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abstract

PARALLEL DECODABLE CHANNEL CODING

IMPLEMENTED ON A MIMO TESTBED

AKTAŞ, Tug̃can

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Ali Özgür YILMAZ

August 2007, 133 pages

This thesis considers the real-time implementation phases of a multiple-input

multiple-output (MIMO) wireless communication system. The parts which

are related to the implementation detail the blocks realized on a field pro-

grammable gate array (FPGA) board and define the connections between

these blocks and typical radio frequency front-end modules assisting the wire-

less communication. Two sides of the implemented communication testbed

are discussed separately as the transmitter and the receiver parts. In ad-

dition to usual building blocks of the transmitter and the receiver blocks,

a special type of iterative parallelized decoding architecture has also been

implemented on the testbed to demonstrate its potential in low-latency com-

munication systems. In addition to practical aspects, this thesis also presents

theoretical findings for an improved version of the built system using an-

alytical tools and simulation results for possible extensions to orthogonal

frequency division multiplexing (OFDM).

Keywords: Wireless Communication, MIMO, OFDM, Iterative Decoding,

FPGA
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öz

BİR MIMO HABERLEŞME TEST DÜZENEG̃İ ÜZERİNE

KURULMUŞ PARALEL ÇÖZÜLEBİLİR KANAL KODLAMA

AKTAŞ, Tug̃can

Yüksek Lisans, Elektrik ve Elektronik Mühendislig̃i Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Ali Özgür YILMAZ

Ag̃ustos 2007, 133 sayfa

Bu çalışmada gerçek zamanlı bir çok-girdili çok-çıktılı (MIMO) telsiz haber-

leşme sisteminin hayata geçirilme evreleri ele alınmıştır. Uygulamaya yönelik

kısımlarda, yerinde programlanabilir geçit dizisi (FPGA) kartı üzerinde ger-

çeklenen bloklar ve blokların alışıldık radyo frekansı ön bölüm birimleri ile

bag̃lantısı ayrıntılarıyla anlatılmıştır. Kurulan test düzeneg̃inin alıcı ve ve-

rici parçaları ayrı ayrı tartışılmıştır. Alıcı ve vericideki alışılagelmiş yapı

blokları dışında, düşük gecikmeli haberleşme sistemlerindeki kullanım ola-

naklarını gösterebilmek için özel bir yapıdaki paralelleştirilmiş döngülü kod

çözme mimarisi test düzeneg̃i üzerinde gerçeklenmiştir. Uygulamaya yöne-

lik kısımlarla birlikte, kurulan sistemin dikgen sıklık bölümlemeli çoklama

(OFDM) yöntemine uyarlanarak geliştirilmesi için çözümsel ve benzetimsel

sonuçları kullanan teorik bulgular da bu tezde sunulmuştur.

Anahtar sözcükler: Telsiz Haberleşme, MIMO, OFDM, Döngülü Kod Çözme,

FPGA
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chapter 1

introduction and motivation

Although receive diversity enabled by multiple antennas at the receiver side

(multi-output) has been common for a very long time, utilization of multiple

antennas at the transmitter side (multi-input) is quite new in communica-

tions. Multiple-input multiple-output (MIMO) wireless systems have been

the center of attention in the last decade following the pioneering work in [1],

where the information theoretic capacity improvements provided by the use

of MIMO systems became apparent. In order to manage the increasing data

rate demand of lately emerging real-time applications, spatial multiplexing

has been one of the promising solutions. Moreover, spatial diversity created

by multiple-antenna systems is also used for improved signal reliability and

reduced bit error rates.

High data rate demand of recent applications presented another problem

in wireless systems. Due to increased bandwidth usage many communication

systems have become more prone to selective frequency response of the trans-

mission medium. Consequently, multicarrier transmission methods have be-

come more popular. Orthogonal frequency division multiplexing (OFDM) is

currently one of the most utilized multicarrier transmission techniques and

has been the underlying element in IEEE 802.11a/g based wireless LANs,

DVB terrestrial digital TV systems, IEEE 802.16 based WiMAX, etc.

In many recent research and development projects in wireless communica-

tions, joining two strong techniques (MIMO and OFDM) high data rates have

been achieved [32]. In these systems, multipath propagation and frequency

selective channel effects are remedied by the use of OFDM. Furthermore,
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multiple usage of the same frequency bands through spatial multiplexing

supply extra data rate increase with respect to single-antenna counterparts.

The focus of this thesis is mainly on explaining the implementation steps

of a wireless communication testbed which has been initialized to experi-

ment newly developed communication techniques as well as the techniques

currently known. Main goals include building the single-input single-output

(SISO) system with all the digital signal processing modules realized on a

flexible hardware, expanding the receiver side to utilize multiple antennas for

improved signal quality, supporting the transmitter side with extra antennas

for creating transmitter diversity, improving the MIMO system so that it can

support transmission of data substreams using OFDM.

Throughout this thesis, there are three main subjects that are discussed.

The initial emphasis is given to development stages of a SISO system on

a field programmable gate array (FPGA) and afterwards the improvement

obtained by addition of another receive antenna to the system is discussed.

Subsequently, in the second part, a parallelized decoder structure for reducing

the latency introduced by iterative decoding is studied and implementation

results are given. Finally, in the third part, the optimal power adaptation

method in OFDM and MIMO systems is inspected with regard to the peak-

to-average power ratio (PAPR) problem. In addition, a suboptimal power

adaptation scheme is developed and analyzed.

Signal processing required for detecting the transmitted data that trav-

els in a noisy communication medium is realized on an FPGA. Two main

building blocks of the wireless testbed, transmitter and receiver modules, are

developed on two separate FPGA boards which are connected to high speed

digital-to-analog and analog-to-digital converters, respectively. Over-the-

counter radio frequency transmission/reception modules serve as the means

for accessing the wireless medium. The transmitter structure is composed

of three blocks: pseudo-random data generator, pulse shaping filter, and

the in-phase/quadrature (I/Q) modulator. The receiver structure, on the

other hand, is more sophisticated and includes various building blocks. The

2



received and sampled signals are I/Q demodulated and lowpass filtered ini-

tially. After a down-sampling operation, the signals on I and Q branches

are matched filtered. Moreover, packet, bit, and frequency synchronization

modules directly affect these blocks and the signal on which bit detection is

carried out.

In 1993, it was shown that bit error rates can be improved by concatenat-

ing simpler codes in parallel and decoding the received signal iteratively [17].

In [14, 13], it was observed that the serial concatenation of codes may yield

even better bit error rate performance under specific conditions. However,

both of the serial and the parallel concatenated code decoders suffer from

increased decoding latency due to many iterations. Therefore, we utilize par-

allelized encoder/decoder structures for simultaneously decoding substreams

of data. We concentrate on serial concatenation of two codes as described

in [10]. The data throughput for this implementation is shown to support

over 4 Mbps data rate on a SISO system.

In addition to practical aspects of the testbed development, we questioned

the enhancement in the PAPR of MIMO and OFDM systems under optimal

power allocation techniques. The suggested equal power allocation technique

is shown to provide comparable channel capacity to the optimal method when

the PAPR performance of two techniques are also taken into consideration.
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chapter 2

implementation of the wireless testbed

This thesis work was predominantly routed by a research project1 which

has been funded by TUBİTAK. The aim of the project is to implement a

broadband wireless communication system exploiting well established ideas

such as multicarrier modulation and antenna diversity/multiplexing and to

further procure new theoretical findings in accordance with observations on

the implemented system. We successfully built up the first version of the

operational testbed and will summarize the implementation under four main

subtitles. Initially, we will elaborate on the hardware we made use of. Follow-

ing the elaboration on hardware, the software programs used in developing

the codes and simulating them will be named. Then, the transmitter and

the receiver parts will be functionally characterized. Finalizing the opera-

tion essentials of the conventional single antenna setup, we will present the

multiple-antenna system and its performance measures.

2.1 Testbed Specifications

Prior to the details of the testbed implementation, some figures for the over-

all specifications of it will be given. The RF front-end modules are designed

for baseband video signal transmission by using FM modulation. Accord-

ingly, the transmitted signal bandwidth is allowed to be at most 5 MHz.

1TUBİTAK Kariyer (104E027) project entitled “Yüksek Başarımlı Gezgin Haberleşme:

Çarpım Kodları Kullanarak Ortak Kanal Kestirimi ve Kodlama” and supervised by Ali

Özgür Yılmaz
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The carrier frequency of FM modulator is 2.4 GHz. In our system, the avail-

able 5 MHz bandwidth is not used, but rather 1.35 MHz bandwidth around

an intermediate frequency of 3 MHz is utilized. In the transmitter side,

before the RF transmitter 12 bit digital words in the FPGA are converted

to analog. Digital-to-analog converter can conduct conversion of 2 different

digital words to analog simultaneously. Digital-to-analog conversion can be

performed with a maximum rate of 160 Msps. In particular, the sampling

rate used is 24 Msps. Similarly, baseband analog signal received from the

RF receiver is converted to 12 bit digital words with a rate of 24 Msps. It

should be noted that analog-to-digital converter can conduct conversion of

analog signals coming from 4 different channels into 12 bit digital words. In

addition, it can support conversion rates upto 65 Msps. The 12 bit digital

words are transmitted to the FPGA via synchronous serial transmission. The

serial port interface that is used for debugging the digital filters on FPGA is

capable of transmitting 115.2 Kbps to the computer.

Currently, the implementation supports wireless communication using

QPSK modulation at a rate of 2 Mbps. Our final goal at the end of the

TUBİTAK funded project is to support data rates upto at least 10 Mbps

with MIMO-OFDM system and adaptive modulation methods.

2.2 Hardware Specifications

We carried out the experiments on our wireless testbed in the Telecommuni-

cations Laboratory of the Electrical and Electronics Engineering Department.

In addition to the commonplace test and measurement equipment like the

function generators, oscilloscopes, spectrum analyzers, etc., we utilized some

specialized evaluation boards crafted for high-speed telecommunication ap-

plications. This section explains the physical building blocks of our testbed.
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2.2.1 ML-310 FPGA Board

Field Programmable Gate Arrays (FPGAs) are programmable logic devices2.

They are composed of configurable logic blocks (CLBs) which are connected

via modifiable switches. Most of the FPGAs may be reprogrammed many

times due to their static random access memory (SRAM) based structures.

Moreover, they gained an increasing interest in the last two decades due to

their potential in executing parallel processes simultaneously. CLBs (denom-

inated as slices by Xilinx3 as well) include the most elementary structures

like flip-flops, multiplexers, lookup tables (LUT), etc. A slice is composed

of two four-input LUTs, six various size multiplexers, and two flip-flops as

shown in Figure 2.1.

The LUTs are capable of realizing all possible functions of at most 9 binary

variables (inputs) when used together with a second stage 3-input LUT. The

results of the LUTs may be multiplexed to the flip-flop(s) in case of a need

for a register for storing the result of the function. Other than CLBs, some

secondary structures may exist on FPGAs for improving the performance.

As an example, the hardware designer may require large arrays of registers

for storing data or implementing the taps of a digital filter, which makes exis-

tence of some Random Access Memory (RAM) modules compulsory together

with CLBs. Moreover, design of relatively large multiplexers using simply

CLBs will slow down the operation of them unavoidably, due to large routing

delays between many CLBs especially for massive implementations. There-

fore, large dedicated multiplexers serve as a means of improving hardware

performance. In addition to these, many recent FPGA chips include dedi-

cated binary multipliers for fast multiplication, clock management modules

for diminishing skew effects on the clock signal(s) and synthesizing various

2Unlike microprocessors, FPGAs can be reconfigured repetitively many times and for
many different functionalities.

3For more information on this well-known FPGA manufacturer see www.xilinx.com/.
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frequencies, and even previously programmed microprocessors for embedded

designs.

Our evaluation board was Xilinx ML310 Embedded Development Plat-

form. This FPGA board is equipped with numerous assets to capture all

requirements of embedded design process. Primarily, it features a XC2VP30-

FF896 Xilinx FPGA chip, whose basic specifications are given in Table 2.1.

The PowerPC microprocessors are based on Harward Architecture and de-

veloped by IBM. Two instances of PowerPC are programmed onto the FPGA

chip in read-only mode during production. In our project, they are expected

to be responsible for execution of sequential-type jobs and calculations in-

volving floating points or functions that are hard to implement on an FPGA

(like precise calculation of logarithmic functions) in the following develop-

ment phases. They are capable of operating at 300 MHz clock frequency

and connected to the programmable part of the FPGA directly. The ap-

Figure 2.1: Slice structure for Xilinx FPGAs.
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Table 2.1: Specifications of XC2VP30-FF896 FPGA chip

Structure Count Explanations

Logic Cells 30,816 Lookup tables and flip-flops for

implementing logic

PPC405 2 IBM PowerPC microprocessors for

sequential code execution

MGTs 8 Very high speed serial input/output

interfaces

BRAM(kb) 2,448 Variable size RAM blocks for medium

size storage

Xtreme Multipliers 136 18-bit by 18-bit fast multiplier blocks

plication and the network layer protocols are the essential usage areas for

these processors. The BRAM (Block RAM) modules are true dual-port4

RAMs, which can be concatenated vertically and/or horizontally in order to

obtain RAMs larger than the default size of “1024 by 18-bit”. In total, 136

Block RAM modules take place in the chip. The MGTs in Table 2.1 stand

for Multi-Gigabit Transceivers and connect the chip to the outside world

through 3.125 Gbps serial data lines. However, we made use of another type

of serial interface to provide the communication between the analog-to-digital

converter and the FPGA. This connection type is Low Voltage Differential

Signaling (LVDS) and widely used for serial communication applications with

high data rate (around 1 Gbps). Details of operation for LVDS connection

used in our setup are given in Sections 2.2.3 and 2.5.1.

Besides the FPGA chip, ML310 comes with several other interfaces and

properties. A concise list of them is given below.

� DDR-RAM sockets filled with 256 MB DDR DIMM type

RAM: Applications that generate the data to be sent through our

4Dual-port RAMs can be written(read) to(from) two distinct addresses concurrently.
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testbed may utilize this memory resource. In some specific cases pro-

grammable part of the FPGA may also use this memory. They are

accessed slower than Block RAMs, hence usually not preferred unless

the storage requirement is very high.

� 512 MB CompactFlash card: It acts like a harddisk on which

the PowerPC processors can write calculation results or data captured

from the physical layer of the receiver. Moreover, there exist two pre-

installed operating systems (MonteVista Linux 3.1 and VxWorks Tor-

nado 2.2 ), which provide many tools to be used over PowerPC proces-

sors.

� High Speed Personality Module Connectors: There are two Z-

DOK connectors on ML310 that serve as the means of communication

between other boards and ML310. Various voltage levels are supported

over almost a hundred input/output (I/O) ports and the voltage levels

are software configurable.

� RS-232 Port with Direct FPGA connection: In our testbed, this

connection is helpful whenever the user wants to analyze the output of a

module (like a filter) on FPGA. We managed to send data generated on

FPGA to a computer running MATLAB in order to debug the various

blocks operating on FPGA.

� ALi South Bridge: This is an I/O controller chip and arbitrates the

I/O requests of peripheral units on the ML310 board for an organized

communication with processors. These peripheral units include two

IDE units (harddisks, CD/DVD-ROM drives), two USB units, audio

codec chip, two RS-232 ports, and one parallel port. Together with two

PCI connectors and an Ethernet controller, the data bus of ALi South

Bridge is connected to Peripheral Control Interface (PCI) Bridge of the

FPGA.
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2.2.2 Digital-To-Analog Converter, AD9773

The transmitter part converts the digital data constructed on FPGA into

analog form using a digital-to-analog converter (DAC) chip, AD97735. This

is a 12-bit resolution converter chip designed by Analog Devices. It is capable

of converting 160 Msps (mega-samples per second) and has two 12-bit input

ports. According to the desired operation, these two inputs may behave as

the digital input for two completely different analog signals or as the in-

phase and the quadrature-phase components of a complex signal for direct

intermediate frequency (IF) transmission. Through a serial port interface,

the unit can be programmed to select this and many more operation modes.

It is possible to select the IF frequency as the fractions (1/2, 1/4, or 1/8)

of the supplied oscillator input frequency, turn on interpolated data con-

version, and specify the voltage (hence, signal power) level at the analog

outputs precisely. The evaluation board of this chip is easily operated af-

ter making power connections, the signal output connections through SMA

(subminiature versionA) connectors, and plugging/unplugging a few jumper

connections on the board. The outputs of this DAC board are AC-coupled,

hence do not pass DC-signals.

2.2.3 Analog-To-Digital Converter, AD9229

AD92296 is another chip designed for conversion of analog signals to digital

ones by Analog devices. This analog-to-digital converter (ADC) operates at

sampling frequencies in the range from 10 Msps to 65 Msps and supply its

digital output in 12-bit offset binary7 format. There are four distinct con-

5For detailed information, see http://www.analog.com/en/prod/0,,AD9773,00.html

6For more information, see http://www.analog.com/en/prod/0,2877,AD9229,00.html

7Offset binary represents the most negative number with all zeros, and the most positive
number with all ones, hence conversion to 2’s complement binary format is as simple as
inverting the first bit in the offset binary representation
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version units; therefore four distinct digital outputs on a single chip. The

digital outputs of the ADC conform to the ANSI-644 LVDS standard. The

differential output signals swing within a 375 mV peak-to-peak range and

require 100Ω termination at the receiver side. Together with the LVDS data

outputs, two LVDS clock signals are also supplied. The frame clock output

designates the start of new 12-bit conversion result at each rising edge. It

is the same as the sampling frequency. In comparison, the data clock is

six times faster than the sampling clock, since at both the rising- and the

falling-edges of this data clock one data bit is given as output. As a conse-

quence of this serial output interface, the digital signal output frequency is

twelve times faster than the sampling frequency. During the design phases of

the interconnection board for interfacing ML310 board with ADC and DAC

boards, the signal integrity of these LVDS lines posed a great problem for us

due to three main reasons:

� The LVDS line pairs need to have 100Ω impedance for minimum power

loss.

� All of the LVDS data line pairs and the differential clock pairs must be

of very similar lengths for diminishing the delay differences imposed on

different signals. To demonstrate with an example, at 65 MHz sampling

rate, the delay difference between any two lines should be kept below

640 picoseconds.

� Different LVDS signal pairs should be kept at a relatively large dis-

tance and their paths should be as smooth as possible (avoiding sharp

corners) to keep signal interference between the lines at a minimum.

To minimize crosstalk, signal integrity, and electromagnetic compatibility

(EMC) problems, we made use of several simulation softwares like Advanced

Design System (ADS) and Hyperlynx, which are also mentioned in Sec-

tion 2.3.3. As a final point, the analog inputs of the ADC board are AC-

coupled as in the case of analog outputs of the DAC board.
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2.2.4 RF Transmitter and Receiver Modules

The transmitter and the receiver modules are responsible for up-conversion

of the IF signal to radio frequency (RF) level and down-conversion of the RF

signal to IF level respectively. They are manufactured by UDEA (an Ankara

based communication technologies company) and designed to operate at one

of four selectable frequency intervals between 2.4 GHz and 2.5 GHz. The

transmitter module delivers 18 dBm (64 mW) power to the channel and is

capable of transmitting signals in the (-5 MHz, 5 MHz) band. One of the

main disadvantages we had in the first version of our testbed was that this

transmitter and receiver pair used frequency modulation (FM) technique be-

ing designed to deliver analog video/audio data from a source to a TV unit.

Consequently, we initiated the design of the second version of the testbed,

which is expected to remedy this problem using amplitude modulation (AM)

for transmission. More details on this second version can be found in Chap-

ter 5. The receiver module has -85 dBm signal sensitivity and also gives

an analog received signal strength indicator (RSSI) output that can be used

to determine the instantaneous effect of the automatic gain control on the

received signal. Both the receiver and the transmitter modules accept the

1 Vp-p signal level for their data input and output ports. This voltage level

is in accordance with the default voltage levels of the ADC and the DAC

boards as well.

