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ABSTRACT

DEVELOPMENT OF AN EDUCATIONAL CFD SOFTWARE FOR TWO DIMENSIONAL

INCOMPRESSIBLE FLOWS

Nakı̇boğlu, Güneş

M.S., Department of Mechanical Engineering

Supervisor: Asst. Prof. Dr. Cüneyt Sert

July 2007, 105 pages

The main purpose of this research is to develop a Computational Fluid Dynamics (CFD) soft-

ware to be used as an educational tool in teaching introductory level fluid mechanics and CFD

courses. The software developed for this purpose is called Virtual Flow Lab. It has a graph-

ical user interface (GUI) that enables basic pre-processing, solver parameter and boundary

condition setting and post-processing steps of a typical CFD simulation. The pressure-based

solver is capable of solving incompressible, laminar, steady or time-dependent problems on

two-dimensional Cartesian grids using the SIMPLE algorithm and its variants. Blocked-cell

technique is implemented to extend the types of the problems that can be studied on a Carte-

sian grid. A parametric study is conducted using a number of benchmark problems in order to

test the accuracy and efficiency of the solver and successful results are achieved.

Keywords: CFD, Software-Based Education, Finite Volume Method, Pressure Based Methods,

SIMPLE Algorithm, Block-Cell Method.
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ÖZ

İKİ BOYUTLU, SIKIŞTIRILAMAYAN AKIŞLAR IÇIN EĞİTİM AMAÇLI BİR HAD

YAZILIMI GELİŞTİRİLMESİ

Nakı̇boğlu, Güneş

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Asst. Prof. Dr. Cüneyt Sert

Temmuz 2007, 105 sayfa

Bu çalışmanın temel amacı, başlangıç düzeyindeki teorik ve hesaplamalı akışkanlar dinamiği

(HAD) eğitiminde kullanılabilecek bir HAD yazılımı geliştirmektir. Bu çalışma bünyesinde

geliştirilen yazılıma “Virtual Flow Lab” adı verilmiştir. HAD yazılımlarının genelinde bulu-

nan, ön işlem, çözüm ve sınır şartları parametrelerinin tanımlanması ve son işlem aşamalarının

görsel olarak gerçekleştirilebileceği bir kullanıcı arayüzü yazılmıştır. Kullanılan basınç temelli

çözücü sıkıştırılamayan, laminer, zamana bağlı ve zamana bağlı olmayan akışları iki boyutlu

kartezyen çözüm ağlarında SIMPLE ve türevi methodlar kullanarak hesaplama yeteneğine

sahiptir. Kartezyen çözüm ağı kullanılabilecek problem çeşitlerinin artırılabilmesi için geliştirilen

yazılıma blok hücre tekniği eklenmiştir. Çözücünün doğruluğunu ve verimliliğini test etmek için

farklı problemler kullanılarak parametrik bir çalışma gerçekleştirilmiştir ve başarılı sonuçlar

alınmıştır.

Anahtar Kelimeler: HAD, Yazılım Tabanlı Eğitim, Sonlu Hacim Metodu, Basınç Temelli Metod-

lar, SIMPLE Algoritması, Blok-Hücre Metodu.
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Özden and Mustafa Akdemir during the preparation of this thesis.
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CHAPTER 1

INTRODUCTION

1.1 Background

In the chronological sense, Computational Fluid Dynamics (CFD) is a subset of fluid mechanics

that uses numerical methods to solve the partial differential equations of continuity, momentum

and energy which can not be solved analytically except from some special cases. Depending on

the definition used to classify a CFD study, it can be remarked that the first use of CFD was

emerged as early as 1940s [1]. However, the first common knowledge uses of CFD appeared and

gained prominence during the mid 1950s and early 1960s with the simultaneous development

of digital computers.

During the last few decades, the exponential growth of computational sources in storage and

execution speeds not only increased the accuracy of the numerical approximations but also

enabled the solution of geometrically (e.g. fuselage of an aircraft, automobile body) and phys-

ically (e.g. combustion, multiphase) more complex flows. Today, CFD finds so extensive usage

in basic and applied research that it can be viewed as a new “third dimension” [2] in fluid

dynamics. Although the other two dimensions, experimental and theoretical methods, are still

widely used, the trend is clearly toward extensive use of computational methods in design phase

which is much cheaper and faster than the conventional methods.
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1.2 Numerical Solution Techniques

Among the various numerical methods that have evolved over years, the most commonly used

solution techniques are finite difference, finite element and finite volume methods. There are

two main differences between these methods; the way which the unknown variables are ap-

proximated by means of simple algebraic functions and the discretisation process where the

approximations are done to simplify the governing flow equations. The accuracy of the nu-

merical solution depends on the quality of the discretisation, a relation analogous with the one

between experimental data and the tools which are used.

Finite difference method (FDM) is a simple and well-established method that solves an equation

by approximating continuous quantities as a set of quantities at discrete points. The approx-

imation of the derivatives is the key point of the method. The finite difference is the discrete

analog of the derivative which uses finite quantities instead of infinitesimal ones. The main

drawback of the method is that it raises difficulties when dealing with complex engineering

geometries. However, this method is proved to be succesful in many heat tranfer problems [3].

Finite element method (FEM) considers that the solution region comprises many small, in-

terconnected sub-regions called finite elements. It is possible to systematically construct the

approximation functions which is needed to reduce complex partial differentials to simple piece-

wise (linear or quadratic) functions that are valid in these sub-regions. As a result, a set of

algebraic equations for the unknown coefficients of the approximating functions can be devel-

oped. Although the method is generally used in structural analysis, where it has been initially

developed for [4], the method is later extended to the general field of continuum mechanics [5].

Although most of the commercial CFD packages use finite volume method, there exist a few

(E.g. Ansys Flotran,CFdesing) that is based on FEM.

Finite volume method (FVM) is a further refined version of the finite difference method; indeed

it is originally developed as a special finite difference method. FVM is one of the most widely
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used [6] and versatile discreization techniques used in CFD. Most of the core commercial CFD

packages use this technique (e.g. FLUENT, CFX, STAR-CD, FLOW3D). Similar to the FDM,

values are calculated at discrete points on a meshed domain. One advantage of FVM over FDM

is that it can be used on both structured and unstructured mesh whereas the FDM requires

a structured mesh. The detail of the FVM which is used in the current study is explained in

Chapter 2.

1.3 Incompressible Flow

Numerical solutions of the governing equations of incompressible flows are in great demand

because of their fundamental nature and practical importance. Almost all of the natural flows

like biological flows (e.g. blood circulation, respiratory flows), geographical flows (e.g. rivers,

oceans) and atmospheric flows (e.g. winds, tornados); most of the engineering flows like low

Mach number aerodynamics (e.g. ground and sea vehicles) and hydrodynamics (e.g. pumps,

valves) can be classified as incompressible fluid flows. The main assumption of the incompress-

ible flow is constant fluid density which is valid not only for liquids but also for gases which

have low Mach numbers (e.g. M < 0.3). This assumption both helps and hinders numerical so-

lutions of Navier-Stokes equations(conservation of mass and momentum). The constant density

assumption simplifies the equations and decouples the energy equation from the momentum and

continuity equations so that if the problem involves heat and work interactions then the energy

equation can easily be solved seperately because of the decoupling. However the main difficulty

in numerical solutions also arises from this assumption which is the lack of time evolution term

for pressure in the continuity equation. As a result, pressure field is decoupled from the velocity

field and the continuity equation becomes just a constraint. Numerous techniques have been

developed to overcome this problem and to solve incompressible Navier-Stokes equation which

is covered in the subsequent chapters.
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1.4 Methods For Solving Incompressible Viscous Flows

The literature on numerical solutions of the incompressible Navier-Stokes equations is so over-

whelming that writing a complete review of numerical methods that has been developed so

far is an impossible task. The current attempt is nothing more than a broad classification of

some of the earlier developments in the era of viscous incompressible flows, before discussing

the scope of the current study.

Depending on the variables used in the system of equations, solution approaches for solving

incompressible Navier-Stokes equations can be classified into two categories,

• Primitive Variable Approaches ,

• Non-primitive Variable Approaches .

The primitive variable approaches, in which the system of equations is written with pressure and

velocity components as independent variables, for the solution of incompressible Navier-Stokes

equations, can be further classified.

• Pressure Based ,

– The Marker and Cell (MAC) method

– Fractional Step Method

– Semi-Implicit Method for Pressure Linked Equations (SIMPLE)

• Density Based.

– Artificial Compressibility Method

The Marker and Cell (MAC) method originally developed by Harlow and Welch [7] was the

first primitive variable approach in literature. The usual procedure in this method is to assume

an initial pressure field as a mapping parameter, and then follow an iterative process until the

continuity equation is satisfied. The major drawback of this method is having to solve a Poisson

equation for pressure which is formed taking the divergence of the momentum equations. Even
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though this method is widely accepted and successfully applied to many problems, the solu-

tion accuracy and performance is highly dependent on the performance of the pressure Poisson

equation solver which is the bottleneck of the method. Implementation of the MAC method

in complex 3D geometries is extremely cumbersome and not practical. Additional information

and examples of the method can be found in literature, [8][9][10].

The next pressure iteration based primitive-variable approach which has been used extensively

is the fractional-step method originally introduced by Chorin [11]. This method advances the

solution in time using two steps; in the first step an intermediate velocity field is solved using

the momentum equations in which the pressure gradient term which is computed from the pre-

vious time step can be used. In the second step, the pressure is computed which will map the

intermediate velocity field into a divergence free field, thus the solution for the next time level

is determined [12]. The second step requires the solution of a pressure Poison equation as it is

in the MAC method and similarly the efficiency of the fractional step method depends highly

on the Poisson solver.

Another pressure based method mentioned in this context is the Semi-Implicit Method for

Pressure-Linked Equations (SIMPLE). This method is developed and implemented by Patankar

and Spalding [6][13]. The major virtue of this method is the simple way of estimating velocity

correction. Although this feature simplifies the calculation considerably, it introduces empiri-

cism into the method which is called as relaxation parameters. The method has gone through

numerous modifications to improve the technique. SIMPLER (SIMPLE Revised) algorithm of

Patankar [6] and SIMPLEC (SIMPLE-Consistent) algorithm of Van Doormal and Raithby [14]

are among the well known modifications of SIMPLE.

The last method discussed in the class of primitive variable approaches is the artificial com-

pressibility method proposed by Chorin [15] for steady problems and later extended to unsteady

flows by Peyret [16]. Unlike other primitive variable methods a pseudo time derivative of pres-
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sure is introduced into the continuity equation changing the mathematical character of the

continuity equation from elliptic to hyperbolic. This change enables the system of equations to

be solved with a variety of time marching schemes previously developed for compressible flow

solvers. There exist numerous applications of artificial compressibility in the literature both for

steady and unsteady flows [17][18].

Other than the primitive variable approaches, there exist several methods in which the non-

primitive variables are used as independent variables to formulate incompressible Navier-Stokes

equations. The primary variables, pressure and velocity components, are calculated later on

as dependent variables. The main advantage of the non-primitive formulation is the complete

decoupling between the velocity and pressure calculations. Vorticity-stream function [19][20]

method is the most widely-used non-primitive variable approach. This method has a unique ad-

vantage of inherently satisfied continuity equation; however this solution technique is applicable

to two dimensional computations only. This constraint comes from the stream function which

is defined in two dimensions and does not exist in three dimensions. However different for-

mulations have been developed to extend non-primitive variable approach to three dimensions,

including vorticity - velocity approach [21][22], vector - potential approach [23], and vector

stream function approach [24]. The major drawback of these methods is the implementation of

boundary conditions which are quite challenging.

In this study, the SIMPLE algorithm and their derivatives are used. These algorithms are

perhaps the most widely referred and reliable methods for the solution of incompressible flows,

indeed most of the commercial CFD packages use these methods. Although the current study is

limited for two dimensional, incompressible flows; the research project that involves this study

has been planned to develop a solver which is capable of solving three dimensional, all-speed

(Incompressible & Compressible) flows. Thus, during the process of selection for appropriate

technique which will be employed in the solver, these facts are taken into account. In in-

compressible flows, the listed methods have similar accuracy and efficiency [25] but only the
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SIMPLE algorithm and its derivatives can easily be extended to all speed flow regimes in three

dimensional space without major changes in the methodology [26].

1.5 Iterative Solvers

Most of the governing equations of fluid mechanics and heat transfer are second-order partial

differential equations (PDE) which turn into a system of algebraic equations after the discretiza-

tion process. Depending on the nature of partial differential equations, the algebraic equation

system can be linear or non-linear.

Linear algebraic systems can be solved using both direct and iterative methods, however for

the non-linear case an iterative scheme has to be followed to solve the non-linearity, even if the

system is solved by a direct method at each iteration step.

Direct methods are applied to find the exact solutions (within the accuracy allowed by the

round-off errors) of linear algebraic systems using finite number of arithmetic operations. It-

erative methods, on the other hand, are based on a succession of approximate solutions, and

then provide an accuracy based on a user-specified tolerance level.

In practice, direct methods are generally not preferred since the discretization errors are usu-

ally much larger than the round-off errors (truncation errors). Besides, direct methods need

enormous amount of arithmetic operations to produce a solution. These methods are only

applicable to small systems without becoming clearly disadvantageous than iterative methods

[27]. They also do not take the advantage of initial guess of the solution. Gauss elimination

and LU decomposition are among the well known direct methods.

In fluid mechanic problems, mostly the fine meshes are used in order to resolve the physics

of the flow so that direct methods are seldom applied. The idea behind the iterative methods

is to perform a simple guess-and-correct procedure. The procedure starts with an initial guess

7



then new values are computed using this guessed fields; based on this new computed values, a

newer set of values are sought, and the loop is repeated until a predefined convergence crite-

rion is satisfied.A large number of iterative techniques are available in literature with different

convergence speeds and complexity levels.

The simplest iterative method is the Jacobi method, which is a point iterative method where

the initially guessed or previously computed values of the neighboring nodes are used to cal-

culate the new value of the dependent variable. This method is rarely used in the solution of

elliptic equations because, depending on the convergence definition, this method can be more

expensive than a direct solver.

Another well known basic iterative method is the point Gauss-Seidel method, which is nothing

but a simple extension of the Jacobi method. Different than the Jacobi method, the newly

computed values of the dependent variables are immediately used for the calculation of neigh-

boring nodes in the same iteration step. This simple modification speeds up the convergence

rate by twice [28].

The line Gauss-Seidel iteration method (Line by line TDMA) is similar to the point Gauss-

Seidel iteration method however in this case there exist three unknown node values at each

equation which is formed and it results in a tri-diagonal coefficient matrix. For this often en-

countered system, a very efficient direct solver known as the Thomas algorithm or Tri-diagonal

matrix algorithm (TDMA) is applied. This method converges faster than the point Gauss-

Seidel iteration method by a factor of 3/2 [29] as expected. In the current study this iterative

method is used and the details will be covered in the subsequent chapters.

Successive over-relaxation method is another technique that is developed to further increase

the convergence rate. This method has two variants; point successive and line successive over-

relaxation as it was in the Gauss-Seidel method. The idea behind this iterative method is
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straightforward. If trend in the computed values is captured during the iterations, then this

trend can be used to extrapolate the values for the next iteration which will accelerate the

solution procedure. The key point of success in the over-relaxation methods lies in the deter-

mination of optimum relaxation parameter. However there exists no general guidelines for this

purpose, therefore for most cases, numerical experimentation is performed.

