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ABSTRACT 
 

 

FINITE ELEMENT MODELING OF ELECTROMAGNETIC SCATTERING 

PROBLEMS VIA HEXAHEDRAL EDGE ELEMENTS 

 

YILMAZ, Asım Egemen 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mustafa KUZUOĞLU 

 

July 2007, 233 pages 

 

In this thesis, quadratic hexahedral edge elements have been applied to the three 

dimensional for open region electromagnetic scattering problems. For this purpose, a 

semi-automatic all-hexahedral mesh generation algorithm is developed and implemented. 

Material properties inside the elements and along the edges are also determined and 

prescribed during the mesh generation phase in order to be used in the solution phase. 

Based on the condition number quality metric, the generated mesh is optimized by means 

of the Particle Swarm Optimization (PSO) technique. A framework implementing 

hierarchical hexahedral edge elements is implemented to investigate the performance of 

linear and quadratic hexahedral edge elements. Perfectly Matched Layers (PMLs), which 

are implemented by using a complex coordinate transformation, have been used for mesh 

truncation in the software. Sparse storage and relevant efficient matrix ordering are used 

for the representation of the system of equations. Both direct and indirect sparse matrix 

solution methods are implemented and used.  

Performance of quadratic hexahedral edge elements is deeply investigated over the radar 

cross-sections of several curved or flat objects with or without patches. Instead of the de-

facto standard of 0.1 wavelength linear element size, 0.3-0.4 wavelength quadratic 

element size was observed to be a new potential criterion for electromagnetic scattering 

and radiation problems.  

Keywords: All-Hexahedral Mesh Generation, Finite Element Method, Hierarchical 

Hexahedral Edge Elements, Optimization Based Mesh Smoothing, p-Extension.  
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ÖZ 
 

 

ELEKTROMANYETİK SAÇILMA PROBLEMLERİNDE ALTIYÜZLÜ KENAR 

ELEMANLARI İLE SONLU ELEMAN MODELLEMESİ 

 

YILMAZ, Asım Egemen 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mustafa KUZUOĞLU 

 

Temmuz 2007, 233 sayfa 

 

Bu tezde, ikinci derece altıyüzlü kenar elemanları açık bölge elektromanyetik saçılma 

problemlerinde uygulanmıştır. Bu amaçla, yarı otomatik bir tamamen altıyüzlü elemanlı 

ağ üretme algoritması geliştirilmiş ve gerçekleştirilmiştir. Elemanların içinde ve kenarlar 

boyunca materyal özellikleri, çözüm aşamasında kullanılmak üzere ağ üretimi esnasında 

belirlenmiş ve tanımlanmıştır. Üretilen ağ, Partikül Sürü Optimizasyon tekniği ile durum 

kalite metriğine dayalı olarak iyileştirilmiştir. Doğrusal ve ikinci derece altıyüzlü 

elemanların performanslarını incelemek amacıyla hiyerarşik kenar elemanlarını 

gerçekleyen bir yazılım çerçevesi geliştirilmiştir. Kompleks koordinat dönüşümü ile 

gerçekleştirilmiş olan Tamamen Eşlenmiş Katmanlar, bu yazılım kapsamında ağ 

sonlandırımı işlevini yerine getirmektedir. Denklem sistemini ifade etmek için seyrek 

matris depolama ve verimli matris düzenleme yöntemleri kullanılmıştır. Seyrek matris 

çözümü için doğrudan ve dolaylı matris çözüm yöntemleri uygulanmıştır.  

İkinci derece altıyüzlü kenar elemanlarının performansı, üzerinde yama bulunan veya 

bulunmayan çeşitli düz veya kavisli cisimlerinin radar ara kesit yüzeyleri hesaplanarak 

incelenmiştir. Doğrusal elemanlar için bilinen 0.1 dalgaboyu eleman büyüklüğüne 

karşılık, ikinci derece elemanlar için 0.3-0.4 dalgaboyu büyüklüğünün elektromanyetik 

saçılım ve ışıma problemlerinde yeni bir kriter olabileceği değerlendirilmiştir.   

 

Anahtar Kelimeler: Tamamen Altıyüzlü Elemanlı Ağ Üretme, Sonlu Elemanlar Metodu, 

Hiyerarşik Altıyüzlü Kenar Elemanları, Optimizasyon Tabanlı Ağ İyileştirme, p-Artırımı.  
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CHAPTER 1 
 

 

INTRODUCTION 

 

 

 

1.1. Electromagnetic Scattering 

Electromagnetic scattering has been one of the main subjects of interest especially for 

military, biomedical and communications research areas. The main aim is to find, or to 

predict the behavior of the scattered wave, when an electromagnetic wave from some 

direction at some specific frequency with a specific type of polarization, is incident on a 

given material.  

1.1.1. Numerical Methods 

For only a limited number of shapes and material types, it is possible to find an analytical 

expression for the scattered wave at any point in space. However, for most cases of 

concern, no analytical solution can be found. In such cases, some numerical methods are 

applied in order to find the approximate values of the scattered wave only at some space 

points, but not a functional expression yielding the field values throughout the whole 

space as in an analytical solution.  

 

 

The main steps of the numerical solution methods can be summarized as: 

i. Discretization of the geometric domain into small simple subdomains called 

meshes, such as triangles or quadrilaterals in two dimensions, and tetrahedra or 

hexahedra in three dimensions;  

ii. Symbolic expression of the solution within each subdomain by a finite number of 

parameters;  
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iii. Combination of the local equations obtained for each subdomain; 

iv. Construction of a set of equations describing the whole geometry;  

v. Application of the boundary conditions; 

vi. Solution of the global equation system to obtain the unknown function.  

1.1.2. The Finite Element Method 

The Finite Element Method is based on the solution of Maxwell’s equations in their 

differential form. It is a very good technique for modeling complex, inhomogenous 

structures. The Finite Element Method has been originally developed for static problems 

of structural mechanics and initially used by mechanical and civil engineers. It was first 

formulated for use in electromagnetics in 1940s by Courant [1], who first discussed the 

versatility of piecewise approximations. In the 1950s, Argyris [2] began putting together 

the many mathematical ideas (domain partitioning, assembly, boundary conditions, etc.) 

that form the basis of the Finite Element Method for aircraft structural analysis.  

 

The name ‘finite element’ results from the fact that the domain is represented by a set of 

‘elements’ of fairly simple shape on which the unknown function is approximated. A 

major advantage of this technique is its flexibility, in other words, the possibility to match 

the elements to the geometry and physical characteristics of the solution.  

 

In the numerical solution of a partial differential equation, one must approximately 

express the solution by a finite number of parameters. In other words, a problem with 

infinite degrees of freedom must be converted to one with finite degrees of freedom. In 

general, the solution is sought in a given class of functions; hence any function of this 

class must be expressed in terms of a finite number of parameters. As a second step, the 

differential operator must be transformed to expressions relating these parameters. If the 

differential equation is linear, then, in general, the relations among the parameters are also 

linear. That is, the process leads to a linear system of algebraic equations. However, in 

this process one has to deal with a large number of parameters, at least tens of thousands 

for practical cases. To avoid this complexity, it is preferable to implement a numerical 

method so that the resulting matrix is sparse. This is the case in the finite                 

element method, since the equations preserve the local character of the differential                            

equation, which implies that the system matrix is sparse. Some sparse matrix storage  
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schemes result in O(n) memory requirements, implying that the memory needed for a 

solution of a Finite Element Method system is proportional to the number of unknowns n, 

whereas the memory requirement is O(n2) for full matrix storage schemes in some other 

numerical methods. Certainly, the advantages of the sparse matrices are not limited to 

matrix storage. Some sparse matrix solution schemes have down to O(n) complexities 

(with some restrictions of course), instead of O(n3) complexity of the Gaussian 

elimination.    

 

Although the Finite Element Method is very flexible, it has certain drawbacks. In 

electromagnetic theory, fields extend to infinity in scattering and/or radiation problems. 

Hence, another issue while using the Finite Element Method in scattering applications is 

to apply it to open domain problems successfully. For this purpose, methods like 

absorbing boundary conditions, perfectly matched layers, hybridization with boundary 

integral methods have been developed.    

 

Another situation in which the Finite Element Method encounters difficulties is the 

presence of corners in the system. At such corners, field quantities may become singular. 

Hence, approximate solutions cannot be adequately represented by locally based 

polynomial expansions. 

 

Since the finite element method is only an approximation, one has to explain the effects 

of several error sources, some of which are: 

• Choice of a finite number of trial functions (i.e. approximating a function in terms of 

basis functions of a finite dimensional subspace) 

• Simplification of the geometry (polynomial approximation of boundaries or material 

non-uniformities) 

• Modification of boundary conditions 

• Numerical integration 

• Iterative solution of the matrix equation (if applied) 

• Roundoff errors due to finite precision arithmetics of the computer during the 

modeling and the solution of the discrete system 
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The overall process of finite element solution of electromagnetic scattering problems can 

be summarized and illustrated as in Fig. 1.1. The details of each task and step are 

discussed throughout the main text.  

 
 
 

 
 

Fig. 1.1. Finite Element Solution Process. 

 
 
 

1.2. Summary of the Present Work 

The aim of this thesis is to apply the higher order hexahedral edge elements to 

electromagnetic scattering problems together with a couple of generic implementations;  

• one stand-alone software regarding the all-hexahedral mesh generation,  

• another stand-alone software regarding 3D mesh viewing (not limited to 

hexahedral meshes),  

• and the last stand-alone software regarding the finite element solution of three-

dimensional electromagnetic scattering problems using the hexahedral edge 

elements. 

 

Meanwhile, the effect of the hexahedral mesh quality is also investigated; a new topology 

preserving  mesh  improvement  (i.e. mesh smoothing)  technique     is implemented    and  
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applied to typical meshes to be encountered in electromagnetic problems. This 

implementation is not a stand-alone software product, but a Matlab script instead. 

  

The all-hexahedral mesh generation algorithm implemented in this thesis depends on the 

decomposition of the problem domain to subdomains so that each subdomain is 

homeomorphic to a rectangular prism (i.e. all-hexahedral meshable). Then, each 

subdomain is meshed with the constraint that the adjacent subdomains have the same 

quadrilateral surface meshes on the shared surfaces in order to preserve mesh continuity. 

Another important task performed during the mesh generation is the indication of the 

material properties inside each element, and along each edge. This activity can be 

considered as pre-processing for both mesh viewing and finite element solution, since it 

provides the necessary data for these tasks. 

 

3D mesh viewing software in this thesis is a straightforward implementation which uses a 

generic graphic library; it requires no complex algorithms. The mesh can be viewed in a 

colorful manner where each color is assigned to a specific meaning. Principle activities 

such as zooming in/out, changing the camera angle and position can also be performed 

during viewing. Mesh viewing software is not limited to volume meshes or hexahedral 

meshes. Both surface/volume meshes of any element shape (triangular/quadrilateral 

elements in 2D, tetrahedral/prismic/hexahedral elements in 3D) are supported by this 

software.  

 

Finite element solution software implemented in this thesis is focused to hexahedral edge 

elements. The nodal and edge basis functions of first and second order, and their curls are 

calculated; element matrices are calculated by Gaussian quadrature, assembled global 

stiffness matrix is stored with a sparse storage scheme and solved by means of a sparse 

solver (direct or indirect); radar cross-section is calculated by means of Huygens’ surface 

equivalence principle. During the finite element solution process, mesh truncation is 

achieved by means of the Perfectly Matched Layers, which are realized by complex 

coordinate transformation in this thesis. By means of this software, linear and quadratic 

hexahedral edge elements are compared in terms of resource requirements (CPU time, 

memory) and accuracy. For this purpose, scatterers of various basic/composite 

curved/uncurved shaped materials with/without patches are investigated.           
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The mesh quality is another important factor in the finite element method. The element 

size is a factor in solution accuracy, since the interpolation error increases as the element 

size increases; and the element shape is another factor in the solution accuracy, since bad-

shaped elements might cause an ill-conditioned stiffness matrix. Mesh improvement can 

be performed either by changing or preserving the topological connectivity of the mesh. 

In this thesis, a condition number based combined hexahedral quality metric is used; and 

the mesh improvement is performed by optimization based mesh smoothing. The 

smoothing is performed by means of the Particle Swarm Optimization, which found wide 

application in the last decade.  

 

To the author’s knowledge, there are two original contributions to the literature inside the 

scope of this thesis: 

1. Application of the quadratic hexahedral edge elements to electromagnetic 

scattering problems, 

2. Hexahedral mesh smoothing by means of Particle Swarm Optimization. 

 

Quadratic hexahedral edge (Kameari’s) elements have so far been applied to various 

problems especially in magnetostatics. The application of such elements to 

electromagnetic scattering problems is new; research made throughout this thesis yielded:  

1. [3], which was limited to uncurved single homogenous scatterers; 

2. [4], which was focused to uncurved structures with patches; 

3. [5], which was focused to curved single homogenous scatterers;  

4. and [6], which was focused to comparison of linear and quadratic hexahedral 

edge elements in electromagnetic scattering problems. 

 

Optimization based mesh smoothing is one of the popular research areas in the mesh 

generation society. However, the usage of Particle Swarm Optimization for this purpose 

is new. Research made throughout this thesis yielded [7] and [8]. Using several objective 

functions and performing multi-objective mesh smoothing can be considered to be a 

future work in this area.  
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In addition to these, several research areas, which are still premature and requiring extra 

work, are assessed to yield more publications in the future.  

 

One of these is the investigation of the effects of edge ordering to the stiffness matrix 

storage and solution. Similar work can be found in the literature; but to the author’s 

knowledge none of them specifically focuses on hexahedral edge elements.  

 

Another one is the discussion of the object and pattern oriented finite element software. 

Object oriented approaches in the finite element software development have become 

popular in the last decade; but to the author’s knowledge none of the available 

publications mention the usage of design patterns. Moreover, finite element software is a 

good and compact case study for “software sizing and cost estimation”, which is a 

popular research area triggered by the new World Economy. To the author’s belief, such 

a research and consequent publication(s) will find interest in societies of various 

disciplines. 

 

The first chapter of this thesis gives a brief introduction to numerical methods and the 

Finite Element Method; it also gives an overall idea about the activities and the work 

products of the research carried out.  

 

In the second chapter of this thesis, all-hexahedral meshing is discussed starting from the 

topological existence. It continues with the meshing algorithms, mesh quality measures, 

quality improvement techniques, and aspects of curvilinearization. This chapter can be 

considered as an overall literature survey in “hexahedral meshing” subject.  

 

The third chapter is devoted to the theoretical background of the finite element method, 

specifically the hexahedral edge elements. It starts with the differential forms and the 

algebraic manifolds; continues with the definitions of Hilbert spaces containing various 

important quantities of electromagnetics; introduces the edge element concept; gives a 

brief discussion of hierarchical elements. The main aim of this chapter is to indicate the 

positioning of the hexahedral edge elements in the wide finite element universe. Again, 

this chapter can be considered as a literature survey of the mathematical background in 

finite element theory.  
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All formulations (starting from the weak formulation of the electric field, continuing with 

elemental matrix construction, stiffness matrix assembly, storage and solution algorithms, 

PML realization, RCS calculation), which are necessary for the finite element solution, 

are given in the fourth chapter. Analyses about the sparsity, effects of edge ordering, and 

resource requirements are also included in this chapter. This chapter can be considered as 

a compact summary of the implementations performed throughout this thesis. 

 

The fifth chapter exhibits the results calculated with the hexahedral edge elements and 

compares them with the analytical results or measured values. Comparisons between 

linear and quadratic hexahedral edge elements are also given in this chapter. 

 

The sixth chapter combines the new trends in software development, and discussed the 

possibilities of application of such new methodologies during the finite element software 

development.  

   

Finally, the last chapter discusses the results obtained by the proposed technique(s); 

comments on the achieved results; and lists the potential future work. 

 

In order to preserve the completeness and compactness of the main text, appendices are 

used for exhibition of some important topics. Appendix A gives a listing of great 

scientists (starting from Euclid) who could not be explicitly cited but referred throughout 

the thesis. It also gives the important milestones of the finite element theory and 

hierarchical hexahedral edge elements. 

 

Appendix B gives the explicit basis functions of the hexahedral edge elements, and 

exhibits the interpolation properties of these functions inside the relevant elements. 

 

Appendix C gives the methodology and the important factors during the domain 

decomposition in some problems solved in the thesis. 
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Appendix D outlines the definition Particle Swarm Optimization, its applicability to 

hexahedral mesh smoothing, application to some problems and the solution accuracy. 

This appendix also discusses the concept of Pareto optimality, and multi-objective 

hexahedral mesh smoothing. 

 

Appendix E includes basic Unified Modeling Language notation in order to ease the 

reading of the sixth chapter.  
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CHAPTER 2 
 

 

HEXAHEDRAL MESHING 

 

 

 

2.1. Hexahedral Meshing: Reasons and Challenges 

With the introduction of various numerical simulation techniques, analysis of partial 

differential equations describing complex physical systems became a practical reality. 

These techniques, including finite element method, finite difference time domain method, 

and finite volume method, rely on a discretization of the domain as the key to application 

of the numerical solution. This discretization provides a set, or mesh, of geometrically 

simple elements that as a whole approximate the complexity of the domain. 

 

All-hexahedral meshes have proven to be desirable because of the facts that: 

• A hexahedron provides shape functions with additional terms that may increase 

the accuracy of the solution; a study about the nodal element case can be found in 

[9]. 

• A hexahedron provides directional sizing without losing accuracy. For example, a 

very thin hexahedron within a boundary layer for fluid flow calculations 

performs far better than thin tetrahedron. 

• A hexahedral mesh decreases the total element number; and the total number of 

unknowns consequently. A tetrahedral mesh usually increases the element 

number about 4 to 10 times compared to a hexahedral mesh. 

• For especially man-made objects, a quadrilateral/hexahedral mesh provides better 

surface/volume representation compared to a triangular/hexahedral mesh.  
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 Such conformity in decreases the local errors especially at the material interfaces. 

 

Certainly, topological complexity and challenge in all-hexahedral mesh generation is 

another factor making it a center of attraction in the last decade. As stated by Blacker 

[10], automated all-hexahedral element meshing has been the “Holy Grail” of mesh 

generation research for years due to tight constraints such as connectivity and shape. 

 

In general, a mesh generation scheme should have the following features (which are pair-

wise contradictory in most cases): 

1. Geometric Generality: Since the main aim is to have an automated use of a 

proposed algorithm, it should be able to handle as large a class of geometries as 

possible. Ideally, it should handle any geometry of arbitrary complexity and 

detail. It should also be sensitive to surface curvature and meshing domains with 

widely varying boundary proximity (i.e. long, thin regions versus blocky regions) 

adequately. 

 

2. Geometric Matching: The mesh generated by the algorithm should contain the 

geometric features identified by the user. In practice, most meshing software 

defines this to be all the topological features of domains being meshed. This 

allows the user to control the mesh (e.g. for boundary conditions) by editing the 

topology, either manually or automatically [11] as needed. 

 

3. Boundary Sensitivity: The boundary of the domain is often most important in an 

analysis, since most differential equations currently being solved in some 

engineering applications relate to stress/strain, flows or reactions. Thus, in order 

to define a meshing algorithm, which is going to be accepted as “good” by the 

mesh generation society, it should produce high quality elements close to the 

boundary and these elements should roughly follow the flow of the boundary. 

Element quality interior to the domain is usually less important. 

 

4. Orientation Insensitivity: The orientation of the geometry should ideally not 

affect the generated mesh. This removes any dependency on volume placement  
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before meshing. Otherwise, good quality of the mesh and acceptable shape of the 

resulting elements will be chance driven; might not be achieved even by using 

trial-error method. 

 

5. Bad Geometry Tolerance: The algorithms that can operate in spite of irritating 

gaps, overlaps, holes, and other problems in the geometry (often imported from 

various formats) save a lot of time and frustration for the user. Being able to de-

feature or ignore insignificant detail would also be advantageous. 

 

6. Size Controllability: The mesh should be able to match desired element sizing 

constraints throughout the domain. This is particularly important for adaptive 

analyses. 

 

7. Speed: The algorithm should be able to generate reasonably large meshes in a 

reasonable “interactive” amount of time. Certainly, speeds obtained by 

tetrahedral meshing algorithms would be desirable; which are observed and 

accepted to be fast enough. With recent technology (considering CPU speed, 

operating system and hardware infrastructure and memory capacity), meshes with 

<1 million elements are considered to be small / mid sized. 

 

Hexahedral mesh generation algorithms, which have been proposed so far, have usually 

failed especially due to requirements 1 and 5 above (geometric generality and bad 

geometry tolerance). Initial schemes used to suffer also from requirement 4 (orientation 

insensitivity), which used to be a big challenge more than 10 years ago. 

 

Since geometric generality and bad geometry tolerance are the biggest hurdles, the 

general strategy in hexahedral meshing has become as follows:  

1) Development/proposal of the hex meshing algorithm,  

2) Investigation of the restrictions of the proposed algorithm (in terms of applicability to 

various geometries of different topological features) 

3) Proposal of topological mapping/domain decomposition techniques in order to fit all 

(at least, most) geometries to the proposed hexahedral meshing algorithm [12]. 
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Automated domain decomposition techniques attempt to decompose the volume being 

meshed into pieces, which themselves can be meshed using existing algorithms. Usually 

these pieces are recognizable primitive shapes or swept volumes. This approach is highly 

dependent on being able to identify and/or decompose the geometry appropriately. A very 

straightforward and practical method (due to easy applicability over the CAD modeled 

objects) is the extraction of Basic Logical Object Blocks (also known as BLOBs) [13]. 

Principally, the BLOBs are decomposed to Multiple Block Structures (MBSs), which will 

be considered separately during the mesh generation with the constraint that shared faces 

of MBSs will have the same surface mesh.  This procedure is illustrated in Fig. 2.1. Since 

BLOB decomposition has limited applicability, more complicated topographic tools such 

as medial axis determination, Delaunay tessellation, embedded Voronoï diagrams/graphs 

are widely used for general purpose applications [14-17].  

 
 
 

 
 

Fig. 2.1. A Simple Example for BLOB decomposition [13]. 

 
 
 

On the other hand, due to several difficulties and restrictions in the all-hexahedral 

meshing, some researchers thought that “all-hexahedral” requirement is not worth to try 

desperately; and hence migrated to “hex-dominant” meshes instead [18]. 

 

2.2. Topological Existence of Hexahedral Mesh 

Up to 1996, the topological existence of hexahedral mesh was a big question mark. 

Without    knowing   the   necessary    and  sufficient  conditions  for  existence  of  an all-                             
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hexahedral mesh for an arbitrary volume, many researchers intuitively tried to start with a 

surface mesh on the boundary, and fill the volume by a hexahedral mesh touching to the 

boundary. Many of the researchers were mislead that there are complicated constraints on 

the surface mesh in order to be compatible with the volume mesh inside.  

 

The answer(s) came from Thurston [19] and Mitchell [20-21] independently. Eppstein 

[22] stated their answer(s) in a clean and neat manner as: “Any simply connected three-

dimensional domain with an even number of quadrilateral boundary faces can be 

partitioned into a hexahedral mesh respecting the boundary.” 

 

Starting from this fact, Eppstein claimed that any tetrahedron can be divided into four 

hexahedra as seen in Fig. 2.2; which yielded a straightforward generic hexahedral 

meshing algorithm. This algorithm is obviously inefficient; but more important thing 

about this work is that Eppstein proved that hexahedral mesh generation is a process of 

linear complexity. 

 
 
 

 
 

Fig. 2.2. A tetrahedron partitioned to four hexahedra [22]. 

 
 
 

2.3. Hexahedral Meshing Algorithms 

Hexahedral meshing algorithms in the literature can be roughly classified into the 

following types: 

• Sweep 
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• Overlay Grid 

• Mesh Partitioning 

• Advancing Front 

2.3.1. Sweep Methods 

General sweep algorithms [23-25] allow the sweeping of a surface quadrilateral mesh 

through an arbitrary path. This surface mesh maintains a constant topology cross-section 

during the sweep, but may deform as needed to match the path geometry. This 

generalized sweep is heavily used in practice as it allows more freedom since the cross-

sectional mesh can be unstructured, as shown in Fig. 2.3. The advantages and 

disadvantages of this approach can be summarized as follows: 

Advantages: 

• No need for geometric decomposition,  

• Speed, 

• High element quality, 

• Boundary sensitivity, and  

• Orientation insensitivity. 

Disadvantages: 

• Relatively small applicable class of geometries. 

 
 
 
 

 
 

Fig. 2.3. Mesh Generated by a Sweep Method [10]. 
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2.3.2. Overlay Grid Methods 

The overlay grid techniques [26-29] use a grid that encompasses the volume to be 

meshed. Traditionally, this grid is structured and aligned with the coordinate axes. This 

background grid is then intersected with the geometry to determine elements that are:  

• inside,  

• on the boundary, and  

• outside  

the volume being meshed. The elements on the inside are retained, the ones on the outside 

are eliminated, and the ones on the boundary are then adjusted to fit the existing 

boundary.  

 
 
 
 

 
 

Fig. 2. 4. Mesh Generated by Overlay Grid Method; and Effect of Orientation in 3D [10]. 

 
 
 

Fig. 2.4 shows the interior and boundary elements generated within the volume shown, 

using this technique. The effect of grid alignment on the resulting mesh is obvious. An 

exaggerated illustration about orientation sensitivity in 2D is given in Fig. 2.5. 
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Fig. 2.5. Mesh Generated by Overlay Grid Method; and Effect of Orientation in 2D. 

 
 
 

Another grid based approach, which has been successfully applied to mesh generation of 

CAD models, is the boundary fit method [30]. Between the decomposition and 

reassembly, it relies on several steps principally: edge detection performed on the 

boundaries, recognition depending on the angles between boundary surfaces, 

transformation to a space where the object will resemble a rectangular prism. The whole 

procedure is illustrated in Fig. 2.6.  

 

The advantages and disadvantages of this approach can be summarized as follows: 

Advantages: 

• High automation, 

• Applicability to a broad class of geometries, 

• Bad geometry tolerance (especially when the element sizes are comparable to 

gaps and holes), 

• Ease of implementation (nice and simple data structures). 

Disadvantages: 

• Boundary insensitivity (requires more effort to improve the boundary 

elements, which are of worst quality),  

• Surface mesh dependency to the algorithm (which limits the applicability of 

the algorithm to only volumes with no pre-existing surface mesh),  

• Orientation sensitivity,  
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• Difficult/impossible conformal fine to coarse mesh transitions (requires non-

conformal transitions).  

 
 
 

a) Solid Model (from CAD file) b) Decomposed Solid Model c) Recognition Model 

d) Meshed Recognition Model e) Reassembled Recognition Model f) Meshed Solid Model  
 

Fig. 2.6. Steps Followed in the Boundary Fit Method [30]. 

 
 
 

2.3.3. Mesh Partitioning Methods 

Mesh partitioning techniques [31-34] perform the decomposition integrally during the 

meshing process (not before as in the conventional approaches). These techniques tightly 

control the surface mesh to insure that decomposition is possible. An example cooper 

mesh, which uses mesh partitioning, is shown in Fig. 2.7. In mesh partitioning 

approaches, the decompositions occur integrally with the meshing process by using an 

interior mesh as the cutting mechanism (i.e. no geometric cuts).  
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Fig. 2.7. An Example Mesh Generated by the Cooper Tool Using the Mesh Partitioning 

Approach [10]. 

 
 

The advantages and disadvantages of this approach can be summarized as follows: 

Advantages: 

• No geometric operator dependence, 

• Boundary sensitivity, 

• Orientation insensitivity. 

Disadvantages: 

• Applicability to a limited class of geometries, 

• Necessity for much manual intervention of the user due to complexity, 

• High dependency of the surface mesh to the algorithm (unexpected surface 

mesh). 

2.3.4. Advancing Front Methods 

Advancing front techniques are designed to work from the boundary of the mesh inward 

[35-36]. From the surface mesh, layers of elements are inserted to form the volume mesh 

in the interior of the volume. As the surfaces begin to intersect, they are connected in 

attempts to form a valid hexahedral mesh.  

 

In the 2-D version of the advancing front technique, dealing with quadrilateral elements 

called paving by Blacker and Stephenson [37], rows of such elements are added along 

domain boundaries as seen in Fig. 2.8. Rows originating from different boundaries are 

matched to result in a conformal mesh. One of the most critical aspects is meshing the 

remaining void successfully when fronts from different boundaries converge.  
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Fig. 2.8. Paving [38]. 

 
 
 
The method had been extended to 3-D surface meshing problems by Cass et al [39], 

which is referred to as plastering. In this method, layers of hexahedral elements are 

generated along boundaries as seen in Fig. 2.9. As in paving, fronts built on different 

surfaces are connected together to preserve mesh conformity. However, the problem of 

meshing the void which remains when different fronts converge to each other is generally 

not yet solved. Generally this task has proven to be intractable, and the use of mixed 

element types interior to the volume becomes necessary to fill the void [40]. While 

paving had successfully been proved to be robust and reliable, its three-dimensional 

counterpart lacks robustness in many classes of problems. 

 
 
 

 
 

Fig. 2.9. Plastering. 
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In attempts to overcome the difficulties posed by plastering, an alternative algorithm 

called whisker weaving was developed [41-42]. The algorithm employs the so-called 

Spatial Twist Continuum (STC) or the dual of a volume mesh [43-44]. The idea behind 

whisker weaving can be described as follows: Let the dual of a surface quadrilateral mesh 

be generated. Let this dual be extruded into the volume bounded by this surface. This 

results in generation of a set of surfaces (twist planes), which intersect the surface mesh 

along the lines of its dual as seen in Fig. 2.10. Once a valid set of twist planes is found; 

hexahedral elements can be generated, wherever the three twist planes converge. As the 

intersection of twist planes is important in topological sense only, there is no need to 

compute any intersections. The method is relatively young, and must still prove itself as a 

reliable meshing tool for many classes of problems. 

 
 
 

 
 

Fig. 2.10. Spatial Twist Continuum. 

 
 
The advantages and disadvantages of this approach can be summarized as follows: 

Advantages: 

• Boundary sensitivity,  

• Orientation insensitivity, 

• Usability of existing known surface mesh,  

• Independency to geometry (like most tetrahedral meshing algorithms). 

Disadvantages: 

• Necessity for technology maturity, 

• Necessity for mixed element types (for plastering), 

• Challenge in element quality (for whisker weaving), 
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• Time intensiveness.  

 

2.4. Hexahedral Mesh Quality Improvement 

Generally, mesh quality is an important factor in accuracy. It can be said that qualitatively 

bad elements (especially in shape) cause the stiffness matrix to be ill-conditioned. This 

makes the system of equations to be more sensitive to any errors caused by the error 

sources mentioned in the first chapter. Mesh improvement can be performed either by 

modifying or preserving the node connectivity. 

2.4.1. Mesh Refinement 

Refinement is performed by inserting additional nodes to the mesh; hence changing the 

connectivity. Refinement is not a popular method for quadrilateral/hexahedral elements as 

it is for triangular/tetrahedral elements. The reason is as follows: in order not to have a 

hanging1 node or edge; propagation to neighboring elements is required. Or, some 

complicated methods shall be implemented to get rid of the propagation. What is meant 

by propagation is illustrated in Fig. 2.11 for 2D case.  

 

 

 

 

 

 

 

 

                                                 
1 A node/edge is referred to as hanging, if it is not a node/edge of the neighboring element. 
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Fig. 2.11. Propagation Requirement of Mesh Refinement for Quadrilateral/Hexahedral 

Mesh. 

