
SECURITY ON MOBILE PHONES WITH
LIGHTWEIGHT CRYPTOGRAPHIC MESSAGE SYNTAX

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MURAT YAS�N KUB�LAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2007

Approval of the thesis:

SECURITY ON MOBILE PHONES WITH LIGHTWEIGHT

CRYPTOGRAPHIC MESSAGE SYNTAX

submitted by MURAT YAS�N KUB�LAY in partial fulfillment of the
requirements for the degree of Master of Science in Computer Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences ______________

Prof. Dr. Volkan Atalay
Head of Department, Computer Engineering ______________

Dr. Atilla Özgit
Supervisor, Computer Engineering Dept., METU ______________

Examining Committee Members
Prof. Dr. Ersan Akyıldız ______________
Mathematics Dept., METU

Dr. Atilla Özgit ______________
Computer Engineering Dept., METU

Asst. Prof. Dr. Albert Levi ______________
Faculty of Engineering and Natural Sciences, Sabancı U.

Dr. Cevat �ener ______________
Computer Engineering Dept., METU

Dr. Onur Tolga �ehito�lu ______________
Computer Engineering Dept., METU

Date: 24.08.2007

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Murat Yasin, KUB�LAY

Signature :

 iv

ABSTRACT

SECURITY ON MOBILE PHONES WITH

LIGHTWEIGHT CRYPTOGRAPHIC MESSAGE SYNTAX

Kubilay, Murat Yasin

MS, Department of Computer Engineering

Supervisor : Dr. Atilla Özgit

Co-Supervisor: Asst. Prof. Dr. Albert Levi

August 2007, 83 pages

Cryptographic Message Syntax (CMS) is a standard for protecting messages

cryptographically. Using CMS, messages can be protected in different content types

such as signed-data, enveloped-data, digested-data and authenticated-data. CMS is

architected around certificate based key management and symmetric cryptography.

In this thesis, a lightweight CMS envelope is proposed for the mobile phones which

have limited memory and processing power, in order to provide the privacy of the

data either stored on them or exchanged by means of multimedia messaging (MMS)

and e-mail. A sample prototype is implemented on mobile phone which makes use

of the proposed lightweight CMS. The prototype is compared with standard CMS in

terms of application size and performance. The application size decreases

approximately by 35% and the envelope preparation duration is much shorter with

lightweight CMS in comparison to standard CMS.

Keywords: CMS, PKI, Mobile Phone

 v

ÖZ

BAS�TLE�T�R�LM�� KR�PTOGRAF�K MESAJ SÖZD�Z�M� �LE

MOB�L TELEFONLARDA GÜVENL�K

Kubilay, Murat Yasin

Y. Lisans, Bilgisayar Mühendisli�i Bölümü

Tez Yöneticisi : Dr. Atilla Özgit

Ortak Tez Yöneticisi: Asst. Prof. Dr. Albert Levi

A�ustos 2007, 83 sayfa

Kriptogtafik Mesaj Sözdizimi (KMS), mesajları kriptografik olarak korumak için

tasarlanmı� bir standarttır. KMS ile mesajlar imzalı veri, zarflanmı� veri, özetlenmi�

veri ve do�rulanmı� veri içerik tipi olarak korunabilmektedir. KMS'nin mimarı

yapısı sertifika tabanlı anahtar da�ıtımı ve simetrik kriptografi etrafında

olu�turulmu�tur. Bu tezde, hafıza ve i�lem gücü sınırlı olan cep telefonlarında

saklanan ve MMS, e-posta vasıtasıyla payla�ılan verilerin güvenli�ini sa�lamak için

basitle�tirilmi� kriptografik mesaj sözdizimi önerilmektedir. Basitle�tirilmi� KMS'yi

kullanan ve cep telefonunda ko�an örnek bir prototip geli�tirilmi�, uygulama boyutu

ve performans kriterleri açısından standart KMS ile kar�ıla�tırılmı�tır.

Basitle�tirilmi� KMS ile standart KMS’ye göre prototip boyutu %35 azalmı� olup,

zarf hazırlama süresi de oldukça kısalmı�tır.

Anahtar Kelimeler : Kriptografik Mesaj Sözdizimi, Açık Anahtar Altyapısı, Mobil

Telefon

 vi

TABLE OF CONTENTS

ABSTRACT... IV

ÖZ ... V

TABLE OF CONTENTS ... VI

LIST OF FIGURES... X

CHAPTER

1 INTRODUCTION ... 1

2 LITERATURE SURVEY .. 3

2.1 PUBLIC KEY CRYPTOGRAPHY ...4

2.1.1 Symmetric versus Asymmetric Ciphers..4

2.1.2 Services of Public Key Cryptography ..9

2.1.3 Comparison of the Symmetric and Asymmetric Cryptography.......13

2.2 X.509 PUBLIC KEY CERTIFICATES ..13

2.2.1 Protective Envelope ...15

2.2.2 Certificate Content...16

2.3 CRYPTOGRAPHIC MESSAGE SYNTAX...18

2.3.1 EnvelopedData Type..21

2.3.2 RecipientInfo Type ..23

3 A PROPOSAL FOR MOBILE PHONES SECURITY WITH

KORUGAN.. 26

3.1 LIGHTWEIGHT CMS ...29

3.1.1 ContentInfo Type...29

3.1.2 EnvelopedData Type..29

 vii

3.1.3 RecipientInfo Type ..30

3.1.4 RecipientIdentifier Type ..30

3.2 JAVA CARD APPLICATION...31

3.2.1 Cryptography with Java Card...31

3.2.2 Communication with Java Card ...32

3.2.3 Application Design ..35

3.3 MIDLET APPLICATION ON MOBILE PHONE...39

3.3.1 X.509 Certificate Parser...40

3.3.2 Lightweight CMS ASN.1 Infrastructure...44

3.3.3 Java Midlet ..46

4 PERFORMANCE ANALYSIS.. 55

5 CONCLUSION ... 60

REFERENCES... 63

APPENDICES

A. GUIDE FOR SUBSET OF ASN.1, BER AND DER 65

Simple Types ..67

Structured Types ...67

Other Types ..67

Basic Encoding Rules (BER)...68

Distinguished Encoding Rules (DER)..71

Notation and Encoding of Some Types..71

ANY ...71

BIT String ...72

CHOICE ...72

IA5String ..73

INTEGER ...73

NULL ...73

OBJECT IDENTIFIER ...73

 viii

OCTET STRING ..74

PrintableString ..74

SEQUENCE ...75

SET...75

UTCTime..76

B. SAMPLE X.509 CERTIFICATE ASN.1 ENCODING.................. 77

C. SAMPLE LIGHTWEIGHT CMS ASN.1 ENCODING 82

 ix

LIST OF TABLES

TABLES

Table 1 Number of Users vs Number of Secret Keys...6

Table 2 Number of Users vs Number of Key Pairs ..9

Table 3 Service Comparison ...13

Table 4 Some of the Digital Signature Algorithms ..15

Table 5 Some of the Public Key Algorithms ...18

Table 6 Java Card Applet Size (in KB) Comparison..56

Table 7 Midlet Application Size (in KB) Comparison ...56

Table 8 Korugan Performance Comparison for Different Number of Recipients ..58

Table 9 Korugan Performance Comparison for Different Size of Data59

Table 10 Some Types and Their Universal-Class Tags..66

Table 11 Class Encoding in Identifier Octets...69

 x

LIST OF FIGURES

FIGURES

Figure 1 Secret Key Encryption ..5

Figure 2 PublicKey Encryption ...8

Figure 3 Digital Signature with Message Hash..12

Figure 4 X.509 Certificate Structure..14

Figure 5 Preparing CMS Envelope..27

Figure 6 Opening CMS Envelope..28

Figure 7 APDU Command Structure...33

Figure 8 APDU Response Structure ..33

Figure 9 Mobile Phone Java Card Communication..34

Figure 10 Javacard Application Class Diagram ...35

Figure 11 Process Method Activity Diagram...37

Figure 12 X.509 Certificate and SubjectPublicKeyInfo Parser Class Diagram.......41

Figure 13 Lightweight CMS Class Diagram..45

Figure 14 Midlet Activity Diagram ...47

Figure 15 Java Midlet Class Diagram (Cryptography in Midlet -except Asymmetric

Decryption)...49

Figure 16 Java Midlet Class Diagram (Cryptography in Javacard)50

 1

CHAPTER 1

 INTRODUCTION

For the last decade mobile phones have become an indispensable part of our life and

being carried as an accessory. As the time passes, like every other technological

device, the features and capabilities of the mobile phones are also evolved.

Nowadays, they are used as music player, camera, camcorder, radio, voice recorder,

document reader/writer, game box, internet browser, e-mail client, messenger

(SMS/MMS) etc. in addition to their traditional roles of voice communication. With

the increasing features of mobile phones, the security of the information stored on

them has become an important concern. In case of lost or stolen mobile phones, the

stored information can be easily compromised. Actually a greater security

deficiency is not the data on a lost or stolen mobile phone. Everyday, millions of

information is shared between mobile phone users by means of MMS, e-mail.

Photos, videos, office documents, voice records are sent with almost no security.

These data are encrypted on the air with a very weak encryption algorithm and can

be easily decrypted with a PC processing power by a person who is sniffing them. A

better known scenario is, either authorized or unauthorized employees of the GSM

[28] operators can easily break the privacy of the communication.

In this thesis, a Public Key Infrastructure (PKI) [31] [32] [33] [34] based solution

will be proposed to the problem explained in the previous paragraph. In the

solution, an application running on the mobile phone prepares a cryptographic

 2

envelope for a file with the help of another application running on the subscriber

identity module (SIM) [30] card. The details of two possible sample

implementations will be explained and compared in terms of feasibility and

performance.

The rest of this thesis is organized as follows. In Chapter 2, public key cryptography

will be shortly explained and compared against to symmetric key cryptography.

And then, the structure of X.509 Certificates [2] which binds public key’s to

distinguished names will be discussed. Then, CMS (Cryptographic Message

Syntax) [3] will be explained which can be used for preparing encrypted data

envelope for different recipients. In Chapter 3, the design and implementation of a

sample application, which makes use of the technologies discussed in Chapter 2,

will be explained. In Chapter 4, different sample implementations will be compared,

and benefits and drawbacks of them will be further argued. And finally in Chapter

5, there will be a summary and conclusion for secure communication with mobile

phones.

 3

CHAPTER 2

 LITERATURE SURVEY

Security has always been a very sensitive issue for the human being. Two modern

cryptographic methodologies, the symmetric cryptography and the asymmetric

cryptography will be briefly described and compared in the first section.

X.509 certificates combine the public key of an asymmetric key pair to a

Distinguished Name (DN) [7] X.509 certificates will be used for identification of

people through out this study. Their structure will be described shortly in the second

section.

CMS is a standard used for preparation of a secure data envelope. To have a better

understanding for our lightweight CMS proposal, standard CMS will be described

in the third section.

Both X.509 Certificates and CMS types are DER encoded in ASN.1 notation. The

encoding and decoding of these types is necessary through out this study. For this

reason, a short guide for ASN.1 notation and encoding rules can be found in

Appendix A. The ASN.1 DER encoding of a sample X.509 Certificate can be found

in Appendix B.

 4

2.1 Public Key Cryptography

2.1.1 Symmetric versus Asymmetric Ciphers

The desire of keeping communication confidential from unintended recipients exists

since the human being started to communicate [4] Countless methods for hiding

data have been developed for thousands of years. These methods attempt to

transform the words, letters, and bits to meaningless messages. The intended

recipient must be able to transform the meaningless message to its original form in

order to read the sender’s message

There are two mechanisms to make such transformation, symmetric (secret key)

ciphers and asymmetric (public key) ciphers.

2.1.1.1 Symmetric Ciphers

In symmetric cryptography, the same key is used for encryption and decryption. In

symmetric cryptography, this key must be kept secret. In this communication both

sides uses the same encryption algorithm, the same key. The secret key encryption

is depicted in Figure 1.

 5

Figure 1 Secret Key Encryption

Although symmetric ciphers can posses very desirable features such as

• Algorithms are fast

• Implementation of algorithms on hardware is simple

• Gives the service of confidentiality

have the drawbacks

• Secure key exchange is difficult

• It is not scalable

• Communication is difficult between unknown sides

• Integrity and authentication service is difficult

These drawbacks are explained briefly in the following paragraphs.

 6

The sender and the intended recipient must share the same secret key prior to the

transmission of the message for the security of the symmetric ciphers. Transmission

of this key requires a separate, out of band, secure communication which must

occur prior to the intended communication. This additional step can be very

difficult in some cases.

