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ABSTRACT

PROBABILISTIC MODELING OF FAILURE IN ROCK SLOPES

Fadlelmula F., Mohamed M.

M.Sc., Mining Engineering Department
Supervisor: Prof. Dr. Celal Karpuz
Co-Supervisor: Assoc. Prof. Dr. H. S. Diizgiin
July 2007, 134 Pages

This study presents the results of probabilistic modeling of plane and wedge
types of slope failures, based on the “Advance First Order Second Moment
(AFOSM)” reliability method. In both of those failure types, two different failure
criteria namely, Coulomb linear and Barton Bandis non-linear failure criteria are

utilized in the development of the probabilistic models.

Due to the iterative nature of the AFOSM method, analyzing spreadsheets
have been developed in order to carry out the computations. The developed
spreadsheets are called “Plane Slope Analyzer (PSA)” and “Wedge Slope Analyzer
(WSA)”.

The developed probabilistic models and their spreadsheets are verified by
investigating the affect of rock and slope parameters such as, ground water level,

slope height, cohesion, friction angle, and joint wall compressive strength (JCS) and

v



their distribution types on the reliability index (f), and probability of slope failure
(Pp).

In this study, different probability distributions are used and the inverse
transformation formulas of their non-normal variates to their equivalent normal ones

are developed as well.

In addition, the wedge failure case is also modeled by using system
reliability approach and then the results of conventional probability of failure and

the system reliability approach are compared.

Keywords: Plane Failure, Wedge Failure, Advance First Order Second Moment
(AFOSM) Method, Reliability Index, Probability of Slope Failure, System
Reliability.
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KAYA SEV YENILMELERININ OLASILIKSAL MODELLEMESI

Fadlelmula F., Mohamed M.

Y. Lisans, Maden Miihendisligi Boliimii
Danisman: Prof. Dr. Celal Karpuz
Yardimci Danigman: Dog. Dr. H. §. Diizgiin
Temmuz 2007, 134 Sayfa

Bu calisma, “Gelismis Birinci Derece Ikinci Moment (GBDIM)” giivenilirlik
yontemine dayanarak, sevlerde diizlemsel ve kama tipi yenilmelerin olasiliksal
modellemesine ~ gore  sonuglarint  sunmaktadir.  Olasiliksal ~ modelinin
gelistirilmesinde, her iki yenilme tipinde de, dogrusal Coulomb ve dogrusal olmayan

Barton-Bandis olmak {izere iki farkli yenilme yaklagimi kullanilmistir.

GBDIM metodunun tekrarlayici yapisindan 6tiirii, hesaplamalari yapabilmek
icin analiz yapan hesap cizelgeleri gelistirilmistir. Gelistirilen hesap cizelgeleri
“Plane Slope Analyzer (PSA) ve “Wedge Slope Analyzer (WSA)” olarak

adlandirilmistir.

Gelistirilen olasiliksal modeller ve onlarin hesap cizelgeleri, yeralti su
seviyesi, sev yiiksekligi, kohezyon, siirtiinme agis1 ve catlak duvar1 basma dayanim
direnci (JCS) gibi kaya ve sev degiskenlerinin etkisi, bunlarin giivenilirlik indeksi

tizerindeki dagilim tipleri ve sev yenilme olasilig1 incelenerek dogrulanmastir.
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Bu calismada, degisik olasilik dagilimlar1 kullanilmis ve bunlarin normal
olmayan degiskenlerinin esdeger normal olanlara ters doniisiim formiilleri de

gelistirilmistir.

Buna ek olarak, kama tipi yenilme yaklasimi durumu da sistem giivenilirlik
yaklasimi ile modellenmis ve sonra geleneksel sev yenilme olasilig ile

karsilagtirilmistir.
Anahtar Kelimeler: Diizlemsel Yenilme, Kama Tipi Yenilme, Gelismis Birinci

Derece Ikinci Moment (GBDIM) Yoéntemi, Giivenilirlik Indeksi, Sev Yenilme

Olasiligi, Sistem Giivenilirligi.
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CHAPTER1

INTRODUCTION

1.1. Introduction

Numerous numbers of lives and properties were lost all over the world due to
slope failures although stability analyses are carried out. Most of these analyses are
based on the deterministic methods which do not consider the effect of uncertainty
associated with certain parameters like ground water pressure, rock mass, and
discontinuities’ shear strength. Such uncertainties cause variation in failure
probability of slopes that have the same factor of safety. As a result, the use of
probabilistic analysis techniques that take into account such kind of uncertainties
became more common in recent years. Some of the most widely used probabilistic
methods are Monte Carlo simulation technique, Rosenblueth point estimate method,
and reliability index methods. Among these the “Advanced First Order Second
Moment (AFOSM)” reliability method proposed by Hasofer and Lind (1974) is an
outstanding one as it considers the uncertainty and variability of the parameters

involved as well as their correlation structure.

Many researchers have tried to generate formulas in order to calculate safety
factor of plane and wedge failure cases. As an example, Hoek and Bray (1977;

1981) have formulated equations to calculate the safety factor of such cases. They



also calculated safety factor of the wedge failure depending on a stereoplot.
However, Low (1979) obtained an alternative method for that method, which does
not require any stereographic plot. Thus, the calculation mechanism was eased. Low
assumed that the upper ground surface is horizontal. However, Low and Einstein
(1992) generalized this method to include cases with inclined upper ground surface,
which dips in the same direction as the considered slope face. Low (1997) calculated
the safety factor for a wedge slope utilizing AFOSM. In addition, utilizing Excel
spreadsheet he calculated the reliability index and probability of failure for that
slope. Low (1997) used Coulomb linear failure criterion and he assumed that all the
parameters are normally distributed. However, some researchers have stated that
although the Coulomb criterion is widely used, it is not particularly satisfactory in
considering peak strength criterion for rock material. As a result, other peak shear
strength criteria are preferred for the analysis of shear failure on rock discontinuities.

Barton Bandis shear failure criterion is an example of these criteria.

1.2. The Objectives of This Study

There are two main objectives of this study. The first one is to develop
probabilistic models of plane and wedge failure cases utilizing AFOSM reliability
method by both Coulomb linear and Barton Bandis non-linear failure criteria. The
second objective is to investigate the affect these criteria on the results of slope
stability analyses. The developed plane failure models are based on the methodology
proposed by Hoek and Bray (1981), whereas, wedge failure models are based on the
methodology proposed by Low and Einstein (1992). Moreover, the developed model
does not consider only normally distributed variables, but also it considers variables

having lognormal, uniform, and triangular (symmetric, upper, lower) distributions.

The developed probabilistic models are coded in spreadsheets to ease the

calculations involved, which are very excessive and time consuming due to the



iterative nature of AFOSM method. The developed spreadsheets are named as
“Plane Slope Analyzer (PSA)” and “Wedge Slope Analyzer (WSA)”. Each one of
these analyzers has two types corresponding to the linear and non-linear failure
criteria. The verifications of these analyzers are made by investigating the effect of
slope height, ground water level, cohesion, friction angle, and joint wall compressive

strength (JCS) on reliability index () and probability of slope failure (Pg).

After the verification of the developed spreadsheets, two analyses are carried
out. The first analysis is investigating the affect of Coulomb linear and Barton
Bandis non-linear failure criteria on probability of slope failure. The second one is a
sensitivity analysis in which, the affect of distribution function of parameters on the
reliability index and probability of failure is investigated. In order to perform such
analyses the equivalent normal moments of non-normal distributions are needed.

Thus, transformation formulas are derived.

Beside that, evaluating the safety of wedge slope is carried out by two
methods. The first one is the conventional method depending on the failure
probability of single modes. The second one is the system reliability approach

proposed by Ang and Tang (1984).

The present study is divided into seven chapters. Chapter I covers a brief
introduction of the thesis together with its aim. In Chapter II, a literature review of
previous probabilistic studies on stability of rock slopes is elucidated. Chapter III
covers the basic mechanisms of plane and wedge failures. Next, in Chapter IV brief
information about AFOSM method as well as the inverse transformation techniques
developed to evaluate the equivalent normal variates of the non-normal ones are
considered. Chapter V gives the details of the probabilistic models developed in for

cases of plane and wedge failures based on linear and non-linear failure criteria.



Moreover, this chapter covers the explanation of the system reliability approach,

which is used in the evaluation of the failure probability for wedge slopes.

In Chapter VI the developed analyzing spreadsheets are explained in details.
In other words, the fifth chapter explicates the techniques followed in the coding of
the models explained in Chapter VI using Excel software. Additionally, this chapter
considers some applications of these spreadsheets as well as the discussion of the
results. After that, in Chapter VII the major conclusions of this thesis and the main
recommendations are specified. Finally, the macro defined and illustrating figures of

the developed spreadsheets are presented in Appendices A, B, C, and D.



CHAPTER 11

LITERATURE SURVEY

2.1. Introduction

In rock engineering, slope stability analysis is a two stage procedure. In the
first stage the motion of rock blocks without reference to the forces causing it is the
main concern and called kinematic analysis. In the second stage (kinetic analysis)
the forces acting on the questioned rock block are considered. Thus, it is more
detailed, and provides engineers with more reliable outcomes than the kinematic
analysis. As a result of that many kinetic analyses have been developed. The
kinematic and kinetic analyses can be performed either deterministic or

probabilistic.

2.2 Deterministic Analyses

These types of analyses are based on the calculation of a safety factor that is
defined as the ratio of the forces resisting the slide of a rock block over the forces
causing the slide. The factor of safety calculated by the deterministic methods is not
reliable since it does not take in to consideration the uncertainty associated with the
utilized parameters. In other words, the deterministic methods use single values that

are normally the mean values of the considered parameters. However, in nature



these parameters are random variables, which contain considerable amount of

uncertainty (Duzgun, 1994).

2.3. Probabilistic Analyses

These types of analyses were first developed to overcome the limitation of
the deterministic analysis methods. In other words, these types of analyses consider
the uncertainties and randomness associated with the stability parameters.
Probabilistic analysis was first introduced to rock slope stability by McMahon
(1971). After that many researchers have utilized this type of analyses. An example
of that is the study of Gokceoglu et al. (2000). Some of the most widely used
Probabilistic methods of analysis are the Monte Carlo simulation technique, the

Rosenblueth point estimate method, and the reliability indexes method.

2.3.1. Monte Carlo Simulation Technique (MCST)

This method was first introduced during World War 1II in order to develop
the atomic bomb. The simulation involves the construction of the sample space for
the considered random variables repeating the analysis over and over using these
random variables which are driven from the distribution of the variables using a
random number generator (Feng, 1997). The technique got the name Monte Carlo
because of the “roulette” method that has been used to generate the random variables

before the computers were introduced (Giani, 1992).

The MCST generate a large quantity of random numbers varying between 0
and 1. These numbers are used to generate the variables of the examined problem in
a way that fits the assumed probability distribution curves. Such curves can also be

histograms that are drawn according to some experimental data results. This



simulation can be carried out to determine the probability density distribution of a
safety factor or a safety margin (resisting forces — driving forces). The MCST is
applied to the problems that are very difficult to solve with the analytical methods
(Giani, 1992).

The usage of MCST in stability analyses of planes and three dimensional
wedges have been described by Kim et al. (1978) and Major et al. (1978). Following
these authors many others have used the MCST in rock engineering. Some of these
authors are Priest and Brown (1983), and Morris and stoter (1983), Esterhuizen

(1990), Muralha and Trunk (1993), and Duzgun et al. (2005).

It is also one of the most used probabilistic methods in rock engineering. The
reason for that is its avoidance for the complexity of the failure functions that are
very difficult to analyze analytically. Despite its wide usage, the MCST has some
limitations and drawbacks. One of these is that MCST may not achieve solutions in
some cases, especially when complex limit state functions are used or when dealing
with problems of low probability of failure (Jimenez-Rodriguez et al., 2006). Beside
this one Duzgun (1994) has cited that Mostyn and Li (1993) stated another major
drawback of MCST. They reported that the rock properties in this method are
modeled as spatially perfectly correlated random variables in order to make the

procedure simple, which make the result doubtful.

2.3.2. Rosenblueth Point Estimate Method (RPEM)

As the previous method i.e. MCST, this method is also based on a
deterministic procedure. Giani (1992) cited that the method was first given by
Rosenblueth (1975) and later modified by the same author (1981). He also cited that
the first person who applied the point estimate method to geomechanical problems

was Harr (1981). As cited by Duzgun. (1994), Kimmance and Howe (1991)



presented an application of RPEM in slope stability analysis. She also cited that
Nguyen and Chowdhurry (1985) proved that RPEM is more computationally
efficient than MCST.

This method permits the one to use several correlated random variables given
by their two or three first statistical moments (mean, standard deviation and
skewenss). By doing so we can get results that are expressed in terms of the first
statistical moments of the examined parameters (Giani, 1992). The principles and

the complete procedures of the RPEM are discussed in details by Bolle et al. (1987).

The RPEM becomes impractical when the numbers of random variables
involved are large. Such a case is encountered in slope stability analysis as the

numbers of random variables considered are generally large (Duzgun, 1994).

2.3.3. Reliability Index Methods

This method differs from all the already mentioned methods of analysis in
that the safety of a given slope is formulated by a reliability index () rather than the
conventional safety factor. In order to find this reliability index, we should first
formulate the performance function of slope, which in general expressed as (Ang

and Tang, 1984):

g(x, % x50.00x,) = g(x,) 2.1)

Where x, are the basic variables (i.e. the random input parameters). The

importance of this function is that it represents the stability situation of a given slope

as follows:

If g(xi )< 0 “failure state” and,



If g(xi)> 0 “safe state”

However, if g(xi)=0 then the slope is said to be in the “limit state” and

13

g(xi )=0" is called the limit state equation.

The performance function for a slope is in general defined as (Duzgun, 1994):

g(x)=R(x,)-S(x,) 2.2)
Where,
R (xi ) = Strength (capacity) of the slope

S (xi ) =Load (demand) acting on the slope

Ang and Tang (1984) and Duzgun (1994) stated that there are two reliability
methods which are generally used. The first is the First Order Second Moment
(FOSM) method. In this method, if the limit state function is nonlinear then the
approximation is obtained by utilizing Taylor series expansion around the mean
values (Cornell, 1969). As Duzgun (1994) and Low (2003) reported this is one of
the main basic drawbacks of the FOSM method. That is because when the
performance function is linearized at the mean values of the basic variable,
significant errors will appear especially for the nonlinear functions at increasing
distance from the linearizing point. Another drawback of this method as they

reported is the lack of invariance for nonlinear performance function.

The second method is the Advanced First Order Second Moment (AFOSM)
method proposed by Hasofer and Lind (1974). This method overcame the drawbacks
of the traditional FOSM method and thus, it is a better alternative (USACE, 1999).
The basic principle and structure of the AFOSM method is given in details by Ang



and Tang (1984). Beside these authors Low (1996) as well has given the meaning
and the definition of the reliability index () of the AFOSM method (Figure 2.1).

A Failure surface
X,
Unsafe region
m. . !
: “’1 . 1-o dispersion
T ellipse
Loy I
_
m, X:

Figure 2.1 Illustration of the reliability index of the AFOSM method in plane
(Low 1997)

In this Figure m;, 6, my, and 6, are the mean values and standard deviations of the
parameters X; and X,. The index f may be regarded as the distance from the
boundary of the failure region, in units of directional standard deviation. Ditlevsen
(1981) has given the following formulation for Hasofer and Lind (1974) index (or
the index of AFOSM method) as follows:

By, =miny/(x— m)TC_1 (x—m)

and, xeF

(2.3)
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Where x is a vector representing the set of random variables, C is the covariance
matrix of the random variables, and F is the failure region.

One of the procedures that are widely used for the computation of f is the
one in which the failure surface is transformed into the space of reduced variates,
where the shortest distance between the transformed failure surface and the origin of
the reduced variates is the reliability index (B). In other words, the Hasofer and Lind
(1974) index can be calculated by minimizing the quadratic form (an ellipsoid)
subject to the constraint that the ellipsoid just touches the surface of the failure

region (Figure 2.1).

Many authors have used this method and stated its advantages over the
probabilistic, numerical and analytical analysis methods. For example, Duzgun et al.
applied AFOSM to wedge slope failure (1994; 1995). Moreover, Duzgun et al.
applied this method to plane slope failure (2003). In addition, Hassan and Wolff
(1999) utilized the method in the stability analysis of Connon Dam. Beside these
authors, Low applied the AFOSM method to analyze the stability of, rock wedges
(1997), anchored retaining wall (2002), and embankment on soft ground (2003).

Low (1979) developed a compact closed-form equation for the calculation of
the factor of safety for two-joint tetrahedral wedges. This equation is an alternative
for equation (2.1), but no stereographic projection is required in utilizing it. He
assumed that the upper ground surface is horizontal. However, Low and Einstein
(1992) generalized this method to include cases with inclined upper ground surface

that dips in the same direction as the considered slope face.

Low and Einstein (1992) calculated the factors of safety for different modes

of failures. These modes are:

11



1. Sliding along the line of intersection of both planes forming the block
(Biplane sliding)

2. Sliding along plane 1 only

3. Sliding along plane 2 only

4. Floating failure (due to high water pressure or high in-situ stresses)

Low (1997) proposed a new computational method that eases the utilization of the
AFOSM method. He implemented the AFOSM method using the solver tool
available in the Excel spreadsheet to analysis rock slope stability. In that analysis
Low used Coulomb failure criterion and assumed that the parameters are normally

distributed.

Giani (1992) however, cited that although the Coulomb criterion is widely used, it is
not particularly satisfactory in considering peak strength criterion for rock material.

The reasons for that were given by Brady and Brown (1985) as:

1. The Coulomb criterion implies that a major shear fracture exists at
peak strength. However, that was proven not to be the general case

(Wawersik and Fairhurst, 1970).

2. It also implies a direction of the shear failure which is not always in a

good agreement with experimental observations.

3. As the experimental peak strength envelopes are generally non-linear,

they can consider only a limited range of 6, or 3.

As aresult of these reasons other peak shear strength criteria are preferred for
the analysis of shear failure on rock discontinuities. Barton Bandis shear failure
criterion, which is given in equation 2.33, is among the most widely used non-linear

shear strength criteria.

12



Barton Bandis criterion (1990):

T=0, tan{]RC loglo(ﬁj + ¢,}
o

n

Where,
7 =Shear stress causing failure
JRC = Joint roughness coefficient
JCS = Joint compressive strength

o, = Normal stress

¢, = Residual friction angle

13
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CHAPTER 111

BASIC MECHANISMS OF PLANE AND WEDGE FAILURES

3.1. Introduction

In rock engineering many researchers have studied plane and wedge slope
failures. The plane failure occurs rarely if compared with wedge failure that is the
more common case in rock slopes. Therefore, many engineers treat the plane failure

as a special case of wedge failure.