 
 

Meshes with hanging nodes/edges force the relevant finite element software to be more 

complicated. Methods using iterative octrees [48] result in such meshes. Refinement 

techniques based on pillowing, such as the cleave-and-fill tool [45], overcome the 

propagation requirement in a very clever manner; however, the control and scale of 

cleave and fill refinement is limited. A pillow region, and a cleave-and-fill refined mesh 

are given in Fig.s 2.12 and 2.13 respectively.  
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Other techniques insert non-hex elements that result in hybrid meshes or require uniform 

dicing to maintain a consistent element type [46]. Schneiders’ directional refinement 

method [47] produces a conformal mesh by pillowing layers in alternating i, j and k 

directions but requires a Cartesian initial octree. The 3D anisotropic refinement scheme 

presented by Tchon et al [48] expands Schneiders’ multi-directional refinement to 

initially unstructured meshes by pillowing layers of elements without the use of octrees. 

This method is quite robust but does not offer the capability to refine mesh regions 

around individual nodes, element edges or element faces. 

 
 
 

 
 

Fig. 2.12. An Example of a Pillow Region [45]. 

 

pillow fill

a) Original Mesh b) Cleaved Mesh

c) Cleaved and Filled Mesh  
 

Fig. 2.13. Example of Cleave-and-Fill Refinement [45]. 
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The term mesh connectivity denotes a system of edges, faces and cells which are formed 

based on a given set of vertices. It is also referred to as mesh topology. First of all, it is 

important to understand how topological modifications can affect mesh quality. 

Improvement of mesh quality via node movement is possible only up to a certain quality 

limit. This limit depends on topology of the mesh. Fig. 2.14 shows an example in which 

mesh quality cannot be improved unless its topology is modified. Namely, substitution of 

a five cell pattern by a four cell one results in an increase of the minimum angle of the 

mesh up to 90°. 

 
 
 

 
 

Fig. 2.14. Mesh quality improvement via modification of its connectivity [38]. 

 
 
 

Topological modifications are applied most successfully in triangular and tetrahedral 

mesh generation systems.  

2.4.2. Mesh Smoothing 

Smoothing can be defined as relocation of mesh nodes without changing their 

connectivity. Despite the recent evolution of methodology of unstructured mesh quality 

improvement, smoothing still remains the most common approach to quality 

improvement of non-simplicial meshes. There exist multiple ways of defining new 

positions for relocated nodes. Kovalev sorted these methods into the following categories 

[38]: 

• Laplacian smoothing and its variations, 

• Optimization-based smoothing, 

• Physics-based smoothing, 

• Hybrid techniques, 

• Untangling. 
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Laplacian smoothing represents the most common family of methods among those 

mentioned above. The simplest form of Laplacian smoothing places each mesh node 

successively at the average position of nodes connected to it (i.e. to the centroid of all 

neighboring nodes). This has been a very popular method which was extended by many 

research groups [49-53] so far. 

 
 
 

 
 

Fig. 2.15. A Successful Application of Laplacian Smoothing (Convex Region). 

 
 

 
 

Fig. 2.16. An Unsuccessful Application of Laplacian Smoothing (Concave Region). 

 
 
 

This method works well in convex regions as seen in Fig. 2.15; on the other hand it may 

produce poorly-shaped or even inverted elements in concave regions as seen in Fig. 2.16. 

Typically, the mesh surrounding concave geometrical items is pulled outwards. This often 

leads to geometry-overlaying meshes.  
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In order to overcome such problems, more advanced methods have been proposed. For 

instance, the constrained Laplacian smoothing restricts nodal displacement to a certain 

limit in order to avoid element distortion. A simple form of this approach limits nodal 

movement equally in all directions: if the computed node displacement is smaller than a 

certain pre-defined threshold, this displacement is applied directly; otherwise, the node is 

moved by the threshold distance in the same direction.  

 

In a more advanced implementation, quality of elements affected by node movement is 

computed using both old and new node locations. The node is then moved only if the 

quality of all affected elements does not decrease after the motion. This method is 

referred to as the “smart” Laplacian smoothing [50,54]. 

 

Another example of a modified Laplacian smoother can be found in [55]. Here, the 

advantage is taken from local action of Laplacian smoothing applied to unstructured 

meshes. Topology of a mesh subject to smoothing is analyzed and the most appropriate 

smoothing schemes are applied based on the result of the analysis. For instance, if exactly 

eight hexahedral cells surround a node of a hexahedral mesh (as in structured grids), then 

the so called equipotential (Winslow) smoothing, an approach for smoothing of structured 

grids, is applied. Earlier, Knupp [56] developed a 2D version of this smoother applied to 

quadrilateral unstructured meshes. 

 

When applied to unstructured hexahedral meshes, a Laplacian smoother can be involved 

in a quality improvement process, but it cannot be a standalone quality improvement tool 

due to limited efficiency. 

 

The optimization-based smoothing [51,54,57-61] moves mesh nodes to 

minimize/maximize a certain cell distortion/quality metric. Nodal positions are modified 

based on analysis of variations of local mesh quality, unlike in heuristic approach used in 

Laplacian smoothing. The optimization-based approach is more reliable, especially in 

concave regions of computational domain. However, the computational cost of this 

approach is obviously higher than that of the Laplacian methods. 
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The physics-based smoothing is based on the idea that a well-shaped mesh can be viewed 

as an analogue of certain mechanical systems that can be found in nature. Some authors 

have developed techniques that smooth unstructured meshes using principles which drive 

dynamics of such systems in nature. 

 

A classical example of one of such techniques is the so-called spring analogy approach. 

In this method, edges of a mesh are considered as springs with stiffnesses depending on 

their target sizes. A mesh node is repositioned to a new location to bring the set of 

surrounding springs to equilibrium. All mesh nodes are successively repositioned until 

the entire spring system reaches equilibrium. Forces occurring in springs can be 

unidirectional or bi-directional. In the first case, magnitude of a force depends on spring’s 

length but its direction is always the same. In the second one, equilibrium spring length 

can be defined. A force changes its direction depending on the actual edge length with 

respect to its equilibrium length. 

 

Another group of methods which has been developed recently and which employs the 

analogy with mechanical spring systems uses the so-called torsional springs [62-63]. 

While regular linear springs resist changes in internodal distances, the torsional springs 

resist changes in the angle between edges incident to same node. When the angle between 

such edges deflects from equilibrium, a corresponding torsional spring generates torque 

directed to bring the system back to equilibrium (see Fig. 2.17).  

 
 
 

 
Fig. 2.17. Torsional Spring Analogy [38]. 

 
 
 

The combined approaches usually represent a blend of optimization-based and Laplacian 

smoothing methods.  Development of  such methods is aimed at    combining the speed of  
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Laplacian approach with the efficiency of optimization-based methods. In these methods, 

it is important to develop a system of criteria to effectively distinguish whether a 

Laplacian or an optimization-based smoothing method should be applied to a mesh node. 

Examples of combined approaches can be found in [51, 54]. 

 

2.5. Hexahedral Mesh Quality Metrics 

In the literature, numerous quality metrics for hexahedral elements have been defined. 

Most of these were originally defined for other element shapes, and later adapted to 

hexahedral elements. Hence, most of these might not be effective and meaningful 

although they exist in some availeable software packages. Table 2.1 is an overview of the 

basic hexahedral element quality metrics.     

 

Among these metrics, Oddy metric [67] found broad application in the literature. Unlike 

other metrics, this metric was originally constructed for hexahedral elements. However, 

the metric was found to be excessively restrictive on element’s aspect ratio distortion and, 

on the contrary, insufficiently restrictive on element’s angle distortion. 

 

In addition to these metrics, there have been a couple of other metric definitions in the 

literature. Robinson’s 2D metrics [68] have been generalized to 3D, but these metrics 

suffered from the same deficiencies in 2D. A metric definition for hexahedral and wedge 

elements was proposed by Kwok and Chen [69], as the product of aspect ratio, warpage, 

and volume ratio metrics. However the metric was neither continuous nor differentiable 

since the aspect ratio is a ‘step-function’. Its full and acceptable ranges were not clearly 

defined by the authors. In a series of papers about mesh generation for rotating machines 

by Noguchi et al [70-72]; the authors have defined various quality metrics for hexahedral 

elements. Ranges, dimensions, physical meanings of these definitions have not been 

explicitly defined in these papers. 
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Table 2.1. Basic quality metrics for hexahedral elements. 

 
Metric Name Definition Dimension Full  

Range 
Acceptable 

Range Ref. 

Aspect  
Ratio 

Maximum edge length ratios 
at hexahedron center L0 [1,∞) [1,4] [64] 

Skew 
Maximum | cosθ | where θ is 
the angle between edges at 

hexahedron center. 
L0 [0,1] [0,0.5] [64] 

Taper 
Maximum ratio of lengths 

derived from opposite 
edges. 

L0 [0,∞) [0,0.4] [64] 

Element 
Volume 

Jacobian at hexahedron 
center. L3 (-∞,∞) None [64] 

Stretch √3 × minimum edge length / 
maximum diagonal length. L0 [0,1] [0.25,1] [65] 

Diagonal  
Ratio 

Minimum diagonal length / 
maximum diagonal length. L0 [0,1] [0.65,1] [64] 

Dimension Dimension of the element L1 [0,∞) None [64] 

Condition 
Number 

Maximum condition number 
of the Jacobian matrix at 8 

corners. 
L0 [1,∞) [1,8] [66] 

Jacobian 
Minimum pointwise volume 
of local map at 8 corners & 
center of the hexahedron. 

L3 (-∞,∞) None [66] 

Scaled 
Jacobian 

Minimum Jacobian divided 
by the lengths of the 3 edge 

vectors. 
L0 [-1,1] [0.5,1] [66] 

Shear 3/Mean Ratio of Jacobian 
Skew Matrix. L0 [0,1] [0.3,1] [66] 

Shape 3/Mean Ratio of weighted 
Jacobian Matrix. L0 [0,1] [0.3,1] [66] 

Relative  
Size 

min(J, 1/J), where J is the 
determinant of weighted 

Jacobian matrix. 
L0 [0,1] [0.5,1] [66] 

Shear 
 & Size 

Product of Shear and Size 
Metrics. L0 [0,1] [0.2,1] [66] 

Shape  
& Size 

Product of Shape and Size 
Metrics L0 [0,1] [0.2,1] [66] 

Distortion 

{min(|J|) / actual volume} × 
parent volume, where parent 
volume = 8 for a hexahedral 

element 

L0 [0,1] [0.6,1] - 

Oddy  L0 [0, ∞]  [67] 
 
 
Being uncomfortable from the basic quality metrics (due to their restrictions), Knupp 

focused on trying to define general-purpose quality metrics especially after the year    

1999. In [73], he described the properties of the general-purpose quality metrics as in 

Table 2.2.  
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Table 2.2. Comparison of Restricted and General Quality Metrics [73]. 

 
Property Restricted Metric General Metric 

Dimension  
(n = 2 vs. n = 3) 

Dimension-specific 
(e.g., only applies to n = 2) 

Dimension-free 
(applies both to n = 2 and n = 
3) 

Element Type 
(e.g., triangular or 
quadrilateral) 

Element-specific 
(e.g. only defined for 
quadrilateral elements) 

Element-free 
(e.g. defined both for 
triangular and quadrilateral 
elements) 

Domain 
(e.g. shape of 
quadrilateral element) 

Domain-specific 
(e.g. rectangles only) 

Domain-general 
(e.g. all quadrilateral 
elements) 

Versatility 
(# of qualities 
measured) 

Specialized 
(only one) 

Versatile 
(e.g. volume-shape 
orientation) 

Element Size 
(or volume) 

Scale-sensitive 
(size dependent) 

Scale-free 
(size invariant) 

Orientation Orientation-sensitive 
(orientation-dependent) 

Orientation-free 
(orientation-invariant) 

Units 
(of metric) 

Has units 
(dimensional) 

Unitless 
(nondimensional) 

Reference 
(ideal element) 

Unreferenced 
(implicit ideal) 

Referenced 
(explicit ideal) 

 
 
 
After these definitions, Knupp had a series of papers with lots of general purpose quality 

metrics [66,73-74]. His metric does not depend on element orientation and size, but only 

on shape distortion with respect to an ideal element. The ideal element can be chosen 

based on a certain set of requirements to element shape that must be satisfied in an 

optimized mesh. Details of his “condition number” based metric are given in Appendix 

D. This metric is also used in this thesis.  

 

2.6. Curvilinearization - Extension of Quality Definitions for Curvilinear 

Mesh 

Representation of curved edges and surfaces is another challenge in the finite element 

method. Simple mapping techniques might yield big errors since the objects are 

represented badly and distorted in such cases. 
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As well as the mapping, it can be claimed that the quality metrics, which are defined in 

previous sections, should be extended for curvilinear elements. However, as will be seen, 

this is not an easy task. Moreover, most of the research showed that this effort might not 

be worth to spend time; since adding more degrees of freedom handles much of the error 

reduction. 

2.6.1. Mapping Functions 

In two dimensions, the boundary of the solution domain generally consists of piecewise 

smooth curves, and it is necessary to consider mapping of the standard element so that 

these curves are closely approximated. In p-extensions (see Chapter 3; sections 3.5 and 

3.6 for details), most elements remain large. Therefore, the use of accurate mapping 

techniques is much more important than in the case of h-extensions. Assume that, in 2D 

the vertex coordinates of quadrilateral elements in the xy-plane by capital letters Xi, Yi, 

and the mapping functions for the kth quadrilateral element by: 

 

),()( ηξk
xQx =      (2.1) 

2.6.1.1. Linear Mapping 

When all sides of the mapped elements are straight lines, then generally linear mapping is 

used. However, certain kinds of nonlinear mapping are used in some cases. In the case of 

quadrilaterals, linear mapping is in the form: 
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2.6.1.2. Quadratic Parametric Mapping 

Quadratic parametric mapping permits representation of curved element sides by 

polynomials of degree 2. In the case of quadrilateral elements, the mapping functions are 
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and Xi, Yi are the nodal coordinates corresponding to the numbering scheme in Fig. 2.18. 

When p=2, and the conventional shape functions are used, then the displacement vector 

components and the mapping are represented by the same shape functions. For this reason 

this mapping is called isoparametric mapping. Isoparametric mapping is used very 

extensively in conjunction with the finite element software. The accuracy increases with 

the number of elements. 
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Fig. 2.18. Nodal Numbering Scheme for Quadratic Quadrilateral Elements. 

 
 
 

2.6.1.3. Mapping by the Blending Function Method 

In the p-version, generally large elements are used. It is important to represent curved 

boundary segments accurately with a few elements. The linear blending function 

proposed by Gordon and Hall [75] is well suited for this purpose.  

 

To illustrate this method, consider a simple case where only one side of a quadrilateral 

element is curved, as shown in Figure 2.19. The curve x = x2(η), y = y2(η) is given in 

parametric form so that x2(-1) = X2, y2(-1) = Y2, x2(1) = X3, y2(1) = Y3. It is possible to 

write: 

 

2
1

2
1

2
1)(

)1)(1(
4
1)1)(1(

4
1)1)(1(

4
1)1)(1(

4
1

322

4321

ξηηη

ηξηξηξηξ

+
⎟
⎠
⎞

⎜
⎝
⎛ +−−−+

+−++++−++−−=

XXx

XXXXx

 (2.5) 

 



 35

 
 

Fig. 2.19. A Quadrilateral with a Curved Side. 

 
 

Clearly, the first four terms in this expression are the linear mapping terms of 

Equation(2.2). The fifth term is the product of two functions. One function, the bracketed 

expression, represents the difference between x2(η) and the x-coordinates of the chord 

that connects points (X2, Y2) and (X3, Y3). 

 

The other function is the linear blending function (1+ξ)/2, which is unity along side 2 and 

zero along side 4. In this case, it can be claimed that: 
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Similarly: 
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In the general case, all sides may be curved. The curved sides can be written in the 

parametric form: 
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where the subscripts represent the side numbers of the standard element. In this case, the 

mapping functions are: 
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where X1, X2, X3, X4 are the global x-coordinates of the four nodes of the quadrilateral 

element. Similarly, denoting the global y-coordinates by Yi (i = 1,2,3,4):  
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The inverse mapping, that is ξ = Qξ
(k)(x, y), η = Qη

(k)(x, y) cannot be given explicitly in 

general. However, (ξ, η) can be computed very efficiently for any given (x, y) by means 

of the Newton-Raphson method or a similar procedure. The quadratic (iso)parametric 

mapping, which is the commonly used mapping in finite element analysis, can be viewed 

as a special application of the blending function method in which the sides are 

represented by quadratic polynomial functions.  

2.6.1.4. Bézier curves 

Bézier curves are named after their inventor, Pierre Bézier, who was an engineer with the 

Renault car company and set out a curve formulation in the early 1960s which would lend 

itself to shape design. Engineers find it most understandable to think of Bézier curves in 

terms of the center of mass of a set of point masses. For example, consider the four 

masses m0, m1, m2, and m3 located at points P0, P1, P2, P3. The center of mass of these four 

point masses is given by the equation 
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Next, imagine that instead of being fixed, constant values, each mass varies as a function 

of some parameter t. Specifically, let m0 = (1- t)3, m1 = 3t(1- t)2, m2 = 3t2(1- t), and m3 = t3. 

The values of these masses as a function of t are shown in Fig. 2.20.  

 
 
 

 
 

Fig. 2.20. Cubic Bézier Blending Functions and a Cubic Bézier Curve [76]. 

  
 
 

Now, for each value of t, the masses assume different weights and their center of mass 

changes continuously. In fact, as t varies between 0 and 1, a curve is swept out by the 

center of masses. This curve is a cubic Bézier curve – cubic because the mass equations 

are cubic polynomials in t. Notice that, for any value of t, m0 + m1 + m2  + m3 = 1, and so 

the equation of this Bézier curve can simply be written as P = m0P0 + m1P1 + m2P2 + 

m3P3. 

 

It should be noted that when t = 0, m0 = 1 and m1 = m2 = m3 = 0. This forces the curve to 

pass through P0. Also, when t = 1, m3 = 1 and m0 = m1 = m2 = 0, thus the curve also passes 

through point P3. Furthermore, the curve is tangent to P0 – P1 and P3 – P2. These 

properties make Bézier curves an intuitively meaningful means for describing free-form 

shapes. Here are some other examples of cubic Bézier curves, which illustrate these 

properties. These variable masses mi are normally called blending functions and their 

locations Pi are known as control points or Bézier points. If straight lines between 

adjacent control points are drawn, as in a dot to dot puzzle, the resulting figure is known 

as a control polygon. The blending functions, in the case of Bézier curves, are known as 

Bernstein polynomials. Bézier curves of any degree can be defined. Fig. 2.21 shows 

sample curves of degree one through four.  
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Fig. 2.21. Bézier Curves of Various Orders [76]. 

 
 
A degree n Bézier curve has n + 1 control points whose blending functions are denoted 

Bi
n(t), where 
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In the introductory example, n = 3 and m0 = B0
3 = (1- t)3, m1 = B1

3= 3t(1- t)2, m2 = B2
3= 

3t2(1- t), and m3 = B3
3 = t3. Bi

n(t) is also referred to as the ith Bernstein polynomial of 

degree n. The equation of a Bézier curve is thus:  
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In summary, advantageous properties of Bézier polynomials can be listed as follows: 

o They can be as high a degree as desired 

o Convex hull provides smoother and more controllable approximation 

o Better properties to allow more efficient intersection checks 

o Derivatives and products of Béziers are also Béziers 

o Efficient algorithms for degree elevation and subdivision can be found 

 

2.6.2. Extension of Mesh Quality in Curvilinear Elements 

To the author’s knowledge, several research about the extension of mesh quality metrics 

to curvilinear elements have ended up with the conclusion that for mesh validity is more 
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important than mesh quality for such elements. There is not much published work about 

this subject, but Dey et al [77] proposed a procedure about curvilinear mesh generation. 

In this work, they start with linear mesh generation, improve its quality with available 

metrics, then curvilinearize the mesh as long as it remains valid (according to some 

validity constraint). The details are given in the following subsections.     

2.6.2.1. Validity Rather Than Quality 

The validity check is performed by means of the Jacobian. This means that:  

i. as long as the corresponding linear mesh is of high quality;  

ii. and the Jacobian inside the elements after curvilinearization is > 0 

everywhere inside the element [77]; 

then the curvilinear mesh can be used with confidence. Naturally, there is no method to 

check the Jacobian everywhere inside the element. Traditional validation methods test the 

Jacobian at integration points. Increasing the check points require more CPU time, but 

certainly increases level of confidence. 

 

Recently Luo et al [78] extended the validity to Bézier Curves and Regions. 

o Jacobian is related to the region control points; and its minimum bound is determined 

o A region is claimed to be valid globally if the minimum control point of the Jacobian 

determinant function is > 0  

 

In this work, Luo et al [78] also listed the reasons for using “validity” rather than 

“additional quality” for curvilinear mesh: 

o Past being valid, quality of curved mesh is not dictated by a-priori geometric 

measures 

o Maximization of minimum element Jacobians is not likely to be superior to other 

options 

o Even the mesh hardly passing the validation produces not too bad results 

o A-priori quality metrics for curved elements are hard to define 

o Adaptation based on the solution is more feasible 
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2.6.2.2. Effects of Element Distortion and Jacobian 

Although the isoparametric elements are usually successful in representing the curved 

shapes, there is a limitation to the curvature, or namely to the element shape. In this 

section, the reason for the Jacobian based validity check is clarified with an example.  

 

For simplicity, consider the one dimensional case, a quadratic isoparametric line element 

extending from 0 to h in x-coordinate system. As usual, the element is transformed to a 

unit element in ξ-coordinate system. The relation between x and ξ can be easily shown as 

 
2)21(2)14()( ξξξ ahahx −+−=    (2.14) 

 

and the two coordinates have derivatives related by 

 

ξ
ξ

)21(4)14( ahahx −+−=
∂
∂     (2.15) 

 

The Jacobian of the transformation is the inverse relation, that is 

 

x
J

∂
∂= ξ

     (2.16) 

 

The mathematical principles require the Jacobian to be positive definite. Distortion of the 

elements can cause J to go to zero or become negative. This possibility is easily seen in 

the present 1-D example. If one locates the interior (ξ = 1/2) node at the standard 

midpoint position, then a = 1/2 so that ∂x / ∂ξ = h and J is constant throughout the 

element. Such an element is generally well formulated.   

 

However, if the interior node is distorted to any other position, the Jacobian will not be 

constant and the accuracy of the element may suffer. Generally, there will be points 

where ∂x / ∂ξ goes to zero, so that the stiffness becomes singular due to division by zero.  
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For slightly distorted elements, say 0.4 < a < 0.6, the singular points lie outside the 

element domain. As the distortion increases, the singularities move to the element 

boundary, e.g., a = 1/4 or a = 3/4. Eventually, the distortions cause singularities of J 

inside the element. Such situations can cause poor stiffness matrices and very bad 

estimates, unless the true solution has the same singularity. In that special case these 

distorted elements are known as the quarter point element. The effects of distortions of 

two- or three-dimensional elements are similar. For example, the edge of a quadratic 

element may have the non-corner node displaced in a similar way, or it may be moved 

normal to the line between the corners. Similar analytic singularities can be developed for 

such elements. However, the presence of singularities due to element distortions can 

easily be checked by numerical experiments, as stated in the previous subsection.  
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CHAPTER 3 
 

 

HEXAHEDRAL EDGE ELEMENTS 

 

 

 

3.1. Differential Forms and Algebraic Manifolds 

This section is focused on concepts which are necessary to understand for the concept of 

edge elements; such as differential forms and manifolds. 

 

A differential form is by definition any quantity that can be integrated, including 

differentials. In 1844, Hermann Günter Grassmann published his book Die lineale 

Ausdehnungslehre, ein neuer Zweig der Mathematik [79], in which he developed the idea 

of algebra in which the symbols representing geometric entities such as points, lines and 

planes are manipulated using certain rules. Grassmann introduced what is now called 

exterior algebra, based upon the exterior product. In the early 1900's, Elie Cartan 

developed an exterior calculus of differential forms. Since that time, differential forms 

have received widespread use in the physics and mathematics communities for many 

problems, including electrodynamics. After its early introduction into the engineering 

community by Deschamps [80], Engle [81], Baldomir [82] and others, the calculus of 

differential forms has been used in applications to numerical methods, boundary 

conditions, Green's functions, and anisotropic media.  

 

 

Differential forms are a subset of a larger subject in mathematics called geometric 

calculus. The main concept of geometric calculus is its emphasis on the geometric 

interpretation of vectors, differential operators and all of the other ideas that combine to 

form a calculus. Both differential forms and geometric calculus are reinterpretations of 
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vector calculus for metric free and higher order geometries. These concepts are useful in 

areas such as space time physics but can also be leveraged for use in described linear 

wave equations. The metric free nature of differential forms allows the construction of 

differential operators, gradient (∇), divergence (∇⋅) and curl (∇×) that are independent of 

the coordinate system. The importance of this property becomes apparent in the 

formulations. 

 

The differential forms calculus is based on the concept of four entities called p-forms in 

three-dimensional space. The 0-form and 3-form are both scalar quantities in curvilinear 

geometry while the 1-form and 2-form are vector quantities in curvilinear geometry. The 

differential form takes a p-dimensional vector and gives a number. More information on 

differential forms can be found in the text by Burke [83]. 

 

To discuss differential forms, manifolds and their properties must first be discussed. 

Manifolds are descriptions of space which may be curved and have complicated 

topology; but they are spaces in which every point has a neighborhood resembling 

Euclidean space (i.e. Rn, the set of n-tuples (x1, x2, …, xn)). Locally manifolds look like 

Euclidean space and a general manifold is built by creating a set of locally Euclidean 

regions.  

 

A simple example of manifolds is the surface of a sphere. The sum of the angles of a 

triangle is not exactly equal to 180° if the triangle is drawn on the surface of the sphere. 

Although the surface of the sphere is not a Euclidean space, locally the laws of the 

Euclidean geometry are good approximations (especially when the sphere is large, and 

the triangle is small).   

 

On a manifold, structures such as vector, tangent and cotangent spaces can be created. 

Vector spaces are the set of vectors defined over a manifold and a tangent space is the set 

of all vectors at a single point three dimensional space. In R3 a basis for the vector space 

of curvilinear coordinates can be defined by the vector (x1, x2, x3).  
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At every point y ∈ R3, a space of tangent vectors can be written by using the standard 

basis 
⎭
⎬
⎫

⎩
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⎧
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∂
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∂
∂

321
,,

xxx
. 

 

At every point y ∈ R3, a space of cotangent vectors can be written by using the standard 

basis {dx1, dx2, dx3}.  

 

The 0-form takes a zero-dimensional vector, a point, and returns a scalar which 

corresponds to the evaluation of the scalar function at that point. These entities are useful 

for describing physical quantities that are continuous across a material interface such as 

potentials. Electric potential is a 0-form quantity. 

 

1-forms correspond to quantities with tangential continuity across a material interface 

such as the electric field. Each component of a 1-form is a 0-form. 

 

The 2-forms have normal continuity and represent fluxes such as the magnetic flux 

density. 

 

The 3-forms are defined within a specific volume and therefore have no imposed 

continuity between adjacent volumes which allows them to represent discontinuous fields 

such as charge density. 

 

More definitions and details can be found in Koning’s thesis [84]; Warnick and Russer’s 

[85] or Tonti’s [86] works. As a summary, Table 3.2 lists the p-forms, their features; and 

which important quantities of electromagnetics belong to which class.  

 

As can be understood, p-forms also construct Hilbert spaces (in fact Sobolev spaces) 

where the relevant discussion is given in the following section.  
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3.2. Hilbert Spaces Related to Electromagnetic Quantities 

Let Ω be a conducting domain of interest; and Γ be its boundary. The symbols L2(Ω) and 

L2(Ω) denote the spaces of all square integrable scalar and vector functions on Ω 

respectively. As usual, n denotes the normal vector outward Γ. 

 

The vector spaces H0(Ω,grad), H0(Ω,curl), H0(Ω,div) can be defined as: 

 

{ }ΓΩHΩH on  0)grad,()grad,(0 =∈= φφ    (3.1) 

{ }ΓΩHΩH on  0)curl,()curl,(0 =×∈= nuu   (3.2) 

{ }ΓΩHΩH on  0)div,()div,(0 =⋅∈= nuu    (3.3) 

where 

{ })()()grad,( 22 ΩLΩLΩH ∈∇∈= φφ    (3.4) 

{ })()()curl,( 22 ΩΩΩH LuLu ∈×∇∈=    (3.5) 

{ })()()div,( 22 ΩLΩΩH ∈⋅∇∈= uLu     (3.6) 

 

With this information, the domains and ranges of the differential operators can be listed 

as in Table 3.1. 

 
 
 

Table 3.1. Domains and Ranges of Differential Operators. 

 
  Domain 

  H(Ω,grad) H(Ω,curl) H(Ω,div) L2(Ω) 

H(Ω,grad)  ∇.   

H(Ω,curl) ∇  ∇×  

H(Ω,div)  ∇×  ∇ 
Range 

L2(Ω)   ∇.  
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The four Hilbert spaces H(Ω,grad), H(Ω,curl), H(Ω,div), L2(Ω) and the three operators ∇, 

∇× and ∇. form a de Rham complex2 relative to Γ. The dual complex can be introduced 

by using the adjoint differential operators ∇*, (∇×)* and (∇.)*.  

 

)()div,()curl,()grad,( 2 ΩLΩHΩHΩH ⎯⎯→⎯ ⋅∇⎯⎯ →⎯ ×∇⎯→⎯∇  (3.7) 

 

The importance of this property stems from the fact that Maxwell’s equations can be 

described in terms of a Tonti [86] diagram built up on this complex as seen in Fig. 3.1. 

 
 
 

 
Fig. 3.1. Tonti Diagram of Maxwell’s Equations. 

 
 

 
Combining the definitions of the Hilbert spaces and the differential forms, we can list the 

properties of significant quantities of the electromagnetic theory as in Table 3.2. 

 

                                                 
2 In mathematics, the de Rham complex is the cochain complex of exterior differential forms on 
some smooth manifold, with the exterior derivative as differential. 
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Table 3.2. Properties of the p-forms. 

 
 0-form 1-form 2-form 3-form 

Minimum 

Continuity 

Total Tangential Normal None 

Integral Point Line Surface Volume 

Derivative Grad Curl Div None 

Physical Types Scalar 

Potentials 

Fields, 

Vector 

Potentials 

Fluxes, 

Vector 

Densities 

Scalar 

Densities 

Specific Examples φ A, E, H B, D, J ρ 

Hilbert Space H(Ω,grad)  H(Ω,curl)  H(Ω,div) L2(Ω) 

 
 
 

For the classical Finite Element Method, the nodal elements are used in order to calculate 

the scalar quantities. In more general sense, this type of element correspond to 0-form 

element for H(Ω,grad), which is shown in Fig. 3.2.  

 

In 1986, Nédélec put the idea of a finite element to represent vector quantities belonging 

to H(Ω,curl); which has been popularly known as edge elements since then [87]. This 

type of element correspond to 1-form element for H(Ω,curl) in Fig. 3.2. They are also 

called as H(curl)-conforming elements. 

 

In order to represent the vector quantities belonging to H(Ω,div); Raviart-Thomas [88] 

and Brezzi-Douglas-Marini [89] have proposed the elements shown in Fig. 3.2. Unlike 

the Nédélec element (whose basis functions are defined along the edges); these elements 

have their basis functions normal to the element faces. Although Brezzi-Douglas-Marini 

element provides more degree of freedom, Raviart-Thomas element is more frequently 

used. These elements are facet elements, but usually miscalled as edge elements. They 

can be classified as H(div)-conforming elements. 
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Finally, in order to represent the scalar quantities belonging to L2(Ω), required element 

type is certainly a volume element illustrated in Fig. 3.2. These elements are again usually 

miscalled as nodal elements.    

 
 
 

 
 

Fig. 3.2. Hexahedral Elements for H(Ω,grad), H(Ω,curl), H(Ω,div) and L2(Ω) (For 
simplicity, elements of their first kinds are shown). 