The secret key shared between a message sender and recipient A must be different

from the secret key shared between the message sender and recipient B; otherwise,

the confidentiality of messages sent to recipient A is compromised. If the sender

wants to send different messages to 1000 recipients and keeps them secret between

the recipients, he has to distribute 1000 different secret keys. The increase in the

number of secret key related to the increase of the user is described in Table 1.

Table 1 Number of Users vs Number of Secret Keys

If the parties do not know each other, out of band secure key exchange is much

more difficult. For instance if an entity wants to share some secret information with

 7

another entity, but does not have any prior conversation with it, being certain if the

secret key is shared with the correct entity will be quite difficult.

Message Authentication Codes (MAC) [35] can be used to provide the integrity of

the data to check if it is altered. The most common way to build a MAC is a shared

secret key and cryptographic hash function between the parties. But sharing this

information again brings the problem of secure key distribution.

An implicit authentication can be done with symmetric ciphers accepting that the

shared secret key is owned only by the authenticated entity. There must be a

separate secret key for each of the entity which will be authenticated. Key

distribution problem again arises in authentication.

2.1.1.2 Asymmetric Ciphers

In asymmetric cryptography, encryption and decryption is done with two different

keys. The keys forming this pair are called public and private keys. In this method

of cryptography the private key must be kept secret, but the public key can be

shared with relevant people. Because of this feature, asymmetric cryptography is

also called public key cryptography.

The sides communicating with this cryptography uses the same encryption

algorithm, can reach the relevant keys. The public key encryption is depicted in

Figure 2.

 8

Figure 2 PublicKey Encryption

For asymmetric cryptography, key distribution method is very important. The

following points must be taken into consideration for the key management.

• The public keys must be published by an authority, and the modification in

these keys must be prevented.

• Key pairs can be produced individually or by a central authority.

• For encryption and signature there must be different key pairs.

• Revocation of keys must be carried out and published under control.

In asymmetric cryptography, key distribution is easier than symmetric cryptography

since if an entity who wants to communicate securely needs the public key of the

recipient. Since the public key is published by an authority, for a person who wants

to communicate securely in a community needs only to produce a key pair. The

 9

number of users versus the number of key pairs in asymmetric cryptography is

depicted in Table 2.

Table 2 Number of Users vs Number of Key Pairs

The desirable features of asymmetric cryptography are,

• Key management is scalable

• Resistant against cryptanalysis

• Provides the service of integrity, authentication and non repudiation

with the drawback

• Algorithms are very slow in comparison to symmetric algorithms

2.1.2 Services of Public Key Cryptography

Some of the unknown or difficult services with symmetric ciphers are available

with public key cryptography. Some of the important and interesting services are

highlighted below.

 10

2.1.2.1 Security between Strangers

Secure secret key exchange among strangers is one of the biggest drawbacks of

symmetric cryptography. Since it is very difficult to compute the private key from a

given public key, extensive distribution of the public key is possible. The public key

can be stored in a public repository. Even though if a message sender has no prior

communication with the recipient, he can look up the recipient’s public key from

the repository and encrypt data for him. But the message sender needs to trust the

repository, so that the key he receives really belongs to the recipient. However in

the electronic world, unauthorized data modification is a problematic issue and in

general public repositories can not be trusted to return correct information. In this

point, public key certificates are introduced to provide the trust mechanism.

2.1.2.2 Encryption

Not all but some of the public key algorithms provide the feature of encryption.

Data is encrypted with the public key and can only be decrypted with the

corresponding private key. However, public key algorithms are very slow and in

many situations it is impractical to encrypt bulk data. Instead a two way encryption

process is held,

• A randomly generated symmetric key is used to encrypt the data.

• The symmetric key is then encrypted using the public key of the intended

recipient of the data

When the recipient receives the encrypted data, he follows a similar process

• The recipient decrypts the symmetric key with his private key

• And than the actual data is obtained by using the symmetric key

 11

2.1.2.3 Digital Signature

Digital signature is a very important service enabled by public key cryptography

which can not be easily achievable by symmetric ciphers.

A digital signature operation can be thought as a private key operation on data in

which the resulting value is the signature. If only one entity knows its private key, it

can be the only entity who could have signed the data. On the other hand anyone

who can retrieve the public key of the entity can verify the signature by doing a

public key operation on the signature and checking whether the result corresponds

to the original data.

Size of the data which will be signed may vary, but a private key operation takes a

fixed size input and computes a fixed size output. In order to achieve this, a

cryptographic hash function is used. This function can map an arbitrary size of input

to a fixed size of output, and it is computationally infeasible to find two different

inputs with the same hash. Signing process is held as below,

• Signer takes the hash of the data which will be signed.

• And than a private key operation is done on the hash of the data.

The verification process is similar,

• The verifier takes the hash of the data which will be signed.

• Then the verifier checks this value, the transmitted signature and the signer’s

public key. If the signature matches the key and the hash value, the signature

verifies, else it fails.

The digital signature process can be depicted as in Figure 3.

 12

Figure 3 Digital Signature with Message Hash

2.1.2.4 Data Integrity

A digital signature provides both data origin authentication and the data integrity.

Since it is very difficult to find two different inputs which have the same hash

value, the alteration of original data will lead big changes in the hash and the

verification process will fail.

2.1.2.5 Key Establishment

Public key cryptography can also be used for key establishment. A protocol can use

public, private key pairs to share some secret symmetric key. It can occur in two

ways:

• In key transfer, one entity creates a symmetric key, encrypts it with public

key of the recipient and sends.

 13

• In key agreement, both entities can contribute to the generation of a

symmetric key.

2.1.3 Comparison of the Symmetric and Asymmetric Cryptography

The comparison of symmetric and asymmetric cryptography is summarized in

Table 3.

Table 3 Service Comparison

2.2 X.509 Public Key Certificates

Users of a public key require confidence that the associated private key is owned by

the correct remote subject (person or system) with which an encryption or digital

signature mechanism will be used. This confidence is obtained through the use of

public key certificates, which are data structures that bind public key values to

subjects [1] . The goal is to provide single mechanism by which a relying party is

assured that

• The integrity of the public key is provided

 14

• The public key has been bound to the claimed owner in a trusted way

This section explains how X509 Certificates [2] accomplishes these goals.

X.509 Certificates are published by ITU-T [36] In the X.509 The Directory: Public-

Key and Attribute Certificate Framework [2] standard, X.509 certificates with

versions v1, v2, v3 and X.509 Certificate Revocation List with versions v1 and v2

is defined.

X.509 certificates may be considered as three nested components. The first

component is the protective envelope. The digital signature provides the protection.

Inside the envelope, there is a basic certificate content. The basic certificate content

includes the information that must be present in every certificate. The basic

certificate content may include an optional set of certificate extensions.

Figure 4 X.509 Certificate Structure

 15

2.2.1 Protective Envelope

There are 3 fields in the outermost level of the certificate. These fields are the to-be-

signed certificate, the signature algorithm identifier and the signature itself.

The ASN.1 type definition of the certificate is defined as below:

Certificate ::= SEQUENCE {

 tbsCertificate TBSCertificate,

 signatureAlgorithm AlgorithmIdentifier,

 signature BIT STRING }

tbsCertificate contains the signed certificate. It will be explained in detail.

signatureAlgorithm contains an algorithm identifier and it identifies the digital

signature algorithm identifier used by the certificate issuer to sign the certificate.

Some of the digital signature algorithms are listed in Table 4.

Table 4 Some of the Digital Signature Algorithms

signatureValue contains the digital signature. The digital signature is computed

using the ASN.1 DER encoded value of the tbsCertificate field.

 16

2.2.2 Certificate Content

Certificate content contains all the basic certificate information. At minimum, it

contains six fields: the serial number, the certificate signature algorithm identifier,

the certificate issuer name, the certificate validity period, the public key and the

subject name. The version number, two unique identifier and the extensions are

optional.

The ASN.1 type definition of the basic certificate is defined as below:

TBSCertificate ::= SEQUENCE {

 version [0] Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier,

 issuer Name,

 validity Validity,

 subject Name,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version MUST be v2 or v3

 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version MUST be v2 or v3

 extensions [3] Extensions OPTIONAL

 -- If present, version MUST be v3 -- }

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

 notBefore Time,

 notAfter Time }

 17

Time ::= CHOICE {

 utcTime UTCTime,

 generalTime GeneralizedTime }

UniqueIdentifier ::= BIT STRING

SubjectPublicKeyInfo ::= SEQUENCE {

 algorithm AlgorithmIdentifier,

 subjectPublicKey BIT STRING }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {

 extnID OBJECT IDENTIFIER,

 critical BOOLEAN DEFAULT FALSE,

 extnValue OCTET STRING }

version is an optional field which describes the syntax of certificate. The default

value of it is v1, but most of the modern certificates have the value v3.

serialNumber is an integer assigned by the certificate issuer to each certificate. The

serial number must be unique for each certificate generated by an issuer. The

combination of serialNumber and the issuerName uniquely identify any certificate.

signature is an algorithm identifier. Signature is the same as the

signatureAlgorithm.

issuer field contains the X.520 [10] distinguished name of the certificate issuer.

validity contains two dates on which the certificate becomes valid, and the date on

which the certificate expires.

subject contains the X520 [10] distinguished name of the holder of the private key

corresponding to the public key in this certificate.

 18

subjectPublicKeyInfo contains the subject’s public key and the algorithm identifier.

The public key in this field is used to verify a signature, to encrypt information for

the subject, and if the certificate is a CA certificate than, to verify the signature on a

certificate. Some of the public key algorithms are listed in Table 5.

Table 5 Some of the Public Key Algorithms

2.3 Cryptographic Message Syntax

The Cryptographic Message Syntax (CMS) [3] is a standard published by IETF [29]

, which describes a general syntax for the data that may have cryptography applied

to it, such as digital signatures, digital envelopes, digested-data, encrypted-data and

authenticated-data. Recursion can be used in the syntax, so that, for example one

can sign a previously enveloped data or one envelope can be nested inside another.

It allows different attributes such as the signing time, association of a

countersignature with a signature. In addition, the signing or encrypting certificates

and the related revocation lists can also be inserted in the syntax. Any form of

digital data can be digitally signed, digested, enveloped, authenticated or encrypted

by using CMS. CMS is architected around certificate-based key management.

 19

CMS is also compatible with Privacy-Enhanced Mail (PEM) [21] If the signed-data

and signed-and-enveloped-data content are constructed in a PEM-compatible mode,

then it can be converted into PEM messages without any cryptographic operations.

PEM messages can similarly be converted into the signed-data and signed-and-

enveloped data content types.

CMS is also employed in many other widely used cryptographic standards, such as

S/MIME [17] [18] , PKCS#12 [19] and digital time stamping protocol RFC 3161

[11] .

The enveloped-data content type of CMS will be the point of interest for the rest of

this section. A content type identifier is associated with content in CMS. The ASN.1

syntax of CMS is defined as follows.

ContentInfo ::= SEQUENCE {

 contentType ContentType,

 content [0] EXPLICIT ANY DEFINED BY contentType }

ContentType ::= OBJECT IDENTIFIER

The fields of ContentInfo have the following meanings:

contentType denotes the type of the related content. The content type is associated

with an object identifier. An authority defines the object identifiers which is a

unique string of integers and assigns the object identifier to a contentType.

content is the data identified by the contentType. For CMS, the content types can be

signed-data, enveloped-data, digested-data, encrypted-data and authenticated-data.

Here only the enveloped-data content type will be focused on.

 20

In enveloped-data content type, any type of encrypted content and encrypted

content-encryption keys for one or more recipients can be stored. A digital envelope

for a recipient is comprised of the encrypted content and one encrypted content-

encryption key. There are several key management techniques and a data can be

enveloped for any number of recipients with one of these techniques.

The construction of enveloped-data is defined by the following steps:

1. Randomly a content encryption key for a particular content-encryption algorithm

is generated.

2. For each recipient the content encryption key is encrypted. The encryption may

differ according to the key management technique employed. In key transport

technique the content encryption key is encrypted with the recipient’s public key, in

key agreement technique the recipients public key and the sender’s private key is

used to generate a symmetric key which is used for encrypting content encryption

key, in symmetric key-encryption keys technique, content encryption key is

encrypted with a previously distributed symmetric key and finally in passwords

technique, a password is used to generate a key to encrypt content encryption key.

3. A RecipientInfo value is created which contains the encrypted content-encryption

key and other recipient-specific information for each recipient. The structure of

RecipientInfo is described in more detail in Section 2.3.2.

4. The content is encrypted with the content-encryption key.

5. The encrypted content and all of the recipientInfo values are collected into an

EnvelopedData. The structure of EnvelopedData is described in Section 2.3.1.

