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ABSTRACT

STOCHASTIC APPROACH TO FUSION DYNAMICS

YILMAZ, BÜLENT

Ph.D., Department of Physics

Supervisor: Prof. Dr. Osman Yılmaz

Co-Supervisor: Prof. Dr. Şakir Ayık

June 2007, 105 pages.

This doctoral study consists of two parts. In the first part, the quantum statistical

effects on the formation process of the heavy ion fusion reactions have been investigated

by using the c-number quantum Langevin equation approach. It has been shown that

the quantum effects enhance the over-passing probability at low temperatures. In the

second part, we have developed a simulation technique for the quantum noises which

can be approximated by two-term exponential colored noise.

Keywords: stochastic nuclear collective dynamics, heavy ion fusion reactions,

super heavy elements, Langevin equation, Fokker-Planck equation, dissipative

quantum systems, simulation techniques of colored noises
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ÖZ

FÜZYON DİNAMİĞİNE STOKASTİK YAKLAŞIM

YILMAZ, BÜLENT

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Osman Yılmaz

Ortak Tez Yöneticisi: Prof. Dr. Şakir Ayık

Haziran 2007, 105 sayfa.

Bu doktora çalışması iki kısımdan oluşmaktadır. İlk kısımda, ağır çekirdek füzyon reak-

siyonlarının formasyon sürecine kuantum istatistiksel etkileri, c-sayı kuantum Langevin

denklemi kullanılarak araştırılmıştır. Düşük sıcaklıklarda kuantum etkilerinin engel

üzerinden geçme olasılığını artırdığı gösterilmiştir. İkinci kısımda da iki terimli üstel

renkli gürültü cinsinden ifade edilebilen kuantum gürültüler için bir simülasyon tekniği

geliştirilmiştir.

Anahtar Kelimeler: stokastik çekirdek toplu dinamiği, ağır iyonların füzyon etk-

ileşmeleri, süper ağır elementler, Langevin denklemi, Fokker-Planck denklemi,

yitimli kuantum sistemler, renkli gürültünün simülasyon teknikleri
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Dr. Şakir Ayık, for his valuable help, attitude, guidance and insight throughout

the research.

I would also like to thank Prof. Dr. Ahmet Gökalp for his help and comments
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CHAPTER 1

INTRODUCTION

The nuclear collective phenomenon was born with the discovery of the nuclear

fission and the first influential description of the nuclear fission mechanism has

come with the work of Bohr and Wheeler in 1939 [1]. They derived an expres-

sion for the fission rate adopting a purely statistical approach. One year later

in 1940, Kramers in his seminal work proposed a dissipative model for nuclear

fission and chemical reactions [2]. He has solved the Fokker-Planck equation for

the density in the collective phase space, considering the collective dynamics of

the nuclear reactions to be equivalent to that of a Brownian motion in a heat bath

of nucleonic degrees of freedom and obtained an escape rate over the quasista-

tionary fission barrier for large and small friction limits. In the subsequent forty

years, the idea of Kramers has not gained much recognition in the community

studying nuclear reaction theories due to the relative success of the more simple

Bohr-Wheeler model and the insufficiency of the available experimental data to

distinguish between Bohr-Wheeler and Kramers models. The experiments car-

ried out in 80’s revealed the fact that the fission of nuclei is a slower process
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than the predicted time scales of the transition state model of Bohr and Wheeler

[3]. This discrepancy lead Grange and his collaborators to follow Kramers’ idea

and investigate the effects of nuclear dissipation on the fission time scales [4].

They solved numerically the two-dimensional Fokker-Planck equation for the dis-

tribution function in phase space of the collective fissioning coordinate and the

conjugate momentum assuming a constant friction and constant fission barrier.

They found the fission rate as a function of time by calculating the probability

current over the saddle point. The importance of the transients on the dynamics

of the system, that is the time interval from the beginning of the induced fis-

sion process to the attainment of quasistationary flow over the barrier, has been

indicated. They showed that the friction as well as the transients introduce a

reduction on the fission probability which was consistent with the experimental

results.

The dissipative nature of the nuclear collective dynamics is well established

now and has been applied successfully to various studies on nuclear collective

processes such as the heavy ion fusion reactions. It was found that the fusion

reaction of heavy ions is a highly dissipative phenomenon with a low probabil-

ity. Due to this low probability, the fusion reaction of the heavy ions leading to

the synthesis of superheavy elements is a theoretical and experimental challenge.

The theoretical formulations are obtained by splitting the reaction mechanism

into two stages and treating them independently. In the approach stage, the
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respective nuclei overcome the Coulomb barrier and a sticking configuration is

formed. In the second formation stage, an amalgamated pear shaped dinuclear

structure evolves over the conditional saddle to form a compound mononucleus.

This stage is the least understood because of its complexity. The reason for di-

viding the fusion reaction into two stages is the difference of time scales and the

necessity to use different sets of dynamical collective variables.

The synthesis of the superheavy elements is the main motivation for the enor-

mous efforts devoted to enlighten the reaction mechanism of the heavy nuclei.

Most of the studies are performed by employing a classical diffusive approach to

the fusion reaction ignoring the quantum effects. However, Strutinski has shown

that the stability of the superheavy elements is maintained by shell correction

energies [5] and since the shell structure is destroyed at high excitation energies,

superheavy nuclei should be synthesized at reasonably low excitation energies

corresponding to low nuclear temperatures of the order of 0.5 − 1 MeV. Con-

sequently, quantum statistical effects are expected to play an important role on

the fusion dynamics. The quantum statistical effects on the least studied forma-

tion phase of the fusion reaction can be investigated by considering the quantum

transport equations for the diffusion process of a single collective variable over a

parabolic potential barrier. In order to obtain a compound nucleus with a low

excitation, the initial kinetic energy of collective system at the beginning of the
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formation phase should be close to the conditional potential barrier which justi-

fies the quadratic form assumption for the barrier. Within such a model, it has

been shown that the quantum effects increase the over-passing probability at low

nuclear temperatures as a result of enhancements in the variances caused by the

quantum fluctuations of the nucleonic degrees of freedom [6, 7, 8].

The quantum diffusion of the collective variables can be formulated by using

either the Fokker-Planck approach which is based on the evolution of the density

matrix or the Langevin approach which is based on the evolution of the dynam-

ical variables themselves. Both approaches are equivalent, however, Langevin

description has certain advantages in practical applications. In realistic appli-

cations, the potential is complicated and hence only numerical calculations can

be considered. Solving numerically the Langevin equation, which is a first order

stochastic differential equation, is easier than the Fokker-Planck equation, which

is a deterministic second order partial differential equation. The only difficulty

with the Langevin approach is the simulation of the stochastic forces. There are

some fast and accurate simulation methods for classical noises, but there is a lack

of such methods for the more complicated quantum noises. Since the quantum

noises with the Drude profile can be expressed as a sum of exponentials. A simu-

lation technique for quantum noises which can be expressed by or fitted to a sum

of two exponentials has been developed [9].

In the next chapter, we discuss the Fokker-Planck and Langevin formalisms
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of the dissipative systems. The derivation of the classical as well as quantum

Langevin equations are given. The properties of the stochastic forces are ex-

plained. In Chapter 3, we present the heavy-ion fusion reactions in connection

with the synthesis of superheavy elements. The three stages of the reaction

mechanism are reviewed. In Chapter 4, in order to illustrate the effects of the

quantum statistical fluctuations, we present different approaches describing the

intermediate stage of the heavy-ion fusion reactions at low nuclear temperatures.

In Chapter 5, the simulation techniques of the stochastic forces appearing in

the Langevin equations as well as the integration of the stochastic differential

equations are discussed. Finally, we give conclusions in Chapter 6.
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CHAPTER 2

FORMULATION OF DISSIPATIVE DYNAMICAL SYSTEMS

The formulations of dissipative systems with a special emphasis on the Langevin

approach are discussed below. The basic considerations here will provide the

essential ingredients for the next chapters.

2.1 Fokker-Planck Equation

The dissipative approach of Kramers has been later extended to all collective

nuclear processes after the discovery of the nuclear dissipation for heavy nuclei.