 
 
 

3.3. General Idea of Edge Elements 

To present the main ideas associated with the edge elements, consider the hypothetical 

rectangular edge element shown in Fig. 3.3. Suppose that the vector variable A has to be 

defined on this rectangular element as follows: 

 

∑
=

=
4

1
),(

i
ii Ayx wA      (3.8) 

 

where wi is the shape function related to one of the four edges (i.e. the ith edge) of the 

element. 
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Fig. 3.3. A Rectangular Edge Element. 

 
 
 
The shape functions of the element are 
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We note that these shape functions have a direction (i or j depending on the edge) and 

also an expression depending on position. 

 

Suppose that we need to obtain A at the centroid of the element (x = lx / 2, y = ly / 2). 

Applying these conditions to the shape functions, we obtain 

 

2/1,2/1,2/1,2/1 4321 jwiwjwiw ====    (3.10) 

 

The value of A is, therefore, 

 

.2/2/2/2/)2/,2/( 4321 AAAAll yx jijiA +++=    (3.11) 

 

The remaining question is the meanings of A1, A2, A3, and A4. To see this, take for 

example, y = 0.  In this case we find the x component of A, namely Ax as 

 

1)0,( AxAx =       (3.12) 
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which means that A1  is the projection of the vector field A on edge 1. Similarly, A3  is the 

projection of the vector field A on edge 3. As y varies from 0 to ly, the contribution of A1 

decreases and that of A3 increases. Similarly, as x varies from 0 to lx, the contribution of 

A2 decreases and that of A4 increases. 

 

This example is a simple case in order to describe the idea of edge elements as vector 

elements. For arbitrarily shaped elements where the edges are in a direction not parallel to 

the Cartesian coordinate axes, the derivations may be more complicated. 

 

3.4. The Linear and Quadratic Hexahedral Edge (van Welij’s and 

Kameari’s) Elements  

A linear hexahedral edge element, which was defined by van Welij [90] with its 8 nodes 

and 12 edges, is illustrated in Fig. 3.4. Each hexahedral element can be defined in the 

local uvp coordinate system; and the coordinates u, v, and p range from -1 to 1 for each 

element. The vector basis functions (for the edges in u direction) for the linear edge 

elements can be written as follows: 

 

uppvv iii ∇++= )1()1(
8
1w    (3.13) 

 

where, vi = ±1 and pi = ±1, which are the v and p coordinates of the ith edge respectively. 

Basis functions for the edges in v and p directions can be found similarly. 

 

Kameari’s quadratic hexahedral edge element [91], with 20 nodes and 36 edges, is 

illustrated in Fig. 3.5. Again, for the local uvp coordinate system; the coordinates u, v, 

and p range from -1 to 1 for each element. The additional 12 nodes are defined close to 

the middle of physical edges of element. In each direction there are 12 edges, 8 of which 

are defined on the physical edges of the element, and the remaining 4 are defined on the 

surfaces. 
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Fig. 3.4. a) Linear hexahedral element in xyz-space; b) Linear hexahedral element 
transformed to uvp-space with its 12 edges shown. 

 
 
 

The vector basis functions (for the edges in u direction) for the quadratic edge elements 

can be written as: 

 

uppvvuuppvv iiiiii ∇−++++= )1)(1()1(
8
1w   (3.14) 

 

for the edges defined on the physical edges of the element, and 

 

uvpp ii ∇−+= )1)(1(
4
1 2w     (3.15) 

 

for the edges defined on the surfaces. In equations (3.14) and (3.15), ui = ±1/2, vi = ±1 

and pi = ±1, which are the center point coordinates of ith edge. Basis functions for the 

edges in v and p directions can be found similarly. 
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Fig. 3.5. a) Quadratic hexahedral element in xyz-space; b) Quadratic hexahedral element 
transformed to uvp-space with its 12 edges along u shown. 

 
 
Physically, the values represented at each edge can be considered as the circulation (not 

exactly the projection) of the unknown vector function along that edge. In other words, a 

vector function A is expressed in terms of the basis functions as: 

 

∑
=

=
k

i
iii Alzyx

1
),,( wA      (3.16) 

 

where k = 12 and 36 for linear and quadratic elements respectively. li, which is the length 

of an edge in uvp-space, is equal to 2 for all edges in case of linear elements. On the other 

hand, for the quadratic elements li = 1 for the edges defined on the physical edges of the 

element and li = 2 for the edges defined on the surfaces. 

 

3.5. Hierarchical Finite Element Methods 

In the finite element method, the discretization can be controlled two ways:  

i) by varying the number of elements and/or  

ii) by varying the polynomial order used to describe the displacements and the 

coordinates in the elements.  

 

Note that the “h” in the terms “h-elements”, “h-version”, and “h-extension” refers to the 

length, width or height of the smallest element in the mesh. The “p” in the terms “p-

elements”, “p-version”, “p-level”, and “p-extension” refers to the maximum polynomial 

order “p” of the elements in the mesh. 
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What is an extension? Extensions are step by step changes in the FEM discretization  (the 

mesh) that cause the number of degrees-of-freedom (DOFs) to increase at each step, with 

the goal of reducing numerical error in the solution.  

 

Reduction of error can be accomplished by using any of these three extension techniques:  

• In the ‘h-version,” the extension is carried out by increasing the number or 

density of the finite elements while holding the polynomial order constant  

• In the “p-version,” the extension is carried out by increasing the polynomial level 

in the finite elements while maintaining the number and density of elements 

constant  

• If the extension is carried out by increasing both the polynomial level and the 

number or density of elements in the mesh, the version is called the “hp-version.” 

It turns out that the “hp-version” is the most efficient. 

A general assessment and comparison of all techniques are given in Table 3.3. 

 

Hierarchical elements are usually confused with Lagrange elements, which is another 

method for increasing the degree of freedom. In [92], Karanam clearly distinguished them 

as seen in Table 3.4. 

 

Table 3.3. Comparison of p, h, and hp-versions. 

 
p-version h-version hp-version 

Error controlled with 
polynomial level 

Error controlled with 
number of elements 

Error controlled with 
number of elements and 
polynomial level 

Good numerical 
convergence for high order 
elements 

Inferior numerical 
convergence (at best, 
quadratic)  

Superior numerical 
convergence (exponential) 

Hierarchic shape functions 
allows more accurate 
mapping of geometry 
shapes such as circles 

Geometry shapes are 
mapped with quadratic 
functions 

Hierarchic shape functions 
allows more accurate 
mapping of geometry 
shapes such as circles 

Polynomial level in the 
elements can be variable 

Polynomial level in the 
elements fixed, and 
restricted to linear (p=1) or 
quadratic (p=2) 

Polynomial level can be 
variable; element grading 
recommended 

 
 
 



 54

Table 3.4. Comparison of Hierarchical and Lagrange Elements. 

 
 Hierarchical Elements Lagrange Type Elements 
Number of Basis  
Functions 

For a hierarchical element with m 
nodes, the number of required 
basis functions is calculated by 
cumulating the number of 
necessary modes. This number is 
≥ m. 
 

For a Lagrange Type element 
of order m, the number of 
required basis functions is 
exactly m. 

Basis Function  
Order 

For a hierarchical element of 
order n, polynomial basis 
functions are of different orders 
(≤ n). 
 

For a Lagrange type element 
of order n, all polynomial 
basis functions are of order n.  

Basis Function  
Dependency 

The basis functions of an 
hierarchical element of order n is 
a subset of the basis functions of 
an hierarchical element of higher 
order (i.e. It is easy and 
straightforward to increase the 
order and define higher order 
elements). 
 

The basis functions of  
Lagrange Type elements of 
order n and m are totally 
independent if n ≠ m. 

Interpolation  
Properties 

Basis function coefficients are 
actually related to higher order 
moments of the solution and its 
derivatives. 
 

Basis function coefficients 
correspond to solution values 
at specific spatial locations. 

Orientation Definition of the basis functions 
depend on edge and face 
orientation.  
 

Definition of the basis 
functions do not depend on 
edge and face orientation. 

 
 
 

3.6. General Formulation of p-Hierarchical Hexahedral Edge Elements 

There are three requirements for vector functions defined on a hierarchic edge element, 

i.e. they should be: 

i) tangentially continuous, 

ii) hierarchic (i.e. the lower polynomial order terms are used to construct the higher 

order polynomial terms), and 

iii) H(curl) conforming. 
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A general formulation for construction of these functions for tetrahedral and hexahedral 

elements is given by Wang [93]. According to this paper, the p-hierarchic hexahedral 

element is defined as follows. For the general formulation of p-hierarchic hexahedral 

elements, we start with the 20-noded isoparametric mapping 

 

∑
=

=
20

1
),,(

j
jjN rr ζηξ      (3.17) 

 

where (ξ,η,ζ) (pronounced xi, eta, zeta) are local coordinates and Nj’s are shape 

functions. Based on the mapping, the unitary triple vectors can be defined: 

 

ζηξ ζηξ ∂
∂=

∂
∂=

∂
∂= rarara ,,     (3.18) 

 

These vectors correspond to an oblique coordinate system as shown in Fig. 3.6. The 

gradient vectors along the three local coordinates can be easily found as: 

 

ηξξζζη ζηξ aaaaaa ×=∇×=∇×=∇
JJJ
1,1,1    (3.19) 

 

where J is the Jacobian determinant given by J = (aξ . aη × aζ). 

 

These gradient vectors naturally serve as the basis for edge elements since the tangential 

continuity requirement (i) can be easily met. 
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Fig. 3.6. A Hexahedral Element in an Orthogonal Coordinate System. 

 
 
 
 
The family of hierarchic shape functions has initially been defined by Szabo and Babuška 

in [94]. For a pth order element: 

1) There are 8 node modes given by: 

 

.),1)(1)(1(
8
1)1( etcN ζηξ −−−=    (3.20) 

 

2) There are (p-1) edge modes on each edge for p≥2. For edge (1,2) in Fig. 3.6, 

these are 

 

),()1)(1(
4
1

1
)1( ξφζη −−−= p

p
eN    (3.21) 

 

where 
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and Pi(t) is the Legendre polynomial (see Fig. 3.7) of order i, which can be expressed 

by means of Rodrigues rotation formula3 as: 

 

[ ]i
i

i

ii t
dt
d

i
tP )1(

!2
1)( 2 −=      (3.23) 

 

3) There are (p-2) (p-3)/2 face modes on each face for p≥4. For face (1,2,3,4) in Fig. 

3.6, these are given by: 

 

)()()1(
2
1)1( ηφξφζ ji

p
fN −=    (3.24) 

 

4) There are (p-3) (p-4) (p-5)/6 body modes on each face for p≥6. These are given 

by: 

 

)()()()1( ζφηφξφ kji
p

bN =     (3.25) 

 

Using these hierarchic functions, the requirement (ii) is met. To meet the requirement 

(iii), the polynomial order associated with ∇ξ is picked less one in ξ as compared to η 

and ζ. The construction for a pth order (Hp-1(curl) conforming) elements is given as 

follows: 

 

1. There is one vector function per edge for p=1. For edge (1,2) it is given by 

 

ξζη ∇−−= )1)(1(
4
1)1(

eW     (3.26) 

 

This is nothing but van Welij’s element [90]. 

 

                                                 
3 More generally, Legendre polynomials are the solutions to the Legendre differential equation: 

0)()1()()1( 2 =++⎥⎦
⎤

⎢⎣
⎡ − tPiitP

dt
dt

dt
d . 
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Fig. 3.7. Legendre Polynomials of Order 0 to 5 Plotted between -1 and 1. 

 
 

 
2. There are two vector modes per edge associated with corner node functions for 

p≥2. These are: 

 

ξξ ∇=∇= )2()2()1()1( , NN ee WW    (3.27) 

Setting p=2, we obtain exactly the Kameari’s element [91]. 

 

3. There are (p-2) tangential vector functions per edge associated with edge modes 

for p≥3. For edge (1,2), it is given by: 

ξ∇= )1()1( p
e

p
e NW      (3.28) 

 

4. There are 2(p-1) vector functions per face associated with edge functions (normal 

to edges) for p≥2. For face (1,2,3,4) in Fig. 3.6, these are given by: 

 

ξηφζηξφζ ∇−=∇−= −− )()1(
2
1,)()1(

2
1

1
)2(

1
)1(

n
N

fn
N

f WW  (3.29) 
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5. There are two vector functions for each face mode. For face (1,2,3,4) in Fig. 3.6, 

these are given by: 

ηξ ∇=∇= )1()2()1()1( , p
f

p
f

p
f

p
f NN WW   (3.30) 

 

6. There are 3(p-1) vector functions per element associated with face modes (normal 

to faces for p≥4. These are: 
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    (3.31) 

 

7. There are three vector functions for each body mode. These are given by 

ζηξ ∇=∇=∇= )1()3()1()2()1()1( ,, p
b

p
b

p
b

p
b

p
b

p
b NNN WWW  (3.32) 

Setting p=2 in above equations, we obtain exactly the Kameari’s element [91]. 

More interesting fact is that, both van Welij and Kameari defined their elements (linear 

and quadratic respectively) intuitively by using the completeness condition and tangential 

continuity; much before these general rules for p-hierarchic elements were defined. 

One of the key factors in the p-hierarchic element construction is the usage of Legendre 

polynomials, which is an orthogonal polynomial family. Fig. 3.7 shows the interpolation 

properties of Legendre polynomials of different orders. 

Recently, Zaglmayr [95] defined a more general framework to define p-hierarchic 

quadrilateral, triangular, tetrahedral, hexahedral and prismatic H(Ω,curl) and H(Ω,div) 

elements. In this work, although not shown and verified explicitly, it is claimed that other 

orthogonal polynomial families, such as Gegenbauer, Hermite, or Jacobi, might also be 

used for similar purpose. 
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CHAPTER 4 
 

 

FINITE ELEMENT FORMULATION OF 

ELECTROMAGNETIC SCATTERING PROBLEMS 

 

 

 

4.1. Weak Formulation of the Electric Field 

The most general three-dimensional electromagnetic scattering problem can be stated as 

an electromagnetic wave (Einc, Hinc) with any type of polarization at any frequency, 

incident on a scattering material of arbitrary material properties and shape occupying a 

volume Ωint. This geometry is illustrated in Fig. 4.1, where Ωext is the exterior domain 

outside the scatterer. Ω = Ωint ∪ Ωext is the computational domain. S(Ω) is the boundary 

of Ωint. 

 

Starting from the Maxwell’s equations in differential form we have 

 
tottot HE rj µωµ0−=×∇      (4.1) 

tottot EH rj εωε 0=×∇      (4.2) 

 

where the total fields Etot and Htot are the sum of the incident and the scattered fields (i.e. 

Etot = Einc + Esct and Htot = Hinc + Hsct) and it is assumed that the materials are isotropic 

but inhomogenous with the relative permittivity εr and permeability µr. In Ωext, εr and µr 

are assumed to be unity.  
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Fig. 4.1. Scattering material enclosed by S(Ω) and an incident wave Einc.  

 
 
 
Substituting Equation (4.2) into Equation (4.1) we get the wave equation as 

 

01 2
0 =−×∇×∇ tottot EE r

r
k ε

µ
    (4.3) 

 

subject to a given set of boundary conditions on the surface S(Ω). Choosing a vector-

valued function ϕ defined on Ω, the inner product of Equation (4.3) with ϕ gives  

 

( ) 01 2
0 =Ω⋅−Ω⋅⎟

⎠
⎞

⎜
⎝
⎛ ×∇×∇ ∫∫

ΩΩ

dkd r
r

ϕεϕ
µ

tottot EE   (4.4) 

 

To reduce this integral representation to a simplified form, we utilize the following vector 

identities for any arbitrary vector functions P and Q: 

 

( ) ( ) ( )∫∫∫ ΩΩΩ
Ω×⋅∇+Ω×∇⋅=Ω⋅×∇ ~~~ ddd QPQPQP    (4.5) 

( ) ( )∫∫ ΩΩ
⋅×=Ω×⋅∇

)~(~ S
dd sQPQP    (4.6) 
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where Ω~  is a domain enclosed by )~(ΩS .Using Equation (4.5) and Equation (4.6) and 

assuming that Ωint is occupied by a perfectly conducting scatterer we obtain the following 

weak form: 

 

( ) ( ) ( ) 02
0

)(

=Ω⋅−⋅××∇−Ω×∇⋅×∇ ∫∫∫
ΩΩΩ

dkdd
extSext

ϕϕϕ tottottot EsEE   (4.7) 

 

The surface integral term vanishes because of the boundary condition on the surface 

S(Ω). 

 

0=× totEn      (4.8) 

 

Since the total electric field vanishes in Ωint we obtain the following weak form for the 

scattered field Esct 

 
incsct EE −=  in Ωint       (4.9) 

( ) ( ) ( ) 02
0 =Ω⋅−Ω×∇⋅×∇ ∫∫

ΩΩ

dkd
extext

ϕϕ sctsct EE   (4.10) 

 

If the material is a dielectric with relative permittivity εr, we have the following weak 

form  

 

( ) ( ) ( )( ) Ω⋅−=Ω⋅−Ω×∇⋅⎟
⎠
⎞

⎜
⎝
⎛ ×∇ ∫∫∫

ΩΩΩ

dkdkd rr
r

int

2
0

2
0 11 ϕεϕεϕ

µ
incsctsct EEE  

 (4.11) 
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Or more generally, if the material is a composite structure with relative permittivity εr and 

relative permeability µr, then we have the following weak form  

 

( ) ( )

( )( ) Ω⋅−+Ω⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×∇×∇⎟

⎠
⎞

⎜
⎝
⎛ −

=Ω⋅−Ω×∇⋅⎟
⎠
⎞

⎜
⎝
⎛ ×∇

∫∫

∫∫

ΩΩ

ΩΩ

dkd

dkd

r
r

r
r

int

2
0

int

2
0

111

1

ϕεϕ
µ

ϕεϕ
µ

incinc

sctsct

EE

EE
  (4.12) 

 

4.2. Mesh Generation  

The mesh generation in this thesis depends on the decomposition of the problem to 

subdomains so that each subdomain is homeomorphic (topologically equivalent) to a 

rectangular prism. Each subdomain is divided to hexahedra with the constraint that 

adjacent subdomains will have equivalent quadrilateral surface meshes in order to 

preserve mesh continuity.  

 

Details about the implementation of the domain decomposition and hexahedral mesh 

generation (together with the constraints) are given in Appendix C.  

 

4.3. Mesh Quality Improvement  

In this thesis, optimization based hexahedral mesh smoothing was applied. The objective 

function was chosen to be depending on a condition number based metric; and Particle 

Swarm Optimization was applied for smoothing. Effect of smoothing on solution 

accuracy was also investigated. Theoretical and implementation level details are given in 

Appendix D.  

 

4.4. Mesh Truncation 

The concept of using a lossy material to absorb an outgoing wave to simulate an infinite 

region of free space for finite methods is not a new one [96]. However, this method of 

truncation has not gained widespread use because of the reflections, which occur at the 

free space/material interface. One idea to minimize the reflections at this interface is to    
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choose a low loss absorbing material. Unfortunately, the lossy region must be sufficiently 

large to attenuate the wave. This can significantly reduce the computational efficiency. 

 

Berenger [97] introduced a modification to Maxwell’s equations to allow for the 

specification of material properties which result in a reflectionless lossy material. The 

material is reflectionless in the sense that a plane wave propagating through an infinite 

free space/material interface has no reflection for all angles of incidence. Berenger refers 

to this material as a “perfectly matched layer (PML)”. Although Berenger demonstrates 

the validity of his approach with numerical experiments, the physical meaning of his 

modifications to the Maxwell’s equations is not very clear. Later, Chew and Weedon [98] 

provided a systematic analysis of the PML in terms of the concept of “coordinate 

stretching”. They demonstrated that Berenger’s modifications to Maxwell’s equations can 

be derived from a more generalized form of Maxwell’s equations employing           

complex coordinates. 

 

Later, it has also been discovered by Sacks et al [99] that the reflectionless properties of a 

material can be achieved if the material is assumed to be anisotropic. Unlike Berenger’s 

approach, this one does not require a modification of Maxwell’s equations, making it 

easier to analyze in the general framework of electromagnetics. 

 

4.4.1. Analytical Investigation of PMLs 

The ideal PML comprises an anisotropic medium, whose complex permittivity and 

permeability matrices are chosen such that it absorbs an arbitrary incident 

electromagnetic wave with no reflection. Initially, the PMLs have been designed to 

absorb planar electromagnetic waves, of arbitrary frequency and incident angle, that are 

incident from free space onto the PML half-space. Later it has been shown by Kuzuoğlu 

and Mittra [100] that, under certain conditions, the PMLs can effectively absorb spherical 

and cylindrical waves as well.  

 

 

4.4.1.1. PMLs for Cartesian Coordinate System 

A thorough discussion of PMLs suitable for Cartesian geometries has been presented in 

[99], where the transmission and reflection characteristics of a planar free-space PML   
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has been detailed. One begins by dividing the three-dimensional (3D) space into two half-

spaces with free space for z < 0 and an anisotropic medium for z > 0, where z is normal to 

the interface. The constitutive parameters of the anisotropic medium are given in terms of 

the complex permittivity and permeability tensors 

 

[ ]

[ ]z

z

Λ=

Λ=
=

=

0

0

µµ

εε
      (4.13) 

 

and [Λz] is a diagonal matrix defined as  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎡
=Λ

−100
00
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a
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z      (4.14) 

 

where 

 

0
1

ωε
σja −=       (4.15) 

 

and σ is the constant conductivity of the medium. 

 

For the case where the three-dimensional (3D) space is divided into two half-spaces with 

free space for y < 0 and an anisotropic medium for y > 0, where y is normal to the 

interface, the constitutive parameters of the anisotropic medium are 

 

[ ]
[ ]y

y

Λ=

Λ=
=

=

0

0

µµ

εε
      (4.16) 

 

where  
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⎥
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00
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Similarly, by dividing the three-dimensional (3-D) space into two half-spaces with free 

space for x < 0 and an anisotropic medium for x > 0, where y is normal to the interface, 

the constitutive parameters of the anisotropic medium are obtained as 

 

[ ]

[ ]x

x

Λ=

Λ=
=

=

0

0

µµ

εε
     (4.18) 

 

where 
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     (4.19) 

 

In this work, the coordinate stretching technique is used. In the coordinate stretching 

technique, the spatial variable u is replaced by the complex spatial variable u’ given by 

 

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

k
jujuu α

ωε
σ 11'

0
   (4.20) 

 

assuming that the wave is propagating in the u-direction. The spatial variable u can be 

either x, y, or z. The variable α is the parameter determining how fast the field decays 

inside the Perfectly Matched Layer. 

 

4.4.1.2. Modelling of Edge and Corner Regions of the PML  

The theory for the anisotropic PML is based on the assumption that the plane wave is 

propagating through a planar interface of infinite extent as explained above. However, for 

the cases where the main interest is to use the PML in order to absorb the scattered       
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field from a finite object in free space, the PML absorber must totally surround the 

scattering material.  

 
 
 

 

Fig. 4.2. Geometry of the PML region surrounding the scatterer. 

 
 
 
The PML material is usually placed in the shape of a prism to best approximate the 

reflectionless properties of the PML as shown in Fig. 4.2. 

 

The choice for the material properties of the side regions occupied by the PML is 

straightforward and the Λx, Λy, Λz matrices above can be used. However, the method for 

determining the material properties at the edge and the corner regions of the box is not so 

clear.  

 

One approximate approach for the edge region is to choose the edge properties such that 

they are perfectly matched to the adjacent side regions when the edge-side interface is of 

infinite extent.  

 

Λy  

Λx 

Λz 

Λxy 

Λxz 

Λyz Λxyz 
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One can use a similar approach for the corner region by matching the corner properties to 

the adjacent edges. If we repeat the corresponding analysis for a plane wave propagating 

through an interface for the edges and corners, we arrive the relationship that Λij, which is 

the corresponding matrix, is equal to the matrix multiplication of the corresponding 

matrices, namely Λi and Λj. Similarly, for the corner regions, Λijk is found to be the 

multiplication of Λi, Λj, and Λk. 

4.4.1.3. Conformal PMLs  

The anisotropic PML has also been realized by applying a complex coordinate 

transformation in the direction normal to the PML-free space boundary by Chew et al 

[101], which yields the design of conformal PMLs. The approach can be considered and 

called as locally conformal PML, since at every point in the PML-free space interface, the 

normal vector is considered during the complex coordinate transformation. This approach 

is easy to implement and realize.    

 

4.5. Elemental Matrix Construction 

In the derivation of the FEM formulation, the weighting function ϕ has been used in the 

inner products. To obtain the matrix equation, the weighting function ϕ is chosen to be 

identical to the vector basis functions, namely 

 

( ) ( ) 01 2
0 =Ω⋅−Ω×∇⋅⎟

⎠
⎞

⎜
⎝
⎛ ×∇ ∫∫
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m
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  (4.21) 

 

The scattered electric field inside an element is also expressed as 

 

 ∑
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The left hand side of  Equation (4.21) will be the following 
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where Vi is the volume of the ith element. This implies that for an element, a generic term 

of the elemental matrix E is given as 
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Similarly, a generic term for the right hand side matrix R of the corresponding element 

will be  

 

( )( ) dVkmR
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0 ε    (4.25) 

 

where εr is the relative permittivity of the medium.  

 

As shown in the previous section, the remaining problem is to carry out the integration in 

the elemental matrix term. Since the shape functions are sufficiently smooth, a low order 

Gaussian Integration scheme is assumed to be accurate for this purpose. By using 

Gaussian Integration, Equation (4.24) becomes 
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where NG is the number of Gaussian integration points inside an element, (ui, vi, pi) are 

the possible NG combinations of the Gaussian integration points, and Wi’s are the 

weightings of the corresponding points. Details about the Gaussian quadrature are given 

in the following sub-section.   
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4.5.1. Gaussian Quadrature 

The integral is computed by means of n-point Gaussian quadrature4, which can be 

described as follows. For an arbitrary function f(x),  

 

∫ ∑
− =

≅
1

1 1

)()(
n

i
ii xfwdxxf     (4.27) 

 

where the evaluation points and the weights are defined as in Table 4.1. It can be shown 

that the evaluation points are just the roots of a polynomial belonging to a class of 

orthogonal polynomials; and the values in Table 4.1 are the roots of Legendre 

polynomials. 

 

 

 

Table 4.1. Gaussian Quadrature Evaluation Points and Their Weights. 

Number of 

Quadrature Points (n) 
Points (xi) Weights (wi) 

1 0 2 

2 3/1±  1 

0 8/9 
3 

5/3±  5/9 

±0.339981044 0.652145155 
4 

±0.861136312 0.347854845 

0 0.568889 

±0.538469 0.478629 5 

±0.906180 0.236927 

  

 

                                                 
4 In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, 
usually stated as a weighted sum of function values at specified points within the domain of 
integration. 
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Increasing the number n will increase the accuracy of the integration. Certainly, the rule 

described above can be generalized to any arbitrary interval [a,b] different than [-1,1]. 

 

∫ ∑
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22
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For double and triple integrals, all combinations of the Gaussian quadrature evaluation 

points and their multiplied weights should be considered in the summation.  

 

Recently another quadrature, Clenshaw-Curtis quadrature has become popular. The 

quadrature points are calculated from the Chebyshev polynomials. The computation of 

the Clenshaw-Curtis quadrature points is computationally cheaper than the computation 

of those of Gaussian quadrature; although in terms of accuracy Gaussian is better. In 

applications where it is required to compute the points during the run-time, Clenshaw-

Curtis is preferred. In this thesis, since the look-up tables are constructed initially and 

loaded to the memory in the compile-time; Gaussian quadrature is used. 

   

 

4.6. Sparsity and Resource Requirements in the Finite Element Method  

4.6.1. Sparse Matrix Storage Schemes 

Since the global system matrix is sparse, instead of full storage of complexity O(N2), the 

row indexed sparse storage scheme described by Bentley [102] of complexity O(N) is 

chosen in this work. The storage scheme is as follows: 

 

To represent a matrix A of dimension N×N, two one-dimensional arrays sa and ija are set. 

The former stores the matrix element values in the desired precision, and the latter stores 

integer values. The storage rules are listed below: 

• The first N locations of sa store the diagonal matrix elements of A in order. This 

implies that zero diagonal elements are also stored. 

• Each of the first N locations of ija stores the index of the array sa that contains the 

first off-diagonal element of the corresponding row of the matrix. If there are no off-
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diagonal elements for that row, it is one greater than the index in sa of the most 

recently stored element of a previous row. 

• Location 1 of ija is always equal to N + 2, which can be used to determine N. 

• Location N + 1 of ija is one greater than the index in sa of the last off-diagonal 

element of the last row. It can be used to determine the number of nonzero elements 

in the matrix, of the number of elements in the arrays sa and ija. Location N + 1 of sa 

is not used and can be set arbitrarily. 

• Entries in sa at locations ≥ N + 2 contain off-diagonal entries of A, ordered by rows 

and, ordered by columns within each row. 

• Entries in ija at locations ≥ N + 2 contain the column number of the corresponding 

element in sa. 

 

As an example, the following 5×5 matrix  
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will be stored in the arrays 

 

[ ]
[ ]544534321355332211 0

45423121110887
aaaaaxaaaasa

ija
=
=

 (4.30) 

 

Another sparse storage scheme is chosen in this work for the Multifrontal Algorithm. The 

same matrix A, will be represented by the arrays 

 

[ ]
[ ]

[ ]555445343332221311
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=
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=

 (4.31) 
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4.6.2. Sparsity Issues for p-Hierarchical Quadrilateral Edge Elements 

Assume that the computational domain in 2D is divided into N and L segments in x and y 

directions respectively, yielding a mesh with totally NL quadrilateral elements as seen in 

Fig. 4.3. 

 
 
 

 
Fig. 4.3. An NL-Quadrilateral Element Mesh of a Rectangular Region. 

 
 
 
Obviously, the number of resulting unknowns would be different for the same mesh if the 

types of the elements (node, edge, facet, or volume) change. Table 4.2 lists the number of 

unknowns for the same mesh for each element type where all the elements are assumed to 

be linear. 

 
 
 

Table 4.2. Numbers of Unknowns for the NL-Quadrilateral Element Mesh. 

 
 Linear 

Quadrilateral 

Node Element 

Linear 

Quadrilateral 

Edge Element 

Linear 

Quadrilateral 

Facet Element 

Linear 

Quadrilateral 

Volume Element 

Number of 

Unknowns 
)1)(1( ++ LN  LNNL ++2  LNNL ++2  NL  

 

L

N
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Fig. 4.4. A Linear Quadrilateral Edge Element with 4 Nodes and 4 Edges. 

 
 
 
A linear quadrilateral edge element is defined with 4 nodes and 4 edges as seen in Fig. 

4.4. From Table 4.2, it can be seen that for linear quadrilateral edge elements, the total 

number of edges (unknowns) is  

 

LNNLN elementedgeralquadrilatelinear ++= 2___    (4.32) 

 

As seen in Fig. 4.5, topologically, an edge can be shared by two quadrilateral elements 

inside a 2D mesh. This means that: for linear quadrilateral edge elements, the global 

stiffness matrix will have at most 7 nonzero entries at each row; since the number of total 

edges in a 2-element mesh is 7. 

 
 
 

 
 

Fig. 4.5. An Edge Shared by 2 Linear Quadrilateral Edge Elements. 
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The sparsity of the global stiffness matrix for the NL-linear quadrilateral edge element 

mesh can be calculated as follows (where the sparsity of a matrix is defined as the ratio of 

zero entries to the whole): 

)2(
71

)2(
)2(71

entries  totalofnumber 
entries zero ofnumber  

2

___

LNNLLNNL
LNNL

sparsity elementedgeralquadrilatelinear

++
−=

++
++

−=

=
  (4.33) 

 

 

 

 
Fig. 4.6. A Quadratic Quadrilateral Edge Element with 8 Nodes and 10 Edges. 