 21

When the recipient receives the envelope, first of all, he decrypts the content

encryption key which is encrypted for him, and then decrypts the content with the

decrypted content encryption key.

The top-level data structure EnvelopedData, per-recipient information type

RecipientInfo, content-encryption and key-encryption process is described in the

following sections.

2.3.1 EnvelopedData Type

EnvelopedData type is identified with the following object identifier.

id-envelopedData OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)

rsadsi(113549) pkcs(1) pkcs7(7) 3 }

The enveloped-data content is described in a structured ASN.1 type EnvelopedData:

EnvelopedData ::= SEQUENCE {

 version CMSVersion,

originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,

 recipientInfos RecipientInfos,

 encryptedContentInfo EncryptedContentInfo

unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }

OriginatorInfo ::= SEQUENCE {

certs [0] IMPLICIT CertificateSet OPTIONAL,

crls [1] IMPLICIT RevocationInfoChoices OPTIONAL }

 22

RecipientInfos ::= SET SIZE (1..MAX) OF RecipientInfo

EncryptedContentInfo ::= SEQUENCE {

 contentType ContentType,

 contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,

 encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL }

EncryptedContent ::= OCTET STRING

UnprotectedAttributes ::= SET SIZE (1..MAX) OF Attribute

The fields of type EnvelopedData is described in more detail below.

Version is the syntax version number. OriginatorInfo provides information about

the sender. RecipientInfos is a collection of per-recipient information. There must

be at least one element in the collection. EncryptedContentInfo is the encrypted

content information. UnprotectedAttributes are a collection of attributes appended

to the encrypted content. They are not encrypted and may be used for adding the

content hash, signing time etc. information to the envelope

The fields of type EncryptedContentInfo have the following meanings:

ContentType indicates the type of content. ContentEncryptionAlgorithm identifies

the content-encryption algorithm, and any associated parameters, used to encrypt

the content. The same content-encryption algorithm and content-encryption key are

used for all recipients. EncryptedContent is the result of encrypting the content.

 23

2.3.2 RecipientInfo Type

Per-recipient information is represented in the type RecipientInfo. The keys used to

encrypt content encryption keys may be encrypted with several key management

techniques. All these techniques are supported in recipientInfo type. But, in this

study only the key transport technique will be focused on.

The ASN.1 structure of the RecipientInfo and the EncryptedKey is defined as

follows:

RecipientInfo ::= CHOICE {

ktri KeyTransRecipientInfo,

kari KeyAgreeRecipientInfo,

kekri KEKRecipientInfo,

pwri PasswordRecipientinfo,

ori OtherRecipientInfo}

EncryptedKey ::= OCTET STRING

KeyTransRecipientInfo structure stores the per recipient information. Each instance

of KeyTransRecipientInfo transfers the content-encryption key to one recipient.

The ASN.1 structure of the KeyTransRecipientInfo, RecipientIdentifier and

IssuerAndSerialNumber is defined as follows:

 24

KeyTransRecipientInfo ::= SEQUENCE {

 version CMSVersion, set to 3

 rid RecipientIdentifier,

 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,

 encryptedKey EncryptedKey }

RecipientIdentifier ::= CHOICE {

 issuerAndSerialNumber IssuerAndSerialNumber

subjectKeyIdentifier [0] SubjectKeyIdentifier}

IssuerAndSerialNumber ::= SEQUENCE {

issuer Name,

serialNumber CertificateSerialNumber }

The fields of type KeyTransRecipientInfo is described as follows:

version is the syntax version number.

RecipientIdentifier specifies the recipient's certificate or key that was used by the

sender to protect the content-encryption key. The content-encryption key is

encrypted with the recipient's public key. RecipientIdentifier can be identified either

by the certificate issuer distinguished name and the certificate serial number or by

subjectKeyIdentifier which uniquely identifies the certificate by a key identifier.

This is actually the subjectKeyIdentifier extension of the certificate

 25

keyEncryptionAlgorithm identifies the key-encryption algorithm used to encrypt the

content-encryption key for the recipient.

encryptedKey is the result of encrypting the content-encryption key for the

recipient.

 26

CHAPTER 3

 A PROPOSAL FOR MOBILE PHONES SECURITY WITH

KORUGAN

As explained in the first Chapter, in today’s world mobiles phones are used for

many purposes such as listening music, taking pictures, recording videos, watching

TV, reading, generating documents, sending e-mail etc. in addition to voice

communication. In the mobile phones, a wide range of digital files are stored and

shared by means of MMS and e-mail. The privacy and security of the stored and

shared files in the mobile phones is a major concern for many people since these

files can easily be compromised by either unauthorized or authorized person due to

the insufficient security precautions. In this chapter, a PKI based solution will be

proposed in order to fix these concerns.

Today applications can be developed and installed on the mobile phones and as well

as on the SIM cards. The proposed solution, named Korugan, is mainly composed

of two applications. One of the applications will run on the SIM card which will

handle the cryptographic operations and the other application will run on the mobile

phone which will prepare and resolve a lightweight CMS envelope for the

encrypted data.

 27

The steps for preparation of lightweight CMS envelope in Korugan is described

below and depicted in Figure 5.

• A random symmetric encryption key is generated.

• The plain file is encrypted with the symmetric encryption key.

• The symmetric encryption key is encrypted for each recipient with their

asymmetric public keys which are extracted from their X.509 certificates.

• The encrypted file and the encrypted symmetric keys are packed into the

CMS envelope.

Figure 5 Preparing CMS Envelope

Opening the steps of the lightweight CMS envelope in Korugan is described below

and depicted in Figure 6.

 28

• The lightweight CMS envelope is parsed, the recipient list and the encrypted

content is identified.

• The recipient list is searched if the envelope is prepared for the message

recipient.

• If the envelope is prepared for the message recipient, the encrypted

symmetric encryption key is decrypted with the private key of the recipient

which is stored in the SIM card.

• The encrypted message is decrypted with the symmetric key.

���������	�
��	��������
�
������	���	���

����������

�����
����������
��	�
�����
��

�����
�������

�������	
�����
��� �
�����

�������	
�����
�����

������
����!	����
��	�
�����
��

�������	
������"������#$� ������%

&��	�	��'����!	 ����

	�
����������

()*�+,-./0/012324��54�
�����4

'���!	 ����
!	����
��������
����
����5����������	
��
!	����
��������
����
����5����������	
��

Figure 6 Opening CMS Envelope

Since lightweight CMS envelopes are prepared using the X.509 certificates of the

mobile phone users, the secure distribution of the X.509 certificates is very

important. How can one know if a certificate belongs to an intended recipient?

There may be two solutions two this problem. Either a certificate can be shared by

 29

some means like MMS, e-mail etc. between users, or can be downloaded from a

trusted repository.

In the following sections, firstly the need for a lightweight CMS and a proposal for

lightweight CMS will be explained, and then shortly the technologies employed for

the design and the implementation of Korugan will be discussed and the design of

the applications will be explained in detail.

3.1 Lightweight CMS

CMS is very ideal for enveloping encrypted data for any number of recipients.

Since it is used not only for enveloped data content type but also, signed data,

encrypted data, authenticated data content types, its ASN.1 structure is quite

complex. But in mobile phones we are only interested in the enveloped data content

type and do not need the rest. The required memory and processing power for DER

encoding and decoding of the standard CMS structure is excessive for the mobile

phones which have limited memory and processing power. For this reason a

lightweight CMS structure is proposed in the following sections.

3.1.1 ContentInfo Type

For lightweight CMS, only the enveloped data content type will be supported.

3.1.2 EnvelopedData Type

In the EnvelopedData type the optional fields originatorInfo and

unprotectedAttributes will be omitted. The ASN.1 structure of the EnvelopedData

will be

EnvelopedData ::= SEQUENCE {

version CMSVersion,

 30

recipientInfos RecipientInfos,

encryptedContentInfo EncryptedContentInfo}

3.1.3 RecipientInfo Type

As mentioned before there are several key management techniques for encrypting

content encryption keys. In lightweight CMS, only the key transfer is enough as a

key management technique, and the other choices will be omitted. In order to keep

the conformance to the standard, the ASN.1 choice structure of RecipientInfo is

preserved.

RecipientInfo ::= CHOICE {

ktri KeyTransRecipientInfo}

3.1.4 RecipientIdentifier Type

In the standard CMS, recipient can be identified either by certificate issuer

distinguished name and the certificate serial number or by subjectKeyIdentifier

which uniquely identifies the certificate by a key identifier. This is actually the

subjectKeyIdentifier extension of the certificate. In lightweight CMS, both choices

are omitted. Since, in the first choice issuerAndSerialNumber, issuer is represented

in the ASN.1 name structure. Encoding, decoding and making comparison with this

structure is quite complex and time consuming. Also in order to get the

subjectKeyIdentifier of a certificate, the extensions of a certificate have to be

decoded and identified. In addition, this extension may not be present in some of the

certificates at all. In order to get rid of the unnecessary and heavy ASN.1 encoding,

decoding, comparison process, a new alternative, the choice

issuerHashAndSerialNumber is introduced. The ASN.1 structure of the type

IssuerHashAndSerialNumber is:

IssuerHashAndSerialNumber ::= SEQUENCE {

 31

 issuerHash OCTET String,

 issuerHashAlgorithm AlgorithmIdentifier

 serialNumber INTEGER}

The fields of type IssuerHashAndSerialNumber have the following meanings:

issuerHash is the result of hashing the certificate issuer with the specified hash

algorithm. issuerHashAlgorithm is the object id of the hash algorithm used for

hashing the certificate issuer. serialNumber is the certificate serial number which is

unique for a certificate authority.

3.2 Java Card Application

3.2.1 Cryptography with Java Card

Java Card technology enables smart cards with very limited memory to run small

applications, called applets that employ Java technology. It provides smart card

manufacturers with a secure and interoperable execution platform that can store and

update multiple applications on a single device. Java Card technology is compatible

with existing smart card standards.

Java Cards can be used as Subscriber Identity Module (SIM) cards. Currently

millions of mobile phones use java cards as SIM cards on most wireless networks.

The public, private key pair for asymmetric cryptography can also be created on

java cards. Once the key pair is created on the java card, it is impossible to extract

the private key from the card, and the private key operations are only done within

the card. Except from the java card owner, nobody else can use the private key for

PKI based operations.

 32

Not only the asymmetric cryptographic operations, but also symmetric

cryptographic operations such as encryption, decryption and random number

generation, hashing can also be done on java cards.

Java card will be used as a means of handling cryptographic operations for our

project. In order to achieve this, an applet is developed which will run on java card

VM. In the initialization phase of the applet an asymmetric key pair is created on

the card. The certification of the public key in the card is not in the scope of the

project, but it can be managed by creating a certification request in the form

PKCS#10 [20] syntax file.

3.2.2 Communication with Java Card

There are two means of communication with the java card applet. The first way is

communicating with APDU (Application Protocol Data Unit) commands. The

message structure of APDU commands are defined in ISO/IEC 7816-4 [12] . In the

APDU protocol a command is sent, it is processed and a response is sent to back.

Therefore a specific response corresponds to a specific command, referred to as a

command-response pair. An APDU contains either a command message or a

response message, sent from the interface device to the card or conversely.

The structure of the APDU command is described in Figure 7:

 33

 �������6�����
�����7��	7������5���
��������
����	�
�����
��

5�����5�
��������	���
��
��������	�
8�	�
�8!�5���

�
��	���5���
�����	
��	�
�����
��5�����5�
���
�����	�

��
���
��5���

 �������6�����
97������5���
��������	
��	�
�����
��5�����5�
���

�����	�
8�	�
�8'�5���

6 "	�
�7�
��	�������
���:������
���:�:

"	�
�7�
��	�������
���6������
���6�6

6 "	�
�7�
��	�����"	�
�7�
��	"9�

6 '�����5�"	�
�7�
��	'���'8�

8�	�
� �������
��	9���'���

;������<8�

6

���=�'����	���
�7�
7��

Figure 7 APDU Command Structure

And the structure of the response APDU is described in Figure 8:

Figure 8 APDU Response Structure

The communication between the mobile phone and java card is depicted in

Figure 9:

 34

Figure 9 Mobile Phone Java Card Communication

The second way for the communication with java card applet is Remote Method

Invocation (RMI). This method is simpler than APDU communication, since the

application running on the mobile phone can call objects on the java card applet

remotely with no need to know about the details of the java card, the low level

APDU communications, and it is easier to design, maintain the code.

For sure the second way of communication with RMI is simpler, and more prone to

be selected. But, it is a new technology and only supported by the java cards

compatible with java card API 2.2.2, which are not widespread in the market. For

this reason, APDU’s will be used as a means of communication between the java

card and the application running on mobile phone.

