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Signature :

iii



ABSTRACT

STUDY OF DSJ(2317) AND DSJ(2460) MESON PROPERTIES WITHIN

THE QUARK MODEL AND QCD SUM RULES

Tandoğan, Aslı

M.S., Department of Physics

Supervisor : Assoc. Prof. Dr. Altuğ Özpineci

July 2007, 31 pages

The recently discovered DsJ(2317) and DsJ(2460) mesons had stimulated many

theoretical and experimental studies due to their unexpected properties. In this

thesis, we make a review of the predictions on the properties of these mesons

using the quark model and QCD Sum Rules. We studied different models about

the structure of these mesons, which are suggested because of their unexpected

properties. Moreover, using the quark model which implies that the structure of

DsJ meson as cs and QCD Sum Rules method, we investigated the semileptonic

decay DsJ(2317) → D0`ν.

Keywords: DsJ(2317) meson , DsJ(2460)meson , QCD Sum Rules, Quark model.
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ÖZ

DSJ(2317) VE DSJ(2460) MEZONLARININ ÖZELLİKLERİNİN KUVARK

MODELİ VE QCD TOPLAM KURALLARI İLE İNCELENMESİ

Tandoğan, Aslı

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Assoc. Prof.Dr. Altuğ Özpineci

Temmuz 2007, 31 sayfa

Son yıllarda keşfedilen DsJ(2317) ve DsJ(2460) mezonları beklenmeyen özel-

liklerinden dolayı pek çok teorik ve deneysel çalısmalara konu olmuştur. Bu

tezde, bu mezonların iç yapıları hakkındaki kuvark modeli ve QCD toplam ku-

rallarının tahminlerinin bir derlemesini yaptık. Söz konusu mezonların beklen-

meyen özelliklerinden dolayı önerilen değişik modelleri inceledik. Buna ek olarak,

DsJ mezonunun iç yapısını cs olarak öneren kuvark modeli ve QCD toplam ku-

rallarını kullanarak yarı-leptonik DsJ(2317) → D0`ν bozunmasını inceledik.

Anahtar Kelimeler: DsJ(2317) mezonu , DsJ(2460) mezonu, QCD Toplam Ku-

ralları, Kuvark model.
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CHAPTER 1

INTRODUCTION

In 1934, Yukawa proposed the first significant theory of the strong force. He

claimed that in the nucleus proton and neutron are attracted by a field [1]. Like

photon in Quantum Electrodynamics, there is a particle mediating the strong

force. Yukawa calculated its mass and found that its mass should be nearly 300

times the mass of the electron or about 1/6 of the mass of a proton. This particle

is called meson which means middle-weight. However, after the discovery of

mesons whose masses are greater than a proton, it was understood that not

all the meson masses are between electron and proton. In 1964, Gell-Mann

and Zweig argued that the hadrons are actually composed of more elementary

constituents, called ”quarks”. After defining the quark content, one can define

the mesons as bound states of strongly interacting quarks and anti-quarks.

In understanding the nature of the strong interaction, the mesons consisting

of one heavy and one light quark play an important role [2]. This situation

became more clear by the discoveries of the mesons DsJ(2317) and DsJ(2460).

In April 2003, the BaBar Collaboration at SLAC observed a narrow peak in

the D+
s π0 channel denoted as DsJ(2317) [3]. Also they saw a peak near 2460

MeV in the D+
s π0γ channel but they did not declare this peak as a new state.

In May 2003, CLEO Collaboration confirmed the BaBar’s observation and also

observed a second narrow peak in the D+
s π0γ channel denoted as DsJ(2460) [4].

The existence of these two mesons is also confirmed by the Belle Collaboration.

Possible quantum numbers JP of these two mesons DsJ(2317) and DsJ(2460)

are 0+ and 1+, respectively [3, 4]. These quantum numbers are assigned accord-
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ing to the experimental results. For DsJ(2317), JP = 0+ is assigned according

to the ”angular distribution of the meson decay with respect to its direction in

the e+ − e− centre of mass frame” [5]. Also, BaBar Collaboration and CLEO

Collaboration could not find an evidence for the decay of DsJ(2317), namely

Ds0, in the Dsγ and Dsγγ channel. This is also an evidence of the quantum

number of DsJ(2317), since these channels are forbidden for a scalar due to the

angular momentum and parity conservation (Ds is a pseudoscalar and γ is a

vector). Also, the observed channel D+
s π0 supports the assigned quantum num-

ber ( D+
s and π0 are both pseudoscalar). Similarly, for DsJ(2460), the observed

channel, DsJ(2460) → D∗
sπ

0, supports the assigned quantum number ( D∗+
s is

a vector and π0 is a pseudoscalar). At the same time, the D+
s π0 channel is not

observed which is forbidden for an axial-vector particle.

The discovery of these mesons caused speculations about their structure. In

quark model calculations [6, 7], it was thought that they are very good can-

didates for the missing two states of j=1/2 of cs, where j is the total angular

momentum of the s-quark [8]. Most of the quark models explained the reason of

absence of these j=1/2 doublets by arguing the broadness of the decay widths.

The other two members (j=3/2) (DsJ(2536), DsJ(2573)) of the L=1 multiplet

have already been observed. However, the expected and measured masses of

DsJ(2317) and DsJ(2460) are not consistent. Their measured masses are about

100-150 MeV below the predicted ones. The predicted masses are calculated us-

ing the potential-based quark models [6, 7]. For DsJ(2317), the predicted mass

range was 2450-2500 MeV [6]. So it was thought that this meson would decay

mostly in the DK channel. However, in the experiments, it was realized that

its mass is below the threshold of the DK mode. The only observed channel for

Ds0 meson in the BaBar and CLEO Collaboration’s experiments is the iso-spin

breaking D+
s π0 mode. Similarly, for DsJ(2460), it was expected that it would

decay into the D∗K channel. However, its mass is lower than the threshold of

the D∗K channel. Moreover, since their measured masses are below the thresh-

old of these channels, they decay into the suppressed channels [8]. So their decay

widths are narrower than the expected ones.

