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ABSTRACT 

 
 

PROBABILISTIC MODELING OF FAILURE IN ROCK SLOPES 

 
 

Fadlelmula F., Mohamed M.  

M.Sc., Mining Engineering Department 

Supervisor: Prof. Dr. Celal Karpuz 

Co-Supervisor: Assoc. Prof. Dr. H. Ş. Düzgün 

 July 2007, 134 Pages 

  
 

This study presents the results of probabilistic modeling of plane and wedge 

types of slope failures, based on the ”Advance First Order Second Moment 

(AFOSM)” reliability method. In both of those failure types, two different failure 

criteria namely, Coulomb linear and Barton Bandis non-linear failure criteria are 

utilized in the development of the probabilistic models.  

 

Due to the iterative nature of the AFOSM method, analyzing spreadsheets 

have been developed in order to carry out the computations. The developed 

spreadsheets are called “Plane Slope Analyzer (PSA)” and “Wedge Slope Analyzer 

(WSA)”.  

 

The developed probabilistic models and their spreadsheets are verified by 

investigating the affect of rock and slope parameters such as, ground water level, 

slope height, cohesion, friction angle, and joint wall compressive strength (JCS) and 



 v 

their distribution types on the reliability index (β), and probability of slope failure 

(PF).  

 

In this study, different probability distributions are used and the inverse 

transformation formulas of their non-normal variates to their equivalent normal ones 

are developed as well.  

 

In addition, the wedge failure case is also modeled by using system 

reliability approach and then the results of conventional probability of failure and 

the system reliability approach are compared.  

  

 

Keywords: Plane Failure, Wedge Failure, Advance First Order Second Moment 

(AFOSM) Method, Reliability Index, Probability of Slope Failure, System 

Reliability.  
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ÖZ 

 

 
KAYA ŞEV YENİLMELERİNİN OLASILIKSAL MODELLEMESİ  

 
 

Fadlelmula F., Mohamed M. 

Y. Lisans, Maden Mühendisliği Bölümü 

Danışman: Prof. Dr. Celal Karpuz 

Yardımcı Danışman: Doç. Dr. H. Ş. Düzgün 

Temmuz 2007, 134 Sayfa 

 
 

Bu çalışma, “Gelişmiş Birinci Derece İkinci Moment (GBDİM)” güvenilirlik 

yöntemine dayanarak, şevlerde düzlemsel ve kama tipi yenilmelerin olasılıksal 

modellemesine göre sonuçlarını sunmaktadır. Olasılıksal modelinin 

geliştirilmesinde, her iki yenilme tipinde de, doğrusal Coulomb ve doğrusal olmayan 

Barton-Bandis olmak üzere iki farklı yenilme yaklaşımı kullanılmıştır. 

 

GBDİM metodunun tekrarlayıcı yapısından ötürü, hesaplamaları yapabilmek 

için analiz yapan hesap çizelgeleri geliştirilmiştir. Geliştirilen hesap çizelgeleri 

“Plane Slope Analyzer (PSA) ve “Wedge Slope Analyzer (WSA)” olarak 

adlandırılmıştır. 

 

Geliştirilen olasılıksal modeller ve onların hesap çizelgeleri, yeraltı su 

seviyesi, şev yüksekliği, kohezyon, sürtünme açısı ve çatlak duvarı basma dayanım 

direnci (JCS) gibi kaya ve şev değişkenlerinin etkisi, bunların güvenilirlik indeksi 

üzerindeki dağılım tipleri ve şev yenilme olasılığı incelenerek doğrulanmıştır. 
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Bu çalışmada, değişik olasılık dağılımları kullanılmış ve bunların normal 

olmayan değişkenlerinin eşdeğer normal olanlara ters dönüşüm formülleri de 

geliştirilmiştir. 

 

Buna ek olarak, kama tipi yenilme yaklaşımı durumu da sistem güvenilirlik 

yaklaşımı ile modellenmiş ve sonra geleneksel şev yenilme olasılığı ile 

karşılaştırılmıştır.  

 

Anahtar Kelimeler: Düzlemsel Yenilme, Kama Tipi Yenilme, Gelişmiş Birinci 

Derece İkinci Moment (GBDİM) Yöntemi, Güvenilirlik İndeksi, Şev Yenilme 

Olasılığı, Sistem Güvenilirliği.  
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CHAPTER I 

 

 

INTRODUCTION   

 

 

1.1. Introduction 

 

Numerous numbers of lives and properties were lost all over the world due to 

slope failures although stability analyses are carried out. Most of these analyses are 

based on the deterministic methods which do not consider the effect of uncertainty 

associated with certain parameters like ground water pressure, rock mass, and 

discontinuities’ shear strength. Such uncertainties cause variation in failure 

probability of slopes that have the same factor of safety. As a result, the use of 

probabilistic analysis techniques that take into account such kind of uncertainties 

became more common in recent years. Some of the most widely used probabilistic 

methods are Monte Carlo simulation technique, Rosenblueth point estimate method, 

and reliability index methods. Among these the “Advanced First Order Second 

Moment (AFOSM)” reliability method proposed by Hasofer and Lind (1974) is an 

outstanding one as it considers the uncertainty and variability of the parameters 

involved as well as their correlation structure.  

 

 Many researchers have tried to generate formulas in order to calculate safety 

factor of plane and wedge failure cases. As an example, Hoek and Bray (1977; 

1981) have formulated equations to calculate the safety factor of such cases. They 



 2 

also calculated safety factor of the wedge failure depending on a stereoplot. 

However, Low (1979) obtained an alternative method for that method, which does 

not require any stereographic plot. Thus, the calculation mechanism was eased. Low 

assumed that the upper ground surface is horizontal. However, Low and Einstein 

(1992) generalized this method to include cases with inclined upper ground surface, 

which dips in the same direction as the considered slope face. Low (1997) calculated 

the safety factor for a wedge slope utilizing AFOSM. In addition, utilizing Excel 

spreadsheet he calculated the reliability index and probability of failure for that 

slope. Low (1997) used Coulomb linear failure criterion and he assumed that all the 

parameters are normally distributed. However, some researchers have stated that 

although the Coulomb criterion is widely used, it is not particularly satisfactory in 

considering peak strength criterion for rock material. As a result, other peak shear 

strength criteria are preferred for the analysis of shear failure on rock discontinuities. 

Barton Bandis shear failure criterion is an example of these criteria. 

 

1.2. The Objectives of This Study  

      

There are two main objectives of this study. The first one is to develop 

probabilistic models of plane and wedge failure cases utilizing AFOSM reliability 

method by both Coulomb linear and Barton Bandis non-linear failure criteria. The 

second objective is to investigate the affect these criteria on the results of slope 

stability analyses. The developed plane failure models are based on the methodology 

proposed by Hoek and Bray (1981), whereas, wedge failure models are based on the 

methodology proposed by Low and Einstein (1992). Moreover, the developed model 

does not consider only normally distributed variables, but also it considers variables 

having lognormal, uniform, and triangular (symmetric, upper, lower) distributions.  

 

The developed probabilistic models are coded in spreadsheets to ease the 

calculations involved, which are very excessive and time consuming due to the 
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iterative nature of AFOSM method. The developed spreadsheets are named as 

“Plane Slope Analyzer (PSA)” and “Wedge Slope Analyzer (WSA)”. Each one of 

these analyzers has two types corresponding to the linear and non-linear failure 

criteria. The verifications of these analyzers are made by investigating the effect of 

slope height, ground water level, cohesion, friction angle, and joint wall compressive 

strength (JCS) on reliability index (β) and probability of slope failure (PF).  

 

After the verification of the developed spreadsheets, two analyses are carried 

out. The first analysis is investigating the affect of Coulomb linear and Barton 

Bandis non-linear failure criteria on probability of slope failure. The second one is a 

sensitivity analysis in which, the affect of distribution function of parameters on the 

reliability index and probability of failure is investigated. In order to perform such 

analyses the equivalent normal moments of non-normal distributions are needed. 

Thus, transformation formulas are derived.  

 

Beside that, evaluating the safety of wedge slope is carried out by two 

methods. The first one is the conventional method depending on the failure 

probability of single modes. The second one is the system reliability approach 

proposed by Ang and Tang (1984).  

 

The present study is divided into seven chapters. Chapter I covers a brief 

introduction of the thesis together with its aim. In Chapter II, a literature review of 

previous probabilistic studies on stability of rock slopes is elucidated. Chapter III 

covers the basic mechanisms of plane and wedge failures. Next, in Chapter IV brief 

information about AFOSM method as well as the inverse transformation techniques 

developed to evaluate the equivalent normal variates of the non-normal ones are 

considered. Chapter V gives the details of the probabilistic models developed in for 

cases of plane and wedge failures based on linear and non-linear failure criteria. 
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Moreover, this chapter covers the explanation of the system reliability approach, 

which is used in the evaluation of the failure probability for wedge slopes.   

      

In Chapter VI the developed analyzing spreadsheets are explained in details. 

In other words, the fifth chapter explicates the techniques followed in the coding of 

the models explained in Chapter VI using Excel software. Additionally, this chapter 

considers some applications of these spreadsheets as well as the discussion of the 

results. After that, in Chapter VII the major conclusions of this thesis and the main 

recommendations are specified. Finally, the macro defined and illustrating figures of 

the developed spreadsheets are presented in Appendices A, B, C, and D.



 
 
 
 

CHAPTER II 

 

 

LITERATURE SURVEY   

 

 

2.1. Introduction 

 

 In rock engineering, slope stability analysis is a two stage procedure. In the 

first stage the motion of rock blocks without reference to the forces causing it is the 

main concern and called kinematic analysis. In the second stage (kinetic analysis) 

the forces acting on the questioned rock block are considered. Thus, it is more 

detailed, and provides engineers with more reliable outcomes than the kinematic 

analysis. As a result of that many kinetic analyses have been developed. The 

kinematic and kinetic analyses can be performed either deterministic or 

probabilistic. 

 

2.2 Deterministic Analyses 

 

 These types of analyses are based on the calculation of a safety factor that is 

defined as the ratio of the forces resisting the slide of a rock block over the forces 

causing the slide. The factor of safety calculated by the deterministic methods is not 

reliable since it does not take in to consideration the uncertainty associated with the 

utilized parameters. In other words, the deterministic methods use single values that 

are normally the mean values of the considered parameters. However, in nature 
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these parameters are random variables, which contain considerable amount of 

uncertainty (Duzgun, 1994).     

        

2.3. Probabilistic Analyses 

 

 These types of analyses were first developed to overcome the limitation of 

the deterministic analysis methods. In other words, these types of analyses consider 

the uncertainties and randomness associated with the stability parameters. 

Probabilistic analysis was first introduced to rock slope stability by McMahon 

(1971). After that many researchers have utilized this type of analyses. An example 

of that is the study of Gokceoglu et al. (2000). Some of the most widely used 

Probabilistic methods of analysis are the Monte Carlo simulation technique, the 

Rosenblueth point estimate method, and the reliability indexes method. 

 

2.3.1. Monte Carlo Simulation Technique (MCST) 

 

 This method was first introduced during World War II in order to develop 

the atomic bomb. The simulation involves the construction of the sample space for 

the considered random variables repeating the analysis over and over using these 

random variables which are driven from the distribution of the variables using a 

random number generator (Feng, 1997). The technique got the name Monte Carlo 

because of the “roulette” method that has been used to generate the random variables 

before the computers were introduced (Giani, 1992). 

 

 The MCST generate a large quantity of random numbers varying between 0 

and 1. These numbers are used to generate the variables of the examined problem in 

a way that fits the assumed probability distribution curves. Such curves can also be 

histograms that are drawn according to some experimental data results. This 
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simulation can be carried out to determine the probability density distribution of a 

safety factor or a safety margin (resisting forces – driving forces). The MCST is 

applied to the problems that are very difficult to solve with the analytical methods 

(Giani, 1992). 

 

 The usage of MCST in stability analyses of planes and three dimensional 

wedges have been described by Kim et al. (1978) and Major et al. (1978). Following 

these authors many others have used the MCST in rock engineering. Some of these 

authors are Priest and Brown (1983), and Morris and stoter (1983), Esterhuizen 

(1990), Muralha and Trunk (1993), and Duzgun et al. (2005).  

 

 It is also one of the most used probabilistic methods in rock engineering. The 

reason for that is its avoidance for the complexity of the failure functions that are 

very difficult to analyze analytically. Despite its wide usage, the MCST has some 

limitations and drawbacks. One of these is that MCST may not achieve solutions in 

some cases, especially when complex limit state functions are used or when dealing 

with problems of low probability of failure (Jimenez-Rodriguez et al., 2006). Beside 

this one Duzgun (1994) has cited that Mostyn and Li (1993) stated another major 

drawback of MCST. They reported that the rock properties in this method are 

modeled as spatially perfectly correlated random variables in order to make the 

procedure simple, which make the result doubtful. 

 

2.3.2. Rosenblueth Point Estimate Method (RPEM) 

 

 As the previous method i.e. MCST, this method is also based on a 

deterministic procedure. Giani (1992) cited that the method was first given by 

Rosenblueth (1975) and later modified by the same author (1981). He also cited that 

the first person who applied the point estimate method to geomechanical problems 

was Harr (1981). As cited by Duzgun. (1994), Kimmance and Howe (1991) 
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presented an application of RPEM in slope stability analysis. She also cited that 

Nguyen and Chowdhurry (1985) proved that RPEM is more computationally 

efficient than MCST. 

