM) tools and processes that

facilitate designing and building DSLs and serve as a foundation. They provide mod-

eling environments (with tools, frameworks, patterns and processes) with the vision of

constructing an integrated environment for software factories [41]. DSM mainly aims

to raise the level of abstraction by specifying the solution in a design language that

directly uses concepts from a speci�c problem domain. The �nal product is generated

from these high-level speci�cations in a chosen programming language. The speci�ca-

tion and generation are both domain speci�c. The variations can be managed at the

model, generator or framework level [52].

An organization will only obtain the full bene�t of reuse if a formal reuse program

is employed and subject to quality control through formal planning and continuous im-

provement [114]. Matsumoto, in his talk on SPLC 2007 [98], reveals the management

aspects of software factories, within the scope of his Toshiba experience, with partic-

ular emphasis on organizational management, process/project management, software

27

engineering measurement and evaluation. He has reported that within 6 years after

setting up the factory, the productivity increased more than 50% as per factory mem-

ber and the reuse ratio increased from 13% to 48%. Furthermore, the number of faults

has fallen from 7 to 0.2 as per K-SLOC (Kilo-Source-Line-of-Code).

Consequently, the concept of software factories has been investigated by several

research groups. However, there has been no mutual understanding yet to generalize

the establishment of Software Factories as the way manufacturing industry has been

doing. Although the vision is not new and addressed by many researchers and industry

experts, it still needs formal models and practical assistance for establishing them

across di�erent business domains.

28

CHAPTER 3

THE APPROACH: SOFTWARE FACTORY

AUTOMATION

The main goal of this chapter is to present the high-level approach to the key research

problem:

How can we incorporate domain speci�c abstractions to improve sys-

tematic reuse of software assets on the basis of an industrialization model in

order to enhance the software development productivity and product qual-

ity while reducing the per product development and maintenance costs?

This chapter proposes a software industrialization model, namely Software Factory

Automation (SFA), based on Domain Speci�c Kit (DSK) conceptualization. Using the

Domain Speci�c Kit abstraction, the reference architecture modeling and accompanied

feature-based software asset modeling roadmaps have been charted.

The key idea is to specify asset models with more reusable Domain Speci�c Arti-

facts abstracted by DSKs (composed of a domain speci�c language, engine, and the

toolset). This approach encapsulates correlated features (hence artifacts) within more

cohesive asset models and composes them through a choreography engine, which is

also driven by the same software asset meta-model used for DSKs. De�ning domain

speci�c languages under the supremacy of a meta-model enables the modeling and de-

velopment of artifacts in isolation and facilitates the composition of Domain Speci�c

Engines by means of a choreography engine.

29

3.1 Overview

Major constituents of the approach have been given in Figure 3.1, and brie�y described

as follows:

Asset Model

Development Environment (DSTs)

SPL Reference Architecture

DSK DSK DSK DSK DSK

Product
Family
Quality
Model

A Software Factory

Software Asset
Repository

Software Factory Automation

Architecture Modeling

Software Asset Meta Model Process Model

DSK Repository

DST

DSL

DSE

DSE DSE DSE DSE DSE

Asset Model

Development Environment (DSTs)

SPL Reference Architecture

DSK DSK DSK DSK DSKDSK DSK DSK DSK DSK

Product
Family
Quality
Model

A Software Factory

Software Asset
Repository

Software Factory Automation

Architecture Modeling

Software Asset Meta Model Process Model

DSK Repository

DST

DSL

DSE

DSK Repository

DST

DSL

DSE

DSE DSE DSE DSE DSEDSE DSE DSE DSE DSE

Figure 3.1: The overview of the SFA approach

• Domain Specific Kit: The term Domain Speci�c Kit (DSK) denotes collec-

tively a Domain Speci�c Language (DSL) to specify the artifacts, a Domain

Speci�c Engine (DSE) to execute the artifacts, and a Domain Speci�c Toolset

(DST) to develop and administer the artifacts of the domain. DSK is the core

abstraction for the proposed model.

• Reference Architecture Modeling: This is the generic modeling roadmap

to construct reference architecture for the target business domain. It employs

the symmetric alignment technique that is explained in detail in Chapter 4, for

modeling the SPL reference architecture, which correlates the quality targets and

architectural aspects to running DSEs and choreography rules.

• SPL Reference Architecture: SPL reference architecture is the generalized

architecture of a product family, and it de�nes the infrastructure common to end

30

products and interfaces of components that will be included in the end products

[56]. It is constructed using the reference architecture modeling technique.

• Software Asset Meta Model: Asset Meta Model (AMM) is an XML-based

speci�cation language to de�ne a software product line and its asset model. It

de�nes the global vocabulary, e.g. artifact types, variability points, choreography

rules, context, etc., of product line modeling.

• Asset Modeling Language: Asset Modeling Language (AML) of a product

family (i.e. distinct SPL) is derived from AMM and used to de�ne the assets of

the product line. An AML is particular to a distinct product family.

• Software Asset Repository: This is a global repository to store the reusable

software assets. Later, an asset can be searched and reused in multiple product

lines.

• Development Environment (DSTs) : Development Environment is the col-

lection of dedicated Domain Speci�c Toolsets (DSTs) that are speci�c to devel-

opment and administration of artifact types included in the domain.

• Product Family Quality Model: As stated in Section 2.8, software product

line approach requires e�ective management activities for the asset development,

product construction, and product line management. SFA approach provides a

skeleton Process Model that can be customized to particular domains for di�erent

product families.

The rest of this chapter discusses the high-level properties and structures of the

constituents of SFA approach. Before that, the main stakeholders are described in

Table 3.1 to highlight the major roles.

Table 3.1: Main stakeholders in SFA approach

Stakeholder Responsibility

SFA Engineer Development of Software Factory Automation model.

SPL Engineer Design of a specific SPL, DSKs, and its SFA-based asset model, as well as
management of product line and its assets, which is in charge of product line
management and core asset development compliant with general SPL model.

Product Engineer Management of a specific product in an individual product line.

Product Line Staff People responsible for all other product line activities including business do-
main modeling, configuration and release management, test management and
asset tailoring for a specific product, etc.

31

3.2 The Concept of Domain Specific Kit (DSK)

Software Factory Automation is inspired by the way other industries have been re-

alizing factory automation for decades. Industrial Factory Automation utilizes the

concept of �Programmable Logic Controllers (PLCs)� to facilitate the production of

domain speci�c artifacts in isolated units. PLCs may also take place in moving assem-

bly lines to unify the production process. Factory automation in milk factories, for

example, bridges diverse units of pasteurization, bottling, bottle tapping, and pack-

aging through moving assembly lines, all designed by the use of PLCs. Bottle and

bottle tap in this example are both domain speci�c artifacts that can be reused in the

production of various milk products such as regular, skimmed or semi-skimmed, or

even in bottling of straight or sparkling water, not just milk.

PLCs improve the reusability of domain speci�c artifacts with a consistent design in

mind: PLC has a Programmable Processor (PP) to be programmed with a Computer

Language (CL) through a Development Environment (DE). So does DSK abstraction

of SFA model: the DSK has a Domain Speci�c Engine corresponding to PP, a Domain

Speci�c Language corresponding to CL, and a Domain Speci�c Toolset corresponding

to DE of PLC concept (See Figure 3.2). As the way PLCs are used for abstracting a

wide range of functionalities like basic relay control or motion control, DSKs in SFA

approach can be designed speci�cally to abstract certain things such as screen/report

rendering or business rule execution in software factories.

Industrial Factory

Programmable Logic Controller (PLC)

Development Environment (DE)

Computer Language (CL)

Programmable Processor (PP)

Software Factory

Domain Specific Kit (DSK)

Domain Specific Engine (DSE)

Domain Specific Language (DSL)

Domain Specific Toolset (DST)

Industrial Factory

Programmable Logic Controller (PLC)

Development Environment (DE)

Computer Language (CL)

Programmable Processor (PP)

Industrial Factory

Programmable Logic Controller (PLC)

Development Environment (DE)

Computer Language (CL)

Programmable Processor (PP)

Software Factory

Domain Specific Kit (DSK)

Domain Specific Engine (DSE)

Domain Specific Language (DSL)

Domain Specific Toolset (DST)

Software Factory

Domain Specific Kit (DSK)

Domain Specific Engine (DSE)

Domain Specific Language (DSL)

Domain Specific Toolset (DST)

Figure 3.2: Software Factory Automation and PLC analogy

DSK has further commonalities with PLC. Speci�cally, PLC is typically a Reduced

Instruction Set Computer (RISC) based and contains a variable number of I/O ports.

So does the DSK model. DSK has logical I/O ports to have seamless connection with

each other for context propagation. DSLs are kept in higher-level abstractions so that

32

the design and transformation can be easily accomplished as in the concept of RISC

in PLCs. Moreover, DSE has inherent execution monitoring features in design as PP

has extensions for Supervisory Control and Data Acquisition (SCADA) monitoring.

Basic terminology of SFA is given in Table 3.2, and the interrelation between the

basic blocks are depicted in Figure 3.3.

Table 3.2: The terminology of DSK

Domain Specific Language (DSL) A language dedicated to a particular domain or problem
with appropriate built-in abstractions and notations

Domain Specific Engine (DSE) An engine particularly designed and tailored to execute
a specific DSL

Domain Specific Toolset (DST) An environment to design, develop, and manage software
artifacts of a specific DSL

Domain Specific Kit (DSK) A composite of a Domain Specific Language (DSL), En-
gine (DSE) and a Toolset (DST)

Domain Specific Artifact (DSA) An artifact that is expressed, developed, and executed by
a DSL, DST, DSE, respectively

Domain Specific Artifact Type (DSAT) A DSA type that a certain DSK can express, execute and
facilitate the development

In Figure 3.3, DSL, DSE and DST collectively constitute the DSK. A DSK may be

used to produce several artifact types (DSAT). Furthermore, artifacts of these types

can be developed and contained within reusable software assets. In order to achieve

that, DSK design aims to maximize the reuse of DSAs like screen and report layouts

or certain business rules.

DSL DSAT

DSADST DSE

specifies

is-used-to
-develop

executes

is-of-type

DSL DSAT

DSADST DSE

specifies

is-used-to
-develop

executes

is-of-type

Figure 3.3: Conceptual model of DSK

3.2.1 Fundamentals of DSKs

Before giving some examples of DSKs, the fundamental properties have been stated

as follows [7, 34]:

33

• A DSK provides higher level of abstraction for artifact de�nitions by means of

Domain Speci�c Languages.

• A Domain Speci�c Engine of a DSK provides higher level of execution environ-

ments based on reference architectures.

• A set of Domain Speci�c Artifacts can be de�ned by using the DSL of a DSK.

• The artifacts are de�ned by declarative approaches.

• DSKs are lightweight and loosely coupled with each other; so their artifacts

(DSAs) can be designed to be composed with others.

• DSAs are context-aware, so that they can communicate and be assembled using

a common context.

• A DSE can take part in choreography via di�erent protocols under the domain

speci�c rules and constraints.

• DSKs are not particular to a product family, they can be reused across di�erent

product lines.

3.2.2 Examples of DSKs

In this subsection, several examples will be presented to elaborate the concept of DSK.

Relational Database Management Systems (RDBMS):

A tangible example to DSK abstraction is well-known Relational Data Base Man-

agement Systems (RDBMS) as shown in Figure 3.4.

DSK

DST

DSL

DSE

RDBMS

Interactive SQL & DBA
Utilities

Structured Query Language

Query Listener / Executer

DSK

DST

DSL

DSE

DSK

DST

DSL

DSE

RDBMS

Interactive SQL & DBA
Utilities

Structured Query Language

Query Listener / Executer

RDBMS

Interactive SQL & DBA
Utilities

Structured Query Language

Query Listener / Executer

Figure 3.4: RDBMS as a DSK

34

RDBMS is a business domain independent technology to be used without exten-

sive programming e�orts. SQL is generic enough to be a DSL for data base query

language, interpreted and executed by a Query Engine as a Domain Speci�c Engine,

and �nally there are lots of tools for interactive SQL use and data base administration,

as a Domain Speci�c Toolset. SQL queries, stored procedures, triggers and DML state-

ments are basic Domain Speci�c Artifacts of RDBMS. Having such a capable structure,

RDBMS is versatile enough to take part in choreography via di�erent protocols such

as ODBC, JDBC, ADO, DAO, etc.

Rich Internet Application (RIA) Framework:

Aurora RIA framework [8] is a business domain independent XML-based tech-

nology used for power screen design in Internet applications. A DSK abstraction of

RIA framework has been depicted in Figure 3.5.

DSK

DST

DSL

DSE

RIAFW

EBML Development Studio

Enhanced Bean Markup
Language (EBML)

EBML Rendering Engine

DSK

DST

DSL

DSE

DSK

DST

DSL

DSE

RIAFW

EBML Development Studio

Enhanced Bean Markup
Language (EBML)

EBML Rendering Engine

RIAFW

EBML Development Studio

Enhanced Bean Markup
Language (EBML)

EBML Rendering Engine

Figure 3.5: RIA framework as a DSK

EBML (Enhanced-Bean Markup Language), as a DSL, is a generic markup lan-

guage to describe the structure of user screens and their behaviors. ERE (EBML

Rendering Engine) is a Domain Speci�c Engine to interpret the EBML, which renders

and manages the user screens. Finally, EDS (EBML Development Studio), as a DST,

is a complete development and test tool for the user interface developers. Pages, re-

gions, and popups are the artifact types that can be de�ned by EBML. RIA framework

can take part in choreography via di�erent protocols such as HTTP or SOAP.

Business Rules Management System (BRMS):

A BRMS enables the segregation of business rules from the application where they

crosscut almost every tier from content to service [33]. Managing business rules on its

own provides a clear separation of a crosscutting concern. RUMBA [33], for instance,

35

provides a lightweight framework for dynamic integration of business rules with other

business processes or business services using several architectural patterns. A DSK

abstraction of RUMBA BRMS has been depicted in Figure 3.6.

DSK

DST

DSL

DSE

BRMS

RUMBA
RuleEditor

RuleML

RUMBA Business Rule Engine

DSK

DST

DSL

DSE

DSK

DST

DSL

DSE

BRMS

RUMBA
RuleEditor

RuleML

RUMBA Business Rule Engine

BRMS

RUMBA
RuleEditor

RuleML

RUMBA Business Rule Engine

Figure 3.6: BRMS as a DSK

RuleML1 is a kind of DSL to de�ne business rules as independent artifacts. It has

a RuleEditor as a DST, and a corresponding runtime engine (DSE) for rule execution.

Rule and composite-rule are the artifact types. RUMBA runtime engine can take part

in business choreography with API-based, service-based, or other type of interfaces.

The concept of �Domain Speci�c Kits� was �rst introduced by Griss and Wentzel

within the context of ��exible software factories� [65]. Hybrid kits, de�ned in [65],

consist of (i) reusable components, (ii) carefully designed framework which captures

the architecture or shape of a family of related products, and (iii) some form of “glue

code” which could be either a typical language such as C or C++ or some problem-

oriented language specific to the application domain. They anticipate the use of both

generative and compositional approaches. Consequently, they are very heavy-weighted

structures, and they are more similar to today's reference architectures or reference

models.

In this study, the concept of DSKs has been reshaped within the context of �Soft-

ware Factory Automation (SFA)� idea introduced in [7]. The concept of DSKs here

diverges from the Griss's de�nition; and the SFA model attributes a new content to

the old term. The new de�nition is mainly di�erent in the following respects:

• Kits are not speci�c to a product family.

• Kits can not contain architectures for family of products, instead they are com-

bined to form a reference architecture of a product family.

1 Rule Markup Initiative. http://www.ruleml.org/

36

• Artifacts of the kits are symmetrically composable; however the kits can make

use of generative approaches internally.

• They make use of declarative choreography language.

• Kits, hence their artifacts, can be reused across di�erent product lines.

It is worth to mention that [132] proposes similar usage of multiple DSLs in par-

tial models within the context of Model-Driven Development. However, their primary

motivation is to overcome the di�culties of manageability, readability and understand-

ability of large models describing a complete application.

3.3 Software Factory Automation

Software Factory Automation (SFA) proposes a methodical approach to set up software

product lines. Proposed modeling activities constitute the domain engineering phase

of software product line setup. Involved activities are feature-oriented requirements

engineering, SPL reference architecture modeling, and software asset modeling. The

feature-oriented requirements engineering, corresponding to the domain analysis, yields

Domain Feature Model (DFM) of the target domain. This is fed into the reference

architecture modeling and feature-based software asset modeling phases. These two

phases constitute the actual construction phases of a software product line. The overall

construction process has been managed through a complete domain engineering life

cycle model.

Based on the concept of DSK, as a fundamental building block, a detailed com-

bined conceptual model of major modeling activities, has been presented in Figure 3.7.

Although not explicitly shown in the �gure, the functional requirements and business

domain model (the boxes at the bottom) are expressed as feature diagrams. Therefore,

SFA approach implies the use of Feature-Oriented Requirements Engineering approach

(see Section 3.4). Feature-oriented domain analysis is applied �rst to discover func-

tional and non-functional requirements of a product family. Hence, business domain

is represented in terms of feature models (Domain Feature Model).

Reference Architecture Modeling correlates the architectural aspects and quality

attributes of the problem domain to actual components and connectors of the solution

domain. This method, known as �Symmetric Alignment� [32], assists the identi�cation

37

Choreography Engine

underlies

contains

identify
Architectural

Aspects
Utility Concern Spaces

aligned with

identify

shape shape
Architectural Concern SpacesArchitectural

Tiers

Quality
Attributes

Architectural
Views

Reference Architecture for SPL

composed into

Asset Instance

Functional
Requirements

Business Domain Model
fed into

Published Asset

mapped into

built into

Asset Modeling
Language

governs selected
Reusable Assets

Repository

DSLs

DSE DSE DSE DSE

included by

fed into

Buss. Specific
DSKs

analyzed

Reference Architecture Modeling

Feature-Oriented
Requirements Engineering

deployed into Software Asset Modeling

Choreography Engine

underlies

contains

identify
Architectural

Aspects
Utility Concern Spaces

aligned with

identify

shape shape
Architectural Concern SpacesArchitectural

Tiers

Quality
Attributes

Architectural
Views

Reference Architecture for SPL

composed into

Asset Instance

Functional
Requirements

Business Domain Model
fed into

Published Asset

mapped into

built into

Asset Modeling
Language

governs selected
Reusable Assets

Repository

DSLs

DSE DSE DSE DSE

included by

fed into

Buss. Specific
DSKs

analyzed

Reference Architecture Modeling

Feature-Oriented
Requirements Engineering

deployed into Software Asset Modeling

Figure 3.7: Detailed conceptual model of Software Factory Automation

of components (DSEs) and associated connectors (composition of DSEs) in structuring

the SPL Reference Architecture. SFA facilitates the communication and coordination

of DSEs through a choreography engine.

Complementarily, Software Asset Modeling starts with the outputs of feature-

oriented domain analysis. Product line software asset modeling uses a feature-based

approach to construct the software assets that are collections of domain speci�c arti-

facts with variability points. During asset modeling, identi�ed features are mapped

onto software assets. Product line assets are de�ned based on an asset meta-model

and are tailored to assemble the products.

There is a two-way interaction between reference architecture modeling and soft-

ware asset modeling. The former is required once at the beginning and the outputs

are used in the product line asset modeling of that speci�c product family. However,

38

the asset modeling may loop back to reference architecture modeling for extending the

selected DSK set.

Collecting the product line requirements, determining the product line scope, es-

tablishing the product line platform (the reference architecture), de�ning the asset

model, and identifying the product line core assets constitute the domain engineering

model of SFA approach. The study here has been considered as a domain engineering

model leveraged by the concept of DSK. A complete life cycle to bridge domain engi-

neering and application engineering within SFA context is needed. However, de�ning

the life cycle processes and an accompanied methodology are beyond the scope of this

thesis and left as a future work.

The domain engineering life cycle has to de�ne the technical and organizational

management practices for a successful operation of the product line. Regardless of

the Software Process Improvement (SPI) standard the organization has to comply

with, such as International Standards Organization (ISO) Capability Maturity Model

Integration (CMMI), Software Process Improvement and Capability Determination

(SPICE) and Allied Quality Assurance Publications (AQAP), it is expected to be

transparent to Software Factory Automation. In parallel with this vision, my colleagues

at Cybersoft have been developing a separate SPI Hyperframe so-called �Lighthouse�

[35] that achieves such a transparency. Lighthouse is an hyperframe for multi-model

software process improvement which provides a collaboration and quality management

system to improve software processes [35]. This is something like PLCs are con�gured

in factories without a�ecting the ISO compliance of the actual manufacturing pro-

cesses.

3.4 Feature-Oriented Requirements Engineering

Requirements Engineering (RE) process for SPL is crucial to understand, identify, and

specify the requirements of potential members of the product family and requirements

of the domain. Within the context of product lines, these activities are named as

�domain analysis�. Domain analysis may be executed in multiple stages during product

line setup [85]. Domain analysis forms the basis of domain engineering, which is the

process of de�ning scope, commonality and variability of the product line and their

realization in terms of core product line assets. Furthermore, common requirements

39

for the members of product family are themselves valuable core assets that should be

managed and maintained systematically. Common requirements make it inexpensive

and easy to generate a complete requirements speci�cation and product realization

when a new product joins the product family.

An e�ective product line construction must capture current and future customer

needs (product features), convert these needs into product line requirements, and em-

ploy these requirements to guide the design and realization of the product line core

assets and products [103].

Kuloor and Eberlein [85] present a brief discussion of requirements engineering

processes and techniques used in product line approaches. The study also reveals that

most of the approaches lack in requirement engineering practices or leave the selection

to the product line designer according to the needs of the target domain. The activities

for elicitation, documentation, negotiation, validation/veri�cation and management of

requirements have to be adapted for product family development.

The main goal of this section is not to propose a requirement engineering or domain

analysis model, but rather to set a viewpoint and a common starting point for the rest

of the modeling activities. However, developing a requirements engineering model for

SFA is one of the future research areas. Meanwhile, the understanding of the approach

from requirements to reusable assets has been presented in Figure 3.8.

Software Assets

Domain Specific
Artifacts

Features

Requirements

Feature-Oriented
Requirements Engineering

Modeling
SPL Reference Architecture &
Mapping Features to Artifacts

Feature-Based
Asset Modeling

PROBLEM DOMAIN

SOLUTION DOMAIN

Features

Software Assets

Domain Specific
Artifacts

Features

Requirements

Feature-Oriented
Requirements Engineering

Modeling
SPL Reference Architecture &
Mapping Features to Artifacts

Feature-Based
Asset Modeling

PROBLEM DOMAIN

SOLUTION DOMAIN

Features

Figure 3.8: Transforming requirements to reusable software assets

Actually, this viewpoint of employing features in domain engineering is quite similar

40

to that of [129] which presents a conceptual basis for feature engineering. The features

are life cycle entities to bridge the problem and solution domains and they are meant

to be logically modularizing the requirements. Turner et al. [129] argue that features

can be used as �rst-class entities throughout the life cycle. However, the proposed

approach here limits the use of features in understanding the problem domain and

starting point of the solution domain.

Figure 3.8 implies that the requirement analysis captures the users' needs, relation-

ships and constraints. The requirements are described as functional and non-functional

properties; and functional ones can further be decomposed into business rules, busi-

ness services, business actions, business �ows, business constraints, etc. A feature may

compose several of these requirements and a requirement may be satis�ed by several

features [129].

Various domain analysis techniques for modeling requirements have been proposed

[74, 133, 54, 42, 109, 97], and it has been studied a lot both in academic and industrial

environments. Lee et al. [93] present a broad discussion of domain analysis in general

and feature-oriented domain analysis in particular.

Three primary reasons why feature-oriented domain analysis has been used exten-

sively are as follows [93]:

1. It provides a common vocabulary and an e�ective communication medium among

di�erent stakeholders.

2. It is e�ective in identifying the variability and commonality among the products

of the domain.

3. It can provide a basis for developing, parameterizing and con�guring reusable

assets of the domain.

In the light of this discussion, SFA anticipates the use of feature-oriented require-

ment engineering model for domain analysis. The proposed approach will be engaged

in the feature modeling described in FORM [75]. The following de�nition has been

quoted from [75]:

�A feature model, including feature de�nitions and composition rules,

describes a domain theory. It not only includes the standard terms/con-

41

cepts and their de�nitions, it also describes how they are related struc-

turally and compositionally.�

In FORM, feature models include feature diagrams, composition rules, feature

dictionary, and other issues and decisions; and they altogether represent the functional

and non-functional requirements of the system.

The most common representation of features is with FODA-style feature diagrams

[74]. A feature diagram is a treelike structure where each node represents a feature

and each feature may be described by a set of sub-features represented as children

nodes. Figure 3.9 depicts the notation to represent the features. They also support

notations to distinguish between mandatory and optional features and to express sim-

ple constraints on the legal combinations of features. For the rest of this thesis, the

feature diagrams will be presented using this notation.

m a n d a to r y

n a m e

o p t io n a l

n a m e

a l t e r n a t i v e

n a m e n a m e c o n s t r a in t c o m p o s e d o f s p e c i a l iz a t io n

Figure 3.9: Notation of feature diagrams

Recently, feature-oriented approaches have been widely used in di�erent phases of

the requirements engineering. Ahn and Chong [1] propose a feature-oriented require-

ments tracing method consisting of requirements de�nition, feature modeling, feature

prioritization, requirements linking, and traceability links evaluation. Zhang et al.

[135] use a feature-oriented approach for analyzing requirement dependencies. Chen

et al. [36] propose a semi-automatic approach to construct feature models based on

requirements clustering, which automates the activities of feature identi�cation, orga-

nization and variability modeling to a great extent. With the automatic support of

this approach, high-quality feature models can be constructed in a more e�ective way.

In a recent study, Mei et al. [100] proposed a feature-oriented approach for mod-

eling and reusing requirements of software product lines. Feature-Oriented Domain

Modeling Method (FODM) includes a concrete form of feature model, namely Domain

Feature Model (DFM), and a modeling process. Their approach addresses three lev-

els of software requirements: business requirements, user requirements, and function

42

requirements. These levels identify three stakeholders as the sources of features: orga-

nization or customers, end users, and system developers, respectively. They have also

included a quality analysis section in the DFM and a corresponding step in modeling

process to identify and capture quality attributes of the domain.

In [61], González-Baixauli et al. propose a goal-oriented view of features by elab-

orating the relation among goals/softgoals, features and use cases for modeling re-

quirements. Similar to our approach, they separate the features in two concepts: the

goals that model the capability features (general functionality and operations as well

as non-functional requirements), and the tasks that model all the other feature types

(operating environment, domain technology, and implementation technique).

Streitferdt developed a Family-Oriented Requirements Engineering (FORE) method

that extends feature modeling and integrates into a data model, capable of holding all

the information acquired within the requirements engineering phase [125]. Dependen-

cies within feature models and between features and further model elements can be

modeled with FORE Feature Constraint Language (FCL). FORE proposes a develop-

ment process for system families and enables the resulting requirement model to be

available as XML-Schema (FORE-Data Model).

The output of feature-oriented requirements engineering is expected to reveal the

feature models and their descriptions in the form of textual requirements lists. The

outcome will provide the functional and non-functional features. [125] and [100] likely

provide the expected outcome with di�erent perspectives. In this study, Mei et al.'s

terminology [100] will be used, and the domain requirements will be named as Domain

Feature Model (DFM). The content of DFM will be a combination of FORM [75] and

FODM [100]. A DFM includes:

• feature diagrams,

• composition rules,

• feature dictionary,

• list of requirements (functional and non-functional),

• quality attributes of the domain,

• other issues and decisions.

DFM is fed into reference architecture modeling and software asset modeling ac-

tivities of the SPL construction. These coupled modeling activities together constitute

43

the domain design in SFA approach. It is envisaged that feature modeling activities

and product line modeling activities can be iterative in problem and solution domains,

respectively.

As noted earlier, the goal of Section 3.4 is not to propose a requirement engineering

methodology, but to describe a minimum set of outcomes expected from this phase to

successfully proceed with the next phases.

3.5 Reference Architecture Modeling with DSKs

The reference architecture for an SPL is a generalized architecture of a product family,

and it de�nes the infrastructure common to end products and interfaces of components

that will be included in the end products [56].

SFA approach brings a six-step generic modeling roadmap to construct reference

architecture for the target domain. It employs the symmetric alignment technique for

modeling the SPL reference architecture.

Architectural modeling identi�es several concerns in problem domain and associates

them with design decisions in solution domain. There is, however, no commonsense on

how to localize problem domain concerns and relate them to the solution domain. The

constructed approach identi�es the problem domain in �utility concern spaces� by cor-

relating the �architectural aspects� and �quality attributes`�, and the solution domain

in �architectural concern spaces� by correlating the �multi-views� and �multi-tiers� of

architectures. The symmetric alignment is used here for another correlation of �utility

concern spaces� and �architectural concern spaces� instead of mapping architectural

concerns of problem domain to design decisions of solution domain. This alignment

helps �nding architectural components, connectors and properties in the solution do-

main; hence results in the identi�cation of DSEs to be plugged into the choreography

engine. The six-step roadmap has been discussed in Chapter 4.