To this extent, an analogy between the Brownian motion which is the most basic

dissipative model and the nuclear dynamics was established. A collective nuclear

process is represented by one or a few collective variables representing some gross

features of the process. For instance, in the case of a nucleus undergoing fission,

shape parameters describing the surface of the nucleus or the distance between

the center of masses of respective fission fragments can be used as a collective

variable with a corresponding conjugate momentum. The equation of motion for

the distribution function of the collective variable is given by the Fokker-Planck
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equation

∂

∂t
W (v, t) =

∂

∂v

(
βv +

βkBT

m

∂

∂v

)
W (v, t), (2.1)

where β is the reduced friction coefficient which is a measure of the coupling

strength between the collective and nucleonic degrees of freedom. m, T and kB

are the mass parameter of collective system, the temperature of the nucleonic

heat bath, and the Boltzmann constant, respectively. W (v, t) is the probability

that the system has velocity between v and v+dv at time t. In case of an external

potential the corresponding Fokker-Planck equation is called Kramers equation

and given by

∂

∂t
W (q, p, t) =

{
− ∂

∂q

p

m
+

∂

∂p

(
∂U

∂q
+ βp

)
+ mβkBT

∂2

∂p2

}
W (q, p, t), (2.2)

where U is the external potential, q and p are the conjugate position and mo-

mentum variables, respectively. The mean value of any physical quantity can be

calculated by integration as

〈f(q(t), p(t))〉 =
∫ ∞

−∞

∫ ∞

−∞
f(q, p)W (q, p, t) dq dp, (2.3)

where 〈...〉 represents the mean over the distribution.

2.2 Langevin Equation

An equivalent formulation of dissipative systems can be achieved by using the

Langevin approach where one deals with the phase space trajectories themselves
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rather than their distribution function. The equation of motion is given by

dp

dt
= −∂U

∂q
− βp + R(t), (2.4)

dq

dt
=

p

m
, (2.5)

and called Langevin equation. The first term on the right hand side of Eq.(2.4)

is the external force, whereas the other two terms are the Stokes’ law friction

term, −βp, with the reduced friction coefficient β and the stochastic force R(t)

describing the fluctuations of the observables. These last two terms as will be

explained in Section 2.5 arise due to the coupling of the collective degrees of

freedom to the heat bath. The slowly varying friction term −βp describes the

average effect of the heat bath on the collective modes and the stochastic term

R(t) describes the rapid fluctuations around that average. The random force

R(t) arises due to the instantaneous collisions of the Brownian particle with the

heat bath particles and does not have an explicit time dependence since the

characteristic time (or observation time) for collective variables is always larger

than collision time. The properties of the stochastic force can be deduced by

using the solution of the Langevin equation (2.4) for a free Brownian motion,

p(t) = p(0)e−βt +
∫ t

0
e−β(t−t′)R(t′)dt′. (2.6)

The first term describes the exponential decay of the initial momentum p(0) over

a relaxation time 1/β, hence the larger the friction the faster the decay, so that

the energy of the Brownian particle is more quickly transferred into the intrinsic

8



(heat bath) degrees of freedom. The mean of the second term and hence mean

of the random force must be zero,

〈R(t)〉 = 0, (2.7)

since the mean momentum must follow the classical trajectory of a damped sys-

tem without fluctuations and it must become zero when the thermal equilibrium

is reached, 〈p(t →∞)〉 = 0. The mean 〈...〉 indicates an ensemble averaging over

all the realizations of the stochastic force R(t). The mean square momentum

reads

〈p2(t)〉 = p2(0)e−2βt +
∫ t

0
dt′e−β(t−t′)

∫ t

0
dt′′e−β(t−t′′)〈R(t′)R(t′′)〉, (2.8)

which is expected to obey the equipartition theorem at the thermal equilibrium

〈p2(t →∞)〉
2m

=
1

2
kBT. (2.9)

In order to satisfy this condition, it can be easily shown by substitution that the

autocorrelation of the random force must be given by

〈R(t)R(t′)〉 = 2Dδ(t− t′)

= 2mβkBTδ(t− t′), (2.10)

where D is the diffusion coefficient and δ(t) is the Dirac delta function. The

Eq.(2.10) is called fluctuation-dissipation theorem since it connects the thermal

fluctuation R(t) with the dissipation factor β via the diffusion coefficient D. This

9



result is not much surprising since the origin of both effects is the same; the

collisions of the heat bath particles with the Brownian particle. The theorem

also states that the dissipation is always associated with fluctuations. One can

discard the fluctuations only when the mass of the Brownian particle is much

larger than that of the constituents of the heat bath [10]. The thermal noise R(t)

is function of the initial values of the heat bath degrees of freedom (see Section

2.5) which form an ensemble with Maxwellian distribution, hence R(t) is a mean

zero Gaussian noise with an autocorrelation given by Eq.(2.10).

The Langevin equation as well as the Fokker-Planck equation are not exact

equations of motion for the Brownian particle in a sense that they are not valid

for infinitesimally small times, that is they do not take into account the collisions

themselves. These collisions are treated in a course grained manner over a time

step ∆t which should necessarily be larger than the characteristic collision time of

the heat bath particles with the Brownian particle and smaller than the relaxation

time of the Brownian motion itself. This fact is best illustrated by the random

walk formalism of the Brownian motion where the Brownian particle is considered

to perform displacements in a form of series of steps of equal length and random

directions. For details refer to [11].

10



2.3 Equivalence of Langevin and Fokker-Planck Equations

The Fokker-Planck and Langevin equations are two different formulations of

the stochastic processes with the same physical content. Their equivalence can

be demonstrated by using the continuity equation,

∂

∂t
W (q, p, t) +

∂

∂q
(q̇W (q, p, t)) +

∂

∂p
(ṗW (q, p, t)) = 0, (2.11)

for the distribution function W (q, p, t). Substituting the Langevin equation (2.4)

for ṗ and Eq.(2.5) for q̇ into Eq.(2.11) and integrating within the interval (t, t+∆t)

where ∆t is larger than the characteristic time of the intrinsic degrees of freedom

and smaller than the relaxation time of the collective variables, one obtains

W (q, p, t + ∆t)−W (q, p, t) =
∫ t+∆t

t
dt1Ω(q, p, t1)W (q, p, t1)

=
∫ t+∆t

t
dt1Ω(q, p, t1)W (q, p, t)

+
∫ t+∆t

t
dt1Ω(q, p, t1)

∫ t1

t
dt2Ω(q, p, t2)W (q, p, t2)

=
∫ t+∆t

t
dt1Ω(q, p, t1)W (q, p, t)

+
∫ t+∆t

t
dt1Ω(q, p, t1)

∫ t1

t
dt2Ω(q, p, t2)W (q, p, t)

+..., (2.12)

where

Ω(q, p, t) = − p

m

∂

∂q
+

∂

∂p

(
∂U

∂q
+ βp−R(t)

)
. (2.13)
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Taking the ensemble average of Eq.(2.12) over all realizations of R(t), one obtains

W (q, p, t + ∆t)−W (q, p, t)

∆t
=

{
− ∂

∂q

p

m
+

∂

∂p

(
∂U

∂q
+ βp

)}
W (q, p, t)

+mβkBT
∂2

∂p2
W (q, p, t) + O(∆t), (2.14)

so that when ∆t → 0 this reduces to Kramers equation (2.2). In obtaining the

last result the following statistical properties of the operator Ω are used;

〈Ω(q, p, t)〉 = − p

m

∂

∂q
+

∂

∂p

(
∂U

∂q
+ βp

)
, (2.15)

and

〈Ω(q, p, t1)Ω(q, p, t2)〉 = 2Dδ(t1 − t2)
∂2

∂p2
+ f(q, p), (2.16)

where f(q, p) stands for the time independent terms that have no contribution to

the final result.

2.4 Generalized Langevin Equation

The Langevin equation (2.4) is Markovian which means that the system has

no memory and there is no correlation between the stochastic forces at different

times which is dictated by the Dirac delta function in Eq.(2.10). This form of

the Langevin equation is restrictive and only valid for systems where a clear

separation between relaxation time of the collective variable and characteristic

time of the heat bath degrees of freedom is possible, making the Markovian

limit a good approximation. For instance for the ordinary Brownian motion
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of the pollen particle in a fluid, the difference between the time scale of the

Brownian particle and the time scale of the heat bath is very large. On the

other hand, in many mesoscopic systems such as nuclei, these two time scales

are close to each other. Then the Markovian Langevin equation (2.4) becomes

a poor approximation which needs to be replaced with the generalized Langevin

equation to allow for finite memory and a correlation between stochastic forces

at different times. The generalized Langevin equation is given by

dp

dt
= −∂U

∂q
−

∫ t

t0
χ(t− t′)p(t′)dt′ + R(t), (2.17)

with q̇ = p/m where χ(t) is the friction-memory kernel. In general, the lower

limit of the integral is −∞ so that the memory effects of the remote past are also

included, but it is possible to replace −∞ with an arbitrary finite initial time

t0 < t by redefining the stochastic force R(t) [12]. The second moment of the

zero mean stochastic force now reads

〈R(t)R(t′)〉 = mkBTχ(|t− t′|), (2.18)

which is the generalized form of the fluctuation-dissipation theorem.