As it was mentioned above, prior experimental observations, the masses of

the mesons of concern are calculated using the quark models. Most of the quark
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models [6, 7, 9, 10, 11, 13, 14, 15, 16] give higher values for the masses than

the observed ones. Also lattice QCD calculations [14, 15] give higher masses

than the measured ones. Since most of the quark models predict the masses of

these two new states higher than the measured ones, some new ideas appeared.

It is suggested that these two states might be composed of multi-quarks. For

DsJ(2317), it is suggested that it could be a DK molecule [17]. It is also suggested

that it could be a Dπ atom [18] or a four-quark state [19, 20, 21, 22].

In this thesis, these two new mesons DsJ(2317) and DsJ(2460) are studied. In

chapter 2, the Godfery-Isgur potential-based quark model, which is used for the

prediction of the mass of these mesons and some other alternatives to the quark

model are explained. Chapter 3 deals with QCD Sum Rules method, which

can be used for calculating the coupling constant of DsJ(2317) → D0`ν decay.

Finally, in chapter 4, already studied radiative transitions and strong decays of

DsJ(2317) and DsJ(2460) are examined. And also some parts of the calculation

of the coupling constant of the decay DsJ(2317) → D0`ν are outlined.
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CHAPTER 2

GODFREY-ISGUR POTENTIAL-BASED QUARK

MODEL AND SOME SUGGESTIONS FOR DsJ(2317)

AND DsJ(2460)

In this chapter, firstly, one of the most important reason,which makes the

DsJ(2317) and DsJ(2460) so interesting, namely Godfrey-Isgur potential-based

quark model is explained. In the first section, Godrey and Isgur’s paper [6] is

taken as reference. In the following section, instead of the quark model, some

other suggestion for the structure of the mesons of concern are considered.

2.1 Godfrey-Isgur Potential-Based Quark Model

After the discovery of the charmonium state, it was understood that heavy-quark

systems can be described by nonrelativistic potential models. However, while

considering the light-quark systems, it was understood that these nonrelativistic

quark models become ineffective. To solve this problem, Godfrey and Isgur [6]

stated that all mesons can be described in a unified framework. The meson

spectra and meson couplings are calculated within this model.

In this model, a Coulomb+linear potential, like almost all the quark potential

models [9, 10, 11, 13, 14, 15, 16], is used. Although some other alternatives were

also tried, it was found out that these alternatives are not necessary.

An example for a Coulomb+linear potential is (Cornell potential).

V (r) =
a

r
+ br (2.1)

The a/r part is the Coulombic part and the br part is the linear part. The
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Coulombic part appears in the equation due to one gluon exchange like the

photon exchange in QED. QCD is believed to show another phenomenon called

confinement. Confinement can be taken into account phenomenologically by a

linear potential, hence one includes a linear potential term (br part in this case)

in the potential.

In Godfrey-Isgur potential based quark model, the Schrödinger equation is

used as the basic equation [6].

H|ψ〉 = (H0 + V )|ψ〉 = E|ψ〉 (2.2)

where

H0 =
√

p2 + m2
q +

√
p2 + m2

q (2.3)

And the suggested potential is:

Vij(−→p ,−→r ) = Hconf
ij + Hhyp

ij + Hso
ij + HA (2.4)

where Hconf
ij includes confinement and Coulomb-type interactions, Hhyp

ij includes

the color hyperfine interaction and Hso
ij contains the spin-orbit interaction with

the color magnetic interaction and Thomas-precession terms. And HA is the

annihilation interaction term for qq, which is unnecessary for the DsJ mesons.

Hconf
ij = −(

3

4
c +

3

4
br − αs(r)

r
)Fi · Fj (2.5)

Hhyp
ij = −αs(~r)

mimj


(

8π

3
~Si · ~Sjδ

3(~r) +
1

r3
(
3~Si · r~Sj · ~r

r2
− ~Si · ~Sj)


 ~Fi · ~Fj (2.6)

Hso
ij = H

so(cm)
ij + H

so(tp)
ij (2.7)

where

H
so(cm)
ij = −αs(~r)

r3

(
1

mi

+
1

mj

) 


~Si

mi

+
~Sj

mj


 · ~L(~Fi · ~Fj) (2.8)

H
so(tp)
ij = − 1

2r

∂Hconf
ij

∂r
(

~Si

m2
i

+
~Sj

m2
j

) · ~L (2.9)

5



Figure 2.1: Predicted masses of cd, cu and cs

for all these equations: ~L = ~r × ~p , αs(~r) is the running coupling constant of

QCD and

Fi =





λi

2
for quarks

λc
i

2
= −λ∗i

2
for antiquarks

(2.10)

are the Gellmann matrices.

The predicted masses of cu and cd states are very precise. For example, the

measured masses of D0 and D+ mesons, which are the 0− cu and cd states, are

1864.1±1 MeV and 1869.62±0.2 MeV, respectively. These values are consistent

with the predicted one, which is 1.88 GeV [23]. Also the experimental masses

of 1− cu and cd states are 2006.97± 0.19 and 2010.27± 0.17, respectively [24],

while the predicted mass is 2.04 GeV. Moreover, the measured masses of 0+ and

1+ cu and cd states are 2352± 50 MeV and 2422.3± 1.3 MeV, respectively [24]

whereas the predicted masses are 2.40 GeV and 2.44 GeV.