 

 

 

On the other hand, a quadratic quadrilateral edge element is defined with 8 nodes and 10 

edges as seen in Fig. 4.6. If the elements in the mesh are quadratic, then the total number 

of edges (unknowns) becomes 

 

LNNLN elementedgeralquadrilatequadratic 226___ ++=   (4.34) 

 

As seen in Fig. 4.7: for quadratic quadrilateral edge elements, the global stiffness matrix 

will have at most 18 nonzero entries at each row; since the number of total edges in a 2-

element mesh is 18. 
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Fig. 4.7. An Edge Shared by 2 Quadratic Quadrilateral Edge Elements. 

 
 
 
Hence, the sparsity of the global stiffness matrix for the NL-quadratic quadrilateral edge 

element mesh is: 

 

)226(
181

)226(
)226(181 2___ LNNLLNNL

LNNLsparsity elementedgeralquadrilatequadratic ++
−=

++
++

−=

  (4.35) 

 

As a specific numerical example, let the computational domain be a square of size λ×λ.  

i) If linear elements are to be used, the element size should be chosen about 0.1λ 

due to accuracy concerns. This means that N = L = 10; which yields 100 elements 

and 220 unknowns. For this configuration, the sparsity of the global stiffness 

matrix is 1-(7/220) = 0.9682. 

ii) If quadratic elements are to be used, the element size should be chosen about 

0.33λ due to same accuracy concerns. This means that N = L = 3; which yields 9 

elements and 66 unknowns. For this configuration, the sparsity of the global 

stiffness matrix is 1-(18/66) = 0.727. 

 

This shows that in p-version finite element analysis, the sparsity of the global stiffness 

matrix dramatically decreases with increasing p. This analysis can be expanded for p=3 or 

more; and other elements of different shapes and types. 
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4.6.3. Sparsity Issues for p-Hierarchical Hexahedral Edge Elements 

The same steps carried out for quadrilateral elements will be repeated for hexahedral 

elements. Again, assume that the computational domain in 3D is divided into N, L and M 

segments in x, y and z directions respectively, yielding a mesh with totally NLM 

hexahedral elements as seen in Fig. 4.8. 

 
 
 

 
Fig. 4.8. An NLM-Hexahedral Element Mesh of a Rectangular Prismic Region. 

 
 
 
Again, the number of resulting unknowns would be different for the same mesh if the 

types of the elements (node, edge, facet, or volume) change. Table 4.3 lists the number of 

unknowns for the same mesh for each element type where all the elements are assumed to 

be linear. 

 
 

 

Table 4.3. Numbers of unknowns for the NLM-hexahedral element mesh. 

 
 Number of Unknowns 
Linear Hexahedral Node Element )1)(1)(1( +++ MLN  
Linear Hexahedral Edge Element )2)(1()1)(1( LNLNMLNM ++++++
Linear Hexahedral Facet Element )2)(1()1)(1( LNLNMLNM ++++++
Linear Hexahedral Volume Element NLM  

 
 
 

M

N
L
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A linear hexahedral edge (van Welij’s) element is defined with 8 nodes and 8 edges. 

From Table 4.3, it can be seen that for van Welij’s elements, the total number of edges 

(unknowns) is  

 

)2)(1()1)(1(___ LNLNMLNMN elementedgehexahedrallinear ++++++=  (4.36) 

 

As seen in Fig. 4.9, topologically, an edge can be shared by four hexahedral elements 

inside a 3D mesh. This means that: for van Welij’s elements, the global stiffness matrix 

will have at most 33 nonzero entries at each row; since the number of total edges in a 4-

element mesh is 33. 

 
 
 

 
Fig. 4.9. An Edge Shared by 4 Linear Hexahedral Edge (van Welij’s) Elements. 
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Hence, the sparsity of the global stiffness matrix for the NLM-van Welij’s element mesh 

is: 

 

[ ]
[ ]

[ ])2)(1()1)(1(
331

)2)(1()1)(1(
)2)(1()1)(1(331 2

_'____

LNLNMLNM

LNLNMLNM
LNLNMLNM

sparsitysparsity elementsWelijvanelementedgehexahedrallinear

++++++
−=

++++++
++++++

−=

==

  (4.37) 

 

A quadratic hexahedral edge (Kameari’s) element is defined with 20 nodes and 38 edges. 

For Kameari’s elements, it can be calculated the total number of edges (unknowns) is  

 

)226)(1()262( 2
___ LNLNMLNNLNMN elementedgehexahedralquadratic ++++++++=

 (4.38) 

 

Since topologically an edge can be shared by four hexahedral elements inside a 3D mesh; 

for Kameari’s elements, the global stiffness matrix will have at most 106 nonzero entries 

at each row; since the number of total edges in a 4-element mesh is 106 as seen in Fig. 

4.10. 

 
 
 

 
 

Fig. 4.10. An Edge Shared by 4 Quadratic Hexahedral Edge (Kameari’s) Elements. 
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Hence, the sparsity of the global stiffness matrix for the NLM-Kameari’s element mesh is: 

 

[ ]
[ ]

[ ])226)(1()262(
1061

)226)(1()262(
)226)(1()262(1061

2

22

2

_'___

LNLNMLNNLNM

LNLNMLNNLNM
LNLNMLNNLNM

sparsitysparsity elementsKamearielementedgehexahedralquadratic

++++++++
−=

++++++++

++++++++
−=

==

  (4.39) 

 

As a specific numerical example, let the computational domain be a cube of size λ×λ×λ.  

i) If van Welij’s elements are to be used, the element size should be chosen about 

0.1λ due to accuracy concerns. This means that N = L = M = 10; which yields 

1000 elements and 3630 unknowns. For this configuration, the sparsity of the 

global stiffness matrix is 1-(33/3630) = 0.9909. 

ii) If Kameari’s elements are to be used, the element size should be chosen about 

0.33λ due to same accuracy concerns. This means that N = L = M = 3; which 

yields 27 elements and 504 unknowns. For this configuration, the sparsity of the 

global stiffness matrix is 1-(106/504) = 0.7897. 

 

This again shows that in p-version finite element analysis, the sparsity of the global 

stiffness matrix dramatically decreases with increasing p. Certainly this analysis can also 

be expanded for p=3 or more; and other elements of different shapes and types. 

4.6.4. Resource Requirements  

Consider our volume of interest (i.e. the problem domain), which is a rectangular prism, 

is divided into N × L × M hexahedral elements as in the previous subsection.  

 

It is obvious that the total number of elements is N × L × M, and the significant term is the 

total number of edges, which is closely related to the number of unknowns. For this case, 

if linear hexahedral edge elements are used, the total number of edges ( edgesN ) is found 

as follows: 
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)2)(1()1)(1(_ LNLNMLNMN linearedges ++++++=   (4.40) 

 

For the case of quadratic edge elements, the total number of edges is given by 

 

)226)(1()262( 2
_ LNLNMLNNLNMN quadraticedges ++++++++=  (4.41) 

 

We know that, Bentley’s sparse storage scheme for a K × K matrix by requires an array of 

size (K + 1 + Noff_diagonal) where Noff_diagonal is the total number of nonzero off-diagonal 

terms in the matrix. 

 

For the finite element solution, an edge can be shared by 4 elements. This means that, a 

row can have at most 33 nonzero entries (one of which is on the diagonal) for the linear 

elements. Similarly, a row can have at most 106 nonzero entries (one of which is on the 

diagonal) for the quadratic elements. 

 

Hence, the array size in the linear hexahedral finite element solution is 

 

1106)105(1 ____ +×=×++= linearedgeslinearedgeslinearedgeslineararray NNNN  (4.42) 

 

whereas the array size in the quadratic hexahedral finite element solution is  

 

1106)105(1 ____ +×=×++= quadraticedgesquadraticedgesquadraticedgesquadraticarray NNNN  

(4.43) 

 

Table 4.4 gives some numerical values for the linear and the quadratic cases. It exhibits 

that, for such a problem 512-quadratic-element scheme is computationally as expensive 

as the 8,000-linear-element scheme. In order to use the quadratic element scheme, it 

should give as good results as the corresponding (i.e. computationally having the same 

price) linear element scheme. 
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Table 4.4. Comparison between linear and quadratic hexahedral edge element schemes. 

 
Linear Quadratic N L M Total 

Number 
of 

Elements 
Total 

Number of 
Edges 

Array 
Size 

Total 
Number of 

Edges 

Array 
Size 

8 8 8 512 1,944 64,153 7,984 846,305 

10 10 10 1,000 3,630 119,791 15,260 1,617,561 

12 12 12 1,728 6,084 200,773 25,992 2,755,153 

15 15 15 3,375 11,520 380,161 50,040 5,304,241 

18 18 18 5,832 19,494 643,303 85,644 9,078,265 

20 20 20 8,000 26,460 873,181 116,920 12,393,521 

 
 
 

4.7. Sparse Matrix Solvers 

Sparse matrices, which are eventually encountered, allow the developers and 

programmers only to store and perform the operations over only nonzero entries in most 

cases. A system of equations with a sparse matrix can be solved by direct or indirect 

methods.  

4.7.1. General Assessment About Sparse Matrix Solvers 

Table 4.5 gives an overall assessment about the sparse solvers. 

 

Table 4.5. Overall View of the Sparse Solvers. 

 Direct  Iterative  
 

Non-Symmetric 
 

Pivoting LU 
 

GMRES, QMR, etc 
. 

 
More General 

 
Symmetric  

Positive Definite 

 
Cholesky 

 

 
Conjugate Gradient 

 
More Robust 

  
More Storage 

 
Less Storage 
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For evaluation the complexity of the direct solvers, the following figures of merit can be 

considered in the following scenario: Assume that we have uniform (well shaped) finite 

element meshes in 2D and 3D, each with n elements totally as seen in Fig. 4.11. 

 
 
 

 
 

Fig. 4.11. Uniform Meshes in 2D and 3D with n elements. 

 
 
 

Then, for the case of node elements, the storage and the time (FLoating point OPerations) 

complexities for direct solvers are as seen in Table 4.6 [103].  

 
 
 

Table 4.6. Time and Memory Requirements for Direct Solvers [103]. 

 

 2D 3D 

Memory O(n log n) O(n 1.33) 

Time (FLOPs) O(n 1.5) O(n 2) 

 
 
 
Again, for the case of node elements, the storage and the time complexities for several 

iterative solvers are as seen in Table 4.7 [103]. For element types other than the node 

elements (edge, facet, or volume) not exactly same but similar figures of merit might be 

found.  
 

 

 

n 1/2 

a)

n 1/3

b)



 84

Table 4.7. Time Requirements for Some Indirect Solvers [103]. 

 
 2D 3D 

Sparse Cholesky O(n 1.5) O(n 2) 

CG, exact arithmetic O(n 2) O(n 2) 

CG, no preconditioning O(n 1.5) O(n 1.33) 

CG, modified O(n 1.25) O(n 1.17) 

CG, support trees O(n 1.2) O(n 1.75) 

Multigrid O(n) O(n) 

 
 

4.7.2. Indirect Sparse Matrix Solvers 

Iterative methods can also be employed for the solution of matrix equations. Among 

various iterative methods, the conjugate gradient method receives more attention because, 

in principle, it yields an exact solution (of the matrix equation) when the number of 

iterations reaches the number of equations or unknowns. For this reason, conjugate 

gradient method is also referred to as a semi-direct method.  

 

The conjugate gradient method was originally developed by Hestenes and Stiefel [104].  

 

The biconjugate gradient method was developed by Lanczos [105], and it can also be 

applied to general (both symmetric and non-symmetric) matrix equations.  

 

In addition to the conjugate gradient (CG) and biconjugate gradient (BCG) methods, 

there are several other closely related iterative methods. These include the generalized 

minimal residual (GMRES) [106], quasi-minimal residual (QMR) [107], conjugate 

gradient squared (CGS) [108], biconjugate gradient stabilized (BCGSTAB) [109], and 

transpose-free quasi-minimal residual (TFQMR) [110] methods. The algorithms 

implementing these methods can be found in public literature and software packages 

[111]. Their main features can be summarized as follows: 

 

GMRES computes a sequence of orthogonal vectors that minimizes the residual norm in    

a least  squares  manner. Hence,  the method  leads  to  the  smallest  residual  for  a  fixed  
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number of iterations: However, it requires storing the entire sequence so that an 

increasingly large amount of storage is needed as the number of iterations increases. This 

difficulty is alleviated by restarting the algorithm after a certain number of iterations. The 

method is useful for general non-symmetric matrices. 

 
QMR applies least squares to minimize a quantity that is closely related to the BCG 

residuals, thereby smoothing out the irregular convergence of the BCG, which may lead 

to more reliable approximations. It has a look-ahead strategy, which avoids BCG 

breakdown. In fact, even without this look-ahead strategy QMR largely avoids the 

breakdown. On the other hand, while it converges smoothly, it often does not improve on 

the BCG algorithm in terms of the iteration number. 

 

CGS is the transpose-free variant of BCG. Although it converges faster than BCG, it 

exhibits more irregular convergence behavior with wilder oscillations in residual norm 

than does BCG; and sometimes does not guarantee convergence. 

 
BCGSTAB uses local steepest descents to obtain more smooth convergence. While this 

method seems to work well in many cases, it still exhibits the irregular convergence 

behavior in some difficult problems. Also, its convergence is considerably slower than 

that of CGS. 

 
TFQMR can be easily implemented by changing only a few lines in the standard CGS 

algorithm. However, unlike CGS, the iterations of TFQMR are characterized by quasi-

minimization of the residual norm. This leads to smooth convergence with a convergence 

rate similar to CGS. Therefore, it can be considered as the new version of the CGS, which 

quasi-minimizes the residual in the space spanned by the vectors generated by the CGS 

iterations.  

 
CGS, BCGSTAB, TFQMR share the feature that their implementations do not require 

any matrix transpose. 

 

4.7.2.1. Biconjugate Gradient Method 

A group of iterative solution algorithms, known under the name conjugate gradient 

methods, provide a quite general means for solving the N × N linear system 
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bxA =⋅      (4.44) 

 

The attractiveness of these methods for large sparse systems is that they reference A only 

through its multiplication of a vector, or the multiplication of its transpose and a vector. 

These operations are very efficient for the row indexed sparse storage scheme. The 

simplest ordinary conjugate gradient algorithm [112-114] is effective only in the case that 

A is symmetric and positive definite. It is based on the idea of minimizing the function 

 

  xbxAxx ⋅−⋅⋅= '
2
1)(f    (4.45) 

 

The function is minimized when its gradient  

 

   bxA −⋅=∇f     (4.46) 

 

is zero, which is equivalent to Equation (4.44). The minimization is carried out by 

generating a succession of search directions pk, and improved minimizers xk. At each 

stage a parameter αk is found that minimizes f(xk+αkpk), and xk+1 is set equal to the new 

point xk+αkpk. The pk and xk are built up in such a way that xk+1 is also the minimizer of f 

over the vector space spanned by the directions already evaluated, namely {p1, p2, …, 

pk}. After N iterations, the minimizer over the entire space is arrived, which is the 

solution of Equation (4.46).  

 

A generalization of the conjugate gradient method, where the matrix is not necessarily 

symmetric or positive definite, is the biconjugate gradient method. The method does not, 

in general, have a simple connection with function minimization. It constructs four set of 

vectors rk, r′k, pk, p′k, k = 1, 2, … . The initial vectors r1 and r′1 are supplied and the 

equations p1 = r1 and p′1 = r′1 are set. The following recurrent relations are carried out: 
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    (4.47) 

 

This sequence of vectors satisfies the biorthogonality condition 

 

0'' =⋅=⋅ jiji rrrr  j < i   (4.48) 

 

And the biconjugacy condition 

 

0'' =⋅⋅=⋅⋅ j
T

iji pAppAp  j < i  (4.49) 

 

There is also a mutual orthogonality 

 

0'' =⋅=⋅ jiji prpr  j < i   (4.50) 

 

The proof of these properties proceeds by induction [115]. As long as the recurrence does 

not break down earlier because one of the denominators is zero, it must terminate at m ≤ 

N steps with rm+1 = r′m+1 = 0. This is basically because after at most N steps, new 

orthogonal directions to the vectors are run out.  

 

To use the algorithm, an initial guess x1 is made for the solution. The residual r1 is chosen 

 

11 xAbr ⋅−=      (4.51) 

 

and r′1 = r1 is taken. Then the following sequence of improved estimates are formed  
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kkkk pxx α+=+1     (4.52) 

 

while the recurrence in Equation (4.47) is carried out. Equation (4.52) guarantees that rk+1 

from the recurrence is in fact the residual b – A ⋅ xk+1 corresponding to xk+1. Since rm+1 = 

0, xm+1 is the solution to Equation (4.44). While there is no guarantee that this whole 

procedure will not break down, or will not become unstable for general A, this is rare in 

practice. More importantly, the exact termination in at most N iterations occurs only with 

exact arithmetic. Round-off error means that the procedure is to be halted when some 

appropriate error criterion is met.    

4.7.3. Direct Sparse Matrix Solvers 

Direct solvers can simply be summarized as methods depending on Gaussian elimination 

rather than iterative solution of the matrix equations.  

 

One of the most popular direct solver families, frontal methods have their origins in the 

solution of finite element problems of structural analysis. One of the earliest 

implementations was that of Irons [116]. In this work, only the symmetric positive 

definite systems were considered. Later, the method was extended to unsymmetric 

systems [117], and also problems other than finite elements [118]. 

4.7.3.1. Multifrontal Method 

The direct solution of the sparse matrix can be obtained by the Multifrontal Method, 

which belongs to the class of frontal methods and is defined by Liu [119]. The main 

advantages of this scheme are as follows: 

1. Most arithmetic operations are performed on dense matrices, which reduces indexing 

efforts while addressing the entries, 

2. In each front, parallelism can be achieved. 

 

The algorithm works over the elimination tree, where its notion is initially defined by 

Duff [120]. For the multifrontal algorithm, necessary steps can be summarized as follows: 

For each node of T(A) from leaves to root: 
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• Sum own row/col of A with children’s Update (Ui) matrices into Frontal (Fi) 

matrix 

• Eliminate current variable from Frontal matrix, to get Update matrix 

• Pass Update matrix to parent 

 

The algorithm is best understood by an illustration. Fig. 4.12 illustrates a simple example. 

Several observations can be made over this method: 

• All arithmetic happens on dense square matrices 

• Needs extra memory for a stack of pending update matrices 

• There exists potential parallelism: 

1. Between independent tree branches 

2. Parallel dense operations on the frontal matrix 

 

The performance of algorithm depends on the structure of the elimination tree (i.e. the 

positioning of the nonzero entries) of the matrix. Guermouche et al had several 

publications [121-122] on the memory usage of the method.  

 

As seen in Fig. 4.13, the total memory required by the algorithm is not limited to matrix 

storage as in the case of iterative solvers. The total required memory can be considered as 

the factor storage area (factor memory); and also the current frontal matrix storage area 

and the contribution storage area (active memory). 
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Fig. 4.12. Pictorial Description of Calculation of Frontal and Update (Contribution) 

Matrices for the Multifrontal Algorithm. 

 
 
  

 
 

Fig. 4.13. Memory Usage of the Multifrontal Method. 
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Guermouche et al also deeply investigated the relationship between the structure of the 

elimination tree and active memory usage. As seen in Fig. 4.14, a wide elimination tree 

causes a higher peak in the active memory usage. 

 
 
 

 
 

Fig. 4.14. Effect of the Elimination Tree Structure on Memory Usage [121]. 

 
 
 
Depending on the positioning of the non zero entries (simply called and known as matrix 

ordering), the elimination tree might have different structures as seen in Fig. 4.15. Several 

observations and comments can be made: 

• Each branch of the elimination tree can be distributed to another processor. A 

very narrow tree might cause inefficient parallelism, since some of the processors 

might not be allocated. On the other hand, a very wide tree might cause that the 

number of processors become insufficient. 

• A deep tree might reduce active memory usage, but increases CPU time. 

• An unbalanced tree might cause inefficient parallelism; some processors can 

finish their tasks earlier and wait, but the dominant term is the CPU time of the 

busiest processor. 
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Fig. 4.15. Different Elimination Tree Structures. 

 
 
 
There are several matrix reordering methods available in the literature (not only in 

published form but also inside compileable/linkable or executable software packages 

[123-127], which structures the elimination tree of a matrix according to the needs. A 

rough comparison of these methods and resultant elimination trees are given in Fig. 4.16. 

Of course, there is not any certain statement that “such reordering method comes first”; 

the one which is most appropriate for the needs should be selected. 

 
 
 

 
Fig. 4.16. A Comparison of the Matrix Reordering Methods [121]. 
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4.8. Effects of Node/Edge Ordering During Matrix Solution 

One of the main steps of the finite element solution is the matrix assembly process, which 

is the construction of the global system matrix from the elemental matrices. For this 

purpose, during the mesh generation, while the elements are being constructed, a mapping 

relating the local edge and the element numbers to a global edge number should also be 

constructed.  The assembly process assigns the contribution of the element matrices to the 

corresponding entries of the global matrix via this mapping.  

 

For example, if the ith and jth local edges of an element e are mapped to Ith and Jth 

global edges, then the entry (i, j) of the eth elemental matrix should have a contribution to 

the entry (I, J) of the global system matrix. 

 

Similarly, if an edge with a global number I is shared by 4 elements e1, e2, e3, e4 (which is 

the usual case except the edges on the boundaries), and if it has the local numbers i1, i2, i3, 

i4 in these elements respectively, then  

 

),(),(),(),(),( 444333222111 iieiieiieiieIIG +++=    (4.53) 

 

where G is the global system matrix.  

 

The method of edge ordering determines the structure of the global stiffness matrix. For 

simplicity, consider the example of quadrilateral node elements. Naturally, in this 

example node ordering determines the structure of the global stiffness matrix. As seen in 

Fig. 4.17, the nodes same mesh can be numbered in different manners. 
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Fig. 4.17. Different numbering schemes for a fixed quadrilateral mesh. 

 
 
If the nodes are numbered in an ordered manner, the resultant global stiffness matrix will 

be banded as seen in Fig. 4.18. 
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Fig. 4.18. Resultant Matrix for the Ordered Numbering Scheme. 
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If the nodes are numbered in a spiral manner, the resultant global stiffness matrix will not 

be banded, but still structured this time, as seen in Fig. 4.19. 
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Fig. 4.19. Resultant Matrix for the Spiral Numbering Scheme. 

 
 
 

If the nodes are numbered in an irrelevant (seems like random; but intentionally 

maximizing the global node number difference between adjacent nodes) manner, the 

resultant global stiffness matrix will be very unstructured this time, as seen in Fig. 4.20. 

 



 96

X X X X
X X X X

X X X X
X X X X

X X X X X X
X X X X X X

X X X X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X

X X X X X X
X X X X X X

X X X X X X
X X X X X X X X X

X X X X X X
X X X X X X

X X X X X X
X X X X X X

X X X X X X X X X
X X X X X X

X X X X X X X X X
X X X X X X

X X X X X X X X X
X X X X X X X X

X X X X X X X X X

 
 

Fig. 4.20. Resultant Matrix for the Irrelevant Numbering Scheme. 

 
 
 

The structure of the global stiffness matrix is very important especially in the multifrontal 

algorithm. Although all the matrices will have the same sparsity, the amount of fill-ins 

(i.e. the number of probable nonzero entries after the Gaussian elimination starts) differs. 

The fill-ins are illustrated for all matrices (their upper diagonal parts) in Fig. 4.21.  

 

As seen from this figure, ordered and spiral numbering schemes yield less fill-ins 

compared to irrelevant numbering scheme. This exaggerated experiment shows that the 

global node number difference of adjacent nodes should be kept as minimum as possible 

in order to minimize the memory requirements if the multifrontal method will be used. 

When ordered and spiral numbering schemes are compared, it can be seen that the 

amount of fill-ins is nearly equal. However, the positions of the potential filled-in entries 

are more predictable for the ordered scheme, since the fill-ins reside inside the band.  

 

The conclusion of this analysis can be summarized as: Ordered node/edge numbering 

scheme should be preferred in order to minimize the memory usage of the multifrontal 

algorithm.   

 



 97

X X X X
X X X X X

X X X X X
X X X X X

X X X
X X X X

X X X X X
X X X X X

X X X X X
X X X

X X X X
X X X X X

X X X X X
X X X X X

X X X
X X X X

X X X X X
X X X X X

X X X X X
X X X

X X
X X

X X
X X

X

X X X X
X X X X X

X X F X X X
X X F F X X X

X F F F X X
X F F F F X X

X X F F X X X
X X F F X X X

X X F F X X X
X F F F X X

X X F F F X X
X X F F X X X

X X F F X X X
X X F F X X X

X F F F X X
X X F F F X X

X X F F X X X
X X F F X X X

X X F F X X X
X F F F X X

X X F F F
X X F F

X X F
X X

X

X X X X
X X X X X

X X X X X X X
X X X

X X X X
X X X X X X

X X X X X X X
X X X

X X
X X X

X X X X
X X X X X

X X X X X X X
X X X

X X X X
X X X X X X

X X X X X X X
X X X

X X
X X X

X X
X X

X X
X X

X

X X X X
X X X X X

X X X X X X X
X X X F F F

X X X X F F F
X X X X X X F

X X X X X X X F F
X X X F F F F

X X F F F F
X X X F F F

X X X X F F F
X X X F F F X X

X X X X F F X X X
X X X F F F F F

X X X X F F F F
X X X F X X X F

X X X X X X X F F
X X X F F F F F

X X F F F F F
X X X F F F

X X F F F
X X F F

X X F
X X

X

X X X X
X F X F X F X

X F X F F X F F X F
X X F F F X F F F X F F F

X F X F F F F X F F X X F X
X X F F F F F F X X F F X F X

X F F X X F F X F F F F X X X X X
X F F F X F F F X F F F X F F X X X

X F F F X F F F X F F X X F X X F
X F F F X F F F X F F F X F F F

X F F F X F F F X F F X F F F
X F F F X F F F X F F X F F

X F F F X F F X F F X F F
X F F F X F F X X F X F

X F F F X F F F F F X
X F F F F F F F F X

X F F F X F F F F
X F F X F F F F

X F F X F X X
X F F X F F

X F X X F
X F F F

X X X
X X

X

X X X X
X X X X

X X X X
X X X X

X X X X X X
X X X X X X

X X X X X X X X X
X X X X X X X

X X X X X X X
X X X X

X X X X
X X X X

X X X X
X X X X X

X X X
X X

X X
X X

X X X X
X X

X X X
X

X X X
X X

X  
 

Fig. 4.21. Effect of Fill-in for the matrices obtained by different ordering schemes. 

 
 
 
The situation is different if the conjugate gradient method (or any of its derivatives) is 

used. For this purpose, the procedure called “node coloring” might be followed. The 

nomenclature “coloring” comes from the duality of this problem to the famous “map 

coloring” problem of the graph theory. The procedure is a two-step algorithm: 

i) First, the nodes are colored so that adjacent and related nodes will have different 

colors. The coloring is performed by assignment of integers (i.e. color codes) to 

each node. 

ii) Second, starting from the smallest color code (0 in this example), the nodes of the 

same color are numbered in order. When the nodes in one color code finishes, the 

numbering operation continues after incrementing the color code. 
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The procedure is repeated for the same example as seen in Fig. 4.22. The main aim of the 

procedure is to maximize the distance of the nodes with successor numbers. This is 

similar to maximizing the distance of two countries with same colors in the map coloring 

problem. 

 
 
 

 
 

Fig. 4.22. “Node Coloring” Numbering Scheme. 

 
 
 

The resultant matrix after the node coloring scheme is as seen in Fig. 4.23. Since this 

matrix can be subdivided to submatrices, which are mostly diagonal; parallelization can 

be achieved during the iterative solution of this matrix. 
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Fig. 4.23. Resultant Matrix After the Node Coloring Scheme. 

 
 
 
After such an analysis, the lessons learnt can be applied to the numbering of edge 

elements. In Fig. 4.24, ordered edge numbering for linear quadrilateral edge elements is 

given. The band of the matrix can be calculated in such a numbering scheme. 

 

Similarly, ordered edge numbering for quadratic quadrilateral edge elements can be 

performed as seen in Fig. 4.25.   

 

The analysis can similarly be extended and effects of any numbering scheme can be 

investigated for hexahedral edge elements of any order.  
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Fig. 4.24. An example for the Linear Quadrilateral Edge Element. 

 



 101

X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X

X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X

X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X

X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X

X X
X X
X X
X X
X X
X X X X
X X X X
X X

X X
X X
X X
X X X X
X X X X
X X

X X
X X
X X
X X X X
X X X X
X X

X X
X X
X X
X X
X X
X X

= 8N+10

= 
8N

+1
0

= 8N+10

= 
8N

+1
0

= 6NL + 2N + 2L

1 2

3 4

56

7

8

9

10

11 12

13 14

15 16

17

18 .  .  .  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .  .  .
.  .  .  .  .  .  .  .  .  .

80 81

107 108

104

105

106
109

110

111

112

.  .  .  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .  .  .

N

L

 
 

Fig. 4.25. Another example for the Quadratic Quadrilateral Edge Element. 

 
 
 
 

4.9. Radar Cross-Section and Huygens’ Equivalence Principle 

One of the particular interests in scattering is the evaluation of the radar echo area (for the 

two-dimensional case) or scattering cross-section (for the three-dimensional case). The 

latter is given by 
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3 4lim
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sct
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rD πσ
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=     (4.54) 
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where Esct is the far zone scattered field. In order to calculate the far zone scattered field, 

we utilize the surface equivalence principle, which reduces the calculation to the 

computation of a surface integral.  

 

The surface equivalence principle states that the field exterior (or interior) to a given 

surface may be exactly represented by equivalent currents on that surface and allowed to 

radiate into the region external (or internal) to that surface. The appropriate currents 

representing the fields are given as 

 

MnE
JHn

=×
=×

      (4.55) 

 

The far field expression for the electric field due to these equivalent currents is 

approximately given by the expression 
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where r and r′ denote the observation and source points respectively, and Z0 is the free 

space impedance. The far zone scattered field Esct is calculated by Equation (4.56) and 

this value is substituted in Equation (4.54). An acceptable criterion for using Equation 

(4.56) conveniently is Rayleigh’s criterion stated as 

 

0

22
λ
Dr ≥       (4.57) 

 

where D is the largest dimension of the scattering material.  

 

In practical applications the scattering cross-section, which is calculated by using 

Equation (4.54), is normalized with the square of the wavelength, and its characteristics is 

observed in logarithmic scale. This quantity is denoted by ‘RCS dBSW’. 
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The computation of the surface integral for conformal meshes with curved elements is not 

a straightforward task. The following formulation should be used for this purpose. 

 
 
 

 
 

Fig. 4.26. Pictorial Description of the Surface Integration Method. 

 
 
 
As seen in Fig. 4.26., by using the isoparametric hexahedral elements (i.e. assuming that 

each hexahedral element is transformed to a cube in ξηζ-space extending from (-1,-1,-1) 

to (1,1,1)); for any function G′(x,y,z), the surface integral on the surface of an element 
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in the xyz-space can be stated as 
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in the ξηζ-space. In Equation (4.60), 
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Or in other words,  
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CHAPTER 5 
 

 

NUMERICAL RESULTS  

 

 

 

5.1. Results for Homogenous Scatterers  

Throughout this section, results obtained for homogenous scatterers are given. 

Comparisons and comments on the solutions are given; and the solution accuracy is 

discussed. Unless otherwise stated, in all examples the incident field is chosen as e-jkzay. 

The results are investigated for different θ values in the φ = 0 and φ = π / 2 planes. 

