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ABSTRACT

KALUZA-KLEIN MONOPOLE

Sakarya, Emre

M.S., Department of Physics

Supervisor : Assoc. Prof. Dr. Bayram Tekin

August 2007, 40 pages

Kaluza-Klein theories generally in (4+D) and more specifically in five dimensions are

reviewed. The magnetic monopole solutions found in the Kaluza-Klein theories are

generally reviewed and their generalizations to Anti-de Sitter spacetimes are discussed.

Keywords: Kaluza-Klein Theory, Magnetic Monopole, Anti-de Sitter Spacetime
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ÖZ

KALUZA-KLEIN MONOPOLÜ

Sakarya, Emre

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Doç. Dr. Bayram Tekin

Ağustos 2007, 40 sayfa

Kaluza-Klein teorileri genel olarak (4 + D) boyutta ve daha ayrıntılı bir şekilde beş

boyutta gözden geçirildi. Bu teorilerde bulunan magnetik monopol çözümleri gözden

geçirildi ve bunların Anti-de Sitter uzayzamanlarına genelleştirilmeleri tartışıldı.

Anahtar Kelimeler: Kaluza-Klein Teorisi, Magnetik Monopol, Anti-de Sitter Uzayza-

manı
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CHAPTER 1

INTRODUCTION

1.1 Introduction and Motivation

Kaluza-Klein theories present a scheme for the unification of gravity with other

interactions by means of the hypothesis that the gauge symmetries are originally

geometrical. To realize this, the existence of extra dimensions is proposed. In the

unification programme, the first attempt containing the extra dimensions was made

by Nordström [1] in his scalar gravity theory in 1912. This idea gained a permanent

place when it was used by Kaluza [2] in 1921 to unify gravity with electromagnetism

in five-dimensions. Later, five-dimensional Kaluza’s theory was put in a more realistic

form by Klein [3] in 1926 who suggested that the extra dimension to be compact.

This five dimensional Kaluza-Klein theory was generalized to higher dimensions by de

Witt [4], Kerner [5], Trautman [6], Cho [7, 8] and Freund [7] to achieve the unification

of gravity with non-Abelian gauge theories.

As in the case of grand unified theories, magnetic monopole solutions occur also in

the Kaluza-Klein theories. The first magnetic monopole solution was given indepen-

dently by Sorkin [9] and Gross and Perry [10] in 1983 to the five-dimensional Kaluza-

Klein theory. This solution was generalized to higher dimensions by Lee [11, 12]

and Iwazaki [13]. Its non-Abelian extension was made by Perry [14] and Bais and

Batenburg [15]. In recent years, also the generalization of the monopole solution to

Anti-de Sitter space has gained an increasing importance. Such a generalization to

Anti-de Sitter space was first considered by Önemli and Tekin [16], who found that

there is no exact analog of monopole solution in five-dimensions.

In the second chapter, we review the general structure of Kaluza-Klein theories

and give a detailed description in five-dimensions. In the third chapter, we review
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the magnetic monopole solutions including both Abelian and non-Abelian types with

some of their properties. Lastly in the fourth chapter, we consider the generalization

to the Anti-de Sitter spaces.

1.2 Notation and Conventions

In this thesis, we adopt the following conventions: The metric signature is (−,+,+,

...,+). The upper case Latin letters “A,B,C, ...” denote the (4 +D)-dimensional in-

dices, {0, 1, 2, 3, 5, 6, ..., D}, the lower case Greek letters denote the usual four dimen-

sions, {0, 1, 2, 3}, the lower case “i, j, k” run over spatial dimensions in four dimensions,

{1, 2, 3}, and the lower case Latin indices other than “i, j, k” run over only D-extra di-

mensions {5, 6, ..., 4+D}. Besides, all hatted quantities refer to the (4+D)-dimensional

theory.

Throughout this work, independent of the number of dimensions, the Christoffel

symbol is

Γ̂K
LM =

1
2
ĝKN (∂LĝNM + ∂M ĝNL − ∂N ĝLM ), (1.1)

the Riemann tensor is

R̂K
LMN = ∂M Γ̂K

LN − ∂N Γ̂K
LM + Γ̂K

JM Γ̂J
LN − Γ̂K

JN Γ̂J
LM , (1.2)

the Ricci tensor and the Ricci scalar are

R̂LM = R̂K
LKM and R̂ = R̂L

L. (1.3)

We use units in which ~ = c = 1.
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CHAPTER 2

KALUZA-KLEIN THEORIES

2.1 General Framework

Generically, Kaluza-Klein (KK) theories refer to generalizations of pure or a mod-

ified version of four-dimensional General Relativity (GR) to a (4 + D)-dimensional

spacetime by hypothesizing that there exist D extra dimensions, so that they give

by a mechanism called spontaneous compactification, ordinary gravity plus gauge

theories in their effective low energy sectors [17]. We start with the following (4+D)-

dimensional line element, by assuming that (4 + D)-dimensional spacetime is a Rie-

mann spacetime V (4+D), that is a differentiable manifold with the general metric

compatible affine connection and vanishing torsion,

dŝ2 = ĝABdẑ
AdẑB, (2.1)

where {ẑA} = {xµ, ya} and ĝAB is the metric tensor.

Now, it seems that we have two alternatives for what ways the extra dimensions

participate into the description of the (4+D)-dimensional spacetime, namely, timelike

or spacelike ways. However, if we go into further analysis, we see that the number of

timelike dimensions can not be greater than one, because this would lead to casuality

problems due to the existence of closed timelike curves [18] arising in the theory. In

addition, extra timelike dimensions would yield tachyons in effective four dimensions

and the sign of the Maxwell action would be incorrect [19]. Thus, all the extra

dimensions have to be spacelike and so, the signature of (4 +D)-dimensional metric

becomes (−,+,+, ...,+).

The dynamics of the KK theories is determined by the (4+D)-dimensional Einstein-

Hilbert action with the cosmological constant for generality, plus a term Î which rep-

resents a potential modification of action in terms of matter fields, extra gauge fields
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or other types of curvature invariants,

Ŝ = ŜGR + Ŝ′ = − 1
16πĜ

∫
d4+Dẑ

[√
|ĝ|(R̂− 2Λ̂) + Î

]
, (2.2)

where ĝ = det(ĝAB), R̂ is the Ricci scalar, Λ̂ is the cosmological constant, and Ĝ is

the (4 + D)-dimensional gravitational constant. However, the original purpose is to

extract everything from only the spacetime geometry, that is the case Î = 0. If we

now assume Î = 0 and so vary only the ŜGR part of (2.2) with respect to the metric,

we obtain (4 +D)-dimensional ordinary Einstein equations

R̂AB −
1
2
ĝABR̂+ ĝABΛ̂ = 0. (2.3)

However, if we assume non-zero Î to represent active matter fields and again vary

(2.2), we then obtain

R̂AB −
1
2
ĝABR̂+ ĝABΛ̂ = 8πĜT̂AB, (2.4)

where T̂AB is energy-momentum tensor obtained from

δÎ =
1
2

∫
d4+Dẑ

√
|ĝ|T̂ABδĝ

AB. (2.5)

2.2 General Structure of the Ground State

The most vital phase of the construction is to pick out a ground state [20] for

the theory (2.2), because this ground state determines the general structure of the

(4+D)-dimensional spacetime and its isometries comprise the local gauge symmetries

which we want to describe in a unified way with the ordinary gravity. For the chosen

ground state to solve the complete field equations, we may constitute an Î by assuming

that it represents either matter fields or a combination of some curvature invariants.

Here, it is important to point out that the original purpose, simplicity and beauty

of KK theories is achieved for the cases when Î is zero, which may be referred to

as ‘pure’ KK theories, that is, to describe the gauge fields just from the spacetime

geometry by means of the extra dimensions. Nevertheless, in general, there may be a

need to introduce Î with some exceptions such as the supersymmetric version of KK

theory where certain matter fields are treated by an underlying supersymmetry and

the related geometry of superspace [21]. In this work, we will consider only the non-

supersymmetric KK theories. Generally, the ground state of a given field theory is
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defined as the stable solution of the field equations with the lowest energy. Determining

the correct vacuum space of a given theory is not a straightforward procedure which

is true especially for gravitational theories, because the energy concept is not well

defined and depends on the boundary conditions. We naturally expect the vacuum

space V (4+D)
0 for the pure (4 +D)-dimensional gravity

ŜGR = − 1
16πĜ

∫
d4+Dẑ

√
−ĝ(R̂− 2Λ̂) (2.6)

to be maximally symmetric. For instance, when Λ̂ = 0, the most trivial choice at first

sight seems to be the (4 + D)-dimensional Minkowski space V (4+D)
0 = M (4+D), but

then, we have a right to ask for an explanation of why the spacetime appears four-

dimensional M4. Therefore, this can not be a candidate and we see that we must make

a choice which is close to M4 locally. Hence, although a maximally symmetric V (4+D)
0

contains more symmetries, we assume the vacuum space to be a direct product of two

manifolds, that is V (4+D)
0 = V 4×BD, where V 4 is a four-dimensional Riemann space-

time with a Lorentzian signature (−,+,+,+) and BD is a D-dimensional manifold

with a Euclidean signature (+,+, ...,+). Here, V 4 characterizes the vacuum of the

usual four-dimensional spacetime and BD is assumed to be a compact space, that is, a

closed bounded subset of the D-dimensional Euclidean space, which will characterize

the internal space. In this way, if we assume the size of the compact space BD to be

very small, V 4×BD can simply appear to be V 4 containing the same four-dimensional

symmetry group such as the Poincaré group P4 for the case V 4 = M4. Consequently,

at every point of V 4, there will be a compact space BD which is so small that we can

not observe in daily life. On the other hand, the compactness of BD will provide us

gauge symmetry groups and discrete spectrums, which create the core of the theory.

