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Supervisor

Examining Committee Members

Prof. Dr. Mahmut KUZUCUOĞLU (METU)
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Abstract

BLACK BOX GROUPS AND RELATED GROUP
THEORETIC CONSTRUCTIONS

YALÇINKAYA, Şükrü
Ph.D., Department of Mathematics

Supervisor: Assoc. Prof. Dr. Ayşe BERKMAN
Co-Supervisor: Prof. Dr. Alexandre BOROVIK

JUNE 2007, 86 pages

The present thesis aims to develop an analogy between the methods
for recognizing a black box group and the classification of the finite simple
groups. We propose a uniform approach for recognizing simple groups of Lie
type which can be viewed as the computational version of the classification
of the finite simple groups. Similar to the inductive argument on central-
izers of involutions which plays a crucial role in the classification project,
our approach is based on a recursive construction of the centralizers of in-
volutions in black box groups. We present an algorithm which constructs a
long root SL2(q)-subgroup in a finite simple group of Lie type of odd char-
acteristic p extended possibly by a p-group. Following this construction, we
take the Aschbacher’s “Classical Involution Theorem” as a model in the fi-
nal recognition algorithm and we propose an algorithm which constructs all
root SL2(q)-subgroups corresponding to the nodes in the extended Dynkin
diagram, that is, our approach is the construction of the the extended Curtis
- Phan - Tits presentation of the finite simple groups of Lie type of odd char-
acteristic which further yields the construction of all subsystem subgroups
which can be read from the extended Dynkin diagram. In this thesis, we
present this algorithm for the groups PSLn(q) and PSUn(q). We also present
an algorithm which determines whether the p-core (or “unipotent radical”)
Op(G) of a black box group G is trivial or not where G/Op(G) is a finite sim-
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ple classical group of Lie type of odd characteristic p answering a well-known
question of Babai and Shalev.

The algorithms presented in this thesis have been implemented exten-
sively in the computer algebra system GAP.

Keywords: Black Box Groups, Groups Of Lie Type.
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Öz

KARA KUTU GRUPLARI VE İLGİLİ GRUP
KURAMSAL İNŞAALARI

YALÇINKAYA, Şükrü
Doktora, Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Ayşe BERKMAN
Ortak Tez Yöneticisi: Prof. Dr. Alexandre BOROVIK

Haziran 2007, 86 sayfa

Bu tez bir kara kutu grubunun tanınması ile sonlu basit gru-
pların sınıflandırılmasında kullanılan metodlar arasındaki analojiyi kurmayı
amaçlamaktadır. Sonlu basit kara kutu Lie tipi gruplarının tanınması
için sonlu basit grupların sınıflandırılmasının berimsel versiyonu olarak
görülebilen bir yaklaşım öneriyoruz. Sınıflandırma projesinde çok önemli
bir rol oynayan özters elemanların deǧişim grupları üzerinde tümevarımsal
argümanlara benzer şekilde, yaklaşımımız özters elemanların deǧişim gru-
plarının tekrarlamalı inşaalarına dayanmaktadır. Karakteristiǧi tek sayı p
olan p-group ile genişletilmiş sonlu basit Lie tipi gruplarında uzun kök SL2(q)-
gruplarının inşaası için bir algoritma sunuyoruz. Bu inşaayı takiben, son
tanınma algoritması için Aschbacher’in “Klasik Özters Teorem”ini model
alıp genişletilmiş Dynkin diyagramındaki noktalara karşılık gelen bütün kök
SL2(q)-altgruplarını inşaa eden bir algoritma geliştiriyoruz, bir başka deyişle
yaklaşımımız ileride genişletilmiş Dynkin diyagramından okunabilen bütün
altsistem altgruplarının inşaası olacak olan genişletilmiş Curtis - Phan - Tits
sisteminin inşaasıdır. Bu tezde, bu algoritmayı PSLn(q) ve PSUn(q) gru-
pları için sunacaǧız. Ayrıca Babai ve Shalev’in ünlü problemini yanıtlayan
p-özüne bölündüǧünde sonlu basit klasik kara kutu Lie tipi gruplarının p-
özünün birim grup olup olmadıǧına karar veren bir algoritma sunuyoruz.

Bu tezde sunulan algoritmalar cebir bilgisayar sistemi olan GAP’ta prog-
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ramlanarak kapsamlı bir şekilde test edilmiştir.

Anahtar Kelimeler: Kara Kutu Grupları, Lie Tipi Grupları.
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Chapter 1

Introduction

The present thesis aims to develop an analogy between the methods
for recognizing a black box group and the classification of the finite sim-
ple groups. The centralizers of involutions, which played a prominent role
in the classification of the finite simple groups, are the main focus of our
methods presented in this work.

The problems in computational group theory are centered around to de-
velop efficient algorithms for understanding structural properties of finite
groups. One of the major goals is to develop an algorithm which constructs
the composition series of a given group. When the group representation is
known, for example, generators of a group may be given as permutations on
some set or matrices over finite fields, the algorithms, in many cases, depend
on the representation of the given group. If the group is known to be a
permutation group, there is a huge library of algorithms running in nearly
linear-time in the input length (for example, constructing centralizers of ele-
ments, center of the group etc., see [46] for an exposition). The composition
series of a given permutation group G = 〈S〉 6 Sym(n) can be constructed
in time O(n|S| logc |G|) where c is a universal constant [46, Section 6.2]. In
principle, the methods for the matrix group algorithms are different from
those of the permutation group algorithms. Babai and Szemerédi general-
ized the group algorithms by introducing black box group theory and they
applied it to the matrix groups over finite fields [11].

A black box group G is a group equipped with a black box (‘oracle’)
where the group operations are performed by the oracle. The elements of the
black box groups are encoded as 0−1 strings of uniform length, say N . Given
strings representing g, h ∈ G, the oracle can compute the strings representing
g · h, g−1 and decide whether g = h. Thus we have an upper bound for the
order of the group |G| 6 2N . The central examples for black box groups are
permutation groups and matrix groups over finite fields where the input sizes
are N = |S|n (n is the size of the permutation domain) and N = |S|n2 log q
(n is the size of the square matrices and q is the size of the underlying field)
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respectively, here G = 〈S〉. The black box group algorithms do not depend on
the specific features of the group representation or how the group operations
are performed [46]. In this setting, as the black box group operations allow
only to work with the multiplication table of the input group, it is almost
impossible, for example, in big matrix groups, to get information about the
group without an additional information or oracle. One can overcome this
difficulty, for example, by assuming an order oracle with which we can find
the orders of elements, or in the case of finite classical groups the dimension
of the underlying vector space and the size of the field can be taken as an
input.

A black box group algorithm for the construction of composition series is
proposed in [7]. Every finite group G has a series of characteristic subgroups

1 6 Sol(G) 6 Soc∗(G) 6 Pker(G) 6 G, (1.1)

where Sol(G) is the largest soluble normal subgroup of G, Soc∗(G) is defined
by

Soc∗(G)/Sol(G) = Soc(G/Sol(G)),

where Soc(G), the product of the minimal normal subgroups of G, is semi-
simple. Let Soc∗(G)/Sol(G) = T1 × . . . × Tk where the Ti are nonabelian
simple groups, then G acts on {T1, . . . , Tk} by conjugation and Pker(G) is
defined to be the kernel of this action. Now

1. Sol(G) is soluble,

2. Soc∗(G)/Sol(G) is semisimple,

3. Pker(G)/Soc∗(G) 6 Out(T1) × . . . × Out(Tk) is soluble by Schreier
conjecture,

4. G/Pker(G) 6 Sym(k), symmetric group on k-letters.

Now the composition series of G can be obtained from the refinement of the
chain (1.1). Babai and Beals [7] presented an algorithm which constructs for
a black box group G, the Pker(G), the factors of Soc∗/Sol(G), in particular,
they constructed the non-abelian composition factors of G/Sol(G) in poly-
nomial time in the input length. The group G/Pker(G) is a permutation
group and the composition factors can be constructed by an algorithm in
[46, Section 6.2]. The subgroups Pker(G)/Soc∗(G) and Sol(G) are soluble,

2



therefore they contribute only abelian composition factors. The missing part
in this algorithm is the construction of Sol(G), even the decision problem
whether Sol(G) = 1 is not answered.

The project on the construction of composition factors of a given matrix
group over finite fields is known as the “computational matrix group project”
[36], and Leedham–Green outlined in [36] how a composition series for a ma-
trix group G 6 GLn(q) can be computed by using Aschbacher’s classification
theorem on the subgroup structure of GLn(q) [4]. The algorithm is recursive,
and if G is not simple, it first decides the families of Aschbacher’s classifi-
cation where G belongs to, and then constructs a proper normal subgroup
N E G and a presentation for the quotient group G/N . In order that the
recursive argument works, it is essential to have a constructive recognition
algorithm for each finite simple group G = 〈S〉. The constructive recogni-
tion algorithm for a simple group G = 〈S〉 is an algorithm which solves the
following

1. Determine the isomorphism type of G.

2. Construct an explicit isomorphism between G and its standard copy.

3. Express any element g ∈ G as a word in S.

The first of the recognition algorithms for finite groups is presented in
[42] which decides whether a given matrix group G 6 GLn(q) for known
n and q contains SLn(q). An example of a constructive recognition first
appeared in [21] for the group G = SLn(q) in its natural representation,
that is, G is given as n × n invertible matrices over a field of order q. A
breakthrough result, which does not use any specific properties of the given
group representation, that is, black box group algorithm, is the algorithm
for PSLn(2) [24]. Following this algorithm Kantor and Seress developed
constructive black box group algorithms to all classical groups [34], however
these algorithms are not polynomial time algorithms in the input length, they
are polynomial time algorithms in q but the input size involves only log q.
These algorithms depend on the construction of p-elements (or “unipotent
elements”). However the share of p′-elements (or “semisimple elements”) in
a simple group of Lie type defined over a field Fq is 1−O(1/q) [28]. Therefore
the probability of a random element to be semisimple is close to 1 when the
order of the field is large, in other words, it is unrealistic to expect producing
unipotent elements over large fields by random search. Later the algorithms

3



in [34] were upgraded to polynomial time constructive recognition algorithms
[15, 16, 17] by assuming additional oracles: discrete logarithm oracle in F∗

q

and SL2(q)-oracle, that is, constructive recognition of SL2(q) is assumed.
Therefore these papers reduce the constructive recognition problem for black
box classical groups to the constructive recognition of SL2(q). Recently, in
the case of a matrix group, a constructive recognition algorithm for SL2(q)
has been developed [23] by assuming a discrete logarithm problem on F∗

q.
The algorithms for determining the isomorphism type of G are called

probabilistic recognition algorithms and constitute an important part of the
constructive recognition algorithm. That is, the first step in the construc-
tive recognition algorithms for the finite simple groups is to determine the
isomorphism type of the group and once the standard name of the group
is known then construct an isomorphism between the input group and its
standard copy. A probabilistic recognition algorithm for finite simple groups
of Lie type, namely, the computation of their standard names, is presented
in [9] by using the order oracle. The idea is based on the analysis of the
statistics of element orders, which are distinct for each Lie type group except
for the groups PSp2n(q) and Ω2n+1(q), q odd. This approach fails for the
groups PSp2n(q) and Ω2n+1(q), q odd, because when the size of the field is
large, a random element is regular semisimple with probability close to 1 and
the statistics of orders of regular semisimple elements are virtually the same
for these groups, see [1] for a thorough discussion. To complete the recogni-
tion problem for all finite simple groups of Lie type Altseimer and Borovik
presented an algorithm distinguishing PSp2n(q) from Ω2n+1(q), q odd, which
is based on the structure of the centralizers of involutions and the conjugacy
classes in these groups [1].

An algorithm for finding the characteristic of the underlying field for the
groups of Lie type is proposed in [35] by assuming an order oracle. Therefore
combining the algorithms in [1, 9, 35] with the algorithm in [7], the standard
names of the non-abelian composition factors of the black box groups can
be determined in polynomial time. Moreover, every simple group can be
recognized among all simple groups. The question of recognizing simplicity
of a given black box group is studied in [10], and determining whether a black
box group X is simple or not is reduced in polynomial time to determining
whether Op(X) 6= 1 [10] which is a part of this thesis.

The algorithms so-called verification algorithms are also useful in many
cases. For example, if an element in a black box group G is found whose
order is not present in a known finite group X, then clearly G ≇ X. In this
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thesis, we frequently use these types of algorithms.

1.1 Algorithmic preliminaries

An algorithm is called a randomized algorithm if it makes random choices
during its execution. A randomized algorithm has the worst-case success
probability ε, for 0 < ε < 1, if, for every problem instance, the algorithm
returns a correct answer with probability at least ε.

A Monte–Carlo algorithm is a randomized algorithm which gives a cor-
rect output to a decision problem with probability strictly bigger than 1/2.
The probability of having incorrect output can be made arbitrarily small by
running the algorithm sufficiently many times. A Monte–Carlo algorithm
with outputs “yes” and “no” is called one-sided if the output “yes” is always
correct. A polynomial time algorithm is an algorithm whose running time
is polynomial in the input length. A Monte–Carlo algorithm which runs in
polynomial time in the input length is called a Monte–Carlo polynomial time
algorithm.

Let f and g be two functions on N. Then we write

1. f(n) = O(g(n)) if there exists a positive constant c and a natural
number n0 such that 0 6 f(n) 6 cg(n) for all n > n0

2. f(n) = Θ(g(n)) if there exist positive constants c1 and c2, and a natural
number n0 such that c1g(n) 6 f(n) 6 c2g(n) for all n > n0

1.2 Random elements

The crucial part in a black box group algorithm is the construction of
uniformly distributed random elements in the group. Babai proposed an al-
gorithm which, although not practical, supplies a theoretical justification that
nearly uniformly distributed elements can be constructed [6]. This algorithm
first constructs a new generating set of O(log |G|) elements in O(log5 |G|) mul-
tiplications and then uses this set to produce sequence of nearly uniformly
distributed elements in O(log |G|) multiplications for each element. Here, an
algorithm outputs a nearly uniformly distributed element x in a group G if
(1 − ε)/|G| 6 Prob(x = g) 6 (1 + ε)/|G| for all g ∈ G and ε 6 1/2.
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On the practical side, there is “the product replacement algorithm” [22].
Let Γk(G) be the graph whose vertices are generating k-tuples of elements in
G and edges are given by the following transformations:

(g1, . . . , gi, . . . , gk) → (g1, . . . , gi · g
±1
j , . . . , gk)

(g1, . . . , gi, . . . , gk) → (g1, . . . , g
±1
j · gi, . . . , gk)

Note that i 6= j above, and therefore these transformations map a generating
k-tuple to generating k-tuple. A ‘random’ element in G can be produced
in the following way. Apply these transformations randomly and return a
random component of the resulting generating k-tuple. The connectivity
of Γk(G) and the mixing time of this algorithm are the main obstacles to
construct random elements in this way.

The mixing time for a random walk on a graph Γ is the minimal number
of steps such that after these steps

1

2

∑

v∈Γ

∣∣∣∣Prob(ending at v) −
1

#Γ

∣∣∣∣ <
1

e

which means that the distribution of the end points of the random walk on
this graph is close to the uniform distribution. It is proved in [43] that the
mixing time for a random walk on Γk(G) is polynomial in k and log |G| when
k is sufficiently large. Indeed, when k = Θ(log |G| log log |G|) the mixing
time of the walk is O(log9 |G|(log log |G|)5).

Note that it is essential that the graph Γk(G) is connected to produce
random elements by this procedure. Although Γk(G) is not always connected,
which can be observed from elementary abelian p-groups, one can take k
big enough so that Γk(G) becomes a connected graph, for example, take
k > d(G)+ d̄(G), where d(G) is the minimal number of generators for G and
d̄(G) is the maximal size of the minimal generating set for G. However, it is
still unknown that whether Γk(G) is connected for k > 3 or not when G is a
finite simple group. Note that d(G) 6 2 for finite simple groups. Pak proved
in [44] that, for a fixed k > 3, we have large connected components for large
simple groups G, that is, there exists connected components Γ′

k(G) ⊂ Γk(G)
such that

|Γ′
k(G)|

|Γk(G)|
→ 1 as |G| → ∞.

The product replacement algorithm was implemented in GAP and it has
very successful practical performance, see [22] for more details.
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1.3 A plan for the recognition of black box

groups

As discussed in the previous section, the existing constructive recognition
algorithms for classical groups depend on the discrete logarithm problem and
the consructive recognition of SL2(q). Moreover these algorithms depend
slightly on the type of the input group [15, 16, 17, 34]. Following this obser-
vation, we will present an alternative uniform approach for recognizing all
the simple groups of Lie type which follows the computational version of the
classification of the finite simple groups. Similar to the inductive argument
on centralizers of involutions which plays a crucial role in the classification
project, our approach is based on a recursive construction of the centralizers
of involutions in black box groups [13, 14].

We propose the following plan for the recognition of the black box finite
simple groups of Lie type of known odd characteristic.

Construct a list of subgroups which are root SL2(q)-subgroups in G
corresponding to the nodes in the extended Dynkin diagram of G.

Observe that this procedure determines the isomorphism type of G
uniquely, see Table 2.1 on page 15. Note that this procedure is not a con-
structive recognition of G. However, it allows us to construct all subsystem
subgroups of G, which can be read from the extended Dynkin diagram. To
define a subsystem subgroup and make the arguments uniform, we introduce
the following definition. Let G be a untwisted group of Lie type of rank
n, then we call a maximal split torus, which is of order (q − 1)n, a max-
imal standard torus. For the twisted groups, except for PΩ−

2n(q), n even,
and 3D4(q), we define a maximal standard torus as a maximal torus of or-
der (q + 1)n where n is the Lie rank of the corresponding simple algebraic
group. For G = PΩ−

2n(q), n even, or 3D4(q), tori of orders (q+1)n−1(q−1) or
(q−1)(q3−1) will be called maximal standard tori of G respectively. Except
for Suzuki-Ree groups, a “subsystem subgroup” of a finite simple group G of
Lie type is a quasi-simple subgroup of G normalized by a maximal standard
torus. In this setting, it turns out that the long root SL2(q)-subgroups are
subsystem subgroups of finite simple groups of Lie type of odd characteristic.

Note that this procedure is a computational version of Aschbacher’s
“Classical Involution Theorem” [3]. Aschbacher’s characterization of Cheval-
ley groups over fields of odd order is based on the study of “2-components”
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in the centralizers of involutions. Recall that a 2-component of a group G
is a perfect subnormal subgroup L such that L/O(L) is quasi-simple where
O(L) is the maximal normal subgroup of L of odd order and solvable 2-
component of G is a subnormal subgroup L of G with O(L) = O(G) and
L/O(L) = (P)SL2(3). Aschbacher’s Classical Involution Theorem reads:

Let G be a finite group the generalized Fitting subgroup F ∗(G) sim-
ple. Let z be an involution in G and K a 2-component or solvable
2-component of CG(z) of 2-rank 1 containing z. Then F ∗(G) is a
Chevalley group of odd characteristic or M11.

The involutions satisfying the hypothesis of the above theorem are called
classical involutions. Taking the “Classical Involution Theorem” as a model,
we extend our setting to the black box groups X where X/Op(X) is a finite
simple group of Lie type of odd characteristic. Observe that an involution
i ∈ X belongs to a 2-component or solvable 2-component of CX(i) of 2-
rank 1 if and only if ī ∈ X/Op(X) belongs to a 2-component or solvable
2-component of CX/Op(X)(̄i) of 2-rank 1 since p is odd. Hence Aschbacher’s
characterization fits into this setting, and we propose the following project
for the recognition of black box group X where X/Op(X) is a finite simple
group of Lie type of known odd characteristic p.

Procedure 1: Construct a subgroup K where K/Op(K) is a long root
SL2(q)-subgroup in X/Op(X).

Procedure 2: Determine whether Op(X) 6= 1.

Procedure 3: Construct subgroups K where K/Op(K) is root SL2(q)-
subgroups in G corresponding to the nodes in the extended Dynkin
diagram of G.

In this thesis Procedure 1 is completed in Chapter 4, Procedure 2 is
carried out in Chapter 5 for the groups X where X/Op(X) is a classical
group or unisingular group and we completed Procedure 3 in Chapter 6 for
the groups PSLn(q) and PSUn(q).

1.4 Statements of results

In this section we summarize the results presented in this thesis. Let X
denote a black box group with the property that X/Op(X) is isomorphic to
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a finite simple group of Lie type defined over a field Fq of odd characteristic
p, q = pk for some k > 1.

We are mainly interested in the case that the size of the base field is
large. Note that our algorithms work for the groups over small fields as
well, provided that solvable 2-components do not occur in the centralizers
of involutions or equivalently when q > 3. However there are better algo-
rithms where X/Op(X) can be recognized constructively when the size of the
underlying field is small [34].

