
ii

FINITE ELEMENT MODELING OF
ELECTROMAGNETIC SCATTERING PROBLEMS

VIA HEXAHEDRAL EDGE ELEMENTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ASIM EGEMEN YILMAZ

 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JULY 2007

 iv

Approval of the thesis:

FINITE ELEMENT MODELING OF ELECTROMAGNETIC

SCATTERING PROBLEMS VIA HEXAHEDRAL EDGE ELEMENTS

submitted by ASIM EGEMEN YILMAZ in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Electrical and
Electronics Engineering Department, Middle East Technical University by,

Prof. Dr. Canan Özgen ___________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen ___________
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Mustafa Kuzuoğlu ___________
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Gönül Turhan Sayan ____________
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Mustafa Kuzuoğlu ____________
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Adnan Köksal ____________
Electrical and Electronics Engineering Dept., Hacettepe University

Prof. Dr. Gülbin Dural ____________
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Özlem Aydın Çivi ____________
Electrical and Electronics Engineering Dept., METU

 Date: 20.07.2007

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

 Name, Last name : Asım Egemen YILMAZ

Signature :

iv

ABSTRACT

FINITE ELEMENT MODELING OF ELECTROMAGNETIC SCATTERING

PROBLEMS VIA HEXAHEDRAL EDGE ELEMENTS

YILMAZ, Asım Egemen

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mustafa KUZUOĞLU

July 2007, 233 pages

In this thesis, quadratic hexahedral edge elements have been applied to the three

dimensional for open region electromagnetic scattering problems. For this purpose, a

semi-automatic all-hexahedral mesh generation algorithm is developed and implemented.

Material properties inside the elements and along the edges are also determined and

prescribed during the mesh generation phase in order to be used in the solution phase.

Based on the condition number quality metric, the generated mesh is optimized by means

of the Particle Swarm Optimization (PSO) technique. A framework implementing

hierarchical hexahedral edge elements is implemented to investigate the performance of

linear and quadratic hexahedral edge elements. Perfectly Matched Layers (PMLs), which

are implemented by using a complex coordinate transformation, have been used for mesh

truncation in the software. Sparse storage and relevant efficient matrix ordering are used

for the representation of the system of equations. Both direct and indirect sparse matrix

solution methods are implemented and used.

Performance of quadratic hexahedral edge elements is deeply investigated over the radar

cross-sections of several curved or flat objects with or without patches. Instead of the de-

facto standard of 0.1 wavelength linear element size, 0.3-0.4 wavelength quadratic

element size was observed to be a new potential criterion for electromagnetic scattering

and radiation problems.

Keywords: All-Hexahedral Mesh Generation, Finite Element Method, Hierarchical

Hexahedral Edge Elements, Optimization Based Mesh Smoothing, p-Extension.

 v

ÖZ

ELEKTROMANYETİK SAÇILMA PROBLEMLERİNDE ALTIYÜZLÜ KENAR

ELEMANLARI İLE SONLU ELEMAN MODELLEMESİ

YILMAZ, Asım Egemen

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mustafa KUZUOĞLU

Temmuz 2007, 233 sayfa

Bu tezde, ikinci derece altıyüzlü kenar elemanları açık bölge elektromanyetik saçılma

problemlerinde uygulanmıştır. Bu amaçla, yarı otomatik bir tamamen altıyüzlü elemanlı

ağ üretme algoritması geliştirilmiş ve gerçekleştirilmiştir. Elemanların içinde ve kenarlar

boyunca materyal özellikleri, çözüm aşamasında kullanılmak üzere ağ üretimi esnasında

belirlenmiş ve tanımlanmıştır. Üretilen ağ, Partikül Sürü Optimizasyon tekniği ile durum

kalite metriğine dayalı olarak iyileştirilmiştir. Doğrusal ve ikinci derece altıyüzlü

elemanların performanslarını incelemek amacıyla hiyerarşik kenar elemanlarını

gerçekleyen bir yazılım çerçevesi geliştirilmiştir. Kompleks koordinat dönüşümü ile

gerçekleştirilmiş olan Tamamen Eşlenmiş Katmanlar, bu yazılım kapsamında ağ

sonlandırımı işlevini yerine getirmektedir. Denklem sistemini ifade etmek için seyrek

matris depolama ve verimli matris düzenleme yöntemleri kullanılmıştır. Seyrek matris

çözümü için doğrudan ve dolaylı matris çözüm yöntemleri uygulanmıştır.

İkinci derece altıyüzlü kenar elemanlarının performansı, üzerinde yama bulunan veya

bulunmayan çeşitli düz veya kavisli cisimlerinin radar ara kesit yüzeyleri hesaplanarak

incelenmiştir. Doğrusal elemanlar için bilinen 0.1 dalgaboyu eleman büyüklüğüne

karşılık, ikinci derece elemanlar için 0.3-0.4 dalgaboyu büyüklüğünün elektromanyetik

saçılım ve ışıma problemlerinde yeni bir kriter olabileceği değerlendirilmiştir.

Anahtar Kelimeler: Tamamen Altıyüzlü Elemanlı Ağ Üretme, Sonlu Elemanlar Metodu,

Hiyerarşik Altıyüzlü Kenar Elemanları, Optimizasyon Tabanlı Ağ İyileştirme, p-Artırımı.

 vi

To My Family

 vii

ACKNOWLEDGEMENTS

I have to mention a couple of key people who had great influences on my academic life;

and hence during the preparation of thesis directly and/or indirectly.

First of all, starting with my academic life in general; I would like to thank Assoc. Prof.

Dr. Melek YÜCEL and Prof. Dr. Canan TOKER, from whom I took several graduate and

undergraduate courses. In addition to their excellent teaching abilities; with their

personalities and attitudes towards the students, they are the two major people who made

me love electrical and electronics engineering first.

Another important figure is Prof. Dr. İsmail Ş. GÜLOĞLU from METU Department of

Mathematics (who is currently retired but continuing to work at Doğuş University

Department of Mathematics). I would like to thank him for providing me such a great

mathematical background; from which I am not sure how much I could have absorbed.

Certainly, Prof. Dr. Kemal LEBLEBİCİOĞLU is the person who taught me to investigate

the physical phenomena with a multidisciplinary point of view especially during my

undergraduate term project. I would like to express my thankfulness to him not only for

this fact, but also for directing and introducing me to Prof. Dr. Mustafa KUZUOĞLU for

my graduate level research.

Regarding this thesis, I have to start with my dear friend and colleague B. Barış

DÜNDAR, who has put the very initial effort to hexahedral edge element coding in the

late 1990s. The codes that he developed are so robust and compact that, even today I still

reuse some portions which he wrote. For about 8-9 years, I have not even experienced

any crashes for the parts he developed. Without such a great infrastructure, the code

development would inevitably be more painful for me.

 viii

I owe much gratitude to Prof. Dr. Adnan KÖKSAL (from Hacettepe University

Department of Electronics Engineering) and Prof. Gönül TURHAN SAYAN for their

participation to my Thesis Steering Committee. Even in my most inefficient and lazy

semesters, they did not give up providing their encouraging and helpful comments at any

moment.

Naturally, the greatest part of my gratitude goes to Prof. Dr. Mustafa KUZUOĞLU for

his valuable supervision and support throughout the development and improvement of

this thesis. In addition to his excellent guidance and infinite patience, he has been an idol

to me with his wisdom and his multidisciplinary point of view. In my vita, being his

student throughout the M. Sc. and Ph. D. theses is one of the most important items, of

which I am very proud. I hope that we will have some other opportunities of working

together after the completion of this thesis.

Finally, I have to express my gratefulness to my parents and my sisters for always

supporting me and providing me such a comfortable life (sometimes even spoiling me)

during my whole life of education. I would like to thank my wife for her support and

tolerance to my static and negative energy radiating nights in front of the computer during

the development of this thesis.

 ix

TABLE OF CONTENTS

ABSTRACT... IV

ÖZ ..V

ACKNOWLEDGEMENTS .. VII

TABLE OF CONTENTS ... IX

LIST OF TABLES ...XIII

LIST OF FIGURES..XIV

CHAPTER

1. INTRODUCTION ..1

1.1. Electromagnetic Scattering ..1
1.1.1. Numerical Methods ..1
1.1.2. The Finite Element Method..2

1.2. Summary of the Present Work ...4

2. HEXAHEDRAL MESHING ..10

2.1. Hexahedral Meshing: Reasons and Challenges ...10

2.2. Topological Existence of Hexahedral Mesh ..13

2.3. Hexahedral Meshing Algorithms ...14
2.3.1. Sweep Methods ..15
2.3.2. Overlay Grid Methods..16
2.3.3. Mesh Partitioning Methods ..18
2.3.4. Advancing Front Methods..19

2.4. Hexahedral Mesh Quality Improvement ..22
2.4.1. Mesh Refinement ...22
2.4.2. Mesh Smoothing ..25

2.5. Hexahedral Mesh Quality Metrics ...29

2.6. Curvilinearization - Extension of Quality Definitions for Curvilinear Mesh31
2.6.1. Mapping Functions...32

2.6.1.1. Linear Mapping ..32

 x

2.6.1.2. Quadratic Parametric Mapping...32
2.6.1.3. Mapping by the Blending Function Method...34
2.6.1.4. Bézier curves ..36

2.6.2. Extension of Mesh Quality in Curvilinear Elements..38
2.6.2.1. Validity Rather Than Quality ...39
2.6.2.2. Effects of Element Distortion and Jacobian ...40

3. HEXAHEDRAL EDGE ELEMENTS..42

3.1. Differential Forms and Algebraic Manifolds ...42

3.2. Hilbert Spaces Related to Electromagnetic Quantities...45

3.3. General Idea of Edge Elements..48

3.4. The Linear and Quadratic Hexahedral Edge (van Welij’s and Kameari’s)
Elements..50

3.5. Hierarchical Finite Element Methods ..52

3.6. General Formulation of p-Hierarchical Hexahedral Edge Elements..........................54

4. FINITE ELEMENT FORMULATION OF ELECTROMAGNETIC
SCATTERING PROBLEMS..60

4.1. Weak Formulation of the Electric Field...60

4.2. Mesh Generation..63

4.3. Mesh Quality Improvement ...63

4.4. Mesh Truncation ..63
4.4.1. Analytical Investigation of PMLs ..64

4.4.1.1. PMLs for Cartesian Coordinate System ...64
4.4.1.2. Modelling of Edge and Corner Regions of the PML..................................66
4.4.1.3. Conformal PMLs..68

4.5. Elemental Matrix Construction ..68

4.6. Sparsity and Resource Requirements in the Finite Element Method71
4.6.1. Sparse Matrix Storage Schemes ...71
4.6.2. Sparsity Issues for p-Hierarchical Quadrilateral Edge Elements73
4.6.3. Sparsity Issues for p-Hierarchical Hexahedral Edge Elements77
4.6.4. Resource Requirements..80

4.7. Sparse Matrix Solvers ..82
4.7.1. General Assessment About Sparse Matrix Solvers ..82
4.7.2. Indirect Sparse Matrix Solvers ...84

4.7.2.1. Biconjugate Gradient Method ..85
4.7.3. Direct Sparse Matrix Solvers ...88

4.7.3.1. Multifrontal Method ...88

4.8. Effects of Node/Edge Ordering During Matrix Solution...93

 xi

4.9. Radar Cross-Section and Huygens’ Equivalence Principle101

5. NUMERICAL RESULTS...105

5.1. Results for Homogenous Scatterers ...105
5.1.1. Results for Uncurved Homogenous Scatterers...105

5.1.1.1. Permeable Cube..105
5.1.1.2. Composite Cube ...106

5.1.2. Results for Curved Homogenous Scatterers...107
5.1.2.1. PEC Sphere...107
5.1.2.2. Dielectric Sphere ..110
5.1.2.3. PEC Spheroid ...111
5.1.2.4. Dielectric Cylinder ...114

5.2. Results for Scatterers with Patches ..115
5.2.1. Results for Uncurved Scatterers with Patches..115

5.2.1.1. Unloaded Rectangular Microstrip Patch...116
5.2.1.2. Singly-Loaded Rectangular Microstrip Patch ..117
5.2.1.3. Mutiply-Loaded Rectangular Microstrip Patch ..118

5.2.2. Results for Curved Scatterers with Patches..119
5.2.2.1. Circular PEC Patch Above a Dielectric Cylinder.....................................119
5.2.2.2. Circular PEC Patch Above a Dielectric Coated Sphere120

5.3. General Discussions About the Results ...123

6. AN OBJECT AND PATTERN ORIENTED APPROACH IN THE
FINITE ELEMENT SOFTWARE DEVELOPMENT ...125

6.1. Object Oriented Methodology and Software ...125
6.1.1. User’s Point Of View ...125
6.1.2. Design Considerations ...127
6.1.3. Object Oriented Languages and C++...128
6.1.4. Standard Template Library of C++ ..131
6.1.5. Migration to Object Oriented Methodology in FEM: FEM++ ?......................133
6.1.6. Design Patterns in FEM ...133

6.2. An Object and Pattern Oriented Finite Element Software Proposal134
6.2.1. Architectural Decisions ..135
6.2.2. UML Analysis of the Proposed Architecture ...137

7. CONCLUSIONS...145

REFERENCES..148

APPENDIX

A. SCIENTIFIC CONTRIBUTIONS ...160

A.1. Great Contributors...160

A.2. Historical Milestones in the Finite Element Theory..163

 xii

B. EXPLICIT BASIS FUNCTIONS AND INTERPOLATION PROPERTIES
OF VAN WELIJ AND KAMEARI ELEMENTS ..164

B.1. The Hexahedral Edge Element Shape Functions ..164

B.2. Interpolation Properties of the Linear Hexahedral Edge Elements170

B.3. Interpolation Properties of the Quadratic Hexahedral Edge Elements....................173

C. DOMAIN DECOMPOSITION IN HEXAHEDRAL MESH GENERATION..........181

C.1. Domain Decomposition of Cylindrical Domains ..181
C.1.1. Domain Decomposition for the PEC Cylinder Problem..................................181
C.1.2. Domain Decomposition for the Dielectric Cylinder Problem183
C.1.3. Domain Decomposition for the PEC Sphere Problem.....................................184
C.1.4. Domain Decomposition for the PEC Sphere Problem.....................................187

C.2. Restrictions to Satisfy the “All-Hexahedra” Condition...192

D. A PARTICLE SWARM OPTIMIZATION APPROACH IN HEXAHEDRAL
MESH SMOOTHING ..193

D.1. An Algebraic Hexahedral Mesh Quality Metric ...193

D.2. The Condition Number Based Objective Function ...196

D.3. Particle Swarm Optimization (PSO) ...197

D.4. Adaptation of PSO and Derivatives to Mesh Smoothing..201

D.5. Speeding up the Convergence of PSO for High D.O.F Problems221

D.6. Pareto Optimality in Mesh Smoothing and Application of MOPSO225

E. BASIC NOTATION OF THE UNIFIED MODELING LANGUAGE (UML)227

E.1. What is UML? ...227

 xiii

LIST OF TABLES

Table 2.1. Basic quality metrics for hexahedral elements. ..30

Table 2.2. Comparison of Restricted and General Quality Metrics [73]...31

Table 3.1. Domains and Ranges of Differential Operators. ..45

Table 3.2. Properties of the p-forms..47

Table 3.3. Comparison of p, h, and hp-versions..53

Table 3.4. Comparison of Hierarchical and Lagrange Elements...54

Table 4.1. Gaussian Quadrature Evaluation Points and Their Weights. ...70

Table 4.2. Numbers of Unknowns for the NL-Quadrilateral Element Mesh...................................73

Table 4.3. Numbers of unknowns for the NLM-hexahedral element mesh.77

Table 4.4. Comparison between linear and quadratic hexahedral edge element schemes.82

Table 4.5. Overall View of the Sparse Solvers. ..82

Table 4.6. Time and Memory Requirements for Direct Solvers [103]..83

Table 4.7. Time Requirements for Some Indirect Solvers [103]...84

Table 5.1. Comparison of Each Meshing Scheme (Meshing Parameters and Resource

Requirements). ..109

Table 5.2. Comparison (resource requirement, element size, solution accuracy, etc.) of

linear and quadratic elements for PEC sphere problem. ...110

Table 5.3. Backscatter RCS of an Oblate Spheroid (Maxor Axes Fixed at 2λ).113

Table 5.4. Comparison (Resource Requirement, Element Size) of Linear and Quadratic

Elements for Circular PEC Patch on Dielectric Coated PEC Sphere Problem.122

Table B.1. The position functions φ . ..166

Table B.2. The nodal shape functions. ..169

Table B.3. Error norms for linear and quadratic elements of different sizes.................................179

Table D.1. Nodal ordering for a hexahedral element. ...194

Table D.2. Performance Measures for PSO-Mesh Smoothing of Various Domains.205

Table D.3. Reduction in the error norms after smoothing...220

Table D.4. Main Properties of the Benchmark Functions Used in [172].222

Table E.1. Core Elements in Structural UML Modeling...228

Table E.2. Core Relationships in Structural UML Modeling..229

Table E.3. Core Definitions in UML Use Case Modeling..230

 xiv

LIST OF FIGURES

Fig. 1.1. Finite Element Solution Process. ... 4

Fig. 2.1. A Simple Example for BLOB decomposition [13]. ..13

Fig. 2.2. A tetrahedron partitioned to four hexahedra [22]. ..14

Fig. 2.3. Mesh Generated by a Sweep Method [10]..15

Fig. 2. 4. Mesh Generated by Overlay Grid Method; and Effect of Orientation in 3D [10].16

Fig. 2.5. Mesh Generated by Overlay Grid Method; and Effect of Orientation in 2D....................17

Fig. 2.6. Steps Followed in the Boundary Fit Method [30]...18

Fig. 2.7. An Example Mesh Generated by the Cooper Tool Using the Mesh Partitioning

Approach [10]. ..19

Fig. 2.8. Paving [38]..20

Fig. 2.9. Plastering. ...20

Fig. 2.10. Spatial Twist Continuum. ...21

Fig. 2.11. Propagation Requirement of Mesh Refinement for Quadrilateral/Hexahedral Mesh.23

Fig. 2.12. An Example of a Pillow Region [45]..24

Fig. 2.13. Example of Cleave-and-Fill Refinement [45]. ..24

Fig. 2.14. Mesh quality improvement via modification of its connectivity [38].25

Fig. 2.15. A Successful Application of Laplacian Smoothing (Convex Region)............................26

Fig. 2.16. An Unsuccessful Application of Laplacian Smoothing (Concave Region).26

Fig. 2.17. Torsional Spring Analogy [38]. ..28

Fig. 2.18. Nodal Numbering Scheme for Quadratic Quadrilateral Elements.34

Fig. 2.19. A Quadrilateral with a Curved Side. ...35

Fig. 2.20. Cubic Bézier Blending Functions and a Cubic Bézier Curve [76].37

Fig. 2.21. Bézier Curves of Various Orders [76]. ...38

Fig. 3.1. Tonti Diagram of Maxwell’s Equations..46

Fig. 3.2. Hexahedral Elements for H(Ω,grad), H(Ω,curl), H(Ω,div) and L2(Ω) (For

simplicity, elements of their first kinds are shown)...48

Fig. 3.3. A Rectangular Edge Element. ...49

Fig. 3.4. a) Linear hexahedral element in xyz-space; b) Linear hexahedral element transformed

to uvp-space with its 12 edges shown. ..51

Fig. 3.5. a) Quadratic hexahedral element in xyz-space; b) Quadratic hexahedral element

transformed to uvp-space with its 12 edges along u shown. ...52

 xv

Fig. 3.6. A Hexahedral Element in an Orthogonal Coordinate System...56

Fig. 3.7. Legendre Polynomials of Order 0 to 5 Plotted between -1 and 1.58

Fig. 4.1. Scattering material enclosed by S(Ω) and an incident wave Einc.61

Fig. 4.2. Geometry of the PML region surrounding the scatterer. ..67

Fig. 4.3. An NL-Quadrilateral Element Mesh of a Rectangular Region..73

Fig. 4.4. A Linear Quadrilateral Edge Element with 4 Nodes and 4 Edges.74

Fig. 4.5. An Edge Shared by 2 Linear Quadrilateral Edge Elements. ...74

Fig. 4.6. A Quadratic Quadrilateral Edge Element with 8 Nodes and 10 Edges.............................75

Fig. 4.7. An Edge Shared by 2 Quadratic Quadrilateral Edge Elements...76

Fig. 4.8. An NLM-Hexahedral Element Mesh of a Rectangular Prismic Region............................77

Fig. 4.9. An Edge Shared by 4 Linear Hexahedral Edge (van Welij’s) Elements.78

Fig. 4.10. An Edge Shared by 4 Quadratic Hexahedral Edge (Kameari’s) Elements.79

Fig. 4.11. Uniform Meshes in 2D and 3D with n elements...83

Fig. 4.12. Pictorial Description of Calculation of Frontal and Update (Contribution) Matrices

for the Multifrontal Algorithm. ...90

Fig. 4.13. Memory Usage of the Multifrontal Method..90

Fig. 4.14. Effect of the Elimination Tree Structure on Memory Usage [121].................................91

Fig. 4.15. Different Elimination Tree Structures...92

Fig. 4.16. A Comparison of the Matrix Reordering Methods [121]..92

Fig. 4.17. Different numbering schemes for a fixed quadrilateral mesh. ..94

Fig. 4.18. Resultant Matrix for the Ordered Numbering Scheme. ..94

Fig. 4.19. Resultant Matrix for the Spiral Numbering Scheme. ..95

Fig. 4.20. Resultant Matrix for the Irrelevant Numbering Scheme. ..96

Fig. 4.21. Effect of Fill-in for the matrices obtained by different ordering schemes.97

Fig. 4.22. “Node Coloring” Numbering Scheme. ...98

Fig. 4.23. Resultant Matrix After the Node Coloring Scheme. ...99

Fig. 4.24. An example for the Linear Quadrilateral Edge Element...100

Fig. 4.25. Another example for the Quadratic Quadrilateral Edge Element.101

Fig. 4.26. Pictorial Description of the Surface Integration Method. ...103

Fig. 5.1. RCS of a Permeable Cube Calculated on Compared to [128].106

Fig. 5.2. RCS of a Composite Cube Calculated and Compared to [128].107

Fig. 5.3. Meshes of Different Levels of Density. ..108

Fig. 5.4. Cross section of the mesh generated for the PEC sphere problem..................................109

Fig. 5.5. RCS of a Dielectric Sphere. ..111

Fig. 5.6. Cross-Section of the Mesh Generated for a PEC Prolate Spheroid.111

Fig. 5.7. Transformation from the PEC sphere mesh to the PEC spheroid mesh..........................112

Fig. 5.8. Sample All-Hexahedral Meshes Generated for...112

 xvi

Fig. 5.9. Description of the Dielectric Cylinder Problem..114

Fig. 5.10. RCS of a Dielectric Cylinder Calculated and Compared to [130].115

Fig. 5.11. RCS of an Unloaded Rectangular Microstrip Patch (Compared to [133])....................116

Fig. 5.12. RCS of the Same Geometry When Patch Removed (Compared to [133])....................116

Fig. 5.13. Backscatter RCS of a Singly Loaded Rectangular Patch (Compared to [133]).117

Fig. 5.14. Backscatter RCS of Another Singly Loaded Rectangular Patch (Compared to

[133])...118

Fig. 5.15. Backscatter RCS of a Multiply Loaded Rectangular Patch (Compared to [133]).119

Fig. 5.16. Circular PEC Disk Above a Dielectric Cylinder...119

Fig. 5.17. RCS of a PEC Disk on a Dielectric Cylinder Calculated (Compared to [134])............120

Fig. 5.18. Description of the Circular PEC Patch on Dielectric Coated PEC Sphere Problem.....121

Fig. 5.19. Cross Section of the Mesh Generated for the Circular PEC Patch on Dielectric

Coated PEC Sphere Problem...121

Fig. 5.20. 3D View of the Mesh Generated for the Circular PEC Patch on Dielectric Coated

PEC Sphere Problem (Only Scatterer Shown). ...122

Fig. 5.21. Radar Cross Section of the circular PEC patch on dielectric coated PEC sphere

(Compared to [134])..123

Fig. 6.1. Layered Architecture of the FEM Software..136

Fig. 6.2. A Screen Snapshot of OpenGL based GUI...137

Fig. 6.3. System Boundary of the FEM Software. ..138

Fig. 6.4. Mesh Viewing Functionality Provided by the FEM Software.138

Fig. 6.5. Mesh Manipulation Functionality Provided by the FEM Software.139

Fig. 6.6. Direct FEM Functionality Provided by the FEM Software. ...140

Fig. 6.7. Management Functionality Provided by the FEM Software...140

Fig. 6.8. Mesh Data Structure inside the FEM Software...141

Fig. 6.9. 2D Element Data Structure inside the FEM Software. ...142

Fig. 6.10. 3D Element Data Structure inside the FEM Software. ...142

Fig. 6.11. Curve Data Structure and Abstract Curve Factory inside the FEM Software...............143

Fig. 6.12. Polynomial Data Structure and Abstract Polynomial Factory inside the FEM

Software. ...144

Fig. 6.13. Quadrature Point Data Structure and Abstract Quadrature Point Factory inside the

FEM Software. ..144

Fig. B.1. The hexahedral edge element with its edges numbered. ..165

Fig. B.2. The Hexahedral Edge Element with its Nodes Numbered. ..167

Fig. B.3. Linear hexahedral edge element extending from (-1, -1, -1) to (1, 1, 1) in uvp

space. ...171

Fig. B.4. Effect of the first shape function for the linear hexahedral edge element.171

 xvii

Fig. B.5. Effect of the third shape function for the linear hexahedral edge element.172

Fig. B.6. Effect of the summation of the first and the third shape functions for the linear

hexahedral edge element. ..172

Fig. B.7. Quadratic hexahedral edge element extending from (-1, -1, -1) to (1, 1, 1) in uvp

space. ...173

Fig. B.8. The disjoint effects and the effect of the summation of the first and second two

edges along the u direction..174

Fig. B.9. The disjoint effects and the effect of the summation of the first and second two

edges along the v direction. ...174

Fig. B.0.10. The disjoint effects and the effect of the summation of the first and second two

edges along the p direction..175

Fig. B.11. The effect of the ninth edge along the v direction. ...175

Fig. B.12. The effect of the ninth edge along the p direction..176

Fig. B.13. The effect of the summation of four edges...176

Fig. B.14. The effect of the summation of the five edges. ..177

Fig. B.15. Interpolation of the function f(v) = 3v2 + 4v + 2 at p = -1 plane by means of the

quadratic shape functions. ...177

Fig. C.1. Top and Bottom Parts of the Mesh of PEC Cylinder. ..182

Fig. C.2. Mesh Generated for PEC Cylinder Problem. ...182

Fig. C.3. Mesh generation scheme for the dielectric cylinder. ..183

Fig. C.4. Mesh Generation Scheme for the PEC Sphere Problem. ...184

Fig. C.5. Top Hat Inner Part (A). ..185

Fig. C.6. Top Hat Outer Shell (B). ..185

Fig. C.7. Side Subvolume (C). ..186

Fig. C.8. Whole Spherical Shell (2A+2B+8C)..186

Fig. C.9. Mesh generation scheme in the dielectric sphere problem...187

Fig. C.10. Mesh defining parameters in the dielectric sphere problem...188

Fig. C.11. The Inner Cylindrical Core (A). ...189

Fig. C.12. Top Hats (B)...190

Fig. C.13. The Inner Cylindrical Core Combined with the Top Hats (A+B).190

Fig. C.14. The Side Cover (C). ...191

Fig. C.15. The Whole Sphere After All Parts Combined (A+B+C)..191

Fig. C.16. Top view of the top hat for the illustration of the restriction.192

Fig. D.1. Pictorial Description of PSO in 2D..198

Fig. D.2. Boundary Condition/Wall Concept in PSO. ..200

Fig. D.3. 2D Pictorial Description of NPSO. ..201

Fig. D.4. An all-hexahedral mesh with NLM elements: ..203

 xviii

Fig. D.5. PSO-smoothed version of the mesh in Fig. D.4...207

Fig. D.6. 3D Views of the Circular Microstrip Patch Antenna. ..210

Fig. D.7. Dimension Reduction by Means of Symmetry, and Domain Decomposition................211

Fig. D.8. Fixing Nodes, Imposing Node Dependencies and Setting Rules for Individual

Node Movements. ...211

Fig. D.9. Setting Boundary Conditions (Reflecting Walls) for Floating Nodes.212

Fig. D.10. A 3D PSO Mesh Smoothing Scheme for Subdomain I of the Circular Microstrip

Antenna Problem...213

Fig. D.11. A 2D PSO Mesh Smoothing Scheme for Subdomain II of the Circular Microstrip

Antenna Problem...213

Fig. D.12. Performed Steps for a 2D+2D PSO Mesh Smoothing Scheme of the Circular

Microstrip Antenna Problem. ..214

Fig. D.13. Top Hat Sub-Domain to be Smoothed by PSO (Different 3D Views with Different

Levels of Detail)..215

Fig. D.14. Improvement in the Mesh by Investigation of a Constant R Surface...........................215

Fig. D.15. Improvement in the Mesh by 3D View Investigation of One Layer of Top Hat.216

Fig. D.16. Cross Section of the Mesh Generated for the Perfectly Electric Conductor Sphere

Problem. ..216

Fig. D.17. Surface and Volume Definitions of the Top Hat..217

Fig. D.18. Pictorial Description of the Behavior of 2D Griewank Function [176].222

Fig. D.19. Pictorial Description of the Behavior of 2D Rastrigin Function [176].223

Fig. D.20. Pictorial Description of the Behavior of 2D Rosenbrock Function [176]....................224

Fig. D.21. Pictorial Description of the Behavior of 2D Sphere Function [176]............................224

Fig. D.22. Dominance Relation in a Biobjective Space. ...225

Fig. D.23. The Pareto Front of a Set of Solutions in a Biobjective Space.226

 1

CHAPTER 1

INTRODUCTION

1.1. Electromagnetic Scattering

Electromagnetic scattering has been one of the main subjects of interest especially for

military, biomedical and communications research areas. The main aim is to find, or to

predict the behavior of the scattered wave, when an electromagnetic wave from some

direction at some specific frequency with a specific type of polarization, is incident on a

given material.

1.1.1. Numerical Methods

For only a limited number of shapes and material types, it is possible to find an analytical

expression for the scattered wave at any point in space. However, for most cases of

concern, no analytical solution can be found. In such cases, some numerical methods are

applied in order to find the approximate values of the scattered wave only at some space

points, but not a functional expression yielding the field values throughout the whole

space as in an analytical solution.

The main steps of the numerical solution methods can be summarized as:

i. Discretization of the geometric domain into small simple subdomains called

meshes, such as triangles or quadrilaterals in two dimensions, and tetrahedra or

hexahedra in three dimensions;

ii. Symbolic expression of the solution within each subdomain by a finite number of

parameters;

 2

iii. Combination of the local equations obtained for each subdomain;

iv. Construction of a set of equations describing the whole geometry;

v. Application of the boundary conditions;

vi. Solution of the global equation system to obtain the unknown function.

1.1.2. The Finite Element Method

The Finite Element Method is based on the solution of Maxwell’s equations in their

differential form. It is a very good technique for modeling complex, inhomogenous

structures. The Finite Element Method has been originally developed for static problems

of structural mechanics and initially used by mechanical and civil engineers. It was first

formulated for use in electromagnetics in 1940s by Courant [1], who first discussed the

versatility of piecewise approximations. In the 1950s, Argyris [2] began putting together

the many mathematical ideas (domain partitioning, assembly, boundary conditions, etc.)

that form the basis of the Finite Element Method for aircraft structural analysis.

The name ‘finite element’ results from the fact that the domain is represented by a set of

‘elements’ of fairly simple shape on which the unknown function is approximated. A

major advantage of this technique is its flexibility, in other words, the possibility to match

the elements to the geometry and physical characteristics of the solution.

In the numerical solution of a partial differential equation, one must approximately

express the solution by a finite number of parameters. In other words, a problem with

infinite degrees of freedom must be converted to one with finite degrees of freedom. In

general, the solution is sought in a given class of functions; hence any function of this

class must be expressed in terms of a finite number of parameters. As a second step, the

differential operator must be transformed to expressions relating these parameters. If the

differential equation is linear, then, in general, the relations among the parameters are also

linear. That is, the process leads to a linear system of algebraic equations. However, in

this process one has to deal with a large number of parameters, at least tens of thousands

for practical cases. To avoid this complexity, it is preferable to implement a numerical

method so that the resulting matrix is sparse. This is the case in the finite

element method, since the equations preserve the local character of the differential

equation, which implies that the system matrix is sparse. Some sparse matrix storage

 3

schemes result in O(n) memory requirements, implying that the memory needed for a

solution of a Finite Element Method system is proportional to the number of unknowns n,

whereas the memory requirement is O(n2) for full matrix storage schemes in some other

numerical methods. Certainly, the advantages of the sparse matrices are not limited to

matrix storage. Some sparse matrix solution schemes have down to O(n) complexities

(with some restrictions of course), instead of O(n3) complexity of the Gaussian

elimination.

Although the Finite Element Method is very flexible, it has certain drawbacks. In

electromagnetic theory, fields extend to infinity in scattering and/or radiation problems.

Hence, another issue while using the Finite Element Method in scattering applications is

to apply it to open domain problems successfully. For this purpose, methods like

absorbing boundary conditions, perfectly matched layers, hybridization with boundary

integral methods have been developed.

Another situation in which the Finite Element Method encounters difficulties is the

presence of corners in the system. At such corners, field quantities may become singular.

Hence, approximate solutions cannot be adequately represented by locally based

polynomial expansions.

Since the finite element method is only an approximation, one has to explain the effects

of several error sources, some of which are:

• Choice of a finite number of trial functions (i.e. approximating a function in terms of

basis functions of a finite dimensional subspace)

• Simplification of the geometry (polynomial approximation of boundaries or material

non-uniformities)

• Modification of boundary conditions

• Numerical integration

• Iterative solution of the matrix equation (if applied)

• Roundoff errors due to finite precision arithmetics of the computer during the

modeling and the solution of the discrete system

 4

The overall process of finite element solution of electromagnetic scattering problems can

be summarized and illustrated as in Fig. 1.1. The details of each task and step are

discussed throughout the main text.

Fig. 1.1. Finite Element Solution Process.

1.2. Summary of the Present Work

The aim of this thesis is to apply the higher order hexahedral edge elements to

electromagnetic scattering problems together with a couple of generic implementations;

• one stand-alone software regarding the all-hexahedral mesh generation,

• another stand-alone software regarding 3D mesh viewing (not limited to

hexahedral meshes),

• and the last stand-alone software regarding the finite element solution of three-

dimensional electromagnetic scattering problems using the hexahedral edge

elements.

Meanwhile, the effect of the hexahedral mesh quality is also investigated; a new topology

preserving mesh improvement (i.e. mesh smoothing) technique is implemented and

Frequency

Dimensions

Material
Properties

Calculation

of the
Elemental
Matrices

Boundary
Condition

Setting

Assembling

Solution
of the

System of
Linear

Equations

Mesh

Generation

Huygens
Equivalence
Principle and

RCS Calculation

 5

applied to typical meshes to be encountered in electromagnetic problems. This

implementation is not a stand-alone software product, but a Matlab script instead.

The all-hexahedral mesh generation algorithm implemented in this thesis depends on the

decomposition of the problem domain to subdomains so that each subdomain is

homeomorphic to a rectangular prism (i.e. all-hexahedral meshable). Then, each

subdomain is meshed with the constraint that the adjacent subdomains have the same

quadrilateral surface meshes on the shared surfaces in order to preserve mesh continuity.

Another important task performed during the mesh generation is the indication of the

material properties inside each element, and along each edge. This activity can be

considered as pre-processing for both mesh viewing and finite element solution, since it

provides the necessary data for these tasks.

3D mesh viewing software in this thesis is a straightforward implementation which uses a

generic graphic library; it requires no complex algorithms. The mesh can be viewed in a

colorful manner where each color is assigned to a specific meaning. Principle activities

such as zooming in/out, changing the camera angle and position can also be performed

during viewing. Mesh viewing software is not limited to volume meshes or hexahedral

meshes. Both surface/volume meshes of any element shape (triangular/quadrilateral

elements in 2D, tetrahedral/prismic/hexahedral elements in 3D) are supported by this

software.

Finite element solution software implemented in this thesis is focused to hexahedral edge

elements. The nodal and edge basis functions of first and second order, and their curls are

calculated; element matrices are calculated by Gaussian quadrature, assembled global

stiffness matrix is stored with a sparse storage scheme and solved by means of a sparse

solver (direct or indirect); radar cross-section is calculated by means of Huygens’ surface

equivalence principle. During the finite element solution process, mesh truncation is

achieved by means of the Perfectly Matched Layers, which are realized by complex

coordinate transformation in this thesis. By means of this software, linear and quadratic

hexahedral edge elements are compared in terms of resource requirements (CPU time,

memory) and accuracy. For this purpose, scatterers of various basic/composite

curved/uncurved shaped materials with/without patches are investigated.

 6

The mesh quality is another important factor in the finite element method. The element

size is a factor in solution accuracy, since the interpolation error increases as the element

size increases; and the element shape is another factor in the solution accuracy, since bad-

shaped elements might cause an ill-conditioned stiffness matrix. Mesh improvement can

be performed either by changing or preserving the topological connectivity of the mesh.

In this thesis, a condition number based combined hexahedral quality metric is used; and

the mesh improvement is performed by optimization based mesh smoothing. The

smoothing is performed by means of the Particle Swarm Optimization, which found wide

application in the last decade.

To the author’s knowledge, there are two original contributions to the literature inside the

scope of this thesis:

1. Application of the quadratic hexahedral edge elements to electromagnetic

scattering problems,

2. Hexahedral mesh smoothing by means of Particle Swarm Optimization.

Quadratic hexahedral edge (Kameari’s) elements have so far been applied to various

problems especially in magnetostatics. The application of such elements to

electromagnetic scattering problems is new; research made throughout this thesis yielded:

1. [3], which was limited to uncurved single homogenous scatterers;

2. [4], which was focused to uncurved structures with patches;

3. [5], which was focused to curved single homogenous scatterers;

4. and [6], which was focused to comparison of linear and quadratic hexahedral

edge elements in electromagnetic scattering problems.

Optimization based mesh smoothing is one of the popular research areas in the mesh

generation society. However, the usage of Particle Swarm Optimization for this purpose

is new. Research made throughout this thesis yielded [7] and [8]. Using several objective

functions and performing multi-objective mesh smoothing can be considered to be a

future work in this area.

 7

In addition to these, several research areas, which are still premature and requiring extra

work, are assessed to yield more publications in the future.

One of these is the investigation of the effects of edge ordering to the stiffness matrix

storage and solution. Similar work can be found in the literature; but to the author’s

knowledge none of them specifically focuses on hexahedral edge elements.

Another one is the discussion of the object and pattern oriented finite element software.

Object oriented approaches in the finite element software development have become

popular in the last decade; but to the author’s knowledge none of the available

publications mention the usage of design patterns. Moreover, finite element software is a

good and compact case study for “software sizing and cost estimation”, which is a

popular research area triggered by the new World Economy. To the author’s belief, such

a research and consequent publication(s) will find interest in societies of various

disciplines.

The first chapter of this thesis gives a brief introduction to numerical methods and the

Finite Element Method; it also gives an overall idea about the activities and the work

products of the research carried out.

In the second chapter of this thesis, all-hexahedral meshing is discussed starting from the

topological existence. It continues with the meshing algorithms, mesh quality measures,

quality improvement techniques, and aspects of curvilinearization. This chapter can be

considered as an overall literature survey in “hexahedral meshing” subject.

