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ABSTRACT 

A FLUID DYNAMICS FRAMEWORK FOR CONTROL OF  

MOBILE ROBOT NETWORKS 

 

Paç, Muhammed Raşid 

M.S., Department of Electrical and Electronics Engineering 

Supervisor 

Co-Supervisor 

:  

: 

Prof. Dr. Aydan M. Erkmen 

Prof. Dr. İsmet Erkmen 

August 2007, 170 pages 

 

This thesis proposes a framework for controlling mobile robot networks based on a 

fluid dynamics paradigm. The approach is inspired by natural behaviors of fluids 

demonstrating desirable characteristics for collective robots. The underlying 

mathematical formalism is developed through establishing analogies between fluid 

bodies and multi-robot systems such that robots are modeled as fluid elements that 

constitute a fluid body. The governing equations of fluid dynamics are adapted to 

multi-robot systems and applied on control of robots. The model governs flow of a 

robot based on its local interactions with neighboring robots and surrounding 

environment. Therefore, it provides a layer of decentralized reactive control on 

low level behaviors, such as obstacle avoidance, deployment, and flow. These 

behaviors are inherent to the nature of fluids and provide emergent coordination 

among robots. The framework also introduces a high-level control layer that can 

be designed according to requirements of the particular task. Emergence of 

cooperation and collective behavior can be controlled in this layer via a set of 

parameters obtained from the mathematical description of the system in the lower 

layer. Validity and potential of the approach have been experimented through 

simulations primarily on two common collective robotic tasks; deployment and 



v 
 

navigation. It is shown that gas-like mobile sensor networks can provide effective 

coverage in unknown, unstructured, and dynamically changing environments 

through self-spreading. On the other hand, robots can also demonstrate directional 

flow in navigation or path following tasks, showing that a wide range of multi-

robot applications can potentially be developed using the framework. 

 

 

Keywords: Collective Robotics, Fluid Dynamics, Smoothed Particle 

Hydrodynamics, Deployment, Mobile Sensor Networks. 
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ÖZ 

GEZGİN ROBOT AĞLARININ KONTROLÜ İÇİN  

BİR AKIŞKANLAR DİNAMİĞİ ÇERÇEVESİ 

 

Paç, Muhammed Raşid 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi 

Ortak Tez Yöneticisi 

: 

:

Prof. Dr. Aydan M. Erkmen 

Prof. Dr. İsmet Erkmen 

Ağustos 2007, 170 sayfa 

 

Bu tez gezgin robot ağlarının kontrolü için akışkanlar dinamiği tabanlı bir çerçeve 

önermektedir. Bu yaklaşım akışkanların sergilediği, kollektif robotlar için istenilen 

bazı doğal davranışlardan esinlenmektedir. Dayanılan matematiksel yöntem 

akışkan cisimler ile çok robotlu sistemler arasında benzerlik kurularak 

geliştirilmiştir. Bu benzerlikte robotlar bir akışkan kütleyi meydana getiren 

akışkan zerreleri olarak modellenmiştir. Akışkanlar dinamiğini yöneten formüller 

çok robotlu sistemlere uyarlanmış ve robotların kontrolüne uygulanmıştır. Bu 

model bir robotun akışını, komşu robotlar ve çevre ile olan yerel etkileşimleri 

temelinde yönetmektedir. Bu yüzden model robotların engellerden kaçınma, 

yayılma ve akış gibi alt seviye davranışları üzerinde dağıtılmış bir tepkisel kontrol 

sağlamaktadır. Bu davranışlar akışkanların doğasında vardır ve robotlar arasında 

eşgüdümün kendiliğinden ortaya çıkmasını sağlamaktadır. Anılan çerçeve hususi 

görev gereksinimlerine göre tasarlanabilecek üst seviye bir kontrol katmanı da 

ortaya koymaktadır. Sistemin alt katmandaki matematiksel tanımından doğan bir 

parametre kümesi sayesinde işbirliği ve kollektif davranışın ortaya çıkışı bu üst 

seviye katmanda kontrol edilebilmektedir. Yaklaşımın geçerliliği ve potansiyeli 

başlıca iki genel kollektif robotik görevi olan yayılım ve gezinim üzerinde 
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denemiştir. Gaz benzeri gezgin algılayıcı ağlarının bilinmeyen, yapısız ve dinamik 

olarak değişen ortamlarda kendiliğinden yayılma sayesinde etkin kapsama 

sağlayabildiği gösterilmiştir. Diğer taraftan robotlar gezinim ve yol takip etme 

görevlerinde yönlü bir akış da sergileyebilmektedirler. Bu, önerilen çerçevenin 

muhtelif çok robotlu uygulamaların geliştirilmesinde kullanılabileceğini 

göstermektedir. 

 

 

Keywords: Kollektif Robotik, Akışkanlar Dinamiği, Yumuşatılmış Parçacık 

Hidrodinamiği, Yayılma, Gezgin Algılayıcı Ağları. 
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CHAPTER 1 

INTRODUCTION 

1.1  Control of Mobile Robot Networks 

The research on multi-robot systems (MRS) that are composed of a large 

collection of robots has attracted a growing interest among the robotics community 

over the past decade. It is a fact that a multi-robot system can accomplish tasks 

that no single robot is capable of doing. Basically, multiple autonomous robots that 

can cooperate to perform a common task can possibly provide benefits in terms of 

improved performance, increased robustness and reduced implementation costs. 

For example, instead of a single sophisticated robot, a distributed system of simple 

and inexpensive robots can demonstrate better task achievement since ultimately a 

single robot, no matter how capable, is spatially limited. While the study of 

controlling multiple robots extends previous research on single robots, it is also a 

discipline onto itself because collective autonomous robots require special 

approaches to their inherent distributed nature. In this respect, scientific efforts 

have recently created a number of closely related research fields, such as 

cooperative robotics, collective robotics and swarm robotics, toward the analyses 

of distributed and autonomous multiple mobile robot systems [1]-[6]. 

Control of a multi-robot system refers to the algorithm that governs the actions of 

individual robots in response to the environment in which they operate and to other 

robots that they collaborate toward performing their assigned task. Enabling the 

control of a large collection of autonomous robots require decentralized 

approaches that propose to distribute the intelligence to robots so that each of them 

has its individual autonomous controller and the cooperation among them results 

in the accomplishment of the overall task. In this respect, coordination among 

robots is a critical issue as it makes the distributed robots a collection of 

harmonious system elements. One of the primary means of coordination among 
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robots is communication. When the members of a robot team explicitly act to 

convey information to other members, this can facilitate coordination among 

robots and ultimately improve the performance of the system. It was shown that 

communication can significantly benefit to the performance of a multi-robot 

system and enable certain types of coordination that would be impossible 

otherwise [7]. The capability of mobile robots to establish ad-hoc wireless 

communication networks among each other resulted in the emergence of a new 

concept called as mobile robot/sensor networks [8], [9]. 

The control algorithm of a robot primarily exhibits itself in the actions of the robot. 

In a mobile sensor network, for example, the ultimate goal of the system is to do 

surveillance by distributing sensor nodes over the environment. Starting from an 

initial configuration of the nodes, sensors are deployed in such a way as to 

maximize the total area covered by the network. It is the deployment control 

algorithm that drives the system to a desirable final state where the primary 

performance metric, coverage, is satisfied. Therefore, when it is considered that all 

mobile robot networks involve motion in one way or another, utilization of an 

effective motion control strategy is indispensible. 

1.2  Objectives and Motivations 

Capabilities of collective mobile robot networks in terms of mobility, sensing, and 

onboard computation along with networked wireless communication facilitate 

numerous collaborative tasks to be performed. Improvements in embedded 

processing, wireless communication, and MEMS technologies leveraged the 

availability of inexpensive and low-power smart sensors embedded in mobile 

platforms, releasing the great potential for applications such as infrastructure 

security [10], environment and habitat monitoring [11]-[14], industrial sensing and 

automation [15], [16], distributed manipulation[17], and emergency search-and-

rescue [18]-[20]. 

The idea presented in this thesis originated from the global research efforts 

devoted to search-and-rescue (SAR) robotics, where multi-robot systems are being 

utilized in highly unstructured and challenging environments of disaster areas to 
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help out search and rescue operations for victims. While robotic SAR operations 

were the starting point of our investigation, we have come up with a broad range 

of applications, where multi-robot systems are being used to confront the difficulty 

and danger of tasks for humans. A common aspect of these applications is that the 

environment under consideration is unknown, unstructured, and dynamically 

changing. Therefore, besides the technological sophistication of the robot 

hardware needed to overcome the challenges of such environments, it is also 

compulsory to develop competent algorithms for the control of these robots. 

Large-scale multi-robot systems are those intended to accommodate hundreds to 

thousands of robots. Groups of these sizes pose several challenges such as 

scalability and robustness. Scalability of a multi-robot system is referred to as the 

ability to adapt to a wide range of group sizes. Scalability is strongly related with 

the control architecture of the system such that decentralized approaches provide 

better scalability, whereas centralized approaches are limited with the capabilities 

of the central unit in responding to the computational and communication needs of 

a group of agents. With decentralized control, we mean that each robot has its own 

control algorithm and there is no central controller acting directly on the low-level 

organization and movement of the system. Robustness, on the other hand, 

encompasses two notions as adaptability and fault-tolerance. While adaptation 

reflects the aptitude of a system to maintain its performance under changing 

internal or external conditions such as dynamically changing terrain features, fault-

tolerance is the capability to withstand partial failures such as destruction of some 

of the members in a multi-robot system. A decentralized approach benefits to all of 

these properties and hence is very desirable in unknown, unstructured, 

dynamically changing, and hostile environments of surveillance and disaster areas. 

In a large-scale multi-robot system, there are two types of major behaviors that can 

be controlled and observed. One is the behaviors of individual robots in their local 

interactions and can be called as low level behaviors of the robots. For example, 

avoiding obstacles and collisions is a typical local and reactive behavior that each 

member of a multi-robot system is expected to demonstrate autonomously based 
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on local information. The other is the global behavior of the whole system within 

the environment and can be called as the high level behavior of the system. It is a 

fact that the local interactions of robots significantly affect the collective behavior. 

It is actually the philosophy behind decentralized approaches that the global 

behavior of the system is expected to ‘emerge’ from locally coordinated reactions. 

However, in most of these approaches, the designer of the system merely defines 

some local relations and reaction rules that have indirect effect on the global 

behavior. Since the methodologies for MRS control inherit much of their 

properties from the techniques developed for single-robot systems, collective 

aspects of large-scale MRS have mostly been neglected in the design of robot 

control algorithms. In order for a desired global behavior to emerge from 

distributed actions of robots, we believe that collective control mechanisms should 

also be reflected in the low level behavior control algorithms of individual robots. 

That is, while designing the individual controller of a robot, which is to be part of 

a multi-robot system, the collective aspects of the overall system should be taken 

into account and the necessary control parameters should be incorporated into the 

low level reactive behavior model so that high level controllers of the system can 

utilize these parameters to generate the global behavior of the system. For 

instance, the high level behavior controller of a robot should be able to impose on 

the low level controller a movement direction that is communicated among robots 

in the high level as a global direction for all robots. Therefore, it is very desirable 

that the low level controller has not only reactive mechanisms but also a 

controllable set of parameters to higher level algorithms so that the collective 

behavior is not only emergent but also controllable. It is the novelty of combining 

individual and collective control mechanisms of a multi-robot system in a unified 

framework for designing the control algorithm of robots that inspired and 

motivated our research. The primary objective of the thesis is to develop such a 

framework for decentralized, scalable and robust control of large-scale multi-robot 

systems that are to operate in unknown, unstructured, and dynamic environments. 
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1.3  Methodology 

In this thesis, we present a generic framework for designing the control algorithms 

of mobile robot networks. Although there has not been an established lower bound 

for the number of robots, the systems that we refer to in our approach are meant to 

contain more than a few tens of robots. As for the control framework, the method 

of the thesis has been developed as a unified architecture that can suitably be 

applied in part to the low-level motion controls of individual robots as well as their 

collective behavior in the global scale. That is, the formalism that we propose is 

capable of governing both the local interactions of individual robots and the global 

behavior of the whole system. 

The approach is strongly inspired by the dynamics of fluids and is created through 

an analogy that we established between fluid and multi-robot concepts. The 

mathematical foundation of our formalism is based on the physical principles 

governing the flow of fluids. Hence, we have thoroughly exploited such branches 

of science as Fluid Mechanics, Fluid Dynamics, and Computational Fluid 

Dynamics (CFD). 

1.3.1  An Analogy between Fluids and Mobile Robot Networks 

While the idea of physics-based approaches to control of MRS is not completely 

new, our starting point that inspired our research was an observation that 

compressible fluids (i.e. gases) conform to the outline of their container and 

distribute uniformly within the media however disordered the environment is. This 

behavior –formally called as the transport phenomena ([21], pp. 5)– was ideally 

what we desired in a mobile sensor network (MSN) while we were searching for a 

deployment strategy suitable for unstructured environments. 

The analogy that we established between fluids and MRS originates from several 

desirable characteristics of fluids and is based on modeling a multi-robot system as 

a fluid body through a fluid dynamics model. First, fluids have diffusive and self-

spreading nature such that they flow in the direction of decreasing density and 

spread out to fill in or pour into the space of their container. Especially, gases 
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diffuse into the space and achieve homogeneous density distribution over the 

environment regardless of its complexity. This is a very favorable behavior in 

challenging terrains for multi-robot surveillance systems and mobile sensor 

networks which are required to maximize coverage while preserving uniformity. 

Another very important property of fluids is that any flow variation or disturbance 

in one part of the fluid affects the rest by propagation. Thus, when a fluid body is 

considered as a collection of infinitesimal fluid elements, this behavior points out 

the presence of some kind of a coordination mechanism among these elements. 

Reflection of this behavior in a multi-robot system, if modeled as a fluid, can 

possibly feature the same coordination mechanism among robots and equip them 

with the expected collective reactivity. Similarly, there are more of these features 

of fluids that favor a fluid dynamics framework as we explain in detail later. 

1.3.2  Smoothed Particle Hydrodynamics: A Meshfree Particle Method 

Fluid Dynamics deals with the flow of fluids and is based on the mathematical 

statements of three fundamental physical principles : Conservation of mass, 

momentum, and energy. By applying these principles to a fluid model, the 

governing equations of fluid dynamics are obtained. However, these equations are 

not analytically solvable in general and require the employment of computational 

methods. Among these computational methods, Smoothed Particle Hydrodynamics 

(SPH) is a meshfree particle method that models a fluid body as a collection of 

moving particles and numerically analyzes the flow equations in these particle 

locations. It recently became commonly used in fluid simulations and is very 

suitable for distributed and parallel computations. 

It is the meshfree particle nature of SPH that it can very suitably be implemented 

within a distributed system of mobile agents. Apparently, a fluid particle in SPH 

corresponds to a robot in our framework and the governing flow equations are 

numerically solved by each robot in its locality. 
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1.3.3  A Framework for Control of Robot Networks 

Behaviors of fluids that inspired our model differ from one fluid to another and 

depend on some physical properties of the particular fluid and media. For example, 

a gas flows somewhat differently than a liquid as a result of different physical 

descriptions of the pressure distribution. Or a viscous1 fluid appears to be less 

viscous under higher temperature conditions. More importantly, the environment 

in which the fluid flows largely determines the overall shape of the flow. There are 

a lot of similar parameters that distinguish a particular flow from one another and 

result in quite different flow patterns. 

The idea in our approach is to utilize these parameters to generate a desired motion 

of the robots both in the local and global scales as we are free to choose any setting 

for modeling our multi-robot system as an artificial fluid body. Even we can 

introduce unphysical values to these parameters whenever it comes favorable. 

Therefore, the collective behavior of the system can be controlled through a set of 

parameters that directly govern the flow both in the local and global scale. The 

framework that we propose separates the two basic behavior control levels, local 

(low level) and global (high level), of a robot by identifying a set of model 

parameters in between so that the high level controller can be designed 

independently of the underlying low level fluid dynamics model. The parameters 

are such that the dynamic behavior of the robots both in the local and global scale 

can be controlled by assigning them appropriate values. 

1.3.4  Desirable Characteristics of the Proposed Approach 

Since SPH is a meshfree particle method, it can be implemented in a distributed 

multi-agent system whose members correspond to artificial fluid particles. Hence, 

the approach provides an inherent decentralization. The governing equations of 

fluid dynamics are adapted and applied to MRS such that each robot 

computationally solves them to find out its own velocity control inputs. 

                                                 
1 Viscosity refers to the resistance of the fluid to flow due to friction 
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Decentralized nature of our SPH implementation also ensures that the control 

algorithm is scalable with the number of robots as it is independently run by each 

individual. Similarly, decentralization benefits to the robustness of the approach as 

well because centralized or hierarchical algorithms suffer from partial failures that 

may result in the overall failure of the system. 

Finally, another very important aspect of our fluid physics-based approach is that 

the behavior of a multi-robot system governed by this method can be 

macroscopically modeled and predicted. This is among the current issues in large-

scale MRS, especially in swarm robotics [22]. 

1.3.5  Contributions of the Thesis 

In this thesis, we propose a novel model that enables us to control emergent 

aggregate behaviors of collective multi-robot systems within a unified framework. 

We base our formalism on the physics of fluids through some analogies that we 

established between multi-robot systems and fluid bodies as well as individual 

robots and fluid particles. Our formalism exploits SPH as a distributed 

computational method that each robot runs in its algorithm. Our control 

methodology leads us to achieve desirable properties such as decentralized 

coordination, scalability, and robustness by applying the physical principles behind 

the dynamics of fluids to the distributed control of robots. 

Contributions of the thesis may be summarized as follows: 

a. The idea of designing the low level, reactive behavior controller of a robot 

in terms of both local control parameters and global (collective) control 

parameters is novel among physics-based approaches to control of multi-

robot systems. The fluid dynamics framework that we proposed well serves 

this idea since we model individual robots as fluid particles that are parts of 

a fluid body and inherit the global properties of the whole body. That is, 

robots possess local properties of their own as well as global properties that 

are common to all others. 
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b. To the best of our knowledge, our work is the first approach that 

establishes a comprehensive analogy between fluids and multi-robot 

systems and explicitly models them as fluids using ‘Fluid Dynamics’. It 

thoroughly adapts and exploits the mechanisms available in the physical 

and mathematical description of fluids and fluid flow towards developing a 

framework for control of large-scale multi-robot systems. 

1.3.6  Outline of the Thesis 

In Chapter 2, a review of the previous work on various approaches to the collective 

control of MRS is provided with a special emphasis on physics-based methods. 

Chapter 3 presents a discussion on essential concepts in fluid dynamics and 

smoothed particle hydrodynamics. Our proposed control approach is formalized in 

Chapter 4. Then in Chapter 5, experimental validation of the method is elaborated 

through simulations and the results are discussed. Finally, the thesis is concluded 

in Chapter 6. Appendices provide detailed discussions on the material and give the 

conference publications produced out of this work. 



10 
 

CHAPTER 2 

LITERATURE SURVEY: CONTROL OF MULTI-ROBOT 
SYSTEMS 

Before discussing the previous works of the literature that share some common 

features with the proposed method, it would be beneficial to assort the approaches 

to the control problem in general. According to the commonly adopted 

classification in the literature [23]-[25], types of robot control can be categorized 

in four classes as follows: 

a. Reactive Control: As a control technique characterized by the tight 

coupling between sensory inputs and effector outputs, reactive control is 

especially suitable for tasks that require fast dynamic reactivity to changing 

environmental conditions without much cognitive reasoning. However, it is 

limited by the lack of internal representations of the world and of learning 

capability over time. 

b. Deliberative Control: In contrast to reactivity, deliberative control uses all 

sensory inputs and internal knowledge to plan for the next action. Since 

planning is a computationally complex and time consuming process, this 

type of control typically suffers from slow responsiveness. 

c. Hybrid Control: As a strategy that aims at benefiting from the desirable 

characteristics of both reactive and deliberative control, the hybrid scheme 

combines the real-time features of reactivity with the reasoning and 

planning capability of deliberation. In order for interaction and coherence 

among these two controls, an intermediate component is required. 

d. Behavior-Based Control: Inspired from the interactions of animals with 

their environments, behavior-based approaches define a set of behaviors 

starting from low-level primitive actions to more complex task behaviors. 

They are organized in a bottom-up fashion and executed in parallel. 
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Behavior-based systems encompass reactivity, while they also store 

internal world representations and knowledge as a network of 

interconnected behaviors. Unlike the layers in hybrid control, these 

behaviors do not substantially differ in terms of their representation. 

Since the study of multi-robot systems inherits much of its properties from single-

robot studies, control approaches to multi-robot systems (MRS) can also be 

classified according to the above definitions. Among these, behavior-based control 

approaches dominate cooperative MRS research [26]-[31]. 

Apart from the behavior-based MRS, there is an emerging field in collective 

robotics research called swarm robotics. According to the definition in [6], 

 Swarm robotics is the study of how large number of 
relatively simple physically embodied agents can be designed 
such that a desired collective behavior emerges from the local 
interactions among agents and between the agents and the 
environment. 

 

Researches in swarm robotics are commonly inspired by ethological phenomena in 

which swarms of animals (insects, fishes, birds, etc.) interact to coordinate their 

actions, create collective intelligence, and perform tasks that are far beyond the 

capabilities of individual members. Absence of central control in these behaviors 

and emergence of cooperation from only local interactions makes social swarms 

highly fault-tolerant, scalable, and adaptive to changing conditions. It is these 

inherent properties of biological swarms, which are also desirable for collective 

robotics, that attract a growing interest among researchers. Swarm robotics 

techniques currently available in the literature base their formalism on the 

underlying biological phenomena, trying to mimic the behaviors of animals in 

simulated or embodied artifacts. In these studies, adaptation of animal behaviors to 

multi-robot systems as a low-level coordination mechanism is mainly addressed. 

In this respect, swarm robots can be characterized as highly reactive. 

2.1  Classifying the Proposed Method 

Since the previous work on the general control approaches is abound, we will limit 

our concern in this survey to those exhibiting considerable commonality with the 
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proposed method. In order to do that, we will first classify the fluid dynamics 

framework. 

As will be clearer in the following chapters, the proposed method can be 

characterized by the following features: 

a. Layered Architecture: The proposed method describes a framework in 

which there are two basic layers of control. One is a reactive low-level 

control layer that introduces the fluid dynamics model. Low-level controls 

of the robots in the system are based on local interactions of fluid elements 

and governed by computationally simple equations that allow the robots to 

respond to dynamical changes in the environment. This reactive layer of 

control also provides a set of parameters belonging to the model in this 

layer that can be used by high-level behaviors to accomplish global tasks. 

In this respect, the control architecture is also suitable for hybrid and 

behavior-based approaches such that internal world representations, task 

planning layers or learning algorithms can be incorporated into the 

architectural framework. 

b. Decentralized: Each robot in the system determines its own behavior 

according to its instantaneous knowledge of the local environment and of 

neighbors obtained through local sensing and communication, and to its 

collective behavior scheme preprogrammed at design-time. Yet, the set of 

model parameters mentioned above enable centralized realizations in 

which the collective behavior scheme may be detached from individual 

robots and concentrated in a central controller unit. 

c. Homogeneous: Basically, each robot is considered to be equal in terms of 

physical properties as a fluid body is composed of identical elements. 

However, differences may easily be introduced into the model of any robot. 

While physical difference results in behavioral variation, it can also be 

obtained by specifying a different collective behavior scheme for any 

particular robot. Hence, operational heterogeneity may be obtained in two 

ways. 
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2.2  The Artificial Potential Field (APF) Approach 

The artificial potential field approach has long been popular in mobile robotics 

area starting from the initial work of Khatib [32], and producing a vast amount of 

research onwards. It has been largely applied to obstacle avoidance [33], path 

planning [34], [35], and navigation [36] problems for single-robot systems. For 

multi-robot systems, in addition to the previous areas, the APF approach is utilized 

primarily in deployment control [37] and formation control [38], [39]. 

The principle idea behind APF approach is that the environment in which the 

mobile robot moves is modeled as a 2D domain of a potential function and that the 

motion of the robot is governed by a virtual force field (VFF) derived from this 

potential field so that the robot moves to a point with minimum potential value. In 

this potential, areas of obstacles take high values and target points or desired paths 

take locally minimum values. Therefore, the direction of motion is opposite to the 

gradient of the potential field. 

The reason for the popularity of the APF approach is its simplicity and elegance 

such that it can easily be implemented either off-line or online without much 

computational burden. Hence, it is effective in real-time applications. However, it 

also suffers some shortcomings inherent to its pure form. There are 3 major 

problems identified by [40] as follows: 

a. Local Minima: The robot may trap into undesired local minima such as U-

shaped dead ends due to obstacles. Trap situations have been remedied by 

using heuristic methods in expense of non-optimal paths or by global path 

planners that require global information. 

b. No Passage between Closely Spaced Obstacles: When a robot attempts to 

pass through two closely spaced obstacles, the repulsive forces from the 

obstacles may result in a combined force which is equal in magnitude and 

opposite in direction to the force applied by the target, ceasing the motion 

of the robot. 
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c. Oscillations in presence of obstacles and in narrow passages: Due to the 

strong dependency of the force field to the nearby obstacles, the APF 

method tends to cause unstable motion in presence of obstacles. 

Although the state of the art has largely resolved the abovementioned problems 

[41], the APF approach is a reactive control technique which can merely be 

utilized as a low-level behavior for motion control of either single or multiple 

mobile robots. However, it does not incorporate any mechanism for integrating it 

into a unified control architecture designed for collective robotics, in which all 

levels of control, from the lowest to the highest, should involve aspects of 

collective control. For example, local reactive behaviors should be controllable by 

high-level behaviors and each local interaction should also serve the global task. 