 35

3.2.3 Application Design

The application running on java card is mainly composed of two classes. The main

class which is communicating with the outer world is the CipherApplet. The second

class is named as PKCS5Padding which pads and unpads data according to PKCS5

[1] padding algorithm.

The UML class diagram of the java card application is depicted in Figure 10.

class applet

Applet

CipherApplet

+ INS_DECRYPTDATA: byte = (byte) 0x16 {readOnly}
+ INS_DECRYPTKEY: byte = (byte) 0x15 {readOnly}
+ INS_ENCRYPTDATA: byte = (byte) 0x14 {readOnly}
+ INS_ENCRYPTKEY: byte = (byte) 0x13 {readOnly}
+ INS_HASH: byte = (byte) 0x17 {readOnly}
+ INS_RANDOMDATA: byte = (byte) 0x18 {readOnly}
+ INS_VERIFY: byte = (byte) 0x20 {readOnly}

- _decryptData(APDU) : void
- _decryptData(byte[], byte[]) : byte[]
- _decryptKey(APDU) : void
- _decryptKey(RSAPrivateKey, byte[]) : byte[]
- _encryptData(APDU) : void
- _encryptData(byte[], byte[]) : byte[]
- _encryptKey(APDU) : void
- _encryptKey(RSAPublicKey, byte[]) : byte[]
- _generateRandomData(APDU) : void
- _getBytes(APDU) : byte[]
- _hash(APDU) : void
- _sendBytes(APDU, byte[]) : void
+ CipherApplet(byte[], short, byte)
+ install(byte[], short, byte) : void
+ process(APDU) : void

PKCS5Padding

- mBlockSize: short

+ pad(byte[]) : byte[]
+ PKCS5Padding(short)
+ unPad(byte[]) : byte[]

>� ������������
��	�'�����������

Figure 10 Javacard Application Class Diagram

 36

The classes will be explained in more detail in the following sections.

3.2.3.1 CipherApplet

CipherApplet is an applet which extends from javacard.framework.Applet class. It

has the following methods

CipherApplet(byte[]bArray, short bOffset, byte bLength) : It is the constructor for

the CipherApplet. It is executed only once in the installation phase of the applet to

the java card. It has three arguments which are keeping the applet id as a byte array,

the offset of the applet id in the array, and the length of the applet id respectively. In

the constructor, a 1024 bit RSA key pair is also generated and stored in the java

card.

process(APDU apdu): It is called by the java card runtime environment to process

an incoming APDU command. According to the instruction byte in the apdu, it calls

the related method. The activity diagram for this method is as in Figure 11.

 37

Figure 11 Process Method Activity Diagram

_encryptKey(APDU apdu): This method encrypts the input data with the

asymmetric public key. It is used for the encryption of the symmetric key for either

a given public key or the public key stored in the java card.

_decryptKey(APDU apdu): This method decrypts the encrypted input data with the

asymmetric private key stored in the java card.

 38

_encryptData(APDU apdu): This method encrypts the input data with the input

symmetric key with encryption algorithm AES 128. It assumes the first 16 bytes of

the input as the key and the rest as the data to be encrypted. Before encryption, the

data is padded according to PKCS5 padding algorithm.

_decryptData(APDU apdu): This method decrypts the input data with the input

symmetric key with AES 128. It assumes the first 16 bytes of the input as the key

and the rest as the encrypted data. After decryption, the data is unpadded according

to PKCS5 padding algorithm.

_generateRandomData(APDU apdu): This method generates a random data for a

given length. It is used for random symmetric key generation.

_hash(APDU apdu): This method takes hash of the input data with SHA-1 hash

algorithm.

3.2.3.2 PKCS5Padding

This class pads and unpads an input data for a given block size according to PKCS5

Padding algorithm. The details of the algorithm are defined in the methods below.

PKCS5Padding(short aBlockSize): This is the constructor for the PKCS5Padding

class. It takes the data block size as an argument and sets this value to a member

variable.

pad(byte[] aToBePadded): This method pads the input data’s trailing end

m-(n mod m) octets with all having value m-(n mod m), where n is the length of the

 39

input and m is the block size. In other words, the input is padded at the trailing end

with one of the following strings:

01 -- if n mod m = m-1

02 02 -- if n mod m = m-2

 ….

m m ... m m -- if n mod m = 0

unpad(byte[] aToBeUnPadded): This method removes the padding text and returns

back the original data. Padding can be removed unambiguously since all input is

padded, including input values that are already a multiple of the block size, and no

padding string is a suffix of another.

3.3 Midlet Application on Mobile Phone

The second part of Korugan is a java midlet application running on the mobile

phone. It is an interactive application which the user can traverse through the files

stored in the phone. Any file can be selected for encryption for one or more

recipients. The encrypted files are stored in the mobile phone and can be sent to the

intended recipients by means of MMS. The files encrypted for the mobile phone

user can be decrypted, and their contents can be viewed.

The Midlet application is composed of three main components. The first component

is the java midlet which browses the files, directories stored in the phone, receives

the commands of the user, communicates with the applet running on the java card,

prepares and resolves the CMS envelope of the selected file for the intended

 40

recipients. Second component is X.509 certificate parser. Third and the last

component contain the core ASN.1 classes and lightweight CMS ASN.1 classes.

There are two versions of the java midlet. Except the asymmetric decryption

operation which requires a private key residing in the java card, the other

cryptographic operations such as asymmetric encryption, symmetric encryption, and

decryption can be implemented also in the java midlet as well as in the java card. In

the first version of the midlet, except the asymmetric decryption process all of the

cryptographic operations are implemented in the java midlet. In the second version

all of the cryptographic operations are implemented in the java card.

These components are explained in more detail in the following paragraphs.

3.3.1 X.509 Certificate Parser

The first component of the java midlet application is X.509 certificate parser. As

explained in the Section 2.2, X.509 Certificates are ASN.1 DER encoded. In order

to prepare CMS envelope for an intended recipient, the issuer, serial and public key

of the recipient is necessary. And this information has to be extracted from the

X.509 certificate of the recipient. There are several open source and commercial

ASN.1 DER decoders available, but all of these decoders are designed for

computers, and not suitable for mobile devices. Since the applications running on

mobile phones can only use a limited amount of memory and processing power, a

lightweight X.509 certificate parser is implemented which gets the binary form of

the certificate and parse it according to the ASN.1 DER structure of X.509

Certificate.

Parsing X.509 certificates is necessary but insufficient. If somehow the private key

of a user is compromised since his mobile phone is stolen, his certificate has to be

canceled by the issuing CA. While preparing a CMS envelope for this user the

status of his certificate has to be checked and validated. The X.509 certificate

 41

validation is really a rough process. Either Certificate Revocation Lists (CRL) [10]

has to be downloaded or the status of the certificate has to be checked with the

related Online Certificate Status Protocol (OCSP) [22] server. Of course, in every

envelope preparation doing this process for all the recipients can bring an overhead

and extra cost to the mobile phone users. Since being online with the net either for

downloading a CRL or making an OCSP request will be charged to him.

Nevertheless downloading the CRL or making an OCSP request is not enough, a

detailed algorithm for certificate validation is described in RFC 3280 [10] . In future

versions of Korugan, this parser may also include the lightweight X.509 certificate

validation functionality.

The UML class diagram of the X.509 Certificate parser is depicted in Figure 12 and

further details of these classes are described in the following sections.

class client

Certificate

- mCertificate: byte ([]) = null
- mIssuer: byte ([])
- mIssuerAndSerial: byte ([])
- mSerial: byte ([])
- mSubjectpublickeyInfo: byte ([])

+ Certificate(byte[])
- decode(byte[]) : void
+ getMIssuer() : byte[]
+ getMIssuerAndSerial() : byte[]
+ getMSerial() : byte[]
+ getMSubjectpublickeyInfo() : byte[]
+ intToByteArray(int) : byte[]
- readLen(byte[], int) : int[]
- test(byte, byte) : void

SubjectPublicKeyInfo

+ decodePublicKey(byte[]) : byte[]
+ encodePublicKey(byte[], byte[]) : byte[]
- findRSAOID(byte[], int) : int

TLV

+ RSA_OIDarray: byte ([]) = new byte[] {?? ... {readOnly}
+ RSA_OIDarray2: byte ([]) = new byte[] {?? ... {readOnly}

+ getIcerik(byte[], int) : int[]
+ makeTLV(byte, byte[]) : byte[]
+ TLV_L(byte[]) : byte[]

Figure 12 X.509 Certificate and SubjectPublicKeyInfo Parser Class Diagram

 42

3.3.1.1 Certificate

This class is used to decode the X.509 certificate to its fields.

Certificate(byte[] aCertificate): This is the constructor method for the Certificate

class. It takes the X.509 certificate as an argument in octet array and assigns it to the

member variable mCertificate and calls the private method decode.

decode(byte[] certBytes): The X.509 certificate ASN.1 structure is defined in

Section 2.2.1.1. This method parses this structure according to the DER encoding

specifications described in Appendix A.

getMIssuer(): This is the getter method for the X.509 certificate issuer. The issuer is

returned as an octet array.

getMSerial(): This is the getter method for the X.509 certificate serial number. The

serial is returned as an octet array.

getMIssuerAndSerial(): This method encodes issuer and the serial number as an

issuerAndSerial structure and returns it as an octet array.

getMSubjectpublickeyInfol(): This is the getter method for the X.509 certificate

subjectpublickeyinfo field. The subjectpublickeyinfo is returned as an octet array.

3.3.1.2 SubjectPublicKeyInfo

The ASN.1 structure of subjectPublicKeyInfo is

SubjectPublicKeyInfo ::= SEQUENCE {

 43

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING }

The RSA public key (subjectPublicKey) is comprised of the modulus (n) and the

exponent (e) which is encoded as bit string. This class is used to encode

SubjectPublicKeyInfo structure for a given modulus and exponent, and decode the

modulus and exponent for a given subjectPublicKeyInfo.

encodePublicKey(byte[] aModulus, aExponent): This static method encodes the

subjectPublicKeyInfo for a given modulus and exponent according to DER.

decodePublicKey(byte[] aSubjectPublicKeyInfo): This static method decodes the

DER encoded subjectPublicKeyInfo and returns the modulus array and exponent

array.

3.3.1.3 TLV

This is a utility class for encoding structures in DER format, in other words putting

them in a structure comprised of tag, length and value.

makeTLV(byte tag, byte[] x): This method encodes the given input for a given tag.

TLV_L(byte[] x): This method prepares the length encoding of the input.

getIcerik(byte[] x,int bas): This method returns back the value which is DER

encoded, removes the tag and the length octets.

 44

3.3.2 Lightweight CMS ASN.1 Infrastructure

The second component of the java midlet application includes classes for basic

ASN.1 types and lightweight CMS ASN.1 structures. The design of lightweight

CMS ASN.1 infrastructure classes will be described in the following sections.

For the simple and constructed ASN.1 types described in Appendix A which are

relevant for lightweight CMS, classes are implemented. These are core ASN.1

classes which encode and decode their corresponding types according to DER rules.

Further details for the implementation of these classes are not necessary and not in

the scope of this thesis.

The lightweight CMS classes all extend from abstract class ASN1Encodable. With

utilizing the core ASN.1 type classes, the lightweight CMS classes can be DER

encoded and decoded. ASN.1 encoding of a lightweight CMS example can be found

in Appendix C.

The UML class diagram of the lightweight CMS infrastructure and further details of

the classes are described in the following sections.