In our algorithms we assume that the characteristic p of the underlying
field is given as an input. In this thesis, we do not attempt to find the exact
orders of the elements as the computation of the order of an element in a
black box group is not a polynomial time task in the input length unless one
assumes additional information, for example, the set of primes dividing the
order of the input group. Instead, we work with a milder assumption that a
computationally feasible global exponent E for X, that is, a reasonably sized
natural number E such that xE = 1 for all x ∈ X is given as an input. We
do not assume that we know the exact factorization of E into primes since
then we can compute the orders of the elements. Note that having such an
exponent for a black box group, we can immediately conclude, in certain
cases, that whether X is isomorphic to a known finite group G, for example,
if we find an element x ∈ X satisfying x|G| 6= 1 then, clearly, X ≇ G. To
check whether x|G| 6= 1, we use square-and-multiply method, which involves
only O(log |G|) multiplications in the group.

The main result is the following.

Theorem 1.1. Let X be a black box group and assume that X̄ = X/Op(X)
is isomorphic to a finite simple group of Lie type defined over a field of known
odd size q = pk > 3 for some k > 1. Assume also that X̄ 6= PSL2(q) and X̄ 6=
2G2(q), then there is a one sided Monte–Carlo polynomial time algorithm

which finds the size of the underlying field and constructs a subgroup K such
that K/Op(K) is a long root SL2(q)-subgroup in X̄.

If X/Op(X) is a Lie type group defined over a field of odd characteristic
p with non-trivial center, then we can find Z(X) by a Monte–Carlo polyno-
mial time algorithm in [10]. Therefore the algorithm in Theorem 1.1 can be
extended to the quasi-simple groups of Lie type over a field of odd size q > 3.

In the case of a black box group X where X̄ = X/Op(X) is isomorphic to
PSL2(q) or 2G2(q), there is no subgroup in X̄ isomorphic to SL2(q). Therefore
it is natural to exclude these groups in Theorem 1.1. The following theorem
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allows us to decide whether given a subgroup is a long root SL2(q)-subgroup
in a finite simple group of Lie type defined over a field of odd size q > 3.

Theorem 1.2. Let K be a subgroup in a finite simple black box group G
of Lie type defined over a field of odd size q > 3 isomorphic to (P)SL2(q

k)
for some k > 1. Then there is a one sided Monte–Carlo polynomial time
algorithm which decides whether K is a long root SL2(q)-subgroup in G.

Theorem 1.1 yields some further algorithms answering several questions in
black box group theory. The first of these is a Monte–Carlo algorithm which
determines whether Op(X) 6= 1 in polynomial time answering a well-known
question of Babai-Shalev [10]. We will prove the following theorem.

Theorem 1.3. Let X be a black box group with the property that X/Op(X)
is a simple classical group of odd characteristic p. Then we can determine,
in polynomial time, whether Op(X) 6= 1, and, if Op(X) 6= 1, we can find a
non-trivial element from Op(X).

As an another application of Theorem 1.1 we present a probabilistic recog-
nition algorithm for classical groups.

Theorem 1.4. Let G be a black box classical group defined over a field of
odd size q > 3, and rank n > 3. Then there is a one sided Monte–Carlo
polynomial time algorithm which determines the type of the group G.

An immediate corollary to Theorem 1.4 is an alternative algorithm distin-
guishing symplectic groups PSp2n(q) from orthogonal groups Ω2n+1(q). Such
an algorithm was first proposed by Altseimer and Borovik in [1] using again
centralizers of involutions and conjugacy classes in these groups but their
method was completely different than the one presented in Theorem 1.4.

In the following theorem we present the Curtis-Tits system for the groups
(P)SLn(q) and (P)SUn(q).

Theorem 1.5. Let G be a black box group known to be isomorphic to
(P)SLn(q) or (P)SUn(q), n > 3 q > 5 odd. Then there exists a polynomial-
time Monte-Carlo algorithm which constructs all long root SL2(q)-subgroups
corresponding to the nodes in the extended Dynkin diagram of (P)SLn(q). In
particular, the algorithm determines the isomorphism type of the given group.

The algorithms presented in this thesis have been implemented exten-
sively in the computer algebra system GAP [27] and no technical difficulties
have appeared.
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Chapter 2

Finite groups of Lie type

In this chapter we collect some basic properties of finite simple groups
of Lie type which will be needed in the subsequent chapters. The standard
references for a detailed discussion are [19], [20], [25, Chapter 2], [47]. We
assume some well-known facts about linear algebraic groups which can be
found in [25, Chapter 1] or in [30].

Throughout this chapter Ḡ denotes a simple algebraic group over an
algebrically closed field K of characteristic p, T̄ a maximal torus of Ḡ, Σ the
T̄ -root system of Ḡ, Π a fundamental system in Σ, Σ+ the corresponding
positive system and B̄ the corresponding Borel subgroup of Ḡ containing
T̄ . Thus B̄ = Ū T̄ where Ū = Ru(B̄), unipotent radical of B̄. We also set
N̄ = NḠ(T̄ ) and W = N̄/T̄ .

2.1 Frobenious endomorphisms

It is well known that an algebraic group Ḡ over an algebraically closed
field K of characteristic p can be embedded into GLn(K) for some n ∈ N.
Let q = pl, l > 1 and σq be the map of GLn(K) into itself given by

aij 7→ (aq
ij).

Then σq is an endomorphism of GLn(K).
A homomorphism σ : Ḡ → Ḡ is called a standard Frobenious homomor-

phism if
i(σ(g)) = σq(i(g))

where i is an embedding of Ḡ into GLn(K) for some n and q is some power
of p. A homomorphism σ : Ḡ → Ḡ is called a Frobenius homomorphism if
some power of σ is a standard Frobenious homomorphism.

Let σ be a Frobenius homomorphism of Ḡ and define

Ḡσ = {g ∈ Ḡ | σ(g) = g}.
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It is clear that Ḡσ is a finite subgroup of Ḡ.
The following theorem, referred as Lang–Steinberg Theorem, is the key

result to pass to finite groups from algebraic groups.

Fact 2.1. [Theorem 10.1 in [47]] Let Ḡ be a connected linear algebraic
group and σ be a surjective homomorphism of Ḡ onto Ḡ. If Ḡσ is finite, then
the map

Ḡ → Ḡ

g 7→ gσ(g−1)

is surjective.

We need the following definition to study the structural properties of the
finite groups Ḡσ.

Definition 2.2. Let G be a group and σ be an endomorphism of G. Then
H1(σ,G) is the set of equivalence classes of G under the relation ∼ defined
by

x ∼ y if and only if y = gxσ(g−1) for some g ∈ G.

If x, y ∈ G are equivalent under this equivalence relation we say that they
are σ-conjugate.

Fact 2.3. [Theorem 2.1.4 in [25]] Let Ḡ be a connected simple algebraic
group and σ a Frobenious endomorphism of Ḡ. Let H̄ be a closed σ-invariant
subgroup of Ḡ. Then the canonical mapping H̄ → H̄/H̄◦ induces a bijection

H1(σ, H̄) → H1(σ, H̄/H̄◦).

The following consequence of Lang-Steinberg Theorem plays a crucial role
in the study of finite groups.

Fact 2.4. [Theorem 2.1.5 in [25]] Let Ḡ be a simple algebraic group and
σ a Frobenious endomorphism of Ḡ. Suppose that the semidirect product
Ḡ⋊ 〈σ〉 acts on a non-empty set Ω in such a way that Ḡ acts transitively and
the stabilizer Ḡω in Ḡ of some ω ∈ Ω is closed. Then Ωσ = {ω ∈ Ω | ωσ =
ω} 6= ∅. Furthermore, if ω ∈ Ωσ, then the set of Ḡσ-orbits on the stabilizer
Ωσ is in one-to-one correspondence with H1(σ, Ḡω/Ḡ◦

ω). In particular, if Ḡw

is connected, then Ḡσ acts transitively on Ωσ.
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An immediate consequence of Fact 2.4 is the following.

Fact 2.5. [Theorem 2.1.6 in [25]] Let Ḡ be a connected simple algebraic
group and σ a Frobenious endomorphism of Ḡ. Then

1. There exist a maximal torus T̄ and Borel subgroup B̄ of Ḡ which are
σ-invariant and T̄ 6 B̄. Moreover Ḡσ permutes transitively the set of
all such pairs (T̄ , B̄).

2. There are | H1(σ,NḠ(T̄ )/T̄ ) | classes of σ-invariant maximal tori under
conjugation by Ḡσ where T̄ is a σ-invariant maximal torus.

It is important to observe that Frobenious endomorphisms give rise to a
permutation on the set of fundamental roots of Ḡ. Let σ be a Frobenious
endomorphism of Ḡ, B̄ be a σ-invariant Borel subgroup of Ḡ and T̄ a σ-
invariant maximal torus of Ḡ contained in B̄. Now, Ū = Ru(B̄) is also
σ-invariant and the root subgroups Xα, α ∈ Σ+, are permuted by σ, that is,
σ determines a permutation ρ on the positive roots, σ(Xα) = Xρα. Indeed,
ρ is a permutation on the set of fundamental roots, ρ(Π) = Π.

2.2 Finite groups of Lie type

We follow the same notation and terminology in [25] to construct finite
groups from algebraic groups.

Definition 2.6. A σ-setup over an algebraically closed field F̄p is a pair
(Ḡ, σ) such that Ḡ is a simple algebraic group over F̄p and σ is a Frobenious
endomorphism of Ḡ. A σ-setup for a finite group G is a σ-setup (Ḡ, σ) over
F̄p for some prime p such that G is isomorphic to the subgroup Op′(CḠ(σ))
of CḠ(σ) generated by all its p-elements.

In the rest of this chapter G will denote a finite group possessing a σ-
setup (Ḡ, σ) where Ḡ is a simple algebraic group over F̄p. We denote the set
consisting of all such groups by Lie(p).

For any simple algebraic group Ḡ with a root system Σ, there exist simple
algebraic groups Ḡu and Ḡa, unique up to isomorphism of algebraic groups,
with Σ as their root system. Moreover, there exist isogenies

Ḡu → Ḡ → Ḡa.
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Recall that an isogeny of algebraic groups is a surjective morphism with finite
kernel. The groups Ḡu and Ḡa are called the universal and adjoint versions
of Ḡ respectively.

Fact 2.7. [Theorem 2.1.2 (e) in [25]] Let Ḡ be a simple algebraic group
and σ be a Frobenious endomorphism of Ḡ. Let Ḡu → Ḡ → Ḡa be isogenies
of Ḡ. Then σ lifts to a Frobenious endomorphism σu of Ḡu and induces a
Frobenious endomorphism σa of Ḡa.

Let (Ḡ, σ) be a σ-setup for G. Then we have Frobenious endomorphisms
σu and σa for Ḡu and Ḡa, respectively, as in Fact 2.7 by considering the
isogenies Ḡu → Ḡ → Ḡa which lead to the σ-setups (Ḡu, σu) and (Ḡa, σa)
for the groups denoted Gu and Ga, respectively. Hence we have finite groups
Gu = Op′(CḠu

(σu)) and Ga = Op′(CḠa
(σa)). The properties of the groups

Gu and Ga are summarized in the following fact.

Fact 2.8. [Theorem 2.2.6 in [25]] Let (Ḡ, σ) be a σ-setup for G and let
Gu and Ga be universal and adjoint versions of G, respectively. Then

1. The groups Gu and Ga are unique up to isomorphism.

2. There are surjective homomorphisms Gu → G → Ga whose kernels are
central. In particular, if G is simple, then G ∼= Ga.

3. Z(Ga) = 1 and G/Z(G) ∼= Gu/Z(Gu) ∼= Ga.

4. The versions of G are the groups Gu/Z where Z ranges over all sub-
groups of Z(Gu).

5. If (Ḡ, σ) is a σ-setup for G with Ḡ universal, then Ḡσ is generated by
its p-elements so that G ∼= Ḡσ.

6. If (Ḡ, σ) is a σ-setup for G, then Ḡσ = GT̄σ for any σ-invariant maxi-
mal torus T̄ of Ḡ.

Recall that Frobenious endomorphisms act on the Dynkin diagrams and
the Dynkin diagram of the finite groups of Lie type is not necessarily same
as the Dynkin diagram of the corresponding algebraic group.

The isomorphism type of G is uniquely determined by

• the Dynkin diagram,
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Table 2.1: Dynkin diagrams of simple algebraic groups

Dynkin diagram Extended Dynkin diagram

An ◦
α1

◦
α2

. . . ◦
α

n−1

◦
αn

◦
1

◦
1

. . . ◦
1

◦
1

�
�

��
•
1

H
H

HH

Bn ◦
α1

◦
α2

. . . ◦
α

n−2

◦
α

n−1

〉 ◦
αn

◦
1

◦

•
1

2
◦
2

. . . ◦
2

◦
2
〉 ◦

2

Cn ◦
α1

◦
α2

. . . ◦
α

n−2

◦
α

n−1

〈 ◦
αn

•
1
〉 ◦

2
◦
2

. . . ◦
2

◦
2
〈 ◦

1

Dn ◦
α1

◦
α2

. . . ◦
α

n−3

◦
α

n−2

◦α
n−1

◦
αn

◦
1

◦

•
1

2
◦
2

. . . ◦
2

◦
2

◦1

◦
1

E6 ◦
α1

◦
α2

◦
α3

◦α4

◦
α5

◦
α6

◦
1

◦
2

◦
3

◦2

•1

◦
2

◦
1

E7 ◦
α1

◦
α2

◦
α3

◦α4

◦
α5

◦
α6

◦
α7

•
1

◦
2

◦
3

◦
4

◦2

◦
3

◦
2

◦
1

E8 ◦
α1

◦
α2

◦
α3

◦α4

◦
α5

◦
α6

◦
α7

◦
2

◦
4

◦
6

◦
5

◦3

◦
4

◦
3

◦
2

•
1

F4 ◦
α1

◦
α2

〉◦
α3

◦
α4

•
1

◦
2

◦
3
〉 ◦

4
◦
2

G2 ◦
α1

〉 ◦
α2

•
1

◦
2
〉 ◦

3

15



• the symmetry of the Dynkin diagram, discussed at the end of Section
2.1,

• the version of Ḡ, and

• the number q.

We have the following classes of finite groups of Lie type.
• The groups G whose Dynkin diagrams are same as the Dynkin diagrams

of Ḡ are called the untwisted groups of Lie type. These groups are An(q),
Bn(q), Cn(q), Dn(q), E6(q), E7(q), E8(q), F4(q), G2(q).

• The groups having a Dynkin diagram with a non-trivial symmetry which
does not interchange the length of the roots are called the twisted groups of
Lie type. We denote these groups by 2An(q), 2Dn(q), 3D4(q),

2E6(q) where
the Frobenious endomorphism induces a field automorphism of order 2 on
Fq2 .

• The groups having a Dynkin diagram with a symmetry which in-
terchanges the long roots to short roots and preserves the angle between
roots are called the Suzuki-Ree groups. These are 2B2(2

a+1/2), 2F4(2
a+1/2),

2G2(3
a+1/2).

An(q): If G is universal, then G ∼= SLn+1(q). If G is adjoint then G ∼=
PSLn+1(q). The number q can take any value which is a power of p.

Bn(q): If G is universal, then G ∼= Spin2n+1(q), and if G is adjoint, then
G ∼= Ω2n+1(q) corresponding to a non-degenerate quadratic form over Fq of
maximal Witt index n. The number q can take any value which is a power
of p.

Cn(q): If G is universal, then G ∼= Sp2n(q). If G is adjoint then G ∼=
PSp2n(q). The number q can take any value which is a power of p.

Dn(q): If G is universal, then G ∼= Spin+
2n(q), and if G is adjoint, then

G ∼= PΩ+
2n(q) corresponding to a non-degenerate quadratic form over Fq of

maximal Witt index n. The number q can take any value which is a power
of p.

2An(q): If G is universal, then G ∼= SUn+1(q). If G is adjoint then
G ∼= PSUn+1(q).

2Dn(q): If G is universal, then G ∼= Spin−
2n(q), and if G is adjoint, then

PΩ−
2n(q) corresponding to a non-degenerate quadratic form of maximal Witt

index n − 1 over Fq and Witt index n over Fq2 .
3D4(q): In this case Gu

∼= Ga.
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E6(q): There are two non-isomorphic possibilities Gu and Ga, and
Z(Gu) ∼= Z(3,q−1).

E7(q): There are two non-isomorphic possibilities Gu and Ga, and
Z(Gu) ∼= Z(2,q−1).

E8(q), F4(q), G2(q): In these types Gu
∼= Ga.

2B2(q),
2F4(q): In these types Gu

∼= Ga and p = 2 with q2 = 22k+1 for
some k > 0.

2G2(q): In this type Gu
∼= Ga and p = 3 with q2 = 32k+1 for some k > 0.

Fact 2.9. [Theorem 2.2.7 in [25]] Let G ∈ Lie(p). If G is adjoint,
then G is a non-abelian finite simple group with the following exceptions:
G = A1(2), A1(3),2 A2(2), B2(2),2 B2(2),2 F4(2), G2(2),2 G2(3). Moreover, G
is quasisimple with the same exceptions in all versions.

Fact 2.10. [Theorem 2.2.10 in [25]] Among the finite simple groups of
Lie type and alternating groups An, n > 5, the complete list of isomorphisms
is given as follows.

1. q arbitrary:

• PSL2(q) ∼= PSp2(q)
∼= PΩ3(q) ∼= PSU2(q),

• PSp4(q)
∼= PΩ5(q),

• PΩ+
4 (q) ∼= PSL2(q) × PSL2(q),

• PΩ−
4 (q) ∼= PSL2(q

2),

• PΩ+
6 (q) ∼= PSL4(q),

• PΩ−
6 (q) ∼= PSU4(q).

2. q even: PSp2n(q) ∼= PΩ2n+1(q).

3. PSL2(4) ∼= PSL2(5) ∼= A5, PSL2(7) ∼= PSL3(2), PSL2(9) ∼= A6,
PSL4(2) ∼= A8, PSU4(2) ∼= PΩ5(3).

The orders of finite groups of Lie type will be useful in the sequel and is
given in Table 2.2. We use the following notation in Table 2.2. Let ε =
±, then we write A+

n (q), D+
n (q) etc. to denote the untwisted types and

A−
n (q), D−

n (q) etc. to denote the twisted types.
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Table 2.2: Orders of finite groups of Lie type

Gu Order of Gu

Aε
n(q) qn(n+1)/2

n∏

i=1

(qi+1 − εi+1)

Bn(q) qn2

n∏

i=1

(q2i − 1)

Cn(q) qn2

n∏

i=1

(q2i − 1)

Dε
n(q) qn(n−1)(qn − ε)

n−1∏

i=1

(q2i − 1)

3D4(q) q12(q2 − 1)(q6 − 1)(q8 + q4 + 1)

Eε
6(q) q36(q2 − 1)(q5 − ε)(q6 − 1)(q8 − 1)(q9 − ε)(q12 − 1)

E7(q) q63(q2 − 1)(q6 − 1)(q8 − 1)(q10 − 1)(q12 − 1)(q14 − 1)(q18 − 1)

E8(q) q120(q2 − 1)(q8 − 1)(q12 − 1)(q14 − 1)(q18 − 1)
·(q20 − 1)(q24 − 1)(q30 − 1)

F ε
4 (q) q24(q2 − 1)(q6 − ε)(q8 − 1)(q12 − ε)

Gε
2(q) q6(q6 − ε)(q2 − 1)

2.3 Root systems

In this section we review the construction of the root systems for a finite
group G ∈ Lie(p). Let Σ be a T̄ -root system of Ḡ for a maximal torus T̄ ,
Σ+ corresponding positive sysem, B̄ the corresponding Borel subgroup of Ḡ
containing T̄ and W the Weyl group of Ḡ. We have seen that the Frobenious
endomorphism σ of Ḡ determines a permutation on the set of fundamental
roots of Ḡ at the end of Section 2.1. It turns out that this permutation
gives rise to a symmetry ρ of the Dynkin diagram of Ḡ in the sense that the
number of bonds joining the nodes is left invariant under ρ. Hence the order
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of ρ is 1, 2 or 3 by an immediate observation on the Dynkin diagrams, see
Table 2.1.

Let V = RΣ be the Euclidean space spanned by Σ and τ be the isometry
of V extending the isometry ρ of Π. We set

Ṽ = CV (τ) and W̃ = CW (τ).

Let ṽ denote the orthogonal projection of v onto the subspace Ṽ . Then ṽ is
the average of the vectors in the orbit of v under τ and Σ̃ = {α̃ | α ∈ Σ} is

an orthogonal projection of Σ on Ṽ .
Let Σ̂ be the set of equivalence classes of Σ̃ under the relation ∼ on Σ̃

defined by

ṽ1 ∼ ṽ2 if and only if ṽ1 = cṽ2 for some c > 0.

Thus we have the following mappings.

Σ → Σ̃ → Σ̂
α 7→ α̃ 7→ α̂

It turns out that the finite subset Σ̃ of Ṽ is a root system, not necessarily
reduced, and it is called the twisted root system of G. Note that if G is
untwisted, then τ = 1, and if G is twisted or Suzuki-Ree group, then the
order of the isometry τ is greater than 1.