The basic mechanisms of these types of slope failure have been studied by
many engineers and in many different ways. However, the most widely used
approaches are the ones proposed by Hoek et al. (1973). Hoek and Bray (1981) used
Coulomb linear criteria in developing these approaches. Besides they expressed the
water forces due to water pressure on the sliding surface and in tension crack as

uplift forces.

3.2. Basic Mechanisms of Plane Failure

Hoek and Bray (1981) stated the general condition of a Plane failure to take place is:

v, >, > ¢ (3.1)



Where,

¥, = Inclination of the slope face
¥, = Dip of the failure plane
¢ = Friction angle

This case can be seen clearly in Figure (3.1).

Forshding ¥ > ¥y > $

Figure 3.1 Sliding condition in an inclined plane (Hoek and Bray, 1981)

Beside that the plane on which sliding takes place must strike parallel or nearly

parallel to the slope face. In other words, this plane must strike within +20" to the

slope face.

Plane failure has the same basic mechanisms of a sliding block along an inclined

surface due to gravitational loading. Figure (3.2) shows such block, where,

W = Weight of the block

v = Inclination of the sliding surface from the horizontal

15



WSin g

W Cos Y

Figure 3.2 Forces acting on a sliding mass

In this case the force (WSiny) is tending to cause the sliding, while the force
WCosV is contributing to the total resistance to the sliding. So, the normal stress ¢

which is acting on the sliding surface is (Hoek and Bray, 1981):

o= WCos y (3.2)
A

Where,
A =Base area of the sliding block

Now, substituting the value of ¢ in Coulomb failure criterion which is:

T=c+otan¢g (3.3)

The following is found:

WCosY 1 1n g (3.4)

T=c+
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Where,
7 =Shear stress causing the slide
¢ =Friction angle

¢ = Cohesion
Then if equation (3.4) is multiplied by the base area of the block:

A =cA+WCosy tan ¢ (3.5)

Where, 7A is the shear force that resists the sliding and which is equal to the driving
force WSiny. This force is equal to the resisting force WCos\y at the limit state.

That is, at the limit state:

WSiny = cA+WCos y tan ¢ (3.6)

The geometries of the plane slopes considered in this thesis work are defined in

Figures 3.3 through 3.6.

Where,
= Slope height (m)

H

W = Weight of the sliding block (kN/m)

V= Force due to water pressure in the tension crack (kN/m)
U

= Uplift force due to pressure on the sliding surface (kN/m)
¥, = Dip of slope face
¥, = Dip of discontinuity plane
Z = Height of the tension crack from the upper surface of the slope (m)

Z,, = Height of water in tension crack (m)

17



~ Tenston crack
i upper surface of slope

Slope face

.H'

g
i,

Failure surface

Figure 3.3 Geometry of a plane slope with a tension crack in its upper surface

(Hoek and Bray, 1981)

Figure 3.4 Forces acting on a block on a failure plane of a slope with a tension

crack in its upper surface (Hoek and Bray, 1981)
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Tension crack in slope face

Slope face

Failure Surface

Figure 3.5 Geometry of a plane slope with a tension crack in its face

(Hoek and Bray, 1981)

g -

Figure 3.6 Forces acting on a block on a failure plane of a slope with a tension

crack in its surface (Hoek and Bray, 1981)
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In these slopes the affect of water pressure in the block is also taken into

consideration. Observably, two cases are considered, namely:

1. A slope having a tension crack in its upper surface.

2. A slope with a tension crack in its face.

Hoek and Bray (1981) formulated the two cases as:

A=(H-2Z) Cosecy, (3.7)

U= % Vi - Zyy (H = Z)Cosecy, (3.8)
1 >

V:Eyw .72 (3.9)

The area and the water forces’ equations are the same for both cases.
However, the weight of the sliding block is calculated by different equation each
cases. That is due to the position change of the tension crack. So, when the tension
crack is situated in the upper surface of the slope, the weight is calculated by the

following equation:

Wzéjﬂ{(l—(%)z)-Cotyfp—Cotlﬂf} (3.10)

However, when the tension crack is situated in the slope face, the weight is:

1

W:E;H{(l—%j -Coty/p-(Coty/p-Tany/f—l)} G3.11)

Where,
A = Base area of the sliding block (mz/m)

20



= Slope height (m)

H

W = Weight of the sliding block (ton/m)

V= Force due to water pressure in the tension crack (ton/m)
U

= Uplift force due to pressure on the sliding surface (ton/m)
¥, = Dip of slope face (radian)
¥, = Dip of discontinuity plane (radian)

Z = Height of the tension crack from the upper surface of the slope (m)

N
=
Il

Height of water in tension crack (m)
7 = Unit weight of water (ton/m”)

¥ = Unit weight of rock (ton/m”)

Finally, and by considering the equations (3.6 - 3.11) Hoek and Bray (1981) gave

the factor of safety of a plane slope for the two cases mentioned earlier in this

chapter as:

cA+W - Cosy, -U -V -Siny, ) tan g

F - (3.12)
W-Siny ,+V-Cosy,

3.3. Basic Mechanisms of Wedge Failure

When two discontinuities strike obliquely across the slope face and their line of
intersection daylights in the slope face, the wedge of rock resting on these
discontinuities will slide down the line of intersection, provided that the inclination
of this line is significantly greater than the angle of friction. In other words, and as

Hoek and Bray (1981) stated the general condition of a wedge failure to take place

1s:

21



v, >y, >¢ (3.13)

Where,
= Inclination of the slope face, measured in the view at right angle to

the line of intersection of the discontinuities

Dip of the line of intersection

S
[

Friction angle

S
Il

This case can be seen clearly in Figure (3.7).

For shding W >, > ¢

Figure 3.7 Sliding condition for wedge slope

Noting thaty/, would be the same asy/,, the true dip of the slope face, only if the

dip direction of the line of intersection was the same as the dip direction of the slope

face.
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For the wedge shown in Figure (3.8) Hoek and Bray (1981) stated that, if the sliding

is resisted by friction only and if the friction angle (¢ ) is the same for both planes

then the factor of safety for that wedge is given by:

F, = (R, +RB‘)-Tan¢ 3.14)
W - Siny,

Where, Wis the weight of the wedge block, while R, and R, are as illustrated in

Figure (3.9) the normal reactions provided by planes A and B, respectively.

Plane B

View along line of
intersection

‘S1ODR face

Pictorial view of wedgefailure

Figure 3.8 Wedge failure geometry (Hoek and Bray, 1981)
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Plane A

A

W Cos yr

View along line of mtersection

View at right angles to line of intersection

Figure 3.9 Forces acting on the wedge slope (Hoek and Bray, 1981)

The value of R, +R, is found by resolving the forces into their horizontal and

vertical components then adding:

_ W-Cosy, - Sin0

R, +R, Sin1E

(3.15)

By substituting the value of R, + R, from equation (3.15) into equation (3.14) then:

Sin@-Tang

=——— "7 3.16
S Sinlé Tany, ©.16)
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Hoek et al. (1973) accomplished a detailed analysis for the wedge slope failure
shown in Figure 3.10. First of all, they assumed that the sliding of that wedge always

occurs along the line of intersection (line 5 in Figure 3.10).

a. Pactorial view of the wedge

F————— H
Assumed water pressure h

distribution

h. Wiew normal to the line of iniersection 5

Figure 3.10 Geometry of wedge used for stability analysis by Hoek et al. (1973)
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Then, they derived the safety factor of that slope depending on a steroplot of the data

that defines the geometry of the wedge as well as the slope.

Low (1979) developed a compact closed-form equation for the calculation of
the factor of safety for two-joint tetrahedral wedges. This equation is an alternative
for the one developed by Hoek et al. (1973), but no stereographic projection is
required in utilizing it. Low (1979) assumed that the upper ground surface is
horizontal. However, Low and Einstein (1992) generalized this method to include
cases with inclined upper ground surface that dips in the same direction as the

considered slope face.

Low and Einstein (1992) calculated the factors of safety for all the possible
modes of failures namely, Biplane failure, failure along plane 1 only, failure along
plane 2 only, and Floating failure. These modes of failure also considered separately

in the following subsections.

3.3.1. Biplane sliding

For this mode of failure the factor of safety is:

Fs= _hG., Xt + _0Guy Xt +3b, L+ 3b, 2
§=14a < an ¢, a, Sy an ¢, 1 i 2 h (3.17)

y

This equation is valid only when there is contact on both planes that is:

[al—%J>0 (3.18)
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And

b,G
(az —%}0 (3.19)

Where a,,a,,b,,b, are parameters that depend on the geometry of the slope which is

defined with the angles (9,,90,, B,, 3,.«,Q and ¢ ) as shown in Figure (3.11).

G,, and G,, =Normalized water pressure parameters (dimensionless)
¢, and ¢, =Cohesive strengths of planes 1 and 2 (kPa)

¢,and ¢, = Angles of friction on Planes A and B (radians)

S, = . Specific density of rock (dimensionless)
Vi

y = Unit weight of rock (kN/m’)
¥w = Unit weight of water (kN/m”)

h = Height of the wedge (m)

BDC i1z a horizontal triangle

Hate:
8 = dip, if dip symhol is inside triangls EDC.
a =120 — dip), if dip symbol is cutside triangle BDC.

Figure 3.11 Slope geometry in wedge failure (Low and Einstein, 1992)
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The parameters of Low’s formulas (1997) are calculated by equations (3.20 through
2.29).

3 [Sind, - Cots, — Cosd, - Cos(B, + S3,)] (3.20)
b Siny - Sin(, + 5,) '
0, = [Sing, ~C0f§2 —C.osé'1 -Cos(B,+ 3,)] (321)
Siny - Sin(B, + B,)
b, =a, - Sinf, - Sind, (3.22)
b, =a, - Sinf, - Sind, (3.23)

In equations (3.20) and (3.21), Siny is defined as in equation (3.24).

2
Siny = \/1 —[ Sin51 -Sin52 -Cos(ﬁ1 + ,32 )+ Cosé'1 -Cosé'z} (3.24)

Siny
a, = (3.25)
’ [Sin(B, + B,)- Sind, - Sind, | - (Cote — Cotaxr)
tan e = Sinlf, + 5,) (3.26)
Sinf, - Cotd, + Sinf3, - Coto,

G, =G, =05k (3.27)
Kzﬂz(l_tanﬁj/(l_tanﬁj (3.28)

h tan tan £
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Where Q is inclination of the upper ground surface, and @ is inclination of the
slope face. Note the difference between H and h from Figure (3.11). From Figure

(3.11) h is obtained if only the length of DC is known:

DC
"= (Cote — Cotax)-(Cot3, + Cotp,) (3.29)

Here the dimensionless parameters G,, and G, , are based on pyramidal water

wl
pressure conditions. Another alternative is that assigning the average water pressures
u, and u, that act on planes B’DO and B’CO, respectively. In this case the values of
G, and G, , in equation (3.17) should be substituted with the values of the

corresponding average water pressures, that is:

G, = (3.30)
Y, h

G, =4 (3.31)
Y, h

For the case represented by equation (3.27), the corresponding value of average

water pressures u, and u, is:

h-
u =u, =L K (3.32)
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3.3.2. Sliding along plane 1 only

When sliding along plane 1 only occurs, the normal force on plane 2 is an
uplift force, which can be resolved into two components. One of these components
is perpendicular to plane 1 and the other is tangential to it. The former is
superimposed on the net normal force on planel. However, the latter is added
vectorially to the driving force along the line of intersection of the two joint planes,
and thus, deviating the resultant driving force from the line of intersection. As a
result of these changes, the factor of safety is obtained by the dimensionless

equation (3.33).

g =20 || 026 g an g 436, S
S, S, "
F, = (3.33)

2
‘/14_{(%_%).51'”;/,}
Sy

Z = Cos6, - Cosd, + Sind, - Sind, - Cos(B, + f5,) (3.34)

In equation (3.33),

This situation, that is, the sliding along plane 1 only is valid when:

(az - bf“ J <0 (3.35)

al_blel _ bszz_a2 AR (3.36)
S, S,

And

30



3.3.3. Sliding along plane 2 only

In this case, the change in the equation of the factor of safety is following the
same scenario as the one in the sliding along plane 1 only. The factor of safety for

this case is obtained by:

|:[a2 _ bszz J _ {blel _ alJ . Z:| - tan ¢2 + 3b2 072
3 s, " (3.37)
F, = |

2
1+ HblGWl —alJ -Siny
Sy

This case is valid only when:

(al —%} <0 (3.38)

/4

az_bszz _ blel_al AR (3.39)
S, S,

And

3.3.4. Floating failure

In this case, the contact is lost on both planes, in other words, the wedge
floats as a result of the water pressures that are acting on both planes. Thus, the

factor of safety falls to zero in this case, and it is valid when:
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g =G |_| 26 ) 7l g (3.40)
S7 S7

q, -G |_[0Gu_ | 71 g (3.41)
S7 S7

And
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CHAPTER 1V

ADVANCED FOSM APPROACH

4.1. Introduction

In engineering the reliability of a problem is normally originated as a
comparison of the demand and supply in order to meet certain demand requirements.
In rock engineering the demand refers to the applied load while the supply refers to
the strength of the rock (Duzgun et al., 2003). In order to calculate safe state or
failure probabilities of a rock slope, a good knowledge about the distributions of the
strength and the load applied are required. Yet, if the distributions are known, an
accurate estimation of the probabilities is impractical as a result of the numerical

integrations involved.

Normally, the data obtained are only enough to calculate the first and second
moments of the random variables under consideration. That is, the information is
sufficient only to calculate the means and standard deviations of those random
variables. Thus, the reliability evaluation of a problem is restricted to the utilizations
of these two moments. As a result of that, implementation of the reliability concepts
is limited to the method proposed by Cornell in 1969, namely, the First Order
Second Moment method (Ang and Tang, 1984). However, due to the drawbacks of



this method, as mentioned earlier in Chapter II, the need for a better alternative came

up.

The Advanced First Order Second Moment method (AFOSM), proposed by
Hasofer and Lind (1974), overcame the drawbacks of the traditional FOSM method
and therefore, it is a better alternative (USACE, 1999). As a result of that, the
AFOSM became the most widely used method for the reliability evaluation. At this
point, it is essential to call attention to that the AFOSM approach is consistent with
the equivalent normal representation of non-normal distributions as well as the
normal ones (Ang and Tang, 1984). In other words, if sufficient information is
available about the distribution types of the random variables under consideration,
then it is possible to calculate the probability of the system on based on the

equivalent normal distributions.

4.2. The Performance Function

The reliability of a system in engineering is defined as the probability of that
system in performing its intended task or assignment. So, the level of performance
of a system will clearly depend on its properties. Thus, the performance function

should be generalized in order to fit all possible engineering systems.

Such a general performance function is defined as:

glx,xy,x5,..0,x,) = g(x,) (4.1)

Where, x, = (xl,xz,xS,...,xn) is a vector of the basic variables of a system, in other
words, x; are the properties of that system. While, g(xl.)is the performance function

of that system.
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Then, g(x, ) =0is called the limit-state of the system and therefore,

If gl(x, )< 0 is the “failure state” and,

If g(xl. )> 0 is the “safe state”

In rock engineering, the performance function of a slope is generally defined

as (Duzgun, 1994):

g(x)=R(x,)-S(x,) 4.2)
Where,
R(x,) = Strength (capacity) of the slope

L

S(x,)=Load (demand) acting on the slope

1

4.3. Linear Performance Function
A linear performance function may be represented as:

g(x,)=aq, +2a; X 4.3)

Where a, and a, s are constants and x; are the basic variables. Therefore, the

corresponding limit-state is:

a,+2a; x;=0 4.4)
Then if equation (4.4) is expressed in terms of reduced variates, it yields:

a, + Zai (Gxi : x; + U, ) =0 4.5)

Where,
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x, : Reduced (standardized) variables

o, and y . : Standard deviations and mean values of the basic variables x;,

1

respectively.

Equation (4.5) in three dimensions for example is written as:

a, +a, (O-xl 'xi +/’lx1)+a2i(6x2 'x;cz +:ux2)+a3(6x3 x% +;ux3):0 (4.6)

Which is a plane surface in x,,x,,x, space as shown in Figure (4.1).

X

Flane Limit State Surface

)

Figure 4.1 Limit state surface in x,, x,, x; - space (Ang and Tang, 1984)
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If the random variables are uncorrelated and normally distributed variates,

then failure point can be expressed in term of the direction cosines(e,) and

reliability index (3) as follows:

x;k = Gxi ’ x;k +lllxi = /’lxi _a'/i ’ ﬁ O-Xi (47)
Where,

o =—— (4.8)

ag+2a; - fL,
B = d 4.9)
Z(ai : O-xi )2
Then the probability of the safe state is obtained by:
P, =®(p) (4.10)
Thus, the probability of failure is:
P, =1-®(B) (4.11)

If the probability distributions of the random variables x,,x,,...,x, are not
normal, it is still possible to calculate P and P,.. That is done by utilizing the

equivalent normal distributions of the non-normal variates. They are obtained in a

way that their cumulative probabilities as well as their probability density ordinates
are equal to the corresponding non-normal distributions at appropriate point x; on

the failure surface (Ang and Tang, 1984). So, at that point:
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d{ﬂj =F,(x) (4.12)

Where,

4, o = The mean value and the standard deviation, respectively, of the

equivalent normal distribution for x;

F, (x,* ) = The original cumulative density function (CDF) of x; evaluated

at x;

®( ) = The CDF of the standard normal distribution

By rearranging the terms in equation (4.12), the following is obtained:

p=x —ot - @|F, (x) (4.13)

Now, equating the corresponding probability density functions at point x; yields:

1 _q{xi —Nﬂxij:fﬁ(x;) “.14)
(o2

xi

xi

Where, ¢( ) is the probability density function (PDF) of the standard normal

variable.

From equations (4.13 — 4.14) it is obtained that:

N o_ ofe'[F, ()l (4.15)

i S (xz*)

o
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Then the failure point of x; is (Ang and Tang, 1984):

N

xi

~a,-p-ol (4.16)

Xt

£ N s N _
Xp =0, X, vl =l

Following that, the reliability index is found as:

4.17)

So, by substituting the result of equation (4.17) for # in equations (4.10) and (4.11)

the probability of the safe state and the failure state are obtained, respectively.

Obviously, if an actual distribution is replaced with an equivalent normal
distribution, then the actual mean and standard deviation should also be replaced

with their equivalent normal distributions (Ang and Tang, 1984).

4.4. Nonlinear Performance Function

For the nonlinear performance function g(x,), the evaluation of the exact

probability of safety or failure is normally possible. However, for practical proposes,
it is necessary to approximation the exact probability. Beside that, the nonlinear case
is unlike the linear case since there is no unique distance from the failure surface to

the origin of the reduced variates.

Clearly, Figure (4.2) illustrate that the point (xll *,x'z*) on the failure surface

with the minimum distance to the origin of the reduced variates is the most probable
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failure point (Shinozuka, 1983). The tangent plane to the failure surface at (x, *,x,")

may then be used to approximate the actual failure surface. Then the required
reliability index, the probability of safety, and the probability of failure may be
evaluated as in the linear case mentioned earlier in this chapter. Of course this
approximation will be on the safe side or unsafe side, respectively, depending on
whether the exact nonlinear failure surface is convex or concave toward the origin.