2.3  Fluid Physics Based Approaches 

Nature has always been a source of inspiration for researchers in creating new 

ideas for problems of science and engineering. Robots, as being one of the most 

advanced artifacts, also benefited from innumerable examples available in nature. 

Approaches that originate from the laws of physics to robot control problems are 

inspired by the profound mechanisms of matter. Contrary to probabilistic or 

heuristic methods employed in the biologically-inspired swarm approach, physics-

based approaches exploit well-established grounds of related physics areas such as 

fluid mechanics, electrostatics, and material formations. 

In this section, we concentrate on fluid physics-based approaches that have already 

been used for various mobile robotics problems. We identified two main topics in 

which fluid metaphors have been utilized. These are path planning for single-robot 

systems and deployment, coverage, and formation control for multi-robot systems. 

2.3.1  Robot Path Planning using Stream-Fields 

The path generation and navigation problem of mobile robots was first addressed 

using a fluid dynamics method by Keymeulen and Decuyper in [42], [43], where 

they used the stream field method as a path generator to plan local-minima-free 

and optimal paths for an autonomous mobile robot. Considering indoor and maze-
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like environments, they generated the path of the robot by modeling it as a fluid 

particle flowing under the effect of a fluid pump at the starting point and an outlet 

at the destination. The equation that describes the flow of fluid is called the 

Laplace equation and the solutions are formally called harmonic functions. The 

most important property of harmonic functions is that they are free from local 

extrema. Thus, the robot does not get trapped in vicinities of obstacles as is the 

case in ordinary potential function approaches. Similarly, [44] used harmonic 

functions for obstacle avoidance and path planning, besides the panel method from 

computational fluid mechanics to represent arbitrarily shaped obstacles. While 

these approaches can adapt to dynamical changes of the environment, the 

constrained dynamic equation of flow is solved by a central planner which requires 

global knowledge of the environment in question. The panel method also needs 

global information to fit panels to obstacle surfaces. Therefore, stream field or 

harmonic function based methods are not suitable for multi-robot systems 

operating in incompletely known environments. 

In a more recent work in [45], one of the first attempts was made to utilize a more 

general, if not the most, fluid dynamics equation called Stokes equation. In this 

work, applications in uneven outdoor terrain conditions are targeted with an 

emphasis on the effect of viscosity and external body forces. Viscosity is modeled 

as a virtual interaction between the robot and the surrounding environment so that 

collision-free paths are found in expense of sub-optimality around obstacles. 

External forces, on the other hand, are used to account for the real effect of friction 

between robot tires and the ground. However, the world under consideration is 

again fully known and discretized by a global planner, which cannot be applied as 

a scalable approach for distributed multi-robot systems in unknown environments. 

2.3.2  Fluid Models for Controlling Robot Networks 

The idea of incorporating the fluid dynamics equations into the control strategy of 

a multi-robot system was first introduced by Zarzhitsky et al. [46], [47]. The 

problem was to trace a chemical plume back to its source using a team of mobile 

robots. Since the plume itself is a fluid, its flow is governed by the fluid dynamics 
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equations. The essence of this method is that when the mobile robot team is 

considered as a mesh for measuring the density of the plume and computationally 

solving for the velocity field of the fluid around the robots, the velocities of the 

robots can be controlled to head toward the opposite direction to the flow, which 

eventually leads to the source of the plume. However, in order to organize the 

robots in a computational mesh formation, additional control is required, for which 

the authors utilized a previously proposed artificial physics framework [48]. 

Basically, this approach is inspired by the dynamics of fluids whereas it is not the 

multi-robot system itself modeled as a fluid but a chemical plume that is traced. In 

other words, the multiple robot system merely computes the velocity of the plume 

and controls the velocity of robots such that they trace the plume back to its 

source. Therefore, the method is not applicable to other problems that do not 

involve a fluid to guide the motion of the multi-robot system. 

Another work partly by the same authors in [49] and [50] proposes to use the 

kinetic theory (KT) of gases to model swarm robots as gas particles to obtain the 

coverage and obstacle avoidance characteristics of gases in a multi-robot system. 

While the motivation of the authors in using a gas model for a multi-robot system 

partly overlaps with our aims, KT is a fundamentally different formalism for 

modeling gases than the fluid dynamics model we use. In the kinetic theory of 

gases, fundamental laws of nature are applied directly to atoms and molecules, and 

the average behaviors and properties of the gas are found by using statistical 

analyses techniques because of the very large number of particles (typically on the 

order of 1019/cm3). For instance, the fact that “locations of individual particles are 

unpredictable” is stated as a desirable characteristic of a multi-robot system. 

However, we believe that we should be able to predict the locations of individual 

robots as much as possible in a multi-robot system in order to effectively control 

their cooperative behavior. Also, the kinetic theory suggests that the particles are 

in constant and random motion such that they constantly collide with each other 

and with the walls of their container in a perfectly elastic way. However, neither 

random motions nor constant collisions are desirable in multi-robot systems even 
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if they can result in a macroscopically gas-like behavior. Therefore, the kinetic 

theory approach to modeling and controlling MRS is not suitable.  

The most relevant work of the literature to our proposed method is the study of 

Perkinson and Shafai [51] that proposes to control the positional organization and 

movement of a robotic swarm based on Smoothed Particle Hydrodynamics (SPH). 

It considers robots as particles in SPH and directly applies the formulation of SPH 

to simulated robots in 2D. While this work represents the first attempt to utilize 

SPH for modeling the low-level behavior of a multi-robot system, it does not 

establish an analogy between fluids and large-scale multi-robot systems. Hence, it 

lacks conceptual adaptations of concepts in fluid physics to swarm robotics. Also, 

this work only addresses the coverage problem using a gas-like fluid model in 

bounded environments. Thus, the real potential of the SPH approach in terms of 

describing the low-level behavior model of a robot swarm is not demonstrated. 

2.4  Deployment of Mobile Sensor Networks 

Mobile sensor networks have recently emerged as a new technology integrating 

various fields such as sensor fusion, wireless ad-hoc communication, and 

distributed robotics. The basic idea of mobile sensor networking is to deploy smart 

sensor nodes ‘en masse’ within an environment for surveillance, data mining, and 

search. Although initially the main drive of research on sensor networks was 

military [9], civil applications have also found new emphases by technological 

improvements.  

One of the most fundamental concepts in sensor networking is coverage. It is the 

quality-of-service that a network can provide [52] and may be defined by the 

percentage of the surveillance area that is sensed through sensor nodes. Coverage 

is strongly dependent on ‘deployment’ of the sensor network over the 

environment. Therefore, terrain and task coverage for efficient surveillance and 

mission realization stemming from effective deployment are critical control 

problems to be dealt with. Also, the challenges posed by large-scale mobile sensor 

networks in unknown, unstructured, and hostile environments necessitate the 
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utilization of distributed self-deployment schemes, in which deployment is an 

emergent behavior of the local coordination among sensor nodes.  

The previous works in the literature commonly describe a potential-field-based 

approach to deployment, in which nodes are treated as virtual particles, subject to 

virtual forces. These forces repel nodes from each other and from obstacles, and 

ensure that from an initial compact configuration, nodes will spread out to 

maximize the coverage area of the network [37], [52]-[56]. In these algorithms, 

deployment is conceived as a coverage process that maneuvers the sensor nodes 

from an initial random or compact configuration to a suboptimal configuration in 

which a static equilibrium is attained and coverage requirements are met. Although 

these approaches assume an unknown sensing environment, all of them implicitly 

assume prior information about the surveillance area’s physical range by 

considering the deployment of a predetermined and fixed number of sensor nodes. 

When the nodes disperse sufficiently over the environment, the network reaches 

static equilibrium and a certain level of area coverage is achieved. However, if the 

size of the surveillance environment is not known a priori, these algorithms can 

only provide coverage to the size extent of the area that is previously fixed by the 

number of nodes to be deployed. Thus, a certain quality of service could not be 

guaranteed with these approaches. 

2.5  Publications of the Proposed Method 

In our previous publications [57]-[59], we presented the first fluid dynamics-based 

model as a distributed, scalable, and robust solution to the deployment problem of 

mobile sensor networks. We extended the idea of physics-inspired approaches by 

modeling a robot network as a fluid body and controlling the deployment process 

through the parameters available in the governing equations of fluid dynamics. We 

used a custom defined meshfree particle method for the numerical solution of the 

equations. Primarily addressing the coverage of unknown unstructured 

environments with mobile sensor networks, we demonstrated how the 

configuration of the network can be changed to satisfy connectivity requirements 
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and analyzed the robustness of the approach in response to dynamical environment 

and network conditions. 

In a following paper [60], we further extended our previous formalism by 

developing a low-level, fluid dynamics based control model to coordinate the local 

interactions of robots while providing an interface composed of flow parameters to 

higher level algorithms for controlling the global behavior of the system. We 

exploited SPH for the modeling and analysis of robot swarms through the set of 

fluid dynamics equations. We demonstrated the validity and promise of the 

approach by applying it to common problems recurring in the MRS literature. 

The abovementioned publications can be found in Appendix B. While Chapter 4 

will provide all in-depth details of the proposed method of this thesis, primarily we 

prefer in the next chapter to overview the mathematical background necessary for 

understanding the basis of the fluid dynamics based methodology that we 

developed for controlling collective robot networks. 
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CHAPTER 3 

ESSENTIALS ON FLUID DYNAMICS 

In this section, a brief overview of and some essential material on fluid dynamics 

and smoothed particle hydrodynamics (SPH) are presented for a better 

understanding of the proposed approach in the next chapter. The overview here on 

fluid dynamics and SPH follows from the references in [61] and [62], respectively. 

The reader is advised to consult these references for further details and discussions 

of all concepts and equations that are present in this chapter. 

3.1  Basic Fluid Dynamics Concepts 

Before deriving the governing equations of fluid dynamics, we need to identify 

some background concepts related with the notion of fluid flow and fluid 

dynamics. Basically, there are two types of fluids, namely gases and liquids. Gases 

are compressible while liquids are incompressible. Fluid dynamics is based on the 

mathematical statements of three fundamental physical principles: 

a. Mass is conserved. 

b. Newton’s second law, F = ma. 

c. Energy is conserved. 

The governing equations of fluid dynamics are derived by applying these physical 

principles to a suitable model of the fluid flow. However, definition of a suitable 

model of the flow is not a trivial consideration. There are four models of flow as 

described in the next part. 

3.1.1  Finite Control Volume and Infinitesimal Fluid Element 

Unlike a solid body, a fluid is a deformable substance and in motion the velocity 

of each part of the fluid may be different. Therefore, instead of looking at the 

whole flow field at once, we should limit our attention to a finite region of the 

fluid. In finite control volume approach, this region is called a control volume V 
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along with a control surface S bounding this volume (see Figure 1 (a) and (b)). 

The control volume may be fixed in space with the fluid moving through it as in 

Figure 1 (a). Alternatively, the control volume may be moving with the fluid such 

that the same fluid particles are always inside it (Figure 1 (b)). In either case, the 

control volume is a reasonably large, finite region of the flow. The fundamental 

physical principles are applied to the fluid inside the control volume and to the 

fluid crossing the control surface. 

Alternatively, we can model the flow using an infinitesimally small fluid element 

with a differential volume dV as well (see Figure 1 (c) and (d)). Again, the fluid 

element may be fixed in space or it may be moving along a streamline with a 

velocity vector V equal to the flow velocity at each point of the field, as in Figure 

1 (c) and (d), respectively. Then, the fundamental physical principles are applied 

just to the infinitesimally small fluid element itself. 

The governing equations obtained by applying the fundamental physical principles 

to either the control volume or the infinitesmal fluid element fixed in space are 

called the conservation form of the governing equations. On the other hand, the 

equations obtained from the control volume or infinitesmal fluid element moving 

with the fluid are called the nonconservation form of the governing equations. 

In the analysis of fluid dynamics, one among the four flow models described 

above may be more preferable over the others due to a specific computational 

convenience of the model. Within the perspective of our particular application 

purposes that will be described in the next chapter, we will utilize the model of 

infinitesimal fluid element moving with the flow field. 
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Figure 1 Models of a flow 

3.1.2  Substantial Derivative 

When the model of infinitesimal fluid element moving with the flow (Figure 1 (d)) 

is adopted, a conventional notation called the substantial derivative D/Dt comes 

into play to denote the time rate of change (of some physical quantity) following a 

moving fluid element. That is, for a fluid element in Cartesian space as shown in 

Figure 2, the instantaneous time rate of change of density as the fluid element 

moves through Point 1 is denoted by Dρ/Dt and is computed as 
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The physical significance behind substantial derivative is that the time rate of 

change of density or some other physical quantity of a given fluid element as it 

moves through space results from not only the transient fluctuations of the flow 

field at a fixed point but also from the change due to the movement of the fluid 

element from one location to another in the flow field where the physical 

properties are spatially different. 
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Figure 2 Fluid element moving with the flow: illustration of the substantial derivative 

3.1.3  The Divergence of Velocity  

Another physically significant measure emerging in the derivation of the 

governing equations is the divergence of velocity of the infinitesimal fluid 

element. It is the time rate of change of the volume of a moving fluid element per 

unit volume given by 

 
1 ( ) , ,D V u v w
V Dt x y z

δ
δ

∂ ∂ ∂
∇ = ∇ ≡ + + = + +

∂ ∂ ∂
iV i j k V i j k  (2)

where V is the velocity vector and V is the volume of the fluid element. Since the 

fluid element moves with the flow, it is made up of the same fluid particles and its 

mass is fixed, invariant with time. However, its volume is changing with time as it 

moves to different regions of the flow where different values of density exist. 

Hence, the divergence of velocity is used to describe this nature of the fluid 

element.  
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3.2  The Governing Equations of Fluid Dynamics 

In this section, the equations obtained from the three fundamental conservation 

principles are shortly discussed. We provide them in the following parts without 

their derivations, for which the reader is referred to the second chapter of the 

reference in [61]. 

3.2.1  The Continuity Equation  

Having determined a model of the flow, the physical principles constituting the 

foundation of fluid dynamics may now be applied to the model. The continuity 

equation is derived from the application of the first principle, namely the 

conservation of mass. For the model of an infinitesimal fluid element, the 

conservation of mass principle states that the time rate of change of mass of the 

fluid element is zero as the element moves along the flow. With the help of the 

statements of substantial derivative and divergence of velocity, the continuity 

equation turns out to be 

 : 0DContinuity Equation
Dt
ρ ρ+ ∇⋅ =V  (3)

3.2.2  The Momentum Equation 

A moving fluid element experiences various kinds of forces. These forces are 

categorized into two and called as either body forces or surface forces. Examples 

to body forces are gravitational, electric, and magnetic forces. Surface forces, on 

the other hand, are due to the pressure distribution acting on the surface of the 

element or due to the viscous friction and shear stresses imposed by the 

surrounding fluid media. 

A fluid element under the effects of these forces obeys another physical law; 

Newton’s second law. The governing equations obtained by applying this principle 

to a model of viscous flow, in which the transport phenomena of friction and 

thermal conduction are included, are called the Navier-Stokes Equations. In these 

equations (4), p is the pressure distribution acting on the surfaces of the fluid 

element and f stands for the body force per unit mass. τ represents the normal 
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stress, which is related to the time rate of change of volume of the fluid element, 

when its subscripts are the same (e.g. τxx) or the shear stress, which is related to the 

time rate of change of the shearing deformation of the fluid element, when it 

subscripts are different (e.g. τxy). 
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For newtonian2 fluids, viscous components of the Navier-Stokes equations are 

formulated as follows. 
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Here, μ is the molecular viscosity and λ is the second viscosity coefficient. These 

two characteristic constants of a fluid are related by the following identity. 

 
2
3

λ μ= −  (6)

3.2.3  The Energy Equation 

The third physical principle is the conservation of energy or equivalently the first 

law of thermodynamics. Considering again an infinitesimal fluid element moving 

with the flow, it states that the rate of change of energy inside the fluid element is 

equal to the sum of the net flux of heat into the element and the rate of work done 

on the element due to body and surface forces. In the energy equation given below, 
                                                 
2 For newtonian fluids, shear stress is proportional to the time rate of change of the strain, i.e. 
velocity gradients. Mostly, common fluids are newtonian. 



26 
 

e is the internal and V 2/2 is the kinetic energy of the fluid element. On the right 

hand side, q is the volumetric heat addition per unit mass and f is the body force 

vector. 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

2

yxxx zx

xy yy zy

yz zzxz

D V T T Te q k k k
Dt x x y y z z

up vp wp
x y z

uu u
x y z

v v v

x y z

w ww
x y z

ρ ρ

ττ τ

τ τ τ

τ ττ
ρ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
∂ ∂ ∂

− − −
∂ ∂ ∂

∂∂ ∂
+ + +

∂ ∂ ∂

∂ ∂ ∂
+ + +

∂ ∂ ∂

∂ ∂∂
+ + + + ⋅

∂ ∂ ∂
f V

�

 (7)

3.2.4  Some Comments on the Governing Equations 

The three equations –continuity, momentum, and energy– discussed so far 

represent the complete set of governing fluid dynamics equations. They are a 

coupled system of nonlinear partial differential equations and are very difficult to 

be solved analytically. Actually, there is no general closed-form solution to these 

equations yet. 

While these equations completely describe the flow of a fluid, they involve some 

variables such as pressure and internal energy that require additional relations be 

established. For a perfect gas, for example, the equation of state determines the 

relationship between the density of the gas and its pressure as follows. 

 p RTρ=  (8)

In this equation, R is the specific gas constant (8.314472 m3.Pa.K-1.mol-1) and T is 

the absolute temperature. Similarly, for a calorically perfect gas, the caloric 

equation of state is defined as 

 ve c T=  (9)
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where cv is the specific heat at constant volume. 

3.2.5  The Boundary Conditions 

The equations discussed so far are the same governing equations of flow for a fluid 

whatever its particular environmental conditions are. Then, the real driver for any 

particular solution is the boundary conditions and initial conditions introduced by 

the environment. For example, for a viscous flow, the boundary condition on a 

surface dictates a zero relative velocity between the surface and the fluid 

immediately at the surface (V = 0). This is also called as the no-slip condition. A 

similar condition is prevalent for the temperature necessitating a thermal 

equilibrium at the surface. For an inviscid flow, there is no friction to promote a 

vanishing relative velocity at the surface. Hence, the flow velocity at a wall may 

be a finite, nonzero value. The only boundary condition for an inviscid flow is that 

the flow velocity vector immediately adjacent to the wall must be tangent to the 

wall. Given the normal vector n of the surface at a point and the flow velocity 

vector V at that point, this boundary condition may be formulated as 0⋅ =V n . 

Besides the physical boundary conditions, depending on the particular problem at 

hand, there may be other initial conditions in the flow elsewhere from the surfaces. 

For example, at the inlet of a duct, the pressure of the fluid may at a certain value. 

3.3  Computational Fluid Dynamics (CFD) 

As stated earlier, the governing equations of fluid flow are a system of nonlinear 

partial differential equations, and to date no closed-form solution to these 

equations has been found. It was the experimental fluid dynamics that had been 

used as the workbench of the theory until the advent of high speed digital 

computers combined with accurate numerical algorithms for solving physical 

problems. This has revolutionized the way people study and practice fluid 

dynamics and introduced a fundamentally new approach –the approach of 

computational fluid dynamics. 

CFD is based on the replacement of the integrals or derivatives in the governing 

equations with discretized algebraic forms, which in turn are solved to obtain 
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numbers for the flow field values at discrete points in space and time. The 

arrangement of these discrete points in space throughout the flow field is called a 

grid and its determination called as grid generation is a significant consideration in 

CFD. In terms of the type of the grid being used, there are two fundamental frames 

for describing the process of applying the numerical method. One is the Eulerian 

description which is a spatial description and typically represented by the finite 

difference method (FDM). It defines a stationary grid over the domain and the 

simulated fluid flows across the grid points or mesh cells. The other is the 

Lagrangian description which is a material description and typically represented 

by the finite element method (FEM). Contrary to the Eulerian grid, Lagrangian grid 

is attached to the material and flows with it through the numerical process. 

Obtaining the solutions of the governing equations at discrete points in time, on 

the other hand, is called a time-marching solution where the dependent flow field 

variables are solved progressively in steps of time. Although we will not utilize the 

grid-based approach of CFD in our development, time integration techniques of 

traditional CFD methods that rely on rectangular grids in two dimensions will be 

exploited. Hence, it is worth mentioning one of these techniques –the Lax-

Wendroff technique– in the following part. 

3.3.1  The Lax-Wendroff Technique 

The Lax-Wendroff technique is an explicit, finite-difference method particularly 

suited to marching solutions of an inviscid flow with the unsteady Euler 

equations3. The governing equations are rearranged in (10) with the assumption of 

no body forces. 

                                                 
3 Euler equations are the simplified form of the Navier-Stokes equations when the flow is inviscid, 
i.e. dissipative viscosity, mass diffusion, and thermal conductivity are neglected.  
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The solution to each of these equations are obtained using a time-marching 

approach; note that the equations are already arranged in a convenient form, with 

the time derivatives isolated on the left-hand side and the spatial derivatives on the 

right-hand side. The Lax-Wendroff method is predicated on a Taylor series 

expansion in time, as follows. Choose any dependent flow variable; for purpose of 

illustration let us choose velocity component u. Consider the two dimensional grid 

shown in Figure 3. Let t
jiu , denote the velocity in x-direction (x-velocity) at grid 

point (i,j) at time t. Then, the x-velocity at the same grid point at time t+∆t, 

denoted by tt
jiu Δ+

, , is given by the Taylor series 
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When employing (11), we assume that the flow field at time t is known and (11) 

gives the new flow field at time t+∆t. Then in (11), t
jiu , is known. The unknowns 

on the right-hand side of (11) are the time derivatives of the dependent flow 

variable u. According to the required accuracy of the solution, these time 

derivatives may be derived by using the governing equations in (11) along with an 

increasing elaboration with the degree of accuracy. Generally, Lax-Wendroff 

technique is referred to as the second-order-accurate approximation of the time-

marching solution in (11). 

 



30 
 

Fluid Body

dV V

y

x

Infinitesimal Fluid Elements

i-1 i i+1

j

j-1

j+1

 

Figure 3 Rectangular grid segment and infinitesimal fluid elements 

In order for the calculation of the spatial derivatives in (10), the finite difference 

method on the rectangular grid shown in Figure 3 is used. For example, the spatial 

derivative of t
jiu , with respect to x is given by 
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which is called the second-order central difference. Similar difference equations 

exist for higher order spatial derivatives and for successive partial derivatives with 

respect to different dimensions. 

3.4  Smoothed Particle Hydrodynamics (SPH) 

Conventional grid or mesh based methods such as Finite Difference Method 

(FDM) and Finite Element Method (FEM) have been widely applied in CFD and 

currently are the dominant numerical methods to simulate fluid flow. However, 

they suffer from some inherent difficulties that limit their applicability to many 

problems. First of all, grid-based methods require the generation of an ‘a priori’ 

mesh over the problem domain. That process is generally not easy at all especially 

for complex geometries and may be more computationally expensive than the 
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numerical analysis of the equations itself. The limitations of grid-based methods 

are more apparent in existence of special features such as large deformations, 

inhomogeneities, and free surfaces. The grid-based methods are also not suitable 

for problems where, rather than a continuum of fluid, the concern is on a set of 

discrete physical particles such as stars in astrophysics. 

In response to these difficulties of grid-based methods, the next generation 

computational methods called the meshfree methods emerged. The idea of the 

meshfree methods is to provide solutions to integral or differential equations by 

using a set of arbitrarily distributed nodes (particles) without using any mesh or 

grid to connect them. The particles may be associated with a discrete physical 

object or a part of a continuum material and may range from nano scale to 

astronomical scale. 

Smoothed particle hydrodynamics as a meshfree particle method was originally 

invented for modeling astrophysical phenomena in the late 1970’s and then 

became popular in the numerical analyses of fluid dynamics problems. SPH has 

some special advantages over other grid-based and meshfree methods. For 

instance, its formulation is not affected by the arbitrariness of the particle 

distribution. Also, SPH is very suitable for the Lagrangian description of the 

governing equations as a computational frame moving with the particles and 

carrying material properties. The reader is referred to [62] for an in-depth 

discussion on SPH. 

3.4.1  Particle Approximation in SPH  

In SPH, the state of a system is represented by a set of particles that posses 

individual particle properties and move according to the governing equations. 

Numerical discretization is made by approximating the values of functions, 

derivatives, or integrals at particle locations where neighboring particles contribute 

to the particle approximations based on their influence on the location. The area of 

influence of a particle is defined by a neighboring concept called the support 

domain. Basically, the neighbors of a particle lying in its support domain provide 

all the necessary information for the field variable approximations at the particle. 
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Figure 4 illustrates the support domain of a particle as an area of a certain radius. 

For example, a field variable (e.g. a component of the velocity) u for a particle 

located at x = (x, y, z) within the overall problem domain is approximated using 

the flow variable information of its neighbors in the support domain as in (13). In 

this equation, Ωi is the support of particle i and j represents the neighbors within 

this domain. The velocity values of these neighbors are weighted by a shape 

function jφ  at particle j and summed up. 

 ( ) ( )
i

i j j
j

u u φ
∈Ω

= ∑x x  (13)

 

particle i at x

support domain of particle i: Ωi

 

Figure 4 Support domain of a particle at x 

3.4.2  Basic Formulation of SPH 

SPH method was developed for hydrodynamics problems that are basically in the 

form of partial differential equations (PDEs) of field variables such as density, 

velocity, energy, etc. In order to find numerical solutions to these PDEs, the 

problem domain is discretized. Then the function approximation is applied to the 

PDEs to produce a set of ordinary differential equations (ODEs) in a discretized 

form only with respect to time. Then, this set of ODEs can be solved using one of 
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the standard integration techniques. This task is achieved through the following 

solution procedure: 

 1- The problem domain is represented by a set of arbitrarily distributed 

particles, if it is not already in the form of particles. 