The third chapter is devoted to the theoretical background of the finite element method,

specifically the hexahedral edge elements. It starts with the differential forms and the

algebraic manifolds; continues with the definitions of Hilbert spaces containing various

important quantities of electromagnetics; introduces the edge element concept; gives a

brief discussion of hierarchical elements. The main aim of this chapter is to indicate the

positioning of the hexahedral edge elements in the wide finite element universe. Again,

this chapter can be considered as a literature survey of the mathematical background in

finite element theory.

 8

All formulations (starting from the weak formulation of the electric field, continuing with

elemental matrix construction, stiffness matrix assembly, storage and solution algorithms,

PML realization, RCS calculation), which are necessary for the finite element solution,

are given in the fourth chapter. Analyses about the sparsity, effects of edge ordering, and

resource requirements are also included in this chapter. This chapter can be considered as

a compact summary of the implementations performed throughout this thesis.

The fifth chapter exhibits the results calculated with the hexahedral edge elements and

compares them with the analytical results or measured values. Comparisons between

linear and quadratic hexahedral edge elements are also given in this chapter.

The sixth chapter combines the new trends in software development, and discussed the

possibilities of application of such new methodologies during the finite element software

development.

Finally, the last chapter discusses the results obtained by the proposed technique(s);

comments on the achieved results; and lists the potential future work.

In order to preserve the completeness and compactness of the main text, appendices are

used for exhibition of some important topics. Appendix A gives a listing of great

scientists (starting from Euclid) who could not be explicitly cited but referred throughout

the thesis. It also gives the important milestones of the finite element theory and

hierarchical hexahedral edge elements.

Appendix B gives the explicit basis functions of the hexahedral edge elements, and

exhibits the interpolation properties of these functions inside the relevant elements.

Appendix C gives the methodology and the important factors during the domain

decomposition in some problems solved in the thesis.

 9

Appendix D outlines the definition Particle Swarm Optimization, its applicability to

hexahedral mesh smoothing, application to some problems and the solution accuracy.

This appendix also discusses the concept of Pareto optimality, and multi-objective

hexahedral mesh smoothing.

Appendix E includes basic Unified Modeling Language notation in order to ease the

reading of the sixth chapter.

 10

CHAPTER 2

HEXAHEDRAL MESHING

2.1. Hexahedral Meshing: Reasons and Challenges

With the introduction of various numerical simulation techniques, analysis of partial

differential equations describing complex physical systems became a practical reality.

These techniques, including finite element method, finite difference time domain method,

and finite volume method, rely on a discretization of the domain as the key to application

of the numerical solution. This discretization provides a set, or mesh, of geometrically

simple elements that as a whole approximate the complexity of the domain.

All-hexahedral meshes have proven to be desirable because of the facts that:

• A hexahedron provides shape functions with additional terms that may increase

the accuracy of the solution; a study about the nodal element case can be found in

[9].

• A hexahedron provides directional sizing without losing accuracy. For example, a

very thin hexahedron within a boundary layer for fluid flow calculations

performs far better than thin tetrahedron.

• A hexahedral mesh decreases the total element number; and the total number of

unknowns consequently. A tetrahedral mesh usually increases the element

number about 4 to 10 times compared to a hexahedral mesh.

• For especially man-made objects, a quadrilateral/hexahedral mesh provides better

surface/volume representation compared to a triangular/hexahedral mesh.

 11

 Such conformity in decreases the local errors especially at the material interfaces.

Certainly, topological complexity and challenge in all-hexahedral mesh generation is

another factor making it a center of attraction in the last decade. As stated by Blacker

[10], automated all-hexahedral element meshing has been the “Holy Grail” of mesh

generation research for years due to tight constraints such as connectivity and shape.

In general, a mesh generation scheme should have the following features (which are pair-

wise contradictory in most cases):

1. Geometric Generality: Since the main aim is to have an automated use of a

proposed algorithm, it should be able to handle as large a class of geometries as

possible. Ideally, it should handle any geometry of arbitrary complexity and

detail. It should also be sensitive to surface curvature and meshing domains with

widely varying boundary proximity (i.e. long, thin regions versus blocky regions)

adequately.

2. Geometric Matching: The mesh generated by the algorithm should contain the

geometric features identified by the user. In practice, most meshing software

defines this to be all the topological features of domains being meshed. This

allows the user to control the mesh (e.g. for boundary conditions) by editing the

topology, either manually or automatically [11] as needed.

3. Boundary Sensitivity: The boundary of the domain is often most important in an

analysis, since most differential equations currently being solved in some

engineering applications relate to stress/strain, flows or reactions. Thus, in order

to define a meshing algorithm, which is going to be accepted as “good” by the

mesh generation society, it should produce high quality elements close to the

boundary and these elements should roughly follow the flow of the boundary.

Element quality interior to the domain is usually less important.

4. Orientation Insensitivity: The orientation of the geometry should ideally not

affect the generated mesh. This removes any dependency on volume placement

 12

before meshing. Otherwise, good quality of the mesh and acceptable shape of the

resulting elements will be chance driven; might not be achieved even by using

trial-error method.

5. Bad Geometry Tolerance: The algorithms that can operate in spite of irritating

gaps, overlaps, holes, and other problems in the geometry (often imported from

various formats) save a lot of time and frustration for the user. Being able to de-

feature or ignore insignificant detail would also be advantageous.

6. Size Controllability: The mesh should be able to match desired element sizing

constraints throughout the domain. This is particularly important for adaptive

analyses.

7. Speed: The algorithm should be able to generate reasonably large meshes in a

reasonable “interactive” amount of time. Certainly, speeds obtained by

tetrahedral meshing algorithms would be desirable; which are observed and

accepted to be fast enough. With recent technology (considering CPU speed,

operating system and hardware infrastructure and memory capacity), meshes with

<1 million elements are considered to be small / mid sized.

Hexahedral mesh generation algorithms, which have been proposed so far, have usually

failed especially due to requirements 1 and 5 above (geometric generality and bad

geometry tolerance). Initial schemes used to suffer also from requirement 4 (orientation

insensitivity), which used to be a big challenge more than 10 years ago.

Since geometric generality and bad geometry tolerance are the biggest hurdles, the

general strategy in hexahedral meshing has become as follows:

1) Development/proposal of the hex meshing algorithm,

2) Investigation of the restrictions of the proposed algorithm (in terms of applicability to

various geometries of different topological features)

3) Proposal of topological mapping/domain decomposition techniques in order to fit all

(at least, most) geometries to the proposed hexahedral meshing algorithm [12].

 13

Automated domain decomposition techniques attempt to decompose the volume being

meshed into pieces, which themselves can be meshed using existing algorithms. Usually

these pieces are recognizable primitive shapes or swept volumes. This approach is highly

dependent on being able to identify and/or decompose the geometry appropriately. A very

straightforward and practical method (due to easy applicability over the CAD modeled

objects) is the extraction of Basic Logical Object Blocks (also known as BLOBs) [13].

Principally, the BLOBs are decomposed to Multiple Block Structures (MBSs), which will

be considered separately during the mesh generation with the constraint that shared faces

of MBSs will have the same surface mesh. This procedure is illustrated in Fig. 2.1. Since

BLOB decomposition has limited applicability, more complicated topographic tools such

as medial axis determination, Delaunay tessellation, embedded Voronoï diagrams/graphs

are widely used for general purpose applications [14-17].

Fig. 2.1. A Simple Example for BLOB decomposition [13].

On the other hand, due to several difficulties and restrictions in the all-hexahedral

meshing, some researchers thought that “all-hexahedral” requirement is not worth to try

desperately; and hence migrated to “hex-dominant” meshes instead [18].

2.2. Topological Existence of Hexahedral Mesh

Up to 1996, the topological existence of hexahedral mesh was a big question mark.

Without knowing the necessary and sufficient conditions for existence of an all-

 14

hexahedral mesh for an arbitrary volume, many researchers intuitively tried to start with a

surface mesh on the boundary, and fill the volume by a hexahedral mesh touching to the

boundary. Many of the researchers were mislead that there are complicated constraints on

the surface mesh in order to be compatible with the volume mesh inside.

The answer(s) came from Thurston [19] and Mitchell [20-21] independently. Eppstein

[22] stated their answer(s) in a clean and neat manner as: “Any simply connected three-

dimensional domain with an even number of quadrilateral boundary faces can be

partitioned into a hexahedral mesh respecting the boundary.”

Starting from this fact, Eppstein claimed that any tetrahedron can be divided into four

hexahedra as seen in Fig. 2.2; which yielded a straightforward generic hexahedral

meshing algorithm. This algorithm is obviously inefficient; but more important thing

about this work is that Eppstein proved that hexahedral mesh generation is a process of

linear complexity.

Fig. 2.2. A tetrahedron partitioned to four hexahedra [22].

2.3. Hexahedral Meshing Algorithms

Hexahedral meshing algorithms in the literature can be roughly classified into the

following types:

• Sweep

 15

• Overlay Grid

• Mesh Partitioning

• Advancing Front

2.3.1. Sweep Methods

General sweep algorithms [23-25] allow the sweeping of a surface quadrilateral mesh

through an arbitrary path. This surface mesh maintains a constant topology cross-section

during the sweep, but may deform as needed to match the path geometry. This

generalized sweep is heavily used in practice as it allows more freedom since the cross-

sectional mesh can be unstructured, as shown in Fig. 2.3. The advantages and

disadvantages of this approach can be summarized as follows:

Advantages:

• No need for geometric decomposition,

• Speed,

• High element quality,

• Boundary sensitivity, and

• Orientation insensitivity.

Disadvantages:

• Relatively small applicable class of geometries.

Fig. 2.3. Mesh Generated by a Sweep Method [10].

 16

2.3.2. Overlay Grid Methods

The overlay grid techniques [26-29] use a grid that encompasses the volume to be

meshed. Traditionally, this grid is structured and aligned with the coordinate axes. This

background grid is then intersected with the geometry to determine elements that are:

• inside,

• on the boundary, and

• outside

the volume being meshed. The elements on the inside are retained, the ones on the outside

are eliminated, and the ones on the boundary are then adjusted to fit the existing

boundary.

Fig. 2. 4. Mesh Generated by Overlay Grid Method; and Effect of Orientation in 3D [10].

Fig. 2.4 shows the interior and boundary elements generated within the volume shown,

using this technique. The effect of grid alignment on the resulting mesh is obvious. An

exaggerated illustration about orientation sensitivity in 2D is given in Fig. 2.5.

 17

Fig. 2.5. Mesh Generated by Overlay Grid Method; and Effect of Orientation in 2D.

Another grid based approach, which has been successfully applied to mesh generation of

CAD models, is the boundary fit method [30]. Between the decomposition and

reassembly, it relies on several steps principally: edge detection performed on the

boundaries, recognition depending on the angles between boundary surfaces,

transformation to a space where the object will resemble a rectangular prism. The whole

procedure is illustrated in Fig. 2.6.

The advantages and disadvantages of this approach can be summarized as follows:

Advantages:

• High automation,

• Applicability to a broad class of geometries,

• Bad geometry tolerance (especially when the element sizes are comparable to

gaps and holes),

• Ease of implementation (nice and simple data structures).

Disadvantages:

• Boundary insensitivity (requires more effort to improve the boundary

elements, which are of worst quality),

• Surface mesh dependency to the algorithm (which limits the applicability of

the algorithm to only volumes with no pre-existing surface mesh),

• Orientation sensitivity,

 18

• Difficult/impossible conformal fine to coarse mesh transitions (requires non-

conformal transitions).

a) Solid Model (from CAD file) b) Decomposed Solid Model c) Recognition Model

d) Meshed Recognition Model e) Reassembled Recognition Model f) Meshed Solid Model

Fig. 2.6. Steps Followed in the Boundary Fit Method [30].

2.3.3. Mesh Partitioning Methods

Mesh partitioning techniques [31-34] perform the decomposition integrally during the

meshing process (not before as in the conventional approaches). These techniques tightly

control the surface mesh to insure that decomposition is possible. An example cooper

mesh, which uses mesh partitioning, is shown in Fig. 2.7. In mesh partitioning

approaches, the decompositions occur integrally with the meshing process by using an

interior mesh as the cutting mechanism (i.e. no geometric cuts).

 19

Fig. 2.7. An Example Mesh Generated by the Cooper Tool Using the Mesh Partitioning

Approach [10].

The advantages and disadvantages of this approach can be summarized as follows:

Advantages:

• No geometric operator dependence,

• Boundary sensitivity,

• Orientation insensitivity.

Disadvantages:

• Applicability to a limited class of geometries,

• Necessity for much manual intervention of the user due to complexity,

• High dependency of the surface mesh to the algorithm (unexpected surface

mesh).

2.3.4. Advancing Front Methods

Advancing front techniques are designed to work from the boundary of the mesh inward

[35-36]. From the surface mesh, layers of elements are inserted to form the volume mesh

in the interior of the volume. As the surfaces begin to intersect, they are connected in

attempts to form a valid hexahedral mesh.

In the 2-D version of the advancing front technique, dealing with quadrilateral elements

called paving by Blacker and Stephenson [37], rows of such elements are added along

domain boundaries as seen in Fig. 2.8. Rows originating from different boundaries are

matched to result in a conformal mesh. One of the most critical aspects is meshing the

remaining void successfully when fronts from different boundaries converge.

 20

Fig. 2.8. Paving [38].

The method had been extended to 3-D surface meshing problems by Cass et al [39],

which is referred to as plastering. In this method, layers of hexahedral elements are

generated along boundaries as seen in Fig. 2.9. As in paving, fronts built on different

surfaces are connected together to preserve mesh conformity. However, the problem of

meshing the void which remains when different fronts converge to each other is generally

not yet solved. Generally this task has proven to be intractable, and the use of mixed

element types interior to the volume becomes necessary to fill the void [40]. While

paving had successfully been proved to be robust and reliable, its three-dimensional

counterpart lacks robustness in many classes of problems.

Fig. 2.9. Plastering.

 21

In attempts to overcome the difficulties posed by plastering, an alternative algorithm

called whisker weaving was developed [41-42]. The algorithm employs the so-called

Spatial Twist Continuum (STC) or the dual of a volume mesh [43-44]. The idea behind

whisker weaving can be described as follows: Let the dual of a surface quadrilateral mesh

be generated. Let this dual be extruded into the volume bounded by this surface. This

results in generation of a set of surfaces (twist planes), which intersect the surface mesh

along the lines of its dual as seen in Fig. 2.10. Once a valid set of twist planes is found;

hexahedral elements can be generated, wherever the three twist planes converge. As the

intersection of twist planes is important in topological sense only, there is no need to

compute any intersections. The method is relatively young, and must still prove itself as a

reliable meshing tool for many classes of problems.

Fig. 2.10. Spatial Twist Continuum.

The advantages and disadvantages of this approach can be summarized as follows:

Advantages:

• Boundary sensitivity,

• Orientation insensitivity,

• Usability of existing known surface mesh,

• Independency to geometry (like most tetrahedral meshing algorithms).

Disadvantages:

• Necessity for technology maturity,

• Necessity for mixed element types (for plastering),

• Challenge in element quality (for whisker weaving),

 22

• Time intensiveness.

2.4. Hexahedral Mesh Quality Improvement

Generally, mesh quality is an important factor in accuracy. It can be said that qualitatively

bad elements (especially in shape) cause the stiffness matrix to be ill-conditioned. This

makes the system of equations to be more sensitive to any errors caused by the error

sources mentioned in the first chapter. Mesh improvement can be performed either by

modifying or preserving the node connectivity.

2.4.1. Mesh Refinement

Refinement is performed by inserting additional nodes to the mesh; hence changing the

connectivity. Refinement is not a popular method for quadrilateral/hexahedral elements as

it is for triangular/tetrahedral elements. The reason is as follows: in order not to have a

hanging1 node or edge; propagation to neighboring elements is required. Or, some

complicated methods shall be implemented to get rid of the propagation. What is meant

by propagation is illustrated in Fig. 2.11 for 2D case.

1 A node/edge is referred to as hanging, if it is not a node/edge of the neighboring element.

 23

Fig. 2.11. Propagation Requirement of Mesh Refinement for Quadrilateral/Hexahedral

Mesh.

Meshes with hanging nodes/edges force the relevant finite element software to be more

complicated. Methods using iterative octrees [48] result in such meshes. Refinement

techniques based on pillowing, such as the cleave-and-fill tool [45], overcome the

propagation requirement in a very clever manner; however, the control and scale of

cleave and fill refinement is limited. A pillow region, and a cleave-and-fill refined mesh

are given in Fig.s 2.12 and 2.13 respectively.

 24

Other techniques insert non-hex elements that result in hybrid meshes or require uniform

dicing to maintain a consistent element type [46]. Schneiders’ directional refinement

method [47] produces a conformal mesh by pillowing layers in alternating i, j and k

directions but requires a Cartesian initial octree. The 3D anisotropic refinement scheme

presented by Tchon et al [48] expands Schneiders’ multi-directional refinement to

initially unstructured meshes by pillowing layers of elements without the use of octrees.

This method is quite robust but does not offer the capability to refine mesh regions

around individual nodes, element edges or element faces.

Fig. 2.12. An Example of a Pillow Region [45].

pillow fill

a) Original Mesh b) Cleaved Mesh

c) Cleaved and Filled Mesh

Fig. 2.13. Example of Cleave-and-Fill Refinement [45].

 25

The term mesh connectivity denotes a system of edges, faces and cells which are formed

based on a given set of vertices. It is also referred to as mesh topology. First of all, it is

important to understand how topological modifications can affect mesh quality.

Improvement of mesh quality via node movement is possible only up to a certain quality

limit. This limit depends on topology of the mesh. Fig. 2.14 shows an example in which

mesh quality cannot be improved unless its topology is modified. Namely, substitution of

a five cell pattern by a four cell one results in an increase of the minimum angle of the

mesh up to 90°.

Fig. 2.14. Mesh quality improvement via modification of its connectivity [38].

Topological modifications are applied most successfully in triangular and tetrahedral

mesh generation systems.

2.4.2. Mesh Smoothing

Smoothing can be defined as relocation of mesh nodes without changing their

connectivity. Despite the recent evolution of methodology of unstructured mesh quality

improvement, smoothing still remains the most common approach to quality

improvement of non-simplicial meshes. There exist multiple ways of defining new

positions for relocated nodes. Kovalev sorted these methods into the following categories

[38]:

• Laplacian smoothing and its variations,

• Optimization-based smoothing,

• Physics-based smoothing,

• Hybrid techniques,

• Untangling.

 26

Laplacian smoothing represents the most common family of methods among those

mentioned above. The simplest form of Laplacian smoothing places each mesh node

successively at the average position of nodes connected to it (i.e. to the centroid of all

neighboring nodes). This has been a very popular method which was extended by many

research groups [49-53] so far.

Fig. 2.15. A Successful Application of Laplacian Smoothing (Convex Region).

Fig. 2.16. An Unsuccessful Application of Laplacian Smoothing (Concave Region).

This method works well in convex regions as seen in Fig. 2.15; on the other hand it may

produce poorly-shaped or even inverted elements in concave regions as seen in Fig. 2.16.

Typically, the mesh surrounding concave geometrical items is pulled outwards. This often

leads to geometry-overlaying meshes.

 27

In order to overcome such problems, more advanced methods have been proposed. For

instance, the constrained Laplacian smoothing restricts nodal displacement to a certain

limit in order to avoid element distortion. A simple form of this approach limits nodal

movement equally in all directions: if the computed node displacement is smaller than a

certain pre-defined threshold, this displacement is applied directly; otherwise, the node is

moved by the threshold distance in the same direction.

In a more advanced implementation, quality of elements affected by node movement is

computed using both old and new node locations. The node is then moved only if the

quality of all affected elements does not decrease after the motion. This method is

referred to as the “smart” Laplacian smoothing [50,54].

Another example of a modified Laplacian smoother can be found in [55]. Here, the

advantage is taken from local action of Laplacian smoothing applied to unstructured

meshes. Topology of a mesh subject to smoothing is analyzed and the most appropriate

smoothing schemes are applied based on the result of the analysis. For instance, if exactly

eight hexahedral cells surround a node of a hexahedral mesh (as in structured grids), then

the so called equipotential (Winslow) smoothing, an approach for smoothing of structured

grids, is applied. Earlier, Knupp [56] developed a 2D version of this smoother applied to

quadrilateral unstructured meshes.

When applied to unstructured hexahedral meshes, a Laplacian smoother can be involved

in a quality improvement process, but it cannot be a standalone quality improvement tool

due to limited efficiency.

The optimization-based smoothing [51,54,57-61] moves mesh nodes to

minimize/maximize a certain cell distortion/quality metric. Nodal positions are modified

based on analysis of variations of local mesh quality, unlike in heuristic approach used in

Laplacian smoothing. The optimization-based approach is more reliable, especially in

concave regions of computational domain. However, the computational cost of this

approach is obviously higher than that of the Laplacian methods.

 28

The physics-based smoothing is based on the idea that a well-shaped mesh can be viewed

as an analogue of certain mechanical systems that can be found in nature. Some authors

have developed techniques that smooth unstructured meshes using principles which drive

dynamics of such systems in nature.

A classical example of one of such techniques is the so-called spring analogy approach.

In this method, edges of a mesh are considered as springs with stiffnesses depending on

their target sizes. A mesh node is repositioned to a new location to bring the set of

surrounding springs to equilibrium. All mesh nodes are successively repositioned until

the entire spring system reaches equilibrium. Forces occurring in springs can be

unidirectional or bi-directional. In the first case, magnitude of a force depends on spring’s

length but its direction is always the same. In the second one, equilibrium spring length

can be defined. A force changes its direction depending on the actual edge length with

respect to its equilibrium length.

Another group of methods which has been developed recently and which employs the

analogy with mechanical spring systems uses the so-called torsional springs [62-63].

While regular linear springs resist changes in internodal distances, the torsional springs

resist changes in the angle between edges incident to same node. When the angle between

such edges deflects from equilibrium, a corresponding torsional spring generates torque

directed to bring the system back to equilibrium (see Fig. 2.17).

Fig. 2.17. Torsional Spring Analogy [38].

The combined approaches usually represent a blend of optimization-based and Laplacian

smoothing methods. Development of such methods is aimed at combining the speed of

 29

Laplacian approach with the efficiency of optimization-based methods. In these methods,

it is important to develop a system of criteria to effectively distinguish whether a

Laplacian or an optimization-based smoothing method should be applied to a mesh node.

Examples of combined approaches can be found in [51, 54].

2.5. Hexahedral Mesh Quality Metrics

In the literature, numerous quality metrics for hexahedral elements have been defined.

Most of these were originally defined for other element shapes, and later adapted to

hexahedral elements. Hence, most of these might not be effective and meaningful

although they exist in some availeable software packages. Table 2.1 is an overview of the

basic hexahedral element quality metrics.

Among these metrics, Oddy metric [67] found broad application in the literature. Unlike

other metrics, this metric was originally constructed for hexahedral elements. However,

the metric was found to be excessively restrictive on element’s aspect ratio distortion and,

on the contrary, insufficiently restrictive on element’s angle distortion.

In addition to these metrics, there have been a couple of other metric definitions in the

literature. Robinson’s 2D metrics [68] have been generalized to 3D, but these metrics

suffered from the same deficiencies in 2D. A metric definition for hexahedral and wedge

elements was proposed by Kwok and Chen [69], as the product of aspect ratio, warpage,

and volume ratio metrics. However the metric was neither continuous nor differentiable

since the aspect ratio is a ‘step-function’. Its full and acceptable ranges were not clearly

defined by the authors. In a series of papers about mesh generation for rotating machines

by Noguchi et al [70-72]; the authors have defined various quality metrics for hexahedral

elements. Ranges, dimensions, physical meanings of these definitions have not been

explicitly defined in these papers.

 30

Table 2.1. Basic quality metrics for hexahedral elements.

Metric Name Definition Dimension Full

Range
Acceptable

Range Ref.

Aspect
Ratio

Maximum edge length ratios
at hexahedron center L0 [1,∞) [1,4] [64]

Skew
Maximum | cosθ | where θ is
the angle between edges at

hexahedron center.
L0 [0,1] [0,0.5] [64]

Taper
Maximum ratio of lengths

derived from opposite
edges.

L0 [0,∞) [0,0.4] [64]

Element
Volume

Jacobian at hexahedron
center. L3 (-∞,∞) None [64]

Stretch √3 × minimum edge length /
maximum diagonal length. L0 [0,1] [0.25,1] [65]

Diagonal
Ratio

Minimum diagonal length /
maximum diagonal length. L0 [0,1] [0.65,1] [64]

Dimension Dimension of the element L1 [0,∞) None [64]

Condition
Number

Maximum condition number
of the Jacobian matrix at 8

corners.
L0 [1,∞) [1,8] [66]

Jacobian
Minimum pointwise volume
of local map at 8 corners &
center of the hexahedron.

L3 (-∞,∞) None [66]

Scaled
Jacobian

Minimum Jacobian divided
by the lengths of the 3 edge

vectors.
L0 [-1,1] [0.5,1] [66]

Shear 3/Mean Ratio of Jacobian
Skew Matrix. L0 [0,1] [0.3,1] [66]

Shape 3/Mean Ratio of weighted
Jacobian Matrix. L0 [0,1] [0.3,1] [66]

Relative
Size

min(J, 1/J), where J is the
determinant of weighted

Jacobian matrix.
L0 [0,1] [0.5,1] [66]

Shear
 & Size

Product of Shear and Size
Metrics. L0 [0,1] [0.2,1] [66]

Shape
& Size

Product of Shape and Size
Metrics L0 [0,1] [0.2,1] [66]

Distortion

{min(|J|) / actual volume} ×
parent volume, where parent
volume = 8 for a hexahedral

element

L0 [0,1] [0.6,1] -

Oddy L0 [0, ∞] [67]

Being uncomfortable from the basic quality metrics (due to their restrictions), Knupp

focused on trying to define general-purpose quality metrics especially after the year

1999. In [73], he described the properties of the general-purpose quality metrics as in

Table 2.2.

 31

Table 2.2. Comparison of Restricted and General Quality Metrics [73].

Property Restricted Metric General Metric

Dimension
(n = 2 vs. n = 3)

Dimension-specific
(e.g., only applies to n = 2)

Dimension-free
(applies both to n = 2 and n =
3)

Element Type
(e.g., triangular or
quadrilateral)

Element-specific
(e.g. only defined for
quadrilateral elements)

Element-free
(e.g. defined both for
triangular and quadrilateral
elements)

Domain
(e.g. shape of
quadrilateral element)

Domain-specific
(e.g. rectangles only)

Domain-general
(e.g. all quadrilateral
elements)

Versatility
(# of qualities
measured)

Specialized
(only one)

Versatile
(e.g. volume-shape
orientation)

Element Size
(or volume)

Scale-sensitive
(size dependent)

Scale-free
(size invariant)

Orientation Orientation-sensitive
(orientation-dependent)

Orientation-free
(orientation-invariant)

Units
(of metric)

Has units
(dimensional)

Unitless
(nondimensional)

Reference
(ideal element)

Unreferenced
(implicit ideal)

Referenced
(explicit ideal)

After these definitions, Knupp had a series of papers with lots of general purpose quality

metrics [66,73-74]. His metric does not depend on element orientation and size, but only

on shape distortion with respect to an ideal element. The ideal element can be chosen

based on a certain set of requirements to element shape that must be satisfied in an

optimized mesh. Details of his “condition number” based metric are given in Appendix

D. This metric is also used in this thesis.

2.6. Curvilinearization - Extension of Quality Definitions for Curvilinear

Mesh

Representation of curved edges and surfaces is another challenge in the finite element

method. Simple mapping techniques might yield big errors since the objects are

represented badly and distorted in such cases.

 32

As well as the mapping, it can be claimed that the quality metrics, which are defined in

previous sections, should be extended for curvilinear elements. However, as will be seen,

this is not an easy task. Moreover, most of the research showed that this effort might not

be worth to spend time; since adding more degrees of freedom handles much of the error

reduction.

2.6.1. Mapping Functions

In two dimensions, the boundary of the solution domain generally consists of piecewise

smooth curves, and it is necessary to consider mapping of the standard element so that

these curves are closely approximated. In p-extensions (see Chapter 3; sections 3.5 and

3.6 for details), most elements remain large. Therefore, the use of accurate mapping

techniques is much more important than in the case of h-extensions. Assume that, in 2D

the vertex coordinates of quadrilateral elements in the xy-plane by capital letters Xi, Yi,

and the mapping functions for the kth quadrilateral element by:

),()(ηξk
xQx = (2.1)

2.6.1.1. Linear Mapping

When all sides of the mapped elements are straight lines, then generally linear mapping is

used. However, certain kinds of nonlinear mapping are used in some cases. In the case of

quadrilaterals, linear mapping is in the form:

43

21
)(

43

21
)(

)1)(1(
4
1)1)(1(

4
1

)1)(1(
4
1)1)(1(

4
1),(

)1)(1(
4
1)1)(1(

4
1

)1)(1(
4
1)1)(1(

4
1),(

YY

YYQy

XX

XXQx

k
y

k
x

ηξηξ

ηξηξηξ

ηξηξ

ηξηξηξ

+−++++

+−++−−==

+−++++

+−++−−==

 (2.2)

2.6.1.2. Quadratic Parametric Mapping

Quadratic parametric mapping permits representation of curved element sides by

polynomials of degree 2. In the case of quadrilateral elements, the mapping functions are

 33

),(),,(
8

1

8

1
ηξηξ ∑∑

==

==
i

ii
i

ii NYyNXx (2.3)

where Ni are the shape functions given by

)1)(1(
2
1

)1)(1(
2
1

)1)(1(
2
1

)1)(1(
2
1

)1)(1)(1(
4
1

)1)(1)(1(
4
1

)1)(1)(1(
4
1

)1)(1)(1(
4
1

2
8

2
7

2
6

2
5

4

3

2

1

ηξ

ηξ

ηξ

ηξ

ηξηξ

ηξηξ

ηξηξ

ηξηξ

−−=

+−=

−+=

−−=

−+−+−=

−+++=

−−−+=

−−−−−=

N

N

N

N

N

N

N

N

 (2.4)

and Xi, Yi are the nodal coordinates corresponding to the numbering scheme in Fig. 2.18.

When p=2, and the conventional shape functions are used, then the displacement vector

components and the mapping are represented by the same shape functions. For this reason

this mapping is called isoparametric mapping. Isoparametric mapping is used very

extensively in conjunction with the finite element software. The accuracy increases with

the number of elements.

 34

Fig. 2.18. Nodal Numbering Scheme for Quadratic Quadrilateral Elements.

2.6.1.3. Mapping by the Blending Function Method

In the p-version, generally large elements are used. It is important to represent curved

boundary segments accurately with a few elements. The linear blending function

proposed by Gordon and Hall [75] is well suited for this purpose.

To illustrate this method, consider a simple case where only one side of a quadrilateral

element is curved, as shown in Figure 2.19. The curve x = x2(η), y = y2(η) is given in

parametric form so that x2(-1) = X2, y2(-1) = Y2, x2(1) = X3, y2(1) = Y3. It is possible to

write:

2
1

2
1

2
1)(

)1)(1(
4
1)1)(1(

4
1)1)(1(

4
1)1)(1(

4
1

322

4321

ξηηη

ηξηξηξηξ

+
⎟
⎠
⎞

⎜
⎝
⎛ +−−−+

+−++++−++−−=

XXx

XXXXx

 (2.5)

 35

Fig. 2.19. A Quadrilateral with a Curved Side.

Clearly, the first four terms in this expression are the linear mapping terms of

Equation(2.2). The fifth term is the product of two functions. One function, the bracketed

expression, represents the difference between x2(η) and the x-coordinates of the chord

that connects points (X2, Y2) and (X3, Y3).

The other function is the linear blending function (1+ξ)/2, which is unity along side 2 and

zero along side 4. In this case, it can be claimed that:

2
1)()1)(1(

4
1)1)(1(

4
1

241
ξηηξηξ +

++−+−−= xXXx (2.6)

Similarly:

2
1)()1)(1(

4
1)1)(1(

4
1

241
ξηηξηξ +

++−+−−= yYYy (2.7)

In the general case, all sides may be curved. The curved sides can be written in the

parametric form:

)4,3,2,1(,1 1-),(),(=≤≤== iyyxx ii ξξξ (2.8)

where the subscripts represent the side numbers of the standard element. In this case, the

mapping functions are:

 36

4321

4321

)1)(1(
4
1)1)(1(

4
1)1)(1(

4
1)1)(1(

)()1(
2
1)()1(

2
1)()1(

2
1)()1(

2
1

XXXX

xxxxx

ηξηξηξηξ

ηξξηηξξη

+−−++−−+−−−−

−+++++−=

 (2.9)

where X1, X2, X3, X4 are the global x-coordinates of the four nodes of the quadrilateral

element. Similarly, denoting the global y-coordinates by Yi (i = 1,2,3,4):

4321

4321

)1)(1(
4
1)1)(1(

4
1)1)(1(

4
1)1)(1(

)()1(
2
1)()1(

2
1)()1(

2
1)()1(

2
1

YYYY

yyyyy

ηξηξηξηξ

ηξξηηξξη

+−−++−−+−−−−

−+++++−=

 (2.10)

The inverse mapping, that is ξ = Qξ
(k)(x, y), η = Qη

(k)(x, y) cannot be given explicitly in

general. However, (ξ, η) can be computed very efficiently for any given (x, y) by means

of the Newton-Raphson method or a similar procedure. The quadratic (iso)parametric

mapping, which is the commonly used mapping in finite element analysis, can be viewed

as a special application of the blending function method in which the sides are

represented by quadratic polynomial functions.

2.6.1.4. Bézier curves

Bézier curves are named after their inventor, Pierre Bézier, who was an engineer with the

Renault car company and set out a curve formulation in the early 1960s which would lend

itself to shape design. Engineers find it most understandable to think of Bézier curves in

terms of the center of mass of a set of point masses. For example, consider the four

masses m0, m1, m2, and m3 located at points P0, P1, P2, P3. The center of mass of these four

point masses is given by the equation

3210

33221100

mmmm
mmmm

+++
+++

=
PPPP

P (2.11)

 37

Next, imagine that instead of being fixed, constant values, each mass varies as a function

of some parameter t. Specifically, let m0 = (1- t)3, m1 = 3t(1- t)2, m2 = 3t2(1- t), and m3 = t3.

The values of these masses as a function of t are shown in Fig. 2.20.

Fig. 2.20. Cubic Bézier Blending Functions and a Cubic Bézier Curve [76].

Now, for each value of t, the masses assume different weights and their center of mass

changes continuously. In fact, as t varies between 0 and 1, a curve is swept out by the

center of masses. This curve is a cubic Bézier curve – cubic because the mass equations

are cubic polynomials in t. Notice that, for any value of t, m0 + m1 + m2 + m3 = 1, and so

the equation of this Bézier curve can simply be written as P = m0P0 + m1P1 + m2P2 +

m3P3.

It should be noted that when t = 0, m0 = 1 and m1 = m2 = m3 = 0. This forces the curve to

pass through P0. Also, when t = 1, m3 = 1 and m0 = m1 = m2 = 0, thus the curve also passes

through point P3. Furthermore, the curve is tangent to P0 – P1 and P3 – P2. These

properties make Bézier curves an intuitively meaningful means for describing free-form

shapes. Here are some other examples of cubic Bézier curves, which illustrate these

properties. These variable masses mi are normally called blending functions and their

locations Pi are known as control points or Bézier points. If straight lines between

adjacent control points are drawn, as in a dot to dot puzzle, the resulting figure is known

as a control polygon. The blending functions, in the case of Bézier curves, are known as

Bernstein polynomials. Bézier curves of any degree can be defined. Fig. 2.21 shows

sample curves of degree one through four.

 38

Fig. 2.21. Bézier Curves of Various Orders [76].

A degree n Bézier curve has n + 1 control points whose blending functions are denoted

Bi
n(t), where

nitt
i
n

B iinn
i ,...,1,0 ,)1(=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= − (2.12)

In the introductory example, n = 3 and m0 = B0
3 = (1- t)3, m1 = B1

3= 3t(1- t)2, m2 = B2
3=

3t2(1- t), and m3 = B3
3 = t3. Bi

n(t) is also referred to as the ith Bernstein polynomial of

degree n. The equation of a Bézier curve is thus:

∑
=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

i
i

iin tt
i
n

t
0

)1()(PP (2.13)

In summary, advantageous properties of Bézier polynomials can be listed as follows:

o They can be as high a degree as desired

o Convex hull provides smoother and more controllable approximation

o Better properties to allow more efficient intersection checks

o Derivatives and products of Béziers are also Béziers

o Efficient algorithms for degree elevation and subdivision can be found

2.6.2. Extension of Mesh Quality in Curvilinear Elements

To the author’s knowledge, several research about the extension of mesh quality metrics

to curvilinear elements have ended up with the conclusion that for mesh validity is more

 39

important than mesh quality for such elements. There is not much published work about

this subject, but Dey et al [77] proposed a procedure about curvilinear mesh generation.

In this work, they start with linear mesh generation, improve its quality with available

metrics, then curvilinearize the mesh as long as it remains valid (according to some

validity constraint). The details are given in the following subsections.

2.6.2.1. Validity Rather Than Quality

The validity check is performed by means of the Jacobian. This means that:

i. as long as the corresponding linear mesh is of high quality;

ii. and the Jacobian inside the elements after curvilinearization is > 0

everywhere inside the element [77];

then the curvilinear mesh can be used with confidence. Naturally, there is no method to

check the Jacobian everywhere inside the element. Traditional validation methods test the

Jacobian at integration points. Increasing the check points require more CPU time, but

certainly increases level of confidence.

Recently Luo et al [78] extended the validity to Bézier Curves and Regions.

o Jacobian is related to the region control points; and its minimum bound is determined

o A region is claimed to be valid globally if the minimum control point of the Jacobian

determinant function is > 0

In this work, Luo et al [78] also listed the reasons for using “validity” rather than

“additional quality” for curvilinear mesh:

o Past being valid, quality of curved mesh is not dictated by a-priori geometric

measures

o Maximization of minimum element Jacobians is not likely to be superior to other

options

o Even the mesh hardly passing the validation produces not too bad results

o A-priori quality metrics for curved elements are hard to define

o Adaptation based on the solution is more feasible

 40

2.6.2.2. Effects of Element Distortion and Jacobian

Although the isoparametric elements are usually successful in representing the curved

shapes, there is a limitation to the curvature, or namely to the element shape. In this

section, the reason for the Jacobian based validity check is clarified with an example.

For simplicity, consider the one dimensional case, a quadratic isoparametric line element

extending from 0 to h in x-coordinate system. As usual, the element is transformed to a

unit element in ξ-coordinate system. The relation between x and ξ can be easily shown as

2)21(2)14()(ξξξ ahahx −+−= (2.14)

and the two coordinates have derivatives related by

ξ
ξ

)21(4)14(ahahx −+−=
∂
∂ (2.15)

The Jacobian of the transformation is the inverse relation, that is

x
J

∂
∂= ξ

 (2.16)

The mathematical principles require the Jacobian to be positive definite. Distortion of the

elements can cause J to go to zero or become negative. This possibility is easily seen in

the present 1-D example. If one locates the interior (ξ = 1/2) node at the standard

midpoint position, then a = 1/2 so that ∂x / ∂ξ = h and J is constant throughout the

element. Such an element is generally well formulated.

However, if the interior node is distorted to any other position, the Jacobian will not be

constant and the accuracy of the element may suffer. Generally, there will be points

where ∂x / ∂ξ goes to zero, so that the stiffness becomes singular due to division by zero.