 45

class cms

EncryptedContentInfo

- contentEncryptionAlgorithm: AlgorithmIdentifier
- contentType: DERObjectIdentifier
- encryptedContent: ASN1OctetString

+ EncryptedContentInfo(DERObjectIdentifier, AlgorithmIdentifier, ASN1OctetString)
+ EncryptedContentInfo(ASN1Sequence)
+ getContentEncryptionAlgorithm() : AlgorithmIdentifier
+ getContentType() : DERObjectIdentifier
+ getEncryptedContent() : ASN1OctetString
+ getInstance(Object) : EncryptedContentInfo
+ toASN1Object() : DERObject

EnvelopedData

- encryptedContentInfo: EncryptedContentInfo
- recipientInfos: ASN1Set
- version: DERInteger

+ EnvelopedData(ASN1Set, EncryptedContentInfo)
+ EnvelopedData(ASN1Sequence)
+ getEncryptedContentInfo() : EncryptedContentInfo
+ getInstance(ASN1TaggedObject, boolean) : EnvelopedData
+ getInstance(Object) : EnvelopedData
+ getRecipientInfos() : ASN1Set
+ getVersion() : DERInteger
+ toASN1Object() : DERObject

IssuerHashAndSerialNumber

- nameHash: ASN1OctetString
- nameHashAlgorithm: AlgorithmIdentifier
- serialNumber: DERInteger

+ getHashAlgorithm() : AlgorithmIdentifier
+ getInstance(Object) : IssuerHashAndSerialNumber
+ getName() : ASN1OctetString
+ getSerialNumber() : DERInteger
+ IssuerHashAndSerialNumber(ASN1OctetString, AlgorithmIdentifier, DERInteger)
+ toASN1Object() : DERObject

KeyTransRecipientInfo

- encryptedKey: ASN1OctetString
- keyEncryptionAlgorithm: AlgorithmIdentifier
- rid: RecipientIdentifier
- version: DERInteger

+ getEncryptedKey() : ASN1OctetString
+ getInstance(Object) : KeyTransRecipientInfo
+ getKeyEncryptionAlgorithm() : AlgorithmIdentifier
+ getRecipientIdentifier() : RecipientIdentifier
+ getVersion() : DERInteger
+ KeyTransRecipientInfo(RecipientIdentifier, AlgorithmIdentifier, ASN1OctetString)
+ KeyTransRecipientInfo(ASN1Sequence)
+ toASN1Object() : DERObject

RecipientIdentifier

- id: DEREncodable

+ getId() : DEREncodable
+ getInstance(Object) : RecipientIdentifier
+ isTagged() : boolean
+ RecipientIdentifier(IssuerHashAndSerialNumber)
+ RecipientIdentifier(ASN1OctetString)
+ RecipientIdentifier(DERObject)
+ toASN1Object() : DERObject

RecipientInfo

~ info: DEREncodable

+ getInfo() : DEREncodable
+ getInstance(Object) : RecipientInfo
+ getVersion() : DERInteger
+ isTagged() : boolean
+ RecipientInfo(KeyTransRecipientInfo)
+ RecipientInfo(DERObject)
+ toASN1Object() : DERObject

DEREncodable
cms::ASN1Encodable

+ equals(Object) : boolean
+ getDEREncoded() : byte[]
+ getDERObject() : DERObject
+ hashCode() : int
+ toASN1Object() : DERObject

-rid

-encryptedContentInfo

Figure 13 Lightweight CMS Class Diagram

3.3.2.1 Asn1Encodable

All lightweight CMS classes extend from this abstract class. It has the following

methods.

getDEREncoded() : This method DER encodes the object and return it as an octet

array.

getDERObject() : From a given DER encoded octet array, it prepares the DER

object.

 46

toASN1Object : It is an abstract method which all the extender classes have to

implement. In this method the extender classes implement how to prepare their

DER object from its fields.

The rest of the classed are described below shortly. All of them implement the

toASN1Object abstract method and has constructor methods comprised of their

fields and getter methods for these fields. And since all of them extend from to

ASN1Encodable class they can encoded as DER by calling getDEREncoded

method.

EnvelopedData class is comprised of the encrypted content info and a set of

recipient info. EncryptedContentInfo class is comprised of the encrypted content

info, and content encryption algorithm identifier. RecipientInfo is a container class

for the choice key transfer recipient info. KeyTransRecipientInfo class is comprised

of the encrypted key, key encryption algorithm and the recipient identifier.

RecipientIdentifier is a container class for issuer hash and serial number. Finally,

IssuerHashAndSerialNumber class is comprised of the recipients X.509 certificate

issuer hash, issuer hash algorithm and the serial number

3.3.3 Java Midlet

Upon execution of the Korugan in the mobile phone, the UI (user interface) of the

application is created by the java midlet. In the UI, a user can traverse over the files

stored in the mobile phone, select a lightweight CMS enveloped file for decryption,

select a plain file to prepare CMS envelope.

If the user selects an enveloped file for decryption, the recipients in the enveloped

are checked and if it is enveloped for the user than the decryption process starts.

The decrypted file is saved in the same directory of the envelope.

 47

If a plain file is selected for lightweight CMS envelope preparation, than the folder

containing the user certificates is displayed. From this folder the intended recipients

of the envelope can be selected. After the selection process is completed, the

envelope preparation starts and upon completion the envelope is saved in a

predefined folder. The activity diagram for the UI is depicted in Figure 14.

��� ������ ���
���5�����	�
���
���������	�

����
���'���!	 ������@���
5��������
��	

����
���@���
����������5���
'���!	 ����

����
������ ��
���'���
!	 ����

�7�����

�������!�����
�������

�� ��
������	�@��

9� A��

����
�
���"	
�	����
�������	
���BCD()�'��
�5���
��

��������
���'���!	 ����

�� ��
���!	 ������@��

����
���
� �
���������

Figure 14 Midlet Activity Diagram

In this last component, in addition to UI business, the java midlet also prepares and

resolves the lightweight CMS envelope which contains the encrypted content and

encrypted content encryption key for each recipient. DER encoding and decoding of

the lightweight CMS ASN.1 structures are implemented by utilizing the core ASN.1

classes described in Section 3.3.2. Content-encryption and key-encryption process

is described in more detail in the following paragraphs.

 48

The content-encryption key for the symmetric content-encryption algorithm (AES

with 128 bits key) is randomly generated. The data to be protected is padded

according to PKCS5 padding algorithm as described in Section 3.2.3.2, and then the

padded data is encrypted using the content-encryption key. The encryption

operation maps an arbitrary string of octets (the data) to another string of octets (the

cipher text) under control of a content-encryption key. The encrypted data is

included in the EnvelopedData encryptedContentInfo encryptedContent OCTET

STRING.

The input to the key-encryption process, the value supplied to the recipient's key-

encryption algorithm, is just the value of the content-encryption key. The key

transport recipient info mentioned in Section 2.3.1.2 is used as a key management

technique for each recipient of the same encrypted content. But of course, the new

recipientIdentifier defined in Section 3.1.4 is used in The KeyTransRecipientInfo

structure.

In the first version of the java midlet there is a class for user interface, a class for

lightweight CMS envelope preparation and several classes for cryptographic

operations. Except the asymmetric decryption operation which is done by the applet

running in the java card, all the other necessary cryptographic operations are

implemented in the midlet.

The UML class diagram of the first version of the java midlet is and their details are

described in Figure 15.

 49

class client

CMSEnvelopeME

- mContentInfo: ContentInfo
+ OID_AES128: String = "2.16.840.1.101... {readOnly}
+ OID_CMSENVELOPE: DERObjectIdentifier = new DERObjectId... {readOnly}
+ OID_CONTENT_TYPE_ENCRYPTEDKEY: DERObjectIdentifier = new DERObjectId... {readOnly}
+ OID_RSASHA1: String = "1.2.840.113549... {readOnly}
+ OID_SHA1: String = "1.2.840.10040.4.3" {readOnly}
+ SHA1_ALGID: AlgorithmIdentifier = new AlgorithmId... {readOnly}

- _prepareRecipientInfo(byte[], byte[]) : RecipientInfo
+ CMSEnvelopeME()
+ CMSEnvelopeME(byte[])
+ getEncryptedKeyAndContent(byte[]) : byte[]
+ intToByteArray(int) : byte[]
+ prepareEnvelopedContent(byte[][], byte[], byte[]) : byte[]

MIDlet
CommandListener

KoruganME

- back: Command = new Command("Ba...
- CERTIFICATE_DIR: String = "root1/certific... {readOnly}
- creatOK: Command = new Command("OK...
- currDirName: String
- decrypt: Command = new Command("De...
- dirIcon: Image
- ENC_SUFFIX: String = "_enc" {readOnly}
- encrypt: Command = new Command("En...
- encrypt4me: Command = new Command("En...
- ENCRYPTION_DIR: String = "root1/encrypted/" {readOnly}
- exit: Command = new Command("Ex...
- fileIcon: Image
- kRMIURL: String = "jcrmi:0;AID=a0... {readOnly}
- mCertificates: byte ([][]) = new byte[10][]
- mConnection: JavaCardRMIConnection
- MEGA_ROOT: String = "/" {readOnly}
- mFile: byte ([])
- mFileNameToBeEncrypted: String
- mResolution: Resolution
- mSelectedCertCount: short = 0
- nameInput: TextField
- selectCert: Command = new Command("Se...
- selectCertDone: Command = new Command("Do...
- SEP: char = '/' {readOnly}
- SEP_STR: String = "/" {readOnly}
- showCerts: Command = new Command("Se...
- typeInput: ChoiceGroup
- UP_DIRECTORY: String = ".." {readOnly}
- view: Command = new Command("Vi...

+ commandAction(Command, Displayable) : void
~ createFile(String, boolean) : void
+ destroyApp(boolean) : void
- executeCreateFile(String, boolean) : void
+ KoruganME()
+ pauseApp() : void
~ showCurrDir(Command) : void
~ showFile(String) : void
+ startApp() : void
~ traverseDirectory(String) : void

RandomData

+ nextBytes(byte[]) : void

client::AssymetricCipher

- mAlgorithm: String
- mKeyLength: int
- mPublicKey: PublicKey

+ AssymetricCipher(String, int, byte[])
+ encrypt(byte[]) : byte[]

client::SymmetricCipher

- mAlgorithm: String
- mBlockSize: int
- mIVSpec: IvParameterSpec
- mKey: Key

+ decrpt(byte[]) : byte[]
+ encrypt(byte[]) : byte[]
+ SymmetricCipher(String, byte[], String, int, byte[])

Figure 15 Java Midlet Class Diagram
(Cryptography in Midlet -except Asymmetric Decryption)

In the second version of the midlet there are no classes for cryptographic operations.

There are only two classes KoruganJC and CMSEnvelopeJC which have the same

functionality with the classes KoruganME and CMSEnvelopeME, but all the

cryptographic operations in these classes are done by the application running on

 50

java card. The UML class diagram of the second version of the java midlet is

depicted in Figure 16.

class client

CMSEnvelopeJC

+ AES128_ALGID: AlgorithmIdentifier = new AlgorithmI... {readOnly}
- mContentInfo: ContentInfo
- mResolution: Resolution
+ OID_CMSENVELOPE: DERObjectIdentifier = new DERObjectId... {readOnly}
+ OID_CONTENT_TYPE_ENCRYPTEDKEY: DERObjectIdentifier = new DERObjectId... {readOnly}
+ RSASHA1_ALGID: AlgorithmIdentifier = new AlgorithmId... {readOnly}
+ SHA1_ALGID: AlgorithmIdentifier = new AlgorithmId... {readOnly}

- _prepareRecipientInfo(byte[], byte[]) : RecipientInfo
+ CMSEnvelopeJC(Resolution)
+ CMSEnvelopeJC(byte[], Resolution)
+ getEncryptedKeyAndContent(byte[]) : byte[]
+ intToByteArray(int) : byte[]
+ prepareEnvelopedContent(byte[][], byte[], byte[]) : byte[]

MIDlet
CommandListener

KoruganJC

- back: Command = new Command("Ba...
- CERTIFICATE_DIR: String = "root1/certific... {readOnly}
- creatOK: Command = new Command("OK...
- currDirName: String
- decrypt: Command = new Command("De...
- dirIcon: Image
- ENC_SUFFIX: String = "_enc" {readOnly}
- encrypt: Command = new Command("En...
- encrypt4me: Command = new Command("En...
- ENCRYPTION_DIR: String = "root1/encrypted/" {readOnly}
- exit: Command = new Command("Ex...
- fileIcon: Image
- kRMIURL: String = "jcrmi:0;AID=a0... {readOnly}
- mCertificates: byte ([][]) = new byte[10][]
- mConnection: JavaCardRMIConnection
- MEGA_ROOT: String = "/" {readOnly}
- mFile: byte ([])
- mFileNameToBeEncrypted: String
- mResolution: Resolution
- mSelectedCertCount: short = 0
- nameInput: TextField
- selectCert: Command = new Command("Se...
- selectCertDone: Command = new Command("Do...
- SEP: char = '/' {readOnly}
- SEP_STR: String = "/" {readOnly}
- showCerts: Command = new Command("Se...
- typeInput: ChoiceGroup
- UP_DIRECTORY: String = ".." {readOnly}
- view: Command = new Command("Vi...

- checkDeleteFolder(String) : void
+ commandAction(Command, Displayable) : void
~ createFile(String, boolean) : void
+ destroyApp(boolean) : void
- executeCreateFile(String, boolean) : void
+ KoruganJC()
+ pauseApp() : void
~ showCurrDir(Command) : void
~ showFile(String) : void
+ startApp() : void
~ traverseDirectory(String) : void

>� �������
��'������������#'���
���������	�>� �'���%

Figure 16 Java Midlet Class Diagram (Cryptography in Javacard)

 51

3.3.3.1 KoruganME

This class receives the commands from the mobile phone user, and triggers the

corresponding function. The defined commands are view, show certificates, select

certificate, certificate selection completed, encrypt, decrypt, back and exit.