As it can be seen in Eq.(2.5), there are only two free parameters in this

model. These two parameters b and c can be chosen to fit two masses, which

is not a prediction. However, with this model, one can predict more than two

masses successfully. In general, the Godfrey-Isgur potential based quark model
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is a very successful model. Therefore, the inconsistency between the measured

and calculated masses of DsJ(2317) and DsJ(2460) makes the situation more

interesting. As it is shown in the Fig. (1.1), the predicted masses using this

model of 0+ and 1+ states of cs are 2.48GeV and 2.53GeV, compared to the

experimental values, 2317 GeV and 2460 GeV. This difference in the predicted

and measured values of the masses leads to new ideas about the structure of

these two mesons.

2.2 Four-Quark State, DK Molecule and Dπ atom

With the motivation of the inconsistency between the measured and predicted

mass of DsJ(2317) calculated using potential models, it is suggested that ei-

ther the potential models are renewed or its quark content should be assumed

different than the traditional quark model description, i.e qq. The four-quark

structure for DsJ(2317) was firstly suggested by Lipkin [25]. The difference

between the observed and expected masses might be explained by a strong in-

teraction between qq and qq in the P-wave four-quark state [19]. From this point

of view, the scalar cnns (n = u, d) can be lighter than the P-wave cs state and

so it can be below the threshold DK molecule and the dominance of the D+
s π0

channel can be explained.

Another motivation to suggest the four-quark structure is the decay width.

According to the results of the CLEO Collaboration [4], the decay widths ratio

of electroweak and iso-spin violating channels is:

Γ(D+
s0(2317) −→ D∗+

s γ)

Γ(D+
s0(2317) −→ D+

s π0)
< 0.059 (2.11)

Actually, electroweak interactions and isospin violating interactions are equally

probable. However, as it can be seen from Eq. (2.11), for D+
s0, the electroweak

decay channel is suppressed with respect to isospin violating one [26]. From the

exotic meson point of view, this situation can be explained because of the fact

that with this structure, the D+
s0(2317) −→ D+

s π0 decay becomes a strong decay

instead of isospin violating decay. In this explanation, the D+
s0 should be an

iso-triplet (I = 1, Iz = 0). The suggested four-quark structure for D+
s0 meson is

(cnns)+ [20].
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For the DsJ(2460) meson, the four-quark structure is also suggested with the

same motivations [27]. It might also be a P-wave cnns (where n = u, d) state

and has the same problems with DsJ(2317).

Another suggestion for the structure of the D+
sJ(2317) meson is DK molecule

as mentioned before [28]where K is a strange, pseudoscalar meson. Hadronic

molecules are weakly bounded color-singlet hadrons. There are some signatures

for hadronic molecules, which are [29]:

1) JPC and flavor quantum number of an L = 0 hadron pair

The binding force between the molecules, which is nuclear force, has a short

range. So L > 0 molecules cannot be in light hadronic systems, although there

are some exceptions.

2)A binding energy of at most about 50-100 MeV

For the hadrons to keep their separate identities in a hadron molecule, the

separation between them has to be at least 1 fm. From the uncertainty principle,

this corresponds to a binding energy of approximately 50 MeV.

3)Strong coupling to constituent channels

For example, the very large coupling of f0(975) to KK

4)Unexpectedly large EM couplings relative to expectations for conventional

quark model states

For example, f0(975) has a very small decay width in the γγ channel, which

is between 0.2 to 0.6 KeV, while the naive quark model’s prediction is 3 KeV.

In the paper of Barnes, Close and Lipkin [28], these four conditions are

examined and it is claimed that Ds0(2317) is a good candidate for DK molecule.

The existence of the decay channel D+
s π0 and the absence of the decay channel

D∗+
s π0 confirms the first signature. The DK thresholds (D0K+, D0K0, D+K+

and D+K0) are 2358 MeV , 2362 MeV, 2363 MeV and 2367 MeV, respectively.

These values are calculated with considering the following condition: mDsJ
>

mD + mK . So DK molecule at 2.32 GeV would have a binding energy about 40

MeV, which confirms the second signature. The third condition is problematic

for DsJ(2317) because only observed channel for this meson is D+
s π0. And to

confirm the fourth one, one needs to know the coupling strengths of D+
s0 to

both DK and D∗+
s . The transition rate of D+

s0(2317) −→ Ds∗+γ calculated

using quark model is 2 KeV, so the fourth condition can be easily verified while

8



knowing the necessary coupling strengths.

Owing to the same reasons, Szczepaniak [30] suggests another four-quark

structure, which is Dπ atom, where π is a light unflavored pseudoscalar meson.

Dπ atom may exists because of the strong flavor-singlet attraction between the

pion and the D+
s0 meson.

Also for the structure of the DsJ(2460) meson some new suggestions are

made. Four-quark structure and D∗K [31] molecule are the suggestions for the

DsJ(2460) meson with similar arguments.

Besides these different suggestions for the structure of the Ds0(2317) and

DsJ(2460) mesons, QCD sum rule analysis is consistent with the quark-antiquark

structure [32].
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CHAPTER 3

QCD SUM RULES

Hadrons, which is the general name of mesons and baryons, are subatomic parti-

cles which experiences nuclear force. They are bound states of quarks. To have

some information about hadrons, one can use QCD sum rules method, which

is based on spontaneous symmetry breaking, duality and asymptotic freedom

[33]. While using this method, as one moves from short distances to the long

distances, the confinement mechanism becomes important.

3.1 Asymptotic Freedom and Confinement Mechanism

The coupling constant between quarks is not constant, on the contrary it depends

on the distance between quarks. Therefore, it is called sometimes as running

coupling constant. Unlike the electric charges, the running coupling constant

of quarks gets smaller while the distance decreases. This phenomena is called

asymptotic freedom, discovered by David Gross and Frank Wilczek (1973) [34]

and David Politzer (1973) [35].