 41

For slightly distorted elements, say 0.4 < a < 0.6, the singular points lie outside the

element domain. As the distortion increases, the singularities move to the element

boundary, e.g., a = 1/4 or a = 3/4. Eventually, the distortions cause singularities of J

inside the element. Such situations can cause poor stiffness matrices and very bad

estimates, unless the true solution has the same singularity. In that special case these

distorted elements are known as the quarter point element. The effects of distortions of

two- or three-dimensional elements are similar. For example, the edge of a quadratic

element may have the non-corner node displaced in a similar way, or it may be moved

normal to the line between the corners. Similar analytic singularities can be developed for

such elements. However, the presence of singularities due to element distortions can

easily be checked by numerical experiments, as stated in the previous subsection.

 42

CHAPTER 3

HEXAHEDRAL EDGE ELEMENTS

3.1. Differential Forms and Algebraic Manifolds

This section is focused on concepts which are necessary to understand for the concept of

edge elements; such as differential forms and manifolds.

A differential form is by definition any quantity that can be integrated, including

differentials. In 1844, Hermann Günter Grassmann published his book Die lineale

Ausdehnungslehre, ein neuer Zweig der Mathematik [79], in which he developed the idea

of algebra in which the symbols representing geometric entities such as points, lines and

planes are manipulated using certain rules. Grassmann introduced what is now called

exterior algebra, based upon the exterior product. In the early 1900's, Elie Cartan

developed an exterior calculus of differential forms. Since that time, differential forms

have received widespread use in the physics and mathematics communities for many

problems, including electrodynamics. After its early introduction into the engineering

community by Deschamps [80], Engle [81], Baldomir [82] and others, the calculus of

differential forms has been used in applications to numerical methods, boundary

conditions, Green's functions, and anisotropic media.

Differential forms are a subset of a larger subject in mathematics called geometric

calculus. The main concept of geometric calculus is its emphasis on the geometric

interpretation of vectors, differential operators and all of the other ideas that combine to

form a calculus. Both differential forms and geometric calculus are reinterpretations of

 43

vector calculus for metric free and higher order geometries. These concepts are useful in

areas such as space time physics but can also be leveraged for use in described linear

wave equations. The metric free nature of differential forms allows the construction of

differential operators, gradient (∇), divergence (∇⋅) and curl (∇×) that are independent of

the coordinate system. The importance of this property becomes apparent in the

formulations.

The differential forms calculus is based on the concept of four entities called p-forms in

three-dimensional space. The 0-form and 3-form are both scalar quantities in curvilinear

geometry while the 1-form and 2-form are vector quantities in curvilinear geometry. The

differential form takes a p-dimensional vector and gives a number. More information on

differential forms can be found in the text by Burke [83].

To discuss differential forms, manifolds and their properties must first be discussed.

Manifolds are descriptions of space which may be curved and have complicated

topology; but they are spaces in which every point has a neighborhood resembling

Euclidean space (i.e. Rn, the set of n-tuples (x1, x2, …, xn)). Locally manifolds look like

Euclidean space and a general manifold is built by creating a set of locally Euclidean

regions.

A simple example of manifolds is the surface of a sphere. The sum of the angles of a

triangle is not exactly equal to 180° if the triangle is drawn on the surface of the sphere.

Although the surface of the sphere is not a Euclidean space, locally the laws of the

Euclidean geometry are good approximations (especially when the sphere is large, and

the triangle is small).

On a manifold, structures such as vector, tangent and cotangent spaces can be created.

Vector spaces are the set of vectors defined over a manifold and a tangent space is the set

of all vectors at a single point three dimensional space. In R3 a basis for the vector space

of curvilinear coordinates can be defined by the vector (x1, x2, x3).

 44

At every point y ∈ R3, a space of tangent vectors can be written by using the standard

basis
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

∂
∂

∂
∂

321
,,

xxx
.

At every point y ∈ R3, a space of cotangent vectors can be written by using the standard

basis {dx1, dx2, dx3}.

The 0-form takes a zero-dimensional vector, a point, and returns a scalar which

corresponds to the evaluation of the scalar function at that point. These entities are useful

for describing physical quantities that are continuous across a material interface such as

potentials. Electric potential is a 0-form quantity.

1-forms correspond to quantities with tangential continuity across a material interface

such as the electric field. Each component of a 1-form is a 0-form.

The 2-forms have normal continuity and represent fluxes such as the magnetic flux

density.

The 3-forms are defined within a specific volume and therefore have no imposed

continuity between adjacent volumes which allows them to represent discontinuous fields

such as charge density.

More definitions and details can be found in Koning’s thesis [84]; Warnick and Russer’s

[85] or Tonti’s [86] works. As a summary, Table 3.2 lists the p-forms, their features; and

which important quantities of electromagnetics belong to which class.

As can be understood, p-forms also construct Hilbert spaces (in fact Sobolev spaces)

where the relevant discussion is given in the following section.

 45

3.2. Hilbert Spaces Related to Electromagnetic Quantities

Let Ω be a conducting domain of interest; and Γ be its boundary. The symbols L2(Ω) and

L2(Ω) denote the spaces of all square integrable scalar and vector functions on Ω

respectively. As usual, n denotes the normal vector outward Γ.

The vector spaces H0(Ω,grad), H0(Ω,curl), H0(Ω,div) can be defined as:

{ }ΓΩHΩH on 0)grad,()grad,(0 =∈= φφ (3.1)

{ }ΓΩHΩH on 0)curl,()curl,(0 =×∈= nuu (3.2)

{ }ΓΩHΩH on 0)div,()div,(0 =⋅∈= nuu (3.3)

where

{ })()()grad,(22 ΩLΩLΩH ∈∇∈= φφ (3.4)

{ })()()curl,(22 ΩΩΩH LuLu ∈×∇∈= (3.5)

{ })()()div,(22 ΩLΩΩH ∈⋅∇∈= uLu (3.6)

With this information, the domains and ranges of the differential operators can be listed

as in Table 3.1.

Table 3.1. Domains and Ranges of Differential Operators.

 Domain

 H(Ω,grad) H(Ω,curl) H(Ω,div) L2(Ω)

H(Ω,grad) ∇.

H(Ω,curl) ∇ ∇×

H(Ω,div) ∇× ∇
Range

L2(Ω) ∇.

 46

The four Hilbert spaces H(Ω,grad), H(Ω,curl), H(Ω,div), L2(Ω) and the three operators ∇,

∇× and ∇. form a de Rham complex2 relative to Γ. The dual complex can be introduced

by using the adjoint differential operators ∇*, (∇×)* and (∇.)*.

)()div,()curl,()grad,(2 ΩLΩHΩHΩH ⎯⎯→⎯ ⋅∇⎯⎯ →⎯ ×∇⎯→⎯∇ (3.7)

The importance of this property stems from the fact that Maxwell’s equations can be

described in terms of a Tonti [86] diagram built up on this complex as seen in Fig. 3.1.

Fig. 3.1. Tonti Diagram of Maxwell’s Equations.

Combining the definitions of the Hilbert spaces and the differential forms, we can list the

properties of significant quantities of the electromagnetic theory as in Table 3.2.

2 In mathematics, the de Rham complex is the cochain complex of exterior differential forms on
some smooth manifold, with the exterior derivative as differential.

 47

Table 3.2. Properties of the p-forms.

 0-form 1-form 2-form 3-form

Minimum

Continuity

Total Tangential Normal None

Integral Point Line Surface Volume

Derivative Grad Curl Div None

Physical Types Scalar

Potentials

Fields,

Vector

Potentials

Fluxes,

Vector

Densities

Scalar

Densities

Specific Examples φ A, E, H B, D, J ρ

Hilbert Space H(Ω,grad) H(Ω,curl) H(Ω,div) L2(Ω)

For the classical Finite Element Method, the nodal elements are used in order to calculate

the scalar quantities. In more general sense, this type of element correspond to 0-form

element for H(Ω,grad), which is shown in Fig. 3.2.

In 1986, Nédélec put the idea of a finite element to represent vector quantities belonging

to H(Ω,curl); which has been popularly known as edge elements since then [87]. This

type of element correspond to 1-form element for H(Ω,curl) in Fig. 3.2. They are also

called as H(curl)-conforming elements.

In order to represent the vector quantities belonging to H(Ω,div); Raviart-Thomas [88]

and Brezzi-Douglas-Marini [89] have proposed the elements shown in Fig. 3.2. Unlike

the Nédélec element (whose basis functions are defined along the edges); these elements

have their basis functions normal to the element faces. Although Brezzi-Douglas-Marini

element provides more degree of freedom, Raviart-Thomas element is more frequently

used. These elements are facet elements, but usually miscalled as edge elements. They

can be classified as H(div)-conforming elements.

 48

Finally, in order to represent the scalar quantities belonging to L2(Ω), required element

type is certainly a volume element illustrated in Fig. 3.2. These elements are again usually

miscalled as nodal elements.

Fig. 3.2. Hexahedral Elements for H(Ω,grad), H(Ω,curl), H(Ω,div) and L2(Ω) (For
simplicity, elements of their first kinds are shown).

3.3. General Idea of Edge Elements

To present the main ideas associated with the edge elements, consider the hypothetical

rectangular edge element shown in Fig. 3.3. Suppose that the vector variable A has to be

defined on this rectangular element as follows:

∑
=

=
4

1
),(

i
ii Ayx wA (3.8)

where wi is the shape function related to one of the four edges (i.e. the ith edge) of the

element.

 49

Fig. 3.3. A Rectangular Edge Element.

The shape functions of the element are

⎥⎦
⎤

⎢⎣
⎡ −=⎥

⎦

⎤
⎢
⎣

⎡
=⎥⎦

⎤
⎢⎣
⎡=⎥

⎦

⎤
⎢
⎣

⎡
−=

xyxy l
x

l
y

l
x

l
y 1,,,1 4321 jwiwjwiw (3.9)

We note that these shape functions have a direction (i or j depending on the edge) and

also an expression depending on position.

Suppose that we need to obtain A at the centroid of the element (x = lx / 2, y = ly / 2).

Applying these conditions to the shape functions, we obtain

2/1,2/1,2/1,2/1 4321 jwiwjwiw ==== (3.10)

The value of A is, therefore,

.2/2/2/2/)2/,2/(4321 AAAAll yx jijiA +++= (3.11)

The remaining question is the meanings of A1, A2, A3, and A4. To see this, take for

example, y = 0. In this case we find the x component of A, namely Ax as

1)0,(AxAx = (3.12)

O

l y

lx
x

y

1

3

4 2

 50

which means that A1 is the projection of the vector field A on edge 1. Similarly, A3 is the

projection of the vector field A on edge 3. As y varies from 0 to ly, the contribution of A1

decreases and that of A3 increases. Similarly, as x varies from 0 to lx, the contribution of

A2 decreases and that of A4 increases.

This example is a simple case in order to describe the idea of edge elements as vector

elements. For arbitrarily shaped elements where the edges are in a direction not parallel to

the Cartesian coordinate axes, the derivations may be more complicated.

3.4. The Linear and Quadratic Hexahedral Edge (van Welij’s and

Kameari’s) Elements

A linear hexahedral edge element, which was defined by van Welij [90] with its 8 nodes

and 12 edges, is illustrated in Fig. 3.4. Each hexahedral element can be defined in the

local uvp coordinate system; and the coordinates u, v, and p range from -1 to 1 for each

element. The vector basis functions (for the edges in u direction) for the linear edge

elements can be written as follows:

uppvv iii ∇++=)1()1(
8
1w (3.13)

where, vi = ±1 and pi = ±1, which are the v and p coordinates of the ith edge respectively.

Basis functions for the edges in v and p directions can be found similarly.

Kameari’s quadratic hexahedral edge element [91], with 20 nodes and 36 edges, is

illustrated in Fig. 3.5. Again, for the local uvp coordinate system; the coordinates u, v,

and p range from -1 to 1 for each element. The additional 12 nodes are defined close to

the middle of physical edges of element. In each direction there are 12 edges, 8 of which

are defined on the physical edges of the element, and the remaining 4 are defined on the

surfaces.

 51

Fig. 3.4. a) Linear hexahedral element in xyz-space; b) Linear hexahedral element
transformed to uvp-space with its 12 edges shown.

The vector basis functions (for the edges in u direction) for the quadratic edge elements

can be written as:

uppvvuuppvv iiiiii ∇−++++=)1)(1()1(
8
1w (3.14)

for the edges defined on the physical edges of the element, and

uvpp ii ∇−+=)1)(1(
4
1 2w (3.15)

for the edges defined on the surfaces. In equations (3.14) and (3.15), ui = ±1/2, vi = ±1

and pi = ±1, which are the center point coordinates of ith edge. Basis functions for the

edges in v and p directions can be found similarly.

 52

Fig. 3.5. a) Quadratic hexahedral element in xyz-space; b) Quadratic hexahedral element
transformed to uvp-space with its 12 edges along u shown.

Physically, the values represented at each edge can be considered as the circulation (not

exactly the projection) of the unknown vector function along that edge. In other words, a

vector function A is expressed in terms of the basis functions as:

∑
=

=
k

i
iii Alzyx

1
),,(wA (3.16)

where k = 12 and 36 for linear and quadratic elements respectively. li, which is the length

of an edge in uvp-space, is equal to 2 for all edges in case of linear elements. On the other

hand, for the quadratic elements li = 1 for the edges defined on the physical edges of the

element and li = 2 for the edges defined on the surfaces.

3.5. Hierarchical Finite Element Methods

In the finite element method, the discretization can be controlled two ways:

i) by varying the number of elements and/or

ii) by varying the polynomial order used to describe the displacements and the

coordinates in the elements.

Note that the “h” in the terms “h-elements”, “h-version”, and “h-extension” refers to the

length, width or height of the smallest element in the mesh. The “p” in the terms “p-

elements”, “p-version”, “p-level”, and “p-extension” refers to the maximum polynomial

order “p” of the elements in the mesh.

 53

What is an extension? Extensions are step by step changes in the FEM discretization (the

mesh) that cause the number of degrees-of-freedom (DOFs) to increase at each step, with

the goal of reducing numerical error in the solution.

Reduction of error can be accomplished by using any of these three extension techniques:

• In the ‘h-version,” the extension is carried out by increasing the number or

density of the finite elements while holding the polynomial order constant

• In the “p-version,” the extension is carried out by increasing the polynomial level

in the finite elements while maintaining the number and density of elements

constant

• If the extension is carried out by increasing both the polynomial level and the

number or density of elements in the mesh, the version is called the “hp-version.”

It turns out that the “hp-version” is the most efficient.

A general assessment and comparison of all techniques are given in Table 3.3.

Hierarchical elements are usually confused with Lagrange elements, which is another

method for increasing the degree of freedom. In [92], Karanam clearly distinguished them

as seen in Table 3.4.

Table 3.3. Comparison of p, h, and hp-versions.

p-version h-version hp-version

Error controlled with
polynomial level

Error controlled with
number of elements

Error controlled with
number of elements and
polynomial level

Good numerical
convergence for high order
elements

Inferior numerical
convergence (at best,
quadratic)

Superior numerical
convergence (exponential)

Hierarchic shape functions
allows more accurate
mapping of geometry
shapes such as circles

Geometry shapes are
mapped with quadratic
functions

Hierarchic shape functions
allows more accurate
mapping of geometry
shapes such as circles

Polynomial level in the
elements can be variable

Polynomial level in the
elements fixed, and
restricted to linear (p=1) or
quadratic (p=2)

Polynomial level can be
variable; element grading
recommended

 54

Table 3.4. Comparison of Hierarchical and Lagrange Elements.

 Hierarchical Elements Lagrange Type Elements
Number of Basis
Functions

For a hierarchical element with m
nodes, the number of required
basis functions is calculated by
cumulating the number of
necessary modes. This number is
≥ m.

For a Lagrange Type element
of order m, the number of
required basis functions is
exactly m.

Basis Function
Order

For a hierarchical element of
order n, polynomial basis
functions are of different orders
(≤ n).

For a Lagrange type element
of order n, all polynomial
basis functions are of order n.

Basis Function
Dependency

The basis functions of an
hierarchical element of order n is
a subset of the basis functions of
an hierarchical element of higher
order (i.e. It is easy and
straightforward to increase the
order and define higher order
elements).

The basis functions of
Lagrange Type elements of
order n and m are totally
independent if n ≠ m.

Interpolation
Properties

Basis function coefficients are
actually related to higher order
moments of the solution and its
derivatives.

Basis function coefficients
correspond to solution values
at specific spatial locations.

Orientation Definition of the basis functions
depend on edge and face
orientation.

Definition of the basis
functions do not depend on
edge and face orientation.

3.6. General Formulation of p-Hierarchical Hexahedral Edge Elements

There are three requirements for vector functions defined on a hierarchic edge element,

i.e. they should be:

i) tangentially continuous,

ii) hierarchic (i.e. the lower polynomial order terms are used to construct the higher

order polynomial terms), and

iii) H(curl) conforming.

 55

A general formulation for construction of these functions for tetrahedral and hexahedral

elements is given by Wang [93]. According to this paper, the p-hierarchic hexahedral

element is defined as follows. For the general formulation of p-hierarchic hexahedral

elements, we start with the 20-noded isoparametric mapping

∑
=

=
20

1
),,(

j
jjN rr ζηξ (3.17)

where (ξ,η,ζ) (pronounced xi, eta, zeta) are local coordinates and Nj’s are shape

functions. Based on the mapping, the unitary triple vectors can be defined:

ζηξ ζηξ ∂
∂=

∂
∂=

∂
∂= rarara ,, (3.18)

These vectors correspond to an oblique coordinate system as shown in Fig. 3.6. The

gradient vectors along the three local coordinates can be easily found as:

ηξξζζη ζηξ aaaaaa ×=∇×=∇×=∇
JJJ
1,1,1 (3.19)

where J is the Jacobian determinant given by J = (aξ . aη × aζ).

These gradient vectors naturally serve as the basis for edge elements since the tangential

continuity requirement (i) can be easily met.

 56

1
2

3

4

56

7
8

Fig. 3.6. A Hexahedral Element in an Orthogonal Coordinate System.

The family of hierarchic shape functions has initially been defined by Szabo and Babuška

in [94]. For a pth order element:

1) There are 8 node modes given by:

.),1)(1)(1(
8
1)1(etcN ζηξ −−−= (3.20)

2) There are (p-1) edge modes on each edge for p≥2. For edge (1,2) in Fig. 3.6,

these are

),()1)(1(
4
1

1
)1(ξφζη −−−= p

p
eN (3.21)

where

∫
−

−=
ξ

ξφ
1

)(
2

12)(dttPi
ii (3.22)

 57

and Pi(t) is the Legendre polynomial (see Fig. 3.7) of order i, which can be expressed

by means of Rodrigues rotation formula3 as:

[]i
i

i

ii t
dt
d

i
tP)1(

!2
1)(2 −= (3.23)

3) There are (p-2) (p-3)/2 face modes on each face for p≥4. For face (1,2,3,4) in Fig.

3.6, these are given by:

)()()1(
2
1)1(ηφξφζ ji

p
fN −= (3.24)

4) There are (p-3) (p-4) (p-5)/6 body modes on each face for p≥6. These are given

by:

)()()()1(ζφηφξφ kji
p

bN = (3.25)

Using these hierarchic functions, the requirement (ii) is met. To meet the requirement

(iii), the polynomial order associated with ∇ξ is picked less one in ξ as compared to η

and ζ. The construction for a pth order (Hp-1(curl) conforming) elements is given as

follows:

1. There is one vector function per edge for p=1. For edge (1,2) it is given by

ξζη ∇−−=)1)(1(
4
1)1(

eW (3.26)

This is nothing but van Welij’s element [90].

3 More generally, Legendre polynomials are the solutions to the Legendre differential equation:

0)()1()()1(2 =++⎥⎦
⎤

⎢⎣
⎡ − tPiitP

dt
dt

dt
d .

 58

Fig. 3.7. Legendre Polynomials of Order 0 to 5 Plotted between -1 and 1.

2. There are two vector modes per edge associated with corner node functions for

p≥2. These are:

ξξ ∇=∇=)2()2()1()1(, NN ee WW (3.27)

Setting p=2, we obtain exactly the Kameari’s element [91].

3. There are (p-2) tangential vector functions per edge associated with edge modes

for p≥3. For edge (1,2), it is given by:

ξ∇=)1()1(p
e

p
e NW (3.28)

4. There are 2(p-1) vector functions per face associated with edge functions (normal

to edges) for p≥2. For face (1,2,3,4) in Fig. 3.6, these are given by:

ξηφζηξφζ ∇−=∇−= −−)()1(
2
1,)()1(

2
1

1
)2(

1
)1(

n
N

fn
N

f WW (3.29)

 59

5. There are two vector functions for each face mode. For face (1,2,3,4) in Fig. 3.6,

these are given by:

ηξ ∇=∇=)1()2()1()1(, p
f

p
f

p
f

p
f NN WW (3.30)

6. There are 3(p-1) vector functions per element associated with face modes (normal

to faces for p≥4. These are:

.)()(

,)()(

,)()(

)3(

)2(

)1(

ζηφξφ

ηζφξφ

ξζφηφ

∇=

∇=

∇=

ii
N

b

ii
N

b

ii
N

b

W

W

W

 (3.31)

7. There are three vector functions for each body mode. These are given by

ζηξ ∇=∇=∇=)1()3()1()2()1()1(,, p
b

p
b

p
b

p
b

p
b

p
b NNN WWW (3.32)

Setting p=2 in above equations, we obtain exactly the Kameari’s element [91].

More interesting fact is that, both van Welij and Kameari defined their elements (linear

and quadratic respectively) intuitively by using the completeness condition and tangential

continuity; much before these general rules for p-hierarchic elements were defined.

One of the key factors in the p-hierarchic element construction is the usage of Legendre

polynomials, which is an orthogonal polynomial family. Fig. 3.7 shows the interpolation

properties of Legendre polynomials of different orders.

Recently, Zaglmayr [95] defined a more general framework to define p-hierarchic

quadrilateral, triangular, tetrahedral, hexahedral and prismatic H(Ω,curl) and H(Ω,div)

elements. In this work, although not shown and verified explicitly, it is claimed that other

orthogonal polynomial families, such as Gegenbauer, Hermite, or Jacobi, might also be

used for similar purpose.

 60

CHAPTER 4

FINITE ELEMENT FORMULATION OF

ELECTROMAGNETIC SCATTERING PROBLEMS

4.1. Weak Formulation of the Electric Field

The most general three-dimensional electromagnetic scattering problem can be stated as

an electromagnetic wave (Einc, Hinc) with any type of polarization at any frequency,

incident on a scattering material of arbitrary material properties and shape occupying a

volume Ωint. This geometry is illustrated in Fig. 4.1, where Ωext is the exterior domain

outside the scatterer. Ω = Ωint ∪ Ωext is the computational domain. S(Ω) is the boundary

of Ωint.

Starting from the Maxwell’s equations in differential form we have

tottot HE rj µωµ0−=×∇ (4.1)

tottot EH rj εωε 0=×∇ (4.2)

where the total fields Etot and Htot are the sum of the incident and the scattered fields (i.e.

Etot = Einc + Esct and Htot = Hinc + Hsct) and it is assumed that the materials are isotropic

but inhomogenous with the relative permittivity εr and permeability µr. In Ωext, εr and µr

are assumed to be unity.

 61

int

ext

S

Einc

Fig. 4.1. Scattering material enclosed by S(Ω) and an incident wave Einc.

Substituting Equation (4.2) into Equation (4.1) we get the wave equation as

01 2
0 =−×∇×∇ tottot EE r

r
k ε

µ
 (4.3)

subject to a given set of boundary conditions on the surface S(Ω). Choosing a vector-

valued function ϕ defined on Ω, the inner product of Equation (4.3) with ϕ gives

() 01 2
0 =Ω⋅−Ω⋅⎟

⎠
⎞

⎜
⎝
⎛ ×∇×∇ ∫∫

ΩΩ

dkd r
r

ϕεϕ
µ

tottot EE (4.4)

To reduce this integral representation to a simplified form, we utilize the following vector

identities for any arbitrary vector functions P and Q:

() () ()∫∫∫ ΩΩΩ
Ω×⋅∇+Ω×∇⋅=Ω⋅×∇ ~~~ ddd QPQPQP (4.5)

() ()∫∫ ΩΩ
⋅×=Ω×⋅∇

)~(~ S
dd sQPQP (4.6)

 62

where Ω~ is a domain enclosed by)~(ΩS .Using Equation (4.5) and Equation (4.6) and

assuming that Ωint is occupied by a perfectly conducting scatterer we obtain the following

weak form:

() () () 02
0

)(

=Ω⋅−⋅××∇−Ω×∇⋅×∇ ∫∫∫
ΩΩΩ

dkdd
extSext

ϕϕϕ tottottot EsEE (4.7)

The surface integral term vanishes because of the boundary condition on the surface

S(Ω).

0=× totEn (4.8)

Since the total electric field vanishes in Ωint we obtain the following weak form for the

scattered field Esct

incsct EE −= in Ωint (4.9)

() () () 02
0 =Ω⋅−Ω×∇⋅×∇ ∫∫

ΩΩ

dkd
extext

ϕϕ sctsct EE (4.10)

If the material is a dielectric with relative permittivity εr, we have the following weak

form

() () ()() Ω⋅−=Ω⋅−Ω×∇⋅⎟
⎠
⎞

⎜
⎝
⎛ ×∇ ∫∫∫

ΩΩΩ

dkdkd rr
r

int

2
0

2
0 11 ϕεϕεϕ

µ
incsctsct EEE

 (4.11)

 63

Or more generally, if the material is a composite structure with relative permittivity εr and

relative permeability µr, then we have the following weak form

() ()

()() Ω⋅−+Ω⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×∇×∇⎟

⎠
⎞

⎜
⎝
⎛ −

=Ω⋅−Ω×∇⋅⎟
⎠
⎞

⎜
⎝
⎛ ×∇

∫∫

∫∫

ΩΩ

ΩΩ

dkd

dkd

r
r

r
r

int

2
0

int

2
0

111

1

ϕεϕ
µ

ϕεϕ
µ

incinc

sctsct

EE

EE
 (4.12)

4.2. Mesh Generation

The mesh generation in this thesis depends on the decomposition of the problem to

subdomains so that each subdomain is homeomorphic (topologically equivalent) to a

rectangular prism. Each subdomain is divided to hexahedra with the constraint that

adjacent subdomains will have equivalent quadrilateral surface meshes in order to

preserve mesh continuity.

Details about the implementation of the domain decomposition and hexahedral mesh

generation (together with the constraints) are given in Appendix C.

4.3. Mesh Quality Improvement

In this thesis, optimization based hexahedral mesh smoothing was applied. The objective

function was chosen to be depending on a condition number based metric; and Particle

Swarm Optimization was applied for smoothing. Effect of smoothing on solution

accuracy was also investigated. Theoretical and implementation level details are given in

Appendix D.

4.4. Mesh Truncation

The concept of using a lossy material to absorb an outgoing wave to simulate an infinite

region of free space for finite methods is not a new one [96]. However, this method of

truncation has not gained widespread use because of the reflections, which occur at the

free space/material interface. One idea to minimize the reflections at this interface is to

 64

choose a low loss absorbing material. Unfortunately, the lossy region must be sufficiently

large to attenuate the wave. This can significantly reduce the computational efficiency.

Berenger [97] introduced a modification to Maxwell’s equations to allow for the

specification of material properties which result in a reflectionless lossy material. The

material is reflectionless in the sense that a plane wave propagating through an infinite

free space/material interface has no reflection for all angles of incidence. Berenger refers

to this material as a “perfectly matched layer (PML)”. Although Berenger demonstrates

the validity of his approach with numerical experiments, the physical meaning of his

modifications to the Maxwell’s equations is not very clear. Later, Chew and Weedon [98]

provided a systematic analysis of the PML in terms of the concept of “coordinate

stretching”. They demonstrated that Berenger’s modifications to Maxwell’s equations can

be derived from a more generalized form of Maxwell’s equations employing

complex coordinates.

Later, it has also been discovered by Sacks et al [99] that the reflectionless properties of a

material can be achieved if the material is assumed to be anisotropic. Unlike Berenger’s

approach, this one does not require a modification of Maxwell’s equations, making it

easier to analyze in the general framework of electromagnetics.

4.4.1. Analytical Investigation of PMLs

The ideal PML comprises an anisotropic medium, whose complex permittivity and

permeability matrices are chosen such that it absorbs an arbitrary incident

electromagnetic wave with no reflection. Initially, the PMLs have been designed to

absorb planar electromagnetic waves, of arbitrary frequency and incident angle, that are

incident from free space onto the PML half-space. Later it has been shown by Kuzuoğlu

and Mittra [100] that, under certain conditions, the PMLs can effectively absorb spherical

and cylindrical waves as well.

4.4.1.1. PMLs for Cartesian Coordinate System

A thorough discussion of PMLs suitable for Cartesian geometries has been presented in

[99], where the transmission and reflection characteristics of a planar free-space PML

 65

has been detailed. One begins by dividing the three-dimensional (3D) space into two half-

spaces with free space for z < 0 and an anisotropic medium for z > 0, where z is normal to

the interface. The constitutive parameters of the anisotropic medium are given in terms of

the complex permittivity and permeability tensors

[]

[]z

z

Λ=

Λ=
=

=

0

0

µµ

εε
 (4.13)

and [Λz] is a diagonal matrix defined as

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Λ

−100
00
00

a
a

a

z (4.14)

where

0
1

ωε
σja −= (4.15)

and σ is the constant conductivity of the medium.

For the case where the three-dimensional (3D) space is divided into two half-spaces with

free space for y < 0 and an anisotropic medium for y > 0, where y is normal to the

interface, the constitutive parameters of the anisotropic medium are

[]
[]y

y

Λ=

Λ=
=

=

0

0

µµ

εε
 (4.16)

where

 66

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Λ −

a
a

a

y

00
00
00

1 (4.17)

Similarly, by dividing the three-dimensional (3-D) space into two half-spaces with free

space for x < 0 and an anisotropic medium for x > 0, where y is normal to the interface,

the constitutive parameters of the anisotropic medium are obtained as

[]

[]x

x

Λ=

Λ=
=

=

0

0

µµ

εε
 (4.18)

where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=Λ

−

a
a

a

x

00
00
001

 (4.19)

In this work, the coordinate stretching technique is used. In the coordinate stretching

technique, the spatial variable u is replaced by the complex spatial variable u’ given by

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

k
jujuu α

ωε
σ 11'

0
 (4.20)

assuming that the wave is propagating in the u-direction. The spatial variable u can be

either x, y, or z. The variable α is the parameter determining how fast the field decays

inside the Perfectly Matched Layer.

4.4.1.2. Modelling of Edge and Corner Regions of the PML

The theory for the anisotropic PML is based on the assumption that the plane wave is

propagating through a planar interface of infinite extent as explained above. However, for

the cases where the main interest is to use the PML in order to absorb the scattered

 67

field from a finite object in free space, the PML absorber must totally surround the

scattering material.

Fig. 4.2. Geometry of the PML region surrounding the scatterer.

The PML material is usually placed in the shape of a prism to best approximate the

reflectionless properties of the PML as shown in Fig. 4.2.

The choice for the material properties of the side regions occupied by the PML is

straightforward and the Λx, Λy, Λz matrices above can be used. However, the method for

determining the material properties at the edge and the corner regions of the box is not so

clear.

One approximate approach for the edge region is to choose the edge properties such that

they are perfectly matched to the adjacent side regions when the edge-side interface is of

infinite extent.

Λy

Λx

Λz

Λxy

Λxz

Λyz Λxyz

 68

One can use a similar approach for the corner region by matching the corner properties to

the adjacent edges. If we repeat the corresponding analysis for a plane wave propagating

through an interface for the edges and corners, we arrive the relationship that Λij, which is

the corresponding matrix, is equal to the matrix multiplication of the corresponding

matrices, namely Λi and Λj. Similarly, for the corner regions, Λijk is found to be the

multiplication of Λi, Λj, and Λk.

4.4.1.3. Conformal PMLs

The anisotropic PML has also been realized by applying a complex coordinate

transformation in the direction normal to the PML-free space boundary by Chew et al

[101], which yields the design of conformal PMLs. The approach can be considered and

called as locally conformal PML, since at every point in the PML-free space interface, the

normal vector is considered during the complex coordinate transformation. This approach

is easy to implement and realize.

4.5. Elemental Matrix Construction

In the derivation of the FEM formulation, the weighting function ϕ has been used in the

inner products. To obtain the matrix equation, the weighting function ϕ is chosen to be

identical to the vector basis functions, namely

() () 01 2
0 =Ω⋅−Ω×∇⋅⎟

⎠
⎞

⎜
⎝
⎛ ×∇ ∫∫

ΩΩ

dkd
ext

mr

ext

m
r

wEwE sctsct ε
µ

 (4.21)

The scattered electric field inside an element is also expressed as

 ∑
=

=
12

1
)(

i
ii ErwEsct (4.22)

The left hand side of Equation (4.21) will be the following

 69

() dVEkdVE
ii V

m
n

nnr
V

m
n

nn
r

∫ ∑∫ ∑ ⋅⎟
⎠

⎞
⎜
⎝

⎛
−×∇⋅⎟

⎠

⎞
⎜
⎝

⎛
×∇

==

wwww
12

1

2
0

12

1

1 ε
µ

 (4.23)

where Vi is the volume of the ith element. This implies that for an element, a generic term

of the elemental matrix E is given as

() () dVkdVnmE
ii V

mnr
V

mn
r

∫∫ ⋅−×∇⋅⎟
⎠
⎞

⎜
⎝
⎛ ×∇= wwww ε

µ
2
0

1),((4.24)

Similarly, a generic term for the right hand side matrix R of the corresponding element

will be

()() dVkmR
iV

mr∫ ⋅−= wEinc1)1,(2
0 ε (4.25)

where εr is the relative permittivity of the medium.

As shown in the previous section, the remaining problem is to carry out the integration in

the elemental matrix term. Since the shape functions are sufficiently smooth, a low order

Gaussian Integration scheme is assumed to be accurate for this purpose. By using

Gaussian Integration, Equation (4.24) becomes

() ()()

()() ()iiimiiinri

G

iiimiiin
r

i

pvupvukW

N

i
pvupvuWnmE

,,,,
1

,,,,1),(

2
0 ww

ww

⋅−
=

×∇⋅⎟
⎠
⎞

⎜
⎝
⎛ ×∇= ∑

ε

µ (4.26)

where NG is the number of Gaussian integration points inside an element, (ui, vi, pi) are

the possible NG combinations of the Gaussian integration points, and Wi’s are the

weightings of the corresponding points. Details about the Gaussian quadrature are given

in the following sub-section.

 70

4.5.1. Gaussian Quadrature

The integral is computed by means of n-point Gaussian quadrature4, which can be

described as follows. For an arbitrary function f(x),

∫ ∑
− =

≅
1

1 1

)()(
n

i
ii xfwdxxf (4.27)

where the evaluation points and the weights are defined as in Table 4.1. It can be shown

that the evaluation points are just the roots of a polynomial belonging to a class of

orthogonal polynomials; and the values in Table 4.1 are the roots of Legendre

polynomials.

Table 4.1. Gaussian Quadrature Evaluation Points and Their Weights.

Number of

Quadrature Points (n)
Points (xi) Weights (wi)

1 0 2

2 3/1± 1

0 8/9
3

5/3± 5/9

±0.339981044 0.652145155
4

±0.861136312 0.347854845

0 0.568889

±0.538469 0.478629 5

±0.906180 0.236927

4 In numerical analysis, a quadrature rule is an approximation of the definite integral of a function,
usually stated as a weighted sum of function values at specified points within the domain of
integration.

 71

Increasing the number n will increase the accuracy of the integration. Certainly, the rule

described above can be generalized to any arbitrary interval [a,b] different than [-1,1].

∫ ∑
=

++−−≅
b

a

n

i
ii

abxabfwabdxxf
1

)
22

(
2

)((4.28)

For double and triple integrals, all combinations of the Gaussian quadrature evaluation

points and their multiplied weights should be considered in the summation.

Recently another quadrature, Clenshaw-Curtis quadrature has become popular. The

quadrature points are calculated from the Chebyshev polynomials. The computation of

the Clenshaw-Curtis quadrature points is computationally cheaper than the computation

of those of Gaussian quadrature; although in terms of accuracy Gaussian is better. In

applications where it is required to compute the points during the run-time, Clenshaw-

Curtis is preferred. In this thesis, since the look-up tables are constructed initially and

loaded to the memory in the compile-time; Gaussian quadrature is used.

4.6. Sparsity and Resource Requirements in the Finite Element Method

4.6.1. Sparse Matrix Storage Schemes

Since the global system matrix is sparse, instead of full storage of complexity O(N2), the

row indexed sparse storage scheme described by Bentley [102] of complexity O(N) is

chosen in this work. The storage scheme is as follows:

To represent a matrix A of dimension N×N, two one-dimensional arrays sa and ija are set.

The former stores the matrix element values in the desired precision, and the latter stores

integer values. The storage rules are listed below:

• The first N locations of sa store the diagonal matrix elements of A in order. This

implies that zero diagonal elements are also stored.

• Each of the first N locations of ija stores the index of the array sa that contains the

first off-diagonal element of the corresponding row of the matrix. If there are no off-

 72

diagonal elements for that row, it is one greater than the index in sa of the most

recently stored element of a previous row.

• Location 1 of ija is always equal to N + 2, which can be used to determine N.

• Location N + 1 of ija is one greater than the index in sa of the last off-diagonal

element of the last row. It can be used to determine the number of nonzero elements

in the matrix, of the number of elements in the arrays sa and ija. Location N + 1 of sa

is not used and can be set arbitrarily.

• Entries in sa at locations ≥ N + 2 contain off-diagonal entries of A, ordered by rows

and, ordered by columns within each row.

• Entries in ija at locations ≥ N + 2 contain the column number of the corresponding

element in sa.

As an example, the following 5×5 matrix

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

5554

45

343332

22

1311

000
0000

00
0000
000

aa
a

aaa
a

aa

A (4.29)

will be stored in the arrays

[]
[]544534321355332211 0

45423121110887
aaaaaxaaaasa

ija
=
=

 (4.30)

Another sparse storage scheme is chosen in this work for the Multifrontal Algorithm. The

same matrix A, will be represented by the arrays

[]
[]

[]555445343332221311

545432231
1087431

aaaaaaaaaa
ja
ia

=
=
=

 (4.31)

 73

4.6.2. Sparsity Issues for p-Hierarchical Quadrilateral Edge Elements

Assume that the computational domain in 2D is divided into N and L segments in x and y

directions respectively, yielding a mesh with totally NL quadrilateral elements as seen in

Fig. 4.3.

Fig. 4.3. An NL-Quadrilateral Element Mesh of a Rectangular Region.

Obviously, the number of resulting unknowns would be different for the same mesh if the

types of the elements (node, edge, facet, or volume) change. Table 4.2 lists the number of

unknowns for the same mesh for each element type where all the elements are assumed to

be linear.

Table 4.2. Numbers of Unknowns for the NL-Quadrilateral Element Mesh.

 Linear

Quadrilateral

Node Element

Linear

Quadrilateral

Edge Element

Linear

Quadrilateral

Facet Element

Linear

Quadrilateral

Volume Element

Number of

Unknowns
)1)(1(++ LN LNNL ++2 LNNL ++2 NL

L

N

 74

Fig. 4.4. A Linear Quadrilateral Edge Element with 4 Nodes and 4 Edges.

A linear quadrilateral edge element is defined with 4 nodes and 4 edges as seen in Fig.

4.4. From Table 4.2, it can be seen that for linear quadrilateral edge elements, the total

number of edges (unknowns) is

LNNLN elementedgeralquadrilatelinear ++= 2___ (4.32)

As seen in Fig. 4.5, topologically, an edge can be shared by two quadrilateral elements

inside a 2D mesh. This means that: for linear quadrilateral edge elements, the global

stiffness matrix will have at most 7 nonzero entries at each row; since the number of total

edges in a 2-element mesh is 7.

Fig. 4.5. An Edge Shared by 2 Linear Quadrilateral Edge Elements.