Remark 2.11. We note the three possibilities

1. Σ = Σ̃ = Σ̂, if G is untwisted.

2. Σ 6= Σ̃ = Σ̂, if G is twisted except 2A2n(q).

3. Σ 6= Σ̃ 6= Σ̂, if G = 2A2n(q) or Suzuki-Ree groups.

Fact 2.12. [Theorem 2.3.4(a) in [25]] Let G ∈ Lie(p), N = N̄ ∩ G,
H = T̄ ∩G, B = B̄ ∩G, U = Ū ∩G with the notation fixed in the beginning
of the chapter, we have

(1) NT̄/T̄ ∼= W̃ . In particular N/H ∼= W̃ .

(2) B is the semidirect product of U by H and U = Op(B), the maximal
normal p-subgroup of B.
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Let Π = {α1, α2, . . . , αn} be a fundamental system for Ḡ where the la-
belling of the roots are as in the left column of Table 2.1. Then the explicit
description of the root systems and Weyl groups of twisted groups of Lie type
are as follows.

• 2An(q):

If n = 2k + 1, then

Π̃ = {
1

2
(α1 + α2k+1),

1

2
(α2 + α2k), . . . ,

1

2
(αk + αk+2), αk+1},

and its Weyl group is isomorphic to the Weyl group of type Ck+1.

If n = 2k, then

Π̃ = {
1

2
(α1 + α2k),

1

2
(α2 + α2k−1), . . . ,

1

2
(αk + αk+1)},

and its Weyl group is isomorphic to the Weyl group of type Bk+1.

• 2Dn(q):

Π̃ = {α1, α2, . . . , αn−2,
1

2
(αn−1 + αn)}.

The Weyl group is isomorphic to the Weyl group of type Bn−1.

• 2E6(q):

Π̃ = {
1

2
(α1 + α6),

1

2
(α2 + α5), α3, α4}.

The Weyl group is isomorphic to the Weyl group of type F4.

• 3D4(q):

Π̃ = {α2,
1

3
(α1 + α3 + α4)}.

The Weyl group is isomorphic to the Weyl group of type G2.

2.4 Root subgroups

In this section, we review the construction of the root subgroups for the
finite groups G ∈ Lie(p), p odd. Therefore we do not consider the groups
2B2(2

a+1/2) and 2F4(2
a+1/2).
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For each α ∈ Σ, define Σα̂ = {β ∈ Σ | β̃ = cα̃, c > 0}, and set

Ȳα̂ =
∏

β∈Σα̂

X̄β and Xα̂ = CȲα̂
(σ).

Observe that Ȳα̂ is σ-invariant since τ permutes the roots β ∈ Σα̂ among
themselves where τ is the isometry of RΣ discussed in Section 2.3. Note that
the groups Xα̂ are not necessarily abelian in twisted groups, see Table 2.3.

Table 2.3: The structure of root subgroups in G [25, Table 2.4]. Here Eqi is
an elementary abelian group of order qi.

Type α̂ Remarks

Untwisted both Xα̂ = Xα
∼= Eq

Twisted
except 2A2n(q)

long Xα̂
∼= Eq

Twisted
except 3D4(q)

short Xα̂
∼= Eq2

3D4(q) short Xα̂
∼= Eq3

2A2n(q) long | Xα̂ |= q3 and Z(Xα̂) ∼= Eq

2G2(q) | Xα̂ |= q6 and Z(Xα̂) ∼= Eq2

The root subgroups Xα̂ satisfy an analogue of the Chevalley Commutator
Formula.

Fact 2.13. [Theorem 2.3.7 in [25]] Let (Ḡ, σ) be a σ-setup for G with Ḡ
simple. Let Σ be the root system for Ḡ. Then

G = 〈Xα̂ | α ∈ Σ〉

subject to the relations

[Xα̂, Xβ̂] =
∏

{γ̂|γ∈Σ}

Xγ̂
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where α, β ∈ Σ with α̂ 6= ±β̂ and γ̃ is a linear combination of α̃ and β̃ with
both coefficients positive.

More details on the structure of the root subgroups can be found in [25,
Section 2.4]

Set
Mα̂ = 〈Xα̂, X−α̂〉, Zα̂ = Z(Xα̂), Kα̂ = 〈Zα̂, Z−α̂〉,

where Z(Xα̂) is the center of the root subgroup Xα̂. Then Xα̂
∼= Zα̂

∼= Eq,
and Kα̂

∼= Mα̂
∼= SL2(q) except for the groups given in Table 2.4.

The conjugates of the subgroup Kα̂ are called long root SL2(q)-subgroups
or short root SL2(q)-subgroups if α̂ is long or short respectively.

Fact 2.14. [Theorem 14.5 in [3]] Let G ∈ Lie(p), p odd. Let α̂ ∈ Σ̂ be a
long root. Then

(1) Kα̂
∼= SL2(q).

(2) Op′(NG(Kα̂)) = Kα̂Lα̂ where [Kα̂, Lα̂] = 1 and Lα̂ is the Levi factor of
the parabolic subgroup NG(Zα̂).

Table 2.4: Short root SL2(q)-subgroups in G [3, Table 14.4].

G α̂ Kα Mα

PSU2n+1(q) long SL2(q) PSU3(q)

PSUn(q) short PSL2(q
2) PSL2(q

2)

Ω2n+1(q) short PSL2(q) PSL2(q)

PΩ−
2n(q) short PSL2(q

2) PSL2(q
2)

2E6(q) short SL2(q
2) SL2(q

2)
3D4(q) short SL2(q

3) SL2(q
3)

2.5 Maximal tori

A subgroup of G of the form G ∩ T̄ for some σ-invariant maximal torus
T̄ of Ḡ is called a maximal torus of G.
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A maximal torus T̄ 6 Ḡ is called σ-split if it is σ-invariant and lies in a
σ-invariant Borel subgroup of Ḡ. By Fact 2.5 (a), there is only one conjugacy
class of σ-split maximal tori in Ḡσ. In general, we have the following.

Lemma 2.15. The set of G-orbits on the set of σ-invariant maximal tori of
Ḡ is in bijective correspondence with H1(σ,W ).

Proof. We know, by Fact 2.5, that the there is a bijection between the
Ḡσ-classes of σ-invariant maximal tori and H1(σ,W ). If G is universal, then
G = Ḡσ by Fact 2.8(5) and the result follows. By taking the homomorphic
image of Gu, we get the result in general. �

Note that if σ fixes each element of W , which is the case if G is untwisted,
then H1(σ,W ) corresponds to the set of conjugacy classes of W .

Let S be the set of representatives of G-orbits on the set of σ-invariant
maximal tori of Ḡ. Then S∩G is the set of representatives of maximal tori of
G whose elements correspond to elements w ∈ W and they will be denoted
by Tw. We will call these tori maximal tori of G twisted by w. Note that if
w ∼ w′ in the sense of Definition 2.2, then Tw and Tw′ are G-conjugate.

The following lemma is crucial in our computations in the sequel.

Fact 2.16. [Proposition 3.3.5, 3.3.6 in [20]] Let Ḡ be a simple algebraic
group and T̄ be a σ-invariant maximal torus of Ḡ such that T̄σ corresponds to
an element w ∈ W . If q is the number of elements of the base field on which
G is defined, then the characteristic polynomial of w evaluated at q gives the
order of T̄σ. Moreover |N̄σ/T̄σ| ∼= |CW (w)| where N̄ = NḠ(T̄ ).

The characteristic polynomials of w ∈ W for G are given in [18] and we
give here the orders of maximal twisted tori in classical groups Gu.

• Aε
n(q):

Provided that l1 + . . . + lk = n + 1, the orders of the maximal tori in
Gu are of the form

(ql1 − εl1)(ql2 − εl2) . . . (qlk − εlk)/(q − ε).

• Bn(q), Cn(q):

The orders of the tori in Gu are of the form

(ql1 − 1) . . . (qlr − 1)(qm1 + 1) . . . (qms + 1)

where (l1 + . . . + lr) + (m1 + . . . + ms) = n.
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• Dε
n(q):

The orders of the tori in Gu are of the form

(ql1 − 1) . . . (qlr − 1)(qm1 + 1) . . . (qms + 1)

where (l1 + . . . + lr) + (m1 + . . . + ms) = n. If Gu is untwisted, then s
is an even integer and if Gu is twisted, then s is an odd integer.

The table for the orders of maximal tori in exceptional goups of Lie type
can be found in [18].

2.6 The structure of the centralizers of invo-

lutions

In this section we summarize the structure of centralizers of involutions
in simple groups of Lie type of odd characteristic.

Fact 2.17. [Theorem 4.2.2 in [25]] Let G ∈ Lie(p), p odd, i ∈ G an
involution, C = CG(i). Let L = Op′(C) and Z be the kernel of the cover-
ing Gu → G. Then there exist a subgroup T 6 C such that the following
conditions satisfied.

1. L is a central product L = L1 · · ·Ls where s > 0 and Lk ∈ Lie(p).

2. T is an abelian p′-subgroup normalizing each Lk.

3. Setting C◦ = LT , we have C/C◦ is an elementary abelian 2-subgroup
isomorphic to a subgroup of Z.

We will call the group L in Theorem 2.17 the semisimple socle of C. The
following easy corollary will be useful in the sequel.

Corollary 2.18. Let G ∈ Lie(p), p odd and the defining field of size q > 3.
Then L = C ′′, the second derived subgroup of C.

Proof. By Fact 2.17 (3), C/C◦ is abelian which implies C ′ 6 C◦ = LT .
Now since T is abelian and normalizes L by Fact 2.17 (2), we have C ′′ 6

(LT )′ = L as L is quasimple by Fact 2.9 and the result follows. �

Note that if G = Gu, then Z = 1 implying C = C◦ and we have L = C ′.
Passsing to the groups with a non-trivial p-core we have the following.
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Corollary 2.19. Let X be a finite group. Assume that X/Op(X) is a finite
simple group of Lie type over a field of odd size q > 3 and i be an involution
in X. Then (CX(i)/Op(CX(i)))′′ is the semisimple socle of CX(i)/Op(CX(i)).

The table of all possible centralizers of involutions in Ga is given in Table
2.5 which is taken from [25]. In Table 2.5 we use the following notation.
Let G be a finite group and Z(G) is cyclic. Then we write 1

m
G to denote

the quotient group G/Y where Y 6 Z(G) and |Y | = m. Note that the
center of G = Spin+

2n(q), n even, is an elementary abelian group of order 4.
Therefore 1

2
Spin+

2n(q) is not uniquely defined for n even and we define it as
follows. There is an involution z ∈ Z(G) such that G/〈z〉 ∼= SO+

2n(q). For the
other involutions z1, z2 ∈ Z(G)\{z}, we have G/〈z1〉 ∼= G/〈z2〉 which is not
isomorphic to SO+

2n(q) and we denote these quotient groups as 1
2
Spin+

2n(q).
Notice that 1

2
Spin+

2n(q), n = 6, 8, appears as the component in a centralizer
of an involution in the groups E7(q) and E8(q), see Table 2.5.

We are mostly interested in the involutions in the long root SL2(q)-
subgroups, which are classical involutions by Fact 2.14, and it is worth to give
the list of classical involutions and the semisimple socle of their centralizers
Table 2.6.

The following two lemmas will be used to check whether a given subgroup
isomorphic to SL2(q) for some q in G is long root SL2(q)-subgroup.

Lemma 2.20. Let K be a long root SL2(q)-subgroup of G, q > 3, and z ∈
Z(K). Then K = Kg for any g ∈ CG(z)′′.

Proof. Corollary 2.18 implies that the second derived subgroup CG(z)′′

is the semisimple socle of CG(z). Hence the result follows since K is a com-
ponent in CG(z) by Fact 2.14. �

Lemma 2.21. Let G be a finite simple group of Lie type over a field of size
q > 3 different from 3D4(q) and G2(q). Let K be a short root SL2(q)-subgroup
of G and z ∈ K be an involution. Then there exists g ∈ CG(z)′′ such that
K 6= Kg.

Proof. It is clear from Table 2.4 that if G is PSUn(q), Ω2n+1(q) or
PΩ−

2n(q), then K 6= Kg where g ∈ CG(z)′′.
If G is F4(q) or 2E6(q), then CG(z)′′ is isomorphic to Spin9(q) or Spin−

10(q)
respectively [3, 29.7] in which case there exists g ∈ CG(z)′′ such that K 6= Kg.

If G = PSp2n(q), n > 3, then K ∼= SL2(q) and the underlying vector space
for K is a totally isotropic subspace of dimension 2. Therefore CV (z) has
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Table 2.5: Centralizers of involutions in simple groups of Lie type of odd
characteristic.

G conditions type L = Op′(CG(i)) CCG(i)(L)

t1 SLε
n−1(q) q − ε

PSLε
n(q) 2 6 k 6 n/2 tk SLε

k(q) ◦ SLε
n−k(q) q − ε

n even t′n/2
1

(n/2,q−ε)SLn/2(q
2) q + ε

t1 Ω2n−1(q) 2(q − 1)

t′1 Ω2n−1(q) 2(q + 1)

Ω2n+1(q) 2 6 k < n tk Ω+
2k(q) × Ω2(n−k)+1(q) 2

n > 2 2 6 k < n t′k Ω−
2k(q) × Ω2(n−k)+1(q) 2

tn Ω+
2n(q) 2

t′n Ω−
2n(q) 2

PSp2n(q) 1 6 k 6 n/2 tk Sp2k(q) ◦2 Sp2(n−k)(q) 2

n > 2 tn
1

(2,n)SLn(q) q − 1

t′n
1

(2,n)SUn(q) q + 1

t1 Ωε
2n−2(q) q − 1

t′1 Ω−ε
2n−2(q) q + 1

PΩε
2n(q) 2 6 k < n/2 tk Ω+

2k(q) ◦2 Ωε
2(n−k)(q) 2

n > 4 2 6 k < n/2 t′k Ω−
2k(q) ◦2 Ω−ε

2(n−k)(q) 2

PΩ+
4m(q) tn/2 Ω+

m(q) ◦2 Ω+
m(q) 2

PΩ+
4m(q) t′n/2 Ω−

m(q) ◦2 Ω−
m(q) 2

PΩ+
4m(q) tn−1, tn

1
2SLn(q) q − 1

PΩ+
4m(q) t′n−1, t′n

1
2SUn(q) q + 1

PΩ−
4m(q) tn/2 Ω−

m(q) × Ω+
m(q) 2

PΩε
2(2m+1)(q) tn SLε

n(q) q − ε
3D4(q) t2 SL2(q) ◦2 SL2(q

3) 2

G2(q) t1 SL2(q) ◦2 SL2(q) 2
2G2(q) t1 PSL2(q

2) 2

F4(q) t1 SL2(q) ◦2 Sp6(q) 2

t4 Spin9(q) 2

Eε
6(q) t1 Spinε

10(q) q − ε

t2 SL2(q) ◦2
1

(q−ε,3)SLε
6(q) 2

E7(q) t1 SL2(q) ◦2
1
2Spin12(q) 2

t4, t′4
1

(4,q−ε)
SLε

8(q) 2

t7, t′7 Êε
6(q) q − ε

E8(q) t1
1
2Spin16(q) 2

t8 SL2(q) ◦2 E7(q) 2

26



Table 2.6: Classical involutions and the semisimple socles in their centraliz-
ers.

G i L′′

PSLε
n(q) t2 SL2(q) ◦2 SLε

n−2(q)

PSp2n(q) t1 SL2(q) ◦2 Sp2n−2(q)

Ω2n+1(q) t2 (SL2(q) ◦2 SL2(q)) ◦2 Ω2n−3(q)

PΩε
2n(q) t2 (SL2(q) ◦2 SL2(q)) ◦2 Ωε

2n−4(q)

G2(q) t1 SL2(q) ◦2 SL2(q)
3D4(q) t2 SL2(q) ◦2 SL2(q

3)

F4(q) t1 SL2(q) ◦2 Sp6(q)

Eε
6(q) t2 SL2(q) ◦2

1
(q−ε,3)

SLε
6(q)

E7(q) t1 SL2(q) ◦2
1
2
Spin12(q)

E8(q) t8 SL2(q) ◦2 E7(q)

dimension 2n−4 or 4 where V is the underlying vector space for Sp2n(q) which
implies that CG(z)′′ ∼= Sp4(q)◦2Sp2n−4(q). Thus there exists g ∈ CG(z)′′ such
that K 6= Kg. �

If G = 3D4(q) or G2(q), then CG(z) = SL2(q)◦2SL2(q
3) or SL2(q)◦2SL2(q)

respectively as there is only one conjugacy class of involutions in G. Therefore
K = Kg for any g ∈ CG(z)′′.
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Chapter 3

Centralizers of involtions in

black box groups

In this chapter, we present the necessary tools in the recognition of the
black box groups by using the centralizers of involutions.

3.1 Construction of CG(i) in a black box

group

In literature, the construction of centralizer of an involution in black
box groups were first appeared in [14] and it was used in [1] to distinguish
orthogonal groups Ω2n+1(q) from PSp2n(q) for odd q. In [13], the idea of
using the structure of centralizers of involutions in the black box recognition
algorithms is discussed extensively and some results are announced which
come out of this approach. We borrow the notation in [13].

Let X be a black box finite group having an exponent E = 2km with
m odd. Producing an involution in X, we need an element x of even order.
Then the last non-identity element in the sequence

1 6= xm, xm2, xm22

, . . . , xm2k−1

, xm2k

= 1

will be an involution and will be denoted by i(x).
We call an element j ∈ X of order 4 a pseudo-involution if it is an

involution in X/Z(X) but not in X. Let Y 6 X, then we call an element
j ∈ Y a pseudo-involution in Y if 1 6= j2 ∈ Z(Y ). We can produce pseudo-
involutions in X in a similar manner, that is, we first produce an element of
order 4 and check whether j2 commutes with the generators of X.

Let t be an involution in X and x ∈ X a random element. Set z = ttx.

• If the order m of z is odd, then consider y = z(m+1)/2. Now observe
that yx−1 ∈ CX(t) and denote ζt

1(x) = yx−1.
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• If z is of even order, then i(z) ∈ CX(i). Denote ζt
0(x) = i(z).

Here the superscript t indicates the dependence of the map ζk, k = 0, 1,
on the involution t.

Thus we have a map ζt = ζt
0 ⊔ ζt

1 defined by

ζt : X −→ CX(t)

x 7→

{
ζt
1(x) = (ttx)(m+1)/2 · x−1 if o(ttx) is odd

ζt
0(x) = i(ttx) if o(ttx) is even.

Here o(x) is the order of the element x ∈ X. Note that one can test
whether an element x ∈ X has odd or even order by raising it to the odd
part m of the exponent E. If o(x) is odd then x(m+1)/2 = x(o(x)+1)/2 and
if o(x) is even then xm 6= 1. Therefore we can construct ζt

0(x) and ζt
1(x)

without knowing the exact order of ttx.
Observe that if c ∈ CX(t), then

ζt
1(cx) = (ttcx)(m+1)/2 · x−1c−1 = (ttx)(m+1)/2 · x−1c−1

= ζt
1(x) · c−1,

ζt
0(xc) = i(t · txc) = i(tc · txc) = i((t · tx)c) = i(ttx)c

= ζt
0(x)c.

Hence

Fact 3.1. ([13]) Let X be a finite group and t ∈ X be an involution. If the
elements x ∈ X are uniformly distributed and independent in X, then

(a) the elements ζt
1(x) are uniformly distributed and independent in CX(t)

and

(b) the elements ζt
0(x) form a normal subset of involutions in CX(t).

Let S ⊂ X. By abuse of notation we denote by ζt(S) the group generated
by the image of the subset S under the map ζt.

We will use both of the functions ζt
0 and ζt

1 in the recursive steps to gen-
erate CX(t). It follows directly from Fact 3.1 that the image of the function
ζt
1 is CX(t) and the image of ζt

0 generates a normal subgroup in CX(t).

Remark 3.2. If the domain of one of the functions ζt
0 or ζt

1 is rarely defined
in a group X then the other function is defined for almost all x ∈ X. For
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example, let Y = PSL2(q) and q is a big odd prime power, then almost all
elements are regular semisimple and hence belong to a cyclic torus of order
(q ± 1)/2. Note that one of the tori has even order and at least 1/2 of its
elements have even order. Therefore the probability that the elements having
even order in Y is at least 1/4, see also Theorem 4.3. All involutions in Y
are conjugate and the product of two random involutions is semisimple with
probability close to 1. Therefore the product of two random involutions in Y
has even order with probability close to 1/4. In the group X = Y × . . . × Y
(n times), one has to do these computations componentwise and therefore
the product of two random involutions has odd order with probability close
to 1/22n. This shows that when n is a big number, then the map ζ1 is
rarely defined and we have to use the map ζ0. Although the map ζ1 is much
better for the construction of centralizers of involutions, it turns out that the
function ζ0 suffices for our purposes (see Section 3.2).

3.2 The heart of the centralizer

In this section we describe the subgroup generated by the image of the
function ζ i

0 for any involution i ∈ G where G is a finite simple group of
Lie type of odd characteristic. Recall that ζ i

0 does not produce uniformly
distributed random elements in centralizers of involutions (see Fact 3.1).