 

 This method permits the one to use several correlated random variables given 

by their two or three first statistical moments (mean, standard deviation and 

skewenss). By doing so we can get results that are expressed in terms of the first 

statistical moments of the examined parameters (Giani, 1992).  The principles and 

the complete procedures of the RPEM are discussed in details by Bolle et al. (1987). 

 

 The RPEM becomes impractical when the numbers of random variables 

involved are large. Such a case is encountered in slope stability analysis as the 

numbers of random variables considered are generally large (Duzgun, 1994).  

 

2.3.3. Reliability Index Methods 

 

 This method differs from all the already mentioned methods of analysis in 

that the safety of a given slope is formulated by a reliability index (β) rather than the 

conventional safety factor. In order to find this reliability index, we should first 

formulate the performance function of slope, which in general expressed as (Ang 

and Tang, 1984): 

 

                                            ( ) ( )in xgxxxxg =,,,, 321 K                                         (2.1) 

 

Where ix  are the basic variables (i.e. the random input parameters).  The 

importance of this function is that it represents the stability situation of a given slope 

as follows: 

                           If ( ) 0<ixg  “failure state” and, 
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                           If ( ) 0>ixg  “safe state” 

 

However, if ( ) 0=ixg  then the slope is said to be in the “limit state” and 

“ ( ) 0=ixg ” is called the limit state equation. 

 

The performance function for a slope is in general defined as (Duzgun, 1994): 

 

                                                      ( ) ( ) ( )iii xSxRxg −=                                        (2.2) 

Where, 

( ) =ixR Strength (capacity) of the slope 

( ) =ixS Load (demand) acting on the slope  

 

Ang and Tang (1984) and Duzgun (1994) stated that there are two reliability 

methods which are generally used. The first is the First Order Second Moment 

(FOSM) method. In this method, if the limit state function is nonlinear then the 

approximation is obtained by utilizing Taylor series expansion around the mean 

values (Cornell, 1969). As Duzgun (1994) and Low (2003) reported this is one of 

the main basic drawbacks of the FOSM method. That is because when the 

performance function is linearized at the mean values of the basic variable, 

significant errors will appear especially for the nonlinear functions at increasing 

distance from the linearizing point. Another drawback of this method as they 

reported is the lack of invariance for nonlinear performance function.  

 

 The second method is the Advanced First Order Second Moment (AFOSM) 

method proposed by Hasofer and Lind (1974). This method overcame the drawbacks 

of the traditional FOSM method and thus, it is a better alternative (USACE, 1999). 

The basic principle and structure of the AFOSM method is given in details by Ang 
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and Tang (1984). Beside these authors Low (1996) as well has given the meaning 

and the definition of the reliability index (β) of the AFOSM method (Figure 2.1).  

 

 

 
 

Figure 2.1 Illustration of the reliability index of the AFOSM method in plane  

(Low 1997) 

 

 

In this Figure m1, σ1, m2, and σ2 are the mean values and standard deviations of the 

parameters X1 and X2. The index β may be regarded as the distance from the 

boundary of the failure region, in units of directional standard deviation. Ditlevsen 

(1981) has given the following formulation for Hasofer and Lind (1974) index (or 

the index of AFOSM method) as follows: 

 

                                           
( ) ( )

Fxand

mxCmx
T

HL

∈

−−= −

,

min 1β
                                  (2.3) 
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Where x is a vector representing the set of random variables, C is the covariance 

matrix of the random variables, and F is the failure region. 

One of the procedures that are widely used for the computation of β is the 

one in which the failure surface is transformed into the space of reduced variates, 

where the shortest distance between the transformed failure surface and the origin of 

the reduced variates is the reliability index (β). In other words, the Hasofer and Lind 

(1974) index can be calculated by minimizing the quadratic form (an ellipsoid) 

subject to the constraint that the ellipsoid just touches the surface of the failure 

region (Figure 2.1).  

 

 Many authors have used this method and stated its advantages over the 

probabilistic, numerical and analytical analysis methods. For example, Duzgun et al. 

applied AFOSM to wedge slope failure (1994; 1995). Moreover, Duzgun et al. 

applied this method to plane slope failure (2003). In addition, Hassan and Wolff 

(1999) utilized the method in the stability analysis of Connon Dam. Beside these 

authors, Low applied the AFOSM method to analyze the stability of, rock wedges 

(1997), anchored retaining wall (2002), and embankment on soft ground (2003). 

 

Low (1979) developed a compact closed-form equation for the calculation of 

the factor of safety for two-joint tetrahedral wedges. This equation is an alternative 

for equation (2.1), but no stereographic projection is required in utilizing it. He 

assumed that the upper ground surface is horizontal. However, Low and Einstein 

(1992) generalized this method to include cases with inclined upper ground surface 

that dips in the same direction as the considered slope face. 

 

Low and Einstein (1992) calculated the factors of safety for different modes 

of failures. These modes are: 
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1. Sliding along the line of intersection of both planes forming the block 

(Biplane sliding) 

2. Sliding along plane 1 only 

3. Sliding along plane 2 only 

4. Floating failure (due to high water pressure or high in-situ stresses) 

 

Low (1997) proposed a new computational method that eases the utilization of the 

AFOSM method. He implemented the AFOSM method using the solver tool 

available in the Excel spreadsheet to analysis rock slope stability. In that analysis 

Low used Coulomb failure criterion and assumed that the parameters are normally 

distributed.  

 

Giani (1992) however, cited that although the Coulomb criterion is widely used, it is 

not particularly satisfactory in considering peak strength criterion for rock material. 

The reasons for that were given by Brady and Brown (1985) as: 

 

1. The Coulomb criterion implies that a major shear fracture exists at 

peak strength. However, that was proven not to be the general case 

(Wawersik and Fairhurst, 1970). 

 
2. It also implies a direction of the shear failure which is not always in a 

good agreement with experimental observations. 

 
3. As the experimental peak strength envelopes are generally non-linear, 

they can consider only a limited range of σn or σ3. 

 

 As a result of these reasons other peak shear strength criteria are preferred for 

the analysis of shear failure on rock discontinuities. Barton Bandis shear failure 

criterion, which is given in equation 2.33, is among the most widely used non-linear 

shear strength criteria. 
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Barton Bandis criterion (1990): 

 

                                         







+







= r

n

n

JCS
JRC φ

σ
στ 10logtan                             (2.4) 

 

Where, 

                =τ Shear stress causing failure 

           =JRC  Joint roughness coefficient 

            =JCS  Joint compressive strength     

     =nσ  Normal stress 

       =rφ  Residual friction angle 



 
 
 
 

CHAPTER III 

 

 

BASIC MECHANISMS OF PLANE AND WEDGE FAILURES 

 

 

3.1. Introduction 

 

 In rock engineering many researchers have studied plane and wedge slope 

failures. The plane failure occurs rarely if compared with wedge failure that is the 

more common case in rock slopes. Therefore, many engineers treat the plane failure 

as a special case of wedge failure.  

 

The basic mechanisms of these types of slope failure have been studied by 

many engineers and in many different ways. However, the most widely used 

approaches are the ones proposed by Hoek et al. (1973). Hoek and Bray (1981) used 

Coulomb linear criteria in developing these approaches. Besides they expressed the 

water forces due to water pressure on the sliding surface and in tension crack as 

uplift forces. 

 

3.2. Basic Mechanisms of Plane Failure 

 

Hoek and Bray (1981) stated the general condition of a Plane failure to take place is: 

 

                                                        φψψ >> pf                                                (3.1) 
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Where, 

=fψ  Inclination of the slope face 

=pψ  Dip of the failure plane 

=φ Friction angle 

This case can be seen clearly in Figure (3.1). 

 

 
 

Figure 3.1 Sliding condition in an inclined plane (Hoek and Bray, 1981) 
 

 

Beside that the plane on which sliding takes place must strike parallel or nearly 

parallel to the slope face. In other words, this plane must strike within °± 20 to the 

slope face. 

 

Plane failure has the same basic mechanisms of a sliding block along an inclined 

surface due to gravitational loading. Figure (3.2) shows such block, where, 

 

=W Weight of the block 

=ψ Inclination of the sliding surface from the horizontal 
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Figure 3.2 Forces acting on a sliding mass 
 

 

In this case the force (WSinψ) is tending to cause the sliding, while the force 

WCosψ is contributing to the total resistance to the sliding. So, the normal stress σ 

which is acting on the sliding surface is (Hoek and Bray, 1981): 

 

                                                      
Α

=
ψ

σ
WCos

                                                   (3.2)                 

  
 Where, 

=Α Base area of the sliding block 

 
Now, substituting the value of σ in Coulomb failure criterion which is: 

 
                                                      φστ tan+= c                                                  (3.3) 

 
The following is found: 
 

                                                 φ
ψ

τ tan
Α

+=
WCos

c                                            (3.4) 
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Where, 

=τ Shear stress causing the slide  

=φ Friction angle 

=c  Cohesion  

 
Then if equation (3.4) is multiplied by the base area of the block: 

 
                                                     φψτ tanWCoscAA +=                                     (3.5) 

 
Where, Aτ is the shear force that resists the sliding and which is equal to the driving 

force WSinψ. This force is equal to the resisting force WCosψ at the limit state. 

That is, at the limit state: 

    
                                                    φψψ tanin WCoscAWS +=                              (3.6) 

 
The geometries of the plane slopes considered in this thesis work are defined in 

Figures 3.3 through 3.6.  

 

Where, 

 =Η Slope height (m) 

 =W  Weight of the sliding block (kN/m) 

  =V Force due to water pressure in the tension crack (kN/m) 

  =U Uplift force due to pressure on the sliding surface (kN/m) 

  =fψ   Dip of slope face  

  =pψ   Dip of discontinuity plane 

 =Ζ Height of the tension crack from the upper surface of the slope (m) 

 =ΖW  Height of water in tension crack (m) 
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Figure 3.3 Geometry of a plane slope with a tension crack in its upper surface  

(Hoek and Bray, 1981) 

 
 
 

 
 

Figure 3.4 Forces acting on a block on a failure plane of a slope with a tension  

crack in its upper surface (Hoek and Bray, 1981) 

 

 

 



 19 

 
 

Figure 3.5 Geometry of a plane slope with a tension crack in its face                  

(Hoek and Bray, 1981) 

 

 

 

 
Figure 3.6 Forces acting on a block on a failure plane of a slope with a tension  

crack in its surface (Hoek and Bray, 1981) 
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In these slopes the affect of water pressure in the block is also taken into 

consideration. Observably, two cases are considered, namely: 

 
1. A slope having a tension crack in its upper surface. 

2. A slope with a tension crack in its face. 

  

Hoek and Bray (1981) formulated the two cases as:  

 

                                              ( )
pCoZH ψsec⋅−=Α                                            (3.7) 

                                         ( ) pWW CoHU ψγ sec
2

1
Ζ−Ζ⋅=                                      (3.8) 

                                                       2

2

1
WWV Ζ⋅= γ                                                   (3.9) 

 

The area and the water forces’ equations are the same for both cases. 

However, the weight of the sliding block is calculated by different equation each 

cases. That is due to the position change of the tension crack. So, when the tension 

crack is situated in the upper surface of the slope, the weight is calculated by the 

following equation: 

 

                       ( ) 
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                           (3.10) 

 

However, when the tension crack is situated in the slope face, the weight is: 
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Where,  

 A = Base area of the sliding block (m2/m) 
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 =Η Slope height (m) 

 =W  Weight of the sliding block (ton/m) 

  =V Force due to water pressure in the tension crack (ton/m) 

  =U Uplift force due to pressure on the sliding surface (ton/m) 

  =fψ   Dip of slope face (radian) 

  =pψ   Dip of discontinuity plane (radian) 

 =Ζ Height of the tension crack from the upper surface of the slope (m) 

 =ΖW  Height of water in tension crack (m) 

 =Wγ  Unit weight of water (ton/m3) 

   =γ  Unit weight of rock (ton/m3) 

 

Finally, and by considering the equations (3.6 - 3.11) Hoek and Bray (1981) gave 

the factor of safety of a plane slope for the two cases mentioned earlier in this 

chapter as: 

 

                            
( )

pp

pp

S
CosVSinW

SinVUCosWcA
F

ψψ

φψψ

⋅+⋅
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=

tan
                         (3.12) 

 
    

3.3. Basic Mechanisms of Wedge Failure 

 

When two discontinuities strike obliquely across the slope face and their line of 

intersection daylights in the slope face, the wedge of rock resting on these 

discontinuities will slide down the line of intersection, provided that the inclination 

of this line is significantly greater than the angle of friction. In other words, and as 

Hoek and Bray (1981) stated the general condition of a wedge failure to take place 

is: 
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                                                           φψψ >> iif                                             (3.13) 

 

Where, 

=
ifψ  Inclination of the slope face, measured in the view at right angle to 

the line of intersection of the discontinuities 

 =iψ  Dip of the line of intersection 

 =φ Friction angle 

 

This case can be seen clearly in Figure (3.7). 