5.1.1. Results for Uncurved Homogenous Scatterers  

5.1.1.1.  Permeable Cube 

As a first example, RCS of a permeable cube with a sidelength of 0.5λ, and a relative 

permeability of µr = 2.2 is considered. The results obtained for 125 quadratic hexahedral 

edge elements and 2,080 unknowns (indicated with triangles), are compared to those of 

Sertel [128] (indicated with line) in Fig. 5.1. The same accuracy level was achieved about 

1,000 linear hexahedral edge elements.  

 

For this problem, in [128] Sertel used the Multilevel Fast Multipole Method (MLFMM) 

together with a Volume Integral Equation (VIE) formulation. He also used Finite Element 

Boundary Integral (FE-BI) Method for comparison. Unfortunately, he has not explicitly 

stated the details (number of elements, number of unknowns, etc.) of the FE-BI solution, 

although he clearly stated that he used hexahedral elements.  
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RCS of a Permeable Cube 
of  Sidelength 0.5λ  and µ r  = 2.2
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Fig. 5.1. RCS of a Permeable Cube Calculated on Compared to [128]. 

 
 
 

5.1.1.2. Composite Cube 

As a second example, RCS of a composite cube with a sidelength of 0.2λ, a relative 

permeability of µr = 2.2, and a relative permittivity of εr = 2.2 is considered. Again, the 

results obtained for 125 quadratic hexahedral edge elements and 2,080 unknowns 

(indicated with triangles), are compared to those of Sertel [128] (indicated with line) in 

Fig. 5.2. Similar to the permeable cube case, the same accuracy level were achieved          

about 1,000 linear hexahedral edge elements. 

φ = π / 2 plane 

φ = 0 plane 

: Calculated : Sertel [128] 
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RCS of a Composite Cube 
of Sidelength = 0.2λ , µ r = 2.2 and ε r = 1.5
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Fig. 5.2. RCS of a Composite Cube Calculated and Compared to [128]. 

 
 
 
As in the permeable cube problem, in [128] Sertel also used the Multilevel Fast Multipole 

Method (MLFMM) together with a Volume Integral Equation (VIE) formulation. He also 

used Finite Element Boundary Integral (FE-BI) Method for his comparisons. 

Unfortunately, again he has not explicitly stated the details (number of elements, number 

of unknowns, etc.) of the FE-BI solution, although he clearly stated that he used 

hexahedral elements.  

5.1.2. Results for Curved Homogenous Scatterers 

5.1.2.1.  PEC Sphere 

In this problem, the scatterer is chosen to be a PEC sphere with a radius of 0.5λ. The 

mesh generated for this problem corresponds to a mesh of a spherical shell, since the 

volume (and the elements) inside the PEC sphere is thrown out. The domain 

decomposition and the details of the mesh generation are given in Appendix C. Meshes 

with different levels of density are given in Fig. 5.3. 

 

 

As expected, varying the parameters of meshing (mentioned in Appendix C) is a driving 

factor in the element and edge sizes as well as the number of elements and edges 

φ = π / 2 plane 

φ = 0 plane 

: Calculated : Sertel [128] 
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(unknowns). In order to perform a comparison, each meshing scheme is given a name 

(pecsph00x). In summary, the parameters and total number of elements achieved in each 

scheme is given in Table 5.1. 

 
 
    

 
 

Fig. 5.3. Meshes of Different Levels of Density. 
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Table 5.1. Comparison of Each Meshing Scheme (Meshing Parameters and Resource 

Requirements). 

 
 θc 

(degrees) 

θd   

(degrees) 

Mesh 

Resolution 

in R 

direction 

(unitless) 

Mesh 

Resolution 

in θ 

direction 

(degrees) 

Mesh 

Resolution 

in φ 

direction 

(degrees) 

Number of 

Elements 

pecsph001 45 40 1 5 5 20,880 

pecsph002 45 40 2 9 9 3,400 

pecsph003 45 40 2.5 15 12.85 1,288 

pecsph004 30 25 2.5 30 22.5 512 

 
 
 

 
 

Fig. 5.4. Cross section of the mesh generated for the PEC sphere problem. 

 
 

The cross-section of the mesh generated for this problem is given in Fig. 5.4. For this 

problem, a percentage error measure err(E) for the magnitude of the scattered field is 

defined as 

 

∑
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where Eexact(Pi) is the exact electric field calculated via the Mie series at the centroid (Pi) 

of an element lying in free space; whereas Ecomp(Pi) is the value calculated by FEM at the 

same point. Certainly, the summation traces all elements lying in free space; K is the 

number of such elements; and err(E) is therefore the mean normalized error over the free 

space portion of the computational domain. 

 

A summary of the resources required for the execution of different numerical experiments 

is given in Table 5.2. It is clear that the usage of quadratic hexahedral elements yields 

better accuracy compared to the usage of linear hexahedral elements.  

 
 
 

Table 5.2. Comparison (resource requirement, element size, solution accuracy, etc.) of 

linear and quadratic elements for PEC sphere problem. 

 

 
 
 

5.1.2.2.  Dielectric Sphere 

Next, the RCS of a dielectric sphere of radius 0.5λ is considered. This time, the mesh to 

be generated is a full sphere, not a spherical shell. This is because of the fact that the 

volume of the scatterer should also be considered. The details of the domain 

decomposition and mesh generation are given in Appendix C.  

 

The RCS of the dielectric sphere is calculated and compared to Mie series as seen in Fig. 

5.5. This accuracy level was achieved by 804 quadratic or 8,640 linear elements 

(corresponding to 8,230 and 26,840 unknowns respectively). 
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RCS of a Dielectric Sphere of Radius 0.5λ and Relative Permittivity 
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Fig. 5.5. RCS of a Dielectric Sphere. 

 
 

5.1.2.3.  PEC Spheroid 

The next solved problem of this class is RCS of the oblate/prolate PEC spheroids. The 

cross-section of the mesh generated for a PEC sphere problem is given in Fig. 5.6.  

 
 
 

 
 

Fig. 5.6. Cross-Section of the Mesh Generated for a PEC Prolate Spheroid. 
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As seen in Fig. 5.6, the problem is similar to PEC sphere problem: The elements inside 

the scatterer should be thrown out, and there exists a transformation from the PEC sphere 

mesh to PEC spheroid mesh (i.e. two meshes are homeomorphic), where the 

tranformation is pictorially described in Fig. 5.7. 

 

 

 

 
 

Fig. 5.7. Transformation from the PEC sphere mesh to the PEC spheroid mesh. 

 
 
 
By using this method, all-hexahedral meshes for oblate and prolate spheroids have been 

generated as seen in Fig. 5.8. 

 
 
 

 
 

Fig. 5.8. Sample All-Hexahedral Meshes Generated for  

(a) Prolate, (b) Oblate PEC Spheroids. 
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To the author’s knowledge, unfortunately bistatic RCS results for PEC spheroids do not 

exist in the literature. Only, backscatter RCS values for oblate PEC spheroids are given in 

[129].  Hence, the backscatter RCS problem is solved by using locally conformal PML 

formulation [101] and both van Welij’s and Kameari’s elements; and the obtained results 

are compared as seen in Table 5.3. Throughout this analysis, the major axes of the 

spheroid are kept fixed as 2λ; and the minor axis length is varied between 0.2λ and 0.9λ. 

 
 
 

Table 5.3. Backscatter RCS of an Oblate Spheroid (Maxor Axes Fixed at 2λ). 

 
Sph. 
Minor 
Axis 
Length 
(λ) 

Element 
Type 

 
Element 
Size in 
Radial 
Dir. (λ) 

Number 
of 
Elements 

Back- 
scatter  
RCS 
(dB)  
[129]  

Calc. 
Back-
scatter 
RCS  
(dB) 

Error 
(%) 

Linear 0.1 7,040 44.0 2.33 0.2 
Quadratic 0.4 640 43 43.3 0.70 
Linear 0.1 10,560 37.6 1.62 0.3 
Quadratic 0.4 960 37 37.5 1.35 
Linear 0.1 14,080 32 3.23 0.4 
Quadratic 0.4 1,280 31 31.8 2.58 
Linear 0.1 17,600 25.0 4.17 0.5 
Quadratic 0.4 1,600 24 24.9 3.75 
Linear 0.1 21,120 21.1 5.50 0.6 
Quadratic 0.4 1,920 20 20.9 4.50 
Linear 0.1 24,640 20.8 9.47 0.7 
Quadratic 0.4 2,240 19 20.4 7.37 
Linear 0.1 28,160 20.4 13.33 0.8 
Quadratic 0.4 2,560 18 19.3 7.22 
Linear 0.1 31,680 20.2 12.22 0.9 
Quadratic 0.4 2,880 18 19.1 6.11 

 
 
As seen from Table 5.3, 0.4λ-sized quadratic elements give accuracy comparable with 

0.1λ-sized linear elements. In [129], the solution is performed also by means of FEM but 

with spheroid PML formulation; but the authors have not specified the element type or 

the number of elements/unknowns. It is not possible to compare the method in this work 

with theirs in terms of resource usage (CPU time, memory, etc.). Nevertheless, the 

solutions seem to be matching with each other. 

 

Backscatter RCS values for prolate PEC spheroids for comparison could not be found in 

the literature. 
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5.1.2.4.  Dielectric Cylinder 

As another example, the dielectric cylinder (εr = 4, d=4λ, h=4λ) as shown in Fig. 5.9 is 

considered. The details of the domain decomposition and mesh generation are given in 

Appendix C. In order to get benefit of the cylindrical coordinates during the mesh 

generation, the problem is transferred to a x′y′z′-space, in which the main axis of the 

cylinder will be along the z′ axis. After the mesh is generated, the following back 

transformation is carried out: x′ → z; y′ → x; z′ → y  

 
 
 

 
 

Fig. 5.9. Description of the Dielectric Cylinder Problem. 

 
 
 
Since the scatterer in this problem is electrically large, only solution with quadratic 

elements is considered. Solution with 5,860 elements and 86,400 unknowns is illustrated 

in Fig. 5.10 and compared to [130]. In [130], the solution was found by using the Method 

of Moments and the so-called Precorrected Fast Fourier Transform. The authors have not 

explicitly stated the resource requirements (CPU time, memory) of the set-up they have 

used for the solution of this problem. 

 

h 

y 

x 

d

z 
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RCS of a Dielectric Cylinder
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Fig. 5.10. RCS of a Dielectric Cylinder Calculated and Compared to [130]. 

 
 
 

5.2. Results for Scatterers with Patches 

In this section, RCS (either bistatic or backscatter) of various scatterers with patches are 

investigated. 

5.2.1. Results for Uncurved Scatterers with Patches  

Among the scatterers with patches, first the ones with uncurved sides and faces are 

considered. RCS of microstrip patch antennas was a popular research area in the early 90s 

since they are dominant on the RCS of the platforms that they are mounted on. Volakis et 

al had a series of papers about the RCS of the rectangular patch microstrip patch antennas 

[131-133]. In these papers, the authors used the Finite Element – Boundary Integral (FE-

BI) Method. They have not specified the element type, and the number of unknowns; 

hence it is not possible to compare the results in terms of resource requirements (CPU 

time, memory, etc.). 

φ = π / 2 plane 

φ = 0 plane 

: Calculated : Given in [130] 
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5.2.1.1. Unloaded Rectangular Microstrip Patch 

The first problem in this category is the RCS of a rectangular patch. The geometry and 

the results related to this problem are given in Fig. 5.11; comparison are performed 

against [133]. In the first part, the RCS is observed when the patch is appearing. 

 
 
 

 3.678 cm × 2.750 cm patch  

 7.340 cm × 5.334 cm × 0.144 cm 

substrate with εr = 4.0 

θ (degrees) 

  Computed [*]

  Measured [*] 

 

Linear Hex  

(35468  

Unknowns) 

 

Quadratic Hex 

(23414  

Unknowns) 

(A) (B)

  [*]: Jin and Volakis  

 
Fig. 5.11. RCS of an Unloaded Rectangular Microstrip Patch (Compared to [133]). 

 
 
 
In the second part, the patch is removed and the RCS is observed. The results are given in 

Fig. 5.12. 

 
 

 3.678 cm × 2.750 cm  

patch REMOVED 

 7.340 cm × 5.334 cm × 0.144 cm  

substrate with εr = 4.0 
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  [*]: Jin and Volakis  

 
Fig. 5.12. RCS of the Same Geometry When Patch Removed (Compared to [133]). 
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5.2.1.2. Singly-Loaded Rectangular Microstrip Patch 

In this problem, the backscatter RCS of a loaded rectangular patch is analyzed. For this 

problem, the software is executed once for each frequency to compute the relevant 

backscatter RCS value. Results are given in Fig. 5.13. 

 
 
 

 3.66 cm × 2.60 cm patch  

 7.32 cm × 5.20 cm × 0.158 cm  

substrate with εr = 2.17 

 θinc = 60° and φinc = 45°  

 ZL = 50Ω  impedance load  

at xL = -1.83 cm, yL = -1.30 cm  Frequency (GHz) 

σ (dB) 

Computed [*] 
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(19088 

Unknowns) 
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  [*]: Jin and Volakis  

 
Fig. 5.13. Backscatter RCS of a Singly Loaded Rectangular Patch (Compared to [133]). 

 
 
 
As a second example for this type, a different configuration -a differently located load- is 

analyzed. The corresponding results are given in Fig. 5.14. 
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 2.60 cm × 3.66 cm patch  

 5.20 cm × 7.32 cm × 0.158 cm substrate 

with εr = 2.17 

 θinc = 60° and  φinc = 45°  

 ZL = 50Ω at xL = 1.31 cm and yL = 0.78 

cm 

(A) 

Computed [*] 
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Fig. 5.14. Backscatter RCS of Another Singly Loaded Rectangular Patch (Compared to 
[133]). 

 
 
 

5.2.1.3. Mutiply-Loaded Rectangular Microstrip Patch 

In this problem, the backscatter RCS of a multiply-loaded rectangular patch is analyzed. 

For each control group, the load impedance (not the location) is changed this time. Again, 

the software is executed once for each frequency to compute the relevant backscatter RCS 

value. Results are given in Fig. 5.15. 
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 3.4 cm × 5.0 cm patch  

 5.1 cm × 7.5 cm × 0.176 cm substrate with εr = 2.17 

 θinc = 70° and  φinc = 45° 

 ZL = 300, 50, or 0Ω  at xL = ±2.5 cm and yL = ±1.70 

(C) Unloaded (A) 300Ω loaded (B) 50Ω loaded 

 

Fig. 5.15. Backscatter RCS of a Multiply Loaded Rectangular Patch (Compared to [133]). 

 
 
 

5.2.2. Results for Curved Scatterers with Patches 

In this subsection rather than flat objects, RCS of the scatterers with curved edges and 

faces are considered. 

5.2.2.1. Circular PEC Patch Above a Dielectric Cylinder  

As a patched structure, this time a structure with curved faces is chosen. The scatterer is 

illustrated in Fig. 5.16 with relevant electrical dimensions and material properties. 

 
 
 

 

Fig. 5.16. Circular PEC Disk Above a Dielectric Cylinder.  

 

εr = 2.0 

r = 0.3λ 

h = 0.6λ 
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1,152 quadratic hexahedra and 17,640 unknowns result in the solution illustrated Fig. 

5.17. The results are compared to those of [134]. In [134], the solution was found by 

using the Method of Moments and the so-called Precorrected Fast Fourier Transform.   
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Fig. 5.17. RCS of a PEC Disk on a Dielectric Cylinder Calculated (Compared to [134]). 

 
 
 

5.2.2.2. Circular PEC Patch Above a Dielectric Coated Sphere 

As a second example of this kind, the RCS of a circular PEC patch on a dielectric 

spherical shell located on a PEC sphere is considered. The geometry is illustrated and the 

dimensions are given in Fig. 5.18. Again, the problem is solved with linear and quadratic 

hexahedral elements separately, where the incident field is a uniform plane wave of θi = 

π. The solution approach and a cross-section of the generated mesh are illustrated in Fig. 

5.19. 
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Fig. 5.18. Description of the Circular PEC Patch on Dielectric Coated PEC Sphere 
Problem. 

 
 
 

A highly dense mesh generated for this problem is given in Fig. 5.20; where only the 

scatterer part of the mesh is illustrated for better visualization. In Fig. 5.20, the edges 

corresponding to the patch are illustrated via a different color/tone. 

 
 
 

PML Region

Free Space 
Region

Dielectric 
Substrate 

Region

Thrown-out 
Elements

Circular Patch

0.70.82

0.363 0.187 (mesh for linear elements)

(mesh for linear elements)

0.1870.66 (mesh for quadratic elements)

(mesh for quadratic elements)0.66 0.7  
 

Fig. 5.19. Cross Section of the Mesh Generated for the Circular PEC Patch on Dielectric 

Coated PEC Sphere Problem. 
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Fig. 5.20. 3D View of the Mesh Generated for the Circular PEC Patch on Dielectric 

Coated PEC Sphere Problem (Only Scatterer Shown). 

 
 
 

Table 5.4. Comparison (Resource Requirement, Element Size) of Linear and Quadratic 

Elements for Circular PEC Patch on Dielectric Coated PEC Sphere Problem. 

 

*: Element Size 0.1873  for the first level (dielectric substrate region); 
033 for further levels (free space and PML regions).

Element Size ( )
Element 

Type
Number of 
Elements

Linear

Quadratic

10,560

960

along R along 
fixed min max

along 
min max

0.090865

0.33*

Number of 
Unknowns

34,634

13,480

0.065

0.183

0.196

0.576

0.098

0.262

0.294

0.863

 
 
 
 

The results for this problem are given in Fig. 5.21, and compared with the results in the 

literature [134-135]. Moreover, resource requirements of each approach are summarized 

in Table 5.4. Again, quadratic hexahedral elements (up to size of 0.4λ) are proven to be 

successful in RCS calculation. In [134], the solution was found by using the Method of 

Moments and the so-called Precorrected Fast Fourier Transform. Hence it is not possible 

to make a resource usage (CPU time, memory, etc.) comparison with [134]. 
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Fig. 5.21. Radar Cross Section of the circular PEC patch on dielectric coated PEC sphere 

(Compared to [134]). 

 
 
 

5.3. General Discussions About the Results  

Unfortunately, framework defining a set of benchmark scattering problems does not exist 

in the literature. In such a case, it would be possible to compare the proposed method to 

all other existing methods in the literature one-to-one in all aspects (accuracy, speed, 

memory, code complexity, etc).  

 

Hence for various problems, the results have been compared to the ones (in terms of 

solution accuracy) in the literature [128-135] particularly. In each of these works, the 

authors have implemented and demonstrated the results of various methods, such as:  

- Finite Element Boundary Integral (FE-BI) Method [128, 131-133],  

- Multilevel Fast Multipole Method (MLFMM) [128],  

- Method of Moments (MoM) with Precorrected Fast Fourier Transform 

(PFFT) [130-134].  

 

 

φ = π / 2 plane 

φ = 0 plane 
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Regardless of the method used in the compared publication, the method used in this work 

seems to be working properly and accurately (i.e. usage of Kameari’s element in the 

scattering problems is appropriate, and it is a promising technique in terms of accuracy 

and resource usage).  

 

On the other hand, it could not be possible to compare the method with other methods for 

other aspects (CPU usage, memory usage, solution speed, etc) due to lack of information 

given about the other methods. 

 

In [129], Finite Element Method has been applied together with “spheroid PML” 

formulation. Among the others, the method is the closest one to the method used in this 

work. However, since the authors did not give any information about the implementation 

details (element type, element shape, number of elements, number of unknowns, etc), 

again it could not be possible to perform a comparison in all aspects. 
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CHAPTER 6 
 

 

AN OBJECT AND PATTERN ORIENTED APPROACH IN THE 

FINITE ELEMENT SOFTWARE DEVELOPMENT 

 

 

 

 

6.1. Object Oriented Methodology and Software  

In this section, the reasons of migration to the object oriented software are discussed. 

Unlike the other chapters, the contents of this chapter are not physical facts, or exact 

mathematical expressions (i.e. the content is just “a” correct approach; not “the” correct 

one, since there doesn’t exist a unique one). Two factors are important to develop all 

products; the user’s expectations, and the developer’s considerations. Naturally, these 

will apply to software products. 

6.1.1. User’s Point Of View 

From the user’s point of view, modern finite element software should have the following 

features: 

• Ease of use: The finite element software should provide a graphical user 

interface from which the user can investigate the mesh, the boundary conditions, 

and also the results. It should also provide the user to select his/her preferences 

during the finite element analysis in an ergonomic manner. 

• Platform independence: Considering that the end users of the finite element 

software are mostly academic researchers (and also some large institutes and 

companies), it is more acceptable to have the finite element software deployable 

to various platforms. A researcher might want to execute the software in his      
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Apple Macintosh or Windows PC at home or his office; as well as at the UNIX 

based workstation in his laboratory. 

• Adaptability to elements of various shape and various types: The spectrum of 

the finite element software should be very wide in order to get attention both 

from the academic society and the commercial market. For example, software 

covering and targeting only tetrahedral node elements with 1 degree of freedom 

will be commented to be ordinary and old fashioned in the 21st century. The 

software should be capable of handling node, edge, facet, and volume elements of 

various shapes in 2D and 3D. 

• Inclusion of various algorithms for a specific purpose: In almost every step 

(element selection and basis function construction, mesh quality measurement, 

mesh quality improvement, numerical integration during element matrix 

construction, stiffness matrix ordering, stiffness matrix reordering/ 

preconditioning, matrix solution, etc.) of the finite element analysis, there are 

numerous alternative competing algorithms and methods, and there are always 

trade-offs (speed, accuracy, memory, etc.) while deciding to use one of them. 

Modern software should allow the user to set the preferences at each step 

enabling the researchers also to perform comparative analyses.  

• Concurrency/Parallelization: Adaptability to concurrent/parallel execution in 

single/multi-processor environments respectively is one of the key factors in 

modern numeric software. Since some steps in the finite element software are 

time consuming, it is nearly compulsory for the software to be deployable to 

distributed/parallel computing environments.  

• Interoperability: Interoperability with the available mesh generation software in 

the literature or market is another key factor. Mesh generated by widely accepted 

and well known mesh generation software should be importable by the finite 

element software. This fact will spread the usage of the software in academic and 

industrial societies. Similarly, interoperability with the available matrix 

software/libraries in the literature or market is also important with the same 

reasons and arguments.  
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6.1.2. Design Considerations 

On the other hand, the design aspects of modern finite element software should be as 

follows from the developer’s point of view: 

• Ease of development: The software development environment (computer aided 

design and engineering tools) should provide encouraging and comfortable rapid 

prototyping and development opportunities to the developer(s). 

• Modularity and adaptability: Since the finite element world is a continuously 

evolving universe, adding new functionality and features is nothing but the nature 

of it. The software architecture should be so modular and adaptable that adding 

new functionality would not cause reinvention of the wheel, or one of the 

nightmares on Elm Street. 

• Understandability and Maintainability: Considering that the evolution of such 

large software would take 5-10 years, the developer(s) might change. It is even 

not uncommon for a developer to forget his/her own development activities a 

couple of months later. Hence understandability of the code is important both for 

the ongoing developers and new-comers, not only during the development but 

also during the maintenance phase. Maintenance is usually the mostly ignored but 

the most trouble causing phase in the software life cycle. Considering the trends 

in the finite element analysis; it seems that adaptive, corrective, preventive and 

perfective maintenance activities (for a clean definition of maintenance activities 

see [136]) might be inevitable and crucial for the modern finite element software.  

• Testability: Bottom-up integration and test, although underestimated and ignore 

usually, is as important as top-down analysis, design and development in 

software life cycle. From the very atomic portions of the code to the highest 

level, there should be systematic methods to perform the test activities in the 

code. Earlier the bugs are found, it is cheaper to fix them.  

• Good Documentation: Another feature of the software language to be used for 

development (together with the available tools certainly) should be self-

documented. Documentation is a headache and a big overhead for the developers 

due to its time consumption; but lack of documentation is the nightmare of new-

comers and maintenance personnel on the other hand. Hence, the language should 

be self-descriptive; and there should be tools & methods to extract the 
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documentation in an elegant manner directly from the code itself. In such a case, 

there will not be an additional boring overhead of documentation impacting the 

developers. 

• Language Appropriateness: Since the finite element analysis is depending on 

numerical methods, and it requires high speed in run-time; the language should 

be also appropriate for such purposes. Some high level languages like Java do not 

provide high speed run-time results due to their natures.  

• Platform independence: “Write once, run everywhere” is the main aim of most 

of the software developers. Although the main reason can be specified as 

increasing the customer/consumer/end user spectrum of the end product; it is a 

well-known fact that it increases the self-satisfaction of the developers. 

6.1.3. Object Oriented Languages and C++ 

Considering the design aspects and the compulsory/preferred features listed above, it is 

clear that the modern finite element software should be developed by using object 

oriented methodology. Object oriented methodology (analysis, design, development and 

test), which has aroused in the 1990s during the big software crisis after the end of the 

Cold War, is the trend in the software development world. Due to their strengths and 

advantages in terms of various factors, object oriented languages such as Lisp, Java and 

C++ have found very wide usage in the last one and a half decade. In a couple of years 

after their inventions, object oriented languages found broad usage also in the numeric 

methods software.  

 

In 1994, almost 99% percent of the available numeric method software had been 

developed by structure oriented languages with the domination of Fortran and C. In the 

last decade, especially after the development of object oriented wrappers around popular 

libraries such as PetSc [137], BLAS [138], and LAPACK [139] (which were originally 

developed with structure oriented languages); researchers got rid of their hesitations to 

use object oriented methodology during the development of numeric method software. 

An up-to-date list of available object oriented numeric software of any kind can be found 

in [140]. 
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Due to lack of support (in terms of computer aided engineering tools), Lisp might not be 

the right choice for the development of the finite element software. On the other hand, 

due to run-time inefficiency, Java should not be preferred in the finite element 

application, which requires hard and heavy run-time computing effort. For this purpose, 

C++ seems to be the ideal choice; and detailed information is in the following paragraphs.  

 

C++, which is invented by Stroustrup [141] over a robust procedure oriented language C 

[142], is recently used by hundreds of thousands of programmers in essentially every 

application domain. This use is supported by about a dozen independent implementations, 

hundreds of libraries, hundreds of textbooks, several technical journals, many 

conferences, and innumerable consultants. Training and education at a variety of levels 

are widely available. Early applications tended to have a strong systems programming 

flavor. For example, several major operating systems have been written in C++ and many 

more have key parts done in C++. During the development of C++, Stroustrup considered 

uncompromising low level efficiency essential. This allows developers to use C++ to 

write device drivers and other software that rely on direct manipulation of hardware under 

real time constraints. In such code, predictability of performance and compactness are as 

important as raw speed. For most of the code development efforts, the important factors 

are  

- maintainability,  

- ease of extension, and  

- ease of testing.  

 

 

C++’s support for these concerns has led to its widespread use where reliability is a must 

and in areas where requirements change significantly over time. Examples are banking, 

trading, insurance, telecommunications, and military applications. For years, the central 

control of the U.S. long distance telephone system has relied on C++ and every 800 call 

(that is, a call paid for by the called party) has been routed by a C++ program. Many such 

applications are large and long lived. As a result, stability, compatibility, and scalability 

have been constant concerns in the development of C++. Million line C++ programs are 

not uncommon in practice. Like C, C++ wasn’t specifically designed with numerical 

computation in mind. However, much numerical, scientific, and engineering computation   
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is done in C++. A major reason for this is that traditional numerical work must often be 

combined with graphics and with computations relying on data structures that don’t fit 

into the traditional Fortran mold. Graphics and user interfaces are areas in which C++ is 

heavily used. Anyone who has used either an Apple Macintosh or a Windows PC has 

indirectly used C++ because the primary user interfaces of these systems are C++ 

programs. In addition, some of the most popular libraries supporting X for UNIX are 

written in C++. Thus, C++ is a common choice for the vast number of applications in 

which the user interface is a major part. All of these points to what may be C++’s greatest 

strength: its ability to be used effectively for applications that require work in a variety of 

application areas. It is quite common to find an application that involves local and 

widearea networking, numerics, graphics, user interaction, and database access. 

Traditionally, such application areas have been considered distinct, and they have most 

often been served by distinct technical communities using a variety of programming 

languages. However, C++ has been widely used in all of those areas.  

 

Furthermore, C++ is able to coexist with code fragments and programs written in other 

languages. C++ is widely used for teaching and research. This has surprised some who – 

correctly – point out that C++ isn’t the smallest or cleanest language ever designed. It is, 

however  

• clean enough for successful teaching of basic concepts,  

• realistic, efficient, and flexible enough for demanding projects, 

• available enough for organizations and collaborations relying on diverse 

development and execution environments, 

• comprehensive enough to be a vehicle for teaching advanced concepts and 

techniques, and 

• commercial enough to be a vehicle for putting what is learned into nonacademic 

use. 

 

In summary, as its inventor Stroustrup mentioned: “C++ is a language that you can grow 

with.”  
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6.1.4. Standard Template Library of C++ 

Another important feature of the C++ is that it comes with a standard library handling 

most of the boring and complicated low level operations. This yields the developers to 

focus on its own work and forget any indirect business.  

 
The C++ standard library: 

1. Provides support for language features, such as memory management and 

runtime type information.  

2. Supplies information about implementation defined aspects of the language, 

such as the largest float value. 

3. Supplies functions that cannot be implemented optimally in the language itself 

for every system, such as sqrt() and memmove(). 

4. Supplies nonprimitive facilities that a programmer can rely on for portability, 

such as lists, maps, sort functions, and I/O streams. 

5. Provides a framework for extending the facilities it provides, such as 

conventions and support facilities that allow a user to provide I/O of a 

userdefined type in the style of I/O for builtin types. 

6. Provides the common foundation for other libraries. 

 
In addition, a few facilities – such as random number generators – are provided by the 

standard library simply because it is conventional and useful to do so. The design of the 

library is primarily determined by the last three roles. These roles are closely related. For 

example, portability is commonly an important design criterion for a specialized library, 

and common container types such as lists and maps are essential for convenient 

communication between separately developed libraries. 

 

The heart of the C++ standard library, the part that influenced its overall architecture, is 

the standard template library (STL). The STL is a generic library that provides solutions 

to managing collections of data with modern and efficient algorithms. It allows 

programmers to benefit from innovations in the area of data structures and algorithms 

without needing to learn how they work. From the programmer's point of view, the STL 

provides a bunch of collection classes that meet different needs, together with several 

algorithms  that  operate  on  them. All  components of the STL are templates, so they can                            
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be used for arbitrary element types. But the STL does even more: It provides a framework 

for supplying other collection classes or algorithms for which existing collection classes 

and algorithms work. All in all, the STL gives C++ a new level of abstraction. There is no 

need for programming dynamic arrays, linked lists, and binary trees; or programming 

different search algorithms. To use the appropriate kind of collection, one simply defines 

the appropriate container and calls the member functions and algorithms to process the 

data. The STL's flexibility, however, has a price, chief of which is that it is not self-

explanatory. Therefore, the subject of the STL fills several chapters in many books. An 

introductory reading about STL is [143], and more advanced topics for efficient usages in 

complex components can be found in [144]. 

 

In summary, the STL is based on different well-structured components, which are 

containers, iterators, and algorithms.  

 

- Containers are used to manage collections of objects of a certain kind. The containers 

may be implemented as arrays or as linked lists, or they may have a special key for every 

element. 

 

- Iterators are used to step through the elements of collections of objects. These 

collections may be containers or subsets of containers. For example, one operation lets 

the iterator step to the next element in the collection. This is done independently of the 

internal structure of the collection. Regardless of whether the collection is an array or a 

tree, it works.  

 

- Algorithms are used to process the elements of collections. For example, they can 

search, sort, modify, or simply use the elements for different purposes. Algorithms use 

iterators. Thus, an algorithm has to be written only once to work with arbitrary containers 

because the iterator interface for iterators is common for all container types. 