3.5.1 The Role of Choreography Language and Engine

Architecture modeling is expected to end up with the architectural components (in-

cluding DSEs), their connectors and the composition context. At the end, the golden

principle of separation of concerns for di�erent domains has been achieved. Each con-

cern has been expressed and executed by di�erent DSL and DSE combination like

44

PLCs are controlling certain concerns in industrial automation. Naturally, every sep-

aration should end up with a composition as well. For the composition of domain

speci�c artifacts, expressed in DSL, SFA employs a choreography model (a language

and an engine), which relies on SOA as a paradigm for managing resources, describing

process steps, and capturing interactions between a service and its environment.

A choreography model describes a collaboration between a collection of services

(artifacts of di�erent DSKs in this case) in order to achieve a common goal [11]. It

captures the interactions in which the participants engage to achieve this goal and

identify the dependencies between these interactions. A choreography captures inter-

actions from a global perspective, meaning that all participating services are treated

equally. The interactions include control and data �ow dependencies, message corre-

lations, time constraints, transactional dependencies, etc. A choreography does not

describe any internal action that occurs within a participating service that does not

directly result in an externally visible e�ect, such as an internal computation or data

transformation. A choreography encompasses all the interactions between the partici-

pating services that are relevant with respect to the choreography's goal [11].

In addition to the choreography view that is a global perspective, standards for

service composition cover two additional viewpoints: �rst, a behavioral viewpoint cap-

tures interactions from the perspective of one of the participants and can be seen as

consisting of communication actions performed by the participant. Secondly, the or-

chestration viewpoint deals with the description of the interactions in which a given

service can engage with other services (communication actions), as well as the internal

steps between these interactions. Both behavioral and orchestration models are en-

capsulated by the artifacts of the domain (DSATs) in SFA model. Further discussion

of service viewpoints can be found in [48].

Several composition standardization proposals have been put forward over the past

years (WSFL2, XLang3, BPML4, WSCL5, WSCI6). The preeminent ones are Web Ser-

vices Choreography Description Language (WS-CDL) [76] and Web Services Business

Process Execution Language (WS-BPEL 2.0) [72]. However, there are signi�cant dif-

2 Web Services Flow Language, www.ibm.com/developerworks/webservices/library/ws-ref4/
3 XLang by Microsoft, msdn2.microsoft.com/en-us/library/ms935352.aspx
4 Business Process Modeling Language, www.bpmi.org
5 Web Services Conversation Language, www.w3.org/TR/wscl10/
6 Web Service Choreography Interface, www.w3.org/TR/wsci/

45

ferences between these two standards. The fundamental one is the fact that WS-BPEL

is an orchestration language that implies a centralized control mechanism where as WS-

CDL is a choreography language in which the control is shared between domains. In

addition, the former is an execution language while the latter is a description language.

Therefore, SFA anticipates the use of a choreography language similar to WS-CDL (it

will be called as CDL from now on).

In SFA approach, employment of CDL-like choreography language provides a set

of critical advantages:

• It provides an unambiguous and type safe language for describing the sequence

diagrams.

• The domain speci�c artifact can be validated statically and at runtime against

a choreography description.

• It ensures e�ective interoperability of domains, which is guaranteed because the

domain speci�c artifacts will have to conform to a common behavioral multi-

party contract speci�ed in the CDL.

• It reduces the cost of artifact implementation by ensuring conformance to ex-

pected behavior described in the CDL. This, in turn, can be used to guide and

structure testing and so reduce the overall time to deployment of an artifact.

• It is possible to use the CDL through a validating design tool.

• It enables to describe multi-party contract (artifact interface) in terms of a global

model.

• It is possible to develop and use additional CDL-based tools to generate artifacts'

skeletons and test programs based on CDL descriptions.

• It might be possible to use additional CDL-based tools to provide runtime ver-

i�cation of artifacts against their expected behavior as de�ned in the CDL de-

scription.

A CDL speci�cation aims at composing interoperable, peer-to-peer collaborations

between any type of party regardless of the supporting platform or programming model

46

used by the implementation of the hosting environment. In SFA approach, CDL de-

�nes the choreography of DSAs according to choreography's goal. Since CDL is not an

execution language, it can be compiled into an executable language of particular re-

quirements of a domain. DSEs are execution engines for DSAs and they are composed

via a choreography engine. Choreography engine requires the separation of concerns

across di�erent DSEs and, thus, deferred encapsulation [63] can be achieved through

plugging in and out any DSE as needed. This provides an execution model for col-

laborative and transactional business processes based on a transactional �nite-state

machine. This is a non-monolithic execution model, and it does not need every sort

of detail to be speci�ed at once.

The features mapped into speci�c DSLs are going to be executed by corresponding

DSEs. Therefore, dynamic plugging and context-awareness of DSEs are crucial for the

runtime execution model. The choreography engine enables communication and coor-

dination among DSEs. It ensures context management, state coordination, commu-

nication, produce/consume messaging, nested processes, distributed transactions, and

process-oriented exception handling. Identi�cation of architectural properties during

architectural modeling facilitates the de�nition of SPL contextual information, which

contains the stateful/stateless information to connect individual DSEs.

The design and development of SFA choreography language and engine are beyond

the scope of this thesis. It has been included here to highlight the role of choreography

in SFA approach. However, it has been validated in Chapter 6 that the composition

of domain speci�c artifacts is quite achievable even via a simple composition model

based on Composite Application Framework (WS-CAF) [28].

3.6 Software Asset Modeling with DSKs

SFA software asset modeling uses the abstractions provided by Domain Speci�c Kits.

It is the de�nition of software product line in terms of DSKs, their compositions, their

dependencies, and the global contextual information. Asset model provides means to

e�ectively manage the commonality of features and their variations.

The primary input of this step is the DFM produced in the feature-oriented re-

quirements engineering step. DFM is the global view of requirements of a product

family.

47

Five-step feature-based software asset modeling with DSKs, shown in Figure 3.10,

maintains two di�erent views: External View is speci�ed by Asset Capability Model

(ACM), and Internal View is represented by Asset Meta Model (AMM). The former is

expressed as a feature diagram describing the capabilities of an asset, and the latter is

expressed with Asset Modeling Language (AML) for representing domain speci�c ar-

tifacts, contextual properties, and variability points. The approach has been discussed

fully in Chapter 5.

Step-2: Model Reference
Architecture

(Reference Architecture)

Step-3: Define Asset
Modeling Language for SPL

(AML)

Step-1: Construct Asset
Capability Model

(ACM)

Step-4: Map ACM to
DSAs/VPs

(ACM to DSA/VP Matrix)

Step-5: Define & Publish Assets
(Asset Model)

Construct Feature-Oriented Domain Model
(DFM)

Figure 3.10: Overview of asset modeling approach

The �rst step is the description of asset capabilities in terms of feature diagrams

exposing the structural, functional and behavioral properties, and constraints on them.

Actually, ACM is constructed from DFM by matching the feature model with respect

to the core asset base and identifying the boundaries and features of new reusable

assets. Step 2 employs the reference architecture modeling introduced in Chapter 4

and yields the SPL reference architecture for the target domain.

Asset Modeling Language (AML) for the product family is the main output of

Step 3. AML de�nes the types of artifacts, variability mechanisms, context infor-

mation, choreography rules, and other constraints of the target domain. An AML is

instantiated for a product family from a meta model. The next step consists of the

48

mapping of features to DSAs and Variability Points (VPs) under the governance of

AML. Actually, AML de�nes domain speci�c types and variability mechanisms needed

in a particular product family; and features of an asset (ACM) can be mapped to mul-

tiple DSAs/VPs. The mapping matrix is the output of this step. Finally, Step 5

de�nes and publishes the software assets using AML and DSA/VP mappings of the

capability model. A published asset model describes the artifacts, provided variability

points, accessible artifacts from the outer world, and external dependencies. Outputs

of this step are the asset models for the product family.

There is an obvious iterative cycle between the reference architecture modeling

and product line asset modeling. Thus, it has also been shown as a sub-step in asset

modeling even the tasks are discussed in separate chapters. Chapter 4 and Chapter 5

describe the reference architecture and asset modeling, respectively.

3.7 How SFA fits the Vision of Software Factories

As it has been discussed in Section 2.10, there are several steps needed for the real-

ization of the vision of software factories. Here, the proposed SFA model is discussed

towards achieving software factories with respect to the following constituents:

• Development by Assembly : Most of the development is expected to be compo-

nent assembly, involving customization, adaptation and extension. The model

facilitates development by assembly with the following perspectives:

(a) The basic unit is de�ned as a DSAT and artifacts are instances of DSATs

composed to build products.

(b) The DSKs are loosely-coupled and artifact-to-artifact composition model is

symmetric.

(c) DSLs and CDL are used to specify the DSAs and the choreography, respec-

tively. This makes the composition and validation easy.

(d) The choreography engine with plugged DSEs forms a common infrastructure

which enables the product assembly.

(e) The assets have variations which are explicitly de�ned in the model, so

that the product developer can customize or adapt by using the facilities

provided by the asset developer.

49

(f) The variability realization mechanisms can be enriched by the employment

of new techniques in domain speci�c engines.

(g) The tools (DSTs) facilitates the development, identi�cation and composi-

tion of artifacts during assembly.

• Software Supply Chains: Supply chains emerge to create, package, consume and

assemble the components speci�ed using standard speci�cation formats, devel-

oped by using standard techniques, methods, tools and processes. The model

enables setting up supply chains as follows:

(a) Forming the supply chains requires an architectural alignment process. The

proposed model has been leveraged by a model for construction of product

line reference architecture.

(b) The architecture is built on the domain speci�c abstractions provided by

DSKs. Therefore, it does not reveal the inner working details of the common

architecture.

(c) Since DSLs are loosely-coupled and the composition is achieved declara-

tively, third party suppliers can easily come up with loosely-coupled designs

and components.

(d) In addition to the supply chains for reusable assets, supply chains for DSKs

can be formed. These are specialized for the design, construction and sup-

port of speci�c DSKs.

(e) Actually, some of the asset suppliers can be DSK suppliers on the way. As

long as their domain knowledge matures, the business know-how can be

packed as a DSK rather then asset.

(f) Vendors may appear as �SFA Providers�. These organizations own their

DSKs and their reusable core assets, and they can provide them to other

organizations to setup the product lines.

• Relationship Management : Managing relationships between suppliers and con-

sumers is facilitated by the proposed model as follows:

(a) Managing the con�gurations based on customer demand can be achieved

e�ectively by the declarative nature of the product development.

50

(b) Requirements changes after product delivery can be tailored using the pro-

vided variations of assets.

(c) DSTs also include the management tools within DSKs, hence they allow

the product engineer to e�ectively manage the product con�gurations.

(d) The DSKs and reference architecture provide an abstraction so that quality

of service is preserved during product con�guration.

(e) Product feature management can be traced back to asset feature models

(ACMs) so that the product options can be managed and con�gured ac-

cordingly.

• Domain Specific Assets: In order to leverage the domain speci�c assets, the

proposed model suggests the following features:

(a) DSKs and reusable assets are the primary means of encapsulating domain

speci�c know-how.

(b) The reference architecture that composes all DSEs is one of the most valu-

able assets.

(c) The DSK providers are able to develop and later improve their languages

(DSL) and toolset (DST) according to their domains, which improves the

productivity.

(d) Domain know-how will be stored and fetched in the form of DSKs and

software assets.

• Mass Customization: The long-term vision of mass customization requires a

value chain that integrates processes like customer relationship management,

demand management, product de�nition, product design, product assembly and

supply chain management. The proposed model improves the value chain as

follows:

(a) The model is especially focused on domain design issues of the product line

approach, hence it improves the de�nition, design, and assembly of products

by domain speci�c abstractions.

(b) The available explicit VP mechanism improves the mass customization po-

tential.

51

(c) The model supports the assets to be reusable in multiple product lines,

hence it reduces the time-to-market and enhances the quality of products.

(See Section 6.5)

(d) The model strongly enables the mass customization by letting business an-

alysts to con�gure and build the end products of the product family. They

can easily con�gure the product variations and the artifacts using the ac-

companied DSLs and by hard-wiring the asset variations declaratively.

• Organizational Change: The stakeholders will face a new world at every step

of software development, acquisition and usage. The quicker the organizational

change is higher the bene�ts will appear.

(a) The model facilitates the separation of concerns, therefore companies have

to change their development organizations based on this model. In other

words, the model requires an �organizational alignment� with the reference

architecture, DSKs, and reusable assets.

(b) The development units have to be responsible from a well-de�ned unit of

work with precisely described input and output sets.

(c) They have to be organized as �competence centers�. Actually this is very

common in SPL approach where the team has to be at least in three main

groups: core asset developers, product developers and product line man-

agers. However, SFA pushes this further both in technical and business

expertise areas. Such an organization is similar to the assembly line orga-

nizations in other industries, such as automobile manufacturing.

(d) The process that they run can be recorded, measured and improved sys-

tematically.

(e) The model also facilitates the exchange of development teams across di�er-

ent business domains (product lines), which, in turn, improves the produc-

tivity and decreases the organizational risks.

52

CHAPTER 4

REFERENCE ARCHITECTURE MODELING WITH

DOMAIN SPECIFIC KITS

An architectural model of software is a model in which overall structure of an applica-

tion is captured as the composition of interacting components [118]. Hence, software

architects partition their applications due to several architectural concerns in a way

that they can model, design, develop, test, and even maintain every part separately

and supervise the development easily. However, there is no mutual understanding to

localize such architectural concerns in the problem domain and a common roadmap to

associate these problem domain concerns with the solution domain, and furthermore

how domain speci�c approaches can help during this process.

Software architecture modeling is expected to relate the architectural aspects and

quality targets to running components and connectors. However, this mapping is not

trivial, and it may surprisingly end up with problem domain concerns tangled in and

scattered through the solution domain. In the end, such crosscutting concerns may

complicate the detailed design process as well.

This chapter proposes an architectural modeling approach, which has been pub-

lished recently [32], �rst to localize these concerns in multiple concern spaces and then

relate them from problem to solution domain. This approach identi�es the problem

domain in utility concern spaces by correlating1 the �architectural aspects� and �qual-

1 The term “correlation” is used here as “a synonym for association or the relationship between
variables” rather than a statistical term as “a numeric measure of strength of linear relationship
between two random variables”.

53

ity attributes�, and solution domain in �architectural concern spaces� by correlating

the �architectural tiers� and �architectural views�.

Main contribution of this approach is the mapping technique, symmetric2 align-

ment, as the correlation of �utility concern spaces� and �architectural concern spaces�

instead of asymmetrically relating architectural concerns of problem domain to design

decisions of solution domain. Symmetry and asymmetry are used here as given by

[67]. This alignment assists the determination of architectural components, connec-

tors as well as the associated properties in the solution domain, and further helps

to abstract these as Domain Speci�c Engines (DSEs). This chapter also includes an

example application of the approach on the architectural modeling of a Web security

framework.

Managing the concerns in architectural modeling is not easy particularly for iden-

tifying the risks, tradeo�s and sensitivity points [80]. Two points are vital for con-

cern management: localization of architectural concerns and representation of these

concerns in a speci�c solution. Similar to other modeling approaches, this perspec-

tive divides the software architectural modeling process into two: �identi�cation of

the problem domain� and �description of the solution domain�. Software architecture

modeling is quite complicated in that sense since both of the domains are not trivial

to identify. There are no standard ways to associate them, either.

The modeling approach has been depicted in Figure 4.1. It localizes architectural

concerns in multiple concern spaces for both problem and solution domains, and sym-

metrically aligns them as shown in the �gure. The following sections will explain these

six steps, respectively.

4.1 Identifying Quality Requirements

As discussed in the previous chapter, feature-oriented requirements engineering yields

the Domain Feature Model (DFM) indicating business, user and function requirements.

Hence, DFM is the input to reference architecture modeling for a product family.

Starting point of this approach is the identi�cation of quality requirements from the

feature models so that architectural aspects can be extracted in the next step.

2 In “symmetric” paradigm, all components are treated as first class and of identical struc-
ture, and nothing is more basic than any other’s. However, in “asymmetric” paradigm, all kinds of
heterogeneous structures are aligned into others to demonstrate a base model.

54

Problem Domain

Identification of
Architectural Aspects (AA)

Determination of
Quality Attributes (QA)

Utility Concern Spaces: UCS
Correlating the AA and QA

Solution Domain

Identification of
Architectural Tiers (AT)

Determination of
Architectural Views (AV)

Arch. Concern Spaces: ACS
Correlating the AT and AV

Symmetric Alignment of Both Domains:
Correlating the UCS and ACS

Representation of Architectural
Components and Connectors

Step 4

Step 5

Identification of
Quality Requirements

Step 1

Step 2 Step 3

Identification and Abstraction of
Domain Specific Engines

Step 6

Figure 4.1: Reference architecture modeling approach

In order to collect the actual set of quality requirements during the construction of

feature models, di�erent methods can be used. However, what has been experienced is

that scenario-based and stakeholder-oriented ones like [80] usually end up with more

realistic and near to complete set of quality requirements than the others.

4.2 Identifying Problem Domain: Utility Concern Spaces

Identi�ed set of quality requirements will form the problem domain concerns in multiple

concern spaces called as Utility Concern Spaces (UCS). UCS takes the name from

ATAM [80] since it uses a speci�c technique to map the architectural aspects to quality

attributes �rst in a hierarchical decision tree called as �utility� tree.

At this step, UCS is constructed by correlating the quality attributes taken from

any quality model such as [69, 89], and the architectural aspects categorized by the

55

architect. Consequently, the problem domain is modeled as a matrix presented in

Figure 4.2 where the architectural aspects and derived quality attributes constitute

the rows and columns of this matrix, respectively. Finally, every correlation set (the

cubes of upper illustration in Figure 4.2) embodies an individual utility concern space.

Figure 4.2: Utility Concern Spaces (UCS)

UCS is an NxM matrix to be formed by the architect as shown in Figure 4.2.

Each cell is shown like �UA4Q2� where �U � represents the Utility Concern Space, �A4�

denotes the fourth architectural aspect; Messaging Security in the example, and �Q2�

shows the second quality attribute; Accessibility in this case. The unique UCS cell

identi�ers will be used to form the symmetric alignment matrix later in Step 4.

The symbols like �−−� or �++� in Figure 4.2 denote the �correlation coe�cient�,

i.e. strength, of mappings between architectural aspects and quality attributes. The

lack of any symbol means there is no correlation. The �+� or �−� symbol denotes a

positive or negative correlation, and �++� or �−−� symbol shows the stronger corre-

lations. The coe�cients play an essential role for identifying the �sensitivity points� -

parameter to which some quality attribute is highly related - and �tradeo�s� - factor

56

that a�ects many quality attributes in opposite directions [80]. One can easily identify

the sensitivity points in a UCS matrix if there are only plus or minus signs in an indi-

vidual row. However, coexistence of both plus and minus signs in a single row means

a basic or strong tradeo� due to correlation coe�cients.

4.3 Describing Solution Domain: Architectural Concern Spaces

Akin to problem domain concerns, solution domain concerns are formed into Archi-

tectural Concern Spaces (ACS), which is the correlation of architectural tiers and

architectural views given by the matrix in Figure 4.3.

Figure 4.3: Architectural Concern Spaces (ACS)

Architectural tiers are well-known tiers of �N�tier� model, and architectural views

are customized from Kruchten's �4+1 View� [82] as follows: Functional View shows

functions, system abstractions, and domain elements as components; whereas depen-

dencies and data �ows as connectors. Design View shows services, components, sub-

systems, aspects and the likes as components; but invokes, calls, joinpoints and queries

as connectors. Process View represents processes, threads, work�ows and the likes as

57

components; whereas synchronization, control and data �ows, triggers, and events as

connectors. Eventually, System View shows servers and networking as components;

but protocols and message queues as connectors.

16 distinct concern spaces are shown in this matrix, but there may be more or less as

the number of tiers and views di�ers. For instance, an architectural design may require

a further Business Processing Tier or a separate Development View with respect to

di�erent quality requirements identi�ed at Step 1. Similar to UCS, the architectural

concern spaces are shown as �AV3T1� where �A� represents the Architectural Concern

Space, �V3� denotes the third architectural view; Design View in this case, and �T1�

denotes the �rst architectural tier; Presentation Tier in the example. The unique ACS

cell identi�ers will be used again to form the symmetric alignment matrix later in Step

4. Figure 4.3 also includes the correlation coe�cients like Figure 4.2 has, but note that

ACS may have only positive correlations here.

4.4 Symmetric Alignment of Both Domains

Symmetric alignment is a join step after structuring the utility and architectural con-

cern spaces separately. Precisely speaking, symmetric alignment is correlating the UCS

and ACS in another matrix as shown in Figure 4.4.

Architectural Concern

U
ti

lit
y

C
on

ce
rn

 S
pa

ce
s AV1T1

UA1Q1

AV1T2 AV2T1 AV2T2 AVNTM

UA1Q2

UA1Q3

UA2Q1

UA2Q2

UANQM

+ +

++

Potential Components Potential Connectors

+

+

+ + + + +

+ +

+ +

+
+

+ +

+

+ +

+ +

+ +

+

+

Figure 4.4: Symmetric alignment matrix

Symmetric alignment matrix has the rows formed by UCS cells given in Figure 4.2

and the columns formed by ACS cells given in Figure 4.3. Besides, every cell of

58

this alignment matrix identi�es the place (ACS) where a UCS should be related with

solution elements. In fact, this association is not an exhaustive one-to-one pairing.

The prioritization of UCS and ACS pairing is directed by the correlation coe�cients

of ACS matrix in a way that the ACS cells with strong correlation coe�cients (having

�++� symbols like AV1T2 in Figure Figure 4.3) must be attempted �rst and then the

others containing normal coe�cients (having the �+� symbols like AV3T2). The cells

without any correlation coe�cient in ACS matrix should not be attempted for pairing

with UCS cells. For example, the column AV2T1 in Figure 4.4 is left blank since the

AV2T1 cell in Figure 4.3 does not contain any correlation coe�cient.

The major contribution of this matrix is its guidance in identifying the architectural

components, connectors and properties. The resulting matrix enables the separation

of both problem and solution domain concerns, thus the architectural decisions can be

taken in isolated regions of architectural concern spaces.

Potential components can be realized by analyzing the columns of this symmetric

alignment matrix. If a column contains many coe�cients, then it means that several

UCS are tangled in an ACS, and such concerns may be better abstracted with separate

architectural components. For instance, AV1T2 column of Figure 4.4 signals a potential

architectural component since this column has strong mappings to several UCS.

The row-wise distribution of correlation coe�cients signals a potential architec-

tural connector. In fact, such a distribution means that a single UCS has solution

elements scattered through many ACS that may require a connection between archi-

tectural components. For example, Figure 4.4 signals a potential connector resulted

by the scattering of UA1Q3 through di�erent ACS, and it may probably bridge the

architectural components identi�ed under AV1T2 and AV2T2 columns.

Architectural properties can also be identi�ed from the intersection of UCS and

ACS. For example, the potential component under AV1T2 column of Figure 4.4 is

expected to expose the properties like �clustering of secure Web servers� since this

ACS is correlating the System View and Web Tier, and intersected by UA1Q3 row as

a UCS that correlates the Session Management and Scalability.

The �nal piece of information, expected from reference architecture modeling, is the

set of contextual information (variables), which contains the stateful/stateless infor-

mation to connect architectural components (may be individual DSEs). By analyzing

59

the properties of components and connectors, a common context has been formed for

communication and coordination of these individual components and DSEs.

4.5 Representing Components and Connectors

After identifying the components, connectors, properties and context variables, an

architectural model should represent the complete architecture in a structured form.

In order to describe solution domain of architecture modeling, Architecture De-

scription Languages (ADL) and other similar representation techniques have been in-

troduced. Several ADLs have been designed so far with varying core concepts [86]. For

example, Rapide language is an ADL built on the notion of partial ordered sets [96],

and Unicon makes a smooth transition to code with a very generous type mechanism

[118]. Wright allows the architectural styles to be formalized to check the consistency

and completeness of architectures [5], whereas Acme can be seen rather as an inter-

change format between other languages and tools [58]. Koala is an industrial ADL

used to develop consumer products [131]. Even people argue that UML lacks ADL

features; it includes some informal ADL characteristics [86, 90].

This approach will not have a preference for such a representation and the architect

is free to select any one from the existing approaches. For the rest of this thesis,

the architectural drawings are provided with Software Architecture Analysis Method

(SAAM) [78] architectural notation which has been highlighted in Figure 4.5.

P r o c e s s
C o m p u t a t i o n a l
C o m p o n e n t

A c t i v e
D a t a R e p o s i t o r y

P a s s i v e
D a t a R e p o s i t o r y

U n i / B i -d i r e c t i o n a l
D a t a F l o w
U n i / B i -d i r e c t i o n a l
C o n t r o l F l o w

Figure 4.5: Architectural notation (from SAAM [78])

4.6 Identifying Domain Specific Engines (DSEs)

The �nal step in modeling reference architecture is the identi�cation of Domain Spe-

ci�c Engines (DSEs) where appropriate. Devising DSEs is critical in increasing the

level of abstractions of components that exist in the architecture. The tightly coupled

60

components can be uni�ed so that the number of connectors is reduced, set of inter-

related components can be controlled by one DSL, and accompanied toolset can be

developed accordingly.

There are several hints on DSE identi�cation: �rst one is to determine the tightly

coupled components and try to unify them. Second, analyze the artifact types of

components and try to relate those that are similar to each other and encapsulate

them with a DSE if this provides a further reduction in number of architectural ele-

ments. Third, analyze dependency of architectural components to each other or to a

common context and try to introduce a DSE to con�gure and manage such a depen-

dency through a DSL. At the end, identifying a DSE facilitates reducing architectural

complexity.

The identi�ed DSEs must comply with the characteristics of DSKs stated in Sec-

tion 3.2. The DSEs will be composed through a composition model. The interaction

model of composition relies on SOA as a paradigm for managing resources, describing

process steps, and capturing interactions between an artifact and its environment. The

artifacts can be composed via uni�ed interfaces and they can be declaratively speci�ed

by a choreography language as stated in Section 3.5.1.

DSKs naturally introduce the use of corresponding domain speci�c artifacts within

a reference architecture, and the applications developed in this reference architecture

will be assembled using these domain speci�c artifacts. For instance, consider this

step ending up with the selection of a Business Process Engine (BPE), a Business

Rule Engine (BRE) and a Business Service Engine (BSE) in the reference architecture,

then the applications of this domain will be built using the following artifact types:

processes, rules/composite rules, and services, respectively.

From the viewpoint of artifact composition, there is no signi�cance whether DSEs

reside on a single tier or crosscut multiple tiers. In the business rule segregation paper

[33], it has been shown that business rules crosscut the process management and they

are orthogonal to architectural tiers. Therefore a DSE for rule execution, in this case,

abstracts the related architectural concerns and provides a declarative environment for

management of business rules across many tiers.

61

4.7 Case Study: Web Security Framework

A simple example to demonstrate the applicability of the proposed model has been

discussed here. This real-life example demonstrates the approach on the design of a

Web security framework of a mission critical e-�nance application for Central Registry

Agency (CRA3) of Turkey. Furthermore, in Chapter 6, the reference architecture for

two example product families in parallel to their asset modeling has been presented

for validation purposes.

Step–1: Identifying Quality Requirements

CRA has a mission to dematerialize and register via available electronic records,

capital market instruments, and rights attached thereon with respect to issuers, inter-

mediary institutions, and right owners, check the integrity of actual records kept by

member groups. The particular security needs that have arisen in the requirements

engineering phase of security framework for CRA duties have been listed in Table 4.1.

Accompanied with this list of requirements, the requirements engineering puts forward

the DFM partially depicted in Figure 4.6.

Risk management

Password management

GUI

 …
Certificate management

creation revocation renewal

Session management

Server-side Client-side

Channel

B2B

Electronic records

Access Process

Track access history

Roles Profiles

Delegation

User

CRA Security

… …

Versions

requires

Alert and notification management

Channel

e-mail Fax SMS

Notification messages Action Receiver management

Alert Record trace

Authorization

Management

…

Authentication

Identity

Encrypted

Store

requires
Privacy

Security policy

Messages Services

Non-repudiation

Signature

Security Logs

… …

Figure 4.6: Feature diagram of the CRA security (partial)

3 http://www.mkk.com.tr/

62

Table 4.1: (Step–1) Identified security requirements

R1 The system has to preserve privacy in registering capital market instruments and rights.

R2 Security management is critical in maintaining integrity of the records among different
members (stakeholders).

R3 The system must ensure confidentiality of records in line with the applicable regulatory
provisions.

R4 Network and distributed systems have to be secured.

R5 The infrastructures have to be flexible enough to accommodate new security policies.

R6 The personal data have to be secured.

R7 The business processes and data confidentiality have to be guaranteed.

R8 The client-side identity and session management are critical for user privacy preserving.

R9 The user session management associated with smartcards needs clients to be able to keep
required identification of the user transactions and to track all user activities.

R10 The users are required to be authenticated first.

R11 The users are allowed to access various resources based on user profiles and roles.

R12 The authorization needs to take possible delegations into account.

R13 The user can not later deny his/her transactions (non-repudiation). It ensures that a
transferred message has been sent and received by the parties claiming to do so, which
is a “legal” obligation for financial applications.

R14 The system has to provide a secure location for storing and processing the system records.