 

 
 

Figure 3.7 Sliding condition for wedge slope  
 

 

Noting that
ifψ would be the same as fψ , the true dip of the slope face, only if the 

dip direction of the line of intersection was the same as the dip direction of the slope 

face. 
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For the wedge shown in Figure (3.8) Hoek and Bray (1981) stated that, if the sliding 

is resisted by friction only and if the friction angle (φ ) is the same for both planes 

then the factor of safety for that wedge is given by: 

 

                                                 
( )

i

BA

S
SinW

TanRR
F

ψ

φ

⋅

⋅+
=                                        (3.14) 

 

Where, W is the weight of the wedge block, while AR and BR are as illustrated in 

Figure (3.9) the normal reactions provided by planes A and B, respectively. 

 

 
 

Figure 3.8 Wedge failure geometry (Hoek and Bray, 1981) 
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Figure 3.9 Forces acting on the wedge slope (Hoek and Bray, 1981) 
 

 

The value of BA RR +  is found by resolving the forces into their horizontal and 

vertical components then adding: 

 

                                              
ξ
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2
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By substituting the value of BA RR +  from equation (3.15) into equation (3.14) then:  
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Hoek et al. (1973) accomplished a detailed analysis for the wedge slope failure 

shown in Figure 3.10. First of all, they assumed that the sliding of that wedge always 

occurs along the line of intersection (line 5 in Figure 3.10).  

  

 
 

Figure 3.10 Geometry of wedge used for stability analysis by Hoek et al. (1973) 
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Then, they derived the safety factor of that slope depending on a steroplot of the data 

that defines the geometry of the wedge as well as the slope. 

 

Low (1979) developed a compact closed-form equation for the calculation of 

the factor of safety for two-joint tetrahedral wedges. This equation is an alternative 

for the one developed by Hoek et al. (1973), but no stereographic projection is 

required in utilizing it.  Low (1979) assumed that the upper ground surface is 

horizontal. However, Low and Einstein (1992) generalized this method to include 

cases with inclined upper ground surface that dips in the same direction as the 

considered slope face. 

 

Low and Einstein (1992) calculated the factors of safety for all the possible 

modes of failures namely, Biplane failure, failure along plane 1 only, failure along 

plane 2 only, and Floating failure. These modes of failure also considered separately 

in the following subsections. 

 

3.3.1. Biplane sliding  

 

For this mode of failure the factor of safety is: 
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This equation is valid only when there is contact on both planes that is:  
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And 

                                                    022
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Where 2121 ,,, bbaa  are parameters that depend on the geometry of the slope which is 

defined with the angles ( Ω,,,,, 2121 αββδδ  andε ) as shown in Figure (3.11).  

 

1wG  and =2wG Normalized water pressure parameters (dimensionless)    

                    1c and =2c Cohesive strengths of planes 1 and 2 (kPa) 

        1φ and =2φ Angles of friction on Planes A and B (radians) 

               =γS
wγ

γ
 = Specific density of rock (dimensionless) 

                  =γ Unit weight of rock (kN/m3) 

               =Wγ  Unit weight of water (kN/m3) 

                   =h  Height of the wedge (m) 

 

 
 

Figure 3.11 Slope geometry in wedge failure (Low and Einstein, 1992) 
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The parameters of Low’s formulas (1997) are calculated by equations (3.20 through 

2.29). 

 

                                 
( )[ ]

( )21
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SinSin
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a                       (3.20) 

                                 
( )[ ]
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2

ββψ
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+⋅
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SinSin

CosCosCotSin
a                       (3.21) 

 

                                                  2201 δβ SinSinab ⋅⋅=                                         (3.22) 

 

                                                 1102 δβ SinSinab ⋅⋅=                                          (3.23) 

 

In equations (3.20) and (3.21), ψSin  is defined as in equation (3.24). 
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                                                     κ5.021 == ww GG                                            (3.27) 
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Where Ω  is inclination of the upper ground surface, and α  is inclination of the 

slope face. Note the difference between H and h from Figure (3.11). From Figure 

(3.11) h is obtained if only the length of DC is known: 

 

                                        
( ) ( )21 ββαε CotCotCotCot

DC
h

+⋅−
=                           (3.29)    

 

Here the dimensionless parameters 1wG  and 2wG  are based on pyramidal water 

pressure conditions. Another alternative is that assigning the average water pressures 

1u  and 2u that act on planes B’DO and B’CO, respectively. In this case the values of 

1wG  and 2wG  in equation (3.17) should be substituted with the values of the 

corresponding average water pressures, that is: 

                                                         
h
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                                                (3.30)    

     

                                                         
h

u
G

w ⋅
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γ
2

2

3
                                                 (3.31)     

 
For the case represented by equation (3.27), the corresponding value of average 

water pressures 1u  and 2u is: 
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h
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3.3.2. Sliding along plane 1 only 

 
 
 When sliding along plane 1 only occurs, the normal force on plane 2 is an 

uplift force, which can be resolved into two components. One of these components 

is perpendicular to plane 1 and the other is tangential to it. The former is 

superimposed on the net normal force on plane1. However, the latter is added 

vectorially to the driving force along the line of intersection of the two joint planes, 

and thus, deviating the resultant driving force from the line of intersection. As a 

result of these changes, the factor of safety is obtained by the dimensionless 

equation (3.33). 
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In equation (3.33), 

 

                       ( )212121 ββδδδδ +⋅⋅+⋅= CosSinSinCosCosZ                         (3.34) 

 

This situation, that is, the sliding along plane 1 only is valid when: 
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3.3.3. Sliding along plane 2 only 

 
 
 In this case, the change in the equation of the factor of safety is following the 

same scenario as the one in the sliding along plane 1 only. The factor of safety for 

this case is obtained by: 
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This case is valid only when: 
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3.3.4. Floating failure 

 
 
 In this case, the contact is lost on both planes, in other words, the wedge 

floats as a result of the water pressures that are acting on both planes. Thus, the 

factor of safety falls to zero in this case, and it is valid when: 
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And  
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CHAPTER IV 

 
 
 

ADVANCED FOSM APPROACH 

 
  

 

4.1. Introduction 

 

In engineering the reliability of a problem is normally originated as a 

comparison of the demand and supply in order to meet certain demand requirements. 

In rock engineering the demand refers to the applied load while the supply refers to 

the strength of the rock (Duzgun et al., 2003). In order to calculate safe state or 

failure probabilities of a rock slope, a good knowledge about the distributions of the 

strength and the load applied are required. Yet, if the distributions are known, an 

accurate estimation of the probabilities is impractical as a result of the numerical 

integrations involved.  

 

 Normally, the data obtained are only enough to calculate the first and second 

moments of the random variables under consideration. That is, the information is 

sufficient only to calculate the means and standard deviations of those random 

variables. Thus, the reliability evaluation of a problem is restricted to the utilizations 

of these two moments. As a result of that, implementation of the reliability concepts 

is limited to the method proposed by Cornell in 1969, namely, the First Order 

Second Moment method (Ang and Tang, 1984).  However, due to the drawbacks of 
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this method, as mentioned earlier in Chapter II, the need for a better alternative came 

up.    

 

 The Advanced First Order Second Moment method (AFOSM), proposed by 

Hasofer and Lind (1974), overcame the drawbacks of the traditional FOSM method 

and therefore, it is a better alternative (USACE, 1999). As a result of that, the 

AFOSM became the most widely used method for the reliability evaluation. At this 

point, it is essential to call attention to that the AFOSM approach is consistent with 

the equivalent normal representation of non-normal distributions as well as the 

normal ones (Ang and Tang, 1984). In other words, if sufficient information is 

available about the distribution types of the random variables under consideration, 

then it is possible to calculate the probability of the system on based on the 

equivalent normal distributions. 

 

4.2. The Performance Function 

 

 The reliability of a system in engineering is defined as the probability of that 

system in performing its intended task or assignment. So, the level of performance 

of a system will clearly depend on its properties. Thus, the performance function 

should be generalized in order to fit all possible engineering systems. 

 

Such a general performance function is defined as: 

 

                                                     ( ) ( )in xgxxxxg =,,,, 321 K                                (4.1) 

 

Where, ( )ni xxxxx ,,,, 321 K=  is a vector of the basic variables of a system, in other 

words, ix  are the properties of that system. While, ( )ixg is the performance function 

of that system.  
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Then, ( ) 0=ixg is called the limit-state of the system and therefore,         

                   

If ( ) 0<ixg  is the “failure state” and, 

If ( ) 0>ixg  is the “safe state” 

 

In rock engineering, the performance function of a slope is generally defined 

as (Duzgun, 1994): 

 

                                                          ( ) ( ) ( )iii xSxRxg −=                                    (4.2)  

Where, 

( ) =ixR Strength (capacity) of the slope 

( ) =ixS Load (demand) acting on the slope  

 

4.3. Linear Performance Function 

 

A linear performance function may be represented as: 

  

                                                     ( ) ii
i

i xaaxg ⋅∑+= 0                                          (4.3) 

Where 0a  and sai

'  are constants and xi are the basic variables. Therefore, the 

corresponding limit-state is: 

 

                                                      00 =⋅∑+ ii
i

xaa                                                (4.4) 

 

Then if equation (4.4) is expressed in terms of reduced variates, it yields: 

                                                  ( ) 0'
0 =+⋅∑+ xiixii

i

xaa µσ                                  (4.5) 

Where, 
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'
ix : Reduced (standardized) variables 

xiσ  and xiµ : Standard deviations and mean values of the basic variables xi, 

respectively. 

Equation (4.5) in three dimensions for example is written as: 

 

                       ( ) ( ) ( ) 03
'
3332

'
2221

'
1110 =+⋅++⋅++⋅+ xxxxxixx xaxaxaa µσµσµσ              (4.6) 

 

Which is a plane surface in '
3

'
2

'
1 ,, xxx  space as shown in Figure (4.1).  

 
 

 
 

Figure 4.1 Limit state surface in '
3

'
2

'
1 ,, xxx - space (Ang and Tang, 1984) 
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If the random variables are uncorrelated and normally distributed variates, 

then failure point can be expressed in term of the direction cosines ( )iα  and 

reliability index ( )β  as follows:  

 

                            xiixixiixii xx σβαµµσ ⋅⋅−=+⋅= ∗∗                            (4.7) 

Where, 

                                              

∑
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α                                               (4.8) 

              

                                                      
( )2

0

xii
i

xii
i

a

aa

σ

µ
β

⋅∑

⋅∑+
=                                           (4.9)   

    

Then the probability of the safe state is obtained by: 

                                                          

                                                           ( )βΦ=SP                                                  (4.10) 

 

Thus, the probability of failure is:  

 
                                                           ( )βΦ−= 1FP                                             (4.11)  

 
 

If the probability distributions of the random variables nxxx ,,, 21 K  are not 

normal, it is still possible to calculate SP  and FP . That is done by utilizing the 

equivalent normal distributions of the non-normal variates. They are obtained in a 

way that their cumulative probabilities as well as their probability density ordinates 

are equal to the corresponding non-normal distributions at appropriate point ∗
ix  on 

the failure surface (Ang and Tang, 1984). So, at that point: 
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Φ ixiN

xi

N

xii xF
x

σ
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Where,  

N

xiµ , N

xiσ  = The mean value and the standard deviation, respectively, of the 

equivalent normal distribution for ix  

 ( )∗
ixi xF   = The original cumulative density function   (CDF) of ix evaluated 

at ∗
ix  

       ( )Φ   =   The CDF of the standard normal distribution 

 

By rearranging the terms in equation (4.12), the following is obtained: 

 

                                                 ( )[ ]∗−∗ Φ⋅−= ixi

N

xii

N

xi xFx
1σµ                                (4.13)  

 

Now, equating the corresponding probability density functions at point ∗
ix  yields: 
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Where, ( )φ  is the probability density function (PDF) of the standard normal 

variable. 

 

From equations (4.13 – 4.14) it is obtained that: 
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Then the failure point of ix is (Ang and Tang, 1984): 

  

                                     N

xii

N

xi

N

xii

N

xii xx σβαµµσ ⋅⋅−=+⋅= ∗∗                             (4.16)   

 

Following that, the reliability index is found as: 

 

                                                    
( )

( )2

2

N

xi

N

xii

i

x

σ

µ
β

−
∑=

∗

                                        (4.17)     

 

So, by substituting the result of equation (4.17) for β  in equations (4.10) and (4.11) 

the probability of the safe state and the failure state are obtained, respectively. 

 

Obviously, if an actual distribution is replaced with an equivalent normal 

distribution, then the actual mean and standard deviation should also be replaced 

with their equivalent normal distributions (Ang and Tang, 1984).  

 

4.4. Nonlinear Performance Function 

 

 For the nonlinear performance function ( )ixg , the evaluation of the exact 

probability of safety or failure is normally possible. However, for practical proposes, 

it is necessary to approximation the exact probability. Beside that, the nonlinear case 

is unlike the linear case since there is no unique distance from the failure surface to 

the origin of the reduced variates.  

 

 Clearly, Figure (4.2) illustrate that the point ( ∗∗ '
2

'
1 , xx ) on the failure surface 

with the minimum distance to the origin of the reduced variates is the most probable 
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failure point (Shinozuka, 1983). The tangent plane to the failure surface at ( ∗∗ '
2

'
1 , xx ) 

may then be used to approximate the actual failure surface. Then the required 

reliability index, the probability of safety, and the probability of failure may be 

evaluated as in the linear case mentioned earlier in this chapter. Of course this 

approximation will be on the safe side or unsafe side, respectively, depending on 

whether the exact nonlinear failure surface is convex or concave toward the origin. 