That is seen clearly from Figure (4.2).

L5

Tangent Plane

T Failure Region
\_‘\\
T

Convex

giZi=0

£ .
Safe Region \

Concave
g2z =0

Figure 4.2 Tangent Plane to g(x) =0 at x’* (Ang and Tang, 1984)

In general, the pertinent tangent plane at x, * = (xl XX, *j is (Ang and Tang,

1984):
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3 (xl—xl*j(a—gj =0 (4.18)
i=1 ox; .

Where, the partial derivatives (a—g are evaluated at the point| x, ", x, ,...,x, |.
X.

1

Based on the approximation discussed, the minimum distance from the
tangent plane calculated by equation (4.18) to the origin of the reduced variates is
the appropriate reliability index. This index is used to represent the reliability of the

considered situation.

In the case of nonlinear performance function, the determination of the
required reliability index is not as simple as in the linear case. However, the linear
approximation is used in this case in order to ease the calculation. It is very
important at this stage to emphasize that the outcome of such approximation is yet

yielding reliable results.

So, the solution of the limit-state equation (4.19) below yields the reliability

index:
gler xl,xi . xt)=0 (4.19)
Then, the most probable failure point in this case is given by equation (4.16).
Thereafter, if the variables are uncorrelated with non-normal distributions, the
reliability index is given by equation (4.17). Yet again, by substituting the result of
equation (4.17) for § in equations (4.10) and (4.11) the probability of the safe state

and the failure state are obtained, respectively.

Ang and Tang (1984) summarized the procedure of the iterative algorithm

that is used to calculate the reliability index as follows:
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Define the appropriate limit-state function.

Make an initial guess for the reliability index

Start with x; = g, foralli =1.2,...,n.

Sl

Calculate the equivalent normal mean and the standard deviation for the
non-normally distributed variables.

5. Find reduced variates as:

x| = (4.20)

X .

l

6. Calculate (;—gj at point x, .
7. Evaluate the direction cosines:

o =——lt (4.21)

8. Calculate the new values of x; by equation (4.7).
9. Substitute the value of x; found in step 8 into g(xl' *,xé*,...,x;*j =0

and solve for /5.
10. Using the value of § obtained in step 9, resolve equation (4.7).

11. Keep repeating steps 5 through 10 until convergence is reached.
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4.5. Non-normal Distributions

When the basic variables have non-normal distributions, their moments have
to be transformed into equivalent normal distributions. In this thesis the equivalent
normal moments of the uniform, symmetric triangular, upper triangular, lower
triangular, and the lognormal distributions are evaluated and coded in spreadsheets.
The mean and the coefficient of variation of a variable x having these distributions
are given in Table (4.1) (Ang and Tang, 1984). These distributions and the detailed
calculation of the equivalent normal for each of them are explained in the

subsections 4.5.1 through 4.5.5.

Table 4.1 The Means and c.0.v.’s of various distributions (Ang and Tang, 1984)

P.DF. Mean Value, X COV. &§x or AX

‘J‘i xu' + x!

172 (x1+xy) L (X

'\[_ xu +x1

[ ! 12 (xp+xy) _.,_!.“_(_’Eglﬁ{_)
L3%
'
i
3
i
I3
Xy

LS

/} 1/3(x1+2xu) 1 _x,.,....:mi)

*1 Eu ﬁ(2xu+x,
173 (2x] + xy) AKX
Xy Xy u \/;( -
2 x, +2x,
N(W
- \ H2 (% +xy) i(r_\’u_“_’i{“)
X, ks 1 kg 4N k X, X
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4.5.1. Uniform Distribution

Ang and Tang (1984) stated that:

(4.22)

c.o0.V =

= |Q

Where,
c.o.v = Coefficient of variation
o = Standard deviation

M = Mean value

So, from equation (4.22) and Table (4.1), the standard deviation of the

uniform distribution is given by:

b—a

23

(4.23)

The probability density function (PDF) and cumulative distribution function
(CDF) for a continuous uniform distribution on the interval [a,b] are (Weisstein,

2004):

0 for x<a
PDF = f(x)= p ! for a<x<b (4.24)
—a
0 for x2=b
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Where a and b are the minimum and maximum values of the variable under

consideration, respectively.

CDF =F(x)={ b-a (4.25)

ol = 1 (4.26)
=
N _ % N al xX—a
H:=x —0_ P [b—} for a<x<b (4.27)
—a

4.5.2. Symmetric Triangular Distribution

From equation (4.22) and Table (4.1), the standard deviation of the

symmetric triangular distribution is given by:

(4.28)
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Then PDF and CDF for this distribution on the interval [a,b] are (Weisstein,

2005):

0 for x<a
4(x—a2) for a<x<u
(b-a)
PDF = f(x)= (4.29)
?ib_—ax)z for u<x<b
0 for x>b
0 for x<a
2(x—az for as<x<u
CDF = F(x)= (b—a) i (4.30)
1- 2(5’__:))2 for wu<x<b
0 for x>b
Equations (4.31) and (4.32) are derived based on equations (4.26) and (4.27):
1 1. | 2(x—a) ’
— —— D
\/ZZ- exp [ 2{ |:(b_a)2 :|} ]
5 for as<xZu
4x—a)/(b—a)
oV = (4.31)
1 1. . 2b-x) ’
i 1=
\/ZZ- exp[ 2{ |: (b—a)2 j|} ]
for pu<x<b

4b—x)/(b—a)®
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2
x%—ay‘q)l{z(x_a) } for as<x<u

(b-a) (4.32)

ILle = 2( )2
xﬁ*—O'A{‘CI)l{l—(bx;a)z} for u<x<b
—a

4.5.3. Upper Triangular Distribution

From equation (4.22) and Table (4.1), the standard deviation of this

distribution is given by:

b—a
o= (4.33)
32
Then PDF and CDF for this distribution on the interval [a,b] are (Weisstein,
2005):
0 for x<a
2(x—a)
PDF = f(x)= 2 for a<x<b (4.34)
(b-a)
0 for x>b
0 for x<a

CDF =F(x)=1 (b—a)’ (4.35)
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Based on these functions equations (4.36) and (4.37) are derived:
N

1 1.5 (x—a)2 i
=
T dedld

for a<x<b (4.36)

2
u = x-ob -@‘1{()6_61) } for a<x<b 4.37)

4.5.4. Lower Triangular Distribution

The standard deviation of this distribution is given by equation (4.33). Then
PDF and CDF for this distribution on the interval [a,b] are (Weisstein, 2005):

0 for x<a
PDF = f(x)= (2[)(”_ _a;) for as<x<b (4.38)
0 for x>b
1 for x<a
CDF = F(x)= 1= g::z; for asxs<b (4.39)
0 for  x>b
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Equations (4.40) and (4.41) are derived based on (4.35) and (4.36):

1 1. (= ’
_E exp —Z{CID {1— (b—a)z}}

o <x<b 4.40
T ores o
N # N -l (b_x)z
qui = .X'i _O-xi -d 1_W fOl" anSb (441)
—d

4.5.5. Lognormal Distribution

Rosenblatt transformation is used to calculate the equivalent normal

distributions of variables that have lognormal distribution (Ang and Tang, 1984).

2
£ = ln(l+%j (4.42)
1., o’
A= Inp=_ &= Inp—tn 1+ (4.23)
U

Where, A and £ are, respectively, the mean and the standard deviation

of (Inx), and are the parameters of the distribution.

1
2 |2
oV = x;‘-{ln(l+a—2ﬂ (4.44)
Y7,
= oV= x ¢ (4.45)
)= x -(I-Inx"+4) (4.46)
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CHAPTER V

DEVELOPED PROBABILISTIC MODELS

5.1. Introduction

In this chapter the probabilistic models developed in order to analyze cases
of plane and wedge failure are given in details. Each slope has two models
corresponding to the linear and non-linear failure criteria. These criteria are

Coulomb criterion and Barton Bandis criterion, respectively.

5.2. Plane Failure

In the development probabilistic models of plane failure case are based on
the methodology proposed by Hoek and Bray (1981). This methodology is given in
Chapter III (equations 3.6 through 3.12).

5.2.1. Coulomb Failure Criterion

Based on equations (3.6) through (3.12) the performance function of this

model is:



glx)=cA+W-Cosy, ~U~V - Siny, ) tang—W - Siny, ~V -Cosy, ~ (5.1)

Where,
W = Weight of the sliding block (ton/m)
V= Force due to water pressure in the tension crack (ton/m)
U = Uplift force due to pressure on the sliding surface (ton/m)

¥, = Dip of slope face (radians)
¥, = Dip of discontinuity plane (radians)

A = Base area of the sliding block (mz/m)
¢ = Cohesion (ton/mz)

¢ =Friction angle (radians)
This is identical to (Duzgun, 1994):

g(x)=R, - D, (5.2)

Where,

R, =The total resisting force

D, =The total driving force which tends to cause the slide

Then the limit-state equation becomes:
cA+ (W~ Cosy, —U -V - Siny, ) tang—W - Siny, -V - Cosy, =0 (5.3)
This equation can be written as:

cA+(W-Coswp —U—V-Sinwp)-tan;/j i
W-Siny,+V-Cosy, -

5.4
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In this limit state equation the basic variables are ¥/, ¥/, ¢,tan¢ and Z, which

p’

will change U andV . While the constant are H ,¥, and Z .

When analyzing a specific slope ¥/, and ¥, can be taken as constant parameters.

5.2.2. Barton Bandis Failure Criterion

Based on equation (2.4) the performance function of this model is:
g(x)=0 tan{JRC log( JES j+¢ } (5.5)

Then the limit-state equation becomes:

tan{]RC log( JE5 ] +0, } (5.6)

l‘l

This can be written as:

tan{JRC log(JC )+¢ :I

=1 (5.7)
T
In which,
o, =W-Cosy,-U-V-Siny,)/A (5.8)
=W -Siny, +V - Cosy)/A (5.9)
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Where,

o, = Normal stress (ton/mz)

JRC = Joint roughness coefficient (dimensionless)
JCS = Joint compressive strength (ton/m?)

¢, = Residual friction angle (radians)

While A, V, U, W, l//p,and Y, are as defined in connection with equation (5.1).
The basic variables in this case are JRC, JCS, Z,,y,, ¥, andg,. Whereas, the

constant are H ,¥, and Z .

5.3. Wedge Failure

The technique of wedge failure analysis proposed by Low (1997) in
equations (3.17) through (2.41) is used in the probabilistic stability analysis of the
wedge slope in this thesis work. For wedge slopes every mode of failure is having its
own performance function and therefore it has its own reliability index and
probability of failure. First these reliability indices and failure probabilities are
calculated. Then, the total failure probability of the slope is obtained by utilizing the
system reliability approach proposed by Ang and Tang (1984).

5.3.1. Coulomb Failure Criterion

5.3.1.1. Biplane Sliding

Based on equation (3.17) the following formula is developed:
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yhla,S, -bG,, ) tang, +yhla,S —b,G, ,)-tang, +3S (b,c, +b,c,)
S,-y-h

Fs= (5.10)

Where a,,a,,b,,b, are parameters that depend on the geometry of the slope which is

defined with the angles (9,,9,, B, 3,.@,Q and¢) as shown in Figure (3.11).

G,, and G,, =Normalized water pressure parameters (dimensionless)
¢, and ¢, =Cohesive strengths of planes 1 and 2 (kPa)
¢,and ¢, = Angles of friction on Planes A and B (radians)

/4

§ , = —— = Specific density of rock (dimensionless)
Vv

y = Unit weight of rock (kN/m”’)
7w = Unit weight of water (kN/m”)

h = Height of the wedge (m)

This equation is identical to (Hoek and Bray, 1981):

C -t
T
In which,
O, = yh(alSy —blGM) (5.12)
o, =vhla,S, -b,G,,) (5.13)
C =38, (bc, +byc,) (5.14)
=S -y-h (5.15)
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The limit-state equation of this case is:

yh(alSy -bG,, ) tang, + yh(azSy —bszz)- tang, +3Sy (blc1 +b2c2)

S,-y-h

(5.16)

The basic variables of the limit-states for all the failure modes of a wedge

slope, which is being analyzed by the same failure criterion, are the same. That is

also valid for the constants of these limit-states.

The basic variables are f,, f,, 9,, 0,, tang,,tang,, G,,, G,, ¢,, and c,. While,

the constants are, Q, h, ¥, and Sy.

5.3.1.2. Sliding Along Plane 1 Only

Based on equation (3.33) the following formula is developed:

bG b,G
}/-h-Kal - IS WlJ—[ 2S 2 —azJ-Z}-‘[an(,/)1 +3b,c,
v v

2
7h\/l+{[b2G”2—a2JSmw
S?’

So, limit-state equation of this case is:

bG b,G
y-h||la -1 |-| 2% —a, |- Z |-tang, +3b,c,
Sy Sy
b,G ’
7-h-\/1+{[2‘”2—a2}5im/l}
Sy

Fo=

=1
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That is once more identical to equation (5.11), in which,

C =3b,c,

2
T=y-h- 1+H192S&—a2j-&'nl/f}
/4

Where, all the symbols are as defined in connection with equation (5.10).

5.3.1.3. Sliding Along Plane 2 Only

Based on equation (3.37) the following formula is developed:

b,G bG
7-h-{[a2— 2S ”QJ—[ IS o —aJ~Z}-tan¢2+3bzc2
14 /4

2
S?’

Then, the limit-state equation becomes:

b,G b,G
7-%{[% —ZS“J—[ISWI—aI}Z}-tan@ +3b,c,
14 14

2
bG
v-h- 1+HISW1—GIJ~Sim//
v

F,=

=1
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(5.20)

(5.21)

(5.22)
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That is again identical to equation (5.11), where,

o =y -h||a,-2Gu | [ 0G| 7 (5.24)
S7 S7

C =3b,c, (5.25)

2
T=y-h- 1+Kblfw1 —alJ-Sinl//} (5.26)
/4

Where, all the symbols are as defined in connection with equation (5.10).

5.3.1.4. Floating Failure

The factor of safety falls to zero in this case as the contact is lost on both
planes. That is, the wedge floats due to the water pressures that are acting on both

planes.
So, limit-state equation of this case is:

vhlaS,-bG

wl

)-tang + yhaS, ~b,G,,) tang, +35, (b, +h.)
S, y-h

=0 (5.27)

Where, all the symbols are as defined in connection with equation (5.10).

5.3.2. Barton Bandis Failure Criterion

The basic variables of the limit-states for all the failure modes of a wedge
slope, which is being analyzed by this failure criterion, are the same. That is also

valid for the constants of these limit-states. The basic variables in case are JRC ,
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JCS, B, B,. 6,, 6,, ¢, 9,, G, , andG,,,. While, the constants areax, Q, h, ¥,

and Sy.

5.3.2.1. Biplane Sliding

Based on equation (3.17) the following formula is developed:

o, tan{JRC- log(JCSJ +¢, } +0, taanJRC- log(JCSJ +0, :I

nl n2

F, = S v (5.28)

This is identical to equation (2.4), in which:
o, = yhla,s, -bG,,) (5.29)
c,, = yhla,S, -b,G,,) (5.30)

Where,

0, ando,, are the normal stresses on plane 1 and 2, respectively, and all the

other symbols are as defined in connection with equation (5.7).

Then, the limit-state equation is written as:

nl n2

o, tan{JRC log(JCSJ +o, } +0, tan|:JRC- log(JCS] +@, :I
o o
=1 (5.31)

S -y-h

y

All the symbols in equation (5.31) are as defined in connection with equation (5.7).
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5.3.2.2. Sliding Along Plane 1 Only

Based on equation (3.33) the following formula is developed:

o, " tan{JRC : log[JCSJ + (z)l}

nl

F, = (5.32)
T
In which,
o, =yhl|a - DG |_| £26s —-a, |- Z (5.33)
S}’ S}’
b,G ’
T=y-h- 1+|:( 2S wa —azj'Sinl//} (5.34)
/4

So, limit-state equation of this case becomes:

yh al—blGWl - bszz—a2 -Z |-tan| JRC-log JeS +0
S, S, o,
2
y-h- 1+Kb2GM—a2J-Sinl//}
S7

All the symbols in equation (5.35) are as defined in connection with equation (5.7).

=1 (5.35)

5.3.2.3. Sliding Along Plane 2 Only

Based on equation (3.37) the author developed the following formulation:
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o, tan{JRC : log(JCSJ + ¢2}
(o}

n2

F, = (5.36)

T

In which,
c,,=yhl|a, - b,Gys |_| B —a, |- Z (5.37)
S7 S7
2
T=y-h- 1+H%—al]-&'nl/l} (5.38)
Y

Then the limit-state equation is:

b,G b,G
yh||a, =22 || = —a, |- Z |- tan| JRC-log JeS +0,
S, S, o,,
b 2
G
y-he [1+|| 2 —aq, | Siny
S7

All the symbols in equation (5.39) are as defined in connection with equation (5.7).

=1 (5.39)

5.3.2.4. Floating Failure

The factor of safety falls to zero in Floating failure case as the contact is lost

on both planes due to the water pressures that are acting on these planes.

So, limit-state equation of this case is:
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o, tanl:JRC- log( JCSJ + ¢1:| +0, tanl:JRC- log[JCS] + ¢2:|
o

nl n2

=0 5.40
S 3 (5.40)

y

Where o, and 0,, are defined as in connection to equation (5.28), while, all the

other symbols are as defined in connection with equation (5.7).

5.4. System Reliability

The failure probability of the wedge slope depends on the reliability indices
of the four possible failure modes mentioned above. So, in order to find the
probability of such a wedge, it should be treated as a system composed of these four
components. The occurrence of one or more of these components or failures
constitutes the failure of the whole system. In other words, the reliability of this
system requires that none of the components fail. Thus, it is treated as a series-
connected system. Such a system is represented by the diagram shown in Figure
(5.1). Then, the failure probability of this system or slope is calculated by the system
reliability method.

Failure onplane I [ Failure onplane 2 | —{  Biplane failure | Floating failure

Figure 5.1 Series representation of the wedge failure

The first-order series bounds for all the failure modes are used as these
events are positively correlated (Low, 1997). So, the probability of such a system is

given by the range (Ang and Tang, 1984):
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k
max[P(F, )| < P(Failure)<1- 1_11[1 —P(F)] (5.41)
Where,
F, =The failure modes

P(F.)= The failure probability for the modes of failure

1

Then, the probability of failure in for a wedge slope is given by:

1[1c1>

(1-
max[P(F, ), P(F, ), P(F,), P(F, )| < P(Failure <1— E (5.42)
(1-

In equation (5.42) 3, 3,, ;. B, are the reliability indices of Biplane sliding, sliding

along plane 1 only, sliding along plane 2 only, and Floating failure, respectively.
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CHAPTER VI

DEVELOPMENT OF SLOPE ANALYZING SPREADSHEETS

6.1. Introduction

The AFOSM approach used in the calculation of the reliability index is an
iterative approach, in other words, it is a time consuming method. As a result of that,
the need for software application is essential. Such a computational method has been
proposed by Low (1997). He implemented the AFOSM method using the solver tool
available in Excel spreadsheet to the stability analysis of rock wedge slopes. In that
study Low used the Coulomb linear failure criterion and it was assumed the

parameters were normally distributed.