It extends from the abstract class javax.microedition.midlet.MIDlet and implements

the interface javax.microedition.lcdui.CommandListener. Some of the methods are

described in more detail.

commandAction(Command c, Displayable d): This method is the implementation of

the corresponding method in the interface CommandListener. It receives a

command event that has occurred on a Displayable d. If the received command is

view depending on the displayable, either the content of a file is displayed, or

traveled through out the directory structure. If the command is select certificate, the

selected certificate is stored in a member variable. If the command is certificate

selection completed, the selected file is enveloped for the selected certificates by

calling the method prepareEnvelopedContent method of the CMSEnvelopeME

class. If the command is encrypt, the selected file is read in an array and the X.509

certificates are listed and the user is asked to select the recipients. If the command is

decrypt, first the encrypted content and the encrypted key for the mobile phone user

is extracted from the envelope by means of the CMSEnvelopeME class, and then

the content encryption key is decrypted by the APDU communication with the java

card applet, and then content is decrypted by the calling the decrypt method of the

class SymmetricCipher. The decrypted content is then saved as another file. Back

command returns the operation to the previous screen and exit command exits from

the application.

 52

showCurrDir(Command aCommand): This method lists all the files and directories

in the current directory and according to the command argument sets the relevant

commands in the screen.

showFile(String fileName): The file is displayed in a text viewer on the screen of

the phone.

3.3.3.2 CMSEnvelopeME

This class prepares a lightweight CMS envelope of a file for a given number of

recipient X.509 certificates, and returns back the encrypted content and encrypted

content encryption key of an envelope for a given recipient certificate.

CMSEnvelopeME(byte[] aEnvelope): This constructor method takes the envelope in

octet array and creates the ContentInfo object out of it.

prepareEnvelopedContent(byte[][] aCertificates, byte[] aEncryptionKey, byte[]

aPlainText): This method first prepares the recipient infos by calling the method

_prepareRecipientInfo. And then encrypts the plain text by calling

SymmetricCipher class decrypt method. Finally creates the envelope by combining

the encrypted content with the recipient information.

_prepareRecipientInfo(byte[] aCertificate, byte[] aKey): This method prepares the

recipient information for a recipient by using the X.509 certificate and the content

encryption key. It extracts the issuer, serial and the subjectPublicKeyInfo from the

certificate by certificate parser, and then takes the hash of the issuer according to

SHA-1 hash algorithm. And then encrypts the content encryption key with

AsymmetricCipher class encrypt method. Finally, it packs the issuer hash, serial and

encrypted key to form a RecipientInfo object.

 53

getEncryptedKeyAndContent(byte[] aCertificate): This method iterates over the

recipients of an envelope for the given certificate. If the envelope is for the given

recipient then this method returns back the encrypted key and encrypted content.

3.3.3.3 SymmetricCipher

This class is used to encrypt and decrypt an input file for a given encryption

algorithm with a given secret key.

SymmetricCipher(String aAlg, byte[] aKeyBits,String aKeyAlg,int aBlockSize,byte[]

aIV) : This is the constructor method with the parameters symmetric encryption

algorithms, the symmetric key, key algorithm, symmetric algorithm block size and

the initialization vector. In the Korugan implementation the symmetric algorithm

AES CBC with PKCS5 padding is used with the key size 16.

encrypt(byte[] aPlainText): This method encrypts the plain text according to the

specified algorithm and the key in the constructor.

decrypt(byte[] aCipherText): This method decrypts the cipher text according to the

specified algorithm and the key in the constructor.

3.3.3.4 AsymmetricCipher

This class only encrypts an input file for a given encryption algorithm with a given

public key.

AssymetricCipher(String aAlg, int aKeyLength,byte[] aPublicKeyBits): This is the

constructor method with the parameters asymmetric encryption algorithm, the key

length and the key itself.

 54

encrypt(byte[] aPlainText): This method encrypts the plain text according to the

specified algorithm and the key in the constructor.

3.3.3.5 RandomData

This class is used to generate random symmetric key

nextBytes(byte abyte0[]): This method generates a pseudo random data for a given

length.

 55

CHAPTER 4

 PERFORMANCE ANALYSIS

There are several dozens of mobile phone manufacturers and hundreds of different

mobile phone models in the market [24] [25] These mobile phones differ from each

other according to their technical specifications such as operating system, memory

size, data storage media size, processing power etc. Korugan can be used by only

the mobile phones which support java and use SIM card having java card

capabilities. One of the motivations to implement two versions of Korugan is to get

rid of the dependency to the limitations of the mobile phone by handling all

cryptographic operations in the java card. A second motivation is to compare the

performance of the application when the cryptographic operations are done in the

mobile phone and in the java card.

Another issue of interest is the benefits of Korugan by introducing the lightweight

CMS. If Korugan was implemented according to standard CMS, what would be the

size and performance of the application? In order to make this comparison, a third

version of Korugan is implemented which is preparing the envelope according to

standard CMS. In order to answer these questions, Korugan versions will be

compared in terms of size and performance in the following paragraphs.

 56

The installed application size is one of the important criteria for the mobile phones

which have limited storage media. Table 6 and Table 7 compare media storage size

for two versions of Korugan and Korugan implementation with standard CMS.

Table 6 Java Card Applet Size (in KB) Comparison

E����'���
���������	�����
 FC:

�C6

>� ��'��������
���G��#�	���%�'��������	

&	��������
����������
��	��	�����

The size of the java card applet is almost the same for the two versions. The whole

cryptography for the CMS envelope preparation and resolution can be done in the

java card. But the memory limitations of the java card for symmetric encryption of

big sized data must be considered as a drawback of this option.

Table 7 Midlet Application Size (in KB) Comparison

 57

The java midlet size differs by 3.5 KB according to the application handling the

cryptographic operations. Due to the drawback of the java card application in

symmetric ciphering mentioned in the above paragraph, if the mobile phone is

capable of handling cryptographic operations, it is a better media for handling these

operations. Nevertheless, asymmetric decryption has always to be done by the java

card.

The application size decreases approximately by 35 % (45 KB) with lightweight

CMS in comparison to standard CMS. For the old generation mobile phones, this

may be a significant amount of storage size, but for the new generations it may not

be so important since the storage media size is increasing in chunks of MB as the

time passes.

A second comparison criterion is the average speed of the envelope preparation and

extraction for the CMS versions. In order to make the comparison, the midlets of

Korugan versions are deployed into a Nokia N73 mobile phone. Unfortunately, the

applet could not be deployed into the javacard due to the insufficient support from

the mobile phone operators. The comparison data is collected as an average of 10

runs on the mobile phone. For the versions which cryptography is handled in the

javacard applet and the asymmetric decryption operation, the cryptographic

operations’ durations are gathered from the javacard emulation environment.

In Table 8, Korugan versions are compared according to envelopes prepared for

different numbers of recipients. The envelope preparation and extraction process are

divided into components and the execution durations are measured for each

component separately. When the cryptographic operations are handled in the mobile

phone, CMS envelope preparation and extraction is apparently faster because of the

memory and processing power limitations of the java card. The recipientInfo

preparation duration is faster in the lightweight CMS versions, since the issuer and

 58

the serial field values from X.509 certificates are extracted in a more efficient way

and unnecessary fields are not parsed. With the increasing number of the recipients

in the envelope, the difference in the preparation time increases between versions.

Table 8 Korugan Performance Comparison for
Different Number of Recipients

Envelope extraction time for a recipient depends on two factors. The first factor is

the position of the recipient in the RecipientInfos structure and the second factor is

the comparison criteria to find a recipient. In Table 8, the extraction is done for the

last recipient in the RecipientInfos structure in the envelope. As described in Section

3.1.4, the recipient is identified according to the issuerAndSerialNumber structure

in standard CMS. The ASN.1 syntax of issuer structure in issuerAndSerialNumber

is Name, which can be composed of many different attributes such as common

name, organization, organizational unit, domain component, locality, country etc.

The identification, encoding, decoding and comparison of these attributes are

bypassed in lightweight CMS with the introduction of issuerHashAndSerial

structure which results in the performance increase in Korugan compared to

 59

standard CMS implementations. With increasing number of comparisons, the

performance of lightweight CMS is getting more obvious.

Since the javacard is not suitable for bulk data symmetric encryption, in Table 9

only Korugan midlet versions are compared according to size of the data to be

enveloped. Due to the reasons described in the above paragraph, recipientInfo

preparation and envelope extraction duration is shorter in lightweight CMS version.

With the increasing size of the enveloped data, the envelope preparation and

extraction duration is also increasing.

Table 9 Korugan Performance Comparison for Different Size of Data

Another comparison criterion is the limit of the number of recipients in the

envelope. For each recipient, the size of the envelope is increasing about 185 bytes.

Since the data is encrypted once for all of the recipients, the number of recipients

does not impact data encryption process. As a result, the number of recipients in an

envelope is limited with the size of storage media of the mobile phone which it will

be stored.

 60

CHAPTER 5

 CONCLUSION

During the last decade, mobile phones have become an indispensable part of our

daily life. Nowadays, mobile phones comprise of several features, such as music

player, camera, camcorder, e-mail client, etc. Several types of documents and

multimedia content are being shared widely by means of MMS and e-mail between

mobile phone users. Since the files in the mobile phone are generally not encrypted

and the standard on-the-air encryption is very weak, these files can be easily

captured via several types of attacks.

Despite commonly accepted and severe privacy concerns in mobile phone

communication, there are no widely used and effective security measures against

these privacy breaches. In order to prevent these breaches, the low level security

standards of the network can be bypassed. The security of the multimedia content in

the mobile phones can be provided from end to end by enveloping them with CMS.

CMS is a standard published by IETF for protecting messages cryptographically.

Any form of digital data can be digitally signed, encrypted and enveloped by using

CMS which is architected around certificate-based key management.

Mobile phones have limited storage media, memory and processing power as

compared to computers. Since the CMS ASN.1 structure is quite complex, its

 61

implementation is costly in the mobile phones. In this thesis, in order to meet the

performance restrictions of mobile phones a lightweight CMS is proposed. The

lightweight CMS is used to envelope the files to be stored in mobile phones or to be

shared between users by means of MMS and e-mail. In lightweight CMS,

unnecessary syntax components irrelevant for enveloping are removed and ASN.1

Name related syntax is simplified. A sample mobile application, which makes use

of the lightweight CMS, named Korugan is developed. Using Korugan, any file in

the mobile phone can be digitally enveloped for any number of recipients. In the

envelope, the plain file is encrypted with symmetric encryption and the symmetric

encryption key is encrypted with the public keys of each recipient extracted from

their X.509 certificates. The recipients can resolve the envelope using their private

keys, and obtain the plain file using Korugan.

In Korugan, cryptographic operations can be implemented either in the mobile

phone or in the SIM card except the asymmetric decryption which requires a private

key operation stored on the SIM card. Two different versions of Korugan are

implemented. These implementations differ according to the media where

cryptographic operations are handled. In order to make comparisons, another base

implementation is also developed which uses standard CMS. The Korugan versions

and the base implementation are compared to each other in terms of application size

and performance. When the cryptographic operations are handled in the mobile

phone, CMS envelope preparation and extraction are obviously faster due to the

memory limitations of the SIM card. The application size and the envelope

preparation duration decrease significantly when the lightweight CMS is employed

in Korugan instead of standard CMS.

Lightweight CMS proposes syntax only for data envelopment for any number of

recipients, although standard CMS enables encapsulation syntax for digital data

signing, encryption for local storage, digestion for content integrity, authentication

 62

for content integrity for any number of recipients in addition to enveloping data. As

the secret key distribution method, among the options key transfer, key agreement,

key encryption key and password transfer which are available in standard CMS,

lightweight CMS only supports the option key transfer.

Despite the privacy of the voice is not provided by Korugan; nevertheless it can be

a good candidate for providing the privacy of the stored and transmitted huge

amount of data by means of MMS and e-mail within the mobile phone.