There exist also many other efficient solver algorithm like strongly implicit procedure (SIP)

and alternating direction implicit (ADI). SIP is specifically developed for algebraic equations

derived from discretized partial differential equations, and it is not applicable to general system

of equations. Details of the method can be found in Stone 1968 [30]. ADI is another common

method for elliptic problems although it is difficult to be optimized for general problems. A

discussion of this topic can be found in Hageman and Young (1981) [31]

The last iterative method that is mentioned in this context is the multi-grid method which

is the most efficient and general iterative technique known today [27]. This method is initially

developed for the solution of elliptic partial differential equations [32][33], for which the near-

optimum convergence characteristics have been demonstrated. Later the method is extended

to improve other PDE solvers. The multi-grid idea is based on two principles: error smoothing

and coarse grid correction. Throughout the solution process, meshes of different intensities are

used to optimize the error smoothing using the coarser meshes whenever possible to reduce the

computational cost. Multi-grid methods have shown substantial improvement in the solution

of incompressible Navier-Stokes equations using pressure based algorithms [34][35][36][37].

1.6 Educational Aspect

1.6.1 Motivation

Although CFD is used extensively both in basic and applied science, the use of CFD in engineer-

ing education is mostly limited to graduate level courses where the mathematical background

necessary to write CFD programs is taught. Although recent undergraduate level fluid me-
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chanics books involve CFD related chapters, references indicating the use of CFD as a teaching

aid are limited. This study is about the development of necessary software to use CFD as i)

an educational aid in undergraduate level fluid mechanics courses and ii) a practicing tool in

introductory level CFD related courses.

In many engineering departments students take their first fluid mechanics course in their second

or third year. Although for some of the departments a single semester course is enough, usually

undergraduate level fluid mechanics is taught as a two semester course. Typical outline of a

two semester fluid mechanics course is given below

1. Fluid statics

2. Integral analysis of fluid motion (conservation of mass, momentum and energy)

3. Bernoulli equation

4. Fluid kinematics

5. Differential analysis of fluid motion

6. Similitude and dimensional analysis

7. Viscous flows in pipes and channels

8. Flow over immersed bodies

9. Introduction to compressible flow

10. Introduction to turbomachines

Due to the inherent complexity of fluid motion, fluid flow problems require a different viewpoint

compared to solid mechanics problems. Understanding the topics like continuum assumption

and its validity, proper comprehension of the field concept such as the velocity or the pressure

field, making the switch from the classical Lagrangian approach, which is taught in earlier stat-

ics and dynamics courses, to the Eulerian approach, establishing the link between these two

different view points, mathematical and physical understanding of the convective derivatives

are some of the challenges that the students face with when they begin studying fluid mechanics.
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Other than the above mentioned mathematical modeling related difficulties, students also get

confused due to the simple fact that it is hard to observe and comprehend the behavior of fluids

in everyday life. For example students often do not question the way a beam deflects under

the action of certain forces, but they can easily get confused in a simple pipe flow problem,

where the existence of viscous forces cause a pressure drop but not a velocity drop. Or they

comfortably take apart a complicated solid structure into its simple elements by drawing free-

body-diagrams with proper reaction forces and moments, but it is not so easy for them to work

with an imaginary control volume that is open to mass, momentum and energy transfer. Or

for example it is difficult to mentally visualize the way the properties, such as viscosity, of gas

changes while it is being heated. In addition to these, students get quite puzzled when they

learn that almost all practically important fluid flow applications involve turbulence, which is

considered to be one of today’s most challenging physical phenomena.

Another major difficulty in learning fluid mechanics is the necessity of proper simplification

of a given problem. Fluid flow problems of engineering importance can be so complex that

one almost always needs to make a number of simplifying assumptions in order to be able to

approach it by analytical means. For example the analytical solution of conservation of linear

momentum, in other words the Navier-Stokes equations, is only possible for a few very simple

problems. Neglecting the viscous affects, these equations reduce to Euler equations, which are

still quite difficult to solve. Another simplification comes when we consider the Euler equations

along a streamline, which leads to the Bernoulli equation. Other than these, one might need

to consider if the compressibility of the fluid or the unsteadiness of the flow is of importance or

not. It is not easy to get comfortable with the use of these different levels of simplifications.

Visualizing the fluids in action is a very informative tool that helps overcome the above men-

tioned difficulties to a certain degree. Carefully designed educational experimental studies are

important in this respect. Many of the recently published fluid mechanics textbooks come with
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discs that include movies of many interesting fluid flow phenomena [38]. It is also possible to

find excellent series of educational fluid mechanics films, such as the ones prepared by NCFMF

and IIHR [39], [40]. Today another alternative is the use of CFD simulations as an educational

tool. CFD enables us to solve fluid flow problems numerically by computers. One simple ad-

vantage of this is its power in attracting the attention of today’s computer oriented students

[41]. But the actual benefit is that students feel comfortable when they see that the governing

equations, which are known to be impossible to solve analytically in most cases, can actually

be solved with an acceptable engineering accuracy. The importance of such a numerical study

is quite different than the importance of performing experiments. Experimentation is very

valuable in understanding the underlying physics of a certain problem. This is necessary to

establish and validate a mathematical model. But then we naturally feel the need to solve that

mathematical model. If we can not do that, our model is not very useful. If, for example,

we can not solve the Navier-Stokes equations by any means, then the value of being able to

derive these equations becomes questionable. Today CFD serves as an important tool to test

the validity of our mathematical models for almost all types of flow problems.

1.6.2 Sample CFD Simulation Ideas to be Used in an Undergraduate Fluid Me-

chanics Course

The outline of a typical undergraduate level fluid mechanics course was mentioned in the previ-

ous part. In this part the level of support that CFD simulations might provide in understanding

the topics of this outline will be discussed.

Fluid statics is easy to learn since it involves no fluid motion. CFD simulations can still

be used to explain the pressure distribution in a static fluid. Students can perform a number

of numerical experiments with different shaped cups or tubes to see how the pressure increases

linearly in a direction opposite to the gravitational acceleration independent from the shape of

the container.

12



In integral analysis of fluid motion, students can check the mass conservation inside a box

with multiple inlets and exits. They can be asked to use the numerical data of a CFD sim-

ulation of external flow over a body to calculate the drag and lift forces acting on the body.

Comparing the forces calculated with a standard integral approach that uses the numerically

obtained velocity profiles against the forces directly calculated by the differential approach of

a CFD simulation could be quite instructive.

The Bernoulli equation is one of the most useful but also the most misused equations of fluid

mechanics. It can be demonstrated by the simulation of fluid leaving a tank through a number

of openings at different elevations. The concepts of static, dynamic and total pressure, which

are difficult to grasp, can be explained by examining the result of a converging diverging duct

simulation at different locations. CFD simulations could be excellent ways to discuss the use of

Bernoulli equation in flowrate measuring devices, such as an orifice meter or a venturi meter.

While discussing fluid kinematics, movies of rotational and irrotational flow simulations can

be used. Results of the simulation of a developing flow that enters a channel uniformly can be

used to demonstrate the effect of viscosity and shear forces in the creation of rotational motion

inside the boundary layers. Deformation of a straight line or square shaped fluid element can

be visualized in different flow fields to understand the type of deformation that they go through.

About the differential analysis of fluid motion, inviscid and viscous simulations inside a num-

ber of different geometries can be considered. Analytical solutions of Couette, Poiseulle and

Hagen-Poiseulle flows can be compared with the numerical ones. Possible sources of differences

between numerical and analytical results can be discussed along with the limitations of numer-

ical simulations.

CFD simulation of a carefully designed piping system with different sized pipes and a num-

ber of bends, expansions, contractions, etc. will be very valuable in understanding the major
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and minor frictional losses and related pressure drops, as well as the application of extended

Bernoulli equation for the calculation of these quantities.

Lectures about external flows over immersed bodies can be supported by a simple bound-

ary layer growth demonstration over a flat plate and comparing the results with the analytical

ones. It is also possible to visualize the solution of flow fields around streamlined and blunt

bodies and discuss the affect of streamlining a body through the inspection of numerically cal-

culated shear and pressure drag forces. A discussion about the D’alambert’s paradox can be

made comparing inviscid and viscous flow simulations.

CFD can also be used to enhance the understanding of compressible flow lectures. Simula-

tions of a number of flows inside a converging-diverging de Laval nozzle can be used to see

different flow regimes, formation of shocks and choking.

Of course the list of problems mentioned above is quite long and it is not possible to make

use of all of them in a single or even in a two semester fluid mechanics course. Each problem

should be considered one by one from an educational standpoint. Here the interest is not just

being able to solve these problems numerically. They have to be designed in a way that they

clarify the issues which are harder to understand through other means. Depending on the

CFD software to be available, templates can be prepared for these problems and step by step

instructions can be provided to the students to perform relatively easy simulations. For many

of them, results of the simulations can directly be provided and the students can be asked only

to perform the postprocessing step and then discuss the results.

Today it is possible to find a number of commercial CFD software in the market that can suc-

cessfully perform all the simulations mentioned above. However as mentioned in the previous

paragraph, when it comes to using CFD as an educational tool, a software tailored specifically

for this purpose would be a better choice. One advantage of using such a software will be its
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cost. Due to the relative simplicity of the problems that such a software is expected to be used

for, its capabilities would be limited compared to a full featured CFD software, resulting in a

more economical product. Also the price would be affected by the fact that the software would

be used for educational purposes and it should be affordable by the students. Such educational

software should also be easy to learn and use. It should support the use of templates, problems

that are designed parametrically and created by the instructor to be used in a series of numer-

ical experiments. Templates can be prepared in as much detail as the instructor wants. For

example to study the drag characteristics of a certain object placed in a flow field, a template

can be created based on the parameters such as the upstream fluid velocity, viscosity of the

fluid and the dimensions of the object. Students can use such a template to easily perform a

number of numerical tests to see the effect of different parameters. Mesh generation, solution

and post-processing steps can all be predefined in the template, which means that the student

can obtain the results by clicking a button after setting the problem parameters to the desired

values. For an undergraduate level fluid mechanics course the details of mesh generation and

the selection of solver parameters should be hidden from the students as much as possible.

When the literature about the use of CFD for educational purposes is investigated, it is easy

to see that the software alternatives are very limited. Most of the studies use FlowLab [42],

[43], which is a tailored version of the popular commercial software Fluent. Flowlab is designed

to be used in teaching both fluid mechanics and CFD itself. CFD Studio is another example

of CFD software written to be used as an educational tool [44]. In this study a new software

called Virtual Flow Lab is developed.

1.7 Current Study

The main goal of this research is to develop a CFD software to be used as an educational tool

in teaching introductory level fluid mechanics and CFD courses. The software developed for

this purpose is called as Virtual Flow Lab (VFL). Being different than most of the other CFD

related academic studies, which are composed of bare solvers only, Virtual Flow Lab is written
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to be a complete CFD package. Simple but functional elements of a typical CFD software,

pre-processor, solver and post-processor, are combined in a carefully designed graphical user

interface.

VFL is distributed under the GPL license [45], which means that it can freely be downloaded

from the internet. The source codes can also be downloaded and if necessary they can be

modified by the users according to their specific needs. It is written in C++ language. User in-

terfaces are designed with Qt [46], a C++ user interface library is freely available from Trolltech.

VFL is a platform independent software which can be compiled and run under different com-

puter architectures without any or very little source code change. It is successfully tested under

Linux and Windows operating systems. It is a multi-lingual software, which means that its

graphical interface can be used in more than one language.

The heart of VFL, the flow solver, is a pressure-based solver which is capable of solving in-

compressible, laminar, steady or time-dependent problems on two-dimensional Cartesian grids

using the SIMPLE algorithm of Patankar [6]. Two variants of SIMPLE, namely SIMPLER and

SIMPLEC, are also available as alternative methods. Space discretization can be made using

one of the central, upwind, power-law or hybrid schemes. It is possible to perform steady or

unsteady simulations using iterative and time-marching algorithms. Block-off region technique

of Patankar is implemented to extend the types of the problems that can be studied on Carte-

sian grids.

Next chapter of this thesis will provide detailed information on the numerical techniques used

to develop the solver of Virtual Flow Lab. Chapter 3 will introduce the graphical user interface

of the software. The performance of VFL in solving a number of classical bencmark problems

can be found in Chapter 4. The final chapter will summarize the work and provide a route for

future development of VFL.
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CHAPTER 2

NUMERICAL METHOD

2.1 Governing Equations

In order to simulate fluid flow and heat transfer, it is necessary to describe the associated physics

in mathematical terms. The extend of the mathematical model depends on the characteristics

of the flow of interest. In this particular study two dimensional, incompressible, laminar flows

of Newtonian fluids with constant viscosity are of interest. Governing equations of this type of

flows can be derived from the following general transport equation of a scalar property φ

∂(ρφ)

∂t︸ ︷︷ ︸
Transient

+∇ · (ρ~V φ)︸ ︷︷ ︸
Convective

= ∇ · (Γ∇φ)︸ ︷︷ ︸
Diffusive

+ Sφ︸︷︷︸
Source

(2.1)

where ρ, Γ and ~V are the density, diffusivity and the velocity field of the fluid in which φ is

transported and t is the time.

Equation (2.1) highlights various modes of transport of the property φ. The first and the

second terms on the left hand side are the transient and the convective terms, respectively. The

first term on the right hand side is the diffusive term. Last term is the source term, which is

the collection of the terms that can not be expressed in the form of the others.

Governing equations of two-dimensional, incompressible flows, namely the continuity and two
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components of the linear momentum equation can be derived from Equation (2.1) by setting φ

equal to 1, u and v respectively

Continuity equation,

∂(ρ)

∂t
+ ∇ · (ρ~V ) = 0 (2.2)

u-momentum equation,

∂(ρu)

∂t
+ ∇ · (ρ~V u) = ∇ · (µ∇u) −~i · ∇p + Su (2.3)

v-momentum equation,

∂(ρv)

∂t
+ ∇ · (ρ~V v) = ∇ · (µ∇v) −~j · ∇p + Sv (2.4)

where u and v are the components of the velocity vector in x and y directions of the Cartesian

coordinate system, respectively. µ is the kinematic viscosity of the fluid and p is the pressure.

Source terms of the momentum equations have the units of force per unit volume and they

physically represent different forces acting on the fluid such as the gravitational force due to

the weight of the fluid. Pressure gradient terms are actually part of the source terms, however

they are usually considered seperately to emphasize their importance. Equations (2.2), (2.3)

and (2.4) form a set of three, coupled, non-linear partial differential equations that need to

be solved for three unknowns, u, v and p. Numerical solution of these equations require two

different levels of discretization that will be described in the following sections.

2.2 Geometry Discretization

In a typical numerical solution, continuous velocity and pressure fields need to be determined

at a finite number of discrete points in space (and in time for time dependent problems). The

collection of these discrete points is called as mesh (grid), which is generated during the pre-

processing step of the numerical solution. In this study two-dimensional problem geometries are

discretized by introducing Cartesian grids as shown in Figure 2.1. As seen in the figure, two-

dimensional Cartesian grids are made up of 4-noded square and/or rectangular regions called
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as cells (elements). During the discretization of the governing equations the cell of interest is

denoted by the letter P. Neighboring cells are called as W (West), E (East), S (South) and N

(North). Lowercase letters w, e, s and n are used to denote the faces of the cell P. Face area

vectors and normals are given as

Figure 2.1: Two Dimensional Control Volume

Ae = ∆y ne = ∆y ~i

Aw = ∆y nw = −∆y ~i

An = ∆x nn = ∆x ~j

As = ∆x ns = −∆x ~j (2.5)

There are different approaches about the locations where the unknowns are stored. Colocated

and staggered grid arrangements are the two common choices that will be explained in detail

in the coming sections.
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2.3 Equation Discretization

As mentioned earlier the three governing equations of interest are partial differential equations.