2.3 Software Used for Implementation,

Debugging and Simulation

We made use of several application software tools in order to design, sim-

ulate, synthesize, and program FPGA; develop and simulate algorithms to

be used on our testbed; design and analyze printed circuit boards (PCB) for

new extensions to our testbed hardware. This section summarizes the most

frequently used ones.
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2.3.1 MATLAB v7.0

MATLAB was used in various phases of the development of our testbed. To

start with, it is utilized for implementing the filters and sine lookup table

to be used in our design. We generated and operated all of the receiver and

the transmitter blocks initially within MATLAB as stated in Sections 2.4

and 2.5. Secondly, MATLAB functioned as a debug environment for the

codes programmed onto the programmable device (FPGA). We verified the

results of each newly developed block through an interface which first writes

the results of that block onto Block RAMs and then delivers these results

using the serial port of the FPGA board. Another code, in MATLAB, was

responsible for listening to the serial port of the computer, converting re-

ceived data into real numbers, and plotting the desired curves for assuring

us that the block on the programmable device operates in the same man-

ner as the corresponding block in MATLAB. Also, as it is underlined in

Section 3.6.1, the PDSCCC (parallel decodable serially concatenated convo-

lutional code) decoder was developed in MATLAB, while it was being coded

for FPGA implementation. MATLAB environment presented a fast verifica-

tion method for decoding calculations obtained from FPGA simulation and

operation results. It reduced the time required for debug process consider-

ably. In addition to all these, we tested our suggestions for suboptimal power

allocation methods (see Chapter 4) via the simulation codes conducted under

MATLAB.

2.3.2 Xilinx ISE Webpack Edition v9.1

Nearly all of the hardware implementations are coded using a hardware de-

scription language that is known as VHDL. Xilinx ISE was the development

environment for these codes. The initial phase of development is usually

named as the synthesis part. In the synthesis phase, Xilinx ISE first checks

the syntax of the code, then generates a register level description of the de-
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signed circuit, and produces a netlist8 of the design that will be taken as

an input by the following phase (called implementation). Before the second

phase of Xilinx ISE is invoked, the user may wish to declare some physi-

cal requirements that the final design will satisfy. Hence, it is possible to

enter the timing constraints (like imposing the minimum operating clock

frequency, or dictating all of the register outputs to be ready in less than

a given amount of time before the rising-edge of the clock), the area con-

straints (as a good example, stating that the overall design should utilize

less than a given percentage of the programmable device), and some more

complicated constraints like the operation temperature of the hardware. In

the implementation phase, the final physical structure is formed after plac-

ing and routing the building units (registers, multiplexers, multipliers, RAM

blocks, . . . ) and connecting the input and the output pins of the outermost

block in the design. The pin assignments for interaction with the outer world

is also highly flexible. Furthermore, in some special cases, user may prefer

placing9 a subset or all of the components in a design manually instead of

an automated design procedure. Xilinx ISE allows this manual configuration

through location constraints. The final phase realized by Xilinx ISE is the

programming and verification of the programmable device through a special

download cable.

In connection with the embedded design process (which includes opera-

tion of the PowerPC cores on the device as well), Xilinx Platform Studio and

the Embedded Development Kit is preferred, which will not be detailed here.

8Netlists convey the connectivity information between the registers and other design
units.

9An example for such a case and solution procedure is given in Section 2.6.2
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2.3.3 Printed Circuit Board Design and Simulation

Softwares

Basic resource for drawing an interface board between the FPGA board and

the peripheral boards (DAC and ADC boards) was PCAD 2004. This soft-

ware is such a sophisticated tool that many complex circuits with two or more

layers can be conveniently drawn. It has a trial version that we made use of

and it was fortunate for us that one of the students in Telecommunications

Laboratory had learnt numerous shortcuts and tricks of this software during

his summer practice. This software is also capable of routing the lines be-

tween units automatically, which helped us during the routing phase of lines

that were to carry relatively slow frequency signals. For improved signal

integrity on critical lines (like LVDS pairs described in Section 2.2.3), we ini-

tially defined the line and the ground plane characteristics for matching 100Ω

impedance. For this purpose, Hyperlynx free trial software is utilized. This

software calculated the proper distance between LVDS pairs, the required

thickness of them, and the desired clearance between an LVDS line and the

ground plane that surrounds it. All of these values are obtained according to

the material types to be used for manufacturing the lines and the insulator

layer between the top and the bottom layers of our two-layer board design.

At this point, invaluable support and guidance of friends from Electromag-

netic Waves and Microwave Techniques Group directed us to simulate the

potentially problematic parts in the Advanced Design Systems environment.

After some final arrangements, we had our PCB prepared in Delron10. The

results were satisfactory in terms of signal integrity on the interface board

and we made use of this board until the preparation of this thesis report.

10Delron is a well-known PCB printing company located in Manisa, Turkey.
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2.3.4 Labview Interface for Programming

AD9773 Board

This interface is simply designed for accessing programmable properties of

our DAC board and distributed freely by Analog Devices. Other than set-

ting IF signal’s center frequency and interpolation features, we simulated

various signal-to-noise (SNR) ratio scenarios using the coarse and the fine

gain adjustment registers for the output signal level.

2.4 Transmitter Structure

Since we have given all the basic information about the hardware and the

software that constitute the underlying structure for our testbed implemen-

tation, we can continue with the implementation phases. Initial attention

will be given to the transmitter hardware we built up on the ML310 board.

Basic building blocks of the transmitter is going to be followed by the re-

ceiver architecture. Figure 2.2 highlights the transmitter structure via a

block diagram.

2.4.1 Pseudo-random Data Generation

In many applications random data generation is indispensable. Crypto-

graphic works, statistical experiments, telecommunications applications (as

an example, Gold codes in CDMA system), and simulation softwares are

some areas of interest for people in search of good random-like sequences.

For most of the cases it is impossible to create a true random number gener-

ator on a computer, since any outside factor that has an effect on the output

of generator will make the generator non-random. Although some methods

to generate true random numbers and test their randomness on specific hard-

wares (like FPGAs) have been proposed [2], most of the currently utilized

random number generation methods depend on generating numbers accord-
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Figure 2.2: Transmission of QPSK modulated data is shown.
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ing to a deterministic procedure. For this deterministic procedure, once the

initial state (or also known as seed) of the generator and the procedure are

given all the data to be created in next steps is also known. However, for

such pseudo-random number generators, it usually takes a very long time

to repeat the generated data that in any small interval of observation, the

generated numbers may resemble a truly random sequences. In our case

pseudo-random data generation was important for two reasons:

� If we use a series of bits repeating themselves in short intervals, the

power spectrum of the output of the transmitter will possess an im-

pulsive character, hence the frequency selectivity of the transmission

medium (if any) will not be clearly observed at the receiver side. On

the other hand the power spectrum density (PSD) for a pseudo-random

sequence will resemble the one of a truly random sequence and will not

be impulsive as given in Section 2.4.2.

� It is almost always true that a code working for a set of possible inputs

may fail in others. Therefore, it is wiser to test any code with as

many different input combinations as possible. Determination of fault-

free operation for our transmitter block will be much reliable when a

pseudo-random bit sequence is utilized as well.

There are various methods for pseudo-random bit generation. One of

the best known techniques is using linear feedback shift register (LFSR). An

LFSR is called linear because it consists of only xor (exclusive-or) operators,

which are linear operators for binary variables. Moreover, it also has a feed-

back structure that shifts a function of a set of its state bits (registers) back

to its input as it is given in Figure 2.3 for an example LFSR. The initial state

of the LFSR is called the seed and it deterministically gives whole output

bit sequence. In Figures 2.3, 2.4, 2.5, and 2.6, an example operation cycle is

given for a 16-bit register LFSR. The bits shown shaded are called the taps

of the LFSR and they are the bits summed (in binary sense) to obtain the

next input. Once the next input is obtained, we can shift the register to the
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Figure 2.3: An LFSR with seed: 0110100011110011.

right and the rightmost bit yields the output whereas the input enters to the

LFSR from the left as in Figure 2.6.

Figure 2.4: The 16th, 14th, 13th, and the 11th bits (taps) are summed.

Since the possible number of states of an LFSR is limited to 2n (n is the

number of registers in the LFSR) at most, every LFSR repeats itself within

a fixed interval. However, when this interval is maximum, i.e. 2n − 1, where

the all zero state is substituted, such an LFSR is called as maximal. For

example Figure 2.3 demonstrates a maximal LFSR11. It is fairly simple to

11Proving that a given LFSR is maximal requires showing the polynomial corresponding
to its taps (the bits which affect the input) is primitive. For details, see the book “Shift
Register Sequences” by Solomon Golomb.
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Figure 2.5: The input bit is found as 0.

Figure 2.6: Right shift operation is carried out. Output bit is 1.

implement the LFSR structure on FPGA. The following code segment shows

the implemented LFSR in VHDL:

. . . (Signal declarations follow:)

signal lfsr input : std logic;

signal generator reg : std logic vector(31 downto 0);

. . . (LFSR input is updated using the desired taps:)

lfsr input <= generator reg(0) xor generator reg(10) xor

generator reg(30) xor generator reg(31);

. . . (At the next rising-edge of the clock, LFSR is right-shifted:)

elsif(rising edge(clock)) then
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generator reg <= lfsr input & generator reg(0 to 30);

. . . (Remaining part of the code follows)

As seen in the example code segment, we used a 32-bit LFSR, which is

maximal. Hence, we generated a pseudonoise (PN) sequence that repeats

itself after 232 − 1 cycles. Our data rate was 1 Mbps, which corresponds to

a repetition interval of approximately 4000 seconds. This figure was enough

to observe a PSD that is quite similar to the PSD of rectangular pulse shaped

BPSK.

2.4.2 Pulse Shaping

During the implementation of the pulse shaping filter for the transmitter, we

considered two main points:

� No intersymbol interference (ISI) at the sampling instants:

For a pulse shape x(t), k being any sampling instance, the no ISI con-

dition can be defined as

x(t = kT ) =

{
1 if k = 0

0 if k �= 0
. (2.1)

According to the Nyquist pulse-shaping criterion [3], the necessary and

sufficient condition for X(f) is given as

∞∑
m=−∞

X(f + m/T ) = T (2.2)

� Bandlimited frequency response: In wireless communications, lim-

iting the bandwidth of a baseband signal is crucial to avoid aliasing

during the IF up-conversion and to suppress out-of-band radiation.

However, a signal limited in frequency domain is unlimited in time do-

main. For that reason, the signal to be implemented should be nearly

limited in frequency for realization of a nearly unlimited time domain

representation.
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There are many pulse shapes satisfying the first condition noted above. These

pulse shapes constitute a class called Nyquist-I pulse. The smallest band-

width for these pulses is satisfied by the sinc function:

x(t) =
sin(πt/T )

πt/T
, (2.3)

where T is the symbol duration. In contrast to its bandwidth advantage,

sinc function has a slow decay rate and sensitive to timing phase errors. As a

result, it is usually very hard to approximate the sinc function in time domain

and in case of timing errors, the ISI term in the received signal may increase

indefinitely. For these two reasons, we decided to use another well-known

signal for pulse shaping the symbols to be sent. This pulse shape is known

as raised cosine (RC) and it is usually defined using a parameter named as

the roll-off factor, β. The normalized frequency domain representation for

RC is given by

X(f) =

⎧⎪⎪⎨
⎪⎪⎩

1 | f |≤ 1−β
2T

1
2

[
1 + cos

(
πT
β

[| f | −1−β
2T

])]
1−β
2T

<| f |≤ 1+β
2T

0 | f |> 1+β
2T

. (2.4)

Since the representation in Eqn. 2.4 is limited in frequency domain, the

corresponding time domain pulse is also unlimited just as in the case of sinc

pulse. Nonetheless, RC pulse shape decay rate is proportional to (1/t3) for

β > 0 case12, whereas sinc function only decays with a (1/t) rate. In this

sense RC pulse shape can be approximated more easily and it has higher

immunity to timing phase errors. The bandwidth occupied by RC filter is

BWRRC =
1

2T
(1 + β). (2.5)

In our application, since the receiver had to match the transmitter pulse

shaping filter and the overall response had to represent an RC filter, we used

the root raised cosine (RRC) filtering at both ends. The frequency response

12For β = 0 RC pulse shape becomes nothing but the sinc pulse shape.
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of the RRC filter is just the square-root of the RC response given in Eqn. 2.4.

Our design choice for the roll-off factor was 0.35 due to the effective sampling

frequency at the receiver side (see Section 2.5.3).

During the implementation of pulse shaping (which applied on the pseudo-

random output of the LFSR in Section 2.4.1), we initially generated the de-

sired impulse response of the RRC filter in MATLAB. Then, the filter taps

are normalized and quantized in 6-bit 2’s complement signed format. The

exact RRC pulse shape together with the digital approximate (that is stored

in read-only memory modules of FPGA) is shown in Figure 2.7. The exact

pulse is scaled such that the peak value in the middle is equal to the largest

positive integer (in our case, for 6-bit signed representation, it is 31) for

better visualization of the approximation errors. Moreover, due to 24 MHz

sampling rate of digital-to-analog converter (DAC), and selected 1 Mbps data

rate, the oversampling rate for the RRC filter would be an integer between

1 and 24. Figure 2.7 is drawn with the assumption that approximate filter’s

oversampling rate is 6 and a given sample is constant for 4 time steps in

24 MHz sampled domain. Having a higher oversampling rate means storing

more intermediate samples from exact waveform and better approximation

of RRC pulse. Finally, we divided a symbol time into six intervals, which cor-

responds to oversampling rate of 6. In each interval a distinct value sampled

from the quantized exact waveform is used for realizing the convolution op-

eration with the RRC pulse shape. With 6-bit representation the quantized

values for RRC become zero outside the ±3 symbol interval and 19 sym-

bols (6 for each 3 symbol intervals and a single midpoint) are stored making

use of the symmetry of the RRC pulse shape around its peak (midpoint)

value. The convolution operation is, then, summation of 7 of these samples

or their negated versions according to the values of the symbols to be sent,

when oversampling is taken into account. In our case, for QPSK modulated

symbols, we directly add the sample for a 1 to be sent and add the negated

sample for a 0 to be sent in both in-phase and quadrature-phase branches.

23



−100 −80 −60 −40 −20 0 20 40 60 80 100
−10

−5

0

5

10

15

20

25

30

35
Ideal RRC Impulse Response in Comparision with Digital 6−bit Approximation

n, discrete time

Q
ua

nt
iz

at
io

n 
L

ev
el

 

 

Exact RRC Impulse Response
Digitial Approximation

Figure 2.7: Digital RRC filter closely approximates the exact waveform

within ±3 symbol interval.

The RRC pulse shape (and its approximation) is not causal as seen in

Figure 2.7. This results in the requirement that at least 3 past symbols sent

should also be kept for adding their pulses’ tails to the current symbols pulse

shape. We solved this issue simply by taking the 29th bit of the LFSR as

the current bit to be transmitted and taking the 30th, 31st, and 32nd bits as

the past bits. In accordance with that idea, the 28th, 27th, and 26th ones are

the next bits effecting the current bit. Applying this filter on the random

sequence of BPSK symbols, we obtained the time and frequency domain

signals as in Figures 2.8 and 2.9. The quantization levels (steps) for the

time domain representation are obvious. If we take the PSD of the filter

output into consideration, the first thing to note is that occupied bandwidth

is very close to 0.675 MHz, which is also the expected bandwidth found from
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Figure 2.9: The PSD of the digital RRC filter output.
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Eqn. 2.5 with β = 0.35. Secondly, there are harmonic signals at f=6 MHz and

f=12 MHz distorted by a sinc type multiplicative signal. The signal around

f=6 MHz is approximately 25 dB weaker than the baseband signal; therefore

was observed to have limited effect during the IF conversion described in

Section 2.4.3. A lowpass filter placed before the I/Q modulation stage may

improve the performance further.

2.4.3 I/Q Modulation

QPSK modulation is performed to transmit data after RRC pulse shaping

for BPSK modulated data. In order to generate two bit streams, we used two

LFSRs with different seeds. We quantized single period of a 3 MHz sine signal

in MATLAB and formed an 8-bit resolution sine lookup table (with 8 entries)

from this quantized data in VHDL. We synthesized a free-running counter for

accessing this table to form a digital sine signal and used quarter-length (90◦)

shifted version of that counter to form the cosine signal. After multiplying

the in-phase and quadrature-phase RRC shaped signals with cosine and sine

signals, the difference of the products were ready to be given to DAC board.

Figure 2.10 demonstrates the PSD for the IF QPSK signal taken as input by

the DAC. Obviously, the baseband RRC type frequency response is carried

to the IF, which is 3 MHz in our implementation. The effect of the harmonic

signal that was present before the conversion is negligible. The IF signal

given to the DAC is converted into analog form and transmitted after an RF

up-conversion.

2.5 Receiver Structure

The receiver side, in fact, carries out similar operations to the transmit-

ter, however in the reverse order. Mainly, initial steps constitute RF to

IF down-conversion, sampling of the IF signal, I/Q demodulation, and low-

pass filtering to obtain the baseband equivalent signal. Following these steps,
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Figure 2.10: The PSD of the digital I/Q modulation output.

RRC matched filtering is applied and finally, the symbols are detected. Other

than these steps, some auxiliary steps should also be implemented. Firstly,

the start for the group of bits, which is called a packet, must be detected.

The optimal detection points for bits needs to be found and effects of the

channel and the frequency offsets should be estimated. It is common to most

telecommunications systems that the receiver structure is much more sophis-

ticated than the transmitter. In accordance with this trend, our receiver

setup (with all the blocks stated above) is also almost six times more com-

plicated than the transmitter in terms of the logic area usage on the FPGA

chip. Figure 2.11 demonstrates the complexity of the receiver side better.

Now, we will explain in detail the receiver blocks one by one in the order

of their operation on the received data.
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Figure 2.11: Reception, processing and detection tasks carried out in the

receiver side are summarized.
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2.5.1 Serial to Parallel (LVDS to CMOS) Conversion

We described in Section 2.2.3 that the 12-bit samples of the analog data are

given in serial LVDS pairs together with data and frame clocks by the ADC

board. After being conveyed to the FPGA board through an interface board,

this serial data bits needs to be converted into 12-bit parallel data. This posed

one of the biggest problems we faced, since not only the serial to parallel

(S/P) conversion requires adequate usage of two different frequency clock

signals, but also it has to be done by a circuit with a very low combinational

delay. We aimed to design the simplest possible S/P converter that can

sample the received serial bits at the rising- and the falling-edges of the data

clock. Although the serial LVDS data rate in our case (6×24 = 144 MHz) was

moderate when compared with the upper limit of the ADC (nearly 400 MHz),

the design was still demanding. The initial phase was to convert the obtained

LVDS pair into a single ended CMOS signal that can be used by our design.

The LVDS buffers and the LVDS clock buffers located on some special parts

of the FPGA were the solution for voltage level conversion. Following this,

we separated the S/P conversion block from the other design units and put

some timing constraints so that all the S/P conversion related logic should

satisfy 144 MHz operating frequency. These precautions made Xilinx ISE

synthesize and implement a logic that meets our timing requirements. To

obtain the first results, the parallelized data is tested by setting the ADC

to transmit some factory-coded test patterns without actually sampling the

received signals. Then, a logic block for converting the binary offset (see

Section 2.2.3) representation into 2’s complement had been written. Finally,

assuring the correct operation of the S/P converter we used this structure

until the realization of multiple receiver antenna system. The multi-antenna

system is more complicated with timing constraints becoming harder to meet.

Therefore, an improved version of this S/P converter is given in Section 2.6.2.
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2.5.2 I/Q Demodulation

The sine lookup table discussed in Section 2.4.3 is used for I/Q demodulation

with a slight difference in content and operation. We added some intermedi-

ate values to sine samples in order to increase time domain resolution of the

representation. The overall table had 256 8-bit samples from a single period

of a sine function. This method has barely any effect on the performance

when sine lookup table is directly accessed with 32-step increments13 in the

counter that is used for accessing the table. However, a feedback signal com-

ing from the frequency synchronization block (see Section 2.5.8) orders the

local oscillator signals to shift the frequency of the sine and cosine signals

in small amounts for frequency offset mitigation. Hence, having a sine table

with higher resolution in time allows this frequency correction operation to

be more precise.