2.2.1 Maximally symmetric spacetime in the ground state

Since our assumed vacuum space is a direct product space V (4+D)
0 = V 4×BD, the

general form of its metric is as follows:

ĝ0
AB(x, y) =

 ĝ0
µν(x) 0

0 ĝ0
ab(y)

 , (2.7)

where g0
µν(x) is the metric of V 4 and g0

ab(y) is the metric of BD. Now then, we again

physically assume the four-dimensional vacuum space V 4 to be a maximally symmetric
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spacetime [17], that is a space of constant curvature

Rµνλρ =
λ

3
(
g0
µλg

0
νρ − g0

µρg
0
νλ

)
, (2.8)

where λ is the four-dimensional cosmological constant. Therefore, V 4 is an Einstein

space

Rµλ = λg0
µλ. (2.9)

Here it is important to note also that we could write a more general form of the

vacuum metric [22] ĝ0
AB with maintaining the maximal symmetry property of V 4.

This is the warped product metric in the following form,

ĝ0
MN (x, y) =

 f(y)g0
µν(x) 0

0 g0
ab(y)

 . (2.10)

However, in our consideration we will take the warp-factor as f(y) = 1.

Now, using (2.9) in the pure gravitational field equations (2.3), that is when Î = 0,

we find that BD is an Einstein space too,

RD
ab = ρg0

ab, (2.11)

where ρ = λ.

At this point, we have three different cases [22] according to the sign of λ. Firstly,

when λ > 0, V 4 becomes a de Sitter spacetime with SO(1, 4) symmetry group but does

not admit a positive energy theorem which is needed for stability and supersymmetry,

so we immediately drop this option. Secondly, when λ = 0, V 4 becomes a Minkowski

spacetime M4 with the usual Poincaré group and admits a positive energy theorem

and supersymmetry. Thirdly, when λ < 0, V 4 becomes an anti-de Sitter spacetime

with SO(2, 3) group and again admits a positive energy theorem and supersymmetry.

On the other hand, by a theorem in [23] saying that compact Einstein spaces with

Euclidean signature and ρ = λ < 0 have no continuous symmetries, we eliminate the

third one, that is, the anti de Sitter option, because we know that the gauge symmetries

are continuous symmetries. Therefore, eventually we are left with the second case,

which is V 4 = M4 and Ricci tensors of both spaces become zero, Rµλ = 0 and Rab = 0.

This is equivalent to saying that when Î = 0, both spaces must be flat, M4 ×BD.
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2.2.2 Structure of the internal space

Now, we should determine the structure of the internal compact manifold BD,

in a way that its isometry group contains Abelian or non-Abelian gauge group of

interactions we want. In the case of flat internal compact space, Rab = 0, we must

restrict our consideration to spaces like a D-torus

BD = S1 × S1 × ...× S1︸ ︷︷ ︸
D−times

, (2.12)

or a K3-surface which is a compact complex surface [22]. The solution of D-torus

yields just Abelian gauge symmetries and the solution for K3-surface yields no sym-

metries by any means.

The very simple way of obtaining non-Abelian gauge symmetries is to regard BD

as a coset space, but these type of spaces are Einstein spaces with ρ 6= 0. Therefore,

we must choose between two cases: one of which V 4 is not a flat spacetime or one of

which is V 4 = M4 with Î 6= 0.

2.2.3 Criteria for the ground state

We have some fundamental criteria for a ground state to obey [24]. First of

all, we know that it should be the lowest energy state. However, in gravity usually

the comparison of energies will be impossible or pointless, because the definition of

gravitational energy differs with the boundary conditions. To be able to make a

comparison between any two solutions, their asymptotical structure should be the

same. For instance, we cannot make a comparison between M4 × BD whose energy

is zero and M4+D whose energy is also zero, because their asymptotical structure is

totally different.

Secondly, the solution must be stable both classically and semiclassically. By

classical stability, we mean the stability of ground state under small perturbations.

Given an arbitrary ground state V 4 × BD, we expand a general metric around this

ground state and if there are no imaginary frequencies, that is, no exponentially grow-

ing modes, this ground state is classically stable, because an imaginary frequency wk

will imply the existence of exponential factors, exp(± |wk| t) which increase arbitrar-

ily with time. By semiclassical stability, we mean the behavior of the ground state

against a process of semiclassical barrier penetration. If there are two states which
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correspond to the local minima of an energy functional and are separated by a finite

potential barrier, the system can tunnel to the more stable state. This tunneling

process is associated with an instanton solution of the corresponding Euclidean field

theory. Semiclassical instability can be investigated as follows. First, we find a lo-

cal minimum of the corresponding Euclidean field theory which is the ground state

that we want to analyze, then we search for a bounce solution that asymptotically

approaches this local minimum. At the end, we look at the behavior of this bounce

solution against small perturbations. If it is unstable, its contribution to the ground

state energy will be imaginary which shows the instability of the ground state. At the

same time, we can analyze the semiclassical stability by means of the positive energy

theorem. For the case of M4×BD whose energy is zero, if the positive energy theorem

holds, in the sense that all solutions with the same asymptotic behavior have positive

energy, then M4 ×BD is semiclassically stable.

2.3 Five-Dimensional Kaluza-Klein Theory

Now, we start with the simplest KK theory, which is the five-dimensional theory

originally constructed by Kaluza and Klein. Initially, the five-dimensional line element

is dŝ2 = ĝMNdẑ
MdẑN , where {ẑM} = {xµ, y}, and the general metric tensor has the

form

ĝMN =

 ĝµν ĝµ5

ĝ5ν ĝ55

 . (2.13)

The theory is determined by the five-dimensional Einstein-Hilbert action without a

cosmological constant or any matter fields, that is Î = 0,

ŜGR = − 1
16πĜ

∫
d5ẑ
√
−ĝR̂, (2.14)

and the equations of motion in vacuum

R̂AB −
1
2
ĝABR̂ = 0⇒ R̂AB = 0. (2.15)

The action (2.14) is invariant under five-dimensional general coordinate transfor-

mations

ẑA → ẑ′A = ẑ′A(ẑB). (2.16)

Accordingly, the metric transforms as

ĝ′AB(ẑ′) =
∂ẑC

∂ẑ′A
∂ẑD

∂ẑ′B
ĝCD(ẑ). (2.17)
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2.3.1 Ground state of the five-dimensional theory

In five dimensions, the form of the ground state is V 5
0 = V 4 × B1. Since in one

dimension Rµνλρ = 0, any one-dimensional space B1 is flat. In this case, according to

the discussions made before, the four-dimensional space should also be flat, V 4 = M4.

Now, we choose our compact space as a circle, B1 = S1 of fixed radius L, so that the

vacuum has topology of M4×S1 rather than maximally symmetric M5 and the extra

dimension is periodic with period 2πL

y = y + 2πL. (2.18)

As a result, if we assume the radius of S1 to be very small, the vacuum M4 × S1 can

simply appear to be M4 containing the usual Poincaré group.

We can regard the ground state M4 × S1 as a kind of spontaneous symmetry

breaking [14]. The symmetry group of M5, namely, the five-dimensional Poincare

group P5 is spontaneously broken to the symmetry group of M4 × S1, P4 × U(1).

The emergence of the ground state in this way is called spontaneous compactification.

Here, the point is that we have a compact internal space, with which we can account

for the gauge transformation as a rotation in this space.

2.3.2 The harmonic expansion

The periodicity of the fifth dimension allows us to expand any dynamical variable

γ̂(xµ, y) in the five-dimensional space including the metric tensor in terms of the

complete set of the harmonics on S1

γ̂(xµ, y) =
∞∑

n=−∞
γ̂(n)(xµ)Yn(y), (2.19)

where Yn(y) are the eigenfunctions of the operator ∂2
y

Yn(y) = einy/L. (2.20)

This is a Fourier expansion of γ̂(xµ, y) with the following orthogonality condition

y0+L∫
y0

dyY ∗n (y)Ym(y) = 2πLδnm. (2.21)

In this way, we can determine the spectrum of excitations for any dynamical variable

first by expanding around its ground state.
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2.3.3 Expansion around the ground state

By introducing local coordinates, the metric of the vacuum space M4×S1 can be

written as

η̂MN =

 ηµν 0

0 1

 , (2.22)

where ηµν is the metric of M4. As seen, the metric has the same form with M5,

because the spaces M4 × S1 and M5 are locally isomorphic [17].