The author developed spreadsheets similar to the one proposed by Low
(1997), but with broader applications. The developed spreadsheets are called Plane
Slope Analyzer (PSA) and Wedge Slope Analyzer (WSA). Each one of them has
two spreadsheets that correspond to the failure criteria, namely, Coulomb and Barton
Bandis criteria. The PSA is divided into two sub-analyzers. These analyzers are
corresponding to the possible positions of tension crack, that is, the slope face and

the upper slope surface.



6.2. Plane Slope Analyzer (PSA)

As mentioned above, this analyzer has two sub-analyzers. The sub-analyzers
are called Plane Slope Analyzer 1 (PSA1) and Plane Slope Analyzer 2 (PSA2). If the
tension crack is in the upper surface of the slope then PAS1 is used. On the other
hand, PSA2 is used when the tension crack is located in the slope face. The only
difference between PSA1 and PSA?2 is the weight calculation method for the sliding
block (equations 3.10 and 3.11).

6.2.1. Plane Slope Analyzer (Coulomb)

Plane Slope Analyzer has two worksheets, namely, definitions and details,
and Inputs & Outputs (Appendix A, Figures A.1 and A.3). The former gives the user
information about the type of the slope to be analyzed, the input and output
parameters (Figure A.1), the assumptions, and the application instructions (Figure
A.2). Whereas, the latter is the calculation worksheet, in which the user will input
the required parameters and their distributions (Figure A.3). Then, by following the
instruction given in Figure (A.2), the reliability index and the probability of failure
are calculated. It is important to emphasize that the angles must be in radian rather
than in degrees. That is because the Excel software performs angle calculation in
radians instead of degrees. For this reason converter tool is added to the spreadsheet
in order to ease the user’s work. In this converter the right cell contains the formula

given in equation (6.1) (Figure 6.1):

F27 = RADIANS (E27) 6.1)
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Use this converter to convert the degrees into

radians. Enter the value in the left box to get the

radians in the right ane of the canverter.,
Remember to copy the value and when pasting --

it press paste special [ values [ ok,

Figure 6.1 Converter tool

The required parameters for this analyzer arey,, ¥ ,,C, ¢,, H, 7, 7,.Z, and Z.

6.2.1.1. Coding in Excel

In order to calculate the equivalent normal mean and standard deviation, a
code is defined utilizing the visual basic language based on the code written by Low

and Tang (2004). This code is given in Appendix (B).

In the Inputs & Outputs the equivalent mean value is given by the formula in
Figure (6.2). In this formula the function EquivalentNormal ( ) is called from the
user defined code mentioned above. This function asks for some values in order to
calculate the required mean value. In fact it is written as EquivalentNormal
(DistributionName, paralist, x, code). So, first of all it asks for the distribution
type of the variable. Then, it asks for the parameters’ values, that is, paral and
para2, which will change according to the type of distribution (Figure 6.3). Next, the
function will ask for the initial value of the parameter, which is the mean value
calculated automatically in column I. That is the column labeled xi initial values.
Finally, the function asks for a code, which is either 1 or 2. These codes correspond

to the equivalent normal mean value and the equivalent normal standard deviation,
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respectively. In other words, if the user is intended to calculate the equivalent

normal standard deviation, he will use the same function except for the code which

is replaced by 2.
Al K [ L | M
OUTPUTS
ATt e N N
Distribution Symbal | paral | para2 X ‘ I ‘ 7

=EquivalentNormal(B4,D4:E4,K4,1)

Figure 6.2 Equivalent mean value

Distribution
Marmal

Mormal

IIniform

Symmetric Triangular
Upper Triangular
Lower Triangular
Lognormal

Check the box below to know what wou need to
input as paral and para2 for each diskribukion

H y Y

Para 1
Normal distribution hlean
Lognorma distribution hlean
Uniform distribution ki
Triangular distribution Mlin

Figure 6.3 Meaning of paral and para2 according to their distribution type
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As mentioned in Chapter IV, the reliability index is calculated by:

6.1)
(6.2)
Then, the reliability index is coded as (Figure 6.4):
B = SQRT(SUM(N4 : N8)) (6.3)
| o | K | L [ M | N |
1 OUTPUTS
2
3 | % initial values X Th o {}KF
4
5
b
7
B 7 0
e,
1a
Figure 6.4 Reliability index in the spreadsheet
The failure probability of the slope is calculated at the end as:
P, =1-®(p) (6.4)
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This is coded in the spreadsheet as:

P. =1- NORMSDIST(M17) (6.5)

Where, M17 is the cell containing the value of the reliability index.

All the other formulas used in the calculation of f and Pr are coded as shown in

Figure (A.3).

6.2.1.2. Solver Optimization Tool

The Solver tool can be accessed from the Tool list in the toolbar. However,

if it is not there, it must be added to the Tool list. That can be done as follows:

In the toolbar click Add-Ins function
Select Solver Add-in
Click ok

el A

Now the Solver function has been added to the Tool list

The Solver tool is used to calculate the minimum reliability index. When the
Solver is invoked, set the cell of the reliability index to minimum. By changing the
values of the x column (Figure 6.5), that is K4:K5 cells. Then it is advised to add
constraints that will define the range within which the changing cells can vary. For

this case, the Plane Slope Analyzer (Coulomb), the constraints are (Figure 6.6):

1. $K$4:$K$5<1.57 which means ¥, andy, <90
2. $K$4:$K$8 > 0 which means Y, ¥, c,tang and Z, mustbe>0

3. $M$16=1 which means Fg =1
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Solver, Parameters [z|
Set Target Cell: 17 Solve
EqualTo:  (Opax &min (O valeof: |0

By Chanaging Cells:

v

Subject to the Constraints; Options

HEdbKES <= 1,57

K4 5KE »=1

-

Reset Al

Help

Figure 6.5 Constraints of Plane Slope Analyzer (Coulomb)

After adding the constraints, press the solve button. After solving the

spreadsheet will open a new window (Figure 6.7)

Solver Results E'
Solver found a solukion, All constraints and opkimality
conditions are satisfied, Reparts
Answer
. Sensitivity
Lirnits
) Restare Original Values
[ (8] 4 ] [ Cancel ] [ Sawe Scenario. .. ] [ Help

Figure 6.6 Solver results window

If needed the user may get the answer, sensitivity, and limits reports of the

solution.
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6.2.2. Plane Slope Analyzer (Barton Bandis)

1. This analyzer is similar to the Plane Slope Analyzer (Coulomb) except
for two differences (Appendix C, Figures C.1 through C.3). The first difference is
the required parameters, and therefore, the constraints. Whereas, the second is the

addition of two new outputs, namely, the normal stress ¢, andtan&. Where, 8 is

the term between the parentheses in equation (5.7) (Figure C.3). The required

parameters for this analyzer are JRC, JCS,ZW,WP,Wf , ¢ ,H,y.,and Z (Figure 6.7).

| A | B | ¢ | D | E |

Distribution

Figure 6.7 Required parameters in PSA (Barton Bandis)

While, the constraints are (Figure 6.8):

1. $K$4:$K$5<1.57 which means ¥, andy, <90’
2. $K$4:$K$9>0 which means Vv, ¢, Z,, JRC and JCS must

be >0
3. $K$8<20 which means JRC <20
4. $M$19 =1 which means F =1

69



(x]

Solver Parameters | |

Set Target Cell: rtz0 | Solve

Equal Ta: OMax  ®Mn  Owalueck: |0
By Chanaging Cells:

Close

st

Subject to the Constraints: Options
$KbdkgE <= 1,57

Songdo =L [ & ]

$K$5 == 20 Change

it

Reset All

Help

Figure 6.8 Constraints of PSA (Barton Bandis)

All the other formulas used in the calculation of f and P are coded as shown in

Figure (C.3).

6.3. Wedge Slope Analyzer (WSA)

This analyzer is more complicated than the PSA. That is because of the four
failure modes involved in the analysis. The probability of each single mode of
failure is calculated after that the reliability of the slope is evaluated based on the

system reliability approach introduced earlier in Chapter 4.

6.3.1. Wedge Slope Analyzer (Coulomb)

This analyzer has seven worksheets, namely, definitions and details, Inputs
& Outputs, BiPlane Failure, Plane 1 Failure, Plane 2 Failure, Floats, and Summary
(Appendix D, Figures D.1 through D.8). The first one gives the user information
about the type of the slope to be analyzed, the input and output parameters, the

assumptions, and the application instructions (Figure D.1 and D.2). The second is
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the general calculation worksheet, in which the user will input the required
parameters and their distributions (Figure D.3). The worksheets from the third till
the sixth are related to the failure modes as their names imply. Each one of these
worksheets calculates the reliability and the failure probability for the mode of its
name. The seventh and the last worksheet provide the user with the summary of the
calculation involved as its name implies. This summary includes the failure
probability of the single modes as well as the system reliability (Figure D.8). Once

more this system reliability is based on equation (5.42).

The required parameters in this case are B,, S,, o,, 0,, tang,,tang,, G, ,
Gy,, €, Cy, @, Q, h, y,and §,. These parameters are as defined in connection
with equations (2.8) through (2.20). For simplicity it was assumed that G,, = G,

tang, = tang,, and C, = C,.

On the other hand, the constraints of each mode of failure are different than

those of the others. For example, constraints of Biplane failure are (Figure 6.9):

1. $C$3:$C$6<3.142 that means S, S,, J,, J, <180°

2. $C$3:$C$9 >0 that means §,, B,, 9,, 0,, tang,, G, , and C, are all
=0

3. $H$14<1 that means F; <1. The reason why this constraint was set
rather that Fg =1 is that the latter misleads to a bigger value of the
reliability index (Low, 1997).

4. $M$8:$M$9 > 0 that means abG,and abG,are >0

Where,

Y
abG, =| a, S (6.6)

y
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And

b J (6.7)

Solver, Parameters

Set Target Cell; solve
Equal To: Oimax @min O value of: |D—‘

By Changing Cells:

i

e

Subject ko the Constraints:
$C434CHE <= 3.142 [ add |
$C$3:4049 == 0
$MEa:4MED == 0 Reset Al

Figure 6.9 Constraints of Biplane failure WSA (Coulomb)

The Constraints of the failure along plane 1 are (Figure 6.10):

1. $C$3:3$C$6<3.142 that means f,, f,, ,, 0, <180°

2. $C$3:$C$9 >0 that means §,, B,, 9,, 0,, tang,, G, and C, are all
=0

3. $HS$14 <1 that means F <1

4. $M$9 >0 that means abGZ, >0

Where,

abGZl _ {(al _ b]Gwl J _(bZGWZ _ azj‘ Z} (68)
S}’ S}’
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In which Z is given by equation (2.25)

5. $M$10<0 that means abG, <0, where abG, is defined by equation

(6.7)
Solver Parameters r5__<|
Set Target Cell: . Solve

Equal Ta: i : ]
qual To Oimax ®min O value of: Cloee

By iChanging Cells:

scisscss

Subject to the Constraints: Qptions

$C$3$040 <= 3,142
SIS

L
s

Reset all

I

Help

Figure 6.10 The Constraints of the failure along plane 1 WSA (Coulomb)

The Constraints of the failure along plane 2 are (Figure 6.11):

1. $C$3:$C$6<3.142 that means S, S,, J,, J, <180°

2. $C$3:3C$9 >0 that means ,, B,, 9,, 0,, tang,, G, , and C, are all
=0

3. $HS$14 <1 that means F <1

4. $M$9 <0 that means abG, <0, where abG, is defined by equation (6.6)

5. $M$10 =0 that means abGZ, =0
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Where,

b,G bG
abGZ, = (az -2 g | Z (6.9)
S}’ S}’
Solver Parameters El
Sek Target Cell: Solve
Equal Te: CiMax @M O value of: a
By Changing Cells:
sesicts
Subject ko the Constrainks:
$E340H0 <= 3,142
$CETSCE0 >=10
iets <=
$MEl0 ==0 Reset all
o < o

Figure 6.11 The Constraints of the failure along plane 2 WSA (Coulomb)

Constraints of the Floating failure (Floats) (Figure 6.12):

1. $C$3:$C$6<3.142 that means S, S,, J,, J, <180°

2. $C$3:3C$9 >0 that means ,, B,, 9,, 0,, tang,, G, , and C, are all
=0

3. $HS$14 <1 that means F <1

4. $M$9:$M$10 <0 that means abGZ, and abGZ,are <0, where abGZ,

and abGZ, are defined by equations (6.8) and (6.9), respectively.
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Solver Parameters _|
Set Targek Cell:
Equal To O Max  @Min O value of: 0
Ev Changing Cells:

scsics
Subject bo the Constrainks:
$CETCE <= 3,142
$dmi40dn =0
i
L ge
$MEEME10 <=0 Reset All

Figure 6.12 Constraints of the Floating failure WSA (Coulomb)

6.3.2. Wedge Slope Analyzer (Barton Bandis)

This analyzer is similar to the Wedge Slope Analyzer (Coulomb) except for
two differences (Appendix E, Figures E.1 through E.7). The first is the required
parameters, and therefore, the constraints. The second is the addition of new outputs,

thatis, o,,, 0,,, tand,, and tan@,. Where, 6, and @, are:

6, =| JRC- log(ﬂj + 4 (6.10)
L Gnl

6, =| JRC- log(ﬂJ + 4 (6.11)
L n2

Whileo,,, 0,, are given by equations (5.29) and (5.30), respectively.

The required parameters are 5,, S,, J,, 0,, ¢, Gy,, JRC, JCS, a, Q,

h, y,and §,. For simplicity again it was assumed that G, = G, and ¢, = ¢,.
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Yet again, the constraints of each mode of failure are different than those of the

others.

Constraints of the Biplane failure are (Figure 6.13):

A I

$C$3:$C$10 >0 that means 5,, B,, o,, 9,, ¢, G,,, JRC , and JCS

are all 20

$C$3:$C$6 <3.142 that means f,, S,, J,, 6, <180°
$C$7 <1.57 that means ¢, <90°
$C$9 < 20 which means JRC <20

$HS$14 =1 that means Fg =1. The reason why this constraint was set in
this way is that the F, <1 constraint in some situations yields undefined
values of F;. That is due to the formulation of Barton Bandis failure

criterion.

$L.$8: $L$9 > 0 that means abG,and abG,are=0.

Where, abG,and abG, are given by equations (6.6) and (6.7),

respectively.

Solver Parameters

!

Set Target Cell:
Equal Ta: OMax @min (O valeof: |0 -
I 0 & ' -Cluse
By Changing Cells:
scssscas
Subject bo the Constrainks:
$C43:9C410 >= 0 [ ad |
$C433CF0 <= 3,142
fct7 <=1
$E$'§'4<_= i?E' Reset Al
i =
fifegs >=0

Figure 6.13 Constraints of the Biplane failure WSA (Barton Bandis)
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The Constraints of the failure along plane 1 are:

The first five constraints of this mode of failure are the same as those of the

Biplane failure mentioned above, whereas, the others are:

6. $L$9 >0 that means abGZ, 20.
7. $L$10 <0 that means and abG, <0

Where, abGZ,and abG, are given by equations (6.8) and (6.7),

respectively.

The Constraints of the failure along plane 2:

The first five constraints of this mode of failure are again similar to those of

the Biplane failure. While, the others are:

6. $L$9 <0 that means abG, <0.
7. $L$10 >0 that means and abGZ, >0

Where, abG,and abGZ, are given by equations (6.6) and (6.9),

respectively.

Constraints of the Floating failure (Floats):

Once more the first five constraints are similar to those of the Biplane

failure. Whereas, the others are:

6. $L$9 <0 that means abGZ, <0
7. $L$10 <0 that means and abGZ, <0
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Where, abGZ,and abGZ, are given by equations (6.8) and (6.9),

respectively.

6.4. Defining and Enabling Macros

In order to add a user defined macro to an Excel worksheet, the user need to

follow the procedure given below (Figures 6.14-6.15):

Tools/Macros/Visual Basic Editor
Insert/Module
Define the new macro

Save

A e

File/Close and Return to Microsoft Excel

Tools | Data  Window  Help

| gpeling... F7 ! Arial - 10 -| B I

n ,;:5 Research... Alkb+Click.

]: ‘$ Error Checking. .. | H | | o | b
Speech 3

Shared Workspace. ..
Share Workbook. ..
Track Changes 3

Compare and Merge Workbooks. ..

Protection »
Online Callabor ation 3
Goal Seek. ..
Scenarios. ..
Formula Auditing 3
Solver...
Macro » | F | Macros.., ale+Fa
Add-Ins... @  PRecord New Macro..,
=F  AutoCorrect Options. .. Security, ..
Quskorize, .. | ™ visual Basic Editor Ale+F11
Qptions... @ Microsoft Script Editor Alk+Shift+F11

Figure 6.14 Defining macros in Excel, step (1)
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File | Edit Miew Insert  Formakt Debug  Ru

Sawve Bookl Chrl+5
Import File... CErl+-mM
Export File... Crrl+E

Remove Modulel. ..

=4 Print... Chrl+F

Close and Return to Microsoft Excel  alk+Q |

Figure 6.15 Defining macros in Excel, step (5)

Since the user defined macro does not work unless the macros are enabled, it
is essential enable the macros when utilizing Excel spreadsheets. In order to enable
such macros the user need to set the macro security level to medium. That is done by

following the list below (Figures 6.16-6.17):

1. Tools/Macros/Security
2. Security level / “Medium” | “Ok”

T Data  Window  Help

—
]
o
in

| 57| speling... F7 !;nrial -0 - | B I 1

| ,;l Research... Alt+Click

[‘@ Error Checking. .. | H | | J | b
Speech »

Shared Workspace...
Share Woaorkbook. ..
Track Changes »

Compare and Merge Workbooks, .,

Protection »
nline Collaboration »
Goal Seek...
Scenarios, ..
Formula Auditing »
Solver...
Macro » | | Macros... Alt+F3
Add-Ins. .. @  Record Mew Macro, .,
—F | AutoCaorrect Options. .. | Security. ..
Customize. .. 2 wisual Basic Editor Alt+F11
Ophions... @ Microsaoft Script Editor alt+Shifc+F11

Figure 6.16 Enabling macros, steps (1)
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Security

Trusted Publishers

() Wery High. Only macros installed in brusted locations will be allowed
ta run. all akher signed and unsigned macros are disabled.

() High. Only signed macros From trusted sources will be allowed o
run. Unsigned macros are autarmatically disabled,

{(#) Mediurn. You can choose whether or not to run potentially unsafe
Macros.