 

 

Even at first glance, it can be stated that STL provides tools & methods which are very 

suitable to the finite element analysis. By using the templates, it is possible to define and 

use a structure regardless of its type. By means of the templates, only the definition of 

“vector” is sufficient; then it is possible to use this template for a vector of real numbers, 
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or for a vector of nonnegative integers, or even for a vector of a custom type, etc. Iterators 

and algorithms also provide infrastructure to very complicated operations which are 

encountered in the finite element analysis. For example, during the imposure of the 

boundary conditions, some matrix rows/columns or entries should be deleted and the 

remaining entries should be shifted accordingly. Implementation of such an algorithm in 

Fortran or C might be a mess; however STL handles most of it.  

 

6.1.5. Migration to Object Oriented Methodology in FEM: FEM++ ? 

Regarding all the information given above, the current trend in the finite element software 

is naturally migration to object oriented architectures. Various papers focused on different 

subjects have been published [145-152]. The successfully leading and mature example of 

work products are:  

- OOFEM developed by Patzak [153-154], which is a full product but only limited 

to node elements, 

- FEMSTER developed by Castillo et al [155-156], which is not an end product 

but an object oriented library and framework providing components (finite 

elements of various shapes and types) to finite element software researchers and 

developers, 

- deal.II developed by Bangerth et al [157], which is again not an end product but 

an object oriented library and framework providing components (not only finite 

elements of various shapes and types; but also error estimators) to finite element 

software researchers and developers. 

6.1.6. Design Patterns in FEM 

Another methodology providing a common understanding and improving the readability 

and reusability of object oriented codes is the usage of design patterns. Gamma et al (also 

known as GoF standing for “Gang of Four”) encyclopedically listed 23 such patterns 

[158], classified as creational, structural and behavioral patterns; which are widely used 

and specifically known in the object oriented design world. In summary, design patterns 

have been defined by GoF in order to bring more standardization, make people live and 

feel déjà-vu’s during the design and carry their experiences by means of analogies.  
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Examples about the usage of design patterns in the modern finite element software can be 

listed as follows:  

1. For the finite element software, there are numerous ways of implementing an 

operation. For example, basis functions can be defined by means of different 

orthogonal polynomials. Any creational pattern, such as “Abstract Factory”, can 

be used for the creation of different orthogonal polynomials of different orders. 

Such factories can be defined for other operations such as curve production, 

quadrature point production etc. 

2. The global stiffness matrix can be implemented by means of the creational 

“Singleton” pattern, which guarantees the uniqueness of the matrix. 

3. As another example, there are numerous algorithms for the solution of the matrix 

equation. Among the structural ones, the “Strategy” pattern can be used to 

implement various matrix solvers with a single unique interface. It can also be 

used where multi-algorithm alternatives exist (such as mesh quality measurement, 

improvement, etc). 

4. For hp-version finite element method, some elements might have additional 

attributes (some other modes and more basis functions) than the others. 

“Decorator” pattern, which is a behavioral pattern, seems to be suitable to use for 

such purposes. 

 

More cases about the usage of design patterns can certainly be found after more a detailed 

analysis and design phase. 

 

 

6.2. An Object and Pattern Oriented Finite Element Software Proposal 

The modern finite element software should have a layered architecture in order to 

decrease the dependency between components requiring different type of expertise, and 

to enable parallel development of different components by several development teams. 

Conventionally, graphical user interface has always been distinguished from the business 

logic portion of the code, which is considered as the application layer. Especially after the 

object oriented era, utilities (either reused from commercial/free libraries; or newly 

developed) providing special purpose infrastructure (e.g. mathematical function libraries 

in a numerical method software, or coordinate conversion and projection library in a 
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geographical information software) and hardware/operating system accessing code (e.g. 

communication code making use of operating system calls and network cards) are 

considered to be as framework. Such layering mechanism lets developers concentrate 

only on their component; not necessarily know the details but just the interfaces/services 

of other components. 

6.2.1. Architectural Decisions 

A proposal of the modern finite element software architecture is given in Fig. 6.1. The 

graphical user interface layer consists of components: 

i) Window Element Handler: handling general window elements (any action on 

menus, tabular displays, buttons etc.); 

ii) Mesh Handler: illustrating and manipulating the mesh in a 3D environment 

(zooming in/out; rotation; adjusting camera position and angle etc.); and 

iii) FEM Data Handler: handling the whole geometry and the preferences during 

the finite element analysis; interfacing with the necessary components of the 

application layer. 

 

Regarding the platform independency design consideration mentioned in previous 

sections;  

i) QT [159], which is an advanced platform independent library for widget and 

other user interface element generation and manipulation, might be a useful 

tool during the development of the Window Element Handler. 

ii) OpenGL [160-161], which is an advanced platform independent library for 

3D graphics manipulation, seems to be suitable for the development of the 

Mesh Handler. 

 

Application layer consists of business logic components: 

i) Mesh Manager: importing the mesh from a formatted file or a set of 

formatted files , handling it throughout the execution, and exporting/saving it 

to the file(s) of same format(s). 

ii) Resource Manager: allocating the resources (CPU, memory, threads) to 

necessary operations; i.e. handling the concurrency and parallelization issues 

during the execution, 
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iii) FEM Manager: performing the necessary actions in the finite element 

analysis in relevant order. 

Again regarding the platform independency design consideration; the mesh file to be 

parsed by the Mesh Manager can be chosen to be in XML format [162]; which is a 

structured, well organized, human-readable format appropriate for hierarchical data 

structures.  

 

The framework consists of:  

i) Utilities like a general purpose matrix library and sparse matrix utilities 

(either to be developed from the scratch; or object oriented wrapped versions 

of available libraries such as PETSc, BLAS, LAPACK, UMFPACK etc.), 

ii) Communication infrastructure especially to be used for parallel/distributed 

environment (where ACE [163] and CORBA [164] can be effectively used). 

 

Similarly, the framework tools are proposed in a manner that the platform independency 

is preserved.   

 
 
 

 
 

Fig. 6.1. Layered Architecture of the FEM Software. 

 
 
 

The mesh viewing software developed in this thesis is an OpenGL application, and it can 

be considered as a prototype for the GUI Layer. A screen snapshot of it is given in Fig. 

6.2. 
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Fig. 6.2. A Screen Snapshot of OpenGL based GUI. 

 
 
 

6.2.2. UML Analysis of the Proposed Architecture 

Another aspect of the design is the user’s point of view (i.e. user’s expectations about the 

functionality of the program). Generally, UML use case diagrams [165] are used for this 

purpose. Readers, who are not familiar with UML, might proceed to Appendix E for 

detailed information about it and its notation.  

 

The modern finite element software proposed here has the system boundaries as seen in 

Fig. 6.3 (i.e. According to user’s request, it imports a mesh created by an external mesh 

generation software and performs finite element analysis). Namely mesh generation, 

which is considered as another world or universe, is out of the scope of the proposed 

software. 
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User
PerformFEMOperations

MeshGenerationSW

ImportMesh

<<include>> Boundary of the FEM 
Software mentioned

 
 

Fig. 6.3. System Boundary of the FEM Software. 

 
 
 

The use cases of the software might certainly be detailed and extended. Fig.s 6.4, 6.5, 6.6 

and 6.7 illustrate some more use cases in order to give the complete functionality set 

provided by the software.  

 
 
 

LoadMesh

User ViewMesh

ZoomIn

ZoomOut

ChangeCameraAngle

<<include>>

<<include>>

<<include>>

<<include>>

 
 

Fig. 6.4. Mesh Viewing Functionality Provided by the FEM Software. 
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LoadMesh

CheckMeshValidity

CalculateMeshQuality

PerformMeshSmoothing

SaveMesh

CurvilinearizeMesh

MoveMesh

User

Rotate

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

 
Fig. 6.5. Mesh Manipulation Functionality Provided by the FEM Software. 
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DefineEquation

SelectElementType

<<include>>

DefineProblem

<<include>>

Select whether 
the element to 
be used is  a 
node, edge, 
facet, or 
volume 
element

DefineGeometry

DefineBoundaryConditions

LoadMesh

<<include>>

SelectMatrixSolver

SelectMatrixStorageScheme

SelectMatrixPreconditioner

DefineSources

<<include>>

<<include>>

<<include>>

DefineOutputFormat

DefineHuygensSurface

<<include>>

DefinePeriodicBoundaryConditions

<<include>>

User

SolveProblem

<<include>>

EstimateError

<<include>>

EstimateDiscretizationError

EstimateInterpolationError

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

 

Fig. 6.6. Direct FEM Functionality Provided by the FEM Software. 

 
 
 

MonitorResourceUsage

For applicable 
algorithms (such as 
multifrontal method), 
the user might put 
constraints such as 
minimum memory, 
maximum speed, etc.

DistributeResourceUsage

User

SetConstraints

<<include>>

 

Fig. 6.7. Management Functionality Provided by the FEM Software. 
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Another point of view is construction and analysis of the data structures in order to have 

an idea of the interfaces in mind. Class diagrams are used for this purpose. For example, 

class diagram illustrating the mesh data structure is given in Fig. 6.8. Moreover, the data 

structures of the elements (showing their relationships and hierarchy) are given in Fig.s  

6.9 and 6.10. 

 
Patterns used in the design can also be addressed and specified in the class diagrams. 

Abstract factory pattern used in polynomial, curve and quadrature point generation is 

illustrated in Fig.s 6.11, 6.12, and 6.13 respectively. 

 
 
 

Mesh

Element
1..*1..*

NodeList

11

Coordinate

Node
1..*1..*

**
ConnectivityList

11

EdgeList
11

CorrespondingNodeList
11

BasisFunctionList

11

NodalBasisFunctionList

11

EdgeBasisFunctionList

11

BasisFunction

1..*1..* 1..*1..*

CoefficientList

1..*1..*

 
Fig. 6.8. Mesh Data Structure inside the FEM Software. 
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Element
NodeList
EdgeList
BasisFunctionList

UpdateElementNodes()
ConstructEdgeList()
ConstructBasisFunctionList()
ConstructElementMatrix()

2DElement

QuadrilateralElementTriangularElement

QuadrilateralNode
Element

QuadrilateralEdge
Element

QuadrilateralFace
Element

QuadrilateralVolume
ElementTriangularNode

Element

TriangularEdge
Element

TriangularFace
Element

TriangularVolume
Element

Fig. 6.9. 2D Element Data Structure inside the FEM Software. 

 
 

Element
NodeList
EdgeList
BasisFunctionList

UpdateElementNodes()
ConstructEdgeList()
ConstructBasisFunctionList()
ConstructElementMatrix()

3DElement

TetrahedralElement PrismicElement HexahedralElement

TetrahedralNode
Element

TetrahedralEdge
Element

TetrahedralFace
Element

TetrahedralVolume
Element

PrismicNode
Element

PrismicEdge
Element

PrismicFace
Element

PrismicVolume
Element

HexahedralNode
Element

HexahedralEdge
Element

HexahedralFace
Element

HexahedralVolume
Element

 

Fig. 6.10. 3D Element Data Structure inside the FEM Software. 
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Fig. 6.11. Curve Data Structure and Abstract Curve Factory inside the FEM Software. 
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+CreatePolynomial()
-CoefficientList : double

PolynomialFactory

+CreatePolynomial()
+CheckOrthogonality()

-CoefficientList : double
OrthogonalPolynomialFactory

+CreatePolynomial()
-CoefficientList : double
LegendrePolynomialFactory

+CreatePolynomial()
-CoefficientList : double

JacobiPolynomialFactory

+CreatePolynomial()
-CoefficientList : double

HermitePolynomialFactory

+CreatePolynomial()
-CoefficientList : double
GegenbauerPolynomialFactory

HierarchicalBasisFunctionHandler

* *
+Polynomial()
+CalculateValue() : double
+Integrate()
+Differentiate()

-CoefficientList : double
Polynomial

OrthogonalPolynomial

LegendrePolynomial

JacobiPolynomial

HermitePolynomial

GegenbauerPolynomial

 

Fig. 6.12. Polynomial Data Structure and Abstract Polynomial Factory inside the FEM 
Software. 

 
 
 

+CreatePointList()
-PointList : double
QuadraturePointFactory

ClenshawCurtisQuadraturePointFactory

GaussianQuadraturePointFactory

QuadratureHandler

* *
PointList

ClenshawCurtisQuadraturePointList

GaussianQuadraturePointList

 

Fig. 6.13. Quadrature Point Data Structure and Abstract Quadrature Point Factory inside 
the FEM Software. 
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CHAPTER 7 
 

 

CONCLUSIONS 

 

 

 

In many engineering disciplines, approximate solutions of differential or integral 

equations play an important role to analyze or design complicated engineering systems. 

Several examples can be found from various branches such as Computational Fluid 

Dynamics (CFD), Computational Electromagnetics (CEM), heat transfer applications, 

Structural Mechanics, etc. In all such applications, the spatial domain must be discretized 

by generating a mesh, which is a collection of elements with simple shapes. Then the 

operator equations (i.e. partial differential equations or integral equations) are solved by 

using the well-known methods such as finite differences, finite elements or method of 

moments. 

 

Among these, the Finite Element Method is a powerful and useful tool employed in the 

numerical solution of partial differential equations that arise in different applications. The 

technique allows for the solution of practical problems that would otherwise be 

intractable for analytical methods because of non-linearities or complex geometries. 

However, to achieve the full benefits of considering arbitrary geometries, there must exist 

simple and efficient means to generate the required meshes.  

 

From the viewpoint of applications, three-dimensional problems are much more 

important (but more difficult as well) than their two-dimensional counterparts. Mesh 

generation is crucial in the application of FEM in three-dimensional problems. On the 

other hand all-hexahedral meshing, which yields the most accurate finite element 

solutions, is the most challenging topic in the mesh generation era.  
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The aim of this thesis is to apply the higher order hexahedral edge elements to 

electromagnetic scattering problems together with generic implementations. For this 

purpose, three separate stand-alone software products (all-hexahedral mesh generation; 

3D mesh viewing, and finite element solver by means of hierarchical hexahedral edge 

elements) were developed. Moreover, a separate Matlab script was developed for 

hexahedral mesh smoothing with Particle Swarm Optimization in order to investigate the 

effects of mesh quality on the solution accuracy. 

   

Perfectly Matched Layers (PMLs) which are implemented by using a complex coordinate 

transformation, have been successfully used for mesh truncation in this software. Material 

uniformities have been handled during the very initial all-hexahedral mesh generation in 

order to support both the mesh visualization and the finite element solution.  

 

In the three-dimensional Finite Element Analysis, the number of elements are typically 

very large (in the order of tens of thousands of unknowns), so the resulting matrices for 

those systems are large but fortunately sparse. In  the finite element solver different 

sparse storage schemes, each of which is appropriate for a different solver, have been 

used. The row-indexed sparse storage mode is optimized for multiplication of the matrix 

(or the transpose of the matrix) with a vector from the left. This is a very good property 

since the sparse matrices need to be operated over other matrices to construct the system 

of equations and matrix-vector multiplications are needed during the solution of the 

system of equations using the biconjugate gradient method. The other sparse storage 

scheme is optimized for Gaussian elimination like operations, which are performed 

during the multifrontal method.  

 

To the author’s belief, two original contributions have been made throughout this thesis:  

 
Performance of quadratic hexahedral edge elements has been deeply investigated over the 

radar cross-sections of several curved or flat objects with or without patches. Instead of 

the widely known and accepted “0.1λ linear element size” criterion, it has been observed 

and concluded that “0.3-0.4 λ quadratic element size” is a new potential                       

criterion for electromagnetic scattering and radiation problems. Analyses have shown                       
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that the usage of quadratic elements is not only more confident, but also computationally 

cheaper. 

 

The second original research topic in this thesis is the mesh improvement performed by 

optimization based mesh smoothing. The smoothing has been performed by means of the 

Particle Swarm Optimization, which found wide application in the last decade. During the 

smoothing, a condition number based combined hexahedral quality metric was used. 

 

There remain several avenues for further research in this work. Deeper investigation of 

the effects of edge ordering to the stiffness matrix storage and solution (focused on 

hexahedral edge elements) might be one of these. Object and pattern oriented finite 

element software development, software size and cost estimation are other potential 

research areas.  

 

Certainly, application of higher order (third, fourth, fifth and even more) hierarchical 

hexahedral edge elements to electromagnetic scattering problems might be an extension 

to this work. Similarly, multiobjective hexahedral mesh smoothing can be considered as 

another near-future term work.  
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APPENDIX A 

 

 

SCIENTIFIC CONTRIBUTIONS  

 

 

 

A.1. Great Contributors  

Here is a chronological list of scientists who could not be explicitly cited, but mentioned 

throughout the flow of thesis due to their contributions: 

• Euclid (a.k.a. Euclid of Alexandria) (c.325-c.265BC), Greek mathematician of 

Hellenistic Egypt, "Father of Geometry" and "Uncle of Number Theory", 

mentioned via Euclidean spaces.  

• René Descartes (1596-1650), also known as “Cartesius”, French philosopher, 

mathematician, and scientist; "Father of Modern Mathematics” , mentioned via 

Cartesian coordinates. 

• Christiaan Huygens (1629-1695), Dutch mathematician and physicist, mentioned 

via Huygens equivalence principle. 

• Sir Isaac Newton, (1643-1727), English physicist, mathematician, astronomer, 

alchemist, and natural philosopher, regarded by many as "the greatest figure in 

the history of science", mentioned via Newton-Raphson method. 

• Joseph Raphson (ca. 1648-ca. 1715), English mathematician, mentioned via 

Newton-Raphson method. 

• Joseph-Louis Lagrange (1736-1813), Italian-French mathematician-physicist, 

mentioned via Lagrange polynomials. 

• Pierre-Simon, Marquis de Laplace (1749-1827), French mathematician and 

astronomer, mentioned via Laplacian smoothing.  



 161

• Adrien-Marie Legendre (1752-1833), French mathematician, mentioned via 

Legendre polynomials. 

• André-Marie Ampère (1775-1836), French physicist, mentioned via Ampère’s 

Law. 

• Karl Friedrich Gauss (Gauß) (1777-1855), German mathematician and physicist, 

mentioned via Gauss quadrature and Gauss eliminitation. 

• Michael Faraday (1791-1867), English chemist-physicist, mentioned via 

Faraday’s Law. 

• Benjamin Olinde Rodrigues (1795-1851), French mathematician and social 

reformer, mentioned via Rodrigues rotation formula. 

• Karl Gustav Jacob Jacobi (1804-1851), German mathematician, mentioned via 

Jacobi determinant and Jacobi polynomials. 

• Charles Hermite (1822-1901), French mathematician, mentioned via Hermite 

polynomials. 

• Pafnuty Lvovich Chebyshev (also Romanized in various ways, e. g. as 

Chebychev, Chebyshov, Tchebycheff or Tschebyscheff in French and German 

transcriptions) (1821-1894), Russian mathematician, mentioned via Chebyshev 

polynomials. 

• James Clerk Maxwell (1831-1879), Scottish mathematical physicist, mentioned 

via Maxwell equations. 

• John William Strutt, 3rd Baron Rayleigh (1842-1919), English physicist and 

chemist, mentioned via Rayleigh's criterion. 

• Vilfredo Federico Damaso Pareto (1848-1923), Italian sociologist, economist and 

philosopher, mentioned via Pareto optimality. 

• Leopold Gegenbauer (1849-1903), Austrian mathematician, mentioned via 

Gegenbauer polynomials. 

• Ferdinand Georg Frobenius (1849-1917), German mathematician, mentioned via 

Frobenius norm. 

• David Hilbert (1862-1943), German mathematician, the most influential 

mathematician of the 20th century, mentioned via Hilbert spaces. 

• Georgy Voronoï (1868-1908), Russian mathematician of Ukrainian descent, 

mentioned via Voronoï graph/diagram. 

• Gustav Mie (1869-1957), German physicist, mentioned via Mie series.  
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• André-Louis Cholesky (1875-1918), French mathematician, mentioned via 

Cholesky decomposition. 

• Sergei Natanovich Bernstein (sometimes Romanized as Bernshtein) (1880-1968), 

Ukrainian mathematician, mentioned via Bernstein polynomials. 

• Boris Nikolaevich Delaunay (1890-1980), Soviet/Russian mathematician, 

mentioned via Delaunay tesselation/triangulation. 

• Georges de Rham (1903-1990), Swiss mathematician, mentioned via de Rham 

complex. 

• Sergei L'vovich Sobolev (1908-1989), Russian mathematician, mentioned via 

Sobolev spaces. 

• Pierre Étienne Bézier (1910-1999), French engineer, mentioned via Bézier curves 

and Bézier surfaces. 
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A.2. Historical Milestones in the Finite Element Theory 

1844 – Differential Forms by Grassman  

1900s – Definition of Exterior Calculus of Differential Forms by Cartan 

1943 – Piecewise  Approximations by Courant 

1954 – Domain Partitioning, Assembly and Boundary Conditions (i.e. basic FEM) by 

Argyris 

1970s – Application of the Finite Element Method to Electromagnetics by Numerous 

Researchers 

1985 – Intuitive Definition of the Linear Hexahedral Edge Element by van Welij 

1986 – Introduction of the Edge Element Concept by Nédélec 

1990 – Intuitive Definition of the Quadratic Hexahedral Edge Element by Kameari 

1991 – Hierarchical Finite Element Concept by Szabo and Babuška 

1994 – Definition of the Perfectly Matched Layers by Berenger 

1996 – Proof of Topological Existence of Hexahedral Mesh by Thurston and Mitchell 

1997 – Methodological Construction of Hierarchical Hexahedral Edge Elements by Wang 

2006 – Methodological Construction of Hierarchical Hexahedral Edge and Facet 

Elements by Zaglmayr 
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APPENDIX B 

 

 

EXPLICIT BASIS FUNCTIONS AND INTERPOLATION 

PROPERTIES OF VAN WELIJ AND KAMEARI ELEMENTS  

 

 

 

In this section, the basis functions and the interpolation properties of van Welij 

and Kameari elements are given.  

 

B.1. The Hexahedral Edge Element Shape Functions 

The hexahedral edge element has six faces, eight nodes and twelve edges as shown in Fig. 

B.1. 

 

A vector quantity is given by 

 

∑
=

=
12

1

)(
i

ii ArwA      (B.1) 

 

where wi is the shape function related to edge i and A is, for instance, the magnetic vector 

potential or any other vector field. Ai  represents the projection of A along edge i. 
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Fig. B.1. The hexahedral edge element with its edges numbered. 

 
 
 
The shape function is described by the following product 

 

)(),,()( rqrw iii pvuφ=      (B.2) 

 

where 

 

zyx kjir ++=      (B.3) 

 

which represents the position vector of a generic point M (x, y, z). The function φ i (u, v, 

p) depends on the reference coordinates u, v, p and it is the placement function of the 

edge element; it is given in reference coordinates since the numerical integration and 

other algebraic operations are performed in this coordinate system. The function qi(r), 

which is responsible for the direction of the edge, is given in global coordinates, since 

only these coordinates take into account the actual geometry of the elements. From now 

on, instead of wi(r), qi(r), φ i (u, v, p), a simplified notation, namely wi, qi, φ i will be 

used. Table B.1. shows the position functions φ  for all edges. 

 

The vector quantity qi depends on the direction of the edge. The direction is ∇a for an 

edge parallel to a direction where a is either u, v or p. To obtain ∇u, ∇v and ∇p we define 

the following vectors: 
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Table B.1. The position functions φ . 

 
EDGE NUMBER  φ EDGE_NO 

1 (1-v)(1-p) 

2 (1-p) 

3 v(1-p) 

4 (1-u)(1-p) 

5 (1-u)(1-v) 

6 u(1-v) 

7 uv 

8 (1-u)v 

9 (1-v)p 

10 up 

11 vp 

12 (1-u)p 

 
 
 
As an example, vu can be written as 
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Using this notation, the three vectors give 
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Transposing the matrix, we obtain a matrix [J1], 
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This is a Jacobian matrix which expresses a vector in the (x, y, z) system in terms of the 

(u, v, p) system. Now, let us calculate the vectors vu, vv, and vp in terms of the coordinates 

of the nodes of the elements. Fig. B.2 shows the hexahedral element with its nodes 

numbered.  

 
 
 

Fig. B.2. The Hexahedral Edge Element with its Nodes Numbered. 
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To achieve the calculation, we use the nodal shape functions in order to define the 

coordinates x, y, and z as functions of u, v, and p. 
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Recalling that 
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we can get the simplified notation 
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where (∂N/∂u)x is given as 
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The terms (∂N/∂u)y and (∂N/∂u)z are obtained in a similar manner. The nodal shape 

functions are given in Table B.2. 
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Table B.2. The nodal shape functions. 

 
NODE N 

1 a2 b2 c2 / 8 

2 a1 b2 c2 / 8 

3 a1 b1 c2 / 8 

4 a2 b1 c2 / 8 

5 a2 b2 c1 / 8 

6 a1 b2 c1 / 8 

7 a1 b1 c1 / 8 

8 a2 b1 c1 / 8 

 
 
 
The parameters appearing in Table B.2 are defined as 
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On the other hand, we have 
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From these equations we can write that 
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where vol is the volume of the element. Hence, the twelve vector shape functions can be 

written as 
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In working with Maxwell’s equations, we often need to evaluate the curl of the vector 

shape functions. Writing the curl operator explicitly we can obtain 
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B.2. Interpolation Properties of the Linear Hexahedral Edge Elements  

Consider the linear hexahedral element, whose nodes and edges are numbered as shown 

in Fig. B.3: 
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Fig. B.3. Linear hexahedral edge element extending from (-1, -1, -1) to (1, 1, 1) in uvp 
space. 

 
 
 
The effect of the first edge is shown in Fig. B.4. 

 
 
 
 

 

 

 

 

 

 

 

 

Fig. B.4. Effect of the first shape function for the linear hexahedral edge element. 
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The effect of the second edge is shown in Fig. B.5. 

 
 
 
 

 

 

 

 

 

 

 

 

Fig. B.5. Effect of the third shape function for the linear hexahedral edge element. 

 
 
 
The effect of the summation of the first and the third functions is shown in Fig. B.6. 

 
 
 
 

 

 

 

 

 

 

 

 

Fig. B.6. Effect of the summation of the first and the third shape functions for the linear 
hexahedral edge element. 

 

As a conclusion, the effect of the shape functions is linear as seen in the figures above. 
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B.3. Interpolation Properties of the Quadratic Hexahedral Edge Elements  

Consider the quadratic hexahedral element, whose nodes and edges are numbered as 

shown in Fig. B.7: 

 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. B.7. Quadratic hexahedral edge element extending from (-1, -1, -1) to (1, 1, 1) in uvp 
space. 

 
 
 
The disjoint effects and the effect of the summation of the first and second two edges are 

shown in Fig. B.8. 
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Fig. B.8. The disjoint effects and the effect of the summation of the first and second two 
edges along the u direction. 

 
 
 
The effects of the first two edges along the v and p directions are shown in Fig. B.9 and 

Fig. B.10, respectively. 

 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. B.9. The disjoint effects and the effect of the summation of the first and second two 
edges along the v direction. 
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Fig. B.0.10. The disjoint effects and the effect of the summation of the first and second 
two edges along the p direction. 

 
 
 
The effects of the ninth edge along v and p directions are shown in Fig. B.11 and Fig. 

B.12, respectively. 

 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. B.11. The effect of the ninth edge along the v direction. 
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Fig. B.12. The effect of the ninth edge along the p direction. 

 
 
 
The effect of the summation of four shape functions (the first, the second, the third and 

the fourth) is shown in Fig. B.13. 

 
 
 
 

 

 

 

 

 

 

 

 

 
 

Fig. B.13. The effect of the summation of four edges. 

 
 
 
The effect of the summation of five shape functions (the first, the second, the third and 
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circulation (i.e. the projection times the length of the edge) of the electric field is 

represented on each edge, the effect of the ninth edge is twice the others. 

 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. B.14. The effect of the summation of the five edges. 

 
 
Consider that we want to evaluate the function f(v) = 3v2 + 4v + 2 by means of the shape 

functions at p = -1 plane inside the element.  

 
 

 

 

 

 

 

 

 

 

 

 

Fig. B.15. Interpolation of the function f(v) = 3v2 + 4v + 2 at p = -1 plane by means of the 
quadratic shape functions. 
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As seen in Fig. B.15, the quadratic shape functions are sufficient to represent the 

function, which is also quadratic. This yields the conclusion that quadratic hexahedral 

edge elements are better while representing quadratic functions, and they give more 

accurate results than the linear hexahedral edge elements. 

 

In electromagnetic wave propagation applications, the field variations are compared on 

the basis of time-harmonic uniform plane waves due to the fact that an arbitrary 

propagating field can be represented by means of a plane wave spectrum. For linear 

elements, these functions are to be represented by means of linear interpolation. On the 

other hand, for quadratic elements, the representation is performed via quadratic 

interpolation.  

 

For this comparison, an ideal hexahedral element, namely a cube denoted as ε, is taken as 

a test element for investigation of the interpolation properties. The function, which will 

be approximated inside this element, is taken as a uniform plane wave A=Aexp[-

j(kx+φi)]âz, where φi=(2πi/360k) and i=0,1,…,359. By this procedure, the effect of phase 

variation on interpolation accuracy is included in the analysis.  

 

For a fixed phase angle of φi, the exact value of the function is denoted as Aexact_i, and its 

approximated form (as the linear combination of basis functions in z-direction like in 

equation (B.1)) is denoted as Aapp_i. Two error norms are defined as 
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where e∞ stands for the maximum normalized interpolation error inside the element 

maximized over all investigated phase angles; and e1 stands for the average normalized 

interpolation error throughout the element, maximized over all investigated phase angles. 

 

A qualitative assessment about these definitions can be as follows: e∞ is a metric of the 

point-wise accuracy, whereas e1 is a metric of overall accuracy inside an element ε. 

Overall accuracy inside an element is an important and dominant Fig. of merit especially 

in the computation of the surface and volume integrals during FEM analysis. 

 

For a λ/10-size linear hexahedral element, by following the analysis given above, it is 

calculated that e∞ is 0.0490; and e1 is about 0.0331.  

 

For the interpolation of a uniform plane wave by means of quadratic elements, in order to 

have a reasonable accuracy level, it can be intuitively claimed that the upper limit for the 

element size should be about 0.5λ. The same procedure is repeated for quadratic 

hexahedral elements having different sizes. The results of this analysis are summarized in 

Table B.3. 

 
 
 

Table B.3. Error norms for linear and quadratic elements of different sizes. 

 
Element
Size ( )

Element
Type e e1

Linear 0.1 0.049 0.0331
Quadratic 0.33 0.055 0.0077
Quadratic 0.4 0.095 0.0170
Quadratic 0.5 0.151 0.0472

 
 
 
In this analysis, a specific plane wave polarized in the z-direction and propagating in the 

x-direction is considered. In general, a uniform plane wave can be expressed as exp[-

jk.r]âu, where k=kxâx+kyây+kzâz, r=xâx+yây+zâz and âu is a unit vector perpendicular to k. 

Certainly, âu can be written as a linear combination of âx, ây, and âz. Moreover, the wave 

number is k=║k║=(kx
2+ky

2+kz
2)1/2; which implies that the  variation of this plane wave in 

each Cartesian direction will be smaller than the variation in the direction of propagation.  
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In other words, the plane wave A of the form exp[-jkx]âz in the analysis above serves as a 

worst case condition (i.e. corresponding to maximum phase variation in one direction 

inside an element).  