 2- The integral function representation method is used for field function 

approximation (also called kernel approximation). 

 3- The kernel approximation is then further approximated using particles 

(also called particle approximation). This is done by replacing the continuous 

integrals in the kernel approximation with discrete summations of values of 

neighboring particles within the support domain. 

 4- Step 3 is repeated for each particle at each time step with the current 

neighbors in the support domain. 

 5- At each time step, the field variables are updated using a time marching 

integration. 

The integral representation of a function f(x) starts from the following identity. 

 ( ) ( ) ( )f f dδ
Ω

′ ′ ′= −∫x x x x x (14)

where Ω is the volume of the integral containing the three dimensional position 

vector x, f is a function of x, and δ(x - x’) is the Dirac delta function given by 

 
1

( )
0

δ
′=⎧′− = ⎨ ′≠⎩

x x
x x

x x
 (15)

When the Dirac delta function is replaced by a smoothing function W(x - x’,h), the 

kernel approximation is obtained as 

 ( ) ( ) ( , )f f W h d
Ω

′ ′ ′< >= −∫x x x x x (16)

where W is the smoothing function (kernel function or smoothing kernel) and h is 

the smoothing length defining the influence area of W. The angle brackets < > 
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designate that the integral representation of the function is an approximation unless 

W is the Dirac delta function. 

Similarly, the kernel approximation for the spatial derivative of a function is 

obtained as  

 ( ) ( ) ( , )f f W h d
Ω

′ ′ ′< ∇ ⋅ >= − ⋅∇ −∫x x x x x (17)

For the above derivations to be valid, the smoothing function should satisfy certain 

conditions as listed below. 

 1- The smoothing function must be normalized (unity condition) over its 

support domain, i.e. 

 ( , ) 1W h d
Ω

′ ′−∫ x x x =  (18)

 2- The smoothing function should be compactly supported (compact 

support condition) and positive, i.e. 

 
( , ) 0 for 

( , ) 0 for 

W h h

W h h

κ

κ

′ ′− = − >

′ ′− ≥ − ≤

x x x x

x x x x
(19)

where κ is a constant that defines the non-zero area of the smoothing function with 

respect to x. This area defines the support domain of the smoothing function at a 

particular location. 

 3- The smoothing function should be monotonically decreasing with 

increasing distance to the particle (decay condition). 

 4- As the smoothing length approaches to zero, the smoothing function 

should approach to Dirac delta function (delta function condition). 

 0
lim ( , ) ( )
h

W h δ
→

′ ′− = −x x x x (20)

 5- The smoothing function should be an even function (symmetry 

condition) with respect to a spatial dimension and sufficiently smooth (smoothness 

condition). 
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For the particle approximation, the continuous integral representation of the kernel 

approximation is converted to a discretized form of summation over all the 

particles in the support domain shown in Figure 5. 
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rij

i

jW

 

Figure 5 The support domain for particle i and the 1D projection of a smoothing function 
over it 

The infinitesimal volume dx’ in the kernel approximation is replaced by the finite 

volume of the particle ∆Vj, which is related to the particle mass mj as given by 

 j j jm V ρ= Δ  (21)

where ρj is the density of particle j. Using this in (16), the particle approximation 

of the function is obtained as 

 ( ) ( ) , ( , )
i

j
i j ij ij i j

j j

m
f f W W W h

ρ∈Ω
< >= ⋅ = −∑x x x x  (22)

(22) states that the value of a function at particle i is approximated using the 

average of those values of the function at all particles in the support domain of 

particle i weighted by the smoothing function. 

Similarly using (17), the particle approximation of the derivative of the function is 

obtained as 
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 ( ) ( ) ,
i

j i j ij
i j i ij i ij

j j ij ij

m W
f f W W

r rρ∈Ω

− ∂
< ∇ ⋅ >= − ⋅∇ ∇ =

∂∑
x x

x x  (23)

(23) states that the value of the gradient of a function at particle i is approximated 

using the average of those values of the function at all particles in the support 

domain of particle i weighted by the gradient of the smoothing function. 

As for the smoothing function W, there are various choices among which the 

Gaussian kernel (Figure 6) is one of the most popular ones due to its smoothness, 

stability, and accuracy especially for disordered particles. It is defined as in (24). 

 

 

Figure 6 The Gaussian kernel and its spatial derivative with κ = h = 2 and xi = (0, 0) 
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3.5  Application of SPH to Navier-Stokes Equations 

In this section, application of the SPH method to the governing equations of fluid 

dynamics in Lagrangian form will be discussed. The reader is referred to the fourth 

chapter of [62] for the details and derivations. 
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3.5.1  Particle Approximation of Density 

There two common approaches to evolve density in the conventional SPH method. 

The first and simplest one is the summation density approach, which directly 

applies the particle approximation to the density itself as given below. 

 
i

i j ij
j

m Wρ
∈Ω

= ∑  (25)

The other approach is the continuity density approach that approximates density by 

evolving the continuity equation. It is given by 
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WD m
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∑ v v v v

x
(26)

In the above tensor notation, β is a dummy index for repeated summation of the 

expression over the three dimension indices x, y, and z. i
βv is the velocity of 

particle i in the direction denoted by β. 

While the summation density approach is more common as it well represents the 

essence of the SPH approximation, some modifications have been proposed to 

improve its accuracy as follows. 
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This form of the summation density expression improves accuracy near free 

boundaries where density discontinuity exists. 

3.5.2  Particle Approximation of Momentum 

Among several different forms of momentum approximation equations, one with a 

convenient appearance is the following. 
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The first summation on the right hand side of this equation is for the pressure 

gradient and the second part is for the viscous force. Another dummy index α 

appears here to denote the spatial dimension for which the approximation is made. 

The shear strain rate denoted by ε is also given by the following SPH 

approximation 

 
2
3

i i i

j ij j ij j
i ji ji ji i ij

j j jj j ji i
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∑ ∑ ∑ v

x x
 (29)

where δ is the delta function assuming 1 when α=β, or 0 otherwise.  

3.5.3  Particle Approximation of Energy 

Similar to the momentum, particle approximation of energy also has several 

different forms. The one below is a popular one. 
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3.5.4  Numerical Issues: Artificial Viscosity and Compressibility 

Artificial viscosity was originally proposed to model shock waves, where kinetic 

energy is transformed to heat energy, as a form of viscous dissipation. It provides a 

damping on the numerical oscillations and help to diffuse sharp variations in the 

flow. The most widely used artificial viscosity definition is given below. 
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(31)

In these equations, A and B are constants typically set around 1. φ = 0.1hij is 

inserted to prevent numerical divergence when two particles are too close to each 

other. c and v are the speed of sound and the velocity vector of the particle, 
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respectively. Basically, the part associated with A produces bulk viscosity, which 

is not necessary if the second part in (28) is used, and the part associated with B 

suppresses particle interpenetration at high mach4 numbers. Artificial viscosity is 

incorporated into the governing equations as an additive term in the summation in 

(28). 

In the momentum equation, gradient of the pressure is the main driving entity of 

the flow. For compressible fluids, pressure is a function of density and temperature 

through the state equation of gases. Hence, it can easily be incorporated into the 

numerical analysis. For incompressible fluids, however, density is theoretically 

constant and a discrete approximation of density –either through particle method, 

FDM, or FEM– results in prohibitive numerical difficulties (e.g. extremely small 

time steps) when the actual state equation of liquids are used. The fact that a 

theoretically incompressible flow is practically compressible leads to the concept 

of artificial compressibility. The idea is to make pressure a function of density to 

obtain the time derivative of pressure. Formulation of artificial compressibility is a 

major task that received considerable attention in the literature. Hence there are 

various choices for this similar to the one we present below. 

 
0

1p
γ

ρβ
ρ

⎛ ⎞⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (32)

where γ is a constant typically around 7, β is a problem dependant parameter called 

as stiffness constant that limits the maximum change of density and ρ0 is the 

reference density of the fluid. 

In the next chapter, we will utilize the mathematical background presented up to 

here while developing an architectural framework for control of mobile robot 

networks. 

                                                 
4 Mach number is a dimensionless ratio of the relative speed of an object in a fluid medium to the 
speed of sound in that medium. 
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CHAPTER 4 

THE PROPOSED METHOD: A FLUID DYNAMICS 
FRAMEWORK 

In this chapter, a fluid dynamics framework for control of mobile robot networks 

is proposed and the associated method is presented. As stated in the first chapter, 

the proposed approach is inspired by various dynamic characteristics of fluids that 

are desirable for collective multi-robot systems (MRS). Based on an analogy 

established between fluids and MRS, the approach aims at modeling the dynamic 

behavior of a mobile robot network through the mathematical formalism used to 

analyze fluid flow. Also, the approach proposes a control framework to design 

collective behavior of the system as well as the individual behaviors of agents. 

Therefore, a mobile robot network, which is modeled as a fluid body in the global 

scale, can also be controlled as a collection of fluid particles in the local scale for 

the accomplishment of a particular task. 

4.1  A Framework for Local and Global Control 

In the fluid dynamics model of a multi-robot system that we will develop in this 

chapter, there are lots of parameters to be considered while designing the system. 

Appropriately selecting the parameter values, such as viscosity and support 

domain, the local interactions of the robots can be defined as well as the global 

behavior that emerges from these interactions. Similarly, there are some other 

parameters that have direct effect on the global behavior of the system. For 

example, the body force acts on each individual to guide its motion. To be able to 

control these parameters for a particular task, we propose a control framework that 

defines a two-layered architecture in which the lower layer deals with the local 

interactions of robots while the upper layer controls the global behavior of the 

system.  
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4.1.1  A Two-Layered Control Architecture 

It is a fact that the governing equations of fluid dynamics are quite the same at all 

times, but rather different flow patterns can be observed in fluids. This is due to 

the differences among the parameters involved in these equations and to the 

changing environment conditions. That is, a particular flow emerges from a 

particular setting of the parameters involved in the fluid dynamics model of a 

multi-robot system along with the specific conditions of the environment. 

Therefore, it is important to suitably determine the value of each parameter 

according to the task of robots and to the properties of the environment in order to 

obtain the desired local and global behaviors from the designed fluid-like multi-

robot system. 

As an architectural approach to the abovementioned consideration for the fluid 

dynamics model, we propose a two-layered control system as in Figure 7 to 

distinguish the underlying mathematical formalism of fluid dynamics from the 

high-level controller that is required for controlling the parameters of this model 

according to the environment conditions and predetermined requirements of the 

particular robotic task. The fluid dynamics model of a multi-robot system defines 

and formalizes the relationships between the Fluid Dynamics Layer (FDL) of a 

robot with the environment and with the same layer of a neighboring robot. The 

Collective Control Layer (CCL), on the other hand, is an application dependent 

part of the framework such that the set of parameters of the underlying fluid 

dynamics model is controlled by this layer to generate the global behavior of the 

system. In other words, the local interactions of the robots are handled by the 

lower layer under the control of a modular upper layer that can be designed 

differently for different tasks, environments, and constraints. 

The architecture shown in Figure 7 presents a decentralized control system such 

that both layers of control are contained within the distributed robots. Thus, it is 

suitable for fully autonomous systems where external intervention into the control 

mechanisms of robots is not allowed. However, a significant portion of collective 

robotics applications require the incorporation of a central facility to control, 
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monitor, or at least to initialize the on-site system. Hence, it is very desirable for 

an architecture to be suitable for centralized control whenever necessary. The fluid 

dynamics framework provides this benefit via its modular design such that the 

CCL can be implemented in a central agent to control the distributed system both 

globally and locally (if necessary) through the well-defined set of model 

parameters. This architectural alternative is illustrated in Figure 8. Any 

hierarchical system can also be created as a hybrid combination of these two 

architectures. 

 

 

Figure 7 A decentralized architectural perspective for the fluid dynamics framework 

In conclusion, the fluid dynamics framework proposes a distributed fluid dynamics 

model for robots in their low-level interactions and provides a set of parameters to 

high-level behaviors so that they can control the system both locally and globally 

in either a decentralized architecture, which is the main focus in this thesis, or a 

centralized architecture, or in a hierarchical combination. 
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Figure 8 A centralized architectural perspective for the fluid dynamics framework 

4.2  The Analogy between Fluids and Multi-Robot Systems 

The analogy that we particularly made between MRS and fluids, rather than solids 

or any other material form, comes from the following reasoning. The motivation 

behind modeling a multi-robot system as a fluid in our approach is largely due to 

some properties that are exhibited by fluids and are also desired from the collective 

behavior of robot networks in unstructured environments. In contrary to a solid 

body which is rigid and quite easy to define, a fluid is deformable and highly 

dynamic. Similarly, if a solid body is in translational motion, each part of the body 

moves with the same velocity, whereas if a fluid is in motion, the velocity may be 

different at each location in the fluid. Yet, an infinitesimal external perturbation at 

a single location in the fluid propagates to other parts with the specific speed of 

sound in that medium or a global effect like gravitation can act on the whole 

matter. That is, a fluid is neither a rigid body nor a bulk of completely solitary 

elements. It is a continuum of spatially distributed but harmonious, 

microscopically varying but macroscopically uniform fluid elements. A network of 

mobile robots, on the other hand, has to be a coordinated collection of robots that 

can act independently as individuals, react and interact locally as part of a 

distribution, and behave globally as an aggregate. It is basically the analogy 

between the particle scale of a fluid and the individuals of a multi-robot system, 
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and the analogy between the macroscopic scale of a fluid and the global scale of a 

multi-robot system that we establish in the proposed control framework. 

4.2.1  Designing Agents as Part of a Multi-Robot System 

In a distributed multi-robot system, for a desired collective behavior to emerge 

from local actions of robots, control mechanisms should be in multiple resolutions 

such that both local actions of individuals and their aggregate behavior as a 

collection should be controllable through a set of levels. The proposed architecture 

is based on a fact that agents of a multi-robot system should be designed ‘as part 

of’ a collective body rather than to operate in a collection of uncoordinated agents. 

A fluid element is inherently part of a fluid body and its macroscopic flow is 

defined only within this body. Then, by using this analogy and the underlying 

formalism, we can design the control algorithms of individual agents as part of a 

distributed system and toward a global operation while achieving those desirable 

properties of fluids in a multi-robot system. 

4.2.2  Desirable Properties of Fluids 

In everyday life, we can observe fluids to get inspiration from and to appreciate 

possible benefits that can be attained by designing a multi-robot system that acts 

like a fluid. These benefits are due to some intrinsic properties of fluids that are 

also desirable for dynamic behaviors of collective robot networks as explained 

below:  

a. Deformability: Fluids are deformable and deformation is necessary for a 

robot network when navigating in unstructured terrains where the global 

shape of the system cannot be retained due to spatial constraints such as 

obstacles and narrow passages. Hence, a fluid-like multi-robot system can 

achieve self-reconfigurability that is absolutely desirable when navigating 

through unstructured terrains of, for instance, search-and-rescue tasks. 

b. Aggregate Flow: This concept in fluid mechanics accounts for the effect of 

some natural forces that act on unit mass. For example, gravitation acts on 

each element of a fluid and results in aggregate flow. The artificial 



45 
 

counterpart of the body force concept in a multi-robot system can be used 

to control the flow of the whole system towards target positions or to guide 

the collective motion of robots in patrolling tasks. This is the most 

important mechanism of global behavior control in the proposed approach 

as discussed later. 

c. Uniformity: Apart from body forces, another important driving entity is the 

pressure gradient, especially in compressible fluids (i.e. gases) as it is 

directly related with density. Under non-uniform density distribution, the 

gradient of pressure becomes nonzero and fluid elements flow to equalize 

density throughout the fluid body. Most of the time, uniformity among 

robots in a multi-robot system is desirable especially in surveillance 

applications. In a mobile sensor network application, for example, uniform 

distribution of nodes over the environment is necessary to maximize 

coverage and to facilitate effective data acquisition. 

d. Compressibility/Incompressibility: Depending on the particular problem, a 

multi-robot system may be modeled as a compressible or incompressible 

fluid. For instance, in mobile sensor network applications, a compressible 

fluid model is very favorable as it can provide a self-spreading network to 

maximize coverage. On the other hand, incompressible fluid model can be 

used for a herd of patrolling security robots in close formations. 

e. Reactivity and Adaptation: Fluid bodies are quite reactive to external 

perturbations and can very quickly adapt to dynamical changes in the 

environment or in the fluid itself. This is an apparent advantage if a multi-

robot system possesses such a reactivity and adaptability in a dynamic 

hostile environment, where both individual robot failures and dynamically 

changing terrain features require fast reaction and adaptation. 

There are also some advantageous aspects in designing a control algorithm based 

on the mathematically sound theory of fluid dynamics. It is a fact that the theory 

behind fluid dynamics is established and the associated analyses techniques are 

profound. The approach of computational fluid dynamics in modeling a fluid body 



46 
 

as a collection of fluid elements and solving for the governing equations for these 

elements in a massively parallel way facilitates our analogy and implementation of 

a fluid-like distributed multi-robot system. It is especially the convenience of the 

particle approach of Smoothed Particle Hydrodynamics (SPH) that makes our 

artificial fluid paradigm very suitable for large-scale MRS because each particle in 

SPH aptly corresponds to a robot and the same mathematical formalism can easily 

be used for decentralized control of robots. Moreover, the flexibility of playing 

with the parameters involved in the SPH model of a multi-robot system enables us 

to construct the proposed framework where desired local and global behaviors of 

the system can be described in terms of these parameters and controlled by the 

high-level collective control layer. 

4.3  The Fluid Dynamics Model for Mobile Robot Networks 

The proposed fluid model for collective robot networks is presented in detail in 

this section. First of all, the assumptions that we make on the robots of the system 

and on the environment where the robots are situated are discussed. Then, the fluid 

dynamics notions discussed in the third chapter are adapted to robots and the flow 

equations together with their solutions are formulated. Finally, the boundary 

conditions inherited from fluid dynamics and those issues pertaining specifically to 

mobile robot networks are studied. 

4.3.1  Assumptions for the Environment and Robots 

In order to reveal the pure nature and the potential applicability of our approach to 

various MRS applications, we tried to establish a conceptual setting that is as 

universal and generic as possible. This can be achieved by introducing the least 

number of and critical assumptions. Starting with the environment under 

consideration, the assumptions we made are listed along with their justifications: 

a. Environment: The environment in which the robot network operates is 3 

dimensional. In contrast to the common practice in the literature that 

assumes a quasi-3D world, where the environment is composed of two 

primary types of features, namely spare areas and obstacles as in Figure 9 
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(see for example [38], [50]), the environment we consider in this study is 

unstructured and may be dynamically changing (Figure 10). 

 

 

Figure 9 Common conception of the robot world 

b. Robot Embodiment: Embodiment of a robot refers to the dynamic and 

structural modeling of the robot in the simulation, which is an application 

dependent task. In order not to complicate the simulation platform, we 

assume robots as point particles. This naïve simplification favors the 

demonstration of the potential capabilities of our method so that a generic 

fluid dynamics based control framework can be considered in the 

examples. Another assumption in our application examples is that robots 

have 2 dimensional velocity vectors like ground vehicles. However, this 

does not cause any loss of generality and not prevent it from being applied 

to aerial or underwater vehicles, which can move in three dimensions, 

because the underlying formalism is already defined for three dimensional 

fluid flow. Also, we limit the maximum velocity and acceleration of robots 

in the experimental studies. 

c. Local Information: Robots are assumed to be endowed with the necessary 

capabilities to gather information from their local neighborhood. From 

primitive obstacle detectors to wireless communication modules and 
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localization devices like GPS are among the possible forms of information 

sources for each robot. The information that is assumed to be obtained 

from these devices are as follows: 

1. Each robot has a set of neighboring robots that lie within a certain 

radius Rc, the communication radius. A robot is able to measure the 

relative positions of its neighbors and to learn the relative velocities and 

some other variables of them. 

2. Each robot has sensors for detecting obstacles around itself. An 

obstacle is defined as an area over which the robot cannot surmount 

and has to avoid. Each robot also avoids its neighbors not to collide 

with them. However, the avoidance mechanism from obstacles is 

different than the avoidance mechanism from other robots as will be 

explained later. The sensing range of a robot is defined by a circle of 

radius Rs. In practical applications, Rs is typically smaller than Rc as in 

the illustration in Figure 11. 

 

 

Figure 10 An example world in this study where white nodes represent robots 
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Figure 11 Communication radius Rc and sensing radius Rs 

4.3.2  Adaption of Fluid Concepts to Robots 

From fluid dynamics background presented in Chapter 3, we summarize in Table 1 

the basic properties of a fluid element that are involved in the governing equations. 

Besides the properties that are purely from the physics of fluids, there are also 

some other properties that stem from the numerical analysis of the fluid flow. 

Since our model is based on SPH, these properties are those belonging to the SPH 

method. 

According to our analogy, the counterparts of these properties of a fluid element in 

a multi-robot system can be equally represented in the model of each robot and 

summarized as in Table 2. While some of the properties in Table 1 have obvious 

counterparts in a robotic system such as position and velocity, the others need a bit 

of adaptation such as viscosity, and flow variables like pressure that generate the 

physical fluid behavior and can be called in general flow parameters. Different 

from fluid simulations, these parameters need not necessarily be determined 

according to the real specifications of fluids, but the parameter values can be set by 

the high-level controller of the framework in such a way that a desired flow 

behavior can be observed in the multi-robot system.  
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Table 1 Basic properties of a fluid element associated with fluid dynamics and SPH 

Property Explanation 
Position: x Depending on the fluid model, the position of a fluid element can be 

defined in 2D or 3D space as x = (x, y) or x = (x, y, z), respectively.  
Velocity: v Depending on the dimensions of the flow, a fluid element may have a 

2D or 3D velocity as v = (u, v) or v = (u, v, w), respectively.  
Gas/Liquid Compressibility or incompressibility is a fundamental distinction that 

results in significant differences in flow.  
Mass: m Generally mass of each fluid element is taken to be the same, but it is 

not required.  
Density: ρ As formulated in the SPH method, density of a fluid element is 

defined within a set of neighboring particles. 
Gas Constant: R For gases, specific gas constant is involved in the state equation. 
Viscosity: μ Also called the dynamic viscosity, it determines the friction forces 

among fluid particles and between a particle and an external surface. 
Pressure: p Gradient of pressure results in flow from high to low pressure. 
Body Force: f Gravitation is the primary body force experienced by fluids such that 

it act directly on each fluid element and directs its flow. 
Temperature: T For gases, temperature is explicitly related with pressure. 
Energy: e Energy evolves in a separate conservation equation and has indirect 

effect on the momentum through temperature. 
Support Domain 
Ω 

In SPH, all calculations for each particle are carried out over its 
support domain. 

Smoothing 
Function W 

Also called the smoothing kernel, it weighs the individual strengths of 
neighboring particles in flow variable calculations. 
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Table 2 Basic properties of a robot associated with fluid dynamics and SPH model 

Property Explanation 
Position: x Position of a robot is defined as x = (x, y, z), which is with respect to a 

global or local reference frame. The position is required only for relative 
localization of neighboring robots in terms of distance and bearing5.  

Velocity: v While velocity can be defined in 3D space, we take it as a 2D control 
vector for ground vehicles as v = (u, v) since they have maneuverability 
in two dimensions only. Velocity may be with respect to either a global 
or local reference frame. 

Gas/Liquid For different task requirements, a gas-like or a liquid-like multi-robot 
system may be preferable.  

Mass: m The meaning of mass is different than the physical mass of the robot 
because it is an artificial property of the robot. It is simply a parameter 
that determines the desired acceleration of the robot under artificial 
body, surface, and friction forces of the fluid model.   

Density: ρ Similar to the SPH formulation, the weighted sum of masses represented 
by robots within a neighborhood of a robot is defined as its density. 

Gas Constant: 
R 

Gas constant is another virtual parameter that controls repulsive effects 
among robots due to pressure gradients. 

Viscosity: μ The local interactions of robot basically occur through viscous frictions 
such that relative motions of robots generate drag forces among each 
other.  

Pressure: p Non-uniform robot distribution results in nonzero pressure gradients that 
produce a reaction to equalize pressure. 

Body Force: f Each robot has a body force vector predefined or dynamically changing 
according to the goal directions. 

Temperature: 
T 

As a secondary mechanism of obstacle avoidance, temperature of a 
robot is virtually defined such that it increases from a constant value 
when the robot encounters an obstacle so that nearby robots are 
distracted from the obstacle without actually coinciding with it due to 
the increased temperature (hence pressure) in the direction of the 
obstacle. 

Energy: e Since the relation between temperature and energy is detached, there is 
no need to evolve the energy equation. However, it is reserved for 
prospective utilizations in the future.  

Support 
Domain Ω 

Support domain of a robot is defined by the communication range of the 
robot. While it is generally taken in SPH as circular in shape, 
anisotropic6 domains may also serve peculiar purposes. 

Smoothing 
Function W 

Without an alteration of meaning, the smoothing function weighs the 
individual strengths of neighboring robots in flow variable calculations. 

                                                 
5 Bearing is an angular direction measured from one position to another, or awareness  of one’s 
position relative to its surrounding. 

6 Anisotropy is the dependence on angular direction. 
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4.3.3  Governing Equations of a Robot 

It is now time to formulate the governing equations of fluid dynamics for a multi-

robot system based on the previously developed analogy, assumptions, and 

adaptations. We will modify the SPH method to solve Navier-Stokes equations 

given in Chapter 3 in order to incorporate it in our controller architecture. 

Remember that the governing equations of fluid dynamics are based on the 

conservation of three fundamental physical quantities: mass, momentum, and 

energy. First, we approximate the density and momentum equations. While density 

is one of the major driving entities in fluid flow, the solution for the velocity of 

each fluid element is obtained from the momentum equation. On the other hand, 

the energy equation is only applicable to gases in determining the temperature that 

is involved in the momentum equation. However, its effect to the resulting flow 

pattern can be neglected if the meaning attributed to energy of a robot does not 

require special consideration. We will redefine temperature for robots as an 

auxiliary mechanism of avoiding obstacles. 