We can now expand a general five-dimensional metric ĝMN , which is again a so-

lution of ĜMN = 0, around its ground state value η̂MN to the first order as a small

fluctuation

ĝMN (xµ, y) = η̂MN + ĥMN (xµ, y). (2.23)

Now, assuming |ĥMN | � 1 and keeping ĥMN to the first order, the first order gravi-

tational field equations are found as

ĜMN = ∂N∂M ĥ+ �̂ĥMN − ∂N∂P ĥ
N
M − ∂P∂M ĥ

P
N − η̂MN

(
�̂ĥ− ∂A∂Bĥ

AB
)

= 0,

(2.24)

where ĥ ≡ ĥM
M and the d’Alembertian operator �̂ ≡ η̂MN∂M∂N . Einstein tensor

ĜMN can be simplified by writing ĥMN in terms of its trace reverse, which is defined

as

ˆ̄hMN = ĥMN −
1
2
η̂MN ĥ, (2.25)

and ĥMN can be written as,

ĥMN = ˆ̄hMN −
1
3
η̂MN

ˆ̄h, (2.26)

so that ĥ = −2
3
ˆ̄h. Substituting these expressions in (2.24), ĜMN becomes

ĜMN = �̂ˆ̄hMN + η̂MN∂A∂B
ˆ̄hAB − ∂N∂P

ˆ̄hP
M − ∂M∂P

ˆ̄hP
N = 0. (2.27)

Under infinitesimal general coordinate transformations ẑ′M = ẑM + ξ̂N (ẑ), while

η̂MN stays the same, ĥMN transforms as follows:

ĥ′MN = ĥMN − ∂M ξ̂N − ∂N ξ̂M . (2.28)

This transformation can be regarded as a gauge transformation of a symmetric tensor

field in the flat background, because ĥMN and ĥ′MN both solve the field equations
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(2.24). We can now further simplify field equations (2.27) by making a gauge trans-

formation of ˆ̄hMN with an appropriate gauge condition [25]. The transformed ˆ̄h′MN

is equal to
ˆ̄h′MN = ˆ̄hMN − ∂M ξ̂N − ∂N ξ̂M + η̂MN∂P ξ̂

P , (2.29)

and the gauge condition we impose is the Lorenz gauge condition, ∂M
ˆ̄h′MN = 0,

leading to

∂M
ˆ̄h′MN = ∂M

ˆ̄hMN − �̂ξ̂N = 0⇒ �̂ξ̂N = ∂M
ˆ̄hMN . (2.30)

In this gauge condition, by dropping bars and primes, field equations (2.27) take the

form

ĜMN = �̂ĥMN (xµ, y) = 0. (2.31)

2.3.4 The effective low energy sector

The effective low energy sector describes the theory at energies low compared

to the inverse size of the internal dimension of the KK theory. We see that (2.31)

is the five-dimensional Klein-Gordon equation, and ĥMN is a massless field in five

dimensions. By Fourier expanding ĥMN using (2.19), we obtain an infinite number of

Klein-Gordon equations, that is, an infinite number of fields in four dimensions. For

each mode n in four dimensions, we have

(�− n2

L2
)ĥ(n)

MN (xµ) = 0. (2.32)

All modes are massive with m2
n = n2/L2 except for the zero mode h(0)

MN (xµ). If L is of

the order of Planck length, all the massive modes will have very high energies, which

is greater than ~c/L ≈ 1019GeV, therefore it will be very difficult to excite them. For

low energy effective theory where E � ~c/L, we will consider only the n = 0 mode of

the general metric

ĝMN (xµ, y) =
+∞∑

n=−∞
ĝ
(n)
MN (xµ)einy/L, (2.33)

which results in dropping the dependence on y, ĝMN ≈ ĝ
(0)
MN (xµ).

At the very beginning, first Kaluza [2] introduced this assumption

∂y ĝAB = 0, (2.34)

called cylinder condition, that is, the variations of all state-quantities, including the

components of the five-dimensional metric ĝAB, with respect to the fifth coordinate is
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so small that we can ignore them. Also, the corresponding isometry will result in a

local U(1) gauge symmetry.

2.3.5 Residual coordinate transformations and the general metric

The cylinder condition puts limits on the general coordinate transformations (2.16).

By taking out the metric ĝMN , from the transformation (2.17) and using (2.34), we

get
∂

∂y

[(
∂ẑ′M

∂ẑR

)(
∂ẑ′N

∂ẑL

)
ĝ′MN (ẑ′)

]
= 0. (2.35)

Now, we see that the partial derivatives ∂x′µ/∂xλ, ∂x′µ/∂y, ∂y′/∂xλ and ∂y′/∂y must

not depend on y. We also require that the first four coordinates belong to the usual

four-dimensional spacetime, that is to say, ∂x′µ/∂y and ∂xµ/∂y′ vanish. In this way,

the most general coordinate transformation we can construct is

xµ → x′µ = x′µ(xν), (2.36)

y → y′ = ay + f(xν), (2.37)

and the inverse transformation is

x′µ → xµ = xµ(x′ν), (2.38)

y′ → y =
y′ − f(xµ(x′ν))

a
, (2.39)

where a is a constant for all coordinates and a 6= 0. Under the transformation (2.36),

the metric components transform as a tensor

ĝ′µν =
∂xλ

∂x′µ
∂xρ

∂x′ν
ĝλρ, (2.40)

ĝ′µ5 =
∂xλ

∂x′µ
ĝλ5 and ĝ′55 = ĝ55, (2.41)

and under the transformation (2.37), they transform as

ĝ′µν = ĝµν − ĝν5(∂µf)− ĝµ5(∂νf) + ĝ55(∂µf)(∂νf), (2.42)

ĝ′µ5 = a(ĝµ5 − ĝ55(∂µf)), (2.43)

ĝ′55 = a2ĝ55. (2.44)

12



Moreover, we know that if a four-dimensional spacetime is stationary, that is

∂0gµν = 0, the line element can be written in terms of temporal dλ and spatial dl

separations [26]

ds2 = g00dλ
2 + dl2, (2.45)

where

dλ = dx0 +
gk0

g00
dxk and dl2 =

(
gkl −

gk0gl0

g00

)
dxkdxl. (2.46)

The dλ and dl are invariant under x0 → x′0 = x0+f(xk) and under xk → x′k = x′k(xr).

By analogy, in five-dimensional spacetime we can separate the line element into two

parts as a result of our assumption (2.34), dŝ2 = dl̂2 + g55dλ̂
2, where dλ̂ and dl̂ are

dλ̂ = dy +
ĝµ5

ĝ55
dxµ, (2.47)

dl̂2 =
(
ĝµν −

ĝµ5ĝ5ν

ĝ55

)
dxµdxν . (2.48)

These quantities are invariant under (2.36) and (2.37).

Now in the light of these, we will introduce a parametrization of the five-dimensional

metric of the effective theory. Firstly, we can take ĝ55 most generally as

ĝ55 = Ψ(xµ), (2.49)

where Ψ is a dimensionless non-zero scalar field. This field will be later called the

dilaton field. Secondly, we see that the transformation of the quantities ĝµ5 in (2.43)

resembles a gauge transformation if we assume that ĝµ5 contains ĝ55 in itself. There-

fore, we define ĝµ5 as

ĝµ5 = κĝ55Aµ(xµ)⇒ ĝµ5 = κΨAµ(xµ), (2.50)

where Aµ is the electromagnetic four-vector potential and κ is a proportionality con-

stant, which we will take to be κ = 1 without loss of generality. Now then, we see

that the transformation (2.43) is equivalent to

A′µ = Aµ − ∂µf, (2.51)

where A′µ = (ĝ′µ5/aΨ). Here, we see the most vital point of our construction since

gauge transformation has now become equivalent to the movement in the fifth dimen-

sion. Finally, the invariance of (2.48) with respect to the translation in y and the fact

that the term in parentheses of (2.48) is a tensor under (2.36) suggest that this is the

13



unique alternative to identify with the usual four-dimensional line element dl̂2 = ds2.

So we take the four-dimensional metric tensor as

gµν = ĝµν −
ĝµ5ĝ5ν

ĝ55
⇒ gµν = ĝµν −ΨAµAν . (2.52)

In this way, the most general five-dimensional metric and the line element take the

form

ĝMN =

 gµν + ΨAµAν ΨAµ

ΨAν Ψ

 , (2.53)

dŝ2 = gµνdx
µdxν + Ψ(Aµdx

µ + dy)2. (2.54)

From the identity ĝMN ĝ
NL = δL

M , the inverse metric is

ĝMN =

 gµν −Aµ

−Aν Ψ−1 +AµA
µ

 . (2.55)

2.3.6 The dimensionally reduced action

We can now embed the metric (2.53) into the action (2.14) by writing everything

in terms of the four-dimensional quantities. With a row reduction on (2.53), we find

the determinant as

ĝ = det(ĝMN ) = Ψdet(gµν) = Ψg, (2.56)

and we calculate the following Christoffel symbols

Γ̂µ
νλ = Γµ

νλ +
1
2
[
ΨAλF

µ
ν + ΨAνF

µ
λ −AλAν∂

µΨ
]
,

Γ̂µ
5λ =

1
2
[
ΨF µ

λ −Aλ∂
µΨ
]
, Γ̂µ

55 = −1
2
∂µΨ,

Γ̂5
νλ =

1
2
(∇λAν +∇νAλ) +

1
2
Aρ(AνAλ∂ρΨ−AνFλρΨ−AλFνρΨ) (2.57)

+
1
2
Ψ−1(Aν∂λΨ +Aλ∂νΨ),

Γ̂5
5λ =

1
2
[
AλA

ρ∂ρΨ +AρFρλΨ + Ψ−1∂λΨ
]

and Γ̂5
55 =

1
2
Aρ∂ρΨ,

where Fµν is the electromagnetic field strength tensor Fµν ≡ ∂µAν − ∂νAµ.