That is seen clearly from Figure (4.2). 

 

 
 

Figure 4.2 Tangent Plane to g(x) = 0 at x’* (Ang and Tang, 1984)  
 

 

In general, the pertinent tangent plane at 







= ∗∗∗∗ ''

2
'
1

' ,,, ni xxxx K  is (Ang and Tang, 

1984): 
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Where, the partial derivatives 
∗










∂

∂
'
ix

g
are evaluated at the point 







 ∗∗∗ ''
2

'
1 ,,, nxxx K . 

 

Based on the approximation discussed, the minimum distance from the 

tangent plane calculated by equation (4.18) to the origin of the reduced variates is 

the appropriate reliability index. This index is used to represent the reliability of the 

considered situation.  

  

In the case of nonlinear performance function, the determination of the 

required reliability index is not as simple as in the linear case. However, the linear 

approximation is used in this case in order to ease the calculation. It is very 

important at this stage to emphasize that the outcome of such approximation is yet 

yielding reliable results.  

 

So, the solution of the limit-state equation (4.19) below yields the reliability 

index: 

                                                ( ) 0,,,, 321 =∗∗∗∗
nxxxxg K                                         (4.19) 

 

Then, the most probable failure point in this case is given by equation (4.16). 

Thereafter, if the variables are uncorrelated with non-normal distributions, the 

reliability index is given by equation (4.17). Yet again, by substituting the result of 

equation (4.17) for β  in equations (4.10) and (4.11) the probability of the safe state 

and the failure state are obtained, respectively. 

 

Ang and Tang (1984) summarized the procedure of the iterative algorithm 

that is used to calculate the reliability index as follows:  
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1. Define the appropriate limit-state function. 

2. Make an initial guess for the reliability index 

3. Start with iix µ=∗  for all ni ,,2,1 K= . 

4. Calculate the equivalent normal mean and the standard deviation for the 

non-normally distributed variables. 

5. Find reduced variates as: 
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6. Calculate 
∗
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 at point ∗'

ix . 

 
7. Evaluate the direction cosines: 
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8. Calculate the new values of ∗
ix  by equation (4.7). 

9. Substitute the value of ∗
ix  found in step 8 into 0,,, ''

2
'
1 =







 ∗∗∗
nxxxg K  

and solve for β . 

10. Using the value of β  obtained in step 9, resolve equation (4.7). 

11. Keep repeating steps 5 through 10 until convergence is reached.   
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4.5. Non-normal Distributions  

  

When the basic variables have non-normal distributions, their moments have 

to be transformed into equivalent normal distributions. In this thesis the equivalent 

normal moments of the uniform, symmetric triangular, upper triangular, lower 

triangular, and the lognormal distributions are evaluated and coded in spreadsheets. 

The mean and the coefficient of variation of a variable x having these distributions 

are given in Table (4.1) (Ang and Tang, 1984). These distributions and the detailed 

calculation of the equivalent normal for each of them are explained in the 

subsections 4.5.1 through 4.5.5. 

  

Table 4.1 The Means and c.o.v.’s of various distributions (Ang and Tang, 1984) 
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4.5.1. Uniform Distribution 

 

Ang and Tang (1984) stated that: 

 

                                                  
µ

σ
=voc ..                                                (4.22) 

 
Where,  

 voc ..  = Coefficient of variation 

    σ   = Standard deviation 

    µ   = Mean value 

 

So, from equation (4.22) and Table (4.1), the standard deviation of the 

uniform distribution is given by: 

  

                              
32

ab −
=σ                                                (4.23) 

 

The probability density function (PDF) and cumulative distribution function 

(CDF) for a continuous uniform distribution on the interval [ ]ba,  are (Weisstein, 

2004): 

 

                             ( )















≥

<<
−

≤

==

bxfor

bxafor
ab

axfor

xfPDF

0

1

0

                          (4.24)  
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Where a  and b  are the minimum and maximum values of the variable under 

consideration, respectively. 
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Based on these functions equations (4.26) and (4.27) are derived:  
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4.5.2. Symmetric Triangular Distribution   

 

From equation (4.22) and Table (4.1), the standard deviation of the 

symmetric triangular distribution is given by: 
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Then PDF and CDF for this distribution on the interval [ ]ba,  are (Weisstein, 

2005): 
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Equations (4.31) and (4.32) are derived based on equations (4.26) and (4.27):  
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4.5.3. Upper Triangular Distribution   

 

From equation (4.22) and Table (4.1), the standard deviation of this 

distribution is given by: 
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Then PDF and CDF for this distribution on the interval [ ]ba,  are (Weisstein, 

2005): 
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Based on these functions equations (4.36) and (4.37) are derived:  
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4.5.4. Lower Triangular Distribution   

  

The standard deviation of this distribution is given by equation (4.33). Then 

PDF and CDF for this distribution on the interval [ ]ba,  are (Weisstein, 2005): 
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Equations (4.40) and (4.41) are derived based on (4.35) and (4.36):  
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4.5.5. Lognormal Distribution   

 

Rosenblatt transformation is used to calculate the equivalent normal 

distributions of variables that have lognormal distribution (Ang and Tang, 1984). 
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Where, λ andξ are, respectively, the mean and the standard deviation 

of ( )xln , and are the parameters of the distribution. 
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CHAPTER V 

 
 
 

DEVELOPED PROBABILISTIC MODELS   

 
 

 

5.1. Introduction 

 

In this chapter the probabilistic models developed in order to analyze cases 

of plane and wedge failure are given in details. Each slope has two models 

corresponding to the linear and non-linear failure criteria. These criteria are 

Coulomb criterion and Barton Bandis criterion, respectively.   

    

5.2. Plane Failure 

 

In the development probabilistic models of plane failure case are based on 

the methodology proposed by Hoek and Bray (1981). This methodology is given in 

Chapter III (equations 3.6 through 3.12).   

 

5.2.1. Coulomb Failure Criterion 

  

Based on equations (3.6) through (3.12) the performance function of this 

model is: 
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                  ( ) ( )
pppp CosVSinWSinVUCosWcAxg ψψφψψ ⋅−⋅−⋅⋅−−⋅+= tan        (5.1) 

Where, 

 =W  Weight of the sliding block (ton/m) 

  =V Force due to water pressure in the tension crack (ton/m) 

  =U Uplift force due to pressure on the sliding surface (ton/m) 

  =fψ   Dip of slope face (radians) 

  =pψ   Dip of discontinuity plane (radians) 

              =Α  Base area of the sliding block (m2/m) 

               =c  Cohesion (ton/m2) 

  =φ Friction angle (radians) 

 
This is identical to (Duzgun, 1994):  

 

                                                             ( )
ff DRxg −=                                                   (5.2) 

Where, 

=fR The total resisting force 

=fD The total driving force which tends to cause the slide  

 

Then the limit-state equation becomes: 

                            
              ( ) 0tan =⋅−⋅−⋅⋅−−⋅+ pppp CosVSinWSinVUCosWcA ψψφψψ           (5.3) 

 

This equation can be written as: 
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In this limit state equation the basic variables are fψ , pψ , c , φtan  and WZ  which 

will change U andV . While the constant are H ,γ , and Z . 

 

When analyzing a specific slope fψ  and pψ  can be taken as constant parameters.   

       

5.2.2. Barton Bandis Failure Criterion  

  

Based on equation (2.4) the performance function of this model is: 
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Then the limit-state equation becomes: 
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This can be written as: 

 

                                        1

logtan

=











+







⋅⋅

τ

φ
σ

σ r

n

n

JCS
JRC

                                (5.7) 

       

In which, 

                                    ( ) ASinVUCosW ppn ψψσ ⋅−−⋅=                                (5.8) 

 

                                       ( ) ACosVSinW p ψψτ ⋅+⋅=                                        (5.9) 
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Where, 

     =nσ  Normal stress (ton/m2) 

 =JRC  Joint roughness coefficient (dimensionless) 

 =JCS  Joint compressive strength (ton/m2) 

  =rφ  Residual friction angle (radians) 

While ,,,,, pWUVA ψ and fψ  are as defined in connection with equation (5.1). 

The basic variables in this case are fpwZJCSJRC ψψ ,,,,  and rφ . Whereas, the 

constant are H ,γ , and Z . 

 

5.3. Wedge Failure  

 

The technique of wedge failure analysis proposed by Low (1997) in 

equations (3.17) through (2.41) is used in the probabilistic stability analysis of the 

wedge slope in this thesis work. For wedge slopes every mode of failure is having its 

own performance function and therefore it has its own reliability index and 

probability of failure. First these reliability indices and failure probabilities are 

calculated. Then, the total failure probability of the slope is obtained by utilizing the 

system reliability approach proposed by Ang and Tang (1984).  

 

5.3.1. Coulomb Failure Criterion 

 

5.3.1.1. Biplane Sliding  

 

Based on equation (3.17) the following formula is developed: 
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y

ywywy
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=

221122221111 3tantan φφ
              (5.10) 

 

Where 2121 ,,, bbaa  are parameters that depend on the geometry of the slope which is 

defined with the angles ( Ω,,,,, 2121 αββδδ  andε ) as shown in Figure (3.11).  

 

1wG  and =2wG Normalized water pressure parameters (dimensionless)    

                    1c and =2c Cohesive strengths of planes 1 and 2 (kPa) 

        1φ and =2φ Angles of friction on Planes A and B (radians) 

               =γS
wγ

γ
 = Specific density of rock (dimensionless)    

                  =γ Unit weight of rock (kN/m3) 

               =Wγ  Unit weight of water (kN/m3) 

                   =h  Height of the wedge (m) 

    

This equation is identical to (Hoek and Bray, 1981): 

 

                                            
τ

φσ tan⋅+
= n

S

C
F                                                  (5.11) 

In which, 

                                ( )
1111 wyn GbSayh −=σ                                             (5.12) 

 

                               ( )
2222 wyn GbSayh −=σ                                             (5.13) 

 

                                              ( )22113 cbcbSC y +=                                               (5.14) 

 

                                       hyS y ⋅⋅=τ                                                       (5.15) 
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The limit-state equation of this case is: 
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The basic variables of the limit-states for all the failure modes of a wedge 

slope, which is being analyzed by the same failure criterion, are the same. That is 

also valid for the constants of these limit-states.  

 

The basic variables are 1β , 2β , 1δ , 2δ , 1tanφ , 2tanφ , 1WG , 2WG , 1c , and 2c . While, 

the constants areα , Ω , h , γ , and γS . 

 

5.3.1.2. Sliding Along Plane 1 Only 

 

Based on equation (3.33) the following formula is developed: 
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So, limit-state equation of this case is: 
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That is once more identical to equation (5.11), in which,  
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Where, all the symbols are as defined in connection with equation (5.10). 

 

5.3.1.3. Sliding Along Plane 2 Only 

 

Based on equation (3.37) the following formula is developed: 
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Then, the limit-state equation becomes: 
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That is again identical to equation (5.11), where,  
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                                                223 cbC =                                                 (5.25) 
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Where, all the symbols are as defined in connection with equation (5.10). 

 

5.3.1.4. Floating Failure 

 

The factor of safety falls to zero in this case as the contact is lost on both 

planes. That is, the wedge floats due to the water pressures that are acting on both 

planes. 

 

So, limit-state equation of this case is: 
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Where, all the symbols are as defined in connection with equation (5.10). 

5.3.2. Barton Bandis Failure Criterion  

 

The basic variables of the limit-states for all the failure modes of a wedge 

slope, which is being analyzed by this failure criterion, are the same. That is also 

valid for the constants of these limit-states. The basic variables in case are JRC , 
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JCS , 1β , 2β , 1δ , 2δ , 1φ , 2φ , 1WG , and 2WG . While, the constants areα , Ω , h , γ , 

and γS . 

 

5.3.2.1. Biplane Sliding 

 

Based on equation (3.17) the following formula is developed: 
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This is identical to equation (2.4), in which:                  
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Where, 

 
1nσ and 2nσ  are the normal stresses on plane 1 and 2, respectively, and all the 

other symbols are as defined in connection with equation (5.7). 

   

Then, the limit-state equation is written as: 
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All the symbols in equation (5.31) are as defined in connection with equation (5.7). 
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5.3.2.2. Sliding Along Plane 1 Only 

 

Based on equation (3.33) the following formula is developed: 
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In which,            
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So, limit-state equation of this case becomes: 
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         (5.35) 

 

All the symbols in equation (5.35) are as defined in connection with equation (5.7). 

 

5.3.2.3. Sliding Along Plane 2 Only 

 

Based on equation (3.37) the author developed the following formulation: 
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Then the limit-state equation is: 
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All the symbols in equation (5.39) are as defined in connection with equation (5.7). 

 

5.3.2.4. Floating Failure 

 

The factor of safety falls to zero in Floating failure case as the contact is lost 

on both planes due to the water pressures that are acting on these planes. 

 
So, limit-state equation of this case is: 
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Where 1nσ  and 2nσ are defined as in connection to equation (5.28), while, all the 

other symbols are as defined in connection with equation (5.7). 