 75

The sparsity of the global stiffness matrix for the NL-linear quadrilateral edge element

mesh can be calculated as follows (where the sparsity of a matrix is defined as the ratio of

zero entries to the whole):

)2(
71

)2(
)2(71

entries totalofnumber
entries zero ofnumber

2

LNNLLNNL
LNNL

sparsity elementedgeralquadrilatelinear

++
−=

++
++

−=

=
 (4.33)

Fig. 4.6. A Quadratic Quadrilateral Edge Element with 8 Nodes and 10 Edges.

On the other hand, a quadratic quadrilateral edge element is defined with 8 nodes and 10

edges as seen in Fig. 4.6. If the elements in the mesh are quadratic, then the total number

of edges (unknowns) becomes

LNNLN elementedgeralquadrilatequadratic 226___ ++= (4.34)

As seen in Fig. 4.7: for quadratic quadrilateral edge elements, the global stiffness matrix

will have at most 18 nonzero entries at each row; since the number of total edges in a 2-

element mesh is 18.

 76

Fig. 4.7. An Edge Shared by 2 Quadratic Quadrilateral Edge Elements.

Hence, the sparsity of the global stiffness matrix for the NL-quadratic quadrilateral edge

element mesh is:

)226(
181

)226(
)226(181 2___ LNNLLNNL

LNNLsparsity elementedgeralquadrilatequadratic ++
−=

++
++

−=

 (4.35)

As a specific numerical example, let the computational domain be a square of size λ×λ.

i) If linear elements are to be used, the element size should be chosen about 0.1λ

due to accuracy concerns. This means that N = L = 10; which yields 100 elements

and 220 unknowns. For this configuration, the sparsity of the global stiffness

matrix is 1-(7/220) = 0.9682.

ii) If quadratic elements are to be used, the element size should be chosen about

0.33λ due to same accuracy concerns. This means that N = L = 3; which yields 9

elements and 66 unknowns. For this configuration, the sparsity of the global

stiffness matrix is 1-(18/66) = 0.727.

This shows that in p-version finite element analysis, the sparsity of the global stiffness

matrix dramatically decreases with increasing p. This analysis can be expanded for p=3 or

more; and other elements of different shapes and types.

 77

4.6.3. Sparsity Issues for p-Hierarchical Hexahedral Edge Elements

The same steps carried out for quadrilateral elements will be repeated for hexahedral

elements. Again, assume that the computational domain in 3D is divided into N, L and M

segments in x, y and z directions respectively, yielding a mesh with totally NLM

hexahedral elements as seen in Fig. 4.8.

Fig. 4.8. An NLM-Hexahedral Element Mesh of a Rectangular Prismic Region.

Again, the number of resulting unknowns would be different for the same mesh if the

types of the elements (node, edge, facet, or volume) change. Table 4.3 lists the number of

unknowns for the same mesh for each element type where all the elements are assumed to

be linear.

Table 4.3. Numbers of unknowns for the NLM-hexahedral element mesh.

 Number of Unknowns
Linear Hexahedral Node Element)1)(1)(1(+++ MLN
Linear Hexahedral Edge Element)2)(1()1)(1(LNLNMLNM ++++++
Linear Hexahedral Facet Element)2)(1()1)(1(LNLNMLNM ++++++
Linear Hexahedral Volume Element NLM

M

N
L

 78

A linear hexahedral edge (van Welij’s) element is defined with 8 nodes and 8 edges.

From Table 4.3, it can be seen that for van Welij’s elements, the total number of edges

(unknowns) is

)2)(1()1)(1(___ LNLNMLNMN elementedgehexahedrallinear ++++++= (4.36)

As seen in Fig. 4.9, topologically, an edge can be shared by four hexahedral elements

inside a 3D mesh. This means that: for van Welij’s elements, the global stiffness matrix

will have at most 33 nonzero entries at each row; since the number of total edges in a 4-

element mesh is 33.

Fig. 4.9. An Edge Shared by 4 Linear Hexahedral Edge (van Welij’s) Elements.

 79

Hence, the sparsity of the global stiffness matrix for the NLM-van Welij’s element mesh

is:

[]
[]

[])2)(1()1)(1(
331

)2)(1()1)(1(
)2)(1()1)(1(331 2

_'____

LNLNMLNM

LNLNMLNM
LNLNMLNM

sparsitysparsity elementsWelijvanelementedgehexahedrallinear

++++++
−=

++++++
++++++

−=

==

 (4.37)

A quadratic hexahedral edge (Kameari’s) element is defined with 20 nodes and 38 edges.

For Kameari’s elements, it can be calculated the total number of edges (unknowns) is

)226)(1()262(2
___ LNLNMLNNLNMN elementedgehexahedralquadratic ++++++++=

 (4.38)

Since topologically an edge can be shared by four hexahedral elements inside a 3D mesh;

for Kameari’s elements, the global stiffness matrix will have at most 106 nonzero entries

at each row; since the number of total edges in a 4-element mesh is 106 as seen in Fig.

4.10.

Fig. 4.10. An Edge Shared by 4 Quadratic Hexahedral Edge (Kameari’s) Elements.

 80

Hence, the sparsity of the global stiffness matrix for the NLM-Kameari’s element mesh is:

[]
[]

[])226)(1()262(
1061

)226)(1()262(
)226)(1()262(1061

2

22

2

_'___

LNLNMLNNLNM

LNLNMLNNLNM
LNLNMLNNLNM

sparsitysparsity elementsKamearielementedgehexahedralquadratic

++++++++
−=

++++++++

++++++++
−=

==

 (4.39)

As a specific numerical example, let the computational domain be a cube of size λ×λ×λ.

i) If van Welij’s elements are to be used, the element size should be chosen about

0.1λ due to accuracy concerns. This means that N = L = M = 10; which yields

1000 elements and 3630 unknowns. For this configuration, the sparsity of the

global stiffness matrix is 1-(33/3630) = 0.9909.

ii) If Kameari’s elements are to be used, the element size should be chosen about

0.33λ due to same accuracy concerns. This means that N = L = M = 3; which

yields 27 elements and 504 unknowns. For this configuration, the sparsity of the

global stiffness matrix is 1-(106/504) = 0.7897.

This again shows that in p-version finite element analysis, the sparsity of the global

stiffness matrix dramatically decreases with increasing p. Certainly this analysis can also

be expanded for p=3 or more; and other elements of different shapes and types.

4.6.4. Resource Requirements

Consider our volume of interest (i.e. the problem domain), which is a rectangular prism,

is divided into N × L × M hexahedral elements as in the previous subsection.

It is obvious that the total number of elements is N × L × M, and the significant term is the

total number of edges, which is closely related to the number of unknowns. For this case,

if linear hexahedral edge elements are used, the total number of edges (edgesN) is found

as follows:

 81

)2)(1()1)(1(_ LNLNMLNMN linearedges ++++++= (4.40)

For the case of quadratic edge elements, the total number of edges is given by

)226)(1()262(2
_ LNLNMLNNLNMN quadraticedges ++++++++= (4.41)

We know that, Bentley’s sparse storage scheme for a K × K matrix by requires an array of

size (K + 1 + Noff_diagonal) where Noff_diagonal is the total number of nonzero off-diagonal

terms in the matrix.

For the finite element solution, an edge can be shared by 4 elements. This means that, a

row can have at most 33 nonzero entries (one of which is on the diagonal) for the linear

elements. Similarly, a row can have at most 106 nonzero entries (one of which is on the

diagonal) for the quadratic elements.

Hence, the array size in the linear hexahedral finite element solution is

1106)105(1 ____ +×=×++= linearedgeslinearedgeslinearedgeslineararray NNNN (4.42)

whereas the array size in the quadratic hexahedral finite element solution is

1106)105(1 ____ +×=×++= quadraticedgesquadraticedgesquadraticedgesquadraticarray NNNN

(4.43)

Table 4.4 gives some numerical values for the linear and the quadratic cases. It exhibits

that, for such a problem 512-quadratic-element scheme is computationally as expensive

as the 8,000-linear-element scheme. In order to use the quadratic element scheme, it

should give as good results as the corresponding (i.e. computationally having the same

price) linear element scheme.

 82

Table 4.4. Comparison between linear and quadratic hexahedral edge element schemes.

Linear Quadratic N L M Total

Number
of

Elements
Total

Number of
Edges

Array
Size

Total
Number of

Edges

Array
Size

8 8 8 512 1,944 64,153 7,984 846,305

10 10 10 1,000 3,630 119,791 15,260 1,617,561

12 12 12 1,728 6,084 200,773 25,992 2,755,153

15 15 15 3,375 11,520 380,161 50,040 5,304,241

18 18 18 5,832 19,494 643,303 85,644 9,078,265

20 20 20 8,000 26,460 873,181 116,920 12,393,521

4.7. Sparse Matrix Solvers

Sparse matrices, which are eventually encountered, allow the developers and

programmers only to store and perform the operations over only nonzero entries in most

cases. A system of equations with a sparse matrix can be solved by direct or indirect

methods.

4.7.1. General Assessment About Sparse Matrix Solvers

Table 4.5 gives an overall assessment about the sparse solvers.

Table 4.5. Overall View of the Sparse Solvers.

 Direct Iterative

Non-Symmetric

Pivoting LU

GMRES, QMR, etc
.

More General

Symmetric

Positive Definite

Cholesky

Conjugate Gradient

More Robust

More Storage

Less Storage

 83

For evaluation the complexity of the direct solvers, the following figures of merit can be

considered in the following scenario: Assume that we have uniform (well shaped) finite

element meshes in 2D and 3D, each with n elements totally as seen in Fig. 4.11.

Fig. 4.11. Uniform Meshes in 2D and 3D with n elements.

Then, for the case of node elements, the storage and the time (FLoating point OPerations)

complexities for direct solvers are as seen in Table 4.6 [103].

Table 4.6. Time and Memory Requirements for Direct Solvers [103].

 2D 3D

Memory O(n log n) O(n 1.33)

Time (FLOPs) O(n 1.5) O(n 2)

Again, for the case of node elements, the storage and the time complexities for several

iterative solvers are as seen in Table 4.7 [103]. For element types other than the node

elements (edge, facet, or volume) not exactly same but similar figures of merit might be

found.

n 1/2

a)

n 1/3

b)

 84

Table 4.7. Time Requirements for Some Indirect Solvers [103].

 2D 3D

Sparse Cholesky O(n 1.5) O(n 2)

CG, exact arithmetic O(n 2) O(n 2)

CG, no preconditioning O(n 1.5) O(n 1.33)

CG, modified O(n 1.25) O(n 1.17)

CG, support trees O(n 1.2) O(n 1.75)

Multigrid O(n) O(n)

4.7.2. Indirect Sparse Matrix Solvers

Iterative methods can also be employed for the solution of matrix equations. Among

various iterative methods, the conjugate gradient method receives more attention because,

in principle, it yields an exact solution (of the matrix equation) when the number of

iterations reaches the number of equations or unknowns. For this reason, conjugate

gradient method is also referred to as a semi-direct method.

The conjugate gradient method was originally developed by Hestenes and Stiefel [104].

The biconjugate gradient method was developed by Lanczos [105], and it can also be

applied to general (both symmetric and non-symmetric) matrix equations.

In addition to the conjugate gradient (CG) and biconjugate gradient (BCG) methods,

there are several other closely related iterative methods. These include the generalized

minimal residual (GMRES) [106], quasi-minimal residual (QMR) [107], conjugate

gradient squared (CGS) [108], biconjugate gradient stabilized (BCGSTAB) [109], and

transpose-free quasi-minimal residual (TFQMR) [110] methods. The algorithms

implementing these methods can be found in public literature and software packages

[111]. Their main features can be summarized as follows:

GMRES computes a sequence of orthogonal vectors that minimizes the residual norm in

a least squares manner. Hence, the method leads to the smallest residual for a fixed

 85

number of iterations: However, it requires storing the entire sequence so that an

increasingly large amount of storage is needed as the number of iterations increases. This

difficulty is alleviated by restarting the algorithm after a certain number of iterations. The

method is useful for general non-symmetric matrices.

QMR applies least squares to minimize a quantity that is closely related to the BCG

residuals, thereby smoothing out the irregular convergence of the BCG, which may lead

to more reliable approximations. It has a look-ahead strategy, which avoids BCG

breakdown. In fact, even without this look-ahead strategy QMR largely avoids the

breakdown. On the other hand, while it converges smoothly, it often does not improve on

the BCG algorithm in terms of the iteration number.

CGS is the transpose-free variant of BCG. Although it converges faster than BCG, it

exhibits more irregular convergence behavior with wilder oscillations in residual norm

than does BCG; and sometimes does not guarantee convergence.

BCGSTAB uses local steepest descents to obtain more smooth convergence. While this

method seems to work well in many cases, it still exhibits the irregular convergence

behavior in some difficult problems. Also, its convergence is considerably slower than

that of CGS.

TFQMR can be easily implemented by changing only a few lines in the standard CGS

algorithm. However, unlike CGS, the iterations of TFQMR are characterized by quasi-

minimization of the residual norm. This leads to smooth convergence with a convergence

rate similar to CGS. Therefore, it can be considered as the new version of the CGS, which

quasi-minimizes the residual in the space spanned by the vectors generated by the CGS

iterations.

CGS, BCGSTAB, TFQMR share the feature that their implementations do not require

any matrix transpose.

4.7.2.1. Biconjugate Gradient Method

A group of iterative solution algorithms, known under the name conjugate gradient

methods, provide a quite general means for solving the N × N linear system

 86

bxA =⋅ (4.44)

The attractiveness of these methods for large sparse systems is that they reference A only

through its multiplication of a vector, or the multiplication of its transpose and a vector.

These operations are very efficient for the row indexed sparse storage scheme. The

simplest ordinary conjugate gradient algorithm [112-114] is effective only in the case that

A is symmetric and positive definite. It is based on the idea of minimizing the function

 xbxAxx ⋅−⋅⋅= '
2
1)(f (4.45)

The function is minimized when its gradient

 bxA −⋅=∇f (4.46)

is zero, which is equivalent to Equation (4.44). The minimization is carried out by

generating a succession of search directions pk, and improved minimizers xk. At each

stage a parameter αk is found that minimizes f(xk+αkpk), and xk+1 is set equal to the new

point xk+αkpk. The pk and xk are built up in such a way that xk+1 is also the minimizer of f

over the vector space spanned by the directions already evaluated, namely {p1, p2, …,

pk}. After N iterations, the minimizer over the entire space is arrived, which is the

solution of Equation (4.46).

A generalization of the conjugate gradient method, where the matrix is not necessarily

symmetric or positive definite, is the biconjugate gradient method. The method does not,

in general, have a simple connection with function minimization. It constructs four set of

vectors rk, r′k, pk, p′k, k = 1, 2, … . The initial vectors r1 and r′1 are supplied and the

equations p1 = r1 and p′1 = r′1 are set. The following recurrent relations are carried out:

 87

kkkk

kkkk

kk

kk
k

k
T

kkk

kkkk

kk

kk
k

'''

'
'
''

'
'

1

1

11

1

1

prp
prp

rr
rr

pArr

pArr
pAp

rr

β
β

β

α

α

α

+=
+=
⋅
⋅

=

⋅−=

⋅−=
⋅⋅

⋅
=

+

+

++

+

+

 (4.47)

This sequence of vectors satisfies the biorthogonality condition

0'' =⋅=⋅ jiji rrrr j < i (4.48)

And the biconjugacy condition

0'' =⋅⋅=⋅⋅ j
T

iji pAppAp j < i (4.49)

There is also a mutual orthogonality

0'' =⋅=⋅ jiji prpr j < i (4.50)

The proof of these properties proceeds by induction [115]. As long as the recurrence does

not break down earlier because one of the denominators is zero, it must terminate at m ≤

N steps with rm+1 = r′m+1 = 0. This is basically because after at most N steps, new

orthogonal directions to the vectors are run out.

To use the algorithm, an initial guess x1 is made for the solution. The residual r1 is chosen

11 xAbr ⋅−= (4.51)

and r′1 = r1 is taken. Then the following sequence of improved estimates are formed

 88

kkkk pxx α+=+1 (4.52)

while the recurrence in Equation (4.47) is carried out. Equation (4.52) guarantees that rk+1

from the recurrence is in fact the residual b – A ⋅ xk+1 corresponding to xk+1. Since rm+1 =

0, xm+1 is the solution to Equation (4.44). While there is no guarantee that this whole

procedure will not break down, or will not become unstable for general A, this is rare in

practice. More importantly, the exact termination in at most N iterations occurs only with

exact arithmetic. Round-off error means that the procedure is to be halted when some

appropriate error criterion is met.

4.7.3. Direct Sparse Matrix Solvers

Direct solvers can simply be summarized as methods depending on Gaussian elimination

rather than iterative solution of the matrix equations.

One of the most popular direct solver families, frontal methods have their origins in the

solution of finite element problems of structural analysis. One of the earliest

implementations was that of Irons [116]. In this work, only the symmetric positive

definite systems were considered. Later, the method was extended to unsymmetric

systems [117], and also problems other than finite elements [118].

4.7.3.1. Multifrontal Method

The direct solution of the sparse matrix can be obtained by the Multifrontal Method,

which belongs to the class of frontal methods and is defined by Liu [119]. The main

advantages of this scheme are as follows:

1. Most arithmetic operations are performed on dense matrices, which reduces indexing

efforts while addressing the entries,

2. In each front, parallelism can be achieved.

The algorithm works over the elimination tree, where its notion is initially defined by

Duff [120]. For the multifrontal algorithm, necessary steps can be summarized as follows:

For each node of T(A) from leaves to root:

 89

• Sum own row/col of A with children’s Update (Ui) matrices into Frontal (Fi)

matrix

• Eliminate current variable from Frontal matrix, to get Update matrix

• Pass Update matrix to parent

The algorithm is best understood by an illustration. Fig. 4.12 illustrates a simple example.

Several observations can be made over this method:

• All arithmetic happens on dense square matrices

• Needs extra memory for a stack of pending update matrices

• There exists potential parallelism:

1. Between independent tree branches

2. Parallel dense operations on the frontal matrix

The performance of algorithm depends on the structure of the elimination tree (i.e. the

positioning of the nonzero entries) of the matrix. Guermouche et al had several

publications [121-122] on the memory usage of the method.

As seen in Fig. 4.13, the total memory required by the algorithm is not limited to matrix

storage as in the case of iterative solvers. The total required memory can be considered as

the factor storage area (factor memory); and also the current frontal matrix storage area

and the contribution storage area (active memory).

 90

Fig. 4.12. Pictorial Description of Calculation of Frontal and Update (Contribution)

Matrices for the Multifrontal Algorithm.

Fig. 4.13. Memory Usage of the Multifrontal Method.

5 96 7 81 2 3 4
1

5

2
3
4

9

6
7
8

A

5 96 7 81 2 3 4
1

5

2
3
4

9

6
7
8

A

Step 1:

T(A)

1 2
3

4
6

7
8

9

5

T(A)

1 2
3

4
6

7
8

9

5

3 7
3
7

1 3 7
1
3
7

F1 = A1 ⇒ U1

3 7
3
7

3 7
3
7

1 3 7
1
3
7

1 3 7
1
3
7

F1 = A1 ⇒ U1

2 3 9
2
3
9

2 3 9
2
3
9

3 9
3
9

3 9
3
9

F2 = A2 ⇒ U2

Step 2a:

Step 2b:

Step 3:

F3 = A3+U1+U2
⇒ U3

3 7 8 9
3
7
8
9

7 8 9
7
8
9

3 7 8 9
3
7
8
9

3 7 8 9
3
7
8
9

7 8 9
7
8
9

7 8 9
7
8
9

T(A)

1 2
3

4
6

7
8

9

5

T(A)

1 2
3

4
6

7
8

9

5

T(A)

1 2
3

4
6

7
8

9

5

T(A)

1 2
3

4
6

7
8

9

5

T(A)

1 2
3

4
6

7
8

9

5

T(A)

1 2
3

4
6

7
8

9

5

 91

Guermouche et al also deeply investigated the relationship between the structure of the

elimination tree and active memory usage. As seen in Fig. 4.14, a wide elimination tree

causes a higher peak in the active memory usage.

Fig. 4.14. Effect of the Elimination Tree Structure on Memory Usage [121].

Depending on the positioning of the non zero entries (simply called and known as matrix

ordering), the elimination tree might have different structures as seen in Fig. 4.15. Several

observations and comments can be made:

• Each branch of the elimination tree can be distributed to another processor. A

very narrow tree might cause inefficient parallelism, since some of the processors

might not be allocated. On the other hand, a very wide tree might cause that the

number of processors become insufficient.

• A deep tree might reduce active memory usage, but increases CPU time.

• An unbalanced tree might cause inefficient parallelism; some processors can

finish their tasks earlier and wait, but the dominant term is the CPU time of the

busiest processor.

 92

Fig. 4.15. Different Elimination Tree Structures.

There are several matrix reordering methods available in the literature (not only in

published form but also inside compileable/linkable or executable software packages

[123-127], which structures the elimination tree of a matrix according to the needs. A

rough comparison of these methods and resultant elimination trees are given in Fig. 4.16.

Of course, there is not any certain statement that “such reordering method comes first”;

the one which is most appropriate for the needs should be selected.

Fig. 4.16. A Comparison of the Matrix Reordering Methods [121].

 93

4.8. Effects of Node/Edge Ordering During Matrix Solution

One of the main steps of the finite element solution is the matrix assembly process, which

is the construction of the global system matrix from the elemental matrices. For this

purpose, during the mesh generation, while the elements are being constructed, a mapping

relating the local edge and the element numbers to a global edge number should also be

constructed. The assembly process assigns the contribution of the element matrices to the

corresponding entries of the global matrix via this mapping.

For example, if the ith and jth local edges of an element e are mapped to Ith and Jth

global edges, then the entry (i, j) of the eth elemental matrix should have a contribution to

the entry (I, J) of the global system matrix.

Similarly, if an edge with a global number I is shared by 4 elements e1, e2, e3, e4 (which is

the usual case except the edges on the boundaries), and if it has the local numbers i1, i2, i3,

i4 in these elements respectively, then

),(),(),(),(),(444333222111 iieiieiieiieIIG +++= (4.53)

where G is the global system matrix.

The method of edge ordering determines the structure of the global stiffness matrix. For

simplicity, consider the example of quadrilateral node elements. Naturally, in this

example node ordering determines the structure of the global stiffness matrix. As seen in

Fig. 4.17, the nodes same mesh can be numbered in different manners.

 94

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

21 23 24 2522

16 17 18 19 20

1 4 5 8 9

2 3 6 7 10

19 18 15 14 11

21 23 24 2522

20 17 16 13 12

1 13 20 12 4

17 9 23 8 16

5 21 24 25 6

3 22 11 210

18 14 7 19 15

1 5 17 2 6

9 13 19 10 14

21 23 25 22 24

11 20 12 1615

3 7 18 4 8

Fig. 4.17. Different numbering schemes for a fixed quadrilateral mesh.

If the nodes are numbered in an ordered manner, the resultant global stiffness matrix will

be banded as seen in Fig. 4.18.

X X X X
X X X X X X

X X X X X X
X X X X X X

X X X X
X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X X X X

X X X X X X
X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X X X X

X X X X X X
X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X X X X

X X X X X X
X X X X
X X X X X X

X X X X X X
X X X X X X

X X X X

= N+3

=
N

+3

= N+3

=
N

+3

= (N+1)(L+1)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

21 23 24 2522

16 17 18 19 20

N

L

Fig. 4.18. Resultant Matrix for the Ordered Numbering Scheme.

 95

If the nodes are numbered in a spiral manner, the resultant global stiffness matrix will not

be banded, but still structured this time, as seen in Fig. 4.19.

X X X X
X X X X X X
X X X X X X X X X
X X X X X X

X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X

X X X X
X X X X X X
X X X X X X

X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X

X X X X X X
X X X X

X X X X X X
X X X X X X

X X X X X X
X X X X

Fig. 4.19. Resultant Matrix for the Spiral Numbering Scheme.

If the nodes are numbered in an irrelevant (seems like random; but intentionally

maximizing the global node number difference between adjacent nodes) manner, the

resultant global stiffness matrix will be very unstructured this time, as seen in Fig. 4.20.

 96

X X X X
X X X X

X X X X
X X X X

X X X X X X
X X X X X X

X X X X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X

X X X X X X
X X X X X X

X X X X X X
X X X X X X X X X

X X X X X X
X X X X X X

X X X X X X
X X X X X X

X X X X X X X X X
X X X X X X

X X X X X X X X X
X X X X X X

X X X X X X X X X
X X X X X X X X

X X X X X X X X X

Fig. 4.20. Resultant Matrix for the Irrelevant Numbering Scheme.

The structure of the global stiffness matrix is very important especially in the multifrontal

algorithm. Although all the matrices will have the same sparsity, the amount of fill-ins

(i.e. the number of probable nonzero entries after the Gaussian elimination starts) differs.

The fill-ins are illustrated for all matrices (their upper diagonal parts) in Fig. 4.21.

As seen from this figure, ordered and spiral numbering schemes yield less fill-ins

compared to irrelevant numbering scheme. This exaggerated experiment shows that the

global node number difference of adjacent nodes should be kept as minimum as possible

in order to minimize the memory requirements if the multifrontal method will be used.

When ordered and spiral numbering schemes are compared, it can be seen that the

amount of fill-ins is nearly equal. However, the positions of the potential filled-in entries

are more predictable for the ordered scheme, since the fill-ins reside inside the band.

The conclusion of this analysis can be summarized as: Ordered node/edge numbering

scheme should be preferred in order to minimize the memory usage of the multifrontal

algorithm.

 97

X X X X
X X X X X

X X X X X
X X X X X

X X X
X X X X

X X X X X
X X X X X

X X X X X
X X X

X X X X
X X X X X

X X X X X
X X X X X

X X X
X X X X

X X X X X
X X X X X

X X X X X
X X X

X X
X X

X X
X X

X

X X X X
X X X X X

X X F X X X
X X F F X X X

X F F F X X
X F F F F X X

X X F F X X X
X X F F X X X

X X F F X X X
X F F F X X

X X F F F X X
X X F F X X X

X X F F X X X
X X F F X X X

X F F F X X
X X F F F X X

X X F F X X X
X X F F X X X

X X F F X X X
X F F F X X

X X F F F
X X F F

X X F
X X

X

X X X X
X X X X X

X X X X X X X
X X X

X X X X
X X X X X X

X X X X X X X
X X X

X X
X X X

X X X X
X X X X X

X X X X X X X
X X X

X X X X
X X X X X X

X X X X X X X
X X X

X X
X X X

X X
X X

X X
X X

X

X X X X
X X X X X

X X X X X X X
X X X F F F

X X X X F F F
X X X X X X F

X X X X X X X F F
X X X F F F F

X X F F F F
X X X F F F

X X X X F F F
X X X F F F X X

X X X X F F X X X
X X X F F F F F

X X X X F F F F
X X X F X X X F

X X X X X X X F F
X X X F F F F F

X X F F F F F
X X X F F F

X X F F F
X X F F

X X F
X X

X

X X X X
X F X F X F X

X F X F F X F F X F
X X F F F X F F F X F F F

X F X F F F F X F F X X F X
X X F F F F F F X X F F X F X

X F F X X F F X F F F F X X X X X
X F F F X F F F X F F F X F F X X X

X F F F X F F F X F F X X F X X F
X F F F X F F F X F F F X F F F

X F F F X F F F X F F X F F F
X F F F X F F F X F F X F F

X F F F X F F X F F X F F
X F F F X F F X X F X F

X F F F X F F F F F X
X F F F F F F F F X

X F F F X F F F F
X F F X F F F F

X F F X F X X
X F F X F F

X F X X F
X F F F

X X X
X X

X

X X X X
X X X X

X X X X
X X X X

X X X X X X
X X X X X X

X X X X X X X X X
X X X X X X X

X X X X X X X
X X X X

X X X X
X X X X

X X X X
X X X X X

X X X
X X

X X
X X

X X X X
X X

X X X
X

X X X
X X

X

Fig. 4.21. Effect of Fill-in for the matrices obtained by different ordering schemes.

The situation is different if the conjugate gradient method (or any of its derivatives) is

used. For this purpose, the procedure called “node coloring” might be followed. The

nomenclature “coloring” comes from the duality of this problem to the famous “map

coloring” problem of the graph theory. The procedure is a two-step algorithm:

i) First, the nodes are colored so that adjacent and related nodes will have different

colors. The coloring is performed by assignment of integers (i.e. color codes) to

each node.

ii) Second, starting from the smallest color code (0 in this example), the nodes of the

same color are numbered in order. When the nodes in one color code finishes, the

numbering operation continues after incrementing the color code.

 98

The procedure is repeated for the same example as seen in Fig. 4.22. The main aim of the

procedure is to maximize the distance of the nodes with successor numbers. This is

similar to maximizing the distance of two countries with same colors in the map coloring

problem.

Fig. 4.22. “Node Coloring” Numbering Scheme.

The resultant matrix after the node coloring scheme is as seen in Fig. 4.23. Since this

matrix can be subdivided to submatrices, which are mostly diagonal; parallelization can

be achieved during the iterative solution of this matrix.

 99

= (N+1)(L+1)

X X X X
X X X X X X

X X X X
X X X X X X X X X

X X X X X X
X X X X

X X X X X X X X
X X X X X X

X X X X X X
X X X X X X X X X

X X X X
X X X X X X

X X X X X X
X X X X X X

X X X X X X
X X X X

X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X

X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X
X X X X X X X X X

Fig. 4.23. Resultant Matrix After the Node Coloring Scheme.

After such an analysis, the lessons learnt can be applied to the numbering of edge

elements. In Fig. 4.24, ordered edge numbering for linear quadrilateral edge elements is

given. The band of the matrix can be calculated in such a numbering scheme.

Similarly, ordered edge numbering for quadratic quadrilateral edge elements can be

performed as seen in Fig. 4.25.

The analysis can similarly be extended and effects of any numbering scheme can be

investigated for hexahedral edge elements of any order.

 100

1 8 115

3 7 10 134
2 9 126

14 18 20 2216
15 19 2117

23 27 29 3125
24 28 3026

32 36 38 4034
33 37 3935 = 3N+4

=
3N

+4

=
3N

+4

= 2NL + N + L

N

L

X X X X
X X X X
X X X X X X
X X X X X X

X X X
X X X X X

X X X
X X X X X X

X X X X
X X X X X X
X X X X

X X X
X X X X X

X X X X X
X X X

X X X
X X X X X X

X X X X X X
X X X

X X X X
X X X X
X X X X X X

X X X
X X X X X

X X X
X X X X X X
X X X X
X X X X

= 3N+4

Fig. 4.24. An example for the Linear Quadrilateral Edge Element.

 101

X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X

X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X

X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X

X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X

X X
X X
X X
X X
X X
X X X X
X X X X
X X

X X
X X
X X
X X X X
X X X X
X X

X X
X X
X X
X X X X
X X X X
X X

X X
X X
X X
X X
X X
X X

= 8N+10

=
8N

+1
0

= 8N+10

=
8N

+1
0

= 6NL + 2N + 2L

1 2

3 4

56

7

8

9

10

11 12

13 14

15 16

17

18

.

.
.

80 81

107 108

104

105

106
109

110

111

112

.

.

.

.

N

L

Fig. 4.25. Another example for the Quadratic Quadrilateral Edge Element.

4.9. Radar Cross-Section and Huygens’ Equivalence Principle

One of the particular interests in scattering is the evaluation of the radar echo area (for the

two-dimensional case) or scattering cross-section (for the three-dimensional case). The

latter is given by

2

2

2
3 4lim

inc

sct

E

E
r

rD πσ
∞→

= (4.54)

 102

where Esct is the far zone scattered field. In order to calculate the far zone scattered field,

we utilize the surface equivalence principle, which reduces the calculation to the

computation of a surface integral.

The surface equivalence principle states that the field exterior (or interior) to a given

surface may be exactly represented by equivalent currents on that surface and allowed to

radiate into the region external (or internal) to that surface. The appropriate currents

representing the fields are given as

MnE
JHn

=×
=×

 (4.55)

The far field expression for the electric field due to these equivalent currents is

approximately given by the expression

[]∫∫ ⋅−
−

××+×≈
m

jk
rjk

S
dSeZ

r
ejk '))'(()'(
4

)()'(
00

0
0 rrrJrrrMrrE

π
 (4.56)

where r and r′ denote the observation and source points respectively, and Z0 is the free

space impedance. The far zone scattered field Esct is calculated by Equation (4.56) and

this value is substituted in Equation (4.54). An acceptable criterion for using Equation

(4.56) conveniently is Rayleigh’s criterion stated as

0

22
λ
Dr ≥ (4.57)

where D is the largest dimension of the scattering material.

In practical applications the scattering cross-section, which is calculated by using

Equation (4.54), is normalized with the square of the wavelength, and its characteristics is

observed in logarithmic scale. This quantity is denoted by ‘RCS dBSW’.

 103

The computation of the surface integral for conformal meshes with curved elements is not

a straightforward task. The following formulation should be used for this purpose.

Fig. 4.26. Pictorial Description of the Surface Integration Method.

As seen in Fig. 4.26., by using the isoparametric hexahedral elements (i.e. assuming that

each hexahedral element is transformed to a cube in ξηζ-space extending from (-1,-1,-1)

to (1,1,1)); for any function G′(x,y,z), the surface integral on the surface of an element

∫∫
eS

dszyxG),,(' (4.58)

in the xyz-space can be stated as

∫ ∫
− −

∂
∂1

1

1

1
)(

),,(),,(ηξ
ξη

ζηξ ddzyxG , ζ constant (4.59)

in the ξηζ-space. In Equation (4.60),

 104

2/1222

)(
),,(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−

∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−

∂
∂

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−

∂
∂

∂
∂=

∂
∂

ξηηξξηηξξηηξξη
yzzyxzxzyxyxzyx

 (4.60)

Or in other words,

ηξ
ξη

ddzyxds
)(

),,(
∂

∂
= , where ζ is constant (4.61)

 105

CHAPTER 5

NUMERICAL RESULTS

5.1. Results for Homogenous Scatterers

Throughout this section, results obtained for homogenous scatterers are given.

Comparisons and comments on the solutions are given; and the solution accuracy is

discussed. Unless otherwise stated, in all examples the incident field is chosen as e-jkzay.

The results are investigated for different θ values in the φ = 0 and φ = π / 2 planes.

5.1.1. Results for Uncurved Homogenous Scatterers

5.1.1.1. Permeable Cube

As a first example, RCS of a permeable cube with a sidelength of 0.5λ, and a relative

permeability of µr = 2.2 is considered. The results obtained for 125 quadratic hexahedral

edge elements and 2,080 unknowns (indicated with triangles), are compared to those of

Sertel [128] (indicated with line) in Fig. 5.1. The same accuracy level was achieved about

1,000 linear hexahedral edge elements.

For this problem, in [128] Sertel used the Multilevel Fast Multipole Method (MLFMM)

together with a Volume Integral Equation (VIE) formulation. He also used Finite Element

Boundary Integral (FE-BI) Method for comparison. Unfortunately, he has not explicitly

stated the details (number of elements, number of unknowns, etc.) of the FE-BI solution,

although he clearly stated that he used hexahedral elements.

 106

RCS of a Permeable Cube
of Sidelength 0.5λ and µ r = 2.2

-30

-25

-20

-15

-10

-5

0

0 15 30 45 60 75 90 105 120 135 150 165 180

Theta (degrees)

R
C

S
(d

B
SW

)

Fig. 5.1. RCS of a Permeable Cube Calculated on Compared to [128].

5.1.1.2. Composite Cube

As a second example, RCS of a composite cube with a sidelength of 0.2λ, a relative

permeability of µr = 2.2, and a relative permittivity of εr = 2.2 is considered. Again, the

results obtained for 125 quadratic hexahedral edge elements and 2,080 unknowns

(indicated with triangles), are compared to those of Sertel [128] (indicated with line) in

Fig. 5.2. Similar to the permeable cube case, the same accuracy level were achieved

about 1,000 linear hexahedral edge elements.

φ = π / 2 plane

φ = 0 plane

: Calculated : Sertel [128]

 107

RCS of a Composite Cube
of Sidelength = 0.2λ , µ r = 2.2 and ε r = 1.5

-60

-50

-40

-30

-20

-10

0 15 30 45 60 75 90 105 120 135 150 165 180

Theta (Degrees)

R
C

S
(d

BS
W

)

Fig. 5.2. RCS of a Composite Cube Calculated and Compared to [128].

As in the permeable cube problem, in [128] Sertel also used the Multilevel Fast Multipole

Method (MLFMM) together with a Volume Integral Equation (VIE) formulation. He also

used Finite Element Boundary Integral (FE-BI) Method for his comparisons.

Unfortunately, again he has not explicitly stated the details (number of elements, number

of unknowns, etc.) of the FE-BI solution, although he clearly stated that he used

hexahedral elements.

5.1.2. Results for Curved Homogenous Scatterers

5.1.2.1. PEC Sphere

In this problem, the scatterer is chosen to be a PEC sphere with a radius of 0.5λ. The

mesh generated for this problem corresponds to a mesh of a spherical shell, since the

volume (and the elements) inside the PEC sphere is thrown out. The domain

decomposition and the details of the mesh generation are given in Appendix C. Meshes

with different levels of density are given in Fig. 5.3.

As expected, varying the parameters of meshing (mentioned in Appendix C) is a driving

factor in the element and edge sizes as well as the number of elements and edges

φ = π / 2 plane

φ = 0 plane

: Calculated : Sertel [128]

 108

(unknowns). In order to perform a comparison, each meshing scheme is given a name

(pecsph00x). In summary, the parameters and total number of elements achieved in each

scheme is given in Table 5.1.

Fig. 5.3. Meshes of Different Levels of Density.

 109

Table 5.1. Comparison of Each Meshing Scheme (Meshing Parameters and Resource

Requirements).

 θc

(degrees)

θd

(degrees)

Mesh

Resolution

in R

direction

(unitless)

Mesh

Resolution

in θ

direction

(degrees)

Mesh

Resolution

in φ

direction

(degrees)

Number of

Elements

pecsph001 45 40 1 5 5 20,880

pecsph002 45 40 2 9 9 3,400

pecsph003 45 40 2.5 15 12.85 1,288

pecsph004 30 25 2.5 30 22.5 512

Fig. 5.4. Cross section of the mesh generated for the PEC sphere problem.

The cross-section of the mesh generated for this problem is given in Fig. 5.4. For this

problem, a percentage error measure err(E) for the magnitude of the scattered field is

defined as

∑
=

−
=

K

i iexact

icompiexact

P
PP

Kerr
1)(

)()(1)(
E

EE
E (5.1)

 110

where Eexact(Pi) is the exact electric field calculated via the Mie series at the centroid (Pi)

of an element lying in free space; whereas Ecomp(Pi) is the value calculated by FEM at the

same point. Certainly, the summation traces all elements lying in free space; K is the

number of such elements; and err(E) is therefore the mean normalized error over the free

space portion of the computational domain.

A summary of the resources required for the execution of different numerical experiments

is given in Table 5.2. It is clear that the usage of quadratic hexahedral elements yields

better accuracy compared to the usage of linear hexahedral elements.

Table 5.2. Comparison (resource requirement, element size, solution accuracy, etc.) of

linear and quadratic elements for PEC sphere problem.

5.1.2.2. Dielectric Sphere

Next, the RCS of a dielectric sphere of radius 0.5λ is considered. This time, the mesh to

be generated is a full sphere, not a spherical shell. This is because of the fact that the

volume of the scatterer should also be considered. The details of the domain

decomposition and mesh generation are given in Appendix C.

The RCS of the dielectric sphere is calculated and compared to Mie series as seen in Fig.

5.5. This accuracy level was achieved by 804 quadratic or 8,640 linear elements

(corresponding to 8,230 and 26,840 unknowns respectively).