R15 The system has to protect electronic records from unauthorized access and undesired
execution.

R16 Some of the services require the user to be authenticated at service-level.

R17 Security-based record update requires the management of older versions of records and
keeping the record history with privileges.

R18 All system-level events are required to be integrated with various alert mechanisms such
as e-mail, SMS, and the likes.

R19 Secure messaging mandates the use of encryption during message transition and security
assertions like digital signatures to be part of the messages.

R20 Requirement (R19) applies to B2B integration as well.

R21 B2B integration extends business processes across organizations, which results in multi-
plication of security concerns at both ends.

R22 Certificate management (certificate creation, revocation, renewal) has to be provided.

R23 Password management (password generation, change, revocation, validation, password
complexity, encrypted storage) is required.

R24 Detailed logging of all system actions (success/fail cases for database, application, net-
work actions) is mandatory.

Step–2: Identifying Problem Domain

At the end of feature-oriented requirements engineering phase, a DFM including

the list of requirements and feature models has been constructed as given in Table 4.1

and in Figure 4.6. For this domain it revealed 24 requirements and a corresponding

feature model. Note that irrelevant details of this example have been omitted from

the feature model for simplicity.

Next step in the architecture modeling is the identi�cation of problem domain

which starts with the classi�cation of architectural aspects. The architectural aspects

are distilled from the feature models and requirements list by elicitation of features,

63

feature groups, feature dependencies, and feature interrelations. However, there is no

straightforward method in identi�cation of architectural aspects from the requirements

since non-functional requirements are usually crosscut the functional requirements and

they are scattered. At the end of this sub-step we obtain a candidate set of architectural

aspects which has been listed in Table 4.2.

Table 4.2: (Step–2.1) Taxonomy of architectural aspects

Presentation Aspects

A1 Client-side Identity Management

A2 Client-side Session Management

A3 Session Management

A4 Authentication

A5 Authorization and Delegation

A6 User Profiles and Roles

Application and Data Security Aspects

A7 Service-level Authorization

A8 Data Security (Protection of Electronic Records)

A9 Security-Based Record Update

A10 Non-Repudiation

A11 Security Alerts

Integration And Communication Aspects

A12 Messaging Security

A13 Securing B2B Integration

A14 Encryption

Administrative Aspects

A15 Logging

A16 Certificate Management

A17 Password Management

A18 Security Risk Management

In order to clarify the discussion, several architectural aspects are presented on the

feature diagram. Figure 4.7 is based on the feature diagram given in Figure 4.6 and

some of the architectural aspects have been marked.

As it can be observed from Figure 4.7, there are di�erent cases: Client-side Session

Management (A2) is scattered over several features such as GUI accessibility, client-

side session requirements, and user identity/privacy features. Non-repudiation (A10)

has one-to-one correspondence with a feature node. Data Security (Protection of

Electronic Records) (A8) and Security-Based Record Update (A9) are both tangled

and scattered over several feature groups. Certi�cate Management (A16), on the other

hand, coincides with a feature subtree on its own. The association rules of features to

architectural aspects will be investigated in further case studies.

After the categorization of security aspects, the next step is the identi�cation of

64

A3

Risk management

Password management

GUI

 …
Certificate management

creation revocation renewal

Session management

Server-side Client-side

Channel

B2B

Electronic records

Access Process

Track access history

Roles Profiles

Delegation

User

CRA Security

… …

Versions

requires

Alert and notification management

Channel

e-mail Fax SMS

Notification messages Action Receiver management

Alert Record trace

Authorization

Management

…

Authentication

Identity

Encrypted

Store

requires
Privacy

A2

A8 -A9

A16

Security policy

Messages Services

A8-A9
Non-repudiation

A10

Signature

A2

Security Logs

… …

A2

Figure 4.7: Example architectural aspects on CRA security feature diagram

quality attributes. The quality model has been adapted from the comprehensive list

and precise classi�cation in [89]. Table 4.3 contains the identi�ed quality attributes

for CRA case. Again this has been distilled from the requirements of the domain.

Table 4.3: (Step–2.2) List of quality attributes for security

Q1 Usability Q14 Interoperability

Q2 Accessibility Q15 Openness

Q3 Operability Q16 Heterogeneity

Q4 Simplicity Q17 Auditability

Q5 Portability Q18 Traceability

Q6 Performance Q19 Analyzability

Q7 Scalability Q20 Configurability

Q8 Latency/Responsiveness Q21 Distributeability

Q9 Transaction Throughput Q22 Availability

Q10 Modifiability Q23 Confidentiality

Q11 Upgradeability Q24 Integrity

Q12 Data/Version Consistency Q25 Maintainability

Q13 Composability Q26 Reliability

The �nal step in identi�cation of problem domain is the determination of correla-

tion between architectural aspects (A∗) and quality attributes (Q∗). Table 4.4 shows

some of the correlations since the complete matrix in Figure 4.2 cannot be fully visual-

65

ized and discussed here due to space limitations (it is a 18x26 matrix in this example).

Instead, the matrix grouped by the correlations has been presented in Table 4.4.

Table 4.4: (Step–2.3) UCS for Web security framework modeling (partial)

Strong Positive (++) A1 UA1Q23

A2 UA2Q13, UA2Q14

A3 UA3Q8, UA3Q22

A4 UA4Q2, UA4Q23

A10 UA10Q23

A12 UA12Q2
A14 UA14Q10

A15 UA15Q18, UA15Q19, UA15Q20

A16 UA16Q2, UA16Q14, UA16Q20

A17 UA17Q26

Positive (+) A1 UA1Q17

A2 UA2Q11, UA2Q18, UA2Q20

A3 UA3Q2

A4 UA3Q17

A10 UA10Q26

A11 UA11Q20

A14 UA14Q13

A18 UA18Q18, UA18Q19

Negative (−) A2 UA2Q3, UA2Q4

A3 UA3Q3, UA3Q7

A4 UA4Q1

A11 UA11Q3

Strong Negative (−−) A2 UA2Q8, UA2Q21

A17 UA17Q4

As discussed in Section 4.2, UCS matrix reveals the tradeo�s and sensitivity points.

Considering the Table 4.4 (representing the partial UCS matrix), if any architectural

aspect exists only in positive and strong positive groups or only in negative and strong

negative groups, then it is a sensitivity point. An example to sensitivity point is the

Security Risk Management (A18) since it has only positive correlation with Traceability

(Q18) and Analyzability (Q19).

Another example for sensitivity point is the Client-side Identity Management (A1)

that must provide Con�dentiality (Q23) and Auditability (Q11). However, it has no

negative correlation with any of the quality attributes. Hence, A1 is relatively easy to

decide as compared to A2 that has both positive and negative correlations.

Conversely, if an aspect exists within both negative and positive groups, it indicates

a tradeo�. A simple tradeo� example is as follows: Password Management (A17) has

a strong positive correlation with Reliability (Q26), whereas it has a strong negative

correlation with Simplicity (Q4).

66

A further complicated tradeo� exists for Client-side Session Management (A2).

It has a strong positive correlation with Q14 and Q13; positive correlation with Q11,

Q18, and Q20; whereas it has negative correlation with Q3 and Q4, and even a strong

negative correlation with Q8 and Q21. The verbal expression of this variety of correla-

tions is: �Client-side Session Management must be composable and interoperable with

smartcards, and it must be upgradeable, con�gurable and traceable. Nevertheless, it

should not create any latency and distributeability problems as well as it should be

simple and operable.�

Step–3: Describing Solution Domain

For structuring the solution domain, a 4-tier model with Presentation, Web, Ap-

plication and Data Tiers has been employed. The architectural views will be the basic

four architectural views introduced in Section 4.3: Functional, Design, Process and

System Views. Based on the quality requirements, the correlation matrix of ACS is

presented in Table 4.5.

Table 4.5: (Step–3) ACS for Web security framework modeling

ACS
(AVXTY)

Presentation
Tier (TP)

Web Tier
(TW)

Application
Tier (TA)

Data Tier
(TD)

Functional
View(VF)

++ + ++

Design
View(VD)

++ ++ ++ ++

Process
View(VP)

+ + + +

System
View(VS)

+ ++ +

Based on Table 4.5, AVSTA and AVF TD do not need to be considered for the

symmetric alignment since there is no correlation between these tiers and views from

the security perspective of CRA application.

Step–4: Symmetric Alignment of Concern Spaces

After identifying UCS and ACS, symmetric alignment of these concern spaces re-

sults in an alignment matrix given partially in Table 4.6. This matrix depicts some of

the resulting component identi�cations and their connectors. The Application tier and

corresponding views are eliminated from the �gure just to simplify the presentation.

67

Table 4.6: (Step–4) Symmetric alignment of UCS and ACS

Table 4.6 guides the identi�cation of architectural components and connectors. For

example, Client-side Identity Management (UA1Q23) and Non-repudiation (UA10Q23)

indicate a component in presentation tier, which is realized with a �Smartcard� con-

trolled by the Client-side Session Manager given in Figure 4.8.

For Session Management (A3) aspect, UCS (UA3Q∗) are aligned to AVDTW and

AVDTD. Such an alignment signals dedicated components for �User and Session Man-

ager� together with �Session Store�, respectively. Furthermore, alignment of UA3Q8

and UA3Q22 to both AVDTW and AVSTD reveals that there should be a connec-

tor between the Session Manager and Session Store. Alignment of UA3Q2 to both

AVDTW and AVSTD indicates that system components at Data Tier should be acces-

sible through the Web Tier. The alignment of UA3Q7 to AVSTW shows that some

precautions might be taken during the design so that Session Management should

not decrease the scalability of the Web Tier. Hence, this points to an architectural

property.

Authentication (A4) requires a dedicated component (LDAP) integrated with the

User and Session Manager. Similarly, the alignment of UA16Q2, UA16Q14 and UA16Q20

to AVSTW points out a dedicated component, i.e. Certi�cate Server, to be integrated

68

with the User and Session Manager at Web Tier.

UA5Q1 signals the presence of a component and decision is to introduce �User/Ses-

sion Manager� for that. Actually, it signals another connector between the User and

Role Management services in Application Tier, but it is not apparent in the partial

matrix given in Table 4.6.

Step–5: Representing Components and Connectors

As stated in Section 4.5, the resulting architectural model can be broadly repre-

sented with any architecture description techniques. For simplicity, Figure 4.8 depicts

merely the structural representation of the architecture by using the lexicon given in

Figure 4.5.

 Presentation Tier

Application Server

Data Tier

Application Tier

Web Tier

LDAP

Certificate
Server

Service Repository

Message
Store

Session
Store

Transaction Data

Smart
Card

Pres. Logs

OpenView

Service
Manager

Bussines Services

User and Session
Manager

User and Role
Management

Services

DB Logs

Session
Manager

Web Switch Web Service / MQ

B2B Client &
Session

Manager

App. Logs

Request Broker

Rich Client
Renderer

Figure 4.8: The Web security framework model

69

Step–6: Identifying DSEs

DSE identi�cation is critical since it isolates/encapsulates some of the components

and corresponding connectors in the solution domain. Hence this step simpli�es the

resulting architecture in the number of components and connectors.

In the scope of this example, four simple DSKs have identi�ed. In other words, the

corresponding domain speci�c engines are embedded into the choreography platform

of the architecture. They are Client-Side Rich Internet Application (RIA) framework,

Business Service Engine, Logger and Global User Management. The Figure 4.9 depicts

these DSEs in place.

The �rst one is expressed in EBML (Enhance Bean Markup Language), rendered by

ERE (EBML Rendering Engine), and designed via EDS (EBML Development Studio).

For the second one, Business Service Engine is used for executing the business services,

which are expressed using XML (DSL) and stored in a repository, there is a runtime

engine (DSE) to execute services and they are developed using �Service Editor and

Eclipse� (DST). For the third DSK, Log4j4-based con�guration XML is the language

(DSL), editors and management console form the toolset (DST), and contained logic

for traceability and monitoring of logs constitute the engine (DSE). Similarly, for

User Management, an appropriate DSL can be designed to con�gure users, policies,

authorization models, and other settings, with appropriate toolset (DST) and runtime

facilities (DSE).

4.8 Remarks

Software architecture has gained a vast impetus for improving the quality of software

applications; hence architectural modeling has become an area of intense research [57].

An extensive study has been carried out to reveal the evolution of software architectures

in line with achieving software quality [126]. Supportively, the quality attributes of

software have been classi�ed [14, 44, 69, 89, 110], architectural concerns have been

identi�ed with respect to conceptual [6, 8, 13, 118] and semantic [5] models as well as

viewpoint and stakeholder-based reasoning [73, 78, 80, 86].

The concerns a�ecting architectural quality can be modeled in many ways, one of

which is the individual mapping of problem domain concerns to the solution domain,

4 http://logging.apache.org/log4j/

70

Business
Services Engine

Enterprise
User Manager

Presentation Tier
RIA Framework

Data Tier

Web Tier

LDAP

Certificate
Server

Message
Store

Service
Repository

Session
Store

Transaction Data

Smart
Card

Enterprise
Logger

Domain Specific Engines

Service Manager

Session
Manager

Web Switch Web Service / MQ

B2B Client &
Session

Manager

Request Broker

Rich Client
Renderer

Pres. Logs

OpenView

DB Logs

App. Logs

User
and

Session
Manager

User and Role
Management

Services
Bussines Services

Figure 4.9: The Web security framework model with DSE abstractions

but such a mapping usually creates tangled and scattered concerns in the solution

domain. An example to this in a Web-based security framework may be the tangling

of authentication and authorization at Web tier as well as scattering of the identity

management at Web, Application and Data tiers. In order to separate such crosscut-

ting concerns, there are some approaches [68, 82, 90] with a multi-view perspective,

but they primarily help in modeling the solution domain. The problem domain needs

a similar structure so that architectures can be modeled with multi-dimensional sepa-

ration of concerns [73, 105, 127].

Analyzability of the architectural models is another signi�cant concern addressed

by some of the methods. Software Architecture Analysis Method (SAAM) uses sce-

narios to evaluate quality properties of architecture, being biased towards evaluating

71

maintainability [78]. It has some extensions on di�erent tracks like SAAMCS for

complex scenarios [86] and ATAM for architecture trade-o� analysis [79, 80]. ATAM

requires the business drivers and quality attributes to be speci�ed as well as detailed

architectural descriptions to be made available.

FORM [75] uses feature models for de�ning parameterized reference architectures

and reusable components. The feature diagrams are layered in four layers: Capability

Layer, Operating Environment Layer, Domain Technology Layer, and Implementation

Technique Layer. Furthermore, feature models contain feature diagrams, composition

rules, feature dictionary and other issues/decisions. The method semi-formally de�nes

a mapping of feature models into subsystem, process and module models of a reference

architecture. It depends more on the domain engineer's skills, creativity and experience

to construct high quality domain products. The proposed approach di�ers from FORM

in two respects: �rst, by capturing and isolating architectural aspects and quality

attributes from the domain feature model; second, by feeding functional features into

asset modeling activity to construct reusable assets.

In [95], a mapping from feature models to architecture models has been proposed.

However, the approach has major weaknesses by mapping features directly to architec-

tural components since the features may be tangled and scattered, and an architectural

aspect may crosscut di�erent features at the same time. Similarly, Sochos et al. pro-

pose a mapping of feature models to architectures [121, 122]. The features models are

manipulated with a series of transformation rules, and later features are implemented

by architectural components and their interactions are mapped to architectural con-

nectors (as component interfaces). In addition to the drawbacks on crosscutting and

tangling concerns, the latter study needs the formal semantics of transformation rules

and the e�ective means of resolving feature interactions.

Regarding the architectural modeling, [49] states that �a future work is required to

develop systematic ways of bridging quality requirements of software systems to their

architecture; unsolved problem is how to take architectural concepts better to analyze

software systems for quality attributes in a systematic way�. The proposed approach

given here is an attempt to solve this problem with the symmetric alignment and by

utilizing Domain Speci�c Engines.

One �nal note about the resulting software architecture is that it employs a sym-

72

metric composition model in which all components are treated as �rst-class, co-equal

building-blocks of identical structure, and in which no component's model is more ba-

sic than any other's. It does not make any distinction on Domain Speci�c Artifacts

(DSAs) of di�erent DSKs. Artifact-to-artifact composition is driven by the choreog-

raphy rules of asset models. Harrison et al. make a good overview of symmetric and

asymmetric paradigms for software composition [67]. From the point of reuse, they

analyze that the use of symmetrically organized paradigms is a vehicle for promoting

a reusable components industry, and relationship symmetry is essential to any kind of

reuse. Their result also strengthens the usability of the proposed reference architecture

modeling approach especially within the context of improving reuse.

The tool support for the technique presented in this chapter has already been

started. The �rst prototype of the tool has been developed as a graduation project

for Master's Degree without thesis [4]. Several screenshots of the prototype have been

presented in Appendix-B. The tool provides a central repository for architectural

modeling and information sharing, which also enables an XML export.

73

CHAPTER 5

SOFTWARE ASSET MODELING WITH DOMAIN

SPECIFIC KITS

This chapter presents the proposed feature-based software asset modeling approach in

detail. The asset modeling has been leveraged by Domain Speci�c Kits (a language, an

engine, and a toolset) of the Software Factory Automation (SFA) concept introduced

in Chapter 3.

This modeling approach uses the abstractions provided by Domain Speci�c Kits

to improve the commonality of features, and provides means to e�ectively manage the

variations of them by exploiting a meta-model. Using features in software modeling

is not new, however, encapsulating them in individual asset models with domain spe-

ci�c abstractions looks more attractive since this approach ends up with more loosely

coupled assets. The proposed approach creates more cohesive asset models by en-

capsulating the feature commonality within an asset. It further facilitates variability

management with composition of Domain Speci�c Artifacts through the choreography

engine of SFA reference architecture.

5.1 Feature-Based Asset Modeling Approach

Feature-based software asset modeling with DSKs maintains two di�erent views of

assets:

• External View is speci�ed by Asset Capability Model (ACM).

• Internal View is represented by Asset Meta Model (AMM).

74

The former is expressed as a feature diagram describing the capabilities of an asset,

and the latter is expressed with Asset Modeling Language (AML) for representing

domain speci�c artifacts, contextual properties, and variability points.

Figure 5.1 depicts the software asset modeling approach in �ve steps that are

expounded in the sequel. The primary input of this step is the DFM, which is the

global view of requirements of product family; and it has been produced in the feature-

oriented requirements engineering step.

Step-2: Model Reference
Architecture

(Reference Architecture)

Step-3: Define Asset
Modeling Language for SPL

(AML)

Step-1: Construct Asset
Capability Model

(ACM)

Step-4: Map ACM to
DSAs/VPs

(ACM to DSA/VP Matrix)

Step-5: Define & Publish Assets
(Asset Model)

Construct Feature-Oriented Domain Model
(DFM)

Figure 5.1: Asset modeling approach

Step–1: Construct ACM.

The �rst step describes asset capabilities in terms of feature diagrams exposing the

structural, functional and behavioral properties, and constraints on them. The re-

quirements of business domain (DFM) has been partitioned into reusable assets, and

feature model of each asset is described as Asset Capability Model (ACM), which is the

75

principal output of this step. There is a bi-directional interaction between reference

architecture modeling and asset modeling because the identifying DSKs and reusable

assets may require several iterations. The output of this step is fed into Step 4 for

creating the matrix to map ACM to domain speci�c artifacts and variability points.

Section 5.2 explains the ACM in detail.

Step–2: Model Reference Architecture.

Step 2 is the SPL reference architecture modeling with DSKs as described in Chapter 4.

Modeling the reference architecture with symmetric alignment also yields the con-

textual information to connect DSEs, which is needed for the interaction and coordi-

nation of these DSEs with a standard composition model. Thus, de�ning DSLs under

the supremacy of asset meta-model enables the modeling of artifacts in isolation and

facilitates the composition of DSEs within a choreography engine.

In summary, Step 2 models the SPL reference architecture with a set of DSEs,

contextual information, constraints for DSL composition, and the accompanying run-

time model. In order to illustrate the ideas in this chapter, a high level architecture

has been presented in Figure 5.2. It depicts the snapshot of the reference architecture

taken from the actual core banking product line of Cybersoft, which underlies the

running example in the text. The DSEs of the reference architecture and associated

DSATs are described as follows:

• ERE : EBML Rendering Engine is used for rendering the rich content on clients.

EBML (Enhanced Bean Markup Language) [6, 8] is the DSL for specifying

DSATs such as page, region, and popup.

• LRE : Listing and Reporting Engine is used to render and print documents.

DSAT is report.

• BPE : Business Process Engine is used for executing business process. DSAT is

process.

• BSE : Business Service Engine is used for executing the business services. DSAT

is service.

• BRE : Business Rule Engine (RUMBA) [33] is used for business rule segregation

and execution of other artifacts. DSATs are rule and composite-rule.

76

• PME : Persistence Management Engine is used for Object-to-Relational (O2R)-

mapping of persistent entities. DSAT is pom (persistent object model).

CHOREOGRAPHY ENGINE

ERE LRE BPE BSE

Domain-Specific Artifact (DSA) Contextual Info

BRE PME

Repository

Figure 5.2: SPL reference architecture excerpt

Step–3: Define AML.

Asset Modeling Language (AML) for the target product family is the main output of

this step. AML de�nes the types of artifacts, variability mechanisms, context infor-

mation, choreography rules, and other constraints of the target domain. An AML is

instantiated from Asset Meta Model (AMM) for a product family. Section 5.3 explains

the AMM and AML in detail.

Step–4: Map ACM to DSA/VP.

The next step consists of the mapping of features to Domain Speci�c Artifacts (DSAs)

and Variability Points (VPs) under the governance of AML. Actually, AML de�nes

DSATs and variability mechanisms needed in a particular product family; and features

of an asset (ACM) can be mapped to multiple DSAs/VPs. The mapping matrix is the

output of this step, which will be explained in detail in Section 5.2.

Step–5: Define and Publish Asset Models.

The last step de�nes and publishes the software assets based on an AML and DSA/VP

mappings of the capability model. A published asset model describes all the artifacts,

provided variability points, public artifacts, and external (artifact) dependencies. Out-

puts of this step are the asset models for the product family. This step may loop back

to reference architecture modeling because assets are likely to be encapsulated later

as DSKs while their maturity improves. Section 5.5 explains the details of asset de�-

nitions.

77

5.2 Asset Capability Model (ACM)

The proposed software asset modeling depends on a conceptual model that treats a

software asset as a �set of features and variations�. As stated in Section 2.9, a feature

can be a structural property, the components of the designed object, a con�guration,

a set of relationships, a behavior, a function, or a property of a behavior or of a

function [25]. Highly complex entities and relationships in software can be synthesized

by composing generic and reusable features [15].

A software asset can be modeled using a feature model which is a description of

the relevant characteristics of some entity of interest; during domain design they are

mapped into artifacts and variability points. Using the feature analysis technique [75]

in domain analysis, the proposed approach intends to capture the �capability features�

that describe a distinct service, operation, function or structure together with its non-

functional properties such as expected response time or scalability concerns; and model

them as �Asset Capability Model� (ACM).

Feature diagrams are exploited to model problem domain with the stabilized do-

main terminology that the users and developers use to communicate their ideas, needs

and problems [75]. Hence, they best �t with the domain analysis. However, solution

domain is usually expressed in terms of a set of artifacts and variability points to real-

ize such features. Accordingly, Step 4 in the proposed approach builds asset models by

mapping features to set of DSAs/VPs in domain design. Thus, the proposed model-

ing approach has been entitled as �feature-based� rather than �feature-oriented� since

features will not be treated as �rst-class entities right after they have been mapped to

DSAs/VPs. Features form the �external view� of assets whereas DSAs/VPs represent

the �internal view� within the context of the proposed approach.

Figure 5.3 shows a feature diagram of �Document Manager� asset from the core

banking SPL of Cybersoft to be used as a running example throughout this chapter.

�Document Manager� has to support three alternative document store types that can

be selected by the product developer: File System, Database or XML. It should fa-

cilitate several document types; basic actions for document lifecycle management like

save, update, retrieve; document category and metadata management; search with

options (e.g. keyword or full-text); and several other advanced features.

After having the feature model, the next step is mapping features to DSAs/VPs in

78

bin

Fg

Fs

Fd
 …

… Dates

entry

validity
Fax

invalidation

Action

Callback action

Read

Keyword Fulltext
Security

Generate

…

Save

Updated

Indexes

Deleted

…

Histor
y

…

Document Manager

Category management Type

text xml

expiry

tree

Store

Filesystem DB XML
xml

Metadata

Save Update Search

Search Keywords Display

Delete
d

requires

Template

Figure 5.3: ACM for “Document Manager” (partial)

Step�4. A feature may be mapped to multiple DSAs/VPs to indicate that it can be

realized throughout the development of that particular set of DSAs/VPs.

Given an asset [S], with a set of features [Fs], a Domain Speci�c Artifact [A], a

Domain Speci�c Engine [DSE], and a Variability Point [V P]; then this software asset

can be expressed as follows in the proposed modeling approach:

S =
n∑

i=1

Fi where Fi ∈ Fs (5.1)

Fi =
t∑

j=1

Aij +
m∑

k=1

V Pik where Aij ∈ DSEj where Fi ∈ Fs (5.2)

For example;

F1 = {A11, A12, A14} in domains {DSE1,DSE2,DSE4}

F2 = {A21, A23} + {V P21} in domains {DSE1,DSE3}

Then asset [S] with features {F1, F2} can be realized using a set of artifacts from

the domains {DSE1,DSE2,DSE3,DSE4} with the following DSAs and VPs:

S = {F1, F2}

S = {{A11, A21}, {A12}, {A23}, {A14}, {V P21}}

The mapping yields a matrix constructed by putting DSKs in columns and features

in rows. VPs are identi�ed in a separate column at the end (see Table 5.1). The cells

will be labeled with the names of the artifacts and the name of the variability points

79

if there is a mapping, otherwise it will be left empty. At the end of mapping, each

column has the list of artifacts for that particular DSK and list of VPs that asset

should support.

Based on the ACM of �Document Manager� in Figure 5.3 and the reference archi-

tecture mentioned in Section 5.1, the partial mapping matrix has been presented in

Table 5.1. Several feature mappings have been listed below to exemplify the mapping.

Table 5.1: ACM and ACM-to-DSA/VP matrix for “Document Manager” (partial)

Feature ERE (EBML) BSE (Service) BPE (Process) BRE (Rule) PME (Persis-
tent Entity)

Variability
Point

Doc type Document
POM

vp-doctype
(parameter)

Doc store Action
services

vp-store (conf
property)

Doc
category

Action
services

Category
POM

Doc dates Document
POM

vp-dates
(parameter)

Save
document

save
document

isAuthorized Document
POM

Retrieve
document

Display docu-
ment region

retrieve
document

isAuthorized Document
POM

Display
document

Display screen retrieve
document

isAuthorized Document
POM

Search
document

Document
search screen

search
document

Document
POM, Meta-
data POM,
Keyword
POM

vp-search (pa-
rameter) vari-
ant=keyword
requires
vp-keyword.

Update
document

Approval
screens

update
document

Update Ap-
proval Process

Approval
Rules

Document
POM

Generate
document

generate
document

DocumentPOM vp-template
(parameter)

Attach
Keywords

Action
services

Keyword
POM

vp-
keyword (conf
property)

On
document
deletion

vp-deleted
(artifact
substitution)

...

• �Save document (Fs)� can be realized using a service, a rule for authorization,

and a persistent entity (pom) for document information, that is,

Fs = {save_document, isAuthorized,DocumentPOM}

in domains {BSE,BRE,PME}

• �Optional document date (Fd)� can be supported by mapping to a pom to store

the dates and a VP to turn on/o� date tracking, that is,

Fd = {DocumentPOM} + {vp − dates}

in domain {PME}

• �Generate document (Fg)� can be realized using a generation service, a pom for

the generated document, and a VP for document template, that is,

80

Fg = {generate_document,DocumentPOM} + {vp − template}

in domains {BSE,PME}

Feature-to-artifact mapping can not be guided with generic rules that are indepen-

dent from the domain, since the selection of DSKs, hence artifacts, is domain speci�c.

Mapping semantics may depend on the feature classes and artifact types for a domain;

later mapping rules for a domain can be de�ned and can be applied to identify artifacts

during the design of assets.

5.3 Software Asset Meta Model (AMM)

A software asset model for a product family is not just a collection of domain speci�c

artifacts. An asset de�nition needs more to compose the internal and external artifacts,

to de�ne contextual information, and to manage variability. Conceptually, an asset is

a composition of artifacts speci�ed by using di�erent DSLs.

As stated in Chapter 4, SFA architectural modeling identi�es the set of DSEs and

associated DSLs with the composability rules under a choreography engine which con-

stitutes the SPL reference architecture. Compliant with this architecture, SPL needs

a modeling language to de�ne the assets for product assembly. The Asset Modeling

Language (AML) of a product family (i.e. distinct SPL) is derived from an XML-based

meta-model, namely the Asset Meta Model (AMM).

Figure 5.4 presents the relationship between meta-models of software assets. The

AML for an SPL is an instance of AMM; assets are de�ned using AML of a product

family; and �nally, executable assets are instantiations of these assets assembled in

di�erent products.