The quantity of an electric charge in a dielectric medium depends on how far

the measurement is done. The nearer is the distance in which the measurement

is done, the less is the screening. Instead of the electron-photon vertices in QED

case, in QCD, there are quark-gluon vertices and in addition to this, there are

also gluon-gluon vertices. In QCD, the strong coupling constant is proportional

to the factor a,

a = 2f − 11n (3.1)

where f is the quark number and n is the color number. If a is positive, then

10



Figure 3.1: QED field lines in comparison to field lines QCD

the coupling constant increases at short distances, as in the QED case. If a is

negative, then the coupling constant decreases at short distances. In QCD, there

are 6 quarks and 3 colors, i.e. f = 6 and n = 3. So a is equal to -21 in QCD.

This is the origin of asymptotic freedom [34]. Owing to the asymptotic freedom,

one can use the perturbation theory at very small separation, since quarks are

almost non-interacting free particles there.

Unlike the photon in QED, the gluons in QCD carry the charge of the cor-

responding force. Hence, they also interact with themselves. It is believed that,

due to the interactions of the gluons with each other, the field lines of color are

confined within tubes. If one tries to pull a bound quark-antiquark pair apart,

the flux tube binding them together grows and hence the energy stored in this

flux tube increases. At some point, the energy stored in the flux tube becomes

so large that it becomes energetically more favorable for the system to create a

quark-antiquark pair and break the flux tube. In other words, the energy given

to separate the quark-pair, is used in pair production. So free quarks cannot be

produced. Although there does not exist a proof that QCD implies confinement,

it is believed that it has to do so.

3.2 Correlation Function

QCD sum rules method was suggested in 1978 by M.A. Shifman, A.I. Vainstein

and V.I. Zakharov [36]. This method can be used to extract the hadron prop-
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erties, such as the masses and coupling constants. In this method, hadrons are

represented by their interpolating quark currents instead of constituent quarks,

consequently QCD sum rules are model-independent [37]. For example, one can

use this method for four-quark structure model and for naive quark model.

The QCD Lagrangian is

LQCD = −1

4
Ga

µνG
aµν +

∑
q

ψq(iγ
µDµ −mq)ψq (3.2)

where Ga
µν is the gluon field-strength tensor, Ga

µν = ∂µG
a
ν − ∂νG

a
µ− igfaklGk

µG
l
ν ,

D is covariant derivative, Dµψ
q = (∂µ−igGµ)ψq and ψq’s are the quark fields. Al-

though this Lagrangian governs all attributes of hadrons and hadronic processes

involving the strong force only, it can be used directly only within limited frame-

work of perturbation theory [37]. While dealing with highly virtual processes,

which can be achieved in hard scattering process, not only the perturbative ef-

fects but also the non-perturbative effects have to be considered. In the processes

in which small momentum transformations are considered, the coupling constant

takes values greater than 1. So perturbation theory cannot be applied. However,

in order to calculate the hadronic properties, the region where coupling constant

is greater than 1 has to be considered. Therefore, non-perturbative methods are

needed. QCD sum rules is one of these non-perturbative methods.

In QCD sum rules, one starts by considering a suitable correlation function

such as,

Π(q2) =
∫

d4xeiq·x〈0|T{J(x)J(0)}|0〉 (3.3)

where T is the time ordered product operator and J(x) and J(0) are interpolat-

ing quark currents. To write down the interpolating quark current, the quark

content of the hadron might be used. Eq. (3.3) is a two point correlation func-

tion that can be used to calculate the mass of the baryon under consideration.

The correlation function given in Eq. (3.3) can be calculated in two different

ways: using the operator product expansion (OPE) in terms of QCD parameters,

and using a phenomenological expansion, in terms of hadron parameter. After

calculating the correlation function in two different ways and applying both sides

called Borel transformation, which enhances single resonance contributions and

equating these two representations, one can get sum rule. In the next two

sections a brief explanation of these two parts of the sum rules are presented.
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3.3 Operator Product Expansion (OPE)

Operator Product Expansion is based on Wilson operator expansion [38, 33].

OPE is a very convenient tool at high virtualities since the short and long

distances are considered separately [37].

i
∫

dxeiq·xT{j(x)j(0)} = CII +
∑
n

Cn(x2)On (3.4)

where Cn’s are Wilson coefficients and On’s are local operators constructed from

the quark and gluon fields. And the correlation function becomes

Π(q2) =
∑
n

Cn(q2)〈0|On|0〉 (3.5)

On’s are ordered by their dimension and Cn’s decrease by increasing powers of

q2 [33]. So, at high virtualities, lowest dimensional operators dominate. The

unit operator with dimension zero represents the perturbative part, which is

expected to be the dominant part. In OPE, only the spin-zero operators are

considered because only the vacuum expectation values are considered. Effects

of the operators having dimension higher than 6 are considered as negligible [36].

The operators whose spin is zero and dimension is equal to or less than 6 are

[36]

I(unit operator) (d = 0),

mqq (d = 4),

Ga
µνG

µνa (d = 4),

qΓ1qqΓ2q (d = 6),

mqσµν
λa

2
qGµνa (d = 6),

fabcG
a
µνG

νb
σ Gσµc (d = 6) (3.6)

where λa are Gell-Mann matrices and Ga
µν is the gluon field tensor.

In perturbative vacuum, the vacuum expectation values of these operators

are zero. However, since the QCD vacuum contains condensates due to the

non-perturbative effects, the vacuum expectation values of these operators are

not zero anymore. The vacuum expectation values of the operators with dimen-

sion d 6= 0, called as vacuum condensates, are associated with non-perturbative

effects.
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As it can be seen from Eq. (3.4), OPE is defined in coordinate space. Ac-

tually, it is a taylor expansion around x ∼ 0, where x ' 0. By applying taylor

expansion, the contributions coming from short distances are included in Cn and

long distances are included in On. There is a cut off 1/µ, which separates long

and short distances. Cn are calculated perturbatively. If q2 ¿ 0, then the main

contribution to the integral comes from x ∼ 0 region [37], where OPE can be

applied.