Meanwhile, from the following identity arising from the symmetries of the Riemann

tensor

∂K(Γ̂LMN + Γ̂MNL + Γ̂NLM ) = ∂N Γ̂KLM + ∂LΓ̂KMN + ∂M Γ̂KNL, (2.58)
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where we fix the index K = 5 and let others run over all values, we see that the

electromagnetic Bianchi identity and exchangeability of partial derivatives on Ψ occur

Fνλ,µ + Fλµ,ν + Fµν,λ = 0, (2.59)

Ψ,µν −Ψ,νµ = 0. (2.60)

Next, we calculate Ricci scalar as

R̂ = R− 1
4
ΨFµνF

µν − 2
Ψ1/2

�Ψ1/2. (2.61)

Substituting R̂ into the action (2.14), we obtain the effective theory action as

Ŝ = − 1
16πĜ

∫
d4xdy(

√
−gΨ1/2)(R− 1

4
ΨFµνF

µν − 2
Ψ1/2

�Ψ1/2). (2.62)

Here we see that the compact structure of the fifth dimension guarantees the integral

over the fifth dimension not to diverge, therefore integrating over y we get a constant

2πL

Ŝ = − 1
16πG

∫
d4x(

√
−gΨ1/2)(R− 1

4
ΨFµνF

µν − 2
Ψ1/2

�Ψ1/2), (2.63)

where G = Ĝ/2πL. When we write the integral as

Ŝ = − 1
16πG

[∫
d4x(

√
−gΨ1/2)(R− 1

4
ΨFµνF

µν)− 2
∫
d4x
√
−g�Ψ1/2

]
, (2.64)

we see that the second integral in the parentheses is a surface term therefore we can

drop it, because it does not affect the equations of motion, so in this way we end up

with the following integral

Ŝ = − 1
16πG

∫
d4x
√
−g(Ψ1/2R− 1

4
Ψ3/2FµνF

µν). (2.65)

Now, we see that this action contains the GR and Maxwell’s theory coupled to

a scalar field. To make this clear, we have to put the action into a more familiar

form in which the coefficient of
√
−gR is constant. Also in this form, the variation

is simpler and it yields the typical Einstein’s equations. This can be realized with

a conformal transformation under which both ĝMN and Ψ are rescaled. We apply a

standard result [27] stating that if two n-dimensional metrics, with n > 2, are related

through a conformal transformation such as

ĝ′MN = Ω2ĝMN ⇔ ĝ′MN = Ω−2ĝMN , (2.66)
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where Ω is a non-zero differentiable function, then their Ricci scalars have the following

relationship

R′ = Ω−2R− 2(n− 1)Ω−3Ω;MNg
MN − (n− 1)(n− 4)Ω−4Ω;MΩ;Ng

MN . (2.67)

With n = 5, we transform ĝMN → ĝ′MN = Ω2ĝMN , then the term in the action

transforms as
√
−gΨ1/2R →

√
−g′R′ =

√
−gΨ1/2Ω3R. Thus, if we take Ω = Ψ−1/6,

we can put the action into the desired form. Inserting these into (2.67) yields the

transformed metric and the Ricci scalar

ĝ′MN = Ψ−1/3

 gµν + ΨAµAν ΨAµ

ΨAν Ψ

 , (2.68)

R̂′ = Ψ1/3(R̂− 5
3
Ψ−2gµν∂µΨ∂νΨ +

4
3
Ψ−1gµν∂µνΨ), (2.69)

where R̂ is defined in (2.61). Using (2.68) and (2.69) in (2.14) and dropping the total

divergence, we find the low energy action

Ŝ = − 1
16πG

∫
d4x
√
−g(R− 1

4
ΨFµνF

µν +
1
6
∂µΨ∂µΨ

Ψ2
). (2.70)

We can regard the low energy sector of the KK theory as describing a massless scalar

coupled to gravity and electromagnetism. Starting with such a higher dimensional

theory, the process of obtaining a unified description for the effective four-dimensional

spacetime by considering small fluctuations around ground state is called dimensional

reduction.

2.3.7 The general dynamics

We now consider the motion of a classical point test particle of mass m in five-

dimensional spacetime having the action

Ŝm = m

∫
dτ(ĝMN

dzM

dτ

dzN

dτ
)1/2, (2.71)

where τ is the proper time. The motion is given by a five-dimensional geodesic equa-

tion
d2zM

dτ2
+ Γ̂M

NL

dzN

dτ

dzL

dτ
= 0. (2.72)

Using the effective theory metric (2.53), the geodesic equation becomes

ÿ + Γ̂5
νλẋ

ν ẋλ + 2Γ̂5
5λẏẋ

λ + Γ̂5
55ẏ

2 = 0, (2.73)
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ẍµ + Γ̂µ
νλẋ

ν ẋλ + 2Γ̂µ
5λẏẋ

λ + Γ̂µ
55ẏ

2 = 0, (2.74)

where dot refers to the derivative d
dτ . For the Killing vector K = KM∂M = ∂y, we

find the corresponding conserved quantity

KM
dzM

dτ
= C ⇒ ΨAµẋ

µ + Ψẏ = C, (2.75)

where C is a constant. We know this is the first integral of (2.73). If we use (2.75)

in (2.74), the four-dimensional geodesic equation (2.74) becomes

d2xµ

dτ2
+ Γµ

νλ

dxν

dτ

dxλ

dτ
=

q

m
Fµ

λ

dxλ

dτ
+

q2

2m2

∂µΨ
Ψ2

, (2.76)

describing the motion of a particle with mass m and charge q in the usual curved

spacetime, provided that C = q/m. This determines the dimensions of C as (A.s/kg).

If q
√

16πG is identified with the charge of the particle, then on the right of (2.76) we

see the usual Lorentz force plus an interaction with the scalar field Ψ.

For a particle of mass m, the five-dimensional Lagrangian L contained in (2.71) is

L̂ = mĝMN
dzM

dτ

dzN

dτ
, (2.77)

by which we can calculate the conjugate five-momentum from the usual definition

p̂M =
∂L̂

∂żM
⇒ p̂M = mĝMN ż

N . (2.78)

Then the five-momentum becomes

p̂µ = mgµλẋ
λ +Aµp̂5, (2.79)

p̂5 = m(ΨAλẋ
λ + Ψẏ)⇒ p̂5 = mC = q. (2.80)

This means that the electric charge is essentially the fifth component of the five-

momentum of a massive particle. In addition, (2.79) agrees with the generalized

momenta of a particle of charge q interacting with an electromagnetic field, so we can

identify p̂µ with πµ.

We can now continue the analysis of the fifth dimension by considering a complex

scalar field ϕ̂(xµ, y) in the five-dimensional space [10], with the following action

Ŝ =
∫
d5ẑ
√
−ĝ[(∂M ϕ̂)(∂N ϕ̂

†)ĝMN ], (2.81)

whose equations of motion are

�̂ϕ̂ = 0 and �̂ϕ̂† = 0. (2.82)
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By using the inverse metric (2.55) and the Fourier expansion of the field ϕ̂(xµ, y), we

obtain the following expression for the term in the action

(∂M ϕ̂)(∂N ϕ̂
†)ĝMN =

∣∣∣∣(∂µ + i
Aµn

L

)
ϕ̂

∣∣∣∣2 + Ψ−1 n
2

L2
|ϕ̂|2 . (2.83)

If we compare (2.83) with the standard form of the minimal coupling ∂µ → ∂µ −

iqnAµ, we may identify the electric charge qn and the mass mn of the nth Fourier

mode ϕ̂(n)(xµ)einy/L as

qn =
n

L
and m2

n =
n2

L2
. (2.84)

Here, we notice that we can obtain a formula relating the radius of the extra dimension

with the elementary charge. After we scale the gauge field Aµ → (16πG)−1/2Aµ to

get the proper normalization, we find the elementary charge, for n = 1, as

e =
√

16πG
L

. (2.85)

If we could deduce the radius L from any other argument, we would have an explana-

tion for the quantization and the calculation of the numerical value of the elementary

charge e.

2.4 The Non-Abelian Generalization

We now again look at the case of a general KK theory in (4 +D) dimensions for

the non-Abelian extension. We expect the symmetries of the internal compact space

BD to yield the non-Abelian gauge symmetries in the massless low energy sector for

the effective observer in four dimensions.