SFA Model

 an-instance-of

Software Product Line

 defines

 defines

Asset Meta Model

 conforms-to

Asset Modeling Language

Asset Model

 an-instance-of

Executable Asset

 conforms-to

Figure 5.4: Asset meta modeling levels

81

Table 5.2 presents an analogy of the metamodeling approach with Meta Object

Facility (MOF1) and Uni�ed Modeling Language (UML). It can be summarized as

follows: AMM is a meta-meta-model to de�ne a meta-model (AML) which is used to

de�ne assets of a product family. De�ning the domain speci�c artifact types together

with their dependencies, choreography rules, and variations constitute an AML for an

SPL. AMM also provides proper means to de�ne variability points associated with

artifact types and their realizations.

Table 5.2: Analogy between AMM and MOF

Meta Model Level Object-Oriented Modeling Software Asset Modeling

Meta-Meta-Model Meta Object Facility (MOF) Asset Meta Model (AMM)

Meta-Model Unified Modeling Language (UML) Asset Modeling Language (AML)

Model Class Model Asset Model

Instance Runtime Objects Executable Assets

AML enables to de�ne reusable software assets based on the artifacts (abstractions)

provided by individual DSKs. The common asset de�nition at a meta-level (AMM)

enables the design and cross-utilization of reusable software assets across multiple

product lines. Figure 5.5 shows an overview of AMM.

The conceptual building blocks of AMM are described below. The excerpts in

Figures 5.6, 5.9 and 5.10 are taken from the core banking asset model. Note that the

AML de�nition is coupled with the reference architecture given in Section 5.1.

• Domain Specific Artifact Type (DSAT): Identi�es the type of artifacts that can

be built by using a DSK. A speci�c asset may contain artifacts of these types.

For instance, a software asset in the running example may contain DSATs such

as page described in EBML, rule described in RuleML, or process described in

JPDL (see Figure 5.6).

• Domain Specific Kit : An artifact type is bound to a particular DSK. In other

words, the artifacts are expressed using a speci�c DSL. Furthermore, there is

an accompanying toolset in the domain speci�c development environment and a

runtime engine to be plugged into choreography engine (see Figure 5.6).

For instance, if business rule segregation is needed for the product family, then:

1 http://www.omg.org/technology/documents/formal/mof.htm

82

depends

Asset
Model

Domain Specific
Artifact Type

DSE

DST

Constraint

Choreography

connects

Dependency

DSL
Variability

Point

Context

Domain
Specific Kit

Variant Realization

Binding Visibility

Constraint

Implementer

Configurator

Parameter

Aspect

Artifact Substitution

Figure 5.5: Software Asset Meta Model (AMM)

DSL is the rule speci�cation language such as the RuleML,

DSE is a rule inference engine such as the RBE in RUMBA [33] framework,

DST is a related rule de�nition editor such as the RUMBA RuleEditor.

• Context : The contextual information that an asset model depends on comes

from the reference architecture and asset modeling activities. The context in-

cludes all variables to be shared by the DSEs through a global namespace. This

approach has already been followed in many domains, such as banking, ERP,

and e-government, for several years as a fundamental mechanism in the Service-

Oriented Architecture and the associated Enterprise Service Bus of Cybersoft

[6, 8].

83

�
1 <domain-specific -artifact -types>

2 <domain-specific - artifact -type name ="page ">

3 <domain-specific -kit>

4 <domain-specific -language name ="ebml "/>

5 <domain-specific -engine name ="ere"/>

6 <domain-specific -tool name ="eds"/>

7 </domain-specific -kit>

8 <dependency >

9 <reference -type name ="process "/>

10 <reference -type name ="service "/>

11 <reference -type name ="rule "/>

12 <reference -type name ="region"/>

13 <reference -type name ="popup"/>

14 </dependency >

15 </domain-specific -artifact -type >

16 <domain-specific - artifact -type name ="region".../ >

17 <domain-specific - artifact -type name ="popup".../ >

18 <domain-specific - artifact -type name ="rule ".../ >

19 <domain-specific - artifact -type name ="service ">

20 <domain-specific -kit>

21 <domain-specific -language name ="servicexml "/>

22 <domain-specific -engine name ="bse"/>

23 <domain-specific -tool name ="ServiceEditor "/>

24 </domain-specific -kit>

25 <dependency >

26 <reference -type name ="process "/>

27 <reference -type name ="rule "/>

28 <reference -type name ="composite -rule "/>

29 <reference -type name ="pom"/>

30 </dependency >

31 </domain-specific -artifact -type >

32 <domain-specific - artifact -type name ="process ".../ >

33 ...

34 </domain-specific -artifact -types>
� �
Figure 5.6: Defining DSATs and DSKs in AML

The context has not only architectural variables such as "session identifier",

"session context", "trans id", "security attributes" or "user id", but

also business domain speci�c variables like "institution code", "branch code"

or "customer id" of banking. Both architectural and business domain de�ni-

tions are product line speci�c extensions, and resulting AML describes them (see

Figure 5.7).

• Constraint : The product family level constraint type de�nitions that will be

applicable to all assets are also de�ned by the AML. For instance, there are three

constraint types de�ned in example, and one of them is mandatory indicating

that an asset has to declare its context dependency (see Figure 5.8). The others

indicate the required assets and excluded assets, however assets might ignore

84

�
1 <context >

2 <var id="session_identifier "/>

3 <var id="session_context ">

4 <bag id="session_bag ">

5 <var id=" logintime "/>

6 <var id="timeout "/>

7 ...

8 </bag>

9 </var>

10 <var id="trans_id "/>

11 <var id="institution_code "/>

12 <var id="branch_code "/>

13 <var id="customer_id "/>

14 ...

15 </context >
� �
Figure 5.7: Defining context in AML

these de�nitions.

This part of AMM might be closely related with the choreography language and

engine in the future to indicate some directives to the choreographer. Using

directives on assembly, usage, deployment and runtime, the choreographer can

coordinate the interactions of artifacts.�
1 <constraints >

2 < constraint -type optional ="true ">requires </ constraint -type >

3 < constraint -type optional ="true ">excludes </ constraint -type >

4 < constraint -type optional ="false">context</ constraint -type >

5 ...

6 </constraints >
� �
Figure 5.8: Defining constraints in AML

• Choreography : The Choreography block in AML de�nes the terms and conditions

for DSAT interactions (see Figure 5.9). A choreography de�nition indicates that

two DSATs may communicate with each other, and parameters like link type,

connection type and communication protocol are also speci�ed within this block.

For instance, page calls (references) a service, and also aggregates a region as part

of the page (see Figure 5.9 for the de�nition of this example).

The choreography block in this version of AML is in parallel with the composi-

tion model described in Section 6.2.2 which is based on Composite Application

Framework (WS-CAF) [28].

85

�
1 <choreography >

2 < interaction source-dsat ="page" dest -dsat ="service "

3 link -type ="call " comm -model="sync " .../ >

4 < interaction source-type ="page" dest -type ="region"

5 link -type =" aggregate " comm -model="sync " .../ >

6 < interaction source-dsat ="process " dest -dsat ="service"

7 link -type ="call " comm -model="sync " .../ >

8 ...

9 </ choreography >
� �
Figure 5.9: Defining choreography rules in AML

• Dependency : This block indicates that a DSAT may depend on another one.

Using this de�nition, one can elucidate the usage rules of artifact types and their

interrelation. For example, �page may access service� needs to be de�ned here as

a dependency so that related asset instances can be constrained during design

time, and choreographer can behave accordingly during runtime (see Figure 5.6

for dependency de�nitions).

• Variability Point (VP): VPs are the locations in an asset that might have a

parameter provided or customized by the product developer. De�nition of a VP

includes variable items, constraints, variants, visibility, binding properties, etc.

(See Figure 5.9) A VP at the AML-level is associated with an artifact type,

and it indicates that an artifact type can have a variable part that is usually a

structural variation. Later, it is left to the asset provider whether a particular

artifact needs to support this variation or not. The details of both AML-level

and asset-level VP de�nitions can be found in Section 5.4.

Once these blocks are instantiated based on AMM, the resulting AML will be

specialized for an SPL. All reusable coarse-grained assets to take place in a product

family can be de�ned using this AML. Note that di�erent product lines imply the use

of di�erent AMLs (modeling languages).

Within the scope of an SPL, software assets are de�ned using the AML associ-

ated with that product family where products are assembled by using these reusable

software assets. Managing the variability of assets is of utmost importance for the suc-

cessful assembly of products out of a core asset base. In the next section, the details of

variability point de�nitions and realizations in the proposed model will be discussed.

86

5.4 Managing Variability in Software Assets

Management of variations is the key discriminator between conventional software en-

gineering and software product line engineering [83, 109]. Variability points enable the

development of products by reusing prede�ned and adjustable artifacts. The built-in

support to de�ne variability points in the proposed approach has been adapted from

the Orthogonal Variability Model (OVM) [109]. Variability point de�nitions identify

the following details:

• Variability Point (VP): It identi�es the name of VP, associated artifact type (or

artifact), variants, binding time, visibility and type of realization.

• Variant: This determines the list of available alternatives. There might be some

constraints attached to each alternative. A VP may have no variants if its vari-

ability depends on a parameter value provided by asset user (product developer).

• Binding: Binding time of variant to a variability point can be set by the product

developer.

• Visibility: A variability point may be external (visible to customers) or internal.

• Constraint: The constraints on VPs, such as �requires� or �excludes�, are added

as a part of the asset de�nition so that the product developer can decide on

which VPs to use during product design. Constraints can also be attached to

VP variants as they may express a limitation on variant value.

• Realization: Realization is associated with a VP or a variant. The asset developer

has to decide on the realization mechanism and provide appropriate support

accordingly to instantiate the realization mechanism.

The proposed asset modeling approach provides the following realization mecha-

nisms for VPs:

• Artifact substitution: This is the most common variability mechanism in the

proposed model since DSAs are de�nitely loosely coupled with each other and

the composition mechanism relies on SOA for interaction of domains. The asset

developer simply leaves a slot for the product developer to attach another artifact.

87

The service-to-service or page-to-region substitutions are typical examples of this

mechanism.

• Implementers (Plug-in): Using proper techniques, such as the bytecode engineer-

ing facilities provided by RUMBA [6], the product developer can supply some

part of an artifact (e.g. service) even at runtime.

• Parameters: These are the code-level parameters that product developer can

easily feed during the execution of some artifacts. For example, Business Services

Engine may execute services with user supplied parameters.

• Configurators: They are actually a prede�ned set of con�guration properties that

an asset supports. Con�gurators are set during asset instantiation by the product

developer at the beginning of product development. For example, �Document

Manager� can be instantiated with one of three store types, such as DB, XML,

or Filesystem.

• Aspects: Dynamic composability of basic aspects can be supported at DSK-level.

Then, the artifacts of that DSK can bene�t from runtime variability mechanism.

For example, a rule expression can be con�gured in RUMBA rule inference engine

[33].

An asset developer has to implement variation mechanisms that support the op-

tional and alternative features in ACM. Further variation mechanisms and their basic

properties are reported in [9].

A realization mechanism implies di�erent binding times of variability [109]. Di�er-

ent binding times can be speci�ed throughout the asset and product development life

cycle: design time, development time, build time, installation time, startup time, and

runtime. Not all variability mechanisms can be applied at every point. Binding time

selection is critical, since it restricts the applicable variability mechanisms. Deciding

an early binding time results in less variability, and late binding brings more complex-

ity. Therefore a careful analysis of the binding �exibility is important, because shift

of binding times leads often to change of mechanism [22].

Three VP de�nitions at AML-level for the running example of this chapter are pre-

sented in Figure 5.10. First, a service body can be changed at runtime that is realized

88

by an implementer (Line 2 in in Figure 5.10). Second, datasource of a persistent entity,

pom, can be con�gured at design time by a con�gurator (static property) (Line 5 in

in Figure 5.10). Finally, the report has a VP to select the presentation format during

runtime, which is passed as a parameter to report generation (Line 8 in in Figure 5.10).

Alternatives are pdf and html as shown in Figure 5.10.�
1 <variability -points>

2 < variability -point artifact -type ="service"

3 vp-name ="body" binding="runtime " visibility ="external "

4 vp-key="body " realization =" implementer "/>

5 < variability -point artifact -type ="pom"

6 vp-name ="datasource " binding ="designtime " visibility =" external "

7 vp-key="datasource " realization ="configurator "/>

8 < variability -point artifact -type ="report"

9 vp-name ="format" binding="runtime "

10 visibility ="external " vp-key="format"

11 realization =" parameter ">

12 <variants >

13 <val>html </val>

14 <val>pdf</val>

15 </variants >

16 </ variability -point>

17 ...

18 </variability -points>
� �
Figure 5.10: Defining variability points in AML

It is worth to point out that there are two levels of VP de�nitions: �AML-level�

and �asset-level�. A VP is associated with an artifact type or artifact if it is at the

AML-level or asset-level, respectively. Realizations at both levels are limited by the

mechanisms provided by DSKs and binding time constraints.

5.5 Defining and Publishing Software Assets

The last step in asset modeling process is the de�nition and publishing of assets. Once

DSAs and required VPs are modeled, an asset provider is going to provide the artifacts

within that asset, such as a page design in EBML or a process description in JPDL.

Artifacts are developed using the associated DSTs. Assets are de�ned by using the

AML of an SPL, where asset de�nition includes the followings:

• Artifacts: This is the list of artifacts contained in an asset.

• Public Artifacts: These are the artifacts that are available to other assets so that

they can reference and use them.

89

• External Artifacts: These are the artifacts that an asset needs to use from other

assets.

• Variability Points: They can be employed to vary products during the product

development.

An asset de�nition for the running example (�Document Manager�) has been de-

picted in Figure 5.11, 5.12 and 5.13. Figure 5.11 presents the de�nition of artifacts

contained in �Document Manager� asset. Public artifacts and external artifacts from

other assets, e.g. GetUserInfo is provided by �UserManager� asset, have been depicted

in Figure 5.12. Note that each artifact has a <uses> tag to express its dependency on

other DSAs, and <supports> tag to indicate that their behavior can be managed by

variants of a VP.�
1 <asset name ="document -manager" asset-meta -model="Banking">

2 <artifacts >

3 <page name =" display_document ">

4 <uses type="service"> retrieve_document </uses >

5 </page >

6 <region name =" display_document_region">

7 <uses type="service"> retrieve_document </uses >

8 </region>

9 <service name="save_document ">

10 <uses type="rule ">isAuthorized </uses >

11 <uses type="pom">documentPOM </uses >

12 <supports -vp name ="vp-doctype "/>

13 </service>

14 <service name="retrieve_document ">

15 <uses type="rule ">isAuthorized </uses >

16 <uses type="pom">documentPOM </uses >

17 </service>

18 <service name="generate_doc ">

19 <supports -vp name ="vp-template "/>

20 </service>

21 <rule name =" isAuthorized ">

22 <uses type="service"> getUserInfo </uses >

23 </rule >

24 <rule name =" isAuthorizedforDeletion"/>

25 <pom name =" documentPOM ">

26 <supports -vp name ="vp-doctype "/>

27 </pom>

28 <pom name =" metadataPOM "/>

29 <pom name =" keywordPOM "/>

30 ...

31 </ artifacts >
� �
Figure 5.11: Excerpt from “Document Manager” (artifacts)

90

�
1 <public-artifacts >

2 <page name =" display_document "/>

3 <region name =" display_document_region"/>

4 <service name =" save_document " vp-key="doctype "/>

5 <service name =" generate_doc " vp-key="template -name "/>

6 <service name =" search_document " vp-key="option"/>

7 <rule name ="isAuthorized "/>

8 ...

9 </public-artifacts >

10 <external -artifacts >

11 <service >getUserInfo </service>

12 ...

13 </external -artifacts >
� �
Figure 5.12: Excerpt from “Document Manager” (public and external artifacts)

VP de�nitions are shown in Figure 5.13. Each identi�ed VP in mapping has

been de�ned with its parameters and variants. The <vp-key> tag here enables the

product developer to use the asset variability. Note that they are also indicated in

<public-artifacts> de�nitions.

The reusability of software assets directly depends on the use of common DSLs for

many SPLs. An asset can be reused across di�erent product lines only if DSKs required

by the asset speci�cation exist in AMM de�nition. In other words, such assets can be

reused if dependent artifact types are available. The complete version of �Document

Manager� asset has been used in two distinct product families, in banking and ERP

domains. For the former, it is used to generate and store the statements of transactions;

and for the latter it is used to generate and save invoice/receipt documents.

5.6 Using Software Assets

This section aims to explain brie�y the use of assets during product assembly without

going into the details of choreography. In order to illustrate better, another asset,

�Alert and Noti�cation Manager� (ANM), has been modeled by using the same ap-

proach. ANM manages end user noti�cations as their requests or jobs are completed

successfully or abnormally. It also signals alerts through several channels if some rules

are satis�ed or a timeout occurs, etc.

The instantiation of assets are carried out by means of an XML con�guration �le.

Using a very simpli�ed instantiation script, the example in Figure 5.14 shows how

these two assets can be linked to provide an alert when a document is deleted.

91

�
1 <variability -points>

2 < variability -point name ="vp-doctype "

3 binding ="runtime " visibility ="external "

4 realization =" parameter " vp-key="doctype">

5 <variants >

6 <val>bin</val>

7 <val>text </val>

8 <val>xml</val>

9 </variants >

10 </ variability -point>

11 < variability -point name ="vp-store"

12 binding ="designtime " visibility ="external "

13 realization =" configurator " vp-key="store">

14 <variants >

15 <val>filesystem </val>

16 <val>db</val>

17 <val>xml</val>

18 </variants >

19 </ variability -point>

20 < variability -point name ="vp-search"

21 binding ="runtime " visibility ="external "

22 realization =" parameter " vp-key="option">

23 <variants >

24 <val requires -vp="vp-keyword ">keyword</val>

25 <val>fulltext </val>

26 </variants >

27 </ variability -point>

28 < variability -point name ="vp-template "

29 binding ="runtime " visibility ="external "

30 realization =" parameter "

31 vp-key="template -name "> // no variant

32 </ variability -point>

33 < variability -point name ="vp-updated " .../ >

34 < variability -point name ="vp-deleted " .../ >

35 ...

36 </variability -points>
� �
Figure 5.13: Excerpt from “Document Manager” (variability points)

The anm alert and anm trace services of ANM use the settings in <messages>

and <receivers> tags in the Con�gurator. The onDelete key of VP (vp-deleted) in

�Document Manager� is subscribed to anm alert service (see Line 7 in Figure 5.14).

When a document is deleted, the document manager triggers anm alert to run. The

artifacts communicate through a common context which is also used to manage the

global state and parameter passing during choreography.

5.7 Remarks

Feature orientation has been researched widely for managing the requirements and

variability in product family development [18, 47, 91], and feature models have been

92

�
1 <sfa-init main ="PhD2007 ">

2 <asset name ="document -manager">

3 <configurators >

4 <store>filesystem </store>

5 <keyword>on</keyword>

6 <onUpdate > anm_trace </onUpdate >

7 <onDelete > anm_alert </onDelete >

8 ...

9 </configurators >

10 </asset>

11
12 <asset name ="anm">

13 <configurators >

14 <channel>mail </channel>

15 <messages >...</messages >

16 <receivers >...</receivers >

17 ...

18 </configurators >

19 </asset>

20 </sfa-init >
� �
Figure 5.14: Instantiating software assets

used in conjunction with Object-Oriented Programming (OOP) [15], Aspect-Oriented

Programming (AOP) [92], and Generative Programming (GP) [45] models. The pro-

posed model, in this respect, di�ers from the previous models by employing domain

speci�c abstractions for the realization of features.

The model presented here does not prescribe any of the mentioned programming

models; rather DSKs try to abstract them as much as possible. This approach separates

asset concerns by mapping features to DSAs, and later composes them using the SPL

reference architecture. Hence, it generates more cohesive asset models to improve the

asset reusability by reducing the interdependencies.

FORM [75] extends FODA [74] for modeling the reference architecture and makes

use of object-oriented engineering with the feature categorization at di�erent layers.

However, the crosscutting relations at multiple feature models may dramatically in-

crease complexity as the number of features grows [17]. Mapping the features into Do-

main Speci�c Artifacts aims to reduce such complexities, but requires e�ective mech-

anisms for realizing variability during composition. Built-in realization mechanisms

(con�gurators, implementers and aspects with runtime bindings) for VPs enable the

variability management with deferred encapsulations, which is also needed in ambient

applications [60, 91].

The use of Domain Speci�c Languages decreases the number of DSAs since DSLs

93

de�ne artifact types in higher abstractions compared to OO and AO models. Though

the design of DSLs is non-trivial, the design process can bene�t from the SPL ap-

proach itself [134]. Besides, conceptual model of AMM guides the design of DSLs for

supporting the capabilities (e.g. context, constraints, variability points, etc.) needed

to model reusable artifacts which take part in asset models.

The proposed model also facilitates the reusability of software assets on multiple

product lines as long as the common DSKs and contextual constraints are valid for

them. Asset models and the artifacts can be reused; and this eliminates the redun-

dancies and possibility of inconsistencies in feature models if they are used in multiple

product lines [27].

SFA model is similar to XML-based feature modeling of [29] in terms of de�ning

a product family and assets using meta-models. However, while [29] relies on XML-

based generative technologies, SFA puts explicit focus on variability management as

the �rst-level aspect of the model.

The asset models can be stored and searched in reusable asset libraries such as

Reusable Asset Speci�cation (RAS) [112] repositories. RAS describes the structure and

nature of assets with their classi�cation, solution, usage and related assets. It requires

tool support to search, locate and decide which asset to use in product development.

DSTs in the proposed model are also responsible for such issues. As assets are kept

in domain speci�c repositories, DSTs may empower the process of searching, locating

and deciding in asset repositories.

The asset terminology of the proposed model is similar to Larsen's study [88]

in Section 2.7. Although his asset de�nitions are broad and general, Larsen adopts

�models� as reusable assets and follows Model-Driven Development and uses ABD to

complement it. In Larsen's study, UML is used to specify components and systems;

MDA [99] speci�es model organization for business-driven component architectures;

and RAS [112] packages patterns, components, and other artifacts as assets to leverage

the business.

94

CHAPTER 6

EXPERIMENTATION AND VALIDATION

The evaluation of the study from di�erent viewpoints has been discussed here with

a series of validation e�orts. For the validation purposes, there are two case studies

modeled using the proposed approach. The results have been validated with respect

to the original problem de�nition and research questions introduced in Chapter 1.

After presenting the product line models for Investment Banking (INV) and Fi-

nancial Gateways (FGW), the reusability of software assets and Domain Speci�c Kits

will be discussed with the data collected from the case studies. Then the achieved

quality improvements and evaluation of basic requirements of software factory will be

discussed; later comparison of the approach with other product line approaches will

be carried out. Finally, it will be brie�y discussed how the concept of DSKs has been

applied to design of another domain, legacy migration to service-oriented environment.

The cases introduced in this chapter have been partly designed and developed by

the proposed approach in real life. Based on the bene�ts exploited so far, they are

planned to be fully transformed in the near future.

6.1 Defining the Scope of Example Domains

Determining the scope of product line is an essential activity. The product line scope is

a description of the products that will constitute the product line or that the product

line is capable of including [103]. At its simplest, scope may consist of an enumer-

ated list of product names. More typically, the things that the products all have in

95

common and the ways in which they vary from one another are described. A scope def-

inition might include features or operations they provide, performance or other quality

attributes they exhibit, platforms on which they run, and so on.

Setting the scope and setting the product line requirements seem like similar activ-

ities. Clements makes a clear statement of the distinction between product line scope

and requirements [37]. A completely precise scope is, in fact, a requirements speci�ca-

tion for the product line. In practice, however, scoping and requirements engineering

are done by di�erent people, stop at di�erent points, and are used for di�erent purposes

by di�erent stakeholders.

The main goal here is neither to de�ne the formal scope of the example domains

nor to specify the complete requirements. An overview of the domains is explained to

give a brief understanding of the cases.

6.1.1 Investment Banking (INV)

The �rst case study is the product family for investment banking. The scope of the

product line is de�ned by listing the members of the family and determining the

common and variable features of the products. Members of the product family have

been determined as follows (the acronyms in parenthesis indicate the product code

valid for the rest of the discussion in this chapter):

• Fixed Income Securities (FIS): This product supports all buy/sell, repo/reverse

repo, security transfer, auction, physical delivery, and money market prepara-

tions of �xed income securities. The supported security types are Bonds, Foreign

or Local T-Bills, Eurobonds, and other commercial papers.

• Mutual Funds (FND): Amutual fund is a form of collective investment that pools

money from many investors (customers) and invests their money in stocks, bonds,

short-term money market instruments, and/or other securities. This product is

used to manage the customer orders, buy/sell, settlement, and transfer opera-

tions of mutual funds issued by local or foreign �nancial institutions. Informed or

uninformed Mutual Funds can be of any currency units. This product supports

the mutual fund operations from the viewpoint of a retail banking.

96

• Equities (EQT): This product supports all order management, buy/sell and

transfer operations, stock management, public o�erings, capital increases, cus-

tody operations, and on-demand credit management. All domestic and foreign

equities are within the scope of this product.

• Derivatives Exchange (DEX): This product is used to manage the forward and

options operations of customers in the derivatives exchange market. Contract

management, order processing, and guarantees are basic process groups needed.

• Fund Management (FDM): Fund management product supports the life cycle of

mutual funds from the viewpoint of fund managers. In a mutual fund, the fund

manager trades the fund's underlying securities, realizing capital gains or losses,

and collects the dividend or interest income, and calculates the value of a share.

The investment proceeds are then passed along to the individual investors. It

provides a back-end system for asset/stock operations and plan executions and

ongoing monitoring of investments.

• Portfolio Management (PRT): This is similar to the fund management; but the

money is not pooled as in the case of mutual funds but executed on behalf of

the investor as a private banking service. Both fund and portfolio management

products have similar back-end operations.

After identifying the members of the product family, common and variable require-

ments of the product line have been determined as follows:

(1) All the products have a set of de�nitions that is the basis of common operations.

(2) All products are required to be integrated and co-work with existing third party

customer, accounts and accounting products of the customers.

(3) All products depend on a common organization and authorization module.

(4) Price bargaining between Central Treasury O�ce and branches or agent o�ces is

needed for all FIS operations.

(5) Flexibility in pricing policy is required based on the channel, customer type, etc.

(6) End-of-day process is very common for all type of �nancial products, therefore the

products need to provide a batch/scheduled job management environment.

97

(7) Rediscount is a fundamental process during the end-of-day operations in �nancial

systems. Rediscount accounting with parametric formulas is required.

(8) All products need a blacklist module to manage and prevent those customers that

exist in the blacklists.

(9) Typical �nancial operations require approval in the form of Maker-Checker or

multi-step approvals. They also need dynamic validation and check services.

(10) The operations need common controls like time limitations, amount limitations

based on user roles, the input document requirements, etc.

(11) The deductions (commission, tax, expense, etc.) of operations need to be managed

dynamically, and they can be �exible based on branch, instrument type, customer

group, etc.

(12) The output documents are required to be saved in printable formats.

(13) All products need a common logging mechanism.

(14) Each product has its own core business functionality, set of operations, and user

requirements.

(15) Products may utilize a common asset de�nition with common market closing price,

common statements of account, unique overall portfolio report, common stock

reports, and common operation reports.

(16) Common asset de�nition enables common primitive asset management operations:

asset transaction de�nitions, stock and balance structures, di�erent asset costing

methods (detail, average), di�erent asset stock decreasing methods (FIFO, LIFO,

Min tax, Min cost, Max cost), taxation methods, and closing the day.

(17) Common asset de�nitions and common primitive operations are required to be

tuned for di�erent instruments and for di�erent installations.

6.1.2 Financial Gateways (FGW)

In de�ning the scope of the second case study, the same approach will be followed. The

scope is de�ned by listing the members of the family and determining the common and

98

variable features of the products. The construction of this product family has been

partly supported by Tübitak TEYDEB (OCTOPODA Project, ProjectNo: 3060543).

An overview of the product line has been depicted in Figure 6.1. The model used here

is a simpli�ed version of the original product line.

Logging and Alert Management

E
xtern

al S
ystem

 A
ccess

FGWCore E
xtern

al S
ystem

 A
ccess

EFTGW

Financial
InstitutionsBanking Hosts

TCMB

MKK

KKB

Admin Console

Blacklist

Scoring

MKKGW

KKBGW

Switch BKM

Logging and Alert Management

E
xtern

al S
ystem

 A
ccess

FGWCore E
xtern

al S
ystem

 A
ccess

EFTGW

Financial
InstitutionsBanking Hosts

TCMB

MKK

KKB

Admin Console

Blacklist

Scoring

MKKGW

KKBGW

Switch BKM

Figure 6.1: OCTOPODA financial gateways product family overview

Members of the product family have been determined as follows (the acronyms

in parenthesis indicate the product code valid for the rest of the discussion in this

chapter):

• EFT Gateway (EFT): This is a gateway to Central Bank of the Republic of

Turkey (TCMB1) for electronic fund transfer services. TCMB integration is

achieved through a custom protocol (Host Link Protocol � HLP). The product is

required to support EFT operations at the same time. E�ective means of logging

and alerting are critical, while integration with the value-added services such as

blacklist management and scoring is a distinguishing feature of the product.