Let us start with the simple density formulation in (25) by rewriting it below. 

 
Density Equation

i

i j ij
j

m Wρ
∈Ω

= ∑  (33)

As a brief interpretation of (33), it can be stated that the density of robot i at a 

particular time is a weighted sum of the masses of the neighboring robots in the 

support domain which is also an updated set for each time step. Although not 

shown, it is implicitly meant that the variables in this and following equations 

change with time and their values obtained from the equations are instantaneous. 

As for the approximation of momentum, the equation in (28) is reformulated for 2 

dimensional flow in (34), where the dummy indexes α and β are replaced by x and 

y. 
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Momentum Equation
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The momentum equation in (34) calculates the time rate of change of velocity 

using the substantial derivative D/Dt, which is nothing but the total derivative of 

the velocity of a moving robot. The first term on the right-hand-side (RHS) of the 

equation accounts for a major portion of this derivative due to pressure gradient 

along with the dissipative artificial viscosity in the specified direction. The middle 

term is the formulation of physical viscosity, which provides, in MRS, a 

mechanism for interactions and coherence among robots such that when one of the 

robots in the system starts to move, then the rest of the network is affected by this 

motion and neighboring robots also start accelerating in the same direction. For 

instance, the normal stresses denoted by εxx and εyy are dragging effects of 

neighboring robots in the respective directions. The shearing deformation εxy, on 

the other hand, exerts a surface force due to gradients along the perpendicular axis 

and also generates a dragging effect. Lastly, the f term in the overall summation is 

the body force that is either a global or a specific value for each robot. Note that it 

directly enters the derivative equation, so it is a direct effect on the flow and is 

suitable for guiding the motion of robots toward target directions. If the body force 

is used as a common value for each robot, then it has a global guiding effect on the 

whole robot network, whereas if it is variable among robots, then each robot can 

individually be directed.  
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The artificial viscosity term Π in (35) only contains part B of the equation in (31) –

the part that prevents inter-particle penetration among robots– as the viscous 

effects are already included in the viscous shear stress, which is the multiplication 

of viscosity μ and shear strain rate ε. For completeness, the reduced artificial 

viscosity equation is given in (35), where the artificial viscosity is nonzero when 

two robots are approaching each other and zero otherwise. Note that the artificial 

viscosity term is additive to the momentum equation in (34) but with a minus sign. 

Therefore, it is has a dissipative effect on the velocities of robots when it is 

nonzero. When the equation for shear strain rate in (29) is expanded by replacing 

the dummy indexes, (36) is obtained. 
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Finally, the relation between pressure and density for compressible and 

incompressible MRS are stated in (37) from the previously given equations in (8) 

and (32). 

 

0
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(37)

In compressible case, the state equation relates pressure to density, specific gas 

constant, and temperature. Density is separately solved in (33) and specific gas 

constant is a user defined control parameter that affects the strength of pressure 

dependant repulsions among robots. For temperature, however, we need to 

establish an additional formula. As discussed in Table 2, we will define 

temperature as a secondary mechanism of obstacle avoidance through a boundary 

condition that is explained in section 4.3.5. 

4.3.4  Solution of the Momentum Equation 

As stated previously in section 3.3, the governing equations of fluid dynamics are 

not analytically solvable. Hence, the particle approximations of the equations 

presented above are to be solved using a computational method. We mean by 

solving these equations to obtain ultimately a value for the velocity vector of each 

robot for discrete points in real-time. This is called the time-marching solution and 

is actually an integration of the equations over time for evolving the values on the 

time axis. An example to this technique was given in section 3.3.1 using the Taylor 

series expansion of one of the dependent flow variables u fixed at a grid point. For 

a moving robot i, this expansion can be rewritten in (38) with the notation of SPH 

such that t
iu represents a velocity component of robot i at time t. At an integral 

time step ∆t later, the new value of the velocity component may be approximated 

by the first two terms of the expansion.  
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Note that on the RHS of this equation, the time rate of change of u is given by its 

total derivative with respect to time as in (39). 

 
t t t t

t ti i i i
i i

Du u u uu v
Dt t x y

∂ ∂ ∂
= + +

∂ ∂ ∂
(39)

Therefore, the time integration of the velocity components can be approximated as 

in (40).  
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We use the Gaussian kernel defined in (24) for the smoothing function with a 

slight modification as in (41) such that it is compact within a radius Rd that we call 

the deployment radius defined to be less than the communication range Rc of the 

robot. Rij is a ‘scaled’ distance between particle i for which the kernel is being 

computed and its neighbor j in the support domain. The scaling factor is denoted 

by the smoothing length h. It determines the bell shape of the smoothing function 

along with κ, a user-defined constant. For κ = 2 (i.e. h = Rd/2), which we 

commonly adopted in our simulations, the ‘unity condition’ of the kernel is only 

degraded by 1.83%, while being compact as shown in Figure 12. 
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Figure 12 The compact Gaussian kernel for h = κ = 2 

4.3.5  Boundary Conditions and System Constraints 

As briefly mentioned in 3.2.5, there are a couple of boundary conditions for the 

flow of fluids. For a viscous fluid, the first one is the ‘no-slip’ condition. It states 

that the relative velocity between a fluid element and a surface becomes zero when 

the distance between them diminishes. If the fluid is inviscid, there may be a 

nonzero velocity component parallel to the surface. The other condition is that the 

temperature of a fluid element immediately adjacent to a surface equals the 

temperature of the surface. 

Adaption of the no-slip condition to a mobile robot accounts to the behavior that a 

robot avoids obstacles and ceases its motion toward a surface before colliding with 

it. Actually, this is the most basic reactivity of a mobile robot and a very common 

problem in mobile robotics called as obstacle avoidance. In order to satisfy this 

condition, we use an obstacle avoidance mechanism that mimics the same 

phenomenon in fluid flow. First, we assume that the information obtained from the 

sensors of a robot upon detection of an obstacle basically carries range and bearing 

data of the obstacle point in space relative to the robot. Also, if the robot has 
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multiple sensors around its perimeter or a scanning detector, it is highly probable 

that it detects more than one point of an obstacle almost at the same time as 

illustrated in Figure 13. This enables the robot to reason about a surface and to 

adjust its velocity according to the no-slip condition such that the velocity 

component perpendicular to the surface is decreased with decreasing distance to 

the obstacle. If the robot happens to detect only one obstacle point, then it can 

assume that the surface normal originates from this point passing through its own 

location. Formulation of this technique is given in more detail in Appendix A.1. 

 

 

Figure 13 Illustration for the obstacle avoidance of a robot 

As for the thermal equilibrium condition of fluid dynamics, we have a virtual 

definition for temperature and the equilibrium condition. First, we assume a 

common virtual (non-physical) temperature for obstacle surfaces that is twice the 

virtual temperature of robots. According to our definition of thermal equilibrium 

condition, temperature of a robot increases as it approaches to a surface. The 

reason for selecting twice the ambient temperature for surfaces is that when a robot 

approaches to a surface, it can have neighbors only on its one side opposite to the 

surface. For robots along obstacle surfaces, this corresponds to having nearly half 

of the normal density and hence half of the normal pressure that the robots interior 

to the system have. This results in uneven distribution of robots, a problem 
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inherently available in SPH and called particle deficiency. The temperature for 

obstacle surfaces may also be selected to be more than twice the ambient 

temperature, in which case not only particle deficiency is remedied but also those 

robots neighboring to boundary robots are repelled from the obstacles without 

actually sensing them due to the increased temperature and pressure near boundary 

robots. Formulation of the boundary condition for temperature is given in 

Appendix A.2. 

We also consider the fact that robots in a multi-robot system are limited in terms of 

maneuverability such that their velocity and acceleration cannot exceed certain 

limits. The fluid dynamics equations, on the other hand, do not impose any 

constraints in this respect. Therefore, we put hard-limiters to cut off the velocity 

control calculated from the equations whenever these limits are exceeded, as 

explained in Appendix A.3. This is a necessity for actual robots in collective robot 

networks. Finally, another necessity that has to be modeled for robot networks is 

the connectivity among robots of the system such that the communication links 

between robots are continuously enabled. For example, a wandering frontier robot 

may lose its communication connectivity with the rest of the robot network. To 

prevent this situation, a damping term is applied on the velocity of a robot so that it 

slows down when its connectivity with its neighbors weakens. Mathematical 

details of these issues are provided in Appendix A.4. 

4.3.6  Fluid Dynamics Layer: SPH-Based Control Algorithm of a Robot 

The discussion up to this point mathematically described the fluid dynamics based 

low-level control principles of a robot that is part of a multi-robot system. In order 

to provide an insight into the implementation of this control method, we describe 

the low-level control algorithm of a robot created upon this basis. The algorithm 

consists of pseudo coding the abovementioned mathematical formalism in the 

proper sequence to ultimately produce a control output of velocity. That output is 

then fed into the motion controller of the robot at real-time. It is important to note 

that solving the governing equations for a robot is an online process that evolves 

with the moving robot within its environment. 
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Listing 1 presents the pseudocode of the robot control algorithm that we developed 

as an implementation of the SPH model of a robot. Figure 14 also shows the same 

algorithm with a flowchart. First, a robot starts its operation by initializing its fluid 

dynamics parameters. Then, to solve for the governing equations, it sends a query 

to its neighbors through communication to obtain their flow variables. The flow 

variables such as density, pressure, and viscous stresses have their summation 

equations as in (33) and (36) and they are calculated beforehand to be able to use 

them in the momentum equation in (34). After calculating the acceleration and 

applying the limiter on it, the velocity of the robot is updated using (40). Again, 

the constraints due to velocity limitation and obstacles take effect on the calculated 

velocity and the final result is fed to the motion controller of the robot. Finally, the 

variables involved in the equations, such as the body force parameter, are updated 

with possible new values that may be imposed by the high-level controller of the 

framework. The algorithm continues with sending a new broadcast query to its 

current neighbors. 

Listing 1 Pseudocode of the SPH-based robot control algorithm 

0 Robot i: Initialize fluid dynamics parameters 
1 Broadcast a query to neighboring robots 
2 Collect neighbor information: relative location xij, relative velocity vji, and density ρj 
3 Over Ωi that contains all j such that | xij | < Rd , 
4      Calculate density ρi 
5      Calculate viscous stresses μεi  
6      Calculate pressure pi 
7 Over Ωi that contains all j such that | xij | < Rd , 
8      Calculate artificial viscosity 
9      Calculate the acceleration through solving momentum equation Dui/Dt and Dvi/Dt 
10 Apply system constraints on acceleration 
11 Calculate velocity components (ui, vi) 
12 Apply boundary conditions and system constraints on velocity 
13 Apply the velocity control to the motion controller of the robot 
14 Update fluid dynamics parameters 
15 Jump to step 1 
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Figure 14 Flowchart of the robot control algorithm 
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4.4  Collective Control Layer: Effects of Model Parameters 

There are various parameters involved in the governing equations of a robot and 

each of them requires a closer look at its individual effects on the control of the 

system either locally or globally. By appropriately controlling the values of these 

parameters in the high-level collective control layer of the framework, we can 

obtain desired behaviors both in the local interactions of robots and in the global 

level. Based on the preliminary development presented in the previous parts of this 

chapter, we now provide a list of parameters that are the basic control mechanisms 

in our fluid dynamics framework. The effect of each parameter on either the local 

interactions of a robot or the global behavior of whole the system is summarized in 

Table 3. For example, deployment radius of a robot locally determines the 

separation among robots while it provides a control mechanism on the coverage 

property and expansion behavior of the whole system in the global scale. 

Similarly, in the following parts, the individual effect of the basic model 

parameters to both local and global scale behavior of the system is experimentally 

observed and discussed. 

Table 3 Summary of the Flow Control Parameters 

Flow Parameter Local Control Global Contol 
Deployment 
Radius Rd 

- Inter-particle separation - System expansion 
- Coverage 

Viscosity μ - Boundary layer development 
- Obstacle avoidance 

- Slower movement in obstacle-
laden environments 

Compressibility - Dispersion - Gas-like behavior 
- Coverage 

Incompressibility - Density - Liquid-like behavior 
- Directional motion 

Body Force f - Target force - Directional motion 
- Guidance 

Specific Gas 
Constant  R 

- Pressure 
- Inter-particle separation 

- Deployment speed 
- System expansion 

Temperature T  - Pressure 
- Inter-particle separation 

- Deployment speed 
- System expansion 

Boundary 
Temperature 

- Obstacle avoidance - Obstacle avoidance 
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4.4.1  The Support Domain: Effect of Deployment Radius 

It was previously mentioned that the nonzero support domain of a robot is defined 

within its communication range because the robot needs to communicate local 

information of its neighbors to solve for the governing equations. In practical 

situations, the communication range of a robot may be much larger than necessary 

such that it voids the local nature of information. For example, the wireless 

communication range of a robot may be greater than a kilometer while it only 

needs to share the flow variables with its neighbors that lie within a much smaller 

radius such as a few tens of meters. Thus, the radius of the support domain, also 

called as the deployment radius Rd, is defined to be less than or equal to the 

communication range of a robot. At this point, the selection of this parameter 

comes into consideration as a mechanism of controlling the local density and inter-

particle separation of the system. As a quick example to this point, a simulation is 

performed with 20 robots modeled as a compressible fluid and released within a 

planar environment starting from a compact initial configuration as shown in 

Figure 15. 

 

 

Figure 15 Robots initially released in a compact configuration 
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We run the simulation for two different values of Rd, 1m and 1.6m, while fixing Rc 

at 2m. The final distribution of the robots reached after spreading out and stopping 

due to the connectivity constraint is given in Figure 16. It is seen that the 

separation among robots is larger when Rd is increased. Figure 17 also shows that 

when Rd is changed from 1m to 1.6m, the average separation among neighboring 

robots increases from 1.43m to 1.75m. For both cases, the standard deviation 

around the average separation is less than 3% after the system ceases to move. 

This means that, in an inherent hexagonal lattice formation, the final 

configurations are quite homogeneous. More importantly, it can be concluded that 

the radius of deployment has a direct effect on the spreading behavior of the 

system. 

 

 

Figure 16 For two different values of Rd (1m and 1.6m), the resulting final distribution of 
the robots 
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Figure 17 Average inter-robot separation for Rd = 1m and 1.6m 

4.4.2  Viscosity: Development of Boundary Layers 

The effect of viscosity on the flow can be observed most clearly along the 

boundaries of the environment because the velocities of robots adjacent to surfaces 

are almost zero especially when the obstacle is lying perpendicularly to the 

direction of flow and hence a stationary set of robots develop around obstacles. 

This phenomenon is called as boundary layer development and is a fundamental 

issue in fluid mechanics ([21], pp. 340). Boundary layer in viscous fluid flow is a 

thin layer of fluid that is stationary along boundary surfaces.  

A velocity plot of a viscous flow simulation in Figure 18 shows that the robots 

around the circular obstacle in the middle of the corridor are almost stationary as 

well as those along the horizontal walls. This shows that by utilizing viscosity, 

obstacles may be covered by boundary robots while others safely flow through 

free open areas. Depending on the strength of viscosity, the robots in the boundary 

layer may also flow slowly along the surfaces. Another aspect of viscosity is that it 

slows down the average movement although the robots interior to the boundaries 

move as if no friction is effective. 
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Figure 18 Velocity plot of a viscous flow simulation: Boundary layer development 

4.4.3  Viscosity: Normal and Shear Stresses 

Viscosity is not only effective along obstacle surfaces but also among neighboring 

robots such that movement of one robot induces a similar motion on the 

surrounding robots. This situation is even more prominent in case of high viscosity 

that results in strong cohesion among robots such that the inertial forces (e.g. 

density gradient) become smaller when compared to viscous forces. In fluid 

dynamics, the effect of a point force called a Stokeslet directly acting on a single 

fluid particle is an analogous situation, when Navier-Stokes equations are 

approximated by the linear Stokes equations and the velocity induced on a 

neighboring particle can be solved through the Oseen tensor ([63], pp. 450-451). 

As illustrated in Figure 19, on the particles neighboring the center particle, the 

induced velocity components that are along the horizontal axis are due to the 

normal stresses between particles and those along the vertical axis are due to the 

shear stresses, as formulated in (36). Therefore, viscosity demonstrates an implicit 

coordination mechanism among robots which can be utilized to generate a desired 

collective motion of the system such as in formation control. 
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Figure 19 Velocity field induced around a point force 

4.4.4  (In)compressibility: Effects on Directionality and Coverage  

As explained previously, compressible fluids tend to spread out while 

incompressible fluids preserve a constant density throughout the fluid. This results 

in significantly different flow behaviors. Figure 20 shows these differences with 

simulations of an inviscid system in both compressible and incompressible modes. 

The area behind the circular object is not covered in the incompressible case 

instead the two branches result in a faster flow. On the other hand, after the flow 

separates into two, the compressible robots spread out and rejoin behind the 

obstacle. Note also that the flow in incompressible case is more directional. Thus, 

we can say that compressible flow is appropriate for coverage tasks due to the 

tendency of robots to spread out, whereas incompressible flow is desirable when 

directional movement is required, for instance to follow a path or to patrol around 

security zones. 
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Figure 20 Compressible (left) and incompressible (right) flow in a corridor toward right 

4.4.5  Body Force 

In the previous corridor examples, the explanation for the cause of the rightward 

flow was left to the intuition of the reader. It was indeed the body force denoted by 

f in (34). It is now obvious that the body force can be a mechanism of controlling 

the global motion of the whole system. This does not necessarily mean a 

centralized unit to impose this force on all of the robots. Rather, it may be a built-

in knowledge or a distributed real-time input available to each robot separately or 

collectively. For example, in dispatching of autonomous ground vehicles (AGV) in 

outdoor terrains based on a predetermined route and real-time GPS data, a 

position-varying body force might be effective. Also, the compressibility 

parameter adjusted for incompressible flow becomes appropriate to gather and 

funnel down the robots along a specified route. Figure 21 shows an autonomous 

dispatching scenario, where robots are given 5 waypoints (coordinates of terrestrial 

points) in the terrain to navigate through. Upon arrival of a waypoint, each robot 

updates the body force guiding its motion to head toward the next waypoint. It is 

shown in this simulation that for tasks requiring a directed movement of the robots 

in unstructured terrains, utilizing a dynamically changing body force parameter is 

effective. Moreover, modeling the robots as a liquid rather than a gas is 

particularly beneficial in keeping the robots on a thin track. 
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Figure 21 Dispatching of robots through waypoints in a rural terrain 

4.4.6  Specific Gas Constant and Ambient Temperature 

The state equation of gases in (37) involves the specific gas constant R and the 

temperature T of the fluid besides its density. While R is fixed for gases, it can be 

exploited as a system parameter in a multi-robot system such that increased R 

value results in higher pressure and hence more rapid deployment. Similarly, T is 

also proportional to pressure and since we are using it as a constant ambient value 

except at boundaries, its effect on the pressure is the same as R. At boundaries, 

temperature of a robot is varied as described in part 4.3.5.  

As an example to the effect of these parameters, the simulation in Figure 15 is 

revisited and this time the specific gas constant parameter R is changed to see its 

effect. Figure 22 shows the increase in the average velocity of robots when the R is 

changed from 0.5 to 2 and to 8. It can be seen that when R is smaller, spreading of 

robots takes longer with a lower average speed. That is decreased deployment time 

is in tradeoff with increased speed of robots. This can also be seen from Figure 23, 

where the coverage plot of the whole multi-robot system is shown. It is apparent in 

this figure that almost the same eventual coverage is attained with varying 

latencies.  
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Figure 22 Increased average velocity with increased specific gas constant R  
(in reference to the simulation in Figure 15) 

 

Figure 23 Area covered when different values of R are used 

4.4.7  Heterogeneity 

Up to now, we assumed a homogeneous multi-robot system in terms of constant 

flow parameters, such as viscosity (μ), ambient temperature (T), specific gas 

constant R, radius of deployment (Rd), and radius of communication (Rc). 

Assigning different values to these parameters for some or all of the robots 

introduces heterogeneity into the system. Heterogeneity may be favorable or 

necessary in some applications. For instance, in a hierarchical architecture, group 

leaders in the system may need to be equipped with more powerful wireless 
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communication devices that have larger communication ranges to allow their 

connectivity to all group members as illustrated in Figure 24. 

 

 

Figure 24 A group leader equipped with a larger communication radius 

This chapter introduced the fluid dynamics framework and presented several 

instructive examples on how the individual aspect of the framework can be utilized 

to achieve desired behaviors in a multi-robot system. Following chapter applies the 

method to two important tasks for collective robot networks and presents detailed 

simulation results. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

In this chapter, applications of the proposed method to two common tasks, 

deployment and navigation, in multi-robot systems are discussed through 

experimental studies. The experimental validation is carried out using a simulation 

environment that we developed in MATLAB. Simulations address some very 

common problems in collective robotics, swarm robotics, and large-scale multi-

robot systems where decentralized, low-level, and reactive algorithms play a 

significant role both in the control of individual robots and the overall behavior of 

the system that emerges from distributed local interactions of robots.  

The chapter starts with the introduction of the simulation environment in the next 

section. Then, the application of the framework to several problem scenarios are 

presented with in-depth analyses on the resulting performances, strengths and 

weaknesses of the framework in the particular problem, and with discussions on 

the scalability and robustness  of the approach.  

5.1  The Simulation Environment 

Real experimental studies on multi-robot systems require incorporation of various 

technologies in terms of both hardware and software which are significantly 

expensive. Besides, experimentation with real robots requires considerable time 

and space. While constructing a single autonomous robot that works in a reliable 

way is already a big challenge, it is much more so for a collection of mobile 

robots. Hence, during the development of a control algorithm, it is more 

appropriate and convenient to make the initial experimentation on a simulation 

platform for easy and rapid advancement. In the robotics community, however, 

there is not an established simulation platform that is commonly used, accepted, 

and applicable to a wide range of problems. Instead, individuals prefer to develop 

customized simulators to suit their particular problems and needs. Similarly, we 
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also preferred to develop our own simulator to implement the proposed fluid 

dynamics model. One of the main concerns of this simulator was to be able to 

simulate unstructured environments and large numbers of robots. Yet, we tried to 

make it as simple as possible not to complicate experimentation. 

5.1.1  The Graphical User Interface (GUI) of the Simulator 

In order to be able to effectively manage the simulation parameters which are due 

to either the fluid dynamics model or the simulation environment, we developed a 

graphical user interface using the “Guide” tool of MATLAB. Figure 25 shows the 

main parameter window of the simulator where these parameters are grouped into 

several panes. The simulation environment is selected from the “File” menu as 

shown in Figure 26. The simulator accepts a grayscale bitmap (.bmp) image as an 

environment file and displays it in another window as a reconstructed 3D world 

where altitude information is obtained from the gray levels of each pixel in the 

bitmap file. For example, a 200x160 bit image in Figure 27 is reconstructed as in 

Figure 28. 

Each pane in the main window is associated with a set of features that the 

simulator provides. 

a. “Fluid Dynamics Framework” pane contains the parameters related with 

the fluid model. They can be edited using drop-down list boxes or edit 

boxes on the right side of the pane. 

b. “Initial Coordinates” pane is used to define a set of initial x and y 

coordinates where the robots are initially placed. Note that the coordinates 

of a robot are in 3D where the z value is given by the altitude of the 

environment at (x, y). 

c. “Animation” pane enables the user to capture a video in “.avi” format from 

the simulation while it is running. 

d. “Statistics” pane provides the option to measure statistical information 

about the flow variables that are changing during the simulation. For 
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instance, average velocity of each robot and its standard deviation 

throughout a simulation are such measurements that can be done. 

 

 

Figure 25 Graphical user interface of the simulator 



75 
 

e. “Dynamic Conditions” pane is used to experiment on the results of 

dynamical changes such as failure of some of the robots in the system or a 

dynamically changing environment feature. 

f. “Computational Method” pane is reserved for future developments of the 

simulator which will accompany different numerical techniques for solving 

the governing equations of fluid dynamics. 

g. “Manage Figure” pane provides various alternatives for displaying the 

environment and the robots in different coloring and rendering schemes. 

 

 

Figure 26 Loading the simulation environment from the File menu 

 

Figure 27 An example grayscale bitmap image for environment construction 
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In the framework pane of the simulator, the characteristic properties of the fluid 

model (Table 4) are determined. By playing with these parameters, different fluid 

behaviors can be obtained in the simulated multi-robot system.  

 

 

Figure 28 Environment window of the simulator 

Table 4 Fluid Dynamics Framework Parameters 

Parameter Explanation 
Flow Mode “Inviscid”, “Friction”, “Stress”, or “Both” is selected. If friction, 

viscosity is effective only between robots and obstacles. If stress, 
viscosity is effective only among robots. If both is selected, viscosity 
is effective both between robots and obstacles and among robots. 

Deployment 
Mode 

“Adaptive” or “Invariant” deployment mode is selected. In adaptive 
mode, new robots are introduced into the system during simulation 
based on the value of robot density at the initial deployment location. 
If the mode is invariant, robot number is kept fixed at the initial 
value. 

Gas/Liquid “Compressible” or “Incompressible” fluid model is selected. 
Initial Density If the deployment mode is adaptive, during simulation new robots 

are introduced into the initial deployment location so that the initial 
density is preserved.  

Simulation Time Total simulation time in simulated seconds. 
Communication 
Radius 

The communication range Rc of each robot in meters. 
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Table 4 Fluid Dynamics Framework Parameters (Continued) 

Deployment 
Radius 

The radius of deployment Rd of each robot in meters. 

Sensing Radius The sensing range Rs of each robot to detect obstacles. 
Pressure Constant 
/ Stiffness 

If the fluid model is compressible, the pressure constant (specific gas 
constant) R is entered, whereas if the model is incompressible the 
stiffness constant of the liquid is entered.  