Let i ∈ G be any fixed involution. We define

♥i(G) = 〈ζ i
0(g) | g ∈ G〉.

We use here the convention that ζ i
0(g) = 1 if iig has odd order. We also

assume that if iig has even order, then we assume that ζ i
1(g) = 1.

Lemma 3.3. Let G be a finite group and i ∈ G be an involution. Then ζ i
0

does not produce involutions in the coset iZ(G).

Proof. Let g ∈ G such that ζ i
0(g) 6= 1 and consider the dihedral group

D = 〈i, ig〉. Recall that ζ i
0(g) = i(iig) ∈ Z(D). Therefore, if ζ i

0(g) = iz
where z is an involution in Z(G) then i commutes with ig since z ∈ Z(G).
Hence ζ i

0(g) = iig = iz implying ig = z and i = z which gives ζ i
0(g) = 1, a

contradiction. �

Lemma 3.4. Let G = G1 × G2 be a direct product of finite groups G1, G2

and i = (i1, i2) ∈ G an involution. Then ♥i(G) = ♥i1(G1) ×♥i2(G2).
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Proof. Recall that the image of ζ i
0 belongs to the conjugacy classes of

involutions in CG(i) by Fact 3.1. Since conjugacy classes of involutions in G
are direct product of conjugacy classes of G1 and G2, result follows. �

Let j ∈ G be a pseudo-involution. Then we define

ζj
0(g) = i(jjg),

and
ζj
1(g) = (jjg)(m+1)/2 · g−1

where g ∈ G and i(jjg) is an involution produced from jjg as in Section 3.1
and m is the order of jjg. Observe that ζj

0(g) ∈ CG(j). Moreover, we define
♥j(G) similarly for a pseudo-involution j ∈ G.

In our algorithms, we will need the images of ζj
0 and ζj

1 for a pseudo-
involution j ∈ G where G = SL2(q).

Lemma 3.5. Let G = SL2(q) and j ∈ G be a pseudo-involution. Then
♥j(G) = Z(G).

Proof. The result follows from the observation that G has unique central
involution and the image of the function ζj

0 is a set of involutions in G. �

Lemma 3.6. Let G = SL2(q) and j ∈ G be a pseudo-involution. Then
ζj
1(G) = NG(〈j〉) and ζj

1(G)′′ = 1.

Proof. Recall that if jjg has odd order m, then ζj
1(g) = (jjg)(m+1)/2g−1.

Let h = (jjg)(m+1)/2, then it is straight forward to check that jh = j2jg

which implies that jhg−1

= j3 since j2 ∈ Z(G). Hence ζj
1(g) ∈ NG(〈j〉). It

is clear from this observation and Fact 3.1 that ζj
1(G) = NG(〈j〉). Observe

that if j belongs to a torus T then NG(〈j〉) = NG(T ), CG(t) = CG(T ) = T
and |NG(T )/CG(T )| = 2 which implies that ζj

1(G)′ 6 CG(j) and ζj
1(G)′′ = 1

since CG(j) is a cyclic group of order q ± 1. �

Lemma 3.7. Let G = (P)Sp2n(q), q > 3 and i be an involution of type t1.

(a) If n > 3, then ♥i(G)′ = Sp2n−2(q).

(b) If G = Sp4(q), then ♥i(G) = Z(G).

(c) If G = PSp4(q), then ♥i(G) > E(CG(i)) where E(CG(i)) is the semi-
simple socle of CG(i).
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Proof.

(a) Assume first that G = Sp2n(q). Then CG(i) = SL2(q)× Sp2n−2(q). Let
V = V− ⊕ V+ be the decomposition of the corresponding vector space
where V± are the eigenspaces of i for the eigenvalues ±1. Then the
dimension of V− is 2 or 2n − 2. We can assume that dimV− = 2, the
other case is analogous. It is clear that the dimension of the eigenspace
of the involution ζ i

0(g) for any g ∈ G and for the eigenvalue −1 is at
most 4. Therefore the image of ζ i

0 contains non-central involutions in
Sp2n−2(q) since n > 3. Hence ♥i(G) = {±I2n} × Sp2n−2(q) where I2n

is 2n × 2n identity matrix. In the case of PSp2n(q), we have central
product CG(i) = SL2(q) ◦ Sp2n−2(q). By the same argument the image
ζ i
0 does not contain involutions which do not lie in the center of SL2(q)

component since n > 3.

(b) Note that C = CG(i) is direct product of two copies of SL2(q). Hence
I(C) is an elementary abelian group of order 4. By Lemma 3.3, ζ i

0 does
not produce the involution i and iz where z is the central involution
in Sp4(q). Hence the image of ζ0 contains only the central involution z
and the result follows.

(c) If G = PSp4(q), then CG(i) = (SL2(q) ◦2 SL2(q)) ⋊ 〈t〉 where t is an
involution interchanging the components. Again as ζ i

0 does not produce
the involution i, it produces a pseudo-involution in both components of
CG(i) or the involution t. In either case as ♥i(G) is normal subgroup
in CG(i), we conclude that ♥i(G) > E(CG(i)) = SL2(q) ◦2 SL2(q). �

Glauberman Z∗-Theorem. [5, page 262] Let G be a finite group and
i ∈ G be an involution such that {iG}∩CG(i) = {i}. Then i∗ ∈ Z(G∗) where
G∗ = G/O2′(G) and O2′(G) is the maximal normal subgroup of odd order in
G.

We need the following consequence of Glauberman Z∗-Theorem to prove
the next Theorem.

Lemma 3.8. Let G be a non-abelian finite simple group and i be an invo-
lution in G. Then there exists an involution j ∈ CG(i) such that j 6= i and
jg = i for some g ∈ G.

Theorem 3.9. Let G be a finite simple group of Lie type over a field of odd
characteristic p and i ∈ G be an involution.
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• If G is classical then ♥i(G) contains the semisimple socle of CG(i)
except for the groups PSp2n(q) and involution of type t1.

• If G is exceptional then ♥i(G) contains at least one component in CG(i).

Proof. Let i be an involution in G. We shall prove the claim by finding
an involution in the image of ζ i

0 which does not centralize the component(s)
in CG(i). If we find such an involution, then we will conclude that ♥i(G)
contains that component(s) of the semisimple socle of CG(i) since ♥i(G) is a
normal subgroup of CG(i). We will refer to Table 2.5 for the involution types
and more information can be found in [25].

Let G = PSLn+1(q), n > 2. If i is an involution of type t1, then CG(i) ∼=
T ◦(n,q−1) SLn(q) where T is a cyclic group of order q − 1 and i is the only
involution in Z(CG(i)). Therefore there exists g ∈ G such that ig ∈ CG(i)
by Lemma 3.8 which implies that ζ i

0(g) = iig is not central in CG(i). Now
assume that i is an involution of type tk, 2 6 k 6 n/2, then the semisimple
socle of CG(i) is H = SLk(q) ◦ SLn+1−k(q). Notice that there is an involution
s = s1s2 ∈ H such that s1 acts like an involution of type t1 in SLk(q) and
s2 acts like an involution of type tk−1 in SLn+1−k(q). Hence the involution
s = s1s2 ∈ H is an involution of type tk in G and s = ig for some g ∈ G.
Observe that ζ i

0(g) = iig does not centralize neither of the components of
H and hence H 6 ♥i(G). Let n + 1 be even and i be an involution of
type t′(n+1)/2, then CG(i) contains a subgroup 1

((n+1)/2,q−1)
SL(n−1)/2(q

2) and

i is the only involution in Z(CG(i)). By Lemma 3.8, there is an element
g ∈ G such that ig ∈ CG(i) and ζ i

0(g) = iig is not central in CG(i). Therefore
1

((n+1)/2,q−1)
SL(n−1)/2(q

2) 6 ♥i(G). The proof for PSUn(q) is analogous.

Let G = Ω2n+1(q) and n > 3. The proof for n = 2, we refer Lemma 3.7 (c)
as Ω5(q) ∼= PSp4(q). Let V be the natural module for G. Then the dimension
of the eigenspaces of the involutions of tk or t′k, 1 6 k 6 n, for the eigenvalue
−1 is 2k and we denote these involutions by tk to simplify the notation.
Note that involution of type tk or t′k present in G if and only if qk ≡ 1 mod 4
or qk ≡ −1 mod 4 respectively. Let i be an involution of type t1, then the
semisimple socle of CG(i) is H = Ω2n−1(q). Notice that there is a non-central
involution s of type t1 in H which is conjugate to i in G, say s = ig for some
g ∈ G. Hence H 6 ♥G(i) by similar arguments above. Assume now that i is
an involution of type tk, 2 6 k < n. We know that CG(i) contains a subgroup
H = Ωε

2k(q) × Ω2(n−k)+1(q) where qk ≡ ε mod 4. Note that Ωε
2k(q) contains

an involution s1 which is conjugate to an involution of type tk−1 in G and
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Ω2(n−k)+1(q) contains an involution s2 which is conjugate to an involution
of type t1 in G. It is clear that the involution s = s1s2 is conjugate to an
involution of type tk in G, hence s = ig for some g ∈ G. Since s1 and s2

are non-central involutions in the corresponding subgroups, ζ i
0(g) = iig does

not centralize neither of the components of H hence the result follows. If
i ∈ G is an involution of type tn, then following the notation of Lemma 3.7,
we have dimV− = 2n. The semisimple socle of CG(i) is H = Ωε

2n(q) where
qn ≡ ε mod 4. Observe that iig ∈ C = CSL(V )(V−∩V−g) for any g ∈ G. Since
dimV− = 2n, V− ∩ V−g has codimension 6 2 and C/Op(C) is a subgroup of
SL2(q). Notice also that we can choose g ∈ G so that ig ∈ CG(i) by Lemma
3.8. Hence ζ i

0(g) = iig and it is clear that ζ i
0(g) does not centralize H.

Let G = PSp2n(q) and n > 3. We refer Lemma 3.7 (c) for the case
n = 2 and for the involution of type t1 we refer Lemma 3.7 (a). Let i ∈ G
be an involution of type tk, 2 6 k 6 n/2, then CG(i) contains a subgroup
H = Sp2k(q) ◦2 Sp2n−2k(q). Observe that Sp2k(q) contains an involution s1

which is conjugate to an involution of type tk−1 in G and Sp2n−2k(q) contains
an involution s2 which is conjugate to an involution of type t1 in G. As s1

commutes with s2, the involution s = s1s2 is conjugate to an involution of
type tk in G, hence s = ig for some g ∈ G. Since s1 and s2 are non-central
involutions in the corresponding subgroups, ζ i

0(g) = iig does not centralize
neither of the components in the centralizer hence the result follows. If i is
an involution of type tn, then CG(i) contains a subgroup 1

(2,n)
GLε

n(q) where
q ≡ ε mod 4. In either case we can apply Lemma 3.8 and find g ∈ G such
that ig ∈ CG(i) and ig is non-central in CG(i) as i is the only involution in
Z(CG(i)).

Let G = PΩε
2n(q) and n > 4. For the involutions of types tk or t′k,

1 6 k < n − 1, the proof is similar to the case G = Ω2n+1(q). If i is of type
tn−1 or tn, then CG(i) contains a subgroup 1

2
GLε

n(q) where q ≡ ε mod 4. In
either case by Lemma 3.8, there exists g ∈ G such that ig ∈ CG(i) and ig is
non-central in CG(i) as Z(CG(i)) = 〈i〉.

Let G = 3D4(q) or G2(q). Then there is only one conjugacy class of
involutions in G. Let i be an involution in G, then CG(i) = SL2(q)◦2 SL2(q

3)
or SL2(q)◦2 SL2(q) respectively. Notice that there is an involution s in CG(i)
which does not centralize either components and it is necessarily conjugate
to i since there is only one conjugacy class of involutions. Let s = ig for some
g ∈ G, then ζ i

0(g) = iig does not centralize the components of the CG(i) and
the result follows. We apply the same argument to the group 2G2(q) as there
is only one conjugacy class of involutions in 2G2(q).
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Let G be a group of type F4(q). Let i be an involution of type t4, then
CG(i)′′ = Spin9(q) and Z(CG(i)) = 〈i〉. By Lemma 3.8, there exists g ∈ G
such that i 6= ig ∈ CG(i) and ζ i

0(g) = iig is non-central in Spin9(q). If i is
an involution of type t1, then CG(i) ∼= SL2(q) ◦2 Sp6(q) and Z(CG(i)) = 〈i〉.
Again, by Lemma 3.8, there exists g ∈ G such that ζ i

0(g) = iig is non-central
in Sp6(q). Hence Sp6(q) 6 ♥i(G). By the same argument, if SL2(q) is a
component in the semisimple socle of CG(i) for G = E6(q), E7(q), E8(q),
then ♥i(G) contains the other quasi-simple component of semisimple socle
of CG(i).

In the remaining exceptional groups Eε
6(q), E7(q) and E8(q), semisimple

socles of the centralizers of involutions contain a single quasi-simple group if
SL2(q) does not appear, see Table 2.5, and the involution i is the only central
involution in CG(i). Hence we apply previous arguments to these cases. �

Corollary 3.10. Let G be a quasi-simple group of Lie type defined over a
field of odd characteristic and i ∈ G be a non-central involution in G.

1. If G is classical then ♥i(G) contains the semisimple socle of CG(i)
except for the groups (P)Sp2n(q) and involution of type t1.

2. If G is exceptional then ♥i(G) contains at least one component in CG(i).

Proof. Note that the non-central involutions in G map to involutions in
G/Z(G) and we apply the same arguments as in Theorem 3.9. �

In Theorem 3.9 and Corollary 3.10, it may happen that if SL2(q) appears
as a component in the centralizers of involutions in exceptional groups, then
♥i(G) contains only the other component of CG(i). However the experiments
in GAP showed that the semisimple socles of CG(i) is also included in ♥i(G)
in the exceptional groups G of Lie type.
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Chapter 4

Construction of a long root

SL2(q)-subgroup

Our aim in this chapter is to prove Theorem 1.1. We achieve this in two
steps. First, we present an algorithm that constructs a long root SL2(q)-
subgroup in a finite simple group G of Lie type defined over the field of
odd order q. Then in Section 4.2 we extend this algorithm for groups with
non-trivial p-core.

4.1 Constructing a long root SL2(q)-subgroup

in simple groups

Let G be a group and Gi 6 G, i = 1, . . . , n. Assume that

G = 〈Gi | i = 1, . . . n〉

and Gk commutes with Gl for any k 6= l. Then we say that G is commuting
products of Gi for i = 1, . . . , n.

Algorithm 4.1. “Construction of a long root SL2(q)-subgroup in

a finite simple group of Lie type”

Input: A black box group isomorphic to a finite simple group G of Lie
type defined over a field of odd size q except PSL2(q) and 2G2(q).

Output: A black box group which is a long root SL2(q)-subgroup in G.

Description of the algorithm:

Step1: Construct the centralizers of involutions recursively to find a com-
muting products of (P)SL2(q

k) in G where k > 1 may vary, Algorithm 4.2.
Step 2: Construct one of the components (P)SL2(q

k) in the commuting prod-
uct and check whether it is a long root SL2(q)-subgroup of G, Algorithm 4.12
and 4.14.
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Note that in Step 1, we may have commuting products of (P)SL2(q)
where q may vary but the characteristic of the underlying field is fixed, for
example, in G = 3D4(q) there is only one conjugacy class of involutions and
CG(i) ∼= SL2(q) ◦2 SL2(q

3) for an involution i ∈ G.

4.1.1 Constructing commuting products of (P)SL2(q)

We first construct commuting products of (P)SL2(q) in G by recursive
construction of the centralizers of involutions using the function ζ i = ζ i

0 ⊔ ζ i
1.

Algorithm 4.2. “Construction of a commuting products of

(P)SL2(q)-subgroup”

Input: A black box group isomorphic to a finite simple group G of Lie
type defined over a field of odd size q except PSL2(q) and 2G2(q).

Output: A black box group which is commuting products of (P)SL2(q
k)

for various k > 1.

Description of the algorithm:

Step 1: Produce an involution i = i(g) from a random element g ∈ G and
check whether it is central or not. If it is always central after several attempts
then return G.
Step 2: Produce sufficiently many elements S = {g1, . . . , gs} ⊂ G and con-
struct ζ i(S) 6 CG(i).
Step 3: Construct ζ i(S)′′, second derived subgroup of ζ i(S).

1. If ζ i(S)′′ 6= 1 then set G = ζ i(S)′′ and go to Step 1.

2. If ζ i(S)′′ = 1, then construct H = 〈iG〉.

• If ζ i
1 is used in the generation of ζ i(S), then we return H.

• If ζ i
1 is not used in the generation of ζ i(S) then we look for a

pseudo-involution j ∈ H and check whether

ζj(T )′′ 6= 1

for a subset T ⊂ H. If ζj(T )′′ = 1 then we return H. If ♥j(H)′′ 6=
1 then H is products of Sp4(q) and we use ζ i

1 map to construct
CH(i) which is in turn isomorphic to direct products of SL2(q) and
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return CH(i). Here i is the involution produced in Step 1. Note
that this part deals with the exception in Theorem 3.9, that is,
♥i(G)′′ = 1 where G = Sp4(q) and i ∈ G is an involution of type
t1.

The involution i = i(g) for a random element g

We pick a random element g ∈ G and produce the involution i = i(g). To
produce an involution from a random element, we need an element of even
order. The share of these elements is given by the following theorem.

Fact 4.3. ([31]) Let G be a finite group having a simple homomorphic image
that is neither cyclic nor Lie type of characteristic 2. Then the share of
elements having an even order is at least 1/4.

Next, we need to check whether i = i(g) is central in G or not. Notice
that this procedure is unavoidable in the recursive steps of our algorithm as
CG(i)′′ contains central involutions in most of the cases (see Table 2.5). As
a set of generators of G is a part of input we can check whether i commutes
with the generators of G. We can find a non-central involution in view of the
following lemma.

Lemma 4.4. Let G be a universal version of a finite group of Lie type defined
over a field of odd characteristic. Then the share of elements in G producing
non-central involutions is bounded from below by a function of the Lie rank
of G.

Proof. Let T be any maximal torus corresponding to an element w in the
Weyl group W as in Section 2.5. Then |NG(T )/T | = |CW (w)| by Theorem
2.16. Therefore the number of tori conjugate to T in G is at least

|G|

|T ||CW (w)|
.

Hence the probability of being an element in a torus conjugate to T is at
least

1

|CW (w)|
.

Therefore if T is any torus containing an involution i then the number of ele-
ments producing i depends only on W not on the size of the field. In classical
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groups, tori twisted by the cycles of length less than the length of the longest
cycle do not contain central involutions. This observation immediately fol-
lows from the tables of the centralizers of involutions and the orders of the
corresponding tori, see Section 2.5. Note that among the exceptional groups
only E7(q) has central extension which has central involution in which case
one can use the same argument to get the conclusion. �

We give an example in the easiest case. Let G = SLn(q), n even and
n > 5. Then a maximal torus T twisted by a product of n−2 and 2 cycles is
of the form T = T1◦q−1T2 where T1 is a cyclic group of order (qn−2−1) and T2

is a cyclic group of order (q2 − 1), see [18] and Section 2.5. Note that as n is
an even number (q2−1) divides (qn−2−1) and therefore involutions produced
from random elements in T belongs to T1 with probability very close to 1. It
can be observed from Table 2.5 that T1 has involution i of type t2 in G by
comparing the orders of CG(i) and T1. Since W = Sym(n), symmetric group
on n letters, and n > 5, CW (w) has order 2(n−2). Therefore the probability
of producing non-central involutions in G from random elements is at least

1
2(n−2)

.
Hence after feasible number of iterations we will find a non-central involu-

tion i = i(g) in G by Lemma 4.4. If we are always in a situation of producing
central involutions then we use a result by Griess [26] to conclude that G is
isomorphic to direct products of SL2(q). In this case, we take this subgroup
as an output.

Recursion

Let i = i(g) be a non-central involution in G. Then we construct ζ i(S)
for a subset S ⊂ G. If ζ i

1 is defined for good sample of elements in S, then
ζ i(S) = CG(i) with probability close to 1, especially over large fields, by Fact
3.1 together with the following theorem.

Fact 4.5. ([33, 38]) Two randomly chosen elements in a finite simple group
G generates G with probability which tends to 1 as |G| tends to ∞.

If ζ i
1 is not defined for S, then ζ i

0 is defined for all the elements in S and we
use only the function ζ i

0. Recall that the image of the map ζ i
0 in G is a normal

subset of CG(i) by Fact 3.1 but ζ i
0 does not produce uniformly distributed

random elements in CG(i). In this case we take S to be sufficiently large so
that we have ζ i

0(S) = ♥i(G). It turns out that ζ i
0(S) = ♥i(G) for a reasonably

sized subset S ⊂ G regarding our experiments in GAP. A reasonable number
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of generators for ♥i(G) produced by ζ i
0 is, for example, 50 for 50× 50 matrix

groups. We note here two results of Liebeck and Shalev.