2.5 Derivation of the Generalized Langevin Equation from a Microscopic Model

The goal in any sciences inspecting transport phenomena of complex systems is

to start from a microscopic theory, derive the transport equations for the collective

modes and solve these equations as general as possible. There are many models
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for the Hamiltonians of the total system which lead to Langevin equations [13].

The most widely encountered model is regarding the heat bath as an assembly

of harmonic oscillators at thermal equilibrium coupled bilinearly to the collective

position. The idea was introduced by Magalinskij [14] for the classical systems

and later extended to quantum systems by Senitzky [15], Ford et. al. [13], and

Ullersma [16]. But the model is generally named after Caldeira and Leggett who

made a detailed explanation of the model [17]. The classical Hamiltonian of the

total system is given by

H =
P 2

2M
+ U(Q) +

∑

i


 p2

i

2mi

+
1

2
miω

2
i

(
qi − ci

miω2
i

Q

)2

 , (2.19)

where (Q,P ) and (qi, pi) are the phase space variables of the collective motion and

the ith oscillator in the heat bath, respectively. M is the mass of the Brownian

particle (or effective mass of the collective variable). mi and ωi are the mass and

frequency of the ith oscillator. The coupling strength of the collective position Q

with the position qi of the ith oscillator is indicated by ci. The solutions for the

collective system has been derived by Zwanzig for the Hamiltonian above. He

used a direct elimination technique to obtain the solution of the collective system

[18]. The equations of motion for the collective system read

dQ

dt
=

P

M
,

dP

dt
= −∂U

∂Q
+

∑

i

ci

(
qi − ci

miω2
i

Q

)
, (2.20)
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and for the bath degrees of freedom they are

dqi

dt
=

pi

mi

,

dpi

dt
= −miω

2
i

(
qi − ci

miω2
i

Q

)
. (2.21)

The latter coupled equations can be easily solved either by writing these coupled

equations in a matrix form and diagonalizing the corresponding drift matrix or

by using the Green’s functions method. The result is

qi(t) =
ci

miω2
i

Q(t)−
∫ t

t0

ci

miω2
i

cos ωi(t− t′)
dQ(t′)

dt′
dt′

+

[
qi(t0)− ci

miω2
i

Q(t0)

]
cos ωi(t− t0) +

pi(t0)

miωi

sin ωi(t− t0).(2.22)

Substituting Eq.(2.22) into Eq.(2.20) we get the equation,

dP

dt
= −∂U

∂Q
−

∫ t

t0
χ(t− t′)P (t′)dt′ + R(0)(t) + Mχ(t− t0)Q(t0), (2.23)

where the friction-memory kernel is

χ(t) = Θ(t)
1

M

∑

i

c2
i

miω2
i

cos ωit, (2.24)

with Θ(t) being the Heaviside step function preserving the causality. The stochas-

tic force reads

R(0)(t) =
∑

i

ci

[
qi(t0) cos ωi(t− t0) +

pi(t0)

miωi

sin ωi(t− t0)

]
. (2.25)

At first glance the last equation looks like a deterministic expression, however

the heat bath degrees of freedom constitute the irrelevant part of the dynamics

15



and their initial values are forming a Gaussian equilibrium ensemble with the

distribution function given by

ρ
(0)
B = Z−1 exp

{
− 1

kBT

∑

i

[
p2

i (0)

2mi

+
1

2
miω

2
i q

2
i (0)

]}
. (2.26)

Hence when the Eq.(2.25) is averaged over the distribution Eq.(2.26), it acquires

the usual statistical properties given by Eq.(2.7) and Eq.(2.18). The stochas-

tic differential equation (2.23) without the last term would be the generalized

Langevin equation. This transient slippage Mχ(t− t0)Q(t0) can be eliminated by

adding it into the random force R(0) and redefining the reservoir density Eq.(2.26)

as

ρB = Z−1 exp



−

1

kBT

∑

i


p2

i (0)

2mi

+
1

2
miω

2
i

(
qi(0)− ci

miω2
i

Q(0)

)2





 , (2.27)

so that the stationary statistical properties given by Eq.(2.7) and Eq.(2.18) are

preserved with the new stochastic force [13, 17, 19],

R(t) =
∑

i

ci

[(
qi(t0)− ci

miω2
i

Q(t0)

)
cos ωi(t− t0) +

pi(t0)

miωi

sin ωi(t− t0)

]
.(2.28)

The generalized Langevin equation now reads

dP

dt
= −∂U

∂Q
−

∫ t

t0
χ(t− t′)P (t′)dt′ + R(t), (2.29)

with memory kernel and random force given by Eq.(2.24) and Eq.(2.28), respec-

tively.

There are some properties of the Caldeira-Leggett model that affect the
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validity and applicability of the generalized Langevin equation. First one is the

consideration of the number of harmonic oscillators forming the heat bath and

the second one is regarding the form of memory kernel that should be modified for

practical applications. Consider a system coupled to only one or a few harmonic

oscillators within Caldeira-Leggett model. The energy will be feeded back and

forth between the system and the harmonic oscillators over a short time interval

called the Poincaré recurrence time. Here, short means that this time scale is

comparable to any relevant time scale of the system. Then, Langevin approach

loses its validity since the system is reversible. For systems coupled to more

than a few dozens of harmonic oscillators the Poincaré recurrence time becomes

so large that it can practically be considered as infinity when compared to any

relevant collective time scale. Hence, the collective system becomes irreversible

and the Langevin approach acquires validity. On the other hand, even though

the derived generalized Langevin equation (2.29) is exact, the memory kernel

Eq.(2.24) is impractical to use since it is a superposition of many cosines with

unknown coupling strengths ci and the frequencies ωi. One can at best go to the

continuum limit, hence the friction-memory kernel Eq.(2.24) becomes [19]

χ(t) = Θ(t)
2

π

∫ ∞

0
Γ(ω) cos(ωt)dω, (2.30)

where Γ(ω) = J(ω)/Mω with J(ω) being the spectral density of the environ-

mental coupling. Comparing Eq.(2.24) and Eq.(2.30), the exact value of Γ(ω)
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reads Γ(ω) = π
2M

∑
i

c2i
miω2

i
δ(ω− ωi), which should be replaced by a proper contin-

uous function. The form of Eq.(2.30) suggests that the density Γ(ω) is related to

the Fourier transform of the memory function χ(t). Taking the inverse Fourier

transform of the Eq.(2.30) we have

Γ(ω) =
∫ ∞

0
χ(t) cos(ωt)dt

= χ̃′(ω), (2.31)

where prime stands for the real part of the Fourier transformed memory function

χ̃(ω) =
∫∞
−∞ χ(t) exp(iωt)dt. This result states that it is the real part of the

Fourier transform of the memory function that introduces the memory effect

and dissipation and it is enough to introduce either the spectral density or the

memory function in order to be able to solve generalized Langevin equation. The

two most frequently encountered continuum choices of the memory kernel are

the exponential and Gaussian memory functions. The exponential one has the

following form

χ(t) = Θ(t)
β

τ
e−

t
τ , (2.32)

where β is the reduced friction coefficient and τ is the relaxation time of the

collective system. The corresponding density has a Lorentzian (Drude) profile,

Γ(ω) =
J(ω)

Mω
=

β

1 + (ωτ)2
. (2.33)
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The Gaussian memory kernel is given by

χ(t) = Θ(t)
2√
π

β

τ
e−

t2

τ2 , (2.34)

with the corresponding density,

Γ(ω) =
J(ω)

Mω
= βe−

ω2τ2

4 . (2.35)

Note that when we let the memory time vanish with the limit τ → 0 (Markovian

limit), both memories Eq.(2.32) and Eq.(2.34) reduce to the Dirac delta form and

hence the Stokes’ friction is recovered as expected. In the same limit, the den-

sities Eq.(2.33) and Eq.(2.35) become constant hence the corresponding spectral

densities J(ω) become linear in ω. Some other properties of the friction-memory

kernels are discussed in Section 5.5.

We should stress that there are some other Hamiltonians from which the

generalized Langevin equation can be obtained such as the generalized Caldeira-

Leggett model where a bilinear coupling between all the system and reservoir

degrees of freedom is allowed [20]. Another model leading to the generalized

Langevin equation is the Rubin model where the heat bath is again considered to

be consisted of harmonic oscillators but coupled to one another in a chain form

[19, 21]. All these Hamiltonians lead to the same generalized Langevin equation

with slight changes in the memory kernel.