 

As a conclusion, while dealing with the electromagnetic scattering problems, quadratic 

elements will give better results in case the electric field has quadratic dependency to the 

coordinate variables. 
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APPENDIX C 

 

 

DOMAIN DECOMPOSITION IN HEXAHEDRAL MESH 

GENERATION  

 

 

 

C.1. Domain Decomposition of Cylindrical Domains  

The mesh generation in this thesis depends on the decomposition of the problem to 

subdomains so that each subdomain is homeomorphic (topologically equivalent) to a 

rectangular prism. Each subdomain is divided to hexahedra with the constraint that 

adjacent subdomains will have equivalent quadrilateral surface meshes in order to 

preserve mesh continuity.  

C.1.1. Domain Decomposition for the PEC Cylinder Problem 

For the RCS calculation of a Perfect Electric Conductor (PEC) cylinder, it is not required 

to consider the region inside the cylinder, since it is certainly known that the total electric 

field vanishes. Hence, this part can be taken out of consideration during the whole 

process starting from the mesh generation. 

 

The mesh generation for this problem is straightforward. The parameters defining the 

mesh are: 

1. Mesh Resolution in r direction  

2. Mesh Resolution in φ direction 

3. Mesh Resolution in z direction  
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For the PML regions, which are placed at the top and bottom parts, it is obvious that the 

central part should also be filled with elements. The way to do this, is to put rectangular 

prisms in the centers and to extend these prisms to cylinders. The top and bottom figures 

are illustrated in Fig. C.1. 

 
 

 
 

Fig. C.1. Top and Bottom Parts of the Mesh of PEC Cylinder. 

 
 
 
Fig. C.2 illustrates the whole mesh generated for the PEC Cylinder problem. 

 
 

 

Fig. C.2. Mesh Generated for PEC Cylinder Problem. 
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See further subsections of this Appendix for the restrictions in mesh generation for this 

problem. 

C.1.2. Domain Decomposition for the Dielectric Cylinder Problem 

For the RCS calculation of a dielectric cylinder; unlike the PEC case, it is required to 

consider the region inside the cylinder. Namely, this part cannot be taken out of 

consideration during the whole process starting from the mesh generation. 

 

The mesh generation for this problem is slightly different than the PEC cylinder case. Fig. 

C.3 illustrates the main idea of mesh generation in this problem.  

 
 
 

 

Fig. C.3. Mesh generation scheme for the dielectric cylinder. 

 
 
 
The parameters defining the mesh can be listed as follows: 

i) Width and height of the core rectangular prism 

ii) Radius of the core cylinder (of same height with the rectangular prism) 

iii) Radius of the outer cylinder (the Volume of Interest) 

iv) Mesh Resolution in r direction  

v) Mesh Resolution in φ direction 

vi) Mesh Resolution in z direction  
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Another parameter (dependent to wavelength), which will be effective in accuracy during 

the FEM solution, is as follows: 

- Radius and height of the cylinder in terms of wavelength 

 

See further subsections of this Appendix for the restrictions in mesh generation for this 

problem. 

C.1.3. Domain Decomposition for the PEC Sphere Problem 

For the RCS calculation of a Perfect Electric Conductor (PEC) sphere, it is not required to 

consider the region inside the sphere, since it is certainly known that the total electric 

field vanishes. Hence, this part can be taken out of consideration during the whole 

process starting from the mesh generation. 

 
 
 

 
 

Fig. C.4. Mesh Generation Scheme for the PEC Sphere Problem. 

 
 
 
In order not to have a non-hexahedral element, the mesh generation shall be performed as 

follows:  

• The spherical shell volume is divided into 3 main volumes (2 top hat, and side 

volumes) as seen in Fig. C.4. 
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• Side volume is divided further into 8 side sub volumes, and each top hat volume 

is divided to subvolumes called top hat outer shell and top hat inner part 

respectively.  

 

This scheme is directly applicable for linear and quadratic element mesh generation. The 

generated meshes are illustrated in the following figures (Fig.s C.5, C.6, C.7, and C.8). 

 
 
 

 
 

Fig. C.5. Top Hat Inner Part (A). 

 
 
 

 
 

Fig. C.6. Top Hat Outer Shell (B). 
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Fig. C.7. Side Subvolume (C). 

 
 
 

 
 

Fig. C.8. Whole Spherical Shell (2A+2B+8C). 

 
 
 
The parameters affecting the shape and structure of the generated mesh are as follows: 

1. θc  (see Fig. C.4 for the definition) 

2. θd  (see Fig. C.4 for the definition) 

3. Mesh Resolution in R direction 

4. Mesh Resolution in θ direction 

5. Mesh Resolution in φ direction 
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Two other parameters (dependent to wavelength), which will be effective in accuracy 

during the FEM solution, are as follows: 

1. Radius of the PEC Sphere in terms of wavelength 

2. Radius of the total spherical Volume of Interest (VoI) 

 

See further subsections of this Appendix for the restrictions in mesh generation for this 

problem. 

 

C.1.4. Domain Decomposition for the PEC Sphere Problem 

For the RCS calculation of a dielectric sphere; unlike the PEC case, it is required to 

consider the region inside the sphere. Namely, this part cannot be taken out of 

consideration during the whole process starting from the mesh generation. 

 
 
 

 

Fig. C.9. Mesh generation scheme in the dielectric sphere problem. 

 
 

In order not to have a non-hexahedral element, the mesh generation shall be performed as 

follows:  

• The spherical shell volume is divided into 3 main volumes  

o 1 cylindrical core consisting of 
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 a rectangular prism, 

 and a cover completing it to a cylinder  

o 2 top hats consisting of 

 inner part, 

 and outer shell  

o and  side volume 

 as seen in Fig. C.9.  

• Side volume is divided further into 8 side sub volumes, and each top hat volume 

is divided to subvolumes called top hat outer shell and top hat inner part 

respectively.  

 

This scheme is directly applicable for linear and quadratic element mesh generation. 

 
 
 

 

Fig. C.10. Mesh defining parameters in the dielectric sphere problem. 

 
 
 

The parameters affecting the shape and structure of the generated mesh (seen in Fig. 

C.10) are as follows: 

1. Width and height of the core rectangular prism 

2. Radius of the core cylinder (of same height with the rectangular prism) 

3. Mesh Resolution in r direction (which is also implicitly defining the mesh resolution in 

R  direction) 

4. Mesh Resolution in φ direction 
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5. Mesh Resolution in z direction (which is also implicitly defining the mesh resolution in 

θ direction) 

 

Two other parameters (dependent to wavelength), which will be effective in accuracy 

during the FEM solution, are as follows: 

1. Radius of the sphere in terms of wavelength 

2. Radius of the total spherical Volume of Interest (VoI)  

 

The relevant generated subvolume meshes are given in the following figures (Fig.s C.11, 

C.12, C.13, C.14, and C.15). 

 
 
 

 
 

Fig. C.11. The Inner Cylindrical Core (A). 
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Fig. C.12. Top Hats (B). 

 
 
 

 
 

Fig. C.13. The Inner Cylindrical Core Combined with the Top Hats (A+B). 



 191

 
 

Fig. C.14. The Side Cover (C). 

 
 
 

 
 

Fig. C.15. The Whole Sphere After All Parts Combined (A+B+C). 

 

See further subsections of this Appendix for the restrictions in mesh generation for this 

problem. 
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C.2. Restrictions to Satisfy the “All-Hexahedra” Condition 

During the all-hexahedral mesh generation process, the mesh defining parameters should 

be chosen carefully. This restriction is valid and similar for both the cylindrical and 

spherical geometries. Fig. C.16 illustrates the reason for this restriction. 

 
 

 
 

Fig. C.16. Top view of the top hat for the illustration of the restriction. 

 
 

The number k, should be divisible by 8 in order not to have a singularity (a non-

hexahedral element). k is obviously determined by the mesh resolution in φ direction. 

Also, the mesh density in the inner part is closely related with k. Surface-wise there are:  

• m2 elements in the inner part of the top hat, and  

• 4×m elements in the top hat outer shell, 

where m=((k+4)/4)-1. This yields a very dense mesh in the top hat, if θc  and θd  values are 

not chosen very large. 

As a numerical example, a 22.5° mesh resolution in φ direction implies that k = 16; and m 

= ((k+4)/4)-1 = 4; which means that there will be surface-wise m2=16 elements in the 

inner part of the top hat, and 4×m=16 elements in the top hat outer shell; with a total of 32 

elements. 
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APPENDIX D 

 

 

A PARTICLE SWARM OPTIMIZATION APPROACH IN 

HEXAHEDRAL MESH SMOOTHING  

 

 

This Appendix is devoted to the Particle Swarm Optimization method and the application 

of it to the all-hexahedral mesh smoothing. 

D.1. An Algebraic Hexahedral Mesh Quality Metric 

Many papers have been devoted to the topic of unstructured mesh smoothing and 

optimization [53–63, 74, 166]. However, there are only a limited number of papers which 

specifically address unstructured hexahedral mesh smoothing [74, 166]. The method 

described in [166] is based on maximizing a variant of the scaled-Jacobian metric. This 

approach does not guarantee that the improved mesh will consist only of untangled 

elements; and actually have improved shape-quality according to the user definition. The 

method in [74] achieves these criteria. The aim of this paper is to propose another 

method, which is as successful as [74].  

 

For finite element meshing three geometric qualities of elements are almost always 

important: invertibility, size, and shape. An element is invertible if it has positive local 

volume. If a hexahedral mesh contains inverted elements the hexahedral mesh untangling 

algorithm [167] is recommended to automatically remove the inverted elements by node 

repositioning. Assuming a mesh contains no inverted elements, element ‘size’ becomes 

the next most important metric. Element size must be small enough that discretization 

error is small, yet large enough that computer memory is not exceeded and the application 

can be solved in a reasonable amount of time. 
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Invertibility, size, and shape are the three important factors of the element quality:  

- If an element has positive local volume (everywhere in the element, not just at the 8 

corners), then it is considered to be invertible.  

- For a mesh without any inverted elements, element size becomes the factor under 

consideration. An element must be small enough to have small discretization errors, and 

on the other hand, it should be sufficiently large such that available computer resources 

(CPU time, memory) are efficiently used.  

- The last metric is element shape, which is a function of element aspect ratios and skew 

[74]. Skew gives information about the angles within an element regardless of the aspect 

ratio. Accuracy decreases if an element contains very large and small angles (i.e. close to 

0 or 180°). In [73], Knupp showed that the shape can be expressed as a function of the 

condition number, which can be improved by means of:  

i) aspect ratio improvement, and/or  

ii) element skew reduction.  

 

Definitions about element quality are directly taken from [74]. For clarification, these 

definitions are repeated in this section. The eight nodes of a hexahedral element (k =0, 

1,…, 7) can be numbered such that the nodes 0, 1, 2, 3 are at the bottom, and the nodes 4, 

5, 6, 7 are at the top surface; this numbering scheme and the node coordinates of 

hexahedral element transformed to the ξηζ-space are listed in Table D.1.  

 

Table D.1. Nodal ordering for a hexahedral element. 

 
k (ξ, η, ζ) x1 x2 x3 

0 (0, 0, 0) 1 3 4 

1 (1, 0, 0) 2 0 5 

2 (1, 1, 0) 3 1 6 

3 (0, 1, 0) 0 2 7 

4 (0, 0, 1) 7 5 0 

5 (1, 0, 1) 4 6 1 

6 (1, 1, 1) 5 7 2 

7 (0, 1, 1) 6 4 3 
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Let x be the position vector of one of the eight nodes; and x1, x2, and x3 be the coordinates 

of the three neighbor nodes. Their order for proper orientation is again listed in Table 

D.1. Three edge vectors e1 = x1 − x, e2 = x2 − x, e3 = x3 − x and the matrix A can be 

formed from the three column vectors, A = [e1 | e2 | e3]. This means that if the vector x is 

(x, y, z); and for i = 1, 2, 3 if the vectors xi are (xi, yi, zi), then A can be written as follows: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

=
zzzzzz
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xxxxxx

321

321

321

A     (D.1) 

 

For each node of the hexahedron, eight such matrices, Ak can be constructed. It is 

assumed that the element is untangled; namely det(Ak) ≥ 0 for all k. If there is a tangled 

element inside the mesh, then prior to the optimization it should be untangled. For this 

purpose, the method described in [167] can be used. 

 

Knupp also has defined weight matrices Wk in order to specify the ideal element shape in 

[73]. By means of Ak and Wk, the matrices Tk = Ak Wk
-1 are formed and used in order to 

represent the shape metrics. The shape metric is defined as follows: the matrices Tk 

resemble an orthogonal matrix if the objective function gets optimized. In case that the 

element becomes an ideal element (most probably with a different orientation), Tk 

becomes orthogonal, and eventually Ak = Tk Wk,. For hexahedra, the ideal shape is a 

cube; and the weight matrix is the identity matrix.  

 

Let the condition number be κ(T) = |T| |T−1|, where the matrix norm is the Frobenius 

norm. ∑=
k kf 2)3/)((/8 Tκ is an algebraic shape metric for hexahedral elements. The 

proof is given in [74]. With this definition, f is a non-simplicial algebraic shape metric 

since it has the following properties: 

• the domain of f is the set of matrices Tk = Ak Wk
-1, k = 0, 1, …, K −1, with det(Tk) ≥ 

0, 

• f is size invariant, 

• f is orientation invariant, 
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• For all Tk, 0 ≤ f({Tk}) ≤ 1,  

• f({Tk}) = 1 if and only if Tk is a scalar multiple of an orthogonal matrix for all k, 

• f({Tk}) = 0 if and only if det(Tk) = 0 for some k; i.e. the three edges having a 

common node are coplanar.  

• It should be noted that for tangled elements, shape is not defined. 

(The notation f({Tk}) stands for f  being a function of all Tk matrices.) 

 

It is obvious that other functions satisfying the definition of a shape metric can also be 

defined and used in order to define an objective function for element quality 

improvement. For example, shape can be defined by modified Winslow  

 

))/(3(
213/2 −= Tτf ,     (D.2) 

mean ratio  

 

))/(3( 23/2 T−= τf ,     (D.3) 

and inverse condition number  

 

))(/3( Τκ=f .      (D.4) 

 

The present work focuses on the condition number shape metric. 

 

D.2. The Condition Number Based Objective Function 

Based on the shape quality metric mentioned in the previous section, an objective 

function is described in this section. Again, the definition is reused from [74]. The 

objective function considers the shape quality of all elements in a hexahedral mesh. Let 

Tn,k be the matrix corresponding to the kth node of the nth hexahedral element εn. We can 

define 

 

∑
==

k kn
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2
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8
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Tκ

ε     (D.5) 
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as the quality metric of the nth hexahedral element in the mesh (where n = 1, …, N). 

 

For the definition of the objective function, it is better to work with 1 / fn instead of fn 

because it provides a greater numerical range and a steeper gradient; as well as a metric 

creating a barrier. The objective function is the sum over all elements (εn’s) inside the 

hexahedral mesh (ε) 

 

∑∑∑ −=−=
n k

kn
n

n NfNF 1)3/)((8
11)/1(1 2

,Tκ   (D.6) 

 

This is nothing but the sum of the squares of the element condition numbers. The 

objective function is scaled so that the minimum value of F is 0.  

 

D.3. Particle Swarm Optimization (PSO) 

The particle swarm optimization (PSO) method is an effective optimization algorithm, 

which has been applied successfully to some difficult multidimensional 

continuous/discontinuous problems in various fields so far [168]. Moreover, this 

technique has been shown to be outperforming other optimization methods such as 

genetic algorithms (GAs) [169].  

 
PSO, which has been developed in 1995 by Kennedy and Eberhart [170], can be 

described through its leading example: Assume that there is a swarm of bees whose main 

aim is to find the location with the highest density of flowers in a field without any a 

priori knowledge; starting at random locations with random velocities. Each bee can 

remember its previsited successful locations (cognitive behavior), and also it can feel the 

best locations found by the swarm (social behavior). When a bee finds a better place than 

previously found places, then it would have tendency to go to this new location in 

addition to the best location found by the swarm. Eventually, the whole swarm would be 

attracted towards that location.  

 
Each member of the swarm is referred to as a particle; which corresponds to a solution 

candidate. All the particles accelerate toward the best personal and best overall location; 

meanwhile they continuously check their value of their current locations.  
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Each member of the swarm remembers the best location of own discovery. This location 

is called as the personal best or pbest. On the other hand, each member feels the best 

location discovered by the swarm. This is called as the global best or gbest of the swarm.  

 

The necessary steps for the PSO algorithm are certainly as follows: After the definition of 

the fitness/objective function; and the definition of the solution space; the particles (i.e. 

locations and velocities) in the swarm are initialized. Then the particles are moved inside 

the solution space. For each particle, the fitness is evaluated at the relevant particle’s 

location. If this value is greater than the value calculated at pbest of the relevant particle, 

or the global gbest of the swarm, then these values are updated. 

 

The velocity manipulation is the main key to convergence in PSO. Locations of pbest and 

gbest are major factors for the new velocity value of a particle during this step. A particle 

gets accelerated in the directions of pbest and gbest as follows: 

 

).(.).(.. ,22,11 nnbestnnbestnn xgucxpucvwv −+−+=   (D.7) 

 

where xn is the particle’s coordinate in the nth dimension and vn is the velocity of the 

particle in the nth dimension. This operation is performed at each dimension in an N-

dimensional problem. A pictorial description in 2-dimensions can be seen in Fig. D.1.  

 
 
 

 
 

Fig. D.1. Pictorial Description of PSO in 2D. 
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It can clearly be seen in this equation that the new velocity is the summation of the 

current velocity scaled by w and increased in the direction of gbest and pbest for that 

dimension.  

 

c1 and c2 are scaling factors representing the attraction powers of pbest and gbest. c1 is a 

factor showing the memory/history influence on a particle’s movement (i.e. a metric of 

cognitivity), and c2 is a factor showing the swarm’s influence on a particle’s movement 

(i.e. a metric of sociality). Increasing c1 increases a particle’s tendency to its own pbest; 

whereas increasing c2 increases a particle’s tendency to the assumed global maximum.  

 

u1 and u2 are random numbers between 0.0 and 1.0 obeying uniform distribution. In most 

PSO implementations, two independent random numbers are used in order to control the 

attraction powers of gbest and pbest. The main reason for this is to add a flavor of 

unpredictability to the behavior of the swarm. w is known as the inertial weight, and this 

number (chosen to be between 0.0 and 1.0) determines how much the particle remains 

along its original direction regardless of the gbest and pbest attraction. This is a factor 

adding diversity, and setting up a balance between exploration and exploitation. Detailed 

discussions about the ideal choices of c1, c2 and w can be found in [171]. 

 

After the velocity has been calculated, the movement of the particle is straightforward. 

The velocity is applied during a given time-step, which is usually chosen to be unity; and 

the new coordinate is calculated at each dimension as follows: 

 

nnn vtxx .∆+=     (D.8) 

 

After these operations are completed for all particles in the swarm, the whole movement 

and fitness evaluation process is repeated. Hence, the particles are moved for discrete 

time intervals as if their snapshots are taken at the end of each time-interval. This is 

carried on until the termination criterion (criteria) is (are) met. There might be several 

termination criteria, such as maximum iteration number, achievement of target fitness, 

saturation in improvement of gbest etc.  
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In most applications, it is usually desired to put constraints on the search domain. Due to 

the movements of the particles, there is always a possibility that particles fall outside the 

solution space during the iterations. In order to prevent/avoid this problem, three different 

boundary conditions can be imposed [171] as seen in Fig. D.2: 

 
 
 

 
 

Fig. D.2. Boundary Condition/Wall Concept in PSO. 

 
 
 

1) If a particle exceeds the boundary of the solution space at one dimension, the velocity 

in that dimension is set to zero; and the relevant particle is implicitly pulled back toward 

the allowed solution space. This case can be considered as an absorbing boundary 

condition. 

2) If a particle exceeds the boundary of the solution space at one dimension, the velocity 

is reversed in that dimension; and hence the particle is directly reflected back; which can 

be considered as a reflecting boundary condition.  

3) Without any constraints, the particles are moved to everywhere; but for a, particle 

falling outside, fitness is not evaluated; which is interpreted as an invisible boundary 

condition. 

 

Another idea is to push the particles away from the worst solutions, instead of pulling 

them towards the best solutions. This idea is proposed by Yang and Simon [172], and 

named as NPSO standing for New Particle Swarm Optimization. In NPSO, the 

conventional PSO equation (D.7) is modified as in (D.9); where pworst and gworst are 

used instead of pbest and gbest.  
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).(.).(.. ,22,11 iworstiiworstiii gxucpxucvwv −+−+=   (D.9) 

 

A more detailed comparison of NPSO with the classical PSO (in terms of convergence 

etc.) can be found in [172]. A pictorial description of NPSO in 2 dimensions can be seen 

in Fig. D.3. More derivatives and hybridizations of PSO have been proposed since the 

first proposal in 1995. 
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Fig. D.3. 2D Pictorial Description of NPSO. 

 

 

D.4. Adaptation of PSO and Derivatives to Mesh Smoothing 

Adaptation of PSO to the mesh smoothing will fall into the optimization-based smoothing 

category. Certainly, optimization based smoothing methods are computationally 

expensive compared to methods like Laplacian methods; on the other hand, they do not 

have any restrictions like Laplacian methods. The main motivations for the usage of PSO 

in this work can be summarized as follows:  

- First of all, PSO is a young but promising, flexible, easy-to-implement global 

optimization algorithm which is suitable for multidimensional continuous optimization 

problems by its definition. Due to these facts, it is appropriate for the mesh smoothing 

problems. 

- The method is open to modifications, variations, and hybridizations for performance 

improvement purposes.  
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- Unlike some other optimization algorithms, it does not require any a priori information 

about the gradient of the objective function. Evaluation of the objective function at a 

given point is sufficient for the implementation. 

- So far, it has been demonstrated that PSO outperforms (in terms of accuracy, 

convergence speed, CPU & memory requirements) most of the nature-inspired 

optimization algorithms.  

- By its well known rapid convergence feature, it can provide quick results from highly 

distorted mesh. Moreover, unlike most mesh smoothing techniques, it provides global 

optimization rather than yielding local extrema; which are highly probable to be 

encountered in the mesh smoothing problems. 

- Since it is a population based search method, PSO provides not only the best solution, 

but also a large set of good solutions. There might be some applications for mesh 

smoothing, where one would like to get advantage of this property. 

- The composite nature of PSO makes it especially conducive to implementation on 

parallel processors. 

 

For the adaptation of PSO (and its derivatives such as NPSO [172]) to mesh smoothing 

problems, in the most general case it should be noted that the objective function F is a 

function of n variables, where n is the total number of node coordinates to be adjusted for 

mesh quality improvement. More specifically, if the nodes to be adjusted in the problem 

are P1, P2, …, Pk where Pi=(xi, yi, zi); then the objective function F will be a function of 

n=3k variables, and it can be written as F(x1, y1, z1, x2, y2, z2, …, xk, yk, zk). 

 

Considering that the number of nodes in a mesh is usually very large, at first glance it can 

be said that the problem will yield a function F with a large number of variables. The 

following paragraphs give an idea about how large the dimension or the degree of 

freedom (D.O.F) is.  

 

The mesh seen in Fig. D.4 has a total of (N+1)(L+1)(M+1) nodes assuming that all 

elements are of first order. During the smoothing of this mesh; if all nodes are allowed to 

move, then the degree-of-freedom (D.O.F) of this problem will be: 

 

D.O.Fmax = 3(N+1)(L+1)(M+1)    (D.10) 
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Fig. D.4. An all-hexahedral mesh with NLM elements: 

a) 3D Isometric View. b) Isometric View of One Sample Layer. 

 
 
 

The value in (D.10) represents the worst case; and hence it is called as D.O.Fmax. 

Obviously by allowing all the nodes to move, the shape of the volume of interest will 

most probably change after mesh smoothing. However in most cases, the shape of the 

volume of interest is preserved, which means: 

- The corner nodes are fixed, 

- The surface nodes are allowed only to move along the surface, and 

- The edge nodes are allowed only to move along the edges. 

 

With such restrictions, it can be shown that the D.O.F might reduce down to: 

 

 D.O.Fnom = 3(N-1)(L-1)(M-1) + 4M(L-1) + 4L(N-1) + 4N(M-1)  (D.11) 

 

The proof is straightforward depending on the brute force count of the nodes. This value 

represents the typical case, and it is a nominal value; hence it is called as D.O.Fnom. This 

means that D.O.Fmax is only a theoretical upper bound, which is not encountered in 

practice.  
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Another extreme case is to preserve the surface mesh completely. In such a case, the 

D.O.F reduces to: 

 

D.O.Fmin = 3(N-1)(L-1)(M-1)     (D.12) 

 

In summary, D.O.Fmin is a lower bound, whereas D.O.Fmax is an upper bound; and 

D.O.Fnom is a typical value for the smoothing of such volume of interest. 

 

It is sure that high D.O.F will increase the computation efforts during the mesh 

smoothing. The following paragraphs discuss some techniques in order to reduce the 

D.O.F, and to have a more efficient PSO solution: 

 

1. Domain Decomposition (The Divide and Conquer Method): During the improvement 

of the mesh quality, there might be opportunities to decompose the main domain into r 

independent subdomains. Via this manipulation, instead of trying to solve a PSO problem 

with n-D.O.F, one can try to solve r independent problems with ni-D.O.F where Σni= n. 

 

Assume that the volume of interest (i.e. the problem domain) is divided into subdomains. 

For mesh continuity, two adjacent subdomains (say V1 and V2) should have the same 

surface mesh at their shared surface (S12). Assume that the mesh of V1 is smoothed 

initially; and assume that the surface mesh at S12 is preserved during the smoothing of V2. 

This means that in such a case, the expected degree-of-freedom (say D.O.Fexp) for the 

smoothing operation of V2 mesh will be even lower than D.O.Fnom. Moreover, if a volume 

is surrounded by other volumes in all directions; and if all of its surface meshes have 

already been smoothed, then D.O.Fexp will be reduced down to D.O.Fmin. Consequently, 

for a non-isolated volume (i.e. surrounded by other volumes) the following can be said 

about D.O.Fexp: 

 

 

D.O.Fmin ≤ D.O.Fexp ≤ D.O.Fnom     (D.13)    

 

 

The optimum computation size (in terms of number of elements) is tried to be      

investigated by means of a simple analysis. A PSO setup with 20-particle population and                   
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50 iterations is executed. The degree-of-freedom is chosen to be worst case; i.e. all nodes 

are allowed to be floating, which yields D.O.Fmax. Table D.2 shows the elapsed time (both 

total and per element) during the PSO-smoothing for meshes with for various N, L, and M 

values. All preprocessing (memory allocations, PSO population setup, etc.) and 

postprocessing (memory deallocations, result displays, etc.) operations are included in the 

total elapsed time.  

 
 
 

Table D.2. Performance Measures for PSO-Mesh Smoothing of Various Domains. 

 

Total 
Elapsed 

Time
(sec)

Elapsed 
Time Per 
Element

(sec)

Total 
Elapsed 

Time
(sec)

Elapsed 
Time Per 
Element

(sec)
2 2 2 8 81 0.06 0.00750 0.048 0.00600
3 3 3 27 192 0.09 0.00333 0.065 0.00241
4 4 4 64 375 0.17 0.00266 0.113 0.00177
5 5 5 125 648 0.27 0.00216 0.193 0.00154
6 6 6 216 1029 0.461 0.00213 0.321 0.00149
7 7 7 343 1536 0.711 0.00207 0.513 0.00150
8 8 8 512 2187 1.122 0.00219 0.786 0.00154
9 9 9 729 3000 1.753 0.00240 1.268 0.00174

10 10 10 1000 3993 2.644 0.00264 2.022 0.00202
11 11 11 1331 5184 3.925 0.00295 3.146 0.00236
12 12 12 1728 6591 5.888 0.00341 4.414 0.00255
13 13 13 2197 8232 8.472 0.00386 5.838 0.00266
14 14 14 2744 10125 12.067 0.00440 8.015 0.00292
15 15 15 3375 12288 16.424 0.00487 10.997 0.00326
16 16 16 4096 14739 22.342 0.00545 14.894 0.00364
17 17 17 4913 17496 29.923 0.00609 20.274 0.00413

L M
Number of 
Elements

Maximum 
Degree of 
Freedom

PC2: Intel Pentium 4 3.4 GHz 1,00GB RAM Desktop
PC1: Intel Pentium M 1.4 GHz 512MB RAM Laptop

Number of Particles = 20
Number of Iterations = 50

PC-1 PC-2

N

 
 
 

The performance measurement is performed by means of PSO mesh generation script 

executed at Matlab 6.5 on two separate PCs, where: 

- PC1 is a laptop Windows PC with Intel Pentium M 1.4GHz CPU and 512MB RAM, 

- PC2 is a desktop Windows PC with Intel Pentium 4 3.4GHz CPU and 1GB RAM. 
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Investigation of Table D.2 yields the following observations:  

- The elapsed time per element is minimum (about 0.00150 seconds on PC-2) for 

6×6×6 or 7×7×7-element sized domains.  

- For domains smaller than 6×6×6, the overhead for the problem setup (operations like 

swarm generation, and updates) seem to be dominant in terms of CPU time. Hence, 

due to such overheads, elapsed time per element is high for small domains. 

- For domains larger than 7×7×7, PSO related operations seem to be dominant. As the 

allocated memory and the particle sizes increase, the updates and objective function 

evaluations take longer times.  

 

By using the results of this analysis, the following divide-and-conquer strategy can be 

proposed:  

- For the most efficient PSO mesh smoothing, a mesh can be considered as a 

collection of 7×7×7-element (or comparable sized) subdomains. 

- Mesh smoothing can be performed at each subdomain one by one.  

 

By using the divide-and-conquer strategy, a mesh of 100,000 elements is smoothed by 

PSO (with 50 iterations, 20 particles) about 84 seconds on PC-2 by using 7×7×7-element 

subdomains. During this experiment;  

- The shape of the main domain is preserved; i.e. the nodes along the outer surfaces 

are allowed to be moving along the surfaces. There is no other specific restriction.   

- For the interior subdomains, eventual D.O.F reduction is performed by getting use 

of the shared surface mesh, if the relevant adjacent subdomain is already smoothed. 

For such subdomains, the D.O.F is D.O.Fexp, where its lower and upper bounds are 

given in (D.13).  

 

The optimality of 7×7×7-element subdomain size can be observed in the same problem 

numerically. By using the same setup described above, the solution of the same problem 

takes 123 seconds on PC-2 if 10×10×10-element subdomains are used.  

 

Such a strategy will dramatically reduce the complexity and the computation time. 

Certainly, the number of iterations necessary for convergence highly depends on the 
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D.O.F. Moreover, the population size should be increased for high D.O.F problems. 

Nevertheless, the results of this analysis give an idea of optimum subdomain size (which 

is 7×7×7 or equivalent) for fixed population size and fixed number of iterations.  

 

Fig. D.5 shows the PSO-smoothed version (via divide-and-conquer method) of the mesh 

seen in Fig. D.4.      

 
 
 

 
  

Fig. D.5. PSO-smoothed version of the mesh in Fig. D.4. 

a) 3D Isometric View. b) Isometric View of One Sample Layer. 

 
 
 

2. Fixing Some Nodes: Instead of trying to move all the nodes, some nodes (especially the 

ones on the boundaries) might be considered to be fixed. As an example, if the ith and jth 

nodes are defined to be fixed; then the function F(x1, y1, z1, …, xi, yi, zi, …, xj, yj, zj, …, xk, 

yk, zk) will be simplified to F(x1, y1, z1, …, xk, yk, zk).   