 111

RCS of a Dielectric Sphere of Radius 0.5λ and Relative Permittivity
ε r = 2.0

-16

-14

-12

-10

-8

-6

-4

-2

0

0 15 30 45 60 75 90 105 120 135 150 165 180
Theta (Degrees)

R
C

S
(d

B
SW

)

Mie Series

Calculated

Fig. 5.5. RCS of a Dielectric Sphere.

5.1.2.3. PEC Spheroid

The next solved problem of this class is RCS of the oblate/prolate PEC spheroids. The

cross-section of the mesh generated for a PEC sphere problem is given in Fig. 5.6.

Fig. 5.6. Cross-Section of the Mesh Generated for a PEC Prolate Spheroid.

 112

As seen in Fig. 5.6, the problem is similar to PEC sphere problem: The elements inside

the scatterer should be thrown out, and there exists a transformation from the PEC sphere

mesh to PEC spheroid mesh (i.e. two meshes are homeomorphic), where the

tranformation is pictorially described in Fig. 5.7.

Fig. 5.7. Transformation from the PEC sphere mesh to the PEC spheroid mesh.

By using this method, all-hexahedral meshes for oblate and prolate spheroids have been

generated as seen in Fig. 5.8.

Fig. 5.8. Sample All-Hexahedral Meshes Generated for

(a) Prolate, (b) Oblate PEC Spheroids.

 113

To the author’s knowledge, unfortunately bistatic RCS results for PEC spheroids do not

exist in the literature. Only, backscatter RCS values for oblate PEC spheroids are given in

[129]. Hence, the backscatter RCS problem is solved by using locally conformal PML

formulation [101] and both van Welij’s and Kameari’s elements; and the obtained results

are compared as seen in Table 5.3. Throughout this analysis, the major axes of the

spheroid are kept fixed as 2λ; and the minor axis length is varied between 0.2λ and 0.9λ.

Table 5.3. Backscatter RCS of an Oblate Spheroid (Maxor Axes Fixed at 2λ).

Sph.
Minor
Axis
Length
(λ)

Element
Type

Element
Size in
Radial
Dir. (λ)

Number
of
Elements

Back-
scatter
RCS
(dB)
[129]

Calc.
Back-
scatter
RCS
(dB)

Error
(%)

Linear 0.1 7,040 44.0 2.33 0.2
Quadratic 0.4 640 43 43.3 0.70
Linear 0.1 10,560 37.6 1.62 0.3
Quadratic 0.4 960 37 37.5 1.35
Linear 0.1 14,080 32 3.23 0.4
Quadratic 0.4 1,280 31 31.8 2.58
Linear 0.1 17,600 25.0 4.17 0.5
Quadratic 0.4 1,600 24 24.9 3.75
Linear 0.1 21,120 21.1 5.50 0.6
Quadratic 0.4 1,920 20 20.9 4.50
Linear 0.1 24,640 20.8 9.47 0.7
Quadratic 0.4 2,240 19 20.4 7.37
Linear 0.1 28,160 20.4 13.33 0.8
Quadratic 0.4 2,560 18 19.3 7.22
Linear 0.1 31,680 20.2 12.22 0.9
Quadratic 0.4 2,880 18 19.1 6.11

As seen from Table 5.3, 0.4λ-sized quadratic elements give accuracy comparable with

0.1λ-sized linear elements. In [129], the solution is performed also by means of FEM but

with spheroid PML formulation; but the authors have not specified the element type or

the number of elements/unknowns. It is not possible to compare the method in this work

with theirs in terms of resource usage (CPU time, memory, etc.). Nevertheless, the

solutions seem to be matching with each other.

Backscatter RCS values for prolate PEC spheroids for comparison could not be found in

the literature.

 114

5.1.2.4. Dielectric Cylinder

As another example, the dielectric cylinder (εr = 4, d=4λ, h=4λ) as shown in Fig. 5.9 is

considered. The details of the domain decomposition and mesh generation are given in

Appendix C. In order to get benefit of the cylindrical coordinates during the mesh

generation, the problem is transferred to a x′y′z′-space, in which the main axis of the

cylinder will be along the z′ axis. After the mesh is generated, the following back

transformation is carried out: x′ → z; y′ → x; z′ → y

Fig. 5.9. Description of the Dielectric Cylinder Problem.

Since the scatterer in this problem is electrically large, only solution with quadratic

elements is considered. Solution with 5,860 elements and 86,400 unknowns is illustrated

in Fig. 5.10 and compared to [130]. In [130], the solution was found by using the Method

of Moments and the so-called Precorrected Fast Fourier Transform. The authors have not

explicitly stated the resource requirements (CPU time, memory) of the set-up they have

used for the solution of this problem.

h

y

x

d

z

 115

RCS of a Dielectric Cylinder

-10

-5

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180

Theta (Degrees)

RC
S

 (d
BS

W
)

Fig. 5.10. RCS of a Dielectric Cylinder Calculated and Compared to [130].

5.2. Results for Scatterers with Patches

In this section, RCS (either bistatic or backscatter) of various scatterers with patches are

investigated.

5.2.1. Results for Uncurved Scatterers with Patches

Among the scatterers with patches, first the ones with uncurved sides and faces are

considered. RCS of microstrip patch antennas was a popular research area in the early 90s

since they are dominant on the RCS of the platforms that they are mounted on. Volakis et

al had a series of papers about the RCS of the rectangular patch microstrip patch antennas

[131-133]. In these papers, the authors used the Finite Element – Boundary Integral (FE-

BI) Method. They have not specified the element type, and the number of unknowns;

hence it is not possible to compare the results in terms of resource requirements (CPU

time, memory, etc.).

φ = π / 2 plane

φ = 0 plane

: Calculated : Given in [130]

 116

5.2.1.1. Unloaded Rectangular Microstrip Patch

The first problem in this category is the RCS of a rectangular patch. The geometry and

the results related to this problem are given in Fig. 5.11; comparison are performed

against [133]. In the first part, the RCS is observed when the patch is appearing.

 3.678 cm × 2.750 cm patch

 7.340 cm × 5.334 cm × 0.144 cm

substrate with εr = 4.0

θ (degrees)

 Computed [*]

 Measured [*]

Linear Hex

(35468

Unknowns)

Quadratic Hex

(23414

Unknowns)

(A) (B)

 [*]: Jin and Volakis

Fig. 5.11. RCS of an Unloaded Rectangular Microstrip Patch (Compared to [133]).

In the second part, the patch is removed and the RCS is observed. The results are given in

Fig. 5.12.

 3.678 cm × 2.750 cm

patch REMOVED

 7.340 cm × 5.334 cm × 0.144 cm

substrate with εr = 4.0

Computed [*]

Measured [*]

Linear Elements

(35468 Unknowns)

Quadratic Elements

(23414 Unknowns)

(A) (B)

 [*]: Jin and Volakis

Fig. 5.12. RCS of the Same Geometry When Patch Removed (Compared to [133]).

 117

5.2.1.2. Singly-Loaded Rectangular Microstrip Patch

In this problem, the backscatter RCS of a loaded rectangular patch is analyzed. For this

problem, the software is executed once for each frequency to compute the relevant

backscatter RCS value. Results are given in Fig. 5.13.

 3.66 cm × 2.60 cm patch

 7.32 cm × 5.20 cm × 0.158 cm

substrate with εr = 2.17

 θinc = 60° and φinc = 45°

 ZL = 50Ω impedance load

at xL = -1.83 cm, yL = -1.30 cm Frequency (GHz)

σ (dB)

Computed [*]

Linear

Elements

(32034

Unknowns)

Quadratic

Elements

(19088

Unknowns)

(A) (B)

 [*]: Jin and Volakis

Fig. 5.13. Backscatter RCS of a Singly Loaded Rectangular Patch (Compared to [133]).

As a second example for this type, a different configuration -a differently located load- is

analyzed. The corresponding results are given in Fig. 5.14.

 118

 2.60 cm × 3.66 cm patch

 5.20 cm × 7.32 cm × 0.158 cm substrate

with εr = 2.17

 θinc = 60° and φinc = 45°

 ZL = 50Ω at xL = 1.31 cm and yL = 0.78

cm

(A)

Computed [*]

Linear

Elements

(32034

Unknowns)

Quadratic

Elements

(19088

Unknowns)

(B)

 [*]: Jin and Volakis

Fig. 5.14. Backscatter RCS of Another Singly Loaded Rectangular Patch (Compared to
[133]).

5.2.1.3. Mutiply-Loaded Rectangular Microstrip Patch

In this problem, the backscatter RCS of a multiply-loaded rectangular patch is analyzed.

For each control group, the load impedance (not the location) is changed this time. Again,

the software is executed once for each frequency to compute the relevant backscatter RCS

value. Results are given in Fig. 5.15.

 119

 3.4 cm × 5.0 cm patch

 5.1 cm × 7.5 cm × 0.176 cm substrate with εr = 2.17

 θinc = 70° and φinc = 45°

 ZL = 300, 50, or 0Ω at xL = ±2.5 cm and yL = ±1.70

(C) Unloaded (A) 300Ω loaded (B) 50Ω loaded

Fig. 5.15. Backscatter RCS of a Multiply Loaded Rectangular Patch (Compared to [133]).

5.2.2. Results for Curved Scatterers with Patches

In this subsection rather than flat objects, RCS of the scatterers with curved edges and

faces are considered.

5.2.2.1. Circular PEC Patch Above a Dielectric Cylinder

As a patched structure, this time a structure with curved faces is chosen. The scatterer is

illustrated in Fig. 5.16 with relevant electrical dimensions and material properties.

Fig. 5.16. Circular PEC Disk Above a Dielectric Cylinder.

εr = 2.0

r = 0.3λ

h = 0.6λ

 120

1,152 quadratic hexahedra and 17,640 unknowns result in the solution illustrated Fig.

5.17. The results are compared to those of [134]. In [134], the solution was found by

using the Method of Moments and the so-called Precorrected Fast Fourier Transform.

RCS of a Cylinder with a Circular PEC Disk

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Theta (Degrees)

RC
S

 (d
BS

W
)

Fig. 5.17. RCS of a PEC Disk on a Dielectric Cylinder Calculated (Compared to [134]).

5.2.2.2. Circular PEC Patch Above a Dielectric Coated Sphere

As a second example of this kind, the RCS of a circular PEC patch on a dielectric

spherical shell located on a PEC sphere is considered. The geometry is illustrated and the

dimensions are given in Fig. 5.18. Again, the problem is solved with linear and quadratic

hexahedral elements separately, where the incident field is a uniform plane wave of θi =

π. The solution approach and a cross-section of the generated mesh are illustrated in Fig.

5.19.

 121

Fig. 5.18. Description of the Circular PEC Patch on Dielectric Coated PEC Sphere
Problem.

A highly dense mesh generated for this problem is given in Fig. 5.20; where only the

scatterer part of the mesh is illustrated for better visualization. In Fig. 5.20, the edges

corresponding to the patch are illustrated via a different color/tone.

PML Region

Free Space
Region

Dielectric
Substrate

Region

Thrown-out
Elements

Circular Patch

0.70.82

0.363 0.187 (mesh for linear elements)

(mesh for linear elements)

0.1870.66 (mesh for quadratic elements)

(mesh for quadratic elements)0.66 0.7

Fig. 5.19. Cross Section of the Mesh Generated for the Circular PEC Patch on Dielectric

Coated PEC Sphere Problem.

 122

Fig. 5.20. 3D View of the Mesh Generated for the Circular PEC Patch on Dielectric

Coated PEC Sphere Problem (Only Scatterer Shown).

Table 5.4. Comparison (Resource Requirement, Element Size) of Linear and Quadratic

Elements for Circular PEC Patch on Dielectric Coated PEC Sphere Problem.

*: Element Size 0.1873 for the first level (dielectric substrate region);
033 for further levels (free space and PML regions).

Element Size ()
Element

Type
Number of
Elements

Linear

Quadratic

10,560

960

along R along
fixed min max

along
min max

0.090865

0.33*

Number of
Unknowns

34,634

13,480

0.065

0.183

0.196

0.576

0.098

0.262

0.294

0.863

The results for this problem are given in Fig. 5.21, and compared with the results in the

literature [134-135]. Moreover, resource requirements of each approach are summarized

in Table 5.4. Again, quadratic hexahedral elements (up to size of 0.4λ) are proven to be

successful in RCS calculation. In [134], the solution was found by using the Method of

Moments and the so-called Precorrected Fast Fourier Transform. Hence it is not possible

to make a resource usage (CPU time, memory, etc.) comparison with [134].

 123

-45

-40

-35

-30

-25

-20

-15

-10

0 30 60 90 120 150 180

θ (degrees)

R
C

S
(d

B
SW

)

Fig. 5.21. Radar Cross Section of the circular PEC patch on dielectric coated PEC sphere

(Compared to [134]).

5.3. General Discussions About the Results

Unfortunately, framework defining a set of benchmark scattering problems does not exist

in the literature. In such a case, it would be possible to compare the proposed method to

all other existing methods in the literature one-to-one in all aspects (accuracy, speed,

memory, code complexity, etc).

Hence for various problems, the results have been compared to the ones (in terms of

solution accuracy) in the literature [128-135] particularly. In each of these works, the

authors have implemented and demonstrated the results of various methods, such as:

- Finite Element Boundary Integral (FE-BI) Method [128, 131-133],

- Multilevel Fast Multipole Method (MLFMM) [128],

- Method of Moments (MoM) with Precorrected Fast Fourier Transform

(PFFT) [130-134].

φ = π / 2 plane

φ = 0 plane

 124

Regardless of the method used in the compared publication, the method used in this work

seems to be working properly and accurately (i.e. usage of Kameari’s element in the

scattering problems is appropriate, and it is a promising technique in terms of accuracy

and resource usage).

On the other hand, it could not be possible to compare the method with other methods for

other aspects (CPU usage, memory usage, solution speed, etc) due to lack of information

given about the other methods.

In [129], Finite Element Method has been applied together with “spheroid PML”

formulation. Among the others, the method is the closest one to the method used in this

work. However, since the authors did not give any information about the implementation

details (element type, element shape, number of elements, number of unknowns, etc),

again it could not be possible to perform a comparison in all aspects.

 125

CHAPTER 6

AN OBJECT AND PATTERN ORIENTED APPROACH IN THE

FINITE ELEMENT SOFTWARE DEVELOPMENT

6.1. Object Oriented Methodology and Software

In this section, the reasons of migration to the object oriented software are discussed.

Unlike the other chapters, the contents of this chapter are not physical facts, or exact

mathematical expressions (i.e. the content is just “a” correct approach; not “the” correct

one, since there doesn’t exist a unique one). Two factors are important to develop all

products; the user’s expectations, and the developer’s considerations. Naturally, these

will apply to software products.

6.1.1. User’s Point Of View

From the user’s point of view, modern finite element software should have the following

features:

• Ease of use: The finite element software should provide a graphical user

interface from which the user can investigate the mesh, the boundary conditions,

and also the results. It should also provide the user to select his/her preferences

during the finite element analysis in an ergonomic manner.

• Platform independence: Considering that the end users of the finite element

software are mostly academic researchers (and also some large institutes and

companies), it is more acceptable to have the finite element software deployable

to various platforms. A researcher might want to execute the software in his

 126

Apple Macintosh or Windows PC at home or his office; as well as at the UNIX

based workstation in his laboratory.

• Adaptability to elements of various shape and various types: The spectrum of

the finite element software should be very wide in order to get attention both

from the academic society and the commercial market. For example, software

covering and targeting only tetrahedral node elements with 1 degree of freedom

will be commented to be ordinary and old fashioned in the 21st century. The

software should be capable of handling node, edge, facet, and volume elements of

various shapes in 2D and 3D.

• Inclusion of various algorithms for a specific purpose: In almost every step

(element selection and basis function construction, mesh quality measurement,

mesh quality improvement, numerical integration during element matrix

construction, stiffness matrix ordering, stiffness matrix reordering/

preconditioning, matrix solution, etc.) of the finite element analysis, there are

numerous alternative competing algorithms and methods, and there are always

trade-offs (speed, accuracy, memory, etc.) while deciding to use one of them.

Modern software should allow the user to set the preferences at each step

enabling the researchers also to perform comparative analyses.

• Concurrency/Parallelization: Adaptability to concurrent/parallel execution in

single/multi-processor environments respectively is one of the key factors in

modern numeric software. Since some steps in the finite element software are

time consuming, it is nearly compulsory for the software to be deployable to

distributed/parallel computing environments.

• Interoperability: Interoperability with the available mesh generation software in

the literature or market is another key factor. Mesh generated by widely accepted

and well known mesh generation software should be importable by the finite

element software. This fact will spread the usage of the software in academic and

industrial societies. Similarly, interoperability with the available matrix

software/libraries in the literature or market is also important with the same

reasons and arguments.

 127

6.1.2. Design Considerations

On the other hand, the design aspects of modern finite element software should be as

follows from the developer’s point of view:

• Ease of development: The software development environment (computer aided

design and engineering tools) should provide encouraging and comfortable rapid

prototyping and development opportunities to the developer(s).

• Modularity and adaptability: Since the finite element world is a continuously

evolving universe, adding new functionality and features is nothing but the nature

of it. The software architecture should be so modular and adaptable that adding

new functionality would not cause reinvention of the wheel, or one of the

nightmares on Elm Street.

• Understandability and Maintainability: Considering that the evolution of such

large software would take 5-10 years, the developer(s) might change. It is even

not uncommon for a developer to forget his/her own development activities a

couple of months later. Hence understandability of the code is important both for

the ongoing developers and new-comers, not only during the development but

also during the maintenance phase. Maintenance is usually the mostly ignored but

the most trouble causing phase in the software life cycle. Considering the trends

in the finite element analysis; it seems that adaptive, corrective, preventive and

perfective maintenance activities (for a clean definition of maintenance activities

see [136]) might be inevitable and crucial for the modern finite element software.

• Testability: Bottom-up integration and test, although underestimated and ignore

usually, is as important as top-down analysis, design and development in

software life cycle. From the very atomic portions of the code to the highest

level, there should be systematic methods to perform the test activities in the

code. Earlier the bugs are found, it is cheaper to fix them.

• Good Documentation: Another feature of the software language to be used for

development (together with the available tools certainly) should be self-

documented. Documentation is a headache and a big overhead for the developers

due to its time consumption; but lack of documentation is the nightmare of new-

comers and maintenance personnel on the other hand. Hence, the language should

be self-descriptive; and there should be tools & methods to extract the

 128

documentation in an elegant manner directly from the code itself. In such a case,

there will not be an additional boring overhead of documentation impacting the

developers.

• Language Appropriateness: Since the finite element analysis is depending on

numerical methods, and it requires high speed in run-time; the language should

be also appropriate for such purposes. Some high level languages like Java do not

provide high speed run-time results due to their natures.

• Platform independence: “Write once, run everywhere” is the main aim of most

of the software developers. Although the main reason can be specified as

increasing the customer/consumer/end user spectrum of the end product; it is a

well-known fact that it increases the self-satisfaction of the developers.

6.1.3. Object Oriented Languages and C++

Considering the design aspects and the compulsory/preferred features listed above, it is

clear that the modern finite element software should be developed by using object

oriented methodology. Object oriented methodology (analysis, design, development and

test), which has aroused in the 1990s during the big software crisis after the end of the

Cold War, is the trend in the software development world. Due to their strengths and

advantages in terms of various factors, object oriented languages such as Lisp, Java and

C++ have found very wide usage in the last one and a half decade. In a couple of years

after their inventions, object oriented languages found broad usage also in the numeric

methods software.

In 1994, almost 99% percent of the available numeric method software had been

developed by structure oriented languages with the domination of Fortran and C. In the

last decade, especially after the development of object oriented wrappers around popular

libraries such as PetSc [137], BLAS [138], and LAPACK [139] (which were originally

developed with structure oriented languages); researchers got rid of their hesitations to

use object oriented methodology during the development of numeric method software.

An up-to-date list of available object oriented numeric software of any kind can be found

in [140].

 129

Due to lack of support (in terms of computer aided engineering tools), Lisp might not be

the right choice for the development of the finite element software. On the other hand,

due to run-time inefficiency, Java should not be preferred in the finite element

application, which requires hard and heavy run-time computing effort. For this purpose,

C++ seems to be the ideal choice; and detailed information is in the following paragraphs.

C++, which is invented by Stroustrup [141] over a robust procedure oriented language C

[142], is recently used by hundreds of thousands of programmers in essentially every

application domain. This use is supported by about a dozen independent implementations,

hundreds of libraries, hundreds of textbooks, several technical journals, many

conferences, and innumerable consultants. Training and education at a variety of levels

are widely available. Early applications tended to have a strong systems programming

flavor. For example, several major operating systems have been written in C++ and many

more have key parts done in C++. During the development of C++, Stroustrup considered

uncompromising low level efficiency essential. This allows developers to use C++ to

write device drivers and other software that rely on direct manipulation of hardware under

real time constraints. In such code, predictability of performance and compactness are as

important as raw speed. For most of the code development efforts, the important factors

are

- maintainability,

- ease of extension, and

- ease of testing.

C++’s support for these concerns has led to its widespread use where reliability is a must

and in areas where requirements change significantly over time. Examples are banking,

trading, insurance, telecommunications, and military applications. For years, the central

control of the U.S. long distance telephone system has relied on C++ and every 800 call

(that is, a call paid for by the called party) has been routed by a C++ program. Many such

applications are large and long lived. As a result, stability, compatibility, and scalability

have been constant concerns in the development of C++. Million line C++ programs are

not uncommon in practice. Like C, C++ wasn’t specifically designed with numerical

computation in mind. However, much numerical, scientific, and engineering computation

 130

is done in C++. A major reason for this is that traditional numerical work must often be

combined with graphics and with computations relying on data structures that don’t fit

into the traditional Fortran mold. Graphics and user interfaces are areas in which C++ is

heavily used. Anyone who has used either an Apple Macintosh or a Windows PC has

indirectly used C++ because the primary user interfaces of these systems are C++

programs. In addition, some of the most popular libraries supporting X for UNIX are

written in C++. Thus, C++ is a common choice for the vast number of applications in

which the user interface is a major part. All of these points to what may be C++’s greatest

strength: its ability to be used effectively for applications that require work in a variety of

application areas. It is quite common to find an application that involves local and

widearea networking, numerics, graphics, user interaction, and database access.

Traditionally, such application areas have been considered distinct, and they have most

often been served by distinct technical communities using a variety of programming

languages. However, C++ has been widely used in all of those areas.

Furthermore, C++ is able to coexist with code fragments and programs written in other

languages. C++ is widely used for teaching and research. This has surprised some who –

correctly – point out that C++ isn’t the smallest or cleanest language ever designed. It is,

however

• clean enough for successful teaching of basic concepts,

• realistic, efficient, and flexible enough for demanding projects,

• available enough for organizations and collaborations relying on diverse

development and execution environments,

• comprehensive enough to be a vehicle for teaching advanced concepts and

techniques, and

• commercial enough to be a vehicle for putting what is learned into nonacademic

use.

In summary, as its inventor Stroustrup mentioned: “C++ is a language that you can grow

with.”

 131

6.1.4. Standard Template Library of C++

Another important feature of the C++ is that it comes with a standard library handling

most of the boring and complicated low level operations. This yields the developers to

focus on its own work and forget any indirect business.

The C++ standard library:

1. Provides support for language features, such as memory management and

runtime type information.

2. Supplies information about implementation defined aspects of the language,

such as the largest float value.

3. Supplies functions that cannot be implemented optimally in the language itself

for every system, such as sqrt() and memmove().

4. Supplies nonprimitive facilities that a programmer can rely on for portability,

such as lists, maps, sort functions, and I/O streams.

5. Provides a framework for extending the facilities it provides, such as

conventions and support facilities that allow a user to provide I/O of a

userdefined type in the style of I/O for builtin types.

6. Provides the common foundation for other libraries.

In addition, a few facilities – such as random number generators – are provided by the

standard library simply because it is conventional and useful to do so. The design of the

library is primarily determined by the last three roles. These roles are closely related. For

example, portability is commonly an important design criterion for a specialized library,

and common container types such as lists and maps are essential for convenient

communication between separately developed libraries.

The heart of the C++ standard library, the part that influenced its overall architecture, is

the standard template library (STL). The STL is a generic library that provides solutions

to managing collections of data with modern and efficient algorithms. It allows

programmers to benefit from innovations in the area of data structures and algorithms

without needing to learn how they work. From the programmer's point of view, the STL

provides a bunch of collection classes that meet different needs, together with several

algorithms that operate on them. All components of the STL are templates, so they can

 132

be used for arbitrary element types. But the STL does even more: It provides a framework

for supplying other collection classes or algorithms for which existing collection classes

and algorithms work. All in all, the STL gives C++ a new level of abstraction. There is no

need for programming dynamic arrays, linked lists, and binary trees; or programming

different search algorithms. To use the appropriate kind of collection, one simply defines

the appropriate container and calls the member functions and algorithms to process the

data. The STL's flexibility, however, has a price, chief of which is that it is not self-

explanatory. Therefore, the subject of the STL fills several chapters in many books. An

introductory reading about STL is [143], and more advanced topics for efficient usages in

complex components can be found in [144].

In summary, the STL is based on different well-structured components, which are

containers, iterators, and algorithms.

- Containers are used to manage collections of objects of a certain kind. The containers

may be implemented as arrays or as linked lists, or they may have a special key for every

element.

- Iterators are used to step through the elements of collections of objects. These

collections may be containers or subsets of containers. For example, one operation lets

the iterator step to the next element in the collection. This is done independently of the

internal structure of the collection. Regardless of whether the collection is an array or a

tree, it works.

- Algorithms are used to process the elements of collections. For example, they can

search, sort, modify, or simply use the elements for different purposes. Algorithms use

iterators. Thus, an algorithm has to be written only once to work with arbitrary containers

because the iterator interface for iterators is common for all container types.

Even at first glance, it can be stated that STL provides tools & methods which are very

suitable to the finite element analysis. By using the templates, it is possible to define and

use a structure regardless of its type. By means of the templates, only the definition of

“vector” is sufficient; then it is possible to use this template for a vector of real numbers,

 133

or for a vector of nonnegative integers, or even for a vector of a custom type, etc. Iterators

and algorithms also provide infrastructure to very complicated operations which are

encountered in the finite element analysis. For example, during the imposure of the

boundary conditions, some matrix rows/columns or entries should be deleted and the

remaining entries should be shifted accordingly. Implementation of such an algorithm in

Fortran or C might be a mess; however STL handles most of it.

6.1.5. Migration to Object Oriented Methodology in FEM: FEM++ ?

Regarding all the information given above, the current trend in the finite element software

is naturally migration to object oriented architectures. Various papers focused on different

subjects have been published [145-152]. The successfully leading and mature example of

work products are:

- OOFEM developed by Patzak [153-154], which is a full product but only limited

to node elements,

- FEMSTER developed by Castillo et al [155-156], which is not an end product

but an object oriented library and framework providing components (finite

elements of various shapes and types) to finite element software researchers and

developers,

- deal.II developed by Bangerth et al [157], which is again not an end product but

an object oriented library and framework providing components (not only finite

elements of various shapes and types; but also error estimators) to finite element

software researchers and developers.

6.1.6. Design Patterns in FEM

Another methodology providing a common understanding and improving the readability

and reusability of object oriented codes is the usage of design patterns. Gamma et al (also

known as GoF standing for “Gang of Four”) encyclopedically listed 23 such patterns

[158], classified as creational, structural and behavioral patterns; which are widely used

and specifically known in the object oriented design world. In summary, design patterns

have been defined by GoF in order to bring more standardization, make people live and

feel déjà-vu’s during the design and carry their experiences by means of analogies.

 134

Examples about the usage of design patterns in the modern finite element software can be

listed as follows:

1. For the finite element software, there are numerous ways of implementing an

operation. For example, basis functions can be defined by means of different

orthogonal polynomials. Any creational pattern, such as “Abstract Factory”, can

be used for the creation of different orthogonal polynomials of different orders.

Such factories can be defined for other operations such as curve production,

quadrature point production etc.

2. The global stiffness matrix can be implemented by means of the creational

“Singleton” pattern, which guarantees the uniqueness of the matrix.

3. As another example, there are numerous algorithms for the solution of the matrix

equation. Among the structural ones, the “Strategy” pattern can be used to

implement various matrix solvers with a single unique interface. It can also be

used where multi-algorithm alternatives exist (such as mesh quality measurement,

improvement, etc).

4. For hp-version finite element method, some elements might have additional

attributes (some other modes and more basis functions) than the others.

“Decorator” pattern, which is a behavioral pattern, seems to be suitable to use for

such purposes.

More cases about the usage of design patterns can certainly be found after more a detailed

analysis and design phase.

6.2. An Object and Pattern Oriented Finite Element Software Proposal

The modern finite element software should have a layered architecture in order to

decrease the dependency between components requiring different type of expertise, and

to enable parallel development of different components by several development teams.

Conventionally, graphical user interface has always been distinguished from the business

logic portion of the code, which is considered as the application layer. Especially after the

object oriented era, utilities (either reused from commercial/free libraries; or newly

developed) providing special purpose infrastructure (e.g. mathematical function libraries

in a numerical method software, or coordinate conversion and projection library in a

 135

geographical information software) and hardware/operating system accessing code (e.g.

communication code making use of operating system calls and network cards) are

considered to be as framework. Such layering mechanism lets developers concentrate

only on their component; not necessarily know the details but just the interfaces/services

of other components.

6.2.1. Architectural Decisions

A proposal of the modern finite element software architecture is given in Fig. 6.1. The

graphical user interface layer consists of components:

i) Window Element Handler: handling general window elements (any action on

menus, tabular displays, buttons etc.);

ii) Mesh Handler: illustrating and manipulating the mesh in a 3D environment

(zooming in/out; rotation; adjusting camera position and angle etc.); and

iii) FEM Data Handler: handling the whole geometry and the preferences during

the finite element analysis; interfacing with the necessary components of the

application layer.

Regarding the platform independency design consideration mentioned in previous

sections;

i) QT [159], which is an advanced platform independent library for widget and

other user interface element generation and manipulation, might be a useful

tool during the development of the Window Element Handler.

ii) OpenGL [160-161], which is an advanced platform independent library for

3D graphics manipulation, seems to be suitable for the development of the

Mesh Handler.

Application layer consists of business logic components:

i) Mesh Manager: importing the mesh from a formatted file or a set of

formatted files , handling it throughout the execution, and exporting/saving it

to the file(s) of same format(s).

ii) Resource Manager: allocating the resources (CPU, memory, threads) to

necessary operations; i.e. handling the concurrency and parallelization issues

during the execution,

 136

iii) FEM Manager: performing the necessary actions in the finite element

analysis in relevant order.

Again regarding the platform independency design consideration; the mesh file to be

parsed by the Mesh Manager can be chosen to be in XML format [162]; which is a

structured, well organized, human-readable format appropriate for hierarchical data

structures.

The framework consists of:

i) Utilities like a general purpose matrix library and sparse matrix utilities

(either to be developed from the scratch; or object oriented wrapped versions

of available libraries such as PETSc, BLAS, LAPACK, UMFPACK etc.),

ii) Communication infrastructure especially to be used for parallel/distributed

environment (where ACE [163] and CORBA [164] can be effectively used).

Similarly, the framework tools are proposed in a manner that the platform independency

is preserved.

Fig. 6.1. Layered Architecture of the FEM Software.

The mesh viewing software developed in this thesis is an OpenGL application, and it can

be considered as a prototype for the GUI Layer. A screen snapshot of it is given in Fig.

6.2.

 137

Fig. 6.2. A Screen Snapshot of OpenGL based GUI.

6.2.2. UML Analysis of the Proposed Architecture

Another aspect of the design is the user’s point of view (i.e. user’s expectations about the

functionality of the program). Generally, UML use case diagrams [165] are used for this

purpose. Readers, who are not familiar with UML, might proceed to Appendix E for

detailed information about it and its notation.

The modern finite element software proposed here has the system boundaries as seen in

Fig. 6.3 (i.e. According to user’s request, it imports a mesh created by an external mesh

generation software and performs finite element analysis). Namely mesh generation,

which is considered as another world or universe, is out of the scope of the proposed

software.

 138

User
PerformFEMOperations

MeshGenerationSW

ImportMesh

<<include>> Boundary of the FEM
Software mentioned

Fig. 6.3. System Boundary of the FEM Software.

The use cases of the software might certainly be detailed and extended. Fig.s 6.4, 6.5, 6.6

and 6.7 illustrate some more use cases in order to give the complete functionality set

provided by the software.

LoadMesh

User ViewMesh

ZoomIn

ZoomOut

ChangeCameraAngle

<<include>>

<<include>>

<<include>>

<<include>>

Fig. 6.4. Mesh Viewing Functionality Provided by the FEM Software.

 139

LoadMesh

CheckMeshValidity

CalculateMeshQuality

PerformMeshSmoothing

SaveMesh

CurvilinearizeMesh

MoveMesh

User

Rotate

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Fig. 6.5. Mesh Manipulation Functionality Provided by the FEM Software.

 140

DefineEquation

SelectElementType

<<include>>

DefineProblem

<<include>>

Select whether
the element to
be used is a
node, edge,
facet, or
volume
element

DefineGeometry

DefineBoundaryConditions

LoadMesh

<<include>>

SelectMatrixSolver

SelectMatrixStorageScheme

SelectMatrixPreconditioner

DefineSources

<<include>>

<<include>>

<<include>>

DefineOutputFormat

DefineHuygensSurface

<<include>>

DefinePeriodicBoundaryConditions

<<include>>

User

SolveProblem

<<include>>

EstimateError

<<include>>

EstimateDiscretizationError

EstimateInterpolationError

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Fig. 6.6. Direct FEM Functionality Provided by the FEM Software.

MonitorResourceUsage

For applicable
algorithms (such as
multifrontal method),
the user might put
constraints such as
minimum memory,
maximum speed, etc.

DistributeResourceUsage

User

SetConstraints

<<include>>

Fig. 6.7. Management Functionality Provided by the FEM Software.

 141

Another point of view is construction and analysis of the data structures in order to have

an idea of the interfaces in mind. Class diagrams are used for this purpose. For example,

class diagram illustrating the mesh data structure is given in Fig. 6.8. Moreover, the data

structures of the elements (showing their relationships and hierarchy) are given in Fig.s

6.9 and 6.10.

Patterns used in the design can also be addressed and specified in the class diagrams.

Abstract factory pattern used in polynomial, curve and quadrature point generation is

illustrated in Fig.s 6.11, 6.12, and 6.13 respectively.

Mesh

Element
1..*1..*

NodeList

11

Coordinate

Node
1..*1..*

**
ConnectivityList

11

EdgeList
11

CorrespondingNodeList
11

BasisFunctionList

11

NodalBasisFunctionList

11

EdgeBasisFunctionList

11

BasisFunction

1..*1..* 1..*1..*

CoefficientList

1..*1..*

Fig. 6.8. Mesh Data Structure inside the FEM Software.

 142

Element
NodeList
EdgeList
BasisFunctionList

UpdateElementNodes()
ConstructEdgeList()
ConstructBasisFunctionList()
ConstructElementMatrix()

2DElement

QuadrilateralElementTriangularElement

QuadrilateralNode
Element

QuadrilateralEdge
Element

QuadrilateralFace
Element

QuadrilateralVolume
ElementTriangularNode

Element

TriangularEdge
Element

TriangularFace
Element

TriangularVolume
Element

Fig. 6.9. 2D Element Data Structure inside the FEM Software.

Element
NodeList
EdgeList
BasisFunctionList

UpdateElementNodes()
ConstructEdgeList()
ConstructBasisFunctionList()
ConstructElementMatrix()

3DElement

TetrahedralElement PrismicElement HexahedralElement

TetrahedralNode
Element

TetrahedralEdge
Element

TetrahedralFace
Element

TetrahedralVolume
Element

PrismicNode
Element

PrismicEdge
Element

PrismicFace
Element

PrismicVolume
Element

HexahedralNode
Element

HexahedralEdge
Element

HexahedralFace
Element

HexahedralVolume
Element

Fig. 6.10. 3D Element Data Structure inside the FEM Software.

 143

Fig. 6.11. Curve Data Structure and Abstract Curve Factory inside the FEM Software.

 144

+CreatePolynomial()
-CoefficientList : double

PolynomialFactory

+CreatePolynomial()
+CheckOrthogonality()

-CoefficientList : double
OrthogonalPolynomialFactory

+CreatePolynomial()
-CoefficientList : double
LegendrePolynomialFactory

+CreatePolynomial()
-CoefficientList : double

JacobiPolynomialFactory

+CreatePolynomial()
-CoefficientList : double

HermitePolynomialFactory

+CreatePolynomial()
-CoefficientList : double
GegenbauerPolynomialFactory

HierarchicalBasisFunctionHandler

* *
+Polynomial()
+CalculateValue() : double
+Integrate()
+Differentiate()

-CoefficientList : double
Polynomial

OrthogonalPolynomial

LegendrePolynomial

JacobiPolynomial

HermitePolynomial

GegenbauerPolynomial

Fig. 6.12. Polynomial Data Structure and Abstract Polynomial Factory inside the FEM
Software.

+CreatePointList()
-PointList : double
QuadraturePointFactory

ClenshawCurtisQuadraturePointFactory

GaussianQuadraturePointFactory

QuadratureHandler

* *
PointList

ClenshawCurtisQuadraturePointList

GaussianQuadraturePointList

Fig. 6.13. Quadrature Point Data Structure and Abstract Quadrature Point Factory inside
the FEM Software.

 145

CHAPTER 7

CONCLUSIONS

In many engineering disciplines, approximate solutions of differential or integral

equations play an important role to analyze or design complicated engineering systems.

Several examples can be found from various branches such as Computational Fluid

Dynamics (CFD), Computational Electromagnetics (CEM), heat transfer applications,

Structural Mechanics, etc. In all such applications, the spatial domain must be discretized

by generating a mesh, which is a collection of elements with simple shapes. Then the

operator equations (i.e. partial differential equations or integral equations) are solved by

using the well-known methods such as finite differences, finite elements or method of

moments.

Among these, the Finite Element Method is a powerful and useful tool employed in the

numerical solution of partial differential equations that arise in different applications. The

technique allows for the solution of practical problems that would otherwise be

intractable for analytical methods because of non-linearities or complex geometries.

However, to achieve the full benefits of considering arbitrary geometries, there must exist

simple and efficient means to generate the required meshes.

From the viewpoint of applications, three-dimensional problems are much more

important (but more difficult as well) than their two-dimensional counterparts. Mesh

generation is crucial in the application of FEM in three-dimensional problems. On the

other hand all-hexahedral meshing, which yields the most accurate finite element

solutions, is the most challenging topic in the mesh generation era.

 146

The aim of this thesis is to apply the higher order hexahedral edge elements to

electromagnetic scattering problems together with generic implementations. For this

purpose, three separate stand-alone software products (all-hexahedral mesh generation;

3D mesh viewing, and finite element solver by means of hierarchical hexahedral edge

elements) were developed. Moreover, a separate Matlab script was developed for

hexahedral mesh smoothing with Particle Swarm Optimization in order to investigate the

effects of mesh quality on the solution accuracy.

Perfectly Matched Layers (PMLs) which are implemented by using a complex coordinate

transformation, have been successfully used for mesh truncation in this software. Material

uniformities have been handled during the very initial all-hexahedral mesh generation in

order to support both the mesh visualization and the finite element solution.

In the three-dimensional Finite Element Analysis, the number of elements are typically

very large (in the order of tens of thousands of unknowns), so the resulting matrices for

those systems are large but fortunately sparse. In the finite element solver different

sparse storage schemes, each of which is appropriate for a different solver, have been

used. The row-indexed sparse storage mode is optimized for multiplication of the matrix

(or the transpose of the matrix) with a vector from the left. This is a very good property

since the sparse matrices need to be operated over other matrices to construct the system

of equations and matrix-vector multiplications are needed during the solution of the

system of equations using the biconjugate gradient method. The other sparse storage

scheme is optimized for Gaussian elimination like operations, which are performed

during the multifrontal method.