3.4 Analytic Continuation and Phenomenological Representation

As has already mentioned above, OPE ,in QCD, factorizes short and long dis-

tance effects, i.e. Wilson coefficients are calculated perturbatively and long dis-

tance effects are parameterized by vacuum expectation values of local operators.

In order to express the correlation function in terms of the hadronic parameters,

unitary relation might be used. After inserting a complete set of hadronic states

into Eq. (3.3), the correlation function becomes [37]:

Π =
〈0|j(x)|h〉〈h|j(0)|0〉

q2 −m2
h

+
〈0|j(x)|h1〉〈h1|j(0)|0〉

q2 −m2
h1

+ higher mass states (3.7)

where 〈0|j(x)|h〉 = fhmh and fh and mh are leptonic decay constant and mass of

the corresponding hadron, respectively and they are known phenomenologically.

The correlation function can be written for a two- point correlation function as:

Π =
∑

h

λ2
h

q2 −m2
h

(3.8)

where λh are defined by the matrix element of the current j between the vacuum

and meson states [37]. And using Eq. (3.8), the spectral density of phenomeno-

logical side can be written as:

ρ(Phen)(s) = −∑

h

λ2
hδ(s−m2

h) = ρPhen
0 (s) + ρhigher(s) (3.9)

where ρPhen
0 (s) = −λ2

0δ(s−m2
0).

As mentioned above, Π(q2) can be treated in perturbative QCD at large

negative q2, while at q2 > 0 region it has a decomposition in terms of hadronic

observables [37]. The q2 > 0 region can be connected to the q2 < 0 region by

analytical continuation. By using Cauchy integral formula with the contour in

Fig. [3.1] [37], One gets;
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Figure 3.2: The contour in complex plane

Π(q2) =
1

2πi

∮

c
dz

Π(z)

z − q2

=
1

2πi

∮

|z|=R
dz

Π(z)

z − q2
+

1

2πi

∫ R

0
dz

Π(z + iε)− Π(z − iε)

z − q2

(3.10)

where R → ∞. The first term on the r.h.s. is equal to the polynomials in q2

since;

1

s− q2
=

∞∑

n=0

(q2)n

sn+1

and for sufficiently large N
∮

|z|=R
ds

ρ(s)

sN+1
→ 0 as R → 0 (3.11)

And by using Schwartz reflection principle, other term on the r.h.s can be written

as Π(q2 + iε) − Π(q2 − iε) = 2iImΠ(q2). After inserting this equation into the

contour integral in Eq. (3.10), one gets the following dispersion relation.

Π(q2) =
1

π

∫ ∞

0
ds

ImΠ(s)

s− q2
+ substraction terms (3.12)

3.5 Borel Transformation

As it can be seen from the above discussion, there are some substraction terms

in both OPE and phenomenological side. To eliminate these unknown terms,
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one needs to apply Borel transformation to both sides [37].

Π(M2) = BM2Π(q2) = lim
(−q2,n→∞)(−q2/n=M2)

(−q2)(n+1)

n!
(

d

dq2
)nΠ(q2) (3.13)

Two important Borel transformations are:

BM2(q2)k = 0,

BM2( 1
(m2−q2)k ) = 1

(k−1)!
exp(−m2/M2)

M2(k−1) (3.14)

where M is the Borel mass, which is completely arbitrary and the physical pa-

rameters should be independent of M2. On the other hand, in calculations, one

may need to chose a suitable region for M2 where the physical parameters are

almost independent of M2.

Since both substraction terms of OPE and phenomenological sides are poly-

nomials in q2, after applying Borel transformation, these unknown terms are

eliminated.

After applying Borel transformation to both sides, one need to use quark-

hadron duality, which is the assumption that the spectral function that is calcu-

lated phenomenologically and the one that is calculated using OPE are approx-

imately equal to each other when s is above some threshold value s0:

∫ ∞

sh
0

ρhigher states(s)e−
s

M2 ≡
∫ ∞

s0

ρOPE(s)e−
s

M2 (3.15)

where sh
0 is the threshold of the lowest continuum state.

The motivation of quark-hadron duality is that higher states are at high

energies and OPE can be used at high energies, then they should be equal to

each other. The sum rules are obtained from:

∫ s0

0
dse−

s
M2 ρPhen

0 (s) =
∫ s0

0
dse−

s
M2 ρOPE(s) (3.16)
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CHAPTER 4

DsJ(2317) AND DsJ(2460) MESONS IN QCD SUM

RULES

In this chapter, some decay calculations of DsJ(2317) and DsJ(2460) using QCD

Sum Rules are investigated. Moreover, the steps of the calculation of the cou-

pling constant of semileptonic decay DsJ(2317) → Ds`ν is studied.

4.1 The Radiative Transitions and Strong Decays of DsJ(2317) and

DsJ(2460)

In [40], the radiative transitions of the considered mesons are studied by using

light-cone QCD sum rules. As in Eq. (3.4), OPE is actually represented in

coordinate space.In light-cone QCD sum rules (LCSR) [41, 42, 43], this repre-

sentation is considered by considering the vacuum to hadron matrix element.

This is also an expansion around x ∼ 0. However, in LCSR, this represen-

tation is reorganized and turn out to be an expansion around x2 ∼ 0. With

this method, both hard and soft scattering contributions can be taken into ac-

count [44]. Another difference between SVZ sum rules and LCSR is that while

in SVZ sum rules in correlation function, the vacuum expectation value of a

T-product of currents are used, in LCSR vacuum to on-shell state correlation

function is used [45, 46]. Also in this case, non-local operators are considered,

because point of interest is OPE near light-cone. OPE near the light cone is

made over twist (difference between dimension and spin) of the operator while

in QCD sum rules, OPE is made over the dimension of the operators [47]. To

investigate the structure of non-local operators, one can expand it in terms of
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local operators around x = 0 [37] and resum certain infinite subsets to convert

it to an expansion around x2 ' 0. Following this expansion, as an example, the

following matrix element takes the form as:

〈γ(q)|u(x)γµγ5u(0)|0〉 = εµ

∫
dueiuq·xϕγ(u) + O(x2) (4.1)

where ϕγ(u) is the photon light-cone distribution function which encodes the

non-perturbative effects included in the corresponding state’s distribution am-

plitudes.