 

5.4. System Reliability 

 

The failure probability of the wedge slope depends on the reliability indices 

of the four possible failure modes mentioned above. So, in order to find the 

probability of such a wedge, it should be treated as a system composed of these four 

components. The occurrence of one or more of these components or failures 

constitutes the failure of the whole system. In other words, the reliability of this 

system requires that none of the components fail. Thus, it is treated as a series-

connected system. Such a system is represented by the diagram shown in Figure 

(5.1). Then, the failure probability of this system or slope is calculated by the system 

reliability method. 

 

 

Figure 5.1 Series representation of the wedge failure 
 

 

The first-order series bounds for all the failure modes are used as these 

events are positively correlated (Low, 1997). So, the probability of such a system is 

given by the range (Ang and Tang, 1984): 
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Where,  

   iF    = The failure modes     

 ( )iFP = The failure probability for the modes of failure 

 

Then, the probability of failure in for a wedge slope is given by: 
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In equation (5.42) 4321 ,,, ββββ are the reliability indices of Biplane sliding, sliding 

along plane 1 only, sliding along plane 2 only, and Floating failure, respectively. 



 
 
 
 

CHAPTER VI 

 

 

DEVELOPMENT OF SLOPE ANALYZING SPREADSHEETS 

 

 

6.1. Introduction 

 

The AFOSM approach used in the calculation of the reliability index is an 

iterative approach, in other words, it is a time consuming method. As a result of that, 

the need for software application is essential. Such a computational method has been 

proposed by Low (1997). He implemented the AFOSM method using the solver tool 

available in Excel spreadsheet to the stability analysis of rock wedge slopes. In that 

study Low used the Coulomb linear failure criterion and it was assumed the 

parameters were normally distributed. 

     
The author developed spreadsheets similar to the one proposed by Low 

(1997), but with broader applications. The developed spreadsheets are called Plane 

Slope Analyzer (PSA) and Wedge Slope Analyzer (WSA). Each one of them has 

two spreadsheets that correspond to the failure criteria, namely, Coulomb and Barton 

Bandis criteria. The PSA is divided into two sub-analyzers. These analyzers are 

corresponding to the possible positions of tension crack, that is, the slope face and 

the upper slope surface.  
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6.2. Plane Slope Analyzer (PSA) 

 

As mentioned above, this analyzer has two sub-analyzers. The sub-analyzers 

are called Plane Slope Analyzer 1 (PSA1) and Plane Slope Analyzer 2 (PSA2). If the 

tension crack is in the upper surface of the slope then PAS1 is used. On the other 

hand, PSA2 is used when the tension crack is located in the slope face. The only 

difference between PSA1 and PSA2 is the weight calculation method for the sliding 

block (equations 3.10 and 3.11).   

 

6.2.1. Plane Slope Analyzer (Coulomb) 

 

Plane Slope Analyzer has two worksheets, namely, definitions and details, 

and Inputs & Outputs (Appendix A, Figures A.1 and A.3). The former gives the user 

information about the type of the slope to be analyzed, the input and output 

parameters (Figure A.1), the assumptions, and the application instructions (Figure 

A.2). Whereas, the latter is the calculation worksheet, in which the user will input 

the required parameters and their distributions (Figure A.3). Then, by following the 

instruction given in Figure (A.2), the reliability index and the probability of failure 

are calculated. It is important to emphasize that the angles must be in radian rather 

than in degrees. That is because the Excel software performs angle calculation in 

radians instead of degrees. For this reason converter tool is added to the spreadsheet 

in order to ease the user’s work. In this converter the right cell contains the formula 

given in equation (6.1) (Figure 6.1): 

 

                                     F27 = RADIANS (E27)                                        (6.1) 
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    Figure 6.1 Converter tool 

 

 

The required parameters for this analyzer are fp ψψ , ,C , rφ , H , γ , wγ wZ,  and Z . 

 

6.2.1.1. Coding in Excel  

   

In order to calculate the equivalent normal mean and standard deviation, a 

code is defined utilizing the visual basic language based on the code written by Low 

and Tang (2004). This code is given in Appendix (B).  

 

In the Inputs & Outputs the equivalent mean value is given by the formula in 

Figure (6.2). In this formula the function EquivalentNormal ( ) is called from the 

user defined code mentioned above. This function asks for some values in order to 

calculate the required mean value. In fact it is written as EquivalentNormal 

(DistributionName, paralist, x, code). So, first of all it asks for the distribution 

type of the variable. Then, it asks for the parameters’ values, that is, para1 and 

para2, which will change according to the type of distribution (Figure 6.3). Next, the 

function will ask for the initial value of the parameter, which is the mean value 

calculated automatically in column I. That is the column labeled xi initial values. 

Finally, the function asks for a code, which is either 1 or 2. These codes correspond 

to the equivalent normal mean value and the equivalent normal standard deviation, 
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respectively.  In other words, if the user is intended to calculate the equivalent 

normal standard deviation, he will use the same function except for the code which 

is replaced by 2.  

 

 
 

Figure 6.2 Equivalent mean value 
 

 

 
 

Figure 6.3 Meaning of para1 and para2 according to their distribution type 
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As mentioned in Chapter IV, the reliability index is calculated by: 
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In the analyzer, the symbol Ж 2 is: 

 

                                        (Ж) 2 =  
( )

( )2

2

N

xi

N

xiix

σ

µ−∗

                                           (6.2)   

 

Then, the reliability index is coded as (Figure 6.4):   

        
N8)):4SQRT(SUM(N= β          (6.3) 

 

 
 

Figure 6.4 Reliability index in the spreadsheet 
 

 

 

The failure probability of the slope is calculated at the end as: 

 
                                           ( )βΦ−= 1FP                                                  (6.4) 
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This is coded in the spreadsheet as: 

 
                                   M17)NORMSDIST(1−=FP                                  (6.5) 

     
Where, M17 is the cell containing the value of the reliability index.  

 

All the other formulas used in the calculation of β and PF are coded as shown in 

Figure (A.3).  

 

6.2.1.2. Solver Optimization Tool   

 

 The Solver tool can be accessed from the Tool list in the toolbar. However, 

if it is not there, it must be added to the Tool list. That can be done as follows: 

 
1. In the toolbar click Add-Ins function  

2. Select Solver Add-in 

3. Click ok 

4. Now the Solver function has been added to the Tool list     

 

The Solver tool is used to calculate the minimum reliability index. When the 

Solver is invoked, set the cell of the reliability index to minimum. By changing the 

values of the x column (Figure 6.5), that is K4:K5 cells. Then it is advised to add 

constraints that will define the range within which the changing cells can vary. For 

this case, the Plane Slope Analyzer (Coulomb), the constraints are (Figure 6.6): 

 

1. 57.1 $K$5:$K$4 ≤  which means fψ  and °≤ 90pψ  

2. 0 $K$8:$K$4 ≥  which means fψ , pψ , c , φtan  and WZ  must be 0≥  

3.  116$$ =M  which means 1=SF  
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Figure 6.5 Constraints of Plane Slope Analyzer (Coulomb) 

 
 
 

After adding the constraints, press the solve button. After solving the 

spreadsheet will open a new window (Figure 6.7) 

 

 
 

Figure 6.6 Solver results window 
 

 
If needed the user may get the answer, sensitivity, and limits reports of the 

solution.  
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6.2.2. Plane Slope Analyzer (Barton Bandis) 

 

1. This analyzer is similar to the Plane Slope Analyzer (Coulomb) except 

for two differences (Appendix C, Figures C.1 through C.3). The first difference is 

the required parameters, and therefore, the constraints. Whereas, the second is the 

addition of two new outputs, namely, the normal stress nσ  and θtan . Where, θ  is 

the term between the parentheses in equation (5.7) (Figure C.3). The required 

parameters for this analyzer are fpwZJCSJRC ψψ ,,,, , rφ , H ,γ ,and Z (Figure 6.7).  

 

 
 

Figure 6.7 Required parameters in PSA (Barton Bandis) 
  
 
 

While, the constraints are (Figure 6.8): 

 

1. 57.1 $K$5:$K$4 ≤  which means fψ  and °≤ 90pψ  

2. 0 $K$9:$K$4 ≥  which means fψ , pψ , φ , WZ , JRC  and JCS  must       

be 0≥  

3.  20 $K$8 ≤  which means 20≤JRC  

4. 119$$ =M  which means 1=SF  
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Figure 6.8 Constraints of PSA (Barton Bandis) 
 

 

All the other formulas used in the calculation of β and PF are coded as shown in 

Figure (C.3).  

 

6.3. Wedge Slope Analyzer (WSA) 

 

This analyzer is more complicated than the PSA. That is because of the four 

failure modes involved in the analysis. The probability of each single mode of 

failure is calculated after that the reliability of the slope is evaluated based on the 

system reliability approach introduced earlier in Chapter 4.  

 

6.3.1. Wedge Slope Analyzer (Coulomb) 

 

This analyzer has seven worksheets, namely, definitions and details, Inputs 

& Outputs, BiPlane Failure, Plane 1 Failure, Plane 2 Failure, Floats, and Summary 

(Appendix D, Figures D.1 through D.8). The first one gives the user information 

about the type of the slope to be analyzed, the input and output parameters, the 

assumptions, and the application instructions (Figure D.1 and D.2). The second is 
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the general calculation worksheet, in which the user will input the required 

parameters and their distributions (Figure D.3). The worksheets from the third till 

the sixth are related to the failure modes as their names imply. Each one of these 

worksheets calculates the reliability and the failure probability for the mode of its 

name. The seventh and the last worksheet provide the user with the summary of the 

calculation involved as its name implies. This summary includes the failure 

probability of the single modes as well as the system reliability (Figure D.8). Once 

more this system reliability is based on equation (5.42).  

   

The required parameters in this case are 1β , 2β , 1δ , 2δ , 1tanφ , 2tanφ , 1WG , 

2WG , 1C , 2C ,  α , Ω , h , γ , and γS . These parameters are as defined in connection 

with equations (2.8) through (2.20). For simplicity it was assumed that 2WG  = 1WG , 

2tanφ  = 1tanφ , and 2C  = 1C .  

 

On the other hand, the constraints of each mode of failure are different than 

those of the others. For example, constraints of Biplane failure are (Figure 6.9): 

 
1. 142.3 $C$6:$C$3 ≤  that means 1β , 2β , 1δ , °≤ 1802δ  

2. 0$C$9:$C$3 ≥  that means 1β , 2β , 1δ , 2δ , 1tanφ , 1WG , and 1C  are all 

0≥  

3. 1$H$14 ≤  that means 1≤SF . The reason why this constraint was set 

rather that 1=SF  is that the latter misleads to a bigger value of the 

reliability index (Low, 1997).  

4. 0$M$9:$M$8 ≥  that means 1abG and 2abG are 0≥    
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Figure 6.9 Constraints of Biplane failure WSA (Coulomb) 

 
 

The Constraints of the failure along plane 1 are (Figure 6.10): 

 
1. 142.3 $C$6:$C$3 ≤  that means 1β , 2β , 1δ , °≤ 1802δ  

2. 0$C$9:$C$3 ≥  that means 1β , 2β , 1δ , 2δ , 1tanφ , 1WG , and 1C  are all 

0≥  

3. 1$H$14 ≤  that means 1≤SF   

4. 0$M$9 ≥  that means 1abGZ 0≥    

 

Where,  
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In which Z is given by equation (2.25) 

 
5. 0$M$10 ≤  that means 02 ≤abG , where 2abG  is defined by equation 

(6.7) 

 

 
 

Figure 6.10 The Constraints of the failure along plane 1 WSA (Coulomb) 
 
 
 

The Constraints of the failure along plane 2 are (Figure 6.11): 

 
1. 142.3 $C$6:$C$3 ≤  that means 1β , 2β , 1δ , °≤ 1802δ  

2. 0$C$9:$C$3 ≥  that means 1β , 2β , 1δ , 2δ , 1tanφ , 1WG , and 1C  are all 

0≥  

3. 1$H$14 ≤  that means 1≤SF  

4. 0$M$9 ≤  that means 1abG 0≤ , where 1abG  is defined by equation (6.6)   

5. 0$M$10 ≥  that means 02 ≥abGZ  
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Where,  
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Figure 6.11 The Constraints of the failure along plane 2 WSA (Coulomb) 
 

 
 

Constraints of the Floating failure (Floats) (Figure 6.12): 

 
1. 142.3 $C$6:$C$3 ≤  that means 1β , 2β , 1δ , °≤ 1802δ  

2. 0$C$9:$C$3 ≥  that means 1β , 2β , 1δ , 2δ , 1tanφ , 1WG , and 1C  are all 

0≥  

3. 1$H$14 ≤  that means 1≤SF  

4. 0$M$10:$M$9 ≤  that means 1abGZ  and 2abGZ are 0≤ , where 1abGZ  

and 2abGZ  are defined by equations (6.8) and (6.9), respectively.   
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Figure 6.12 Constraints of the Floating failure WSA (Coulomb)   
 

 

6.3.2. Wedge Slope Analyzer (Barton Bandis) 

 

This analyzer is similar to the Wedge Slope Analyzer (Coulomb) except for 

two differences (Appendix E, Figures E.1 through E.7). The first is the required 

parameters, and therefore, the constraints. The second is the addition of new outputs, 

that is, 1nσ , 2nσ , 1tanθ , and 2tanθ . Where, 1θ  and 2θ  are: 
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While 1nσ , 2nσ  are given by equations (5.29) and (5.30), respectively. 