To the author’s belief, two original contributions have been made throughout this thesis:

Performance of quadratic hexahedral edge elements has been deeply investigated over the

radar cross-sections of several curved or flat objects with or without patches. Instead of

the widely known and accepted “0.1λ linear element size” criterion, it has been observed

and concluded that “0.3-0.4 λ quadratic element size” is a new potential

criterion for electromagnetic scattering and radiation problems. Analyses have shown

 147

that the usage of quadratic elements is not only more confident, but also computationally

cheaper.

The second original research topic in this thesis is the mesh improvement performed by

optimization based mesh smoothing. The smoothing has been performed by means of the

Particle Swarm Optimization, which found wide application in the last decade. During the

smoothing, a condition number based combined hexahedral quality metric was used.

There remain several avenues for further research in this work. Deeper investigation of

the effects of edge ordering to the stiffness matrix storage and solution (focused on

hexahedral edge elements) might be one of these. Object and pattern oriented finite

element software development, software size and cost estimation are other potential

research areas.

Certainly, application of higher order (third, fourth, fifth and even more) hierarchical

hexahedral edge elements to electromagnetic scattering problems might be an extension

to this work. Similarly, multiobjective hexahedral mesh smoothing can be considered as

another near-future term work.

 148

REFERENCES

[1] R. Courant, “Variational methods for a solution of problems of equilibrium and vibrations”,

Bull. Amer. Math. Soc., vol. 49, pp. 1-23, 1943.

[2] J. H. Argyris, “Energy theorems and structural analysis”, Aircraft Engineering, vol. 26, pp.

347-356, 1954.

[3] A. E. Yılmaz and M. Kuzuoğlu, “Elektromanyetik Sınır Değer Problemlerinin İkinci

Dereceden Altı Yüzlü Sonlu Elemanlar İle Modellenmesi”, in Proc. URSI-Türkiye 2004 2. Ulusal

Kongresi, pp. 78-80, 2004.

[4] A. E. Yılmaz and M. Kuzuoğlu, “Mikroşerit Yama Antenlerin Sonlu Elemanlar Yöntemi ile

Modellenmesi”, in Proc. URSI-Türkiye 2006 3. Ulusal Kongresi, pp. 146-148, 2006.

[5] A. E. Yılmaz and M. Kuzuoğlu, “Elektromanyetik Sınır Değer Problemlerinin Düzgün

Olmayan Ağlar ve Altı Yüzlü Sonlu Kenar Elemanları ile Modellenmesi”, in Proc. URSI-Türkiye

2006 3. Ulusal Kongresi, pp. 125-127, 2006.

[6] A. E. Yilmaz and M. Kuzuoglu, “Comparison of Linear And Quadratic Hexahedral Edge

Elements in Electromagnetic Scattering Problems”, to appear in AEÜ – International Journal of

Electronics and Communications.

[7] A. E. Yilmaz and M. Kuzuoglu, “A Particle Swarm Optimization Approach in Hexahedral

Mesh Smoothing”, submitted to Communications in Numerical Methods in Engineering.

[8] A. E. Yilmaz and M. Kuzuoglu, “Parçacık Sürü Optimizasyonu ile Altı Yüzlü Eleman

Ağlarının İyileştirilmesi - Hexahedral Mesh Smoothing by Means of Particle Swarm

Optimization”, in CD-ROM Proc. IEEE 15. Sinyal İşleme ve İletişim Uygulamaları Kurultayı

(SİU-2007), Eskişehir, Türkiye.

[9] S. E. Benzley, E. Perry, K. Merkley and B. Clark, “A Comparison of All Hexagonal and All

Tetrahedral Finite Element Meshes for Elastic and Elastic-Plastic Analysis”, Proc. 4th Int.

Meshing Roundtable, pp. 179-191, 1995.

[10] T. Blacker, “Meeting the Challenge for Automated Conformal Hexahedral Meshing”, Proc.

9th Int. Meshing Roundtable, 2000.

[11] A. Sheffer, T. Blacker and M. Bercovier, “Clustering: Automated Detail Suppression Using

Virtual Topology”, Joint ASME/ASCE/SES Summer Meeting, June 1997.

[12] A. Sheffer, T. Blacker, J. Clements and M. Bercovier, ``Virtual Topology Operators for

Meshing'', Proc. 6th Int. Meshing Roundtable, pp. 49-65, 1997.

 149

[13] S. S. Liu and R. Gadh, “Basic LOgical Bulk Shapes (BLOBs) for Finite Element Hexahedral

Mesh Generation”, Proc. 5th Int. Meshing Roundtable, 1996.

[14] C. G. Armstrong, D. J. Robinson, R. M. McKeag, T. S. Li, S. J. Bridgett, R. J. Donaghy and

C. A. McGleenan, “Medials for Meshing and More”, Proc. 4th Int. Meshing Roundtable, 1995.

[15] T. D. Blacker, M. B. Stephenson, J. L. Mitchiner, L. R. Phillips and Y. T. Lin, “Automated

Quadrilateral Mesh Generation: A Knowledge System Approach”, ASME, Paper No. 88-WA/CIE-

4.

[16] S. Liu and R. Gadh, “Automatic Hexahedral Mesh Generation by Recursive Convex and

Swept Volume Decomposition”, Proc. 6th Int. Meshing Roundtable, pp. 217-231, 1997.

[17] A. Sheffer, M. Etzion, A. Rappoport and M. Bercovier, “Hexahedral Mesh Generation using

the Embedded Voronoi Graph”, Proc. 7th Int. Meshing Roundtable, 1998.

[18] R. J. Meyers, T. J. Tautges and P. M. Tuchinsky, “The “Hex-Tet” Hex-Dominant Meshing

Algorithm as Implemented in CUBIT”, Proc. 7th Int. Meshing Roundtable, pp. 151-158, 1998.

[19] W. P. Thurston, “Hexahedral decomposition of polyhedra”,

http://www.ics.uci.edu/~eppstein/gina/Thurston-hexahedra.html, Posting to sci.math, 25 October

1993, (last accessed Jul 1, 2007).

[20] S. A. Mitchell, “A Characterization of the Quadrilateral Meshes of a Surface Which Admits a

Compatible Hexahedral Mesh of Enclosed Volume”,5th

MSI WS.Comp. Geometry, 1995.

[21] S. Mitchell, “A Characterization of the Quadrilateral Meshes of a Surface Which Admit a

Compatible Hexahedral Mesh of the Enclosed Volume”, Proc. 13th Annual Symposium on

Theoretical Aspects of Computer Science, Springer, pp. 465-476, 1996.

[22] D. Eppstein, “Linear Complexity Hexahedral Mesh Generation”, Computational Geometry

'96, ACM (1996).

[23] M. Stephenson and T. Blacker, “Using Conjoint Meshing Primitives to Generate

Quadrilateral and Hexahedral Elements in Irregular Regions”, ASME, G0502B, 1989.

[24] P. M. Knupp, “Next-Generation Sweep Tool: A Method for Generating All-Hex Meshes on

Two-and-One-Half Dimensional Geometries”, Proc. 7th Int. Meshing Roundtable, pp. 505-514,

1998.

[25] M. L. Staten, S. A. Canann and S. J. Owen, “BMSweep: Locating Nodes During Sweeping”,

Proc. 7th Int. Meshing Roundtable, pp. 7-17, 1998.

[26] R. Schneider, “Automatic Generation of Hexahedral Finite Element Meshes”, Proc. 4th Int.

Meshing Roundtable, pp. 103-114, 1995.

[27] J. Zhu and T. Blacker, “Overcoming Cartesian Grid Generation Obstacles”, Proc. 7th Int.

Conference on Numerical Grid Generation in Computational Field Simulations, 2000.

[28] R. Taghavi, “Hexar: Automatic, Parallel and Fault Tolerant Mesh Generation from CAD on

Cray Research Supercomputers”, Proc. 3rd Int. Meshing Roundtable, 1994.

 150

[29] R. Smith, “A Novel Cartesian Grid Method for Complex Aerodynamic CFD Applications”,

Proc. 5th Int. Conference on Numerical Grid Generation in Computational Field Simulations, pp.

709-718, 1996.

[30] N. Chiba, I Nishigaki, Y. Yamashita, C. Takizawa, and K. Fujishiro, “A flexible automatic

hexahedral mesh generation by boundary-fit method”, Comp. Meth. in Appl. Mech. And Eng. Vol.

161, pp. 145-154, 1998.

[31] K. Miyoshi and T. D. Blacker, “Hexahedral Mesh Generation Using Multi-Axis Cooper

Algorithm”, Proc. 9th Int. Meshing Roundtable, 2000.

[32] M. E. Hohmeyer and W. Christopher, “Fully-Automatic Object-Based Generation of

Hexahedral Meshes”, Proc. 4th Int. Meshing Roundtable, pp.129-138, 1995.

[33] T. D. Blacker, “The Cooper Tool”, Proc. 5th Int. Meshing Roundtable, pp. 13-29, 1996.

[34] D. R. White, L. Mingwu, S. E. Benzley and G. D. Sjaardema, “Automated Hexahedral Mesh

Generation by Virtual Decomposition”, Proc. 4th Int. Meshing Roundtable, pp. 165-176, 1995.

[35] M. B. Stephenson, S. A. Canann, T. D. Blacker and R. J. Meyers, “Plastering Progress Report

I”, SAND89-2192, Sandia National Laboratories. 1992.

[36] T. D. Blacker and R. J. Meyers, “Seams and Wedges in Plastering: A 3-D Hexahedral Mesh

Generation Algorithm”, Engineering with Computers, vol. 9, pp. 83-93, 1993.

[37] T. Blacker and M. Stephenson. Paving: A New Approach to Automated Quadrilateral Mesh

Generation. International Journal for Numerical Methods in Engineering, vol. 32, pp. 811–847,

1991.

[38] K. Kovalev, “Unstructured Hexahedral Non-conformal Mesh Generation”, Ph. D. Thesis,

Vrije Universtiteit Brussel, December 2005.

[39] R. Cass, S. Benzley, R. Meyers, and T. Blacker, “Generalized 3D Paving: An Automated

Quadrilateral Surface Mesh Generation Algorithm”, International Journal for Numerical Methods

In Engineering, vol. 39, pp. 1475–1489, 1996.

[40] R. J. Meyers, T. J. Tautges and P. M. Tuchinsky, “The “Hex-Tet” Hex-Dominant Meshing

Algorithm as Implemented in CUBIT”, Proc. 7th Int. Meshing Roundtable, pp. 151-158, 1998.

[41] T. Tautges, T. Blacker and S. Mitchell, “The Whisker Weaving Algorithm: A Connectivity-

Based Method for Constructing All-Hexahedral Finite Element Meshes”, Int. J. Numerical

Methods in Engineering, vol. 39, pp. 3327-3349, 1996.

[42] N. T. Folwell and S. A. Mitchell, “Reliable Whisker Weaving via Curve Contraction”, Proc.

7th Int. Meshing Roundtable, pp. 365-378, 1998.

[43] P. Murdoch and S. Benzley, “The Spatial Twist Continuum”, Proc. 4th International

Meshing Roundtable, pp. 243–251, 1995.

[44] P. Murdoch, S. Benzley, T. Blacker, and S. A. Mitchell, "The spatial twist continuum: a

connectivity based method for representing all-hexahedral finite element meshes", Finite Elements

in Analysis and Design, vol. 28, no. 2, pp. 137-149, Dec. 1997.

 151

[45] M. Borden, S. Benzley, S. Mitchell, D. White and R. Meyers, “The cleave and fill tool: An

all-hexahedral refinement algorithm for swept meshes,” Proc. 9th International Meshing

Roundtable, pp. 69-76, 2000.

[46] L. Marechal, “A new approach to octree-based hexahedral meshing,” Proc. 10th

International Meshing Roundtable, pp. 209-221, 2001.

[47] R. Schneiders, “Octree-based hexahedral mesh generation,” Int. Journal of Comp. Geom. &

Applications, vol. 10, no. 4, pp. 383-398, 2000.

[48] K. Tchon, C. Hirsch, and R. Schneiders, "OctreeBased Hexahedral Mesh Generation for

Viscous Flow Simulations", Proc. 13th AIAA Computational Fluid Dynamics Conference, AIAA-

971980, 1997.

[49] D. Field, “Laplacian Smoothing and Delaunay Triangulations”, Communications and Applied

Numerical Methods, vol. 4, pp. 709–712, 1988.

[50] L. Freitag, “On Combining Laplacian and Optimization-Based Mesh Smoothing

Techniques”, Trends In Unstructured Mesh Generation, vol. 220, pp. 37–43, ASME, July 1997.

[51] L. Freitag and C. Ollivier-Gooch, “Tetrahedral Mesh Improvement Using Swapping and

Smoothing”, International Journal for Numerical Methods in Engineering, vol. 40, pp. 3979–

4002, 1997.

[52] P. Hansbo, “Generalized Laplacian Smoothing Of Unstructured Grids”, Communications in

Numerical Methods in Engineering, vol. 11, pp. 455–464, 1995.

[53] N. Jones and S. Wright “Algorithm For Smoothing Triangulated Surfaces”, Journal of

Computing in Civil Engineering, ASCE vol. 1, pp. 85–102, 1991.

[54] S. A. Canann, J. R. Tristano, and M. L. Staten, “An Approach to Combined Laplacian and

Optimization-Based smoothing for Triangular, Quadrilateral, and Quad-Dominant Meshes”, Proc.

7th International Meshing Roundtable, pp. 479–494, 1998.

[55] N. Mukherjee, "A Hybrid, Variational 3D Smoother for Orphaned Shell Meshes", Proc. 11th

International Meshing Roundtable, pp. 379–390, 2002.

[56] P. Knupp, “Winslow Smoothing on Two Dimensional Unstructured Meshes”, Proc. 7th

International Meshing Roundtable, pp. 449–457, 1998.

[57] S. A. Canann, M. B. Stephenson and T. D. Blacker, “Optismoothing: An Optimization-

Driven Approach to Mesh Smoothing”, Finite Elements in Analysis and Design, vol. 13, pp. 185–

190, 1993.

[58] L. Freitag and P. Knupp, “Tetrahedral Element Shape Optimization via The Jacobian

Determinant and Condition Number”, Proc. 8th International Meshing Roundtable, pp. 247–258,

1999.

[59] L. Freitag and P. Knupp, “Tetrahedral Mesh Improvement via Optimization of The Element

Condition Number”, International Journal for Numerical Methods in Engineering, vol. 53, pp.

1377–1391, 2002.

 152

[60] O. P. Jacquotte and G. Coussement, “Structured Mesh Adaptation: Space Accuracy and

Interpolation Methods”, Computational Methods in Applied Mechanics and Engineering, vol. 101,

pp. 397–432, 1992.

[61] V. Parthasarathy and S. Kodiyalam, “A Constrained Optimization Approach to Finite

Element Mesh Smoothing”, Journal of Finite Elements in Analysis and Design, vol. 9, pp. 309–

320, 1991.

[62] C. Farhat, C. Degand, B. Koobus and M. Lesoinne, “Torsional springs for two-dimensional

unstructured fluid meshes”, Computer Methods in Applied Mechanics and Engineering, vol. 163,

pp. 231–245, 1998.

[63] C. Degand and C. Farhat, “A three-dimensional torsional spring analogy method for

unstructured dynamic meshes”, Computers and Structures, vol. 80, pp. 305–316, 2002.

[64] Sandia National Labotartories, “CUBIT 10.2 User Documentation”,

http://cubit.sandia.gov/help-version10.2/cubithelp.htm, Oct11, 2006 (last accessed Jul 1, 2007).

[65] National University of Singapore, “A Simple Guide To FIDAP/FIMESH - A Fluid Dynamics

Analysis Package”, http://www.nus.edu.sg/comcen/svu/techinfo/fidap_userguide.html, 2006 (last

accessed Jul 1, 2007).

[66] P. M. Knupp, "Algebraic mesh quality metrics for unstructured initial meshes", Finite

Elements in Analysis and Design, vol. 39, pp. 217–241, 2003.

[67] A. Oddy, J. Goldak, M. McDill and M. Bibby, “A Distortion Metric for Isoparametric Finite

Elements”, Trans. CSME, nr. 38-CSME-32, 1988.

[68] J. Robinson, “CRE method of element testing and the Jacobian shape parameters”, Eng.

Comput., vol. 4, pp. 113–118, 1987.

[69] W. Kwok and Z. Chen, “A simple and effective mesh quality metric for hexahedral and

wedge elements”, Proc. 9th International Meshing Round Table, pp. 325–333, 2000.

[70] S. Nagakura, S. Noguchi, H. Yamashita and V. Cingoski, “Automatic Hexahedral Mesh

Generation for FEM Using Shape Recognition Technique and Tree Method”, IEEE Transactions

on Magnetics, vol. 38, no. 2, pp. 417-420, March 2002.

[71] T. Maeda, S. Noguchi, H. Yamashita and V. Cingoski, “Automatic Hexahedral Mesh

Generation for Rotating Machine”, IEEE Transactions on Magnetics, vol. 40, no. 2, pp. 973-976,

March 2004.

[72] T. Maeda, S. Noguchi, H. Yamashita, and V. Cingoski, “An automatic hexahedral mesh

generation method for hexahedral elements towards rotating machine”, Journal of Materials

Processing Technology, vol. 161, no. 1-2, pp. 101–106, Apr. 2005.

[73] P. M. Knupp, "Algebraic mesh quality metrics", SIAM J. Sci. Comput., vol. 23, no. 1, pp.

193-218, 2001.

[74] P. M. Knupp, "A method for hexahedral mesh shape optimization", Int. J. Numer. Meth.

Eng., vol. 58, pp. 319–332, 2003.

 153

[75] W. J. Gordon and C. A. Hall, “Transfinite Element Methods: Blending Function Interpolation

over Arbitrary Curved Element Domains”, Numer. Math., vol. 21, pp. 109-129, 1973.

[76] T. Sederberg, “Bézier Curves”, http://www.tsplines.com/resources/, 2007 (last access Jul 1,

2007).

[77] S. Dey, R. M. O’Bara, and M. S. Shephard, “Curvilinear Mesh Generation in 3D”, Proc. 8th

International Meshing Roundtable, 1999.

[78] X. J. Luo, M. S. Shephard, J. F. Remacle, R. M. O’Bara, M. W. Beall, and B. Szabo, “p-

Version Mesh Generation Issues”, Proc. 11th International Meshing Roundtable, 2002.

[79] H. Grassmann and L. Kannenberg, A New Branch of Mathematics: The “Ausdehnungslehre"

of 1844 and Other Works. Chicago: Open Court Publishing, 1995.

[80] G. A. Deschamps, “Electromagnetics and differential forms," IEEE Proc., vol. 69, pp. 676-

696, June 1981.

[81] W. L. Engl, “Topology and geometry of the electromagnetic field," Radio Sci., vol. 19, pp.

1131-1138, Sept. Oct. 1984.

[82] D. Baldomir, “Differential forms and electromagnetism in 3-dimensional Euclidean space

R3”, IEE Proc., vol. 133, pp. 139-143, May 1986.

[83] W. L. Burke, Applied Differential Geometry. Cambridge, UK: Cambridge University Press,

1985.

[84] J. M. Koning, “An Object Oriented, Finite Element Framework For Linear Wave Equations”,

PhD Thesis, Engineering - Applied Science, University Of California Davis, January 2004.

[85] K. F. Warnick, P. Russer, “Two, Three and Four-Dimensional Electromagnetics Using

Differential Forms”, Turk J Elec Engin, vol. 14, no.1, pp. 153-172, 2006.

[86] E. Tonti, "Finite Formulation of the Electromagnetic Field", Progress in Electromagnetics

Research, PIER 32, pp. 1-44, 2001.

[87] J. C. Nédélec, "A new family of mixed finite elements in R3", Numer. Math., vol. 50, no. 1,

pp. 57-81, 1986.

[88] P. A. Raviart and J. M. Thomas, "A mixed finite element method for second order elliptic

problems", In I. Galligani and E. Magenes, editors, Mathematical Aspects of the 17 Finite

Element Method, pp. 292-315, Berlin-Heilderberg-New York, 1977.

[89] F. Brezzi, J. Douglas Jr. and L. D. Marini, "Two families of mixed finite elements for second

order elliptic problems", Numer. Math., vol. 47, pp. 217-235, 1985.

[90] J. S. van Welij, “Calculation of eddy current in terms of H on hexahedra”, IEEE Trans Mag,

vol. 21, pp. 2239-2241, 1985.

[91] A. Kameari, “Calculation of Transient 3D Eddy Current Using Edge Elements”, IEEE Trans

Mag, vol. 26, pp. 466-469, 1990.

 154

[92] A. K. Karanam, "Hierarchical Hexahedral Elements For Fluid Dynamic Simulations Using

Stabilized Finite Element Methods", M.Sc. Thesis, Rensselaer Polytechnic Institute Dept of

Mechanical Engineering, New York, 2000.

[93] J.S. Wang, “Hierarchic Edge Elements for High-Frequency Problems”, IEEE Transactions on

Magnetics, vol. 33, no. 2, pp. 1536-1539, March 1997.

[94] B. Szabo and I. Babuška, Finite Element Analysis, Wiley, NY: 1991.

[95] S. Zaglmayr, “High Order Finite Element Methods for Electromagnetic Field Computation”,

Ph.D. Thesis, Institut für Numerische Mathematik, Johannes Kepler Universität Linz, July 2006.

[96] R. Holland and J. W. Williams, “Total-field versus scattered field finite-difference codes: A

comparative asessment,” IEEE Trans. Nucl. Sci., vol. NS-30, pp. 4583-4588, Dec. 1983.

[97] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves”, J.

Comp. Phys., vol. 114, pp. 185-200, Oct. 1994.

[98] W. C. Chew and W. H. Weedon, “A 3-D perfectly matched medium from modified

Maxwell’s equations with stretched coordinates”, Microwave Opt. Tech. Lett., pp. 599-604, Sept.

1994.

[99] Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic

absorber for use as an absorbing boundary condition”, IEEE Trans. Antennas Propagat., vol.43,

pp. 1460-1463, Dec. 1995.

[100] M. Kuzuoğlu and R. Mittra, “Investigation of Nonplanar Perfectly Matched Absorbers for

Finite-Element Mesh Truncation”, IEEE Trans. Antennas Propagat., vol 45, pp. 474-486, Mar.

1997.

[101] W. C. Chew, J. M. Jin, and E. Michielssen, "Complex coordinate stretching as a generalized

absorbing boundary condition", Microwave Opt. Technol. Lett., vol. 15, pp. 363–369, 1997.

[102] J. Bentley, Programming Pearls, MA: Addison-Wesley, 1986.

[103] J. R. Gilbert, “Sparse Matrices”, 3-Day Seminar at Sparse Matrix Days in MIT,

http://www.cs.ucsb.edu/~gilbert/talks/talks.htm, (last accessed Jul 1, 2007).

[104] M. R. Hestenes and E. Steifel, “Method of conjugate gradients for solving linear systems”,

J. Res. Natl. Bur. Stand., vol. 49, pp. 409-436, Dec. 1952.

[105] C. Lanczos, “Solution of systems of linear equations by minimized iterations”, J. Res. Natl.

Bur. Stand., vol. 49, pp. 33-53, 1952.

[106] Y. Saad, “GMRES: A generalized minimal residual algorithm for solving non-symmetric

linear systems”, SIAM J. Sci. Statist. Comput., vol. 7, pp. 856-869, 1986.

[107] R. W. Freund and N. M. Nachtigal, “QMR: A quasi-minimal residual method for non-

Hermitian linear systems”, Numerische Mathematik, vol. 60, pp. 315-339, 1991.

[108] P. Sonneveld, “CGS: A fast Lanczos-type solver for nonsymmetric linear systems”, SIAM J.

Sci. Statist. Comput., vol. 10, pp. 36-52, 1989.

 155

[109] H. A. van der Vorst, “BI-CGSTAB: A fast and smoothly converging variant of BI-CG for

the solution of nonsymmetric linear systems”, SIAM J. Sci. Statist. Comput., vol. 13, pp. 631-644,

1992.

[110] R. W. Freund, “A transpose-free quasi-minimal residual algorithm for non Hermitian linear

systems”, SIAM J. Sci. Statist. Comput.,, vol. 14, no. 2, pp. 470-482, 1993.

[111] A. Greenbaum, Iterative Methods for Solving Linear Systems, Philadelphia: SIAM, 1997.

[112] G. H. Golub, C.F. van Loan, Matrix Computations, Baltimore: Johns Hopkins University

Press, 1989.

[113] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, New York: Springer-Verlag,

1980.

[114] L. Baker, More C Tools for Scientists and Engineers, New York: McGraw-Hill, 1991.

[115] R. Fletcher, “Numerical Analysis Dundee 1975”, Lecture Notes in Mathematics, Springer-

Verlag, vol. 506, pp. 73-89, 1976.

[116] B. M. Irons, “A frontal solution program for finite-element analysis”, Int. J. Num. Meth.

Eng., vol. 2, pp. 5-32, 1970.

[117] P. Hood, “Frontal solution program for unsymmetric matrices”, Int. J. Num. Meth. Eng., vol.

10, pp. 379-400, 1976.

[118] I. S. Duff, “MA32 – A package for solving sparse unsymmetric systems using the frontal

method”, Technical Report AERE R11009, Her Majesty’s Stationery Office, London, 1981.

[119] J. W. H. Liu, “The role of elimination trees in sparse factorization”, SIAM J. Matrix

Analysis and Applications, vol. 11, pp. 134-172, 1990.

[120] I. S. Duff, “Parallel implementation of multifrontal schemes”, Parallel Computing, vol. 3,

pp. 193-204, 1986.

[121] A. Guermouche, J. Y. L'Excellent, and G. Utard, "Some memory issues in the multifrontal

method", SIAM Conf. on Parallel Processing for Scientific Computing (PP04), February 2004.

[122] A. Guermouche, J. Y. L'Excellent, and G. Utard, "Impact of reordering on the memory of a

multifrontal solver", Parallel Computing, vol. 29, no. 9, pp. 1191-1218, 2003.

[123] F. Pellegrini, "SCOTCH 3.4 user's guide", Technical Report RR 1264-01, LaBRI, Université

Bordeaux I, November 2001.

[124] F. Pellegrini, Jean Roman, and Patrick Amestoy, "Hybridizing Nested Dissection and Halo

Approximate Minimum Degree for Efficient Sparse Matrix Ordering", Proc. 11th IPPS/SPDP'99

Workshops, Held in Conjunction with the 13th International Parallel Processing Symposium and

10th Symposium on Parallel and Distributed Processing, pp. 986-995, 1999.

[125] G. Karypis, V. Kumar, "METS - a software package for partitioning unstructured graphs,

partitioning meshes, and computing fill-reducing orderings of sparse matrices-Version 4.0",

University of Minnesota, September 1998.

 156

[126] P. R. Amestoy, T. A. Davis, and I. S. Duff, "An Approximate Minimum Degree Ordering

Algorithm", SIAM Journal on Matrix Analysis and Applications, vol. 17, no. 4, pp. 886-905, Oct.

1996.

[127] CEC-ESPRIT IV Fund, "MUMPS: a MUltifrontal Massively Parallel sparse direct Solver",

http://mumps.enseeiht.fr/index.html, May 3, 2007 (last accessed Jul 1, 2007).

[128] K. Sertel, “Multilevel Fast Multipole Method For Modeling Permeable Structures Using

Conformal Finite Elements”, Ph. D. Thesis, University of Michigan, 2003.

[129] Y. Xiao and Y. Lu, “The Prolate and Oblate Spheroid Perfectly Matched Layers”, IEEE

Transactions on Magnetics, vol. 38, no. 2, pp. 669-672, Mar 2002.

[130] X. C. Nie, L. W. Li, N. Yuan, T. S. Yeo, and Y. B. Gan, “A Fast Analysis of

Electromagnetic Scattering by Arbitrarily Shaped Homogeneous Dielectric Objects”, Microwave

and Optical Technology Letters, vol. 38, no. 1, pp. 30-35, July 2003.

[131] J. L. Volakis, A. Alexanian, and J. M. Jin, “Broadband RCS Reduction of Rectangular Patch

by Using Distributed Loading,” IEEE Elect Letters, vol. 28, no. 25, pp. 2322-2323, Dec. 1992.

[132] J. L. Volakis, A. Alexanian, J. M. Jin, and C. L. Yu, “Radar Cross Section Analysis and

Control of Microstrip Patch Antennas,” Draft paper, IEEE, 1992.

[133] J. M. Jin and J. L. Volakis, “A Hybrid Finite Element Method for Scattering and Radiation

by Microstrip Patch Antennas ad Arrays Residing in a Cavity,” IEEE Trans. Antennas Propagat.

vol. 39, no. 11, pp. 1598-1604, Nov. 1991.

[134] N. Yuan, T.S. Yeo, X.C. Nie, L.W. Li, and Y.B. Gan, Efficient analysis of electromagnetic

scattering and radiation from patches on finite, arbitrarily curved, grounded substrates, Radio

Science, vol. 39, no.3, Art. No. RS3003, May 11 2004.

[135] J. Shin, A. W. Glisson, and A. A. Kishk, “Analysis of combined conducting and dielectric

structures of arbitrary shapes using an E-PMCHW integral equation formulation”, Proc IEEE

Antennas and Propagation Society International Symposium 2000, pp. 2282–2285, IEEE

Antennas and Propag. Soc., New York.

[136] Hsiang-Jui Kung, “Quantitative Method to Determine Software Maintenance Life Cycle”,

Proc. 20th IEEE International Conference on Software Maintenance (ICSM’04), 2004.

[137] Argonne National Laboratory – Mathematics and Computer Science Division, “PETSc:

Portable, Extensible Toolkit for Scientific Computation”, http://www-

unix.mcs.anl.gov/petsc/petsc-as/index.html, May 23, 2007 (last accessed on Jul 1, 2007).

[138] Department of Energy – National Science Foundation, “BLAS (Basic Linear Algebra

Subprograms)”, http://www.netlib.org/blas/index.html, Jul 25, 2005 (last accessed on Jul 1, 2007).

[139] Department of Energy – National Science Foundation, “LAPACK – Linear Algebra

Package”, http://www.netlib.org/lapack/index.html, Feb 26, 2007 (last accessed on Jul 1, 2007).

 157

[140] Indiana University Computer Science Department - Open Systems Laboratory,

“oonumerics: Scientific Computing in Object Oriented Languages”, http://www.oonumerics.org/,

Jul 8, 2005 (last accessed on Jul 1, 2007).

[141] B. Stroustrup, The C++ Programming Language, third edition, Addison-Wesley

Publications, Massachusetts 1997.

[142] B. W. Kernighan and D. M. Ritchie, The C Programming Language, PrenticeHall,

Englewood Cliffs, New Jersey. 1978.

[143] N. M. Josuttis, The C++ Standard Library: A Tutorial and Reference, Addison-Wesley

Publications, Massachusetts 1999.

[144] U. Breymann, Designing Components with the C++ STL, revised edition, Addison-Wesley

Publications, Massachusetts 2002.

[145] J. T. Cross, I. Masters and R. W. Lewis, “Why you should consider object-oriented

programming techniques for finite element methods”, International Journal of Numerical Methods

for Heat & Fluid Flow, vol: 9, no. 3, pp. 333 – 347, May 1999.

[146] B. Henz and D. Shires, “Parallel Finite Element Software Development and Performance

Analysis in an Object-Oriented Programming Framework”, Journal of Mathematical Modelling

and Algorithms, vol. 4, no.1, pp. 17-34 (18), March 2005.

[147] J. Mackerle, “Object-oriented techniques in FEM and BEM a bibliography (1996-1999)”,

Finite Elements in Analysis and Design, vol. 36, pp. 189-196, 2000.

[148] E. J. Silva, R. C. Mesquita, R. R. Saldanha and P. F. M. Palmeira, “An object-oriented

finite-element program for electromagnetic field computation”, IEEE Transactions on Magnetics,

vol. 30, no. 5(2), pp. 3618 – 3621, Sep 1994.

[149] E. J. Silva and R. C. Mesquita, “Data management in finite element analysis programs using

object-oriented techniques”, IEEE Transactions on Magnetics, vol. 32, no. 3(1), pp. 1445 - 1448,

May 1996.

[150] J. Kangas, T. Tarhasaari and L. Kettunen, “Maxwell equations and finite element software

systems: object-oriented coding needs well defined objects”, IEEE Transactions on Magnetics,

vol. 36, no. 4(1), pp. 1645 - 1648, July 2000.

[151] W. Mai and G. Henneberger, “Object-oriented design of finite element calculations with

respect to coupled problems”, IEEE Transactions on Magnetics, vol. 36, no. 4(1), pp. 1677-1681,

July 2000.

[152] H. M. Chen and G. C. Archer, “A Distributed Object-Oriented Finite-Element Analysis

Program Architecture”, Computer-Aided Civil and Infrastructure Engineering, vol. 16, no. 5, pp.

326, September 2001.

[153] B. Patzák, “OOFEM: Free Object Oriented Finite Element Code”, http://www.oofem.org/,

Apr 19, 2007 (last accessed on Jul 1, 2007).

 158

[154] B. Patzák and Z. Bittnar, “OOFEM: An object oriented framework for finite element

analysis”, Acta Polytechnica, vol. 44, no. 5-6, pp. 54--60, 2004.

[155] Lawrence Livermore National Laboratory, “FEMSTER Main Page”, http://www-

eng.llnl.gov/emsolve/DOC/html/index.html, March 2, 2006 (last accessed on Jul 1, 2007).

[156] P. Castillo, R. Rieben and D. White, "FEMSTER: An Object Oriented Class Library of

High-Order Discrete Differential Forms", ACM Transactions on Mathematical Software, vol. 31,

no. 4, pp 425-457, 2006.

[157] W. Bangerth, G. Kanschat and R. Hartmann, “deal.II: A Finite Element Differential

Equations Analysis Library”, http://www.dealii.org/, Jun 30, 2007 (last accessed on Jul 1, 2007).

[158] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:

Elements of Reusable Object Oriented Software, Addison-Wesley Publications, Massachusetts

1998.

[159] Trolltech, “QT – Code Less, Create More”, http://www.trolltech.com/products/qt, Jun 26,

2007 (last accessed on Jul 1, 2007).

[160] SGI, “OpenGL – The Industry Standard for High Performance Graphics”,

http://www.opengl.org/, Jun 28, 2007 (last accessed on Jul 1, 2007).

[161] J. Neider and T. Davis, Redbook: OpenGL Programming Guide, Reading: Addison-Wesley

Publishing Company, 1997.

[162] OASIS International Standards Consortium, “Applying XML and Web Services Standards

in Industry”, http://www.xml.org/, Jun 28, 2007 (last accessed on Jul 1, 2007).

[163] D. C. Schmidt, “The Adaptive Communication Environment (ACE)”,

http://www.cs.wustl.edu/~schmidt/ACE.html, Jun 25, 2007 (last accessed on Jul 1, 2007).

[164] Object Management Group, “CORBA (Common Object Request Broker Architecture)

Specifications”, http://www.omg.org/technology/documents/corba_spec_catalog.htm, April 3,

2007 (last accessed on Jul 1, 2007).

[165] Object Management Group, “Catalog of OMG Modeling and Metadata Specifications”,

http://www.omg.org/technology/documents/modeling_spec_catalog.htm, April 3, 2007 (last

accessed on Jul 1, 2007).

[166] N. Calvo and S. Idelsohn, “All-hexahedral mesh smoothing with a node-based measure of

quality”, International Journal for Numerical Methods in Engineering, vol. 50, no. 8, pp. 1957–

1967, 2001.

[167] P. Knupp, “Hexahedral and tetrahedral mesh untangling”, Engineering with Computers, vol.

17, no. 3, pp. 261–268, 2001.

[168] R. C. Eberhart and Y. Shi, “Evolving artificial neural networks”, Proceedings of 1998

International Congress on Neural Networks and Brain, Beijing, P.R.C. 1998.

 159

[169] J. Kennedy amd W. M. Spears, “Matching algorithms to problems: an experimental test of

the particle swarm and some genetic algorithms on multi modal problem generator”, Proceedings

of IEEE International Congress on Evolutionary Computation, 1998.

[170] J. Kennedy and R. C. Eberhart, “Particle swarm optimization”, Proceedings of IEEE

Congress on Neural Networks IV, 1995.

[171] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics”, IEEE

Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397-407, 2004.

[172] C. Yang and D. Simon, “A new particle swarm optimization technique”, Proceedings of

18th International Conference on Systems Engineering, pp. 164-169, 2005.

[173] C. A. Coello Coello and M. S. Lechunga, “MOPSO: A proposal for multiple objective

particle swarm optimization”, Proceedings of the Congress on Evolutionary Computation, pp.

1051-1056, 2002.

[174] M. Reyes-Sierra and C. A. Coello Coello, "Multi-Objective Particle Swarm Optimizers: A

Survey of the State-of-the-Art", International Journal of Computational Intelligence Research,

vol. 2, no. 3, pp. 287-308, 2006.

[175] M. Clerc and J. Kennedy, “The Particle Swarm – Explosion, Stability, and Convergence”,

IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp.58-73, Feb 2002.

[176] M. A. M. de Oca Roldán, On the Performance of Particle Swarm Optimizers, M. Sc. Thesis,

Université Libre de Bruxelles Faculté des Sciences Appliquées, IRIDIA - Institut de Recherches

Interdisciplinaires et de Développements en Intelligence Artificielle, 2006.

 160

APPENDIX A

SCIENTIFIC CONTRIBUTIONS

A.1. Great Contributors

Here is a chronological list of scientists who could not be explicitly cited, but mentioned

throughout the flow of thesis due to their contributions:

• Euclid (a.k.a. Euclid of Alexandria) (c.325-c.265BC), Greek mathematician of

Hellenistic Egypt, "Father of Geometry" and "Uncle of Number Theory",

mentioned via Euclidean spaces.

• René Descartes (1596-1650), also known as “Cartesius”, French philosopher,

mathematician, and scientist; "Father of Modern Mathematics” , mentioned via

Cartesian coordinates.

• Christiaan Huygens (1629-1695), Dutch mathematician and physicist, mentioned

via Huygens equivalence principle.

• Sir Isaac Newton, (1643-1727), English physicist, mathematician, astronomer,

alchemist, and natural philosopher, regarded by many as "the greatest figure in

the history of science", mentioned via Newton-Raphson method.

• Joseph Raphson (ca. 1648-ca. 1715), English mathematician, mentioned via

Newton-Raphson method.

• Joseph-Louis Lagrange (1736-1813), Italian-French mathematician-physicist,

mentioned via Lagrange polynomials.

• Pierre-Simon, Marquis de Laplace (1749-1827), French mathematician and

astronomer, mentioned via Laplacian smoothing.

 161

• Adrien-Marie Legendre (1752-1833), French mathematician, mentioned via

Legendre polynomials.

• André-Marie Ampère (1775-1836), French physicist, mentioned via Ampère’s

Law.

• Karl Friedrich Gauss (Gauß) (1777-1855), German mathematician and physicist,

mentioned via Gauss quadrature and Gauss eliminitation.

• Michael Faraday (1791-1867), English chemist-physicist, mentioned via

Faraday’s Law.

• Benjamin Olinde Rodrigues (1795-1851), French mathematician and social

reformer, mentioned via Rodrigues rotation formula.

• Karl Gustav Jacob Jacobi (1804-1851), German mathematician, mentioned via

Jacobi determinant and Jacobi polynomials.

• Charles Hermite (1822-1901), French mathematician, mentioned via Hermite

polynomials.

• Pafnuty Lvovich Chebyshev (also Romanized in various ways, e. g. as

Chebychev, Chebyshov, Tchebycheff or Tschebyscheff in French and German

transcriptions) (1821-1894), Russian mathematician, mentioned via Chebyshev

polynomials.