The I/Q demodulation operation involves multiplication of the received

signal samples with the digitally generated sine and cosine signals. From

this point on, we have two branches on which we will apply the identical

filtering operations. (Hereafter one of these branches will be referenced as

I for in-phase component of the received signal and the other one as Q for

quadrature-phase component.) Since multiplication with a sinusoidal sig-

nal creates images of the desired baseband signal at twice the modulation

frequency, both I and Q branches seem distorted at the output of the I/Q

demodulator in Figure 2.12. In addition to the effect of high frequency sig-

nals, the power levels of I and Q branches are different. This is mainly due to

the channel response multiplying the baseband equivalent complex (QPSK)

signal. Such a multiplication modifies both the magnitude and the phase of a

QPSK signal. With phase distortion, if the transmitted signal is (1 + j) and

the phase of the channel response is 45◦, the corresponding I/Q demodulator

output will be on the imaginary axis with zero power in the I branch. Since

1332-step increments in a 256-entry sine lookup table with a clock frequency of 24 MHz
corresponds to generating 3 MHz sinusoidal signals just as in the transmitter side.
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Figure 2.12: I and Q branch outputs after I/Q demodulation.

the phase correction to remedy this problem is given in Section 2.5.6, we will

point out a final detail in Figure 2.12. In spite of the deteriorations at the

output of the I/Q demodulator due to noise, the 7-bit Barker code sequence14

is still observable with RRC pulse shaping at the Q branch output as shown

by arrows.

2.5.3 Integrate and Dump Filtering

Having two identical implementations of this filter for handling I and Q

branches simultaneously, we had the following reasonings for having them in

the system:

� After demodulating the received signal, I and Q branches have high

frequency terms as well as the desired baseband terms. A low pass

147-bit Barker sequence is 1,1,1,0,0,1,0.
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filtering is desired to cancel these high frequency terms out.

� Since the signal is sampled at 24 MHz, we have 24 samples for each bit

to be decoded. Even if we take the excess bandwidth (resulting from the

usage of RRC filter with non-zero β value) into account, the sampling

rate is still much higher than the Nyquist frequency. The finite impulse

response (FIR) RRC matched filter should have (6 × 24 + 1 = 145)

taps, which is very costly to implement.

The integrate and dump filters (IDFs) accumulate15 their discrete inputs by

summing them up for a defined interval and at the end of this interval gives a

single output for all the summed up signals. Hence, being an averaging filter

it behaves as a lowpass filter eliminating the high frequency terms. Moreover,

it decreases the number of samples per bit at its output by down-sampling the

input data. Our IDF realization sums 8 consecutive samples16 and outputs

the average of them before accumulating next 8 samples. Following the

IDF, the sampling frequency is decreased by 8 and becomes 3 MHz, which

diminishes the logic area that the next stage filters consume. The effect of

the IDF filter can be better understood by observing the Figures 2.13, 2.14,

and 2.15. In Figure 2.13, the effect of eliminating the high frequency terms

at the output of the I/Q demodulator is noted as having smoother curve

in comparison with the results in Figure 2.12. Figure 2.14 proves us the

existence of high frequency term at 6 MHz having a comparable power with

the desired baseband signal for the I branch. Moving to the Figure 2.15, we

can easily discriminate the desired RRC shaped baseband frequency response

at the output of the IDF for the I branch.

15Correspond to integrating in continuous time.

16In fact, the frequency response of an IDF is sinc type (not a lowpass type) and the
first null is at 6 MHz for this case.
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Figure 2.13: I and Q branch outputs after IDF.
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Figure 2.14: PSD of I branch includes high frequency term at 6 MHz.
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Figure 2.15: RRC frequency response with BW=0.675 MHz is clearly ob-

served.

2.5.4 Matched Filtering

The matched filter is exactly the same pulse shaping filter used as the trans-

mitter side, however since the sampling frequency at the output of the IDF is

3 MHz, an RRC filter with oversampling rate of 6 can not be realized for the

receiver. Therefore, the oversampling rate for the matched filter is 3, which

corresponds to building up an FIR filter with 19 taps under the assumption

that only the symbols at a distance less than or equal to 3 are effective on

the current symbol. A filter with 19 taps requires 19 multiplications and

18 additions for evaluation of an output at each instance. In order to avoid

slowing down of this operation, we used two approaches while coding the

matched filter:

� Multiplication operation is usually more time-consuming than simple

shifting operations and there are only limited number of fast multipli-
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ers on our board as stated in Section 2.2.1. Therefore, we preferred

arithmetically shifting the inputs to the left to multiplying them with

tap weights. For example, multiplication by 5 is implemented as adding

the input value to its 2 times arithmetically left-shifted version.

� Although we removed away the multipliers from our RRC design, still

we had many additions, even more than what we would have had when

we used multiplication. If all of the additions were to be carried out in

single clock time, this would result in a very high combinational delay

that the RRC filter would be useless. At this point, the pipelining was

thought to be the key for decreasing combinational delay of the matched

filter. With pipelining it is possible to evaluate the results of subsets

of all the additions separately and joining these intermediate results to

evaluate the final result by either using another pipelining stage(s) or

directly adding them up. As expected, pipelining comes with its own

cost, excessive storage area used by the intermediate results in different

pipelining stages. In contrast to the excessive multiplier usage and high

combinational delay issues, this problem is fairly acceptable especially

when a good pipelining design taking care of the structure of the filter

is done. After designing the matched filter, we plotted the experimental

data taken from FPGA in MATLAB, which is given in Figure 2.16.

2.5.5 Packet Synchronization and

Correlation Filtering

For detecting the existence and determining the beginning of data packets

we add a pilot symbol sequence at the start of each packet. Although various

kinds of pilot symbols may be used for this purpose, we mainly concentrated

on a specific class of sequences that are also utilized in practice [5]. We ap-

pended 7-bit and 13-bit Barker codes as the prefix of transmitted packets

of length 512 or 1024 bits. The Barker codes are known for their low auto-

correlation sidelobe properties. The 7-bit packet prefix is (1,1,1,0,0,1,0) and
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Figure 2.16: Power in I and Q branches are quite close to each other, which

indicates that instantaneous phase of channel response is close to a multiple

of π/4 and it effects the transmitted signals via a rotation of kπ/4 radians.

the 13-bit sequence is (1,1,1,1,1,0,0,1,1,0,1,0,1) with possible reversed and

negated combinations. The RRC shaped 13-bit Barker sequence is plotted

in Figure 2.17 ideally in MATLAB.

The packet synchronizer uses a correlation filter, which shifts over the

received signal with a time uncertainty step of (T/3), where T is the symbol

duration, and at each step (chip interval) it correlates the received signal with

the known synchronization sequence. In our case the known synchronization

sequence is the Barker sequence used. Therefore, the Barker sequence taps

(+1 for bit values of 1 and -1 for bit values of 0) advance over the received

signal in time steps of 1
3
μsec in order to detect a high correlation point.

There are two such correlation filters, one for I branch and the other for the
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Figure 2.17: MATLAB plot of the 13-bit Barker code.

Q branch. The ideal method for detecting a new packet requires the joint de-

tection over two branches. Since we transmit the same Barker sequence over

two branches, the packet synchronization module simply finds the squares of

the correlation filters and sums these results17, which is given as,

btotal [n] = b2
I [n] + b2

Q [n] . (2.6)

In Eqn. 2.6, bI [n] and bQ [n] denote the outputs of the correlation filters of

the I and the Q branches respectively. Figure 2.18 gives an idea about the

measure (btotal [n]) that is used for determining the start of a new packet.

In Figure 2.18, the first normalized peak value is found to be 0.4594, while

the sidelobe value with datatip is 0.00421. Hence, the ratio of the peak-

17This method is ideal for the case that noise in the received signal is complex AWGN.
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Figure 2.18: Peak points showing the start of data packets and the small

sidelobes are clearly distinguishable.

to-sidelobe is nearly 109, which is a bit smaller than the ideal ratio18 for

btotal [n] with no noise in the channel. In addition to this, the peak values for

consecutive Barker sequences slightly differ from each other. As a result, it

is usually impractical to set a constant limit for detection of the packet start

peaks. On the contrary, the threshold in our system is calculated according

to two parameters: the expected value of the noise power and the estimated

signal power. The expectation for noise power is obtained by lowpass filtering

the correlation power output, btotal [n], of the packet synchronization module.

This lowpass filter is an infinite impulse response (IIR) filter whose update

18Ideal peak-to-sidelobe ratio is the square of bits used in the sequence, hence 169 for
this example.
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equation is given as,

mnoise [n] =

{
k−1

k
mnoise [n − 1] + 1

k
btotal [n − 1] if not in a packet

mnoise [n − 1] if in a packet
. (2.7)

According to Eqn. 2.7, the expectation of the noise signal power is updated

(calculated) only if the system is waiting for a packet arrival. If a packet

is already being sampled or the leading sidelobes of the correlation power

output has arrived, due to possibly very high signal power, the noise power

update is paused until the end of the current packet19. Another important

topic is the selection of the k value in the update equation. With smaller

values of k, the filter tend to approximate the noise power using less number

of past values. However, very large values also has a disadvantage, since

the input (btotal [n − 1]) to the filter is divided by larger numbers which may

result in loss of data in the least significant bits or even the input may be

totally nulled. After some trial and error, we decided to use k = 64.

The signal power estimation is based on the detection of the levels of the

leading sidelobes of the correlation power output. The higher the sidelobes,

the higher should be the threshold that btotal [n] surpass. Moreover, any point

should be a peak (maximum point) in order to be classified as a starting

instance for a packet. This is handled by storing the past value and also

a future value of btotal [n] so that any point over the threshold can also be

compared with its neighboring points. (As an example, in Figure 2.18, the

point marked with the datatip around t = 16 μsec is larger than the points

on its left and right, hence is a maximum point.) Then, a maximum point

higher than the adaptively determined threshold value marks the start of a

new packet, which triggers the channel response estimation and bit sampling

procedures.

19Our transmitter structure guarantees that there will be empty periods between packets
so that no data will be transmitted in these periods.
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2.5.6 Channel Response Estimation and Phase Cor-

rection

In most practical systems it is crucial for the receiver to estimate the effects

of the medium that the received data is transmitted in. This estimation is

commonly known as channel response estimation. In our receiver structure,

if we denote the received signal as y [n], the channel response as h [n], and

the noise sample as w [n] at the instant n, the relation between transmitted

symbol, x [n], and y [n] can be written as,

y [n] = h [n] x [n] + w [n] . (2.8)

In Eqn. 2.8, the most important assumption is that channel response can be

approximated by a single constant complex number. Therefore, the channel

is assumed to be frequency non-selective (flat-fading or ISI-free). Moreover, if

we assume that the channel response, h [n], is constant also within the packet

length (which is acceptable for packet duration of 512 μsec in most indoor

mobility cases), then estimating the value of h [n] at the start of a packet

(hence dropping the discrete time index), channel equalization is performed

by,

ỹ [n] =h�y [n] (2.9)

= | h |2 x [n] + h�w [n] . (2.10)

The operation in Eqn. 2.9 involves complex multiplication of the received

complex signal with another complex number’s conjugate. On FPGA, this

can be realized as in the following code segment,

. . . (Signal declarations and other parts that precede are removed.)

if( (corr power 1past >= threshold) and

(corr power 1past >= corr power) and

(corr power 1past >= corr power 2past)) then

ch resp I <= barker corr I;

40



ch resp Q <= barker corr Q;

. . . (The codes in between are removed.)

I corrected <= (rrc I − rrc Q) * ch resp I +

(rrc I + rrc Q) * ch resp Q;

Q corrected <= (rrc I + rrc Q) * ch resp I −
(rrc I − rrc Q) * ch resp Q;

. . . (Remaining part of the code follows.)

The initial if statement in the code searches for the packet synchroniza-

tion point as described in Section 2.5.5. However, channel response value

obtained in this code uses directly the correlation filters’ outputs at the

packet initialization instance. In fact, since the transmitter side sends the

same Barker sequence from both I and Q branches, the found channel re-

sponse corresponds to the effect of channel on complex symbol x [n] = 1 + j

instead of simply x [n] = 1. Therefore, we have to divide the found h [n]

value by (1 + j) in order to carry out the operation described in Eqn. 2.9.

The remaining parts of the above code segment takes care of this issue to

obtain the corrected20 I and Q values for x [n]. For QPSK (and BPSK) mod-

ulation only the received signal’s phase is important. There is no need for

correcting the magnitude of the symbols to be detected unless non-constant

amplitude modulation techniques are used. Therefore, the (| h |2 x [n]) term

in Eqn. 2.10 was left as it is before detecting the QPSK symbols.

Obtaining the channel response values for consecutive packets, we plot

these complex numbers in the complex domain to observe their characteris-

tics. The scatterplot for the estimated experimental h [n] values (channel is

the transmission medium, that is air, for all of the experiments) are given in

Figure 2.19. The Figure 2.19 is drawn by estimating 32 consecutive channel

response values at five different time intervals, while the transmitter and the

20The correction at this point is only for the channel phase subtraction, no magnitude
correction is carried out.
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Figure 2.19: The phase of the channel response varies fast.

receiver antennas are in line of sight (LOS). Each one of these five groups

span 1 msec intervals. Surprisingly, although the magnitude of the estimates

stays nearly constant, the phase varies in a relatively fast pace so that the

channel response rotates almost by π
6

radians within 1 msec. This would

mean that for symbol time of 1 μsec and packet length of 1500 bits, a symbol

value of (1+j) becomes
√

2 (with no imaginary component at all) at the end

of the packet, which will result in false detections even if no noise is present

in the received signal. Hence, it is almost impossible to transmit packets

longer than 1000 bits by estimating the channel response only at the start

of the packet or without finding the reason for the rotation in the channel

response. The solution for avoiding this rotation is given in Section 2.5.8.
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2.5.7 Bit Synchronization

Bit synchronization procedure is totally dependent on the determination of

the starting point of a packet on our testbed. Since the oversampling rate for

the corrected I and Q branch RC shaped signals is three (see Section 2.5.3),

we have only three candidates for being the optimal sampling point. In fact

the optimal sampling point for the RC pulse shape is the one we need to find.

The sampling point is chosen as the one having the largest Barker correlation

output. Once the first optimal sampling point is found the following optimal

points can be chosen by jumps of three (oversampling rate) samples from the

initial optimal point. This optimal sampling routine is demonstrated on the

real data from our testbed, in Figure 2.20. As seen in Figure 2.20, some of
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Figure 2.20: Diamonds represent the optimal sampling points obtained by

the testbed.
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the sampling points coincide with the optimal RC sampling points very well,

whereas some others (like the 6th sample of Q branch) do not. This is mainly

due to two reasons:

� Since the oversampling rate is only three, there is still a high chance

that all the three points misses the optimal point.

� The rotation of the channel response described in Section 2.5.6 results

in phase offsets dynamically changing the real sampling points through-

out the packet, while our receiver decides on the optimal points for

whole packet once only at the beginning of it.

The solution to the first reason has a high cost associated with it, since

increasing the sampling rate would require all the filters, following the IDF,

to have more input signals to be processed at an instant. (See Section 2.5.3

for details.) Therefore, we mainly concentrated on the second reason for

non-optimal sampling in Section 2.5.8.

2.5.8 Frequency Synchronization and Bit Detection

When we analyzed the reasons for channel response rotation described in

Section 2.5.6, we observed that the rotation direction of the channel re-

sponse changes from clockwise to counterclockwise when we exchange the

crystal oscillators used at the receiver and the transmitter sides. After that,

we carefully investigated the frequency offset between these two roughly 24

MHz oscillators to find a frequency difference of nearly 640 Hz. This offset

corresponds to a (640/8 = 80 Hz) difference at 3 MHz, which is the carrier

frequency for our IF signals. If we model that IF offset as a modulating

sinusoidal signal with period ((80 Hz)−1=12.5) msec, this would result in a

channel rotation of (2π (1 msec)
(12.5 msec)

) = ( 2π
12.5

) in 1 msec that is very close to the

rotation observed in Figure 2.19.

The larger frequency offsets between the IF frequencies generated on two

sides of our testbed result in faster rotations of the channel response esti-
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mates. As a result, the expected value of the rotation angles between con-

secutive channel response estimates gives a metric for frequency mismatch.

Therefore, we desire a mechanism for calculating the phase of the channel

response estimates and for averaging the phase differences over many esti-

mation results.

Coordinate rotation digital computer (CORDIC) [6] is an algorithm espe-

cially used for calculating trigonometric, hyperbolic, logarithmic functions, or

division and square root operations, where no or limited multiplication units

exist. A CORDIC-based algorithm makes use of only additions, arithmetic

shift operations, and a fairly small size lookup table. It tries to converge

to the correct result by successive approximation iterations. The resolu-

tion of the final result (so the number of iterations to be made) depends

on the size and the resolution of the lookup table utilized. In our case, we

used a CORDIC-based algorithm to calculate the phase of each channel re-

sponse estimate. The lookup table, for this implementation, is filled with

digital representations of various arctangent values. There are eigth 8-bit

representations: acrtan(1), arctan(1/2), . . . , arctan(1/128). In the first step

algorithm starts with assuming the phase to be calculated is 0, π, or −π

radians according to the quadrant of the channel response and modifies the

channel response. In the second step it adds/subtracts arctan(1) = π/4,

the first lookup table entry, from the initial guess by observing the sign of

the modified channel response and modifies the channel response once more.

Continuing in this fashion the algorithm adds/subtracts smaller and smaller

angles at each step and obtains a result with an error on the order of the

last lookup table entry after the 8th step. If we convert the last entry of the

lookup table into degrees, the maximum error in phase calculation is only

0.45◦ with 8 iterations that would be done in 8 μsec after start of the packet

is detected.

Final point in frequency synchronization is obtaining an expected (aver-

age) value for frequency offset. This is accomplished by using a simple IIR

filter that bare resemblance to the IIR filter in Eqn. 2.7, but with k = 8.
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This filter operates only once for each packet. The output of this filter gives

us information about the sign and the magnitude of the frequency differ-

ence between the transmitter and receiver. These two parameters modify

the frequency of the generated IF demodulation signals. As explained in

Section 2.5.2, the sine and the cosine signals are generated using a 256-entry

table, which includes the samples from a period of a sine function. If no fre-

quency difference is present between sides, this table is accessed by 32-step

increments at each clock cycle to synthesize 3 MHz signals. Whenever the

frequency offset results in an output signal of non-zero magnitude for the

IIR filter of frequency synchronization module, this 32-entry step is altered

to 31- or 33-entry steps in order to accelerate/decelerate the receiver sides

signals. A 31-entry jump is used for accelerating the sine and cosine signals,

whereas a 33-entry jump slows down these signals. Since these short/long

(abnormal) steps are used only once in hundreds (or even thousands) of nor-

mal steps, the resulting sine and cosine signals do not deteriorate much, but

they are only slightly frequency shifted. The counter which determines the

period of abnormal steps is adaptively updated according to the newly ob-

tained phase differences from consecutive channel response estimates, which

completes the feedback loop. To manifest the tremendous effect of frequency

synchronization block on the recorded experimental channel response esti-

mates, we implemented a test scenario, in which 1024 packets each with 512

QPSK symbols are transmitted. The channel response estimates without

and with the digital phase-locked loop-like (D-PLL-like) structure are given

in Figure 2.21. It is obvious that the channel response do not change much

between consecutive packets, according to Figure 2.21. The channel response

rotates over itself completing many tours when the frequency synchroniza-

tion unit is non-operational (left-hand side). However,when it is operated,

the rotation for 1024 packets is almost 42◦, which gives an average rotation

of 0.041◦ between two consecutive packets. Let us, finally, demonstrate the

effect of frequency synchronization, this time, for the QPSK symbols to be

detected. The presented data on Figure 2.22 is experimental data, which is

46



acquired from the digital bit detector on FPGA, using the serial port commu-

nication. In Figure 2.22, QPSK symbol constellation diagram is plotted for

the case when the frequency synchronization block on FPGA is deactivated

(shown on the left-hand side) and the case when it is activated (shown on

the right-hand side). Both of the experiments are carried out using single

1024-symbol packet with previously known content and QPSK modulation.