2.4.1 The general metric

We now investigate the general structure of the space V (4+D) [17]. Inspired by

the general structure of the vacuum space V (4+D)
0 = V 4 × BD, the general V (4+D)

is assumed to have a fiber bundle structure, that is, a topological space which looks

locally like a direct product of two spaces, V 4 × V D, where V 4 is the base manifold

and V D is the fiber. For every point xµ of V 4, we have a D-dimensional hypersurface

which is a Riemann space V D. By using this property of V (4+D), we can determine

the general form of the metric in V (4+D). We first set up both coordinate bases and

orthonormal bases in V (4+D), êA = {êα, êa} and êB̄ =
{
êβ̄, êb̄

}
respectively. Here, êα
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and êβ̄ belong to V 4 and others belong to V D. We can express any coordinate basis

vectors in terms of the orthonormal basis vectors, êA = (p β
A êβ̄ + p b

A êb̄), where p’s

are components. Next, we demand that a displacement in the spacetime V 4 should

be orthogonal to the internal space V D. The underlying physical foundation is that

a translation in the internal space V D should leave the metric of the physical four-

dimensional spacetime invariant. This is equivalent to saying that the expansion

êa = (p β
a êβ̄ + p b

a êb̄) in V D must contain only its orthonormal partner êb̄ in V D, i.e.

p β
a = 0. Thus, a general p in matrix notation is as follows

p B
A (x, y) =

 p β
α 0

p b
α p b

a

 , (2.86)

and from p B
A qA

C = δB
C , its inverse qA

B(x, y) is

qA
B(x, y) =

 qα
β qa

β

0 qa
b

 . (2.87)

The metric of V (4+D) can be written in terms of the components p

ĝAD = p B
A p C

D ηBC (2.88)

and then the main blocks in ĝAB are

ĝµν = p α
µ p β

ν ηαβ + p r
µ p

s
ν ηrs, ĝµa = p c

µ p
d

a ηcd,

ĝaν = p c
a p

d
ν ηcd and ĝab = p c

a p
d

b ηcd. (2.89)

Now, metrics of V 4 and V D are

gµν = p α
µ p β

ν ηαβ and gab = p c
a p

d
b ηcd (2.90)

respectively. Thus, by using (2.90) and Ba
α := qa

bp
b

α in (2.89), the general form of the

(4 +D)-metric becomes

ĝAB =

 gµν + gabB
a
µB

b
ν Bb

µgba

gabB
b
ν gab

 , (2.91)

and its inverse is given as

ĝAB =

 gµν −Ba
b g

µb

−Ba
b g

bν gab + gcdBa
cB

b
d

 . (2.92)

Although this derivation is not entirely rigorous, the form of this metric is unique and

the full proof can be found in [8]. As it is seen, the form of the metric covers the one

we found for the five-dimensional KK theory.
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2.4.2 Residual coordinate transformations

The fiber structure of the 4 + D-dimensional space puts also a limitation on the

most general coordinate transformations, z′ = z′(z). If we look at the transformation

of p β
α under z′ = z′(z)

p′ β
α =

∂xσ

∂x′α
p β

σ +
∂ya

∂x′α
p β

a , (2.93)

we see that to guarantee the condition p β
a = 0 of the previous section, we need to

allow only the coordinate transformations where y does not depend on x′

z′ = z′(z) −→ x′ = x′(x) and y′ = y′(x, y). (2.94)

The components gµν and gab of the general metric (2.91) transform as a tensor in

V 4+D under the reduced coordinate transformations (2.94)

g′µν(x
′) =

∂xλ

∂x′µ
∂xρ

∂x′ν
gλρ(x) and g′ab(y

′) =
∂yc

∂y′a
∂yd

∂y′b
gcd(y). (2.95)

The Bb
ν transform as follows under (2.94)

B′aµ =
∂xν

∂x′µ

[
∂y′a

∂yb
Bb

ν −
∂y′a

∂xν

]
. (2.96)

2.4.3 Isometries of the compact internal space

Infinitesimal general coordinate transformations in BD is written as

ya → y′a = ya + εiKa
i , (2.97)

where i = 1, ..., n. If this transformation is an isometry, that is, preserving the form of

the metric gab, the vectors Ka
i are Killing vectors and they satisfy the Killing equation

∇aKib +∇bKia = 0.

We assume the compact space BD has a set of n linearly independent global Killing

vectors Ka
i , i = 1, ..., n, where n is D ≤ n ≤ 1

2D(D + 1) [14]. Thus, BD must have

a positive curvature scalar [23]. The Killing vectors have the following commutation

relations via the Lie bracket

[Ki,Kj ]a = f k
ij Ka

k , (2.98)

where f k
ij Ka

k = Kb
i ∂bK

a
j − Kb

j∂bK
a
i . (2.98) forms the Lie algebra of the isometry

group G in BD, which will be identified as a gauge group in the effective low energy

sector. By choosing BD appropriately, we can get almost any gauge group. This can

be done either by choosing BD as the group manifold of G or by choosing BD as a

coset space G/H so that its isometry group will be G.
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2.4.4 Non-Abelian gauge transformations

Now, we consider the following infinitesimal coordinate transformations in BD

xµ → x′µ = xµ and ya → y′a = ya + εi(x)Ka
i (y). (2.99)

Let the functions Ba
µ in the general metric (2.91) be in the form Ba

µ = Ka
i (y)Ai

µ(x).

Then, by using (2.96), we can find the infinitesimal transformation of Ai
µ(x) under

the coordinate transformation (2.99) as

δAi
µ = −∂µε

i(x) + f i
jk A

j
µε

k(x). (2.100)

This is exactly an infinitesimal transformation of the non-Abelian gauge field with

respect to the gauge transformation of δya = εi(x)Ka
i (y).

2.4.5 Spontaneous compactification

KK theory can be regarded as a theory with spontaneous symmetry breaking where

the maximal symmetry of M (4+D), the group of general coordinate transformations in

(4+D) dimensions, that is (4+D)-dimensional Poincare group P(4+D) is spontaneously

broken to the product of the four-dimensional coordinate transformation group of V 4

and the group of coordinate transformations in compact space BD.
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CHAPTER 3

KALUZA-KLEIN MONOPOLE

All grand unified theories in which an original semi-simple symmetry group G′

is spontaneously broken by a Higgs mechanism to a subgroup H including a local

U(1) necessarily contain soliton-like solutions [28, 29]. If this U(1) group is iden-

tified with the gauge group of electromagnetic theory, these solutions turn out to

be magnetic monopoles. The existence and classification of these monopoles can be

realized topologically by the first homotopy group of H, π1(H), or equivalently by

the second homotopy group of (G′/H), π2(G′/H), because H is a subgroup of G′.

Similarly in KK theories, we know there is a kind of symmetry breaking in which

(4 +D)-dimensional Poincaré goup P 4+D has been spontaneously broken to P 4 × G

by means of the spontaneous compactification. Therefore, the existence of magnetic

monopoles in the KK theories is correspondingly related to the topology of gauge

groups G which is unified with gravity. If we assume the spacetime is locally M × Σ

where M is asymptotically flat and Σ is a D-dimensional compact manifold, we can

determine the expected monopoles by examining the topological structure of space-

like infinity [14]. At spacelike infinity, the spacetime can be regarded as a G-valued

bundle over S2 where G is the isometry group of Σ and S2 is the boundary of three-

dimensional space. Non-trivial bundles are classified by π1(G) whose elements are

associated with the charge of the expected monopoles. For G = Sp(n), SU(n), E6,

E7 or E8, π1(G) = 0, the non-empty π1(G) occurs for the groups G = U(n) and

G = SO(n). These are π1(U(n)) = Z, the set of integers, and π1(SO(n)) = Z2, the

cyclic group of order two, corresponding to monopoles of Abelian and non-Abelian

gauge theories, respectively.
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3.1 Abelian Kaluza-Klein Monopoles

3.1.1 The Sorkin-Gross-Perry monopole

We start now with the simplest one, Sorkin-Gross-Perry (SGP) monopole, which

is the first monopole found in the original five dimensional KK theory independently

by Sorkin [9] and by Gross and Perry [10] in 1983. We are searching for non-singular,

static and topologically stable solutions of the field equations R̂MN = 0 of the five-

dimensional KK theory, which may describe the spatially localized lumps of matter.