The considerations up to here are classical and in the following section we

explain the extension of the classical dissipative dynamics to quantum domain.
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2.6 Quantum Langevin Equation

Since dissipation is an effective macroscopic or mesoscopic concept, the anal-

ysis of the dissipative systems within quantum dynamics has not been considered

during the development of quantum physics which was accepted to apply only

to microscopic systems. There appeared some physical applications such as the

radiation field of a cavity which called for a quantum dissipative treatment and

hence boosted such theoretical investigations. The first quantum formulations

of the dissipative systems were carried out by Caldirola [22] and Kanai [23] who

used a time dependent Hamiltonian for a damped harmonic oscillator,

Ĥ(t) =
P̂ 2

2m
e−βt +

1

2
mω2q̂2eβt, (2.36)

where P̂ = m ˙̂qeβt is the canonical momentum satisfying [q̂, P̂ ] = ih̄ and hence

[q̂, ˙̂q] = ih̄e−βt/m. (2.37)

The Hamiltonian Eq.(2.36) of this model gives the following equation of motion

for the damped harmonic oscillator

¨̂q + β ˙̂q + ω2q̂ = 0, (2.38)

and allows to adopt the standard method of quantization but the uncertainty

relation cannot be satisfied as seen from Eq.(2.37) [15, 24, 25]. Dekker [26] used

a Hamiltonian of complex canonical variables together with a canonical quanti-

zation to obtain the master equation for the Wigner distribution. But there are
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stochastic terms introduced in the equations of position and momentum which

contradicts the classical notion. Another approach is to change the method of

quantization or to use nonlinear models. Kostin [27] and Yasue [28] introduced a

nonlinear Schrödinger equation to deal with quantum dissipation, but it turned

out that the superposition principle cannot be handled with this model [19]. Some

progress has been achieved to explain and cure these discrepancies and even their

equivalence has been shown to some extent, but that was performed by chang-

ing the form of the continuity equation which is questionable [29]. Furthermore,

these models do not take into account properly the effect of the environment as

can be seen form the lack of a stochastic term in the Eq.(2.38). For the clas-

sical systems, the zero temperature limit of the heat-bath leads to an equation

without a random noise but that is not realistic since as temperature falls down

the quantum effects become stronger. Hence, at zero temperature there are still

fluctuations which are purely quantal.

Apart from all the previous models, the most consistent and widely accepted

approach to quantum dissipation is to treat the system and an environment as

parts of a conservative global system, the so called system-reservoir model. The

quantization of the isolated global Hamiltonian is performed in usual way avoiding

any ad hoc assumptions. At this stage one can either work with the Schrödinger

picture where the dynamics is governed by master equation for the density ma-

trix or Heisenberg picture where the quantum Langevin equation for the reduced
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operators is used. The difficulty faced in both pictures is the reduction of the

equations of motion for the global system into the ones for the relevant part and

finding solutions of these equations. Generally the solutions can be obtained only

with some assumptions.

The quantum analog of classical generalized Langevin equation (2.29) has the

same form,

dP̂

dt
= − ∂U

∂Q

∣∣∣∣∣
Q=Q̂

−
∫ t

t0
χ(t− t′)P̂ (t′)dt′ + R̂(t), (2.39)

and can be derived using the same but this time operator valued Hamiltonian

Eq.(2.19) for a quantum system coupled to a heat bath of quantum oscillators.

Mori derived the quantum Langevin equation (2.39) by using the projection for-

malism [30]. The memory function χ(t) is again given by Eq.(2.24) and the

stochastic force R̂(t) has the same form with Eq.(2.28),

R̂(t) =
∑

i

ci

[(
q̂i(t0)− ci

miω2
i

Q̂(t0)

)
cos ωi(t− t0) +

p̂i(t0)

miωi

sin ωi(t− t0)

]
.(2.40)

It is apparent that the different time commutation relation of the stationary

noise operator R̂(t) is non-zero. The correlation functions satisfy the following

properties,

〈R̂(0)R̂(t)〉 = Tr
{
R̂(0)R̂(t)e−ĤB/kBT

}

= Tr
{
R̂(0)e−ĤB/kBT e−i(ih̄/kBT )ĤB/h̄R̂(t)ei(ih̄/kBT )ĤB/h̄

}

= Tr
{
R̂(0)e−ĤB/kBT R̂(t− ih̄/kBT )

}

= 〈R̂(t− ih̄/kBT )R̂(0)〉 (2.41)
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and

〈R̂(0)R̂(t)〉∗ = Tr
{(

R̂(0)R̂(t)e−ĤB/kBT
)†}

= Tr
{
e−ĤB/kBT R̂(t)R̂(0)

}

= 〈R̂(t)R̂(0)〉, (2.42)

where ĤB is the the Hamiltonian of the bath (reservoir) and the symbols ∗ and

† denote the complex and Hermitian conjugations, respectively. It is possible to

define the symmetrized correlation function of the random force as [19],

S(t) =
1

2

[
C+(t) + C−(t)

]
, (2.43)

and the antisymmetrized correlation function as,

A(t) =
1

2i

[
C+(t)− C−(t)

]
, (2.44)

where

C+(t) = 〈R̂(t)R̂(0)〉 − 〈R̂2(0)〉, (2.45)

C−(t) = 〈R̂(0)R̂(t)〉 − 〈R̂2(0)〉. (2.46)

Using the property Eq.(2.41), a general relation between the Fourier transforms

S̃(ω) =
∫∞
−∞ eiωtS(t)dt and Ã(ω) =

∫∞
−∞ eiωtA(t)dt can be found as follows,

S̃(ω) =
1

2

∫ ∞

−∞
eiωt

[
C+(t) + C−(t)

]
dt

=
1

2

[
1 + exp

(
− h̄ω

kBT

)]
C̃+(ω)
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= i
1 + exp

(
− h̄ω

kBT

)

1− exp
(
− h̄ω

kBT

)Ã(ω)

= i coth

[
h̄ω

2kBT

]
Ã(ω). (2.47)

The last result is obtained by using the property C̃−(ω) = e−h̄ω/kBT C̃+(ω). Since

the antisymmetric correlation function is odd and it is the derivative of the mem-

ory function, A(t) = M h̄
2

d
dt

χ(t), we have

Ã(ω) = 2i
∫ ∞

0
A(t) sin(ωt)dt

= −iMh̄ωχ̃′(ω), (2.48)

where χ̃′(ω) is the real part of the Fourier transform of the memory function.

Substituting Eq.(2.48) into Eq.(2.47), wet the quantum fluctuation-dissipation

theorem in the Fourier space,

S̃Q(ω) = Mh̄ω coth

[
h̄ω

2kBT

]
χ̃′(ω), (2.49)

which applies to any system with a thermal and quantum noise. The classical

limit, h̄ω ¿ 2kBT , gives the expected value

S̃C(ω) = 2MkBT χ̃′(ω). (2.50)

The quantum (Q) and classical (C) correlation functions in the time domain are

given by

SQ,C(t− t′) = 〈R(t)R(t′)〉 =
∫ ∞

−∞
dω

2π
e−iω(t−t′)S̃Q,C(ω), (2.51)
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The plot of the quantum correlation function 〈R(t)R(0)〉 can be seen in Figure

4.1. It is observed that as temperature increases the classical limit is recovered

and as the temperature falls down the quantum coherence increase so that at zero

temperature there is still a finite fluctuation, the so called zero point fluctuation.

The extra term h̄ω
2

coth
[

h̄ω
2kBT

]
that appears in the quantum correlation function

is indeed the mean energy of a quantum oscillator of frequency ω. It is possible

to comment further by rewriting the mean energy as follows,

h̄ω

2
coth

(
h̄ω

2kBT

)
=

h̄ω

2
+

h̄ω

exp(h̄ω/kBT )− 1
. (2.52)

The first term on the right hand side of Eq.(2.52) is the ground state energy of the

oscillator where as the second term is the Planck distribution. Both terms have

quantum mechanical origin. The Eq.(2.52) can also be considered as a frequency

dependent effective temperature. This effective temperature is divergent at the

high frequency limit ω → ∞ due to the ground state energy which means that

in order to obtain a finite value a proper cut-off must be introduced. One way

is to replace the limits of the frequency integral with a finite cut-off parameter

and another is to allow for finite memories which will play the role of a cut-off

function since the real part of the Fourier transform of the memory function χ̃′(ω)

appears in the spectral density Eq.(2.49).

The correlation function Eq.(2.49) has been obtained for the first time by

Nyquist [31] but without the first term in Eq.(2.52). Later, the spectral density
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has been corrected by Callen and Welton [32]. In both of these studies the voltage

fluctuations of a resistor in a circuit has been considered as a physical system.