In [40], D∗
sJ(2317) → D∗

sγ, DsJ(2460) → Dsγ, DsJ(2460) → D∗
sγ and

DsJ(2460) → D∗
sJ(2317)γ decay are studied by using LCSR and are compared

with other methods, namely Vector Meson Dominance(VMD) in the heavy quark

limit, i.e. mc →∞ and constituent quark model.

For the radiative transitions of DsJ(2317) the decay D∗
sJ(2317) → D∗

sγ is

studied in LCSR and also in the heavy quark limit. The currents are chosen as

the correlation function in LCSR for this decay is chosen as [40]:

Fµ(p, q) = i
∫

d4xeip·x〈γ(q, λ)|T [J†µ(x)J0(0)]|0〉 (4.2)

where J0 = cs and Jµ = cγµs and γ(q, λ) is an external photon state of momen-

tum q and helicity λ. In Eq. (4.2), the products of the currents are performed

in light-cone x2 → 0. From this correlation function, the coupling constant for

the transition is predicted to be −0.35GeV −1 ≤ g ≤ −0.28GeV −1. The cal-

culated decay width using this coupling constant is 4-5 times larger than that

one obtained by VMD. This difference might be explained by arguing the use of

the heavy quark limit of VMD . In order to eliminate this choice, in [40], heavy

quark limit is also considered. Finally, it is understood that finite mass effects

are explained the difference between the calculations using VMD and LCSR.

For the radiative transitions of DsJ(2460), similar calculations are made.

For analyzing the decay DsJ(2460) → Dsγ in LCSR, the following correlation

function is considered [40]:

Tµ = i
∫

d4xeip·x〈γ(q, λ)|T [J†5(x)JA
µ (0)]|0〉 (4.3)

where J5 = ciγ5s and JA
µ = cγµγ5s.
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Table 4.1: The results of the calculation using LCSR

Initial state Final state LCSR VMD QM
D+

sJ(2317) D+
s γ 4-6 0.85 1.9

DsJ(2460) Dsγ 19-29 3.3 6.2
D+

s γ 0.6-1.1 1.5 5.5
D+

sJ(2317)γ 0.5-0.8 - 0.012

And the following correlation functions are chosen for the transitions

DsJ(2460) → D∗
sγ and DsJ(2460) → D∗

sJ(2317)γ as:

Tµν(p, q) = i
∫

d4xeip·x〈γ(q, λ)|T [J†µ(x)JA
ν (0)]|0〉 (4.4)

Wµ(p, q) = i
∫

d4xeip·x〈γ(q, λ)|T [J†0(x)JA
µ (0)]|0〉 (4.5)

respectively. And the same calculations are carried out to get the decay width

of the transitions.

In these calculations, it is understood that in charmed meson case, there are

two main contributions. One of them corresponds to the perturbative photon

emission from the heavy and light quarks and the other corresponds to the

photon emission from the soft light quark [40]. From the table, it is seen that

the radiative decay width of DsJ(2317) → D+
s γ is predicted to be more than 3

times the predictions of the VMD and quark models. The width of the decays

DsJ(2460) → D+
s γ and DsJ(2460) → DsJ(2317)γ is in general predicted to

be much smaller than other predictions. The largest difference between the

predictions is in the decay DsJ → Dsγ whose decay width is predicted to be

more than 4 times larger than the predictions of the other methods. Note

also that, other methods predict the decay width of the DsJ → Dsγ decay

to be more or less equal to the widths of the other channels, whereas LCSR

prediction for DsJ → Dsγ width is more than 4 times larger than the widths of

the other ones. This result of LCSR can naturally explain why the only observed

mode is DsJ(2460) → Dsγ. And from these results, it is suggested that other

interpretations for these mesons are unnecessary to explain present experimental

data [40].
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Another study on DsJ(2317) and DsJ(2460) by using QCD sum rules is about

strong decays of these mesons [48]. In this study again the light-cone QCD sum

rules method is used by assuming the cs quark content. The strong decays

DsJ(2317) → Dsπ
0 and DsJ(2460) → D∗

sπ
0 are studied in [48]. These decays

violate isospin. Hence, in [48], these decays are modeled as two strange decays.

First, DsJ → Dsη which conserved isospin followed by a conversion of η into π0

due to isospin violation. The interpolating currents are chosen as

J0(x) = c(x)s(x), J5(x) = c(x)iγ5s(x), Jµ(x) = c(x)γµs(x) and JA
ν = c(x)γνγ5s(x).

And the correlation functions

F (p2, (p + q)2) = i
∫

d4xeip·x〈η(q)|T [J†5(x)J0(0)]|0〉 (4.6)

for the DsJ → Dsη coupling constant, and

Fµν(p
2, (p + q)2) = i

∫
d4xeip·x〈η(q)|T [J†µ(x)JA

ν (0)]|0〉 (4.7)

for the DsJ(2460) → D∗
sη coupling constant are chosen. Following similar calcu-

lations, one can obtain the coupling constants which are used in the decay width

calculations. In [48], the obtained results by using LCSR is compared with the

experimental results. And it is observed that these results are consistent with

the experimental ones. This consistency also supports the quark content cs for

these mesons.