In order to reduce them to a set of linear algebraic equations, the derivatives appearing in

all three equations need to be discretized. This step makes use of approximate derivatives

that involve the unknowns associated with the discrete points of the numerical grid. Here it

is necessary to mention that a semi-discrete finite volume based discretization is used in this

study. Semi-discrete means that the discretization of the derivatives with respect to space and

time are treated seperately. The following sections provide details of the discretization of the

time-independent forms of the governing equations. Time-dependent terms will be considered

later.

2.3.1 Discretization of the Momentum Equation

The discretization of u- and v-momentum equations are very similar. The process is explained

in detail for the u-momentum equation, which is given as follows for steady flows

∇ · (ρ~V u) = ∇ · (µ∇u) −~i · ∇p + Su (2.6)

Discretization begins by integrating Equation (2.6) over an arbitrary control volume CV (which

is nothing but any cell of the numerical grid), the unique property of control volume method

which distinguishes it from all other CFD techniques. The integrated form of the u-momentum

equation is given as

∫

CV

∇ · (ρ~V u)d∀ =

∫

CV

∇ · (µ∇u)d∀ +

∫

CV

−~i · ∇pdV +

∫

CV

Sud∀ (2.7)

Using the Gauss’ divergence theorem, the convective and diffusive terms can be expressed as

integrals over the entire surface of the control volume

∫

A

(ρ~V u) · dA =

∫

A

(µ∇u) · dA +

∫

CV

−~i · ∇pd∀ +

∫

CV

Sud∀ (2.8)

Details of the discretization of the diffusive, convective and source terms are given in the

following sections.
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2.3.1.1 Discretization of the Diffusive Term

Consider the discretization of the diffusive (viscous) term for the control volume corresponding

to cell P of Figure 2.1. The area integral of the diffusive term should be evaluated over the

surface of cell P, which is composed of four faces denoted by the letters e, w, n and s. The

basic assumption used is that the diffusive flux vectors may be represented by their values at

the face centroids as follows

∫

A

(µ∇u) · dA =
∑

f=e,w,n,s

(µ∇u)f · Af (2.9)

where the subscript f denotes the cell faces. Equation (2.9) can now be written in the following

expanded form

∫

A

(µ∇u) · dA =

(µ
∂u

∂x
)ene · Ae + (µ

∂u

∂x
)wnw · Aw + (µ

∂u

∂y
)nnn · An + (µ

∂u

∂y
)sns · As (2.10)

To complete the discretization process of the diffusive term, the derivatives of Equation (2.10)

are approximated using central differencing as follows,

(∂u

∂x

)

e
=

(uE − uP

δxPE

)

(∂u

∂x

)

w
=

(uP − uW

δxWP

)

(∂u

∂y

)

n
=

(uN − uP

δyPN

)

(∂u

∂y

)

s
=

(uP − uS

δySP

)
(2.11)

Due to the direction-independency of the diffusion process central differencing is usually pre-

ferred. Defining a variable D to represent the diffusivity at cell faces,

De =
µ

δxPE

Dw =
µ

δxWP

Dn =
µ

δyPN

Ds =
µ

δySP

(2.12)
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and substituting Equations (2.5), (2.11) and (2.12) into Equatin (2.10) the complete discrete

form of the diffusive term is obtained as

∫

A

(µ∇u) · dA =

DeAe(uE − uP ) − DwAw(uP − uW ) + DnAn(uN − uP ) − DsAs(uP − uS) (2.13)

2.3.1.2 Discretization of the Convective Term

The discretization process of the convective term needs special attention due to two basic

differences compared to the diffusion term. First of all convective term is nonlinear since the

velocity vector ~V contains the unknown velocity component u as well. Other than this, unlike

diffusion, convection process spreads the information of the flow field only in the flow direction.

Many different discretizations can be derived depending on the ability to use the flow direction

information.

Consider the convective term of Equation (2.8) integrated over the faces of the cell P of Figure

2.1. Similar to the diffusion term, it is assumed that convective flux is constant over each of

the faces of cell P and that the face centroid value is representative of the face average. With

this assumption the convective term can be written as

∫

A

(ρ~V u) · dA =
∑

f=e,w,n,s

(ρ~V u)f · Af (2.14)

Defining a new variable F to represent the mass flux per unit area,

Fe = (ρu)e

Fw = (ρu)w

Fn = (ρv)n

Fs = (ρv)s (2.15)

the convective term can expressed as

∫

A

(ρ~V u) · dA = FeAeue − FwAwuw + FnAnun − FsAsus (2.16)

Note that the nonlinearity of the momentum equation is due to the existence of the unknown

velocities in the F terms. In this study Equation (2.16) is linearized using the Picard method,
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which calculates the F terms using the available velocities from previous iterations.

Equation (2.16) requires the velocity components at the cell faces. This was not the case

for the diffusive term which needed the derivatives of the velocity components at the cell faces.

Four commonly used techniques to approximate cell face velocities are discussed next.

2.3.1.3 Approximation of the Face Velocities with Central Differencing

Central differencing is already used to represent the cell face velocity gradients of the diffusive

term through Equations (2.11). It is possible to use it for approximating cell face velocities

too. Assuming that u varies linearly between grid points, cell face velocities can be written as

follows

ue =
uE + uP

2

uw =
uW + uP

2

un =
uN + uP

2

us =
uS + uP

2
(2.17)

These can be inserted into Equation (2.16) to obtain the following discrete form of the convective

term,

∫

A

(ρ~V u) · dA = FeAe

uE + uP

2
− FwAw

uW + uP

2
+ FnAn

uN + uP

2
− FsAs

uS + uP

2
(2.18)

One advantage of central differencing is the second order space accuracy it provides, which

means sharper drop of errors due to gird refinement compared to first order schemes. However,

central differencing scheme has two major drawbacks. First one is its non-transportive nature

which hinders the scheme to recognize the flow direction or the strength of convection relative

to diffusion. This is especially important for convection dominated (high Reynolds number)

flows. The second drawback is its chance to violate the Scarborough criteria [47]. The criteria

can be stated as follows,

∑
|anb| ≤ aP at all nodes of the grid

∑
|anb| < aP at one node of the grid at least (2.19)
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Here the term aP denotes the coefficient of the central node (P ) and the summation in the

numerator is taken over all the neighbouring nodes (nb). In the subsequent chapters, the

coefficients aP , anb are obtained when the discretization process for the momentum equations

is fully completed. Scarborough has shown that coefficient matrices that are produced by

differencing schemes which satisfy this criteria are always diagonally dominant which is an

important property for the speed and convergence characteristics of iterative solution methods.

In deed, this criteria is a sufficient condition for convergent iterative methods.

2.3.1.4 Approximation of the Face Velocities with Upwind Differencing

The main advantage of upwind differencing is related to the major drawback of central differ-

encing, the transportiveness. As the name implies, upwind differencing takes the flow direction

into account. Indeed the cell face value of u is determined by using only the upstream node

value, as given below

ue =






uP if Fe > 0

uE if Fe < 0






uw =






uW if Fw > 0

uP if Fw < 0






un =






uP if Fn > 0

uN if Fn < 0






us =






uS if Fs > 0

uP if Fs < 0





(2.20)

For example, when the flow is crossing cell P in the positive x direction such that uw > 0

(Fw > 0) and ue > 0 (Fe > 0) than the information is carried from left to the right. In such a

case upwind differencing will predict face velocities of ue = uP and uw = uW .

Substituting Equation (2.20) into Equation (2.16) gives the following discrete form of the con-
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vective term

∫

A

(ρ~V u) · dA = Ae(max[Fe, 0] uP + max[−Fe, 0] uE)

−Aw(max[Fw , 0] uW + max[−Fw, 0] uP )

An(max[Fn, 0] uP + max[−Fn, 0] uN )

−As(max[Fs, 0] uS + max[−Fs, 0] uP ) (2.21)

Equations (2.20) inherently satisfies the Scarborough criteria, which indicates good convergence

characteristics. However, the accuracy of the scheme is only first order. Another drawback of

the upwind scheme is its diffusive nature [28]. This problem arises especially when the flow is

not alined with the grid lines, and has various names in the literature such as artificial, nu-

merical or false diffusion. Similar to the difficulty of central differencing, this difficulty can be

resolved by grid refinement. However, this cure always brings the computational efficiency and

resources into consideration.

In the literature there exist some other first-order schemes for the discretization of convec-

tion and diffusion terms. In this study other than central and upwind differencing schemes,

which treat the convection and diffusion terms separately in the discretization process, two

other approximations are used, namely hybrid and power-law schemes.

2.3.1.5 Hybrid and Power Law Schemes for the Discretization of Diffusive and

Convective Terms

To understand the hybrid scheme, it is necessary to introduce an important flow variable called

the Peclet number (Pe). It measures the relative importance or dominance of convection and

diffusion in the transport of a scalar variable.

Pe =
F

D
(2.22)

If it is based on cell length scale, δx (or δy) it is called as cell Peclet number. It should be

noted that in the context of momentum equation as it is the case here, the cell Peclet number
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corresponds to cell Reynolds number.

Pe =
F

D
=

ρu

Γ/δx
=

ρuδx

µ
= Re (2.23)

Note that for two-dimensional problems it is possible to define another Pe which is based on

δy, or even a third one which is based on a linear length scale that uses a combination of both

δx and δy. Convection dominated problems are associated with high Peclet numbers which are

usually considered to be more challenging to solve numerically compared to diffusion dominated

problems.

As described by Patankar and Spalding [13], hybrid differencing is based on a piecewise formula

that depends on the face Peclet number and provides a combination of central and upwind dif-

ferencing. For low Peclet numbers (Pe < 2) evaluated at a cell face hybrid differencing uses

the second order accurate central differencing for both convection and diffusion through that

face. For relatively high Peclet numbers, (Pe ≥ 2), upwind differencing is used for convective

terms and diffusion is neglected. Hybrid differencing has the favorable properties of upwind

and central differencing schemes. It inherently satisfies the Scarborough criteria as upwind

differencing. It also takes the flow direction into account and provides first order accuracy.

Power-law differencing scheme is similar to hybrid differencing in the sense that it contains

a switch based on the face Peclet numbers [6]. In this scheme diffusion through a face is set

to zero when the face Peclet number exceeds 10. For lower values of Peclet numbers diffusive

term is calculated using a fifth order polynomial that is again derived using the exact solution

of the one-dimensional convection-diffusion problem. Convective flux calculations use upwind

differencing.

Upto here the diffusive and convective terms of the u-momentum equation have been discretized.

Remaining source terms of the momentum equation will be covered in the next section.
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2.3.1.6 Discretization of the Pressure Gradient and the Source Term

Since the pressure gradient term is the main source term in most flows of engineering importance

it is excluded from the rest of the source terms. Consider the discretization of the pressure term

of Equation (2.8) for the control volume corresponding to cell P of Figure 2.1. Applying the

gradient theorem the volume integral including the pressure gradient can be converted to the

following surface integral

∫

CV

−~i · ∇pd∀ =

∫

A

−~i · pdA (2.24)

This integral should be evaluated over the entire closed surface of cell P. Assuming that the

face centroid value of pressure represents the mean value of the face, the surface integral can

be written as

∫

A

−~i · pdA =
∑

f=e,w,n,s

−~i · pfAf (2.25)

or using the definition of face area vectors from Equation (2.5)

∫

A

−~i · pdA = (pw − pe)∆y (2.26)

Finally the source term of the u-momentum equation can be discretized by assuming that an

average value of the source, S, prevails inside the control volume

∫

CV

Sud∀ = S∆∀ (2.27)

where ∆∀ = ∆x∆y is the area of the cell for which the source is being evaluated. Often the

source term is a function of the dependent variable u itself, and it is desirable to consider

this dependence in constructing the discrete equation. Constant and u-dependent parts of the

source term can be seperated as

S∆∀ = (Sc + SP uP )∆x∆y (2.28)

At this point all the terms of Equation (2.8) are discretized. Now it is possible to combine these

individual terms to write the discrete (algebraic) form of the u-momentum equation. Note that

in the previous sections four different schemes were described for the discretization of diffusive
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and convective terms. Therefore four different discrete momentum equations will be mentioned

next.

If central differencing is used for both the diffusive and convective fluxes then the discrete u-

momentum equation can be written by substituting Equations (2.13), (2.18), (2.26) and (2.28)

into Equation (2.8) to get

FeAe

uE + uP

2
− FwAw

uW + uP

2
+ FnAn

uN + uP

2
− FsAs

uS + uP

2
=

DeAe(uE − uP ) − DwAw(uP − uW ) + DnAn(uN − uP ) − DsAs(uP − uS)

+(pw − pe)∆y + (Sc + SP uP )∆x∆y (2.29)

which can be put into the following compact form

aP uP =
∑

nb

anbunb

= aEuE + aW uW + aNuN + aSuS + (pw − pe)∆y + Sc∆x∆y (2.30)

where the subscript nb stands for the four neigbouring nodes of the node P. The coefficients of

Equation (2.30) are given as

aE =
(
De −

Fe

2

)
Ae

aW =
(
Dw +

Fw

2

)
Aw

aN =
(
Dn −

Fn

2

)
An

aS =
(
Ds +

Fs

2

)
As

aP = aE + aW + aN + aS + (FeAe − FwAw + FnAn − FsAs) − SP ∆x∆y (2.31)

If central and upwind differencing are used for the discretization of diffusive and convective

terms, respectively, Equations (2.13), (2.21), (2.26) and (2.28) can be combined into Equation
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(2.8) to get a discrete u-momentum equation of the form (2.30). New coefficients will be

aE =
(
De + max [−Fe, 0]

)
Ae

aW =
(
Dw + max [Fw, 0]

)
Aw

aN =
(
Dn + max [−Fn, 0]

)
An

aS =
(
Ds + max [Fs, 0]

)
As

aP = aE + aW + aN + aS + (FeAe − FwAw + FnAn − FsAs) − SP ∆x∆y (2.32)

Hybrid differencing will again result in a similar discrete u-momentum equation with the fol-

lowing coefficients

aE = max

[
−Fe,

(
De −

Fe

2

)
, 0

]

aW = max

[
Fw ,

(
Dw +

Fw

2

)
, 0

]

aN = max

[
−Fn,

(
Dn −

Fn

2

)
, 0

]

aS = max

[
Fs,

(
Ds +

Fs

2

)
, 0

]

aP = aE + aW + aN + aS + (FeAe − FwAw + FnAn − FsAs) − SP ∆x∆y (2.33)

Finally the coefficients of Equation (2.30) for power-law differencing scheme are given as

aE = Demax

[
0,

(
1 −

0.1 |Fe|

De

)5
]

+ max [0,−Fe]

aW = Dwmax

[
0,

(
1 −

0.1 |Fw|

Dw

)5
]

+ max [0, Fw]

aN = Dnmax

[
0,

(
1 −

0.1 |Fn|

Dn

)5
]

+ max [0,−Fn]

aS = Dsmax

[
0,

(
1 −

0.1 |Fs|

Ds

)5
]

+ max [0,−Fs]

aP = aE + aW + aN + aS + (FeAe − FwAw + FnAn − FsAs) − SP ∆x∆y (2.34)

This concludes the discretization of the u-momentum equation. As stated before discretization

of v-momentum equation follows similar steps.
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2.3.2 Discretization of the Continuity Equation

For time-independent flows the continuity equation takes the following form

∇ · (ρ~V ) = 0 (2.35)

Integrating over the control volume and applying the Gauss’ divergence theorem gives

∫

CV

∇ · (ρ~V )d∀ =

∫

A

ρ~V · dA (2.36)

As it is assumed for the discretization of the momentum equation, ~V on the face can be repre-

sented by its value at the face centroid to get

∫

A

ρ~V · dA =
∑

f=e,w,n,s

(ρ~V )f · Af (2.37)

which, for a Cartesian mesh, can be simplified to

(ρuA)e − (ρuA)w + (ρvA)n − (ρvA)s = 0 (2.38)

This very straightforward discretization of the continuity equation unfortunately hides a major

difficulty faced within the numerical solution of incompressible flows, i.e. not having the pressure

as an unknown in it. The SIMPLE algorithm that will be discussed in the coming sections

provides a way to convert the continuity equation into a form that can be used to solve for

pressure. But before giving the details of it, it is necessary to understand the two major grid

arrangement possibilities; colocated and staggered grids.