 

The required parameters are 1β , 2β , 1δ , 2δ , 1φ , 1WG , JRC , JCS , α , Ω , 

h , γ , and γS . For simplicity again it was assumed that 2WG  = 1WG , and 2φ  = 1φ . 
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Yet again, the constraints of each mode of failure are different than those of the 

others.  

 

Constraints of the Biplane failure are (Figure 6.13): 

 
1. 0$C$10:$C$3 ≥  that means 1β , 2β , 1δ , 2δ , 1φ , 1WG , JRC , and JCS  

are all 0≥  

2. 142.3 $C$6:$C$3 ≤  that means 1β , 2β , 1δ , °≤ 1802δ  

3. 57.1$C$7 ≤  that means °≤ 901φ  

4. 20 $C$9 ≤  which means 20≤JRC  

5. 1$H$14 =  that means 1=SF . The reason why this constraint was set in 

this way is that the 1≤SF  constraint in some situations yields undefined 

values of SF . That is due to the formulation of Barton Bandis failure 

criterion. 

6. 0$L$9:$L$8 ≥  that means 1abG and 2abG are 0≥ .   

 
Where, 1abG and 2abG  are given by equations (6.6) and (6.7), 

respectively. 

  

 
 

Figure 6.13 Constraints of the Biplane failure WSA (Barton Bandis) 
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The Constraints of the failure along plane 1 are: 

 
The first five constraints of this mode of failure are the same as those of the 

Biplane failure mentioned above, whereas, the others are: 

  
6. 0$L$9 ≥  that means 1abGZ  0≥ .   

7. 0$L$10 ≤  that means and 2abG 0≤  

 
      Where, 1abGZ and 2abG  are given by equations (6.8) and (6.7), 

respectively. 

 

The Constraints of the failure along plane 2: 

 

The first five constraints of this mode of failure are again similar to those of 

the Biplane failure. While, the others are: 

 
6. 0$L$9 ≤  that means 1abG  0≤ .   

7. 0$L$10 ≥  that means and 2abGZ 0≥  

 
Where, 1abG and 2abGZ  are given by equations (6.6) and (6.9), 

respectively. 

 

Constraints of the Floating failure (Floats): 

 
Once more the first five constraints are similar to those of the Biplane 

failure. Whereas, the others are: 

 
6. 0$L$9 ≤  that means 1abGZ  0≤   

7. 0$L$10 ≤  that means and 2abGZ 0≤  
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Where, 1abGZ and 2abGZ  are given by equations (6.8) and (6.9), 

respectively. 

 

6.4. Defining and Enabling Macros  

 

In order to add a user defined macro to an Excel worksheet, the user need to 

follow the procedure given below (Figures 6.14-6.15): 

 
1. Tools/Macros/Visual Basic Editor  

2. Insert/Module  

3. Define the new macro 

4. Save 

5. File/Close and Return to Microsoft Excel  

 

 
 

Figure 6.14 Defining macros in Excel, step (1) 
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Figure 6.15 Defining macros in Excel, step (5) 
 

 

Since the user defined macro does not work unless the macros are enabled, it 

is essential enable the macros when utilizing Excel spreadsheets. In order to enable 

such macros the user need to set the macro security level to medium. That is done by 

following the list below (Figures 6.16-6.17): 

 

1. Tools/Macros/Security   

2. Security level / “Medium” / “Ok”  

 

 
 

Figure 6.16 Enabling macros, steps (1) 
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Figure 6.17 Enabling macros, steps (2) 
 
 
 

After that, the user needs to close and re-open the Excel software. Before 

opening the analyzer, a warning window will show up (Figure 6.18). “Enable 

Macros” button should be selected in order to open the analyzer and make use of the 

user defined macro.  

 
 

 
 

Figure 6.18 Excel warning window 
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6.5. Verification of PSA and WSA Spreadsheets 

 

In this section the verifications of the developed spreadsheets are carried out. 

These verifications were accomplished by studying the affect of height of slope, 

height of water table, cohesion, friction angle, and JCS on the values of the 

reliability index, and failure probability of given plane and wedge slopes based on 

Coulomb and Barton Bandis failure criteria. The parameters were assumed to be 

normally distributed for simplicity.         

 

6.5.1. Plane Slope Analyzers 

 
 

In order to analyze the effect of the factors mentioned above on the stability 

of a specific plane slope, there was a need for changing the number of cells that are 

being changed during the solution in the solver tool so that it will represent the same 

slope in all cases. This adjustment was made by eliminating the cells containing the 

dip of slope surface (ψf) as well as the dip of discontinuity plane (ψp) from the cells 

under ‘By Changing Cells’ option. For example, after making such adjustment to 

PSA (Coulomb) the solver tool of Figure 6.5 will appear as shown in Figure 6.19.   

 

 
 

Figure 6.19 Solver of PSA (Coulomb) after eliminating ψf  and ψp 
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6.5.1.1. Plane Slope Analyzer (Coulomb) 

 

In order to verify the Plane Slope Analyzer (Coulomb) the affect of slope 

height, height of water table, cohesion and friction angle on Beta value (reliability 

index) and probability of failure is investigated. For this reason a plane slope with 

the basic variables and their statistical parameters as given in Table 6.1 is 

considered. 

 
 

 
Table 6.1 Summary of the basic variables and their statistical parameters for PSA 

(Coulomb) 

 

Variable 
Name 

Dip of slope 
surface 
(ψf, rad) 

Dip of 
discontinuity 

plane 
(ψp, rad.) 

Cohesion of 
the joint 

(C, ton/m2) 

Tangent of the 
friction angle of 
the joint (tanø, 

rad.) 

Height of water 
in tension 

crack (Zw, m) 

Mean 1.396 0.541 15.000 0.700 10.000 
Standard 
deviation 0.070 0.125 3.001 0.150 0.100 

c.o.v. 0.050 0.232 0.200 0.214 0.010 
 

 

On the other hand, the constant parameters of the slope under consideration are 

shown in Table 6.2. 

 
 
 

Table 6.2 Constant parameters for PSA 
 

Slope height  
(H, m) 

Unit weight of 
rock  

(y, ton/m3) 

Unit weight of 
water in  

(yw , ton/m3)  

Tension crack 
depth from the 

crest (Z, m) 

60.00 2.70 1.00 40.00 
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In this study different slope heights are considered. However, the area of the 

considered plane had to be constant in order to make the results comparable. Thus, 

the difference between the height of the slope (H) and the height of the tension crack 

(Z) is kept constant. The values of the slope heights considered in this study are 

shown in Table 6.3. 

  
 

Table 6.3 Values of H and Z used in the analysis 
 
 

  

 

The effects of slope height, height of water table, cohesion and friction angle on the 

value of the reliability index (Beta) is shown in Figures 6.20 through 6.23, whereas, 

the effects of the same parameters on the probability of failure are given in 

Appendix F (Tables F.1 through F.16). 

  
As seen form Figures 6.20 and 6.21, the value of Beta is directly proportion 

with the value of cohesion, but inversely proportional with slope height. On the 

other hand, the relation is linear when the slope is dry, but not linear when the height 

of water table increases to 10 meters.     

 

From Figures 6.22 and 6.23, it is clear that Beta is directly proportion with 

the friction angle, but inversely proportional with the slope height. The increase is 

linear and highly sharp until 34.99 degrees angle. However, it is not the same for 

friction angles bigger than 34.99 degrees, as the increase is not linear and not as 

sharp as before it.  

Height of the slope 
(H, m) 60 70 80 100 

Height of tension 
crack (Z, m) 

40 50 60 80 
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Figure 6.20 Cohesion versus Beta values for different slope heights at dry condition 
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Figure 6.21 Cohesion versus Beta values for different slope heights at 10 m height 

of water table  
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Figure 6.22 Friction angle versus Beta values for different slope heights at dry 

condition  
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Figure 6.23 Friction angle versus Beta values for different slope heights at 10 m 

height of water table  
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6.5.1.2. Plane Slope Analyzer (Barton Bandis) 

 

In order to verify the Plane Slope Analyzer (Barton Bandis) the affect of 

slope height, height of water table, JCS and friction angle on Beta value and 

probability of failure is investigated. For this reason a plane slope with the basic 

variables and their statistical parameters as given in Table 6.4 is considered. 

 

 
Table 6.4 Summary of the basic variables and their statistical parameters for PSA 

(Barton Bandis)  

  

Variable 
Name 

Dip of slope 
surface 
(ψf, rad) 

Dip of 
discontinuity 

plane 
(ψp, rad.) 

Friction 
angle of 
the joint 
(ø, rad.) 

Joint wall 
compressive 

strength 
(JCS, 

ton/m2) 

Height of 
water in 
tension 
crack 

(Zw, m) 

 
Joint 

roughness 
coefficient 

(JRC) 
 

Mean 1.396 0.541 0.611 55682.957 10.000 10.000 

Standard 
deviation 0.070 0.125 0.131 11136.591 0.100 0.100 

c.o.v. 0.050 0.232 0.214 0.200 0.010 0.010 
 

 

The constant parameters of this slope are as shown in Table 6.2. 

 

The effects of slope height, height of water table, JCS and friction angle on Beta 

value is shown in Figures 6.24 through 6.27, whereas the effects of the same 

parameters on the probability of failure are given in Appendix G (Tables G.1 

through G.16). 

 

As can be seen form Figures 6.24 through 6.27, the value of Beta is directly 

proportion with the value of JCS and friction angle, but inversely proportional with 

slope height. In all the Figures it is very clear that the relation between Beta and JCS 

or friction angle is linear for Beta values less than 4.500.  
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Figure 6.24 JCS versus Beta values for different slope heights at 0 m height of water 

table 
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Figure 6.25 JCS versus Beta values for different slope heights at 10 m height of 

water table 
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Figure 6.26 Basic friction angle versus Beta values for different slope heights at     0 

m height of water table 
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Figure 6.27 Basic friction angle versus Beta values for different slope heights at     

10 m height of water table 
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6.5.2. System Reliability 

 

For wedge failure case two methods are used the calculation of PF. these 

methods are the system reliability method and the conventional method that depends 

on the values of PF corresponding to single modes of failure. Then the results of 

these methods are compared to reveal the advantage of system reliability approach 

over the conventional one. For this reason a wedge slope with the basic variables 

and their statistical parameters as given in Tables 6.5 is considered (Low, 1997). 

These parameters are as defined in connection with equation (3.17) 

 

 

Table 6.5 Summary of the basic variables and their statistical parameters for WSA 

(Coulomb) 

 
 Mean Standard deviation c.o.v. 

β1 (radian) 1.082 0.052 0.048 
δ1 (radian) 0.873 0.035 0.040 
β2 (radian) 0.349 0.052 0.150 
δ2 (radian) 0.838 0.035 0.042 

tan ø1 (radian) 0.700 0.150 0.214 
Gw1 0.500 0.120 0.240 

c1 (kPa) 41.600 8.320 0.200 
 

 

The constant parameters of this slope are given in Table 6.6. 

 
 
 

Table 6.6 Constant parameters for WSA 

 

α (degree) Ω (degree) h (m) y (kN/m
3
) 

Sy 
(dimensionless) 

70 0 16 26 2.6 
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Once the failure probability of single failure modes is calculated (Table 6.7), the one 

may accept PF of Mode 1 as the failure probability of the whole slope, but before 

doing so let us consider the result of the system reliability approach as well.  

.  

 

Table 6.7 Failure probability of single failure modes for the wedge slope considered 
 

  Failure Mode 
Mode 1 

(Plane 1) 

Mode 2 

(Plane 2)  

Mode 3 

(BiPlane) 

Mode 4 

(Floating) 

Probability of 

Failure (PF) 
0.070 1.1x10-9

 0.041 6.9x10-6
 

  

 

In order to evaluate the failure probability of a wedge slope by the system 

reliability approach, it should be treated as a system that composes of four 

components, that is, the four modes of failure. The occurrence of one or more of 

these components constitutes the failure of the whole system. In other words, the 

reliability of this system requires the stability of all the components. Such 

components are said to be positively correlated (Ang and Tang, 1984). For a system 

with such kind of components, Low (1997) suggested the utilization of the first-

order series bounds. The application of such bounds to the wedge under 

consideration is given by equation (5.42). Clearly, the result is in a form of a range 

with two bounds namely, the upper and the lower bounds.  

  
                                            ( ) 092.0FailurePt 070.0 ≤≤                                    (6.1)  

 
In equation (6.1) Pt (Failure) is total failure probability of the considered wedge 
slope.   
 

Inequality (6.1) indicates that the failure probability of this slope is ranging between 

0.092 and 0.070. So, depending on the failure probability of single failure modes 
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would miss lead to the lowest value of the probability range (Figure 6.28). Thus, the 

system reliability approach is more appropriate in the estimation of failure 

probability of wedge slopes. 

 

 

 
Figure 6.28 Comparison of system reliability result with the results of single failure 

modes  

 

6.5.3. Wedge Slope Analyzer  

 

In this section, the effect of slope height, height of water table, cohesion, 

friction angle, and JCS on the failure probability of wedge slope (Pt) is investigated. 

Pt is used instead of Beta value since it is the only outcome of system reliability 

approach, which gives the result as a range having a maximum and a minimum 

values. However, in this study only the maximum value of this failure probability 

range was considered as the failure probability of the whole wedge slope in order to 

simplify it. 