The bit detection is done on I and Q branches separately, since signal levels

on these two branches are independent. For both branches, if the signal is

negative then a 0 is decided; otherwise a 1 is decided. The performance mea-

sure for this single input single output (SISO) system is given in comparison

with single input multiple output (SIMO) system in Section 2.6.3.
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Figure 2.21: The phase of the channel response estimates changes very slowly

in case of frequency synchronization.
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Figure 2.22: Many symbols would be incorrectly detected if no frequency

synchronization were utilized.

2.6 SIMO System Setup

Once all of the blocks of SISO testbed are developed and verified, we set the

goal of operating multiple-antenna cases for receiver, then transmitter, and

finally both sides. In the following sections, there will be information on the

two receiver antenna structure.

2.6.1 Maximal Ratio Combining for

Two Receive Antenna System

One of the frequently faced problems for the wireless systems is fading. The

main reason for fading in wireless systems is the multipath phenomena. Usu-

ally, the transmitter and the receiver are in an environment consisting of

many reflectors and scatterers such that the transmitted signal reaches the

destination following many paths. Each path has its own attenuation and

phase-shifts and the receiver observes a superposition of these signals from
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multiple paths. At some point in space, these signals may add constructively,

whereas within a small distance, at an other point they may add destruc-

tively. This results in wild variations in the received signal power, hence the

system SNR. When the phases of these signals are assumed to be uniformly

distributed in (0, 2π) and independent from each other, the magnitude of

the superposition result (received signal) is Rayleigh distributed [7], which is

given as,

pZ(z) =
z

σ2
exp

(
− z2

2σ2

)
, for z ≥ 0, (2.11)

where z is the amplitude of the received signal and σ2 is the variance of

the received signal’s real and imaginary components. The power of received

signal is exponentially distributed and given as,

pX(x) =
1

2σ2
exp

(
− x

2σ2

)
, for x ≥ 0, (2.12)

where x denotes the power of the received signal. Hence, with moderate

average channel SNR (2σ2) values, there is a good probability that the in-

stantaneous channel SNR is below a threshold level under which the wireless

communication system of interest will be unable to support reliable com-

munication. In such a case, the channel is said to be in deep fade and

communication stops until the received power exceeds the threshold value.

The usual way to fight fading in wireless channels is creating some type

of diversity in one or more of the communication domains: frequency, time,

space, . . . The probability of having all of the diversity elements experience

deep fade at the same time is much smaller than the probability of a single

element facing a deep fade, if the signals for all these diversity elements are

independent. Therefore, with diversity, the reliable communication between

the transmitter and the receiver is supported unless all of the diversity el-

ements fail. We, while building our testbed, used the spatial domain for

obtaining diversity gain and anticipated that if at least one of the spatial di-

versity elements (receiver antennas) could survive, the communication would

not fail due to other elements.
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In our single input multiple output (SIMO) system, we used two receiver

antennas in order to create spatial diversity. In general, assuming that all the

Mr receiver antennas are placed at such distances from each other that they

observe independent fading, there are many ways of combining the received

signals from different antennas. The combined signal is a weighted sum of

the received signals. In Figure 2.23, s(t) denotes the transmitted signal, h1,

Figure 2.23: Combined output is a linear combination of the received signals.

h2, . . . , hMr denote the complex channel gains for paths from the transmitter

antenna to the receiver antennas, and α1, α2, . . . , αMr the complex weighting

factors that the combiner apply to each of the received signals. In the case
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that more than one of the signals are weighted by non-zero αi values, these

αi values must be selected in a way that the weighted signals should not add

up destructively under any realizations of hi values. Therefore, the selection

of the phases for non-zero αi’s require,

αi = aie
−jφi, (2.13)

where φi is the phase of the ith channel response (hi = rie
jφi) and ai’s are

real.

The optimal way of combining the diversity branches is named as the

maximal ratio combining (MRC) [8]. With MRC, the ai values are selected

in order to emphasize the signals with higher SNR values and to weight the

signals having lower SNR values with smaller factors. This approach achieves

the maximum SNR for the combined output signal if ai values are chosen as,

a2
i = r2

i /Ni, i = 1, 2, . . . , Mr. (2.14)

In Eqn. 2.14, Ni is the noise power in the ith channel and therefore γi = r2
i /Ni

represents the SNR for this channel. Then, the maximum total SNR for the

combined output is given as,

γtotal =

(∑Mr

i=1 (aie
−jφi)(rie

jφi)
)2

∑Mr

i=1 | aie−jφi |2 Ni

, (2.15)

=

(∑Mr

i=1 airi

)2

∑Mr

i=1 a2
i Ni

. (2.16)

If we place optimal ai values given in Eqn. 2.14, into Eqn. 2.16, and assume

that the Ni values for all channels are the same and equal to N0, the total
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SNR is given as,

γtotal =

1
N0

(∑Mr

i=1 r2
i

)2

∑Mr

i=1
r2
i

N0
N0

, (2.17)

=
Mr∑
i=1

r2
i /N0, (2.18)

=

Mr∑
i=1

γi. (2.19)

Hence, the maximum total SNR is obtained as the sum of SNR values for

all receiver antennas when we utilize MRC as our combining scenario. For

the two-antenna testbed, simply assuming noise power is identical for two

receiver antennas, we carried out the same operation for combining the re-

ceived signals. Therefore, we detected the QPSK symbols using ỹtotal, which

is found as,

ỹtotal[n] =h�
1 (y1[n]) + h�

2 (y2[n]) , (2.20)

=h�
1 (h1x[n] + w1[n]) + h�

2 (h2x[n] + w2[n]) , (2.21)

=
(| h1 |2 + | h2 |2

)
x[n] + h�

1w1[n] + h�
2w2[n], (2.22)

where x[n] is the symbol transmitted, w1[n] and w2[n] are the noise samples

for receiver antennas, h1 and h2 are the estimated channel responses (both

channels are again assumed to be frequency non-selective as in Section 2.5.6)

for two receiver paths. This shows us that the total SNR is just the sum of

SNRs and for any instantaneous pair of γ1 and γ2 values the performance of

the MRC system will be better than corresponding single receiver antenna

systems.

2.6.2 Implementation Issues

Although, the approach for implementing the SIMO system from the basic

blocks of SISO system is obvious, these issues should be handled carefully

for proper operation:
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� The orientation of the receiver antennas: In order to gain from

diversity of the SIMO system to the fullest extent, the receiver antennas

need to be spaced sufficiently away from each other. The figure for the

distance is accepted as 0.4λ in most practical applications [8], where λ,

the signal wavelength, is 12.5 cm for our RF signal at 2.4 GHz.

� Packet and frequency synchronization: The packet synchroniza-

tion and the frequency synchronization modules should be operated

using both of the received signals for minimum packet miss rate and

best frequency offset estimation. In our testbed we always used only

one of the signals for this purpose; however we utilized the one with

line of sight (LOS) to compensate for the non-optimality. In a more

realistic scenario, the correlation power outputs21 corresponding to the

signals received from two antennas must be summed for detecting the

peak at the start of a packet. Moreover, the frequency offset estimation

should be based on a weighted average of the phase differences of the

channel responses, h1 and h2.

� Xilinx ISE global buffer inference: The SISO system receiver in-

cludes only 12 registers for serial-to-parallel (S/P) conversion of single

ADC22 output. Therefore, there are only 12 units clocked by the data

clock output of ADC. For SIMO case, due to S/P conversion of two

separate ADC outputs, the number of registers connected to the data

clock doubles. Unfortunately, Xilinx ISE infers clock buffers only for

clock signals that have fanout larger than 16. While the SISO system

uses only an LVDS clock buffer for LVDS-to-CMOS conversion, for the

SIMO system another CMOS clock buffer is appended to the output of

the LVDS clock buffer. This addition of the new clock buffer also adds

21See Section 2.5.5 for definition.

22Serial LVDS data output of the analog-to-digital converter in our system is parallelized
using the data clock output of the same module
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a routing and buffering delay to the clock signal leading to unexpected

S/P conversion results. On the other hand, Xilinx ISE offers other

tools for solving these type of timing problems. To start with, forcing

all of the registers (connected to data clock) to be placed in a close

proximity of the CMOS clock buffer output guarantees all registers to

be clocked almost at the same instance. These type of constraints are

known as placement or more specifically location constraints. Other

than the registers, it is also possible to place the CMOS clock buffers

in a desired area, but with more restrictions. Secondly, there are 8 dig-

ital clock management (DCM) on our FPGA chip. A DCM module is

capable of synthesizing integer or fractional multiples of a given clock

signal, phase-shifting a signal by a user-defined amount, and compen-

sating the clock delays in the clock distribution network. This final

property, made us remove the delay caused by the CMOS clock buffer,

since the synthesized DCM module adaptively removed any routing or

buffering delay on its output signal via a feedback clock connected as

an input. This feedback signal observes all delays that a clock signal

without a DCM module would observe, and with the help of a delay-

locked loop (DLL) mechanism, DCM module compares its original and

feedback clock inputs to generate a compensated output clock signal

with theoretically no delay (See Figure 2.24). This zero-delay clock out-

put had been the key for operating the SIMO system with two receiver

antennas.

� Digital output offsets for ADC: This issue is minor when com-

pared to previous ones; on the other hand, it still may be important

for special experiments. As with the most ADCs, AD9229 also gives

non-zero digital outputs when all of its analog inputs are connected

to the ground. Moreover, this offset has different values for distinct

sampling channels and may even be positive for one channel, while it

is negative for another one. A simple offset correction circuit should be
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implemented on FPGA for each channel.

2.6.3 Mobile Receiver Tests and Results

For testing the performance increase proposed by the SIMO system and MRC

method, we developed an experiment scenario. Initially, we placed the trans-

mitter module behind some laboratory equipment to prevent a very strong

signal reception through the LOS component. In order to further decrease the

SNR, we kept the receiver modules behind some other equipment. Moreover,

for observing different fading effects we slowly moved the receiver antennas

in different directions. The transmitter side sent 1024 packets each with 1024

bits (512 known QPSK symbols) and the receiver side recorded the number of

bit errors for each packet and for three different methods separately. The first

method was using only the first antenna, the second one chose the second an-

tenna as its source of symbol detection, and finally, the third method utilized

MRC to combine the signals from both antennas and detected the symbols.

Figures 2.25 and 2.26 give the results for this experiment. Figure 2.25 demon-

strates the dynamic performance of two single antenna systems. A very high

correlation between the estimated instantaneous channel SNR (top-left and

Figure 2.24: Delay-locked loop in a DCM eliminates clock delays.
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Figure 2.25: A deep fade results in increased bit errors in the bottom figures.

top-right figures) and the instantaneous bit error rate23 (BER) (bottom-left

and bottom-right figures) is trivially observed. Moreover, rapid variations in

the received SNR are observed for both antennas. Around the 600th packet,

the second antenna is in a deep fade and the BERs are very close to 0.1 for

these packets.

Fulfilling the expectations, Figure 2.26 proves the strength of two-antenna

system with MRC. The BER values for SIMO system never exceeds the

BERs of two single antenna detectors for the same packets. Moreover, since

the SNR values of the two received signals are summed for MRC, the SIMO

system does not observe a deep fade at any instance. As a result, using

MRC together with spatial diversity improved the performance of our testbed

definitely.

23Instantaneous BER stands for the number of bit errors in a given packet at any instant.
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Figure 2.26: A deep fade (hence large number of bit errors) probability for

two-antenna system is very low.
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chapter 3

pdsccc encoder/decoder

Channel coding can be defined as adding some redundant bits to a sequence

of bits that will be conveyed to a receiver, so that the discrepancies caused

by the noisy transmission medium can be mitigated. Also known as forward

error correction, channel coding aims the receiver side to correct the erro-

neous bits as much as possible. Related with the nature of the transmission

medium used, the coding technique to be used may be highly application

specific. For this reason, various types of coding techniques have been of-

fered for channels with bursts of errors, or with continuous thermal noise, or

with varying fading effects [11]. In the algebraic coding theoretical sense, we

can divide the codes into two families:

� Block Codes: Some examples include repetition codes, cyclic codes,

Reed Solomon codes, and BCH codes. They operate on fixed-size blocks

of bits (or symbols). Since not directly utilized in the scope of this thesis

research, block codes will not be detailed here.

� Convolutional Codes: Unlike block codes, they work on arbitrary

size bit (or symbol) sequences. They have encoders and decoders that

are relatively easier to implement when compared to block codes. More

information about their encoder and decoder structures is given in Sec-

tions 3.1 and 3.4.

One of the crucial steps in completion of our wireless testbed was includ-

ing appropriate encoding/decoding structures enabling efficient forward error
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correction. Our main considerations on selection of appropriate coding tech-

nique included adequate hardware size to be implemented on our FPGA,

considerably small decoding time, easily scalable structure, and, certainly,

good performance within the SNR region of interest. Naturally, each one of

these listed requirements are in contradiction with the remaining ones and a

careful trade-off between them had to be made. After a careful investigation

in the literature we decided to implement a structure (PDSCCC) suggested

by one of the recent PhD. dissertations [10]. The reasons for selecting the

PDSCCC codes is clarified in the following sections together with essential

definitions; however, in the broadest sense, a parallel decodable serially con-

catenated convolutional code (PDSCCC) encoder is a hardware or software

which encodes its input bits making use of two (or more) groups of convolu-

tional encoders, where each group in itself operates in parallel. As expected, a

PDSCCC decoder carries out the reverse operation (decoding of the received

signals) within groups of parallel decoders in order to obtain the uncoded

bits back.

3.1 Convolutional Encoding

Convolutional encoding involves generating the output bits for an arbitrary

length of sequence of input bits according to a defined state transition mech-

anism. Convolutional encoders are of very simple structure and can be seen

as finite state machines which produce n output bits for given k input bits ac-

cording to their states and input bits at that instant. Here, k/n is called the

code rate of the convolutional code. There are two main building blocks

of a convolutional encoder: shift registers and binary addition operators

(XOR operators). The number of registers in each shift register block for

a convolutional code is usually shown by mi and the constraint length for a

convolutional encoder is defined as the max(mi + 1)1 [11]. Another parame-

1Note that there is one other definition which multiplies max(mi + 1) by the number
of output bits, n.
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ter for convolutional codes is the minimum free distance, dfree, which is the

minimum Hamming distance between any two output sequences. Figure 3.1

demonstrates a convolutional encoder with single shift register block consist-

ing of two registers (shown by D, the delay elements), m1 = 2, one input

information bit, u, and two corresponding coded output bits, c1 and c2. This

encoder has 4 states, its constraint length is equal to three and its minimum

free distance is 5 [12]. The state diagram corresponding to the same encoder

is given in Figure 3.2. In addition to the state diagram representation,

Figure 3.1: A Rate 1/2 Convolutional Encoder.

there is one more representation method for convolutional codes which in-

cludes time information in addition to the information present in Figure 3.2.
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This representation is known as the trellis diagram representation2 and the

trellis diagram representation for the rate 1/2 code in Figure 3.1 is given in

Figure 3.3 with the assumption that initial state and the final state for the

encoder is S0 (shown if Figure 3.2). It is quite common to make the convolu-

tional encoders start at state S0, and if we also force the last state to be S0

(as in Figure 3.3) with appropriate extra input bits, this approach is called

trellis termination(ending). We have used trellis termination for all encoding

processes defined in this thesis. The following VHDL code segments show

how easily re-configurable state and output tables can be constructed for

designing the convolutional encoder in Figure 3.1.

. . . (Firstly define basic properties of the convolutional encoder:

number of states, input bits, and output bits.)

constant states : integer := 4;

constant input bits : integer := 1;

constant output bits : integer := 2;

. . . (Define a state transition table which is a two dimensional

matrix with one row for each state and one column for each input

combination3. The entries are the next states when a row (cur-

rent state) and a column (input bit combination, here 0 or 1) are

given.)

type state matrix2D is ARRAY

(0 TO states−1, 0 TO 2**input bits−1)

OF integer range 0 TO states−1;

2Trellis diagram representation is especially helpful for decoding algorithms that utilize
state transition probabilities.

3In VHDL, (2��input bits−1) is equivalent to (2k − 1), k being the number of input
bits.

61



Figure 3.2: The input bit and the output bits for transition from one state

to other is shown on transition arrows in I/OO format. Here, Si corresponds

to the octal representation of i for the registers in the encoder, as an example

S1 stands for the register values 0 and 1 from left to right.

Figure 3.3: The state of the encoder turns back to 0th state (S0) after en-

coding this 7-bit input sequence.
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. . . (Similarly define an output table of two dimensions, where

the entries are encoded bits for a given current state and a given

input combination.)

type output matrix2D is ARRAY

(0 TO states−1, 0 TO 2**input bits−1)

OF std logic vector(output bits−1 downto 0);

. . . (Now, instantiate (create) one instance for each of the tables

defined above. These instantiations will be directly used in the

convolutional encoder and also the decoder.)

constant state table : state matrix2D := ((0,2),

(2,0),

(3,1),

(1,3));

constant out table : output matrix2D := ((”00”,”11”),

(”00”,”11”),

(”01”,”10”),

(”01”,”10”));

. . . (Remaining part of the code follows.)

With these definitions very flexible encoder and decoder structures can be

implemented. Once a different encoder with different state transitions and

corresponding outputs is desired to be defined, the only change will be made

in these constant definitions. Especially for decoder structure, which is highly

complicated as given in Section 3.4, this improves the readability and the

reconfigurability of the design.

Convolutional encoders are classified with respect to the ways of genera-

tion of output bits. A convolutional encoder is said to be recursive whenever

an output bit effects the following states (hence output bits) through a feed-
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back mechanism. Moreover, if the input bits of a convolutional decoder are

directly given as a part of the output bits, such encoders are called system-

atic. In the light of these definitions, the convolutional encoder in Figure 3.1

is both recursive and systematic. The code defined by this encoder is a maxi-

mal minimum free distance code for the codes of constraint length three [11],

and will be the basis of encoding and decoding procedures in the subsequent

sections. Hereafter, we will refer to this code (1,5/7) code in relation to its

generator polynomial written in octal form.

3.2 Serial Concatenation of Convolutional

Codes

In the search of codes that can achieve error-rate performance close to the

limits defined by Shannon with appropriate decoding complexity, many the-

orists tried to combine the best properties of different codes in a single code.

In one of the initial trials [16], concatenation of a Reed Solomon code with a

simple convolutional code gave rise to various descendants with some other

forms of concatenation. A form of serial concatenation of two convolutional

codes with an interleaver structure in between is suggested in [15]. In 1993,

a new class of codes with parallel concatenation of convolutional codes con-

nected by a specially designed interleaver was introduced [17]. These par-

allel concatenated convolutional codes (PCCCs) are also called turbo codes.

Subsequent research carried on the serially concatenated convolutional codes

(SCCCs) provided some similarities of these codes with the PCCCs. In addi-

tion to the analogy between these two types, under some special conditions

SCCCs are proved to have better bit error rate (BER) performance than the

same rate PCCCs. In [13], SCCCs outperform PCCC counterparts under

many scenarios for frequency-nonselective Rayleigh fading channels. Also

in [14], it was found that SCCCs may have smaller changes in their slope of

bit error curves than the PCCCs, which makes PCCCs reach their error floor
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before the SCCCs. This property of SCCCs may be utilized where extremely

low BER values are needed.