• James Clerk Maxwell (1831-1879), Scottish mathematical physicist, mentioned

via Maxwell equations.

• John William Strutt, 3rd Baron Rayleigh (1842-1919), English physicist and

chemist, mentioned via Rayleigh's criterion.

• Vilfredo Federico Damaso Pareto (1848-1923), Italian sociologist, economist and

philosopher, mentioned via Pareto optimality.

• Leopold Gegenbauer (1849-1903), Austrian mathematician, mentioned via

Gegenbauer polynomials.

• Ferdinand Georg Frobenius (1849-1917), German mathematician, mentioned via

Frobenius norm.

• David Hilbert (1862-1943), German mathematician, the most influential

mathematician of the 20th century, mentioned via Hilbert spaces.

• Georgy Voronoï (1868-1908), Russian mathematician of Ukrainian descent,

mentioned via Voronoï graph/diagram.

• Gustav Mie (1869-1957), German physicist, mentioned via Mie series.

 162

• André-Louis Cholesky (1875-1918), French mathematician, mentioned via

Cholesky decomposition.

• Sergei Natanovich Bernstein (sometimes Romanized as Bernshtein) (1880-1968),

Ukrainian mathematician, mentioned via Bernstein polynomials.

• Boris Nikolaevich Delaunay (1890-1980), Soviet/Russian mathematician,

mentioned via Delaunay tesselation/triangulation.

• Georges de Rham (1903-1990), Swiss mathematician, mentioned via de Rham

complex.

• Sergei L'vovich Sobolev (1908-1989), Russian mathematician, mentioned via

Sobolev spaces.

• Pierre Étienne Bézier (1910-1999), French engineer, mentioned via Bézier curves

and Bézier surfaces.

 163

A.2. Historical Milestones in the Finite Element Theory

1844 – Differential Forms by Grassman

1900s – Definition of Exterior Calculus of Differential Forms by Cartan

1943 – Piecewise Approximations by Courant

1954 – Domain Partitioning, Assembly and Boundary Conditions (i.e. basic FEM) by

Argyris

1970s – Application of the Finite Element Method to Electromagnetics by Numerous

Researchers

1985 – Intuitive Definition of the Linear Hexahedral Edge Element by van Welij

1986 – Introduction of the Edge Element Concept by Nédélec

1990 – Intuitive Definition of the Quadratic Hexahedral Edge Element by Kameari

1991 – Hierarchical Finite Element Concept by Szabo and Babuška

1994 – Definition of the Perfectly Matched Layers by Berenger

1996 – Proof of Topological Existence of Hexahedral Mesh by Thurston and Mitchell

1997 – Methodological Construction of Hierarchical Hexahedral Edge Elements by Wang

2006 – Methodological Construction of Hierarchical Hexahedral Edge and Facet

Elements by Zaglmayr

 164

APPENDIX B

EXPLICIT BASIS FUNCTIONS AND INTERPOLATION

PROPERTIES OF VAN WELIJ AND KAMEARI ELEMENTS

In this section, the basis functions and the interpolation properties of van Welij

and Kameari elements are given.

B.1. The Hexahedral Edge Element Shape Functions

The hexahedral edge element has six faces, eight nodes and twelve edges as shown in Fig.

B.1.

A vector quantity is given by

∑
=

=
12

1

)(
i

ii ArwA (B.1)

where wi is the shape function related to edge i and A is, for instance, the magnetic vector

potential or any other vector field. Ai represents the projection of A along edge i.

 165

Fig. B.1. The hexahedral edge element with its edges numbered.

The shape function is described by the following product

)(),,()(rqrw iii pvuφ= (B.2)

where

zyx kjir ++= (B.3)

which represents the position vector of a generic point M (x, y, z). The function φ i (u, v,

p) depends on the reference coordinates u, v, p and it is the placement function of the

edge element; it is given in reference coordinates since the numerical integration and

other algebraic operations are performed in this coordinate system. The function qi(r),

which is responsible for the direction of the edge, is given in global coordinates, since

only these coordinates take into account the actual geometry of the elements. From now

on, instead of wi(r), qi(r), φ i (u, v, p), a simplified notation, namely wi, qi, φ i will be

used. Table B.1. shows the position functions φ for all edges.

The vector quantity qi depends on the direction of the edge. The direction is ∇a for an

edge parallel to a direction where a is either u, v or p. To obtain ∇u, ∇v and ∇p we define

the following vectors:

 166

)(

)(

)(

zyx
pp

zyx
vv

zyx
uu

p

v

u

kjirv

kjirv

kjirv

++
∂
∂=

∂
∂=

++
∂
∂=

∂
∂=

++
∂
∂=

∂
∂=

 (B.4)

Table B.1. The position functions φ .

EDGE NUMBER φ EDGE_NO

1 (1-v)(1-p)

2 (1-p)

3 v(1-p)

4 (1-u)(1-p)

5 (1-u)(1-v)

6 u(1-v)

7 uv

8 (1-u)v

9 (1-v)p

10 up

11 vp

12 (1-u)p

As an example, vu can be written as

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂
∂
∂

=

u
y
u
y
u
x

uv (B.5)

Using this notation, the three vectors give

 167

[]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂
∂
∂

∂
∂
∂
∂
∂
∂

∂
∂
∂
∂
∂
∂

=

p
z
p
y
p
x

v
z
v
y
v
x

u
z
u
y
u
x

pvu vvv (B.6)

Transposing the matrix, we obtain a matrix [J1],

[]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

p
z

p
y

p
x

v
z

v
y

v
x

u
z

u
y

u
x

J1 (B.7)

This is a Jacobian matrix which expresses a vector in the (x, y, z) system in terms of the

(u, v, p) system. Now, let us calculate the vectors vu, vv, and vp in terms of the coordinates

of the nodes of the elements. Fig. B.2 shows the hexahedral element with its nodes

numbered.

Fig. B.2. The Hexahedral Edge Element with its Nodes Numbered.

 168

To achieve the calculation, we use the nodal shape functions in order to define the

coordinates x, y, and z as functions of u, v, and p.

∑ ∑ ∑∑
= = ==

++==++=
8

1

8

1

8

1

8

1
),,(

j j j
jjjjjj

j
jj zNyNxNpvuNzyx kjirkjir (B.8)

Recalling that

)(zyx
uu kjiv ++

∂
∂= (B.9)

we can get the simplified notation

z
u
Ny

u
Nx

u
N

u ∂
∂+

∂
∂+

∂
∂= kjiv (B.10)

where (∂N/∂u)x is given as

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

∂
∂

8

2

1

821

.

.

.
...

x

x
x

u
N

u
N

u
N

 (B.11)

The terms (∂N/∂u)y and (∂N/∂u)z are obtained in a similar manner. The nodal shape

functions are given in Table B.2.

 169

Table B.2. The nodal shape functions.

NODE N

1 a2 b2 c2 / 8

2 a1 b2 c2 / 8

3 a1 b1 c2 / 8

4 a2 b1 c2 / 8

5 a2 b2 c1 / 8

6 a1 b2 c1 / 8

7 a1 b1 c1 / 8

8 a2 b1 c1 / 8

The parameters appearing in Table B.2 are defined as

).1(),1(
),1(),1(
),1(),1(

21

21

21

pcpc
vbvb
uaua

−=+=
−=+=
−=+=

 (B.12)

On the other hand, we have

.

,

,

z
p

y
p

x
pp

z
v

y
v

x
vv

z
u

y
u

x
uu

∂
∂

+
∂
∂

+
∂
∂

=∇

∂
∂+

∂
∂+

∂
∂=∇

∂
∂+

∂
∂+

∂
∂=∇

kji

kji

kji

 (B.13)

From these equations we can write that

vol
p

vol
v

vol
u vuuppv vvvvvv ×

=∇
×

=∇
×

=∇ ,, (B.14)

 170

where vol is the volume of the element. Hence, the twelve vector shape functions can be

written as

.8,7,6,5,
,12,10,4,2,

,11,9,3,1,

=∇=
=∇=
=∇=

iforp
iforv
iforu

ii

ii

ii

φ
φ
φ

w
w
w

 (B.15)

In working with Maxwell’s equations, we often need to evaluate the curl of the vector

shape functions. Writing the curl operator explicitly we can obtain

.8,7,6,51

,12,10,4,21

,11,9,3,11

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−

∂

∂
=×∇

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−

∂

∂
=×∇

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−

∂

∂
=×∇

ifor
u
i

v
i

vol

ifor
p
i

u
i

vol

ifor
v
i

p
i

vol

vui

upi

pvi

vvw

vvw

vvw

φφ

φφ

φφ

 (B.16)

B.2. Interpolation Properties of the Linear Hexahedral Edge Elements

Consider the linear hexahedral element, whose nodes and edges are numbered as shown

in Fig. B.3:

 171

Fig. B.3. Linear hexahedral edge element extending from (-1, -1, -1) to (1, 1, 1) in uvp
space.

The effect of the first edge is shown in Fig. B.4.

Fig. B.4. Effect of the first shape function for the linear hexahedral edge element.

|w
1|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the first shape function (for all u and p = -1)

v

v
p

u

|w
1|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the first shape function (for all u and p = -1)

v

|w
1|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the first shape function (for all u and p = -1)

v-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the first shape function (for all u and p = -1)

v

v
p

u
v

p
v

p

u

1

4
2

1 2

3
4

5

7

8

3
5

6

7

8

9

10

11

12

6

v
p

u

1

4
2

1 2

3
4

5

7

8

3
5

6

7

8

9

10

11

12

6

v
p

u

v
p

v
p

u

 172

The effect of the second edge is shown in Fig. B.5.

Fig. B.5. Effect of the third shape function for the linear hexahedral edge element.

The effect of the summation of the first and the third functions is shown in Fig. B.6.

Fig. B.6. Effect of the summation of the first and the third shape functions for the linear
hexahedral edge element.

As a conclusion, the effect of the shape functions is linear as seen in the figures above.

|w
1|

 +
|w

3|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Effect of the two shape functions (for all u and p = -1)

v

|w
1|

 +
|w

3|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Effect of the two shape functions (for all u and p = -1)

v

|w
1|

 +
|w

3|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Effect of the two shape functions (for all u and p = -1)

v-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Effect of the two shape functions (for all u and p = -1)

v

v
p

u
v

p
v

p

u

|w
3|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the third shape function (for all u and p = -1)

v

|w
3|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the third shape function (for all u and p = -1)

v

|w
3|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the third shape function (for all u and p = -1)

v-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the third shape function (for all u and p = -1)

v

v
p

u
v

p
v

p

u

 173

B.3. Interpolation Properties of the Quadratic Hexahedral Edge Elements

Consider the quadratic hexahedral element, whose nodes and edges are numbered as

shown in Fig. B.7:

Fig. B.7. Quadratic hexahedral edge element extending from (-1, -1, -1) to (1, 1, 1) in uvp
space.

The disjoint effects and the effect of the summation of the first and second two edges are

shown in Fig. B.8.

1 2

3 4

5 6

7 8

11

9

10

12

1 2

3 4

5 6

7 8

11

9

10

12

1 2

3 4

5 6

7 8

11

9

10

12

v
p

u
v

p
v

p

u

 174

Fig. B.8. The disjoint effects and the effect of the summation of the first and second two
edges along the u direction.

The effects of the first two edges along the v and p directions are shown in Fig. B.9 and

Fig. B.10, respectively.

Fig. B.9. The disjoint effects and the effect of the summation of the first and second two
edges along the v direction.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Effect of the two shape functions (for v = -1 and p = -1)

|w
1|

, |
w

2|
 a

nd
 |w

1|
+|

w
2|

u

v
p

u

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Effect of the two shape functions (for v = -1 and p = -1)

|w
1|

, |
w

2|
 a

nd
 |w

1|
+|

w
2|

u
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Effect of the two shape functions (for v = -1 and p = -1)

|w
1|

, |
w

2|
 a

nd
 |w

1|
+|

w
2|

u

v
p

u
v

p
v

p

u

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Effect of the first two shape functions (for all u and p = -1)

|w
1|

 +
 |w

2|

v
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Effect of the first two shape functions (for all u and p = -1)

|w
1|

 +
 |w

2|

v

v
p

u
v

p
v

p

u

 175

Fig. B.0.10. The disjoint effects and the effect of the summation of the first and second
two edges along the p direction.

The effects of the ninth edge along v and p directions are shown in Fig. B.11 and Fig.

B.12, respectively.

Fig. B.11. The effect of the ninth edge along the v direction.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Effect of the first two shape functions (for all u and v = -1)

|w
1|

 +
 |w

2|
p

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Effect of the first two shape functions (for all u and v = -1)

|w
1|

 +
 |w

2|
p

v
p

u
v

p
v

p

u

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the ninth shape function (for all u and p = -1)

|w
9|

v
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the ninth shape function (for all u and p = -1)

|w
9|

v

v
p

u
v

p
v

p

u

 176

Fig. B.12. The effect of the ninth edge along the p direction.

The effect of the summation of four shape functions (the first, the second, the third and

the fourth) is shown in Fig. B.13.

Fig. B.13. The effect of the summation of four edges.

The effect of the summation of five shape functions (the first, the second, the third and

the fourth and the ninth) is shown in Fig. B.14. Here, it should be noted that since the

|w
9|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the ninth shape function (for all u and v = 0)

p
|w

9|
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the ninth shape function (for all u and v = 0)

p-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Effect of the ninth shape function (for all u and v = 0)

p

v
p

u
v

p
v

p

u

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Effect of the four shape functions (for all u and p = -1)

|w
1|

+|
w

2|
+|

w
3|

+|
w

4|

v
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Effect of the four shape functions (for all u and p = -1)

|w
1|

+|
w

2|
+|

w
3|

+|
w

4|

v

v
p

u
v

p
v

p

u

 177

circulation (i.e. the projection times the length of the edge) of the electric field is

represented on each edge, the effect of the ninth edge is twice the others.

Fig. B.14. The effect of the summation of the five edges.

Consider that we want to evaluate the function f(v) = 3v2 + 4v + 2 by means of the shape

functions at p = -1 plane inside the element.

Fig. B.15. Interpolation of the function f(v) = 3v2 + 4v + 2 at p = -1 plane by means of the
quadratic shape functions.

Effect of the five shape functions (for all u and p = -1)

|w
1|

+|
w

2|
+|

w
3|

+|
w

4|
+2

×|
w

9|

p
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

|w1|+|w2|+|w3|+|w4|

|w9|

2×|w9|

|w1|+|w2|+|w3|+|w4|+2×|w9|
v

p

u
v

p
v

p

u

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-10

-8

-6

-4

-2

0

2

4

6

8

10
Interpolation of the function f(v) = 3v2+4v+2 (at p = -1 plane)

f(v
) =

 3
v2 +4

v+
2

v
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-10

-8

-6

-4

-2

0

2

4

6

8

10
Interpolation of the function f(v) = 3v2+4v+2 (at p = -1 plane)

f(v
) =

 3
v2 +4

v+
2

v

v
p

u
v

p
v

p

u

 178

As seen in Fig. B.15, the quadratic shape functions are sufficient to represent the

function, which is also quadratic. This yields the conclusion that quadratic hexahedral

edge elements are better while representing quadratic functions, and they give more

accurate results than the linear hexahedral edge elements.

In electromagnetic wave propagation applications, the field variations are compared on

the basis of time-harmonic uniform plane waves due to the fact that an arbitrary

propagating field can be represented by means of a plane wave spectrum. For linear

elements, these functions are to be represented by means of linear interpolation. On the

other hand, for quadratic elements, the representation is performed via quadratic

interpolation.

For this comparison, an ideal hexahedral element, namely a cube denoted as ε, is taken as

a test element for investigation of the interpolation properties. The function, which will

be approximated inside this element, is taken as a uniform plane wave A=Aexp[-

j(kx+φi)]âz, where φi=(2πi/360k) and i=0,1,…,359. By this procedure, the effect of phase

variation on interpolation accuracy is included in the analysis.

For a fixed phase angle of φi, the exact value of the function is denoted as Aexact_i, and its

approximated form (as the linear combination of basis functions in z-direction like in

equation (B.1)) is denoted as Aapp_i. Two error norms are defined as

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
=

=∞
iexact

iappiexact

i
e

_

__

359,...,0 max

max
max

A

AA

ε

ε (B.17)

and

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

∫

∫
=

ε

ε

iexact

iappiexact

i
e

_

__

359,...,01 max
A

AA
 (B.18)

 179

where e∞ stands for the maximum normalized interpolation error inside the element

maximized over all investigated phase angles; and e1 stands for the average normalized

interpolation error throughout the element, maximized over all investigated phase angles.

A qualitative assessment about these definitions can be as follows: e∞ is a metric of the

point-wise accuracy, whereas e1 is a metric of overall accuracy inside an element ε.

Overall accuracy inside an element is an important and dominant Fig. of merit especially

in the computation of the surface and volume integrals during FEM analysis.

For a λ/10-size linear hexahedral element, by following the analysis given above, it is

calculated that e∞ is 0.0490; and e1 is about 0.0331.

For the interpolation of a uniform plane wave by means of quadratic elements, in order to

have a reasonable accuracy level, it can be intuitively claimed that the upper limit for the

element size should be about 0.5λ. The same procedure is repeated for quadratic

hexahedral elements having different sizes. The results of this analysis are summarized in

Table B.3.

Table B.3. Error norms for linear and quadratic elements of different sizes.

Element
Size ()

Element
Type e e1

Linear 0.1 0.049 0.0331
Quadratic 0.33 0.055 0.0077
Quadratic 0.4 0.095 0.0170
Quadratic 0.5 0.151 0.0472

In this analysis, a specific plane wave polarized in the z-direction and propagating in the

x-direction is considered. In general, a uniform plane wave can be expressed as exp[-

jk.r]âu, where k=kxâx+kyây+kzâz, r=xâx+yây+zâz and âu is a unit vector perpendicular to k.

Certainly, âu can be written as a linear combination of âx, ây, and âz. Moreover, the wave

number is k=║k║=(kx
2+ky

2+kz
2)1/2; which implies that the variation of this plane wave in

each Cartesian direction will be smaller than the variation in the direction of propagation.

 180

In other words, the plane wave A of the form exp[-jkx]âz in the analysis above serves as a

worst case condition (i.e. corresponding to maximum phase variation in one direction

inside an element).

As a conclusion, while dealing with the electromagnetic scattering problems, quadratic

elements will give better results in case the electric field has quadratic dependency to the

coordinate variables.

 181

APPENDIX C

DOMAIN DECOMPOSITION IN HEXAHEDRAL MESH

GENERATION

C.1. Domain Decomposition of Cylindrical Domains

The mesh generation in this thesis depends on the decomposition of the problem to

subdomains so that each subdomain is homeomorphic (topologically equivalent) to a

rectangular prism. Each subdomain is divided to hexahedra with the constraint that

adjacent subdomains will have equivalent quadrilateral surface meshes in order to

preserve mesh continuity.

C.1.1. Domain Decomposition for the PEC Cylinder Problem

For the RCS calculation of a Perfect Electric Conductor (PEC) cylinder, it is not required

to consider the region inside the cylinder, since it is certainly known that the total electric

field vanishes. Hence, this part can be taken out of consideration during the whole

process starting from the mesh generation.

The mesh generation for this problem is straightforward. The parameters defining the

mesh are:

1. Mesh Resolution in r direction

2. Mesh Resolution in φ direction

3. Mesh Resolution in z direction

 182

For the PML regions, which are placed at the top and bottom parts, it is obvious that the

central part should also be filled with elements. The way to do this, is to put rectangular

prisms in the centers and to extend these prisms to cylinders. The top and bottom figures

are illustrated in Fig. C.1.

Fig. C.1. Top and Bottom Parts of the Mesh of PEC Cylinder.

Fig. C.2 illustrates the whole mesh generated for the PEC Cylinder problem.

Fig. C.2. Mesh Generated for PEC Cylinder Problem.

 183

See further subsections of this Appendix for the restrictions in mesh generation for this

problem.

C.1.2. Domain Decomposition for the Dielectric Cylinder Problem

For the RCS calculation of a dielectric cylinder; unlike the PEC case, it is required to

consider the region inside the cylinder. Namely, this part cannot be taken out of

consideration during the whole process starting from the mesh generation.

The mesh generation for this problem is slightly different than the PEC cylinder case. Fig.

C.3 illustrates the main idea of mesh generation in this problem.

Fig. C.3. Mesh generation scheme for the dielectric cylinder.

The parameters defining the mesh can be listed as follows:

i) Width and height of the core rectangular prism

ii) Radius of the core cylinder (of same height with the rectangular prism)

iii) Radius of the outer cylinder (the Volume of Interest)

iv) Mesh Resolution in r direction

v) Mesh Resolution in φ direction

vi) Mesh Resolution in z direction

 184

Another parameter (dependent to wavelength), which will be effective in accuracy during

the FEM solution, is as follows:

- Radius and height of the cylinder in terms of wavelength

See further subsections of this Appendix for the restrictions in mesh generation for this

problem.

C.1.3. Domain Decomposition for the PEC Sphere Problem

For the RCS calculation of a Perfect Electric Conductor (PEC) sphere, it is not required to

consider the region inside the sphere, since it is certainly known that the total electric

field vanishes. Hence, this part can be taken out of consideration during the whole

process starting from the mesh generation.

Fig. C.4. Mesh Generation Scheme for the PEC Sphere Problem.

In order not to have a non-hexahedral element, the mesh generation shall be performed as

follows:

• The spherical shell volume is divided into 3 main volumes (2 top hat, and side

volumes) as seen in Fig. C.4.

 185

• Side volume is divided further into 8 side sub volumes, and each top hat volume

is divided to subvolumes called top hat outer shell and top hat inner part

respectively.

This scheme is directly applicable for linear and quadratic element mesh generation. The

generated meshes are illustrated in the following figures (Fig.s C.5, C.6, C.7, and C.8).

Fig. C.5. Top Hat Inner Part (A).

Fig. C.6. Top Hat Outer Shell (B).

 186

Fig. C.7. Side Subvolume (C).

Fig. C.8. Whole Spherical Shell (2A+2B+8C).

The parameters affecting the shape and structure of the generated mesh are as follows:

1. θc (see Fig. C.4 for the definition)

2. θd (see Fig. C.4 for the definition)

3. Mesh Resolution in R direction

4. Mesh Resolution in θ direction

5. Mesh Resolution in φ direction

 187

Two other parameters (dependent to wavelength), which will be effective in accuracy

during the FEM solution, are as follows:

1. Radius of the PEC Sphere in terms of wavelength

2. Radius of the total spherical Volume of Interest (VoI)

See further subsections of this Appendix for the restrictions in mesh generation for this

problem.

C.1.4. Domain Decomposition for the PEC Sphere Problem

For the RCS calculation of a dielectric sphere; unlike the PEC case, it is required to

consider the region inside the sphere. Namely, this part cannot be taken out of

consideration during the whole process starting from the mesh generation.

Fig. C.9. Mesh generation scheme in the dielectric sphere problem.

In order not to have a non-hexahedral element, the mesh generation shall be performed as

follows:

• The spherical shell volume is divided into 3 main volumes

o 1 cylindrical core consisting of

 188

 a rectangular prism,

 and a cover completing it to a cylinder

o 2 top hats consisting of

 inner part,

 and outer shell

o and side volume

 as seen in Fig. C.9.

• Side volume is divided further into 8 side sub volumes, and each top hat volume

is divided to subvolumes called top hat outer shell and top hat inner part

respectively.

This scheme is directly applicable for linear and quadratic element mesh generation.

Fig. C.10. Mesh defining parameters in the dielectric sphere problem.

The parameters affecting the shape and structure of the generated mesh (seen in Fig.

C.10) are as follows:

1. Width and height of the core rectangular prism

2. Radius of the core cylinder (of same height with the rectangular prism)

3. Mesh Resolution in r direction (which is also implicitly defining the mesh resolution in

R direction)

4. Mesh Resolution in φ direction

 189

5. Mesh Resolution in z direction (which is also implicitly defining the mesh resolution in

θ direction)

Two other parameters (dependent to wavelength), which will be effective in accuracy

during the FEM solution, are as follows:

1. Radius of the sphere in terms of wavelength

2. Radius of the total spherical Volume of Interest (VoI)

The relevant generated subvolume meshes are given in the following figures (Fig.s C.11,

C.12, C.13, C.14, and C.15).

Fig. C.11. The Inner Cylindrical Core (A).

 190

Fig. C.12. Top Hats (B).

Fig. C.13. The Inner Cylindrical Core Combined with the Top Hats (A+B).

 191

Fig. C.14. The Side Cover (C).

Fig. C.15. The Whole Sphere After All Parts Combined (A+B+C).

See further subsections of this Appendix for the restrictions in mesh generation for this

problem.

 192

C.2. Restrictions to Satisfy the “All-Hexahedra” Condition

During the all-hexahedral mesh generation process, the mesh defining parameters should

be chosen carefully. This restriction is valid and similar for both the cylindrical and

spherical geometries. Fig. C.16 illustrates the reason for this restriction.

Fig. C.16. Top view of the top hat for the illustration of the restriction.

The number k, should be divisible by 8 in order not to have a singularity (a non-

hexahedral element). k is obviously determined by the mesh resolution in φ direction.

Also, the mesh density in the inner part is closely related with k. Surface-wise there are:

• m2 elements in the inner part of the top hat, and

• 4×m elements in the top hat outer shell,

where m=((k+4)/4)-1. This yields a very dense mesh in the top hat, if θc and θd values are

not chosen very large.

As a numerical example, a 22.5° mesh resolution in φ direction implies that k = 16; and m

= ((k+4)/4)-1 = 4; which means that there will be surface-wise m2=16 elements in the

inner part of the top hat, and 4×m=16 elements in the top hat outer shell; with a total of 32

elements.

 193

APPENDIX D

A PARTICLE SWARM OPTIMIZATION APPROACH IN

HEXAHEDRAL MESH SMOOTHING

This Appendix is devoted to the Particle Swarm Optimization method and the application

of it to the all-hexahedral mesh smoothing.

D.1. An Algebraic Hexahedral Mesh Quality Metric

Many papers have been devoted to the topic of unstructured mesh smoothing and

optimization [53–63, 74, 166]. However, there are only a limited number of papers which

specifically address unstructured hexahedral mesh smoothing [74, 166]. The method

described in [166] is based on maximizing a variant of the scaled-Jacobian metric. This

approach does not guarantee that the improved mesh will consist only of untangled

elements; and actually have improved shape-quality according to the user definition. The

method in [74] achieves these criteria. The aim of this paper is to propose another

method, which is as successful as [74].

For finite element meshing three geometric qualities of elements are almost always

important: invertibility, size, and shape. An element is invertible if it has positive local

volume. If a hexahedral mesh contains inverted elements the hexahedral mesh untangling

algorithm [167] is recommended to automatically remove the inverted elements by node

repositioning. Assuming a mesh contains no inverted elements, element ‘size’ becomes

the next most important metric. Element size must be small enough that discretization

error is small, yet large enough that computer memory is not exceeded and the application

can be solved in a reasonable amount of time.

 194

Invertibility, size, and shape are the three important factors of the element quality:

- If an element has positive local volume (everywhere in the element, not just at the 8

corners), then it is considered to be invertible.

- For a mesh without any inverted elements, element size becomes the factor under

consideration. An element must be small enough to have small discretization errors, and

on the other hand, it should be sufficiently large such that available computer resources

(CPU time, memory) are efficiently used.

- The last metric is element shape, which is a function of element aspect ratios and skew

[74]. Skew gives information about the angles within an element regardless of the aspect

ratio. Accuracy decreases if an element contains very large and small angles (i.e. close to

0 or 180°). In [73], Knupp showed that the shape can be expressed as a function of the

condition number, which can be improved by means of:

i) aspect ratio improvement, and/or

ii) element skew reduction.

Definitions about element quality are directly taken from [74]. For clarification, these

definitions are repeated in this section. The eight nodes of a hexahedral element (k =0,

1,…, 7) can be numbered such that the nodes 0, 1, 2, 3 are at the bottom, and the nodes 4,

5, 6, 7 are at the top surface; this numbering scheme and the node coordinates of

hexahedral element transformed to the ξηζ-space are listed in Table D.1.

Table D.1. Nodal ordering for a hexahedral element.

k (ξ, η, ζ) x1 x2 x3

0 (0, 0, 0) 1 3 4

1 (1, 0, 0) 2 0 5

2 (1, 1, 0) 3 1 6

3 (0, 1, 0) 0 2 7

4 (0, 0, 1) 7 5 0

5 (1, 0, 1) 4 6 1

6 (1, 1, 1) 5 7 2

7 (0, 1, 1) 6 4 3

 195

Let x be the position vector of one of the eight nodes; and x1, x2, and x3 be the coordinates

of the three neighbor nodes. Their order for proper orientation is again listed in Table

D.1. Three edge vectors e1 = x1 − x, e2 = x2 − x, e3 = x3 − x and the matrix A can be

formed from the three column vectors, A = [e1 | e2 | e3]. This means that if the vector x is

(x, y, z); and for i = 1, 2, 3 if the vectors xi are (xi, yi, zi), then A can be written as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

=
zzzzzz
yyyyyy
xxxxxx

321

321

321

A (D.1)

For each node of the hexahedron, eight such matrices, Ak can be constructed. It is

assumed that the element is untangled; namely det(Ak) ≥ 0 for all k. If there is a tangled

element inside the mesh, then prior to the optimization it should be untangled. For this

purpose, the method described in [167] can be used.

Knupp also has defined weight matrices Wk in order to specify the ideal element shape in

[73]. By means of Ak and Wk, the matrices Tk = Ak Wk
-1 are formed and used in order to

represent the shape metrics. The shape metric is defined as follows: the matrices Tk

resemble an orthogonal matrix if the objective function gets optimized. In case that the

element becomes an ideal element (most probably with a different orientation), Tk

becomes orthogonal, and eventually Ak = Tk Wk,. For hexahedra, the ideal shape is a

cube; and the weight matrix is the identity matrix.

Let the condition number be κ(T) = |T| |T−1|, where the matrix norm is the Frobenius

norm. ∑=
k kf 2)3/)((/8 Tκ is an algebraic shape metric for hexahedral elements. The

proof is given in [74]. With this definition, f is a non-simplicial algebraic shape metric

since it has the following properties:

• the domain of f is the set of matrices Tk = Ak Wk
-1, k = 0, 1, …, K −1, with det(Tk) ≥

0,

• f is size invariant,

• f is orientation invariant,

 196

• For all Tk, 0 ≤ f({Tk}) ≤ 1,

• f({Tk}) = 1 if and only if Tk is a scalar multiple of an orthogonal matrix for all k,

• f({Tk}) = 0 if and only if det(Tk) = 0 for some k; i.e. the three edges having a

common node are coplanar.

• It should be noted that for tangled elements, shape is not defined.

(The notation f({Tk}) stands for f being a function of all Tk matrices.)

It is obvious that other functions satisfying the definition of a shape metric can also be

defined and used in order to define an objective function for element quality

improvement. For example, shape can be defined by modified Winslow

))/(3(
213/2 −= Tτf , (D.2)

mean ratio

))/(3(23/2 T−= τf , (D.3)

and inverse condition number

))(/3(Τκ=f . (D.4)

The present work focuses on the condition number shape metric.

D.2. The Condition Number Based Objective Function

Based on the shape quality metric mentioned in the previous section, an objective

function is described in this section. Again, the definition is reused from [74]. The

objective function considers the shape quality of all elements in a hexahedral mesh. Let

Tn,k be the matrix corresponding to the kth node of the nth hexahedral element εn. We can

define

∑
==

k kn

nn ff
2

,)3/)((
8
1

1)(
Tκ

ε (D.5)

 197

as the quality metric of the nth hexahedral element in the mesh (where n = 1, …, N).

For the definition of the objective function, it is better to work with 1 / fn instead of fn

because it provides a greater numerical range and a steeper gradient; as well as a metric

creating a barrier. The objective function is the sum over all elements (εn’s) inside the

hexahedral mesh (ε)

∑∑∑ −=−=
n k

kn
n

n NfNF 1)3/)((8
11)/1(1 2

,Tκ (D.6)

This is nothing but the sum of the squares of the element condition numbers. The

objective function is scaled so that the minimum value of F is 0.

D.3. Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) method is an effective optimization algorithm,

which has been applied successfully to some difficult multidimensional

continuous/discontinuous problems in various fields so far [168]. Moreover, this

technique has been shown to be outperforming other optimization methods such as

genetic algorithms (GAs) [169].

PSO, which has been developed in 1995 by Kennedy and Eberhart [170], can be

described through its leading example: Assume that there is a swarm of bees whose main

aim is to find the location with the highest density of flowers in a field without any a

priori knowledge; starting at random locations with random velocities. Each bee can

remember its previsited successful locations (cognitive behavior), and also it can feel the

best locations found by the swarm (social behavior). When a bee finds a better place than

previously found places, then it would have tendency to go to this new location in

addition to the best location found by the swarm. Eventually, the whole swarm would be

attracted towards that location.

Each member of the swarm is referred to as a particle; which corresponds to a solution

candidate. All the particles accelerate toward the best personal and best overall location;

meanwhile they continuously check their value of their current locations.

 198

Each member of the swarm remembers the best location of own discovery. This location

is called as the personal best or pbest. On the other hand, each member feels the best

location discovered by the swarm. This is called as the global best or gbest of the swarm.

The necessary steps for the PSO algorithm are certainly as follows: After the definition of

the fitness/objective function; and the definition of the solution space; the particles (i.e.

locations and velocities) in the swarm are initialized. Then the particles are moved inside

the solution space. For each particle, the fitness is evaluated at the relevant particle’s

location. If this value is greater than the value calculated at pbest of the relevant particle,

or the global gbest of the swarm, then these values are updated.

The velocity manipulation is the main key to convergence in PSO. Locations of pbest and

gbest are major factors for the new velocity value of a particle during this step. A particle

gets accelerated in the directions of pbest and gbest as follows:

).(.).(.. ,22,11 nnbestnnbestnn xgucxpucvwv −+−+= (D.7)

where xn is the particle’s coordinate in the nth dimension and vn is the velocity of the

particle in the nth dimension. This operation is performed at each dimension in an N-

dimensional problem. A pictorial description in 2-dimensions can be seen in Fig. D.1.

Fig. D.1. Pictorial Description of PSO in 2D.

 199

It can clearly be seen in this equation that the new velocity is the summation of the

current velocity scaled by w and increased in the direction of gbest and pbest for that

dimension.

c1 and c2 are scaling factors representing the attraction powers of pbest and gbest. c1 is a

factor showing the memory/history influence on a particle’s movement (i.e. a metric of

cognitivity), and c2 is a factor showing the swarm’s influence on a particle’s movement

(i.e. a metric of sociality). Increasing c1 increases a particle’s tendency to its own pbest;

whereas increasing c2 increases a particle’s tendency to the assumed global maximum.

u1 and u2 are random numbers between 0.0 and 1.0 obeying uniform distribution. In most

PSO implementations, two independent random numbers are used in order to control the

attraction powers of gbest and pbest. The main reason for this is to add a flavor of

unpredictability to the behavior of the swarm. w is known as the inertial weight, and this

number (chosen to be between 0.0 and 1.0) determines how much the particle remains

along its original direction regardless of the gbest and pbest attraction. This is a factor

adding diversity, and setting up a balance between exploration and exploitation. Detailed

discussions about the ideal choices of c1, c2 and w can be found in [171].

After the velocity has been calculated, the movement of the particle is straightforward.

The velocity is applied during a given time-step, which is usually chosen to be unity; and

the new coordinate is calculated at each dimension as follows:

nnn vtxx .∆+= (D.8)

After these operations are completed for all particles in the swarm, the whole movement

and fitness evaluation process is repeated. Hence, the particles are moved for discrete

time intervals as if their snapshots are taken at the end of each time-interval. This is

carried on until the termination criterion (criteria) is (are) met. There might be several

termination criteria, such as maximum iteration number, achievement of target fitness,

saturation in improvement of gbest etc.

 200

In most applications, it is usually desired to put constraints on the search domain. Due to

the movements of the particles, there is always a possibility that particles fall outside the

solution space during the iterations. In order to prevent/avoid this problem, three different

boundary conditions can be imposed [171] as seen in Fig. D.2:

Fig. D.2. Boundary Condition/Wall Concept in PSO.

1) If a particle exceeds the boundary of the solution space at one dimension, the velocity

in that dimension is set to zero; and the relevant particle is implicitly pulled back toward

the allowed solution space. This case can be considered as an absorbing boundary

condition.

2) If a particle exceeds the boundary of the solution space at one dimension, the velocity

is reversed in that dimension; and hence the particle is directly reflected back; which can

be considered as a reflecting boundary condition.

3) Without any constraints, the particles are moved to everywhere; but for a, particle

falling outside, fitness is not evaluated; which is interpreted as an invisible boundary

condition.

Another idea is to push the particles away from the worst solutions, instead of pulling

them towards the best solutions. This idea is proposed by Yang and Simon [172], and

named as NPSO standing for New Particle Swarm Optimization. In NPSO, the

conventional PSO equation (D.7) is modified as in (D.9); where pworst and gworst are

used instead of pbest and gbest.

 201

).(.).(.. ,22,11 iworstiiworstiii gxucpxucvwv −+−+= (D.9)

A more detailed comparison of NPSO with the classical PSO (in terms of convergence

etc.) can be found in [172]. A pictorial description of NPSO in 2 dimensions can be seen

in Fig. D.3. More derivatives and hybridizations of PSO have been proposed since the

first proposal in 1995.

2

2

1 1

pworst2

gworst
pworst1

original velocity component

velocity component away from pworst

velocity component away from gworst

resultant velocity

dimension1

dimension2

Fig. D.3. 2D Pictorial Description of NPSO.

D.4. Adaptation of PSO and Derivatives to Mesh Smoothing

Adaptation of PSO to the mesh smoothing will fall into the optimization-based smoothing

category. Certainly, optimization based smoothing methods are computationally

expensive compared to methods like Laplacian methods; on the other hand, they do not

have any restrictions like Laplacian methods. The main motivations for the usage of PSO

in this work can be summarized as follows:

- First of all, PSO is a young but promising, flexible, easy-to-implement global

optimization algorithm which is suitable for multidimensional continuous optimization

problems by its definition. Due to these facts, it is appropriate for the mesh smoothing

problems.

- The method is open to modifications, variations, and hybridizations for performance

improvement purposes.

 202

- Unlike some other optimization algorithms, it does not require any a priori information

about the gradient of the objective function. Evaluation of the objective function at a

given point is sufficient for the implementation.

- So far, it has been demonstrated that PSO outperforms (in terms of accuracy,

convergence speed, CPU & memory requirements) most of the nature-inspired

optimization algorithms.

- By its well known rapid convergence feature, it can provide quick results from highly

distorted mesh. Moreover, unlike most mesh smoothing techniques, it provides global

optimization rather than yielding local extrema; which are highly probable to be

encountered in the mesh smoothing problems.

- Since it is a population based search method, PSO provides not only the best solution,

but also a large set of good solutions. There might be some applications for mesh

smoothing, where one would like to get advantage of this property.

- The composite nature of PSO makes it especially conducive to implementation on

parallel processors.

For the adaptation of PSO (and its derivatives such as NPSO [172]) to mesh smoothing

problems, in the most general case it should be noted that the objective function F is a

function of n variables, where n is the total number of node coordinates to be adjusted for

mesh quality improvement. More specifically, if the nodes to be adjusted in the problem

are P1, P2, …, Pk where Pi=(xi, yi, zi); then the objective function F will be a function of

n=3k variables, and it can be written as F(x1, y1, z1, x2, y2, z2, …, xk, yk, zk).

Considering that the number of nodes in a mesh is usually very large, at first glance it can

be said that the problem will yield a function F with a large number of variables. The

following paragraphs give an idea about how large the dimension or the degree of

freedom (D.O.F) is.