By using the Ehrenfest theorem, the quantum Langevin equation (2.39) can

be expressed in terms of c-number (semiclassical) quantities as

dP

dt
= −∂U

∂Q
−

∫ t

t0
χ(t− t′)P (t′)dt′ + R(t) + F (t), (2.53)

where R(t) is a mean zero quantum noise with the spectral distribution Eq.(2.49).

There are two differences between the quantum c-number Langevin equation

(2.53) and the classical generalized Langevin equation (2.29). One is the cor-

relation functions of the stochastic forces and the other one is the extra term,

F (t), appearing in the quantum Langevin equation (2.53). This extra term,

F (t) = U ′ ({Q̂}
)
−

{
Û ′(Q̂)

}
, (2.54)

is the quantum dispersion of the force U ′ = ∂U/∂Q [33]. F (t) is due to the

quantum nature of systems with non-linear external forces U ′. It is clear that

for linear external forces, the force dispersion F (t) vanishes. {...} represents the

expectation value.
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CHAPTER 3

HEAVY-ION FUSION REACTIONS

The heavy-ion reactions are one of the major subjects of study in nuclear physics

today. The understanding of the collision dynamics of the nuclei provides very

fruitful information about the nuclear structure and the properties of nuclei.

Below, we explain the motivation and reaction mechanism of the fusion reactions

of heavy nuclei.

3.1 Motivation: Superheavy Elements

Since the times of Mendeleev who formed the periodic table, many new ele-

ments have been added to the periodic table including the noble and radioactive

elements. The discoveries of elements found on earth went on until the Ura-

nium which has an atomic number Z = 92. The elements heavier than Uranium

have been produced artificially and except Neptunium Z = 93 and Plutonium

Z = 94 none of them exist naturally on Earth due to their short half lives com-

pared to that of the Earth. These heavy elements are all radioactive and called

transuranic elements. The discovery of the shell structure within nucleus has
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invoked the possibility to produce even heavier elements called superheavy ele-

ments (SHE). The closed shells give extra stability to the nuclear structure with

the corresponding neutron or proton numbers called magic numbers. The magic

proton number next to Z = 82 is Z = 114, Z = 120 or Z = 126, depending

on the model employed, while the magic neutron number next to N = 126 is

predicted to be N = 184 [34]. The existence of doubly closed shell structure in

the superheavy regime introduced the terminology ”island of stability” which is

the predicted region of superheavy elements with half-lives longer by several or-

ders of magnitude than the neighboring isotopes or elements. The half-life of an

ordinary superheavy nuclei before disintegrating into smaller parts is of order of

nanoseconds whereas in the island of stability the half-life of a superheavy nuclei

is predicted to be of orders of seconds or minutes. This predicted long half-life

is the main motivation for the studies devoted to synthesizing the superheavy

elements. Once synthesized, the long-lived superheavy elements will be a good

test for the nuclear structure models.

The production of the heavy elements is performed by two methods. The

first one is the neutron capture method where long-lived massive isotopes are

bombarded with an intense beam of neutrons. Some of those neutrons are cap-

tured and through beta decay are transformed to protons. This method allows

production of elements up to Fermium (Fm) Z=100 and heavier nuclei cannot

be produced since they decay before they have enough time to capture another
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neutron [35]. The second method is the fusion reaction of heavy ions which is the

only mechanism by which the superheavy nuclei can be synthesized and therefore

is very important. The heaviest actinides are fused with light elements from B

to O and the resulting compound nucleus has an excitation energy about 40-50

MeV. This is know as actinide-based or hot fusion reactions which allowed the

production of elements up to Seaborgium (Sg) Z=106. The trouble in this method

is that the collision of two nuclei leaves the compound nucleus in a highly excited

state which means that it is more likely the compound nucleus undergoes fission.

Furthermore, the shell structure is destroyed at high excitations. In the cold

fusion reactions, closed-shell nuclei like 208Pb and 209Bi are fused with medium-

weight neutron-rich isotopes as 54Cr to 74Zn leading to less excited (10-20 MeV)

configurations. The elements from Z=107 to Z=112 has been synthesized by this

approach [36]. Since a less asymmetric combination of target and projectile nuclei

are used, the Coulomb repulsion is larger and hence the formation of a compound

nucleus in cold fusion reactions is more difficult than the one in the hot fusion

reactions. Another limitation of this approach is that a small number of neutrons

are contained in the produced compound nucleus which decreases the stability.

In order to produce nuclei with larger number of neutrons, a rare neutron rich

isotope of Calcium 48Ca is used as a projectile and neutron rich isotopes of ac-

tinides are used as targets. The synthesis of Z = 116 and Z = 118 nuclei has

been reported by Lawrence Berkeley National Laboratory (LBNL) scientists [37]
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but the results still await a conformation by the other experimental facilities.

Synthesis of superheavy elements is a long-standing and important subject in

nuclear physics. It is a challenge both experimentally and theoretically because

of the low production probabilities due to the so called fusion hindrance which

states that even when the initial center of mass energy is of the same order with

the Coulomb barrier the over-passing probability is not 1/2 but much less and

to get higher probability an extra energy is required, the so called extra-push

energy. The fusion hindrance is an experimental observation and occurs for the

condition Zp.Zt > 1600 where Zp and Zt are the projectile and the target atomic

numbers, respectively [38]. The existence of the fusion hindrance is due to the

strong friction between the fusing nuclei where most of the initial kinetic energy

is dissipated into intrinsic (nucleonic) degrees of freedom and due to the fact that

the conditional saddle is inside the fusion barrier hence the system should further

progress over the conditional saddle to form the compound nucleus.

3.2 The Reaction Mechanism

Enormous experimental effort was used to synthesize the superheavy elements

by means of heavy ion fusion reactions but mostly in empirical way since a com-

plete theoretical explanation of the complex dynamics of the heavy ion fusion

reactions is not found yet. Since the production cross section of the superheavy
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elements is of picobarn level, it is important to develop a more substantial theoret-

ical model of the reaction mechanism and provide predictions about the optimum

entrance channels which lead to the synthesis of superheavy elements.

In order to formulate the reaction, one needs to parameterize the evolution

of the system in terms of some suitable collective variables. The heavy ion fusion

reaction similar to fission reaction is a diffusion process. The reaction is highly

dissipative with the associated fluctuations of the dynamical collective variables.

Hence, it is possible to draw direct analogy between Brownian motion and heavy

ion fusion reactions. The nucleonic degrees of freedom are forming the heat bath

and the nuclear collective variables are treated as the ones of Brownian particle.

Now, it is a well established fact that the whole fusion reaction consists of three

stages which are treated independently but connected via the conserved physi-

cal quantities such as total energy and total angular momentum [35, 39, 40, 41].

The first stage is the approaching phase where the respective nuclei are under the

influence of Coulomb repulsion which can be represented by an effective potential

barrier for the collective variable under consideration (see Figure 3.1). The mean

distance between the center of masses of the nuclei (elongation) and the orbital

angular momentum are the two collective variables of this stage. The nuclei can

either pass over the Coulomb barrier or undergo the so called ’quasi-fission’ where

the nuclei do not touch and hence do not lose their identities. The quasi-fission
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Figure 3.1: Schematic view of the reaction mechanism of the fusion process of
the heavy ions.

does not occur for the fusion reactions of light nuclei because the conditional sad-

dle is outside the Coulomb barrier and hence passing over the Coulomb barrier

always results with a complete fusion. The intermediate stage called formation (or

capture) phase starts when the nuclei touch until the formation of the compound

mononucleus. The dynamics of the reaction is cast into a multidimensional space

of shape parameters where next to the elongation parameter, the mass asymmetry

parameter defined as α = (A1 − A2)/(A1 + A2), the deformation parameter and
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necking parameter should be taken into account for a realistic treatment leading

to the compound mononucleus. The pear shaped amalgamated nuclei diffuse over

the conditional saddle to form the compound nucleus with a low probability Pform

since most of the initial kinetic energy is dissipated. The dominant exit channel

is the so called ’fusion-fission’ with a probability 1− Pform. The last stage is the

deexcitation or cooling of the compound nucleus via γ and light particle emission

against the spontaneous fission to give the evaporation residue. This stage is

well understood within the statistical decay of atomic nuclei. The division of the

whole fusion reaction into three stages is justified by the different time scales of

the stages and the fact that the evolution of the stages is governed by different

dynamical collective variables.

The production cross section of a residue C formed through the reaction

A1 + A2 → B → C is given by [39, 41, 42]

σER =
πh̄2

2µEc.m.