Essentially, an SCCC is composed of two convolutional codes. The en-

coder encoding the information bits initially is called the outer encoder. The

second one that encodes the output of the outer encoder is named as the in-

ner encoder. Inner encoders usually take their input in an interleaved fashion

instead of directly reading the outputs of the outer encoders. The structure

of a SCCC is presented in Figure 3.4. Effectively, the inner and outer en-

Figure 3.4: Structure of a serially concatenated convolutional code.

coders may have different coding parameters, and the overall rate for SCCC

is the multiplication of their rates. The interleaver size, N, is determined by

the number of information bits (uo) and the rate of the outer encoder (ko/no)

(N = length(uo) ko

no
). The reasons and details for interleaver implementation

will be given in Section 3.2.1.

3.2.1 Interleaving

Interleaving of a given data sequence requires moving each data element into

another place in the sequence such that there is a one-to-one mapping be-

tween the initial and the final places. As described in Section 2.6.1, wireless

channels are usually prone to fading problems, which may result in consecu-

65



tive bit errors in the reception. Appropriately designed interleavers distribute

the elements in error in great distances from each other so that the errors

can be seen as independent when observed from the output of the inter-

leaver. Moreover, they are capable of distributing the errors occurred in the

first stage of a decoding process onto many data elements that will be pro-

cessed by the next stages. Furthermore, interleaving can also be utilized to

reduce the number of low weight codewords and increase the minimum free

distance [10].

There are various types of interleavers that are used under different con-

ditions. Block interleavers, convolutional interleavers, random interleavers,

code-matched interleavers are some examples to be given. Our main inter-

est is on the S-random interleavers for the design of interleaver that will be

utilized in both the encoder and the decoder structures. An S-random inter-

leaver maps its input place order to an output place order according to two

rules:

� Firstly, all the mappings are determined randomly, with equal chance

of selection for each output place order.

� The randomly selected order is accepted only if it is in a distance greater

than S for all of the S previously selected orders. Otherwise, it is not

accepted and a new random order is generated, until this condition is

satisfied.

The parameter S is a predetermined integer and it usually satisfies S ≤√
K/2, K being the interleaver size [18]. S-random interleavers have good

spreading properties when compared to other types and provide good BER

performance when used with convolutional codes. Its implementation details

in our testbed are listed in Section 3.3.1 following the specific parallelized

encoder structure.
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3.3 Parallel Encoder Structure

The reason behind parallelization is to decrease the delay incurred by iter-

ative decoding procedure of the serially (or parallel) concatenated decoders.

Following the rules defined in [10], we aimed to implement a special serially

concatenated convolutional code (SCCC) that can be encoded and especially

decoded with reduced latency. The encoder for such a code is known as par-

allel decodable serially concatenated convolutional code (PDSCCC) encoder.

Both the outer and the inner encoders of a PDSCCC encoder include more

than one convolutional encoders that operate on parallelized information bits

simultaneously. Figure 3.5 demonstrates a PDSCCC encoder in its most gen-

eral form. The information bits to be encoded are first given to the outer

Figure 3.5: Parallel convolutional codes (CCs) operate at the same time for

the outer and the inner encoders.

encoder after being converted into N parallel substreams. N , here, is the

number of convolutional encoders that make up the outer encoder. These

N encoders may correspond to different convolutional codes without any re-

strictions. CC1,1 denotes the first encoder of the outer parallel encoder, while

CC1,N shows the last encoder. The output of the outer encoder stems from

N distinct substreams, hence it requires a parallel-to-serial (P/S) conversion
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operation before the interleaving operation. Following the interleaver, whose

implementation rules will be given in Section 3.3.1, the data bits have to be

converted into M parallel substreams (k1 to kM) which will be encoded by

M convolutional encoders of the inner parallel encoder. The structure for

the parallel inner encoder is analogous to the outer one.

In the testbed, the numbers N and M are both chosen as 4 for initial

experiments. The length of the information bit sequence (length of W in

Figure 3.5) is taken as 128 in order to keep the final encoded bit length

(length of X) within the limits of the testbed packet length. All of the con-

volutional encoders are selected to encode their input bits using the (1,5/7)

code defined in Section 3.1. According to these assumptions, the input se-

quence for CC1,i is 32 and with two trellis termination bits, each CC1,i yields

2× (32 +2) = 68 encoded bits. Therefore, the interleaver is required to have

length 4 × 68 = 272, which is a small number when we compare the perfor-

mance of serially concatenated encoders with different interleaver sizes [10].

This issue is discussed in Chapter 5. Another point in relation to interleaving

is that this operation should not take up extra time and extra storage area

for FPGA implementation. In other words, the encoders within the inner

parallel encoder should read their input in an interleaved fashion from the

output substreams of the outer parallel encoder directly. As a result, each

inner level encoder (CC2,1 to CC2,4) should keep one table describing the

substream number and the order of the bit in that substream for each bit it

will encode. Keeping such tables for the inner level encoders, we can combine

the tasks P/S, interleaving, and S/P in one process. This idea comes with

its cost in the implementation as expected. First of all, we have to keep

4 68-entry tables that store the addresses revealing how the inner level en-

coders will take their inputs. Moreover, we have implemented the outer and

the inner decoder using the same hardware resources since they are identical

in nature (both have 4 identical (1,5/7) convolutional encoders) and they

operate in a well-defined order (one is non-operational when the other one is

encoding data). This reusage of encoders diminished the logic area require-
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ment. However, when we imposed an interleaved reading task for the inner

encoder, the similarities between the two structures decreased leading to ex-

tra control logic for handling both interleaved and non-interleaved reading

operations on a single architecture. The interleaved reading process involves

one extra clock cycle for firstly grasping the address of the data to be read.

This extra delay should also be treated with great care in the design of the

PDSCCC decoder which is detailed in Section 3.5.2.

Each inner level encoder output consists of 2 × (68 + 2) = 140 encoded

bits, which add up to 560 bits for M = 4 encoders. Finally, these 560 bits

are stored in a packet which is initiated by the 13-bit Barker sequence for

synchronization and channel equalization purposes.

3.3.1 Memory Collision-Free Interleavers

The interleaver structure introduced in Section 3.2.1 is further detailed in this

chapter. The basic structure for our implementation of PDSCCC interleaver

depends on the S-random interleavers. However, a subclass of this type of

interleavers is to be defined for efficient utilization in the PDSCCC encoder

and the PDSCCC decoder. From the viewpoint of design rules for S-random

interleavers, it is very likely that two or more inner level encoders (trying to

read the encoded outputs of a single outer level encoder at the same time)

will lead to memory collisions. There is no rule for S-random interleaver

generation that will restrict the usage of the same output RAM of an outer

convolutional encoder by more than one inner convolutional encoders. Fig-

ure 3.6 shows how an S-random interleaver causes memory collision in the

first encoding cycle of the inner encoder. The address tables for the inner

level encoders are shown in the middle. For example, the first inner level

encoder (CC2,1) will read the 1st output bit of the first outer level encoder

(CC1,1) initially, then it will read the 1st output bit of the second outer level

encoder (this address is 5), then the 1st output bit of the third outer level

encoder (its address is 9) and finally the 1st output bit of the fourth outer
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Figure 3.6: All of the 4 inner level decoders try to read from RAM0 in the

first encoding interval.

level encoder. Similarly, the second inner level encoder will read the 2nd out-

put bit of the first outer level encoder initially. Hence, both the first and the

second inner level encoders will try to access the same RAM, namely RAM0,

which stores the encoded outputs of the first outer level encoder. In addition

to these, the third and the fourth inner level encoders will also try to read

from RAM0. Although the Block RAM resources on ML310 FPGA board

are capable of being read from two distinct addresses at the same time, four

accesses at the same time can not be handled.

Therefore, it is desired to define a new subclass of S-random interleavers,

which are named as row-column S-random (RCS-random) interleavers in [10],

so that memory collisions during interleaved reading can be avoided. An

RCS-random interleaver is made up of many smaller S-random interleavers

working on different parts of the whole data to be interleaved. Firstly, the

data in each RAM (that is each output sequence of outer level encoders) are
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S-random interleaved, which corresponds to interleaving the rows of the whole

data. In our case, this means building 4 distinct S-random interleavers, all of

which are of size 68. This row interleaving is followed by interleaving within

the same addresses of RAMs (column interleaving). In column interleaving,

the data bits in the first addresses of (N = 4) RAMs are interleaved by an

S-random interleaver4, the ones in the second addresses by another S-random

interleaver, and so forth for all the 68 addresses. It is easy to prove that such

an interleaving procedure will not cause memory collisions by just analyzing

the resulting interleavers after row interleaving and after column interleaving

separately:

� If the given structure is memory collision-free, just applying row in-

terleaving to each row separately will not cause memory collisions to

appear, since simply arranging rows (RAM0, RAM1, . . . ) within them-

selves results in all the inner level encoders reading from distinct RAMs

for all encoding instances. (CC2,1 from the first RAM, CC2,2 from the

second RAM, . . . ).

� If the given structure is memory collision-free (it is true for the output

of row interleaving operation), just applying column interleaving to

each address of RAMs, will not alter the one-to-one mapping property

between the inner level encoders and the RAMs, but only change the

one-to-one mapping to another one-to-one mapping.

These steps are exemplified in Figure 3.7, where an RSC-random interleaver

is obtained at the bottom from the ordered table in the top-left corner. The

operation of this RCS-random interleaver at the first interleaving instant is

shown in Figure 3.8. At the first encoding interval each CC2,i reaches a

distinct RAM and this is true for all remaining encoding intervals as well.

In order to implement an RCS-random interleaver of size 4 × 68 = 272,

we initially prepared 4 S-random interleavers of size 68 in MATLAB. In

4In fact, with N = 4, S-random interleaver reduces to purely random interleaver.
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Figure 3.7: Firstly the rows are interleaved, then the columns [10].

this step, S was taken as 5. In the second step we built up 68 S-random

interleavers of size 4 in a similar fashion, with S is equal to 1. Then, a

conversion code for translating these interleaved address information from

integers to binary representation was written. This code gave the addresses

of the interleaved bits within a RAM together with the selected RAM number

for that interleaving. The convention for addressing is : “The first two bits

in the interleaving table give the RAM number from which data bit is to

be read. Remaining 7 bits are used for addressing within the RAM selected

by the first two bits”. The storage of these addresses is realized by using

4 Block RAMs as read-only memories (ROM) with 68 entries of 9-bit data

width. As the final step of PDSCCC encoder implementation, the encoded

bits of length 560 are compared with the output of PDSCCC encoder written
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Figure 3.8: At each time step, each encoder reads from a distinct RAM.

in MATLAB. Table 3.1 presents some figures for hardware complexity of the

implemented PDSCCC encoder. It is possible to neglect the area used by

the encoder, however the Block RAM usage may be important in case of

a larger PDSCCC encoder design with more convolutional encoders in the

inner and/or outer encoders.

3.4 Marginal a Posteriori Decoding

Two types of decoding algorithms are very popular for convolutional codes.

The first type of algorithms find a codeword, 	̂v, for a transmitted codeword,
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Table 3.1: PDSCCC Encoder Synthesis Results

Unit Name Usage Count and Percentage

Number of Slices 282(2%)

Number of Slice Flip Flops 138(0.5%)

Number of 4 input LUTs 515(1.5%)

Number of BRAMs 5(3.5%)

Maximum Operating Frequency 202.192 MHz

	v, and the received sequence, 	r, such that the likelihood function is max-

imized. Hence, they are called as the maximum likelihood (ML) decoding

algorithms. Viterbi algorithm is an example of ML algorithms, which can

find the most likely sequence (or path) with only linear decoding time in-

crease as the sequence length increases. In this sense, Viterbi algorithm is

word error rate (WER) minimizing (P(	̂v �= 	v | 	r) is minimized). The second

type of popular algorithms aim to minimize the bit error rate (BER) through

maximization of the marginal a posteriori (MAP) probabilities for the trans-

mitted information bit ul, P(ûl = ul | 	r), where ûl is the decoded information

bit. They are named as MAP algorithms and the best known example to

MAP algorithms is the BCJR algorithm [4]. When the probabilities for hav-

ing ul = 1 and ul = −1 are equal, two algorithms are equivalent and Viterbi

algorithm is preferable due to its lower complexity. However, when the bit

probabilities are different BCJR algorithm performs better than Viterbi al-

gorithm. Good examples for having unequal bit probabilities can be iterative

decoding algorithms. During the iteration steps the likelihood assigned to

each bit is updated and next steps use unequal bit likelihoods in general.

Since PDSCCC decoder use iteration for achieving lower BER values, it is

inevitable for PDSCCC decoder structure to utilize BCJR algorithm.

Without deriving the equalities, simply the variables used in BCJR al-

gorithm will be defined here. The detailed derivations are presented in [12].
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We will start with the definition for the a posteriori log-likelihoods (LL) of

the information bits. LL values are defined as,

LL(ul) ≡
[

P (ul = 1 | 	r)
P (ul = −1 | 	r)

]
. (3.1)

Then, a bit is decided as 1 whenever LL value corresponding to it is positive

after the last iteration step. Otherwise, it is decided as a −1. The definition

for the α metric, which is obtained by a forward iteration on the received

sequence, is given as,

αl(s
′) ≡ p(s′, 	rt<l). (3.2)

Therefore, α metric can be defined as the probability of being at state s′ and

having a received sequence 	rt<l upto time l. Similarly, γ (branch) metric is

defined for the probability of having a state transition from s′ to state s at

time l with received sequence value of rl given s′. Hence, γ metric is given

as,

γl(s
′, s) ≡ p(s, 	rl | s′). (3.3)

The backward metric, which is calculated over the received sequence in back-

wards direction, is known as β metric and defined as,

βl+1(s) ≡ p(	rt>l | s). (3.4)

After some steps on α and β metric it is easily found that both metrics’

calculations can be written in recursive equations as,

αl+1(s) =
∑
s′∈σl

γl(s
′, s)αl(s

′), (3.5)

βl(s
′) =

∑
s∈σl+1

γl(s
′, s)βl+1(s). (3.6)

In Eqns. 3.2 and 3.4, the sets σl and σl+1 denote the sets all possible states

from (to) which a transition is possible at time l (l + 1). For our PDSCCC

decoder, since all of the (1,5/7) convolutional codes have 4 states, for ob-

taining a new α or β metric we have to carry out 4 multiplications and a
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summation of these results. The basic steps for these recursive calculations

are related to the S0 state assumption for the initial state of all encoders

and the trellis termination that identifies the final state as S0. The initial

assignments for α and β metrics are given as,

α0(s) =

{
1 s = 0

0 s �= 0
, (3.7)

βK(s) =

{
1 s = 0

0 s �= 0
. (3.8)

In Eqn. 3.8, K denotes the number of information bits to be decoded by

the BCJR decoder. If the γ metric given in Eqn 3.3 is analyzed with the

assumption that noise signal in the received signal is additive white Gaussian,

it can be simplified in terms of channel reliability factor (Lc) and a priori bit

probability (La(ul)) as,

γl(s
′, s) = eulLa(ul)/2e(Lc/2)(�rl ·�vl). (3.9)

In Eqn. 3.9, we have two factors determining the branch metric. One is the

a priori bit probability, which is found by the previous iteration step5. The

other one is the inner product of received vector at time l, 	rl, and output

vector for the transition from state s′ to state s, 	vl. This inner product result

is scaled by Lc/2 = 2Es/N0, which corresponds to multiplying it by a larger

number when the symbol SNR is high. Therefore, with BCJR algorithm,

observations are trusted more when the SNR is high, otherwise a priori values

are utilized more in finding the updated branch metrics (and also updated

LL values). This requires estimation of the received SNR to be used in

the PDSCCC decoder. In Section 2.5.5, a method for estimating the signal

power and the noise power is given. Using that method the estimated SNR

may be multiplied by 2	rl for removing the multiplication operation from the

PDSCCC decoder. However, simply that removal is not enough, there are

5If no previous steps exist, La(ul) is initialized as 0 for all l = 0, 1, . . . , K − 1.
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many multiplication operations in Eqns. 3.5, 3.6, and 3.9. In order to simplify

these calculations, log-domain metrics can be defined as,

γ�
l (s

′, s) ≡ ln γl(s
′, s) = ulLa(ul)/2 + (Lc/2)(	rl · 	vl), (3.10)

α�
l+1(s) ≡ ln αl+1(s) = ln

∑
s′∈σl

eγ�
l (s′,s)+α�

l (s′), (3.11)

β�
l (s

′) ≡ ln βl(s
′) = ln

∑
s∈σl+1

eγ�
l (s′,s)+β�

l+1(s). (3.12)

Now the metric calculation for γ is greatly simplified, whereas the calculations

of α and β metrics still involve “ln” operation over summation of 4 elements,

since convolutional encoders have 4 states in our case. This complication can

be solved by using the identity,

max�(x, y) ≡ ln(ex + ey) = max(x, y) + ln(1 + e−|x−y|). (3.13)

With max� operator instead of implementing a two-dimensional lookup table

for approximating ln function of two variables x and y, a single dimension

table using the absolute difference of x and y, and a maximization operator

is implemented. Moreover, max� can be defined for more than two operands

as,

max�(x1, x2, . . . , xp) =max�(x1, max�(x2, x3, . . . , xp)) (3.14)

...

=max�(x1, max�(x2, . . . , max�(xp−1, xp)) . . .)) (3.15)

Using Eqn. 3.14, we can rewrite forward and backward metric calculations

as,

α�
l+1(s) =max�

s′∈{S0,S1,S2,S3} [γ�
l (s

′, s) + α�
l (s

′)] , (3.16)

α�
0(s) =

{
0 s = S0

−∞ s �= S0
, (3.17)

β�
l (s

′) =max�
s∈{S0,S1,S2,S3}

[
γ�

l (s
′, s) + β�

l+1(s)
]
, (3.18)

β�
K(s) =

{
0 s = S0

−∞ s �= S0
. (3.19)
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The max� operations in Eqns. 3.16 and 3.18 can be implemented by firstly

taking two groups of two operands into two max� operators with the defini-

tion in Eqn. 3.13, then applying the same max� operator on the results of

the first stage. For this way of metric calculation, three max� operators are

required for single αl
�(s) or βl

�(s) value. Since there are 4 states, in total

(4 × 2 × 3 = 24) max� operators need to be implemented. This may be the

bottleneck for optimizing the logic area utilized by the PDSCCC decoder.

The solution proposed for max� implementation is given in Section 3.5.5.

This version of the BCJR algorithm (calculating the metrics in the log-

domain) is also known as log-MAP algorithm. The final expression for

PDSCCC implementation is on the LL values for information bits and given

as,

LL(ul) = ln

⎡
⎣ ∑

(s′,s)∈δ+

eβ�
l+1(s)+γ�

l (s′,s)+α�
l (s′)

⎤
⎦ (3.20)

− ln

⎡
⎣ ∑

(s′,s)∈δ−
eβ�

l+1(s)+γ�
l (s′,s)+α�

l (s′)

⎤
⎦ ,

=max�
(s′,s)∈δ+ [β�

l+1(s) + γ�
l (s

′, s) + α�
l (s

′)] (3.21)

−max�
(s′,s)∈δ− [β�

l+1(s) + γ�
l (s

′, s) + α�
l (s

′)].

The δ+ and δ− given in Eqns. 3.20 and 3.21 denote the sets of transitions

made by an information bit 1 and −1 respectively. Consequently, for calcu-

lating a single LL value of an information bit two 4-input max� operators,

or equally 6 two-input usual max� operators are required in a single MAP

decoder.

3.5 Fast PDSCCC Decoder

The decoding algorithm to be used as the basis for construction of PDSCCC

decoder is given with its essentials in Section 3.4. Now, in this section, more
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implementation details about the MAP decoder and interconnection rules for

inner and outer decoder structures will be explained.