 

3. Imposing Nodes Dependencies: The movement of some nodes can be defined to be 

dependent to each other. For example, if the movement of the ith node in x direction is set 

to be dependent to the movement of the jth node in x direction; then the function F(x1, y1, 

z1, …, xi, yi, zi, …, xj, yj, zj, …, xk, yk, zk) will be simplified to F(x1, y1, z1, …, xi, yi, zi, …, 

yj, zj, …, xk, yk, zk).   
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4. Setting Rules to Individual Node Movements: The movement of a node inside a mesh 

might be defined to be in some specific direction; to yield a dependent movement in two 

directions. For example, the movement of a node might be defined to be in r direction of 

the cylindrical coordinates where r=(x2+ y2)1/2. If the movement of the ith node is set to be 

in r direction; then the function F(x1, y1, z1, …, xi, yi, zi, …, xk, yk, zk) will be simplified to 

F(x1, y1, z1, …, ri, zi, …, xk, yk, zk).   

 
 
5. Reduction by Means of Symmetry: For symmetric problems, instead of trying to 

optimize the whole mesh, only a subset can be optimized and the whole mesh can be 

reconstructed. For some problems, this might cause the dimension of F to reduce to 1/8 or 

even 1/16 of the original; if a solution in an octant or half octant is sufficient. 

 
Certainly, manipulations as fixing some nodes, imposing some nodes to be dependent, 

setting rules to individual node movement reduce the level of quality improvement. There 

is a trade-off between the quality of the final mesh and the computation time. On the 

other hand, increasing the D.O.F does not always guarantee better improvement. 

Moreover, manipulations as reduction by means of symmetry might not be applicable in 

most of the problems in practice. Practically, methods other than domain decomposition 

(divide-and-conquer) might not be applicable in most cases. 

 
The adaptation of PSO to mesh smoothing is slightly different than the normal PSO 

procedure. Instead of initializing all the particles in n-dimensional space in a totally 

random manner, an automatically generated mesh is used for this purpose. All particles 

are positionally initialized by superimposing Gaussian noise (with zero mean and a user 

defined variance) to the automatically generated mesh at each dimension. The initial 

velocities of the particles at each dimension are generated as in the ordinary PSO. The ∆t 

value is chosen to be unity; and the initial random velocities of the particles are assigned 

so that a node can move a distance of at most li along one direction due to this velocity 

component at first iteration. Here, li is a user-defined parameter; chosen to be comparable 

to average edge length along one direction.  

 
Obviously, the choice of the step size (i.e. both ∆t and vn) in the optimization has great 

impact on the convergence. So far, the effects of the step size and its     
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selection/computation have not been specifically investigated in the mesh smoothing 

problem. This is a potential subject of further research. 

 

The fitness evaluation throughout the algorithm is achieved by means of minimization of 

F; i.e. the fitness of a mesh increases as F decreases. All pbest, gbest computations are 

performed by using this definition.   

 

With manipulations, initializations and definitions described above, it is possible to apply 

PSO and its derivatives to the mesh smoothing problems. 

 

For all examples in the present work, a population size of 15 is chosen (for most 

applications it is shown that a population size of 10-20 is efficient); and the number of 

iterations is taken as 50. c1 and c2 are chosen to be 2.0 as usual, and w is chosen to be 1.0. 

Moreover, for all nodes reflecting walls are defined.  

 

As a practical application of above manipulations, two problems in engineering 

electromagnetics are given as examples. As will be noticed, there are so numerous 

manipulations in the examples that; one can think whether these reductions are worth to 

apply rather than solving the problem with high D.O.F. Certainly, it is wiser to solve 

these problems directly rather than spending effort to decrease the D.O.F; but the 

examples are just given to demonstrate the application of the suggested reduction 

methods.    

 

First, the circular microstrip patch antenna, which is a well-known structure both for 

scattering or radiation problems in engineering electromagnetics, is considered. The mesh 

generated for this problem should be conformal to the circular patch internally; and it 

should be conformal to the rectangular prism substrate externally. An automatically 

generated all-hexahedra mesh for this structure can be seen in Fig. D.6.  
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Fig. D.6. 3D Views of the Circular Microstrip Patch Antenna. 

 
 
 

First, the problem domain can be reduced by means of symmetry; where the problem can 

be solved in a quadrant. Then domain decomposition can be performed by considering 

the sub-domain inside the circular patch; and the sub-domain between the circular patch 

and the outer boundary of the substrate separately. More dimension reduction can be 

achieved if further symmetry is considered in each sub-domain. These manipulations are 

illustrated in Fig. D.7. Moreover in each sub-domain, the nodes at the boundaries can be 

defined to be fixed; and the movements of some nodes can be defined in specific 

directions only. These operations can be seen in Fig. D.8. 
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Fig. D.7. Dimension Reduction by Means of Symmetry, and Domain Decomposition. 

 
 
 

 
 

Fig. D.8. Fixing Nodes, Imposing Node Dependencies and Setting Rules for Individual 
Node Movements. 
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Another advantage of PSO, when applied to mesh smoothing problem, is the imposure of 

the boundary conditions. For a moving node, a reflecting boundary condition (wall) can 

be applied so that the relevant element is kept untangled. In order to keep the nodes inside 

a boundary (e.g. the boundary of the computational domain), absorbing or invisible walls 

can be defined on the boundaries as well. For the circular microstrip patch antenna 

problem, the reflecting walls defined for all floating nodes are illustrated in Fig. D.9. 

 
 
 

Subdomain I

Reflecting Walls for white labeled nodes

Subdomain II

 
 

Fig. D.9. Setting Boundary Conditions (Reflecting Walls) for Floating Nodes. 

 
 
 

The overall quality improvement in the circular microstrip patch antenna mesh 

improvement is achieved by means of two separate PSO schemes; a 2D scheme for 

Subvolume I (Fig. D.10), and a 2D scheme for Subvolume II (Fig. D.11). Finally, the 

whole procedure is summarized and illustrated in Fig. D.12. 
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1.8 units

2.0 units

3.0 units

(2, 2, z0)

(2, 0, z0)

(1.82, 1.82, z0)

F = 0.7560
faverage = 0.7202 

Fixed element size in z direction : 1.0 unit

F = 0.3277
faverage = 0.7967 

Fixed element size in z direction : 1.0 unit

1.8 units

3.0 units

a) Automatically Generated Mesh b) PSO Smoothed Mesh

(3, 1.2426, z0)
(3, 0.85, z0)

(2.36, 0, z0)

 
Fig. D.10. A 3D PSO Mesh Smoothing Scheme for Subdomain I of the Circular 

Microstrip Antenna Problem. 

 
 
 

 
 

Fig. D.11. A 2D PSO Mesh Smoothing Scheme for Subdomain II of the Circular 
Microstrip Antenna Problem. 

 



 214

 
 

Fig. D.12. Performed Steps for a 2D+2D PSO Mesh Smoothing Scheme of the Circular 
Microstrip Antenna Problem. 

 
 
 

Another problem dealt during the present work is the scattering of a perfectly conducting 

sphere with a radius of one wavelength (λ), which is an engineering electromagnetics 

application again. For this problem, it is certainly known that the total electric field inside 

the perfectly electric conducting sphere is zero. Hence, there is no need to consider the 

sphere; and there is no need to generate mesh for this volume. This means that the 

computational domain is a very thick spherical shell. For automatic all-hexahedral mesh 

generation, the computational domain shall be decomposed into three sub-domains; two 

top hats and the remaining surrounding region.  

 

Automatically generated mesh for the top hat is usually in poor quality; of which the 

cross section for a constant R surface can be seen in Fig. D.13. Again, by getting use of 

symmetry the dimension of the objective function F can be reduced. Moreover, instead of 

trying to improve the whole top hat mesh, only one layer can be improved and then whole 

top hat can be reconstructed.  
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Fig. D.13. Top Hat Sub-Domain to be Smoothed by PSO (Different 3D Views with 
Different Levels of Detail). 

 
 
 

The improvement in the top hat mesh can be seen in Fig. D.14 and Fig. D.15 with 

different views. It should be noted that this improvement is achieved by means of only a 

3D PSO scheme.  

 
 
 

 
 

Fig. D.14. Improvement in the Mesh by Investigation of a Constant R Surface. 
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Fig. D.15. Improvement in the Mesh by 3D View Investigation of One Layer of Top Hat. 

 
 
 

Since this problem is an open domain problem, in order to be able to apply the Finite 

Element Method, an artificial absorber shall be defined for the simulation of infinity and 

mesh truncation. Perfectly Matched Layers (PMLs) defined by Berenger [97] is 

implemented in this work for this purpose by means of the complex coordinate stretching 

[98]. Hence, the cross section of the mesh is classified into regions as free space and PML 

as seen in Fig. D.16. The calculated electric field for the PML region is physically 

meaningless, and hence ignored throughout the error norm analysis described in the 

following paragraphs.  

 
 
 

 

Fig. D.16. Cross Section of the Mesh Generated for the Perfectly Electric Conductor 
Sphere Problem. 
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Fig. D.17. Surface and Volume Definitions of the Top Hat. 

 
 
 

For this problem, the effect of the mesh quality on the Finite Element Solution accuracy 

is investigated. First, the exact area of the surface ST of the top hat (as seen in Fig. D.17) 

has been compared to the calculated areas of the automatically generated and PSO 

smoothed meshes. In other words, for G′(x,y,z) = G′(x,y,z)aR where G′(x,y,z) =1, the 

following surface integral is computed. 
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By using the isoparametric hexahedral elements (i.e. assuming that each hexahedral 

element is transformed to a cube in ξηζ-space extending from (-1,-1,-1) to (1,1,1)); for 

any function G′(x,y,z), the surface integral on the surface of an element 
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in the xyz-space can be stated as 
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in the ξηζ-space. In (D.16), 
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Or in other words,  
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Certainly, Scalculated can be stated as ∑ ∫∫n

eS
dszyxG ),,(' where the summation traces all 

elements on the surface of the top hat. For the error in S, we define the following error 

norm:  
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Second, the exact volume of the top hat (VT as seen in Fig. D.17) has been compared to 

the calculated volumes of the automatically generated and PSO smoothed meshes. In 

other words, for H′(x,y,z) =1, the following volume integral is computed. 
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By using the isoparametric hexahedral elements; for any function H′(x,y,z), the volume 

integral in an element 
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in the xyz-space can be stated as 
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in the ξηζ-space, where J is the Jacobian matrix of the xyz to ξηζ transformation. 

Certainly, Vcalculated can be stated as ∑ ∫∫∫n

eV
dvzyxH ),,(' where the summation traces all 

elements inside the top hat. For the error in V, we define the following error norm:  
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A low quality mesh usually implies that the relevant surface mesh is also of low quality. 

This implies that both the surface and volume representations are bad; i.e. err(S) and 

err(V) values are high. On the other hand, having low err(S) and err(V) values does not 

guarantee mesh quality. These are just indicators about the low quality but not the high 

quality of a mesh. Hence, more reliable error norms should be defined if possible. 

 

Finally, solution of the scattered electric field results obtained by both the automatically 

generated and the PSO smoothed meshes are compared to the analytical results, which 

can be found by using Mie Series. For the electric field, we define the following error 

norm: 
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where Eexact(Pi) is the exact electric field calculated via the Mie Series at the centroid (Pi) 

of an element lying in free space; whereas Ecalculated(Pi) is the value calculated by FEM at 

the same point. Certainly, the summation traces all elements lying in free space; K is the 

number of such elements; and err(E) is therefore the mean normalized error over the free 

space portion of the computational domain. Table D.3 demonstrates the improvement in 

the solutions (i.e. reduction in the error norms) after PSO smoothing. 
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Table D.3. Reduction in the error norms after smoothing. 

 
  err(S) err(V) err(E) 

Automatically Generated Mesh 0.0398 0.0336 0.0968 3,400 total 

elements  PSO Smoothed Mesh 0.0367 0.0302 0.0881 

Automatically Generated Mesh 0.0026 0.0022 0.0131 28,800 total 

elements  PSO Smoothed Mesh 0.0024 0.0020 0.0117 

 
 
 

 

A method for mesh improvement by means of local node repositioning based on the 

condition number related quality metric and Particle Swarm Optimization is proposed in 

this thesis. Meshes that can be encountered in practical situations are smoothed with this 

method. As an example, the impact of smoothing to the finite element solution accuracy 

is observed when H(curl)-conforming hexahedral elements are used. On the other hand, 

the method puts no restriction on the type of the hexahedral element; i.e. quality of any 

other hexahedral element type (H(grad)-conforming, H(div)-conforming) can be 

improved by means of this method. 

 

Mesh improvement by means of PSO might be extended to other types of finite elements 

(e.g. triangular and quadrilateral elements in 2D, tetrahedral, prismatic elements in 3D). 

The method can also be extended to any type of element with higher order if applied to 

appropriate quality metrics or combined to appropriate validity criteria.  

 

The application of PSO to mesh generation problem yields several research topics: 

1. Development of methods for improving the convergence in this problem might be an 

attractive avenue. Since the D.O.F is very high in the mesh smoothing problem; and since 

getting the global extremum is not crucial as in other optimization problems, trying to 

improve the convergence (trading the convergence to accuracy where necessary) might be 

a good choice. The following section D.5 is dedicated to an introductory discussion about 

this topic.   

2. Definition of several objective functions depending on various quality metrics; and 

application of multiobjective mesh smoothing by means of Multi Objective Particle   
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Swarm Optimization (MOPSO) [173-174] might be another further research topic; this 

will be introduced in section D.6. 

 

Unfortunately, it could not be possible to obtain mature and meaningful results in either 

topic yet. 

 
 
 

D.5. Speeding up the Convergence of PSO for High D.O.F Problems 

It has been shown several times that the Particle Swarm Optimization method works well 

for challenging problems. In most of these works, the authors have not investigated the 

behavior of the particles, although they have tested the overall performance of the swarm 

by means of benchmark functions.  

 
However recently in [175], Clerk and Kennedy discussed and investigated the success of 

the PSO with the particle’s point of view; and they have proposed some modifications in 

the original algorithm in order to guarantee the stability and convergence in 

multidimensional problems. In this work, the authors modified the formulation of PSO in 

order to make the adjusted parameters controllable for guaranteeing convergence. 

 

An idea might be:  

1. To try to find a PSO derivative, which outperforms to the original one;  

2. And then to modify the formulation of this derivative just as Clerk and Kennedy 

performed. 

 

For the first step, the proposed PSO derivative should be first tested against the original 

PSO for some challenging problems. Since 1996, IEEE Congress on Evolutionary 

Computing has been trying to provide a standard test bench for the performance testing 

and evaluation of the proposed optimization schemes. The last set has been defined in 

2005 at IEEE Congress on Evolutionary Computing. These benchmark functions provide 

challenges (with either numerous local optima, or wide plateaus) to optimization methods 

and researches.  

 

Our proposal for the outperforming PSO derivative is NPSO of Yang and Simon [172]. 

As stated before, it basically tries to push each particle away from the worst location and    
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bad locations. Therefore, for initial rapid convergence it seems to be reasonable according 

to the results given in [172], in which the authors used four benchmark functions (Sphere, 

Griewank, Rastrigin and Rosenbrock). The main properties of these functions are given in 

Table D.4. 

 
 
 

Table D.4. Main Properties of the Benchmark Functions Used in [172]. 

 
Function Multimodal Separable 

Griewank √ × 

Rastrigin √ √ 

Rosenbrock × × 

Sphere × √ 

 
 
Among these, the Griewank function is defined as: 
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where x = [x1 ... xi ... xn], and xi ∈ [-600.0, 600.0]. The behavior of the function in 2D can 

be seen in Fig. D.18. 

 
 
 

 

Fig. D.18. Pictorial Description of the Behavior of 2D Griewank Function [176]. 
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And the Rastrigin function is defined as: 
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where x = [x1 ... xi ... xn], and xi ∈ [-5.12, 5.12]. The behavior of the function in 2D can be 

seen in Fig. D.19. 

 
 

 
 

Fig. D.19. Pictorial Description of the Behavior of 2D Rastrigin Function [176]. 

 
 
 

The Rosenbrock function is defined as: 
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where x = [x1 ... xi ... xn], and xi ∈ [-30.0, 30.0]. The behavior of the function in 2D can be 

seen in Fig. D.20. 
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Fig. D.20. Pictorial Description of the Behavior of 2D Rosenbrock Function [176]. 

 
 
 

Finally, the Sphere function is defined as: 
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where x = [x1 ... xi ... xn], and xi ∈ [-100.0, 100.0]. The behavior of the function in 2D can 

be seen in Fig. D.21. 

 
 
 

 
 

Fig. D.21. Pictorial Description of the Behavior of 2D Sphere Function [176]. 
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According to [172], for D.O.Fs of 2, 5, and 10; NPSO outperforms (in both convergence 

and accuracy) to PSO for these 4 benchmark functions. Higher D.O.Fs (1,000-10,000) 

should also be tested by using these functions. The comparison should also be performed 

for more challenging benchmark functions (e.g. Schaffer’s F6); and benchmark functions 

with wide plateaus (e.g. Easom) for which PSO is well known to be suffering. 

 

D.6. Pareto Optimality in Mesh Smoothing and Application of MOPSO 

Definition 1. Given two vectors x; y ∈ Rk, we say that x ≤ y if xi ≤·yi for i = 1, ..., k, and x 

dominates y (denoted by xp  y) if x ≤ y and x ≠ y. 

 

Fig. D.22 shows a particular case of the dominance relation in the presence of two 

objective functions. 

 
 
 

 
 

Fig. D.22. Dominance Relation in a Biobjective Space. 

 
 
 

Definition 2. We say that a vector of decision variables x ∈ X ⊂ Rk is nondominated with 

respect to X, if there does not exist another y ∈ χ such that f(y)p  f(x). 

 

Definition 3. We say that a vector of decision variables x* ∈ F ⊂ Rk (F is the feasible 

region) is Pareto-optimal if it is nondominated with respect to F. 
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Definition 4. The Pareto Optimal Set P * is defined by: P * = {f(x) ∈ Rk | x is Pareto-

optimal}. 

 

Definition 5. The Pareto Front PF * is defined by: PF *  = {f(x) ∈ Rk | x ∈ P *}. 

 

Fig. D.23 shows a particular case of the Pareto front in the presence of two objective 

functions. 

 
 
 

Dominated Solutions

f2

f1

Pareto Front Solutions  
 

Fig. D.23. The Pareto Front of a Set of Solutions in a Biobjective Space. 

 
 
 

Hexahedral mesh smoothing can be extended by defining another metric (i.e. another 

objective function). Since the element size is a dominating factor in interpolation 

accuracy, the second objective function can be defined as the maximum deviation from 

the “ideal element volume”; where the maximization is over the all elements inside the 

mesh. Keeping the condition number based objective function as the first objective, 

putting a second objective like this, and using the Pareto definitions above; a Pareto front 

can be found. This might be the subject of further research. 
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APPENDIX E 

 

 

BASIC NOTATION OF THE UNIFIED MODELING 

LANGUAGE (UML)  

 

 

 

In this Appendix, basic notation of Unified Modelling Language is given to the readers 

who are not familiar with the concept. 

 

E.1. What is UML? 

According to the OMG specification: "The Unified Modeling Language (UML) is a 

graphical language for visualizing, specifying, constructing, and documenting the 

artifacts of a software-intensive system. The UML offers a standard way to write a 

system's blueprints, including conceptual things such as business processes and system 

functions as well as concrete things such as programming language statements, database 

schemas, and reusable software components." 

The important point to note here is that UML is a 'language' and not a method or 

procedure. The UML is used to define a software system; to detail the artifacts in the 

system, to document and construct - it is the language that the blueprint is written in. 

UML defines the notation and semantics for the following domains: 

• The User Interaction or Use Case Model - describes the boundary and interaction 

between the system and users. Corresponds in some respects to a requirements 

model.  

• The Interaction or Collaboration Model - describes how objects in the system will 

interact with each other to get work done. 
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• The Dynamic Model - State charts describe the states or conditions that classes 

assume over time. Activity graphs describe the workflows the system will 

implement.    

• The Logical or Class Model - describes the classes and objects that will make up 

the system.     

• The Physical Component Model - describes the software (and sometimes 

hardware components) that make up the system.  

• The Physical Deployment Model - describes the physical architecture and the 

deployment of components on that hardware architecture.  

 
 
 

Table E.1. Core Elements in Structural UML Modeling. 

 
Construct Description Syntax 

Class A description of a set of objects that share the same 

attributes, operations, methods, relationships and 

semantics.  
Interface A named set of operations that characterize the 

behavior of a software element. 

 
Component A modular, replaceable and significant part of a system 

that packages implementation and exposes a set of 

interfaces.  

Node A run-time physical object that represents a 

computational resource. 
 

Constraint A semantic condition or restriction. 
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Table E.2. Core Relationships in Structural UML Modeling. 

 
Construct Description Syntax 

Association A relationship between two or more classifiers that 

involves connections among their instances. 

 

 
Aggregation A special form of association that specifies a 

whole-part relationship between the aggregate 

(whole) and the component part.  

Generalization A taxonomic relationship between a more general 

and a more specific software element. 
 

Dependency A relationship between two modeling elements, in 

which a change to one modeling element (the 

independent software element) will affect the other 

modeling element (the dependent software 

element). 

 

 

Realization A relationship between a specification and its 

implementation. 
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Table E.3. Core Definitions in UML Use Case Modeling. 

 
Construct Description Syntax 

Use Case A sequence of actions, including variants, 

that a system (or other entity) can perform, 

interacting with actors of the system.  

Actor A coherent set of roles that users of use cases 

play when interacting with these use cases. 

 
System  

Boundary 

Represents the boundary between the 

physical system and the actors who interact 

with the physical system.  

Association The participation of an actor in a use case. 

i.e., instance of an actor and instances of a 

use case communicate with each other. 

 

 

Generalization A taxonomic relationship between a more 

general use case and a more specific use 

case. 

 

 

Extend A relationship from an extension use case to 

a base use case, specifying how the behavior 

for the extension use case can be inserted 

into the behavior defined for the base use 

case. 

 

 

Include An relationship from a base use case to an 

inclusion use case, specifying how the 

behavior for the inclusion use case is inserted 

into the behavior defined for the base use 

case. 

 

 

 

 

 



 231

 
 
 

CURRICULUM VITAE 
 

PERSONAL INFORMATION 
Surname, Name  : Yılmaz, Asım Egemen 
Nationality  : Turkish (TC) 
Date and Place of Birth : 18 October 1975, Adıyaman 
Marital Status  : Married 
Phone   : +90 312 219 57 87 / 3120 
Fax   : +90 312 219 57 97 
e-mail   : aeyilmaz@havelsan.com.tr, asimegemenyilmaz@yahoo.com  
 
EDUCATION 
Degree Institution Year of Graduation 
MS METU Electrical  

and Electronics Engineering 
2000 

BS METU Electrical  
and Electronics Engineering 

1997 

BS METU Mathematics 1997 
High School Ankara Fen Lisesi 1993 
 
TEACHING EXPERIENCE 
Year Place Enrollment 
September 
2004- Present 

Ankara University  
Department of Electronics 
Engineering 

Guest Instructor 
(EM206 Electromagnetics I) 
(EM311 Electromagnetics II) 
Formerly  
(EM206 Elektromanyetik I) 
(EM311 Elektromanyetik II) 

 
WORK EXPERIENCE 
Year Place Enrollment 
July 2003- 
Present 

HAVELSAN A.Ş.  
737 AEW&C Peace Eagle Program 

Mission Computing Subsystem  
IPT Manager 

   
July 1999- 
July 2003 

STM A.Ş. 
HERİKKS Project 

R&D Engineer 

   
February 1999- 
July 1999 

Vestel Information Appliances  R&D Engineer 

   
July 1997- 
January 1999 

ASELSAN A.Ş. Communications 
Division Communication Security 
Group 

R&D Engineer 

   
September 
1996- 
June 1997 

ASELSAN A.Ş. Communications 
Division Communication Security 
Group 

Part Time R&D Engineer 

 
FOREIGN LANGUAGES  
Advanced English, Fluent German 



 232

PUBLICATIONS 
1. A.E. Yilmaz, M. Kuzuoglu, “Calculation of Optimized Parameters of Rectangular Microstrip 

Patch Antenna Using Particle Swarm Optimization”, to appear in Microwave and Optical 
Technology Letters (submitted in May 2007). 

2. A.Ö. Bozdoğan, M. Efe, A.E. Yılmaz, “Genel Atama Probleminde Koloni Optimizasyon 
Yaklaşımları”, in CD-ROM Proc. IEEE 15. Sinyal İşleme ve İletişim Uygulamaları Kurultayı 
(SİU-2007), Eskişehir, Türkiye. 

3. A.E. Yılmaz, M. Kuzuoğlu, “Parçacık Sürü Optimizasyonu ile Altı Yüzlü Eleman Ağlarının 
İyileştirilmesi”, in CD-ROM Proc. IEEE 15. Sinyal İşleme ve İletişim Uygulamaları Kurultayı 
(SİU-2007), Eskişehir, Türkiye. 

4. M.B. Akbulut, A.E. Yılmaz, “A Modified Genetic Algorithm for the Generalized Assignment 
Problems”, submitted to IU-JEEE (Istanbul University – Journal of Electrical and Electronics 
Engineering) (Feb. 2007). 

5. A.E. Yilmaz, M. Kuzuoglu, “Comparison of Linear And Quadratic Hexahedral Edge 
Elements in Electromagnetic Scattering Problems”, to appear in AEÜ – International Journal 
of Electronics and Communications (submitted in Dec. 2006). 

6. A.E. Yilmaz, M. Kuzuoglu, “A Particle Swarm Optimization Approach in Hexahedral Mesh 
Smoothing”, submitted to Communications in Numerical Methods in Engineering (Dec. 2006 
– rev. May 2007).  

7. A.E. Yılmaz, M. Kuzuoğlu, “Mikroşerit Yama Antenlerin Sonlu Elemanlar Yöntemi ile 
Modellenmesi”, in Proc. URSI-Türkiye 2006 3. Ulusal Kongresi, pp. 146-148, 6-8 Eylül 
2006, Ankara, Türkiye. 

8. A.E. Yılmaz, M. Kuzuoğlu, “Elektromanyetik Sınır Değer Problemlerinin Düzgün Olmayan 
Ağlar ve Altı Yüzlü Sonlu Kenar Elemanları İle Modellenmesi”, in Proc. URSI-Türkiye 2006 
3. Ulusal Kongresi, pp. 125-127, 6-8 Eylül 2006, Ankara, Türkiye. 

9. İ. Kılınç, A.A. Diri, A.E. Yılmaz, “Komuta Kontrol Sistemlerinde Üç Boyutlu Hava Resmi 
Görüntüleme Teknolojileri”, in Proc. 3. Savunma Teknolojileri Kongresi (SAVTEK-2006), 
vol. 2, pp. 231-241, 29-30 Haziran 2006, Ankara, Türkiye. 

10. A.R. Ünal, G. Karaca, Ö. Dura, A.E. Yılmaz, “Taktik Veri İşleme ve Dağıtım Sistemi”, in 
Proc. 3. Savunma Teknolojileri Kongresi (SAVTEK-2006), vol. 1, pp. 613-623, 29-30 Haziran 
2006, Ankara, Türkiye. 

11. M. Efe, A.E. Yilmaz, O. Donmez Dura, “Data Fusion for a Surveillance System: Addressing 
Some Practical Problems”, in Proc. 18th International Conference on Systems Engineering 
(ICSENG-05), pp. 342-247, August 16-18, 2005, Las Vegas, Nevada, USA. 

12. E. Çağlav, H.G. İlk, R.M. Özel, A.E. Yılmaz, “Karar Destek Mekanizmalarında Özellik 
Füzyonu için Çoklu Sensor Entegrasyonu” , in CD-ROM Proc. IEEE 13. Sinyal İşleme ve 
İletişim Uygulamaları Kurultayı (SİU-2005), Kayseri, Türkiye. 

13. A.E. Yılmaz, M. Kuzuoğlu, “Elektromanyetik Sınır Değer Problemlerinin İkinci Dereceden 
Altı Yüzlü Sonlu Elemanlar İle Modellenmesi”, in Proc. URSI-Türkiye 2004 2. Ulusal 
Kongresi, pp. 78-80, 8-10 Eylül 2004, Ankara, Türkiye. 

14. A.E. Yılmaz, R.M. Özel, H.G. İlk, “Çoklu Taktik Ses ve Veri Haberleşme Linklerinin Analizi 
ve Modellenmesi”, in Proc.IEEE 12. Sinyal İşleme ve İletişim Uygulamaları Kurultayı (SİU-
2004), pp. 763-766, 28-30 Nisan 2004, Kuşadası, Türkiye. 

15. E.H. Kök, A.E. Yılmaz, Ö. Yıldız, M. Efe, R.M. Özel, “Dağınık Konuşlandırılmış Sensör 
İzlerinin Birleştirilmesinde Kayıtlanma Problemleri ve Çözümleri”, in Proc. IEEE 12. Sinyal 
İşleme ve İletişim Uygulamaları Kurultayı (SİU-2004), pp. 755-758, 28-30 Nisan 2004, 
Kuşadası, Türkiye. 



 233

16. E.H. Kök, A.E. Yılmaz, Ö. Yıldız, M. Efe, R.M. Özel, “Heterojen Radarlardan Gelen İzlerin 
Birleştirilmesi: Pratik Problemler ve Çözümleri”, in Proc. IEEE 12. Sinyal İşleme ve İletişim 
Uygulamaları Kurultayı (SİU-2004), pp. 35-40, 28-30 Nisan 2004, Kuşadası, Türkiye. 

 
PATENTS 
M.A. Yazıcı and A.E. Yılmaz, inventors; ASELSAN A.Ş., assignee. “X İlk Koşullu Artan/Azalan 
Örüntü Eleyici Yapma Rassal Sayı Üretme Metodu”, Turkish Patent Institute No: 1998 00950, 
2001/12/21. 

 
HONORS & AWARDS 
• 3rd, Student Proceedings Award, URSI-2004, Ankara, Turkey. 
• 1st patent holder of ASELSAN; 1st software patent holder in Turkey. 
 
MEMBERSHIPS 
• Member (’05) – International Council on Systems Engineering (INCOSE) 
• Founding Member (’05) – International Council on Systems Engineering (INCOSE) Turkey 

Chapter 
• Student Member (’07) – Institute of Electrical and Electronics Engineers (IEEE) 
 
OTHER ACADEMIC ACTIVITIES 
• Guest Referee, Turkish Journal of Electrical Engineering and Computer Sciences 

(ELEKTRİK) – upon Invitation or Request.  
• Speaker on Career & Training Days of various universities such as Ankara University, 

TOBB-ETU, Selçuk University, and Bilkent University – upon Invitation or Request.  
• Organization and Chair of the Special Session “Tactical Environment Modelling, Target 

Tracking and Applications” in SİU-2006, Antalya, Turkey (co-organized and co-chaired with 
M. Efe). 

• Organization and Chair of the Special Session Series “Evolutionary Algorithms: Theory and 
Applications (I–II)” in SİU-2007, Eskişehir, Turkey (co-organized and co-chaired with M. 
Efe). 

  
NON PROFESSIONAL ACTIVITIES 
• Amateur Photography:  

Photos published in various media such as AFSAD Monthly Bulletin - Kontrast, AFSAD 
Web Page, Cumhuriyet-Ankara, and Ankara Chamber of Dentists Bulletin 
Personal Galleries:  
www.treklens.com/members/egemenyilmaz/,  
www.trekearth.com/members/egemenyilmaz/  

 
• Performing Arts:  

(Mar 2007 – present) Back vocalist, harmonica player, and keyboardist/pianist of the 
Pop/Rock cover band A Broad Band™    
(Jun 2004 – Mar 2007) Lead singer and keyboardist/pianist of the Pop/Rock cover band Plug 
N’ Play™    
(Jul 1999 – May 2001) Keyboardist/pianist of the Ethnic Jazz experimental band The Eye 
Queue Project™    

 
PERSONAL INTERESTS 
History of Music (Romantic Era), History of Art (Impressionist & Post-Impressionist Era) 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 2400
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 2400
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [4000 4000]
  /PageSize [612.000 792.000]
>> setpagedevice