Time Step The incremental time step ∆t of each simulation step. 
Normal 
Avoidance Factor 

The strength A of the virtual force applied on robots in the normal 
direction from obstacles as formulated in (45) of Appendix A.1. 

Ambient 
Temperature 

The initial temperatures of gas-like robots. It increases around 
obstacles due to the boundary condition explained in Appendix A.2. 

Max. Nodal 
Spacing 

Associated with the maximum allowed spacing between robots 
before the connectivity constraint ceases their motion as explained in 
Appendix A.4. 

Damping 
Coefficient 

Associated with the strength of damping on velocities of robots due 
to the connectivity constraint as explained in Appendix A.4. 

Max. Speed Maximum allowed speed of a robot Vmax as explained in A.3. 
Max. 
Acceleration 

Maximum allowed acceleration of a robot amax as explained in 
Appendix A.3. 

Max. Inclination 
Degree 

The maximum inclination of a terrain where a robot can move over. 
Parts of terrain beyond this limit are considered as obstacles.  

Guiding Mode Guiding of the robots using body forces in three modes: “Direct”, 
“Target”, and “Route”. The next two lines of this table are associated 
with the modes of guiding. In direct mode, a fixed directional body 
force is applied. In target mode, the body force varies according to 
the location of the target with respect to each robot. In route mode, 
the body force directs toward the next waypoint for each robot. 

Force / Target / 
Waypoint 

In direct guiding mode, “Force” defines the fixed body force as (fx, 
fy). In target mode, the text turns to “Target” and the coordinate of 
the target as (x, y) is entered to the edit box. In waypoint mode, a 
sequence of waypoint coordinates are entered such as (x1, y1; x2, y2; 
…; xn, yn) 

Force Reduction / 
Force Magnitude 

In direct mode of guiding, “Force Reduction” defines a constant that 
is multiplied with the magnitude of the body force at each simulation 
time step. For example, if it is 0.9, then the body force becomes a 
function of time as f (t)=(0.9)t/∆t (fx, fy). If the mode is Target or 
Route, then the text of this field turns to “Force Magnitude” and 
defines the magnitude of the body force that decreases with 
decreasing distance to the target or the next waypoint. 

Dynamic 
Viscosity 

Viscosity μ of the robots. 

Initial Velocity Initial velocity (u, v) of the robots. 
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5.1.2  Simulation Algorithm  

Apart from the abovementioned GUI, the essential part of the simulator is the 

simulator algorithm coded in the scripting language of MATLAB in an M-File. 

Once the simulation parameters are entered through the interface and the 

“Simulate” button is pushed, the algorithm of the simulator starts running behind 

this GUI and the results are displayed in the environment window. The tasks of the 

simulation algorithm include simulating time, simulating the environment, running 

the control algorithm of each robot given in Listing 1 at each time step, and 

running the Collective Control Layer (CCL) algorithm described in terms of the 

framework parameters given in Table 4. Also, calculation of the statistical data 

during the simulation is part of this algorithm. 

5.2  Deployment of Mobile Sensor Networks 

5.2.1  A Solution to the Coverage Problem in Unknown Environments 

We propose a solution to decentralized self-deployment of mobile sensor networks 

in unknown, unstructured, and dynamic environments using our fluid dynamics 

framework. Our motivation is to mimic the diffusive and self-spreading behavior 

of compressible fluids in a mobile sensor network so as to achieve effective 

coverage and such desirable properties as scalability and robustness. We introduce 

a novel adaptive deployment strategy that can provide a desired level of service 

quality without any prior information about the surveillance environment. It is 

assumed that the number of robots to be deployed in the environment cannot be 

determined beforehand. This is especially a suitable scenario for urban disaster 

areas where the deployment terrain is bounded, unstructured, and unknown. Thus, 

we envisage one of the potential application areas to be in the fast emergency 

response for early stage search-and-rescue operations in which the assistance of 

mobile sensor networks may be life-saving. 

In this experimental study, we consider an unstructured, bounded environment as 

shown in Figure 29 where the z-axis of the environment is color coded on a bar on 

the right hand side. Relatively high z values indicate the obstacle positions in the 
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environment. Although the units of the axis are meters (m), the values are only 

relative with respect to each other and to the remaining spatial parameters within 

the model like velocity. Hence, the results are equally valid for a spatially scaled 

simulation.  

 

 

Figure 29 The simulation environment for mobile sensor network deployment 

There is an entrance to the internal space at the middle of the left edge, where the 

mobile sensor nodes are going to be deployed. The only known portion of the 

whole environment is a limited area around this entrance indicated by a circle of 

radius Rd, the deployment radius of the sensor nodes. The problem in this scenario 

can be stated as follows: How can we deploy sensor nodes so that the whole terrain 

is covered without knowing the required number of nodes a priori? 

The strategy that we developed to solve this problem is based on a gas-like model 

of mobile sensor networks. It is the self-spreading and diffusive nature of gases 
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that benefits to an expandable mobile sensor network that tries to conform to the 

internal outline of the environment. The deployment process consists of injecting 

sensor nodes into the terrain one by one from the opening at the left edge such that 

a certain node density value, say λ, is preserved at this entrance location. Note that 

‘node density’ is a task parameter to be determined according to the requirements 

of the operation and its definition is somewhat different than the density definition 

in the SPH model of the robots. Indeed, it is the number of nodes per square meter 

over the covered area. Since the nodes previously sent into the space will spread 

out, deployment of new nodes will be necessary to keep the density at λ. This 

continues until either all available sensors are used up or there is no sufficient 

room at the entrance for new nodes to be injected. If the process stops due to 

extinction of nodes, then this means that the deployed number of nodes is not 

sufficient to fill in the space. Conversely, if the process stops due to increased 

density at the entrance above λ, then this means that the area is covered by the 

nodes with an average density approximately equal to λ.  

While the gas-like behavior of the network is a distributed algorithm running on 

each node, the node injection process is a different layer of control. It can be 

separated into a centralized collective control layer (CCL) as described in Chapter 

4 and possibly be performed by an automated agent or a human operator located at 

the entrance of the environment according to a deployment algorithm that is 

designed to carry out the abovementioned node injection process. A sample 

pseudocode is given in Listing 2 for such a node injection process. 

Listing 2 Pseudocode for the node injection algorithm 

1 Determine initial deployment locations {(x01, y01), (x02, y02), …, (x0n, y0n)} 
2 Place as many robots at these locations as required {R1, R2, …, Rn} 
3 Start them with an initial velocity toward into the surveillance area (u0, v0) 
4 For each initial deployment location (x0k, y0k), k = 1, …, n 
5      Measure the number of nodes Nk within a circle of radius Rd around (x0k, y0k) 
6      If Nk < λ, then inject a new node with location (x0k, y0k) and velocity (u0, v0) 
7 Calculate the total number NT of nodes deployed at time t 
8 If [(NT(t) – NT(t–Δt)]/Δt < ε , then stop injecting new nodes (preserve NT)  
9      Else, jump to step 4  
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5.2.2  Simulation 1.1: Self-Deployment of a Mobile Sensor Network 

When the node injection algorithm is applied with the framework parameters given 

in the second column of Table 5, the snapshots given in Figure 30 are obtained at 

four different time instants of the simulation. Initially, the distribution of the nodes 

is not quite uniform due to high initial velocity. Figure 31 shows that the average 

velocity of robots slowly decreases down to around 0.24 m/s as the network fills 

up the internal space of the terrain. The density plots in Figure 32 need a bit of 

explanation. First, the meaning of density when attributed to a robot comes from 

the notion of fluids. Hence, “Average of robot densities” in Figure 32 is a plot of 

robot densities calculated in (33) and averaged among robots. It is seen that this 

value goes to zero. Since density is defined within the deployment neighborhood 

of each robot, it goes to zero as robots repel each other out of this region to 

achieve minimum pressure. It can also be seen from the robot separation plot in 

Figure 33 that the average inter-nodal distance among neighboring robots (in terms 

of communication) reaches to 1.8m while Rd is 1.6m. The standard deviation 

around this mean spacing is about 8%, which shows that the network is quite 

uniformly distributed. 

Table 5 Simulation parameter settings for deployment of mobile sensor networks 

Parameter Sim.1.1 Sim. 1.2 Sim. 1.3 
Flow Mode Inviscid Inviscid Inviscid 
Deployment Mode Adaptive Adaptive Adaptive 
Gas/Liquid Gas Gas Gas 
Initial Density λ 7 7 7 
Simulation Time (s) 90 90 90 
Communication Radius Rc (m) 2.4 2.4 2.4 
Deployment Radius Rd (m) 1.6 1.4 1.6 
Sensing Radius Rs (m) 0.8 0.8 0.8 
Pressure Constant R (J/mol.K) 5 5 5 
Time Step ∆t (m) 0.05 0.05 0.05 
Normal Avoidance Factor A 2 2 2 
Ambient Temperature Tamb (K) 1 1 1 
Max. Nodal Spacing C 1 1 1 
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Table 5: Simulation parameter settings for deployment of mobile sensor 
networks (Continued) 

Damping Coefficient D 14 14 14 
Max. Speed Vmax (m/s) 4 4 4 
Max. Acceleration amax (m/s2) 2 2 2 
Max. Inclination Degree (°D) 50 50 50 
Guiding Mode Direct Direct Direct 
Force (fx, fy) (N) 10, -2 10, -2 10, -2 
Force Reduction 0.94 0.94 0.94 
Dynamic Viscosity μ (Pa.s) 0 0 0 
Initial Velocity (u0, v0) (m/s) 2, -0.5 2, -0.5 2, -0.5 
Terrain Dynamics - - At t = 60s 
Node Failure - - At t = 60s 

 

 

 

Figure 30 Snapshots from Simulation 1.1 

t = 10 s t = 30 s

t = 50 s t = 90 s



83 
 

 

Figure 31 Average robot velocity in Simulation 1.1 

 

Figure 32 Average of robot densities (ρ) versus node density (λ)  
in the covered area in Simulation 1.1 

Node density in Figure 32, on the other hand, is a measure of the number of nodes 

per unit area that is covered by the robots. In other words, it is the ratio of total 

number of nodes to total area covered by the network. It turns out from Figure 32 

that after the network covers the whole area, node density stabilizes at 0.68 

nodes/m2. This can also be observed from Figure 34 where coverage versus robot 
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number is depicted. The final value of the robot number is 87 and coverage is 128 

m2. The steady increase of coverage with respect to the number of nodes shows 

that the self-deployment method is scalable with the network size and hence with 

the environment size. Transient drops in node number at around t = 23s, 36s, and 

50s are due to those nodes that escape from the environment during the initial 

stages of their deployment. It can be seen from the guiding parameters of this 

simulation in Table 5 that each robot is assigned a body force heading into the 

environment. However, this force quickly dies out due to force reduction (FR) 

parameter being 0.94. Remembering from Table 4 that the body force with respect 

to time in direct mode is given by f (t)=(FR)t/∆t (fx, fy). For example, this initial 

body force becomes (0.02, -0.004) at t = 5s. In this simulation, injection of new 

nodes was manually stopped at time t = 60s and the entrance of the environment 

was virtually closed afterwards so that no robot can get out of the terrain. The 

resulting coverage graph shows that the area covered by the network starts 

saturating at around t = 40s. In the final configuration, the area covered by the 

network is illustrated in Figure 35. It can be seen that the uniformity of distribution 

is degraded around obstacles. This is because the obstacles constrain the motion of 

robots. In uniformly covered areas, the coverage circles of nodes almost 

tangentially intersect each other. This is because of a special selection of 

deployment radius Rd (1.6m) twice the sensing radius Rs.  
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Figure 33 Average separation among neighboring robots with its standard deviation 

 

Figure 34 Coverage versus robot number in Simulation 1.1 
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Figure 35 Coverage circles of the nodes in Simulation 1.1 

5.2.3  Simulation 1.2: Adjusting Node Density using Deployment Radius 

As it was mentioned in the previous chapter, we can play with the deployment 

radius parameter to obtain a more densely or sparsely deployed network. By 

deploying more robots, redundancy in the network can be improved as the 

probability of a point in the terrain being covered by at least one sensor increases. 

Conversely, increasing the deployment radius may be necessary due to insufficient 

number of robots in expense of leaving uncovered areas between robots. In this 

case, a hardware solution would be to improve the sensing range of the robots. 

In this simulation, the radius of deployment is reduced to 1.4m as shown in the 

third column of Table 5 without changing the other parameters. The resulting 

coverage graph is shown in Figure 36, where deployment is apparently denser. 

Also, some of the areas, e.g. the upper left corner, which could not be covered 

previously, are now better covered. In qualitative terms, Figure 37 tells that the 

final value of robot number is 134 while coverage is 158 m2. This means that there 
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are 0.85 nodes per m2 as can also be seen from Figure 38. Therefore, when 

compared with the previous case, coverage increases from 128 m2 to 158 m2 in 

expense of deploying 137 sensor nodes. 

 

 

Figure 36 Coverage when deployment radius decreased to 1.4m in Simulation 1.2 
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Figure 37 Coverage versus robot number in Simulation 1.2 

 

Figure 38 Average of robot densities (ρ) versus node density (λ)  
in the covered area in Simulation 1.2 

5.2.4  Simulation 1.3: Dynamical Changes in Environment and Network 

In order to demonstrate the fault tolerance and adaptivity of the self deployment 

algorithm to node failures and terrains dynamics, we analyze a scenario in which 
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an obstacle in the terrain is destroyed along with some surrounding nodes. We 

consider the same simulation in 1 with the destruction of the island-like obstacle 

inside the terrain and surrounding 3 nodes at time t = 60s. Figure 39 shows the 

snapshots of the instant of this dynamical change and the ensuing recovery of the 

destructed region. When the middle obstacle is destroyed with 3 surrounding 

nodes at t = 60, a large uncovered area emerges. Since this spare area is a region of 

low pressure for the surrounding nodes, the network adapts to this dynamical event 

and starts flowing into this gap. Eventually, the system compensates for the failure 

of nodes and recovers the whole environment as can be seen from Figure 40 and 

Figure 41. 

 

 

Figure 39 Snapshots from Simulation 1.3: Obstacle in the middle is destroyed at t = 60s 

t = 60 s t = 60+ s 

t = 65 s t = 90 s
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Figure 40 Coverage after the middle obstacle is destroyed 

 

Figure 41 Effect of the dynamical environment change and node failure on coverage 
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5.3  Navigation and Path Following 

As briefly mentioned in the previous chapter, there are several flow parameters 

summarized in Table 3 that effect the behavior of a multi-robot system both in the 

global and local scales and provide some desirable characteristics in terms of 

navigation capabilities. For example, a nonzero viscosity results in the generation 

of a boundary layer around obstacles such that robots moving along obstacle 

surfaces slow down and the possibility of colliding with them is reduced. Another 

aspect of viscosity is that it provides a coherence mechanism among robots such 

that a local perturbation on the system propagates to the rest through shear and 

normal stresses among robots. 

The most important mechanism of global control in the fluid dynamics framework 

is the concept of body force. It is such a force that directly acts on each individual 

and can guide the motion towards a desired direction. This parameter is utilized in 

the following simulations to demonstrate its potential use in navigation tasks. 

5.3.1  Simulation 2.1: Single Waypoint Navigation 

In this simulation, flow of a number of robots in an outdoor terrain toward a fixed 

waypoint beyond obstacles is demonstrated. In Figure 42, a typical outdoor 

environment is shown with the indications of the regions where the robots enter 

and leave the environment. In order to guide robots through this terrain, the body 

force parameter f in (34) is utilized. It is seen that the area between the start and 

destination regions is obstructed by hills upon which robots cannot climb. 

Therefore, the system has to flow around these obstacles.  

The second column in Table 6 summarizes the flow parameters used in this 

simulation. Note that the guiding mode is selected as “Route” so that the body 

force applied to each robot points to the destination region which is like a 

waypoint for the robots to reach. In this simulation, it is assumed that the robots 

know the relative location of this waypoint. This capability can be provided to the 

robots by equipping each of them with a GPS (Global Positioning System) 

receiver. Therefore, we implemented a decentralized waypoint navigation 
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algorithm given in Listing 3 as the collective control layer of the fluid dynamics 

framework. 

 

 

Figure 42 An outdoor simulation environment for navigation tasks 

Table 6 Simulation parameter settings for navigation in outdoor environments 

Parameter Sim.2.1 Sim. 2.2 
Flow Mode Inviscid Inviscid 
Deployment Mode Adaptive Adaptive 
Gas/Liquid Gas Gas 
Initial Density λ 2 1.2 
Simulation Time (s) 40 40 
Communication Radius Rc (m) 3.2 3.2 
Deployment Radius Rd (m) 1.6 1.6 
Sensing Radius Rs (m) 1.2 1.2 
Pressure Constant R (J/mol.K) 1 0.5 
Time Step ∆t (m) 0.05 0.05 
Normal Avoidance Factor A 2 2 
Ambient Temperature Tamb (K) 1 1 
Max. Nodal Spacing C 1 1 
Damping Coefficient D ∞ ∞ 
Max. Speed Vmax (m/s) 3 3 
Max. Acceleration amax (m/s2) 3 3 
Max. Inclination Degree (°D) 50 50 
Guiding Mode Route Route 
Waypoints (x, y) (m) (49, 17) (16,16), (39,7), (49, 17) 
Force Magnitude (N) 6 6 
Dynamic Viscosity μ (Pa.s) 0 0 
Initial Velocity (u0, v0) (m/s) 0, 0 0, 0 
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The algorithm in Listing 3 basically calculates the body force vector of a robot 

according to the relative position of the target waypoint such that the body force 

takes a direction pointing toward the coordinate of the waypoint given as (xW, yW) 

= (49, 17) m in the simulation parameter setting. While not available in this 

simulation, in the following simulations there are multiple waypoints that are to be 

navigated progressively. The 4th step of the algorithm tells that when a robot 

approaches to a waypoint closer than the communication range, it switches the 

body force to the next waypoint so that it can smoothly navigate through all the 

waypoints up to the destination. 

Listing 3 Pseudocode for decentralized waypoint navigation algorithm of a robot 

1 Get the force magnitude parameter fM and sensing radius Rc 
2 Get the next waypoint coordinate (xW, yW) 
3 Calculate relative distance to the waypoint d = |(xi, yi) – (xW, yW)| 
4 If d > Rs/2 
5      Calculate relative bearing of the waypoint θ = arctan((yW – yi)/(xW – xi)) 
6      Calculate the body force as fi = (fx, fy) = fM (1 – Rc/d)(cosθ, sinθ) 
7 Else 
8      Go to step 2 

 

Application of this algorithm along with the fluid model parameterized in the 

second column of Table 6 produces the result shown in Figure 43 where snapshots 

from six instants of the simulation are given. There are totally 50 robots that enter 

the environment from the lower left edge and navigate thorough obstacles to the 

exit at the upper right edge. It can be seen that the robots separate into two when 

they come across with the first hill and then rejoin to pass through a narrow 

passage between two other hills. 
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Figure 43 Snapshots from Simulation 2.1 

5.3.2  Simulation 2.2: Path Following Using Multiple Waypoints 

In the previous simulation, there was a single waypoint behind obstacles around 

which the robots had to flow. To some extent, the robots were free to move around 

while avoiding obstacles. In some applications, however, the path of the robot herd 

may be thoroughly predetermined by multiple waypoints along a track as in Figure 

44 for instance. In such a case, the flow of the robots needs to be constrained in a 

thin path so that they do node disperse undesirably. In order to funnel down the 

robots along such a path, the system might either be modeled as a liquid as 

mentioned in Chapter 4 or as a gas with a low specific gas constant R. Using a low 

R value, the robots do not repel each other considerably and they can be 

concentrated over a track and directed along the route under a suitable body force. 

In this simulation, we adopt to use a lower R value as can be seen in the third 

column of Table 6 where it is taken as 0.5. Again using the algorithm in Listing 3, 

the result in Figure 45 is obtained. In contrast to the previous simulation, the 

robots do not disperse over the environment and can maintain a sequence along a 

trajectory that connects the waypoints.  

t = 2s t = 8s

t = 13s t = 18s

t = 23s t = 31s 
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Figure 44 Waypoint locations in Simulation 2.2 

 

Figure 45 Path following through multiple waypoints in Simulation 2.2 

The plot in Figure 46 shows the average robot velocity with respect to time. The 

mean velocity level is below 3m/s due to the velocity limitation given in the 

second column of Table 6 with Vmax parameter. It can be noted that the robots 

t = 3s t = 9s

t = 14s t = 20s

t = 27s t = 35s
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preserve their speed even if they encounter obstacles. This is provided by using 

body force terms applied on each robot to guide its motion toward the waypoints 

one by one. 

 

 

Figure 46 Average robot velocity in Simulation 2.2 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

In this thesis, a fluid dynamics inspired framework for control of large-scale multi-

robot systems is presented. The framework defines two basic architectural levels 

of control called as fluid dynamics layer in the lower level and collective control 

layer in the upper level. In the lower layer, the fluid dynamics model controls 

multi-robot system behaviors based on Smoothed Particle Hydrodynamics (SPH). 

The model provides a set of parameters through which the upper layer controls 

both local interactions among robots and their global behavior. Therefore, the two-

layer architecture provides the control of the fluid dynamics based model for 

collective multi-robot systems. The novelty of this approach is that it proposes a 

dynamically controllable model; in contrast to the existing physics based 

methodologies that rely on static and predetermined artificial physics properties in 

their models. Also the proposed approach is considered a precursor for the 

development of a fully explored fluid dynamics model for large-scale multi-robot 

systems. While we agree with the notion of emergent collective behavior 

emanating from local interactions of robots in a large-scale multi-robot system, we 

also believe in the benefit of being able to control these interactions and the 

collective behavior via a well defined framework. In this respect, we believe that 

the proposed novel method will extend the idea of emergent behavior in collective 

robotics. 

The theory of fluid dynamics and the associated numerical analyses techniques 

like SPH are mature and provide a profound background to its exploitation in our 

framework. Hence, it is important to derive adequate analogies between fluid 

physics and mobile robots. Nonetheless, it may not always be possible to map 

concepts from one side to the other. In this case, methodologies that are already 

available in the robotics literature and suitable for such possible gaps may be 

equally used. 
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In the experimental validation of the proposed method, two common problems in 

multi-robot systems, deployment control and navigation, were addressed. It was 

shown that using the parameters of the framework, different global and local 

behaviors can emerge from local interactions of robots. While self-deployment of 

mobile sensor networks was due to the dispersion nature of a gas-like system, 

navigation and path following capabilities of robots in unstructured environments 

were facilitated by guiding body forces and by the inherent reactivity of fluids to 

obstacles. The foremost extension to the demonstration of the capabilities of the 

fluid dynamics model would be to deal with the formation control problem. It was 

shown in the deployment simulations that steady state configuration of a gas-like 

robot network exhibits an intrinsic hexagonal lattice formation. We think that this 

is a result of the circular support domain and the associated smoothing function. 

We strongly anticipate that by using different shapes for support domains and 

smoothing functions, different formation shapes can be obtained. 

Although the present discussion hopefully reveals the potential applicability of the 

proposed method to general collective robotics problems, there remain various 

aspects for improvements both in the fluid dynamics framework and in the 

experimental setup used to test the developed algorithms. First, an in depth 

sensitivity analysis should be carried out on the individual effect of each flow 

parameter involved in the governing equations and on their combined utilization 

for truly understanding the overall control capabilities of the fluid dynamics 

model. Besides, optimal control of these parameters by the high level control layer 

toward performing a robotic task in the best way is a challenging issue that needs a 

large scope consideration. On the other side, the design of the high level control 

layer of the framework for various applications would demonstrate possible 

common features that could be used as guidelines to generalize the structure of the 

layer and ease the process of redesigning it for different applications. Similarly, in 

order to be able to make predictions on the macroscopic behavior of the resulting 

design, statistical analyses on large sets of experimental data may be carried out. 

We envisage that such an analysis would reveal a predominant deterministic 
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component in the macroscopic model of a fluid-like multi-robot system whose 

constituents have definite, physics based mathematical descriptions. 

As for further experimentation of the method, the primary improvement would be 

to develop a realistic simulator that can simulate embodied agents, sensing 

uncertainties, communication aspects, more complex environment features, and 

various real robot dynamics. Also, different new techniques in computational fluid 

dynamics and Smoothed Particle Hydrodynamics may be incorporated into the 

simulator to benefit from the improvements in those areas. 

Finally, the ultimate goal of any future work is to realize the developed 

methodology first in the laboratory and then in the real world. We truly hope to see 

a robotic technology contributed by the work in this thesis to appear eventually at 

some time in the future, saving lives in disaster areas, providing security for 

habitats, or in any way improving the standards of life for human being. 
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APPENDIX A 

BOUNDARY CONDITIONS AND SYSTEM CONSTRAINTS 

As introduced in part 4.3.5, there are two boundary conditions due to the physics 

of fluids for a robot at the surface of an obstacle. First one is the no-slip condition 

for viscous flows such that the velocity of a robot diminishes as it comes very 

close to a surface. The other is the thermal equilibrium condition at the boundaries. 

On the other hand, there are also some constraints inherent to robotic systems. 

Two of the most important and general ones are discussed here, namely the 

constraints on the locomotion capabilities of and communication connectivity 

among robots. 

A.1  Obstacle Detection and Avoidance 

The capabilities of a mobile robot in detecting obstacles strongly depend on its 

sensor modalities such as ultrasonic, infrared or laser sensors. Laser range finders 

are the most commonly used sensors in research setups and realizations due to 

their accuracy and long range. In unstructured environments, detecting the exact 

boundaries of an obstacle is not a trivial task because the terrain features are in 

continuum rather than in distinguished states. For example, the environment 

shown in Figure 42 is a typical outdoor terrain where the obstacles for a robot can 

only be distinguished based on the slope of the ground. That is, the maximum 

slope that the robot can move over determines which parts of the environment are 

going to be identified as obstacles. In the simulations, we assumed that robots can 

measure the slope of the surrounding environment features and detect obstacles as 

points in space with respect to the robot itself. A parameter called as ‘Max. 