2.4 Grid Arrangement

Assume for the moment that the velocity vectors (~V ) and the pressures (p) are stored at the

cell centroids as shown in Figure 2.2, such a grid arrangement is called as collocated. Then an

interpolation have to be made to find the pressure values at the cell faces for discrete momentum
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equation, Equation (2.30).

pe =
pE + pP

2

pw =
pW + pP

2

pn =
pN + pP

2

ps =
pS + pP

2
(2.39)

Therefore the pressure gradient term in the u-momentum equation becomes,

Figure 2.2: Two Dimensional Collocated Grid Arrangement

(pw − pe)∆y ⇒ (pW − pE)
∆y

2
(2.40)

Similarly for v-momentum equation

(ps − pn)∆x ⇒ (pS − pN )
∆x

2
(2.41)

It can easily be noticed that the pressure gradient term in u- and v-momentum equations are

2∆x apart on the mesh, as shown in Figure 2.2, and do not involve the pressure at the point P.

Similarly, for continuity equation (2.38) the velocity values at the faces are not available directly
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and they must be interpolated from the cell centroid values.

ue =
uE + uP

2

uw =
uW + uP

2

vn =
vN + vP

2

vs =
vS + vP

2
(2.42)

Gathering terms together and rewriting the continuity equation (2.38),

(ρu)E∆y − (ρu)W ∆y + (ρv)N∆x − (ρv)S∆x = 0 (2.43)

Now, assume a chekerboarded velocity pattern, as shown in Figure 2.3, is somehow obtained

during the calculations. Although this velocity field is completely unphysical, the continuity

equation will surprisingly sustain it, because the continuity equation (2.43) for cell P does not

contain the velocity of this cell, which hinders the continuity equation to realize this high gradi-

ent in the velocity. During the solution a pressure field whose gradients exactly compensate the

checkerboarding of momentum transport implied by the checkerboarded velocity field will also

be developed. Consequently, the converged solution would exhibit checkerboarding. It can be

thought other way around, this time assume that a checkerboarded pressure field exists. Then

momentum equations will not be able to distinguish it from a completely uniform pressure field,

since the pressure terms in the momentum equations are 2∆x or 2∆y apart depending on the

equation.

In practical applications perfect checkerboarding is rarely encountered because of mainly ir-

regular mesh, boundary conditions and physical properties. However, unphysical wiggles in the

velocity and pressure fields which can be seen as a tendency toward checkerboarding,can often

be encountered.

2.4.1 Staggered Grid

A widely accepted remedy for checkerboarding is to use staggered mesh [7]. A typical staggered

mesh arrangement is shown in Figure 2.4. Pressure and all the scalar other variables (e.g.
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Figure 2.3: Checkerboard Velocity Field

pressure, density, enthalpy) are stored at the centroids of the main cells (•). The velocity com-

ponents are stored on the faces of main cells, which are also the centroids of the corresponding

staggered cells. Horizontal arrows (→) indicate the location where the u-velocities are stored

and vertical arrows (↑) for v-velocities.

The staggered grid has many advantages over collocated grid. First, the discrete continuity

equation (2.38) can be directly used without interpolation since velocities are available at the

points where they are required. However, in collocated arrangement, further interpolation has

to be made, equation (2.42), to carry the velocities to the cell faces which is the soul reason

of velocity checkerboarding. Consequently, staggered grid arrangement not only decreases the

computational load but also eliminates the possibility of velocity checkerboarding. Similarly for

momentum equation, when staggered grid arrangement is used, the pressure gradient terms can

be written directly using the pressures on the faces of momentum control volumes. As a result,

no further interpolation is required as in collocated grid, equation (2.39), and the pressure values

used in the momentum equations are no longer 2∆x apart, means the pressure checkerboarding

is also eliminated. Then the pressure gradient terms in the momentum equations(2.30) turn
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Figure 2.4: Staggered Grid Arrangement

out to be,

For u-momentum equation

(pP − pE)∆y

(pW − pP )∆y (2.44)

For v-momentum equation

(pP − pN)∆x

(pS − pP )∆x (2.45)

It can be noticed that u and v control volumes overlap each other and the main control volumes,

but this is of no consequence other than complex indexing which cause difficulty in coding. This

problem arises especially in complex geometries, however there exist studies [48] in the literature

which successfully use staggered arrangement in these geometries.
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2.5 Solution Methods

In the previous sections discretization process of the continuity and momentum equations are

examined. Next step is to study the available methods that can be used to solve the discretized

equations. Solution method not only affects the accuracy of the solution but also the compu-

tation time and above all, it determines whether a solution can be obtained or not. Sequential

solution methods are used in this study. As explained in Section 1.5, sequential solution meth-

ods solve the continuity and two momentum equations one-by-one. In sequential solvers each

discrete equation has to be associated with a particular unknown. The discrete u-momentum

equation is solved to get the u-velocities and similarly v-momentum equation is used for the

v-velocities. However, the third unknown, pressure, can not be obtained using the remaining

continuity equation. As it is known, pressure does not appear in the continuity equation. For

incompressible flows, the constant density that appears in the continuity equation can not be

linked to pressure. To use sequential solvers it is therefore necessary to find a way to introduce

pressure into the continuity equation. This is the basic idea of the SIMPLE algorithm, as it

will be explained in the next section.

2.5.1 SIMPLE Algorithm

The SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm is essentially a

guess and correct method [13]. The primary idea behind SIMPLE is to convert the discrete

continuity equation into a new equation called as the pressure correction equation that can be

used to solve for pressure. To create this new equation, SIMPLE method forms a relation be-

tween the velocity terms of the continuity equation and pressure gradient terms of the discrete

momentum equations.

To have a general understanding, SIMPLE algorithm works as follows; It starts with initial

guesses of pressure and velocity fields. u- and v-momentum equations are solved using these

guessed values. Of course there is no guarantee that the resulting velocity field will be diver-

gence free to satisfy the continuity equation. Next, the pressure correction equation is solved
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to obtain pressure corrections that can be used to correct the pressure and the velocity fields.

The velocity field will now be divergence free, but the corrected variables will not satisfy the

momentum equations. The iteration between the continuity and momentum equations continue

till pressure and velocity fields that satisfy all three equations are obtained.

The SIMPLE algorithm will be explained using the sample computational domain given in

Figure 2.5. In this staggered grid, (i,J) nodes store the u-velocity (u), (I,j) nodes store the

v-velocity (v) and (I,J) nodes store the pressure (p). Using Equation (2.30) and the indexing

shown in Figure 2.5 discrete u- and v-momentum equations can be rewritten as follows

ai,Jui,J =
∑

anbunb + (pI,J − pI+1,J)Ai,J + bi,J u-momentum

aI,jvI,j =
∑

anbvnb + (pI,J − pI,J+1)AI,j + bI,j v-momentum (2.46)

where the final b terms represent the constant part of the source terms, SC∆x∆y, and

Ai,J = yi,j − yi,j−1

AI,j = xi,j − xi−1,j (2.47)

The SIMPLE algorithm starts with initial guesses of the pressure and velocity fields, p∗, u∗, v∗.

Discrete momentum equations are solved using these guessed fields as follows

ai,Ju∗

i,J =
∑

anbu
∗

nb + (p∗I,J − p∗I+1,J)Ai,J + bi,J u-momentum

aI,jv
∗

I,j =
∑

anbv
∗

nb + (p∗I,J − p∗I,J+1)AI,j + bI,j v-momentum (2.48)

Note that the initial u∗ and v∗ guesses are necessary to calculate the convective fluxes, F .

Since the pressure field, p∗, is only a guess or a prevailing iterate, the velocity field, u∗ and v∗,

obtained by solving Equation (2.48) will not be divergence free and therefore will not satisfy

the continuity equation (Equation (2.38)). Let’s assume that we have the following corrections

(shown with primes) that provide a divergence free velocity field

u = u∗ + u
′

v = v∗ + v
′

(2.49)
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Figure 2.5: Staggered Grid Arrangement

Correspondingly, the pressure field can be corrected to satisfy the momentum equations as

p = p∗ + p
′

(2.50)

Subtracting Equation (2.48) from Equation (2.46) and using the previously defined corrections

yields

ai,Ju
′

i,J =
∑

anbu
′

nb + (p
′

I,J − p
′

I+1,J)Ai,J

aI,jv
′

I,j =
∑

anbv
′

nb + (p
′

I,J − p
′

I,J+1)AI,j (2.51)
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As the main approximation of the SIMPLE algorithm,
∑

anbu
′

nb and
∑

anbv
′

nb terms of Equa-

tion (2.51) are dropped to get (a justification for this simplification will be discussed later)

u
′

i,J = di,J (p
′

I,J − p
′

I+1,J)

v
′

I,j = dI,j(p
′

I,J − p
′

I,J+1) (2.52)

where

di,J =
Ai,J

ai,J

dI,j =
AI,j

aI,j

(2.53)

Corrected velocities can now be expressed as

ui,J = u∗

i,J + di,J (p
′

I,J − p
′

I+1,J)

vI,j = v∗I,j + dI,j(p
′

I,J − p
′

I,J+1) (2.54)

Now it is time to obtain the necessary pressure corrections.

2.5.1.1 Pressure Correction Equation

Before studying the derivation of the pressure correction equation, it is necessary to rewrite the

continuity equation (Equation (2.38)) with the indexing given in Figure 2.5.

(ρuA)i,J − (ρuA)i−1,J + (ρvA)I,j − (ρvA)I,j−1 = 0 (2.55)

As stated before, the starred velocities u∗ and v∗ obtained by solving Equation (2.48) do not

satisfy the continuity equation, so that

(ρu∗A)i,J − (ρu∗A)i−1,J + (ρv∗A)I,j − (ρv∗A)I,j−1 6= 0 (2.56)

Using Equation (2.54) in Equation (2.55) provides

ρ
[
Ai,J

(
u∗

i,J + di,J(p
′

I,J − p
′

I+1,J)
)
− Ai−1,J

(
u∗

i−1,J + di−1,J (p
′

I−1,J − p
′

I,J)
)

+

AI,j

(
v∗I,j + dI,j(p

′

I,J − p
′

I,J+1)
)
− AI,j−1

(
v∗I,j−1 + dI,j−1(p

′

I,J−1 − p
′

I,J)
)]

= 0 (2.57)

which can be rearranged to get the following discrete pressure correction equation

aI,Jp
′

I,J = aI+1,Jp
′

I+1,J + aI−1,Jp
′

I−1,J + aI,J+1p
′

I,J+1 + aI,J−1p
′

I,J−1 + b
′

I,J (2.58)
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where

aI+1,J = ρdi,JAi,J

aI−1,J = ρdi−1,JAi−1,J

aI,J+1 = ρdI,jAI,j

aI,J−1 = ρdI,j−1AI,j−1

aI,J = aI+1,J + aI−1,J + aI,J+1 + aI,J−1

b
′

I,J = −ρu∗

i,JAi,J + ρu∗

i−1,JAi−1,J − ρv∗I,jAI,j + ρv∗I,j−1AI,j−1 (2.59)

It is important to note that the term b
′

I,J of Equation (2.59) is the negative of Equation (2.56).

This term is called as the mass source and it can be thought as a measure of mass imbalance in

the continuity equation due to the use of wrong (starred) velocities. When the prevailing iter-

ate velocities, u∗ and v∗ exactly satisfy the continuity equation, b
′

I,J term will be zero and the

pressure correction equation will yield a constant value, which, due to Equation (2.52), results

in no velocity correction. Therefore the convergence is obtained once the velocities predicted

by the momentum equations satify the continuity equation.

At this point it is important to realize the reason for dropping the
∑

anbu
′

nb and
∑

anbv
′

nb

terms from Equation (2.51). Assume for a moment that these terms are retained. Then they

would have to be expressed in terms of the pressure and velocity corrections at the neighbors

of corresponding u- and v-cells. These neighbors would, in turn, bring their neighbors. Con-

sequently, the resulting pressure correction equation would involve all the grid points in the

computational domain, which makes the solution of the pressure correction equation very ex-

pensive.

Now a new question arises whether the converged solution given by SIMPLE does contain

any error due to the omission explained in the previous paragraph. If we were solving a pres-

sure equation rather than a pressure correction equation then the omission of any term would

be unacceptable, since the result would not be the true solution of the governing discrete equa-
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tions. However, we are working with a pressure correction equation and as far as the final

answers are considered the omission of
∑

anbu
′

nb and
∑

anbv
′

nb terms is of no consequence.

This is easily seen if what happens in the final iteration is considered. In the final iteration

before convergence, the velocity and pressure fields of the previous iteration can be denoted as

u∗, v∗, p∗. Since this velocity field corresponds to a converged solution the mass source, b
′

,

turns out to be zero. This means pressure correction equation will yield a constant value that

can be taken as zero. If p
′

= 0 at all grid points then u = u∗, v = v∗ and p = p∗ thus the

pressure correction equation plays no role in the final iteration so that the converged solution

is uninfluenced by any approximations made in deriving this equation.

Although dropping the
∑

anbu
′

nb and
∑

anbv
′

nb terms does not affect the converged results,

it has consequences for the rate of convergence. By dropping these terms, the entire burden

of velocity corrections is placed upon the pressure correction, Equation (2.52). As a result,

corrected velocity field will satisfy the continuity equation but the resulting pressure field is

over-corrected which is prone to divergence unless some under relaxation is used

p = p∗ + αpp
′

(2.60)

where αp is the pressure under-relaxation factor that has a value between 0 and 1. As the

under-relaxation factor gets closer to 1, convergence speed increases, but the chance of diver-

gence also increases. On the other hand, as the value gets closer to 0, the solution becomes

more stable, but now the convergence slows down. There exist no general guidelines for the

determination of an optimum under-relaxation factor, hence each problem should be considered

seperately [6].

Most of the time a stable solution would also require under-relaxation for the momentum

equations. Using Equation (2.46), the unknown u-velocity at node P can be written as

ui,J =

∑
anbunb + (pI,J − pI+1,J)Ai,J + bi,J

ai,J

(2.61)
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The Change between this u-velocity of the current iteariton and the one for the previous iteration

becomes

∑
anbunb + (pI,J − pI+1,J)Ai,J + bi,J

ai,J

− u∗

i,J (2.62)

This difference can be under-relaxed to update the current value of the u-velocity at node P as

ui,J = u∗

i,J + αu

[∑
anbunb + (pI,J − pI+1,J)Ai,J + bi,J

ai,J

− u∗

i,J

]
(2.63)

which can be rearranged to give

ai,J

αu

ui,J =
∑

anbunb + (pI,J − pI+1,J)Ai,J + bi,J +

[
(1 − αu)

ai,J

αu

]
u∗

i,J (2.64)

where αu is the under-relaxation parameter of the u-momentum equation. Similarly the under-

relaxation of the v-momentum equation provides

aI,j

αv

vI,j =
∑

anbvnb + (pI,J − pI,J+1)AI,j + bI,j +

[
(1 − αv)

aI,j

αv

]
v∗I,j (2.65)

As mentioned before, the choice of the under-relaxation factors is critical for an efficient analysis.