Fact 4.6. ([39]) Let G be a finite simple group and S ⊆ G a normal subset.
Then there exists a constant c such that Sn = G for any n > clog|G|/log|S|.

Fact 4.7. ([39]) There exists a constant c such that for any element of any
finite simple group G can be written as a product of c involutions.

If the algorithm fails to succeed in constructing of a commuting products
of (P)SL2(q) for various q, for example, it may return the identity group, it
might happen that we fail to construct the component(s) of the centralizers of
involutions in the recursive steps in which case we use the same involutions
to produce more generators for the centralizers of involutions constructed
previously in the recursive steps.

From now on we assume that S is sufficiently large so that we have
♥i(G) 6 ζ i(S), and by definition ζ i(S) 6 CG(i).

The derived subgroup

We will construct the semisimple socle of ζ i(S) for the involution i ∈ G.
By Lemma 2.18, ζ i(S)′′ is the semisimple socle of ζ i(S). If ζ i(S) = ♥i(G),
then ζ i(S)′′ contains at least one component of the semisimple socle of CG(i)
by Lemma 2.18 and Theorem 3.9.

Assume that we are at the kth recursive step of our algorithm, namely

Cik = ζ ik(Sk)
′′

where ik = i(g), g ∈ C ′′
ik−1

and Sk ⊂ C ′′
ik−1

. Set H = C ′′
ik−1

.
If C ′′

ik
= 1, then either

• 〈iHk 〉 is a commuting products of (P)SL2(q) by Lemma 3.4 and 3.5; or

• 〈iHk 〉 is a commuting products of Sp4(q) which is the case if Cik =
♥ik(H), and ik is of type t1 in the correponding components, see Lemma
3.4 and Lemma 3.7(b).

If C ′′
ik
6= 1, then we set G = C ′′

ik
and go to Step 1.

Assume that C ′′
ik

= 1. If the map ζ ik
1 is used in the generation of ζ ik(Sk),

then we assume that Cik = CH(ik) by Facts 3.1 and 4.5. Hence the subgroup
〈iHk 〉

′ is a commuting products of (P)SL2(q) and we return this subgroup.
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If ζ ik
1 is not used in the generation of ζ ik(Sk), then H may be direct

products of Sp4(q) and ik is an involution of type t1. To distinguish com-
muting products of (P)SL2(q) from direct products of Sp4(q), we look for a
pseudo-involution j ∈ H.

Let H be a commuting products of several (P)SL2(q). If we can not find
any pseudo-involution in H, then we deduce that H is a direct products of
PSL2(q) and we go to Step 1 and start the procedure from the very beginning
since long root SL2(q)-subgroups are isomorphic to SL2(q) by Theorem 2.14.
Now let j ∈ H be a pseudo-involution and

Y = 〈jH〉′.

Then CY (j)′′ = 1 and hence ζj(T )′′ = 1 for any subset T ⊂ Y . On the other
hand, if H is direct products of Sp4(q), then by Theorem 3.9, Lemmas 2.18
and 3.4, ζj(T )′′ is direct products of SL2(q), we used here the assumption
that ♥j(Y ) 6 ζj(T ).

Summarizing this observation if we have ζj(T )′′ = 1 then Y is a commut-
ing products of SL2(q) and we take Y as an output. If ζj(T )′′ 6= 1 then we
have commuting products of Sp4(q) and ik acts as an involution of type t1 in
the corresponding components so we use the function ζ ik

1 to construct CH(ik)
which is isomorphic to direct products of SL2(q). For the share of elements
in Sp4(q) defining the map ζ ik

1 see Theorem 5.11.
Note that if G = Sp4(q) and j is a pseudo-involution, then CG(j)′′ is a

short root SL2(q)-subgroup in G [32].
We apply the following theorem in construction of the derived subgroup

of a black box group.

Fact 4.8. ([8]) The commutator subgroup of a black box group can be con-
structed in Monte–Carlo polynomial time.

4.1.2 Finding SL2(q)

The aim of this section is to construct a normal subgroup SL2(q
k) which

appears as a factor in a given commuting products of (P)SL2(q
l) for various

l found in Section §4.1.1.
Let K = SL2(q). It is well known that all semisimple elements in K\Z(K)

are regular, therefore they belong to only one torus. There are two conjugacy
classes of tori in K, split and non-split tori. The split torus is a cyclic group
of order q − 1 and the non-split torus is a cyclic group of order q + 1.
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Lemma 4.9. Let K = SL2(q), q > 3, and L = K ×K. Then the probability
of producing a pseudo-involution acting non-trivially on only one component
is at least 1/24.

Proof. Let T1 be a split torus in G, then

|K : NK(T1)| = q(q + 1)/2.

Let T2 be a non-split torus in G, then

|K : NK(T2)| = q(q − 1)/2.

Hence total number of tori is q2. Therefore the probability of a semisimple
element belonging to a split torus is

1

2

q(q + 1)

q2
>

1

2

and to a non-split torus is

1

2

q(q − 1)

q2
≈

1

2
>

1

3

since q > 3. Let g = (g1, g2) ∈ L. Then gq
1 and gq

2 belong to different classes
of tori in L with probability at least 1/6. Note that one of the tori has order
divisible by 4 and in this torus the probability of finding an element whose
order is divisible by 4 is at least 1/4. Therefore a pseudo-involution produced
from a random element acts non-trivially on only one component in L with
probability at least 1/24. �

We can state an immediate corollary:

Corollary 4.10. Let L be a commuting products of SL2(q). Then we can find
a pseudo-involution which acts non-trivially in fewer number of components
in L with probability at least 1/24.

Lemma 4.11. Let K = SL2(q) and t ∈ K be a pseudo-involution. Then
elements of the form ttg have odd order with probability at least 1/6.

Proof. It follows from the above observation that the semisimple elements
of the form z = ttg, g ∈ K, belongs to a torus of order q − 1 or q + 1. The
probability that z belongs to a certain type of torus is at least 1/3 by the
proof of Lemma 4.9 and one of (q ± 1)/2 is an odd number. Therefore z has
odd order with probability at least 1/6. �
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Algorithm 4.12. “Construction of SL2(q)”

Input: A black box group L which is isomorphic to commuting products
of (P)SL2(q

l) for various l.

Output: A black box group isomorphic to SL2(q
k) for some k appearing

as a factor in the commuting product or return the statement “L is
direct products of PSL2(q

l) for various l”.

Description of the algorithm:

Step1: Produce a pseudo-involution t ∈ L. If we can not find any pseudo-
involution then return “L is direct products of PSL2(q

l) for various l”.

Recall that the elements of SL2(q) belong to a cyclic subgroup of order
q ± 1 and one of the numbers (q ± 1)/2 has even order and at least
half of the elements in the corresponding cyclic subgroup are also of
even order. Therefore we can find elements whose orders are multiple
of 4 with probability at least 1/4. Hence we can produce a pseudo-
involution from random elements by following the procedure in Section
3.1. If we can not find a pseudo-involution in L, then we deduce that
L is a direct products of PSL2(q) and we start the procedure from the
very beginning, that is, we go back to Algorithm 4.2.

Step2: Construct ζt
1(S)′′ for some S ⊂ L. If the map ζt

1 does not work, then
construct 〈tL〉′.

Note that we may be in a situation of not to be able to use the map
ζt
1 for some subset S ⊂ L when t acts as a pseudo-involution in a big

number of components, see Remark 3.2. If we fail to use the map ζt
1

then we construct K = 〈tL〉′ and set L = K and go to Step1. However
if the map ζt

1 works, then t is a pseudo-involution in a small number of
components and we construct ζt

1(S), see Lemma 4.11. We can assume
that ζt

1(S) = CL(t) by Facts 3.1 and 4.5. Let C = ζt
1(S)′′, then C does

not contain the components where t acts as a pseudo-involution in the
commuting product by Lemma 3.6. Therefore we have smaller number
of components in the subgroup C and if C 6= 1, then we set L = C and
go to Step 1. We can check whether C 6= 1 by producing a random
element in C and comparing it with 1. If C = 1, then we return to
Step 1. Observe that if we always have C = 1 in m times, then we
deduce that L = SL2(q

k) for some k in the commuting product where
the probability of error is at most (1 − 1/24)m, see Corollary 4.10.
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4.1.3 Finding the order of the field

In this section, we find the order of the field in the subgroup (P)SL2(q)
constructed in the previuos section.

Algorithm 4.13. “Finding field order”

Input: A black box group K isomorphic to (P)SL2(q).

Output: The order q of the underlying field.

Description of the algorithm:

The elements of K have order dividing either q− 1 or q +1 or 2p. Here
p is the characteristic of the field. The semisimple elements belong to
tori of order q ± 1. The probability of finding a generator in these tori
is

Φ(q ± 1)

q ± 1
>

1

eγ log log(q ± 1)

where Φ is Euler function, e is the base of the natural logarithm and γ
is Euler constant [41]. Therefore we can find an element of order q ± 1
with probability at least 1/eγ log log(q ± 1).

Let E = pnm, (p,m) = 1, be a global exponent for the group G which
is the input group in Algorithm 4.1. We produce sufficiently many
elements g1, . . . , gs ∈ K. It is clear that g

p(pn−1)
l = 1 for each l =

1, . . . , s. Starting from k = 1, we check whether g
p(p2k−1)
i = 1 for each

l = 1, . . . , s. When we find the smallest such number k, 1 6 k 6 n, we
deduce that the order of the undelying field is q = pk. The probability
of error is at most (1 − 1/eγ log log(q ± 1))s.

Note that the order of the field found by Algorithm 4.13 is not necessarily
the order of the field on which G is defined, for example, let G = PSL4(q)
and q ≡ −1 mod4, then there exists an involution i ∈ G such that K =
CG(i)′′ = PSL2(q

2) and Algorithm 4.13 returns q2. In this case, observe that
K is not a subsystem subgroup in G.

4.1.4 A long root SL2(q)

The aim of this section is to prove Theorem 1.2, that is, we present an
algorithm which decides the subgroup K found in Section 4.1.2 is a long root
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SL2(q)-subgroup in a finite simple group G of Lie type of odd characteristic.
Here q is the order of the field found in Section 4.1.3 for K.

Algorithm 4.14. “Checking whether a given (P)SL2(q) is a long

root SL2(q)”

Input: A black box group K which is known to be isomorphic to
(P)SL2(q) for some q in G.

Output: The truth value of the statement: “K is a long root SL2(q)-
subgroup in G”.

Description of the algorithm:

Step 1: Produce an involution z ∈ K and check whether it is central in K or
not. If z ∈ Z(K), then go to next step, otherwise return the statement ‘K
is not long root SL2(q)-subgroup’.

If z /∈ Z(K), then K = PSL2(q) and we deduce that K is not a long
root SL2(q)-subgroup by Theorem 2.14.

Step 2: Construct C = ζz(S)′′ for some subset S ⊂ G.
Step 3: Construct N = 〈K,Kg〉 for g ∈ C. If we find an element n ∈ N
satisfying nq(q2−1) 6= 1, then we conclude that K is not a long root SL2(q)-
subgroup. If we can not find such an element after reasonable number of
times, then we repeat this step for another g ∈ C. If we always have nq(q2−1) =
1, then we conclude that K is a long root SL2(q)-subgroup.

We may assume that K = SL2(q) where q is found by Algorithm 4.13
for K. We know that if K is a long root SL2(q)-subgroup in G, then
K = Kg for any g ∈ C by Corollary 2.20.

If K is not a long root SL2(q)-subgroup, then we shall prove that K is
contained strictly in the subgroup N = 〈K,Kg〉 for a random g ∈ C
with probability close to 1 except for the groups G2(q) and 3D4(q).
Therefore K 6= N , and as soon as we find an element in N whose order
does not divide q(q2 − 1), we deduce that K is not a long root SL2(q)-
subgroup in G. Note that if K is not a long root SL2(q)-subgroup
then either K is a short root SL2(q)-subgroup or the order of the field
is increased in the construction of K (see the example at the end of
previous section).
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Assume first that the order of the field is increased in the construction
of K. This is possible only in G = PSLε

n(q) with n even, and CG(i)′′ =
1

(n/2,q−1)
SLn/2(q

2), see Table 2.5. Assume that G = PSLn(q) and we

obtain K = SL2(q
2k

) for some k > 1 by constructing centralizers of
involutions recursively. Note that K can be embedded naturally in
L = SL2k+1(q) and CG(z)′′ ∼= SL2k+1(q) ◦ SLn−2k+1(q). Now let K1

∼=
SL2(q

2k−1

) be a subgroup in K. Then N1 = 〈K1, K
g
1 〉 = SL4(q

2k−1

) with
probability at least 1−O(1/q2k−1

) for g ∈ CG(z)′′, see Lemma 5.6, and
N1 6 L. Now N1 < N = 〈K,Kg〉 and N1 contains sufficiently many
elements of order not dividing q2k

(q2k+1

− 1). The case G = PSUn(q)
is analogous.

If K is a short root SL2(q)-subgroup, then, by Table 2.4, K = PSL2(q
2),

PSL2(q) or PSL2(q
2) for G = PSUn(q), Ω2n+1(q), PΩ−

2n(q) respectively.
These cases are recognized in Step 1. Therefore we are left with the
cases G = PSp2n(q), F4(q) or 2E6(q).

Let G = PSp2n(q), then K ∼= SL2(q). Let z ∈ Z(K), then CG(z)′′ =
Sp4(q) ◦2 Sp2n−4(q) and K is contained in Sp4(q). We have N =
〈K,Kg〉 = Sp4(q) with probability close to 1 for random g ∈ CG(z)′′,
which follows from a similar idea of the proof of Lemma 5.7, and N
contains sufficiently many elements of order not dividing q(q2 − 1). If
G = F4(q), then K = SL2(q) and C = CG(z)′′ = Spin9(q). Since
C/Z(C) ∼= Ω9(q), it is enough to obtain the estimates in G = Ω9(q).
Let K be a short root SL2(q)-subgroup in G, then K ∼= PSL2(q) and
[K,V ] is a orthogonal 3-space of Witt index 1 where V is the natural
module for G. Now, following the same idea in the proof of Lemma 5.8,
we obtain that N/Z(N) ∼= PΩ+

6 (q) with probability at least 1−O(1/q)
where N = 〈K,Kg〉 and g ∈ G. It is clear that N contains sufficiently
many elements whose orders do not divide q(q2 − 1). If G = 2E6(q),
then K = SL2(q

2), C = CG(z)′′ = Spin−
10(q) and C/Z(C) ∼= PΩ−

10(q).
In this case we find a similar estimate in Ω−

10(q). Note that if K is a
short root SL2(q)-subgroup in Ω−

10(q), then [K,V ] is a orthogonal 4-
space of Witt index 1 where V is the natural module for Ω−

10(q). The
rest is similar to the arguments above.

If we can not find an element n ∈ N satisfying nq(q2−1) 6= 1, then
we conclude that K is a long root SL2(q)-subgroup of G. Observe
that this approach fails to recognize long root SL2(q)-subgoups in the
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groups G2(q) and 3D4(q), see Lemma 2.21. We will deal with these
exceptions in the next section. Notice that the output “K is not a long
root SL2(q)-subgroup” is always true.

Remark 4.15. If Algorithm 4.14 returns a negative answer, then K is not
a long root SL2(q)-subgroup, and instead of going back to the Algorithm
4.2 to construct new commuting products of (P)SL2(q), we can construct
another factor (P)SL2(q) in L. Here L is a commuting products of (P)SL2(q)
constructed by Algorithm 4.2. To do this, we construct M = CL(z)′′ by
using ζz

1 , see Remark 3.2, where z is an involution or pseudoinvolution in
K if K = PSL2(q) or SL2(q) respectively. If M = 1, then we go back
to Algorithm 4.2 to construct new commuting products of (P)SL2(q), see
Lemmas 3.5 and 3.6. If M 6= 1, then it is commuting products of (P)SL2(q)
and we construct new component K = (P)SL2(q) in M by using Algorithm
4.12 and find the order of the field in K by using Algorithm 4.13. Now we
can run Algorithm 4.14 for this K.

The groups G2(q) and 3D4(q)

In this section we present an algorithm which constructs a long root
SL2(q)-subgroup in G2(q) and 3D4(q). We first present an algorithm which
decides whether a given finite simple group of Lie type defined over a field of
odd order is isomorphic to G2(q) or 3D4(q).

Algorithm 4.16. “G2(q) or 3D4(q)”

Input: A black box group isomorphic to a quasi-simple group of Lie type
of odd characteristic.

Output: If G is isomorphic to G2(q) or 3D4(q), then it returns the
statement ‘It is isomorphic to G2(q) or 3D4(q) with probability close to
1’. Otherwise it returns ‘It is not G2(q) or 3D4(q)’.

Description of the algorithm:

We present an algorithm for simple groups of Lie type; an idea of an algorithm
for quasi-simple groups of Lie type is similar.

We check whether we get a commuting product of SL2(q)-subgroups from
the first iteration of the recursive steps of Algorithm 4.2. If this is not
the case, then we return ‘It is not G2(q) or 3D4(q)’. Otherwise we check
whether Algorithms 4.12 and 4.14 returns a long root SL2(q)-subgroups. If
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not, then we return ‘It is not G2(q) or 3D4(q)’. Otherwise we repeat the
process from the begining and if we repeat this process more than a pre-set
reasonable number of times we return ‘It is isomorphic to G2(q) or 3D4(q)
with probability close to 1’.

It follows directly from Table 2.5 that Algorithm 4.2 may return com-
muting product of SL2(q)-subgroups in the first iteration of the recur-
sive steps in the following groups:

PSLε
3(q), PSLε

4(q), PSp4(q), Ω7(q), PΩ±
8 (q), G2(q),

3D4(q).

Let G be one the groups PSLε
4(q), PSp4(q), Ω7(q) or PΩ±

8 (q). Then
there is an involution i ∈ G where CG(i)′′ = PSL2(q

2), PSL2(q), Ω5(q)
or Ωε

6(q) respectively, see Table 2.5. The probability of producing such
an involution i ∈ G is bounded from below by a universal constant
since it depends only on the corresponding Weyl group, see Section
4.3 for similar computations. The subgroups PSL2(q

2), PSLε
2(q) are

not long root SL2(q)-subgroups in the corresponding groups which can
be detected by Algorithm 4.14 and the subgroups Ω5(q), Ω

ε
6(q) are not

commuting products of (P)SL2(q) which can be detected by Algorithm
4.2. Hence we can assume now that G = PSLε

3(q), G2(q) or 3D4(q), then
CG(i)′′ = SL2(q), SL2(q)◦2 SL2(q) or SL2(q)◦2 SL2(q

3) respectively. It is
clear that SL2(q) has only central involutions whereas SL2(q) ◦2 SL2(q)
and SL2(q)◦2SL2(q

3) have non-central involutions. Therefore G2(q) and
3D4(q) can be told apart by looking at the list above and hence among
all finite simple groups of Lie type of odd characteristic. Observe that
we do not use the size q of the field in the above arguments.

Algorithm 4.17. “Construction of a long root SL2(q) in G2(q) and
3D4(q)”

Input: A black box group G isomorphic to G2(q) or 3D4(q).

Output: A black box group K which is a long root SL2(q)-subgroup in
G.

Description of the algorithm:

We construct a subgroup K = SL2(q
k), for some k, by using Algorithm 4.1

where Algorithm 4.14 returns that K is a long root SL2(q
k)-subgroup in

G. Note that if G = 3D4(q), then Algorithm 4.2 returns SL2(q) ◦2 SL2(q
3)
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and Algorithm 4.14 may return K = SL2(q
3) and hence Algorithm 4.13

returns q3. In this case q3 = pk for some k > 3 and q = pk/3. As the
characteristic of the field is known, we find k and if it is not divisible by 3,
then we conclude that the size of the field is correct. If q = p3k0 , then we
produce sufficiently many elements g ∈ G and check whether gm = 1 where
m = q12

0 (q8
0 + q4

0 + 1)(q6
0 − 1)(q2

0 − 1) and q0 = pk0 . Note that

|G2(q)| = q6(q6 − 1)(q2 − 1)

and
|3D4(q)| = q12(q8 + q4 + 1)(q6 − 1)(q2 − 1).

If we find an element g ∈ G such that gm 6= 1, then we deduce that p3k0 is the
size of the underlying field and we use q = p3k0 . After finding the size of the
field, we can distinguish the groups 3D4(q) and G2(q). If G = 3D4(q), then
we can find an element g ∈ G such that gm 6= 1 where m = q6(q6−1)(q2−1).
However there are no such elements in G2(q). Therefore if we find such an
element then we deduce that G = 3D4(q) otherwise G = G2(q).