• CRA Gateway (CRA): This is a gateway to Central Registry Agency of Turkey

(CRA2) for electronic registration of securities. This gateway requires the use of

either Web service or message queue based integration. The message format is

same for both cases, and signature-based security policy is applied. All messages

must be signed by the users and saved by the system. The requests are processed

asynchronously, therefore collecting further noti�cations is mandatory. Again,

1 http://www.tcmb.gov.tr/
2 http://www.mkk.com.tr/

99

integration with logging, alerting, and blacklist management is a distinguishing

feature.

• Credit Bureau Gateway (CRB): This is a gateway to Credit Bureau of Turkey

(KKB3) for accessing to a comprehensive picture of consumer, and such informa-

tion is used in the assessment of consumer credit worthiness and related credit

granting purposes by the banks and other consumer �nance institutions. The

system returns all information extracted from the database for the applicant

(consumer) being searched, enabling the credit risk of all parties to be assessed.

The primary challenge of the gateway is KKB host systems are running on main-

frame and accessed via mainframe speci�c protocols. Integrating with the local

caching mechanism is a distinguishing feature for this product.

After identifying the members of the product family, common and variable require-

ments of the product line have been determined as follows:

(1) All products need a common infrastructure for service-based integration, user au-

thorization and session management.

(2) A common admin console is required for ease-of-administration.

(3) All products need a common external access layer for integration to both internal

and external hosts (B2B integration). This is required to be dynamically con-

�gurable, to support di�erent communication protocols, and to give service in

di�erent modes such as synchronous, asynchronous, etc.

(4) A common security mechanism is required and on-demand customizations have to

be supported additionally.

(5) Custom communication protocols may be built and integrated for some products

(e.g. EFT requires the use of custom protocol � HLP)

(6) EFT and CRA gateways have to be integrated with blacklist management module

to prevent the processing of incoming/outgoing messages from the individuals on

blacklists.

3 http://www.kkb.com.tr/

100

(7) All system logs including the operational and �nancial audit logs have to be

recorded.

(8) Gateways may require the use of noti�cation system for generating system alerts.

(9) The system alerts must be directed to SMS, e-mail, and other channels.

(10) Integrated log and alert system can produce rule-based alerts with �Event Mining�

and �Event Sequence Matching� algorithms.

(11) Blacklists are coming from di�erent sources with di�erent formats and data mod-

els. Dynamic usage and matching rules of blacklists with di�erent products are

fundamental requirements (applying �Record Matching� and �Data Linkage� algo-

rithms). Additional support for the application of mining algorithms on these lists

will be an important value-add.

In the next section, the required DSKs and reference architectures of both INV

and FGW domains have been discussed.

6.2 Reference Architectures

The discussion of reference architectures for case studies has been organized in two

steps: �rst, the required common DSKs for the case studies have been described, then

the reference architectures for INV and FGW domains are depicted.

6.2.1 Domain Specific Kits for Case Studies

The list of DSKs that are used in the examples and their descriptions are given in Ta-

ble 6.1. Then, for each DSKs, the DSL description, the artifact types and descriptions,

the development environment (DST), the runtime engine (DSE), and other details are

de�ned in this subsection.

6.2.1.1 RIA Presentation Kit

Presentation tier is one of the most tedious and error-prone parts of the Web applica-

tion development. HTML-based applications have become very popular so far because

cost of deployment is low, architecture is relatively simple, and HTML is trivially easy

101

Table 6.1: List of DSKs used in the case studies

Name Description/Purpose
RIA Presentation Kit Business domain independent XML-based technol-

ogy to be used for power screen design in Internet
applications [8].

Reporting Kit Business domain independent XML-based technol-
ogy to be used for report content generation, ren-
dering and presentation in Internet applications.

Business Services Kit A lightweight kit for development, publishing, ad-
ministration of business services with a registry,
repository, meta-model and policy management ser-
vices [8].

RUMBA Business Rules Kit Business domain independent Aspect-Oriented kit
for business rules segregation where all aspects,
facts, rules and rule-sets can be defined and man-
aged dynamically by means of a GUI console [33].

BPM Kit A jBPM [71]-based kit for business process man-
agement (BPM) providing design, development and
execution of business processes.

Persistence (POM) Kit An XML-based Object-to-Relational (O2R) map-
ping kit for defining, deploying and executing SQL
queries by mapping to Plain Old Java Objects (PO-
JOs) [8].

Batch Processing Kit A special purpose kit for defining, scheduling and
execution of batch jobs with enterprise-class fea-
tures, such as transactions and clustering.

to learn and use. But the bene�ts of being Web-based outweighed the loss of signi�-

cant user interface (UI) functionality since Web (HTML) has originally been designed

for publishing. Consequently, certain application domains do not �t to the limited

capabilities of HTML. As a re�ex to the limitations of HTML, Rich Internet Appli-

cation (RIA) concept introduced the client-side rendering approach that can present

very dense, responsive, and graphically rich user interfaces [104, 66, 101]. It combines

best of the desktop, Web, and communications [51].

EBML (Enhance-Bean Markup Language) [6, 8] has been derived from User In-

terface Markup Language (UIML4) [108], which is an open standard user interface

description language in XML. The motivation of UIML is to facilitate better tools for

creation of user interfaces that work on any platform available today. From the point

4 UIML, http://www.uiml.org/

102

of multi-tier Web architecture, UIML only describes the presentation layer. The orig-

inal UIML speci�cation is not optimized for fast rendering, its markup requirements

are high, and it has little help on advanced UI widgets like tabbed panes, in-cell ed-

itable grids, tree tables (explorer like screens) and popup querying controls. Therefore,

the original UIML concept has been tailored for Web presentation, empowered with

pluggable widget technology, enriched with advanced screen widgets, and the resulting

markup language has been named as Enhanced Bean Markup Language (EBML).

EBML is capable of expressing reusable screen regions, de�ning sanity checks as

well as arithmetic and logical expressions, executing local and remote method calls,

versioning and caching structural parts separately, dealing with static reference data

dynamically, managing the client context, and supporting localization and internation-

alization without extra client-side coding [8].

A generic Java applet has been implemented as the rendering engine, called as

EBML Rendering Engine (ERE). Similar to Web Browsers rendering HTML content,

ERE is a generic program that can render di�erent screens as far as they are expressed

in terms of EBML, thus it can thoroughly provide the client/server UI functionality to

end users. By separating screen layouts (including reusable regional parts) from the

actual data and method calls, an e�ective client side caching is possible.

Rendering capabilities have been conceptualized as a DSK in Table 6.2. EBML

(Enhance-Bean Markup Language), as a DSL, is a generic markup language to describe

the structure of user screens and their behavior. ERE (EBML Rendering Engine) is

a Domain Speci�c Engine to interpret the EBML, which both renders and manages

the user screens. Finally, EDS (EBML Development Studio), as a DST, is a complete

development and test tool for the user interface developers. Page, Region, and Popup

are the artifact types that can be de�ned by EBML. Excerpts from a sample EBML

�le, a screenshot of EDS, and an example screen rendered by ERE have been included

in Appendix C.

Table 6.2: RIA Presentation Kit

DSL EBML (Enhance-Bean Markup Language)
DST EDS (EBML Development Studio)
DSE ERE (EBML Rendering Engine)
DSAT Page, Region, and Popup

103

6.2.1.2 Reporting Kit

Enterprise Web applications require e�ective reporting and listing capabilities. Gener-

ating and rendering reports, supporting several reporting formats (PDF, Word, XML,

HTML, etc.), and the print management are some of the key requirements.

The Reporting Kit is based on JasperReports5 which is a powerful open source

reporting tool that has the ability to deliver rich content onto the screen, to the

printer or into PDF, HTML, XLS, CSV and XML �les. It has been written in Java

and can be used in a variety of Java enabled applications, including Java EE or Web

applications, to generate the dynamic content. Main goal of JasperReport is to help

creating page-oriented ready-to-print documents.

The reports are described as XML �les (JRXML) which is later uploaded, compiled

and deployed to the report server. The structure of JRXML is provided as a Docu-

ment Type De�nition (DTD) �le supplied with the JasperReports engine. There is

an open source visual report builder/designer for JasperReports, iReport6 and there is

also a built-in Swing viewer. iReport allows users to visually edit complex reports with

charts, images, and subreports. The data to print can be retrieved through several

ways including multiple JDBC connections, TableModels, JavaBeans, XML, Multidi-

mensional Expressions (MDX), EJBQL7, Hibernate8, etc. In the example architecture,

the data has been served with an included Content Manager.

Table 6.3 summarizes the reporting kit. JRXML, as a DSL, is a generic markup

language to describe the structure of reports. JasperReports is a Domain Speci�c

Engine to process report de�nitions as well as to generate and print reports. Finally,

iReport and Swing-based viewer, as a DST, is a complete development and test tool

for the report developers. Report is the artifact type that can be de�ned by JRXML.

An excerpt from JRXML, a screenshot of iReport, and an example report have been

included in Appendix C.

6.2.1.3 Business Services Kit

Service is a piece of software that can be reused across the enterprise, in the context of

5 http://jasperforge.org/sf/projects/jasperreports
6 http://jasperforge.org/sf/projects/ireport
7 EJB QL, http://java.sun.com/developer/technicalArticles/ebeans/ejb20/index.html
8 www.hibernate.org

104

Table 6.3: Reporting Kit

DSL JRXML
DST iReport and Swing-based viewer
DSE JasperReports
DSAT Report

many business processes or subprocesses, consisting of an interface, implementation,

contract, and data [16]. A contract consists of the global constraints that component

will maintain (invariants); the constraints that need to be met by the client (pre-

conditions); and the constraints that component promises to establish in return (post-

conditions) [8].

A clear separation of business logic from the presentation, business rules and persis-

tence results in improved abstraction, and hence, reuse of the services. The component-

based approach enables partitioning the business logic into proper components (set of

artifacts) in such a way both to maximize intra-component relations (coherency) and

minimize inter-component interactions (coupling) [124].

Business Services Kit is a lightweight framework for development, publishing, and

administration of business services with a registry, repository, meta-model and pol-

icy management services [8]. As summarized in Table 6.4, services are expressed as

XML de�nitions (ServiceXML) and they are also registered into a repository through

a database schema. Service Executor Runtime is an engine to invoke services. The

services can be de�ned and developed using a Service Editor and Eclipse IDE. Service

is the artifact type that can be de�ned by XML, and it is connected to a piece of exe-

cutable code and accessible via di�erent protocols. An example ServiceXML de�nition

and a screenshot of Service Editor have been included in Appendix C.

Table 6.4: Business Services Kit

DSL ServiceXML
DST Service Editor and Eclipse IDE
DSE Service Services Engine
DSAT Service

105

6.2.1.4 BPM Kit

Business Process Management (BPM) is an emerging technology that organizes the

�ow of business processes in terms of work�ows, rules, and other business entities

for improving the e�ciency of processes as they are de�ned, executed, managed and

changed. In this respect, a business process is de�ned as inclusive and dynamically

coordinated set of collaborative/transactional activities [119].

There are many di�erent vendors and BPM languages, such as BPEL, BPELJ,

BPML, ebXML's BPSS, WSCI and WfMC's XPDL. An open source business process

model, JBoss's jBPM [71], has been selected for the case study. jBPM enables �exi-

bility by supporting multiple-process languages with the same scalable process engine

platform. JBoss jBPM's pluggable architecture is extensible and customizable on ev-

ery level, therefore it is very suitable for the DSK extension. Complying with DSK

abstraction, jBPM has three subcomponents: a process engine, process monitor, and

a process language.

Table 6.5 summarizes the BPM kit. jBPM Process De�nition Language (JPDL),

as a DSL, is an XML-based language to describe the business processes. jBPM has a

process engine that keeps track of the states and variables of all active processes, and

provides a communication infrastructure that forwards tasks to appropriate process,

user or application. GPD (Graphical Process Designer), as a DST, is a complete

business process design environment. Process is the artifact type that can be de�ned

by JPDL. An excerpt from an example JDPL process de�nition, a screenshot of GPD

and a snapshot of a process �ow have been included in Appendix C.

Table 6.5: Business Process Management Kit

DSL JPDL (jBPM Process Definition Language)
DST GPD (Graphical Process Designer)
DSE jBPM
DSAT Process

6.2.1.5 RUMBA Business Rules Kit

Almost at every tier of enterprise application, business rules crosscut several parts of

process management such as work�ows, task assignments, and business transactions.

106

Managing business rules on its own hence improves the dynamism of processes in the

sense of modeling, implementing, executing, and even maintenance [33].

In [33], a taxonomy has been presented for the separation of business rules cross-

cutting the BPM. It has speci�ed the process management as an orthogonal model to

architectural tiers of enterprise applications and classi�ed the business rules accord-

ing to this orthogonal model. Accordingly, business rules can be classi�ed based on

content, orchestration, work�ow, operation, task, transaction, service, and domain.

Hence, segregation and management of business rules in isolation enables a better

treatment of complexity, criticality, frequency of change, order of execution, type of

access, and responsibility issues.

Table 6.6 summarizes the business rule management kit. RuleML, as a DSL, is a

generic markup language to describe the business rules. RUMBA is a Domain Speci�c

Engine to execute the business rules. Finally, there is a set of management screens to

de�ne and deploy business rules. Rule and composite-rule are the artifact types that

can be de�ned by RuleML. A screenshot of RUMBA RuleEditor have been included

in Appendix C.

Table 6.6: RUMBA Business Rules Kit

DSL RuleML
DST RUMBA Design Environment
DSE RUMBA Runtime
DSAT Rule and Composite-Rule

6.2.1.6 Persistence (POM) Kit

Persistence, as a fundamental mechanism for an enterprise application, has been

abstracted a long time ago with Object-to-Relational (O2R) Mapping frameworks.

These frameworks have signi�cantly reduced the amount of code to access a rela-

tional database, and they have also supported object caching and object-oriented

idioms. Several O2R mapping frameworks have been proposed and they have been

in use in many enterprise applications, even the same framework is available in both

Java or .NET environments. Therefore, there may be several DSKs de�ned based on

107

Hibernate9, iBatis10, and many others. The choice in the example is to build a DSK

based on an in-house developed persistence mechanism, POM [8].

As summarized in Table 6.7, PomXML (Persistent Object Model XML), as a DSL,

is a generic markup language to describe the SQL mappings of persistent entities. The

PomXML enables mapping tables, stored procedures, functions, views and queries to

Plain Old Java Objects (POJOs); it is used to generate the database scripts, associ-

ated DDL schema and related interface classes automatically based on these de�nitions.

These mappings and generations are performed by means of POM Studio (GUI envi-

ronment to manage POM de�nitions), as a DST. POM has a runtime engine to serve

the relational queries, and it has been extended to support object caching. Pom is the

artifact type that can be de�ned by PomXML. An excerpt from an example PomXML

de�nition and a screenshot of POM Studio have been included in Appendix C.

Table 6.7: Persistence Kit

DSL PomXML
DST POM Studio
DSE POM Runtime
DSAT POM (Persistent Object Model)

6.2.1.7 Batch Processing Kit

Batch processing, as an integral part of an enterprise application, is the execution of a

series of jobs on a computer without human intervention whenever they are scheduled

or triggered by an event. All input data is preselected through scripts or command-

line parameters. Typical core banking system has end-of-day jobs for execution of the

operations such as credit pay backs, rediscounts, creating balance sheets, etc.

A special purpose kit has been developed for scheduling and execution of batch jobs.

Batch Processing Kit has been developed based on Quartz11 job scheduling system that

can be integrated with or used along side virtually any Java EE application. It is used

to create complex schedules for executing jobs whose tasks are de�ned as services.

As summarized in Table 6.8, a repository of batch jobs has been set with their

9 www.hibernate.org
10 http://ibatis.apache.org/
11 http://www.opensymphony.com/quartz/

108

parameters, scheduling rules, execution dependencies, etc. This information has been

de�ned using an XML �le. job.xml, as a DSL, is a generic markup language to describe

batch or scheduled jobs. Job Management Console, as a DST, is a Web application

for registering, management and monitoring of batch jobs. Quartz Job Scheduler is an

engine to execute batch jobs with the provided parameters at scheduled times. Job is

the artifact type that can be de�ned by XML. An example batch job de�nition and a

screenshot of job management have been included in Appendix C.

Table 6.8: Batch Processing Kit

DSL Job.xml
DST Job Managemenet Console
DSE Quartz Enterprise Job Scheduler
DSAT Job

6.2.2 Reference Architectures of The Product Lines

Product line reference architecture of Investment Banking (INV) domain has been

constructed with the roadmap presented in Chapter 4. Details of the construction are

omitted for the compactness of discussion. Figure 6.2 depicts a simpli�ed version of

the reference architecture. The choreographer in this drawing has been added to the

SAAM lexicon (presented in Figure 4.5). The architecture of INV domain utilizes all

seven DSKs de�ned in Section 6.2.1.

Similarly, the reference architecture of FGW product line has been depicted in

Figure 6.3. The FGW domain utilizes only four of the DSKs given in previous sec-

tion: RIA Presentation, Reporting Kit, Business Services Kit, Persistence (POM) Kit.

Due to the nature of FGW domain, some other architectural elements for external

connections have been employed in this architecture.

The choreographer model in these case studies has been designed in compliance

with the Web Services Composite Application Framework (WS-CAF) [28]. WS-CAF

is divided into three parts:

1. Web Service Context (WS-CTX) is a lightweight framework for simple context

management that ensures all Web services participating in an activity share a

common context and can exchange information about a common outcome.

109

Application
Tier

Data Tier

Presentation
Tier

Business Services
Engine

EBML

Rendering Engine

XML Repository (Process, Services,
Rules, POM, Job)

Transaction Data

Quartz
Enterprise

Job
Scheduler

Persistence Kit

(POM)

Business Rules
Engine

(RUMBA)

BPM Engine

(jBPM)

Reporting Engine
(JasperReports)

Context Manager

Context Manager

Choreographer
Computational
Component

Active
Data Repository

Uni/Bi-directional
Data Flow
Uni/Bi-directional
Control Flow

DSE

Figure 6.2: Reference architecture of INV product line (simplified)

2. Web Service Coordination Framework (WS-CF) builds on WS-CTX and provides

a sharable mechanism to manage context augmentation and lifecycle.

3. Web Services Transaction Management (WS-TXM) builds on WS-CF and de�nes

three distinct transaction protocols for interoperability across existing transac-

tion managers, for long running compensations, and for asynchronous business

process �ows.

In compliant with this general approach, the choreographer handles the context

management, coordination, and transaction management of all parties (DSEs). The

context includes the following information:

• session identi�er and context,

• security attributes,

• transaction identi�er and context,

• client identi�er,

• business domain speci�c identi�ers, such as �branch_code� or �customer_id� for

investment banking.

110

Application
Tier

Data Tier

Presentation
Tier

Business Services
Engine

EBML

Rendering Engine

XML Repository
(Services, Rules, POM)

Transaction Data

External
Comm.

Protocols

Persistence Kit

(POM)

Business Rules
Engine

(RUMBA)

Reporting Engine
(JasperReports)

Context Manager

Context Manager

Choreographer
Computational
Component

Active
Data Repository

Uni/Bi-directional
Data Flow
Uni/Bi-directional
Control Flow

DSE

Figure 6.3: Reference architecture of FGW product line (simplified)

The interaction model of composition relies on SOA as a paradigm for managing

resources, describing process steps, and capturing interactions between an artifact and

its environment. Therefore, a uniform service (Call) has been designed with uniform

interfaces. The Call has a uniform interface, called as Bag, which is a lightweight

hierarchical container with e�cient impose/expose mechanisms and fast-access meth-

ods. Each asset provides a known set of artifacts in terms of �named calls� together

with speci�ed input and output sets. Name of the call as well as its input and output

parameters are all prede�ned and controlled by the choreographer. (See Line 15 and

25 at Figure C.2 in Appendix C.)

Figure 6.4 shows all artifact types and their dependencies. The dependency graph

points out that �the artifact type A depends on (or calls) artifact B if there is an arc

between A and B�. For instance, a process may call a service, a rule or a composite-

rule; and it may be called from a service, a page or a region. Since FGW reference

architecture utilizes only four of the DSKs (RIA Presentation, Reporting Kit, Business

Services Kit, Persistence (POM) Kit), it has a reduced set of artifact types (only those

that are marked with �*�).

111

Region* Process

Service*

POM*

Rule*

Page*

Popup*

Report*

Comp
Rule*

Job
A depends on B.

A B

Region* Process

Service*

POM*

Rule*

Page*

Popup*

Report*

Comp
Rule*

Job
A depends on B.

A B

A depends on B.

A B

Figure 6.4: Dependency of artifact types in case studies

6.3 Asset Models

The results of asset modeling for case studies have been presented here. The individual

steps of asset modeling have been omitted in order to highlight the results of the case

studies. The discussion of reusable assets of INV and FGW domains has been presented

and their brief descriptions are given in Appendix D.

Based on the reference architectures of domains, SFA approach builds a modeling

language to de�ne the assets for product assembly. An AML example with similar

DSKs has already been given in Chapter 5, which is similar to the Asset Modeling

Languages (AMLs) of INV and FGW product lines. AML de�nes the domain speci�c

artifact types and their dependencies given in Figure 6.4.

Following the roadmap given in Chapter 5, assets of the product families have

been modeled, and a consolidated asset table has been given in Table 6.9. Table is

structured as follows: the �rst column is the name of the asset, the second column

shows the scope of asset utilization, the next group of columns under INV product

family indicate whether an asset has been used in that INV product, and similarly the

�nal group of columns under FGW product family indicate whether an asset has been

used in that FGW product. The cell is marked with (
√
) if the asset is being used by

that product.

In this section, the reuse ratio and reuse scope, as de�ned in [52], will be investi-

gated. It has been stated in [52] that the success of reuse can be measured by primarily

two factors:

112

Table 6.9: Asset utilization within and cross product families

INV Products FGW Products
Assets

FIS FND EQT DEX FDM PRT EFT CRA CRB
Customer Core ?

√ √ √ √ √

Customer Advanced •
√ √ √ √

Blacklist Manager ?
√ √ √ √

Document Manager ?
√ √ √ √ √ √ √

Account Manager ?
√ √ √ √ √ √ √ √

Deduction ?
√ √ √ √ √ √ √

Accounting Gateway ?
√ √ √ √ √

Accounting •
√ √

Administration ?
√ √ √ √ √ √ √ √ √

Ext. System Data Transfer ?
√ √ √ √ √ √

Alert and Notification Man. ?
√ √ √ √ √ √ √ √

Repo ◦
√

Fixed Income Common ◦
√

Fixed Income Trade ◦
√

BPP ◦
√

Asset Delivery ◦
√

Auction •
√ √

Asset Lending ◦
√

DEX Operations ◦
√

Equity Common Operations ◦
√

Order Management ◦
√

Credit ◦
√

Capital Increase ◦
√

Public Offering ◦
√

Mutual Fund Buy/Sell Ops. ◦
√

Fund Transfer •
√ √

Fund Man. Backend ◦
√

Portfolio Man. Backend ◦
√

Asset/Stock Invest Core •
√ √ √ √ √ √

Cash Invest Core •
√ √ √

Asset Transfer •
√ √

FGW Core ?
√ √ √ √ √

FGW Communication •
√ √

EFT Messaging (HLP) ◦
√

EFT Operations ?
√ √ √

KKB KRS ◦
√

KKB LKS ◦
√

CRA Electronic Registry ?
√ √ √ √ √

CRA Core Operations ◦
√

• Reuse scope for a reusable component

• Reuse ratio in the target application

Satisfying these two measures at the same time is not trivial. Large reuse scope is

achieved by those reusable components that provide relatively low level of functionality

(e.g. libraries). Improving the level of functionality decreases the reuse scope, but at

the same time increases the reuse ratio of the �nal product. The latter case is common

for the product line approaches (with coarse-grained assets) but only in the limited

scope of product family. Therefore, increasing the reuse scope beyond the boundaries

of a single product family while keeping the reuse ratio high is critical.

113

The asset utilization column in Table 6.9 indicates the reuse scope of assets with the

following symbols: �?� indicates that an asset is being used in two product families, �•�

indicates that an asset is being used within at least two products of a family, whereas

�◦� indicates that an asset is being used only in a single product of a family.

There are 39 assets used to build INV and FGW product lines. The distribution

of assets according to reuse scope is as follows: there are 12 assets used in two product

families (31%), 8 assets used within at least two products in a family (20%), and 19

assets used only in a single product of a family (49%). These results show that half of

the assets are reused in at least two products and large reuse scope beyond the product

lines has been achieved with the proposed modeling approaches.

On the other hand, the reuse ratio for each product can be calculated as follows

(call this Product as P): Ar/AP where

Ar: the number of assets used in P and in at least one more product, and

AP : the total number of assets used in building the product P .

For example, 19 assets have been used in building the FIS product (AP is 19), 13

of 19 assets that are used in FIS and in at least one more product (Ar is 13), the reuse

ratio for FIS is 13/19 = 68%.

The reuse ratio for all products varies between 68% and 92%. The reuse ratio

for individual products decreases if product families are considered independently.

For instance, EFT product uses many assets that are also reused in INV product

line, therefore the reuse ratio of EFT is 81% if both product families are taken into

consideration. On the other hand, the value is 55% if it is calculated only in the

context of FGW product line. In any case, the reuse ratio is above the 50%.

There several are factors that have to be noted for the right interpretation of these

results:

• Those products that share a large number of common business functionality,

such as DEX, FND, FDM, have better reuse ratios since they only di�er in their

core business �ows and functionality.

• Two assets, �Customer Core� and �Customer Advance�, di�er in their reusability.

Although this information is not available in the table, �Customer Core� does

not depend on BPM and Batch Processing Kits, therefore it is reusable in both

product lines. However, �Customer Advance� is dependent on BPM Kit for

114

advance customer approval work�ows this is only usable in INV product line,

not in FGW.

• Some of the domain assets (�rst 11 of them) are the end product of banking

projects, which have been carried out for several years. Therefore, they have

been designed from scratch and this is one of the factors that has improved the

reuse ratio.

• The domain knowledge obtained before designing these domains has been realized

by senior business analysts. That is another critical factor in achieving those high

reuse ratios.

As stated in [27], if multiple product lines share many common features and varia-

tions, developing and maintaining the common artifacts become a critical requirement.

The reusability of assets in multiple product lines is one of the unique outcome of the

proposed approach. Since the asset modeling languages are derived from the same

meta-model and they depend on the same DSK set, these provide the expected bene�t

of utilization of software assets across multiple product lines. Furthermore, keeping

a single copy of capability features of assets (ACMs) and maintaining the variability

points within these assets eliminate the redundancies and possibility of inconsistencies

when assets are used in multiple product lines independently.

6.4 Reusability of Domain Specific Kits

This section presents that DSKs can be reused across multiple product lines. For this

purpose, several product lines that have been developed at Cybersoft are introduced

and their DSK utilization has been depicted in Table 6.10.

The following product lines have been analyzed in this discussion:

• Core Banking System (BNK): Core banking system is a complex product family

with many products sharing many features, but having many variations at the

same time. A typical core banking application includes products ranging from

corporate banking applications to consumer products, from accounting system

to payment systems. Each of these product sets can be considered as a separate

product lines, but they have been included as a single product family.

115

• Investment Banking (INV): This product family has already been discussed in

Section 6.1.1.

• Financial Gateways (FGW): This product family has already been discussed in

Section 6.1.2.

• Enterprise Resource Planning (ERP): This product family has been developed

for ERP installations in public sector organizations. It has all major ERP

products such as stock management, purchasing, accounting, �nance, human

resources, �xed assets, materials management, etc.

• Tax Automation (TAX): Even this is a single product, several DSKs from other

domains have been used in the architecture of this system.

• Insurance (INS): Insurance application has been designed and developed using

some of the DSKs already in use.

Within the context of these product lines, several new DSKs are introduced in

addition to the ones that have been discussed in Section 6.2.1. These new DSKs are

as follows:

• Data Access Layer (DAL): This is actually an alternative kit for persistence,

which has a service-based interface for RDBMS access with many enterprise

features, such as clustering RDBMS instances, table and query virtualization for

very large volume of result sets, etc.

• Document Management System (DMS): This is a document management system

to track and store electronic documents and images of paper documents. This

has a logical central store organization and many enterprise level integration

options.

• Authorization and Authentication Server (CSAAS): CSAAS provides a central

control for the collection of user ID authentication and authorization processes,

which is isolated from the applications. It is designed to allow integration by

multiple applications via service-based interfaces, and enables the use of rule-

based policy de�nitions. It comprises both RAD (Resource Access Decision) and

RBAC (Role Based Access Control) features.

116

Table 6.10 shows the DSK usage in di�erent product lines. It is the product

line (domain) requirement that determines whether a particular DSK is used in that

domain. For instance, DAL and POM are alternative persistence kits. DAL, which is

a CORBA-based persistence kit, has been employed in taxation system since the back-

end RDBMS server consolidation is mandatory for that domain and it is particularly

needed to restrict the data access with some additional features. All other product

lines have utilized POM as a persistence kit.