 63

REFERENCES

[1] RFC 2459 Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile
[2] ITU-T X.509 The Directory: Public-key and Attribute Certificate
Frameworks
[3] RFC 3852 Cryptographic Message Syntax (CMS)
[4] Understanding PKI second Edition Concepts, Standards and Deployment
Considerations, Carliste Adams and Steve Lloyd
[5] Planning for PKI, Best Practice Guide for Deploying Public Key
Infrastructure, Russ Housley, Tim Polk
[6] ITU-T X.690 ASN.1 encoding rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding
Rules (DER)
[7] ITU-T Recommendation X.501, Information Technology - Open
Systems Interconnection – The directory models, 1993
[8] ASN.1 Communication between Heterogeneous Systems, Olivier
Dubuisson, http://www.oss.com/asn1/booksintro.html , Last Access Date:
21.08.2007
[9] RFC 3280 Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile (updates RFC 2459)
[10] ITU-T Recommendation X.520, Information Technology - Open
Systems Interconnection – The directory : Selected Attribute Types, 1993
[11] RFC 3161 Internet X.509 Public Key Infrastructure Time-Stamp
Protocol(TSP)
[12] ISO/IEC 7816-4 : Interindustry Command for interchange
[13] RFC 2898 PKCS #5 : Password-Based Cryptography Specification
Version 2.0
[14] CCITT. Recommendation X.200: Refrence Model of Open Systems
Inteconnection for CCITT Applications. 1984
[15] CCITT. Recommendation X:208: Specification of Abstract Syntax
Notation One (ASN.1). 1988
[16] CCITT. Recommendation X.209: Specification of Basic Encoding Rules
for Abstract Syntax Notation One (ASN.1). 1988
[17] RFC 3850 Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.1 Certificate Handling, July 2004
[18] RFC 3851 Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.1 Message Specification, July 2004

 64

[19] PKCS #12 v1.0: Personal Information Exchange Syntax, RSA
Laboratories, June 24, 1999
[20] PKCS #10 v1.7: Certification Request Syntax Standard RSA
Laboratories, May 26, 2000
[21] RFC 1422 - Privacy Enhancement for Internet Electronic Mail: Part II:
Certificate-Based Key Management
[22] RFC 2560 X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol – OCSP, June 1999
[23] A Layman's Guide to a Subset of ASN.1, BER, and DER, Burton S.
Kaliski Jr., RSA Data Security, Inc., Redwood City, CA, June 3, 1991
[24] Nokia, www.nokia.com.tr , Last Access Date: 21.08.2007
[25] Sony Ericsson, www.sonyericsson.com , Last Access Date: 21.08.2007
[26] LG, www.lgmobile.com , Last Access Date: 21.08.2007
[27] Siemens, www.siemens.com , Last Access Date: 21.08.2007
[28] GSM, Global System for Mobile Communications,
http://en.wikipedia.org/wiki/GSM , Last Access Date: 21.08.2007
[29] IETF, Internet Engineering Task Force, www.ietf.org , Last Access
Date: 21.08.2007
[30] SIM, Subscriber Identity Module,
http://en.wikipedia.org/wiki/Subscriber_Identity_Module , Last Access Date:
21.08.2007
[31] PKI: Implementing and Managing E-Security , Andrew Nash, William
Duane, Celia Joseph, Derek Brink, Osborne/McGraw-Hill, 2001
[32] Cryptography and Public Key Infrastructure on the Internet , Klaus
Schmeh, John Wiley & Sons, 2003
[33] Public-Key Cryptography , Salomaa, Arto, Springer-Verlag, 1990
[34] Authentication: From Passwords to Public Keys , Richard E. Smith ,
Addison-Wesley, 2002
[35] Message Authentication Code, D.R. Stinson, Cryptography - Theory and
Practice, CRC Press, Boca Raton, 1995.
[36] ITU-T, International Telecommunication Union, www.itu.int , Last
Access Date: 21.08.2007

 65

APPENDIX A

GUIDE FOR SUBSET OF ASN.1, BER AND DER

One of the most complex systems today, and one that also involves a great

abstraction is Open Systems Inteconnection (OSI) [14] . OSI is an internationally

standardized architecture that manages the interconnection of computers from the

physical layer up to the user application layer. OSI’s method of specifying abstract

objects is called Abstract Syntax Notation One (ASN.1) [15] and a set of rules for

representing abstract objects as strings of ones and zeros is called Basic Encoding

Rules (BER) [16] For further information about ASN.1, the book ‘ASN.1

Communication between Heterogeneous Systems, Olivier Dubuisson’ [8] and the

‘Layman's Guide to a Subset of ASN.1, BER, and DER’ [23] can be referred.

In ASN.1, a type is a set of values; a value of a given ASN.1 type is an element of

that type’s set of values. There are 4 different ASN.1 types. These are simple types

which are atomic that have no components, structures types which have

components, tagged types which are derived from other types, and other types.

CHOICE and ANY types are defined as other types.

Every ASN.1 type other than CHOICE and ANY has a tag. ASN.1 types are

abstractly the same if and only if their tag numbers are the same. There are four

different classes of tag.

 66

universal for types whose meaning is the same in all applications; these

types are only defined in X.208 [15]

application for types whose meaning is specific to an application, such as

X.500 directory services; types in two different applications may have the same

application-specific tag and different meanings.

private for types whose meaning is specific to a given enterprise.

context-specific for types whose meaning is specific to a given structured

type. Component types in two different structured types may have the same tag and

different meanings

The types with universal tags are defined in X.208. [15] Table 9 lists some ASN.1

types and their universal class tags:

Table 10 Some Types and Their Universal-Class Tags

 67

Simple Types

They are atomic types which those not consist of components.

BIT STRING is an arbitrary string of bits.

IA5String is an arbitrary string of IA5(ASCII) characters.

INTEGER is an arbitrary integer.

NULL is a null value.

OBJECT IDENTIFIER is an object identifier which is a sequence of integer

components that identify an object.

OCTET STRING is an arbitrary string of octets (eight-bit values).

PrintableString is an arbitrary string of printable characters.

UTCTime is Greenwich Mean Time (GMT) value.

Structured Types

Structured types consists of components.

SEQUENCE is an ordered collection of one or more types.

SEQUENCE OF is an ordered collection of zero or more occurrences of a given

type.

SET is an unordered collection of one or more types.

SET OF is an unordered collection of zero or more occurrences of a given type.

Other Types

CHOICE and ANY are the other ASN.1 types. The CHOICE states a union of one or

more alternatives. The ANY states an arbitrary value of an arbitrary type.

 68

Basic Encoding Rules (BER)

The Basic Encoding Rules for ASN.1, describes the way how to represent any

ASN.1 value as an octet string.

There are three different methods to encode a value with BER. These methods

change according to the type and length of the value. The first method is for

primitive types with definitive length, the second method is for constructed types

again with definitive length, the third and the last one is for constructed types with

indefinite length.

ASN.1 BER encoding may have three or four parts depending on the encoding

method. These parts are:

Identifier octets: These octets identify the type of the ASN.1 value, and indicate

whether the method is primitive or constructed.

Length octets: If the length of the value is known than these octets identify the

length of the ASN.1 value, else they indicate that the length is indefinite.

Contents octets: If the ASN.1 value is primitive than these octets represent the

value. If the value is not primitive than these octets give the concatenation of the

BER encodings of the components of the value.

End-of-contents octets: For the constructed, indefinite-length method, these denote

the end of the contents. For the other methods, these are absent.

The three encoding methods are described as follows.

Primitive, definite-length method

This method is used in simple types and it requires that the length of the value be

known in advance. The parts of the BER encoding are described as follows:

 69

Identifier octets: There are two forms: low tag number (for tag numbers between 0

and 30) and high tag number (for tag numbers 31 and greater).

In Low-tag-number form it is one octet. Bits 8 and 7 specify the class, bit 6

has value "0," indicating that the encoding is primitive, and bits 5–1 give the tag

number.

Table 11 Class Encoding in Identifier Octets

In High-tag-number form it is two or more octets. First octet is as in low-

tag-number form, except that bits 5–1 all have value "1." Second and the following

octets give the tag number in base 128.

Length octets: There are two forms: short (for lengths between 0 and 127), and long

definite (for lengths between 0 and 21008−1).

Short form is one octet. Bit 8 has value "0" and bits 7–1 give the length.

Long form is two to 127 octets. Bit 8 of first octet has value "1" and bits 7–1

give the number of additional length octets. Second and following octets give the

length in base 256.

 70

Contents octets: These give a concrete representation of the value (or the value of

the underlying type, if the type is derived by implicit tagging

Constructed, definite-length method

This method applies to simple string types, structured types, types derived from

simple string types and structured types by implicit tagging, and types derived from

anything by explicit tagging. It requires that the length of the value be known in

advance. The parts of the BER encoding are as follows:

Identifier octets: It is as described in primitive definitive length method, except that

bit 6 has value "1," indicating that the encoding is constructed.

Length octets: It is as described in primitive definitive length method.

Contents octets: The concatenation of the BER encodings of the components of the

value:

• For simple string types and types derived from them by implicit tagging,

the concatenation of the BER encodings of consecutive substrings of the

value.

• For structured types and types derived from them by implicit tagging, the

concatenation of the BER encodings of components of the value.

• For types derived from anything by explicit tagging, the BER encoding of

the underlying value.

Constructed, indefinite-length method

This method applies to simple string types, structured types, types derived simple

string types and structured types by implicit tagging, and types derived from

anything by explicit tagging. It does not require that the length of the value be

known in advance. The parts of the BER encoding are as follows:

 71

Identifier octets: It is as described in constructed, definitive length method.

Length octets: One octet, 80.

Contents octets: As described in constructed, definitive length method

End-of-contents octets: Two octets, 00 00.

Distinguished Encoding Rules (DER)

The DER is a subset of BER. In DER, there is only one representation of any

ASN.1 value. For DER encoding the following restrictions apply:

• When the length is between 0 and 127, the short form of length must be used

• When the length is 128 or greater, the long form of length must be used, and

the length must be encoded in the minimum number of octets.

• For simple string types definite-length method must be used.

• For structured types, the constructed, definite-length method must be

employed.

Notation and Encoding of Some Types

Some of the ASN.1 types notation and the encoding of the values under DER is

described in the following sections.

ANY

The ANY type denotes an arbitrary value of an arbitrary type. The arbitrary type is

possibly defined in the registration of an object identifier or associated with an

integer index. The ASN.1 notation for the ANY type is

ANY [DEFINED BY identifier].

The DER encoding of an ANY value is the DER encoding of the actual value.

 72

BIT String

The BIT String type denotes an arbitrary string of bits (ones and zeroes). The

ASN.1 notation for the Bit String type is BIT STRING.

In DER encoding, the first contents octet gives the number of bits by which the

length of the bit string is less than the next multiple of eight (this is called the

"number of unused bits"). The second and following contents octets give the value

of the bit string,converted to an octet string.

1. The bit string is padded after the last bit with zero to seven bits of any value to

make the length of the bit string a multiple of eight. If the length of the bit string is a

multiple of eight already, no padding is done.

2. The padded bit string is divided into octets. The first eight bits of the padded bit

string become the first octet, bit 8 to bit 1, and so on through the last eight bits of

the padded bit string.

For example the DER encoding of the bit string "011011100101110111" is

03 04 06 6e 5d c0.

CHOICE

The CHOICE type denotes a union of one or more alternatives. The ASN.1 notation

for the CHOICE type is

CHOICE {

[identifier1] Type1,
…,
[identifiern] Typen }

The DER encoding of a CHOICE value is the DER encoding of the chosen

alternative.

 73

IA5String

The IA5String type denotes an arbitrary string of ASCII characters. The ASN.1

notation for the IA5String type is IA5String.

For example, the DER encoding of the IA5String value "test1@rsa.com" is

12 0d 74 65 73 74 31 40 72 73 61 2e 63 6f 6d.

INTEGER

The INTEGER type denotes an arbitrary integer. The ASN.1 notation for the

INTEGER type is INTEGER [{ identifier1(value1) … identifiern(valuen) }]. The

contents octets give the value of the integer in base 256.

For example the DER encoding of 127 is 02 02 00 7F.

NULL

The NULL type denotes a null value. The ASN.1 notation for the NULL type is

NULL.

For example, the DER encoding of a NULL value is always 05 00.

OBJECT IDENTIFIER

The OBJECT IDENTIFIER type denotes an object identifier, which is a sequence

of integer components that identify an object such as an algorithm. The ASN.1

notation for the OBJECT IDENTIFIER type is OBJECT IDENTIFIER.The ASN.1

notation for values of the OBJECT IDENTIFIER type is

{ [identifier] component1 … componentn }

 74

component i = identifieri | identifieri (valuei) | valuei

where identifier, identifier1, …, identifiern are identifiers, and value1, …, valuen are

optional integer values.

The contents octets are the concatenation of n−1 octet strings, where n is the

number of components in the complete object identifier. The first subidentifier is

40value1 + value2 and the ith subidentifier, 2 � i � n−1, is valuei+1.

For example for the object identifier { 1 2 840 113549 } the DER encoding is

computed as follows.42 = 40 * 1 + 2, encoding of 42 is 2A, encoding of 840 is 86

48, encoding of 113549 is 86 F7 0D and the encoding of 1 is 01. The encoding

result is 06 07 2A 86 48 86 F7 0D.