Inclination Degree’ is included in the framework (see Table 4) to determine the 

maximum slope the robots can move over. 

For fluid-like robots, obstacle avoidance condition can be restated as a requirement 

that a robot cannot have a velocity component perpendicular to an obstacle surface 
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if it is very close to the surface. Also, if the fluid model is viscous, then the overall 

velocity of the robot ceases at the very vicinity of an obstacle. The figure below 

illustrates the variables involved in the formulation of this obstacle avoidance 

behavior. Suppose that a robot detects two obstacle points. In order to avoid this, it 

calculates the two components of its velocity with respect to the surface that can 

be defined with these two points. If the robot happens to detect only one point, it 

can assume a surface passing through this point and perpendicular to the line 

between this point and the robot. 

 

 

Figure 47 Illustration for the mathematical formulation of obstacle avoidance 

Using some geometry, the parallel component of the robot velocity with respect to 

the two obstacle points can be derived as in (42). As a measure of the robot’s 

proximity to the surface, a factor k is defined in (43) such that when the robot 

detects an obstacle at Rs –the sensing range– k becomes 1 and it drops to zero as d 

goes to zero.  
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Finally, using (44) where Vobs is the corrected velocity of a robot around an 

obstacle, the velocity of the robot can be smoothly deviated from a heading toward 

the obstacle. In this equation, μ is the viscosity of the multi-robot system and M is 

constant that determines the strength of the viscosity effect on the parallel 

component of velocity. Thus, the less the viscosity is (i.e. more inviscid), the more 

the robot can move in the parallel direction.  

 (1 ) M
obs k k e μ−= + −V V V&  (44)

As an extra obstacle avoidance mechanism, we also incorporated an artificial body 

force that repels robots in normal direction to the obstacle surfaces. The obstacle 

force calculated in (45) is added to the body force term in (34). Here, A is the 

normal avoidance factor that adjusts the strength of the normal force. 
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A.2  Thermal Equilibrium 

Implementation of the boundary condition for temperature also depends on the k 

factor as given in (46). Here Tamb is the normal ambient temperature of the robots. 

As a robot approaches to a surface, its temperature starts to increase up to 2Tamb, 

which is the constant surface temperature. 
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 (1 )amb ambT T k T= + −  (46)

A.3  Velocity and Acceleration Limitation 

The limitations of the robotic system in terms of maximum velocity and 

acceleration of robots depend on the physical construction of the robots and can 

vary significantly from simple wheeled robots to air vehicles. However, the 

constraint on the velocity V and acceleration of a robot can commonly be 

described as follows. 
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where Vmax and amax are the maximum values for velocity and acceleration, 

respectively. 

A.4  Connectivity Constraint 

Wireless connectivity among robots is preserved using a damping factor on the 

velocity of each robot. The factor applied to the velocity control as follows.  
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That is, the velocity control calculated from the governing equations is damped if 

the set of neighboring robots, the support domain, is not empty. Otherwise, the 

robot stops moving until it detects a neighbor. The damping factor is determined 

based on the ratio of the average inter-robot distance to the radius of the support 

domain. D is the damping factor that scales down the effect of F to adjust the 

strength of the constraint. C is a measure of maximum allowed inter-robot spacing 

in proportion to Rc. 
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APPENDIX B 

PUBLICATIONS OF THE THESIS 

B.1  Scalable Self-Deployment of Mobile Sensor Networks 

Publication: In Proceedings of the 2006 IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS), Beijing, China, Oct. 9-15, 2006, pp. 1446 

– 1451. 

Title: Scalable Self-Deployment of Mobile Sensor Networks: A Fluid Dynamics 

Approach 

Authors: Muhammed R. Pac, Aydan M. Erkmen, Ismet Erkmen. 

Abstract: We propose in this paper a novel approach inspired by fluid dynamics 

as a distributed and scalable solution to the deployment problem of mobile sensor 

networks in unknown environments. Our approach is based on the physical 

principles of fluids through which we model each sensor/robot node as a fluid 

element and the sensor network as a fluid body to which we adapt the principles of 

fluid flow. Originating from local neighborhood interactions, governing flow 

equations of a sensor node is formalized. Mimicking the diffusive and self-

spreading behavior of compressible fluids in a mobile sensor network, we achieve 

the desirable properties of effective coverage, scalability, and distributed self-

deployment. Simulation results exhibit the diffusive and self-spreading 

characteristics of the nodes producing an emergent collective behavior of the 

network towards better coverability. An adaptive deployment scheme is also 

devised for urban disaster environments where the number of nodes to be deployed 

may not be determined a priori. Simulation of this scenario shows that our 

approach is scalable and can guarantee a desired level of service quality without 

any prior information about the environment. 
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B.1.1  Introduction 

Mobile sensor networks have recently emerged as a new technology integrating 

various fields such as sensor fusion, wireless ad-hoc communication, and 

distributed robotics. The basic idea of mobile sensor networking is to deploy smart 

sensor nodes ‘en masse’ within an environment for surveillance, data mining, and 

search. Being the building block of a distributed sensor network, capabilities of an 

individual node in terms of sensing, onboard computation, networked wireless 

communication, and locomotion enable the whole network to execute numerous 

distributed tasks through multilevel collaboration. Although initially the main 

drive of research on sensor networks was military [1], civil applications have also 

found new emphases by technological improvements. Recently, availability of 

inexpensive smart micro-sensors embedded in mobile platforms opened the way to 

new robot/sensor network applications such as in disaster intervention and 

emergency search-and-rescue [2]. 

One of the most fundamental concepts in sensor networking is coverage. It is the 

quality-of-service that a network can provide [3] and may be defined by the 

percentage of the surveillance area that is sensed through sensor nodes. Coverage 

is strongly dependent on the deployment of the sensor network over the 

environment. Therefore, terrain and task coverage for efficient surveillance and 

mission realization stemming from effective deployment are critical control 

problems to be dealt with.  

The challenges posed by large-scale mobile sensor networks in unknown, 

unstructured, and hostile environments necessitate the utilization of distributed 

self-deployment schemes, in which deployment is an emergent behavior of the 

local coordination among sensor nodes. In this paper, we develop a novel approach 

inspired by fluid dynamics as a distributed and scalable solution to the deployment 

problem. Our approach is based on the governing physical principles of fluids 

where we model the sensor network as a fluid body and each sensor/robot node as 

a fluid element. Our motivation is to mimic the diffusive and self-spreading 

behavior of compressible fluids, e.g. gases, in a mobile sensor network so as to 
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achieve the desirable properties of effective coverage, scalability, and distributed 

self-deployment within an emergent collective behavior. We envisage one of the 

potential applications of our approach to be in the fast emergency response for 

early stage search-and-rescue operations in which the assistance of mobile sensor 

networks are life-critical in unknown, hazardous, and highly unstructured 

environments of disaster areas.  

B.1.2  Related Works and Motivation 

One of the earliest studies on the subject proposes an incremental deployment 

algorithm [4] in which each node is deployed one at a time depending on the 

information provided by previously deployed nodes to maximize coverage. In this 

approach, the computational capacity required for determining the next 

deployment location increases proportionally with the number of deployed nodes. 

Therefore, serious scalability limitations exist for large-scale networks due to the 

centralized nature of this approach. Another algorithm [5] introduces the concept 

of force inspired by the equilibrium of molecules. Utilizing the mobility of the 

sensor nodes, the algorithm aims at improving the topology of the network that has 

random initial deployment. Although there is no explicit reference to the 

assumptions about the environment, the target application area is envisaged to be 

air dropped sensor networks in rural fields. Indoor environments and obstacle 

avoidance are not addressed in this work.  

The study of Howard, Mataric, and Sukhatme in [6] provides a solution to the 

problem of deploying a mobile sensor network in unknown dynamic 

environments. They describe a potential-field-based approach to deployment, in 

which nodes are treated as virtual particles, subject to virtual forces. These forces 

repel nodes from each other and from obstacles, and ensure that from an initial 

compact configuration, nodes will spread out to maximize the coverage area of the 

network. Similarly, the virtual force algorithm of [7] and the virtual spring force 

algorithm of [8] use both repulsive and attractive force components to maximize 

coverage and uniformity for a given number of sensors. Other potential field 
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approaches analyze connectivity and redundancy constraints [9] or include robot 

team concepts in sensor networking [10].  

A common feature of the existing distributed algorithms mentioned so far is that 

deployment is conceived as a coverage process that maneuvers the sensor nodes 

from an initial random/compact configuration to a suboptimal configuration in 

which a static equilibrium is attained and coverage requirements are met. Although 

these approaches assume an unknown sensing environment, all of them implicitly 

assume prior information about the surveillance area’s physical range. Thus, each 

of them considers the deployment of a predetermined and fixed number of sensor 

nodes so that the network reaches the static equilibrium when the nodes disperse 

sufficiently over the environment and a certain level of area coverage is achieved. 

However, if the size of the surveillance environment is not known a priori –which 

is the probable case in urban disaster scenarios due to fractal dimension of the 

irregular terrain–, these algorithms can only provide coverage to the size extent of 

the area that is previously fixed by the number of nodes to be deployed. Thus, a 

certain quality of service could not be guaranteed without prior knowledge of 

coverage area size. 

We examine in this paper the deployment problem in truly unknown environments 

whose physical range is not known and hence the number of sensor nodes to be 

deployed cannot be determined a priori. The main contribution of our work is to 

present a formalism for modeling a sensor network itself as a fluid penetrating and 

diffusing into a terrain with fractional dimensions.  

To our knowledge, mobile sensor networks or robot teams have not been modeled 

as fluids by the physical principles of fluid dynamics. A fluid dynamics approach 

for multi-robot chemical plume tracing is addressed in [11] where flow variables 

of a ‘real’ fluid are measured by a computational sensor grid and the flow direction 

is estimated for backward tracing. Another work [12] proposes two gas models, 

one of which uses a virtual force approach and the other uses a kinetic approach. 

The former approach is very similar to the previously discussed virtual force 

approaches [5], 7] and is not based on the real physics of gases. The latter, on the 
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other hand, uses the kinetic theory of gases to model obstacle avoidance and deals 

with virtual couette walls to introduce kinetic energy into the system.  

B.1.3  Model Preliminaries 

Assumptions: First, we assume that sensing coverage area of each sensor/robot 

node is determined by its sensing range taken as circular in shape with a certain 

radius denoted by Rs. Similarly, the communication coverage is the area bounded 

by another circle of radius Rc. Nodal coverage in both of these ranges are assumed 

to be deterministic. An important assumption is that a sensor node can determine 

the relative position of its neighbors that lie within its communication range. This 

may be by virtue of utilizing a scanning laser range-finder or communicating the 

coordinate information obtained from a global positioning system (GPS). An 

exclusive assumption of our approach is that at any time a sensor node knows its 

velocity vector with respect to a local or global reference. Also, it can be informed 

of the velocities of its neighbors through communication and if needed convert 

them into its own reference frame. 

Governing Equations of Fluid Dynamics: Fluid dynamics is based on the 

mathematical statements of three fundamental physical principles, namely 

conservation of mass, Newton’s second law, and conservation of energy. The 

governing equations of fluid flow are derived by applying these principles to a 

suitable flow model. One of the flow models that we adopt in our approach 

considers the fluid body as a collection of flowing infinitesimal fluid elements. It 

is called the nonconservation form flow model. In the development of our 

approach, we model a mobile sensor network as an inviscid compressible fluid 

composed of individual fluid elements, i.e. sensor nodes. The governing equations 

for the flow of such a fluid in two dimensions are expressed as in (1). 
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 Equation (1) is called the Euler Equations in which ρ is fluid density, D/Dt is the 

substantial derivative, p is fluid pressure, fx and fy are body force components per 

unit mass in x and y directions, and finally u and v are the velocity components of 

an infinitesimal fluid element in the respective directions. This equation can be 

rearranged in a convenient form as in (2) 
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(2)

by using the open form of the substantial derivative terms and time derivatives 

isolated on the left-hand side and spatial derivatives on the right-hand side of the 

equation. In (2), subscript i and superscript t indicate that the flow variables u, v, ρ, 

p, and f belong to the ith element of the fluid at time t. For the details of fluid 

dynamics concepts discussed in this paper and derivations of governing equations, 

please refer to [13]. 

B.1.4  A Fluid Dynamics Solution to the Deployment Problem 

A distributed deployment scheme, which is necessarily sensor node oriented, has 

to originate from the interactions of nodes with their neighbors and surrounding 

environment. It is the interactions of a fluid element with its surrounding and the 

physical principles governing these interactions that shape our fluid dynamics 

based deployment strategy. With appropriate adaptations of fluid concepts to 

mobile sensor networks, we aim at providing a suitable formalism for our 

distributed deployment approach. 

Before the development of our approach, it would be beneficial to explicitly set the 

analogy that we found between a flowing fluid and a mobile sensor network as in 

Table B.1.1.  
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Table B.1.1 Analogy between a Fluid and a Mobile Sensor Network 

Fluid Mobile Sensor Network 
Fluid body Sensor network 
Fluid element Sensor node 
Interactions among adjacent fluid 
elements 

Interactions among neighboring sensor 
nodes 

Fluid flow Network deployment 
Physical principles of flow Control algorithm of deployment 

 

Adaptation of Fluid Concepts to Mobile Sensor Networks: In accordance with 

the aforementioned analogy, we define and reformulate the counterparts of the 

flow variables and mathematical expressions appearing in (2) for a mobile sensor 

network as follows: 

 1) Velocity Vector: The velocity vector of a fluid element is directly 

analogous to the velocity vector of a sensor node. Thus, the velocity vector of the 

ith node (node i) may be denoted by Vi
t = (ui

t, vi
t).  

 2) Local Density: We develop a formalism for the local density denoted by 

ρi at a node location as  
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(3)

Rd is the deployment radius (0< Rd ≤ Rc) of a deployment neighborhood Ni for 

node i, defined as the set of neighboring nodes j that fall within this range. ni is the 

number of elements in this set and rij is the Euclidean distance between node i and 

node j. The variation of local density with respect to average distance between 

node i and its neighbors for various values of ni is given in Figure B.1.1. This 

definition provides a normalized density value that is proportional to the number 

of deployment neighbors and inversely proportional to the average distance 

between node i and its neighbors. Therefore, given the same number of elements in 
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set Ni, local density would be higher when nodes are closely located. On the other 

hand, if set Ni is empty, density takes the value of 1 to account for node i itself. 

 3) Pressure: Pressure is the main driving entity in fluid flow. For a perfect 

gas, pressure equation is given by 

 p RTρ=  (4)

where R is the specific gas constant and T is the absolute temperature. While we 

keep R as a scaling factor in our formulation, we use T for obstacle avoidance 

purposes in such a way that nodes that encounter obstacles in their sensing range 

raise their temperature, resulting in a repulsive effect on the nodes due to the 

higher pressure region generated along the obstacle surfaces as follows 

 1 (1 )t
iT K= + −  (5)

where K is defined in (9). 

 

 

Figure B.1.1 Variation of local density ρi with respect to average inter-nodal distance ijr  
for various ni number of neighbors 

 4) Spatial Derivatives of Flow Variables: In equation (2), we have the 

partial derivatives of velocity components and pressure with respect to spatial 

dimensions x and y. In computational fluid dynamics, these derivatives are found 
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on grid structures using finite difference methods. In sensor networks, however, 

the generation of a grid is not practical due to unevenly distributed nature of sensor 

nodes. Instead, we formulate a finite difference method based on deployment 

neighborhood. We define first-order finite difference equations as in (6) for node i 

to approximate the spatial derivatives of flow variables u, v, and p. 
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(6)

We call these as first-order circular difference equations due to the trigonometric 

terms multiplying each difference. Here, θij denotes the polar angle of node j with 

respect to the reference frame of node i. For the partial derivative with respect to 

the x direction, cosine of the relative orientation between node i and its neighbors 

places higher emphasis on neighbors along the x direction. Similarly, sine of the 

relative orientation places higher emphasis on the neighbors along the y direction 

for the partial derivative with respect to y. Differences are also scaled by inter-

nodal distances and averaged over all neighbors within the deployment radius. 

Figure B.1.2 (a) and (b) illustrate respectively the variation of the circular weight 

terms cosθij/rij and sinθij/rij that determine the emphasis of the flow variable 

differences in (6). Note in this figure that θij = tan-1(y/x) and rij = √(x2+y2). 

In order to illustrate local interactions within deployment neighborhood, consider a 

sensor node, i, with two deployment neighbors, h and k, as in Figure B.1.3. 

Arbitrary velocity components are shown for each node within the reference frame 

of node i. Also, the relative orientations of the neighboring nodes with respect to 

node i are indicated by θih and θik. For the case in Figure B.1.3, (6) yields 

positively weighted contributions from node h to the spatial derivatives in both 

directions since it is ahead of node i in both directions (cosθih>0, sinθih>0). 

Conversely, the contribution of node k to the derivatives in both directions are 
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negatively weighted (cosθik<0, sinθik<0) since it is behind node i in both directions. 

Also, the magnitude of the total contribution of node k is more than node h since it 

is closer to node i (rik< rih).  

 

 

Figure B.1.2 Variation of cosθij/rij and sinθij/rij around node i at the origin (0,0) 
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Figure B.1.3 Deployment neighborhood and local interaction parameters 

 5) Body Forces: In fluid dynamics, a fluid element may be under the effect 

of various body forces like gravitational, electric, and magnetic forces. These 

forces are incorporated in the governing equations in (1) by fx and fy. Considering a 

sensor node as a unit mass element in the network, we modeled fx and fy as force 
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components acting as control entities guiding each node to preferential coverage 

regions or target locations. In this way, the network may be directed globally by a 

collective network behavior or locally by a clustered network behavior. For 

example, a desired patrolling direction determined as a result of the coordination 

among sensor nodes may be broadcasted by one of the nodes to impose these body 

force components. Alternatively, in a clustered network, each cluster head may 

direct its cluster to cover a local isolated target area. 

Obtaining Solutions for the Governing Equations: As in computational fluid 

dynamics, we obtain computationally the velocity vectors of sensor nodes in the 

form of a time-marching solution. For example, take one of the velocity 

components u of node i and assume that we know the flow variables at time t. 

Then, this velocity component at a differential time interval ∆t later takes the value 

given by the Taylor series expansion 
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The velocity component may simply be approximated by the first two terms in (7) 

for which all the necessary information is available by (2) through (6). Thus, the 

solutions for the velocity components are obtained as 
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(8)

Limitations, Initial and Physical Boundary Conditions: The solutions obtained 

from (8) for the velocity components may exceed the locomotion capabilities of 

sensor nodes. Not only velocity, but also its time derivative, i.e. acceleration, may 

exhibit a similar behavior. Therefore, we put hard-limiters to the magnitudes of 

both velocity and acceleration of sensor nodes in case they exceed respective 

thresholds Vth and ath. 
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The time-marching solutions in (8) require the initial values of the velocity 

components to be known. In our analyses, we assume zero initial velocities for 

every node. Any particular solution is dictated by these initial conditions coupled 

with the physical boundary conditions imposed by the environment. The only 

boundary condition for inviscid fluid flow is identified to be the requirement that 

the velocity vector of a fluid element immediately adjacent to a surface be parallel 

to this surface. Adaptation of this condition to the motion of a sensor node is 

illustrated in Figure B.1.4 where a sensor node is at a distance d to a surface. 

Whenever node i detects a surface (d≤Rs), it changes its velocity through a smooth 

deviation from the velocity solution imposed by (8) such that the velocity 

eventually becomes parallel to the surface. This is achieved using (9). 

 
'(1 ) , , '

2 's

dK K d d B
R d

= + − = = −
−

nV V V�  (9)

where K is the smoothing factor and B is a bias term to determine the minimum 

distance that a node is allowed to approach a surface. After applying the boundary 

condition, V~ is obtained as the corrected velocity by using an auxiliary vector Vn 

normal to the surface tangent. 

 

 

Figure B.1.4 Illustration of the physical boundary condition 

Damping Viscosity for Network Connectivity: In order to preserve the 

connectivity of the sensor network, some kind of artificial viscosity that we call 

damping viscosity is applied on the nodes so that the residual velocity terms 
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i vu=V ) in (8) are scaled by a variable that changes with the average inter-

nodal distance as in (10). 
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Here, F is the damping factor, C is the maximum allowed nodal spacing 

proportional to Rc (0<C≤1) and D is an adjustment constant for the level of 

damping. 

B.1.5  Simulation Results 

Numerous simulations have been carried out in various environments to 

investigate the performance of our approach in terms of coverability, scalability, 

and collectivity of the emergent behavior. Parameter settings of our simulations 

are indicated in Table B.1.2 with reference to the related figure number. 

In order to illustrate the self-spreading behavior of the sensor nodes under the 

connectivity constraint, we deploy a simple network composed of 16 nodes 

initially confined to a compact region as shown by square markers in Figure B.1.5 

(a) and (b). The final configuration attained after 50 time units for two different 

damping viscosity functions F obtained by varying D to impose different 

connectivity constraints are shown by the small circles in the same figures. A large 

circle around each node indicates its communication range. The variation of local 

density and coverage area with respect to time is shown in Figure B.1.6 from 

which it is apparent that the initial high density (pressure) results in a fast 

deployment during the early stages of the process. This behavior is also exhibited 

by sparsely printed points of the streamlines tailing behind the nodes in Figure 

B.1.5. Then, the connectivity constraint among the nodes restrains this movement, 

driving the network into a static equilibrium with optimal coverage. In Figure 

B.1.5 (a), the coverage attained is around 200 square units with each node having 

an average of 3.75 neighbors in its communication range. In Figure B.1.5 (b), on 

the other hand, maximum coverage is 175 square units with each node having an 

average of 10.25 neighbors in its communication range. Therefore, there is a 
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natural tradeoff between coverage and connectivity. By properly adjusting the 

parameters of the damping viscosity function in (10), we can achieve a favorable 

balance between coverability and connectivity requirements. 

 

 

Figure B.1.5 Self-spreading of nodes under network connectivity constraint  
(a) D = 20 (b) D = 10 

The obstacle avoidance and directed diffusion capabilities of nodes are illustrated 

in Figure B.1.7 where obstacle surfaces are drawn by thick lines. In Figure B.1.7 

(a), elapsed time is 50 units and nodes are under the effect of a horizontal body 

force. Note fx parameter in the second column of Table B.1.2 assuming a value of 

0.5. The result of the same simulation with 150 units of elapsed time, and without 

any body force is given in Figure B.1.7 (b). This simulation shows that improved 

coverage and fast deployment may be achieved by biasing the deployment of the 

network towards a desired direction by using the body force terms available in the 

governing equations.  

In a bounded environment with obstacles, deployment of a fixed number of sensor 

nodes is considered in Figure B.1.8. 24 nodes are released from an initial station 

A. After 150 time units, dispersion of nodes throughout the environment almost 

ceases. Large circles around the nodes indicate their sensing area at the final 

configuration in which the coverage provided is around 250 square units (83% of 
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the maximum that can be obtained from 24 nodes with Rs=2) as shown in Figure 

B.1.9. Local density and coverage plots in this figure are obtained for two values 

of Rd, 3 and 6, along with the other parameters being the same as indicated in the 

3rd column of Table B.1.2. 

Table B.1.2 Simulation Settings by Figure Number 

Parameter Figure B.1.5 
(a,b) 

Figure B.1.7 
(a,b) Figure B.1.8 Figure B.1.10 

Rc 8 4 6 6 
Rd 4 2 3, 6 3 
Rs 2 1.6 2 1.5 
R 0.75 0.75 0.75 1 
fx  0 0.5, 0 0 0 
fy 0 0 0 0 
∆t 1/20 1/20 1/20 1/20 
B 0 0 0.6 0.1 
C 1 1 1 1 
D 20, 10 4 16 10 
Vth 1.5 1.5 1.5  1.5  
ath 0.5 0.5 0.5 0.5 

 

 

 

Figure B.1.6 Local density and coverage versus time for the simulations in Figure B.1.5 
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When the two plots in Figure B.1.9 are compared, it can be seen that the variation 

of coverage with respect to time is similar, whereas transient fluctuations in 

coverage and density –due mostly to obstacles– are more significant for the lower 

value of the deployment radius. The reason is that when local interactions are 

restricted by lower number of neighbors (lower deployment radius), the variation 

of spatial derivatives becomes more vulnerable to slight changes in the distribution 

of neighbors. 

 

 

Figure B.1.7 Obstacle avoidance and directed diffusion of nodes (a) t = 50 with a nonzero 
body force in x direction (b) t = 150 with zero body force 

As a final simulation, consider the scenario of deploying a sensor network in a 

truly unknown environment whose physical range is not known. Thus, the number 

of sensor nodes to be deployed cannot be determined beforehand. For such 

scenarios, we switch to our adaptive deployment scheme in which nodes are 

injected into the environment one at a time as required. Determining when to 

deploy a new node depends on the local node density at the initial deployment 

location. When the previously deployed nodes flow into the unobservable depth of 

the environment, new successors are placed in the starting locations. This scenario 
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is simulated in a relatively unstructured 3D environment shown in Figure B.1.10. 

where the initial deployment location is an opening of the environment indicated 

by an arrow at the back edge. Also, there is another opening at the front edge of 

the environment indicating its unknown continuation. At the final distribution 

shown by white nodes in Figure B.1.10, there are 74 nodes deployed within 400 

time units. 

 

 

Figure B.1.8 Deployment in a bounded environment with Rd=3 

 

Figure B.1.9 Local density and coverage versus time for two values of Rd in Figure B.1.8 



127 
 

Variations of local density, node number, and coverage area with respect to time 

are shown in Figure B.1.11 from which it is seen that the area covered by the 

network increases with increasing number of nodes. With this adaptive approach, 

therefore, a desired level of service quality may be obtained by deploying as many 

number of nodes as required. Note also that node density simultaneously responds 

to the stepwise changes in node number by local increases and then conservatively 

returns to a nominal lower value later on. The gradual increase of coverage area 

and stable variation of node density with increasing number of sensor nodes are 

good indicators of the scalability of the approach. 