() Low {not recommended). You are not protected From potentially
unsafe macras, Use this setting anly if wou have virus scanning
software installed, or wou have checked the safety af all documents
wiau open.

Virus scanner(s) inskalled.

[ Ok ] [ Cancel

Figure 6.17 Enabling macros, steps (2)

After that, the user needs to close and re-open the Excel software. Before
opening the analyzer, a warning window will show up (Figure 6.18). “Enable
Macros” button should be selected in order to open the analyzer and make use of the

user defined macro.

Security Warning E|

"CHiDocuments and SettingsiMohamedi DeskiophWedge Slope Analyzer
(Barkton Bandis), xls" contains macros.,

Macros may conkain wiruses, It is usually safe to disable macros, but if the
macros are legitimate, wou might lose some Funckionality.

Disable Macros ] [ Enable Macros | [ More Info

Figure 6.18 Excel warning window
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6.5. Verification of PSA and WSA Spreadsheets

In this section the verifications of the developed spreadsheets are carried out.
These verifications were accomplished by studying the affect of height of slope,
height of water table, cohesion, friction angle, and JCS on the values of the
reliability index, and failure probability of given plane and wedge slopes based on
Coulomb and Barton Bandis failure criteria. The parameters were assumed to be

normally distributed for simplicity.

6.5.1. Plane Slope Analyzers

In order to analyze the effect of the factors mentioned above on the stability
of a specific plane slope, there was a need for changing the number of cells that are
being changed during the solution in the solver tool so that it will represent the same
slope in all cases. This adjustment was made by eliminating the cells containing the
dip of slope surface (yr) as well as the dip of discontinuity plane (y,,) from the cells
under ‘By Changing Cells’ option. For example, after making such adjustment to

PSA (Coulomb) the solver tool of Figure 6.5 will appear as shown in Figure 6.19.

Solver Parameters le
Set Target Cell: Solve
Equal To: OiMax @ Mo O value of: I—ID
Bv Changing Cells:

e 13
Subiject to the Constrainks:
B = 15
$KE4$KEE ==10
16— 1
Reset Al

Figure 6.19 Solver of PSA (Coulomb) after eliminating yr and y,
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6.5.1.1. Plane Slope Analyzer (Coulomb)

In order to verify the Plane Slope Analyzer (Coulomb) the affect of slope

height, height of water table, cohesion and friction angle on Beta value (reliability

index) and probability of failure is investigated. For this reason a plane slope with

the basic variables and their statistical parameters as given in Table 6.1 is

considered.

Table 6.1 Summary of the basic variables and their statistical parameters for PSA

(Coulomb)
. Dip of . Tangent of the .
Variable Dip Oi.. slope discontinuity C;)ll: eston tOf friction angle of Hel‘ghtt of‘water
Name (s\;lr ::(:) plane (C ft: 33;::12) the joint (tang, cr;tke(nZS\l:fmm)
fy ’ ’
(‘I’u, rad.) rad.)
Mean 1.396 0.541 15.000 0.700 10.000
Standard 0.070 0.125 3.001 0.150 0.100
eviation
c.0.v. 0.050 0.232 0.200 0.214 0.010

On the other hand, the constant parameters of the slope under consideration are

shown in Table 6.2.

Table 6.2 Constant parameters for PSA

Slope height Unit weight of Unit weight of Tension crack
(pH m)g rock water in depth from the
’ (y, ton/m®) (yw , ton/m) crest (Z, m)
60.00 2.70 1.00 40.00
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In this study different slope heights are considered. However, the area of the
considered plane had to be constant in order to make the results comparable. Thus,
the difference between the height of the slope (H) and the height of the tension crack
(Z) is kept constant. The values of the slope heights considered in this study are

shown in Table 6.3.

Table 6.3 Values of H and Z used in the analysis

Height of the slope
(H, m) 60 70 80 100
Height of tension
crack (Z, m) 40 50 60 80

The effects of slope height, height of water table, cohesion and friction angle on the
value of the reliability index (Beta) is shown in Figures 6.20 through 6.23, whereas,
the effects of the same parameters on the probability of failure are given in

Appendix F (Tables F.1 through F.16).

As seen form Figures 6.20 and 6.21, the value of Beta is directly proportion
with the value of cohesion, but inversely proportional with slope height. On the
other hand, the relation is linear when the slope is dry, but not linear when the height

of water table increases to 10 meters.

From Figures 6.22 and 6.23, it is clear that Beta is directly proportion with
the friction angle, but inversely proportional with the slope height. The increase is
linear and highly sharp until 34.99 degrees angle. However, it is not the same for
friction angles bigger than 34.99 degrees, as the increase is not linear and not as

sharp as before it.
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Reliability Index

Figure 6.20 Cohesion versus Beta values for different slope heights at dry condition

Reliability Index

Figure 6.21 Cohesion versus Beta values for different slope heights at 10 m height
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Figure 6.22 Friction angle versus Beta values for different slope heights at dry

condition
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Figure 6.23 Friction angle versus Beta values for different slope heights at 10 m

height of water table
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6.5.1.2. Plane Slope Analyzer (Barton Bandis)

In order to verify the Plane Slope Analyzer (Barton Bandis) the affect of
slope height, height of water table, JCS and friction angle on Beta value and
probability of failure is investigated. For this reason a plane slope with the basic

variables and their statistical parameters as given in Table 6.4 is considered.

Table 6.4 Summary of the basic variables and their statistical parameters for PSA

(Barton Bandis)

Di Dip of Friction Joint wa‘ll Height‘of Joint
Variable ip of slope discontinuit angle of compressive | water in roughness
y g . g
Name surface lane the joint strength tension coefficient
(yy, rad) P J cs, crack
(yp, rad.) (¢, rad.) ton/m?) (Zw, m) (JRC)
Mean 1.396 0.541 0.611 55682.957 10.000 10.000
Standard | 0,070 0.125 0.131 | 11136591 | 0.100 | 0.100
C.0.V. 0.050 0.232 0.214 0.200 0.010 0.010

The constant parameters of this slope are as shown in Table 6.2.

The effects of slope height, height of water table, JCS and friction angle on Beta
value is shown in Figures 6.24 through 6.27, whereas the effects of the same

parameters on the probability of failure are given in Appendix G (Tables G.1
through G.16).

As can be seen form Figures 6.24 through 6.27, the value of Beta is directly
proportion with the value of JCS and friction angle, but inversely proportional with
slope height. In all the Figures it is very clear that the relation between Beta and JCS

or friction angle is linear for Beta values less than 4.500.
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Figure 6.24 JCS versus Beta values for different slope heights at 0 m height of water

Reliability Index

4,90

table

4,70 A

4,50

4,30

4,10 A

3,90 A

3,70

---H=60
——H=70

55682,957

92804,929

JCS (ton/m?)

129926,901

167048,872

Figure 6.25 JCS versus Beta values for different slope heights at 10 m height of

water table

87




4,50
4,40 -
4,30 -
4,20 -
x
L 410
£
>
£ 4,00
Z
8
T 3,90
o
P --=-H=60
3,80 -
I H = 70
3,70 ——H=80
3,60 i — = H= 100
3,50
22 26 30 34,99

Basic Friction Angle (degree)

Figure 6.26 Basic friction angle versus Beta values for different slope heights at

m height of water table
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Figure 6.27 Basic friction angle versus Beta values for different slope heights at

10 m height of water table
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6.5.2. System Reliability

For wedge failure case two methods are used the calculation of Pg. these
methods are the system reliability method and the conventional method that depends
on the values of Pr corresponding to single modes of failure. Then the results of
these methods are compared to reveal the advantage of system reliability approach
over the conventional one. For this reason a wedge slope with the basic variables
and their statistical parameters as given in Tables 6.5 is considered (Low, 1997).

These parameters are as defined in connection with equation (3.17)

Table 6.5 Summary of the basic variables and their statistical parameters for WSA

(Coulomb)
Mean Standard deviation C.0.V.
B1 (radian) 1.082 0.052 0.048
01 (radian) 0.873 0.035 0.040
B2 (radian) 0.349 0.052 0.150
05 (radian) 0.838 0.035 0.042
tan ¢ (radian) 0.700 0.150 0.214
Gw, 0.500 0.120 0.240
c1 (kPa) 41.600 8.320 0.200

The constant parameters of this slope are given in Table 6.6.

Table 6.6 Constant parameters for WSA

3 Sy
o (degree) Q (degree) h (m) y (kN/m’) (dimensionless)
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Once the failure probability of single failure modes is calculated (Table 6.7), the one
may accept Pr of Mode 1 as the failure probability of the whole slope, but before

doing so let us consider the result of the system reliability approach as well.

Table 6.7 Failure probability of single failure modes for the wedge slope considered

Mode 1 Mode 2 Mode 3 Mode 4
Failure Mode
(Plane 1) (Plane 2) (BiPlane) (Floating)
Probability of 0 6
0.070 1.1x10° 0.041 6.9x10
Failure (Py)

In order to evaluate the failure probability of a wedge slope by the system
reliability approach, it should be treated as a system that composes of four
components, that is, the four modes of failure. The occurrence of one or more of
these components constitutes the failure of the whole system. In other words, the
reliability of this system requires the stability of all the components. Such
components are said to be positively correlated (Ang and Tang, 1984). For a system
with such kind of components, Low (1997) suggested the utilization of the first-
order series bounds. The application of such bounds to the wedge under
consideration is given by equation (5.42). Clearly, the result is in a form of a range

with two bounds namely, the upper and the lower bounds.
0.070 < Pt (Failure) < 0.092 (6.1)

In equation (6.1) Pt (Failure) is total failure probability of the considered wedge
slope.

Inequality (6.1) indicates that the failure probability of this slope is ranging between

0.092 and 0.070. So, depending on the failure probability of single failure modes
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would miss lead to the lowest value of the probability range (Figure 6.28). Thus, the
system reliability approach is more appropriate in the estimation of failure

probability of wedge slopes.

Failure on Plane 1 _Failure on Plane 2 - Biplane Failure . Floating Failure
Pr=0.070 Pr=1.1x10"* Pr=0.041 Pr=6.9x10-°

System Reliability
0.070 <= Pt <= 0.092

Figure 6.28 Comparison of system reliability result with the results of single failure

modes

6.5.3. Wedge Slope Analyzer

In this section, the effect of slope height, height of water table, cohesion,
friction angle, and JCS on the failure probability of wedge slope (Pt) is investigated.
Pt is used instead of Beta value since it is the only outcome of system reliability
approach, which gives the result as a range having a maximum and a minimum
values. However, in this study only the maximum value of this failure probability
range was considered as the failure probability of the whole wedge slope in order to

simplify it.

6.5.3.1. Wedge Slope Analyzer (Coulomb)

In order to verify this spreadsheet a wedge slope having the same parameters
as those listed in Tables 6.5 and 6.6 is considered. The results of this analysis are

given by Figures 6.29 through 6.32.
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As can be seen form Figures 6.29 through 6.32, the value Pr is inversely
proportional with the value of cohesion and friction angle, but directly proportional
with slope height. It is clear from the same figures that the relation between Pr and
cohesion or friction angle is nonlinear. From the same figures, it is obvious that the

decrease in Pg is sharper when the water pressure increases as expected.

0,60
— = H=16
0,50 - —H=20
o ——H=24
3
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o
P 030
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S o020 RN
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= ~ .
a ...
0,10 el
000 —— L === — - — —

30 32 34 36 38 40 42 44 46 48 50
Cohesion (kPa)

Figure 6.29 Cohesion versus probability of slope failure for different slope heights at

0.25 Normalized water pressure
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Figure 6.30 Cohesion versus probability of slope failure for different slope heights at
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Figure 6.31 Friction angle versus probability of slope failure for different slope

heights at 0.25 Normalized water pressure
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Figure 6.32 Friction angle versus probability of slope failure for different slope

heights at 0.5 Normalized water pressure

6.5.3.2. Wedge Slope Analyzer (Barton Bandis)

In order to verify this spreadsheet a wedge slope with the basic variables and

their statistical parameters as given in Table 6.6 and 6.8 are considered, while the .

These parameters are as defined in connection with equation (3.17).
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Table 6.8 Summary of the basic variables and their statistical parameters for WSA

(Barton Bandis)

Mean Standard deviation c.0.V.

B1 (radian) 1.082 0.052 0.048

01 (radian) 0.873 0.035 0.040

B2 (radian) 0.349 0.052 0.150

0 (radian) 0.838 0.035 0.042

@1 (radian) 0.611 0.131 0.214

Gw; (dimensionless) 0.500 0.120 0.240
JRC (dimensionless) 11.930 4.180 0.350
JCS (kPa) 154427.402 87368.685 0.566

The constant parameters of this slope are as shown in Table 6.6, and the results of
this analysis are given by Figures 6.33 through 6.36. These figures illustrate that the

expected results are achieved, which prove the accuracy of this spreadsheet.

—H = 20

H=24

---H=30

Probability of Slope Failure
o
8

0,00 T T
37121,972 53541,305 74243,943 154427,402

JCS (kPa)

Figure 6.33 JCS versus probability of slope failure for different slope heights at 0.25

Normalized water pressure
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Figure 6.34 JCS versus probability of slope failure for different slope heights at 0.5
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Figure 6.35 Friction angle versus probability of slope failure for different slope

heights at 0.25 Normalized water pressure
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Figure 6.36 Friction angle versus probability of slope failure for different slope

heights at 0.5 Normalized water pressure

6.6. Sensitivity Analysis Based on Distribution Function for PSA

This section is devoted to the application of PSA in investigating the
sensitivity of reliability index (B) and consequently the probability of slope failure
(Pg), to distribution functions of the parameters. PSA (Coulomb) and PSA (Barton

Bandis) are used in this analysis.

6.6.1 Sensitivity analysis for PSA (Coulomb)

The parameters used in this study are as shown by Table 6.9 and 6.10.
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Table 6.9 Summary of the basic variables for PSA (Coulomb)

. Tangent of .
. Dip of slope . Dip .Of . Cohesion of the friction Helght.of
Variable discontinuity O water in
surface the joint angle of the .
Name (y;, rad) plane (C, ton/m?) joint (tang tension crack
Vs (y,, rad.) ’ J rad.) ’ (Zw, m)
Mean 1.396 0.541 15.000 0.700 10.000
Standard | 0,070 0.125 3.001 0.150 0.100
eviation

The constant parameters of the slope under consideration are shown in Table 6.10.

Table 6.10 Constant parameters for PSA

. Unit weight of Unit weight of Tension crack
Slope height A
(H, m) rock , water in , depth from the
’ (y, ton/m’) (yw , ton/m") crest (Z, m)
60.000 2.700 1.000 40.000

From Figure 6.3 the maximum and minimum values of the parameters

considered are needed if the distribution type is triangular (symmetric, upper, lower)

or uniform. The values of these parameters are calculated utilizing Table (4.1) and

equation (4.22). Then the results of this study are given in Tables 6.11.

Table 6.11 Results of the Plane Slope Analyzer (Coulomb)

Normal | Uniform | Lognormal | Symmetric T. | Upper T. | Lower T.
p 1.5440 1.4192 1.7250 8.2221 1.3734 1.4267
P: | 0.0613 0.0779 0.0423 0.0000 0.0848 0.0768
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6.6.2 Sensitivity analysis for PSA (Barton Bandis)

The basic variables used in this study are as shown in Table 6.12, while, the
constant parameters are the same as those shown in Table 6.10. Then the results of

the analysis are given in Tables 6.13.

Table 6.12 Summary of the basic variables for PSA (Barton Bandis)

. Dip of Friction Joint wa‘ll Height‘of Joint
Variable Dip of slope discontinuit angle of compressive | water in roughness
y g : g
surface . . strength tension .
Name (v, rad) plane the joint JCs crack coefficient
o (prad) | (@rad) | ooh e SO (JRO)
Mean 1.396 0.541 0.611 55682.957 | 10.000 10.000
Standard | 0,070 0.125 0.131 | 11136591 | 0.100 | 0.100

Table 6.13 Results of the Plane Slope Analyzer (Barton Bandis)

Normal | Uniform | Lognormal | Symmetric T. | Upper T. | Lower T.

B | 4.0288 3.5108 8.9957 M 3.5940 3.8589
Pr |0.00003 | 0.00022 0.00000 0.00000 0.00016 0.00006

Where, M is a very large positive number.

From Tables 6.11 and 6.13 it is clear that the results of the symmetric triangular
distribution are unreliable since they are always very large when compared with
other results. The lognormal distribution, on the other hand, always gives results

greater than the results of the normal distribution. The uniform and upper triangular
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distributions give similar result to some extent. Finally, the lower triangular

distribution is found to give the closest result to that of the normal distribution.

6.7. Discussion

The developed probabilistic models and their spreadsheets are verified by
carrying out sensitivity analyses. That was done by investigating the variation affect
of some parameters on reliability index (), and probability of slope failure (Pg). In
these analyses, one parameter is changed while the others are kept constant. The
results of these analyses as shown in Figures 6.20 through 6.36 indicate the expected

trend such that:

a.  The reliability index, Beta, decreases as the water level and the slope
height increases whereas Pr increases.
b.  Beta increase as the cohesion, friction angle, or JCS increases whereas

Pr decreases.

Based on these outcomes, it can be said that the developed models and the
spreadsheets are verified and they can be used reliably by any practical engineers in

their slope stability analysis.

The effect of Coulomb linear and Barton Bandis nonlinear failure criteria on
probability of failure (Pg) is compared in both plane and wedge models. In these
comparisons, the strength parameters used in those two different failure criteria were
approximated in a manner representing each other. In this approximation the ratio of
the compressive strength to cohesion, is taken as 4, as it is commonly utilized in
practical applications. So, considering this practical usage, the ratio of JCS to

cohesion is assumed to be 3.7 in these analyses.
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The comparison of results presented in Tables 6.14 and 6.15 show that:

¢ For plane slopes, the results of Coulomb criterion are greater than those of

Barton Bandis criterion (Table 6.14).

e For wedge slopes, the results of Barton Bandis criterion are greater than that

of Coulomb criterion (Table 6.15).

Table 6.14 Probability of failure, Pg, of a plane with cohesion of 15 (ton/mz) for
different slope heights at 10 m height of water table

Coulomb Barton Bandis
Prat H=60 0.061 2.78E-05
PratH=70 0.077 3.36E-05
Prat H=80 0.091 3.99E-05

Table 6.15 Probability of failure, Pg, of a wedge with cohesion of 30 (kPa) for

different slope heights at 0.5 Normalized water pressure

Coulomb Barton Bandis
PratH=16 0.092 0.308
Prat H=20 0.157 0.328
Prat H=24 0.280 0.346
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One reason for such differences in the results is the lack of uncertainty evaluation of
the parameters in this thesis. Another reason is the estimation of the JCS that
corresponds to a given cohesion value. This reduction in the ratio is due to the
difficulty encountered in the estimation of JCS for in-situ rocks. Another reason is
the distribution parameters which are found to have a great affect on the value of the

reliability index.