The effect of these parameters on the convergence characteristics will be investigated in the next

chapter.

2.5.1.2 Sequence of Operations of the SIMPLE Algorithm

The overall procedure that the SIMPLE algorithm follows is given below:

1. Initialize the pressure and velocity fields (p∗,u∗,v∗).

2. Solve the discrete momentum Equations (2.64) and (2.65) to obtain u∗ and v∗.

3. Solve the pressure correction equation (2.58) to obtain p
′

.

4. Correct the pressure and velocity fields using the pressure (2.50) and velocity (2.54)

correction equations.

5. If necessary, solve the discrete equations for other scalar variables such as temperature,

species concentration or turbulence quantities, using the continuity-satisfying velocity

field.
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6. If the solution is converged based on a predetermined convergence tolerance, stop. If not,

go to the second step.

2.5.2 SIMPLER Algorithm

There have been a number of studies in the literature which aim to accelerate the convergence

of the SIMPLE algorithm. One of such attempts is the SIMPLER (SIMPLE Revised) algorithm

of Patankar [6]. The approximation introduced in the SIMPLE algorithm for the derivation

of pressure correction equation leads an exaggerated pressure-correction field which requires

under-relaxation, thus slows down the convergence rate. In other words, pressure correction

equation is an efficient method when the velocity correction part is considered; however it is

not that much successful in correcting the pressure.

To understand this argument, a very simple problem can be considered; one dimensional, con-

stant density flow with a given inlet velocity boundary condition. In this problem, velocity is

governed only by the continuity equation, and hence the final solution, the continuity satisfying

velocity field, is obtained at the end of the first iteration. However, converged pressure field can

be established after many iterations[6]. Consequently, while finding another way to obtain the

pressure field, it would be appropriate to employ pressure correction equation only to correct

the velocity field.

The pressure equation is obtained by re-arranging the momentum equations. First the

momentum equations are written as,

ui,J =

∑
anbunb + bi,J

ai,J

+ di,J(pI,J − pI+1,J)

vI,j =

∑
anbvnb + bI,j

aI,j

+ dI,j(pI,J − pI,J+1) (2.66)
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By defining pseudovelocities (û and v̂) as,

ûi,J =

∑
anbunb + bi,J

ai,J

v̂I,j =

∑
anbvnb + bI,j

aI,j

(2.67)

The momentum equations become,

ui,J = ûi,J + di,J (pI,J − pI+1,J)

vI,j = v̂I,j + dI,j(pI,J − pI,J+1) (2.68)

It is easy to see the similarity between the Equations (2.68) and (2.54). Here the pseudove-

locities (û and v̂) appear in the place of prevailing iterate velocity field (u∗ and v∗) and the

pressure itself (p) takes the place of pressure correction (p
′

). Then the same procedure, as in

the SIMPLE algorithm, is followed to derive an equation for pressure.

Substituting Equation (2.68) into the discrete continuity equation (2.55), the following equation

for pressure is obtained.

aI,JpI,J =
∑

nb

anbpnb + bI,J (2.69)

where

aI+1,J = ρdi,JAi,J

aI−1,J = ρdi−1,JAi−1,J

aI,J+1 = ρdI,jAI,j

aI,J−1 = ρdI,j−1AI,j−1

aI,J = aI+1,J + aI−1,J + aI,J+1 + aI,J−1

bI,J = −ρûi,JAi,J + ρûi−1,JAi−1,J − ρv̂I,jAI,j + ρv̂I,j−1AI,j−1 (2.70)

It can be noticed that the pressure equation is identical to the pressure correction equation

(2.59) except the bI,J term. At this point it should be noted that; different than the pressure

correction equation where the source term represent the mass imbalance, the source term of the

pressure equation does not represent the mass source. Another important difference between
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these equations is that the pressure equation involves no approximation. Thus, if a correct

velocity field is used, the pressure equation would give the correct pressure at once.

2.5.2.1 Sequence of Operations of the SIMPLER Algorithm

The revised algorithm SIMPLER solution loop takes the following form:

1. Initialize the velocity field.

2. Compute the pseudovelocities (û and v̂).

3. Solve the pressure Equation (2.69) which yields the pressure field.

4. Using this new calculated pressure field, and the momentum Equations (2.64), 2.65),

calculate the velocity fields (u∗, v∗).

5. Solve the pressure correction Equation (2.58) hence obtain the p
′

field.

6. Correct the velocity fields using the velocity (2.54) correction equations. Do NOT correct

the pressure.

7. Solve the discrete equations for other scalar variables (φ) such as temperature, concen-

tration and turbulence quantities, using the continuity-satisfying velocity field for the

convective terms.

8. If the solution is converged, stop. If not, go to the second step.

2.5.3 SIMPLEC Algorithm

The SIMPLEC (SIMPLE-Corrected) algorithm of Van Doormal [14] was developed as a rem-

edy to the relatively crude approximation of the SIMPLE algorithm which is the omission of

∑
anbu

′

nb and
∑

anbv
′

nb terms in the derivation of pressure correction equation. The SIMPLEC

algorithm attempts to approximate the omitted terms rather than completely neglecting them

as,

∑

nb

anbu
′

nb ≈ u
′

i,J

∑

nb

anb

∑

nb

anbv
′

nb ≈ v
′

I,j

∑

nb

anb (2.71)
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Thus, the velocity correction takes the form

u
′

i,J = di,J (p
′

I,J − p
′

I+1,J)

v
′

I,j = dI,j(p
′

I,J − p
′

I,J+1) (2.72)

where

di,J =
Ai,J

ai,J −
∑

nb anb

dI,j =
AI,j

aI,j −
∑

nb anb

(2.73)

The rest of the procedure is same as the SIMPLE algorithm except for the fact that the pres-

sure correction equation does not need under relaxation anymore. Whereas, the momentum

equations have to be under-relaxed to prevent the denominator of Equation (2.73) to be zero.

Since, if the momentum equations are not under-relaxed, then the ai,J term will be equal to

∑
nb anb term.

Although this algorithm converges faster than the SIMPLE algorithm and does not have the

extra computational cost as in the SIMPLER algorithm, it shares the same disadvantage with

the SIMPLE algorithm. This method would destroy the initially good guessed velocity field if

it is not accompanied by a good pressure field guess, since there exist no equation dedicated

only to solve the pressure field as in the SIMPLER algorithm.

A comparative study between these algorithms on different test cases and the superiority of

each algorithm over the others are explained in the next chapter.

2.5.3.1 Sequence of Operations of the SIMPLEC Algorithm

The sequence of operations of the SIMPLEC algorithm is exactly same as the SIMPLE al-

gorithm; the only difference is at the fourth step where different velocity correction Equation

(2.72) is used.
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2.6 Unsteady Flows

The solution procedure of unsteady flows is very similar to the one followed for steady problems.

As usual, the process starts with the discretization of the governing equations. However, for the

unsteady flow calculations the transient terms should also be discretized. Therefore, Equations

(2.3) and (2.4) are integrated over not only a control volume but also a finite time step.

2.6.1 Discretization of the Equation

Replacing the volume integrals of diffusive and convective terms with the surface integrals,

using the Gauss Divergence Theorem, and changing the order of integration for the transient

term, the unsteady u-momentum Equation (2.3) takes the following form.

∫

CV

(∫ t+∆t

t

∂(ρu)

∂t
dt

)
dV +

∫ t+∆t

t

(∫

A

(ρ~V u) · dA

)
dt =

∫ t+∆t

t

(∫

CV

−~i · ∇pdV
)
dt +

∫ t+∆t

t

(∫

A

(µ∇u) · dA

)
dt +

∫ t+∆t

t

(∫

CV

SudV
)
dt (2.74)

There are several different schemes available to discretize the time derivative. First-order,

backward differencing scheme, used in this study, provides the following discretized form,

∫

CV

(∫ t+∆t

t

∂(ρu)

∂t
dt

)
dV = ρ

(u − uo)

∆t
∆V (2.75)

where, the superscript ’o’ refers to the u-velocity at time t. No superscript is used for the

u-velocity at time level t + ∆t.

The remaining terms of the u-momentum equation can only be calculated if an assumption

is made to approximate the variation of u-velocity with time. It is possible to use u-velocities

at time step t only, u-velocities at time step t + ∆t only or a combination of both can be used.

It is possible to generalize the approach using a weighting parameter (θ) that takes a value

between 0 and 1. Then,

∫ t+∆t

t

udt = [θu + (1 − θ)uo] ∆t (2.76)
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Hence, the final form of the discrete equation depends on the value of θ. θ = 0 is called as

explicit discretization where only the u-velocities that belong the previous time level t are used

to evaluate the velocities at the new time level t + ∆t.

∫ t+∆t

t

udt = uo∆t (2.77)

0 < θ < 1 provides implicit discretization where velocities of both previous (uo) and new (u)

time levels are used in the calculation. The special case of θ = 1/2 is called as the Cranck-

Nicolson scheme where both time levels have equal dominance in the calculations [49].

∫ t+∆t

t

udt =
1

2
(uo + u)∆t (2.78)

The extreme case of θ = 1 is called as the fully implicit scheme. In this scheme only the

velocities that belong the new time level are used in the calculations. Thus, at each time level

a system of algebraic equations must be solved.

∫ t+∆t

t

udt = u∆t (2.79)

The fully implicit method is recommended for general purpose CFD computations due to its

superior stability [50]. It is also the scheme used in this study. Now, the differences between

the steady and unsteady momentum equations and the respective extra calculations can be

explained. The whole discretization process of unsteady u-momentum equation will not be re-

peated. Substituting the Equations (2.75) and (2.79) into Equation (2.74), the discrete unsteady

u-momentum equation takes the following form

(ai,J +
ρ∆V

∆t
)ui,J =

∑
anbunb + (pI,J − pI+1,J)Ai,J +

ρ∆V

∆t
uo

i,J + bi,J (2.80)

Depending on the discretisation scheme used ai,J and anb coefficients can be calculated from

the previously derived equations for steady u-momentum equation.

Incompressible, unsteady flow calculations with fully implicit formulation can be performed

by employing the SIMPLE, SIMPLER or SIMLEC algorithms that are already covered. The

changes in the discretized form of the momentum equations due to the transient term are de-

scribed above. The transient term does not have any effect in the final discrete continuity
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equation for incompressible flows. Therefore, pressure correction equations of steady and un-

steady problems are same. The only point to be paid attention in the unsteady calculations

is, at each time level these algorithms should be applied until a specified convergence level is

achieved.

2.6.2 Time Marching Approach for the Solution of Steady Problems

Time marching approach is an alternative way to obtain steady-state results [51]. In this

method time-dependent equations is solved and steady-state results is obtained by marching in

time. Since, only the steady-state results are of interest, it is not necessary to obtain converged

results at each time level as in the unsteady calculations. Therefore, at each iteration, obtaining

only partially converged results is enough. At successive time steps, the results approach to the

steady-state values which is the idea of the method.

The application of time marching approach is quite easy due to the similarity between the

steady under-relaxed and the unsteady momentum equations. Corresponding equations for

these two different approaches are repeated below

ai,J

αu

ui,J =
∑

anbunb + (pI,J − pI+1,J)Ai,J +

[
(1 − αu)

ai,J

αu

]
u∗

i,J + bi,J

(ai,J +
ρ∆V

∆t
)ui,J =

∑
anbunb + (pI,J − pI+1,J)Ai,J +

ρ∆V

∆t
uo

i,J + bi,J

As seen from the above equations, the unsteady term and the under-relaxation practice have

similar effects on the discretized equations. The following relation can be written between the

relaxation parameter αu and the time step ∆t

(1 − αu)
ai,J

αu

=
ρ∆V

∆t
or αu =

ai,J

ai,J + ρ∆V/∆t
(2.81)

It should be noted that in this method, the under-relaxation factor (αu) depends on the central

coefficient (ai,J ), which in turn depends on the velocities. Therefore, the relaxation parameter

varies spatially (cell to cell) and evolves with the solution. This unique feature enables us to

solve a flow by marching in time using the steady momentum equations.
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Although it is problem dependent, generally time marching formulation shows better perfor-

mance than iterative formulation by decreasing the total computational time [51]. A compera-

tive study of these approaches are presented in Chapter 4.

2.7 Boundary Conditions

Implementation of initial and boundary conditions is an essential point for all numerical algo-

rithms so that this process should be well understood. The initializing process is a straight

forward task where the initial values of all flow variables need to be specified at all nodes in

the computational domain. Thus, this topic is not discussed any furter. Implimentation of the

boundary condition, on the other hand, requires special attention. In this subsection the most

common three boundary condition types, namely; inlet, outlet and wall, are discussed in detail.

Also the method of blocked-off region, as it is called by Patankar [6] is covered in this section.

2.7.1 Inlet

At an inlet boundary, all the flow variables have to be prescribed. Due to the staggered grid

arrangement that is used in this study, u− & v−velocity and pressure nodes are all stored in dif-

ferent locations. Figure 2.6 has an inlet and an outlet which are perpendicular to the x-direction

and emphasize three u−momentum cells; in the vicinity of inlet, outlet and wall boundaries.

Figures 2.7 and 2.8 are similar to the Figure 2.6, but they are emphasizing v− velocity and

pressure correction (any other scalar) cells in the same domain. The cells labeled as “1” are

the first computational nodes where discrete momentum and pressure correction equations are

solved. The grids extend outside the physical boundary (I=0) and along that boundary (i=0)

are used to store the inlet values of the flow variables. Thus, for the computational cells in

the vicinity of the inlet, all neighbouring nodes remain active, shown as squares, means no

special treatment is necessary for these cells. Another important point is the treatment of p
′

at boundaries where velocities are prescribed, as it is the case for the inlet boundary. When

the velocity is specified at a boundary, a zero gradient on p
′

normal to that boundary gives the
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desired result [13]. As stated by Patankar [6] when the velocity boundary conditions are applied

correctly, it implicitly asserts the correct condition on p
′

; then there is no requirement for an

explicit application of p
′

boundary condition. Finally, since the velocity in the inlet boundary

is specified there is no need to make a velocity correction here,i.e.,

ui=0,J = u∗

i=0,J (2.82)

Figure 2.6: Computational Domain With Three Emhasized u−momentum Cells in the Vicinity
of Inlet, Outlet and Wall Boundaries

2.7.2 Outlet

The Neumann boundary condition is used as the outlet boundary condition where the gradients

of all flow variables, except pressure, are zero in the flow direction. The location of the outlet

boundary condition is essential. It has to be selected far away from the geometrical disturbance,

generally the area of interest, where the flow reaches a fully developed state. When the flow

reaches fully developed state no further change occurs in the downstream of the flow. It is

a common practice to locate the outlet surface perpendicular to the flow direction then take

gradients in the direction normal to the outlet surface equal to zero. The last computational u−

& v−momentum and pressure cells, as displayed in diamond, in the vicinity of outlet boundary
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Figure 2.7: Computational Domain With Three Emhasized v−momentum Cells in the Vicinity
of Inlet, Outlet and Wall Boundaries

condition are shown in Figures 2.6, 2.7 and 2.8 respectively.

It is seen from Figure 2.6 that the last column where the computational u−velocity nodes

exist is i=4. Thus, the u−velocity nodes at i=5 are not calculated through out the iterations.