Table 6.10: Reusability of DSKs across multiple SPLs

Product Families
DSKs BNK INV FGW ERP TAX INS
RIA Presentation Kit

√ √ √ √ √ √

Reporting Kit
√ √ √ √ √

Business Services Kit
√ √ √ √ √ √

BPM Kit
√ √ √

RUMBA Business Rules Kit
√ √

Persistence (POM) Kit
√ √ √ √ √

Batch Processing Kit
√ √

DAL Kit
√

DMS Kit
√ √

CSAAS Kit
√ √

RIA Presentation and Business Services Kits have been reused in all product fami-

lies. This actually makes some of the business domain independent core assets, such as

document, alert manager, organization, etc., reusable across these product lines since

presentation and business implementations are based on the same domain speci�c

abstraction.

On the other hand, some of the product families, given in Table 6.10, make use of

other non-listed architectural components for similar facilities. For instance, only the

core banking and investment banking products use Batch Processing Kit for batch and

scheduled operations, however other domains have their particular batch job manage-

ment facilities.

At �rst glance, this also seems to be facilitated by frameworks and libraries. How-

ever, the frameworks are language dependent and usually integrate the components via

composition mechanisms of the underlying language. The language independent com-

position infrastructure, such as CORBA, does not provide a required level of abstrac-

tion and addresses this issue in the object level. Java EE application server component

117

model, on the other hand, addresses the composition issues through Java language and

other Java EE services. In SFA approach, DSK provides a language independent ab-

straction for development of domain speci�c artifact and employs a fully declarative

composition model. This also enables incorporation of business speci�c DSKs into the

model which extends the bene�ts and improves the reuse of coarse-grained components

as DSKs.

6.5 Quality Improvements

In this section, the proposed approach has been explored with respect to the observed

quality improvements. The discussion has been pursued along with those quality

attributes a�ected by the approach.

• Reusability : Improving the reusability of domain know-how is one of the key

motivations of SFA approach. The reuse has been increased in two respects: the

�rst is achieved by using DSKs as the main building block, which increases the

reuse of domain speci�c abstractions that can be reused even across multiple

product lines. Secondly, the modeling of software assets provides the reusability

within the product line and across product lines. These have been discussed with

examples in Section 6.3 and Section 6.4.

• Traceability : The SFA approach provides traceability from one end (require-

ments) to the other end (reusable assets). Requirements expressed as feature

models are mapped to domain speci�c artifacts and later they are bound to soft-

ware assets. Feature models are pivoting points as they are linking requirements

of the problem domain to artifacts of the solution domain. An answer to typical

scenario: �how the e�ect of change in requirements can be determined� is easy

to detect. The requirements are expressed as feature models, and they are, in

turn, linked to the artifacts and variability points. The dependency of artifacts

and variability points clearly identi�es the scope of change in solution domain.

• Testability : The testability issues have been collected as follows:

(a) Managing the dependency of artifacts and their composition via CDL can

guide and structure testing, and thus, reduce the overall time to deploy an

artifact.

118

(b) The scope of regression testing can easily be determined through full trace-

ability.

(c) It is possible to develop and use additional test programs based on CDL

descriptions.

(d) DSEs can be engineered in such a way to run automated test runs.

• Productivity : The productivity e�ect of the model has been determined in the

following points:

(a) Building applications by developing the domain speci�c artifacts and com-

posing them by means of a choreography language increases the developer

productivity considerably. The time-to-develop an artifact is relatively low

with respect to developing the same artifact with a low level programming

language.

(b) This also enables the static validation of artifacts against a choreography

description, which, in turn, lowers the defect ratio and improves the quality.

(c) The cost of implementing artifacts can be reduced since conformance to

expected behavior described in the CDL is ensured.

(d) It might be possible to develop and use CDL-based tools to generate ar-

tifacts skeletons. This will prevent the developers dealing with con�gura-

tional or structural issues, hence guide their e�orts to actual development

of artifacts.

(e) Productivity during development of artifacts is improved since DSTs are

tailored to do it more e�ectively. In addition, developing the artifacts in

isolation provides a concentrated e�ort that improves the productivity.

(f) Through the use of DSLs, developers need not to know the inner working

details of infrastructural issues, which will reduce the training time.

(g) Separation of concerns during the development by means of DSKs enables

setting up separate teams that use specialized DSTs.

• Maintainability : Maintainability of applications are improved since pieces of

software (artifacts) can be managed separately. The declarative nature of DSLs

119

brings the ease-of-change. This altogether reduces the maintenance time of soft-

ware assets. Moreover, �exibility of products is improved with �rst-hand support

of variability points and alternative realization mechanisms. On the other hand,

it requires e�ective con�guration and release management practices.

• Performance: The performance can be improved since Domain Speci�c Engines

can utilize the native capabilities or they can make use of particular domain spe-

ci�c techniques internally. On the other hand, the performance might decrease

since the applications are built using the assembly of artifacts as compared to

developing everything in a single language. Similarly the choreography, con-

text management and propagation, and other composition overheads increase

the runtime costs.

• Reliability : Reliability of the products is naturally improved since DSKs and

assets are reused in multiple products and even in multiple product families, so

that they have better chance to improve their maturity through reusability.

It has to be noted here that the above discussion is based on subjective evaluation

during case studies. The quantitative analysis of empirical data from further case

studies is needed for better investigation of the quality attributes.

6.6 Comparison with Major Product Line Approaches

In order to compare the proposed approach with other product line engineering ap-

proaches, the comparison model, adapted from [52], has been used.

In [52], set of comparison criteria has been determined based on the lessons learned

from the product line community (C1 −C3) and additional requirements that must be

satis�ed for larger scope of reuse (C4 − C7). The criteria are as follows:

C1: Rely on an abstract and stable description of the problem to solve.

C2: Identify explicitly the variations in terms of features, not in terms of a solution.

C3: Reuse coarse-grain, high-functionality components.

C4: Allow abstract architecture evolution.

C5: Variation mechanisms must be improved.

C6: A high-level mapping between the abstract architecture and the components.

C7: Reuse components developed elsewhere.

120

Major product line approaches to be used in comparison are described here very

brie�y. The discussion of the approaches and their evaluation with respect to the set

of criteria given above is already available in [52]. Therefore the details will not be

discussed here. The product line approaches are as follows:

• Domain Specific Language (DSL): This approach can be highlighted as design-

ing and generating a high-level language where domain speci�c concepts are

promoted as �rst class entities. A DSL is designed to abstract the common ar-

chitecture of the product family, and it enables to represent the concepts of the

application domain. A program, written in that language, is compiled into an

executable code.

• Generative Programming (GP): Generative programming focuses on automating

the creation of product families by generating a family member from a speci�ca-

tion written in a high-level language (DSLs). DSLs are designed after the feature

model has been constructed and strongly emphasizes the variation control.

• Model Driven Engineering (MDE): MDE is a top-down approach and is primarily

focused on using meta-models to capture domain speci�city. MDE applies a

series of transformations from platform independent models into platform speci�c

models. The approach has already been brie�y described in Section 2.4.

• Domain Specific Modeling (DSM): DSM is a combination of DSL and GP ap-

proaches. It has three elements: a DSL, a generator and a framework. Domain

concepts are expressed in DSL, the domain variations can be expressed either in

a DSL, in a generator, or they may be de�ned and implemented in a framework.

The approach has already been brie�y described in Section 2.10.

Table 6.11 has been adapted from [52] which rates product line approaches with

respect to the criteria set (the rates are expressed as �?�).

Evaluation of the SFA approach with respect to the criteria is as follows:

C1: Rely on an abstract and stable description of the problem to solve: SFA anticipates

the use of feature-oriented domain model to start building reference architecture

and asset models. This is actually a description of the problem domain. Therefore,

this criterion has been fully satis�ed.

121

Table 6.11: Comparison of the approaches

C1 C2 C3 C4 C5 C6 C7

DSL ? ? ? ? ? ?
GP ? ?? ? ? ? ??
MDE ? ? ? ? ? (???)
DSM ? ? ? ? ? ? ? ? ?
SFA ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ?

C2: Identify explicitly the variations in terms of features, not in terms of a solution:

The proposed model manages the variations with feature models in problem do-

main, and maps them to the artifacts and variability points in the solution domain.

Therefore, this criterion has been fully satis�ed.

C3: Reuse coarse-grain, high-functionality components: The assets, as sets of features,

are coarse-grained, and they include the domain speci�c artifacts with a set of

variability points. The assets are reusable within a product family, and they can

also be reused in other product lines even they are not speci�cally designed for that

domain. This criterion has been fully satis�ed, and no other approach provides

support for reuse in multiple product lines.

C4: Allow abstract architecture evolution: Although the reference architecture mod-

eling and asset modeling proceed by feedbacking each other, they both rely on a

feature-based domain model. Therefore, they are not quite tolerant in changing

the requirements and scope of product lines.

However, such a change does not require the product line setup to start from

scratch. As reference architecture modeling proceeds by extracting the architec-

tural aspects and quality attributes from feature-oriented domain model, it brings

another layer of separation. Furthermore, using DSKs might probably hide some

of those changes, in other words, the impact of change is limited to a single DSK.

As a result, this criterion is partially satis�ed.

C5: Variation mechanisms must be improved : The asset modeling approach in SFA

enables to de�ne variations and their realization mechanisms. The variability re-

alization mechanisms can be expanded since their implementations are dependent

on DSEs. As new DSEs enable alternative realization mechanisms, the assets,

hence products, can utilize these variation mechanisms. This criterion has been

122

fully satis�ed.

C6: A high-level mapping between the abstract architecture and the components: This

requirement indicates that there should be no direct relationship between a feature

and underlying implementation. In SFA approach, DSKs provide the building

blocks of solution space, artifact types and variability mechanisms that the feature

models are mapped to. There is a clear separation of concerns since artifact types

are executed by di�erent DSEs and composed via CDL. The high-level mapping

has been achieved. However, although the mapping is domain speci�c, the formal

mapping rules need more research. Therefore, this is partially supported.

C7: Reuse components developed elsewhere: This requirement can be evaluated in two

respects: �rst, the components that are core assets of other product lines can be

reused as long as their dependencies are satis�ed. Second, the DSK encapsulation

can help to introduce other components and services as new DSKs and they can

be con�gured by a suitable DSL and be used within another product line. (See

next section how DSKs can be utilized for this purpose.) This criterion has been

fully satis�ed.

6.7 DSKs in Migration to Service-Oriented Computing

This section covers the application of the DSK concept to another �eld: legacy migra-

tion to service orientation. This section has been mainly excerpted from two recent

publications [30, 31].

6.7.1 Migration Strategy

Converting legacy applications to services allows systems to remain largely unchanged

while exposing functionality to a large number of clients through well-de�ned service

interfaces. Migrating a legacy system to SOA, e.g. wrapped as Web Services, may

be relatively straightforward. However, characteristics of legacy systems like platform,

language, architecture, and the target SOA may unexpectedly complicate the task.

This is particularly the case during migration to highly demanding SOA enforcing the

rich content rendering, service composition and mashups.

There exist some proposals for SOA migration and each approaches to the problem

mainly from di�erent viewpoints though they have commonalities. The alternatives

123

have been presented and systematically compared in [30].

In [30], we have proposed a six-step mashup migration strategy depicted in Fig-

ure 6.5. The strategy addresses both behavioral and architectural aspects of the mi-

gration. The �rst two activities are for the modeling of target enterprise business

(MODEL) and the analysis of legacy systems and infrastructure (ANALYZE). These

activities lead to two main steps: (MAP & IDENTIFY) maps model requirements to

legacy components and services identi�cations; and (DESIGN) models mashup server

architecture with Domain Speci�c Engines (DSEs), which abstracts legacy compo-

nents.

Model Target Enterprise
Business Requirements

(MODEL)

Map Target Enterprise Model to Legacy
Components and Identify Services

(MAP & IDENTIFY)

Analyze Existing Legacy
Systems

(ANALYZE)

Define Service Level Agreements (SLAs)
(DEFINE)

Implement and Deploy Services
(IMPLEMENT & DEPLOY)

Design Concrete Mashup Server
Architecture with Domain Specific Kits

(DESIGN)

Figure 6.5: A roadmap for migration to service-oriented computing

Both the mapping and architectural design activities might cause a loopback to

MODEL and ANALYZE activities to re-reconsider some of the decisions and im-

provements. As a result of these major activities, target system service dependency

graph has been constructed and mashup server concrete architecture has been de-

signed. De�ning the Service Level Agreements (SLAs), including non-functional and

contextual properties, is the next step (DEFINE) that will obviously be followed by

implementation and deployment activities (IMPLEMENT & DEPLOY).

124

6.7.2 The Role of DSKs in Migration Strategy

The migration strategy, itself, is not the particular reason to include this work here.

Rather, it has been leveraged by the speci�c pluggable DSEs that can be utilized

as abstraction of di�erent service sources in mashup server architecture. Each DSE

may require varying management activities depending on the service source. They

also maintain the contextual information and they are con�gured using the DSLs.

De�ning DSLs under the governance of a meta-model enables the exposition of service

from di�erent sources with varying attributes.

The reference architecture model for the mashup server has been depicted in Fig-

ure 6.6, which highlights the generic reference architecture that enables plugging the

speci�c DSEs for di�erent systems (service sources). The reference architecture de-

pends on a meta-model for specifying DSLs for di�erent service sources, a common

service repository, and a policy for managing contextual information. The reference

architecture enables the integration of another mashup server using a particular DSE

(see DSE5 in Figure 6.6).

MASHUP SERVER (MSR)

DSE1 DSE2 DSE3 DSE4

Existing
legacy
code

(M/F)

Existing
legacy
code

(Web1.0)

Service
Repository

New
developed

code
(in any

language)

Existing
legacy
code

(ERP)

Web 2.0 Client

Service Screen scrapper Contextual Info

DSE5

Mashup
Server

(MSRX)

MASHUP SERVER (MSR)

DSE1DSE1 DSE2DSE2 DSE3DSE3 DSE4DSE4

Existing
legacy
code

(M/F)

Existing
legacy
code

(Web1.0)

Service
Repository

New
developed

code
(in any

language)

Existing
legacy
code

(ERP)

Web 2.0 ClientWeb 2.0 Client

Service Screen scrapper Contextual Info

DSE5DSE5

Mashup
Server

(MSRX)

Figure 6.6: Mashup reference architecture with DSEs

The DSEs can wrap di�erent legacy systems. Consider, for instance, a Web 1.0

system without an API. It heavily mixes presentation with content and makes it hard

to sift out meaningful data from the rest of the elements used for formatting, spacing,

125

decoration or site navigation. In such a situation, the DSE can employ �Screen/Web

scraping� techniques by analyzing the page structure and wrapping out the relevant

records. In some cases the task is even more complex than that: the data can be

scattered over more pages. Then, triggering of a GET/POST request may be needed

to get the input page for the extraction or authorization that might be required to

navigate to the page of interest. The situation may be even more complex if there are

work�ows running in the provider system and tight security policies are applied.

In case the legacy code is provided by a mainframe, the screen scrapping techniques

are essential to simulate the working of the mainframe terminals. Using screen scrap-

ping, the data would be retrieved from the host and also posted onto the host. Mashed

up services are accessed through Web 2.0 clients supported with AJAX, Flash, Flex,

JavaScript, and other XML-based rendering [8] technologies. Even smarter clients can

be used to access several mashup servers from a single client empowered with mashup

choreography abilities.

6.7.3 Experimenting the Migration Strategy

The example to demonstrate the mashup reference model and migration strategy comes

from the black list management in �nancial applications: mashing up �nancial gate-

ways and black list management (BLM) sources. The BLM sources include Central

Bank lists, credit history lists, capital market black lists, internal black lists of the

bank, etc. These services are accessed via di�erent ways: (a) through a standalone

legacy program accessed via the user screens, (b) through gateway accessing main-

frame, (c) through MQ-based access, (d) through existing AS/400 based core banking

solution. The mashup problem is as follows:

i. �Provide a third party service to the banks so that they can access these varying

sources via a single interface.�

ii. �Enrich this service with value-added services such as combining the black list

records with Ministry of Finance records accessed through a Web service.�

iii. �Enable bank to associate their customer information while querying black lists

on demand.�

Initial modeling of the problem revealed that the domain speci�c approach is e�ec-

tive in absorbing variations in service sources. The design of Domain Speci�c Engines

126

can hide all the dirty tricks and low-level details of external accesses. The modeled

DSEs are as follows:

• DSE-CB: Modeled to access Central Bank list with the old legacy program.

This engine must do screen scrapping to initiate a query and extract information

from the display screen.

• DSE-MF: Modeled to retrieve/post data from/onto the mainframe.

• DSE-MQ: Modeled to access message-based system with message queues.

• DSE-AS400: Modeled to retrieve/post data from/onto the AS/400. This en-

gine must also do screen scrapping and manage complex screen �ow logic.

• DSE-WS: Modeled to encapsulate Web service access.

The approach can utilize the existing legacy application, such as Central Bank

lists, mainframe lists, and AS/400 screens, without any change at the code level.

Furthermore, it is relatively easy to integrate Ministry of Finance querying with a

particular DSE. �Querying black list� service can support advanced functionality such

as record matching among all black lists and data linkage algorithms. Those new

services can be implemented using any technology of choice during refactoring.

The initial investigation showed that the model is quite tolerant to variations in

service sources and can help to reuse existing legacy components compared to our

earlier implementations where such external links are managed at the code level.

6.8 Remarks

As a concluding remark to this chapter, the original research questions introduced in

Chapter 1 have been revisited, and they are linked to validation e�orts in this chapter

as follows:

Q1. Can domain specific know-how be abstracted and reused across different business

domains?

Yes, domain speci�c know-how has been abstracted and encapsulated into Domain

Speci�c Kits (DSKs), and they have been used as a basic building block to express

the domain speci�c types and artifacts. This has been validated through de�ning

127

a set of DSKs for di�erent purposes and by utilizing them across di�erent product

families. (See Section 3.2, Section 6.2.1, Section 6.4, and Appendix C.)

Q2. Can such abstractions increase the reusability of software assets?

Yes, this has a positive e�ect on reuse scope and reuse rates of software assets,

while DSKs, itself, are reusable across multiple product lines. By using the pro-

posed reference architecture and asset modeling activities, two product families

have been modeled. The reuse scope and reuse rates in these families have been

investigated for validation purposes. It has also been examined and validated that

the assets can be reused not only within a product family but also in multiple

product families. (See Chapter 5, Section 6.3, and Section 6.4.)

Q3. What should be the content of reusable assets for increased reuse scope?

The reusable software assets in the proposed model includes Domain Speci�c

Artifacts, their dependencies, variability mechanisms, and contextual information.

The proposed asset modeling approach reveals software assets that are reusable

in multiple product lines. (See Chapter 5, Section 6.3, and Section 6.4.)

Q4. How do those domain specific abstractions be employed and helpful in modeling

the reference architecture of a product family?

A reference architecture modeling approach has been constructed based on the

separation of concerns both in problem and solution domains. The concept of

DSK has been successfully utilized in product line reference architecture. This

has been validated by constructing reference architectures of two domains. (See

Chapter 4 and Section 6.2.)

Q5. Can we construct a roadmap for setting up software product lines for different

domains out of a reference model?

Yes, the proposed coupled modeling activities, i.e. reference architecture and asset

modeling, constitute the domain design phase of a software product line. Software

Factory Automation has been proposed as an industrialization model and it has

been used experimentally to model two product families (INV and FGW). (See

Section 6.1, Section 6.2, and Section 6.3.)

128

CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

This study proposes an industrialization model, Software Factory Automation, for

establishing software product lines. Major contributions of this thesis are the con-

ceptualization of Domain Specific Kits (DSKs) and a Feature-Based Domain Design

Model based on DSKs for software product lines. The concept of DSK has been in-

spired by the way other industries have been successfully realizing factory automation

for decades. DSKs, as fundamental building blocks, have been deeply elaborated with

their characteristic properties and with several examples.

The constructed domain design model has two major activities: �rst, building the

product line reference architecture using DSK abstraction; and second, constructing

the reusable asset model again based on DSK concept. Both activities depend on

outputs of feature-oriented analysis of product line domain. The outcome of these

coupled modeling activities is the �reference architecture� and �asset model� of the

product line.

Reference architecture modeling approach has been based on symmetric alignment

of problem and solution domains structured in multiple concern spaces. Representing

both domains in multiple concern spaces and aligning two symmetric matrices in an-

other matrix assist identifying the sensitivity and tradeo� points in problem domain

as well as the components, connectors and properties in solution domain. This archi-

tectural modeling approach has also been exempli�ed on modeling of a Web security

129

framework, which revealed the practical cases how components and connectors, later

DSKs, can be derived from the symmetric alignment matrix.

On the other hand, the asset modeling approach uses the abstractions provided by

DSKs to encapsulate the commonality of features, and provides means to e�ectively

manage the variations of them by exploiting a meta-model. Using features in software

modeling is not new, however, encapsulating them in individual asset models with do-

main speci�c abstractions looks more attractive since this approach ends up with more

loosely coupled assets. The proposed approach creates more cohesive asset models by

encapsulating the feature commonality within an asset. It further facilitates variability

management with composition of Domain Speci�c Artifacts through the choreography

engine of SFA reference architecture.

The approach has been validated by constructing product lines for two di�erent

product families. The reusability of DSKs and software assets within and across these

product lines has been discussed. Finally, the constructed model has been evaluated in

terms of quality improvements, and it has been compared with other software product

line engineering approaches.

7.2 Conclusions

The presented SFA approach has been conceived to bring the focus on essential diffi-

culties in software development. For this purpose, the SFA model relies on two things:

higher level of �domain speci�c� abstractions providing separation of concerns and

high level composition of these abstractions. Therefore, the technology or platform

is not the main focus of SFA approach, which has been usually the case for previous

approaches [23].

The SFA model has been built on DSK abstraction, and the value proposition be-

hind the fundamental DSK abstraction is to provide abstract artifacts expressed using

a DSL that are e�ciently developed using a specialized toolset (DST) and executed

e�ciently by regarding engine (DSE). Di�erent DSKs address di�erent set of concerns,

which provide the segregation of responsibilities not only in technical infrastructure but

also in the development team organization as well. As a result, very specialized teams

with di�erent concerns can be formed with increased productivity. The loose coupling

and symmetric composition of artifacts eliminates the inter-dependency of teams, and

130

enables the development of product by assembly of Domain Speci�c Artifacts.

Another important characteristic of DSKs is that they can be generically reused

across multiple product lines since they are abstract enough and loosely coupled. This

also brings the reusability of their artifacts in the form of coarse-grained assets in

multiple product lines. This has been shown through a case study including two

di�erent product families in Chapter 6.

The proposed approach has been evaluated with respect to the vision of software

factories. The most fundamental property of the model is the e�ective incorporation

of domain speci�c assets into software development. The model provides development

by assembly by the declarative nature of DSL and CDL, and by providing explicit

variability points in software assets. SFA facilitates setting up software supply chains

by providing a common architectural baseline and suppliers of coarse-grained assets

and DSKs. The model provides the �exibility of product options in satisfying the

diversity of customer requirements.

The SFA approach contributes to the long term vision of mass customization of

software, but it is too early to say that it has been fully satis�ed. However, it pro-

vides improvement especially on product de�nition, design and assembly for mass

customization.

The employment of SFA approach brings serious organizational changes to software

development teams. The �organizational alignment� based on separation of concerns

has to be taken, and there will be a new model at every step of the software devel-

opment, acquisition and usage for all stakeholders. This is both positive and negative

side of the model. The organizational change is not easy, but quicker the organiza-

tional change is higher the bene�ts will be. The �competence centers� in technical

and business expertise areas will be similar to the assembly line organizations in other

industries, such as automobile manufacturing. Finally, the team performance can in-

dependently be recorded, measured and improved.

Besides improving reusability, which is the major proposal of the model, the pro-

posed model achieves better in a number of other quality attributes. The reuse has

been increased by using Domain Speci�c Kits as the main building block and by mod-

eling software assets on domain speci�c abstractions. The constructed roadmap from

requirements engineering to product development maintains end-to-end traceability.

131

In terms of testability, the model bene�ts from the traceability of the requirements

and declarative nature of product development; independent development of artifacts

further improves the testability of the artifacts. Traceability and testability, together,

improve the maintainability of the products, and maintainability also bene�ts from

the variability management support in asset meta-models.

Another fundamental contribution of the approach is the productivity gain. The

separation of concerns at large scale simpli�es the development of artifacts since they

usually address a single or a limited set of concerns. Time to develop, test and deploy

an artifact is signi�cantly reduced, since toolset is specialized for a single artifact

type. CDL-based composition of artifacts enables the validation and conformance to

expected behavior; and tool support can be provided to generate artifact skeletons for

better productivity.

However, nothing has only positive sides; there are several drawbacks as well. One

of the drawbacks of the proposed model is the possible performance loss due to the

declarative development and execution model with independent engines. In addition,

there is an extra overhead during execution due to choreography, context management

and propagation, etc. This demands higher performance from choreography engine

and DSEs as well as the development of alternative execution models. Besides, this

triggers another drawback that the design of choreography engine gets more complex.

Another di�culty of the model is that it tries to de�ne a meta-model and an

XML syntax simultaneously to form asset models. As a result, there is no distinction

between syntactic and semantic aspects. Therefore, it might be more convenient to

develop a modeling notation rather then XML syntax later. Artifacts produced by

DSLs and composed via CDL need a formal ground so that they can be checked with

formal models.

An important aspect of the software asset model is that they can be later con-

structed as Domain Speci�c Kits with appropriate abstractions. This will further raise

the abstraction and enable the construction of business speci�c DSKs. In order this

to happen, a methodical study of DSLs and construction of a type system are needed.

Finally, the proposed model has the potential to provide global �SFA Providers�.

These organizations will have their own DSKs and reusable core assets, so that they

can provide them to other organizations aiming to setup their specialized product lines.

132

7.3 Future Work

While the study represents a signi�cant improvement in automating the software de-

velopment and providing reuse, it also opens a number of important further long term

or short term research areas suggested by the results of this dissertation.

The SFA concept has six fundamental blocks, where three of them, namely the con-

cept of DSKs, reference architecture modeling with DSKs, and software asset modeling

with DSKs, have been studied here. In order to complete the vision of SFA approach,

other three major long term research areas are as follows:

• Feature-Oriented Requirements Engineering : SFA anticipates the use of feature-

oriented requirements engineering model for domain analysis. The features are

life cycle entities to bridge the problem and solution domains, and they are

meant to be logically modularizing the domain requirements and expressed as a

Domain Feature Model (DFM). Although it has been set a global viewpoint in

Section 3.4, a complete feature-oriented requirements engineering process has to

be devised for SFA approach.

• Domain Engineering Life Cycle Management : A complete domain engineering

life cycle management process has to be de�ned for the technical and organiza-

tional practices needed for a successful operation of product lines. Such a life

cycle needs to address the organizational management, process/project manage-

ment, software engineering measurement and evaluation, with formal planning

and continuous improvement.

• Design of Choreography Language and Engine: As SFA employs the principle of

separation of concerns by utilizing the DSKs, a choreography model for domain

speci�c artifacts has been described. Such a model describes collaboration be-

tween artifacts (executed by di�erent DSEs) in order to achieve a common goal,

and it captures the interactions and the dependencies between these interac-

tions. It has been discussed in the text that the composition of artifacts is quite

achievable even via simple composition model, however, employing a declarative

choreography language for this purpose has many advantages (see Section 3.5.1).

Besides, the design of choreography engine will certainly highlight more details

on the syntax and semantics of DSL.

133

In addition to these long-term research areas, there are several short term but

equally important research areas as well:

• Although the reference architecture modeling approach identi�es many archi-

tectural issues systematically, some steps do still need systematic approaches in

decision-making. One basic example is the determination of correlation coe�-

cients in architectural modeling. Statistical analysis on a set of applications may

create a catalog of useful coe�cients to further guide the software architects.

• During reference architecture modeling, the exploration and formalization of

rules for identi�cation of components, connectors, and later DSEs from alignment

matrix will be quite helpful. In order to achieve this goal, the modeling has to

be applied on several case studies for the extraction of rules.

• In this dissertation, proposed approach has been investigated with a set of case

studies. Further case studies are needed to improve the understanding of the ap-

proach, since this will enable us to extend the meta-model and modeling language

for de�ning software assets as well.

• Automated tool support for software asset modeling with integrated repositories

is a fundamental step in achieving the software factory vision.

• De�ning an ontology of software assets can be quite helpful in development of

asset modeling tools and repositories. Such an ontology can also be helpful in

asset selection and checking the consistency of compositions.

• The guidance or recommendation on asset selection can be explored using the

External Views (ACM) of software assets as they are represented with feature

models. The reasoning approaches on feature models can be utilized and auto-

mated support can be provided in partitioning/mapping DFM into ACMs and

selection of existing assets.

• A methodical approach for the design of DSLs, an exploration of a type system

for DSATs including the higher-order types for business speci�c DSKs and their

composition will further increase the level of abstraction since it will facilitate

the encapsulation of software assets as business speci�c DSKs.

134

REFERENCES

[1] S. Ahn and K. Chong. A feature-oriented requirements tracing method: A study
of cost-benefit analysis. In ICHIT’06: Proceedings of the 2006 International
Conference on Hybrid Information Technology, pages 611–616, Washington, DC,
USA, 2006. IEEE Computer Society.

[2] N. Akima and F. Ooi. Industrializing software development: A Japanese ap-
proach. IEEE Software, 6(2):13–21, 1989.