Firstly, the decoder structure for a serially concatenated code is composed

of four main building blocks. It includes an inner decoder (corresponding to

the inner encoder in serial concatenation), an outer decoder (corresponds to

the outer encoder), an interleaver with the same properties as in the serially

concatenated encoder part, and a deinterleaver which supports the feedback

between the outer decoder and the inner decoder for iterating over the re-

ceived sequence many times. These main building blocks together with some

additional blocks are shown in Figure 3.9. The decoder of a serially concate-

Figure 3.9: Interleaver and the corresponding deinterleaver connect the inner

and outer decoders.

nated convolutional code (SCCC) resembles that of a parallel concatenated

convolutional code (turbo code). The main distinctions between two types

of decoders lie in two points:

� The way outer decoder of a SCCC decoder takes its channel informa-

tion and the a priori information is different from the way of lower

and upper decoders of a turbo decoder. The outer decoder does not

directly take its channel information from the channel, but this input is
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supplied by the inner decoder as the log-likelihood (LL) values (for x in

Figure 3.9). Also the a priori information of the uncoded information

bits (u) are always zero for outer decoder, since it has no knowledge

on these uncoded bits. It also gives its coded output estimates (L(x̂))

to the inner decoder since these are the uncoded bit LL values for the

inner decoder.

� Both the inner and the outer decoders subtract only the information

taken from the other decoder from their estimated outputs. This is

not the case for turbo decoding where both of the decoders subtract

the channel information from their estimates, too. Here only one of

the decoders (inner decoder) directly observe the channel and this will

not result in divergence of the metrics due to accumulation of channel

information.

The construction of the parallelized SCCC (PDSCCC) decoder is similar

to the construction of PDSCCC encoder from the SCCC encoder structure.

An illustrative diagram for a PDSCCC decoder is provided in Figure 3.10.

As with the PDSCCC encoder, for PDSCCC decoder the number of sub-

Figure 3.10: Parallelized convolutional decoders speed up the decoding op-

eration for both the inner and the outer decoding [10].
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decoders in both the inner and the outer decoders is taken as 4. Therefore,

each encoder in the inner encoder will take (560/4 = 140) bits of received

sequences. They will provide output estimates for (140/2 − 2 = 68) bits

without any need for estimating the trellis ending bits used in the inner

encoder of PDSCCC encoder. After being deinterleaved, these (4 × 68)-bit

LL values will be given to the outer encoder. Outer encoder will provide not

only the LL values for (68/2 − 2 = 32) uncoded information bits, but also

the a priori information for 4× 68 bits to the inner decoder back, which will

read these data in an interleaved fashion. This iteration is carried out for

a pre-defined or adaptively chosen number of times and only then will the

hard decisions for the uncoded bits be given using the uncoded information

bit LL value output of the outer decoder. The following sections will provide

information about critical parts of PDSCCC implementation on FPGA and

list a number of improvements for faster operation and reduced hardware

size.

3.5.1 Simultaneous Calculation of Alpha and

Beta Metric Values

If the branch metric calculations in Eqns. 3.16 and 3.18 are considered, two

operations, i.e., calculation of α and β metrics, are independent from each

other so that simultaneous evaluation of α metric values in forward direction

and β metric values in backward direction is possible. This will bring an

advantage in decoding latency only if the LL values are determined during

these calculations, because there are currently known algorithms which yield

the LL values after making two sweeps over the received vector [19, 20]. The

idea for obtaining the LL values with just one sweep depends on calculating

the LL values at the first possible instant. As an example, assuming LL

values for 70 information bits will be found, consider that the first metric

values, α�
0(s) and β�

70(s), are written to corresponding places at time 0 as

in Figure 3.11. In the following cycle using the α�
0(s) and the γ�

0(s) values
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Figure 3.11: α and β metric RAMs are initialized at time 0.

α�
1(s) values will be obtained for each state s. Similarly, β�

69(s) values will

be calculated and written to next place, 69th place, in β metric RAMs as in

Figure 3.12. In the next cycles, both of the metrics will be calculated in the

Figure 3.12: Metric calculations continues at time 1 with second values.

directions shown by arrows. Remembering Eqn. 3.21 for LL value calculation,

for finding LL(ul) the required metrics are α�
l (s), γ�

l (s), and β�
l+1(s). Hence,

the earliest calculation of an LL value is possible at time 35, after the α and
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Figure 3.13: At time 35, first LL values are ready to be calculated.

β metric calculations meet at the midpoint. In fact, at this instant two LL

values, namely LL(u35) and LL(u34), are calculated. This first LL calculation

instant is given in Figure 3.13. Following this cycle two LL values are found

in each cycle and at the end after 70 cycles, with just one sweep over the

received vector, all LL values are calculated as in Figure 3.14 Especially, for

Figure 3.14: Finally, after time 69, all LL values are obtained.

iterative decoding algorithms decoder latency is the bottleneck for increasing
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the iteration number. Our implementation improves the decoding latency of

each iteration step by halving it.

3.5.2 Interleaving and Deinterleaving Operations

As it is given in Figure 3.10, various S/P, P/S converters, subtractions for

obtaining extrinsic information, and interleaving/deinterleaving operations

exist in a PDSCCC decoder. In Section 3.3, the interleaving operation is de-

fined such that the inner encoder reads from substreams of the outer encoder

output so that P/S converter, interleaver, and S/P converter are joined in a

single structure with just one cycle delay. The same interleaver is used for

reading the LL outputs (extrinsic information) of the outer decoder as well.

However, a deinterleaver which combines the jobs of P/S converter, deinter-

leaver, and S/P converter in Figure 3.10 is still required. Implementing new

address (deinterleaving) tables for each output level decoder to read its input

from the output substreams of the inner level decoders will be very costly

in terms of Block RAM usage. Just as in the case of interleaver tables, 4

seperate ROMs will be made out of Block RAMs. In fact, there is no need for

deinterleaver tables if we can observe this operation from the point of inner

decoder. An inner level convolutional decoder, knowing which address it has

read its a priori information from, can write its extrinsic information output

(after subtraction) LL value just to the same address. This operation force

all inner level decoders to maintain last reading addresses from the outputs

of the outer level decoders and writing its LL result to the same address

in already a deinterleaved fashion. Therefore, the deinterleaving job is also

given to the inner decoder, while the outer decoder reads and writes in a

sequential manner. It must be emphasized that since we have simultaneous

calculation of α and β metrics as described in Section 3.5.1, two LL values

are written to LL value RAMs at each instance once the midpoint of the data

is passed. This is easily handled by defining LL RAMs as dual port Block

RAMs, however, the γ calculation described in Eqn. 3.10 requires reading of
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two consecutive received values (for one information bit two encoded bits are

sent). When the simultaneous calculation of forward and backward metrics

is also considered, at any instant outer decoder requires to read 4 extrinsic

information values (from the output of the inner decoder) at the same time.

It may be proposed that having two consecutive extrinsic information in the

same word (address) of the inner decoder output RAMs is enough for so-

lution. On the contrary, these consecutive extrinsic information values are

written at different times by the inner decoder since they are not consecu-

tively found. The only solution is to keep the extrinsic information values

of the information bits and their parity bits in separate RAMs for the outer

decoder input. In total, 8 Block RAMs of size 34-word6 are desired. This

problem does not exist for the outer decoder output since it writes its out-

put LL values (a-priori information for inner encoder) sequentially and inner

decoder just reads these values (in an interleaved fashion) with no write op-

erations. The memory requirement at the output of the outer decoder is 4

Block RAMs of size 34-word7. The Figure 3.15 demonstrates the placement

of these LL value storage RAMs.

3.5.3 Re-usage of Parallel MAP Decoders

Due to serial concatenation, the inner and the outer decoders operate in

succession. Inner decoder does not operate on the received data while the

outer decoder is processing the received data, and vice versa. This is a great

opportunity for reducing the logic area utilized by the PDSCCC decoder.

However, this reusable architecture has its own problems which should be

handled separately:

� The reading and writing of LL values for the inner and the outer de-

coders differ. Inner decoder can always read and write with one clock

6Each word is a single LL value.

7Here, each word is a combination of two LL values.
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Figure 3.15: All the interleaving (during reading) and deinterleaving (during

writing) operations are carried out by inner level decoders (D2,1 to D2,4) over

a single address table.

cycle delay due to interleaving and deinterleaving. On the other hand,

outer decoder reads and writes by directly addressing the RAMs of

interest.

� The inner and the outer decoders read from different RAMs and write

to different RAMs. The inner decoder reads from received data vector

RAMs and outer decoder output RAMs, it writes to 8 distinct output

RAMs. The outer decoder only reads from inner decoder output RAMs

and writes to 4 distinct output RAMs.

� The a priori log-likelihood input of the outer decoder is connected to

zero, whereas the inner decoder accepts a priori information from the

coded LL output of the outer decoder.

� The lengths of input and output sequences for two decoders are not

equal. Each inner level convolutional decoder operates on a received

vector of 140 values and gives 68 LL values corresponding to its uncoded

bits as the output. In contrast, for the output level decoders the input

size is 68 and output sizes are 68 for coded LL values and 32 for uncoded
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LL values. Since the input lengths are different the midpoints (after

which LL calculation will begin) are also different for two decoders.

Therefore, it is clear that reusing the modules for implementing both the in-

ner and the outer decoders increases complexity of the PDSCCC decoder de-

sign, although a great size reduction is obtained. All convolutional decoders

must know whether they operate as an inner decoder or an outer decoder

constituent block. When combined with the interleaving/deinterleaving and

information subtraction procedures, reusing modules results in highly com-

plicated control logic modules. Consequently, the maximum combinational

delay of the PDSCCC decoder increases leading to lower operating frequen-

cies. Although our final operating frequency is above the desired levels (see

Section 3.7.1 for exact values), some optimization methods for further im-

proving the clock frequency of PDSCCC decoder is given Chapter 5.

3.5.4 Alpha, Beta, Gamma Metric Size Selection and

Metric Storage Allocation

The α, β, γ metrics, and LL values are represented by fixed point numbers

on FPGA for simplified operations in 2’s complement logic. It is easy to

see that there is a trade-off between the metric size (number of bits used

representing metrics) and the hardware complexity of the PDSCCC decoder,

which consists of 4 BCJR decoders in our case. It is shown in [21] that using

8-bit quantization for representing the metric values in log-MAP algorithm

yields such a good performance that almost no SNR loss is incurred with

respect to the floating point utilization for the metrics. It is also observed

in [21] that 4-bit quantization results in an SNR loss of approximately 0.1dB

for most simulation cases. Hence, we decided to have a PDSCCC decoder

with parametrizable metric size and a parametrization interval of 4-bit to

8-bit quantization. Moreover, the ideal metric size is determined as 6-bit

when the hardware size, operation frequency, and SNR loss are considered

as the constraints of the system. 8-bit quantization is an upper limit when
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the PDSCCC decoder size is constrained to fit into the used ML310 FPGA

board. Especially, when the multiple-antenna system with more than two

receiver antennas is the destination of future testbed implementation, some

optimization will be required for this 8-bit quantized architecture.

Each inner level decoder utilizes single Block RAM for storing both of the

α and the β metrics. This optimization is possible only with simultaneous

calculation of two metrics. Once the middle point for calculation of the

metrics is left behind LL values can be calculated, thus there is no more

need for storing new α and β values. Newly found values will be directly

used in the next clock cycle for LL value calculation. In this way, the α

and the β metric storage RAMs shown in Figure 3.11 can be merged into a

single RAM, in which the first half is reserved for storing (α�
0,. . . , α

�
34) and

the second half is reserved for (β�
36,. . . , β

�
70). This optimization is novel to the

knowledge of the author of this thesis and it reduces the total RAM usage by

the number of parallel decoders in the inner decoder, which results in saving

4 Block RAMs (or more for metric sizes larger than 4-bit). Since the outer

level decoders are physically the same decoders as the inner level decoders,

no more RAM utilization is required for the outer decoder. The αl(s = S0),

αl(s = S1), αl(s = S2), and αl(s = S3) values are stored in the lth address of

a Block RAM, whose size is parametrically tuned for housing 4 α (or equally

β) values next to each other.

Both the inner and the outer level decoders have to store γ metrics for

all possible transitions at any instant. With a 1/2-rate and 4-state code, this

corresponds to storing 8 possible transitions for γl(s
′, s). Due to this large

number and some other practical implementation issues, log-likelihoods for

the transitions made as a result of an information bit 1 are stored in a separate

RAM than the ones as a result of an information bit −1. Therefore, single

decoder uses two Block RAMs for the storage of γ metrics. Similar to α-β

storage 4 γ values for same information bit are kept in a single word of a

Block RAM, occupying the same address.
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3.5.5 Max� Approximation Method

The max� expression given in Eqn. 3.13 involves two terms: the maximiza-

tion term (max(x, y)) and the nonlinear correction function fc(| x − y |) =

ln(1 + e−|x−y|). The maximum finding operator is fairly easy for FPGA im-

plementation, however fc(| x− y |) is the problematic part in max� operator

implementation. In [19], four methods of approximating the correction func-

tion are listed and a BER performance comparison is made. These methods,

three of which are shown in Figure 3.16, are:

� Max-log-MAP approximation: This is the simplest method which

totally neglects the effects of the correction function. In other words,

(fc(| x − y |) = 0) is accepted for all (x, y) pairs. Therefore, it is not

shown in Figure 3.16. It leads to worst BER performance as expected.

� Constant log-MAP approximation: This algorithm takes the cor-

rection function as a constant value for values of | x− y | smaller than

a given value and as zero elsewhere.

� Linear log-MAP approximation: The correction function is ap-

proximated by a piece-wise linear function in this approach. The ap-

proximation function is given as,

fc(| x − y |) ≈
{

0 if | x − y |> T

a(| x − y | −T ) if | x − y |≤ T
. (3.22)

Minimization of mean-square error for this approximation yields a =

−0.24904 and T = 2.5068. This is one of the most common methods

in implementation of max� operator.

� Lookup table approximation: The performance of this method is

heavily dependent on the depth and the width of the lookup table

used. The Figure 3.16 demonstrates an approximation over 30 samples

evenly spaced in the significant part of the exact correction function. It

closely approximates the desired shape, however implementation cost
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of a such a large lookup table is high and it is not preferable in case

many instances of max� operator exist.
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Figure 3.16: Different methods exist for approximating the correction func-

tion.

Using 6-bit metrics, linear log-MAP algorithm requires max� units utilizing

only 31 slices, whereas the lookup table approach would require 60 flip-flops

(that is 30 slices) only for implementing the ROM of 10 samples from the

correction function, where each sample would have 6 bits. As a result, our

design choice is linear approximation method for the log-MAP algorithm.
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3.6 PDSCCC Decoder Simulations

This section will present the methods and the results of extensive simula-

tions made on the hardware implementation of the PDSCCC decoder. Two

separate simulation fields were used in conjunction for stricter debugging pur-

poses. Initially, the code written VHDL was compiled and tested for basic

timing constraints in ModelSim. Following this basic ModelSim simulation

and timing error corrections, a MATLAB code was written in order to gen-

erate a realistic received vector under various conditions like different SNR

levels and different quantization resolutions. This received vector data was

converted into VHDL representation and written on the ROM blocks placed

in the testbench module of the PDSCCC decoder. In this way, operation of

different versions of PDSCCC decoder on the same received data and quick

performance comparisons were made possible. Finally, a MATLAB code for

simulating all blocks of the proposed PDSCCC structure in MATLAB envi-

ronment was written. This code and the ModelSim simulation was operated

concurrently for detecting possible errors in hardware implementation of the

PDSCCC decoder.

3.6.1 MATLAB Implementation

In VHDL, whole code of PDSCCC decoder depends on 2’s complement arith-

metic operations on fixed point representations. On the other hand, floating

point is more frequently used representation within MATLAB environment.

In order to simulate the operation of such a VHDL code in MATLAB, the

Fixed Point Toolbox should be exploited. In our VHDL implementation,

6-bit representation is the final selection for size of the metric and the LL

values. Similarly, the MATLAB implementation includes all arithmetic op-

erations defined on 6-bit signed variables. Exactly the same algorithms that

described in previous sections are also written in MATLAB in addition to

generation of the received sequence with adequate SNR levels and analog-to-

digital conversion operations. The MATLAB implementation proved to be
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useful especially when we had to check hundreds of signals while probing for

possible erroneous parts.

3.6.2 VHDL Implementation

During the simulations executed in ModelSim, usually testbench structures

are utilized for supplying input data to the simulated module at the correct

instances. Then outputs and intermediate signal assignments are observed

for assuring proper operation. The testbench module of the PDSCCC de-

coder consists of an initialization PDSCCC decoder and 4 dual-port Block

RAMs (in fact ROMs) for supplying the MATLAB generated noisy received

sequences for the inner level decoders. During the simulations using this test-

bench structure many critical corrections and modifications are performed.

Some of these critical findings are given next.

� Clipping addition and subtraction operations: The 6-bit repre-

sentation for metrics and LL values is extremely limiting for all arith-

metical operations. Especially, when we take the iterative additions

while obtaining α and β metrics into account, it is very likely that

some overflows will happen during these operations. Naturally, this

enforces the designer to implement somewhat specialized addition and

subtraction modules. Such modules should sense the possible overflows

beforehand and clip the results to the closest extreme values of the

representation. The following code segment shows how such a clipping

addition can be realized:

. . . (Firstly, some constants to be used are defined.)

constant m size : integer := 6;

constant minus inf : signed :=

conv signed(−(2**(m size − 1)),m size);

constant plus inf : signed :=
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conv signed(2**(m size − 1) − 1 ,m size);

. . . (Then, define the input and outputs of the module. Their

lengths are equal to metric size (m size).)

entity clipping sum is

Port (inp1 : in SIGNED (m size − 1 downto 0);

inp2 : in SIGNED (m size − 1 downto 0);

clipped out : out SIGNED (m size − 1 downto 0));

end clipping sum;

. . . (Define the signals used in the module.)

architecture Behavioral of ab clipping sum is

signal mid sum : SIGNED (m size downto 0);

signal ovf bit : std logic;

. . . (Sum the operands in a larger register (mid sum) and

check for the overflow bit.)

begin

mid sum <= (inp1(m size − 1) & inp1) +

(inp2(m size − 1) & inp2);

ovf bit <= mid sum(m size) xor mid sum(m size − 1);

clipped out <= (mid sum(m size − 1 downto 0))

when (ovf bit = ’0’)

else (minus inf)

when (mid sum(m size) =’1’)

else (plus inf);

end Behavioral;

For clipping the sum of two operands when necessary, the method is

handling the addition operation in a register which is 1 bit larger than
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the operands and then checking whether its sign bit is identical to its

second significant bit (an XOR operator is used for this). If the response

is positive, then the result can fit into the limits of the representation;

otherwise, a minus infinity or plus infinity must be multiplexed to the

output in order to avoid overflow. The minus infinity is represented by

−32 and plus infinity by +31 in case of 6-bit 2’s complement arithmetic.

For all arithmetic operations in PDSCCC decoder, the variables are

strictly kept within these limits.

� Negation of the most negative number: Whenever a variable is to be

negated, special care should be taken to check whether it is minus

infinity (−32). The reason for this extra control is that when the most

negative number is negated in 2’s complement arithmetic, the result is

again the most negative number (2’s complement of “100000” is also

“100000”). Therefore, the negation operator should map minus infinity

to plus infinity.

� Obtained information subtraction: Both the inner and the outer de-

coders require subtraction of the information given by the other decoder

(here, it is called the obtained information) so that they can pass to the

other decoder only the extrinsic information they found. However, this

subtraction operation is not straightforward due to the limited arith-

metic range utilized. As an example, if the LL value of a bit found by

the inner decoder is minus infinity, this means that the inner decoder is

almost certain about this bit being a −1. After it passes this informa-

tion to the outer decoder, if the outer decoder decides −30 as the LL

value of this bit before the obtained information subtraction, the result

following the subtraction would be +1 (due to negation of minus infin-

ity as defined above). Although the outer decoder anticipates this bit as

a very strong −1, after subtraction it would be a very weak +1 bit. For

avoiding such situations some rules are defined on the obtained informa-

tion subtraction. Firstly, if the operands entering the subtraction oper-
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ation have opposite signs, then realize the subtraction as it is. Hence,

((+10) − (−12) = (+22)) and ((+10) − (−32) = (+31)) with proper

clipping. Secondly, if the signs are the same, but none of the operands

is equal to plus or minus infinity, again carry out normal subtraction,

which requires ((+10)− (+12) = (−2)) and ((−10)− (−25) = (+15)).