 

6.5.3.1. Wedge Slope Analyzer (Coulomb) 

 

In order to verify this spreadsheet a wedge slope having the same parameters 

as those listed in Tables 6.5 and 6.6 is considered. The results of this analysis are 

given by Figures 6.29 through 6.32. 
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As can be seen form Figures 6.29 through 6.32, the value PF is inversely 

proportional with the value of cohesion and friction angle, but directly proportional 

with slope height. It is clear from the same figures that the relation between PF and 

cohesion or friction angle is nonlinear. From the same figures, it is obvious that the 

decrease in PF is sharper when the water pressure increases as expected.  
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Figure 6.29 Cohesion versus probability of slope failure for different slope heights at 

0.25 Normalized water pressure 
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Figure 6.30 Cohesion versus probability of slope failure for different slope heights at 

0.5 Normalized water pressure 
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Figure 6.31 Friction angle versus probability of slope failure for different slope 

heights at 0.25 Normalized water pressure  
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Figure 6.32 Friction angle versus probability of slope failure for different slope 

heights at 0.5 Normalized water pressure 

 
 

6.5.3.2. Wedge Slope Analyzer (Barton Bandis) 

 

In order to verify this spreadsheet a wedge slope with the basic variables and 

their statistical parameters as given in Table 6.6 and 6.8 are considered, while the . 

These parameters are as defined in connection with equation (3.17). 

 

 

 

 

 



 95 

Table 6.8 Summary of the basic variables and their statistical parameters for WSA 

(Barton Bandis) 

 
 Mean Standard deviation c.o.v. 

β1 (radian) 1.082 0.052 0.048 
δ1 (radian) 0.873 0.035 0.040 
β2 (radian) 0.349 0.052 0.150 
δ2 (radian) 0.838 0.035 0.042 
ø1 (radian) 0.611 0.131 0.214 

Gw1 (dimensionless) 0.500 0.120 0.240 
JRC (dimensionless) 11.930 4.180 0.350 

JCS (kPa) 154427.402 87368.685 0.566 
 
 
 
The constant parameters of this slope are as shown in Table 6.6, and the results of 

this analysis are given by Figures 6.33 through 6.36. These figures illustrate that the 

expected results are achieved, which prove the accuracy of this spreadsheet. 
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Figure 6.33 JCS versus probability of slope failure for different slope heights at 0.25 

Normalized water pressure 
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Figure 6.34 JCS versus probability of slope failure for different slope heights at   0.5 

Normalized water pressure 
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Figure 6.35 Friction angle versus probability of slope failure for different slope 

heights at 0.25 Normalized water pressure 
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Figure 6.36 Friction angle versus probability of slope failure for different slope 

heights at 0.5 Normalized water pressure 

 
 

6.6. Sensitivity Analysis Based on Distribution Function for PSA  

 

 This section is devoted to the application of PSA in investigating the 

sensitivity of reliability index (β) and consequently the probability of slope failure 

(PF), to distribution functions of the parameters. PSA (Coulomb) and PSA (Barton 

Bandis) are used in this analysis.  

 

6.6.1 Sensitivity analysis for PSA (Coulomb)  

 

The parameters used in this study are as shown by Table 6.9 and 6.10.  
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Table 6.9 Summary of the basic variables for PSA (Coulomb) 

 

Variable 
Name 

Dip of slope 
surface 
(ψf, rad) 

Dip of 
discontinuity 

plane 
(ψp, rad.) 

Cohesion of 
the joint 

(C, ton/m2) 

Tangent of 
the friction 
angle of the 
joint (tanø, 

rad.) 

Height of 
water in 

tension crack 
(Zw, m) 

Mean 1.396 0.541 15.000 0.700 10.000 
Standard 
deviation 

0.070 0.125 3.001 0.150 0.100 

 

  

The constant parameters of the slope under consideration are shown in Table 6.10. 

 
 
 

Table 6.10 Constant parameters for PSA 
 

Slope height  
(H, m) 

Unit weight of 
rock  

(y, ton/m3) 

Unit weight of 
water in  

(yw , ton/m3)  

Tension crack 
depth from the 

crest (Z, m) 

60.000 2.700 1.000 40.000 

 

 

From Figure 6.3 the maximum and minimum values of the parameters 

considered are needed if the distribution type is triangular (symmetric, upper, lower) 

or uniform. The values of these parameters are calculated utilizing Table (4.1) and 

equation (4.22). Then the results of this study are given in Tables 6.11. 

 
 

Table 6.11 Results of the Plane Slope Analyzer (Coulomb)   
 

 Normal Uniform  Lognormal  Symmetric T. Upper T. Lower T. 

β 1.5440 1.4192 1.7250 8.2221 1.3734 1.4267 

PF 0.0613 0.0779 0.0423 0.0000 0.0848 0.0768 
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6.6.2 Sensitivity analysis for PSA (Barton Bandis)  

 

The basic variables used in this study are as shown in Table 6.12, while, the 

constant parameters are the same as those shown in Table 6.10. Then the results of 

the analysis are given in Tables 6.13. 

 

 

Table 6.12 Summary of the basic variables for PSA (Barton Bandis)  

 

Variable 
Name 

Dip of slope 
surface 
(ψf, rad) 

Dip of 
discontinuity 

plane 
(ψp, rad.) 

Friction 
angle of 
the joint 
(ø, rad.) 

Joint wall 
compressive 

strength 
(JCS, 

ton/m2) 

Height of 
water in 
tension 
crack 

(Zw, m) 

 
Joint 

roughness 
coefficient 

(JRC) 
 

Mean 1.396 0.541 0.611 55682.957 10.000 10.000 

Standard 
deviation 0.070 0.125 0.131 11136.591 0.100 0.100 

 

 

Table 6.13 Results of the Plane Slope Analyzer (Barton Bandis)   
 

 Normal Uniform  Lognormal  Symmetric T. Upper T. Lower T. 

β 4.0288 3.5108 8.9957 M 3.5940 3.8589 

PF 0.00003 0.00022 0.00000 0.00000 0.00016 0.00006 

 

 

Where, M is a very large positive number. 

 

From Tables 6.11 and 6.13 it is clear that the results of the symmetric triangular 

distribution are unreliable since they are always very large when compared with 

other results. The lognormal distribution, on the other hand, always gives results 

greater than the results of the normal distribution. The uniform and upper triangular 
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distributions give similar result to some extent. Finally, the lower triangular 

distribution is found to give the closest result to that of the normal distribution.   

 

6.7. Discussion                                          

 

  The developed probabilistic models and their spreadsheets are verified by 

carrying out sensitivity analyses. That was done by investigating the variation affect 

of some parameters on reliability index (β), and probability of slope failure (PF). In 

these analyses, one parameter is changed while the others are kept constant. The 

results of these analyses as shown in Figures 6.20 through 6.36 indicate the expected 

trend such that: 

 

a. The reliability index, Beta, decreases as the water level and the slope 

height increases whereas PF increases. 

b. Beta increase as the cohesion, friction angle, or JCS increases whereas 

PF decreases. 

 

Based on these outcomes, it can be said that the developed models and the 

spreadsheets are verified and they can be used reliably by any practical engineers in 

their slope stability analysis. 

 

The effect of Coulomb linear and Barton Bandis nonlinear failure criteria on 

probability of failure (PF) is compared in both plane and wedge models. In these 

comparisons, the strength parameters used in those two different failure criteria were 

approximated in a manner representing each other. In this approximation the ratio of 

the compressive strength to cohesion, is taken as 4, as it is commonly utilized in 

practical applications. So, considering this practical usage, the ratio of JCS to 

cohesion is assumed to be 3.7 in these analyses.  
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 The comparison of results presented in Tables 6.14 and 6.15 show that: 

 
• For plane slopes, the results of Coulomb criterion are greater than those of 

Barton Bandis criterion (Table 6.14).  

 
• For wedge slopes, the results of Barton Bandis criterion are greater than that 

of Coulomb criterion (Table 6.15).  

 

 

Table 6.14 Probability of failure, PF, of a plane with cohesion of 15 (ton/m2) for 

different slope heights at 10 m height of water table 

 
 Coulomb Barton Bandis 

PF at H = 60  0.061 2.78E-05 

PF at H = 70 0.077 3.36E-05 

PF at H = 80 0.091 3.99E-05 

 

 

 

Table 6.15 Probability of failure, PF, of a wedge with cohesion of 30 (kPa) for 

different slope heights at 0.5 Normalized water pressure 

 

 Coulomb Barton Bandis 

PF at H = 16 0.092 0.308 

PF at H = 20 0.157 0.328 

PF at H = 24 0.280 0.346 
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One reason for such differences in the results is the lack of uncertainty evaluation of 

the parameters in this thesis. Another reason is the estimation of the JCS that 

corresponds to a given cohesion value. This reduction in the ratio is due to the 

difficulty encountered in the estimation of JCS for in-situ rocks. Another reason is 

the distribution parameters which are found to have a great affect on the value of the 

reliability index. 

 

For wedge slopes the system reliability approach is found more reliable than 

the conventional PF which depends on the evaluation of PF for each mode separately. 

That is because estimating the failure probability of a wedge slope depending on the 

failure probability of a single mode has a considerable amount of uncertainty.  

 

According to the results shown in Tables 6.11 and 6.13 the type of 

distribution function has a remarkable affect on the value of reliability index and 

therefore on the probability of failure. The sensitivity analysis carried out showed 

that the results of lognormal distribution is greater than those of normal distribution 

as far as the reliability index is concerned, whereas, the results of uniform, upper 

triangular and lower triangular distributions are found to be smaller than those of the 

normal one. Additionally, the results of symmetric triangular distribution are found 

to be unreliable since they are always very large when compared with the results of 

other distribution types. The reason for such big results may be due to                          

the transformation process involved, or as a result of PDF formulation of that 

distribution.  

 

 
 



 
 
 
 

CHAPTER VII 

 

 

CONCLUSIONS AND RECOMMENDATIONS  

 

 

1. In this study, probabilistic models have been developed both for plane and wedge 

type of slope failures. The models utilize both linear form of Coulomb and non-

linear form of Barton Bandis Failure criteria. Analyzer spreadsheets are developed 

to ease the usage of probabilistic models based on the AFOSM method in slope 

stability analyses. 

 

2. The developed spreadsheets save time, yield accurate results and they are user 

friendly, therefore can be used by practical engineers. 

 

3. The spreadsheets express the stability of slopes in terms of reliability index, and 

probability of slope failure and give the chance to compare them with the factor of 

safety. 

 

4. The spreadsheets offer the choice of six different distribution types; normal, 

uniform, lognormal, symmetric triangular, upper triangular, and lower triangular 

distributions. They suggest that the symmetric triangular distribution is inappropriate 

for the calculation of the reliability index, while the lognormal distribution has 

greater effect than those of normal distribution as far as the reliability index is 

concerned. 
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5. For wedge slopes, the result of System reliability approach is found to be more 

reliable than the result of the conventional method, which depends on the failure 

probability of a single mode. 

 

6. The developed models were verified by the sensitivity analyses and as expected 

the value of the reliability index decreases as the height of slope and/or the level of 

water table increases, while it increases as the cohesion, friction angle, and JCS 

increase. These parameters have the opposite effect on the probability of slope 

failure. 

 

7. The results of Coulomb failure criterion for plane slopes are bigger than those of 

Barton Bandis failure criterion as far as PF is concerned. However, for wedge slopes 

the results of Barton Bandis failure criterion are greater than those of Coulomb 

failure criterion.  

 

Finally, based on this study the following recommended for further study: 

 

1. In this thesis the uncertainties of the parameters which have a 

considerable affect on the result are not considered. Thus, it is 

recommended to carry out a detailed stability analysis considering the 

uncertainties as well as the variability of the parameters. That may 

reveal the ambiguity of the difference between the results of Coulomb 

and Barton Bandis failure criteria.  

 

2. Wider application of AFOSM method is recommended, since it has 

overcome the drawbacks of other probabilistic methods.  