As a result, before the next iteration, where the u-momentum equation will be solved, the val-

ues of u-velocities at the nodes on i=5 are updated by extrapolation from the interior on the

assumption of zero gradient at the outlet plane. Similar extrapolation is performed for column

I=6 to determine the values of v-velocities and pressures; this time the interior column on which

the values are extrapolated is I=5. These extrapolations can be summarized as,

ui=5,J = ui=4,J

vI=6,j = vI=5,j

pI=6,j = pI=5,j (2.83)

Similar to the inlet, no explicit boundary condition for p
′

is required; the appropriate boundary

treatment of p
′

is implicitly assured. Also no velocity correction is needed for the nodes on the

outlet boundary.
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Figure 2.8: Computational Domain With Three Emhasized Pressure (and Any Scalar Variable)
Cells in the Vicinity of Inlet, Outlet and Wall Boundaries

2.7.3 Wall

Wall is the most commonly encountered boundary condition in confined flow problems. The

no-slip boundary condition, where both components of the velocity are equal to zero, is the

appropriate condition at solid walls. Depending on the direction of the wall either u− or v−

momentum cells require special attention. For the case that is discussed here where the walls

are in horizontal pozition, as shown in Figure 2.7, the v− cells at the row j=1 can be evaluated

without modification like any other v-cell in the domain. The u−cells, on the other hand, at the

wall boundaries can not be accounted in that level of simplicity. The presence of the wall have

to be taken into and added to the equation as a source term. It is assumed that the velocity

varies linearly with distance from the wall in the laminar flow as illustrated in Figure 2.9-a.

Thus, the discretised u-momentum equation (Equation 2.46) for the boundary node which can

be restated by taking the velocity of the south cell (ghost-cell) is equal to the negative of the

center cell.

ai,Jui,J︸ ︷︷ ︸
center

= ai+1,Jui+1,J︸ ︷︷ ︸
east

+ ai−1,Jui−1,J︸ ︷︷ ︸
west

+ ai,J+1ui,J+1︸ ︷︷ ︸
north

− ai,J−1ui,J︸ ︷︷ ︸
wallside

+(pI,J − pI+1,J)Ai,J + bi,J (2.84)
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Figure 2.9: u-momentum Cells in the Vicinity of Stationary (a) and Sliding (b) Boundaries.

The coefficient of the wallside cell (ai,J−1) is composed of convective and diffusive terms. Since

the velocity of the south cell is zero, there exists no convective term and the diffusive term

will be µ∆x/∆y. Finally, collecting the common terms together, the u-momentum cell in the

vicinity of the wall will be:

(
ai,J +

µ∆x

∆y

)
ui,J

︸ ︷︷ ︸
center

= ai+1,Jui+1,J︸ ︷︷ ︸
east

+ ai−1,Jui−1,J︸ ︷︷ ︸
west

+ ai,J+1ui,J+1︸ ︷︷ ︸
north

+(pI,J − pI+1,J)Ai,J + bi,J (2.85)

It is seen that the only difference between the u-momentum equations of an inner and a bound-

ary cell is the coefficient of center cell.

Sliding wall boundary condition is very similar to stationary wall boundary condition. De-

pending on the direction of the wall movement one of the velocity components is non zero, as

illustrated in the Figure 2.9-b. In this case, based on the linear velocity profile assumption, the

u-velocity at the south cell (ghost-cell) is found by extrapolation using the velocity of the wall

and the first inner cell. Thus, the u-momentum takes the following form.

ai,Jui,J︸ ︷︷ ︸
center

= ai+1,Jui+1,J︸ ︷︷ ︸
east

+ ai−1,Jui−1,J︸ ︷︷ ︸
west

+ ai,J+1ui,J+1︸ ︷︷ ︸
north

+ 2uwall − ai,J−1ui,J︸ ︷︷ ︸
wallside

+(pI,J − pI+1,J)Ai,J + bi,J (2.86)
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Extracting the coefficient of the wallside cell and collecting the common terms together, the

equation becomes,

(
ai,J +

µ∆x

∆y

)
ui,J

︸ ︷︷ ︸
center

= ai+1,Jui+1,J︸ ︷︷ ︸
east

+ ai−1,Jui−1,J︸ ︷︷ ︸
west

+ ai,J+1ui,J+1︸ ︷︷ ︸
north

+(pI,J − pI+1,J)Ai,J + bi,J +
µuwall∆x

∆y/2
(2.87)

In the sliding wall case, not only the coefficient of the central cell is changed but also a new

term is added to the right handside source.

2.7.4 Blocked-Off Regions

The solver that is developed through out this research is working on Cartesian structured grids

which is limited in handling irregular shaped computational domains. The blocked-off region

method of Patankar [6] can be a perfect tool to remove this weakness. In this method, by

rendering the inactive control volumes, the desired irregular computational domain is obtained.

The block-off operation is simply the assignment of known values of relevant variables to inactive

control volumes. Recalling the u- and v- momentum equations and inserting two new source

terms; one to the coefficient of central cell (SP ) and one to the righthand side source (SC). The

equations take the following form,

(
ai,JSP,u

)
ui,J =

∑
anbunb + (pI,J − pI+1,J)Ai,J + bi,J + SC,u u-momentum

(
aI,jSP,v

)
vI,j =

∑
anbvnb + (pI,J − pI,J+1)AI,j + bI,j + SC,v v-momentum (2.88)

At this point it is seen that if large enough source terms (SP ,SC) are employed, as shown in

the Equation 2.89, all the other terms in the discretization equations will become negligible.

SC,u = 1030udesired

SC,v = 1030vdesired

SP,u = 1030

SP,v = 1030 (2.89)
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Thus, the u- & v- velocities in the node of interest (central node) can be calculated in the

following form,

ui,J =
SC,u

SP,u

= udesired

vI,j =
SC,v

SP,v

= vdesired (2.90)

It is obvious that, if udesired and vdesired are set equal to zero, then internal obstacles (station-

ary solid boundaries) can be created inside the calculation domain using this method.

The major disadvantage of this method is its inefficiency in CPU time and storage. Although

the values of flow variables are known at these inactive cells, it is still necessary to store and

perform trivial computations for that zone.
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CHAPTER 3

VIRTUAL FLOW LAB SOFTWARE

The flow solver developed in this study is embeded into a Graphical User Interface (GUI) envi-

ronment [52] and the combined software is called as Virtual Flow Lab (VFL) [53]. This chapter

provides a general overview of its Graphical User Interface (GUI) and presents its capabilities.

Most CFD codes written as part of an academic study include not more than a bare flow

solver. In such an approach the user first needs to draw the problem geometry and prepare the

mesh using a mesh generation software. Then an input file that includes the solver parameters,

boundary and initial conditions, etc. is prepared. The generated mesh and this input file are

fed into the solver to obtain the numerical results. These results need to be analyzed using a

visualization software. This is definitely not a user-friendly approach. It is also not economical

due to the need of separate pre- and post-processing software. The learning curve of such a

software bundle is too steep to be used for educational purposes.

VFL, on the other hand, is written to be a complete CFD package, which combines all nec-

essary sub-components in a single, user friendly enviroment. VFL is an open source software.

It is distributed under the GPL license [45], which means that it can be downloaded freely

from the internet. The source codes can also be downloaded freely and if necessary they can
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be modified by the users according to their specific needs. It is written in C++ language.

User interfaces are designed with Qt [46], a C++ user interface library freely available from

Trolltech. It is a platform independent software which can be compiled and run under different

computer architectures without any or very little source code change. It is successfully tested

under Linux and Windows operating systems. It is a multi-lingual software, which means that

the user interface can be used in different languages. Using the tools provided by Trolltech, it

is possible to translate the whole user interface from one language to another in just few hours.

The VFL project is still under development and the capabilities of the current version will be

presented in the following paragraphs.

The opening screenshot of VFL is given in Figure 3.1. It is composed of a main menu bar,

operation toolpad, graphical window and communication box. Main menu bar is used for

operations like opening/saving a problem, setting general user interface options, capturing a

screenshot, accessing the help files. Operation toolpad is composed of six tabs, namely Geom-

etry, Blocks/Faces, Mesh, BC/IC, Solve and Visualize. The task of each tab can be followed

easily by its name. Graphical window is used to draw and display the problem geometry and

the generated mesh, select blocked-cells and control points and visualize the results. Commu-

nication box is used to provide feedback about the operations performed. Warning and error

messages can be followed from this window. Once the solution starts, it is also used to watch

the convergence and the variation of variables at the control points.

Figure 3.2 shows a screenshot taken during the creation of a problem geometry. The user

can draw the geometry of the problem by using elementary geometrical entities such as lines

and circular arcs. After drawing a closed geometry mesh points on the boundaries of the prob-

lem can be selected using the Blocks/Faces tab. Then a multi-block structured mesh can be

generated using either algebraic of differential mesh generation methods as demonstrated in

Figure 3.3 [54].
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Figure 3.1: Opening Screenshot of VFL

Figure 3.2: A Screenshot of VFL Taken During the Creation of a Problem Geometry
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Figure 3.3: A Screenshot of VFL Taken During Mesh Generation

As shown in Figure 3.4, BC/IC tab is used to specify boundary and initial conditions. The

current version of the software supports three most commonly used boundary condition types:

inflow, outflow and wall. Specification of fluid properties (e.g. density, kinematic viscosity),

solver parameters (e.g. relaxation parameters, time step size, convergence tolerance, etc.) and

the convergence monitoring capability of the software can be seen in Figure 3.5. As explained

in Chapter 2 the incompressible flow solver is based on the SIMPLE algorithm of Patankar

[6]. Its variants SIMPLER and SIMPLEC are also available. Space discretization can be made

using one of the central, upwind, power-law or hybrid choices. It is possible to perform steady

or unsteady simulations.
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Figure 3.4: A Screenshot of VFL Taken During the Specification of Boundary and Initial
Conditions

Figure 3.5: A Screenshot of VFL Showing the Convergence Monitoring of a Running Simulation
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As seen in Figure 3.6 it is very simple to create complex geometries by selecting proper blocked

cells in a Cartesian mesh, which will be treated as walls in a simulation by using the block-off

region method of Patankar [6]. Other than the real-time convergence monitoring, it is also

possible to select desired number of control points and visualize the convergence of the solution

by following the variations of flow properties at these points.

While running a simulation, the results can be post-processed as seen in Figure 3.7. It is

possible to draw contour plots of flow variables, place streamlines and probe the properties of

any point in the flow field. The user can also save the contents of the graphical window and

convergence and control point monitoring windows as images.

Figure 3.6: A Screenshot of VFL Taken During the Selection of Blocked Cells
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Figure 3.7: A Screenshot of VFL Showing Its Post-Processing Capabilities
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CHAPTER 4

VALIDATION of the FLOW SOLVER

The flow solver developed in this study is validated by solving a number of test problems.

Several factors that affect the accuracy and the efficiency of the solutions, such as solution

methods, discretization schemes, relaxation parameters, grid sizes, etc. are examined in detail.

The studied test problems are as follows; 1. Lid-driven square cavity flow, which is a standard

validation test case due to its simple geometry and boundary conditions, 2. Back facing step

flow, which is another popular validation case for an internal flow with recirculating regions, 3.

Unsteady confined flow over a square cylinder, a widely refered benchmark problem. Obtained

results are compared with experimental and computational results available in the literature.

The reported computing times are the CPU seconds obtained on a Hewlett-Packard Com-

pac dc7100 personal computer with an Intel R©, Pentium R© 4 3.00Ghz processor and 512 MB

of memory. The iterations are performed until the mass residual (the largest cell mass source

term, b term in the pressure correction equation (2.59)) drops below 10−9 in the domain. This

convergence criteria always satisfies that u and v velocity residuals in the domain are also

smaller than 10−9. Unless noted otherwise, this convergence criteria is applied to all runs in

this work as suggested by Patankar [6]. Numerical studies, which are presented in the tables,

are not labeled; whereas, experimental studies are labeled as “E”.
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4.1 Problem 1. Lid-Driven Cavity

The numerical solution of the flow in a two-dimensional square cavity with the top wall sliding

at a constant velocity is one of the most popular benchmark problems for testing new solution

techniques and flow solvers. Since the early work by Burggraf [55], this problem has served

over and over again as a standard problem for the validation of Navier-Stokes codes, in spite of

the singularities at the two top corners where the velocity is discontinuous. It provides a good

test case because there is no primary flow direction, a structured Cartesian grid fits well into

the simple problem domain and the boundary conditions are of single type.

Generally, two sets of data are presented in the lid-driven cavity analyses. The first one is

the u-velocity and the v-velocity profiles along the vertical and horizontal center lines, respec-

tively and their extrema, as shown in Figure 4.1-a. The other set of data is the locations of

primary, secondary and for some cases ternary vortices, as shown in Figure 4.1-b.

Figure 4.1: (a) Velocity Profiles Along the Centerlines, (b) Definition of the Vortices and
Corresponding Indexing for Problem 1
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4.1.1 Mesh Independency Study

The first set of runs are performed for the mesh independency study to see the affect of the

grid size on the accuracy of the solution. For this purpose, uniformly spaced grids of 8×8,

16×16, 32×32, 64×64, 128×128, 256×256 are used to calculate the flow field for a Reynolds

number of Re = UL/ν = 100. For this set of runs steady flow equations are solved using central

differencing scheme and the SIMPLE algorithm.

Calculated velocity profiles along the centerlines of the cavity are shown in Figures 4.2 and

4.3. With the increasing number of grid points the computed extrema of u and v velocities

along the centerlines are approaching to their correct values. Surprisingly, even an 8×8 mesh

can capture the general characteristics of the flow field.
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Figure 4.2: Comparison of u-velocity Along the Vertical Centerline Using Different Mesh Sizes
(Re=100), Problem 1

But for a more solid comparison the location of the vortices and the extrema of the velocities

along the centerlines should also be taken into account. These data are presented in Table 4.1
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Figure 4.3: Comparison of v-velocity Along the Horizontal Centerline Using Different Mesh
Sizes (Re=100), Problem 1

and 4.2, respectively.

Table 4.1: Center Locations of the Vorticies, Re=100, Problem 1

Primary Vortex Secondary Vortex Secondary Vortex
Bottom Right Bottom Left

Grid 8 ×8 (0.6237, 0.7190) (N/A) (N/A)
Grid 16 ×16 (0.6215, 0.7389) (N/A) (N/A)
Grid 32 ×32 (0.6167, 0.7380) (0.9462, 0.0622) (N/A)
Grid 64 ×64 (0.6154, 0.7375) (0.9438, 0.0619) (0.0343, 0.0347)
Grid 128 ×128 (0.6159, 0.7373) (0.9427, 0.0618) (0.0344, 0.0348)
Grid 256 ×256 (0.6162, 0.7374) (0.9426, 0.0616) (0.0342, 0.0344)
Ghia et al. [56] (0.6172, 0.7344) (0.9453, 0.0625) (0.0313, 0.0391)
Bruneau et al. [57] (0.6172, 0.7344) (0.9453, 0.0625) (0.0313, 0.0391)
Vanka [58] (0.6188, 0.7375) (0.9375, 0.0563) (0.0375, 0.0313)
Goyon [59] (0.6172, 0.7343) (0.9453, 0.0625) (0.0312, 0.0390)
Schreiber et al. [60] (0.6167, 0.7417) (0.9417, 0.0500) (0.0333, 0.0250)

It is seen from the tables that the results are in agreement with the ones in the literature. It

can be noted from the Table 4.1 that mesh sizes less than 64×64 fail to reveal the secondary

vortices, and for higher Reynolds numbers, where ternary vortices start to appear, this inability

will be more obvious. Another drawback of coarse mesh is about the convergence. As the Re

number increases it becomes more difficult, if possible at all, to get converged results. For ex-

66



Table 4.2: Characteristic Values for the Driven Cavity, Re =100, Problem 1

ymin Umin xmax Vmax xmin Vmin

Grid 8 ×8 0.3749 -0.1571 0.2500 0.1401 0.8750 -0.1969
Grid 16 ×16 0.4375 -0.1924 0.2500 0.1621 0.8125 -0.2332
Grid 32 ×32 0.4687 -0.2082 0.2500 0.1747 0.8125 -0.2485
Grid 64 ×64 0.4530 -0.2126 0.2344 0.1787 0.8125 -0.2525
Grid 128 ×128 0.4609 -0.2136 0.2343 0.1792 0.8125 -0.2534
Grid 256 ×256 0.4576 -0.2136 0.2344 0.1792 0.8125 -0.2529
Ghia et al. [56] 0.4531 -0.2109 0.2344 0.1753 0.8047 -0.2453
Bruneau et al. [57] 0.4531 -0.2106 0.2344 0.1786 0.8125 -0.2521
Vanka [58] 0.4578 -0.2130 - - - -
Deng et al. [61] - -0.2132 - 0.1790 - -0.2534
Botella et al. [62] 0.4581 -0.2140 0.2370 0.1796 0.8104 -0.2538

ample, irrespective of the solution algorith that is employed or the relaxation parameters that

are used, it is impossible to get a converged result for Re = 1000 with a 8×8 mesh.