∞∑

J=1

(2J + 1)P J
fus(A1 + A2 → B; Ec.m.)P

J
surv(B → C; E∗), (3.1)

where

P J
fus(A1 + A2 → B; Ec.m.) = P J

stick(Ec.m.)P
J
form(Ec.m.). (3.2)

A1 and A2 represent the target and projectile nuclei and B denotes the compound

nucleus, µ is the reduced mass of the nuclei, Ec.m. is the initial center of mass

energy, J is the angular momentum, E∗ is the excitation energy of the compound

nucleus, Pfus is the fusion probability which is a product of sticking probability

33



Pstick and formation probability Pform. The survival probability of the compound

nucleus to form the evaporation residue (ER) by emission of γ rays and neutrons

against the spontaneous fission or charged particle evaporation is denoted by

Psurv. When the center of mass energy Ec.m. is increased, the fusion probability

will increase as well leading to a highly excited compound nucleus and hence

the survival probability Psurv will decrease. Since the superheavy elements are

stabilized by shell correction energies, they should be synthesized at low excitation

energies. The initial kinetic energy is one of the parameters which can be tuned to

minimize the excitation energy and optimize the residue cross section. The most

suitable choices of the center of mass energy are the ones leaving the system at the

near-barrier energies where the further evolution of the system from touching to

compound nucleus formation is due to the thermal diffusion over the conditional

saddle.

In the next chapter, we will consider the quantum statistical effects on the

formation process of the reaction which is the least studied reaction stage.
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CHAPTER 4

QUANTUM STATISTICAL EFFECTS ON THE HEAVY-ION

FUSION REACTIONS

In most of the studies devoted to the nuclear heavy-ion fusion reactions, the evo-

lution of the collective variables is treated as a classical diffusion process [43]. The

intermediate stage of the reaction called the formation process is visualized as a

diffusion over a conditional saddle where initially most of the collective energy

is dissipated due to the fusion hindrance and the system is left at sub-barrier

energies. Hence, the evolution of the system over the saddle from the touch-

ing configuration to the compound nucleus formation is realized by the thermal

fluctuations. It is desirable to obtain a compound nucleus with low excitation

since otherwise the compound nucleus cannot resist against fission or charged

particle decays and therefore the synthesis of the superheavy elements cannot be

achieved. The superheavy elements are stabilized by shell correction energy and

hence they should be synthesized at low excitation energies, consequently the

quantum effects are expected to play an important role [6, 7, 8].
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For the systems with initial near-barrier energies which is the case for the for-

mation stage of the heavy-ion fusion reactions leading to superheavy elements, it

is possible to approximate the conditional saddle to a parabolic potential barrier.

Then, assuming a constant inertia and constant friction for the collective system

as well as a Gaussian distribution for the collective phase space variables, a simple

expression for the passing probability over the parabolic potential barrier can be

derived [44, 45]. The Gaussian distribution function of the phase space variables

is given by

W (q, p) =
1

2π
√

∆
exp

{
−(q − 〈q(t)〉)2σpp + (p− 〈p(t)〉)2σqq

2∆

+
2(q − 〈q(t)〉)(p− 〈p(t)〉)σqp

2∆

}
, (4.1)

where ∆ = σqqσpp − σ2
qp. Integrating the last result over p gives the reduced

distribution as

W ′(q) =
1√

2πσqq(t)
exp

(
−(q − 〈q(t)〉)2

2σqq(t)

)
. (4.2)

For the usual initial value choice q0 < 0, the over-passing probability is simply

the probability that the system is found on the other side of the potential barrier,

hence the probability reads

P (q0, p0, t) =
∫ ∞

0
W ′(q)dq

=
1

2
Erfc


− 〈q(t)〉√

2σqq(t)


 , (4.3)
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where Erfc stands for the complimentary error function. It is interesting to ob-

serve that the last expression is given only by the mean position 〈q(t)〉 of the

collective system and its variance σqq(t). The argument of the error function in

Eq.(4.3) acquires a finite value for the asymptotic time t →∞.

The over-passing probability has been found numerically and analytically for

classical systems [44, 45, 46]. The extension of the classical diffusion of the

nuclear collective variables over a parabolic barrier to include quantum effects

within linear response theory has been considered in a number of papers with

different approaches [6, 7, 8, 47]. In the following sections we review some of these

studies where the over-passing probability has been calculated and we discuss our

contribution in the last section.

4.1 The Propagator Approach

An explicit expression for the over-passing probability has been obtained by

Bao and Boilley [6] by using the real-time path integral propagator approach.

Here, we summerize their result. In their work, they have adopted the standard

model where the collective system is coupled to infinite number of harmonic

oscillators. Assuming a parabolic potential barrier of the form,

U(q) = −1

2
MΩ2q2, (4.4)

for the collective system and an initial state for the reduced density operator

described by an initial position q0 < 0 and average momentum p0 > 0, they have
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derived an expression for the reduced density function given by

ρ̃(q, t) = C exp

[
−(q − 〈q(t)〉)2

2σ2
q (t)

]
, (4.5)

where C is a normalization constant and

〈q(t)〉 = exp

(
−β

2
t

) {
q0

[
β

β′
sinh

(
1

2
β′t

)
+ cosh

(
1

2
β′t

)]

+
2p0

Mβ′
sinh

(
1

2
β′t

)}
, (4.6)

σ2
q (t) =


Mβ′ exp

(
β
2
t
)

4 sinh
(

1
2
β′t

)


−2 




h̄Mβ

π

∫ ωc

0

ω coth
(

h̄ω
2kBT

)

a2 + ω2
dω + σ2

p0

+σ2
q0

M2
[
β + β′ coth

(
1

2
β′t

)]2
}

, (4.7)

are the mean and variance of the collective position, respectively. In the last two

equations M , σ2
q0

and σ2
p0

stand for the inertia of the collective system, initial

variances of the position and momentum, respectively. a = (β′ − β)/2 is the

positive root of the secular equation a2 + βa − Ω2 = 0 and β′ = (β2 + 4Ω2)1/2

[46]. The mean position given by Eq.(4.6) is the same with the classical one as

expected from the Ehrenfest theorem [46]. But the variance σ2
q (t) is different

since it depends on the correlation function which carries the quantum effects

(see Section 2.6).

The expressions derived here are Markovian i.e. no memory effects are in-

cluded and in the Markovian approach a cut-off frequency ωc is required to guar-

antee a finite value for the integral appearing in the Eq.(4.7). For ωc → ∞, the
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integral is logarithmically divergent. As discussed in the next sections, it is pos-

sible to obtain convergent variance σ2
q (t) by including the non-Markovian effects

which will play the role of a cut-off function and the inverse of the memory time

will be the cut-off parameter.

For long times, the over-passing probability Eq.(4.3) obtains the asymptotic

value,

P (q0, p0, t →∞) =
1

2
Erfc

(
1
2
(β + β′)q0 + 1

M
p0

Φ(σ2
q0

, σ2
p0

)

)
, (4.8)

where

Φ(σ2
q0

, σ2
p0

) =





2h̄β

Mπ

∫ ωc

0

ω coth
(

h̄ω
2kBT

)

a2 + ω2
dω +

2

M2
σ2

p0
+

(β + β′)2

2
σ2

q0





1/2

. (4.9)

4.2 Quantum Fokker-Planck Approach

A different approach based on a density matrix formalism leading to the non-

Markovian Fokker-Planck equation for the collective degrees of freedom has been

developed by Takigawa et. al. [7]. We largely follow their derivation. The

starting point is the von Neumann equation for the time evolution of the density

matrix of the global system,

ih̄
∂

∂t
ρ̂(t) = [Ĥ, ρ̂(t)], (4.10)

where the Hamiltonian is assumed to have the form,

Ĥ = ĤA + ĤB + V̂c(q̂, x̂), (4.11)
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with the Hamiltonian of the collective subspace A given by,

ĤA =
p̂2

2M
+ Û(q̂). (4.12)

Û(q̂) is the parabolic potential of the collective motion given by Eq.(4.4). HB

is the environment (bath) Hamiltonian and V̂c(q̂, x̂) is the coupling Hamiltonian.