[3] Z. Aktas and S. Cetin. We envisage the next big thing. In Integrated Design
and Process Technology, IDPT-2006, Society for Design and Process Science,
San Diego, CA, USA, 06 2006.

[4] O. Alic. Development of a tool for architectural modeling with symmetric align-
ment of multiple concern spaces. M.Sc. graduation project report, Middle East
Technical University, Department of Computer Engineering, June 2007.

[5] R. J. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon University, School of Computer Science, 1997.

[6] N. I. Altintas and S. Cetin. Integrating a software product line with rule-based
business process modeling. In D. Draheim and G. Weber, editors, Trends in En-
terprise Application Architecture, VLDB Workshop, TEAA 2005, Trondheim,
Norway, Revised Selected Papers, volume 3888 of LNCS, pages 15–28. Springer,
2006.

[7] N. I. Altintas, S. Cetin, and A. H. Dogru. Industrializing software development:
The “Factory Automation” way. In D. Draheim and G. Weber, editors, Trends
in Enterprise Application Architecture, TEAA 2006, Berlin, Germany, Revised
Selected Papers, volume 4473 of LNCS, pages 54–68. Springer, 2006.

[8] N. I. Altintas, M. Surav, O. Keskin, and S. Cetin. Aurora software product line.
In Turkish Software Architecture Workshop, Ankara, September 2005, 2005.

[9] F. Bachman and P. C. Clements. Variability in software product lines. Technical
Report CMU/SEI-2005-TR-012, Carnegie Mellon University, Software Engineer-
ing Institute, 2005.

[10] M. R. Barbacci, R. Ellison, A. J. Lattanze, J. A. Stafford, C. B. Weinstock,
and W. G. Wood. Quality attribute workshops, third edition. Technical Report
CMU/SEI-2003-TR-016, Carnegie Mellon University, Software Engineering In-
stitute, 2003.

135

[11] A. Barros, M. Dumas, and P. Oaks. A critical overview of the web ser-
vices Choreography Description Language (WS-CDL), BPTrends Newsletter,
www.bptrends.com, Volume 3, Number 3, March 2005.

[12] L. Bass and R. Kazman. Architecture-based development. Technical Report
CMU/SEI-1999-TR-007, Carnegie Mellon University, Software Engineering In-
stitute, 1999.

[13] L. J. Bass, P. Clements, and R. Kazman. Software Architecture in Practice,
Second Edition. Addison-Wesley Professional, 2003.

[14] L. J. Bass, M. Klein, and F. Bachmann. Quality attribute design primitives and
the attribute driven design method. In PFE’01: Revised Papers from the 4th

International Workshop on Software Product-Family Engineering, pages 169–
186, London, UK, 2002. Springer-Verlag.

[15] D. Batory. Feature oriented programming for product-lines. In European Con-
ference on Object-Oriented Programming 2006, France, 2006.

[16] G. K. Behara and S. Inaganti. Approach to service management in SOA space,
Wipro White Paper, www.bptrends.com, February 2007.

[17] K. Berg, J. Bishop, and D. Muthig. Tracing software product line variability:
from problem to solution space. In SAICSIT’05: Proceedings of the 2005 annual
research conference of the South African institute of computer scientists and
information technologists on IT research in developing countries, pages 182–191.
SAICSIT, 2005.

[18] D. Beuche, H. Papajewski, and W. Schröder-Preikschat. Variability manage-
ment with feature models. Sci. Comput. Program., 53(3):333–352, 2004.

[19] B. Boehm. Economic analysis of software technology investments. In
T. Gulledge and W. Hutzler, editors, Analytical Methods in Software Engineer-
ing Economics. Springer-Verlag, 1993.

[20] B. Boehm. Managing software productivity and reuse. IEEE Computer,
32(9):111–113, 1999.

[21] G. Booch. Object-oriented analysis and design with applications (2nd ed.).
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1993.

[22] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J. Henk Obbink,
and Klaus Pohl. Variability issues in software product lines. In PFE ’01: Re-
vised Papers from the 4th International Workshop on Software Product-Family
Engineering, pages 13–21, London, UK, 2002. Springer-Verlag.

[23] F. P. Brooks. No silver bullet - essence and accidents of software engineering.
IEEE Computer, 20(4):10–19, 1987.

[24] A. W. Brown. Large-Scale Component-Based Development. Prentice Hall, 2000.

[25] D. C. Brown. Functional, behavioral and structural features. In KIC5: 5th IFIP
WG5.2 Workshop on Knowledge Intensive CAD., Malta, 2002.

136

[26] A. Bucchiarone and S. Gnesi. A survey on service composition languages and
models. In Proceedings of the First International Workshop on Web Services
Modeling and Testing (WsMaTe’06), Palermo, Italy, 2006.

[27] S. Bühne, K. Lauenroth, and K. Pohl. Why is it not sufficient to model re-
quiements variability with feature models? In AURE04, pages 5–12, Japan,
2004.

[28] D. Bunting, M. Chapman, and et. al. Web services composite application frame-
work (WC-CAF) ver1.0 [online], www.arjuna.com/library/specs/ws caf 1-0/ws-
caf-primer.pdf, 28 July 2003.

[29] V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger. Xml-based feature
modeling. In Software Reuse: Methods, Techniques and Tools, volume 3107 of
LNCS, pages 101–114. Springer, 2004.

[30] S. Cetin, N. I. Altintas, H. Oguztuzun, A. H. Dogru, O. Tufekci, and S. Suloglu.
Legacy migration to service-oriented computing with mashups. In ICSEA’07:
Proceedings of the International Conference on Software Engineering Advances.
IEEE Computer Society, 2007.

[31] S. Cetin, N. I. Altintas, H. Oguztuzun, A. H. Dogru, O. Tufekci, and S. Su-
loglu. A mashup-based strategy for migration to service-oriented computing. In
ICPS’07: IEEE International Conference on Pervasive Services, July 15 - 20,
2007, Istanbul, Turkey, pages 169–172. IEEE Computer Society, 2007.

[32] S. Cetin, N. I. Altintas, and C. Sener. An architectural modeling approach with
symmetric alignment of multiple concern spaces. In ICSEA’06: Proceedings of
the International Conference on Software Engineering Advances, page 48, Los
Alamitos, CA, USA, 2006. IEEE Computer Society.

[33] S. Cetin, N. I. Altintas, and R. Solmaz. Business rules segregation for dynamic
process management with an aspect-oriented framework. In Business Process
Management International Workshops, Vienna, Austria, September 4-7, 2006,
Proceedings, volume 4103 of LNCS, pages 193–204. Springer, 2006.

[34] S. Cetin, N. I. Altintas, and O. Tufekci. Improving model reuse with domain
specific kits. In International Workshop on Model Reuse Strategies, MoRSe
2006, Warsaw, Poland, Oct. 17, 2006, 2006.

[35] S. Cetin, O. Tufekci, E. Karakoc, and B. Buyukkagnici. Lighthouse: An experi-
mental hyperframe for multi-model software process improvement. In EuroSPI2
Conference, pages 62–73, 2006.

[36] K. Chen, W. Zhang, H. Zhao, and H. Mei. An approach to constructing feature
models based on requirements clustering. In RE’05: Proceedings of the 13th

IEEE International Conference on Requirements Engineering (RE’05), pages
31–40, Washington, DC, USA, 2005. IEEE Computer Society.

[37] P. Clements. What’s the difference between product line scope and product line
requirements? Technical Report news@sei interactive, Second Quarter 2003,
Carnegie Mellon University, Software Engineering Institute, 2003.

137

[38] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[39] P. C. Clements. Active reviews for intermediate designs. Technical Report
CMU/SEI-2000-TN-009, Carnegie Mellon University, Software Engineering In-
stitute, 2000.

[40] Peter Coad and Edward Yourdon. Object-oriented analysis (2nd ed.). Yourdon
Press, Upper Saddle River, NJ, USA, 1991.

[41] S. Cook. Domain-specific modeling. Microsoft Architect Journal, October 2006.

[42] J. Coplien, D. Hoffman, and D. Weiss. Commonality and variability in software
engineering. IEEE Software, 15(6):37–45, 1998.

[43] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based development pro-
cess and component lifecycle. In ICSEA’06: Proceedings of the International
Conference on Software Engineering Advances, page 44, Los Alamitos, CA, USA,
2006. IEEE Computer Society.

[44] I. Crnkovic, M. Larsson, and O. Preiss. Concerning predictability in dependable
component-based systems: Classification of quality attributes. In R. de Lemos,
C. Gacek, and A. B. Romanovsky, editors, WADS, volume 3549 of LNCS, pages
257–278. Springer, 2004.

[45] K. Czarnecki and U. W. Eisenecker. Generative programming: methods, tools,
and applications. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.

[46] K. Czarnecki and C. H. P. Kim. Cardinality-based feature modeling and con-
straints: A progress report. In Proceedings of the International Workshop on
Software Factories at OOPSLA 2005, San Diego, CA, USA, 2005.

[47] K. Czarnecki, C. H. P. Kim, and K. T. Kalleberg. Feature models are views
on ontologies. In SPLC’06: Proceedings of the 10th International on Software
Product Line Conference, pages 41–51. IEEE Computer Society, 2006.

[48] R. M. Dijkman and M. Dumas. Service-oriented design: A multi-viewpoint
approach. Int. J. Cooperative Inf. Syst., 13(4):337–368, 2004.

[49] L. Dobrica and E. Niemelä. A survey on software architecture analysis methods.
IEEE Trans. Softw. Eng., 28(7):638–653, 2002.

[50] A. H. Dogru and M. M. Tanik. A process model for component-oriented software
engineering. IEEE Software, 20(2):34–41, 2003.

[51] J. Duhl. The business impact of rich internet applications, IDC White Paper,
2003.

[52] J. Estublier and G. Vega. Reuse and variability in large software applications. In
ESEC/FSE-13: Proceedings of the 10th European Software Engineering Confer-
ence held jointly with 13th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pages 316–325, New York, NY, USA, 2005.
ACM Press.

138

[53] R. G. Fichman and C. F. Kemerer. Object technology and reuse: Lessons from
early adopters. Computer, 30(10):47–59, 1997.

[54] W. B. Frakes, R. Prieto Dı́az, and C. J. Fox. Dare: Domain analysis and reuse
environment. Ann. Software Eng., 5:125–141, 1998.

[55] D. S. Frankel. Business process platforms and software factories. In Proceedings
of the International Workshop on Software Factories at OOPSLA 2005, San
Diego, CA, USA, 2005.

[56] B. P. Gallagher. Using the architecture tradeoff analysis method to evaluate a
reference architecture: A case study. Technical Report CMU/SEI-2000-TN-007,
Carnegie Mellon University, Software Engineering Institute, 2000.

[57] D. Garlan. Software architecture: a roadmap. In A. Finkelstein, editor, The
Future of Software Engineering. ACM Press, 2000.

[58] D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural description of
component-based systems. In G. T. Leavens and M. Sitaraman, editors, Foun-
dations of Component-Based Systems, pages 47–68. Cambridge University Press,
2000.

[59] R. Gitzel and A. Korthaus. The role of metamodeling in model-driven de-
velopment. In Proceedings of the 8th World Multi-Conference on Systemics,
Cybernetics and Informatics (SCI2004) , 19-21 July, 2004, Orlando, USA, July
2004.

[60] H. Gomaa and M. Saleh. Feature driven dynamic customization of software
product lines. In Reuse of Off-the-Shelf Components, 9th International Confer-
ence on Software Reuse, ICSR 2006, Turin, Italy, June 12-15, 2006, Proceed-
ings, volume 4039 of LNCS, pages 58–72. Springer, 2006.

[61] B. González-Baixauli, M. A. Laguna, and Y. Crespo. Product line requirements
based on goals, features and use cases. In International Workshop on Require-
ments Reuse in System Family Engineering (IWREQFAM), pages 4–7, 2004.

[62] J. Greenfield and K. Short. Software factories: assembling applications with
patterns, models, frameworks and tools. In OOPSLA’03: Companion of the 18th

annual ACM SIGPLAN Conference on Object-oriented programming, systems,
languages, and applications, pages 16–27. ACM Press, 2003.

[63] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools. Wiley, 2004.

[64] M. L. Griss, J. Favaro, and M. d’ Alessandro. Integrating feature modeling
with the RSEB. In ICSR’98: Proceedings of the 5th International Conference
on Software Reuse, page 76. IEEE Computer Society, 1998.

[65] M. L. Griss and K. Wentzel. Hybrid domain specific kits for a flexible software
factory. In Proceedings of the Ann. ACM Symp. Applied Computing, pages 47–
52, 1994.

139

[66] W. Grosso. Laszlo: An open source framework for rich internet applications,
http://today.java.net/pub/a/today/2005/03/22/laszlo.html, 2005.

[67] W. H. Harrison, H. L. Ossher, and P. L. Tarr. Asymmetrically vs. symmetri-
cally organized paradigms for software composition. Research Report RC22685
(W0212-147), IBM, December 2002.

[68] IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems, IEEE Std 1471, 2000.

[69] ISO/IEC 9126-1:2001, Software Engineering – Product Quality, Part 1: Quality
Model, 2001.

[70] M. Jackson. Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2001.

[71] JBoss jBPM [online], http://www.jboss.com/products/jbpm, 2007.

[72] D. Jordan, J. Evdemon, and et. al. Web services business process execution
language version 2.0, OASIS Standard, 11 April 2007.

[73] M. M. Kandé and A. Strohmeier. On the role of multi-dimensional separation
of concerns in software architecture. In P. Tarr, L. Bergmans, M. Griss, and
H. Ossher, editors, Workshop on Advanced Separation of Concerns (OOPSLA
2000), October 2000.

[74] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented
domain analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-21,
Carnegie Mellon University, Software Engineering Institute, 1990.

[75] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM: A feature-
oriented reuse method with domain-specific reference architectures. Ann. Softw.
Eng., 5:143–168, 1998.

[76] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web ser-
vices choreography description language version 1.0, W3C Working Draft, 17
December 2004.

[77] R. Kazman, J. Asundi, and M. Klein. Quantifying the costs and benefits of
architectural decisions. In ICSE ’01: Proceedings of the 23rd International Con-
ference on Software Engineering, pages 297–306, Washington, DC, USA, 2001.
IEEE Computer Society.

[78] R. Kazman, L. J. Bass, M. Webb, and G. D. Abowd. SAAM: A method for
analyzing the properties of software architectures. In Proceedings of the 16th

International Conference on Software Engineering, May 16-21, 1994, Sorrento,
Italy., pages 81–90. IEEE Computer Society / ACM Press, 1994.

[79] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere.
The architecture tradeoff analysis method. In 4th International Conference on
Engineering of Complex Computer System, ICECCS’98, page 0068. IEEE Com-
puter Society, 1998.

140

[80] R. Kazman, M. Klein, and P. Clements. ATAM: Method for architecture eval-
uation. Technical Report CMU/SEI-2000-TR-004, Carnegie Mellon University,
Software Engineering Institute, 2000.

[81] R. Kazman, R. L. Nord, and M. Klein. A life-cycle view of architecture anal-
ysis and design methods. Technical Report CMU/SEI-2003-TN-026, Carnegie
Mellon University, Software Engineering Institute, 2003.

[82] P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50,
1995.

[83] C. W. Krueger. Practical strategies and techniques for adopting software prod-
uct lines. In Workshop on Industrial Experience with Product Line Approaches,
2002.

[84] V. Kulkarni and S. Reddy. Enterprise business application product line as a
model driven software factory. In Proceedings of the International Workshop on
Software Factories at OOPSLA 2005, San Diego, CA, USA, 2005.

[85] C. Kuloor and A. Eberlein. Aspect-oriented requirements engineering for soft-
ware product lines. In 10th IEEE International Conference on Engineering of
Computer-Based Systems (ECBS 2003), 7-10 April 2003, Huntsville, AL, USA,
page 98. IEEE Computer Society, 2003.

[86] R. Land. An architectural approach to software evolution and integration. Li-
centiate thesis, Mälardalen University Press, September 2003.

[87] B. Langlois and D. Exertier. MDSoFa: a Model-Driven Software Factory. In
Proceedings of the International Workshop on MDSD at OOPSLA 2004, October
25, 2004, 2004.

[88] G. Larsen. Model-driven development: Assets and reuse. IBM Systems Journal,
45(3):541–553, 2006.

[89] M. Larsson. Predicting quality attributes in component-based software systems.
PhD thesis, Department of Computer Science and Engineering, Mälardalen Uni-
versity, 2004.

[90] N. Lassing, D. Rijsenbrij, and H. van Vliet. Using UML in architecture-level
modifiability analysis. In ICSE 2001 Workshop on Describing Software Archi-
tecture with UML, pages 41–46. IEEE Computer Society Press, 2001.

[91] J. Lee and D. Muthig. Feature-oriented variability management in product line
engineering. Commun. ACM, 49(12):55–59, 2006.

[92] K. Lee, K. C. Kang, M. Kim, and S. Park. Combining feature-oriented anal-
ysis and aspect-oriented programming for product line asset development. In
SPLC’06: Proceedings of the 10th International on Software Product Line Con-
ference, pages 103–112. IEEE Computer Society, 2006.

[93] K. Lee, K. C. Kang, and J. Lee. Concepts and guidelines of feature model-
ing for product line software engineering. In ICSR-7: Proceedings of the 7th

International Conference on Software Reuse, pages 62–77, London, UK, 2002.
Springer-Verlag.

141

[94] G. Lenz and C. Wienands. Practical Software Factories in .NET. Apress,
Berkeley, CA, USA, 2006.

[95] D. Liu and H. Mei. Mapping requirements to software architecture by feature-
orientation. In The Second International Workshop on Software Requirements
and Architectures, STRAW’03 at ICSE’03, Portland, OR, 2003.

[96] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann.
Specification and analysis of system architecture using rapide. IEEE Trans.
Software Eng., 21(4):336–355, 1995.

[97] C. Lung, J. E. Urban, and G. T. Mackulak. Analogy-based domain analysis
approach to software reuse. Requir. Eng., 12(1):1–22, 2006.

[98] Y. Matsumoto. Essence of toshiba software factory. In SPLC’07: Proceedings
of the 11th International on Software Product Line Conference – Invited Talk.
IEEE Computer Society, 2007.

[99] Model Driven Architecture, OMG, http://www.omg.org/mda, 2007.

[100] H. Mei, W. Zhang, and F. Gu. A feature oriented approach to modeling and
reusing requirements of software product lines. In Proceedings of the 27th Annual
International Computer Software and Applications Conference (COMPSAC’03).
IEEE Computer Society, 2003.

[101] K. Mullet. The essence of effective rich internet applications, Macromedia White
Paper, 2003.

[102] S. Neema, J. Scott, and G. Karsai. Architecture analysis in software factories.
In Proceedings of the International Workshop on Software Factories at OOPSLA
2005, San Diego, CA, USA, 2005.

[103] L. M. Northrop. A framework for software product line practice, v4.2. Tech-
nical Report http://www.sei.cmu.edu/productlines/framework.html, Carnegie
Mellon University, Software Engineering Institute, 2007.

[104] C. O’Rourke. A look at rich internet applications. Oracle Magazine, 2004.

[105] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hyper-
space approach. In Proceedings of the Symposium on Software Architectures and
Component Technology: The State of the Art in Software Development. Kluwer,
2000.

[106] C. M. Pancake. The promise and the cost of object technology: a five-year
forecast. Commun. ACM, 38(10):32–49, 1995.

[107] M. P. Papazoglou and D. Georgakopoulos. Service-oriented computing. Com-
mun. ACM, 46(10):24–28, 2003.

[108] C. Phanouriou. UIML: A Device-Independent User Interface Markup Language.
PhD thesis, Virginia Polytechnic Institute and State University, Computer Sci-
ence Department, 2000.

142

[109] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer, September 2005.

[110] O. Preiss, J. Wong, and A. Wegmann. On quality attribute based software engi-
neering. In 27th EUROMICRO Conference 2001: A Net Odyssey, 4-6 September
2001, Warsaw, Poland, pages 114–120. IEEE Computer Society, 2001.

[111] PuLSE: Product line software engineering, Fraunhofer, fogo.iese.fraunhofer.de/
pulse/.

[112] OMG RAS Specification, v2.2, www.omg.org/technology/documents/formal/
ras.htm.

[113] M. Regio and J. Greenfield. Designing and implementing an hl7 software factory.
In Proceedings of the International Workshop on Software Factories at OOPSLA
2005, San Diego, CA, USA, 2005.

[114] M. A. Rothenberger, K. J. Dooley, U. R. Kulkarni, and N. Nada. Strategies
for software reuse: A principal component analysis of reuse practices. IEEE
Transactions on Software Engineering, 29(9):825–837, 2003.

[115] M. A. Rothenberger and J. C. Hershauer. A software reuse measure: moni-
toring an enterprise-level model driven development process. Information and
Management, 35(5):283–293, 1999.

[116] W. Schöfer and H. Weber. European software factory plan–the esf profile. In
Modern software engineering, foundations and current perspectives, pages 613–
637. Van Nostrand Reinhold Co., New York, NY, USA, 1990.

[117] M. Shaw and P. Clements. The golden age of software architecture. IEEE
Software, 23(2):31–39, 2006.

[118] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[119] H. Smith and P. Fingar. Business Process Management (BPM): The Third
Wave. Meghan-Kiffer Press, 2003.

[120] F. G. Sobrinho and M. D. Ferraretto. Software plant: the Brazilian software con-
sortium. In ACM’87: Proceedings of the 1987 Fall Joint Computer Conference
on Exploring technology: today and tomorrow, pages 235–243, Los Alamitos,
CA, USA, 1987. IEEE Computer Society Press.

[121] P. Sochos, I. Philippow, and M. Riebisch. Feature-oriented development of soft-
ware product lines: Mapping feature models to the architecture. In M. Weske
and P. Liggesmeyer, editors, 5th Intl. Conf. on Object-Oriented and Internet-
Based Technologies, Concepts, and Applications for a NetworkedWorld, Ger-
many, volume 3263 of LNCS, pages 138–152. Springer, 2004.

[122] P. Sochos, M. Riebisch, and I. Philippow. The feature-architecture mapping
(FArM) method for feature-oriented development of software product lines. In
ECBS’06: Proceedings of the 13th Annual IEEE International Symposium and
Workshop on Engineering of Computer Based Systems (ECBS’06), pages 308–
318, Washington, DC, USA, 2006. IEEE Computer Society.

143

[123] A. Z. Spector. The steady path to services-oriented computing. In Service-
Oriented Computing - ICSOC 2006, 4th International Conference, Chicago, IL,
USA, December 4-7, 2006, Proceedings, Keynote Talk, 2006.

[124] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM
Systems Journal, 13(2):115–139, 1974.

[125] D. Streitferdt. Family-Oriented Requirements Engineering. PhD thesis, Techni-
cal University Ilmenau, 2004.

[126] M. Svahnberg. Supporting Software Architecture Evolution. PhD thesis,
Blekinge Institute of Technology, 2003.

[127] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton. N degrees of separation:
Multi-dimensional separation of concerns. In Proceedings of the International
Conference on Software Engineering ICSE’99, pages 107–119, 1999.

[128] O. Tufekci, S. Cetin, and N. I. Altintas. How to process [business] processes. In
Integrated Design and Process Technology, IDPT-2006, Society for Design and
Process Science, San Diego, CA, USA, June 2006.

[129] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf. A conceptual basis for
feature engineering. J. Syst. Softw., 49(1):3–15, 1999.

[130] F. van der Linden. Software product families in Europe: The Esaps & Café
projects. IEEE Softw., 19(4):41–49, 2002.

[131] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The koala
component model for consumer electronics software. Computer, 33(3):78–85,
2000.

[132] J. B. Warmer and A. G. Kleppe. Building a flexible software factory using
partial domain specific models. In Sixth OOPSLA Workshop on Domain-Specific
Modeling (DSM’06), Portland, Oregon, USA, pages 15–22, Jyvaskyla, October
2006.

[133] D. M. Weiss and C. T. R. Lai. Software product-line engineering: a family-based
software development process. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[134] U. Zdun. Concepts for model-driven design and evolution of domain-specific
languages. In Proceedings of the International Workshop on Software Factories
at OOPSLA 2005, San Diego, CA, USA, 2005.

[135] W. Zhang, H. Mei, and H. Zhao. A feature-oriented approach to modeling re-
quirements dependencies. In RE’05: Proceedings of the 13th IEEE International
Conference on Requirements Engineering (RE’05), pages 273–284, Washington,
DC, USA, 2005. IEEE Computer Society.

[136] D. Zubrow and G. Chastek. Measures for software product lines. Technical Re-
port CMU/SEI-2003-TN-031, Carnegie Mellon University, Software Engineering
Institute, 2003.

144

APPENDIX A

GLOSSARY

Application Engineering

Application engineering is to develop individual products using the platform

and core asset base established in domain engineering (design-with-reuse). (See

Section 2.8.)

Architecture-Based Development (ABD)

A software architecture acts as a blueprint for all activities in the development

life cycle. An ABD process includes elicitation of architectural requirements,

design, documentation, analysis, realization and maintenance of software ar-

chitectures. (See Section 2.6.)

Architectural Concern Spaces (ACS)

In reference architecture modeling, the solution domain multiple concern spaces

that are formed by correlating architectural tiers and architectural views. (See

Section 4.3.)

Asset-Based Development

Asset-Based Development is a set of processes, activities and standards that

facilitate the reuse of assets. Asset-Based Development can be considered as a

sub-methodology in the software development process. (See Section 2.7.)

145

Asset Capability Model (ACM)

The capabilities of software assets expressed as feature diagrams that de-

scribe a distinct service, operation, function or structure together with its

non-functional properties such as expected response time or scalability con-

cerns. (See Section 5.2.)

Business Process Management (BPM)

An emerging technology that organizes the �ow of business processes in terms

of work�ows, rules, and other business entities for improving the e�ciency of

processes as they are de�ned, executed, managed and changed. (See Section 2.5

and Section 6.2.1.4.)

Component-Based Development (CBD)

Developing software systems by an assembly of components that are already

developed and prepared for integration and in general considered as black

boxes. This aims the development of components as reusable entities as well

as the maintenance and upgrading of systems by customizing and replacing

their components. (See Section 2.3.)

Domain Engineering

Domain engineering is to provide the reusable platform and core assets that

are exploited during application engineering when assembling or customizing

individual applications (design-for-reuse). (See Section 2.8.)

Domain Feature Model (DFM)

A model expressing the functional and non-functional requirements of product

line. A DFM includes feature diagrams, composition rules, feature dictionary,

list of requirements, quality attributes of the domain, other issues and deci-

sions. (See Section 3.4.)

Domain Specific Language (DSL)

A language dedicated to a particular domain or problem with appropriate

built-in abstractions and notations. (See Section 3.2.)

146

Domain Specific Engine (DSE)

An engine particularly designed and tailored to execute a speci�c DSL. (See

Section 3.2.)

Domain Specific Toolset (DST)

An environment to design, develop, and manage software artifacts of a speci�c

DSL. (See Section 3.2.)

Domain Specific Kit (DSK)

A composite of a DSL, DSE and DST. (See Section 3.2.)

Domain Specific Artifact (DSA)

An artifact that is expressed, developed, and executed by a DSL, DST, DSE

respectively. (See Section 3.2.)

Domain Specific Artifact Type (DSAT)

A DSA type that a certain DSK can express, execute and facilitate the devel-

opment. (See Section 3.2.)

Model-Driven Development (MDD)

A model-centric software engineering approach which aims at improving the

quality and lifespan of software artifacts by focusing on models instead of code

[59]. (See Section 2.4.)

Orthogonal Variability Model (OVM)

A model that de�nes the variability of a software product line. It relates the

variability to other software development models. (See Section 5.4.)

Service-Oriented Computing (SOC)

A new computing paradigm that takes services as basic elements. SOC relies

on Service-Oriented Architecture (SOA) when constituting the service model.

(See Section 2.5.)

147

Software Asset

A collection of artifacts with variations that provides a solution to a problem.

An asset has instructions on how it should be used and is reusable in one

or more contexts, such as a development or a runtime context. It may also

be extended and customized through variability points. (See Section 2.7 and

Section 5.2.)

Software Factory Automation (SFA)

A methodical approach to set up software product lines starting from domain

analysis to domain design using DSKs. (See Section 3.3.)

Software Factory

Software Factory [63] is the fundamental model that can be viewed as a com-

prehensive and integrative approach to generative software development, with

the goal of automating product development in the context of software product

line engineering [46].

Software Product Line (SPL)

A set of software-intensive systems sharing a common, managed set of features

that satis�es the speci�c needs of a particular market segment or mission and

that are developed from a common set of core assets in a prescribed way [38].

(See Section 2.8.)

SPL Reference Architecture

The generalized architecture of a product family that de�nes the infrastructure

common to end products and interfaces of components that will be included

in the end products [56]. (See Chapter 4.)

Utility Concern Spaces (UCS)

In reference architecture modeling, the problem domain multiple concern

spaces that are constructed by correlating the quality attributes and the ar-

chitectural aspects. (See Section 4.2.)

148

APPENDIX B

ABOUT RAMTool

RAMTool is a simple tool to support architectural modeling discussed in Chapter 4.