For wedge slopes the system reliability approach is found more reliable than
the conventional Pr which depends on the evaluation of Prfor each mode separately.
That is because estimating the failure probability of a wedge slope depending on the

failure probability of a single mode has a considerable amount of uncertainty.

According to the results shown in Tables 6.11 and 6.13 the type of
distribution function has a remarkable affect on the value of reliability index and
therefore on the probability of failure. The sensitivity analysis carried out showed
that the results of lognormal distribution is greater than those of normal distribution
as far as the reliability index is concerned, whereas, the results of uniform, upper
triangular and lower triangular distributions are found to be smaller than those of the
normal one. Additionally, the results of symmetric triangular distribution are found
to be unreliable since they are always very large when compared with the results of
other distribution types. The reason for such big results may be due to
the transformation process involved, or as a result of PDF formulation of that

distribution.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

1. In this study, probabilistic models have been developed both for plane and wedge
type of slope failures. The models utilize both linear form of Coulomb and non-
linear form of Barton Bandis Failure criteria. Analyzer spreadsheets are developed
to ease the usage of probabilistic models based on the AFOSM method in slope

stability analyses.

2. The developed spreadsheets save time, yield accurate results and they are user

friendly, therefore can be used by practical engineers.

3. The spreadsheets express the stability of slopes in terms of reliability index, and
probability of slope failure and give the chance to compare them with the factor of

safety.

4. The spreadsheets offer the choice of six different distribution types; normal,
uniform, lognormal, symmetric triangular, upper triangular, and lower triangular
distributions. They suggest that the symmetric triangular distribution is inappropriate
for the calculation of the reliability index, while the lognormal distribution has
greater effect than those of normal distribution as far as the reliability index is

concerned.



5. For wedge slopes, the result of System reliability approach is found to be more
reliable than the result of the conventional method, which depends on the failure

probability of a single mode.

6. The developed models were verified by the sensitivity analyses and as expected
the value of the reliability index decreases as the height of slope and/or the level of
water table increases, while it increases as the cohesion, friction angle, and JCS
increase. These parameters have the opposite effect on the probability of slope

failure.

7. The results of Coulomb failure criterion for plane slopes are bigger than those of
Barton Bandis failure criterion as far as P is concerned. However, for wedge slopes
the results of Barton Bandis failure criterion are greater than those of Coulomb

failure criterion.

Finally, based on this study the following recommended for further study:

1. In this thesis the uncertainties of the parameters which have a
considerable affect on the result are not considered. Thus, it is
recommended to carry out a detailed stability analysis considering the
uncertainties as well as the variability of the parameters. That may
reveal the ambiguity of the difference between the results of Coulomb

and Barton Bandis failure criteria.

2. Wider application of AFOSM method is recommended, since it has

overcome the drawbacks of other probabilistic methods.

3. The developed models should also be verified with an actual field data.

104



REFERENCES

Ang, A.H.S., and Tang, W.H., 1984. Probability Concepts in Engineering Planning

and Design, Vol.2. Decision, risk, and reliability. John Wiley and Sons.

Barton, N. 1990. “Scale effects or sampling bias”. In Pinto da Cunha A. (ed.), Scale

effects in rock masses, Proc. 1% int. workshop, Leon. Balkema, Rotterdam, pp. 3-27.

Bolle, A. Bonnechere F. and Arnould R. 1987. “Aprobabilistic approach of slope
stability in fractured rock”, Proc. of 6th. Cong. Rock mechanics, pp. 301-303.

Brady, B.H.G. & Brown E.T. 1985. “Rock mechanics for underground mining”.
Allen and Unwin, London, pp. 527.

Cornell, C.A., 1969. “Structural Safety Specifications Based on Second Moment
Analysis”, Proc. Int. Assoc. Bridge and Structural Engineers, Symposium on

Concepts of Safety of Structures and Methods of Design.

Ditlevsen, O., 1981. “Uncertainty modeling: with applications to multidimensional

civil engineering systems”. McGraw-Hill, New York.

Duzgun, H. S. B., 1994. “Plane failure analysis of rock slopes: A Reliability
Approach”. M.Sc. Thesis, Middle East Technical University, Turkey.



Duzgun, H. S. B., Bozdag, T. and Pasamehmetoglu, A.G., 1994. “Probabilistic
Wedge Stability Analysis by Advanced First Order Seconed Moment (FOSM)
Method”, Proc. of Mine Planning and Equipment Selection’94, pp. 833-838.

Duzgun, H. S. B., Bozdag, T. and Pasamehmetoglu, A.G., 1995. “A Reliability
Approach to Wedge Stability Analysis”, Proc. of 8™ ISRM Congress, pp. 389-392.

Duzgun, H. S. B., Yucemen, M. S., Karpuz, C. 2003. “A methodology for
reliability-based design of rock slopes”. Rock Mech. Rock Engng. 36 (2), pp. 95—
120.

Duzgun, H. S. B., Karpuz, C. and Yucemen, M. S., 2005. “Probabilistic Modelling
of Plane Failure in Rock Slopes”, 9" International Conference on Structural Safety

and Reliability, June 19-23, Rome, Italy.

Esterhuizen, G.S., 1990. “Combined Point Estimate and Monte Carlo Techniques
for the Analysis of Wedge Failure in Rock Slopes”. Proc. of Static and Dynamic
Considerations in Rock Engineering Symp., pp. 125-132.

Feng P., 1997. “Probabilistic treatment of the sliding wedge”. M.Sc. Thesis,
University of Manitoba Winnipeg, Manitoba, Canada.

Giani, G.P., 1992. Rock Slope Stability Analysis, A.A. Balkema Publishing,

Rotterdam.
Gokceoglu, C., Sonmez, H., and Ercanoglu, M., 2000. “Discontinuity controlled

probabilistic slope failure risk maps of Altindag (settlement) region in Turkey”.

Engineering Geology, 55 (4), pp. 277-296.

106



Harr, M.E. 1981. “Mecanique des milieux formes de particules”. Presses

Polytechniques Romandes, Lausanne, pp. 514.

Hasofer, A.M. and Lind, N.C., 1974. “Exact and invariant second-moment code

format”. J.Engrg. Mech., ASCE, 100(1), pp. 111-121.

Hassan AM. Wolff TF. 1999. “Search algorithm for minimum reliability index of
earth slopes”. Journal of geotechnical and geoenvironmental engineering, ASCE;

125(04):301-8.
Hoek, E., Bray, J. W., and Boyd, J. M., 1973.”The Stabilityof a Rock Slope
Containing a Wedge Resting on Two Intersecting Discontinuities”, Quarterly J.

Engrg. Geol., 6(1), 1-55.

Hoek, E., Bray, J., 1977. Rock slope engineering. Institute of Mining and

Metallurgy, London.

Hoek, E., Bray, J., 1981. Rock slope engineering. Institute of Mining and

Metallurgy, 3" edn., London.

Jimenez-Rodriguez, R., Sitar, N., and Chacon, J., 2006. “System reliability approach
to rock slope stability”. Int. J. Rock Mech. Min. Sci. 43 (6), pp. 847-859.

Kim, H.S., Major, G. and Ross, B.D., 1978. “A General Probabilistic Analysis for 3-

Dimentional Wedge Failure”, Pre-print Proc. 19". U.S. Symp. Rock Mechanics,
Makay School of Mines, Nevada.

107



Kimmance, J. P., Howe, J. H., 1991. “A combined geostatistical and first order
second moment reliability analysis of slopes in Kaolinsed granite”. In: Proc., 7th

ISRM Congress on Rock Mechanics, pp. 905-911.

Low, B. K., 1979. “Reliability of rock slopes with wedge mechanisms”. M.Sc.
thesis, Massachusetts Inst. Of Technol., Cambridge, Mass.

Low, B. K. and Einstein, H. H., 1992. “Simplified reliability analysis for wedge
mechanisms in rock slopes”. Proc., 6™ Int. Symp. On Landslides, A. A. Balkema,

Rotterdam, the Netherlands, pp. 499-507.

Low, B. K., 1996. “Practical probabilistic approach using spreadsheet”. ASCE
Geotechnical Special Publication No. 58, Proc., Uncertainty in the geologic
Environment — From Theory to Practice, Madison, Wisconsin, July 31-August 3,

Vol. 2, pp. 1284-1302.

Low, B. K., 1997. “Reliability analysis of rock wedges”. J. Geotech. Geoenviron.
Engng. 123 (6), pp. 498-505.

Low, B. K., 2002. “Practical First — Order Reliability Computations Using
Spreadsheet”. In Proceedings, Probabilistic In Geotechniques: Technical and

Economic Risk Estimation. Verlag Gluckauf GmbH. Essen (Germany). pp. 39-46.

Low, B. K. 2003. “Practical Probabilistic Slope Stability Analysis”. Proceedings,
Soil and Rock America 2003. 12" Panamerican Conference on Soil Mechanics and
Geotechnical Engineering and 39" U.S. Rock Mechanics Symposium. Verlag
Gluckauf GmbH. Essen. Vol. 2, pp. 2777-2784.

108



Low, B. K., and Tang, W. H., 2004. “Reliability analysis using object-oriented
constrained optimization.” Struct. Safety, 26_1_, 69—89.

Major, G., Kim, H.S. and Ross, B.D., 1978. “Application of Monte Carlo
Techniques to Stability Analysis”, Pre-print Proc. 19™. U.S. Symp. Rock Mechanics,
Makay School of Mines, Nevada.

McMahon, B.K., 1971.” A Statistical Method for the Design of Rock Slopes”, Proc.

1%, Australia-New Zeland Conference on Geomechanics.

Morris, P., and Stoter, H.J., 1983. “Open Cut Slope Design Using Probabilistic
Methods”, Proc. Of 5% ISRM Symposium, Vol. 1.

Mostyn, G.R., and Li K.S., 1993. “Probabilistic slope analysis-state of play”. In
Probabilistic Methods in Geotechnical Engineering, Li KS, Lo SC (eds). A.A.
Balkema: Rotterdam-Brookfield.

Muralha, J. & Trunk, U., 1993. “Stability of Rock Slopes-Evaluation of Failure
Probabilities by the Monte Carlo and First Order Reliability Methods”. Proc. of

Assessment and Prevention of Failure Phenomena in Rock Engineering, 759-765.

Nguyen, V.U., and Chowdhurym R.N., 1985. “Simulation for Risk Analysis with
Correlated Variables”, Geotechnique, 35.

Priest, S.D., and Brown, E.T., 1983. Probabilistic Stability Analysis of Variable

Rock Slopes, Trans. Instn. Min. Metal., 92.

Rosenbleuth, E., 1975. “Point Estimates for Probability Moments”, USA Proc. Nat.
Acad. Sci., 70 (10).

109



Rosenbleuth, E., 1981. “Two Point Estimates in Probabilities”, Applied
Mathematical Modeling, 5.

Shinozuka, M., 1983. “Basic Analysis of Structural Safety”, J. of Structural
Division, ASCE, Vol. No. 3, 109.

USAGE (U.S. Army Corps of Engineers) (1999) document, “ETL 1110-2-556,
Risk-based analysis in geotechnical engineering for support of planning studies”,

Appendix A, pages All and A12. http://www.usace.army.mil/publications/eng-tech-

ltrs/etl-ew.html, (Retrieved January 15, 2007).

Wawersik W.R. and Fairhurst C., 1970. “A study of brittle rock fracture in
laboratory compression experiments”. Int. J Rock Mech. Min. Sci., 7, pp. 561-575.

Weisstein, Eric W., 2004. "Uniform Distribution." From MathWorld—A wolfram
web resource.http://mathworld.wolfram.com/UniformDistribution.html, (Retrieved

March 23, 2007).

Weisstein, Eric W., 2005. "Triangular Distribution." From MathWorld--A Wolfram
web resource.http://mathworld.wolfram.com/TriangularDistribution.html, (Retrieved

March 23, 2007).

Weisstein, Eric W., 2005. "Triangular Distribution." From MathWorld--A Wolfram
web resource. http://reference.wolfram.com/mathematica/ref/TriangularDistribution.

html, (Retrieved March 23, 2007).

110



APPENDIX A

PLANE SLOPE ANALYZER (COULOMB)

A B € D E F G H J K L I
19 ki 2 Y (Dip of slope surface in (radians)
20 ‘§ :";’ Y, |Dip of discontmuity plane i (radians)
21 SE | H [Slopsheight (m)
22 o Z  |Tension crack depth from the crest (m)
23

(73] . . . 3
24| Y Uit weight of rock m (fonfm™)
25 g_ 8 E” Ve (Unit weight of water in (tonfm3)

= 2

% S| 25| C |Cohesion of the jint in (onfu’)
27 =q Zw  |Height water in tension crack (m)
28 tan@ |Tanganet of the fchon angle of the jomt in {radians)
29 StDev Standard dewation of the respective 24 (calculated m lab using the feld data)
a0 Mean Iean values of the respective Xi (calculated i lab usimg the field data)
31 Min & Max |WNinimum and mammum values of the parameters 34 (calculated in lab uzsing the field data)
ER
| Fs Factor of safety
34 B Reliability indes
3 E A Area of the shding surface for the rock block m (m2fm)
3 g_ U Uplft force due to pressure on the shding surface m (ton/m)
37 ‘5 v Force due to water pressure i the tension crack i (ton/m)
BO W Weight of shding block m {fon/m)
39 |.l" and ¢" |Mean and standard deviation, respectively,of the equivalent normal distribution for =
40 P(Failure) |Failure probability of the considered slope
Y
42 Assumptions 1
43

44 Instruction 1

AE
H 4 M \Deﬁnitions and Details,( Input & Output / |1|

Figure A.1 Plane Slope Analyzer (Coulomb) definitions and details worksheet (1)
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palelclo [ e F [ 6 [ A [ 1 [ J ] K L] M]N]
ﬁ Assumptions [ ‘For simplicity the variables are assumed to be uncorrelated |
44 Instruction
45
a5 For each case;
47| 1.Choose the required distribution for each variable, When you do that the system
48] will calculate the corresponding " pN" and "oN".
143 2. Start with xvalues = mean values (which means that you should copy the values
% of the "xi initial values" column and past them in the "x" column (make sure that you
=1 choose "paste special " then click "valuies" then "ok" while pasting the values in "x"
= column),
|54 3. Invoke the solver tool. Then make sure that in the dialogue box the B cell is set
| 66 | to value equal to minimum.
156 4, Press "Sofve" to get the minimum value of B.
% 5. You can get answer, sensitivity, and limits reports if you select them,
=1 6. Press "ok " after solving.
N 7. Close the spreadsheet and press no when you are asked to save the changes.
|61 (Make sure that you record all the data required before closing the spreadsheet),
B2
=
W 4 » M’ Definitions and Details { Input & Qutput / <

Figure A.2 Plane Slope Analyzer (Coulomb) definitions and details worksheet (2)

A B C D E F G H J K L i M

1 INPUTS OUTPUTS

2

3 Distribution Symbol | paral | para2 M ¥; initial values| X " o ()K)z
farget to input

4 i the values of

5 p {wf, wp, and
tand, ) in

8 € RADIANS.

7 tang LUse the

g 2 converter
below.

g

10

11

2| [ y [ ow | 7 ] [ A [ v v [w]

13 [

15 |% initial values = IF(B="Normal",D IF(E="Lognarmal",D IF(E="Unper Triangular" (D+2"E)/3 IF{B="Lawer

16 || Triangular” (2"D+E)3 (D+E)2]) Fixl
17 || ooy column "X ozl values™ and paste by clicking "Paste Special/ values” in column x B

15 " = Equivalenttlormal(B.D:E K,1) Final §
19 | o™ = EquivalentMarmal(B,0:E K 2) Pifailure)

20 | (K = (K-(LIP2/(M)2)
21 |A = (B13-E137(1/SIN]E)

72| U = 0.5° D13 KEE13-E13(1/SIN]S)

73 |V = 0.5°D13%(KaY2)

24 | W = 0.57C137(B1 32701 - (131 302 (L TAN(S)- (L TAN(4))
28 | F(x) = ((KEKIF)+{M T (COS(RE-L1 3- (W1 TSINGKE) PRI TS IN(KE]+ M1 TCOS(KE)

p = SQRT(SUMNA: NE))

29 I The cells below: paral, para2, H, y, y, and Z do not contain formulas

Final p = IF(M1758.1,8.1,M17)
27 | Pifailure) = 1-NORMSDIST(MIS)

W 4+ m|% Definitions and Details

3.Input & Output / [« |

Figure A.3 Plane Slope Analyzer (Coulomb) input & output worksheet
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APPENDIX B

THE USER DEFINED CODE IN THE DEVELOPED SPREADSHEETS

Function EquivalentNormal(DistributionName, paralist, X, code)

del =0.1

paral = paralist(1): para2 = paralist(2)

codel = (uN): code2 = (sigmalN)

Select Case UCase(Trim(DistributionName))

Case "NORMAL": If code = 1 Then EquivalentNormal = paral
If code = 2 Then EquivalentNormal = para2

Case "UNIFORM": Min = paral: Max = para2

If x <= Min Then x = Min + del

If x >= Max Then x = Max - del

If Min < x < Max Then CDF = (x - Min) / (Max - Min): pdf = 1 / (Max - Min)
EquivalentNormal = EquivalentTransformed(x, CDF, pdf, code)

Case "SYMMETRIC TRIANGULAR":
Min = paral: Max = para2
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u = (Min + Max) / 2

If x <= Min Then x = Min + del

If x >= Max Then x = Max - del

If Min < x <= Then CDF = (2 * ((x - Min) * 2)) / ((Max - Min) * 2): pdf =4 * (x -
Min) / ((Max - Min) * 2)

If u <x <Max Then CDF =1 - ((2 * (Max - x) * 2)) / (Max - Min) " 2)): pdf =4 *
(Max - x) / (Max - Min) " 2)

EquivalentNormal = EquivalentTransformed(x, CDF, pdf, code)

Case "UPPER TRIANGULAR":

Min = paral: Max = para2

If x <= Min Then x = Min + del

If x >= Max Then x = Max - del

If Min < x < Max Then CDF = ((x - Min) A 2) / ((Max - Min) A 2): pdf = (2 * (x -
Min)) / (Max - Min) " 2)

EquivalentNormal = EquivalentTransformed(x, CDF, pdf, code)

Case "LOWER TRIANGULAR":

Min = paral: Max = para2

If x <= Min Then x = Min + del

If x >= Max Then x = Max - del

If Min < x < Max Then CDF =1 - ((Max - x) A 2) / (Max - Min) * 2)): pdf = (2 *
(Max - x)) / (Max - Min) " 2)

EquivalentNormal = EquivalentTransformed(x, CDF, pdf, code)

Case "LOGNORMAL":

If x < del Then x = del

Lamda = Log(paral) - 0.5 * Log(1 + (para2 / paral) * 2)

If code = 1 Then EquivalentNormal = x * (1 - Log(x) + Lamda)
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If code = 2 Then EquivalentNormal = x * Sqr(Log(1 + (para2 / paral) * 2))