With the use of the Ehrenfest theorem, the c-number position q(t) and momentum

p(t) variables can be introduced as

q(t) = Tr(q̂ρ̂(t)),

p(t) = Tr(p̂ρ̂(t)). (4.13)

It is convenient to work with the Galilei transformed quantities with vanishing

average values, in order to deal only with the fluctuations around the average

values. The Hamiltonian in the Galilei transformed picture is expanded up to the

second order terms of the fluctuations. The coupled equations for the densities

of the subspaces A and B are solved by using the perturbation method. Then, a

von Neumann equation for the relevant density is obtained as

∂

∂t
D̂A(t) =

1

ih̄
[

p̂2

2M
+

1

2
Cq̂2, D̂A(t)]

− 1

h̄2 [q̂, [χ(+E)(t)q̂ − χ(+O)(t)p̂, D̂A(t)]]

− 1

2ih̄
[q̂, [χ(−E)(t)q̂ − χ(−O)(t)p̂, D̂A(t)]+], (4.14)

where

χ(±E)(t) =
∫ t

t0
dt1C(t, t1)χ

(±)(t, t1), (4.15)
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χ(±O)(t) =
∫ t

t0
dt1S(t, t1)χ

(±)(t, t1), (4.16)

with

C(t, t1) = cosh[Ω(t− t1)], (4.17)

S(t, t1) =
1

MΩ
sinh[Ω(t− t1)], (4.18)

and

χ(−)(t, t1) =
i

h̄
T rB([f̂(t), f̂(t1)]D̂B(t1)), (4.19)

χ(+)(t, t1) =
1

2
TrB([f̂(t), f̂(t1)]+D̂B(t1)). (4.20)

The fluctuating force operator f̂(t) is given by

f̂(t) = û†B(t, t0)

{
∂Vc(q(t), x̂)

∂q
− Tr

[
∂Vc(q(t), x̂)

∂q
ρ̂G(t)

]}
ûB(t, t0), (4.21)

where ûB(t, t0) is the time evolution operator for the subspace B and ρ̂G(t) is

the density operator in the Galilei transformed picture. The functions χ(−)(t, t1)

and χ(+)(t, t1) are the response and correlation functions, respectively. The su-

perscripts E and O in the Eq.(4.14) and Eq.(4.16) stand for even and odd. By

taking the Wigner transform of the von-Neumann equation (4.14) as

DAW (p, q, t) =
∫ ∞

−∞
dre−ipr/h̄ < q +

1

2
r|D̂A(t)|q − 1

2
r > (4.22)

the Fokker-Planck equation with the non-Markovain quantal transport coefficients

is obtained,

∂

∂t
DAW (t) =

{
− 1

M
p

∂

∂q
−MΩ2q

∂

∂p
− χ(−E)q

∂

∂p
+ χ(−O) ∂

∂p
p
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+ χ(+O) ∂2

∂p∂q
+ χ(+E) ∂2

∂p∂p

}
DAW (p, q, t). (4.23)

Assuming a Gaussian form for the density DAW (t) as

DAW (p, q, t) =
1

2π∆1/2
× exp



− 1

2∆
( q p )




σqq σqp

σqp σpp




−1 


q

p







, (4.24)

where ∆ = σqqσpp − σ2
qp and substituting Eq.(4.24) into Eq.(4.23), we get

d

dt
σqq(t) =

2

M
σqp(t),

d

dt
σqp(t) = (MΩ2 + χ(−E))σqq(t)− χ(−O)σqp(t) +

1

M
σpp(t) + χ(+O),

d

dt
σpp(t) = 2(MΩ2 + χ(−E))σqp(t)− 2χ(−O)σpp(t) + 2χ(+E). (4.25)

In order to find the over-passing probability Eq.(4.3), the knowledge of the

mean and the variance of the position is required. The average position is the same

with the classical one and given by Eq.(4.6). On the other hand, the variance

should be calculated from the coupled equations (4.25) which depend on the

transport coefficients χ(±E) and χ(±O). By defining a spectral density as

J(t; ω) =
∫ +∞

−∞
dτeiωτTrB(f̂(t)f̂(t1)ρ̂B(t1)), (4.26)

where τ = t − t1, it is possible to obtain the response and correlation functions

as

χ(−)(t, t1) =
∫ ∞

−∞
dω

2π
e−iωτ i

h̄

(
1− e−β(t)h̄ω

)
J(t; ω), (4.27)

χ(+)(t, t1) =
∫ ∞

−∞
dω

2π
e−iωτ 1 + e−β(t)h̄ω

2
J(t; ω), (4.28)
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which are obtained by using Eq.(4.19) and Eq.(4.20) together with the property

J(t; ω) = eβ(t)h̄ωJ(t;−ω). (4.29)

The spectral function J(t; ω) reads

J(t; ω) = 2πJ(ω)
1

1− e−β(t)h̄ω
(ω > 0) (4.30)

where J(ω) is given by either Eq.(2.33) for Drude regularization (Lorentzian cut-

off) or Eq.(2.35) for Gaussian cut-off. In obtaining the results Eqs.(4.27,4.28,4.30)

a weak bilinear coupling of the collective system to the heat bath is assumed

so that the linear response theory can be employed. It is also assumed that

the density for the bath space is given by a canonical distribution, ρB(t) ∝

exp
[
β(t)(F − ĥB)

]
.

The correlation and response functions are obtained by substituting Eq.(4.27)

and Eq.(4.28) into Eq.(4.15) and Eq.(4.16). Then, the variance σqq(t) is evaluated

by numerical integration of the coupled equations Eq.(4.25).

In this study it is shown that the over-passing probability is enhanced at low

temperatures and recovers the classical value at high temperatures.

4.3 Quantum Langevin Approach

The inclusion of quantum statistical effects to the nuclear collective dynamics

is achieved by using an approach based on Langevin formulation [8]. We closely

follow our derivation in [8]. In this approach, we consider the same model for the
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Hamiltonian Eq.(4.11),

Ĥ = Ĥcoll + Ĥ0 + V̂coup (4.31)

where Ĥcoll, Ĥ0 and V̂coup represent the Hamiltonian of the collective variable,

the Hamiltonian of the intrinsic nucleonic degrees of freedom, and the coupling

potential of the collective variable with the intrinsic nucleonic degrees of free-

dom, respectively. For simplicity, we consider a harmonic form for the collective

Hamiltonian Ĥcoll = p̂2/2M ±MΩ2q̂2/2, where M is the mass parameter of the

collective variable and MΩ2 denotes the magnitude of the curvature parameter

of the potential, positive sign stands for a parabolic potential well and negative

sign for a parabolic potential barrier. Furthermore, we assume that the coupling

Hamiltonian has a linear form, V̂coup = q̂F̂ . The classical equation of motion

for the collective variable can be deduced by using the Heisenberg equations of

motion:

d

dt
q(t) =

1

ih̄

(
[q̂, Ĥ]

)
, (4.32)

d

dt
p(t) =

1

ih̄

(
[p̂, Ĥ]

)
, (4.33)

where (...) = Tr(...ρ̂) denotes an average over the intrinsic degrees of freedom, to

give,

d

dt
q(t) =

1

M
p(t) and

d

dt
p(t)±MΩ2q(t) = −Tr(F̂ ρ̂) . (4.34)

Here, the quantity on the right hand side of the second equation denotes the force

of the intrinsic degrees of freedom on the collective motion. We consider the case
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where the coupling F̂ is a one-body operator. We then need only the single-

particle density matrix ρ̂ of the intrinsic degrees of freedom to calculate the force.

As we discuss below, temporal evolution of the single-particle density matrix

exhibits a stochastic behavior. As a result, the intrinsic force has a fluctuating

part on the top of its average value. Here, we find it more convenient to calculate

the fluctuating part of force, which is determined by the fluctuating part of the

single-particle density matrix δρ̂(t) = ρ̂(t) − ¯̂ρ(t), where the bar means taking

ensemble average. Assuming the fluctuations are small, δρ̂(t) is determined by a

linearized transport equation [48] around the average ¯̂ρ(t),

ih̄
∂

∂t
δρ̂(t)− [

¯̂
h(t), δρ̂(t)]− [δq(t)F̂ , ρ̄(t)] = 0 (4.35)

where
¯̂
h(t) = ĥ + q̄(t)F̂ , ĥ being the Hartree-Fock Hamiltonian of the separated

nuclei and δq(t) = q(t) − q̄(t) denotes the fluctuation of the collective variable

around its average value q̄(t). The ensemble average value of the density matrix

is determined by,

ih̄
∂

∂t
¯̂ρ(t)− [

¯̂
h(t), ¯̂ρ(t)] = 0 . (4.36)

For simplicity of derivation, we neglect the collision term on the right hand side

of Eq.(4.35) and Eq.(4.36) [43, 49, 50], however subsequently, we incorporate the

damping width of single-particle states. Starting from an initial state δρ̂(s) at

some time s, the formal solution of Eq.(4.35) can be given as,

δρ̂(t) = − i

h̄

∫ t

s
dt′δq(t′)

[
Ĝ(t, t′)F̂ Ĝ†(t, t′), ¯̂ρ(t)

]
+ Ĝ(t, s)δρ̂(s)Ĝ†(t, s) (4.37)
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where the first term describes the effects of the perturbation during the time inter-

val t − s with Ĝ(t, s) = exp
[
−(i/h̄)