4.2 The Semileptonic DsJ(2317) → D0`ν Decay

In this thesis, the steps of the calculation with three-point QCD sum rules of

semileptonic DsJ(2317) → D0`ν decay which has not been observed yet, is

investigated. This decay, when observed, can give insight into the structure

of DsJ(2317). In the calculation of the form factors of this decay, the quark

structure of the meson is assumed to be cs. As it can be seen in Fig.4.1, the

decay DsJ(2317) → D0`ν is described by the quark level transition of an s quark

into an u quark with emission of a virtual W. At low energies, since p2 ¿ M2
W

where p is the momentum of the W boson, the momentum term in the W boson

propagator (∝ 1/(p2−M2
W )) can be neglected. When it is neglected, the effective

hamiltonian takes the following form:

Heff =
Gf

21/2
Vussγµ(1− γ5)u`γµ(1− γ5)ν (4.8)
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Figure 4.1: The Feynman diagram for DsJ(2317) → D0`ν

and the matrix element is:

M = 〈final state|Heff |initial state〉
= 〈`ν|`γµ(1− γ5)ν|0〉〈D0|sγµ(1− γ5)u|DsJ〉 (4.9)

where the necessary matrix element to investigate DsJ(2317) → D0`ν is:

〈D0|sγµ(1− γ5)u|DsJ〉 = f1(q
2)pµ + f2(q

2)qµ (4.10)

So one needs to find the formfactors f1 and f2, for which a non-perturbative

calculation is needed.

While studying the steps of the decay of concern, three-point QCD sum rules

can be used. The methodology of the three point sum rules is very similar to

two-point ones. In this method, the correlation function contains double integral

unlike the two-point one, because of the consideration of 3 space-time points.

The correlation function is given by:

Π(p2, p
′2) = −

∫ ∫
d4xd4yeip·yeip

′ ·x〈0|[J1(x)J2(y)J3(0)]|0〉 (4.11)

and the dispersion relation for the three-point QCD sum rules is:

Π(p2, p
′2) =

∫ ∫
ds1ds2

ρ(s1, s2)

(s1 − p2)(s2 − p′2)
+ polynomials in p2 and p

′2 (4.12)

where

ρ(s1, s2) ∝ Imp2Imp′2Π(p2, p
′2) (4.13)
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Figure 4.2: The Feynman diagram for the perturbative part

In the calculation of the coupling constant of the decay under consideration,

firstly the following correlation function is studied:

Πµ(p2, p
′2) = −

∫ ∫
d4xd4yeip·ye−ip

′ ·x

〈0|{u(y)c(y)s(0)γµ(1− γ5)u(0)c(x)s(x)}|0〉 (4.14)

After choosing the correlation function, firstly the OPE side is calculated. In

this part, as it is explained in chapter 3, the perturbative and non-perturbative

effects are calculated separately.

4.2.1 Perturbative Part of OPE

Figure 4.2 is the Feynman diagram of the perturbative part, where

q = p − p
′
. It is expected that the dominant contribution comes from this

perturbative part.The perturbative part is given by the following expression:

Πµ(p2, p
′2) = −

∫ ∫
d4xd4yeip·ye−ip

′ ·x

〈0|[γµ(1− γ5)]γβ[Su(0, y)]ab
βα[Sc(y, x)]ac

αλ[Ss(x, 0)]bcλγ : 1 : |0〉
(4.15)

where Su, Sc and Ss are the free propagators, whose explicit forms are given in

the Appendix B. The other terms go to zero, some of them are equal to zero after

applying Borel transformation with respect to p2 and p
′2 and some of them are

zero because of the vacuum structure of QCD. And the final correlation function

for perturbative part is:

Πµ = −i3
∫ d4l

(2π)4
Tr

[
γµ(1− γ5)

6 l− 6p + mu

((l − p)2 −m2
u)

6 l + mc

(l2 −m2
c)

6 l− 6p′ + ms

((l − p′)2 −m2
s)

]
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Figure 4.3: The Feynman diagrams of the non-perturbative part

(4.16)

The integrals are taken with the help of Feynman Parametrization, which is

presented in Appendix A. Carrying out the trace and applying double Borel

transformation with respect to p2 and p
′2, the correlation function takes the

following form:

BB(Π(p2, p
′2)) =

∫ ∫
ds1ds2ρ(s1, s2)e

− s1
M2

1 e
− s2

M2
2 (4.17)

and the spectral density of perturbative part can be found.

4.2.2 Non-Perturbative Part of OPE

As mentioned in Chapter 3, when one moves from the short distances to long

distances, non-perturbative effects become important. It is expected that higher

dimensional operators give small but non-negligible contributions to the calcu-

lation of the coupling constant. The diagrams that contribute up to dimension

of 6 are shown in the Figure (4.3).

The diagrams in b and c do not contribute to the result, because after apply-

ing Borel transformation, they are equal to zero since they depend on p2 only

or p
′2 only.
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For example, for the second figure, the form of the correlation function is as

follows:

Πµ = −
∫ ∫

d4xd4yeip·ye−ip
′ ·x

〈0|[γµ(1− γ5)]γβ[SG
u (0, y)]ab

βα[SG
c (y, x)]ac

αλ[S
free
s (x, 0)]bcλγ|0〉 (4.18)

where Sfree
s is free propagator, which is the same with the one in perturbative

part and SG
u and SG

c are propagators of the quarks in a one-gluon field repre-

sented in Appendix B.

Like in the perturbative part, the integrations over loop momentum are per-

formed using Feynman Parametrization. Afterwards, Borel transformation is

applied for p2 and p
′2. Then, the non-perturbative part of the spectral density is

found. The correlation function calculated using OPE is an expression involving

only the parameters of QCD such as the condensates, masses, etc.

4.2.3 Phenomenological Part

By inserting two complete sets of hadronic states into Eq.(4.10), the correlation

function can be written as:

Π =
〈0|u(y)c(y)|D0〉〈D0|sγµ(1− γ5)u|DsJ〉〈DsJ |c(x)s(x)|0〉

(p2
DsJ

−m2
DsJ

)(p2
D0
−m2

D0
)

+ h.s.