Choosing the appropriate mesh size is a kind of optimization problem between the CPU time

and accuracy. The CPU time and the corresponding converged iteration numbers are given

in the Table 4.3. For the sake of controlled numerical experimentation, only one parameter,

namely the mesh sizes, are changed; while all the other solution parameters are kept the same.

As a result, the presented iteration numbers and the CPU times are not necessarily the opti-

mum values; but can still be used for comparison. As expected as the mesh gets finer, both the

convergence iteration number and the CPU time increase.

Table 4.3: CPU Time and Convergence Iteration Number, Re = 100, Problem 1

CPU Time (s) Convergence Iteration Number
Grid 8 ×8 0.14 95
Grid 16 ×16 0.42 242
Grid 32 ×32 2.63 737
Grid 64 ×64 26.75 2304
Grid 128 ×128 318.05 6909
Grid 256 ×256 3683.16 18558
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4.1.2 Comparative Study of Different Reynolds Numbers

In this set of numerical experiments, the lid driven cavity problem is solved for three different

Reynolds number, namely, Re = 100, Re = 400 and Re = 1000, and the results are compared

with the studies in the literature. Based on the discussion made in the previous section, the

uniform mesh size of 128×128 is chosen.

u- and v-velocity contours and streamtraces for Re = 100 are given in Figures 4.4, 4.5 and

4.6, respectively. Similar plots for Re = 1000 can be seen in Figures 4.7 , 4.8 and 4.9. It can

be seen that in both case two secondary vortices appear which are on the left and right bottom

corners. It can also be noted from Re = 1000 case that a third secondary vortex will appear on

the left-top corner, if Reynolds number is continue to be increased. Another fact that can be

figured out is that, as the Reynolds number increases, the center location of the primary vortex

moves downward.
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Figure 4.4: u-velocity Contour, Re = 100, Problem 1
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Figure 4.5: v-velocity Contour, Re = 100, Problem 1
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Figure 4.6: Streamtraces, Re = 100, Problem 1
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Figure 4.7: u-velocity Contour, Re = 1000, Problem 1
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Figure 4.8: v-velocity Contour, Re = 1000, Problem 1
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Figure 4.9: Streamtraces, Re = 1000, Problem 1

u-velocities along the vertical centerline and the v-velocities along the horizontal centerline are

given in Figures 4.10 and 4.11, respectively. The extrema of the velocity profiles along the

centerlines are compared with the available data in literature in Table 4.4. Results are satis-

factorily close to the values in the literature.
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Figure 4.10: Comparison of u-velocity Along Vertical Line Through Geometric Center for Dif-
ferent Reynolds Numbers, Problem 1
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Figure 4.11: Comparison of v-velocity Along Horizontal Line Through Geometric Center for
Different Reynolds Numbers, Problem 1
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Table 4.4: Characteristic Values, Re = 400 & Re = 1000, Problem 1

ymin Umin xmax Vmax xmin Vmin

Re = 400
Present Study 0.2813 -0.3265 0.2266 0.3019 0.8594 -0.4511
Ghia et al. [56] 0.2813 -0.3273 0.2266 0.3020 0.8594 -0.4499
Deng et al. [61] - -0.3275 - 0.3027 - -0.4527

Re = 1000
Present study 0.1719 -0.3824 0.1563 0.3710 0.9063 -0.5181
Ghia et al. [56] 0.1719 -0.3829 0.1563 0.3710 0.9063 -0.5155
Bruneau et al. [57] 0.1602 -0.3764 0.1523 0.3665 0.9102 -0.5208
Vanka [58] 0.1680 -0.3798 0.1563 0.3669 0.9102 -0.5186
Deng et al. [61] - -0.3851 - 0.3737 - -0.5228
Zhang [63] 0.1699 -0.3901 0.1582 0.3785 0.9082 -0.5284

The locations of the primary and secondary vortices are another set of parameters that can be

compared with the previous studies, Table 4.5 (This comparison for Re = 100 was done in the

previous section). It can be noticed that the results are in agreement with each other. The

data can also be observed from Figure 4.12.

Table 4.5: Center Locations of the Vorticies, Re = 400 & Re = 1000, Problem 1

Primary Vortex Secondary Vortex Secondary Vortex
Bottom Right Bottom Left

Re = 400
Present study (0.5544,0.6057) (0.8865,0.1227) (0.0509,0.0470)
Ghia et al. [56] (0.5547,0.6055) (0.8906,0.1250) (0.0508,0.0469)
Vanka [58] (0.5563,0.6000) (0.8875,0.1188) (0.0500,0.0500)

Re = 1000
Present study (0.5312,0.5652) (0.8634,0.1124) (0.0832,0.0779)
Ghia et al. [56] (0.5313,0.5625) (0.8594,0.1094) (0.0859,0.0781)
Bruneau et al. [57] (0.5313,0.5586) (0.8711,0.1094) (0.0859,0.0820)
Vanka [58] (0.5438,0.5625) (0.8625,0.1063) (0.0750,0.0813)
Goyon [59] (0.5312,0.5625) (0.8671,0.1171) (0.0859,0.0781)
Schreiber et al. [60] (0.5286,0.5643) (0.8643,0.1071) (0.0857,0.0714)
Botella et al. [62] (0.5308,0.5652) - , - - , -
Zhang [63] (0.5313,0.5664) (0.8633,0.1133) (0.0820,0.0781)
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Figure 4.12: Center Location of Primary Vortex, Re = 1000, Problem 1

4.1.3 Algorithm Study

In this subsection the three possible solver algorithms,namely the SIMPLE, SIMPLER and

SIMPLEC algorithms, which the program is capable of using, are compared with each other.

This set of runs are performed for Re = 100 using the central differencing scheme on a uniform

mesh size of 128×128. Another important set of parameters which should be specified at this

point is the relaxation parameters which are given in Table 4.6.

For a meaningful comparison, different relaxation parameters should be employed with dif-

Table 4.6: Relaxation Parameters Used in the Algorithm Comparison Runs, Re = 100, Problem
1

u Relaxation v Relaxation p-correction Relaxation
Parameters Parameters Parameters

SIMPLE 0.8 0.8 0.5
SIMPLEC 0.9 0.9 1
SIMPLER 0.9 0.9 N/A
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ferent algorithms, since the main advantage of the SIMPLEC and SIMPLER algorithms over

SIMPLE is that these algorithms enable the use of larger relaxation parameters. The relaxation

parameters given in the Table 4.6 are the limiting values, any relaxation parameter bigger than

the one given in the table, cause divergence for that case. Thus, these parameters can be thought

as the optimum values which are appropriate for a comparison purpose. Note that pressure

correction term need not to be underrelaxed for SIMPLEC algorithm, so the p-correction term,

Equation (2.60), is always equal to 1. Whereas, in SIMPLER algorithm a relaxation parameter

for pressure correction is not needed at all, so it is not specified.

The residual for mass imbalance term versus the iteration number is given in Figure 4.13.

As expected, it is shown that the SIMPLER algorithm performs better than SIMPLE. This

is primarly because the SIMPLER algorithm does not require a good pressure guess (which

is difficult to provide). Rather, it generates the pressure field from a good guess of velocity

field (which is easier to guess) itself. However, the SIMPLER algorithm solves for two pressure

variables; the actual pressure and the pressure correction. Thus, this algorithm involves more

computational effort per iteration than SIMPLE. The iteration numbers and the corresponding

CPU times are given in the Table 4.7. It can be noticed from the table that the additional

pressure equation in the SIMPLER algorithm increases the computational effort by about 25%

per iteration. Although the computational load per iteration increases, the total computation

time decreases about 35% due to the faster convergence rate. The SIMPLEC algorithm also

performs better than SIMPLE, however it is not as efficient as SIMPLER. The total reduction

in the CPU time is approximately 10% in this case and the computational load per iteration

is almost the same as SIMPLE. It should be kept in mind that, although the trend about the

iteration numbers and the CPU times are agree with the values in literature, there can be

some differences in percentages. Since the aim of this study is to develop a single program that

involves many features, it is inevitable to make some inefficient combinations.
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Figure 4.13: Residual for Mass Imbalance Versus Iteration, Re = 100, Problem 1

Table 4.7: Iteration Numbers and the CPU Times, Re = 100, Problem 1

Convergence Iteration Numbers CPU Time (s) Time per Iteration (s)
SIMPLE 4084 197.38 0.0483
SIMPLEC 3828 180.33 0.0471
SIMPLER 2093 126.17 0.0603

4.1.4 Differencing Scheme Study

In this section, the four differencing schemes covered in the previous chapter are compared with

each other for different Reynolds numbers. In Figures 4.14 and 4.15 the ability of the schemes

to predict the flow at Re 100 are seen. Their extremas and convergence iteration numbers are

given in the Table 4.8

The central differencing and hybrid differencing give exactly the same result since for low

Reynolds number flows hybrid differencing is equal to the central differencing as mentioned in

the second chapter. Also the best prediction of the flow is obtained by these two schemes since

central differecing scheme is second order accurate. As expected, first order accurate upwind
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differencing scheme has the worst prediction. However, both the extramas and the convergence

iteration numbers of different schemes are close to each other. So it can be said that, for low

Re number flows the differencing schemes are not very crucial.

The same data that is presented for Re = 100 is now given for Re = 1000 in Figures 4.16

and 4.17 and Table 4.9 . It is clear that as the Reynolds number increases the difference be-

tween the schemes becomes more obvious. Again the central differencing scheme offers the best

approximation and the upwind differencing scheme offers the worst approximation. Among

these four alternative differencing schemes, as long as the central differencing scheme gives

converged results it should be the choice, since it is the only second order accurate scheme.

However, due to its non-transportive nature, central differencing scheme fails to converge for

high Reynolds number flows where the remaining three first order accurate differecing schemes

still provide converged results. This is the reason (obtaining accurate results at high Reynold

number flows) behind the development of high order upwind differencing schemes like QUICK

(Quadratic upwind differecing scheme), but these schemes are not covered in this study.
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Figure 4.14: u-velocity Along the Vertical Centerline, Re = 100, Problem 1
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Figure 4.15: v-velocity Along the Horizontal Centerline, Re = 100, Problem 1

Table 4.8: Extrema and Convergence Iteration Number, Re = 100, Problem 1

Differencing ymin Umin xmax Vmax xmin Vmin Convergence
Scheme Iteration Number
Central 0.4610 -0.2137 0.2344 0.1793 0.8125 -0.2535 4084
Upwind 0.4610 -0.2069 0.2344 0.1756 0.8125 -0.2460 4054
Hybrid 0.4610 -0.2137 0.2344 0.1793 0.8125 -0.2535 4084
Power-Law 0.4610 -0.2134 0.2344 0.1792 0.8125 -0.2532 4000
Botella et al. [62] 0.4581 -0.2140 0.2370 0.1796 0.8104 -0.2538 –

Table 4.9: Extrema and Convergence Iteration Number, Re = 1000, Problem 1

Differencing ymin Umin xmax Vmax xmin Vmin Convergence
Scheme Iteration

Number
Central 0.1719 -0.3824 0.1563 0.3710 0.9063 -0.5181 12020
Upwind 0.1719 -0.3099 0.1563 0.2975 0.9063 -0.4592 11452
Hybrid 0.1719 -0.3726 0.1563 0.3627 0.9063 -0.5095 11698
Power-Law 0.1719 -0.3552 0.1563 0.3449 0.9063 -0.4984 11580
Ghia et al. [56] 0.1719 -0.3829 0.1563 0.3710 0.9063 -0.5155 –
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Figure 4.16: u-velocity Along the Vertical Centerline, Re = 1000, Problem 1
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Figure 4.17: v-velocity Along the Horizontal Centerline, Re = 1000, Problem 1
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4.1.5 Time Marching Approach

In this section, the superiority of time marching approach over the classical iterative approach

will be demonstrated in terms of convergence rate. Similar to the algorithm comparison study,

the optimum relaxation parameters and time step sizes are used. Thus, any time step larger

than the ones listed in the Table 4.10 will result in divergence. It can be noticed from the table

that the algorithms need neither u-relaxation nor v-relaxation parameter, since the relaxation

parameters evolve with the solution procedure.

The results show that the time marching approach accelerate the convergence rate in all three

algorithms, as shown in Figure 4.18. However, as stated in Table 4.11, the accelaration rate

between these algorithms are different. Especially, the SIMPLE algorithm drastically improves.

Table 4.10: Relaxation Parameters and Time Step Size Used in the Time Marhcing Approach
Comparison Runs, Re = 100, Problem 1

u Relaxation v Relaxation p-correction Relaxation Time Step
Parameters Parameters Parameters Size (s)

SIMPLE N/A N/A 0.5 0.0001
SIMPLEC N/A N/A 1 0.0002
SIMPLER N/A N/A N/A 0.0002

Table 4.11: Iteration Numbers, CPU Times and Percent Acceleration in the Convergence Rate
for Both Iterative and Time Marhcing Approaches, Re = 100, Problem 1

Convergence CPU Improvement in Improvement
Iteration Time (s) Convergence Iteration in CPU
Numbers Number (%) Time (%)

SIMPLE Iterative 4084 197.38 - -
SIMPLE Time Marching 3229 153.38 22.3 20.9
SIMPLEC Iterative 3828 180.33 - -
SIMPLEC Time Marching 3501 167.56 7.1 8.5
SIMPLER Iterative 2093 126.17 - -
SIMPLER Time Marching 1885 116.83 7.4 9.9
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4.2 Problem 2. Backward-Facing Step

The separation of the flow and its subsequent reattachement to a solid surface occurs in variety

of engineering applications, like airfoils at large angles of attack, channel flows with sudden

expansion and turbine blades. However, due to the complexity of the flow physics, the numer-

ical and experimental methods are still far from being perfect for the characterization of the

flow for these complex geometries. In order to obtain a deeper undertanding of fluid flow with

separation and reattachement, the two-dimensional flow past a backward-facing step is a highly

referred test case.

Geometry and the corresponding indexing of the problem is shown in the Figure 4.19. The

Figure 4.19: Geometry of the Flow Over a Backward-Facing Step in a Channel

expansion ratio of the inlet channel height, H −h, to the outlet height, H, is 1:2. The Reynolds

number, Re = UavrgH/ν, is based on the mean inlet velocity Uavrg, the channel height H , and

the kinematic viscosity ν. At the inflow boundary condition a parabolic fully developed profile,
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given in Equation (4.1), is used.

u = 6Uavrg(H − y))(y − h)/(H − h)2

v = 0 (4.1)

There exists diversity in literature for the proper location of the outflow boundary condition.