Since the UCS and ACS may be too many, the symmetric alignment matrix can be

huge and the analysis of the matrix may be too complicated. Therefore an e�ective tool

during architecture design is unavoidable. This appendix includes several screenshots

from the prototype tool [4].

Figure B.1 is used to de�ne the primitives required for UCS and ACS construc-

tion. The �Item Type� in the screen can be any of the following: Quality Attributes,

Architectural Aspects, Architectural Views and Architectural Tiers.

Figure B.1: RAMTool – Definition and selection of quality attributes

149

The screenshot of architectural aspect de�nition/selection has been depicted in

Figure B.2. It is possible to select from set of aspects available in the repository.

Figure B.2: RAMTool – Definition and selection of architectural aspects

The UCS and ACS matrices are constructed by the tool (See Figure B.3). Initially,

the values of the cells are ��. The user can change the correlations by selecting values

from a combobox �++�, �+�, �0�, �−� and �−−�.

Figure B.3: RAMTool – UCS and ACS matrices

�Autohide� option in all screens provides a �ltering facility of sparse rows/columns.

150

By Autohide button, user may �lter out the sparse rows/columns, the sparsity of

rows/columns are decided against the threshold selected from the combobox.

In Figure B.4, symmetric alignment matrix is formed and user �rst records the

correlations and later identi�ed components and connectors.

Figure B.4: RAMTool – Symmetric alignment matrix

It is also possible to perform column-wise operations during architectural analysis.

The system facilitates the user to mark the irrelevant rows or to �lter the correlated

rows of a column (See Figure B.5.

Figure B.5: RAMTool – Operations on symmetric alignment matrix

The tool provides a central repository for architectural modeling and information

sharing and also enables an XML export. Web-based screens enable the sharing of

information by several users.

This prototype can be extended in several ways:

151

1. It may identify the potential architectural elements (components and connectors)

and possibly guide the user.

2. It may give guidance to the user for prioritizing the exploration of huge sparse

matrices.

3. Support for annotation on the alignment matrix will improve the productivity

during modeling activity since it spans over a time frame.

4. Integration with ADL tools will be helpful to exchange information.

5. It is possible to construct a case-driven repository so that it can learn from

modeling di�erent cases on-the-�y.

152

APPENDIX C

EXAMPLES FROM DSKs USED IN CASE STUDIES

This appendix includes examples from the Domain Speci�c Kits that have been used in

the case studies and examples in the text. For each of the DSK, one or more excerpts

from its language, a screenshot of its development environment and a runtime snapshot

of one of its artifacts have been presented.

RIA Presentation Kit

• Excerpts from an EBML �le (Figure C.1 and Figure C.2). Figure C.1 shows the

structure part of EBML, and Figure C.2 shows the event, rule and data sections.

• A screenshot of EDS (Figure C.3).

• An example screen rendered by ERE (Figure C.4).

Reporting Kit

• A sample JRXML �le for report format speci�cation (Figure C.5).

• A sample DSXML �le for report content generation (Figure C.6).

• iReport report designer screenshot (Figure C.7).

• A snapshot of a generated report (Figure C.8).

153

Business Services Kit

• A screenshot of Service Editor (Figure C.9).

• An example ServiceXML de�nition (Figure C.10).

BPM Kit

• An example JDPL process de�nition (Figure C.11).

• A screenshot of GPD (Graphical Process Designer) (Figure C.12).

• A snapshot of a process �ow (Figure C.13).

RUMBA Business Rules Kit

• A screenshot of RumbaEditor (Figure C.14).

Persistence (POM) Kit

• A screenshot of POM Studio (Figure C.15).

• An example PomXML de�nition (Figure C.16).

Batch Processing Kit

• An example batch job de�nition with job.xml (Figure C.17).

• A screenshot of Job Management Console (Figure C.18).

154

�
1 <ebml v="noversion " pid="VARLIKLARIM .ebml " size ="800 x620 " type ="0"

2 techVersion ="3.0.0" language ="tr">

3 <interface >

4 < structure >

5 <bean class="JCSPage " id="Page ">

6 <style>

7 <p name ="title">VARLIKLAR </p>

8 <p name =" pageSize ">800,620 </p>

9 </style>

10 <bean class="JCSPanel " id="Page .pnl_Musteri ">

11 <style>

12 <p name="title">Musteri Sorgulama </p>

13 </style>

14 ...

15 <bean class="JCSHandleButtonField " id="... hnd_MusteriNo ">

16 <style>

17 <p name ="minCharCount ">0</p>

18 <p name ="popup"> PP_INTERNETMUSTERI </p>

19 <p name ="inputs">...</p>

20 <p name ="outputs">...</p>

21 </style>

22 </bean >

23 </bean >

24 <bean class=" JCSTabbedPane " id="Page . tab_Varliklar ">

25 <style>

26 <p name ="bounds">10,140,765,355 </p>

27 <p name =" focusable ">true </p>

28 </style>

29 <bean class="JCSTabPage " id="Page . tab_Varliklar .tab_Pasif ">

30 <style>

31 <p name="bounds"> 2,25,760,327 </p>

32 <p name="tabTitle ">Pasifler &Riskler </p>

33 </style>

34 <bean class="JCSTable " id="... table_Hesaplar ">

35 <style>

36 <p name ="reorderingAllowed ">true </p>

37 <p name ="minimumRowCount ">1</p>

38 <p name ="bounds"> 13,30,740,270 </p>

39 <p name ="focusable ">true </p>

40 <p name ="adapterInfo ">

41 <columns >

42 <column id="MUSTERINO " type =" TEXT_ADAPTER " ...>

43 <style>

44 ...

45 </style>

46 </column>

47 ...

48 <bean class="JCSRegion " id="Page .rg_Genel ">

49 <style>

50 <p name="regionName "> RG_SBUTTONS </p>

51 ...

52 </style>

53 </bean >

54 ...

55 </bean >

56 </ structure >
� �
Figure C.1: An example EBML file (definition of structure)

155

�
1 <events>

2 <lC type ="action" ref="ActPrint ">

3 <p m="setData " id="Page . JCSTextPrinter58796 ">

4 <var id=" vVarlikText "/>

5 </p>

6 <p m="print" id="Page . JCSTextPrinter58796 "/>

7 </lC>

8 <lC type ="action" ref="actSorgula ">

9 <p m="cleanup " id="Page . tab_Varliklar . tab_Pasif "/>

10 <p m="cleanup " id="Page . tab_Varliklar . tab_Talimatlar "/>

11 <p m="cleanup " id="Page . tab_Varliklar "/>

12 <p m="setText " id="Page . pnl_Musteri . txt_Aciklama "/>

13 <p m="setText " id="Page . pnl_Musteri . txt_MusteriAd "/>

14 <p m="setText " id="Page . pnl_Musteri . txt_MusteriSoyad "/>

15 <call service ="SBIB_MUSTERI_BILGI_GETIR" status="0">

16 <inputs>

17 <p n=" MUSTERINO " id="Page .pnl_Musteri .hnd_MusteriNo "/>

18 </inputs>

19 <outputs>

20 <p n="AD" id="Page . pnl_Musteri . txt_MusteriAd "/>

21 <p n="SOYAD" id="Page. pnl_Musteri . txt_MusteriSoyad "/>

22 <p n="ALLINFO " id="Page .pnl_Musteri .txt_Aciklama "/>

23 </outputs>

24 </call >

25 <call service ="SBIB_GET_VARLIKLAR " status="0">

26 <inputs>

27 <p m="getText " n="MUSTERINO " id=" hnd_MusteriNo "/>

28 </inputs>

29 <outputs>

30 <p m="getText " n="ACIKLAMA " id=" txt_Aciklama "/>

31 <p m="getName " n=" VARLIKTABLO " id=" tbl_Hesaplar "/>

32 <p n=" TALIMATTABLO " id="tab_Talimatlar "/>

33 <p m="getText " n="AD" id="txt_MusteriAd "/>

34 <p m="getText " n="SOYAD" id=" txt_MusteriSoyad "/>

35 </outputs>

36 </call >

37 ...

38 </events>

39 </interface >

40 <data >

41 <var id="vMusteriNo "/>

42 <var id="vHesapNo "/>

43 <var id="vHesapTipi "/>

44 ...

45 </data >

46 <ruleset >

47 <rule id="VLHESAPRULE ">

48 <call rule =" VHESAPRULE ">

49 <inputs>

50 <p m="getText " n="VARLIKTIPI " id="... tbl_Hesaplar . VARLIKTIPI "/>

51 <p>1</p>

52 </inputs>

53 </call >

54 </rule >

55 ...

56 </ruleset >

57 </ebml >
� �
Figure C.2: An example EBML file (definition of events)

156

Figure C.3: A screenshot of EDS

Figure C.4: A screen rendered by ERE

157

�
1 <!-- Created with iReport - A designer for JasperReports -->

2 <!DOCTYPE jasperReport PUBLIC "// JasperReports // DTD Report Design //EN"

3 "http:// jasperreports .sourceforge .net/dtds / jasperreport .dtd">

4 <jasperReport name =" DEFAULT_STATEMENT "

5 columnCount ="1" printOrder =" Vertical " orientation ="Portrait "

6 pageWidth ="595" pageHeight ="842" columnWidth ="535"

7 columnSpacing ="0" leftMargin ="28" rightMargin ="28"

8 topMargin ="28" bottomMargin ="28" whenNoDataType ="NoPages "

9 isTitleNewPage ="false" isSummaryNewPage ="false">

10 <property name ="ireport .scriptlethandling " value="0" />

11 <property name ="ireport .encoding " value="UTF -8" />

12 <import value="java .util .*" />

13 <import value="net.sf.jasperreports .engine .*" />

14 <import value="net.sf.jasperreports .engine.data .*" />

15 <parameter name ="TITLE" class="java .lang .String" ...>

16 < defaultValueExpression>

17 <![CDATA[" DEKONT"]]></ defaultValueExpression>

18 </parameter >

19 <parameter name =" CUSTOMER_NO " class="java .lang .String" .../ >

20 <parameter name =" ACCOUNT_NO " class="java .lang .String" .../>

21 <parameter name =" TRANSACTION_DATE " class="java .lang .String" .../ >

22 <parameter name =" CURRENCY " class="java .lang .String" ...>

23 < defaultValueExpression>

24 <![CDATA[" YTL"]]></defaultValueExpression>

25 </parameter >

26 ...

27 <background >

28 <band height="365" isSplitAllowed ="true " >

29 <rectangle radius="0" >

30 <reportElement mode ="Transparent " x="0" y="193"

31 width="537" height="149"

32 forecolor ="#000000" backcolor ="#FFFFFF" key="rectangle -1"/>

33 <graphicElement stretchType ="NoStretch " pen="Thin " .../ >

34 </rectangle >

35 <textField isStretchWithOverflow ="true " ...>

36 <reportElement mode ="Opaque" x="162" y="4"

37 width="209" height="60"

38 forecolor ="#000000" backcolor ="#FFFFFF" key="textField -1"/>

39 <box topBorder ="None " topBorderColor ="#000000 " .../ >

40 <textElement textAlignment ="Center" ...>

41

42 </textElement >

43 <textFieldExpression ...>

44 <![CDATA [$P{TITLE}]]></ textFieldExpression >

45 </textField >

46 ...

47 </band >

48 </ background >

49 <title>...</title>

50 <pageHeader >...</ pageHeader >

51 < columnHeader >...</columnHeader >

52 <detail>...</detail>

53 < columnFooter >...</columnFooter >

54 <pageFooter >...</ pageFooter >

55 <summary >...</summary >

56 </ jasperReport >
� �
Figure C.5: A sample JRXML file

158

�
1 <report v="1.00 " type ="service" csvSupport ="true ">

2 <service> UTL_PREPARE_DEFAULT_STATEMENT</service >

3 <report- parameters >

4 <param>TITLE</param>

5 <param>SEQUENCE </param>

6 <param>AMOUNT</param>

7 <param>BODY </param>

8 <param>CUSTOMER_NAME </param>

9 <param>ADDRESS</param>

10 <param>BRANCH</param>

11 <param>CUSTOMER_NO </param>

12 <param>ACCOUNT_NO </param>

13 <param>TRANSACTION_DATE </param>

14 <param>TAX_OFFICE </param>

15 <param>TAX_NO</param>

16 <param>PRINT_DATE </param>

17 <param>CURRENCY </param>

18 </report-parameters >

19 </report>
� �
Figure C.6: A sample DSXML file

Figure C.7: A screenshot of iReport

159

Figure C.8: A snapshot of a generated report

Figure C.9: A screenshot of Service Editor

160

�
1 <services >

2 <service >

3 <service-name> ADMIN_ORG_DEPENDENCE_ADD</service -name >

4 <domain-name >INV</domain-name >

5 <project-code> Infrastructure </project-code >

6 <component -group>Administration </component -group>

7 <component > Organization </component >

8 <class-name >... administration .organization .Dependence </class-name >

9 <class-method>add</class-method>

10 <is-batch>false</is-batch>

11 <description >Adds a new organization

12 dependence meta -definition .</description >

13 <parameters >

14 <param name ="ORG_DEPENDENCE_BAGKEY " data -type ="String"

15 io-type="input" is-column="" is-mandatory ="true " />

16 <param name ="ORG_DEPENDENCE_CODE " data -type ="String"

17 io-type="input" is-column="" is-mandatory ="true " />

18 <param name ="ORG_DEPENDENCE_DESC " data -type ="String"

19 io-type="input" is-column="" is-mandatory ="true " />

20 <param name ="ORG_DEPENDENCE_NAME " data -type ="String"

21 io-type="input" is-column="" is-mandatory ="true " />

22 </parameters >

23 </service >

24 <service >

25 <service-name> ADMIN_ORG_COMMON_PARAMETERS_ADD</service-name >

26 <domain-name >INV</domain-name >

27 <project-code> Infrastructure </project-code >

28 <component -group>Administration </component -group>

29 <component > Organization </component >

30 <class-name >... organization . CommonParameters </class-name >

31 <class-method>add</class-method>

32 <is-batch>false</is-batch>

33 <description >Adds common parameters to a new org.</ description >

34 <parameters >

35 <param name ="MARKET_CODE " data -type ="String"

36 io-type="input" is-column="" is-mandatory ="true " />

37 <param name ="REUTERS_CODE " data -type ="String"

38 io-type="input" is-column="" is-mandatory ="true " />

39 <param name ="SWIFT_CODE " data -type ="String"

40 io-type="input" is-column="" is-mandatory ="true " />

41 <param name ="TAKASBANK_CODE " data -type ="String"

42 io-type="input" is-column="" is-mandatory ="true " />

43 <param name ="TAX_NUMBER " data -type ="String"

44 io-type="input" is-column="" is-mandatory ="true " />

45 <param name ="TAX_OFFICE " data -type ="String"

46 io-type="input" is-column="" is-mandatory ="true " />

47 <param name ="TELEX_CODE " data -type ="String"

48 io-type ="input" is-column="" is-mandatory ="true " />

49 </parameters >

50 </service >

51 ...

52 </services >
� �
Figure C.10: An example service definition

161

�
1 <process -definition name ="78000" label="MEROPSTalepGiris "

2 processGroup ="..." componentOid ="..." xmlns=" urn:jbpm .org:jpdl -3.1 ">

3 <start-state name="Baslat">

4 < transition name ="initializeProcess "

5 to="IslemKontrol "></transition >

6 </start-state>

7 <node name ="IslemKontrol ">

8 <event type ="node -enter">

9 <check-all name ="check-all"></check-all>

10 <set-status process ="20802" history="20802"/>

11 </event>

12 < transition name ="OperasyonYoneticisineGonder"

13 to="BaslatanKontrol "></ transition >

14 </node >

15 <decision name =" BaslatanKontrol ">

16 <handler class=" MakerDecisionHandler ">

17 <makers>

18 <maker>

19 <channelCode >01</channelCode >

20 <organizationType ></ organizationType >

21 <organizationGroup ></ organizationGroup >

22 ...

23 <transitionRef >checkerControlDecision</transitionRef >

24 </maker>

25 </makers>

26 </handler >

27 < transition name ="TalepOnayaGit " to="TalepOnay "></transition >

28 < transition name ="checkerControlDecision"

29 to=" checkerControlDecision"></transition >

30 </decision >

31 <task -node name =" TalepOnay ">

32 <task name ="TalepOnay ">

33 <assignment class="CSAssignmentHandler ">

34 <actors type ="ANY">

35 <actor>

36 <actorCount >1</actorCount >

37 <rule ></rule >

38 <organization >@</ organization >

39 <unit ></unit >

40 <profile >021</profile>

41 <screen name =" RG_MOP_CORE_REQUEST_DEFINITION"/>

42 </actor>

43 </actors>

44 </assignment >

45 </task >

46 < transition name ="Onayla" to=" checkerControlDecision"></ transition >

47 < transition name ="GeriGonder " to="TalepDuzeltme "></transition >

48 </task -node >

49 <decision name =" checkerControlDecision">

50 <handler class=" CheckerControlDecisionHandler"/>

51 <transition name ="true " to=" CheckerKontrolu "/>

52 <transition name ="false" to="MakerTalebiBaslat "/>

53 </decision >

54 ...

55 </process -definition >
� �
Figure C.11: An example JDPL process definition

162

Figure C.12: A screenshot of GPD (Graphical Process Designer)

Figure C.13: A snapshot of a process flow

163

Figure C.14: A snapshot of RUMBA Editor

Figure C.15: A screenshot of PomStudio

164

�
1 <component name =" CampaignPom .pom"

2 package ="tr.com.cs.banking. creditcards .ccms . campaign .pom">

3 <connection driver="oracle.jdbc.driver.OracleDriver "

4 jndiname ="BankingDS " name ="Banking Datasource " .../ >

5 <model dbSchema ="" dbTable="" name =" AbstractTablePom " >

6 <field dbColumnConstraint =" PRIMARYKEY " dbColumnName ="OID"

7 dbColumnPrecision ="16" dbColumnScale ="0"

8 dbColumnType ="CHAR " javaType ="String" name ="oID" />

9 <field dbColumnName ="STATUS" .../ >

10 <field dbColumnName ="LASTUPDATED " .../ >

11 <model dbSchema ="CARD "

12 dbTable="CMP_CAMPAIGN_NOTIFICATION"

13 name =" CampaignNotificationPom" >

14 <field dbColumnConstraint ="NONE " dbColumnName ="CAMPAIGN_OID "

15 dbColumnPrecision ="16" dbColumnScale ="0"

16 dbColumnType ="CHAR " javaType ="String" name ="campaignOid " />

17 <field dbColumnName =" NOTIFICATION_TYPE " .../ >

18 <field dbColumnName =" MESSAGE_CODE " .../ >

19 <field dbColumnName =" NOTIFICATION_TIME " .../ >

20 <field dbColumnName =" NOTIFICATION_CHANNEL " .../ >

21 </model>

22 ...

23 </model>

24 <model dbSchema ="" dbTable="" name ="AbstractQueryPom " >

25 <field dbColumnConstraint =" PRIMARYKEY " />

26 <field dbColumnConstraint ="NOT NULL " />

27 <field dbColumnConstraint ="NOT NULL " />

28 <model name =" NotificationQueryPom " >

29 <query>SELECT ’1’ AS LASTUPDATED , N.STATUS, ...

30 FROM CARD .CMP_CAMPAIGN C,

31 CARD . CMP_CAMPAIGN_NOTIFICATION N</query>

32 <field dbColumnName =" NOTIFICATION_TYPE "

33 dbColumnType ="VARCHAR" javaType ="String"

34 name =" notificationType " />

35 <field dbColumnName ="MESSAGE_CODE "

36 dbColumnType ="VARCHAR" javaType ="String"

37 name =" messageCode " />

38 <field dbColumnName =" NOTIFICATION_TIME " .../ >

39 <field dbColumnName =" NOTIFICATION_CHANNEL " .../ >

40 </model>

41 ...

42 </model>

43 <model dbSchema ="" dbTable="" name ="AbstractProcedurePom " ...>

44 ...

45 </model>

46 </component >
� �
Figure C.16: An example PomXML definition

165

�
1 <batch-jobs >

2 <job>

3 <job-name >EFT Gateway Listener3 </job-name >

4 <job-group>EFT</job-group>

5 <description >EFT Gateway Listener for

6 branches ending with 3</description >

7 <job-service-name >... batch.impl .eft.EFTReadL1L3 </job-service -name >

8 <is-durable>false</is-durable >

9 <is-volatile >false</is-volatile >

10 <is-stateful >false</is-stateful >

11 <requires -recovery >false</requires -recovery >

12 <recovery -service -name />

13 <job-param-data >

14 <param name ="READ_INDEX " value="3" data -type ="String"

15 is-column="" is-mandatory ="true "/>

16 </job-param-data >

17 <is-manuel>false</is-manuel>

18 <thread-count>1</thread-count>

19 </job>

20 ...

21 </batch-jobs >
� �
Figure C.17: An example job definition

Figure C.18: A screenshot of Job Management Console

166

APPENDIX D

DESCRIPTION OF ASSETS IN CASE STUDIES

This appendix includes the brief description of software assets in INV and FGW prod-

uct lines. Table D.2 and Table D.1 include the FGW and INV assets, respectively.

The same assets may exist in both tables.

167

Table D.1: Description of INV product line assets

Assets Description
Customer Core Management of customer core information, it includes only

personal and basic required information
Customer Advanced Management of comprehensive information of customers.

It supports approval workflows and several integrations.
Blacklist Manager Management of blacklist pools (external or internal) and

provides support for customer linkage
Document Manager Central document manager (See Figure 5.3 and Table 5.1)
Account Manager Management of customer accounts and assets
Deduction Determination, calculation and recording of deductions of

transactions
Accounting Gateway Proxy component to access accounting system
Accounting Accounting system (either this or the previous one can be

active)
Administration Core common infrastructure to manage organization and

declarative authorization using profiles and ACLs
Ext. System Data Transfer File transfer utilities for sending/receiving to/from external

systems
Alert and Notification Man. Unified alert and notification utility integrated with

channels
Repo Operations of repo/reverse repo
Fixed Income Common Management of core definitions and common primitive

operations
Fixed Income Trade FIS Buy/Sell operations
BPP BPP Operations
Asset Delivery Physical delivery of assets
Auction Customer auction operations
Asset Lending Lending and tracking assets
DEX Operations Customer Derivative operations
Equity Common Operations Common core infrastructure and operations for equity

management
Order Management Equity order management
Credit Equity trade with credit option
Capital Increase Capital increase operations
Public Offering Public offering operations
Mutual Fund Buy/Sell Ops. Buy/Sell operations of mutual funds
Fund Transfer Transfer operations of mutual funds
Fund Man. Backend Fund management core business operations from the view-

point of fund managers.
Portfolio Man. Backend Portfolio management core business operations
Asset/Stock Invest Core Common infrastructure for asset management and primi-

tive operations including the common reporting
Cash Invest Core Common cash operations
Asset Transfer Common asset transfer operations

168

Table D.2: Description of FGW product line assets

Assets Description
Customer Core Management of customer core information, it includes only

personal and basic required information
Customer Advanced Management of comprehensive information of customers.

It supports approval workflows and several integrations.
Blacklist Manager Management of blacklist pools (external or internal) and

provides support for customer linkage
Document Manager Central document manager (See Figure 5.3 and Table 5.1)
Account Manager Management of customer accounts and assets
Deduction Determination, calculation and recording of deductions of

transactions
Accounting Gateway Proxy component to access accounting system
Accounting Accounting system (either this or the previous one can be

active)
Administration Core common infrastructure to manage organization and

declarative authorization using profiles and ACLs
Ext. System Data Transfer File transfer utilities for sending/receiving to/from external

systems
Alert and Notification Man. Unified alert and notification utility integrated with

channels
FGW Core Common core utilities for financial gateways. Provides

common client application and administration services for
financial gateways

FGW Communication Common communication infrastructure for financial
gateways

EFT Messaging (HLP) Management of EFT messaging and Host Link Protocol
EFT Operations Management of EFT requests and operations
KKB KRS Management of KRS (Credit Risk Search) messages
KKB LKS Management of KRS (Limit Control System) messages
CRA Electronic Registry Administration of electronic registry operations
CRA Core Operations Common operations including extra administration utilities

for CRA gateway

169

VITA

Personal Information

Surname, Name : Altıntaş, Nesip İlker
Nationality : Turkish (TC)
Date and Place of Birth : 17 December 1970, Aydın
Marital Status : Married, One child.
Phone : +90 532 442 96 30
email : ilker.altintas@cs.com.tr

Education

Degree Institution Year of Graduation
M.Sc. METU Computer Engineering, Ankara 1995
B.S. METU Computer Engineering, Ankara 1992
High School Maltepe Military High School, İzmir 1988

Professional Experience

Years Place Enrollment
2000–Present Cybersoft Information Technologies, Co. Projects Coordinator

Project Manager
1999–2000 MONAD Software and Consultancy, Co. Senior Software Engineer

and Chief Architect
1997–1998 METU Computer Engineering, Ankara Senior Software Engineer
1992–1997 METU Computer Engineering, Ankara Research Assistant

Foreign Languages

Fluent English

Awards and Honors

1. 1994 TUBITAK Husamettin Tugac Research Award (“Metu Object-Oriented
DBMS” project).

2. 1992 Best Senior Project Award in Computer Engineering Department, METU.
(“Turkish Word Processor and Speller” project).

3. 1992 High Honor Student in B.S. (Cum GPA: 3.75 / 4.00).

4. 1988 Turkish Physics Olympiads, Aegean Region, 2nd Degree.

170

Publications

1. N. I. Altintas, S. Cetin, and A. H. Dogru. Industrializing software development:
The “Factory Automation” way. In D. Draheim and G. Weber, editors, Trends
in Enterprise Application Architecture, TEAA 2006, Berlin, Germany, Revised
Selected Papers, volume 4473 of LNCS, pages 54-68. Springer, 2007.

2. S. Cetin, N. I. Altintas, H. Oguztuzun, A. H. Dogru, O. Tufekci, and S. Suloglu.
Legacy migration to service-oriented computing with mashups. In ICSEA’07:
Proceedings of the International Conference on Software Engineering Advances.
IEEE Computer Society, 2007.

3. S. Cetin, N. I. Altintas, H. Oguztuzun, A. H. Dogru, O. Tufekci, and S. Su-
loglu. A mashup-based strategy for migration to service-oriented computing. In
ICPS’07: IEEE International Conference on Pervasive Services, July 15 - 20,
2007, Istanbul, Turkey, pages 169-172. IEEE Computer Society, 2007.

4. S. Cetin, N. I. Altintas, and C. Sener. An architectural modeling approach with
symmetric alignment of multiple concern spaces. In ICSEA’06: Proceedings of
the International Conference on Software Engineering Advances, page 48, Los
Alamitos, CA, USA, 2006. IEEE Computer Society.

5. S. Cetin, N. I. Altintas, and R. Solmaz. Business rules segregation for dynamic
process management with an aspect-oriented framework. In Business Process
Management International Workshops, Vienna, Austria, September 4-7, 2006,
Proceedings, volume 4103 of LNCS, pages 193-204. Springer, 2006.

6. S. Cetin, N. I. Altintas, and O. Tufekci. Improving model reuse with domain
specific kits. In International Workshop on Model Reuse Strategies, MoRSe
2006, Warsaw, Poland, Oct. 17, 2006, 2006.

7. O. Tufekci, S. Cetin, and N. I. Altintas. How to process [business] processes. In
Integrated Design and Process Technology, IDPT-2006, Society for Design and
Process Science, San Diego, CA, USA, June 2006.

8. N. I. Altintas and S. Cetin. Integrating a software product line with rule-based
business process modeling. In D. Draheim and G. Weber, editors, Trends in
Enterprise Application Architecture, VLDB Workshop, TEAA 2005, Trondheim,
Norway, Revised Selected Papers, volume 3888 of LNCS, pages 15-28. Springer,
2006.

9. N. I. Altintas, M. Surav, O. Keskin, and S. Cetin. Aurora software product line.
In Turkish Software Architecture Workshop, Ankara, September 2005, 2005.

10. N. I. Altintas and H. C. Bozsahin, Reducing the Order Bias in Incremental
Learning, TAINN-VI, 6th Turkish Symposium on Artificial Intelligence and Neu-
ral Networks, June 1997, Ankara, Turkey.

11. Y. Ceken, I. Altintas, M. Altinel, H. Guven, and A. Dogac, Experiences in
Design and Implementation of a Health Care Information System, in Proc. of
Intl. ORACLE User Week, San Fransisco, November 1996.

12. A. Dogac, M. Altinel, C. Ozkan, I. Durusoy, and I. Altintas, Design and Im-
plementation of an Object-Oriented DBMS Kernel, 10th Intl. Symposium on
Computer and Information Systems, Izmir, November 1995.

171

13. A. Dogac, M. Altinel, C. Ozkan, B. Arpinar, I. Durusoy and I. Altintas, METU
Object-Oriented DBMS Kernel, DEXA 1995, 6th Intl. Conference and Work-
shop on Database and Expert Systems Applications, September 4-8 1995, Lon-
don, UK.

14. A. Dogac, C. Ozkan, B. Arpinar, C. Evrendilek, I. Altintas, et al. METU
Object-Oriented DBMS, ACM-SIGMOD 1994. Prototype demo description.
Minneapolis, USA.

Hobbies

Economics, Sports and Aquarium World.

172