 

3. The developed models should also be verified with an actual field data.
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APPENDIX A 

 

 

PLANE SLOPE ANALYZER (COULOMB)                                    

 

 

 
 

Figure A.1 Plane Slope Analyzer (Coulomb) definitions and details worksheet (1) 
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Figure A.2 Plane Slope Analyzer (Coulomb) definitions and details worksheet (2) 

 

  
Figure A.3 Plane Slope Analyzer (Coulomb) input & output worksheet 
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APPENDIX B 

 

 

THE USER DEFINED CODE IN THE DEVELOPED SPREADSHEETS 

 

 

Function EquivalentNormal(DistributionName, paralist, x, code) 

 

del = 0.1 

para1 = paralist(1): para2 = paralist(2) 

code1 = (µN): code2 = (sigmaN) 

Select Case UCase(Trim(DistributionName)) 

 

Case "NORMAL":  If code = 1 Then EquivalentNormal = para1 

If code = 2 Then EquivalentNormal = para2 

 

Case "UNIFORM": Min = para1: Max = para2 

If x <= Min Then x = Min + del 

If x >= Max Then x = Max - del 

If Min < x < Max Then CDF = (x - Min) / (Max - Min): pdf = 1 / (Max - Min) 

EquivalentNormal = EquivalentTransformed(x, CDF, pdf, code) 

 

Case "SYMMETRIC TRIANGULAR": 

Min = para1: Max = para2 
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µ = (Min + Max) / 2 

If x <= Min Then x = Min + del 

If x >= Max Then x = Max - del 

If Min < x <= µ Then CDF = (2 * ((x - Min) ^ 2)) / ((Max - Min) ^ 2): pdf = 4 * (x - 

Min) / ((Max - Min) ^ 2) 

If µ < x < Max Then CDF = 1 - ((2 * ((Max - x) ^ 2)) / ((Max - Min) ^ 2)): pdf = 4 * 

(Max - x) / ((Max - Min) ^ 2) 

EquivalentNormal = EquivalentTransformed(x, CDF, pdf, code) 

 

Case "UPPER TRIANGULAR": 

Min = para1: Max = para2 

If x <= Min Then x = Min + del 

If x >= Max Then x = Max - del 

If Min < x < Max Then CDF = ((x - Min) ^ 2) / ((Max - Min) ^ 2): pdf = (2 * (x - 

Min)) / ((Max - Min) ^ 2) 

EquivalentNormal = EquivalentTransformed(x, CDF, pdf, code) 

 

Case "LOWER TRIANGULAR": 

Min = para1: Max = para2 

If x <= Min Then x = Min + del 

If x >= Max Then x = Max - del 

If Min < x < Max Then CDF = 1 - (((Max - x) ^ 2) / ((Max - Min) ^ 2)): pdf = (2 * 

(Max - x)) / ((Max - Min) ^ 2) 

EquivalentNormal = EquivalentTransformed(x, CDF, pdf, code) 

 

Case "LOGNORMAL": 

If x < del Then x = del 

Lamda = Log(para1) - 0.5 * Log(1 + (para2 / para1) ^ 2) 

If code = 1 Then EquivalentNormal = x * (1 - Log(x) + Lamda) 
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If code = 2 Then EquivalentNormal = x * Sqr(Log(1 + (para2 / para1) ^ 2)) 

 

End Select 

 

End Function 

Function EquivalentTransformed(x, CDF, pdf, code) 

 

delta = 10 ^ -16 

If CDF <= delta Then CDF = delta 

If CDF >= 1 - delta Then CDF = 1 - delta 

EquivalentSigma = Application.NormDist(Application.NormSInv(CDF), 0, 1, False) 

/ pdf 

If EquivalentSigma < 0.000001 Then EquivalentSigma = 0.000001 

If code = 1 Then EquivalentTransformed = x - EquivalentSigma * 

(Application.NormSInv(CDF)) 

If code = 2 Then EquivalentTransformed = EquivalentSigma 

 

End Function 

 

 

 

 

Note  

The word “Application” in the code above stands for “Excel”. 
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APPENDIX C 

 

 

PLANE SLOPE ANALYZER (BARTON BANDIS) 

 
 
 

 
 

Figure C.1 Plane Slope Analyzer (Barton Bandis) definitions and details     

worksheet (1) 
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Figure C.2 Plane Slope Analyzer (Barton Bandis) definitions and details     
worksheet (2) 

 

 
 

Figure C.3 Plane Slope Analyzer (Barton Bandis) input & output worksheet 



 118 

 

 

 

 

APPENDIX D 

 

 

WEDGE SLOPE ANALYZER (COULOMB) 

 

 

 
 

Figure D.1 Wedge Slope Analyzer (Coulomb) definitions and details worksheet (1) 
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Figure D.2 Wedge Slope Analyzer (Coulomb) definitions and details worksheet (2) 
 

 
 

Figure D.3 Wedge Slope Analyzer (Coulomb) input & output worksheet 
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Figure D.4 Wedge Slope Analyzer (Coulomb) Biplane failure worksheet 
 

 
 

Figure D.5 Wedge Slope Analyzer (Coulomb) Plane 1 failure worksheet 
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           Figure D.6 Wedge Slope Analyzer (Coulomb) Plane 2 failure worksheet 
 

 
 

Figure D.7 Wedge Slope Analyzer (Coulomb) Floats worksheet 
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Figure D.8 Wedge Slope Analyzer (Coulomb) summary worksheet 
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APPENDIX E 

 
 

WEDGE SLOPE ANALYZER (BARTON BANDIS) 

 

 

 
 

Figure E.1 Wedge Slope Analyzer (Barton Bandis) definitions and details worksheet 
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Figure E.2 Wedge Slope Analyzer (Barton Bandis) input & output worksheet 
  

 
 

Figure E.3 Wedge Slope Analyzer (Barton Bandis) Biplane failure worksheet 
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Figure E.4 Wedge Slope Analyzer (Barton Bandis) Plane 1 failure worksheet 
 

 
 

Figure E.5 Wedge Slope Analyzer (Barton Bandis) Plane 2 failure worksheet 
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Figure E.6 Wedge Slope Analyzer (Barton Bandis) Floats worksheet 
 

 
 

Figure E.7 Wedge Slope Analyzer (Barton Bandis) summary worksheet 
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APPENDIX F 

 
 

TABLES OF RSULTS FOR PSA (COULOMB)  

 

                                   

Table F.1 Values of Pf for H = 60 m and at 0 m height of water table 
 

Cohesion (kPa) 

  15 25 35 45 
Probability of Slope 

Failure (Pf) 
0.016 0.002 0.00011 0.000 

 
 

 
Table F.2 Values of Pf for H = 70 m and at 0 m height of water table 

 
Cohesion (kPa)   

15 25 35 45 
Probability of Slope 

Failure (Pf) 
0.02272 0.0041 0.00046 0.00003 

 
 
 

Table F.3 Values of Pf for H = 80 m and at 0 m height of water table 
 

 Cohesion (kPa) 

  15 25 35 45 

Probability of Slope 
Failure (Pf) 

0.02897 0.007 0.00116 0.00013 
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Table F.4 Values of Pf for H = 100 m and at 0 m height of water table 
 

 Cohesion (kPa) 

  15 25 35 45 

Probability of Slope 
Failure (Pf) 

0.03877 0.01316 0.00342 0.00068 

 
 
 

Table F.5 Values of Pf for H = 60 m and at 10 m height of water table 
 

Cohesion (kPa) 

  15 25 35 45 

Probability of Slope 
Failure (Pf) 

0.06130 0.01145 0.00205 0.00043 

 
 

 
Table F.6 Values of Pf for H = 70 m and at 10 m height of water table 

 
Cohesion (kPa)   

15 25 35 45 
Probability of Slope 

Failure (Pf) 
0.07741 0.01899 0.00426 0.00101 

 
 

 
Table F.7 Values of Pf for H = 80 m and at 10 m height of water table 

 
 Cohesion (kPa) 

  15 25 35 45 
Probability of Slope 

Failure (Pf) 
0.09065 0.02694 0.00720 0.00194 

 
 
 

Table F.8 Values of Pf for H = 100 m and at 10 m height of water table 
 

 Cohesion (kPa) 

  15 25 35 45 
Probability of Slope 

Failure (Pf) 
0.11020 0.04172 0.01422 0.00468 
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Table F.9 Values of Pf for H = 60 m and at 0 m height of water table 
 
Friction angle (degree)  

  30 34.99202 36 38 

Probability of Slope 
Failure (Pf) 

0.04885 0.016 0.01246 0.00796 

 
 
 

Table F.10 Values of Pf for H = 70 m and at 0 m height of water table 
 

Friction angle (degree)   
30 34.99202 36 38 

Probability of Slope 
Failure (Pf) 

0.06762 0.02272 0.01812 0.0116 

 
 

 
Table F.11 Values of Pf for H = 80 m and at 0 m height of water table 

 
 Friction angle (degree) 

  30 34.99202 36 38 

Probability of Slope 
Failure (Pf) 

0.08263 0.02897 0.02319 0.0149 

 
 
 

Table F.12 Values of Pf for H = 100 m and at 0 m height of water table 
 

 Friction angle (degree) 
  30 34.99202 36 38 

Probability of Slope 
Failure (Pf) 

0.10321 0.03877 0.03123 0.02022 

 
 
 

Table F.13 Values of Pf for H = 60 m and at 10 m height of water table 
 
Friction angle (degree) 

  30 34.99202 36 38 

Probability of Slope 
Failure (Pf) 

0.18396 0.06130 0.04884 0.031 
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Table F.14 Values of Pf for H = 70 m and at 10 m height of water table 
 

Friction angle (degree)   
30 34.99202 36 38 

Probability of Slope 
Failure (Pf) 

0.22669 0.07741 0.06182 0.03949 

 
 
 

Table F.15 Values of Pf for H = 80 m and at 10 m height of water table 
 

 Friction angle (degree) 
  30 34.99202 36 38 

Probability of Slope 
Failure (Pf) 

0.26012 0.09065 0.07254 0.04646 

 
 
 

Table F.16 Values of Pf for H = 100 m and at 10 m height of water table 
 

Friction angle (degree) 
  30 34.99202 36 38 

Probability of Slope 
Failure (Pf) 

0.30689 0.11020 0.88480 0.05693 
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APPENDIX G 

 

 

TABLES OF RSULTS FOR PSA (BARTON BANDIS)  

 

 

Table G.1Values of Pf for H = 60 m and at 0 m height of water table 
 

JCS (kPa) 

  55682.96 92804.93 129926.90 167048.9 

Probability of Slope 
Failure (Pf) 

5E-6 1.16E-6 2.3E-9 0.000 

 
 
 

Table G.2 Values of Pf for H = 70 m and at 0 m height of water table 
 

JCS (kPa)   
55682.96 92804.93 129926.90 167048.9 

Probability of Slope 
Failure (Pf) 

6.8E-6 18E-6 3E-7 1.1E-12 

 
 
 

Table G.3 Values of Pf for H = 80 m and at 0 m height of water table 
 

 JCS (kPa) 

  55682.96 92804.93 129926.90 167048.9 
Probability of Slope 

Failure (Pf) 
9.3E-6 2.4E-6 1E-6 5.4E-9 
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Table G.4 Values of Pf for H = 100 m and at 0 m height of water table 

 
JCS (kPa) 

  55682.96 92804.93 129926.90 167048.9 

Probability of Slope 
Failure (Pf) 

1.46E-5 4E-6 1.6E-6 7E-7 

 
 
 

Table G.5 Values of Pf for H = 60 m and at 10 m height of water table 
 

JCS (kPa) 

  55682.96 92804.93 129926.90 167048.9 

Probability of Slope 
Failure (Pf) 

2.78E-5 7.6E-6 3.1E-6 1.5E-6 

 
 

 
Table G.6 Values of Pf for H = 70 m and at 10 m height of water table 

 
JCS (kPa)   

55682.96 92804.93 129926.90 167048.9 
Probability of Slope 

Failure (Pf) 
3.36E-5 9.31E-6 3.8E-6 1.9E-6 

 
 

 
Table G.7 Values of Pf for H = 80 m and at 10 m height of water table 

 
 JCS (kPa) 

  55682.96 92804.93 129926.90 167048.9 
Probability of Slope 

Failure (Pf) 
0.0000399 0.0000112 0.0000046 0.0000023 

 
 
 

Table G.8 Values of Pf for H = 100 m and at 10 m height of water table 
 

 JCS (kPa) 

  55682.96 92804.93 129926.90 167048.9 
Probability of Slope 

Failure (Pf) 
0.0000527 0.0000150 0.0000063 0.0000032 
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Table G.9 Values of Pf for H = 60 m and at 0 m height of water table 

 
Basic Friction angle (degree) 

  22 26 30 34.99202 

Probability of Slope 
Failure (Pf) 

0.0000116 0.0000080 0.0000060 0.0000050 

 
 
 

Table G.10 Values of Pf for H = 70 m and at 0 m height of water table 
 

Basic Friction angle (degree)   
22 26 30 34.99202 

Probability of Slope 
Failure (Pf) 

0.0000209 0.0000133 0.0000095 0.0000068 

 
 

 
Table G.11 Values of Pf for H = 80 m and at 0 m height of water table 

 
 Basic Friction angle (degree) 

  22 26 30 34.99202 

Probability of Slope 
Failure (Pf) 

0.0000331 0.0000198 0.0000134 0.0000093 

 
 
 

Table G.12 Values of Pf for H = 100 m and at 0 m height of water table 
 

 Basic Friction angle (degree) 
  22 26 30 34.99202 

Probability of Slope 
Failure (Pf) 

0.0000641 0.0000353 0.0000224 0.0000146 

 
 
 

Table G.13 Values of Pf for H = 60 m and at 10 m height of water table 
 

Basic Friction angle (degree) 
  22 26 30 34.99202 

Probability of Slope 
Failure (Pf) 

0.0001300 0.0000696 0.0000435 0.0000278 
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Table G.14 Values of Pf for H = 70 m and at 10 m height of water table 

 
Basic Friction angle (degree)   

22 26 30 34.99202 

Probability of Slope 
Failure (Pf) 

0.0001710 0.0000887 0.0000540 0.0000336 

 
 
 

Table G.15 Values of Pf for H = 80 m and at 10 m height of water table 
 

 Basic Friction angle (degree) 
  22 26 30 34.99202 

Probability of Slope 
Failure (Pf) 

0.0002180 0.0001100 0.0000655 0.0000399 

 
 
 

Table G.16 Values of Pf for H = 100 m and at 10 m height of water table 
 

Basic Friction angle (degree) 
  22 26 30 34.99202 

Probability of Slope 
Failure (Pf) 

0.0003240 0.0001570 0.0000898 0.0000527 

 
 

 

 

 