Finally, when the signs are the same if at least one of the operands is

equal to extreme values, then do not subtract the obtained informa-

tion, just give the result as it is. Therefore, ((+10) − (+31) = (+10))

and ((−32) − (−12) = (−32)). This way of controlled obtained infor-

mation subtraction is more suitable for obeying the rules of arithmetic

operations that include operands equal to plus or minus infinity.

� Channel reliability factor usage: In Eqn. 3.10, γ metric calculation re-

quires a multiplication of the received sequence by Lc, which is named

as the channel reliability factor. Although the precise approximation

of this factor is not crucial for turbo decoding as shown in [22, 23], still

the basic performance improvement offered by the BCJR algorithm

depends on the proper usage of the channel SNR. As described in Sec-

tion 2.5.5, testbed implementation is capable of estimating the received

SNR. However, the important question is based on how this estimate

will be mapped onto the 6-bit representation of the metrics and LL

values. We only know −32 stands for minus infinity and 31 for plus

infinity, no clue seems to be present for the meaning of the other values.

One way to overcome this complication is to use the ln function in the

correction function as a reference value. The maximum value of the

correction function (fc(| x − y |) = ln(1 + e−|x−y|)) is (ln(2) ≈ 0.6931).

If we represent this maximum value by a suitable value in our fixed

point arithmetic, then the SNR information can also be mapped to our

fixed point world using linear or nonlinear methods. For 6-bit represen-

tation, the selected mapping provides 3 as the maximum value of the

correction function and uses a linear method to scale the received SNR
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value accordingly. In such a mapping the maximum difference between

two probability values (31 − (−32) = 63) corresponds to a multiplica-

tive difference of e63 ln(2)
3 = 2.1 × 106, which is enough for representing

small probability values in many cases.

� Metric Normalizations: The α and β metrics denote probability values

for states and the received sequences in the forward and backward di-

rections. Thus, at any instant the sum of the probabilities of in relation

with all states should be equal to 1. This can also be interpreted as

the natural logarithm of the sum of probabilities attached to all states

should be 0. Assuming we have 4 states, at any time l, this condition

is given for α metrics as,

ln(αl(s = S0) + αl(s = S1) + αl(s = S2) + αl(s = S3)) = 0,

⇒ ln(eln(αl(s=S0)) + eln(αl(s=S1)) + eln(αl(s=S2)) + eln(αl(s=S3))) = 0,

⇒ ln(eα�
l (s=S0) + eα�

l (s=S1) + eα�
l (s=S2) + eα�

l (s=S3)) = 0,

⇒max�(α�
l (s = S0), α�

l (s = S1), α�
l (s = S2), α�

l (s = S3)) = 0. (3.23)

According to Eqn. 3.23, a normalization operation on the obtained

α or β metrics can be applied in order to remove any bias from the

probabilities. The bias may exist as a result of fixed point approxima-

tions or unnormalized γ metrics. The correction method is to operate

on these log-likelihood metrics using max� operators, and subtract the

final max� output from the previously obtained metrics.

3.6.3 Importance of Metric Size and Iteration Number

As described in 3.5.4, the selected metric size for PDSCCC implementation

is 6. This section will clarify some points in this choice by presenting some

simulation results based on the BER performance of the PDSCCC decoder

under various bit resolutions for metrics. The Table 3.2 demonstrates the

incorrectly decoded bits at all iteration steps of PDSCCC decoders with
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4-bit, 6-bit, and 8-bit metric sizes. For generating the data on Table 3.2

a 560-bit packet is simulated with data bit SNR, Eb/N0 = 5.21dB, which

corresponds to a coded bit SNR, Es/N0 = −0.81dB. The bits in the packet

are selected as all zeros, with out any loss of generality since the code used is

based on convolutional codes and these codes are linear. The interleaver type

used in simulations is purely random (not RCS-random) and in all three cases

the same purely random interleaver generated prior to simulations is utilized.

Furthermore, for all three experiments, the received sequences are multiplied

by the distinct optimal gain factors for maximum signal-to-distortion ratio

(SDR). The optimum gain factors for different bit resolutions and SNR levels

are drawn in [21].The same Gaussian noise samples are added onto the coded

BPSK symbols for all three metric sizes. The shown number of bits in error

are out of 272 bits for inner decoder output and out of 128 bits for the

outer decoder output. From this sample of bit errors it can be deduced

that 8-bit decoder reaches to zero output errors (at the output of the outer

decoder which gives the final decisions) with less number of iterations. It

Table 3.2: Iteration Steps for Three Types of PDSCCC Decoders

8-bit Metrics 6-bit Metrics 4-bit Metrics

(Bits in Error) (Bits in Error) (Bits in Error)

Iteration Step Inner Outer Inner Outer Inner Outer

1 34 12 33 18 53 42

2 11 1 16 3 31 24

3 0 0 4 0 23 15

4 0 0 0 0 24 17

5 0 0 0 0 23 6

6 0 0 0 0 7 1

7 0 0 0 0 2 0

8 0 0 0 0 1 0
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achieves decoding all the information bits correctly just after two iteration

steps, where as this number is three for the 6-bit decoder, and 7 for the 4-

bit decoder. Moreover, the inner decoder of the 4-bit PDSCCC decoder can

not give correct soft information about one of its output bits even after 8

steps. It must be also noted that the 5.21dB SNR value is a fairly high level

for such iterative decoders, hence 4-bit decoder may easily decide some bits

incorrectly at slightly lower SNR levels.

In most cases for parallel and serially concatenated convolutional codes, 8

to 16 iteration steps are suitable. Although having more iterations yields bet-

ter BER performance, a very high decoding latency is the sideeffect. In our

implementation, the number of iterations was left as an adaptively updated

parameter that may be varied according to channel conditions. However, in

most of the trials, for keeping the decoding latency low it was limited by 8.

3.7 PDSCCC Decoder Hardware

The synthesis and implementation phase results for hardware implementation

of the PDSCCC decoder are given in the following sections.

3.7.1 Xilinx ISE Synthesis

This section will present the logic area utilization and maximum operating

frequency statistics of the PDSCCC decoder and its building block BCJR de-

coder. These statistics are approximated in the Xilinx ISE’s synthesis phase.

The goal of optimization is set as area optimization and the optimization ef-

fort is at normal level. Table 3.3 gives information about the BCJR decoder.

The BCJR decoder is capable of working at 35.370 MHz and it is approxi-

mately covering 14 % of the FPGA area. Therefore, it is possible to use 6 of

these decoders in a single antenna design (other units utilize nearly 10 percent

of the whole area), or 4 of them in a two-antenna receiver system. The syn-

thesis results of the PDSCCC decoder with 4 parallelized decoders is detailed
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Table 3.3: Single BCJR Decoder Synthesis Results

Unit Name Usage Count and Percentage

Number of Slices 1928(14%)

Number of Slice Flip Flops 134(0.5%)

Number of 4 input LUTs 3480(12.5%)

Number of BRAMs 6(4.5%)

Maximum Operating Frequency 35.370 MHz

Table 3.4: PDSCCC Decoder Synthesis Results

Unit Name Usage Count and Percentage

Number of Slices 8899(64%)

Number of Slice Flip Flops 1169(4%)

Number of 4 input LUTs 15888(58%)

Number of BRAMs 40(29%)

Maximum Operating Frequency 31.251 MHz

in Table 3.4. The PDSCCC decoder implementation utilizes an area which is

larger than the half area of XC2VP30 FPGA chip. Some area optimizations

are possible with corresponding performance degradations. As an example,

it is possible to construct the max� operator using the max-log-MAP approx-

imation approach defined in Section 3.5.5. This brings an SNR loss around

0.5dB in case of parallel concatenated codes as given in [19]. Moreover, we

can also decrease the resolution of the metrics, which will result in an SNR

degradation of nearly 0.1dB for metric size change from 6-bit to 4-bit. The

synthesis results for 4-bit linear-log-MAP based PDSCCC implementation

is given in Table 3.5. If we also use the max-log-MAP algorithm together

with the 4-bit metrics, the corresponding PDSCCC has the utilization figures

presented in Table 3.6.

According to all these timing results, the PDSCCC decoder is capable of

99



Table 3.5: PDSCCC Decoder Synthesis Results(4-bit Metrics)

Unit Name Usage Count and Percentage

Number of Slices 6899(50%)

Number of Slice Flip Flops 961(3%)

Number of 4 input LUTs 12046(43%)

Number of BRAMs 28(20%)

Maximum Operating Frequency 33.649 MHz

Table 3.6: PDSCCC Decoder Synthesis Results(4-bit and Max-log-MAP)

Unit Name Usage Count and Percentage

Number of Slices 4159(30%)

Number of Slice Flip Flops 961(3%)

Number of 4 input LUTs 7355(26%)

Number of BRAMs 28(20%)

Maximum Operating Frequency 38.551 MHz

supplying a data throughput of 4.167 Mbps in the highest BER performance

case, that is for 6-bit metrics and linear-log-MAP. (Each iteration takes 120

cycles and for 8 iterations 128 uncoded data bits are decided at 31.255 clock

frequency.) For lower performance case given in Tables 3.5 and 3.6, the

throughputs are 4.487 Mbps and 5.140 Mbps respectively. These figure are

quite higher than some recent implementations of iterative approaches [20].

When the PDSCCC decoder is operated using the 24 Mhz clock source of

the other receiver modules, it still has a throughput of 3.2 Mbps.

3.7.2 Optimization and Implementation Issues

The PDSCCC decoder is a relatively huge hardware module especially when

the metric size is selected as 6 and linear-log-MAP algorithm is used. In

order to successfully implement and operate large designs some parameters
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of Xilinx ISE should be set correctly. Firstly, within the Xilinx Constraints

Editor the clock signal should be defined and corresponding clock period

constraint must be set according to the operating frequency. In order to

assure that all calculation results are assigned to corresponding registers

correctly, the pad to setup constraint should be set as at most half the period

of the clock signal. This constraint guarantees that any input signal from the

outside world observes a combinational delay at most at the required length.

Similarly, the clock to pad constraint determines the maximum combinational

delay for a signal traveling from the output of a register to an output pad

and it is usually set as the half clock period as well. In addition to these,

some advanced implementation parameters should be tuned for expected

circuit behavior. These parameters are set from the properties dialog box

of the “Implement Design” phase. Map effort level is required to be set as

high and the optimization strategy as balanced between the area and speed

optimizations. Place and route effort level must also be set as high and

multi-pass place and route choice may be selected as well in order to avoid

placement and routing problems in large designs.
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chapter 4

the papr problem in water-filling and a

suboptimal water-filling algorithm

The Chapters 2 and 3 are concentrated on implementation aspects of a com-

plete wireless communication testbed with all related RF transmission mod-

ules, signal processing blocks, and coding schemes used. This chapter, on

the other hand, is based on algorithms developed for signal transmission in

the next step of the testbed implementation with orthogonal frequency di-

vision multiplexing (OFDM) and multiple input multiple output (MIMO)

methods. Few key points have been described about the MIMO perspective

of the testbed development in Chapter 2. Also no details on the OFDM

implementation has been given since the fast Fourier transform (FFT) algo-

rithm (which is the basis for OFDM transmission) was under development

during the submission of this thesis. However, we carried out many simula-

tions and derived some analytical results for the possible algorithms that had

potential usage in the final MIMO-OFDM system. The essential goal of the

algorithms tested is decreasing a parameter, known as peak-to-average-power

ratio (PAPR), in MIMO-OFDM testbed transmitter output.

4.1 Definition of PAPR

The peak-to-average-power ratio (PAPR) for a stochastic discrete time pro-

cess x[n] is given as,

PAPR =
maxn | x[n] |2
Ex {| x[n] |2} (4.1)
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According to the definition of PAPR, some simple examples can be given to

demonstrate the PAPR for some schemes. The PAPR of a system with PSK

modulated output symbols is trivially 1 due to constant amplitude at the

output. In opposition to the PSK modulation scheme, with square M-QAM

modulations (M>4), the PAPR is always greater than 1, since the peak power

is associated with the symbols on the corners that have larger magnitude then

the other symbols. Also with multicarrier transmission schemes, signals may

add up constructively at some time instances while adding up destructively

at other instances, which may lead to a large dynamic range for the output

signal power, so a high PAPR.

Most of the power amplifiers at the last stage of the wireless transmitter

modules have nonlinear input vs. output power characteristics. Some models

for this nonlinearity are suggested in [24, 25]. According to the solid state

amplifier (SSA) model, as an example, the power characteristics of an ampli-

fier (with smoothness factor of 1, and saturation level of 1 Watt) is given in

Figure 4.1. It is obvious that when we use the amplifier in the linear region

we can transmit the desired signal without any power change. However, close

to the saturation region there is considerable degradation in the transmitted

signal power. This may result in severe signal distortion ([28]) unless PAPR

of the transmitted signal is reduced or the transmitted signal power is re-

duced so that the peak power will also be close to the linear region, which

is known as backoff. Applying high backoff to the transmitted signal has a

disadvantage of using the power amplifier in its low-efficiency region for most

of the time.

In most cases simply defining and using the maximum PAPR value as a

system performance parameter is practically insignificant. Considering the

very low probability of having the maximum possible PAPR value, in most

systems the cumulative distribution function of the PAPR is the performance

criteria for transmitted signal. Figure 4.2 demonstrates a comparison of two

systems in terms of the PAPR distribution of their output signals. These two

systems are arbitrary, but with the corresponding given PAPR distributions.
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Figure 4.1: The linear and the saturation regions of the power amplifier are

clearly distinguishable.

Several conclusions can be drawn from Figure 4.2. Firstly, we can compare

two systems by setting a probability value of interest under which we assume

the probability of having corresponding PAPR0 value is negligible. Assuming

this limit is set at 10−4 for a specific application such that in one symbol out

of 10000, we observe a problem due to high signal level. Therefore, in order

to avoid such problems we can backoff the average signal power level by

the corresponding PAPR0 value. This value is nearly 9.5dB for the first

system whereas it is almost 11dB for the second. Hence the designer of

the second system should decrease its average power level by 1.5dB more

than the first system’s designer so that both systems can operate with same

level of degradation on the output signal. This power reduction will pose a

disadvantage to the designer of the second system due to decreased SNR and
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Figure 4.2: System 1 has better PAPR distribution property with lower

probabilities of surpassing a given level of PAPR0 value.

hence the decreased available channel capacity. Secondly, we can compare

two systems’ probabilities of having a specific PAPR0 value. As an example,

the first system will have 10dB instantaneous PAPR with the probability of

4×10−5 and the second system with the probability of 5×10−4. If no backoff

is applied and the critical signal distortion level is set as PAPR0 = 10dB, the

second system will roughly have its symbols degraded with 10 times higher

probability than the first one.

4.2 PAPR Reduction Methods in Literature

Since PAPR is especially an intrinsic and crucial problem for multicarrier

systems, techniques for reducing PAPR are diversified with the increasing
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interest in multicarrier systems in recent years. Although a detailed analysis

of all of the methods will not be given, some of the frequently used ones will

be named here [26].

� Amplitude Clipping and Filtering: This technique clips the sig-

nals over a given level to the desired output level. This clipping op-

eration usually generates some noise in the bandwidth of the signal

(in-band distortion) and also some noise out of the signal bandwidth

(out-of-band radiation). In order to suppress the out-of-band radiation

after clipping, filtering is applied to the signal which causes some addi-

tional PAPR problems. Thus, an iterative clipping and filtering stages

are suggested which result in excessive processing delays.

� Coding: This class of techniques is large with a lot of subclasses that

suggest reduction for distinct modulation schemes. One idea is to select

such codewords for transmission such that the overall combined effect of

the codewords results in decreased PAPR levels. This approach requires

large lookup tables and finding good codes that reduce PAPR. In [27],

for an OFDM system with MPSK modulation the optimum lengths

for Golay complementary codes are given. Using these sequences of

codes the PAPR level of the output signal is kept at desired levels

deterministically. In most cases, the coding for PAPR reduction suffers

from bandwidth efficiency loss due to very low coding rates.

� Selected Mapping: Preparing multiple versions of the data to be

transmitted, the one with the lowest PAPR value is selected in this

technique. As an example for an OFDM system, many FFT’s are ob-

tained for one data sequence and transmitter selects the optimum one

in terms of PAPR. Obviously this method is problematic when suffi-

ciently enough representations for the same signal is to be generated.

Hardware resources may be the bottleneck in implementation of se-

lected mapping technique.
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4.3 PAPR Reduction in OFDM systems

Due to increased data rate requirements of modern applications the band-

width utilized for wireless communications has increased in the last decade.

The increased bandwidth usually comes with a problem to be remedied for

reliable communication. This problem is known as the intersymbol interfer-

ence and mainly caused by the selective response of the channel within the

communication bandwidth. To fight with this frequency selective response,

a method is to split the bandwidth utilized into subbands such that on each

subband the gain of the frequency selective channel is almost constant. Then

the data to be transmitted is also divided into substreams each of which has

only a fraction of the total data rate. Furthermore, the subcarrier frequencies

to carry these substreams are selected such that each modulated substream

is orthogonal to others in frequency domain. This type of modulation is

known as the orthogonal frequency division multiplexing (OFDM) and has

been used in many wideband wireless communication systems, such as IEEE

802.11a/g based wireless LANs, DVB terrestrial digital TV systems, IEEE

802.16 based WiMAX.

4.3.1 Definition of OFDM Signal

An OFDM signal can be defined as the time domain representation of the

data signal that is constructed in the frequency domain by assigning N sub-

streams of data to orthogonally spaced N subcarriers. This operation can

be implemented as an inverse fast Fourier transform (IFFT) operation [29].

The substreams may be modulated adaptively in the frequency domain be-

fore IFFT as shown in Figure 4.31. In order to mitigate the effects of multi-

path fading signal reception, a cyclic prefix is usually copied from the above

defined time domain signal’s end and attached to its head. This way the

synchronization mismatches are avoided, the orthogonality between the sub-

1Figure is taken from http://en.wikipedia.org/wiki/OFDM
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Figure 4.3: The IFFT based OFDM transmitter shown has N subcarriers.

carriers is preserved and consequently a simpler receiver design with an FFT

operation is possible [8]. Therefore, many resources accept that an OFDM

symbol includes the cyclic prefix part in addition to the IFFT of the data in

frequency domain.

The discrete time domain representation for OFDM signal with N sub-

carriers is given as,

x[n] =
1√
N

N−1∑
i=0

X[i]ej2πin/N (4.2)

When we observe the distribution of the in-phase and quadrature-phase com-

ponents of the OFDM signal, when N is a large number (due to Central Limit

Theorem) these components resemble Gaussian noise samples. This Gaus-

sian distribution assumption is practically valid for most applications when

N ≥ 64 [8]. This is exemplified in Figure 4.4, where 8192 OFDM symbols

for a 64-subcarrier system are generated in MATLAB and the histogram of

the real part of the resulting signal is drawn. As a result of the Gaussian-like

distribution, inherently OFDM signals have high PAPR. This can be easily

observed on Eqn. 4.2 as well. The complex frequency domain signals X[i]

are multiplied by subcarriers with different phases. Their sum (x[n]) at any

time n may be very large due to possible constructive superposition at that

time instance.
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Figure 4.4: Gaussian characteristics of the histogram is obvious for real part

of the OFDM signal.

4.3.2 PAPR Problem with Optimal Power Allocation

in Frequency Domain

For time varying frequency selective channels, the optimal algorithm for

achieving channel capacity is the two-dimensional water-filling algorithm [8].