Let G = G2(q) and i ∈ G be an involution then CG(i) = L1 ◦2 L2 where
Lk

∼= SL2(q), k = 1, 2. Notice that L1 and L2 are short and long root
SL2(q)-subgroups in G. Assume that L1 (resp. L2) is short (resp. long) root
SL2(q)-subgroup in G. Now let j be an involution in CG(i) which does not
centralize L1 and L2. We have CG(j) = SL2(q) ◦2 SL2(q) since there is only
one conjugacy class of involutions in G. Let K1 and K2 be short and long
root SL2(q)-subgroups in CG(j) respectively. Then it is easy to see that all
the pairs {Ls, Kt}, s, t = 1, 2, generate G2(q) except 〈L2, K2〉 = SL3(q) or
SU3(q) [37]. Now we can distinguish G2(q) from SLε

3(q) by using Algorithm
4.16

Let G = 3D4(q) and i ∈ G be an involution, then CG(i) ∼= SL2(q) ◦2

SL2(q
3) where SL2(q) corresponds to long root and SL2(q

3) corresponds to
a short root SL2(q)-subgroups in G, see Table 2.4. To construct SL2(q) we
do the following. Let S be a set of generators for CG(i). Setting m =
q(q − 1)(q + 1), we consider

Sm = {gm | g ∈ S}.

Now L = 〈Sm〉 = SL2(q
3) and we construct an element g ∈ CG(i) such that

g ∈ CCG(i)(L). Note that (q − 1, q3 + 1) = (q + 1, q3 − 1) = 2. Therefore we

look for elements g ∈ CG(i) satisfying one of the conditions g(q−1)(q3+1) = 1
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or g(q+1)(q3−1) = 1. Let g = (g1, g2) ∈ CG(i). Assume that g(q−1)(q3+1) = 1

where gq−1
1 = 1, gq3+1

2 = 1 and gq3+1 is non-central in CG(i). By repeating the
proof of Lemma 4.9, we find such elements with probability at least 1/6 since
the probability of finding a non-central element g1 ∈ SL2(q) of order dividing
q − 1 is at least 1/2 and the probability of finding an element g2 ∈ SL2(q

3)
of order dividing q3 + 1 is at least 1/3. Now, setting h = gq3+1 we have
〈hCG(i)〉′ = SL(2, q) which is a long root SL(2, q)-subgroup in G.

4.2 Groups with a non-trivial p-core

The aim of this section is to extend the algorithm for constructing long
root SL2(q)-subgroups in the simple groups to the groups X where X/Op(X)
is isomorphic to a finite simple group over a field of odd size q > 3, q = pk

for some k > 1. Note that Op(X) is possibly trivial.

Algorithm 4.18. “Main Algorithm”

Input: A black box group X where X/Op(X) is isomorphic to a finite
simple group over a field of odd size q > 3 and the characteristic p of
the field.

Output: A black box group K where K/Op(K) is a long root SL2(q)-
subgroup in X/Op(X).

The structure of the algorithm is same as in the previous algorithm.
Description of the algorithm:

Step1: Construct a subgroup L which is commuting products of subgroups
Ks, s > 1, where Ks/Op(Ks) is isomorphic to (P)SL2(q) for various q, by
taking centralizers of involutions recursively.

Let i ∈ X be an involution and C = CX(i). By Corollary 2.19,
(C/Op(C))′′ is the semisimple socle of C/Op(C). Therefore C ′′ is a
central products of quasi-simple groups of Lie type of characteristic p
extended by some p-group. Recall that the image of the function ζ i

0

consists of involutions, therefore if ζ i
1 is not used in some recursive steps

in the generation of CX(i) then the resulting subgroup may have trivial
p-core in which case we are in the situation of the previous setting and
Algorithm 4.2 gives products of (P)SL2(q) in X as desired. Therefore
we assume that this does not happen. Note that it may happen that
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the p-core is inverted by the involution i in which case iig are p-elements
in Op(X) with probability close to 1 for random g ∈ X. In this case
we construct the p-core and consider C ′′/Op(C

′′) and we use Algorithm
4.2. In all the other cases we obtain the products of subgroups K with
the property that K/Op(K) is (P)SL2(q).

Step2: Construct a subgroup K where K̄ = K/Op(K) is a long root SL2(q)
subgroup in X̄ = X/Op(X).

The construction of a subgroup K where K̄ is (P)SL2(q) follows from
Algorithm 4.12. Now we shall check that K/Op(K) corresponds to a
long root SL2(q)-subgroup in X/Op(X). Assume now that we have
constructed K. We first produce an involution z in K, if z /∈ Z(K)
and CK(z)′′ = 1, then we deduce that K/Op(K) ∼= PSL2(q). Note that
if K/Op(K) ∼= PSL2(q) then CK(z) is a diheadral group of order q ± 1
extended by a possibly non-trivial p-core, which has solubility degree 2.
In this case we go to Step 1 and start the procedure from the beginning.
Otherwise let z ∈ Z(K), C = CX(z). We know that C ′′/Op(C

′′) is a
product of quasi-simple groups by Lemma 2.19. If K̄ is a long root
SL2(q)-subgroup in X̄, then, for any x ∈ C ′′, we have

K 6 〈K,Kx〉 6 〈K,Ky〉

for some y ∈ Op(K) (possibly trivial) which implies that K = 〈K,Kx〉.
We have gq(q2−1) = 1 for any g ∈ K whereas if K̄ is not a long root
SL2(q)-subgroup in X̄, then we can find an element x ∈ C ′′ such that
K 6= 〈K,Kx〉 and also we can find elements g ∈ 〈K,Kx〉 such that
gq(q2−1) 6= 1 by using the same methods in Algorithm 4.14. If we find
such an element the we return to Step 1 and start the procedure from
the beginning. The algorithm for the groups X where X/Op(X) ∼=
3D4(q) or G2(q) is similar to the previous algorithm.

4.3 Estimates

In this section, we estimate the probability of producing an involution i
which guarantees the construction of a long root SL2(q)-subgroup in a finite
simple group G of Lie type of odd characteristic by the first run of Algorithm
4.1 applied to CG(i). To guarantee the success of Algorithm 4.1, we assume
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that the semisimple socles of the centralizers of involutions are constructed
in the recursive steps. The estimates in some cases are very crude and on
the cautious side, the actual probabilities of success are much bigger.

Let n = 2km, m odd. Then the number k is called the 2-height of n.
Note that to produce involutions in G we need an element of even order

and the share of elements of even order is at least 1/4 by Fact 4.3.
Assume that G = PSLn(q) and i is an involution of type t′n/2. Note that

such an involution exists in G if and only if n is even and 2-height of q − 1
is bigger than the 2-height of n, see Table 2.5 and Table 4.5.1 in [25]. The
semisimple socle of CG(i) is

1

(n/2, q − 1)
SLn/2(q

2).

If an involution of type t′n/2 constructed in one of the recursive steps, then

we obtain a subgroup SL2(q
2k

) for some k > 1 which is not a long root
SL2(q)-subgroup in G. Note that an involution of type t′n/2 belongs only in a
maximal twisted torus T , twisted by the longest cycle w in the Weyl group
W = Sym(n), symmetric group on n letters. Therefore i = i(g) where g is
an element from a maximal twisted torus. The number of maximal twisted
tori in G is |G : NG(T )|. Now |NG(T ) : T | = |CW (w)| by Theorem 2.16 and
|CW (w)| = n since w is a cycle of length n in W . Hence there are at most

|G|

|NG(T )|
=

|G|

|CW (w)| · |T |
=

|G|

n|T |

such elements produce involutions of type t′n/2. Therefore the probability of

producing an involution of type t′n/2 is at most 1/n. Notice that the probabil-

ity of producing such involutions in the case of central product SLk(q)◦SLl(q)
is close to 0 as the elements in both components must belong to same type
of torus and have the same 2-height in order to produce such an involution.
Therefore if we have an involution of type different than t′n/2 in the first

step, which is of probability at least 1/4(1− 1/n), we will obtain a long root
SL2(q)-subgroup.

Assume that G = PSp2n(q) and q ≡ 1 mod 4. Let i be an involution
of type tn, then CG(i) = 1

(2,n)
GLn(q). If we construct an involution of type

tn in one of the recursive steps, then Algorithms 4.2 and 4.12 do not return
a long root SL2(q)-subgroup [32]. The rest is similar to the PSLn(q) case.
Involutions of type tn belongs only to a maximal twisted torus T . The number
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of maximal twisted tori in G is |G : NG(T )| and |NG(T ) : T | = |CW (w)| = 2n
since T corresponds to a longest cycle w in the Weyl group W = Z2 ≀Sym(n).
Hence there are at most

|G|

2n|T |

elements which can produce involutions of type tn. Therefore the probability
of producing an involution of type tn is at most 1/2n. Hence we can produce
an involution which is not of type tn with probability at least 1/4(1− 1/2n).
If q ≡ −1 mod 4, then CG(i) = 1

(2,n)
GUn(q) for an involution of type tn and

the same arguments apply.
Assume that G = Ω2n+1(q), n > 3. A short root SL2(q)-subgroup is

isomorphic to Ω3(q) ∼= PSL2(q). Let i be an involution of type tn, then
CG(i)′′ ∼= Ωε

2n(q) where qn ≡ ε mod 4. Note that only maximal twisted tori
whose order is 1/2(qn±1) contain involutions of type tn, see Table 2.5. Since
the Weyl groups of Ω2n+1(q) and PSp2n(q) are same, we will obtain the same
estimate that we will construct Ωε

2n(q) as a centralizer of an involution with
probability at least 1/2n in the first step of the algorithm. Therefore a crude
estimate in this case follows from an estimate in PΩε

2n(q).
Assume that G = PΩε

2n(q), n > 4. If we construct 1
2
SLε

n(q) as a centralizer
of an involution, then a lower bound for the probability of constructing long
root SL2(q)-subgroup follows from the PSLn(q)-case. The desired involution
is of type tn or t′n. Again these involutions belong to a maximal twisted tori.
The probability of obtaining such involution is at least 1/2n by using the
same ideas above and the overall probability is 1/4(1 − 1/n)(1/2n).

Assume that G = F4(q). If we have an involution i of type t4, then
CG(i)′′ ∼= Spin9(q) and the estimate for constructing a long root SL2(q)-
subgroup follows from the estimate for Ω9(q). An involution of type t4 belongs
to a torus T where T corresponds to an element w ∈ W with |CW (w)| = 8
[18, Table 4].

Let G = E8(q) or E7(q), then the possible semisimple socles for central-
izers of involutions are either central products of classical groups or contain
E7(q) or E6(q) respectively. In the case of central products of classical groups,
we refer to the above estimates. Similarly, we reduce the estimates to E6(q)
for the groups E7(q). The estimates for the groups E6(q) and 2E6(q) can be
computed again from the estimates for classical groups as the possible semi-
simple socles of the centralizers of invoutions are central products of classical
groups, see Table 2.5.
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In G2(q) or 3D4(q), we can construct a long root SL2(q)-subgroup without
any difficuilty, see Section 4.1.4.
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Chapter 5

Recognition of the p-core

In this chapter we present an algorithm which determines whether
Op(X) 6= 1, where X/Op(X) is a finite simple classical group or unisingular
group G of Lie type of odd characteristic p. In Section 5.1, we present an
algorithm which was proposed by Babai and Shalev [10] and was designed
for the groups when G is so-called unisingular simple groups of Lie type of
characteristic p. It appears that the problem is much easier for the groups
in this class than in general. In Section 5.2, we present an algorithm in the
case where G is any classical group.

5.1 Easy case: Unisingular groups of Lie type

In this section, we present the algorithm in [10]. Let G be a finite simple
group of Lie type defined over Fq of characteristic p. If the order of an
element g ∈ G is divisible by p, then it is called p-singular, otherwise we say
that g is p-regular. Let ρp(G) denote the proportion of p-singular elements
and s(G) denote the proportion of regular semisimple elements in G. Setting
ρ′

p(G) = 1 − s(G), then we have ρ′
p(G) is the proportion of elements which

commute with an element of order p.
The p-singular elements are crucial in recognizing finite simple groups of

Lie type of characteristic p. However it is very difficult to find a p-singular
element when q is large, namely we have

Fact 5.1. [28] Let G be a finite simple group of Lie type of characteristic p
defined over Fq. Then

ρp(G) 6 ρ′
p(G) 6

3

q − 1
+

2

(q − 1)2
.

It is clear that for any finite group X and A E X, we have

ρp(X) > ρp(X/A).
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If the quantity ρp(X)− ρp(X/A) is non-negligible then random sampling
and checking for p-singularity will work in X. It turns out below that when
X/A is a finite simple unisingular group of Lie type defined over Fq, A =
Op(X) and q is big, then ρp(X) − ρp(X/A) is close to 1.

Definition 5.2. Let G be a finite simple group of Lie type of characteristic
p.

1. Let A be any abelian p-group with a G-action. Any element g ∈ G is
said to be unisingular if g has a non-zero fixed point on A.

2. G is called unisingular if every element of G acts unisingularly on every
finite abelian p-group A with a G-action.

It is essential to study the unisingular action of p-regular elements by
Fact 5.1.

Let

λ(AG) =
| p′-elements in G which are unisingular on A |

| G |
.

Then a simple group G of Lie type of characteristic p is unisingular if and
only if

λ(AG) = 1 − ρp(G) (5.1)

for every nontrivial G-module AG of characteristic p. Hence we have

λ(AG) > 1 −
3

q − 1
−

2

(q − 1)2
. (5.2)

Fact 5.3. [Proposition 3.6 in [10]] Let A be an abelian p-group, X a
finite group and φ : X → G be a epimorhism with ker(φ) = A. Let g ∈ G be
p-regular.

1. If g is not unisingular in its action on A then all elements of φ−1(g)
are p-regular.

2. If g is unisingular in its action on A then at most 1/p fraction of the
elements of φ−1(g) are p-regular.

56



By Fact 5.3, it is clear that

λ(AG)(1 − 1/p) 6 ρp(X) − ρp(X/A) 6 λ(AG). (5.3)

By Equations 5.2 and 5.3, we have

(1 −
3

q − 1
−

2

(q − 1)2
)(1 − 1/p) < ρp(X) − ρp(X/A). (5.4)

Algorithm 5.4. “Recognition of the p-core: The easy case”

Input: A black box group X where X/Op(X) is a finite simple unisin-
gular groups of Lie type of characteristic p.

Output: An element from Op(X) or the statement “Probably, Op(X) =
1”.

Description of the algorithm:

Let E = mpk where (m, p) = 1. We produce a random element x ∈ X and
check whether y = xm 6= 1. If y 6= 1, then we construct 〈yX〉 and we check
whether it is a p-group or not. If we find an element z ∈ 〈yX〉 satisfying
zpk

6= 1, then we conclude that y /∈ Op(X). If we can not find such an
element, then we deduce that y ∈ Op(X).

The probability that we fail to find a p-singular element is (1 − ρp(X) +
ρp(X/Op(X)))l where l is the number of repetitions. By Equation 5.4, we
have

(1 − ρp(X) + ρp(X/Op(X)))l
6 O(1/p)l.

Therefore when p is large, l = 1 suffices to find p-element in Op(X) with a
big probability.

The complete list of finite simple unisingular groups of Lie type of char-
acteristic p is as follows.

Fact 5.5. [29] Let G be a finite simple group of Lie type of characteristic
p defined over the field GF (q), where q = pk for some k > 1. Then G is
unisingular if and only if G is one of the following:

1. PSLε
n(p) with n|(p − ε);

2. PΩε
2n(p) with p odd and ε = (−1)n(p−1)/2;

3. 2G2(q), F4(q),
2F4(q), E8(q) with q arbitrary;
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4. G2(q) with q odd;

5. Eε
6(p) with 3|(p − ε);

6. E7(p) with p odd.

5.2 General case

Our algorithm in the general case is recursive. We reduce the problem of
finding a p-element in X to the centralizers of involutions in X. The last step
of the recursion deals with a group Y 6 X where Y/Op(Y ) ∼= PSL2(q). In
order for this procedure to work, we make use of long root SL2(q)-subgroups
in X.

5.2.1 Pairs of long root SL2(q)-subgroups

In this section, we determine the subgroups generated by the two con-
jugate long root SL2(q)-subgroups in a finite simple classical group of odd
characteristic.

Lemma 5.6. Let G = PSLn(q), n > 5. Let K 6 G be a long root SL2(q)-
subgroup and g ∈ G be a random element. Then 〈K,Kg〉 = SL4(q) with
probability at least 1 − 1/qn−3.

Proof. Let V be a natural module for SLn(q) and V = U ⊕ W where K
induces SL2(q) on U and fixes W . Assume that U = 〈u1, u2〉. Let g ∈ SLn(q)
and

gu1 = a1u1 + a2u2 + w1

gu2 = b1u1 + b2u2 + w2

where ai, bi, i = 1, 2, are elements in the base field and w1, w2 ∈ W . Observe
that the vectors w1 and w2 are linearly dependent with probability 1/qn−3.
Therefore the probability that dim〈U, gU〉 = 4 is at least 1 − 1/qn−3. �

Lemma 5.7. Let G = PSp2n(q), n > 3. Let K 6 G be a long root SL2(q)-
subgroup and g ∈ G be a random element. Then 〈K,Kg〉 = Sp4(q) with
probability at least 1 − 1/q.
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Proof. Let V be the natural module for Sp2n(q) and V = V1⊥ . . .⊥Vn be
an orthogonal decomposition of V where Vk is a hyperbolic plane for each
k = 1, . . . , n. Assume that Vk = 〈ek, fk〉 where {ek, fk} are hyperbolic pairs.
We may assume that K = Sp(V1). Let g ∈ Sp2n(q) and V ′

1 be the natural
module for Kg. It is clear that V ′

1 is hyperbolic plane in V . The probability
that the space 〈V1, V

′
1〉 is non-degenerate 4-space is

A(B − C)/D,

where A is the number of non-degenerate 4-spaces, U4, of V containing V1,
B is the number of hyperbolic planes in U4, C is the number of hyper-
bolic planes in U4 intersecting non-trivially with V1 and D is the number
of hyperbolic planes in V . By the computation in [2, Chapter 3], there are
(q2n−2(q2n − 1))/(q2 − 1) distinct hyperbolic planes in a 2n-dimensional non-
degenerate symplectic geometry, and there are q2(q +1) hyperbolic planes in
U4 intersecting non-trivially with V1. Hence the the probability that 〈V1, V

′
1〉

is a 4-dimensional symplectic geometry with probability at least

q2n−4(q2n−2 − 1){(q2(q2 + 1) − q2(q + 1))}

q2n−2(q2n − 1)
> 1 − 1/q.

�

Lemma 5.8. Let G = PΩ±(V ) be a simple orthogonal group with dimV > 9.
Let K 6 G be a long root SL2(q)-subgroup and g ∈ G be a random element.
Then 〈K,Kg〉 = Ω+

8 (q) with probability at least (1 − 1/q)2.

Proof. Let V be the natural module for Ω±(V ). Then

[K,V ] = 〈kv − v | v ∈ V, k ∈ K〉

is a orthogonal 4-space of Witt index 2 and let U = [K,V ] = 〈e1, e2, f1, f2〉
where {ei, fi} are hyperbolic pairs. Let U ′ = 〈e′1, e

′
2, f

′
1, f

′
2〉 6 V be the

othogonal 4-space of Witt index 2 on which Kg induces SL2(q) for g ∈ Ω±(V ).
Again by computation in [2, Chapter 3], there are

qn−2(qn−1 − 1) if n is odd,
qn−2(qn/2 − 1)(qn/2−1 + 1) if n is even and G = PΩ+(V ),
qn−2(qn/2 + 1)(qn/2−1 − 1) if n is even and G = PΩ−(V )
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total number of hyperbolic pairs. By the similar computations as in Lemma
5.7, the subspace U1 = 〈U, e′1, f

′
1〉 is a non-degenerate 6-space with Witt index

3 and the subspace 〈U1, e
′
2, f

′
2〉 is a non-degenerate 8-space with Witt index

4 with probability at least 1 − 1/q. Hence 〈U, gU〉 is a orthogonal 8-space
with Witt index 4 with probability at least (1 − 1/q)2. �

Lemma 5.9. Let G = PSUn(q), n > 5. Let K 6 G be a long root SL2(q)-
subgroup and g ∈ G be a random element. Then 〈K,Kg〉 = SU4(q) with
probability at least 1 − O(1/q).

Proof. Similar to the arguments above.

Lemma 5.10. Let G = (P)SLn(q), (P)SUn(q), n = 2, 3, 4, or (P)Sp4(q),
Ω7(q), Ω±

8 (q) and K be a long root SL2(q)-subgroup in G, then 〈K,Kg〉 = G
with probability at least 1 − O(1/q).

Proof. Similar to the arguments above.

5.2.2 An algorithm for classical groups

We shall use the function ζ i
1 for generating the centralizers of involutions

i ∈ X. In our algorithm, we use only classical involutions. Therefore it is
enough to obtain a lower bound for the probability that iig has odd order for
only classical involutions i ∈ G.

Theorem 5.11. Let G be a finite simple classical group over a field of odd
characteristic p and i ∈ G be a classical involution. Then the product iig

has odd order with probability bounded from below by constant which does not
depend on G.