The solution we look for will attain meaning in the original parametrization of the

general KK metric

ĝMN =

 gµν + ΨAµAν ΨAµ

ΨAν Ψ

 . (3.1)

For topological reasons, we naturally demand our solutions to approach the vacuum

solution at least locally, ĝMN → η̂MN , at spatial infinity, r →∞. In our situation, this

corresponds to saying that our solutions will be asymptotically locally flat because of

our periodic fifth dimension in vacuum space structure, M4 × S1. According to our

parametrization of the effective theory metric (3.1), the vacuum solution (2.22) is

characterized by

gµν = ηµν , Aµ = 0 and Ψ = 1. (3.2)

A static metric is defined as a metric that has a timelike Killing vector field K

which is orthogonal to spacelike hypersurfaces. In other words, for a static spacetime,

the metric components can be made to satisfy

∂tĝMN = 0 and ĝ0N = δ0N , (3.3)

by selecting an appropriate coordinate system, that is, the metric components are all

independent from the time coordinate t and there are no cross terms involving dt. In

this way, the field equations can be reduced to

R̂ij = R̂5j = R̂55 = 0 (3.4)

by taking ĝ00 = −1. Thus, ĝMN may split as ĝMN = −dt2 + ĝijdz
idzj where

i, j = (1, 2, 3, 5) and, R̂00 and R̂0N are automatically satisfied. This also corresponds

to choosing the A0 = 0 gauge. Now obviously, (3.4) implies that we are searching for a

solution to the four-dimensional Euclidean gravity with signature (+,+,+,+). Then
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the only possible interpretation of y in four dimensions is to take it as a periodic Eu-

clidean time. We know that we can generate lots of solutions to these equations using

the Schwarzschild, Kerr or Taub-NUT metrics by Wick rotating the time coordinate

t → iτ to obtain the Euclideanized form. For instance, the simplest solution turns

out to be the Euclidean Schwarzschild metric

dŝ2 = −dt2+ds2SCH = −dt2+(1−2m
r

)−1dr2+r2dθ2+r2 sin2 θdφ2+(1−2m
r

)dτ2, (3.5)

where (r, θ, φ) denote the usual spherical coordinates. This metric has an Euclidean

character in the range r ≥ 2m, therefore the r = 0 spacetime singularity is out of the

Euclidean range and the apparent coordinate singularity at r = 2m can be removed

by taking τ as an angular variable with period 8πm, 0 ≤ τ ≤ 8πm.

To identify our solution as a monopole, we expect the solution leads to a monopole

field in the effective four-dimensional spacetime in the form of Aφ = 4m(1 − cos θ)

having the Dirac-string singularity. Now, the Taub-NUT metric ds2TN provides this

form with the coordinates (τ, r, θ, φ)

ds2TN = Ψ(dτ + 4m(1− cos θ)dφ)2 +
1
Ψ

(dr2 + r2dθ2 + r2 sin2 θdφ2), (3.6)

where Ψ = r
r+4m . This metric depends on a parameter m which can be positive or

negative. For m > 0 case, ds2TN becomes a non-singular solution of the Euclidean

equation for the self-dual Riemann tensor (R̃αβµν = ε γδ
αβ Rγδµν) and it is interpreted

as a gravitational instanton [30]. Later, we will see that the parameter m is propor-

tional to the mass of the monopole.

Now, by replacing the τ coordinate with our periodic coordinate y and adding the

−dt2 in (3.6), we can write our solution explicitly as

dŝ2 = −dt2 + ds2TN = −dt2 + Ψ(dy + 4m(1− cos θ)dφ)2

+
1
Ψ

(dr2 + r2dθ2 + r2 sin2 θdφ2), (3.7)

where (r, θ, φ) are the spherical polar coordinates of the spatial part of the usual

four-dimensional spacetime. If we match our parametrization with this solution, all

components of Aµ except for Aφ vanish

Aφ = 4m(1− cos θ), (3.8)

leading to

E = 0 and B =
4mr
r3

, (3.9)
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which is that of a magnetic monopole.

A quick check of the solution (3.7) reveals that there may be two singularities, at

θ = π and at r = 0. Firstly, the metric has a singularity as θ → π, because the loop

formed by φ about θ = π axis does not shrink to zero, namely, the term (1 − cos θ)

does not go to zero. This corresponds to the Dirac-string singularity of the monopole.

To avoid this, we can make a change of coordinates y → y′ = y + 8mφ around the

θ = π axis, then the related part transforms as

dy + 4m(1− cos θ)dφ→ dy′ − 4m(1 + cos θ)dφ, (3.10)

and the metric becomes regular here. However, with this coordinate set, we again

have the same singularity when θ → 0. Therefore, we must use two sets of coor-

dinate systems to cover the whole space. For the northern hemisphere, we use the

set (t, r, θ, φ, y) and for the southern hemisphere we use (t, r, θ, φ, y′). This way, we

see that the Dirac-string singularity becomes a coordinate singularity in the SGP

monopole. As for the second singularity, when r → 0 the singular part of the metric

behaves like

r

4m
dy2 +

4m
r

(dr2 + r2dθ2 + r2 sin2 θdφ2). (3.11)

If we let r = r′2, then (3.11) becomes

16m

[
dr′2 +

(
r′

8m

)2

dy2

]
+ 4mr′2(dθ2 + sin2 θdφ2). (3.12)

Here, by considering the metric of a two-dimensional plane in polar coordinates ds2 =

dr2 + r2dϕ2, we see that we can eliminate the singularity if we associate y/8m with

ϕ. To eliminate the singularity we assume that y is an angular variable with period

16πm. Therefore, we must identify 16πm with 2πL since our solution approaches to

the vacuum M4 × S1 for large r, which leads to

m =
L

8
. (3.13)

Now, the circle characterized by y shrinks to a point at r = 0. Moreover, the other

singularity seen in front of the dr2 in (3.11) disappears too. Hence, we see that the

solution (3.7) is regular everywhere.
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3.1.1.1 Charge of the SGP monopole

To determine the magnetic charge of the monopole, we first scale the magnetic

field properly B→ (16πG)−1/2B

B =
1√

16πG

[
(16πG)−1/24mr

r3

]
. (3.14)

Then, the magnetic charge g = 4m/
√

16πG and from m = L/8, it becomes g =

L/(2
√

16πG). The charge g is fixed by the fifth dimension similar to the case of the

electric charge. Here, we see that if the quantization of the electric charge is dictated

by topology, it is possible to obtain a magnetic monopole. Lastly, by writing L in

terms of the electric charge from the discussion of the previous chapter (2.85), we see

that our monopole obeys the Dirac quantization rule:

g =
1
2e
. (3.15)

3.1.1.2 Mass of the SGP monopole

For an asymptotically flat spacetime for which one has at least gAB → ηAB+O(1/r)

as r →∞, we can calculate a conserved momentum belonging only to the gravitational

field by using the conserved energy-momentum pseudo-tensor of the gravitational

field [26], which is given as

tAB =
1

16πĜ(−ĝ)
∂C∂D[(−ĝ)(ĝAB ĝCD − ĝAC ĝBD)]. (3.16)

The corresponding conservation is provided by

∂

∂xB
(−ĝ)tAB = 0, (3.17)

and the corresponding conserved quantities are given as

PA =
∫

(−ĝ)tA0dV . (3.18)

In our five-dimensional SGP metric, there is nothing other than the gravitational field,

so we can calculate the mass P 0 of the monopole by using (3.18). At spatial infinity,

t00 is found as

t00 ' −∇2(
1
Ψ

). (3.19)

Therefore, the mass of the monopole is

M = P 0 =
−2πR
16πĜ

∫
d3x∇2(

1
Ψ

) =
m

G
. (3.20)
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Since, we know m in terms of G and e, we can determine the mass. Remember that we

already knew the fifth component of momentum would correspond to the conserved

charge. Now this can be verified by calculating the component P 5. At spatial infinity,

we find t50 approximately as

t50 ' 1
16πĜ

1√
|ĝ|
∂i[
√
|ĝ|(∂0Ai − ∂iA0)] =

∇.E
16πĜ

. (3.21)

3.1.1.3 Multi-monopole generalization

We can easily generalize the monopole solution to the static multi-monopole case.

Basically, our aim is to construct a metric that will contain a four-potential of an

arrangement of N monopoles sitting at r = rn where n = 1, 2, ..., N . Firstly, Ψ is

calculated from
1
Ψ

= 1 +
N∑

n=1

4m
|r− rn|

. (3.22)

Next, the four-potential and the magnetic field is given as

∂i

(
1
Ψ

)
= −εijk∂jAk = Bi. (3.23)

Finally, the corresponding solution takes the form

dŝ2 = −dt2 + Ψ(Aidx
i + dy)2 +

1
Ψ

(dr2 + r2dθ2 + r2 sin2 θdφ2). (3.24)

Similarly, as long as y is periodic with 16πm, this metric is regular everywhere. Be-

sides, since the monopoles do not interact with each other, the total mass of this

configuration is simply NM , where each one of the monopoles has the same mass

M . Here, we notice that we cannot construct this solution with monopoles having

different masses, because at each point r = rn we would have a singularity which

could be eliminated with different periods imposed on y coordinate, to avoid all of

the singularities each monopole should have the same mass. We can also form the

analogous antimonopole solutions simply by changing the sign of B.

3.1.1.4 Gravitational mass of the monopole

Although, it was calculated the inertial mass of the monopole solution, the gravi-

tational mass of the monopole turns out to be zero [10]. This is evident from the form

of the solution metric, because the Newtonian force applied on a slowly moving test

particle, which is proportional to 1
2∇ĝ00 vanishes. Therefore, all kinds of solutions
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have static geodesics which correspond to test particles sitting at rest with respect to

the monopole. More explicitly, these geodesics are in the form of x0(τ) = τ , x(τ) = x0

and y(τ) = y0, where the parameter used is the proper time τ . However, this is not

because the principle of equivalence is violated where we have preserved the general

five-dimensional covariance, this occurs because of the violation of Birkhoff’s theorem

in five dimensions.