(4.19)

where u(y)c(y) = JD0 and c(x)s(x) = JDsJ
. And

〈DsJ |JDsJ
|0〉 = fDsJ

〈0|JD0|D0〉 = fD0

m2
D0

mc + mu

〈D0|sγµ(1− γ5)u|DsJ〉 = f1(q
2)Pµ + f2(q

2)qµ (4.20)

where

P = pDsJ
+ pD0

q = pDsJ
− pD0 (4.21)

And the correlation function of the phenomenological part becomes:

Πµ = Π1Pµ + Π2qµ (4.22)
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where

Π1 = fDsJ
fD0

m2
D0

mc + mu

f1(q
2)

1

(p2
DsJ

−m2
DsJ

)

Π2 = fDsJ
fD0

m2
D0

mc + mu

f2(q
2)

1

(p2
D0
−m2

D0
)

(4.23)

Eq. (4.19) and Eq. (4.23) give the phenomenological represantation of the

correlation function Eq. (4.11). Note that the functions in Eq. (4.23)involve

hadronic parameters.

By equating the OPE expression of the correlation function to the phen-

menological expression, one can express the hadronic parameters in terms of the

QCD parameters and vacuum condensates. After subtracting the contributions

of higher states and continuum using quark-hadron duality, the sum rules is

obtained by evaluating

∫ s0

0
ds1ds2ρ

Phen
i (s1, s2)e

− s1
M2

1 e
− s2

M2
2 =

∫ s0

0
ds1ds2ρ

OPE
i (s1, s2)e

− s1
M2

1 e
− s2

M2
2

(4.24)

where i = 1, 2 and ρi corresponds to the spectral density of Πi(i = 1, 2).

4.3 Discussion

The semileptonic decay DsJ(2317) → D0`ν has not been observes yet.When it

is observed this investigation may give some important clues for the structure

of the meson. Hence, the study of the DsJ(2317) → D0`ν transition will be

important in understanding the structure of this meson.
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CHAPTER 5

CONCLUSIONS

DsJ(2317) and DsJ(2460) are recently discovered mesons by BaBar and CLEO

Collaborations. The difference between the expected and the measured masses

and the narrow decay widths stimulated studies of DsJ(2317) and DsJ(2460).

The discrepancies between the predicted properties within the quark model and

experiment caused speculations about the structure of these mesons. Various

models are suggested for the structure of these mesons.

In this thesis, firstly, the Godfrey-Isgur potential-based quark model is inves-

tigated and it is shown that this model has been successfully applied to the cq

(q = u, d) mesons discovered previously. The predictions of this model on the 0+

and 1+ states of cs and the observed candidates DsJ(2317) and DsJ(2460) are

shown to be inconsistent. Following this model, various models suggested for the

structure of these mesons besides the quark model are investigated. These are

four-quark structure, DK and D∗K molecules and Dπ atom. Afterwards, the

model-independent QCD sum rules method, which is one of the non-perturbative

methods to calculate the hadronic parameters. QCD sum rules method can also

be used to study four-quark structure, etc. QCD sum rules predictions, assuming

a cs structure for the DsJ mesons, are consistent with experimental predictions.

By using QCD sum rules method and accepting the quark structure of

DsJ(2317) meson as cs, we outlined how to study the decay DsJ(2317) → D0`ν

within QCD sum rules. Although this semileptonic decay has not been observed

yet, the study of this decay will help to understand the structure of DsJ(2317)

meson.
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APPENDIX A

FEYNMAN PARAMETRIZATION

In QCD sum rules method, the following types of integrals are frequently en-

countered.

I1 =
∫ d4k

(2π)4

1

[k2 −m2
1]

n[(k − q)2 −m2
2]

m[(k − q′)2 −m2
3]

l
(A.1)

I2µ =
∫ d4k

(2π)4

kµ

[k2 −m2
1]

n[(k − q)2 −m2
2]

m[(k − q′)2 −m2
3]

l
(A.2)

In order to calculate these integrals, Wick rotation is used:

k0 → ikE
0

−→
k → −→

k
E

(A.3)

After this step, Feynman parametrization is used. [49]

1

anbm
=

Γ(n + m)

Γ(n)Γ(m)

∫ 1

0
dx

xn−1xm−1

[ax + bx]n+m

1

abc
= 2

∫ 1

0
xdx

∫ 1

0
dy

1

[ax + bxy + cxy]3
(A.4)

The integrals in Eq. (A.1) and Eq. (A.2) are evaluated as:

I1 =
(−1)n+m+li

(4π)2

Γ(n + m + l − 2)

Γ(n)Γ(m)Γ(l)

∫ 1

0
dxx

∫ 1

0
dy

(xy)n−1(xym−1xl−1)

∆n+m+l−2

I2µ =
(−1)n+m+li

(4π)2

Γ(n + m + l − 2)

Γ(n)Γ(m)Γ(l)

[
qµ

(∫ 1

0
dx

∫ 1

0
dy

(xn+myn−1ymxl−1)

∆n+m+l−2

)

+q
′
µ

(∫ 1

0
dx

∫ 1

0
dy

(xn+m−1yn−1ym−1xl)

∆n+m+l−2

)]

(A.5)
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where

x = 1− x

y = 1− y

∆ = p2xxy + p
′2xxy + q2x2yy + m2

3xy + m2
2xy + m2

1x (A.6)
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APPENDIX B

PROPAGATORS

The full propagator in the presence of an external gluon field can be written as:

Sq = Sfree
q + SG

q , (B.1)

where

Sfree
i (y, x) = −i

∫ d4k

(2π)4

6k + mi

k2 −m2
i

e−ik(y−x) (B.2)

where i = u, d, s, c, b, t and

SG
q (y, x) = −igs

∫ d4k

(2π)4
e−ik(y−x)

∫ 1

0
dv

[ 6k + mc

(m2
c − k2)2

(Gβα)(ux + uy)σβα +
1

(m2
q − k2)

(ux + uy)β(Gβα)γα

]

(B.3)
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