Proof. Let i ∈ G be a classical involution, then it belongs to some long
root SL2(q)-subgroup K 6 G. Therefore, the product iig belongs to the
subgroup L = 〈K,Kg〉. We have shown in Section 5.2.1 that the subgroup L
has a given structure depending on G with probability at least 1/2. Hence
it is enough to find the probability that a product of two conjugate classical
involutions in L has odd order.

Consider the map

ϕ : iL × iL → L

(ig, ih) 7→ igih.
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Take a torus T 6 L inverted by j = ig
′

for some g′ ∈ L, that is, satisfying
tj = t−1 for all t ∈ T . Let x ∈ T be an element of odd order. Then there
exists h ∈ 〈x〉 such that h2 = x. Now

jjh = jh−1jh = hh = x

since j inverts T . Hence elements of odd order in T are in the image of ϕ.
Let x ∈ T be a regular element, that is, CL(x) = T , which has odd order.
Then |ϕ−1(x)| > |T | since jtjht = (jjh)t = (hh)t = xt = x for any t ∈ T . Let
S be the set of regular elements in T which are of odd order. Let R be the
set of all regular elements in L whose elements are conjugate to elements in
S, then

|R| = |L : NL(T )||S|.

Now observe that
|ϕ−1(R)| > |R||S|,

and

|iL × iL| =
|L|2

|CL(i)|2
.

Therefore the share of pairs of involutions which are mapped to R is

|ϕ−1(R)|

|iL × iL|
>

|R||S||CL(i)|2

|L|2
=

|S|2|CL(i)|2

|NL(T )||L|
.

Now, we shall find a lower bound to this quotient in all finite simple
classical groups.

Let G = PSLn(q), n > 5. Then L = SL4(q) with probability at least
1/2 by Lemma 5.6. Observe that a classical involution i ∈ L inverts a cyclic
torus H 6 L of order q2 + 1 and (q2 + 1)/2 is an odd number. Observe
also that H is uniquely contained in a maximal cyclic torus T 6 L of order
(q + 1)(q2 + 1) = (q4 − 1)/(q − 1). Note that the maximal torus T in L
corresponds to a 4-cycle in the Weyl group of L which is Sym(4) in this

case. Hence |R| >
|L|

8(q+1)
, |S| > (q2 + 1)/2, |CL(i)| = q2(q2 − 1)2(q − 1) and

|L| = q6(q2 − 1)(q3 − 1)(q4 − 1). After a simple rearrangement

|ϕ−1(R)|

|iL × iL|
>

(q − 1)3(q + 1)

16q2(q2 + q + 1)
>

1

32
.

Hence iig ∈ PSLn(q) is of odd order with probability at least 1/64. If G =
(P)SLn(q), n 6 4, then L = G with probability at least 1/2 by Lemma 5.6,
and by the same computations we obtain a similar result.
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Let G = PSp2n(q), n > 3. Then L = Sp4(q) with probability at least 1/2
by Lemma 5.7. The classical involutions invert a tori of order q±1. Let T 6 L
be a torus of order q − 1 inverted by a classical involution i ∈ L and q ≡ −1
mod 4, then (q − 1)/2 is an odd number. Observe that CL(T ) ∼= GL2(q) and
|NL(T )/CL(T )| = 2, CL(i) is isomorphic to SL2(q) × SL2(q). Now after a
simple rearrangement, we have

|ϕ−1(R)|

|iL × iL|
>

1

4

(q − 1)2(q + 1)

q(q2 + 1)
> 1/16.

Hence iig ∈ PSp2n(q) is of odd order with probability at least 1/32. If q ≡ 1
mod 4, then we consider tori of order q + 1. If G = PSp4(q), then L = G
with probability at least 1/2 by Lemma 5.7 and by the same arguments we
obtain a similar result.

Let G = Ω−
8 (q), then L = G with probability at least 1/2 by the com-

putations in Section 5.2.1. Observe that the classical involutions i ∈ G
inverts a maximal torus T of order (q4 +1)/2 which is an odd number. Now,
|CG(i)| = 1

4
q4(q − 1)3(q + 1)3(q2 + 1), |S| > (q4 + 1)/2, |NG(T )/T | = 12.

Hence
|ϕ−1(R)|

|iL × iL|
>

1

384

(q − 1)4(q + 1)4(q2 + 1)

q4(q6 − 1)
>

1

1536
.

Hence iig ∈ Ω−
8 (q) is of odd order with probability at least 1/(2 · 1536) =

1/3072.
Assume now that G = Ω+

8 (q) or Ωε
n(q), n > 9, then L ∼= Ω+

8 (q) with
probability at least 1/2 by Lemma 5.8. Observe that L contains a subgroup
of the form N = Ω−

4 (q) × Ω−
4 (q), and there is an involution i ∈ Ω−

4 (q) which
inverts a torus of order (q2 + 1)/2. Notice that i is necessarily an involution
of type t1 in L, see Table 2.5. Now the involution j = (i, i) ∈ N inverts a
torus T of order (q2 + 1)2/4 which is an odd number. Since j is a product of
two commuting involution of type t1, it is of type t2 in L and therefore it is
a classical involution. Hence

|S| > (q2 + 1)2/4,

|CL(i)| = 4|Ω+
4 (q)|2 = q4(q − 1)4(q + 1)4,

|L| = q12(q4 − 1)(q2 − 1)(q4 − 1)(q6 − 1),

|NL(T )| = 8(q2 + 1)2,
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and

|ϕ−1(R)|

|iL × iL|
>

q8(q − 1)8(q + 1)8(q2 + 1)4

128(q2 + 1)2(q12(q4 − 1)(q2 − 1)(q4 − 1)(q6 − 1))
.

After a simple rearrangement we have

|ϕ−1(R)|

|iL × iL|
>

(q2 − 1)5

128q4(q6 − 1)
>

1

128 · 6
=

1

768
.

�

Lemma 5.12. Let X be a finite group, i ∈ X an involution and Q = Op(X).
If CQ(i) = 1 then ī ∈ Z(X̄) where X̄ = X/QCX(Q).

Proof. Notice that i ∈ X inverts Q, that is, xi = x−1 for any x ∈ Q and
Q is abelian. Now [i, x] ∈ QCX(Q) for all x ∈ X and the result follows. �

Let X/Op(X) ∼= PSL2(q) and i ∈ X be an involution. Assume that
Q = Op(X) 6= 1. It is easy to see that CQ(i) 6= 1 by Lemma 5.12 and
therefore Op(CX(i)) 6= 1. Now CX(i)/Op(CX(i)) is isomorphic to a dihedral
group of order q ± 1. Let Q1 = Op(CX(i)). If Op(CX(i)′) = 1, then random
elements in CX(i) have orders which are multiple of p and we can find a p-
element in Q1 by raising a random element in CX(i) to the power q±1. Hence
we can assume that Op(CX(i)′) 6= 1. Now CX(i)′/Op(CX(i)′) is isomorphic
to a cyclic group of order (q±1)/2. Hence when we take the power (q±1)/2
of random elements in CX(i)′ we can produce p-elements in Op(Cx(i)

′) and
we are done. Our approach in the general case is to reduce to problem to
this case in all finite simple classical groups. The structure of the algorithm
is as follows.

Algorithm 5.13. “Recognition of the p-core”

Input: A black box group X with the property that X/Op(X) is a finite
simple classical group of odd characteristic p.

Output: If Op(X) 6= 1, then the algorithm finds a non-trivial p-element
in Op(X) with probability bounded from below by a constant. Otherwise
it returns the statement “Possibly, the p-core is trivial”.

Description of the algorithm:

Step 0: Check whether random search works in X.
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In this step, we use Algorithm 5.4, see Section 5.1.

Step 1: Construct K 6 X where K/Op(K) is a long root SL2(q)-subgroup
in X/Op(X) and check whether Op(K) 6= 1.

We will use Algorithm 4.18 to construct K. In each recursive step in
the construction of K, we check whether random search works as in
Step 0. Note that in the construction of K we are using the function
ζ i
0 as well as ζ i

1 for the involutions i ∈ X. Therefore if we are in the
situation of using only the function ζ i

0 in some recursive steps, Op(K)
may be trivial even though Op(X) 6= 1. We check whether Op(K) 6= 1
as above, namely if Op(K) 6= 1, then K/〈i〉 is isomorphic to PSL2(q)
extended by some p-group and we apply the above procedure. If we
can not find a p-element then we go to next step.

Step 2: Construct CX(i) by using ζ i
1, and CX(i)′′ where i ∈ K is an involution.

We construct the involution i ∈ K. Note that i ∈ Z(K). By Facts
3.1 (a) and 4.5, the image of the function ζ i

1 for reasonable number of
sample elements generates CX(i) with probability close to 1, and the
share of elements for which the map ζ i

1 is defined is bounded from below
by constant by Theorem 5.11. To construct the derived subgroups, we
use the algorithm in [8] as before.

Set Q = Op(X). If CQ(i) = 1, then certain power of commutators of
random elements are p-elements in Op(X) by the proof of Lemma 5.12.
Therefore assume that CQ(i) 6= 1 which implies that Op(CX(i)) 6= 1.
Now if Op(CX(i)′) = 1 or Op(CX(i)′′) = 1, then certain power of ran-
dom elements in CX(i) or CX(i)′ are p-elements in Op(X) respectively.
Recall that, by Corollary 2.19, CX(i)′′/Op(CX(i)′′) is a product of quasi-
simple groups. Therefore if p-elements can not be found by powering
random elements in CX(i)′′, then we go to next step.

Step 3: Construct 2-components K ′′
1 and L′′

1 of CX(i)′′.

By Corollary 2.19 and Corollary 2.20, CX(i) has a 2-component K1

where K1/Op(K1) is a long root SL2(q)-subgroup in X/Op(X). The
other 2-component(s) L1 in CX(i) can be read from Table 2.6.

Assume that G = PSLn(q), PSUn(q), PSp2n(q), Ω2n+1(q) or PΩ±
2n(q),

then CG(i)′′ = K1L1 for a classical involution i ∈ G and L1 = SLn−2(q),
SUn−2(q), Sp2n−2(q), SL2(q)Ω2n−3(q) or SL2(q)Ω

±
2n−4(q) respectively.

Consider the following tori in a classical group L1.
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G L1 |T |

PSLn(q) SLn−2(q) {
(qn−2 − 1)/(q − 1),

qn−3 − 1
PSUn(q) SUn−2(q) (qn−2 − (−1)n−2)/(q + 1)

PSp2n(q) Sp2n−2(q) (qn−1 + 1)/2

PΩ2n+1(q) Ω2n−3(q) (qn−2 + 1)/2

PΩ+
2n(q) Ω+

2n−4(q) (qn−3 + 1)(q + 1)/2

PΩ−
2n(q) Ω−

2n−4(q) (qn−2 + 1)/2

In order to construct K1 in the commuting product C = CG(i)′′, we
construct a non-central element g ∈ C of order dividing q ± 1. Then
we construct H = 〈gC〉′ and we check whether H is isomorphic to
SL2(q) by just raising some random elements to the power q(q2 − 1)
and compare with identity.

Note that maximal tori considered above are conjugate in the corre-
sponding groups and they correspond to elements w ∈ W where the
order CW (w) is O(n), see Theorem 2.15. Since |NG(T )/T | ∼= |CW (w)|
by Theorem 2.16, the probability that a random element belongs to a
torus conjugate to T is O(1/n).

Let L1 = SLn−2(q). If n is even, then ((qn−3 − 1), q + 1) = 2 and we
consider a torus of order qn−3 − 1. If n is odd, then ((qn−2 − 1)/(q −
1), q + 1) = 1 and we consider a torus of order (qn−2 − 1)/q − 1. Note
that the probability that an element in L1 having an order dividing
(qn−2−1)/(q−1) or qn−3−1 is at least 1/(n−2) or 1/(n−3) respectively,
see Section 4.3 for such computations. Therefore with probability at
least 1/(n − 3), h = gE/(q+1)a

∈ K1 where E is an exponent for G and
a is the biggest power of (q + 1) in E. If h is a central element in C
then we repeat this proces until we get a non-central element. The
process of checking whether h is central or not in C is to check whether
h commutes with each generator of C. Now it is clear that 〈hC〉′ = K1.

In the rest of the cases observe that (|T |, q − 1) = 2 except L1 =
SUn−2(q) and n is even in which case we consider the torus T of order
(qn−3+1). Therefore after O(n) iterations we can find an element g ∈ C
such that h = gE/(q−1)b

is a non-central element in K1 where b is the
maximal power of q − 1 in E and hence 〈hC〉′ = K1.
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It is easy to see that the above argument can be applied to the groups
with non-trivial p-core in construction of K1. Now we check whether
K1 has non-trivial p-core as before. If Op(K1) = 1, then we construct
L′′

1 by raising the power q(q2 − 1) of the elements in the generating set
for CX(i)′′. If L′′

1 is a commuting products of (P)SL2(q), then we use
the idea in Algorithm 4.12 to construct each (P)SL2(q) in L′′

1.

Step 4: Set X = L′′
1. Go to Step 1.

If Op(X) 6= 1 and Op(K
′′
1 ) = 1, then Op(L

′′
1) 6= 1. Therefore we set

X = L′′
1 and go to Step 1. Here we recursively construct subgroups Ks,

s > 1 where Ks/Op(Ks) is centrally isomorphic to PSL2(q) for each s.
If we fail to construct p-elements in all these subgroups, we conclude
that Op(X) = 1.
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Chapter 6

Construction of Curtis -

Phan - Tits system in black

box groups

Finite groups of Lie type have a special presentation called the Steinberg-
presentation which is based on the relations on its root subgroups.

Let G be a universal untwisted group of Lie type of rank n > 2 defined
over Fq, Σ its roots system and Xα root subgroups for α ∈ Σ. Then G =
〈Xα | α ∈ Σ〉 and Xα is isomorphic to additive group of Fq where

Xα = {xα(t) | t ∈ Fq}

and
xα(t + u) = xα(t)xα(u). (6.1)

The following equation is known as the Chevalley commutator formula.

[xα(t), xβ(u)] =
∏

γ

xγ(ci,j,α,βtiuj) (6.2)

where α, β ∈ Σ, α 6= ±β and γ runs over all roots of Σ of the form γ = iα+jβ
with i, j positive integers. The coefficients ci,j,α,β are integers in [−3, 3] and
they are independent of n and q. The group G also satisfies

hα(t)hα(u) = hα(tu) tu 6= 0 (6.3)

where
hα(t) = nα(t)nα(−1),

nα(t) = xα(t)x−α(−t−1)xα(t).

Fact 6.1. [Theorem 8 in [47]] Let Σ be an irreducible root system of rank
at least 2 and K be a finite field. For each root α ∈ Σ and t ∈ K introduce
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a symbol x̄α(t). Let Ḡ be a finite group generated by the elements x̄α(t)
with respect to the relations in Equations 6.1, 6.2 and 6.3. Then Ḡ/Z(Ḡ) is
isomorphic to the finite simple group of Lie type over K having root system
Σ.

Remark 6.2. The analogue of Fact 6.1 holds also for twisted groups of Lie
type but the Chevalley commutator formula is more complicated, a detailed
discussion can be found in [25, Section 2.4, 2.9].

The following theorem (known as the Curtis-Tits presentation) shows that
the essential relations in the Steinberg presentation are the ones involving
rank 1-subgroups corresponding to fundamental roots. Note that we have

〈Xα, X−α〉 ∼= (P)SL2(q)

for any α ∈ Σ for untwisted G (cf. Table 2.4). Note also that the nodes in
the Dynkin diagram are labelled by the elements in Π. Therefore the Curtis-
Tits presentation involves the pairs of fundamental roots which are edges or
nonedges in the Dynkin diagram. More precisely;

Fact 6.3. [Theorem 2 in [48]] Let Σ be an irreducible root system of rank
at least 3 with fundamental system Π and Dynkin diagram ∆. Let G be a
finite group and assume that the following are satisfied

1. G = 〈Kα | α ∈ Π〉, Kα = 〈Xα, X−α〉 = (P)SL2(q), for all α ∈ Π.

2. Hα = NKα
(Xα) ∩ NKα

(X−α) 6 NG(Xβ) for all α, β ∈ Π.

3. [Kα, Kβ] = 1 if α and β are not connnected in ∆.

4. 〈Kα, Kβ〉 ∼= (P)SL3(q) if α and β are connected with a single bond.

5. 〈Kα, Kβ〉 ∼= (P)Sp4(q) if α and β are connected with a double bond.

Then there exists a group of Lie type G̃ with a root system Σ and a fun-
damental system Π, and a surjective homomorphism ϕ : G → G̃ mapping
the X±α onto the corresponding fundamental root subgroups of G̃. Moreover
kerϕ 6 Z(G) ∩ H where H = 〈Hα | α ∈ Π〉.
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Example 6.4. [Example in [47], p. 72] Let G = SLn(q), n > 3 and
xij(t) = I + tEij where Eij is the matrix whose (i, j)-entry is 1 and the
others are 0. Then Steinberg-presentation of G is

G = 〈xij(t) | 1 6 i, j 6 n, i 6= j, t ∈ Fq〉

subject to the following relations

1. xij(t + u) = xij(t)xij(u),

2. [xij(t), xjk(u)] = [xik(tu)] if i, j, k are different,

3. [xij(t), xkl(u)] = 1 if j 6= k, i 6= l.

In the Curtis-Tits presentation of G we use only the generators xij(t) where
| i − j |6 2. Hence the number of relations is considerably less than the
number of relations in Steinberg-presentation.

Phan proved similar results for the twisted groups of Lie type in [45].
Bennet and Shpectorov proved Phan’s theorem with weaker assumptions for
the groups G = SUn(q) and we state this result.

Fact 6.5. [12] Let G be a finite group containing subgroups Ki
∼= SU2(q),

i = 1, 2, . . . , n and Ki,j, 1 6 i < j 6 n, such that the following hold:

1. If | i − j |> 1 then Ki,j is a central product of Ki and Kj.

2. For i = 1, 2, . . . , n − 1, Ki and Ki+1 are contained in Ki,i+1 which
is isomorphic to SU3(q) or PSU3(q). Moreover Ki and Ki+1 are the
stabilizers of a non-singular vector in Ki,i+1.

3. The subgroups Ki,j, 1 6 i < j 6 n, generate G.

If q > 3, then G is isomorphic to a factor group of SUn+1(q).

It is easy to see that the subgroups Ki, i = 1, 2, . . . , n in Fact 6.5 play
the role of the subgroups corresponding to the nodes in the Dynkin diagram
of PSLn+1(q) as in the Curtis-Tits presentation.

Now our principal aim is to develop a black box group algorithm which
constructs a list of subgroups in G = PSLn(q) and PSUn(q) corresponding
to the nodes in the extended Dynkin diagram for PSLn(q). These subgroups
are long root SL2(q)-subgroups in G. Our algorithm shall produce some
generators for these subgroups.
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6.1 Determination of the type

In this section, our aim is to present an algorithm which determines the
type (linear, symplectic, unitary, orthogonal) of the given classical group over
a field of odd order. The algorithm is based mostly on Theorem 1.1.

Algorithm 6.6. “Determination of the type”

Input: A black box group G isomorphic to a finite simple classical group
of odd characteristic p.

Output: It finds the size of the underlying field, q, and returns one of
the following statements:

“G is isomorphic to PSLn(q) for some n”

“G is isomorphic to PSUn(q) for some n”

“G is isomorphic to PSp2n(q) for some n”

“G is isomorphic to PΩε
n(q) for some n”.

Description of the algorithm:

Step1: We construct a long root SL2(q)-subgroup in G by using Algorithm
4.1 and find the size of the underlying field by using Algorithm 4.13.
Step2: We produce a random element g ∈ G and determine the type of the
group L = 〈K,Kg〉.

The subgroup L has similar structure with G, that is, by Lemmas 5.6,
5.7, 5.8, 5.9, the structure of the subgroup L is given in Table 6.1 which
holds with probability at least 1 − O(1/q) for random g ∈ G;

Table 6.1: Pairs of long root SL2(q)-subgroups

G condition L

PSLn(q) n > 4 (P)SL4(q)

PSUn(q) n > 4 (P)SU4(q)

PSp2n(q) n > 2 (P)Sp4(q)

PΩε
n(q) n > 9 Ω+

8 (q)
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If n is smaller than it is stated in the second column in Table 6.1, then
by Lemma 5.10 we have G = L with probability at least 1−O(1/q) for
random g ∈ G.

Assume first that the subgroup L is one of the following given in Table
6.1. We have

|SL4(q)| = q6(q2 − 1)(q3 − 1)(q4 − 1),

|SU4(q)| = q6(q2 − 1)(q3 + 1)(q4 − 1),

|Sp4(q)| = q4(q2 − 1)(q4 − 1),

|Ω+
8 (q)| =

1

2
q12(q4 − 1)(q2 − 1)(q4 − 1)(q6 − 1).

Among these groups only Ω+
8 (q) has cyclic tori T of order (q4 − 1)/2.