 

 

Figure B.1.10 Deploying an increasing number of nodes 

B.1.6  Conclusion 

The paper addresses the problem of deploying a mobile sensor network in 

unknown environments. By modeling the network as a fluid body and the 

individual sensors as fluid elements, a novel distributed strategy that possesses 

desirable properties in terms of coverability, scalability, and self-deployment is 

developed. The deployment scheme produces an emergent collective behavior of 

the overall network as a result of the coordination of the individual nodes within a 

neighborhood.  
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Simulation results showed that the approach is suitable and promising. While 

coverability is achieved as a result of the self-spreading behavior of the network, 

distributed nature of the approach provides scalability in terms of network and 

environment size. Also, diffusive movement of sensor nodes facilitates effective 

operation of the network in unstructured terrain. Especially in urban disaster areas, 

our adaptive deployment scheme can provide desired quality of service by using 

sufficient number of sensor nodes. 

 

 

Figure B.1.11 Local density, node number, and coverage versus time for the simulation in 
Figure B.1.10 
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Abstract: We propose in this paper a novel adaptive approach inspired by fluid 

dynamics as a distributed, scalable, and robust solution to the deployment problem 

of mobile sensor networks in unknown environments. Our approach is based on 
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the physical principles of fluids through which we model a mobile sensor network 

as a fluid body and individual nodes as fluid elements. We achieve desirable 

properties of effective coverage, scalability, and robustness by virtue of the 

diffusive and self-spreading behavior of compressible fluids as modeled in our 

deployment approach. Simulation of our deployment strategy shows that the 

approach is scalable in terms of environment and network size. It is also robust 

against localization uncertainty, partial operational failure, and dynamic changes in 

the landscape. In truly unknown environments where the number of nodes to be 

deployed cannot be determined a priori, our adaptive deployment scheme 

guarantees thorough coverage of the environment. 

B.2.1  Introduction 

Mobile sensor networking requires a large number of sensor nodes to be deployed 

within an environment for efficient surveillance, data mining, and search tasks. 

Deployment strategy of the network determines the range of terrain coverage 

which is the quality-of-service that the network can provide [1]. Therefore, terrain 

and task coverage for efficient surveillance and mission realization stemming from 

effective deployment are critical control problems to be dealt with. 

Deployment also plays a significant role in the adaptability of the system to harsh 

environment conditions. Surveillance in unknown, unstructured, and dynamic 

terrains requires a highly robust system against uncertain information, node 

failure, and terrain dynamics. Especially, challenges posed by large-scale mobile 

sensor networks in such environments necessitate the utilization of distributed self-

deployment schemes, in which deployment is an emergent behavior of the local 

coordination among sensor nodes. 

In this paper, we develop an adaptive strategy based on our distributed self-

deployment approach inspired by fluid dynamics. Our motivation is to mimic the 

diffusive and self-spreading behavior of compressible fluids in a mobile sensor 

network so as to achieve desirable properties of effective coverage, scalability, 

distributed self-deployment, and robustness within an emergent collective 
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behavior. We specifically treat unknown, unstructured, and dynamic environments 

in which effective coverage is provided by our adaptive deployment scheme.  

B.2.2  Related Work 

The study of Howard, Mataric, and Sukhatme in [2] provides a solution to the 

problem of deploying a mobile sensor network in unknown dynamic 

environments. They describe a potential-field-based approach to deployment, in 

which nodes are treated as virtual particles, subject to virtual forces. These forces 

repel nodes from each other and from obstacles, and ensure that from an initial 

compact configuration, nodes will spread out to maximize the coverage area of the 

network. Other potential field approaches analyze connectivity and redundancy 

constraints [3] or include robot team concepts in sensor networking [4]. The force 

algorithm of [5] inspired by the equilibrium of molecules utilizes the mobility of 

nodes to improve the topology of the network that has random initial deployment. 

Similarly, the virtual force algorithm of [6], [7] and the virtual spring force 

algorithm of [7] use both repulsive and attractive force components to maximize 

coverage and uniformity for a given number of sensors.  

In the abovementioned algorithms of the literature, deployment is conceived as a 

coverage process that maneuvers the sensor nodes from an initial random or 

compact configuration to a suboptimal configuration in which a static equilibrium 

is attained and coverage requirements are met. Although these approaches assume 

an unknown sensing environment, all of them implicitly assume prior information 

about the surveillance area’s physical range by considering the deployment of a 

predetermined and fixed number of sensor nodes. When the nodes disperse 

sufficiently over the environment, the network reaches static equilibrium and a 

certain level of area coverage is achieved. However, if the size of the surveillance 

environment is not known a priori, these algorithms can only provide coverage to 

the size extent of the area that is previously fixed by the number of nodes to be 

deployed. Thus, a certain quality of service could not be guaranteed with these 

approaches. 
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In this paper, we present a novel adaptive deployment strategy that can guarantee a 

desired level of service quality without any prior information about the 

surveillance environment. We present a formalism for modeling a sensor network 

itself as a fluid that can penetrate and diffuse into highly unknown and 

unstructured terrain.  

To our knowledge, mobile sensor networks or robot teams have not been modeled 

as fluids by the physical principles of fluid dynamics. A fluid dynamics approach 

for multi-robot chemical plume tracing is addressed in [8] where flow variables of 

a ‘real’ fluid are measured by a computational sensor grid and the flow direction is 

estimated for backward tracing. Another work [9] proposes two gas models. One 

of them uses a virtual force approach similar to [5] and [6] whereas the other uses 

the kinetic theory of gases to model obstacle avoidance and deals with virtual 

couette walls to introduce kinetic energy into the system. 

B.2.3  Preliminaries: Governing Equations of Fluid Dynamics 

We model a mobile sensor network as an inviscid compressible fluid composed of 

individual fluid elements, i.e. sensor nodes. In fluid dynamics, one of the flow 

models that we adopt in our approach considers the fluid body as a collection of 

flowing infinitesimal fluid elements. It is called the nonconservation form flow 

model. With this model, the governing equations for the flow of an inviscid fluid 

in two dimensions are expressed as in (1). 

 
:

:

x

y

Du px momentum f
Dt x
Dv py momentum f
Dt y

ρ ρ

ρ ρ

∂= − +
∂
∂= − +
∂

 (1)

Equation (1) is called the Euler Equations in which ρ is fluid density, D/Dt is the 

substantial derivative, p is fluid pressure, fx and fy are body force components per 

unit mass in x and y directions, and u and v are the velocity components of an 

infinitesimal fluid element in the respective directions. This equation can be 

rearranged in a convenient form as in (2) 
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(2)

by using the open form of the substantial derivative terms and time derivatives 

isolated on the left-hand side with spatial derivatives residing on the right-hand 

side of the equation. In (2), subscript i and superscript t indicate that the flow 

variables u, v, ρ, p, and f belong to the ith element of the fluid at time t. For the 

details of fluid dynamics concepts discussed in this paper and derivations of 

governing equations, please refer to [10]. 

B.2.4  A Fluid Dynamics Model for Distributed Self-Deployment 

A distributed deployment scheme, which is necessarily sensor node oriented, has 

to originate from the interactions of nodes with their neighbors and surrounding 

environment. It is the interactions of a fluid element with its surrounding and the 

physical principles governing these interactions that shape our fluid dynamics 

based deployment strategy. With appropriate adaptations of fluid concepts to 

mobile sensor networks, we aim at providing a suitable formalism for our 

distributed deployment approach. 

We assume in our formalism that sensing coverage area of each sensor node is 

determined by its sensing range taken as circular in shape with a certain radius 

denoted by Rs. Similarly, the communication coverage is the area bounded by 

another circle of radius Rc. Coverage in both of these ranges are deterministic. We 

also assume that a sensor node can determine the relative position of its neighbors 

that lie within its communication range and at any time a sensor node knows its 

velocity vector with respect to a local or global reference. Also, each node is 

assumed to be capable of learning the velocities of its neighbors through 

communication. 
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Adaptation of Fluid Concepts to Mobile Sensor Networks: We define and 

reformulate the counterparts of the flow variables and mathematical expressions 

appearing in (2) for a mobile sensor network as follows. 

 1) Velocity Vector: The velocity vector of a fluid element is directly 

analogous to the velocity vector of a sensor node. Thus, the velocity vector of the 

ith node (node i) may be denoted by Vi
t = (ui

t, vi
t).  

 2) Local Density: We develop a formula for the local density denoted by ρi 

at a node location as 

 
2

1 1

i

id d
i i

ij ij
j

R R nn
r r

ρ
∈Ν

= + × = +
∑

 
(3)

Here, Rd is the deployment radius (0< Rd ≤ Rc) of a deployment neighborhood Ni 

for node i, defined as the set of neighboring nodes j that fall within this range. ni is 

the number of elements in this set and rij is the Euclidean distance between node i 

and node j. This definition provides a normalized density value that is proportional 

to the number of deployment neighbors and inversely proportional to the average 

distance between node i and its neighbors. Therefore, given the same number of 

elements in set Ni, local density would be higher when nodes are closely located. 

On the other hand, if set Ni is empty, density takes the value of 1 to account for 

node i itself.  

 3) Pressure: Pressure is the main driving entity in fluid flow. For a perfect 

gas, the equation of state is given by 

 p RTρ=  (4)

where R is the specific gas constant and T is the absolute temperature. While we 

keep R as a scaling factor in our formulation, we use T for obstacle avoidance 

purposes in such a way that nodes that encounter obstacles in their sensing range 

raise their temperature, resulting in a repulsive effect on the nodes due to the 

higher pressure region generated along the obstacle surfaces as follows  

 1 (1 )t
iT K= + −  (5)
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where K is defined as in (9). 

 4) Spatial Derivatives of Flow Variables: In equation (2), we have the 

partial derivatives of velocity components and pressure with respect to spatial 

dimensions x and y. In computational fluid dynamics, these derivatives are 

conventionally calculated on grid or mesh structures using finite difference or finite 

element methods. In sensor networks, however, generation of a grid is not practical 

due to unevenly distributed nature of sensor nodes. Instead, we formulate a 

meshfree method [11] based on deployment neighborhood. We define first-order 

finite difference equations of a flow variable denoted by ξ as in (6) for node i to 

approximate the spatial derivatives of u, v, and p at a time instant t. 
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(6)

We call these as first-order circular difference equations due to the trigonometric 

terms multiplying each difference. Differences are also scaled by inter-nodal 

distances and averaged over all neighbors within the deployment radius. Here, θij 

denotes the polar angle of node j with respect to the reference frame of node i. 

Figure B.2.1 illustrate the variation of the circular weight functions cosθij/rij and 

sinθij/rij that determine the emphasis of the flow variable differences. Note in this 

figure that θij = tan-1(y/x) and rij = √(x2+y2).  

For the partial derivative with respect to the x direction, cosine of the relative 

orientation between node i and its neighbors places higher emphasis on neighbors 

along the x direction. Similarly, sine of the relative orientation places higher 

emphasis on the neighbors along the y direction for the partial derivative with 

respect to y. 
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Figure B.2.1 Weight functions for the spatial derivatives 

 4) Body Forces: In fluid dynamics, a fluid element may be under the effect 

of various body forces like gravitational, electric, and magnetic forces. These 

forces are incorporated in the governing equations in (1) by fx and fy. Considering a 

sensor node as a unit mass element in the network, we modeled fx and fy as force 

components acting as control entities guiding each node to preferential coverage 

regions or target locations. This enables the guidance of the network navigational 

flow towards a particular desired direction when necessary. For example, a desired 

patrolling direction determined as a result of the coordination among sensor nodes 

may be broadcasted by one of the nodes to impose these body force components. 

Alternatively, in a clustered network, each cluster head may direct its cluster to 

cover a local target area. 

Solution of the Governing Equations: As in computational fluid dynamics, we 

computationally obtain the velocity vectors of sensor nodes in the form of time-

marching solutions. For example, take one of the velocity components, u, of node i 

and assume that we know the flow variables at time t. Then, this velocity 

component at a differential time interval ∆t later takes the value given by the 

Taylor series expansion 

 ( )22

2 2
t t

t t t i i
i i

tu uu u t
t t

+Δ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Δ∂ ∂= + Δ + +
∂ ∂

" (7)



137 
 

The velocity component may simply be approximated by the first two terms in (7) 

for which all the necessary information is available by (2) through (6). Thus, the 

solutions for the velocity components are obtained as 
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(8)

Limitations, Initial and Physical Boundary Conditions: The solutions obtained 

from (8) for the velocity components may exceed the motion capabilities of sensor 

nodes. Hence, we utilize hard-limiters for the magnitudes of both velocity and 

acceleration of sensor nodes in case they exceed respective thresholds Vth and ath. 

The time-marching solutions in (8) require the initial values of the velocity 

components to be known. Any particular solution is dictated by these initial 

conditions coupled with the physical boundary conditions imposed by the 

environment. The only boundary condition for inviscid fluid flow is identified to 

be the requirement that the velocity vector of a fluid element immediately adjacent 

to a surface be parallel to this surface. Adaptation of this condition to the motion 

of a sensor node is illustrated in Figure B.2.2 where a sensor node is depicted at a 

distance d to a surface. Whenever node i detects the surface (d≤Rs), it changes its 

velocity through a smooth deviation from the velocity solution imposed by (8) 

such that the velocity eventually becomes parallel to the surface. The node is also 

repelled by the surface if it is closer than a certain distance. This obstacle 

avoidance behavior is achieved by using (9). 

 
'(1 ) , , '

2 's

dK K d d B
R d

= + − = = −
−

nV V V�  (9)

where K is the smoothing factor and B is a bias term to determine the minimum 

distance that a node is allowed to approach a surface. After applying the boundary 

condition, V~ is obtained as the corrected velocity by using an auxiliary vector Vn 

normal to the surface tangent. 
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Figure B.2.2 Illustration of the physical boundary condition 

Damping Viscosity for Network Connectivity: In order to preserve the 

connectivity of the sensor network, some kind of artificial viscosity that we call 

damping viscosity is applied on the nodes so that the residual velocity terms 

( ),( t
i

t
i

t
i vu=V ) in (8) are scaled by a variable that changes with the average inter-

nodal distance as in (10). 
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Here, F is the damping factor, C is the maximum allowed nodal spacing 

proportional to Rc (0<C<1) and D is an adjustment constant for the level of 

damping. 

Adaptive Deployment: In our formalism, several mechanisms exist for high level 

behaviors in order to control the deployment process. First, a constant term R in 

(4) along with damping viscosity terms in (10) are available for controlling the 

spreading and connectivity of the network. Second, the body force components in 

(8) facilitate the penetration of the network into goal directions. Obstacle 

avoidance behavior of the nodes is also handled by (5) and (9). As explained in the 

next section, our deployment strategy benefits from these control mechanisms to 

adaptively deploy a network. For example, according to a specific connectivity 

requirement, damping viscosity guarantees the convergence of the network 

especially in unbounded environments. In unknown bounded environments, on the 
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other hand, favorable deployment directions can be imposed on the network using 

the body forces and evolution status of the network is monitored through pressure 

and velocity feedbacks. 

A major aspect of our adaptive deployment scheme is that nodes are progressively 

injected into the environment at the initial deployment locations. When the 

previously deployed nodes spread out, new successors are placed in these initial 

locations to attain or preserve a certain density level that is determined based on 

the overall density, connectivity, and redundancy requirements of the network. 

Convergence of the network to static equilibrium or premature termination of the 

deployment process depends on the average of velocity feedbacks from the nodes. 

If the network achieves static equilibrium due to connectivity constraint, its 

deployment naturally ceases. Whereas, when a certain density or redundancy level 

is attained or coverage requirements are met, injection of new nodes into the 

environment may temporarily or permanently be stopped. 

B.2.5  Simulation Results 

We investigate the performance of our approach in terms of coverability, 

scalability, and robustness. Since we assume unknown environments, our 

coverability and scalability measure is the variation of covered area with respect to 

deployed node number. Robustness is analyzed in presence of localization 

uncertainty and node failure. Parameter settings of our simulations are indicated in 

Table B.2.1 with reference to the related figure numbers. 

To illustrate the obstacle avoidance and guided penetration capabilities of the 

sensor nodes, we deploy a simple network composed of 9 nodes as shown by black 

dots in Figure B.2.3. In this simulation, assume that each node is equipped with a 

GPS device and the coordinates of a target point are given as indicated by the 

bigger red dot in Figure B.2.3. Thus, each node assumes a body force towards the 

target which is a virtual force sink. The final configuration attained after 30 

simulation time units is shown by the white dots in the same figure. White 

streamlines tailing behind each node show the deployment trajectories. This 
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simulation demonstrates that high hills in the terrain that are seen as obstacles are 

avoided and a target location is covered effectively by a guided flow. 

Table B.2.1. Simulation settings by figure 

Parameter Fig. B.2.3 Fig. B.2.4 Fig. B.2.6 Fig. B.2.9,11  
Rc 4 4 5 5 
Rd 2 2 2.5 2.5 
Rs 2 2 1 1 
R 3 3 2 2 
fx  variable 0 5×(0.9)20t 5×(0.9)20t 

fy variable 0 0 0 
∆t 1/20 1/20 1/20 1/20 
B 0 0.2 0.2 0.2 
C 1 0.8 1 1 
D 12 5 12 12 
Vth 2 2 2 2 
ath 0.5 0.5 0.5 0.5 
t 30 100 200 100, 200 

In the same unbounded environment of Figure B.2.3, continuous deployment of 

nodes without body force is considered in Figure B.2.4. In this simulation, nodes 

are dynamically injected into the environment depending on the densities at the 

initial locations such that when any of them drops below 3 a new node is added to 

the environment at that location. Under no body force, nodes tend to spread out in 

all directions to maximize coverage. Their dispersion is limited by the damping 

factor to preserve the connectivity of the network. Figure B.2.5 depicts the 

variation of coverage, node density and number with respect to simulation time. 

Gradual increase of coverage area with increasing node number and conservatively 

preserved density is the evidence of the scalability of the adaptive deployment 

scheme. Comparing Figure B.2.3 and Figure B.2.4, we can also conclude that our 

deployment strategy supports various deployment requirements. While the 

requirement in Figure B.2.3 is to cover a particular target region of the landscape, 

in Figure B.2.4 homogeneous coverage of all parts of the area is aimed. 
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Figure B.2.3 Obstacle avoidance and guided penetration of nodes into the landscape 

 

Figure B.2.4 Self-spreading of nodes 

In a bounded environment as shown in Figure B.2.6, deployment of an adaptively 

changing number of nodes is considered next to examine the coverability, 

scalability, and fault tolerance of the approach. In this figure, initial deployment 

locations are indicated by black points where nodes are progressively injected into 

the environment with a certain initial condition (V0=(2,0)) to direct the nodes into 

the environment. Also, an initial body force that quickly diminishes with time (see 

Table B.2.1) is applied on the newly deployed nodes as an injection force that 

prevents their immediate backward escape out of the environment. To account for 

uncertainty, we introduce an additive Gaussian noise for the neighbor localization 

of each node. Using a zero mean and 0.05 variance Gaussian noise, the final 

configuration of the network is depicted Figure B.2.6. The same simulation is 

repeated with no noise for the comparison of the resulting coverability 

characteristics as given in Figure B.2.7. From the variation of coverage with 
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respect to node number, it can be seen that coverage increases with increasing 

number of nodes until it saturates at a certain level where the environment is fully 

covered. This also shows that our deployment scheme is scalable in terms of 

network and environment size. It is seen from Figure B.2.7 that the same coverage 

can be provided in presence of localization error but with deploying more sensors 

than the noiseless case. In Figure B.2.8, variations of average node velocity and 

density (with 0.01 noise variance) are plotted. As the density increases, velocities 

of nodes drop and the network flow slows down due to increased nodal 

interactions and damping viscosity. Note the transient fluctuations in both plots 

with magnitudes that clearly decrease after approximately t=100. This moment in 

Figure B.2.7 corresponds to the time when the coverability starts saturating. 

 

 

Figure B.2.5. Variation of coverage, density, and node number with time in Figure B.2.4 

To demonstrate the fault tolerance and adaptivity of the approach to node failures 

and terrain dynamics, we analyse a scenario in which some hills appearing as 

obstacles in the environment collapse, destroying 14 nodes already positioned in 

the surrounding area. The destroyed portion of the terrain and the failing nodes 

buried under the debris are enclosed in the white rectangle as shown in Figure 

B.2.9 just before the downfall. Figure B.2.10 shows the destruction of these 14 

nodes (out of 86) resulting in an immediate decrease in coverage by 21% (from 
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122.8 to 97.0 unit squares). However, the network recovers from this situation 

within 10 time units and covers the new area that is created as a result of landscape 

change as shown in Figure B.2.11. 

 

 

Figure B.2.6 Adaptive deployment in a bounded environment 

 

Figure B.2.7 Variation of coverage and node number with time in Figure B.2.6 
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Figure B.2.8 Variation of node velocity and density with time in Figure B.2.6 

 

Figure B.2.9 Area and nodes to be destroyed at t=100 

 

Figure B.2.10 Recovery from node failure in Figure B.2.9 due to collapse of an area 
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Figure B.2.11 Response to dynamical change of the terrain and new coverage of the 
destroyed area in Figure B.2.9 

B.2.6  Conclusion 

We address adaptive self-deployment of mobile sensor networks in unknown, 

unstructured, and dynamic environments. A novel distributed strategy based on a 

fluid dynamics model is developed and several desirable properties are achieved in 

terms of coverability, scalability, and robustness. While coverability and 

robustness are achieved as a result of the self-spreading behavior of the network, 

distributed nature of the approach provides scalability in terms of network and 

environment size. Also, diffusive movement of sensor nodes facilitates effective 

operation of the network in unstructured terrain. Simulation results showed that 

our adaptive scheme provides effective deployment and coverage in unknown 

dynamic environments. It can efficiently be utilized in the surveillance of an entire 

area as well as to cover target regions individually. It is also tolerant to localization 

error in neighborhood interactions and failure of nodes under harsh environment 

conditions. 
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Abstract: The paper presents a fluid dynamics based framework for the control of 

emergent behaviors of robot swarms that are modeled as fluids. A distributed low-

level control mechanism is developed based on Smoothed Particle Hydrodynamics 

(SPH) and it is coupled with a high-level control layer that is responsible for the 

tuning of fluid parameters to generate desired behaviors from the swarming 

characteristics of the robots. It is shown by simulations that using the same low-

level SPH formalism, different swarming behaviors can emerge from the local 

interactions of robots according to the settings of the fluid parameters that are 

controlled by the high-level control layer. 

B.3.1  Introduction 

Swarm robotics aims at developing scalable, flexible, and robust coordination 

mechanisms to control large groups of autonomous mobile agents. It is inspired by 

ethological phenomena in which swarms of animals (insects, fishes, birds, etc.) 

interact to coordinate their actions, create collective intelligence, and perform tasks 

that are far beyond the capabilities of individual members. Absence of central 

control in these behaviors and emergence of cooperation from only local 

interactions makes social swarms highly fault-tolerant, scalable, and adaptive to 

changing conditions. It is these inherent properties of biological swarms, which are 

also desirable for collective robotics, that attract a growing interest among 

researchers [1],[2]. 

Approaches currently available in the literature to swarm robotics generally base 

their formalism on the underlying biological phenomena and try to mimic the 

behaviors of animals in their artificial or simulated counterparts [3]–[5]. In these 

studies, adaptation of animal behaviors to multi-robot systems as a low-level 

coordination mechanism is mainly addressed. While constructing large numbers of 

autonomous robots is already a big challenge, developing control algorithms 

applicable to such systems based on the behaviors of animal swarms remains to be 

the main focus of the recent research. 

In this paper, we propose a novel model that notably helps in controlling emergent 

and aggregate swarming behaviors of large-scale multi-robot systems. In contrast 
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to the majority of approaches in the literature inspired by coordination in animal 

swarms, we base our formalism on the physics of fluids through an analogy 

between swarm robots and fluid particles. Our control methodology leads us to 

achieve desirable properties such as decentralized coordination, scalability, and 

robustness by applying the physical principles behind the dynamics of fluids to the 

distributed control of swarm robots. For the numerical analyses of the governing 

equations of fluid dynamics, we use Smoothed Particle Hydrodynamics (SPH) 

method [6]. Contrary to the conventional grid (or mesh) based analyses, SPH is a 

meshfree method that we found particularly suitable for our purposes of modeling 

a robot swarm as a collection of fluid particles. 

B.3.2  Previous Work 

Apart from the popular “artificial potential field” approach to the control of multi-

robot systems [5], [7], [8], there appears another line of research inspired from 

physics laws to solve problems such as coverage, surveillance, formation control, 

and obstacle avoidance. The most notable studies in this context are works by W. 

Spears and D. Spears, who proposed a “physicomimetics” framework for the 

distributed control of swarms of robots [9], [10]. In this framework, individual 

robots are treated as particles subject to artificial physics force laws. Similar to the 

potential field approach, the mobile robots are driven by these virtual forces and 

eventually the system is expected to achieve a desired configuration which 

minimizes the overall system potential energy. Depending on the relative strengths 

of the attractive and repulsive forces between particles, the system acts like a solid, 

liquid, or gas. This approach was used to address the lattice formation problem. 

For the coverage problem, on the other hand, they proposed a “kinetic theory” 

approach in which the problem is handled as the sweeping of a corridor by a 

particle swarm [11]. Shimizu et al. [13] proposed to use Stokesian Dynamics in 

designing local interactions of robots to maintain the coherence of the swarm in 

unstructured environments. 