End Select

End Function

Function EquivalentTransformed(x, CDF, pdf, code)

delta=10"-16

If CDF <= delta Then CDF = delta

If CDF >=1 - delta Then CDF =1 - delta

EquivalentSigma = Application.NormDist(Application.NormSInv(CDF), 0, 1, False)
/ pdf

If EquivalentSigma < 0.000001 Then EquivalentSigma = 0.000001

If code = 1 Then EquivalentTransformed = x - EquivalentSigma *
(Application.NormSInv(CDF))

If code = 2 Then EquivalentTransformed = EquivalentSigma

End Function

Note

The word “Application” in the code above stands for “Excel”.
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APPENDIX C

PLANE SLOPE ANALYZER (BARTON BANDIS)

A B € D E F G H J K L
21 E o Y |Dip of slope surface i (radians)
22 § g Y, [Dip of discontinuity plane in (radians)
23 SE | H |Slope height (m)
24 v e Z  |Tenston crack depth from the crest (m)
25
% 0 y  [Unit weight of rock in (ton/m-)
27 E =u Vw  |Unit weight of water in (tonfmS)
28 g' % % Zw  |Height water in tension crack (i)
il R § g 0  |Basic friction angles of the joint in {radians)
30 22 [IRC [Toint roughness coefficient (dimensionless)
31 JCS  |Jomt wall compressive strength (tonfmg)
32 StDev Standard deviation of the respective 34 (caleulated i lab using the feld data)
33 Mean Mean values of the respective 30 (calculated m lab using the feld data)
34 Min & Max |Mintmum and masmum values of the parameters 3 {calculated i lab using the feld data)
35
36 Fs Factor of safety
37 B Reliability index
3| ¢p A Area of the shding surface for the rock block in (mgfm)
39 "5 U Uplit force due to pressure on the shiding surface (tonfm)
40 ‘E. V Force due to water prezsure i the tension crack (tonfm)
4] 3 w Weight of sliding block (fon/m)
42 0 |_|" and o" [Mean and standard deviation, respectively,of the equivalent normal distribution for
43 ;] {JRC Log (JCSia, )+ o}
44 P(Failure) |Failure probability of the given slope
45
T peiiinss i Details { Tt BOURE 4l

Figure C.1 Plane Slope Analyzer (Barton Bandis) definitions and details
worksheet (1)
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Al B | € o | E | F | & | H | 1t | 4 | K | L Mo N
43| [ (TEC (Log (JCSion )+ ¢ }
44 P(Failure) |Failure probability of the given slope
45
jg =IO ﬂ.‘——_—_ﬂ_—_|F0r simplicity the variables are assumed to be uncorrelated
43 Instruction \
| 43
50 For each case;
51 1.Choose the required distribution for each variable. When you do that the system
52| will calculate the corresponding " pN"and " oN",
63 | 2. Start with xvalues = mean values (which means that you should copy the values
| 54 | of the "xi initial values" column and past them in the "x" column (make sure that
% you choose "paste special "' then click "vafues" then "ok " while pasting the values
Gl in"" column).
== 3. Invoke the solver tool. Then make sure that in the dialogue box the B cell is set
59| to value equal to minimum.,
B0 | 4. Press "Sofve" to get the minimum value of B.
% 5. You can get answer, sensitivity, and limits reports if you select them.
31 6. Press "ok" after solving,
E 7. Close the spreadsheet and press no when you are asked to save the changes.
65 | (Make sure that you record all the data required before closing the spreadsheet).
B
77 |

Figure C.2 Plane Slope Analyzer (Barton Bandis) definitions and details

worksheet (2)

A B © D E F G H J K L ] i
1 INPUTS QUTPUTS
2

At DO NOT A-fa N N 2

3 Distribution Symbol | paral para2 e o st e x; initial values X " o ()K)
4 hil values of (yf,
5 p ypp, and @) in
I @ RADIANS.
i 2y Use the converter
i JRC bl o
9 JCS
10
11 H y Vo 7 A [ v T v [ w
12 | | |

13 Hx; initial values = IF{B="Marmal",0 IF(E="Lognarmal" 0 IF(B="Upper Triangular" (D+2"E)3 IF (B="Lower
14 M Triangular’ (2*D+E)/3, [D+EV2)
15 1" Comy" column "xi inttial values" and paste by clicking "Paste Special/ values" in column x

18 [ |uM = EquivalentMormal(B D:E K1) Tt

17 all= EquivalentMormal{B,0:E K.2) 8
QK = (K-(LP24((My2)

18 1 = m13E1301/SINGE) LaNE;

19 HlU = 0.5 D137 (B13-E13){1/SINGE)

20y = 05 DIFKTYD) e

21 Flw = 0.5*C13%(B13)25((1- (E1 /B2 TANGS))- (1 TAN(4)) il

22 H g0 = (N1 35COS(5))- L13-(M1 FSINGEKIE Final f

23 Mo, = KB*(LOG10{DY/F(M1G<=0.1016 MIE)))+DEGREES(KE) Pifailure)

24 | [tana; = TANRADIANS[M17))

F(x) = (MIB*WITE)AIM1 I7SINEY) HW1F*COS[EAK13)

B = SORT{SUMNA MY

28 HlFinal p = IF(M21=8.1,8.1;M21)

27 HIPfailure) = 1-NORMSDIST(M2Z)

The cells below: paral, para2, H, y, vy, and Z do not contain formolas
W 4 » M[\_ Definitions and Details 3 Input & Output / [4] |

Figure C.3 Plane Slope Analyzer (Barton Bandis) input & output worksheet
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APPENDIX D

WEDGE SLOPE ANALYZER (COULOMB)

A B € D E F G H | J K
29 T £ | Pus 84 P2 85 |Toint ottentation angles (they are obtained from fizure. 1 above) (in radians)
an % “’;’ (] Tnclination of the slope face (in degrees)
k]l g g 0] Inclnation of the upper ground surface (i degrees)
g2 oe h Height of the wedge (1)
3B
% @ y Tnit weight of rock in ki
¥ E 30 Sy Spectic density of rock (dimensionless)
ks g— <3 Cyand Cy  |Cohesion of joints 1 and 2, respectively (in kPa)
-] - -
— |55 e and G Normalized water pressure parameters for jomts 1 and 2, respectively
]
kil =4 ! ¢ {dimensionless and based on pyramidal water pressure conditions)
B tang; and tang; | Tanganet of the friction angle of joints 1 and 2, respectively (in radians)
3 StDey Standard dewation of the respective X1 (calculated i lab using the feld data)
40 Mean Mean values of the respectve 21 (caloulated i lab using the feld data)
41 Min & Max Minirnun and mazimum valies of the parameters 3 (calelated in lab using the field data)
42
43 2 Fs Factor of safety
4 g_ p Reliability index
)
45| 3 |.I" and o" Mean and standard deviation, respectively,of the equivalent normal distribution for 33
4 o Py(Failure) Total failure probability of the considered wedge slope
47
48
49
a0 Assumptions W
a1
a2 Instruction W
£3
W 4 b M]\Definitions and Details / Input & Output / BPlane Failre £ Plane 1 Falure { Plane 2 Falure { Floats { Summary / <

Figure D.1 Wedge Slope Analyzer (Coulomb) definitions and details worksheet (1)
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Al B | ¢ | b | E | F | 66 | H | I | J | K | L
48
49| For simplicity the following assumptions have been
50 made:
a1 Assumptions T 1. The variables are assumed to be uncorrelated
52 2.C1=C2
A3 Instruction 3. Gwl= Gw?
% T\ 4, tan g1 = tan @2
=1
57|
3
55| |For each case;
60| |1.Choose the required distribution for each variable. When you do that the system will calculate the
% corresponding " "' " and """,
E3| |2 Start with xvalues = mean values (which means that you should copy the values of the "xi initial
| |values" column and past them in the "x" column (make sure that you choose "paste special "' then click
% |"valuas" then "ok” while pasting the values in "x" column).
66 | |3. Go to "BiPlane Faifure" worksheet and do step 2 again. At this stage the calculated “Fs” value
67| |corresponds to that at mean values of parameters,
B8 | 14, Invoke the solver tool. Then make sure that in the dialogue box the B cell is set to value equal to
% minimurm.
711 |5 Press "Sofve" to get the minimum value of B.
721 |6, You can get answer, sensitivity, and limits reports if you select them.
73| |7. Press "ok" after solving.
74118, Go to the following three worksheets that corrospond to the other modes of failure and repeat steps 2-
78117 for each of them.
% 9. Go to "Summary" worksheet to find the probability of failure for the complete system (Wedge Slope).
Za| |10. Close the spreadsheet and press no when you are asked to save the changes. (Make sure that you
73| |record all the data required before closing the spreadsheet).
e " Definitions and Details { Input & Output £ BiPlane Falure £ Plane 1 Failre £ Plane 2 Failure £ Floats  Summary / | ¢

Figure D.2 Wedge Slope Analyzer (Coulomb) definitions and details worksheet (2)

A B C 0 | E [ F | & [ K L]

1 INPUTS OUTPUTS

2
3] Distribution Symbol | paral para2 ¥; initial values X " a"

4 [ DO NOT forget to
? 5, input the values
&1 p of (1, P2, 8, Bz,
] 2 and tang, ) in
7] 5, RADIANS
8| tan o,
g Gw; Use the converter
] below
10 Cq
a1
12 xi initial values = IF(B="Mormal" D IF{B="Lognormal" D IF{B="Upper
EED Triangular", (D+2*E)3 IF(B="Lower Triangular" (2*D+E)/3,[D+EV2)))
14
"Copy" column "xi initial values" and paste by clicking "Paste
15 a
o Barail  Para2 Special [ values” in colurn "x"

18 Q Normal distribution Mean StDev

17 h Lognorma distribution  Mean StDey N '

18 y Uniform distribution Max Min " Equvalenthormal(8,0.E K1)

19 Sy Triangular distribution  Max Iin o™ = EquivalenthomalB,D:E K.2)

20
21 B Tse this conwerter to convert the degrees into Converter The cells below: paral, para2, a, 2, y, and Sy do not contain
221 Niadians. Enter the value in the left bax to get th formulas
231 Ntadians in the right one of the caonverter.
24 F I Remember o copy the value and when pasting
25 | it press paste special / values [/ ok.
28|
il
2
2l
W 4 » W\ Definitions and Detals % Input & Output / BFlane Falre £ Plane 1 Falure £ Plane 2 Falure £ Floats / Surmmary / <

Figure D.3 Wedge Slope Analyzer (Coulomb) input & output worksheet
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LT = T B O = 7 I T S YU R

=]

A B G 5] E F G H
The Variables (Xj | x T oM OKP
B
8
[
8;
tan -
Gw,
¢

"Copy" column "xi initial values” in "Input & Output” warksheet and paste by clicking
"Paste Special/ values" in column "x"

W = EquivalentMormal(Input & Output!B,Input & Output1D:E.C.1)

o= EquivalentMarmal{lnput & Qutput'B,Input & OutputDE C 2)

(= (C-OpvE=2

Sin¥ = ABS{(1-(SIN{CATSINCE* C OS(CI+0E)+COS(CA) COS(CE) 210 .4

k = (1-(TANRADIANSInput & OutputTE16})/TANGRADIANS (Input & Output 51

TANRADIANE (Input & Cutput!B1EAID))

H = J3%Input & Output'B17

£ = DEGREES{ATANDY)

cotdy = 1/TANC4)

cotd; = 1/TAN(CE)

cota = TTANRADIANSInput & Output1B15))

tang = [SIN{CI+HCE)SINGG I IB+SIN(CETIT)

cotg = 1110

ag = (L2/ISINCI+CESIMCATSIN(CET 2 (11-19))
Fs = (MU CTIHMIZTCT T Input & Dutput B9 (MECI+MT CEN Input &
OutputB19%Input & Cutput!B18%Input & Output'B17)
fi = SQRTISUMFI:FI)

| J K L b N
Sin¥ a
K a
H a
£
b,
cotd, b,
cotd, abG,
cota abG,
tane
cote Ty
0y
Fs
‘Final B| | B
a1 = ([SIN{CEY"J7)-(COS(CE COS(CI+CEI U2 S INICI+CE))
ap = ([SIN{C4)"J8)- (COS(CA COS(CI+CEN U2 S INICI+CEY

by = MZSINICATSINGCE)
by = M2SIN(CIFSING)
abGy = (M3-MECE nput &

Output'1B19)-(ME*CE]))
Trz =Input & Output1B18%In
Output1B19)-(M7*Ca))
Final fi = IF(M15=8.1,8.1;M

abGy = MA-M7*CB/Input & Output1B19
Tny = Input & Output!B18%Input & Output B 7 (M3 Input &

Clutput1B19)

put & Output!B17* (M4 Input &

15)

M 4 » W]y Defintions and Detais 4 Input & Oukput ) BiPlane Failure  Plane L Failre / Plane 2 Failore [/ Floats £ Summary [/

Kl

Figure D.4 Wedge Slope Analyzer (Coulomb) Biplane failure worksheet

wo|m @ ;e W

16
17
jls]
19
20
21
22
23
24
25
26

M4 r M[',  Definitions and Details

1=

B C o E F G H

The Variables (X;) X I ol oK)
B4

[ J K L i
Sin¥ ag
K ay
H a
€ 74
cotd, b,
cotd; b,
cota abGZ,
tane abG;
cote
Tt
Fs
|Fina| B| | B

Z = (COS(C4)"COS(CE))+HSINCA) SIN(CE"COS(C3+Ca))

Output1B19)-M4JE))

M) I2)2))

The rest are the same as those of the Biplane Failure worksheet.

abGZy = ((M3-(M7*CE) nut & OutputIB197)- ((ME*CEWInput & OutputlB19)-M4J IS
Gt = Input & OutputB15™Input & OutputIB1 7 {(M3-(MFCE) Input 8 Output!B15))-((ME"CE) Input &

Fs = ((M12°C71+E M0 Input & Output!B1E*Input & OutputIB17*SQRTH +{(ME*CEW Input & Output1B18)-

A Input & output £ EiFlane Falure ) Plane 1 Failure { Plane 2 Faiure / Floats £ Summary /

Figure D.5 Wedge Slope Analyzer (Coulomb) Plane 1 failure worksheet
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7= (COS(C4) COS(CE)HSINC A SINCEF COS(CI+CEY)

abGZ, = {(W4)-(MEPCEY Input & Output!B19Y)- (M7 *CEN Input 8 Output 1B S)MEIME)

Gz = Input & QutputiE1EInput & Output1B17*(Md-((MEFCEW Inaut & OutputIB 9)-((M7* CE Input &
Qutput!B19)-MI M)

Fs = ({1 2C7)+I"ME*CII(Input & DutputlB18*Input & OutputIB17*SART( +{(M7*CEY Input 2 OutputIB19)-
MEJ2p2))

The rest are the same as those of the Biplane Failure worksheet.

Plane 2 Failure

Figure D.6 Wedge Slope Analyzer (Coulomb) Plane 2 failure worksheet

Z = (COS(C4"COS(CE))+HSINCA™SINCE* COS(C3+Ca))

abGZy = ((M3)-((M77CB) Input & Output!B19)-(((MEB"CE) Input & Output!B19)-M4™ M
abGZ; = ((M4)-((ME*CEY Input & Qutput1B19-(([(M7*CE Input & Output!B190-M3)™ha)
0t = Input & Output!B18%Input & Output1B175((M3"Input & Output'|B19)-(M7*CE))

Oz = Tnput & Output!B18Input & Output!B17*((M4™Input & Output1B19)-(ME*CE))

Fs = ((M1Z7CT)H(M13"C7)H3™Input & Cutput!B1F{MECI)+MTCA)))1/Input & OutputB19™Input 8.
Dutput'B18%nput & Output'B17)

Final p = IF(M16>8.1;8.1;M18)

The rest are the same as those of the Biplane Failure worksheet.

Figure D.7 Wedge Slope Analyzer (Coulomb) Floats worksheet
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AB ¢ | 0 [e] F [ #H [ 1 | J [K[ L [ M ]| N 0]
1
% ‘ The summary of the three failure modes and the probability of the total slope failure ‘
= = Sliding on hoth planes:
5 \Slldlng on hoth planes. Fs Fs = BiPlane Failurz!h1d
6 B f = 'BiPlane Failurel)15
ra P(failure) Pffailure) = 1-NORMSDIST(E)
8
2 ‘S'Idlng along plane 1 Only' F The smaller the f, the | |Sliding along plane 1 only:
|0 ﬁ mote critical is the failure | |Fs = Flane 1 Failure’Mi4
ail P(failure) wode. Ths, the smallest f="Plane 1 Failuel1
12| g ﬂ ﬂ 0 pifailure) = 1-NOAMSDISTING)
oA . Anong the three 1s

1—4 \Slldlng along plane 2 only: F; corresponding to the most | |Sliding along plane 2 only:
4] " 0 Fs = Plane 2 Failuret14

16 P(failure) antcal fawe mode. | 1, o et
3 P(failure) = 1-NORMSDIST{14)
1] [Floats : Fs Floats:
8] B Fs = FloatsIM15

19 P(failure) b= Floatslis
Bl P{failure) = 1-NORMSDIST18)
2|
2|
4] |The total failure probability of this wedge slope is within the range: |

24

% | <|PyFailure) < |

%
Tp | [FTT (<015 F(15<03 119 15) JF{F1<013,108 1133 F (7015 JF (15<119 113 115) F (7<119 12 7)) P(Failure) < 1-(1-7"(1-1)°(1-15)(1-13)
K
)

W 4 b W[\ Definitions and Detals / Input & Qutput /. BiPlane Falure /{ Plane | Falwre / Plane 2 Falure { Floats ) Summary

Figure D.8 Wedge Slope Analyzer (Coulomb) summary worksheet
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APPENDIX E

WEDGE SLOPE ANALYZER (BARTON BANDIS)

Figure E.1 Wedge Slope Analyzer (Barton Bandis) definitions and details worksheet

Al B ¢ o | E | F | & | H | 1 o0l k|

| 28] E E B1. 84, Por B Tomt orientation angles (they are obtained from figure. 1 above) (in racians)
130 ‘E g a Inclination of the slope face (in degrees)

E® e o :
Kl sz Q Inclination of the upper ground surface (in degrees)
32 o e h Height of the wedge (m)
EEl
4 @ y Uit weight of rock m M
| [
135 ﬂ g Sy Spectfic density of rock (dimensionless)
36 g_ E JRC  (Tomt roughness coefficient (dimensionless)
| =
Tle| = JCS Jomt wall compressive strength m (kPa)