Therefore if we find an element g ∈ L satisfying gq4−1 = 1 but
g(q4−1)/a 6= 1 for a proper divisor a > 2 of q4 − 1, then we conclude
that L = Ω+

8 (q) and G is orthogonal. The probability of finding a gen-
erator of T is close to 1/ log log q by [41] and the probability that an
element in L conjugate to an element in T is determined by the Weyl
group W of L, that is, T corresponds to an element w ∈ W such that
|NL(T )/T | = |CW (w)| = 8. Hence the probability of finding such an
element in L is at least

1

log log q

|L|

|NL(T )|
·
|T |

|L|
=

1

8 log log q
.

If we can not find such an element after a good sample of elements in L,
then we deduce that L ≇ Ω+

8 (q) and hence G is not an orthogonal group
with probability close to 0. Now we may assume that L ∼= (P)SL4(q),
(P)SU4(q) or (P)Sp4(q). Set E1 = q12(q2 − 1)(q4 − 1), E2 = q12(q2 −
1)(q3 − 1)(q4 − 1), E3 = q12(q2 − 1)(q3 + 1)(q4 − 1). Notice that if an
element g ∈ L satisfy gE1 = gE2 = 1 and gE3 6= 1 then L ∼= (P)SL4(q)
and G is isomorphic to PSLn(q) for some n. These elements have orders
dividing q3 − 1 but not (q− 1)(q2 − 1). Therefore they belong to tori of
order q3 − 1 and at least half of the elements in these tori have orders
not dividing (q−1)(q2−1). Let T be such a torus, then |NL(T )/T | = 3
by the same argument above. Now, in L = (P)SL4(q), the probability
of finding such element is at least

|L|

|NL(T )|
·
|T |

2|L|
=

1

6
.
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Similarly, if an element g ∈ L satisfy gE1 = gE3 = 1 and gE2 6= 1 then
L ∼= (P)SU4(q) and G is isomorphic to PSUn(q) for some n. These
elements belong to a torus of order q3+1, and the probability of finding
such elements in (P)SU4(q) is at least 1/6 by the same argument above
and Fact 2.16. If we always have gE1 = 1, then we deduce that L ∼=
(P)Sp4(q) and G is isomorphic to PSp2n(q) for some n.

If G = PSL3(q), PSU3(q) or Ω7(q), then L = G with probability at
least 1−O(1/q) by Lemma 5.10. The same argument above applies to
distinguish these groups.

The main corollary of Algorithm 6.6 is an algorithm which distinguishes
the groups PSp2n(q) and Ω2n+1(q). Such an algorithm was first presented by
Altseimer and Borovik [1]. An algorithm for distinguishing PSp2n(q) from
Ω2n+1(q) is important because of the fact that the statistics of element orders
are virtually the same in these two groups, see [1] for more details, hence
an approach based on the analysis on the element orders do not provide
an efficient algorithm [9]. The algorithm in [1] uses the structure of the
centralizers of involutions and conjugacy classes in these groups but it is
completely different from the one presented in Algorithm 6.6. Therefore we
state this alternative algorithm.

Corollary 6.7. Let G be a black box group isomorphic to PSp2n(q) or
Ω2n+1(q), q > 3, q odd, n > 3. Then there is a one sided Monte–Carlo poly-
nomial time algorithm which decides whether G is isomorphic to PSp2n(q) or
not.

6.2 Construction of the Curtis-Tits system

In this section we present an algorithm which constructs Curtis-Phan-
Tits system for the groups (P)SLε

n(q), n > 3. The following two lemmas are
crucial in the construction.

Lemma 6.8. Let G = (P)SLε
n(q), n > 3, K 6 G be a long root SL2(q)-

subgroup. Let i ∈ K be the involution, then the probability of producing an
involution j ∈ CG(i) by the map ζ i

0 which does not centralize K is bounded
from below by the constant 1/192.

Proof. The proof follows the same arguments and notations in Theorem
5.11. The subgroup 〈i, ig〉 can be embedded into a subgroup L isomorphic
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to SL4(q) or SU4(q) for any g ∈ G if G = (P)SLn(q) or (P)SUn(q), n > 5,
respectively. Assume that n > 5, then it is enough to find the estimate in
SL4(q) and SU4(q).

We count the number of elements of even order belonging to tori which are
inverted by i. We consider the tori which have involutions not centralizing
the components in CL(i).

Consider the map

ϕ : iL × iL → L

(ig, ih) 7→ igih.

Let T 6 L be a cyclic torus inverted by j = ig
′

for some g′ ∈ L. Then half
of the elements of T are squares, namely half of the elements x ∈ T satisfies
x = h2 for some h ∈ T and

jjh = jh−1jh = hh = x

since j inverts T . Hence half of the elements are in the image of ϕ.
Let x ∈ T be a regular element of even order. Then |ϕ−1(x)| > |T |/2

since jtjht = (jjh)t = (hh)t = xt = x for any t ∈ T . Let S be the set of
regular elements in T which are of even order and R the set of all regular
elements in L whose elements are conjugate to elements in S, then

|R| = |L : NL(T )||S|,

and following the arguments in Theorem 5.11, the share of pairs of involutions
which are mapped to R is

|ϕ−1(R)|

|iL × iL|
>

|R||S||CL(i)|2

|L|2
=

|S|2|CL(i)|2

|NL(T )||L|
.

Now we shall calculate this quotient in SL4(q) and SU4(q).
Assume first that L = SL4(q). Then a classical involution inverts a torus

of order (q − 1)(q + 1). To see this, let H = GL2(q) and

j =

[
0 1
1 0

]
∈ H.

Then j inverts tori T1, T2 6 SL2(q) of order q − 1 and q + 1. It is easy to see
that |NH(T1)| = 2(q − 1)2 and |NH(T2)| = 2(q − 1)(q + 1). Now

i =




0 1 0
1 0

0 1
0 1 0


 ∈ SL4(q)
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is a classical involution and i inverts a torus T of order (q − 1)(q + 1), here
T contains a copy of T1 and T2. More precisely,

{

[
t1 0
0 t2

]
| tk ∈ Tk, k = 1, 2} 6 T.

Observe that |NL(T )| > 4(q − 1)2(q + 1) and one of (q − 1)/2 or (q + 1)/2 is
an odd number. Therefore the probability of producing an involution from a
random element in T is at least 1/2 and this involution belongs to one of T1

or T2 with probability at least 1/2. Hence with probability at least 1/4, we
can produce an involution belonging to only T1 or T2, and it is clear that the
involutions in T1 or T2 do not centralize the components in CL(i). Moreover
observe that the number of regular elements of even order in T is at least
|S| = |T |/4. Hence after a simple rearrangement, we have

|ϕ−1(R)|

|iL × iL|
>

(q − 1)3(q + 1)3

64q2(q2 + 1)(q2 + q + 1)
>

1

64 · 3
=

1

192
.

Now, assume that L = SU4(q). Then a classical involution i inverts a
torus T of order (q− 1)(q + 1) and |NL(T )| = 4(q− 1)(q + 1)2. Moreover the
number of regular elements of even order in T is at least |S| = |T |/4 by the
same argument. Hence we have

|ϕ−1(R)|

|iL × iL|
>

(q − 1)5(q + 1)2

64q2(q2 + 1)(q3 + 1)
>

1

64 · 3
=

1

192
.

The computations in the case L = PSL4(q) are analogous, namely i in-
verts a torus T of order (q− 1)(q + 1)/(4, q− 1) and |NL(T )| = 4(q− 1)2(q +
1)/(4, q− 1), and we obtain the same lower bound. If L = PSL3(q), then the
only involution in CL(i) which centralize the component SL2(q) is i. There-
fore, for any g ∈ L, if ζ i

0(g) 6= 1 or equivalently iig has even order, then ζ i
0(g)

does not centralize the component in CG(i) since ζ i
0 does not produce the

involution i itself by Lemma 3.3. The share of elements g ∈ L such that iig

has even order is bigger than 1/192 by the similar computations. The cases
PSUn(q) for n = 3, 4 are analogous. �

Lemma 6.9. Let G = PSLε
n(q), n 6= 4, K 6 G be a long root SL2(q)-

subgroup and i ∈ K be the involution. Let j ∈ CG(i) be an involution in the
image of the map ζ i

0 which does not centralize K. Then the involution j is a
classical involution (that is, of type t2) and j ∈ NG(K).
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Proof. Assume that G = (P)SLn(q), the case G = PSUn(q) is analogous.
Let n > 5 and fix g ∈ G so that ζ i

0(g) 6= 1, then the subgroup 〈K,Kg〉 can
be embedded into SL4(q). Hence the involution ζ i

0(g) belongs to a subgroup
isomorphic to SL4(q) and there are two types of involutions in SL4(q), invo-
lutions of type t2 and t4 which are classical and central involution in SL4(q)
respectively. Clearly if j = ζ i

0(g) is an involution of type t4, then j centralizes
K. Hence if ζ i

0(g) does not centralize K, then it is of type t2. Since n 6= 4,
we have CG(i) = NG(K) which implies that j ∈ NG(K).

If G = PSL3(q), then there is only one conjugacy class of involutions
which are classical, therefore any involution of type ζ i

0(g) is a classical invo-
lution. �

Remark 6.10. Let G = PSL4(q) and i ∈ G a classical involution, then the
involutions of the form ζ i

0(g) are not necessarily classical involutions. However
it is clear that the image of ζ i

0(G) contains classical involutions. There are
three conjugacy classes of involutions which are of type t1, t2 (classical) and t′2
in G. Note that involutions of type t′2 exists in G exactly when q ≡ −1 mod4
and they are conjugate to

j =




1
1

−1
−1


 .

Assume that

i =




−1
−1

1
1




then i is conjugate to

t =




−1
−1

−1
−1


 ,

say t = ig for some g ∈ G. Now j = it = iig = ζ i
0(g) is an involution in

PSL4(q) which implies that the image of ζ i
0(G) contains involutions of type

t′2 in PSL4(q).
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6.2.1 PSLε
n(q), n > 3, q > 5:

In this section we present an algorithm which constructs all long root
SL2(q)-subgroups in a black box group G isomorphic to PSLn(q), n > 3, q > 5
which correspond to the nodes in the extended Dynkin diagram of PSLn(q).
We present the algorithm for PSLn(q) and the algorithm for PSUn(q) can be
read along the same steps by changing the notation SL to SU.

Algorithm 6.11. “Curtis-Tits system for PSLn(q)”

Input: A black box group G isomorphic to PSLn(q), q > 5 odd and
n > 3.

Output: Some generators for long root SL2(q)-subgroups of G which
correspond to the nodes in the extended Dynkin diagram of G.

Description of the algorithm:

Step1: Construct a long root SL2(q)-subgroup K1.

We use Algorithm 4.1 to construct K1. Let i1 ∈ Z(K1) be the invo-
lution. Assume that G 6= PSL4(q), then we have CG(i1) = K1L1S1

where [K1, L1] = 1 and S1 is a torus normalizing K1 and L1 whose
order is dividing q − 1, see Lemma 2.18. Moreover CG(i1)

′ = K1L1

and L1
∼= SLn−2(q). If G = PSL4(q), then C = K1L1S1 is a

normal subgroup of index 2 in CG(i1) and there is an involution in
CG(i1) which does not belong to C and interchanges K1 with L1, and
CG(i1)

′′ = K1L1.

Step2: Construct the following:

• A classical involution i2 ∈ NG(K1)\CG(K1).

• The long root SL2(q)-subgroup K2 where i2 ∈ Z(K2) and 〈K1, K2〉 ∼=
(P)SL3(q).

We first construct an involution i2 ∈ CG(i1) which does not centralize
K1 by using the map ζ i1

0 . The existence and frequency of elements
producing such involutions follow from Theorem 3.9 and Lemma 6.8.
Note that if G 6= PSL4(q), then i2 is a classical involution by Lemma
6.9 and lies in NG(K1). If G = PSL4(q), then i2 can be an involution in
CG(i1) which interchanges K1 with L1 which is not a classical involution
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in G, indeed, CG(i2) contains a normal subgroup C such that CG(i2)/C
is a dihedral group of order q + 1 or 2(q + 1) and C/Z(C) ∼= PSL2(q

2).
We can check whether i2 is a classical involution by using Algorithm
4.14 and if it is not a classical involution then we search for a classical
involution in the same way. The probability of producing a classical
involution i2 is at least 1/192 by Lemma 6.8. Now CG(i2)

′′ = K2L2

where K2 is a long root SL2(q)-subgroup in G and L2
∼= SLn−2(q).

Now we shall prove that 〈K1, K2〉 ∼= (P)SL3(q). Assume that G =
SLn(q), n > 4, and V is the natural module for G. Let V = V 1

− ⊕V 1
+ =

V 2
− ⊕ V 2

+ where V 1
± and V 2

± are the eigenspaces of the involutions i1
and i2 corresponding to the eigenvalues ±1. We assume that dimV 1

− =
dimV 2

− = 2 since i1 and i2 are classical involutions. Then 〈i1, i2〉 <
SL(V 1

− + V 2
−). We know that i2 leaves invariant the subspaces V 1

−, V 1
+

since i2 normalizes K1 and [i2, V
1
−] 6= 0 since i2 does not centralize K1.

If dim[i2, V
1
−] = 2, then i1 = i2. Therefore we have dim[i2, V

1
−] = 1

which implies that dim(V 1
− + V 2

−) = 3 and 〈K1, K2〉 ∼= SL3(q).

Hence we have

– [i1, i2] = 1.

– i2 ∈ NG(K1)\CG(K1).

– 〈K1, K2〉 ∼= SL3(q). If n = 3, then 〈K1, K2〉 ∼= PSL3(q).

We use the same method in Step3 of Algorithm 5.13 to construct K2

in the commuting product C2 = K2L2.

If G = PSL3(q), then the involution i3 = i1 · i2 is a classical invo-
lution and it is clear that i3 ∈ NG(Ks)\CG(Ks) for s = 1, 2. Let
K3 = CG(i3)

′ be the corresponding long root SL2(q)-subgroup. Then
〈K1, K2〉 = 〈K2, K3〉 = 〈K3, K1〉 = PSL3(q). Here the subgroups K1

and K2 correspond to the nodes in the Dynkin diagram while the sub-
group K3 corresponds the extra node in the extended Dynkin diagram.

If G = PSL4(q), then we have 〈K1, K2〉 = 〈K2, L1〉 = 〈L1, L2〉 = SL3(q)
and [K1, L1] = [K2, L2] = 1. Therefore the subgroups K1, K2, L1

correspond to the nodes in the Dynkin diagram while the subgroup L2

corresponds the extra node.

Step3: Construct long root SL2(q)-subgroups Kl such that 〈Kl, Kl+1〉 ∼=
SL3(q) for l = 1, . . . , n − 1 and 〈Ks, Kt〉 = 1 where |s − t| > 2.
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We can assume now that n > 5. We work in the subgroup L1
∼=

SLn−2(q). By the above construction we have i2 ∈ NG(L1) and i2 /∈
CG(L1). Moreover i2 acts as an involution of type t1 on L1 since it
is a classical involution in G and i2 /∈ CG(L1). Now we construct an
involution i3 = ζ i2

0 (g) with the property that i3 /∈ CG(K2) for some
g ∈ L1. It is clear that i3 ∈ L1 since i2 ∈ NG(L1) and g ∈ L1. The
involution i3 is classical involution in L1 by Lemma 6.9. Therefore
CL1

(i3)
′ = K3L3. We have

– [is, it] = 1 for s, t = 1, 2, 3.

– is+1 ∈ NG(Ks)\CG(Ks) for s = 1, 2.

– 〈Ks, Ks+1〉 ∼= SL3(q) for s = 1, 2 and 〈K1, K3〉 = 1.

We construct L̃2 = CL1
(i2)

′′ and work in this subgroup. Clearly L̃2 <
L2 and L̃2

∼= SLn−3(q) since i2 acts an involution of type t1 on L1, see
Table 2.5. Therefore [L̃2, K1] = [L̃2, K2] = 1. Now we construct an
involution i4 by using ζ i3

0 in L̃2 with the property that i4 /∈ CG(K3) for
some g ∈ L̃2. By the same argument i4 is a classical involution in L̃2

and hence CL̃2
(i4)

′ = K4L4. We have

– [is, it] = 1 for s, t = 1, 2, 3, 4.

– is+1 ∈ NG(Ks)\CG(Ks) for s = 1, 2, 3.

– 〈Ks, Ks+1〉 ∼= SL3(q), s = 1, 2, 3 and 〈Ks, Kt〉 = 1 where |s−t| > 2.

Now we construct L̃3 = CL̃2
(i3)

′ and work in this subgroup in the same

way as above. Observe that L̃n−3
∼= SL2(q) which corresponds to the

end node in the Dynkin diagram, say L̃n−3 = Kn−1.

Step4: Construct a long root SL2(q)-subgroup corresponding to extra node
in the extended Dynkin diagram.

Let in = i1 · i2 · · · in−1. Then it is easy to see that in is a classical in-
volution and in ∈ NG(Kn−1)\CG(Kn−1). Let Kn be the corresponding
long root SL2(q)-subgroup containing in, then 〈Kn−1, Kn〉 ∼= SL3(q) and
[Ks, Kn] = 1 for s = 2, 3, . . . , n− 2. Notice that in ∈ NG(K1)\CG(K1).
Hence Kn corresponds to the extra node in the extended Dynkin dia-
gram.

Hence we have constructed the following.
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• 〈Ks, Ks+1〉 = (P)SL3(q) for s = 1, . . . , n − 1.

• [Ks, Kt] = 1 if |s − t| > 2 and s, t = 1, . . . , n − 1.

• 〈Kn, K1〉 ∼= 〈Kn, Kn−1〉(P)SL3(q).

• [Kn, Ks] = 1 for s = 2, 3, . . . , n − 2.

Therefore the subgroups Ks, s = 1, . . . , n, correspond to the nodes in the
extended Dynkin diagram of (P)SLn(q), see Table 2.1. Let T1 be a maximal
torus of order q − 1 in K1 and Ts be the maximal torus of Ks normalizing
Ks−1 and centralizing Ts−1 for each s = 2, 3, . . . , n − 1. Then T = 〈Ts | s =
1, . . . , n−1〉 is a maximal torus of order (q−1)n−1 in G, hence it is a maximal
standard torus of G, that is, T 6 NG(Ks) for each s = 1, . . . , n − 1.

In the case of G = (P)SUn(q), we consider the tori Ts of orders q+1 in Ks

for s = 1, . . . , n−1. Following the same construction as above, T = 〈Ts | s =
1, . . . , n − 1〉 is a maximal torus of order (q + 1)n−1 in G, and T 6 NG(Ks)
for each s = 1, . . . , n− 1, that is, T is a maximal standard torus of G. Hence
we have constructed the Curtis-Phan-Tits system for the groups (P)SLε

n(q).

79



References

[1] Christine Altseimer and Alexandre V. Borovik. Probabilistic recognition
of orthogonal and symplectic groups. In Groups and computation, III
(Columbus, OH, 1999), volume 8 of Ohio State Univ. Math. Res. Inst.
Publ., pages 1–20. de Gruyter, Berlin, 2001.

[2] E. Artin. Geometric algebra. Interscience Publishers, Inc., New York-
London, 1957.

[3] M. Aschbacher. A characterization of Chevalley groups over fields of
odd order. I, II. Ann. of Math. (2), 106(3):353–468, 1977.

[4] M. Aschbacher. On the maximal subgroups of the finite classical groups.
Invent. Math., 76(3):469–514, 1984.

[5] Michael Aschbacher. Finite group theory. Cambridge Studies in Ad-
vanced Mathematics. Cambridge University Press, second edition, Cam-
bridge, 2000.

[6] L. Babai. Local expansion of vertex-transitive graphs and random gen-
eration in finite groups. Proc. ACM Symp. on Theory of Computing,
pages 164–174, 1991.

[7] L. Babai and R. Beals. A polynomial-time theory of black box groups.
I. In Groups St. Andrews 1997 in Bath, I, volume 260 of London Math.
Soc. Lecture Note Ser., pages 30–64. Cambridge Univ. Press, Cambridge,
1999.

[8] L. Babai, G. Cooperman, L. Finkelstein, E. Luks, and Á. Seress. Fast
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[35] W. M. Kantor and Á. Seress. Prime power graphs for groups of Lie type.
J. Algebra, 247(2):370–434, 2002.

[36] C. R. Leedham-Green. The computational matrix group project. In
Groups and computation, III (Columbus, OH, 1999), volume 8 of Ohio
State Univ. Math. Res. Inst. Publ., pages 229–247. de Gruyter, Berlin,
2001.

[37] M. W. Liebeck and G. M. Seitz. Subgroups generated by root elements
in groups of Lie type. Ann. of Math. (2), 139(2):293–361, 1994.

[38] M. W. Liebeck and A. Shalev. The probability of generating a finite
simple group. Geom. Dedicata, 56(1):103–113, 1995.

[39] M. W. Liebeck and A. Shalev. Diameters of finite simple groups: sharp
bounds and applications. Ann. of Math. (2), 154(2):383–406, 2001.

[40] A. Lubotzky and I. Pak. The product replacement algorithm and Kazh-
dan’s property (T). J. Amer. Math. Soc., 14(2):347–363 (electronic),
2001.
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