The work by Perkinson and Shafai [14] proposes to utilize SPH so that the 

members of a nanorobot swarm can be controlled as fluid particles. Obstacle 
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avoidance and coverage problems are addressed in 2D simulation environments. 

To the best of our knowledge, this is the only work using SPH as a motion control 

algorithm for multi-robot systems. However, it does not establish an analogy 

between fluids and robot swarms and limits the method to the self-deployment of a 

sensor network in an unknown environment.  

In the works by Pac et al. [15], [16], the authors extended the idea of physics-

based approaches by modeling a robot network as a fluid body and controlling the 

deployment process through the parameters available in the governing equations. 

They used a custom defined meshfree particle method for the numerical solution 

of the equations. Primarily addressing the coverage of unknown unstructured 

environments with mobile sensor networks, they demonstrated how the 

configuration of the network can be changed to satisfy connectivity requirements 

and analyzed the robustness of the approach in response to dynamical environment 

and network conditions.  

In this paper, we further extend the previous formalism in [15] by developing a 

low-level, fluid dynamics based control model to coordinate the local interactions 

of robots while providing an interface composed of flow parameters to higher level 

algorithms for controlling the global behavior of the system. We exploit SPH for 

the modeling and analysis of robot swarms through the set of fluid dynamics 

equations. We demonstrate the validity and promise of the approach by applying it 

to common problems recurring in the swarm robotics literature.  

B.3.3  Proposed Control of Robotic Swarm Behaviors 

In this section, we present our motivation in developing a fluid dynamics based 

model for the distributed control of robot swarms. When a fluid body is considered 

as a collection of infinitesimal fluid elements, the analogy between these elements 

and the individuals in a swarm becomes more apparent. There are various 

characteristics of fluids that are desirable in a robot swarm. For example, the 

obstacle avoidance and source-to-sink optimal path finding behavior of fluids 

inspired quite a few works in mobile robotics area [17]–[20]. Similarly, 

harmonious and self-coordinated movement of fluids is also desirable in robot 
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swarms. While obstacle avoidance is in part a local reactivity of the fluid, 

coherence of the whole body is a result of the aggregate state of it. It can be seen 

that these properties exist at conceptually two distinct scales of a fluid: one is the 

particle scale that explains the local interactions of a fluid element with its 

surrounding, and the other is the macroscopic scale where the global motion of the 

fluid can be described. It is a fact that the overall motion of a fluid essentially 

emerges from the local interactions of particles in it and the principles governing 

these interactions are based on various physical quantities such as viscosity, 

compressibility, and temperature. Our idea in this paper is to utilize these 

quantities to ‘control’ the swarming behaviors of a multi-robot system that we 

model as a collection of fluid particles with quite the same mathematical 

formalism of SPH. Our flexibility in using this formalism is that we can change 

any parameters of the model in such a controlled way that the desired swarming 

behaviors are obtained.  

Towards this aim, we developed a control architecture with two fundamental 

layers such that the lower layer deals with the particle scale of the swarm while the 

upper layer controls the macroscopic behavior. The two layers are in coordination 

through an interface composed of fluid parameters that are described by the SPH 

model of the swarm in the lower layer. By this way, the global behavioral control 

of the swarm is designed in terms of the fluid parameters and programmed into a 

high-level control algorithm in the higher layer; whereas the local interactions of 

robots are governed by the SPH based low-level fluid model operating with this 

parameter setting and controlled through the interface (Figure B.3.1). Here, we 

need to emphasize that the overall behavior of the swarm still emerges from the 

local interactions of the robots but this happens under the control of the associated 

fluid parameters that are designed and adjusted for the particular task. 
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Figure B.3.1 Separate layers controlling the local interactions and global behavior in a 
decentralized system 

Figure B.3.1 depicts the relationships with bidirectional arrows between the 

control layers and interactions of the robots with each other and with the 

environment. The low-level control layer is called the SPH Layer which inherently 

exhibits swarming behaviors, whereas the high-level control layer is called the 

Swarm Control Layer. While this separation does not violate the decentralized 

nature of the commonly adopted swarm approach, the high-level control layer can 

also be implemented as an off-site central controller unit of the swarm where the 

global operation of the swarm is planned and resulting control commands are sent 

to the low-level control layer through the interface in between. We illustrate this 

architectural case in Figure B.3.2. 

 

 

Figure B.3.2 Global behavior control in a central unit 

The majority of collective robotics applications require the incorporation of a 

central facility to control, monitor, or at least to initialize the on-site distributed 
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system. Hence, while we agree with the notion of emergent swarm behavior 

emanating from local interactions, we also believe in the benefit of utilizing 

centralized mechanisms along with it, whenever necessary and suitable. Separating 

the control of emergent swarm behaviors from the underlying swarm 

characteristic, which is the fluid model in our case, makes the modular 

combination of these two paradigms –centralized and decentralized– possible. 

As mentioned, the interface between the swarm control layer and the SPH layer is 

composed of the flow parameters that can be artificially set to desired values so 

that a particular swarm behavior emerges. Elements of this interface are of two 

types: those inherently available in the fluid dynamics equations and those 

belonging to the swarm systems based on SPH. These parameters are summarized 

in Table B.3.1 and discussed in the next section. Although this is not an exhaustive 

list of factors involved in the flow process, optimal design of a swarm for a 

particular task is already challenged by the tuning of these basic parameters as we 

show in the simulation results. 
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Table B.3.1 Interface Parameters Between Swarm Control and SPH Layers 

Parameter Variation Description 
Parameters from Fluid Physics 

Compressible Gas-like swarms Compressibility 
Incompressible Liquid-like swarms 
Viscous: dynamic 
viscosity 

Shear and normal stresses in robot-
robot and robot-environment 
interactions  

Viscosity ( μ ) 

Inviscid No shear and normal stresses 
Available: static, 
dynamic 

Provides directional flow Body force ( f ) 

Not available Self-spreading of gas-like swarms 
Gas Constant (R) For gas-like swarms Effects inter-particle repulsion 
Initial density (ρ0) For liquid-like swarms Effects inter-particle repulsion 
Temperature (T) For gas-like swarms Facilitates obstacle avoidance 
Parameters from SPH model of Swarm Robots 

Static Fixed swarm size  Deployment Mode 
Adaptive Dynamically changing swarm size 

adaptive to requirements 
Support Domain 
Size (Rd ) 

Deployment radius Adjusts the range of local 
interactions 

Kernel Function Gaussian, spline, 
quadratic, etc. 

Defines the weights of interactions 
with neighbors  

Average particle spacing Determines redundancy profile of 
gas-like swarms 

Connectivity 

Initial density, stiffness 
constant 

Involves in patterns of liquid-like 
swarms 

Normal velocity 
damping factor 

Strength of the repulsive force 
normal to obstacles 

Obstacle Avoidance 

Approach bias Limitation of minimum distance to 
obstacles 

 

 

B.3.4  SPH Formulation of Robots 

Preliminaries: In order to develop a generic control approach to robot swarms 

which may range from nanorobots to autonomous underwater vehicles and to 

unmanned aerial/ground vehicles, we present the SPH formulation in the most 

general form representing 3D flow of a viscous fluid (liquid or gas) in presence of 

body forces. Then, the relevant form of the governing equations is called the 
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Navier-Stokes Equations. For the details and derivations of these equations and 

related SPH formulations, the reader is referred to [12] and [6], respectively.  

The governing equations of fluid dynamics are based on the conservation of three 

fundamental physical quantities: mass, momentum, and energy. Grid-based 

approaches to these equations basically differ according to whether the grid is 

fixed (Eulerian) or attached to the fluid material (Lagrangian). Since SPH is a 

meshfree particle method, Lagrangian description of the Navier-Stokes Equations 

are more suitable [6] (pp. 105). 

Definitions: Before introducing the SPH formulation, we first need to present 

some basic definitions that will help clarify the adaptation of fluid dynamics 

concepts to robot swarms. 

 1) Particle: In the SPH framework, a fluid body is represented by a 

collection of particles for each of which the governing equations of flow are 

‘independently’ solved. Since, the Navier-Stokes Equations have no analytical 

solution, they are solved computationally in integral time steps –a technique called 

time marching [12] (pp. 85). In our framework, a particle corresponds to a mobile 

robot while the swarm corresponds to the whole fluid body.  

 2) Support Domain: Each particle in SPH has a support domain, a set of 

neighboring particles within its locality. All calculations for each particle are 

carried out over its support domain at marching time instants. For the members of 

a swarm, this concept is equivalent to a deployment neighborhood of a robot, a set 

of neighboring robots inside a certain radius (Rd), which is less than or equal to the 

maximum communication radius (Rc) of that robot. Figure B.3.3 depicts a group of 

particles representing the robots in a swarm and the support domain Ω of robot i 

including several neighbors within Rd.  
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Figure B.3.3 Illustration for the support domain Ω of robot i 

 3) Smoothing (Kernel) Function: In SPH, the state of a fluid is represented 

by a set of particles that posses individual particle properties and move according 

to the governing equations. Numerical discretization is made by approximating the 

values of field functions, their derivatives, or integrals at these particle locations 

where neighboring particles contribute to the particle approximations based on 

their influence on the location. It is the smoothing function that determines the 

values of these contributions. The SPH formalism starts with the following 

identity, where Ω is the volume of the integral containing the position vector x. 

 ( ) ( ) ( )f f dδ
Ω

= −′ ′ ′∫x x x x x  (1)

As an approximation to the above Dirac delta function δ, a smoothing kernel is 

used in the integral representation of the flow equations as in (2) where W is the 

smoothing function and h is the smoothing length. The angle brackets designate 

that the integral representation is an approximation. 

 ( ) ( ) ( )f f W h d
Ω

< >= −′ ′ ′∫x x x x , x  (2)

In our formalism, we use the Gaussian kernel for its closed form expression and 

accuracy in disordered particles [6] (pp. 63). The kernel is given in (3) to (5), 

where R is a scaled distance between the particle for which the kernel is being 

computed and its neighbors in the support domain. The smoothing length h defines 

the influence area of the smoothing function along with κ, a user-defined constant 

that determines the radius of deployment neighborhood. Figure B.3.4 and Figure 



156 
 

B.3.5 are the respective shapes of the 2D Gaussian kernel and its derivative that 

we use in our model. 
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Figure B.3.4 The compact Gaussian kernel in 2D over the support domain 

 

Figure B.3.5 Derivative of the Gaussian Kernel with respect to the horizontal spatial axis 
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The SPH Formulation: In our SPH formalism, each robot in the swarm 

represents a computational element where the conservation of momentum equation 

is independently solved for the velocity of that particular robot based on the local 

information within its support domain. Therefore, the computational method is 

naturally distributed and massively parallel. The particle approximations for the 

fluid dynamics equations of density and momentum in (6) and (7) along with (8)-

(9) are adapted from [6] (pp. 113–123). In these equations, ρ stands for density, m 

for mass, and v for the velocity vector of the particle i. In the text, we denote vector 

values in bold face. Since a particle corresponds to a single member of the swarm 

in our approach, the density at the location of a robot is equivalently formulated by 

the weighted sum of the neighbor masses in the support domain as in (6), where 

the weighting function is the smoothing kernel indeed. As for the mass, we take it 

as unity for all robots although it may also be used to attribute more weight to 

some of the robots to introduce heterogeneity in the swarm. In (7), f is the body 

force vector acting on unit mass [12] (pp. 61). In fluid physics, a typical body 

force is the gravitation, whereas the high-level control layer of our approach uses it 

artificially to impose a preference in the direction of flow whenever relevant to the 

desired swarming behavior. In the superscripts, α and β are used to denote the 

spatial dimensions x, y, and z. Wij is the kernel evaluated for robot i and its 

neighbor j. D/Dt is the total derivative operator [12] (pp. 43) with respect to time 

and ∂/∂xβ is the partial derivative with respect to the spatial dimension denoted by 

β. σ is the total stress tensor given by (8), where p is the pressure multiplied by the 

delta function (δαβ = 1 if α = β, 0 otherwise) and summed with the viscous shear 

stress τ defined in (9). Finally in (9), μ is the dynamic viscosity and is zero for 

inviscid flow. We use these concepts in our formalism without redefinition to 

obtain the natural characteristics of fluids in our model. However, all of the 

parameters involved in these equations are adjusted by the swarm control layer to 

generate a desired swarming behavior.  

The total stress tensor σ describes the interactions among particles. For instance, 

pressure is a potential field in a global view and produces inter-particle repulsion 

that results in flow toward homogeneous distribution. It is exactly the same effect 
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of pressure that we employ in our approach to control the uniform distribution of 

the swarm. Shear stress τ, on the other hand, is a viscous effect that tries to 

regulate the velocity field by producing inter-particle and particle-obstacle drag 

forces. In our approach, these are analogous to attractive forces around a robot 

such that each neighbor and obstacle in the vicinity imposes its own velocity on 

that robot. Therefore, total stress tensor is the main driving entity of swarm flow 

and of harmony among robots. 
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For β in (7), the summation is taken over repeated dimension indices. For 2D flow, 

for example, equations (7)-(9) can be rewritten in an expanded form as in (10)-

(11). 
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In (10), u and v are the velocity components in x and y directions, respectively, of 

robot i and are what we ultimately need to find out for each robot. As for the 

pressure, there are two definitions according to the fluid being compressible (gas) 

or incompressible (liquid). The compressible case is modeled as in (12) where 

pressure is a function of density through the state equation of gases [12] (pp. 79). 

R and T are the specific gas constant and the absolute temperature, respectively. 

Qualitatively, (12) is the statement of the fact that pressure is linearly related with 

density within a certain volume or area. The unit area in our case is the support 

domain of each robot where increased number of neighboring robots results in an 

increase in the pressure at that particular location. This linear relationship involves 

a constant R and a variable T. We use R as a swarm specific parameter to adjust 

the inter-robot repulsion due to pressure. In obstacle-laden environments, for 

example, R can be reduced to allow close spacing of robots without producing 

excessive pressure while moving across narrow passages. T, on the other hand, is 

used as a secondary mechanism of obstacle avoidance (The primary mechanism is 

the boundary conditions described in part D) in a way that when a robot 

encounters an obstacle, it raises its temperature and produces higher pressure at its 

location so that its neighbors are distracted from the obstacle without coming 

across with it. This also remedies a numerical boundary problem called particle 

deficiency [6] (pp. 138) by compensating for the unrealistically reduced pressure at 

boundaries. 

For incompressible flow, it is a fact that density inside a liquid is constant and is 

not a function of pressure. However, due to the inefficiency in solving for the 

actual state equation of liquids, the computational fluid dynamics community has 

adopted to use artificial compressibility concept that practically models 

incompressible fluids [6] (pp. 136). Here, we also formulate incompressible flow 

by using the artificial compressibility definition of [21] as given in (12) where ρ0 

stands for the initial or desired density of the liquid, whereas k is the stiffness 

constant. The greater k is, the more accurate incompressibility is simulated but in 

expense of smaller time steps for processing due to the requirements of increased 

pressure values. For a wireless swarm system, therefore, the value of k is limited 
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by the bandwidth of local communication among robots because each robot needs 

to communicate with its neighbors and collect flow information to process its 

equations at each time step. 

 ( )0

Compressible Flow    :
Incompressible Flow:

i i i i

i i

p R T
p k

ρ
ρ ρ

=

= −

 

(12)

The apparent difference between compressible and incompressible flow benefits to 

different application scenarios in a swarm system. For example, compressible flow 

is suitable for tasks that require the coverage of an area because the self-spreading 

behavior of gases is desirable in a mobile surveillance system. On the other hand, 

incompressible flow is more appropriate for patrolling and flocking tasks that 

require stiff formations among robots along a track. 

Solution of the Momentum Equation: Solutions to the flow equations are 

obtained using the time-marching technique. It is actually an integration of the 

first-order Taylor series approximation of velocity over time to evolve its value as 

in (13). 

 
tDt t t i ti i Dt

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

+Δ = + Δ
v

v v

 

(13)

Since we assume robots as point particles, we do not deal with any dynamics of 

the robot. Depending on the application and the type of robots, it is the particular 

locomotion controller of the robot that accepts the velocity controls in (13) and 

deals with the physical dynamics. 

Despite the very same equations are employed, different flow patterns are 

observed in different environments due to the varying initial and boundary 

conditions for the particular case. Initial conditions refer to the initial velocities 

and locations of the robots, whereas boundary conditions are imposed by the 

environment surrounding the robots. Thus, the source of the robot-environment 

interactions is the obstacles within the deployment terrain. The characteristic 

obstacle-avoidance behavior of fluids is modeled in our approach through the 

associated boundary conditions such that for inviscid flow (μ = 0), the only 
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boundary condition is that the velocity of a robot adjacent to a surface is parallel to 

it. For viscous flow (μ > 0), there is an additional no-slip condition such that the 

velocity of the robot reduces to zero at the immediate vicinity of the surface. 

We utilize a simple mechanism to satisfy these conditions as follows. First, we 

assume that the information obtained from the sensors of the robot due to an 

obstacle basically carries range and bearing data of an obstacle point in space 

relative to the robot. Also, if the robot has multiple sensors around its perimeter or 

a scanning detector, it is highly probable that it detects more than one point of an 

obstacle almost at the same time as illustrated in Figure B.3.6. Then, it can reason 

about a surface and adjust its velocity according to the boundary condition such 

that the velocity component perpendicular to the surface is decreased with 

decreasing distance to the obstacle. If the robot happens to detect only one obstacle 

point, then it can assume the surface normal to originate from this point passing 

through its own location. 

 

(x1, y1)

(x2, y2)

v = (u,v)

d

(x12, y12)

(x0, y0)
φ

Obstacle surface

Robot

vp

 

Figure B.3.6 Obstacle avoidance through boundary conditions 

Equation (14) briefly formulates the boundary condition such that the velocity 

component perpendicular to the surface decreases with decreasing k value, a 

measure of distance to the obstacle. The parallel component of velocity vp to the 

surface can be derived from the three locations (x0, x1, and x2) in Figure B.3.6. In 

the expression of k below, Rs represents the sensing range of the robot beyond 

which the robot cannot detect obstacles. 
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 (1 ) , (2 )k k k d R dsp′ = + − = −v v v

 

(14)

Besides these conditions from fluid dynamics, there are other conditions 

originating from the nature of swarm robotics or from the task requirements. For 

example, the members of a swarm have limited mobility capabilities which may 

not fully satisfy the direct solution obtained from flow equations for all time 

instances. In our model, robot velocities are clipped by hard-limiters whenever the 

flow solution exceeds these limits. Robots also need to preserve the wireless 

connectivity among each other so that no robot detaches from the swarm. We 

addressed this condition in [15] by using a damping factor to slow down the 

outliers in the swarm. In this work, we also use the viscous stress among the 

particles to preserve their integrity. 

B.3.5  SPH Based Swarm Characteristic 

In this section, we present sample results from our numerous simulations chosen to 

address some ‘standard’ problems in swarm robotics literature in order to 

demonstrate the capabilities and potential use of our SPH based control strategy 

for swarm behaviors. 

Deployment and Coverage: In our previous work [16], we addressed the 

deployment problem of mobile sensor networks in unknown, unstructured, 

dynamic environments with an emphasis on the robustness of self-deployment and 

coverage in response to changing terrain and network conditions. The sensor 

network was modeled as an inviscid gas and the self-spreading behavior of gases 

was exploited for coverage tasks.  

Here, this first simulation aims to analyze the effect of viscosity (μ) on coverage as 

it is varied as an interface parameter. We simulate the compressible fluid model of 

a robot swarm in a corridor sweeping task (Figure B.3.6). We use the body force 

parameter f set to 0.5 Newton toward the right so that the robots released from the 

left hand side of the corridor sweep through to the right while covering spare areas 

and avoiding obstacles. Introduction of viscosity into the flow is expected to result 

in frictional loss and hence a slower movement especially around obstacles. The 
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plot in Figure B.3.7 typically shows that the coverage per robot is less when 

viscosity is nonzero. From Figure B.3.8, it is seen that the average velocity of the 

robots is reduced under friction. However, reduction in coverage per robot can 

better be explained with the increased average robot density when viscosity is 

nonzero as shown in Figure B.3.9. Therefore, it can be concluded that increased 

viscosity results in slower deployment, whereas it increases the average density of 

the robots. Although this is not the primary mechanism of controlling the overall 

density of the robots in the swarm, which is discussed in the last simulation, it can 

be utilized as a mechanism of slowing the movement down around points of 

interest in the terrain that require more careful inspection and are virtually 

assumed as obstacles by the robots. 

 

 

Figure B.3.6 Flow of robots from left to right in an obstacle-laden corridor 

 

Figure B.3.7 A typical comparison of coverage per robot for inviscid (μ = 0.0 mPa.s) and  
viscous flows (μ = 0.1 mPa.s) 
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Figure B.3.8 Average velocities of robots under zero and nonzero viscosity 

  

Figure B.3.9 Average densities of robots under zero and nonzero viscosity 

Patrolling and Dispatching: In our SPH model, there are several flow parameters 

suitable for utilization in tasks that require a guided motion of a swarm of robots 

toward a target along a predefined route through passages. Some applications 

involve such tasks as autonomous security patrolling and vehicle dispatching. 

Body force f is the parameter that plays the most important role in this respect. In 

the previous corridor sweeping example, body force was constant in magnitude 

and direction and was used to direct the swarm to the right of the corridor. For a 

patrolling or dispatching task, however, a position-varying body force has to be 

used. An example to such tasks is the dispatching of autonomous ground vehicles 

(AGV) in outdoor terrains based on a predetermined route and GPS data. Also, the 

compressibility parameter adjusted for incompressible flow becomes appropriate 

to gather and funnel down the robots along a specified route since liquids do not 

spread out as gases do. 
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Figure B.3.10 shows an autonomous dispatching scenario, where robots are given 

5 waypoints (coordinates of terrestrial points) by the swarm control layer in the 

terrain to navigate through. Upon arrival of a waypoint, each robot updates the 

body force guiding its motion to head toward the next waypoint. It is shown in this 

simulation that for tasks requiring a directed movement of the swarm in 

unstructured terrains, utilizing a dynamically changing body force parameter is 

effective. Moreover, modeling the swarm as a liquid rather than a gas is 

particularly beneficial in keeping the robots on a thin track. 

 

 

Figure B.3.10 Dispatching of robots through waypoints in a rural terrain 

Flocking and Formation Control: Flocking is the synchronized and harmonious 

movement of a collection of agents as a single body –a behavior demonstrated by 

flocks of birds, schools of fishes, etc. While it has been modeled as an emergent 

distributed behavior [22] inspiring from flocks of animals, flocking is inherently 

available in the nature of fluids and equivalently represented in the governing 

equations by the total stress tensor in (8). 

As an example to the control of the flocking behavior, we consider low-Reynolds-

number incompressible viscous flow, in which high viscosity results in a strong 

cohesion among particles and the inertial forces (e.g. density gradient) become 

small as compared to viscous forces. In this case, the set of Navier-Stokes 

Equations may be approximated by the linear Stokes Equations [23] (pp. 411).  



166 
 

We propose this form of fluid flow especially for leader-follower type flocking 

behavior, in which one or multiple leader robots in the swarm govern the overall 

movement using only local information. The guiding effect of the leader in the 

swarm is analogous to a point force called Stokeslet [23] (pp. 450) applied on a 

particle in the fluid. Such a force induces a velocity field that radially propagates 

around this particle with an average speed given by (15) where Rd is the radius of 

the support domain and comT  is the average period of local communication among 

robots to exchange flow information. The velocity induced on each particle is 

analytically solvable through the Oseen tensor [23] (pp. 451). However, as we 

solve the set of Navier-Stokes equations numerically, we do not need to use a 

linearized approximation. Figure B.3.11 shows the neighbor velocities induced by 

a point force applied on a particle. 

 d
prop

com

Rv
T

=

 

(15)

Formation control is one of the most studied behaviors relevant to multi-robot 

systems and the very basic feature of a formation is the spacing between robots. 

The parameter in Table B.3.1 that primarily affects the inter-robot distances of the 

swarm is the support domain radius Rd, which is limited by the communication 

range (Rc) of the robots. In the following simulation, we show the effect of this 

parameter on the spacing between robots using a compressible fluid model and 

assume that Rc is 2m for each robot. Figure B.3.12 shows a compact initial 

distribution of robots at the start of the simulation. 

We run the simulation for two different values of Rd, 1m and 1.6m. The final 

distribution of the robots reached after spreading out and stopping due to the 

connectivity requirement is given in Figure B.3.13. It is seen that the separation 

among robots is larger when Rd is increased. Figure B.3.14 also shows that when 

Rd is changed from 1m to 1.6m, the average separation among neighboring robots 

increases from 1.43m to 1.75m. For both cases, the standard deviation around the 

average separation is less than 3% after the swarm ceases to move. This means that 

the final configurations are quite homogeneous in an inherent lattice formation. 
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Figure B.3.11 Velocity field induced around a point force 

 

Figure B.3.12 Compact initial distribution of robots at t = 0 

 

Figure B.3.13 Final distribution of robots at t=20s for two values of Rd 
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Figure B.3.14 Average inter-robot separation for Rd = 1m and 1.6m 

B.3.6  Conclusion 

We presented a novel approach to the control of robotic swarm behaviors based on 

Smoothed Particle Hydrodynamics by modeling a robot swarm as a fluid and 

controlling its flow through the flow parameters involved. We showed that our 

approach is applicable to robot swarms in controlling both the local interactions of 

the robots and the global behavior of the whole swarm system. The theory of fluid 

dynamics and the associated numerical analyses techniques like SPH are mature 

and provide a profound background to its exploitation in our framework. Due to 

the limited space in this paper, we were unable to present extensive simulation 

results that demonstrate the individual effect of each fluid parameter in Table 

B.3.1 and its potential utilization in a swarming task. Yet, the present discussion 

reveals the potential applicability of the model to various swarm robotics problems 

and is considered a precursor for the development of a fully explored fluid 

dynamics model for large-scale mobile robot systems. 
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