Birkhoff’s theorem states that any solution of the field equations for a localized

lump in four dimensions reduce to the Schwarzschild metric at spatial infinity

ds2SCH ' −(1− 2M
r

)dt2 + (1− 2M
r

)−1dr2 + r2dθ2 + r2 sin2 θdφ2 (3.25)

so that Schwarzschild metric is the unique spherically symmetric solution. From (3.25),

we see that we have an inertial mass of M and a gravitational potential of 1
2(g00+1) =

M/r. However, we see that this theorem is not true in KK theory. For instance, we

have two such independent spherically symmetric solutions, one is the Schwarzschild

solution (3.5) with g0A = δ0A and the other one is again Schwarzschild metric but this

time with g5A = δ5A. Only for this last type of solutions, we have an equality between

the inertial mass and the gravitational mass. But, our monopole solutions are all the

first type.

3.1.2 Generalization to (4 +D) dimensions

The SGP monopole solution can be generalized to (4+D) dimensions for given KK

theories whose vacuum structure is M4×T , in which T has an Abelian isometry group.

Naturally, we again consider static metrics for these solutions. Such a generalization

was first made by Lee in 1984 [11, 12]. We start with the following metric in (4 +D)

dimensions

dŝ2 = gµν(xµ)dxµ ⊗ dxν + Φab(xµ)θa ⊗ θb, (3.26)

where θa is

θa = dya +A a
µ (xµ)dxµ, a = 1, ..., D. (3.27)

Here, we note that if for example Φab is taken to be diagonal, our compact manifold

becomes the D-torus, T = S1 × S1 × ... × S1. Now, we impose the staticity and
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spherical symmetry conditions on the four-dimensional metric to obtain the following

metric ansatz

gµν(x)dxµ ⊗ dxν = −e2Ψ(r)dt2 + e2Λ(r)dr2 + r2dΩ. (3.28)

To construct the monopole field, the following non-vanishing components of electro-

magnetic field strength tensor should read

F a
θφ = ga sin θ and F atr = pa(r). (3.29)

Finally, we make the following ansatz for Φ,

Φab(xµ) = (exp(2χ(r)))ab. (3.30)

Under these, it was shown that the field equations can be completely integrated [12].

In five dimensions, the complete solutions, which correspond to all spherically sym-

metric monopoles, were obtained [31]. These solutions in general have gravitational

masses and are singular at the origin except in the SGP limit. Also in six dimen-

sions, the solutions were obtained by reducing the field equations to the Toda lattice

problem [11].

3.2 Non-Abelian Kaluza-Klein Monopoles

We now consider the monopole solutions in non-Abelian KK theories. By assuming

our gauge group to be SO(n), which makes our compact manifold Sn, we can construct

monopole solutions to these non-Abelian theories. Such a construction was first made

by Perry in 1984 [14]. We assume the compact manifold Σ to be S2, which has constant

curvature and can be represented by a line element

ds2Σ = dψ2 + sin2 ψdχ2. (3.31)

Σ has a set of three Killing vectors,

K1 = − sinχ
∂

∂ψ
− cotψ cosχ

∂

∂χ
,

K2 = cosχ
∂

∂ψ
− cotψ sinχ

∂

∂χ
and K3 =

∂

∂χ
. (3.32)

For simplicity, we choose a gauge such that A1 = A2 = 0. Next, we take the following

spherically symmetric metric in six-dimensions

dŝ2 = −h2(r)dt2 + g2(r)dr2 + k2(r)(dθ2 + sin2 θdφ2)

+p2(r)[dψ2 + sin2 ψ(dχ+
A3

p(r)
)2]. (3.33)
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If we choose A3 = p(r)[q(r) cos θdφ − s(r)dt], then this represents both a magnetic

q and electric s charged particle. Unless we define q = n
2 where n is an integer, the

string singularities along ψ = 0 or ψ = π occur. When n = 1 mod 2, the space is

topologically non-trivial, because it is homeomorphic to the twisted S2 bundle over

S2 at spatial infinity. Therefore, we can naturally expect Z2 number of topological

excitations.

In such a theory, the compactification can be realized most easily by introducing

an auxiliary antisymmetric tensor field derived from an antisymmetric potential [19].

The tensor field can be four-indexed or two-indexed because of duality. However, there

are no monopole solutions with two-indexed case [14]. Therefore, it is assumed that

we have the following four-indexed tensor field

F̂ABCD = ∇[AÂBCD], (3.34)

where ÂBCD is a three-indexed antisymmetric potential. The action of the theory is

Ŝ = − 1
16πĜ

∫
d6ẑ
√
|ĝ|
[
(R̂− 2Λ̂) +

1
8
F̂ABCDF̂

ABCD

]
. (3.35)

In [14], it was shown that with the chosen metric ansatz (3.33), there are solutions to

the corresponding field equations

R̂AB −
1
2
ĝABR̂+ ĝABΛ̂ = 8πĜ(F̂ACDEF

CDE
B − 1

8
ĝABF̂CDEF F̂

CDEF ). (3.36)
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CHAPTER 4

KALUZA-KLEIN MONOPOLE IN ADS SPACETIME

It is important to generalize the KK monopoles to spaces of non-zero constant

curvature namely, de Sitter (dS) and anti-de Sitter (AdS) spacetimes, for several rea-

sons such as the completeness of topic, the current theoretical interest in these spaces

thanks to the AdS/Conformal Field Theory (CFT) duality and the recent experimen-

tal data pointing out to a cosmological constant of dS type. For AdS spaces, there

are open hypersurfaces using which we can define magnetic flux, so that we expect

monopole solutions. In contrast, for dS spaces, since there are closed hypersurfaces

with a boundary, we cannot define the magnetic flux and do not expect the existence of

monopole solutions. In spite of this, we can expect neutral solutions such as magnetic

dipoles [16].

4.1 SGP Monopole in the AdS Background

Now, we start with a non-singular solution, the original SGP monopole in five

dimensions. We mostly follow the discussion made in a paper written by Önemli and

Tekin [16]. We want to find a solution which will characterize the SGP monopole

completely in a five-dimensional AdS spacetime. Therefore, we put a bunch of criteria

to be satisfied by the solution. First of all, we expect our solution to be asymptotically

locally AdS rather than asymptotically AdS, similar to the case of the SGP monopole,

because we again need to compactify the extra spatial dimension. Secondly, since we

know that as the cosmological constant Λ̂ → 0, we should recover the Minkowski

spacetime in a continuous way, to claim that our solution is a true AdS analog, we

correspondingly expect our solution to reduce to the original SGP monopole in the

limit where again Λ̂ → 0. Thirdly, the solution should be static. Finally, as the

SGP monopole reduces to vacuum when its charge goes to zero, in the same zero
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charge limit, our solution should also reduce smoothly to the AdS vacuum, that is to

a background metric with Λ̂ < 0.

4.1.1 The no-go result in the five-dimensional AdS spacetime

For such a solution, one possibility inspired from the case of the SGP solution is

to use a four-dimensional gravitational instanton type space, such as the AdS-Taub-

NUT. However, in our case we can not form the solution from a direct product of time

coordinate with a gravitational instanton so that we could easily add time coordinate

to the instanton metric. Instead, the solution should be of the form of a warped

product metric

ĝAB(ẑ) =

 k(t) 0

0 h(t)gab(r, θ, φ, y)

 , (4.1)

where a, b = {1, 2, 3, 4}. However, this introduces an explicit time dependence in the

metric like a cosmological solution, hence we skip this option.

Another way which we will follow is to first search for a suitable background metric

of a five-dimensional spacetime in which a static SGP monopole can be defined. In

this search, the topology of the background will be essential in the sense that one of

the spatial dimensions should be compactified on a circle with an arbitrary radius. In

addition, this background has to be an Einstein space with a negative cosmological

constant Λ̂ = −2L2, satisfying the field equations:

R̂AB = −2L2ĝAB. (4.2)

In five dimensions, the standard solution of (4.2) is the maximally symmetric AdS5

spacetime, which can be written in static form as

dŝ2 = − cosh2(Lr/
√

2)dt2 + dr2 + (2/L2) sinh2(Lr/
√

2)dΩ3, (4.3)

where the metric on S3 can be taken as dΩ3 = dψ2 +sin2 ψ(dθ2 +sin2 θdφ2). However,

it is impossible to interpret this metric as a suitable background, since we cannot

compactify any one of the ψ, θ or φ coordinates on an arbitrary circle, they are all

fixed by the condition of being Einstein space. In addition, since the magnetic field of

our solution should spread radially in three non-compact spatial dimensions, we expect

for the effective four-dimensional part of the solution to contain an explicit spatial part

of the AdS3 form. As seen, there is no way to extract AdS3 from (4.3). We therefore
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assume the topology of the background to be a product space AdS2×AdS3 in the form

dŝ2 = (−1/2)e−2
√

2Lydt2 + dy2 + dr2 + (1/L2) sinh2(Lr)dΩ2, (4.4)

whose AdS2 and AdS3 parts are

ds2AdS2
= (−1/2)e−2

√
2Lydt2 + dy2 and ds2AdS3

= dr2 + (1/L2) sinh2(Lr)dΩ2,

where dΩ2 = dθ2 +sin2 θdφ2 and y is the compact extra dimension. Here, we see that

the spatial part of spacetime is characterized only by the AdS3 part.