This algorithm allocates distinct power levels to each frequency at any time

according to the instantaneous SNR level of that frequency. The frequencies

with higher SNR levels receive higher power, while the worse frequencies ob-

tain less or no power according to a predefined threshold. A simple example

(using only one-dimensional water-filling in frequency domain at an instant)

for demonstrating the water-filling operation is given in Figure 4.5. The γ0

value shown in Figure 4.5 is the threshold, whose reciprocal will determine
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Figure 4.5: The inverse of the SNR function is used for allocating the power

to frequencies.

the power to be allocated to various frequencies. The total power to be dis-

tributed is denoted by Ptotal and the power allocation, P (f, t), to frequency

f at time t is given as,

P (f, t)

Ptotal
=

{
1/γ0 − 1/γ(f, t) γ(f, t) ≥ γ0

0 γ(f, t) < γ0

. (4.3)

In Eqn. 4.3, γ(f, t) is used for the instantaneous SNR at frequency f at

time t. A very similar algorithm for optimally distributing a given power

to frequency-selective block fading channels can also be obtained. This al-

gorithm also applies to OFDM subcarrier power distribution, since within

the frequency subbands the frequency response of the channel is assumed to

follow block fading in frequency domain for OFDM. Figure 4.6 shows power
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allocation on block fading frequency bands. For OFDM optimal power dis-

Figure 4.6: The subcarrier number 0 is not allocated any power since it is

below the threshold [7].

tribution, the power allocated to the subcarriers is defined as,

Pj

Ptotal

=

{
1/γ0 − 1/γj γj ≥ γ0

0 γj < γ0

, j = 0, 1, . . . , N − 1. (4.4)

This power allocation method is optimal in the sense that it achieves the

channel capacity which is given as,

C =
∑

j:γj≥γ0

B log2(
γj

γ0
). (4.5)

In Eqn. 4.5, B denotes the allocated bandwidth for communication. Although

the channel capacity is satisfied with the given constraints, there is no con-

straint on the PAPR of the output signal after this power allocation scheme.

With the motivation of including a PAPR constraint into the power alloca-

tion scheme, we suggested a suboptimal algorithm for OFDM systems. This
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method is simple to apply when compared to the water-filling algorithm and

depends on distributing the given total power in equal amounts to a selected

number of subcarriers. The following section summarizes our analytical find-

ings on the PAPR of the OFDM signal when water-filling is utilized. It

further compares the optimal (water-filling) scheme and the scheme where

all the subcarriers are allocated equal power. Then, the next section com-

pares the suggested suboptimal scheme (allocating equal power to a selected

number of subcarriers) and the water-filling.

4.3.3 Comparison of Non-adaptive Scheme

with Water-filling

The cumulative probability distribution function of an OFDM signal with N

subcarriers is given in [8] as,

Fλ(λ) =Pr( max
i=0,1,...,N−1

| x[i] |2≤ λ), (4.6)

=(1 − e−λ)N . (4.7)

However, with two-dimensional water-filling at some instances most of the

SNR levels of the subcarriers may be lower than the threshold level. Then,

the power is saved for better channel SNR levels in future transmissions,

which will result in significantly varying PAPR for the power adapted OFDM

signal. Therefore, this requires a new analysis for determination of cu-

mulative probability distribution function with water-filling. In [30], the

instantaneous PAPR corresponding to an instantaneous SNR vector, 	γ =

{γ0, γ1, . . . , γN−1}, is found as,

Fλ(�γ)(λ(	γ)) = (1 − e−λ/σ2
�γ )N , (4.8)
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where σ2
�γ is the random variance of the channel SNR vector, 	γ. This random

variance is given as,

σ2
�γ =E{ 1

N

N−1∑
i=0

N−1∑
j=0

√
Pi(γi )

√
Pj(γj )X[i]X�[j]ej2π(i−j)n/N}, (4.9)

=
1

N

N−1∑
i=0

Pi(γi). (4.10)

Then the cumulative probability distribution function for the PAPR is found

after taking expectation of the expression in Eqn. 4.8 over all realizations of

the channel SNR vector as,

Fλ(λ) =

∫
· · ·

∫
f�γ(γ0, . . . , γN−1)(1 − e−λ/σ2

�γ )Ndγ0 . . .dγN−1. (4.11)

For the following comparisons this analytical result is evaluated using the

Monte Carlo simulation method. Moreover, for all the water-filling and sub-

optimal method simulation results are obtained by generating 100000 channel

vectors with zero-mean Gaussian vector elements that have variance 1. The

channel capacity comparisons are carried out by generating 10000 channel

vectors for each average total SNR level.

Figure 4.7 presents the capacity of optimal power allocation algorithm

with the non-adaptive (suggested equal power allocation) algorithm. It is

easy to observe that water-filling algorithm degrades to equal power alloca-

tion method in the high SNR values. Around 10dB SNR value (at a capacity

of 2.5 bits/sec/Hz) the SNR loss due to equal power allocation is 2.5dB.

Around 0dB SNR the loss is approximately 5dB and around 30dB it is less

than 0.5dB. Figure 4.8 shows the PAPR performance of two methods at an

average SNR of 0dB. Moreover, it also demonstrates the analytical result

curve in a close proximity of the 2-D water-filling method’s curve. The SNR

loss due to the excess backoff should be done by the water-filling method is

slightly above 2dB at PAPR probability of 10−4.

Figures 4.9 and 4.10 show the comparison results for two methods at

average SNR levels 10dB and 30dB respectively. For 10dB average SNR,
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Figure 4.7: Channel capacity of two methods are close for high SNR values.
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Figure 4.8: The non-adaptive method offers better PAPR distribution.
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Figure 4.9: The analytical PAPR result is in accordance with the simulated

water-filling PAPR curve.

the loss in water-filling algorithm is nearly 1dB, and for 30dB the PAPR

distributions of two methods are almost identical. As a result, the channel

capacity gain obtained by the optimal water-filling algorithm is not very high

when the nonlinear characteristics of power amplifiers, which are effected by

high PAPR values, is taken into account. The simple equal power allocation

method can perform with only 2.5 − 1 = 1.5dB performance degradation at

10dB average SNR. Furthermore, the analytical PAPR distribution suggested

by [30] strictly follows the simulation results at 10dB and higher SNR values.

This is mainly due to the fact that at very low SNR values the water-filling

method uses only a few subcarriers and they may not add up to Gaussian

distributed signals leading to invalidity of the Gaussian assumption in the

derivation.
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Figure 4.10: Water-filling converges to equal power distribution.

4.3.4 Comparison of Subcarrier Selection

Scheme with Water-filling

In implementation of the power adaptation schemes, transmitter should be

fed back by the appropriate channel state information (like the SNR of each

subcarrier). The water-filling algorithm also requires information about the

power to be allocated to each subcarrier and this feedback may result in ex-

cessive utilization of the feedback channel. In order to reduce the time for

feedback, limited rate feedback may be preferred. In our scheme, instead of

sending the quantized subcarrier SNR values back to the transmitter, only

one bit per subcarrier is transmitted to reveal whether the corresponding sub-

carrier is allocated power or not. Therefore, the channel is used for shorter in-

tervals during each feedback event. This section presents the capacity curves

for various number of subcarriers (with highest SNR values) selected to carry

signal and it compares them with the optimal method. (In Appendices closed
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form expression for capacity of arbitrary number of selected subcarriers is de-

rived.) Figure 4.11 gives this comparison. In Figure 4.11 it is clearly seen
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Figure 4.11: For different number of subcarriers capacity curves are given.

that at lower SNRs low subcarrier numbers yield higher capacity than the

high subcarrier numbers. Moreover, the 8-subcarrier suboptimal method has

almost a 2dB loss around the average SNR value of 10dB. Figure 4.12 demon-

strates the PAPR cumulative probability distribution functions for optimal

and suboptimal power allocation techniques. Average SNR is 10 dB for this

simulation and all of the curves are drawn using approximately 8 million

QPSK symbols. For the subcarrier selection method, given number of sub-

carriers with highest SNR values are allocated equal amounts of power with

a total power constraint. Obviously, the PAPR performance of 8-subcarrier
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Figure 4.12: 16-subcarrier selection method has much worse PAPR perfor-

mance than the 8-subcarrier selection method.

suboptimal method is better than the optimal water-filling method and the

16-subcarrier suboptimal method. Moreover, 8-subcarrier seletion has 1.5dB

PAPR advantage which leads to only a 2dB − 1.5dB = 0.5db gain for the

optimal method in the overall comparison. This means a negligible capacity

loss is incurred in the suggested method which greatly reduces the feedback

rate required.

4.4 PAPR Reduction in MIMO systems

Quite similar to sending data signals as substreams distributed in the fre-

quency domain, it is also possible to use the spatial domain to create new

independent substreams for either sending independent data or creating di-
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versity. Multiple-input multiple-output (MIMO) systems, in this sense, bare

resemblance to OFDM systems, with the distinction that the methods used

for achieving channel capacity differ. Consequently, it may be interesting to

analyze the PAPR properties of MIMO systems under different scenarios.

4.4.1 Overview of MIMO systems

Figure 4.13 shows the MIMO system in its most general form with Nt trans-

mit antennas and Nr receive antennas (called Nt×Nr MIMO system). Within

the MIMO wireless channel there are signal paths from all transmitter anten-

nas to all receiver antennas and for transmission various space-time coding

methods are possible. A MIMO wireless system is usually generalized by a

Figure 4.13: Many paths exist from the transmit antennas to the receive

antennas in a MIMO wireless channel.

matrix-vector equation that is given as,

y =

⎡
⎢⎢⎣

y1

...

yNr

⎤
⎥⎥⎦ = Hx+n =

⎡
⎢⎢⎣

h11 . . . h1Nt

...
. . .

...

hNr1 . . . hNrNt

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1

...

xNt

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

n1

...

nNr

⎤
⎥⎥⎦ . (4.12)
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The transmitted vector, x, is an Nt dimensional vector whose elements are

the transmitted signals from the antennas. H represents the channel gain

matrix, where the entry hij (in general complex) is the fading parameter for

the channel between the jth transmit antenna and the ith receive antenna. n

is the complex Gaussian noise vector representing the noise added to signals

at each receive antenna. Finally, y is the received vector with each entry

corresponding to a signal at each receive antenna.

For any Nr×Nt complex matrix, H, there exists a method called singular

value decomposition (SVD) that decomposes H into unitary Nr × Nr U

matrix, unitary Nt × Nt V matrix, and diagonal Nr × Nt Σ matrix as,

H = UΣV H (4.13)

Using this decomposition if we modify the vector x and transmit x̃ = Vx,

and similarly shape the received vector y as ỹ = UHy, the modified receive

vector can be given as,

ỹ =UHy, (4.14)

=UH(Hx̃ + n), (4.15)

=UH(UΣV HV x + n), (4.16)

=Σx + ñ, (4.17)

where ñ = UHn has the same distribution as n , since U (and also UH) is

unitary. Then, after applying these shaping transforms onto the signal to

be sent and the signal that is received, we obtain min{Nt, Nr} parallelized

channels with distinct signal powers given in diagonals of σ. The optimal

power allocation on these independent channels is also water-filling (see [8])

as in the case of independent subcarriers of an OFDM signal.
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4.4.2 PAPR Problem with Optimal Power Allocation

in Spatial Domain

In this section, similar to the results given in Section 4.3.3 for OFDM system,

the capacity and PAPR comparisons for different average SNR levels will

be given. As it is shown in [31], for fast Rayleigh fading MIMO systems

there is slight difference between the capacities achieved by one-dimensional

(over spatial dimension) and two-dimensional (over both spatial and time

dimensions) water-filling. Therefore, in the following simulations the water-

filling method used is one-dimensional. Moreover, Nr = Nt = 4 is the general

assumption for all simulations.

The channel capacity achieved by water-filling and equal power alloca-

tion methods are compared in Figure 4.14. The SNR loss of the non-adaptive
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Figure 4.14: The loss due to equal power allocation is negligible even for

moderate SNR levels.
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method is close to 2dB around 0dB average SNR, 0.5dB around 10dB average

SNR, and negligibly small around 25dB average SNR. Figure 4.15 demon-

strates the PAPR distributions for two methods at 0dB average SNR. For
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Figure 4.15: Equal power allocation is much less prone to PAPR problems.

0dB average SNR and a fixed PAPR probability of 10−4, the extra backoff

for the water-filling power allocation method is almost 1.5dB when com-

pared with the equal power allocation method. Hence the overall gain for

the optimal method is close to a meager 0.5dB. Figure 4.16 is drawn for

10dB average SNR. When we set the PAPR probability at 10−4, the loss of

the water-filling method is nearly 0.5dB, which makes it comparable with

the non-adaptive method in terms of channel capacity. Finally, Figure 4.17

shows us that two methods converge to each other when the average SNR is

25dB.
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Figure 4.16: An observable PAPR performance difference still exists between

two methods.
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chapter 5

conclusions and future work

There are three main themes of this thesis:

� The SISO and SIMO wireless testbed structures are described, cor-

responding filtering operations and the symbol detection results are

discussed. The maximal ratio combining method applied on the SIMO

system is shown to achieve much better bit error rates than the SISO

system, which encourages further studies with the MIMO approach.

� A parallelized serially concatenated convolutional code structure is de-

fined and its fixed point implementation based on the linear-log-MAP

algorithm is detailed. Various parameters effective on the performance

of the corresponding decoder are presented and final data throughput

for each major case is listed.

� The effect of optimal power allocation technique for OFDM and MIMO

systems on the PAPR of the output signal are investigated. The re-

sults for the comparison of this algorithm with the simplest equal power

allocation technique are given and the gain obtained by using the opti-

mal technique is shown to be small for especially 4× 4 MIMO system.

Moreover, a closed form expression for the capacity of a suboptimal

subcarrier selection method is derived (see Appendices).

In addition to the achievements described in this thesis, some improve-

ments to our testbed are set as future goals. These goals can be itemized as

follows:
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� In order to optimize the system performance, the frequency modulating

(FM) RF transmitter/receiver modules described in Section 2.2.4 have

to be replaced with new transciever modules using amplitude modu-

lation (AM). This replacement has forced us to design a new board

that uses the desired modulation and supports up to 4 receive and 4

transmit antennas. The new testbed is also expected to operate FFT

modules for realizing OFDM. Moreover, the optimal adaptive power

allocation methods and their suboptimal counterparts for both MIMO

and OFDM can also be experimented on this second version of the

testbed.

� For further improving the data throughput of the iterative decoder ar-

chitecture discussed in Section 3.5, the number of the parallel decoders

in the inner and/or the outer decoder can be increased. Moreover,

some pipelining stages may be inserted into metric and log-likelihood

calculations in order to improve the operating clock frequency.

� The serial port connection of the FPGA board with the computer may

be upgraded to support USB. This may decrease the data acquisition

time and provide real-time data acquisition for an in-depth analysis of

the wireless channel properties .

� Rate adaptation over various spatial or frequency dimensions may be

implemented with the addition of higher rate modulation schemes to

the current QPSK modulation.

In addition to equal power allocation method for MIMO and OFDM sys-

tems, we analyzed the achievable capacity for suboptimal algorithms utilized

during the distribution of the power over antennas and/or subcarriers. We

mainly concentrated on selection of a predetermined number of the possible

antennas and allocating the power in equal amounts to these antennas in

MIMO systems. The capacity obtained by such a method requires analyzing

the random eigenvalue distributions for the channel response matrix. After
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some detailed derivations that include second order integral approximations

for the capacity expressions we could not manage to obtain a convenient so-

lution to the problem due to mathematical intricacies involved. This is also

a problem that remains to be solved in near future.

The observation of PAPR and capacity comparisons under more realistic

conditions may also be an interesting extension to the problems described

here. The correlation of the subcarriers in the OFDM system and the cor-

relation of the receive antennas in the MIMO system would be nice starting

points. The bit error rate performance of the competing methods, with all

the coding and modulation schemes included as the system parameters, may

also be investigated. Furthermore, realistic nonlinear power amplifier models

may also be added in this comparisons.
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appendices

Analytical Capacity of Suboptimal Water-

Filling Algorithm for OFDM

The instantaneous capacity for a Rayleigh Fading channel is given as,

C = B log2(1 + γ), (A-1)

where γ is the instantaneous SNR value and B is the bandwidth of the

channel. The distribution of γ is exponential and given as,

fγ(γ) =

(
1

γ0

)
e
− γ

γ0 , (A-2)

where γ0 is the expected value of γ. Then the expected channel capacity for

a Rayleigh fading channel is given as,

Eγ [C] =

∫ ∞

0

B log2(1 + γ)fγ(γ)dγ, (A-3)

=
B

ln 2

∫ ∞

0

ln(1 + γ)(
1

γ0
)e

− γ
γ0 dγ, (A-4)

=
B

ln 2
e1/γ0E1(1/γ0). (A-5)

In Eqn. A-5, E1(x) is the En function (with n = 1) whose definition is given

as,

En(x) ≡
∫ ∞

1

1

γn
e−xγdγ. (A-6)

For obtaining the capacity of a number of selected independent subcarriers’

total capacity the following properties will be utilized:

� Property-1:∫ ∞

0

ln(1 + γ)(
1

γ0
)e

− kγ
γ0 dγ =

ek/γ0

k
E1

(
k

γ0

)
. (A-7)
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� Property-2: For n independently distributed random variables, the

probability distribution function of the ith smallest variable for ordered

statistics is given as,

fγ(i)
(γ) =

n!

(i − 1)! · (n − i)!
(Fγ(γ))i−1(1 − Fγ(γ))n−ifγ(γ), (A-8)

=i ·
(

n

i

)
(Fγ(γ))i−1(1 − Fγ(γ))n−ifγ(γ). (A-9)

Problem-1: What is the capacity when always the best channel (that is

γ(n)) is allocated the whole power?

Solution: Using Property-2, the expected value for the capacity of the high-

est SNR channel is given as,

E[log2(1 + γ(n))] =
B

ln 2

∫ ∞

0

ln(1 + γ)
n!

(n − 1)!0!
(1 − e

− γ
γ0 )n−1

(
1

γ0

)
e
− γ

γ0 dγ,

(A-10)

=
B

ln 2

∫ ∞

0

ln(1 + γ)
n!

(n − 1)! · 0!

.

(
n−1∑
j=0

(
n − 1

j

)
(−1)je

− jγ
γ0

)(
1

γ0

)
e
− γ

γ0 dγ, (A-11)

=
B

ln 2
n

n−1∑
j=0

(
n − 1

j

)
(−1)j

∫ ∞

0

ln(1 + γ)

.

(
1

γ0

)
e
− (1+j)γ

γ0 dγ. (A-12)

Now, if we apply the Property-1 on Eqn. A-12, the capacity is given as,

E[log2(1+γ(n))] =
B

ln 2
n

n−1∑
j=0

(
n − 1

j

)
(−1)j 1

1 + j
e

1+j
γ0 E1

(
1 + j

γ0

)
. (A-13)

Problem-2: What is the capacity when the k best channels among n inde-

pendent Rayleigh channels are allocated equal power?

Solution: We need to find E[log 2(1 + γ(t))] for t = n − k + 1, . . . , n and
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sum the results for the total capacity. The capacity of an individual channel

can be obtained using the Properties-1 and 2 as,

E[log2(1 + γ(t))] =
B

ln 2

∫ ∞

0

ln(1 + γ)t

(
n

t

)
(1 − e

− γ
γ0 )t−1

.(e
− γ

γ0 )n−t

(
1

γ0

)
e
− γ

γ0 dγ, (A-14)

=
B

ln 2

∫ ∞

0

ln(1 + γ)t

(
n

t

)(
t−1∑
j=0

(
t − 1

j

)
(−1)je

− jγ
γ0

)

.(e
− γ

γ0 )n−t

(
1

γ0

)
e
− γ

γ0 dγ, (A-15)

=
B

ln 2
t

(
n

t

)
t−1∑
j=0

(
t − 1

j

)
(−1)j

∫ ∞

0

ln(1 + γ)e
− jγ

γ0

.e
− (n−t)γ

γ0

(
1

γ0

)
(e

− γ
γ0 )n−tdγ, (A-16)

=
B

ln 2
t

(
n

t

)
t−1∑
j=0

(
t − 1

j

)
(−1)j 1

j + n − t + 1

.e
j+n−t+1

γ0 E1

(
j + n − t + 1

γ0

)
. (A-17)

Finally, using Eqn. A-17, the capacity for suboptimal subcarrier selection

method can be found as,

E

[
n∑

t=n−k+1

log2(1 + γ(t))

]
=

n∑
t=n−k+1

E[log2(1 + γ(t))]. (A-18)
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