The mesh seen in Fig. D.4 has a total of (N+1)(L+1)(M+1) nodes assuming that all

elements are of first order. During the smoothing of this mesh; if all nodes are allowed to

move, then the degree-of-freedom (D.O.F) of this problem will be:

D.O.Fmax = 3(N+1)(L+1)(M+1) (D.10)

 203

Fig. D.4. An all-hexahedral mesh with NLM elements:

a) 3D Isometric View. b) Isometric View of One Sample Layer.

The value in (D.10) represents the worst case; and hence it is called as D.O.Fmax.

Obviously by allowing all the nodes to move, the shape of the volume of interest will

most probably change after mesh smoothing. However in most cases, the shape of the

volume of interest is preserved, which means:

- The corner nodes are fixed,

- The surface nodes are allowed only to move along the surface, and

- The edge nodes are allowed only to move along the edges.

With such restrictions, it can be shown that the D.O.F might reduce down to:

 D.O.Fnom = 3(N-1)(L-1)(M-1) + 4M(L-1) + 4L(N-1) + 4N(M-1) (D.11)

The proof is straightforward depending on the brute force count of the nodes. This value

represents the typical case, and it is a nominal value; hence it is called as D.O.Fnom. This

means that D.O.Fmax is only a theoretical upper bound, which is not encountered in

practice.

 204

Another extreme case is to preserve the surface mesh completely. In such a case, the

D.O.F reduces to:

D.O.Fmin = 3(N-1)(L-1)(M-1) (D.12)

In summary, D.O.Fmin is a lower bound, whereas D.O.Fmax is an upper bound; and

D.O.Fnom is a typical value for the smoothing of such volume of interest.

It is sure that high D.O.F will increase the computation efforts during the mesh

smoothing. The following paragraphs discuss some techniques in order to reduce the

D.O.F, and to have a more efficient PSO solution:

1. Domain Decomposition (The Divide and Conquer Method): During the improvement

of the mesh quality, there might be opportunities to decompose the main domain into r

independent subdomains. Via this manipulation, instead of trying to solve a PSO problem

with n-D.O.F, one can try to solve r independent problems with ni-D.O.F where Σni= n.

Assume that the volume of interest (i.e. the problem domain) is divided into subdomains.

For mesh continuity, two adjacent subdomains (say V1 and V2) should have the same

surface mesh at their shared surface (S12). Assume that the mesh of V1 is smoothed

initially; and assume that the surface mesh at S12 is preserved during the smoothing of V2.

This means that in such a case, the expected degree-of-freedom (say D.O.Fexp) for the

smoothing operation of V2 mesh will be even lower than D.O.Fnom. Moreover, if a volume

is surrounded by other volumes in all directions; and if all of its surface meshes have

already been smoothed, then D.O.Fexp will be reduced down to D.O.Fmin. Consequently,

for a non-isolated volume (i.e. surrounded by other volumes) the following can be said

about D.O.Fexp:

D.O.Fmin ≤ D.O.Fexp ≤ D.O.Fnom (D.13)

The optimum computation size (in terms of number of elements) is tried to be

investigated by means of a simple analysis. A PSO setup with 20-particle population and

 205

50 iterations is executed. The degree-of-freedom is chosen to be worst case; i.e. all nodes

are allowed to be floating, which yields D.O.Fmax. Table D.2 shows the elapsed time (both

total and per element) during the PSO-smoothing for meshes with for various N, L, and M

values. All preprocessing (memory allocations, PSO population setup, etc.) and

postprocessing (memory deallocations, result displays, etc.) operations are included in the

total elapsed time.

Table D.2. Performance Measures for PSO-Mesh Smoothing of Various Domains.

Total
Elapsed

Time
(sec)

Elapsed
Time Per
Element

(sec)

Total
Elapsed

Time
(sec)

Elapsed
Time Per
Element

(sec)
2 2 2 8 81 0.06 0.00750 0.048 0.00600
3 3 3 27 192 0.09 0.00333 0.065 0.00241
4 4 4 64 375 0.17 0.00266 0.113 0.00177
5 5 5 125 648 0.27 0.00216 0.193 0.00154
6 6 6 216 1029 0.461 0.00213 0.321 0.00149
7 7 7 343 1536 0.711 0.00207 0.513 0.00150
8 8 8 512 2187 1.122 0.00219 0.786 0.00154
9 9 9 729 3000 1.753 0.00240 1.268 0.00174

10 10 10 1000 3993 2.644 0.00264 2.022 0.00202
11 11 11 1331 5184 3.925 0.00295 3.146 0.00236
12 12 12 1728 6591 5.888 0.00341 4.414 0.00255
13 13 13 2197 8232 8.472 0.00386 5.838 0.00266
14 14 14 2744 10125 12.067 0.00440 8.015 0.00292
15 15 15 3375 12288 16.424 0.00487 10.997 0.00326
16 16 16 4096 14739 22.342 0.00545 14.894 0.00364
17 17 17 4913 17496 29.923 0.00609 20.274 0.00413

L M
Number of
Elements

Maximum
Degree of
Freedom

PC2: Intel Pentium 4 3.4 GHz 1,00GB RAM Desktop
PC1: Intel Pentium M 1.4 GHz 512MB RAM Laptop

Number of Particles = 20
Number of Iterations = 50

PC-1 PC-2

N

The performance measurement is performed by means of PSO mesh generation script

executed at Matlab 6.5 on two separate PCs, where:

- PC1 is a laptop Windows PC with Intel Pentium M 1.4GHz CPU and 512MB RAM,

- PC2 is a desktop Windows PC with Intel Pentium 4 3.4GHz CPU and 1GB RAM.

 206

Investigation of Table D.2 yields the following observations:

- The elapsed time per element is minimum (about 0.00150 seconds on PC-2) for

6×6×6 or 7×7×7-element sized domains.

- For domains smaller than 6×6×6, the overhead for the problem setup (operations like

swarm generation, and updates) seem to be dominant in terms of CPU time. Hence,

due to such overheads, elapsed time per element is high for small domains.

- For domains larger than 7×7×7, PSO related operations seem to be dominant. As the

allocated memory and the particle sizes increase, the updates and objective function

evaluations take longer times.

By using the results of this analysis, the following divide-and-conquer strategy can be

proposed:

- For the most efficient PSO mesh smoothing, a mesh can be considered as a

collection of 7×7×7-element (or comparable sized) subdomains.

- Mesh smoothing can be performed at each subdomain one by one.

By using the divide-and-conquer strategy, a mesh of 100,000 elements is smoothed by

PSO (with 50 iterations, 20 particles) about 84 seconds on PC-2 by using 7×7×7-element

subdomains. During this experiment;

- The shape of the main domain is preserved; i.e. the nodes along the outer surfaces

are allowed to be moving along the surfaces. There is no other specific restriction.

- For the interior subdomains, eventual D.O.F reduction is performed by getting use

of the shared surface mesh, if the relevant adjacent subdomain is already smoothed.

For such subdomains, the D.O.F is D.O.Fexp, where its lower and upper bounds are

given in (D.13).

The optimality of 7×7×7-element subdomain size can be observed in the same problem

numerically. By using the same setup described above, the solution of the same problem

takes 123 seconds on PC-2 if 10×10×10-element subdomains are used.

Such a strategy will dramatically reduce the complexity and the computation time.

Certainly, the number of iterations necessary for convergence highly depends on the

 207

D.O.F. Moreover, the population size should be increased for high D.O.F problems.

Nevertheless, the results of this analysis give an idea of optimum subdomain size (which

is 7×7×7 or equivalent) for fixed population size and fixed number of iterations.

Fig. D.5 shows the PSO-smoothed version (via divide-and-conquer method) of the mesh

seen in Fig. D.4.

Fig. D.5. PSO-smoothed version of the mesh in Fig. D.4.

a) 3D Isometric View. b) Isometric View of One Sample Layer.

2. Fixing Some Nodes: Instead of trying to move all the nodes, some nodes (especially the

ones on the boundaries) might be considered to be fixed. As an example, if the ith and jth

nodes are defined to be fixed; then the function F(x1, y1, z1, …, xi, yi, zi, …, xj, yj, zj, …, xk,

yk, zk) will be simplified to F(x1, y1, z1, …, xk, yk, zk).

3. Imposing Nodes Dependencies: The movement of some nodes can be defined to be

dependent to each other. For example, if the movement of the ith node in x direction is set

to be dependent to the movement of the jth node in x direction; then the function F(x1, y1,

z1, …, xi, yi, zi, …, xj, yj, zj, …, xk, yk, zk) will be simplified to F(x1, y1, z1, …, xi, yi, zi, …,

yj, zj, …, xk, yk, zk).

 208

4. Setting Rules to Individual Node Movements: The movement of a node inside a mesh

might be defined to be in some specific direction; to yield a dependent movement in two

directions. For example, the movement of a node might be defined to be in r direction of

the cylindrical coordinates where r=(x2+ y2)1/2. If the movement of the ith node is set to be

in r direction; then the function F(x1, y1, z1, …, xi, yi, zi, …, xk, yk, zk) will be simplified to

F(x1, y1, z1, …, ri, zi, …, xk, yk, zk).

5. Reduction by Means of Symmetry: For symmetric problems, instead of trying to

optimize the whole mesh, only a subset can be optimized and the whole mesh can be

reconstructed. For some problems, this might cause the dimension of F to reduce to 1/8 or

even 1/16 of the original; if a solution in an octant or half octant is sufficient.

Certainly, manipulations as fixing some nodes, imposing some nodes to be dependent,

setting rules to individual node movement reduce the level of quality improvement. There

is a trade-off between the quality of the final mesh and the computation time. On the

other hand, increasing the D.O.F does not always guarantee better improvement.

Moreover, manipulations as reduction by means of symmetry might not be applicable in

most of the problems in practice. Practically, methods other than domain decomposition

(divide-and-conquer) might not be applicable in most cases.

The adaptation of PSO to mesh smoothing is slightly different than the normal PSO

procedure. Instead of initializing all the particles in n-dimensional space in a totally

random manner, an automatically generated mesh is used for this purpose. All particles

are positionally initialized by superimposing Gaussian noise (with zero mean and a user

defined variance) to the automatically generated mesh at each dimension. The initial

velocities of the particles at each dimension are generated as in the ordinary PSO. The ∆t

value is chosen to be unity; and the initial random velocities of the particles are assigned

so that a node can move a distance of at most li along one direction due to this velocity

component at first iteration. Here, li is a user-defined parameter; chosen to be comparable

to average edge length along one direction.

Obviously, the choice of the step size (i.e. both ∆t and vn) in the optimization has great

impact on the convergence. So far, the effects of the step size and its

 209

selection/computation have not been specifically investigated in the mesh smoothing

problem. This is a potential subject of further research.

The fitness evaluation throughout the algorithm is achieved by means of minimization of

F; i.e. the fitness of a mesh increases as F decreases. All pbest, gbest computations are

performed by using this definition.

With manipulations, initializations and definitions described above, it is possible to apply

PSO and its derivatives to the mesh smoothing problems.

For all examples in the present work, a population size of 15 is chosen (for most

applications it is shown that a population size of 10-20 is efficient); and the number of

iterations is taken as 50. c1 and c2 are chosen to be 2.0 as usual, and w is chosen to be 1.0.

Moreover, for all nodes reflecting walls are defined.

As a practical application of above manipulations, two problems in engineering

electromagnetics are given as examples. As will be noticed, there are so numerous

manipulations in the examples that; one can think whether these reductions are worth to

apply rather than solving the problem with high D.O.F. Certainly, it is wiser to solve

these problems directly rather than spending effort to decrease the D.O.F; but the

examples are just given to demonstrate the application of the suggested reduction

methods.

First, the circular microstrip patch antenna, which is a well-known structure both for

scattering or radiation problems in engineering electromagnetics, is considered. The mesh

generated for this problem should be conformal to the circular patch internally; and it

should be conformal to the rectangular prism substrate externally. An automatically

generated all-hexahedra mesh for this structure can be seen in Fig. D.6.

 210

Fig. D.6. 3D Views of the Circular Microstrip Patch Antenna.

First, the problem domain can be reduced by means of symmetry; where the problem can

be solved in a quadrant. Then domain decomposition can be performed by considering

the sub-domain inside the circular patch; and the sub-domain between the circular patch

and the outer boundary of the substrate separately. More dimension reduction can be

achieved if further symmetry is considered in each sub-domain. These manipulations are

illustrated in Fig. D.7. Moreover in each sub-domain, the nodes at the boundaries can be

defined to be fixed; and the movements of some nodes can be defined in specific

directions only. These operations can be seen in Fig. D.8.

 211

Fig. D.7. Dimension Reduction by Means of Symmetry, and Domain Decomposition.

Fig. D.8. Fixing Nodes, Imposing Node Dependencies and Setting Rules for Individual
Node Movements.

 212

Another advantage of PSO, when applied to mesh smoothing problem, is the imposure of

the boundary conditions. For a moving node, a reflecting boundary condition (wall) can

be applied so that the relevant element is kept untangled. In order to keep the nodes inside

a boundary (e.g. the boundary of the computational domain), absorbing or invisible walls

can be defined on the boundaries as well. For the circular microstrip patch antenna

problem, the reflecting walls defined for all floating nodes are illustrated in Fig. D.9.

Subdomain I

Reflecting Walls for white labeled nodes

Subdomain II

Fig. D.9. Setting Boundary Conditions (Reflecting Walls) for Floating Nodes.

The overall quality improvement in the circular microstrip patch antenna mesh

improvement is achieved by means of two separate PSO schemes; a 2D scheme for

Subvolume I (Fig. D.10), and a 2D scheme for Subvolume II (Fig. D.11). Finally, the

whole procedure is summarized and illustrated in Fig. D.12.

 213

1.8 units

2.0 units

3.0 units

(2, 2, z0)

(2, 0, z0)

(1.82, 1.82, z0)

F = 0.7560
faverage = 0.7202

Fixed element size in z direction : 1.0 unit

F = 0.3277
faverage = 0.7967

Fixed element size in z direction : 1.0 unit

1.8 units

3.0 units

a) Automatically Generated Mesh b) PSO Smoothed Mesh

(3, 1.2426, z0)
(3, 0.85, z0)

(2.36, 0, z0)

Fig. D.10. A 3D PSO Mesh Smoothing Scheme for Subdomain I of the Circular

Microstrip Antenna Problem.

Fig. D.11. A 2D PSO Mesh Smoothing Scheme for Subdomain II of the Circular
Microstrip Antenna Problem.

 214

Fig. D.12. Performed Steps for a 2D+2D PSO Mesh Smoothing Scheme of the Circular
Microstrip Antenna Problem.

Another problem dealt during the present work is the scattering of a perfectly conducting

sphere with a radius of one wavelength (λ), which is an engineering electromagnetics

application again. For this problem, it is certainly known that the total electric field inside

the perfectly electric conducting sphere is zero. Hence, there is no need to consider the

sphere; and there is no need to generate mesh for this volume. This means that the

computational domain is a very thick spherical shell. For automatic all-hexahedral mesh

generation, the computational domain shall be decomposed into three sub-domains; two

top hats and the remaining surrounding region.

Automatically generated mesh for the top hat is usually in poor quality; of which the

cross section for a constant R surface can be seen in Fig. D.13. Again, by getting use of

symmetry the dimension of the objective function F can be reduced. Moreover, instead of

trying to improve the whole top hat mesh, only one layer can be improved and then whole

top hat can be reconstructed.

 215

Fig. D.13. Top Hat Sub-Domain to be Smoothed by PSO (Different 3D Views with
Different Levels of Detail).

The improvement in the top hat mesh can be seen in Fig. D.14 and Fig. D.15 with

different views. It should be noted that this improvement is achieved by means of only a

3D PSO scheme.

Fig. D.14. Improvement in the Mesh by Investigation of a Constant R Surface.

 216

Fig. D.15. Improvement in the Mesh by 3D View Investigation of One Layer of Top Hat.

Since this problem is an open domain problem, in order to be able to apply the Finite

Element Method, an artificial absorber shall be defined for the simulation of infinity and

mesh truncation. Perfectly Matched Layers (PMLs) defined by Berenger [97] is

implemented in this work for this purpose by means of the complex coordinate stretching

[98]. Hence, the cross section of the mesh is classified into regions as free space and PML

as seen in Fig. D.16. The calculated electric field for the PML region is physically

meaningless, and hence ignored throughout the error norm analysis described in the

following paragraphs.

Fig. D.16. Cross Section of the Mesh Generated for the Perfectly Electric Conductor
Sphere Problem.

 217

Fig. D.17. Surface and Volume Definitions of the Top Hat.

For this problem, the effect of the mesh quality on the Finite Element Solution accuracy

is investigated. First, the exact area of the surface ST of the top hat (as seen in Fig. D.17)

has been compared to the calculated areas of the automatically generated and PSO

smoothed meshes. In other words, for G′(x,y,z) = G′(x,y,z)aR where G′(x,y,z) =1, the

following surface integral is computed.

∫∫∫∫∫∫ =⋅=⋅=

TT

RR

T

exact

S
ds

S
dszyxG

S
zyxS)()),,((),,('' aadsG (D.14)

By using the isoparametric hexahedral elements (i.e. assuming that each hexahedral

element is transformed to a cube in ξηζ-space extending from (-1,-1,-1) to (1,1,1)); for

any function G′(x,y,z), the surface integral on the surface of an element

∫∫
eS

dszyxG),,(' (D.15)

in the xyz-space can be stated as

∫ ∫
− −

∂
∂1

1

1

1
)(

),,(),,(ηξ
ξη

ζηξ ddzyxG , ζ constant (D.16)

in the ξηζ-space. In (D.16),

 218

2/1222

)(
),,(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−

∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−

∂
∂

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−

∂
∂

∂
∂=

∂
∂

ξηηξξηηξξηηξξη
yzzyxzxzyxyxzyx

 (D.17)

Or in other words,

ηξ
ξη

ddzyxds
)(

),,(
∂

∂
= , where ζ is constant (D.18)

Certainly, Scalculated can be stated as ∑ ∫∫n

eS
dszyxG),,(' where the summation traces all

elements on the surface of the top hat. For the error in S, we define the following error

norm:

exact

exactcalculated

S
SS

Serr
−

=)((D.19)

Second, the exact volume of the top hat (VT as seen in Fig. D.17) has been compared to

the calculated volumes of the automatically generated and PSO smoothed meshes. In

other words, for H′(x,y,z) =1, the following volume integral is computed.

∫∫∫∫∫∫ ==

TT

exact

V
dv

V
dvzyxHV),,(' (D.20)

By using the isoparametric hexahedral elements; for any function H′(x,y,z), the volume

integral in an element

∫∫∫
eV

dvzyxH),,(' (D.21)

in the xyz-space can be stated as

 219

∫ ∫ ∫
− − −

1

1

1

1

1

1

)det(),,(ζηξζηξ dddH J (D.22)

in the ξηζ-space, where J is the Jacobian matrix of the xyz to ξηζ transformation.

Certainly, Vcalculated can be stated as ∑ ∫∫∫n

eV
dvzyxH),,(' where the summation traces all

elements inside the top hat. For the error in V, we define the following error norm:

exact

exactcalculated

V
VV

Verr
−

=)((D.23)

A low quality mesh usually implies that the relevant surface mesh is also of low quality.

This implies that both the surface and volume representations are bad; i.e. err(S) and

err(V) values are high. On the other hand, having low err(S) and err(V) values does not

guarantee mesh quality. These are just indicators about the low quality but not the high

quality of a mesh. Hence, more reliable error norms should be defined if possible.

Finally, solution of the scattered electric field results obtained by both the automatically

generated and the PSO smoothed meshes are compared to the analytical results, which

can be found by using Mie Series. For the electric field, we define the following error

norm:

∑
=

−
=

K

i iexact

iexacticalculated

P
PP

K
err

1)(
)()(1)(

E
EE

E (D.24)

where Eexact(Pi) is the exact electric field calculated via the Mie Series at the centroid (Pi)

of an element lying in free space; whereas Ecalculated(Pi) is the value calculated by FEM at

the same point. Certainly, the summation traces all elements lying in free space; K is the

number of such elements; and err(E) is therefore the mean normalized error over the free

space portion of the computational domain. Table D.3 demonstrates the improvement in

the solutions (i.e. reduction in the error norms) after PSO smoothing.

 220

Table D.3. Reduction in the error norms after smoothing.

 err(S) err(V) err(E)

Automatically Generated Mesh 0.0398 0.0336 0.0968 3,400 total

elements PSO Smoothed Mesh 0.0367 0.0302 0.0881

Automatically Generated Mesh 0.0026 0.0022 0.0131 28,800 total

elements PSO Smoothed Mesh 0.0024 0.0020 0.0117

A method for mesh improvement by means of local node repositioning based on the

condition number related quality metric and Particle Swarm Optimization is proposed in

this thesis. Meshes that can be encountered in practical situations are smoothed with this

method. As an example, the impact of smoothing to the finite element solution accuracy

is observed when H(curl)-conforming hexahedral elements are used. On the other hand,

the method puts no restriction on the type of the hexahedral element; i.e. quality of any

other hexahedral element type (H(grad)-conforming, H(div)-conforming) can be

improved by means of this method.

Mesh improvement by means of PSO might be extended to other types of finite elements

(e.g. triangular and quadrilateral elements in 2D, tetrahedral, prismatic elements in 3D).

The method can also be extended to any type of element with higher order if applied to

appropriate quality metrics or combined to appropriate validity criteria.

The application of PSO to mesh generation problem yields several research topics:

1. Development of methods for improving the convergence in this problem might be an

attractive avenue. Since the D.O.F is very high in the mesh smoothing problem; and since

getting the global extremum is not crucial as in other optimization problems, trying to

improve the convergence (trading the convergence to accuracy where necessary) might be

a good choice. The following section D.5 is dedicated to an introductory discussion about

this topic.

2. Definition of several objective functions depending on various quality metrics; and

application of multiobjective mesh smoothing by means of Multi Objective Particle

 221

Swarm Optimization (MOPSO) [173-174] might be another further research topic; this

will be introduced in section D.6.

Unfortunately, it could not be possible to obtain mature and meaningful results in either

topic yet.

D.5. Speeding up the Convergence of PSO for High D.O.F Problems

It has been shown several times that the Particle Swarm Optimization method works well

for challenging problems. In most of these works, the authors have not investigated the

behavior of the particles, although they have tested the overall performance of the swarm

by means of benchmark functions.

However recently in [175], Clerk and Kennedy discussed and investigated the success of

the PSO with the particle’s point of view; and they have proposed some modifications in

the original algorithm in order to guarantee the stability and convergence in

multidimensional problems. In this work, the authors modified the formulation of PSO in

order to make the adjusted parameters controllable for guaranteeing convergence.

An idea might be:

1. To try to find a PSO derivative, which outperforms to the original one;

2. And then to modify the formulation of this derivative just as Clerk and Kennedy

performed.

For the first step, the proposed PSO derivative should be first tested against the original

PSO for some challenging problems. Since 1996, IEEE Congress on Evolutionary

Computing has been trying to provide a standard test bench for the performance testing

and evaluation of the proposed optimization schemes. The last set has been defined in

2005 at IEEE Congress on Evolutionary Computing. These benchmark functions provide

challenges (with either numerous local optima, or wide plateaus) to optimization methods

and researches.

Our proposal for the outperforming PSO derivative is NPSO of Yang and Simon [172].

As stated before, it basically tries to push each particle away from the worst location and

 222

bad locations. Therefore, for initial rapid convergence it seems to be reasonable according

to the results given in [172], in which the authors used four benchmark functions (Sphere,

Griewank, Rastrigin and Rosenbrock). The main properties of these functions are given in

Table D.4.

Table D.4. Main Properties of the Benchmark Functions Used in [172].

Function Multimodal Separable

Griewank √ ×

Rastrigin √ √

Rosenbrock × ×

Sphere × √

Among these, the Griewank function is defined as:

∏∑
=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
=

n

i i
xn

i
xf i

i

1
1cos

1
4000

1)(2x (D.25)

where x = [x1 ... xi ... xn], and xi ∈ [-600.0, 600.0]. The behavior of the function in 2D can

be seen in Fig. D.18.

Fig. D.18. Pictorial Description of the Behavior of 2D Griewank Function [176].

 223

And the Rastrigin function is defined as:

))2cos(10
1
(10)(2

ii x
n

i
xnf π−

=
+= ∑x (D.26)

where x = [x1 ... xi ... xn], and xi ∈ [-5.12, 5.12]. The behavior of the function in 2D can be

seen in Fig. D.19.

Fig. D.19. Pictorial Description of the Behavior of 2D Rastrigin Function [176].

The Rosenbrock function is defined as:

))1()
1

1
(100()(222

1 −+−
−

=
= ∑ + iii xx

n

i
xf x (D.27)

where x = [x1 ... xi ... xn], and xi ∈ [-30.0, 30.0]. The behavior of the function in 2D can be

seen in Fig. D.20.

 224

Fig. D.20. Pictorial Description of the Behavior of 2D Rosenbrock Function [176].

Finally, the Sphere function is defined as:

∑
=

=
n

i
xf i

1
)(2x (D.28)

where x = [x1 ... xi ... xn], and xi ∈ [-100.0, 100.0]. The behavior of the function in 2D can

be seen in Fig. D.21.

Fig. D.21. Pictorial Description of the Behavior of 2D Sphere Function [176].

 225

According to [172], for D.O.Fs of 2, 5, and 10; NPSO outperforms (in both convergence

and accuracy) to PSO for these 4 benchmark functions. Higher D.O.Fs (1,000-10,000)

should also be tested by using these functions. The comparison should also be performed

for more challenging benchmark functions (e.g. Schaffer’s F6); and benchmark functions

with wide plateaus (e.g. Easom) for which PSO is well known to be suffering.

D.6. Pareto Optimality in Mesh Smoothing and Application of MOPSO

Definition 1. Given two vectors x; y ∈ Rk, we say that x ≤ y if xi ≤·yi for i = 1, ..., k, and x

dominates y (denoted by xp y) if x ≤ y and x ≠ y.

Fig. D.22 shows a particular case of the dominance relation in the presence of two

objective functions.

Fig. D.22. Dominance Relation in a Biobjective Space.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ Rk is nondominated with

respect to X, if there does not exist another y ∈ χ such that f(y)p f(x).

Definition 3. We say that a vector of decision variables x* ∈ F ⊂ Rk (F is the feasible

region) is Pareto-optimal if it is nondominated with respect to F.

 226

Definition 4. The Pareto Optimal Set P * is defined by: P * = {f(x) ∈ Rk | x is Pareto-

optimal}.

Definition 5. The Pareto Front PF * is defined by: PF * = {f(x) ∈ Rk | x ∈ P *}.

Fig. D.23 shows a particular case of the Pareto front in the presence of two objective

functions.

Dominated Solutions

f2

f1

Pareto Front Solutions

Fig. D.23. The Pareto Front of a Set of Solutions in a Biobjective Space.

Hexahedral mesh smoothing can be extended by defining another metric (i.e. another

objective function). Since the element size is a dominating factor in interpolation

accuracy, the second objective function can be defined as the maximum deviation from

the “ideal element volume”; where the maximization is over the all elements inside the

mesh. Keeping the condition number based objective function as the first objective,

putting a second objective like this, and using the Pareto definitions above; a Pareto front

can be found. This might be the subject of further research.

 227

APPENDIX E

BASIC NOTATION OF THE UNIFIED MODELING

LANGUAGE (UML)

In this Appendix, basic notation of Unified Modelling Language is given to the readers

who are not familiar with the concept.

E.1. What is UML?

According to the OMG specification: "The Unified Modeling Language (UML) is a

graphical language for visualizing, specifying, constructing, and documenting the

artifacts of a software-intensive system. The UML offers a standard way to write a

system's blueprints, including conceptual things such as business processes and system

functions as well as concrete things such as programming language statements, database

schemas, and reusable software components."

The important point to note here is that UML is a 'language' and not a method or

procedure. The UML is used to define a software system; to detail the artifacts in the

system, to document and construct - it is the language that the blueprint is written in.

UML defines the notation and semantics for the following domains:

• The User Interaction or Use Case Model - describes the boundary and interaction

between the system and users. Corresponds in some respects to a requirements

model.

• The Interaction or Collaboration Model - describes how objects in the system will

interact with each other to get work done.

 228

• The Dynamic Model - State charts describe the states or conditions that classes

assume over time. Activity graphs describe the workflows the system will

implement.

• The Logical or Class Model - describes the classes and objects that will make up

the system.

• The Physical Component Model - describes the software (and sometimes

hardware components) that make up the system.

• The Physical Deployment Model - describes the physical architecture and the

deployment of components on that hardware architecture.

Table E.1. Core Elements in Structural UML Modeling.

Construct Description Syntax

Class A description of a set of objects that share the same

attributes, operations, methods, relationships and

semantics.
Interface A named set of operations that characterize the

behavior of a software element.

Component A modular, replaceable and significant part of a system

that packages implementation and exposes a set of

interfaces.

Node A run-time physical object that represents a

computational resource.

Constraint A semantic condition or restriction.

 229

Table E.2. Core Relationships in Structural UML Modeling.

Construct Description Syntax

Association A relationship between two or more classifiers that

involves connections among their instances.

Aggregation A special form of association that specifies a

whole-part relationship between the aggregate

(whole) and the component part.

Generalization A taxonomic relationship between a more general

and a more specific software element.

Dependency A relationship between two modeling elements, in

which a change to one modeling element (the

independent software element) will affect the other

modeling element (the dependent software

element).

Realization A relationship between a specification and its

implementation.

 230

Table E.3. Core Definitions in UML Use Case Modeling.

Construct Description Syntax

Use Case A sequence of actions, including variants,

that a system (or other entity) can perform,

interacting with actors of the system.

Actor A coherent set of roles that users of use cases

play when interacting with these use cases.

System

Boundary

Represents the boundary between the

physical system and the actors who interact

with the physical system.

Association The participation of an actor in a use case.

i.e., instance of an actor and instances of a

use case communicate with each other.

Generalization A taxonomic relationship between a more

general use case and a more specific use

case.

Extend A relationship from an extension use case to

a base use case, specifying how the behavior

for the extension use case can be inserted

into the behavior defined for the base use

case.

Include An relationship from a base use case to an

inclusion use case, specifying how the

behavior for the inclusion use case is inserted

into the behavior defined for the base use

case.

 231

CURRICULUM VITAE

PERSONAL INFORMATION
Surname, Name : Yılmaz, Asım Egemen
Nationality : Turkish (TC)
Date and Place of Birth : 18 October 1975, Adıyaman
Marital Status : Married
Phone : +90 312 219 57 87 / 3120
Fax : +90 312 219 57 97
e-mail : aeyilmaz@havelsan.com.tr, asimegemenyilmaz@yahoo.com

EDUCATION
Degree Institution Year of Graduation
MS METU Electrical

and Electronics Engineering
2000

BS METU Electrical
and Electronics Engineering

1997

BS METU Mathematics 1997
High School Ankara Fen Lisesi 1993

TEACHING EXPERIENCE
Year Place Enrollment
September
2004- Present

Ankara University
Department of Electronics
Engineering

Guest Instructor
(EM206 Electromagnetics I)
(EM311 Electromagnetics II)
Formerly
(EM206 Elektromanyetik I)
(EM311 Elektromanyetik II)

WORK EXPERIENCE
Year Place Enrollment
July 2003-
Present

HAVELSAN A.Ş.
737 AEW&C Peace Eagle Program

Mission Computing Subsystem
IPT Manager

July 1999-
July 2003

STM A.Ş.
HERİKKS Project

R&D Engineer

February 1999-
July 1999

Vestel Information Appliances R&D Engineer

July 1997-
January 1999

ASELSAN A.Ş. Communications
Division Communication Security
Group

R&D Engineer

September
1996-
June 1997

ASELSAN A.Ş. Communications
Division Communication Security
Group

Part Time R&D Engineer

FOREIGN LANGUAGES
Advanced English, Fluent German

 232

PUBLICATIONS
1. A.E. Yilmaz, M. Kuzuoglu, “Calculation of Optimized Parameters of Rectangular Microstrip

Patch Antenna Using Particle Swarm Optimization”, to appear in Microwave and Optical
Technology Letters (submitted in May 2007).

2. A.Ö. Bozdoğan, M. Efe, A.E. Yılmaz, “Genel Atama Probleminde Koloni Optimizasyon
Yaklaşımları”, in CD-ROM Proc. IEEE 15. Sinyal İşleme ve İletişim Uygulamaları Kurultayı
(SİU-2007), Eskişehir, Türkiye.

3. A.E. Yılmaz, M. Kuzuoğlu, “Parçacık Sürü Optimizasyonu ile Altı Yüzlü Eleman Ağlarının
İyileştirilmesi”, in CD-ROM Proc. IEEE 15. Sinyal İşleme ve İletişim Uygulamaları Kurultayı
(SİU-2007), Eskişehir, Türkiye.

4. M.B. Akbulut, A.E. Yılmaz, “A Modified Genetic Algorithm for the Generalized Assignment
Problems”, submitted to IU-JEEE (Istanbul University – Journal of Electrical and Electronics
Engineering) (Feb. 2007).

5. A.E. Yilmaz, M. Kuzuoglu, “Comparison of Linear And Quadratic Hexahedral Edge
Elements in Electromagnetic Scattering Problems”, to appear in AEÜ – International Journal
of Electronics and Communications (submitted in Dec. 2006).

6. A.E. Yilmaz, M. Kuzuoglu, “A Particle Swarm Optimization Approach in Hexahedral Mesh
Smoothing”, submitted to Communications in Numerical Methods in Engineering (Dec. 2006
– rev. May 2007).

7. A.E. Yılmaz, M. Kuzuoğlu, “Mikroşerit Yama Antenlerin Sonlu Elemanlar Yöntemi ile
Modellenmesi”, in Proc. URSI-Türkiye 2006 3. Ulusal Kongresi, pp. 146-148, 6-8 Eylül
2006, Ankara, Türkiye.

8. A.E. Yılmaz, M. Kuzuoğlu, “Elektromanyetik Sınır Değer Problemlerinin Düzgün Olmayan
Ağlar ve Altı Yüzlü Sonlu Kenar Elemanları İle Modellenmesi”, in Proc. URSI-Türkiye 2006
3. Ulusal Kongresi, pp. 125-127, 6-8 Eylül 2006, Ankara, Türkiye.

9. İ. Kılınç, A.A. Diri, A.E. Yılmaz, “Komuta Kontrol Sistemlerinde Üç Boyutlu Hava Resmi
Görüntüleme Teknolojileri”, in Proc. 3. Savunma Teknolojileri Kongresi (SAVTEK-2006),
vol. 2, pp. 231-241, 29-30 Haziran 2006, Ankara, Türkiye.

10. A.R. Ünal, G. Karaca, Ö. Dura, A.E. Yılmaz, “Taktik Veri İşleme ve Dağıtım Sistemi”, in
Proc. 3. Savunma Teknolojileri Kongresi (SAVTEK-2006), vol. 1, pp. 613-623, 29-30 Haziran
2006, Ankara, Türkiye.

11. M. Efe, A.E. Yilmaz, O. Donmez Dura, “Data Fusion for a Surveillance System: Addressing
Some Practical Problems”, in Proc. 18th International Conference on Systems Engineering
(ICSENG-05), pp. 342-247, August 16-18, 2005, Las Vegas, Nevada, USA.

12. E. Çağlav, H.G. İlk, R.M. Özel, A.E. Yılmaz, “Karar Destek Mekanizmalarında Özellik
Füzyonu için Çoklu Sensor Entegrasyonu” , in CD-ROM Proc. IEEE 13. Sinyal İşleme ve
İletişim Uygulamaları Kurultayı (SİU-2005), Kayseri, Türkiye.

13. A.E. Yılmaz, M. Kuzuoğlu, “Elektromanyetik Sınır Değer Problemlerinin İkinci Dereceden
Altı Yüzlü Sonlu Elemanlar İle Modellenmesi”, in Proc. URSI-Türkiye 2004 2. Ulusal
Kongresi, pp. 78-80, 8-10 Eylül 2004, Ankara, Türkiye.

14. A.E. Yılmaz, R.M. Özel, H.G. İlk, “Çoklu Taktik Ses ve Veri Haberleşme Linklerinin Analizi
ve Modellenmesi”, in Proc.IEEE 12. Sinyal İşleme ve İletişim Uygulamaları Kurultayı (SİU-
2004), pp. 763-766, 28-30 Nisan 2004, Kuşadası, Türkiye.

15. E.H. Kök, A.E. Yılmaz, Ö. Yıldız, M. Efe, R.M. Özel, “Dağınık Konuşlandırılmış Sensör
İzlerinin Birleştirilmesinde Kayıtlanma Problemleri ve Çözümleri”, in Proc. IEEE 12. Sinyal
İşleme ve İletişim Uygulamaları Kurultayı (SİU-2004), pp. 755-758, 28-30 Nisan 2004,
Kuşadası, Türkiye.

 233

16. E.H. Kök, A.E. Yılmaz, Ö. Yıldız, M. Efe, R.M. Özel, “Heterojen Radarlardan Gelen İzlerin
Birleştirilmesi: Pratik Problemler ve Çözümleri”, in Proc. IEEE 12. Sinyal İşleme ve İletişim
Uygulamaları Kurultayı (SİU-2004), pp. 35-40, 28-30 Nisan 2004, Kuşadası, Türkiye.

PATENTS
M.A. Yazıcı and A.E. Yılmaz, inventors; ASELSAN A.Ş., assignee. “X İlk Koşullu Artan/Azalan
Örüntü Eleyici Yapma Rassal Sayı Üretme Metodu”, Turkish Patent Institute No: 1998 00950,
2001/12/21.

HONORS & AWARDS
• 3rd, Student Proceedings Award, URSI-2004, Ankara, Turkey.
• 1st patent holder of ASELSAN; 1st software patent holder in Turkey.

MEMBERSHIPS
• Member (’05) – International Council on Systems Engineering (INCOSE)
• Founding Member (’05) – International Council on Systems Engineering (INCOSE) Turkey

Chapter
• Student Member (’07) – Institute of Electrical and Electronics Engineers (IEEE)

OTHER ACADEMIC ACTIVITIES
• Guest Referee, Turkish Journal of Electrical Engineering and Computer Sciences

(ELEKTRİK) – upon Invitation or Request.
• Speaker on Career & Training Days of various universities such as Ankara University,

TOBB-ETU, Selçuk University, and Bilkent University – upon Invitation or Request.
• Organization and Chair of the Special Session “Tactical Environment Modelling, Target

Tracking and Applications” in SİU-2006, Antalya, Turkey (co-organized and co-chaired with
M. Efe).

• Organization and Chair of the Special Session Series “Evolutionary Algorithms: Theory and
Applications (I–II)” in SİU-2007, Eskişehir, Turkey (co-organized and co-chaired with M.
Efe).

NON PROFESSIONAL ACTIVITIES
• Amateur Photography:

Photos published in various media such as AFSAD Monthly Bulletin - Kontrast, AFSAD
Web Page, Cumhuriyet-Ankara, and Ankara Chamber of Dentists Bulletin
Personal Galleries:
www.treklens.com/members/egemenyilmaz/,
www.trekearth.com/members/egemenyilmaz/

• Performing Arts:

(Mar 2007 – present) Back vocalist, harmonica player, and keyboardist/pianist of the
Pop/Rock cover band A Broad Band™
(Jun 2004 – Mar 2007) Lead singer and keyboardist/pianist of the Pop/Rock cover band Plug
N’ Play™
(Jul 1999 – May 2001) Keyboardist/pianist of the Ethnic Jazz experimental band The Eye
Queue Project™

PERSONAL INTERESTS
History of Music (Romantic Era), History of Art (Impressionist & Post-Impressionist Era)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [612.000 792.000]
>> setpagedevice