= E Gwr and Gu MNotmalized water pressure parameters for joints 1 and &, respectively

s g 1 ‘ (dimensiorless and based on pyramdal water pressure conditions)
[ | X}
kL] s 0y and @; |Basic fiiction angle of joints 1 and 2, respectively (in radians)
140 StDev Standard deviation of the respective 20 (calculated i lab using the feld data)
|41 Mean Mean values of the respective Xi (caloulated in lab using the field data)
42 Min & Max  |Minimum and mazimum valies of the parameters X (calculated in lab using the field data)
43
|44 " Fs Factor of safety
48] "5 B Reliability index
|46 | B‘ |.IN and ¢" Iean and standard deviation, respectively,of the equivalent normal distribution for =
i 8 8 (TRC (Log (8o, )+ 0 )
48 Py(Failure) Total failure probability of the given wedge slope
49
50 For simplicity the Following assumptions hawe been made:
51 Assumptions T 1. the variables are assumed to be uncorrelated

== : 2. Gil= G2
52 3.6l = g2
53 Tnstruction
W m " Definitions and Details / Input & Output / Blane Faiure / Plane 1 Faiure { Plane 2 Falure /{ Floats £ Summary /
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A | 8 | ¢ | b | E | F | 6 | H [ 4 | K | L | ™
1 INPUTS OUTPUTS
2
| 3| Distribution Symbel | paral para2 tial values X p" o
4
(I - DO NOT forget to
15| 5 input the values of
|6 | Bz (B1. Bz, 81, 82, 1) in
7 -5 RADIANS
g8 @
5 Gw, Use the converter
— below.
|10 JRC
11 JCS
12
13 a
1 a Normal distribution % % xi initial values = [F{B="Narmal",D IF{B="Lognormal",D IF{B="Upper
I h e e SiDey Triangular” (D+2*E)i3 IF(B="Lower Triangular" (Z*D+E)/3,(D+EN2))))
16 ¥ #".Ifonnldlstlr.::l!}w?. Max mm "Copy" column "xi initial values" and paste by clicking "Paste
17 Sy riangular distribution ax in Special f vaiues” in colurn "x"
18 "
F p" = EquivalentMarmal(B,D:E K1)
(20| Use this converter to convert the degrees into Converter N .
1] radians. Enter the value in the left box to get tt 0" = EquivalentNormal(B,0:E K.2)
— radiang in the right one of the converter ) ) - )
|22 | Remember 10 copy the value and when pasting The cells below: paral, para2, a, (}, y, and Sy do not contain
53 it press paste special [ values [ ok, formulas.
3
|25 |
[25]
[27]

=

L]

« » M)y Defiritions and Detalls % Input & Output / BRlane Falure { Plane 1 Falure / Plane 2 Falure { Floats 4 Summary /

3

Figure E.2 Wedge Slope Analyzer (Barton Bandis) input & output worksheet

W m |~ m MW e =

o

A B C 0 E F G H J K L Wl N 0
The Variables (X) [xvalues| 1" 0" ()2 Sin¥ a Oy

ﬁﬂ K N 91
& H a tan 84
B2 |3
0 b, L%}
B4 cotd, b 64
Gw; cotd, abG, tan 8,

JRC cota abG,

JCS tane Fs

cote | Final p | | B

"Copy" column "xi initial values” in "Input & Output” worksheet and paste by clicking "Paste Special/ values"
in column "x"

p = EquivalentMarmal{input & Output'B, nput & OutputiD:E,C,1)

o" = EquivalentMormal(Input & Qutput!B,Input & OutputID:E,C2)

()2 = (C-Dp /B2

Sin'¥ = ABS((1-(SIN(C3)*SIN(CE) COS(C2+C4)+COS(C3F COS(CE)r2r0.5)

K = [1-(TANRADIANS(Input & Output1B14))TAM(RADIAMNSInput & OutputIB13)01-TAN(RADIANS Input &
Output 1B147740)

cota = 1/TAN((RADIANS(Input & OutputB13)))

tang = (SINCZ+CA)SINC2)7 +3IN(CAT7IEY)

ag = (IT(SINC2HCASINICISINCEA2T(110-18))

ap = ((SIN(CEYIB)-([COS(CE COST2+C4))) (117 SINC2+C4Y)

ap = ([SIN(CI)I7)-(COS(CIFCOS(CI+CANIN*SINIC2+CAY)

Fs = ({0103 +O5*07 )/ (Input & Output!B17"Input & Output!B16%nput & Output1B15)

f = SORTSUM(FZ:FE)

g = Input & Output!B16%Input & Output!B15*((L2%Input & Output'B17)-(L5*CTY)

Oz = Input & Output!B16%Input & Output'B15*((L3%Input & Output'BA7)-(LE*CTY)

£ = DEGREES(ATAN(]E))

cotdy = 1/TAN(CF)

cotd; = 1/TAN(CE)

cote = 1/19

by = LT*SIN{C4)*3IN(CE)

b = LT*SIN{CZ)"3IN(C3)

abGy = (L2-L5*C7/Input & Output'1B17)

abG; = (L3-LB7CY/Input & OutputB17)

H = [2"Input & Output'B15

© =COMLOGIOCAAIR (D1 <=0.10%16, 0100+
DEGREES(CE)

tan 8 = TAMRADIANS(OZ)

8y =CAYLOG10{CY/IF(05<=0.10~16,058)111+
DEGREES(CE)

tan &, = TANRADIANZ(06])

Final f = IF(010=8.1;8.1,010)

4

» W[5 Definitions and Details £ Inpuk & Output % BiPlane Failure / Plane | Failore £ Plane 2 Falure £ Floats £ Summary /

[4]

Figure E.3 Wedge Slope Analyzer (Barton Bandis) Biplane failure worksheet
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A E € D E F G H J K L N 0
The Variables (X;) xvalues‘ |JN a" (K)P Sin¥ ag [ ]

B K a CH
B H a; tan 84
Be £ z
B;
0y cotd, by

Gw, cotd, b

JRC cota abGZ,

JCS tane abG, Fs

cote B

Final p

7 = (COBCIFCOSCE+EINTIPSINCEFCOSC2+C4))
ahGZy = ((LZF{LECT) Input & Output!BI7))-(L7=C7W nput & OutputB17)-L3pL4

13
14 Trt =Input & Output'B15%Input & Output BTS2 (LE*CT) Input & Output1B173)-(([((L7"C7) Input & Output!B17)-L3)7L4Y)
84 = C7((LOGTO(CH/(IF(01==0.10"16,01))))+DEGREESICE)
15 |ltan 6, = TANRADIANS(O2))
16 |[Fs = (O1%03)/(Input & Output!B16"Input & Output!BIS*SORTI+H{((L7*C7) Input & Output1B17)-L3)"1)2))
17
18 ||The rest are the same as those of the Biplane Failure worksheet.
19
20
21
22
23
24
25
I:C< » w [\ Definitions and Detals £ Input & Output / EiPlane Faiure ) Plane 1 Failure / Plane 2 Falure f Floats £ Summary / ‘4 ‘
Figure E.4 Wedge Slope Analyzer (Barton Bandis) Plane 1 failure worksheet

A B © [B] E F G H J K L 'l 0]
1 The Variables (X [xvalues| n" o (k) siny ag 0,2
2 B K ay B
3 &, H a; tan 2
4 B: £ z
<] ;
B [« cotd,; by
7 Gw;, cotd, b,
g JRC cota abhG;
9 JCS tane abGZ; Fs
10 cote B
11 Final g
12| [7 = (COS(CITCOSCE+HSINCITSINCECOSC2+CA))
13| |abGZz = (LA (L7*CT) Input & OutputtB17))-(((LECTWInput & OutputB17)-L2)*L4)
1 @nz = 'Input & Output!B16%Input & OutputB15%((L3-((L7*C7 ) Input & Output1B177-((((LE"C7) nput & Output1B17)-L2)"L4))

8, = CE{(LOGIDES/IF (01 <=0.10%16,0131))+DEGREES(CE)

15 tan e, = TAM(RADIANS(C2Y)
16| [Fs = (01"03)/{Input & Qutput!B1E=Input & OutputIB15*SART(HELETCT) nput & Output|B173-L271 123
17
18 | |The rest are the same as those of the Biplane Failure worksheet.
19
20
21
22
23
24
25

4 4 » w[\_ Definitions and Details 4 Input & Output # BiFlane Failure £ Plane 1 Fallore % Plane 2 Failure / Floats £/ Summary /

[«

Figure E.5 Wedge Slope Analyzer (Barton Bandis) Plane 2 failure worksheet
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A B C D E F [ H K L M 1 0
1 The Variables (X) |xvalues| " a" (k)2 Sin¥ a i
2 B El 9
3 54 H a tan &,
4 B: £ z
& &; Ou2
g [+ M cotd, b, 65
7 Gw; cotd, by tan 85
a JRC cota abGZ,
9 JCS tane ahGZ; Fs
10 cote [
11 ‘ Final g | |

12 Z = [COS(CIPCOS(CENHSINICI*SIN(CE COS(C2+C4)

abGZ; = ((L2)-(LE*C7) Input & OutputB17))-((L7*C7) nput & Output'B17)-L3)"L4
abGZz = ((L3)-(L7*C7) Input & OutputB17))-(([(LE*CT)W Input & CutputB17)-L25L4)

14 0t = Input & Output!B16%Input & Output!B155(L2"Input & Cutput1B17HLE*CT))

15 8¢ = CEM(LOGIOICY/(F(01<=0.10~16,01))+DEGREES(CE)

161 ltan e, = TAN(RADIANS(0Z))

Oz = Input & Output1B16%Input & Output!B15*((L3*Input & OutputB17)-(L7=C7))

19 8¢ = CEM(LOGIOICY/(F(05<=0.10~16,05))+DEGREES(CE)

20 tan ©; = TAN(RADIANS(08))

21 Fs = ({01 03)+{05*07))(Input & Output'B17*Input & Output!B16¥Input & OutputB15)

The rest are the same as those of the Biplane Failure worksheet.

W 4 » m]\_ Definitions and Detals { Input & Output £ BiPlane Failure { Plane L Failure 4 Plane 2 Failure % Floats 4 Summary

Figure E.6 Wedge Slope Analyzer (Barton Bandis) Floats worksheet

A B € D E F G H | J K L 1] N 0 P
1
g ‘ The summary of the three failure modes and the probability of the total slope failure
4
A o Sliding on both planes:
5 [sliding on both planes: Fs L L
6 B f = BiFlane FailurelL10
7 P(failure) Pffailure) = 1-NCRMSDIST(E)
g
] |sliding along plane 1 only: Fs The smaller the p, the gliﬂilllFﬁ;]leo?i ;:S:SNI1 ;nly:
10 p more critical is the failure B = Plane 1 Failure'!L11
11 P(failure) mode. Thus, the smallest B| | P(failure) = 1-NORMSDIST(0)
= P Pt i e Sliding along plane 2 only:
13 |SI|d|ng along plane 2 only: Fs cort to the most | |Po = Blane 3 Foiure e
14 B entical failure mode. f = 'Plane 2 Failure'L11
15 P(failure) Pf(failure) = 1-NORMSDIST{I14)
16
17 |Floats : Fs Floats :
18 B Fs = Floatsi18
. fi = FloatsIL11
19 P(failure) Pifailure) = 1-NORMSDIST(15)
20
2
22 \The total failure probability of this wedge slope is within the range:
23
24 | |2|Pu(Failure)| <] |
25
26 | [IF(7 <111 IF(1<15 JF(15<119,119,115) JF(11<119,19 1113} JF (7 <115 IF(115<113 13 15) JF {7 <19 13 J73) < P{Failure) £ 1-{{1-7Fy(1-1117(1-15)51-19))
27
28
29

W 4 » w[5_Definitions and Details 4 Input & Output # EiPlane Failore 4 Plane 1 Falure { Flane 2 Fallore f Floats % Summary /

]

Figure E.7 Wedge Slope Analyzer (Barton Bandis) summary worksheet

126




TABLES OF RSULTS FOR PSA (COULOMB)

APPENDIX F

Table F.1 Values of Pf for H=60 m and at 0 m height of water table

Cohesion (kPa)

15

25

35

45

Probability of Slope
Failure (Pf)

0.016

0.002

0.00011

0.000

Table F.2 Values of Pf for H="70 m and at 0 m height of water table

Cohesion (kPa)

15

25

35

45

Probability of Slope
Failure (Pf)

0.02272

0.0041

0.00046

0.00003

Table F.3 Values of Pf for H =80 m and at 0 m height of water table

Cohesion (kPa)

15

25

35

45

Probability of Slope
Failure (Pf)

0.02897

0.007

0.00116

0.00013




Table F.4 Values of Pf for H= 100 m and at 0 m height of water table

Cohesion (kPa)

15

25

35

45

Probability of Slope
Failure (Pf)

0.03877

0.01316

0.00342

0.00068

Table F.5 Values of Pf for H= 60 m and at 10 m height of water table

Cohesion (kPa)

15

25

35

45

Probability of Slope
Failure (Pf)

0.06130

0.01145

0.00205

0.00043

Table F.6 Values of Pf for H="70 m and at 10 m height of water table

Cohesion (kPa)

15

25

35

45

Probability of Slope
Failure (Pf)

0.07741

0.01899

0.00426

0.00101

Table F.7 Values of Pf for H =80 m and at 10 m height of water table

Cohesion (kPa)

15

25

35

45

Probability of Slope
Failure (Pf)

0.09065

0.02694

0.00720

0.00194

Table F.8 Values of Pf for H= 100 m and at 10 m height of water table

Cohesion (kPa)

15

25

35

45

Probability of Slope
Failure (Pf)

0.11020

0.04172

0.01422

0.00468




Table F.9 Values of Pf for H=60 m and at 0 m height of water table

Friction angle (degree)
30 34.99202 36 38
Probability of Slope
Failure (Pf) 0.04885 0.016 0.01246 0.00796

Table F.10 Values of Pf for H =70 m and at O m height of water table

Friction angle (degree)

30

34.99202

36

38

Probability of Slope
Failure (Pf)

0.06762

0.02272

0.01812

0.0116

Table F.11 Values of Pf for H = 80 m and at 0 m height of water table

Friction angle (degree)

30

34.99202

36

38

Probability of Slope
Failure (Pf)

0.08263

0.02897

0.02319

0.0149

Table F.12 Values of Pf for H = 100 m and at O m height of water table

Friction angle (degree)

30

34.99202

36

38

Probability of Slope
Failure (Pf)

0.10321

0.03877

0.03123

0.02022

Table F.13 Values of Pf for H = 60 m and at 10 m height of water table

Friction angle (degree)
30 34.99202 36 38
Probability of Slope
Failure (Pf) 0.18396 0.06130 0.04884 0.031
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Table F.14 Values of Pf for H =70 m and at 10 m height of water table

Friction angle (degree)
30 34.99202 36 38
Probability of Slope
Failure (Pf) 0.22669 0.07741 0.06182 0.03949

Table F.15 Values of Pf for H = 80 m and at 10 m height of water table

Friction angle (degree)

30

34.99202

36

38

Probability of Slope
Failure (Pf)

0.26012

0.09065

0.07254

0.04646

Table F.16 Values of Pf for H =100 m and at 10 m height of water table

Friction angle (degree)
30 34.99202 36 38
Probability of Slope
Failure (Pf) 0.30689 0.11020 0.88480 0.05693
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APPENDIX G

TABLES OF RSULTS FOR PSA (BARTON BANDIS)

Table G.1Values of Pf for H=60 m and at 0 m height of water table

JCS (kPa)
55682.96 | 92804.93 | 129926.90 167048.9
Probability of Slope | ;¢ ¢ 1.16E-6 2.3E-9 0.000
Failure (Pf) ' ' '

Table G.2 Values of Pf for H =70 m and at O m height of water table

JCS (kPa)
55682.96 92804.93 | 129926.90 | 167048.9
Probability of Slope
Failure (Pf) 6.8E-6 18E-6 3E-7 1.1E-12

Table G.3 Values of Pf for H = 80 m and at O m height of water table

JCS (kPa)
55682.96 92804.93 | 129926.90 | 167048.9
Probability of Slope
Failure (Pf) 9.3E-6 2.4E-6 1E-6 5.4E-9
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Table G.4 Values of Pf for H =100 m and at 0 m height of water table

JCS (kPa)
55682.96 92804.93 | 129926.90 | 167048.9
Probability of Slope
Failure (Pf) 1.46E-5 4E-6 1.6E-6 7E-7

Table G.5 Values of Pf for H =60 m and at 10 m height of water table

JCS (kPa)
55682.96 92804.93 | 129926.90 | 167048.9
Probability of Slope
Failure (Pf) 2.78E-5 7.6E-6 3.1E-6 1.5E-6

Table G.6 Values of Pf for H =70 m and at 10 m height of water table

JCS (kPa)
55682.96 92804.93 | 129926.90 | 167048.9
Probability of Slope
Failure (Pf) 3.36E-5 9.31E-6 3.8E-6 1.9E-6

Table G.7 Values of Pf for H =80 m and at 10 m height of water table

JCS (kPa)
55682.96 92804.93 | 129926.90 | 167048.9
Probability of Slope
Failure (Pf) 0.0000399 | 0.0000112 | 0.0000046 | 0.0000023

Table G.8 Values of Pf for H =100 m and at 10 m height of water table

JCS (kPa)
55682.96 92804.93 | 129926.90 | 167048.9
Probability of Slope
Failure (Pf) 0.0000527 | 0.0000150 | 0.0000063 | 0.0000032
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Table G.9 Values of Pf for H =60 m and at 0 m height of water table

Basic Friction angle (degree)

22

26

30

34.99202

Probability of Slope
Failure (Pf)

0.0000116

0.0000080

0.0000060

0.0000050

Table G.10 Values of Pf for H =70 m and at O m height of water table

Basic Friction angle (degree)

22

26

30

34.99202

Probability of Slope
Failure (Pf)

0.0000209

0.0000133

0.0000095

0.0000068

Table G.11 Values of Pf for H = 80 m and at O m height of water table

Basic Friction angle (degree)

22

26

30

34.99202

Probability of Slope
Failure (Pf)

0.0000331

0.0000198

0.0000134

0.0000093

Table G.12 Values of Pf for H= 100 m and at 0 m height of water table

Basic Friction angle (degree)

22

26

30

34.99202

Probability of Slope
Failure (Pf)

0.0000641

0.0000353

0.0000224

0.0000146

Table G.13 Values of Pf for H= 60 m and at 10 m height of water table

Basic Friction angle (degree)

22

26

30

34.99202

Probability of Slope
Failure (Pf)

0.0001300

0.0000696

0.0000435

0.0000278
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Table G.14 Values of Pf for H =70 m and at 10 m height of water table

Basic Friction angle (degree)

22

26

30

34.99202

Probability of Slope
Failure (Pf)

0.0001710

0.0000887

0.0000540

0.0000336

Table G.15 Values of Pf for H =80 m and at 10 m height of water table

Basic Friction angle (degree)

22

26

30

34.99202

Probability of Slope
Failure (Pf)

0.0002180

0.0001100

0.0000655

0.0000399

Table G.16 Values of Pf for H= 100 m and at 10 m height of water table

Basic Friction angle (degree)

22

26

30

34.99202

Probability of Slope
Failure (Pf)

0.0003240

0.0001570

0.0000898

0.0000527
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