In all of the studies, the location of the outlet is assumed to be selected far away from the

geometrical disturbances where the flow reaches a fully developed state with no further change

ocurring in the flow direction. But depending on the method and boundary condition that is

used, the “far away” differs from study to study; in some references [64] it is as short as 30h

and for some others [65] it is as long as 140h. Also, there exists a diversity in the choice of

outflow boundary condition. In some studies the outflow boundary condition is taken to be

a parabolic velocity profile [65] as it is in inlet. Although different boundary conditions are

used, the most common one is the Neumann boundary condition where the gradient of the flow

variables (except pressure) in the direction normal to the outlet surface is taken to be zero. In

this case outlet velocities are found by extrapolation, but the order of the extrapolation is also

a varying parameter between studies. In some studies [66] even fourth order extrapolation were

used where the four velocity positions upstream of the outflow boundary are involved. In this

work only first order extrapolation is used in the outlet boundary condition as recommended

by Peric [67] which lead quite satisfactory results.

In this set of numerical experiments, the backward-facing step problem is investigated for three

different Reynolds numbers which are 300, 600 and 800. Re = 300 is the upper limit of the low

Reynolds number flows which behaves like an open backward-facing step flow where the flow

seperates at the step and reattaches further downstream. For higher Reynolds number flows

(e.g. Re = 600) the adverse pressure gradient is strong enough to cause separation along the

upper boundary which reattaches further downstream. Re = 800, the most referred Re number

for this benchmark problem, is considered to be the upper limit of steady and stable laminar

flows confirmed by Barton [66], Gartling [68] and Gresho et al. [69]. All these analyses are

performed on two different mesh densities. The first one, medium mesh size, is composed of
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uniformly spaced elements of 80×300. The fine meshed domain consists of as many as 100×500

cells which are clustered in the region where vorticies appear.

All of the results stated in this section are obtained using the following solver parameters:

SIMPLE algorithm, central differencing scheme, iterative approach. No additional work has

been done to use neither the same nor the optimum relaxation parameters in the analysis. The

characteristic values of the backward-facing step flow at Re = 300, Re = 600 and Re = 800 are

listed in Tables 4.12, 4.13 and 4.14, respectively.

Table 4.12: Characteristic Values, Re = 300, Problem 2

Expansion LB LT XTL XTR

Ratio
Barton, Central [64] 2 3.570 N/A N/A N/A
Barton, Hybrid [64] 2 3.540 N/A N/A N/A
Current study, medium 2 3.517 N/A N/A N/A
Current study, fine 2 3.565 N/A N/A N/A

Table 4.13: Characteristic Values, Re = 600, Problem 2

Expansion LB LT XTL XTR

Ratio
Barton, Central [64] 2 5.360 3.715 4.360 8.075
Barton, Hybrid [64] 2 5.160 3.695 4.130 7.825
Morinava et al. [65] 2 5.370 3.782 4.330 8.112
Current Study, medium 2 5.316 3.539 4.452 7.991
Current Study, fine 2 5.370 3.669 4.477 8.146

The relaxation parameters, convergence iteration numbers and the corresponding computa-

tional load of the above runs are given in Table 4.15 for comparison.

It is seen from the above tables that both the locations and the lengths of the separation and

reattachement zones which are calculated in this study quite agree with the previous studies. It

can be seen that the reattachment length in the below boundary increases almost linearly with

Reynolds number, the slight non-linearity is due to the viscous drag along the upper boundary.
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Table 4.14: Characteristic Values, Re = 800, Problem 2

Expansion LB LT XTL XTR

Ratio
Marinova [65] 2 6.091 5.651 4.821 10.472
Gartling [68] 2 6.100 5.630 4.850 10.480
Sayma et al. [70] 2 5.605 6.230 4.200 10.430
Srinivasan et al. [71] 2 6.220 5.160 5.090 10.250
Barton [64] 2 5.495 5.500 4.275 9.775
Keskar et al. [72] 2 6.096 5.625 4.853 10.479
Gresho [69] 2 6.100 5.630 4.860 10.490
Armaly et al. [73] (E) 1.94 7.000 5.700 4.300 10.000
Lee et al. [74] (E) 2 6.000 5.500 4.800 10.300
Kim et al. [12] 2 6.000 5.750 - -
Sohn [75] 2 5.750 4.700 4.700 9.400
Current Study, medium 2 6.022 5.424 4.905 10.330
Current Study, fine 2 6.086 5.555 4.946 10.501

Table 4.15: Relaxation Parameters Used in the Analysis of Problem 2 and the Corresponding
Convergence Iteration Numbers and CPU Times.

u and v- velocity Pressure Convergence CPU
Relaxation Relaxation Iteration Time
Parameters Parameters Numbers (sec)

Current study, medium, Re = 300 0.4 0.5 13222 973
Current study, medium, Re = 600 0.4 0.5 16237 1181
Current study, medium, Re = 800 0.3 0.3 29076 2123
Current study, fine, Re = 300 0.4 0.5 20728 3461
Current study, fine, Re = 600 0.4 0.5 25996 4064
Current study, fine, Re = 800 0.3 0.3 85601 13427

u and v velocity contours and streamtraces of the current numerical studies are given in Figures

4.20 , 4.21 and 4.22 respectively. It can be noted that as Reynolds number increases both vor-

tices get larger and larger. It is also seen that for Re = 300 case, the confined flow behaves like

an open backward-facing step flow where the flow seperates at the step and reattaches further

downstream.
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Figure 4.20: u-velocity Contours of Problem 2
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Figure 4.21: v-velocity Contours of Problem 2
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Figure 4.22: Streamtraces for Problem 2
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4.3 Problem 3. Confined Flow Past a Rectangular Cylinder

The unsteady flows around bluff bodies such as circular and rectangular cylinders 1 and flat

plates are of direct relevence to many practical applications (e.g. road vehicles, heat exchangers,

chimneys, suspension bridges) and receiving a great deal of attention due to its importance as

a design parameter for both energy efficient and structurally reliable systems. Other than its

practical importance, this test case enables us to check the two capabilities (time-dependent

solution and blocked-cell method) of the solver that could not be controlled with the previous

benchmark problems.

In this set of numerical experiments the laminar two dimensional viscous flow past a square

cylinder is investigated for various Reynolds numbers. The problem definition is given in Figure

4.23.

Figure 4.23: Configuration Definition of Flow Past a Square Cylinder

The Reynolds number for this flow is defined as Re = U0b/ν. In the analyses, all the lengths are

nondimensionalised by height of the square cylinder (b) and all the velocities by velocity magni-

tude at the centerline of the channel inlet (U0), respectively. Thus, in Figure 4.23 b = U0 = 1 by

definition. Then “a” becomes the aspect ratio (AR) of the rectangle, and “H−1” becomes the

blockage ratio (BR) . The non-dimensional geometric parameters used in the following analysis

1 In this context, which is 2D, cylinder refers to section. Thus, rectangular cylinder means a 2D rectangular
section.
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are, BR = 1, AR = 1, xL = 7, xR = 18.

The surface boundary conditions used in this study are that normal and tangential veloci-

ties are zero along the channel walls. A parabolic (fully-developed) inlet velocity profile is

employed at x = 0. Finally, for the outflow the Neumann boundary condition is used where the

gradient of the flow variables (except pressure) in the direction normal to the outlet surface is

taken to be zero.

The numerical solution is accomplished on a variably spaced staggered mesh size of 300× 120,

as shown in Figure 4.24. The variable spacing is such that the mesh cells are concentrated in

the areas around the rectangle where zones of separation and vorticies are distinct.

Figure 4.24: The 300 × 120 Non-Uniform Grid, Problem 3

For all the analyses listed in this section the SIMPLE algorithm and first order upwind differ-

encing are employed. As the Reynolds number increases, the flow direction becomes more and

more important. Thus, in this set of runs the upwind differencing is used due to its tranportive-

ness property. Also pressure relaxation parameter of 0.5 and time step size of 2.5 × 10−5 are

used in the analyses. The analyses are performed for Reynolds numbers of 100, 150, 200, 250

and 300. The Strouhal numbers are calculated using

St =
fb

U0

(4.2)

where f is the shedding frequency. To determine the shedding frequency a control point, which

is 1.5a behind the center of the square, is located. Then, using the data gathered from this

point, the velocity profiles are drawn and the periodicity is figured out which leads to shedding
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frequency. In Table 4.16, the Reynolds numbers and corresponding Strouhal numbers for the

test cases are given. As given in Figure 4.25, the results are in agreement with the previous

studies of many researchers, Breuer et al. [76], Galletti et al. [77], Mukhopadhyay [78], Roy et

al. [79] and Davis et al. [80].

Table 4.16: Strouhal Numbers for Different Reynolds Numbers, Problem 3

Strouhal
Number

Current study, Re 100 0.1285
Current study, Re 150 0.1380
Current study, Re 200 0.1386
Current study, Re 250 0.1371
Current study, Re 300 0.1348
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Figure 4.25: Comparison of Strouhal Numbers With Various Reynolds numbers, Problem 3

The instantaneous streamlines in Figure 4.26 (a-h) show the detailed views of the laminar vortex

shedding near the square cylinder at Re 200, for eight successive moments of time which span
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over the whole period (i.e., Figure 4.26 (a) is repeated after Figure 4.26 (h) for the next cycle

of vortex shedding). It is quite easy to follow the Karman vortex street that is formed behind

the cylinder. The critical points of the streamline patterns, e.g. centers and saddles, described

by Perry et al. [81] are also shown in the figure. Similar to the study of Eaton [82] on circular

cylinders, it is observed in Figure 4.26 (e-h) that while a vortex is shedding from the top of the

cylinder, fluid from the below of the cylinder is drawn up into the recirculation region. The

vortex that is forming on the top of the rear face of the cylinder grows until it reaches the point

where it breaks off, as shown in Figure 4.26 (g). Then the shedding process is repeated from the

other side. Another distinguishing feature of the streamline patterns which is the instantaneous

alleyways as called by Perry are also observed. The alleyway is a path along which fluid is drawn

from above or below the cylinder into the recirculating region. These appear in Figures 4.26

(e) and 4.26 (h), for instance, where an instantaneous alleyway carries fluid from below the

cylinder around the forming vortex and up between the shedding vortex and the cylinder to

the top of the recirculation region. The results shown in Figure 4.26 conform to Sharma et al’s

[83] picture of laminar vortex shedding. Also the instantaneous u- & v-velocity, pressure and

vorticity contours are presented in Figure 4.27. As expected u and v velocities are oscillating

due to vortex shedding. It can also be noted from the vorticity contour plot that direction of

vortices on the top and bottom sides are opposite.
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Figure 4.26: Instantaneous Streamlines Near the Square Cylinder, Separated by an Interval of
One-Eight of the Time Period of Vortex Shedding (≈ 0.0045 sec), Re = 200, Problem 3
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4.4 Problem 4. Labyrinth Flow

In this sub-section the solver is tested with a more complex problem where many sharp turns

exist in the flow field. The definition of this problem, which is called as Labyrinth flow in this

study, is given in Figure 4.28. This geometry has direct relevance to many practical applications

where the extended surface area is critical, like electronic cooling and heat exchangers. For the

Figure 4.28: Definition of Problem 4

numerical solution, a uniformly spaced mesh size of 166 × 80 is employed, as shown in Figure

4.29. It is essential at this point to re-emphasize that the block-off cell method is used to form

the walls of the Labyrinth. The surface boundary conditions, used in this case are that the

normal and tangential velocities are zero along the channel wall. A uniform velocity profile is

given as the inlet boundary condition and for the outlet, the Neumann boundary condition is

specified where the gradients of velocities in the direction normal to the outlet surface is taken

to be zero.

The problem is solved with both the solver developed in this research and with FLUENT. The

parameters that are employed in both analyses with the corresponding convergence iteration

numbers and CPU times are listed in the Table 4.17. The mass source term is used as the

convergence criteria for both analyses where the mass imbalance has to be below the limit of
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Figure 4.29: 166 × 80 Mesh is Used in Problem 4

10−9 in all of the computational cells.

Table 4.17: Solver Parameters Used in Problem 4 and Corresponding Results

Algorithm Differencing Pressure Velocity Convergence CPU
Scheme Relaxation Relaxation Iteration Time

Number (sec)
Current Study SIMPLE Central 0.3 0.7 2077 85.0
FLUENT SIMPLE 2nd Upwind 0.3 0.7 2862 263.2

Due to the geometry of the problem, in many locations both high gradients and recirculation

regions are expected. The u- & v-velocity and pressure contours are given in Figure 4.30. As

expected, both u and v components of the velocity increases in the narrow passages. The ve-

locity magnitude contour and the comparison of the velocity magnitude contour with FLUENT

result are given in Figure 4.31 and 4.32 respectively. The streamtraces of the problem are given

in Figure 4.33, it can be noted that vortices appear in every turn of the flow field.
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Figure 4.33: The Streamtraces of Problem 4

It is obvious from the Figure 4.32 that the result of the current study is in agreement with

the results of FLUENT. The only deviation between the results appear close to the outlet

section and it is due to the difference between the boundary conditions that are applied. In the

FLUENT analysis, the zero gage pressure is employed as the outlet boundary condition whereas

in the current solver, Neumann boundary condition is used. It is known that the gradients of the

velocities in the direction normal to the outlet boundary have to be zero in Neumann boundary

condition means the velocity magnitude contour are forced to take a horizontal shape at the exit

plane. Although, the type of the outlet boundary condition has certain effects on the solution,

it is essential to note that, this effect is limited to the region close to the outlet boundary.
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CHAPTER 5

CONCLUSIONS

This study introduced a new Computational Fluid Dynamics software called Virtual Flow Lab

(VFL). The main motivation behind developing VFL was to have an easy to learn and use,

economical CFD software that can be used for educational purposes. Although VFL project is

still in progress, current working version of it, as presented in this thesis, shows a great potential

for fluid mechanics and CFD education. VFL’s robust flow solver is also expected to serve as a

starting point for future thermo-fluidic related researches. Main features of the current version

of VFL are listed below

- It has a graphical user interface that enables basic pre-processing, solver parameter and bound-

ary condition setting and post-processing steps of a typical CFD simulation. 1

- It can generate multi-block, structured, orthogonal or non-orthogonal grids using a number

of different algebraic and differential mesh generation techniques. 1

- It can be used to study incompressible, laminar, steady or time-dependent problems on two-

dimensional Cartesian grids.

- Its pressure based solver incorporates with the SIMPLE algorithm and its two variants, SIM-

PLER and SIMPLEC.

- Space discretization can be done using one of the central, upwind, power law or hybrid differ-

encing schemes.

1 These features are developed in another research study [52] and combined with the current one.
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- Steady and time-dependent problems can be solved using either an iterative of time-marching

approach.

- It implements the so called blocked-cell technique to extend the types of problems that can

be studied on a Cartesian grid.

- It supports stationary or sliding wall, inflow and outflow type boundary conditions.

- Its post-processing capabilities include drawing contour plots, placing streamlines and probing

the flow field. 1

Virtual Flow Lab project is a work in progress and currently improvements are being made

in the following areas

- Switching from staggered grid arrangement to colocated arrangement.

- Improving the solver to study problems on non-orthogonal grids.

- Modifying the pressure-based algorithm to have an all-speed flow solver that will enable the

solution of both incompressible and compressible flows.

Future capabilities that VFL is planned to have in the future include

- An improved data structure to cover multi-block structured grids.

- Cutting cell detection algorithm to simulate problems with curved boundaries more accurately

on Cartesian grids.

- Automatic grid refinement on structured grids with hanging nodes.

- A new solver for unstructured grids.

- A complete set of pre-prepared problem templates and help files to enhance the educational

aspect of the project.
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