OCTET STRING

The OCTET STRING type denotes an arbitrary string of octets. The ASN.1

notation for the OCTET STRING type is OCTET STRING.

For example, the DER encoding of the OCTET STRING value 01 23 45 67 89 AB
CD EF is 04 08 01 23 45 67 89 AB CD EF.

PrintableString

The PrintableString type denotes an arbitrary string of printable characters. The

ASN.1 notation for the PrintableString type is PrintableString.

For example, the DER encoding of the PrintableString value "Test User 1" is

13 0B 54 65 73 74 20 55 73 65 72 20 31.

 75

SEQUENCE

The SEQUENCE type denotes an ordered collection of one or more types. The

ASN.1 notation for the SEQUENCE type is

SEQUENCE {

[identifier1] Type1 [{OPTIONAL | DEFAULT value1}],

…,

[identifiern] Typen [{OPTIONAL | DEFAULT valuen}]}

where identifier1 , …, identifiern are optional, distinct identifiers for the

components, Type1, …, Typen are the types of the components, and value1, …,

valuen are optional default values for the components.

The contents octets are the concatenation of the DER encodings of the values of the

components of the sequence,in order of definition.

SET

The SET type denotes an unordered collection of one or more types. The ASN.1

notation for the SET type is

SET {

[identifier1] Type1 [{OPTIONAL | DEFAULT value1}],

…,

[identifiern] Typen [{OPTIONAL | DEFAULT valuen}]}

where identifier1 , …, identifiern are optional, distinct identifiers for the

components, Type1, …, Typen are the types of the components, and value1, …,

valuen are optional default values for the components.

The contents octets are the concatenation of the BER encodings of the values of the

components of the set,

 76

UTCTime

The UTCTime type denotes a Greenwich Mean Time (GMT) value. The ASN.1

notation for the UTCTime type is UTCTime.

Contents octets give the characters in the string, encoded in ASCII.

For example, the ASCII string representation of 07 June 2007 Thursday 09:19:25

GMT+2 is 070607061925Z, and the DER encoding is 17 0D 30 37 30 36 30 37 30

36 31 39 32 35 5A.

 77

APPENDIX B

SAMPLE X.509 CERTIFICATE ASN.1 ENCODING

In the sample X.509 Certificate encoding the values before : states the position in

the data, the value of the tag and the length of the element.

 0 30 948 : SEQUENCE {

 4 30 668 : SEQUENCE {

 8 A0 3 : [0] {

 10 02 1 : INTEGER 2

 : }

 13 02 2 : INTEGER 321

 17 30 13 : SEQUENCE {

 19 06 9 : OBJECT IDENTIFIER

 : sha1withRSAEncryption (1 2 840 113549 1 1 5)

 30 05 0 : NULL

 : }

 32 30 35 : SEQUENCE {

 34 31 11 : SET {

 36 30 9 : SEQUENCE {

 38 06 3 : OBJECT IDENTIFIER countryName (2 5 4 6)

 43 13 2 : PrintableString 'tr'

 : }

 : }

 78

 47 31 20 : SET {

 49 30 18 : SEQUENCE {

 51 06 3 : OBJECT IDENTIFIER organizationName (2 5 4 10)

 56 13 11 : PrintableString 'ESYA'

 : }

 : }

 : }

 69 30 30 : SEQUENCE {

 71 17 13 : UTCTime '070417075835Z'

 86 17 13 : UTCTime '100111085835Z'

 : }

 101 30 24 : SEQUENCE {

 103 31 22 : SET {

 105 30 20 : SEQUENCE {

 107 06 3 : OBJECT IDENTIFIER commonName (2 5 4 3)

 112 0C 13 : UTF8String 'Murat Kubilay'

 : }

 : }

 : }

 127 30 159 : SEQUENCE {

 130 30 13 : SEQUENCE {

 132 06 9 : OBJECT IDENTIFIER rsaEncryption (1 2 840 113549 1 1 1)

 143 05 0 : NULL

 : }

 145 03 141 : BIT STRING 0 unused bits

 : 30 81 89 02 81 81 00 9B 76 16 AD 44 12 A2 AB FF

 : 5B 8A DC A7 42 88 80 69 1E A8 17 11 BD B2 63 00

 : 89 A5 4B F4 16 4A E2 D7 E6 C9 E7 CE 97 2B E1 B7

 : DB EC 5D A5 25 EB CE CD DA 85 CD 2D 77 7B 30 B9

 : A6 12 8C 9C 03 C0 E5 E3 CD A8 9A C1 54 BB 1E 9A

 : DD 69 FF 9E 52 03 C2 55 8C D9 E1 04 C8 59 1F B0

 : 33 9B C1 8F 34 E0 D6 CF 60 7C DF 33 F7 0D 5E 65

 79

 : A7 56 36 D0 48 84 2E 93 EE 1D 59 8E 47 2A CF 8C

 : [Another 12 bytes skipped]

 : }

 289 A3 383 : [3] {

 293 30 379 : SEQUENCE {

 297 30 31 : SEQUENCE {

 299 06 3 : OBJECT IDENTIFIER authorityKeyIdentifier (2 5 29 35)

 304 04 24 : OCTET STRING

 : 30 16 80 14 A7 16 EA B4 4F BB D5 DE 4B C5 10 66

 : C1 F9 D1 37 B8 E2 CB 7A

 : }

 330 30 29 : SEQUENCE {

 332 06 3 : OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14)

 337 04 22 : OCTET STRING

 : 04 14 5F DD 34 C6 59 AA C4 11 C9 DA 09 09 D2 78

 : D7 3C 3F BB 61 44

 : }

 361 30 14 : SEQUENCE {

 363 06 3 : OBJECT IDENTIFIER keyUsage (2 5 29 15)

 368 01 1 : BOOLEAN TRUE

 371 04 4 : OCTET STRING

 : 03 02 05 20

 : }

 377 30 9 : SEQUENCE {

 379 06 3 : OBJECT IDENTIFIER basicConstraints (2 5 29 19)

 384 04 2 : OCTET STRING

 : 30 00

 : }

 388 30 110 : SEQUENCE {

 390 06 3 : OBJECT IDENTIFIER cRLDistributionPoints (2 5 29 31)

 395 04 103 : OCTET STRING

 : 30 65 30 28 A0 26 A0 24 86 22 68 74 74 70 3A 2F

 80

 : 2F 32 30 2E 31 2E 35 2E 31 30 35 3A 38 30 38 30

 : 2F 45 53 59 41 53 49 4C 2E 63 72 6C 30 39 A0 37

 : A0 35 86 33 6C 64 61 70 3A 2F 2F 32 30 2E 31 2E

 : 35 2E 31 30 35 3A 33 38 39 2F 43 3D 54 52 2C 4F

 : 3D 45 53 59 41 41 4B 54 41 52 49 4D 2C 6F 75 3D

 : 45 53 59 41 53 49 4C

 : }

 500 30 113 : SEQUENCE {

 502 06 8 : OBJECT IDENTIFIER

 : authorityInfoAccess (1 3 6 1 5 5 7 1 1)

 512 04 101 : OCTET STRING

 : 30 63 30 2B 06 08 2B 06 01 05 05 07 30 02 86 1F

 : 68 74 74 70 3A 2F 2F 32 30 2E 31 2E 35 2E 31 30

 : 35 3A 38 30 38 30 2F 45 53 59 41 2E 63 65 72 30

 : 34 06 08 2B 06 01 05 05 07 30 02 86 28 6C 64 61

 : 70 3A 2F 2F 32 30 2E 31 2E 35 2E 31 30 35 3A 33

 : 38 39 2F 43 3D 54 52 2C 4F 3D 45 53 59 41 41 4B

 : 54 41 52 49 4D

 : }

 615 30 59 : SEQUENCE {

 617 06 3 : OBJECT IDENTIFIER subjectAltName (2 5 29 17)

 622 04 52 : OCTET STRING

 : 30 32 81 0F 6D 75 72 61 74 6B 40 75 67 2E 75 65

 : 6B 61 65 A0 1F 06 0A 2B 06 01 04 01 82 37 14 02

 : 03 A0 11 0C 0F 6D 75 72 61 74 6B 40 75 67 2E 75

 : 65 6B 61 65

 : }

 : }

 : }

 : }

 676 30 13 : SEQUENCE {

 678 06 9 : OBJECT IDENTIFIER

 81

 : sha1withRSAEncryption (1 2 840 113549 1 1 5)

 689 05 : NULL

 : }

 691 03 257 : BIT STRING 0 unused bits

 : 8E 4E 73 60 B7 83 61 25 92 42 52 41 CD FD 4C 02

 : 26 FE 0E 4B 1B C9 2E E7 13 1A 1F 3F 41 3A 35 15

 : 65 41 74 3D 45 29 18 7C 6B A9 67 53 5C C5 3C A3

 : F0 94 FC 5C DB 8B B2 F9 61 C3 F4 C0 FB E7 E9 74

 : 9E C5 1B 75 70 4B 5C 40 16 95 FE 59 BE 6B E6 B1

 : 80 75 FE 53 3F 60 43 D8 11 8E 3A 8F 45 68 01 94

 : 96 A3 91 E4 86 B8 B9 01 D8 E4 D3 C7 B6 04 DB B7

 : 7E CA D1 4E ED 3E 8D 16 49 6C 32 AE AB 8D 64 0C

 : [Another 128 bytes skipped]

 : }

 82

APPENDIX C

SAMPLE LIGHTWEIGHT CMS ASN.1 ENCODING

In the sample lightweight CMS encoding the values before : states the position in

the data, the value of the tag and the length of the element.

 0 30 399 : SEQUENCE {

 4 06 9 : OBJECT IDENTIFIER envelopedData (1 2 840 113549 1 7 3)

 15 A0 384 : [0] {

 19 30 380 : SEQUENCE {

 23 02 1 : INTEGER 0

 26 31 187 : SET {

 29 30 184 : SEQUENCE {

 32 02 1 : INTEGER 0

 35 30 35 : SEQUENCE {

 37 04 20: OCTET STRING

 : DA 39 A3 EE 5E 6B 4B 0D 32 55 BF EF 95 60 18 90

 : AF D8 07 09

 59 30 7 : SEQUENCE {

 61 06 5 : OBJECT IDENTIFIER sha1 (1 3 14 3 2 26)

 : }

 68 02 2 : INTEGER 321

 : }

 72 30 11 : SEQUENCE {

 83

 74 06 9 : OBJECT IDENTIFIER

 : sha1withRSAEncryption (1 2 840 113549 1 1 5)

 : }

 85 04 128 : OCTET STRING

 : 52 78 BE F2 57 8D 7C 30 06 6F 2D 59 81 9C 4C 38

 : 7A D0 BC C4 5E 16 6D 93 57 4B 50 EE C3 77 ED 4A

 : 1E C6 B7 2B BA F6 AC 47 91 C4 68 F3 4B 37 FA C1

 : 87 8F 30 E3 3C 25 77 64 DC EB 77 B6 AB EF BA 35

 : A6 82 41 8B B3 A2 1D 74 39 8A 0D 4E 1E 4F A9 F5

 : B9 3C BA 52 02 80 30 49 53 63 57 A6 01 23 24 0B

 : A8 E9 2F A2 60 CC 61 57 D9 A0 7E DE 7F 3A 57 88

 : 75 AB 01 A3 B5 0A 05 CA 2F 2A 4A 5C EC 05 F2 29

 : }

 : }

 216 30 184 : SEQUENCE {

 219 06 6 : OBJECT IDENTIFIER encrypted content '1 3 4 5 6 7 8'

 227 30 11 : SEQUENCE {

 229 06 9 : OBJECT IDENTIFIER aes128-CBC (2 16 840 1 101 3 4 1 2)

 : }

 240 80 160 : [0]

 : C1 9C 19 A1 34 E0 28 E2 E0 65 62 E1 B9 CE 3E 07

 : 31 E5 EF 49 E5 48 90 DF 07 F3 6B 2E 5C B0 CD B7

 : B8 30 4E D3 5F B5 C8 BE CE 62 5F 96 2F 8C 15 E7

 : 66 FD 50 45 6A 13 0F E2 EB EC 3B 1C 1F E3 65 BC

 : 9A 4E 6E 5F 2E 92 A0 CE 99 19 E9 2D 4E ED 9E 91

 : CD F4 50 D7 7D 83 29 C2 7E 7B DE A1 9E B7 FB 86

 : 94 E2 70 29 74 4D 1F A2 53 94 CA D0 AE 0F 24 C4

 : D8 E4 32 8A D5 2C 4A 72 2C E6 A8 DD 49 60 6E 65

 : [Another 32 bytes skipped]

 : }

 : }

 : }