For the moment, we can make a prediction about the required form of the magnetic

field in AdS3. This form is evident from the term in front of the metric on two sphere

S2 in (4.4). By comparing this with the vacuum of the SGP monopole, we conclude

that the form of the field is

BAdS =
4mL2r̂

sinh2(Lr)
. (4.5)

As L → 0, this BAdS reduces smoothly to the field of the flat SGP monopole case.

BAdS actually represents an Abelian hyperbolic monopole [32, 33]. We see that by

the conservation of magnetic flux, the total flux Φ =
∫

BAdS .ds should be the same

both in flat case and AdS case. The total magnetic flux of hyperbolic monopole at a

great distance is found as Φ = 16πm, which is the same as that of the SGP monopole.

Hence, the argument above becomes concrete. In addition, the basic form of the

four-potential is preserved with BAdS .

Now, we write the most general static ansatz metric on our assumed background

(4.4) in the following form:

dŝ2 = (−1/2)a2(r, y)e−2
√

2Lydt2 + b2(r, y) [dy + 4m(1− cos θ)dφ]2

+v2(r, y)
[
dr2 + (1/L2) sinh2(Lr)dΩ2

]
. (4.6)

We expect that there exists a solution in this form which can solve the field equations

(4.2) with our constraints. Applying these constraints, in the limit m → 0 to return

to the background metric (4.4), we should have

a2(r, y) = b2(r, y) = v2(r, y)→ 1, (4.7)

and in the limit L→ 0 to reach the SGP monopole, we should also have

a2(r, y)→ 2 and b−2(r, y) = v2(r, y)→ 1 + 4m/r. (4.8)
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To identify the three unknown functions a, b and v, we will utilize the following three

vanishing components of the Ricci tensor

R̂θy =
8m2L2b2(1− cos θ)
sinh2(Lr)v2 sin θ

[
∂yv

v
− ∂ya

a
− 3

∂yb

b
+
√

2L
]

= 0, (4.9)

R̂θφ =
2m(1− cos θ)2

sin θ

[
∂ya

a
+
∂yv

v
+
∂yb

b
−
√

2L
]

+
[
2m(1− cos θ)2

sin θ
16m2L2b2

sinh2(Lr)v2

(
∂yv

v
− ∂ya

a
− 3

∂yb

b
+
√

2L
)]

= 0, (4.10)

R̂ry =
∂yv

v

(
∂r(abv)
abv

+
∂r(bv)
bv

)
− 2

∂r∂yv

v
+
√

2L
∂r(a/b)
a/b

+
∂r(b/∂ya)
ab/∂ya

= 0. (4.11)

We see that (4.9) reduces to[
∂yv

v
− ∂ya

a
− 3

∂yb

b
+
√

2L
]

= 0, (4.12)

and if we put this equation in (4.10), then we get[
∂ya

a
+
∂yv

v
+
∂yb

b
−
√

2L
]

= 0. (4.13)

Now, from (4.12) and (4.13) we find b in terms of a

b(r, y) =

(
e
√

2Lyg(r)
a(r, y)

)1/2

, (4.14)

where g(r) is an arbitrary integral constant. Then by using (4.14) in (4.12), we find v

in terms of a as

v(r, y) =

(
e
√

2Lyk(r)
a(r, y)g(r)

)1/2

, (4.15)

where k(r) is again an integral constant. Finally, after using b(r, y) and v(r, y) in

(4.11), it becomes
3
2
∂ra(r, y)
a(r, y)2

[√
2La(r, y)− ∂ya(r, y)

]
= 0. (4.16)

This generates two possibilities for a(r, y), which are

a(r, y) = e
√

2Lys(r), (4.17)

and

a(r, y) = a(y). (4.18)
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Thus, we obtain two different sets of solutions for the metric ansatz according to

the value of a. The first general solution, obtained by using (4.17) is

dŝ2 = (−1/2)s2(r)dt2 +
g(r)
s(r)

[dy + 4m(1− cos θ)dφ]2

+
k(r)

s(r)g(r)
[
dr2 + (1/L2) sinh2(Lr)dΩ2

]
. (4.19)

However, it is seen that there is no way to restore the background metric in the limit

m → 0. One of the most apparent reasons is that the term in front of dt2 does not

have a y dependence. Next, the other general solution, obtained by using (4.18) is

dŝ2 = (−1/2)a2(y)e−2
√

2Lydt2 +
e
√

2Lyg(r)
a(y)

[dy + 4m(1− cos θ)dφ]2

+
e
√

2Lyk(r)
a(y)g(r)

[
dr2 + (1/L2) sinh2(Lr)dΩ2

]
. (4.20)

However, this solution also does not allow us to recover the background metric. This

is seen in the limit m→ 0 (4.7), where we should have

lim
m→0

a2(y) = 1, (4.21)

and for b(r, y) and v(r, y),

lim
m→0

e
√

2Lyg(r)
a(y)

= 1 and lim
m→0

e
√

2Lyk(r)
a(y)g(r)

= 1. (4.22)

It is obvious that all of these limits can not be satisfied simultaneously. Since (4.22),

a(y) → (1 or −1), there is no way to realize the desired limits (4.22) without any y

dependence at least in the function g(r).

Consequently, it turns out that in five-dimensions there is no monopole solution

which smoothly reduces to the SGP monopole in the form of the chosen ansatz (4.6).

The topology of the chosen background does not allow for a monopole-like solution.

Basically, it seems impossible to construct a background which is close to AdS4

by using AdS5, since in AdS spacetime we cannot change the topology as easily as

in the Minkowski case, where we could change it by compactifying one of the spatial

dimensions of M5.

4.2 Monopole in the Six-Dimensional AdS Spacetime

Now, we turn to the same problem in six dimensions by using two extra dimensions

y and z this time. We take our background vacuum metric again as a direct product
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space of AdS2×AdS4, in the following form

dŝ2 = −e−2Lzdt2 + dz2 +
3
2
[
dr2 + (1/L2) sinh2(Lr)dΩ2 + cosh2(Lr)dy2

]
, (4.23)

whose AdS2 and AdS4 parts are

ds2AdS2
= e−2Lzdt2 + dz2 and ds2AdS4

=
3
2

[
dr2 +

1
L2

sinh2(Lr)dΩ2 + cosh2(Lr)dy2

]
,

where again dΩ2 = dθ2 + sin2 θdφ2. Both parts have one extra dimension which can

be compactified on an arbitrary circle. This time the spatial AdS3 which supports

the monopole is embedded in the AdS4 part, and therefore we again assume the same

form of the magnetic field (4.5) for the hyperbolic monopole.

We write the following static metric ansatz

dŝ2 = −e−2Lzdt2 + dz2 +
3
2
H2(r)[

1
V (r)

[
dr2 + (1/L2) sinh2(Lr)dΩ2

]
+cosh2(Lr)V (r) [dy + 4m(1− cos θ)dφ]2].

(4.24)

The four-dimensional part (r, θ, φ, y) above completely resembles the spatial part of

the flat case monopole. This four-dimensional part of the metric was studied before

by Pedersen [34], who found that the staticity and spherical symmetry leaves just two

functions, H(r) and V (r). The m → 0 and L → 0 limits of these functions should

read

H(r) = V (r)→ 1 and H(r)→ 1 (4.25)

respectively. In the magnetic field, since r has been replaced by sinh(Lr)/L, from the

value of V (r) in the flat case, we can take the ansatz for V (r) as

1
V (r)

= 1 +
4mL

sinh(Lr)
. (4.26)

From the field equations, H(r) is then found as follows

H(r) =
1

1− 4mL sinh(Lr)
. (4.27)

Therefore, in six dimensions we find the monopole with all the desired properties as

dŝ2 = −e−2Lzdt2 + dz2 +
3

2[1− 4mL sinh(Lr)]2
[(1 +

4mL
sinh(Lr)

)[dr2

+(1/L2) sinh2(Lr)dΩ2] + cosh2(Lr)(1 +
4mL

sinh(Lr)
)−1 [dy + 4m(1− cos θ)dφ]2].

(4.28)

This solution, which is asymptotically locally AdS, describes a monopole sitting at

rest at r = 0. We see that there is a singularity at r = 0, but it is absent if we
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make y to be periodic with period 16πm. Thus, for regularity of the metric we should

compactify one of the coordinates. There is also a coordinate singularity and we cover

the whole space again with the two coordinate sets. The curvature invariants indicate

that the metric is non-singular.
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CHAPTER 5

CONCLUSION

In this thesis, we have made a general review of Kaluza-Klein theories and its

monopole solutions. These cover both Abelian and non-Abelian versions. We have

especially given emphasis on the five-dimensional Kaluza-Klein theory and its reg-

ular, static and spherically symmetric soliton solution, namely, Sorkin-Gross-Perry

monopole [9, 10]. We have then discussed the monopole type solutions in the anti-de

Sitter spacetime, especially again the counterpart of Sorkin-Gross-Perry monopole [16].

We have seen that there is no monopole type static solution which can describe the

Sorkin-Gross-Perry monopole in the five-dimensional anti-de Sitter background. We

can however construct the monopole solutions in the anti-de Sitter spacetime by re-

laxing some of the conditions we have put on the solution such as staticity or the

number of dimensions.
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