∫ t
s dt′ ¯̂h(t′)

]
≈ exp

[
−(i/h̄)(t− s)

¯̂
h(t)

]
as the

mean-field propagator, i.e. the propagator in the absence of thermal fluctuation,

and the second term represent the propagation of the initial fluctuations δρ̂(s) of

the intrinsic degrees of freedom during the time interval from s to t. Here, the

initial time s does not represent the remote past, but rather it is sufficiently close

to the time t, so that the time interval is much shorter than the relaxation time

of the intrinsic degrees of freedom t− s ¿ τrel. Hence, the neglect of correlations

due to collision term is justified in the description of Eq.(4.37). In this case, the

effect of correlations enters through the initial fluctuation term. Furthermore, we

assume that the collective motion is sufficiently slow so that the intrinsic degrees

of freedom is close to local equilibrium for each value of the collective variable. In

order to evaluate the matrix elements of the fluctuating part of the density opera-

tor based on Eq.(4.37), we approximate the average density matrix in terms of the

instantaneous single-particle wave functions as ¯̂ρ(t) ≈ ∑ |φl(t)〉nl〈φl(t)|, where we

neglect the off diagonal elements. In this expression, the instantaneous wave func-

tions φl(t) = φl[q(t)] are determined from (ĥ + qF̂ )|φl(q)〉 = εl(q)|φl(q)〉 for each

value of the collective variable q, and ni = 1/ [exp [(εi − εF )/T ] + 1] denotes the

Fermi-Dirac occupation factor at a temperature T . Employing the instantaneous

representation, the matrix elements of fluctuations can be expressed as,

δρij(t) = − i

h̄

∫ t

s
dt′δq(t′)Gij(t, t

′)〈i|F̂ |j〉(nj − ni) + Gij(t, s)δρij(s) (4.38)
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with Gij(t, s) = exp[−i(t− s)(εi− εj)/h̄]. It is not possible to determine detailed

structure of initial fluctuations of the intrinsic degrees of freedom. Therefore, it is

plausible to assume that each matrix element of δρ̂(s) is a Gaussian random quan-

tity with zero mean 〈i|δρ̂|j〉 = 0. In accordance with the fluctuation-dissipation

relation of the single-particle density matrix, we specify the second moment of

δρ̂(s) as,

〈i|δρ̂|j〉〈j′|δρ̂|i′〉 = δii′δjj′
1

2
[ni(1− nj) + nj(1− ni)] . (4.39)

In the special case of diagonal elements this formula gives the known result for

fluctuations of occupation numbers, 〈i|δρ̂|i〉〈i|δρ̂|i〉 = ni(1−ni) [51]. Substituting

Eq.(4.37) into the right hand side of Eq.(4.34), we find a generalized Langevin

equation for the fluctuations of the collective variable,

d

dt
δp(t)±MΩ2δq(t) =

∫ t

s
dt′γ(t− t′)δq(t′) + ξ(t) (4.40)

where the memory kernel in the retarded force and the random force term are

given by

γ(t− t′) =
i

h̄

∑ |〈i|F̂ |j〉|2Gji(t, t
′) [ni(1− nj)− nj(1− ni)] (4.41)

and

ξ(t) = −∑〈i|F̂ |j〉Gji(t, s)〈j|δρ̂|i〉. (4.42)

Using Eq.(4.39), the auto-correlation function of the random force can be
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expressed as,

ξ(t)ξ(t′) =
∑ |〈i|F̂ |j〉|2Gij(t, t

′)
1

2
[ni(1− nj) + nj(1− ni)]

=
∑ |〈i|F̂ |j〉|2

h̄ωji

Gij(t, t
′)

h̄ωji

2
coth

(
h̄ωji

2T

)

× [ni(1− nj)− nj(1− ni)] , (4.43)

where h̄ωji = εj−εi and the equation nj(1−ni) = exp(h̄ωij/T )ni(1−nj) has been

used. Dissipation and fluctuation aspects of dynamics are closely connected to

each other, the similarity of expressions for the correlation function and the mem-

ory kernel reflects this fact. If the decay time of the memory kernel is sufficiently

short, we can explicitly incorporate the memory effect into the retarded force in

Eq.(4.40). For evolution over a short time interval from t′ to t, by neglecting the

right hand side of Eq.(4.40), we find the following relation,

δq(t′) ≈ C(t− t′)δq(t)− S(t− t′)δp(t) . (4.44)

For a parabolic potential well, propagators C(t− t′) and S(t− t′) are given by,

C(t− t′) = cos Ω(t− t′) and S(t− t′) =
1

MΩ
sin Ω(t− t′) . (4.45)

On the other hand, for a parabolic potential barrier, these propagators are given

by,

C(t− t′) = cosh Ω(t− t′) and S(t− t′) =
1

MΩ
sinh Ω(t− t′) . (4.46)

The first term in Eq.(4.44) involving δq(t) introduces a shift in the curvature

parameter of the potential. Here, we neglect this effect and substitute the second
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term on the right hand side of Eq.(4.44) into the right hand side of Eq.(4.40).

Note that, since the fluctuations are linear, the same equation as Eq.(4.40), but

without the last term on the right hand side, holds for the average evolution by

replacing δp(t) and δq(t) with p̄(t) and q̄(t), respectively. Therefore, combining

the average evolution with the fluctuations, we obtain a generalized Langevin

equation for the actual variables, p(t) = p̄(t) + δp(t) and q(t) = q̄(t) + δq(t),

d

dt
p(t)±MΩ2q(t) = −βp(t) + ξ(t) . (4.47)

Here, the reduced friction coefficient is given by,

β =
i

h̄

∫ t−s

0
dτ

∑ |〈i|F̂ |j〉|2e− i
h̄

τ(εj−εi)ni(1− nj)S(τ) + c.c. . (4.48)

Substituting Eqs.(4.45) and (4.46) for S(τ), we find for the friction coefficient for

a parabolic well,

β = − 1

2iMΩ

∑ |〈i|F̂ |j〉|2

e−

i
h̄
(t−s)(εj−εi−h̄Ω−iη) − 1

εj − εi − h̄Ω− iη

− e−
i
h̄
(t−s)(εj−εi+h̄Ω−iη) − 1

εj − εi + h̄Ω− iη


 ni(1− nj)

+ c.c. (4.49)

and for a parabolic barrier,

β = +
1

2MΩ

∑ |〈i|F̂ |j〉|2

e−

i
h̄
(t−s)(εj−εi−ih̄Ω−iη) − 1

εj − εi − ih̄Ω− iη

−e−
i
h̄
(t−s)(εj−εi+ih̄Ω−iη) − 1

εj − εi + ih̄Ω− iη


 ni(1− nj)

+ c.c. . (4.50)

49



In obtaining these results, we include the damping width η of the single-particle

states into the propagator in Eq.(4.48) [52]. In further evaluation of the friction

coefficients, we neglect the time-dependent terms in Eq.(4.49) and Eq.(4.50). The

reason is the following: the dominant contributions to the friction coefficient arise

from the coupling matrix element over an energy interval of the order of major

shell spacing, εj − εi = ∆ ≈ 10 MeV, which is much larger than typical values

of collective frequency we consider here, h̄Ω ≈ 1.0 MeV. If the single-particle

spectrum is sufficiently dense, the summations over the single particle states can

be converted to energy integrals. As a result, exponential factors in Eq.(4.49) and

Eq.(4.50) damp out over a time interval of the order of τ0 = h̄/∆. Furthermore,

in particular for low frequency collective motion, h̄Ω ≤ η, these exponential

factors damp out even over a shorter time scale as a result of damping of the

single-particle states. Therefore, for a sufficiently long time interval, t− s À τ0,

neglecting time dependent terms, we have for a parabolic well,

β =
∑ |〈i|F̂ |j〉|2 1

MΩ

[
η

(εj − εi − h̄Ω)2 + η2

− η

(εj − εi + h̄Ω)2 + η2

]
ni(1− nj) (4.51)

and for a parabolic barrier,

β =
∑ |〈i|F̂ |j〉|2 1

MΩ

[
εj − εi

(εj − εi)2 + (h̄Ω− η)2

− εj − εi

(εj − εi)2 + (h̄Ω + η)2

]
ni(1− nj) . (4.52)
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As seen from these results, for finite Ω, the friction coefficient has different ex-

pressions around a well and a barrier. However, in the limit Ω → 0, it can be

easily seen that these expressions become identical, known as the one-body fric-

tion formula. We call this limiting value as the classical friction coefficient and

denote as β0. We introduce the Fourier transform of the correlation function of

the random force [17],

ξ(t)ξ(t′) =
∫ +∞

−∞
dω

2π
e−iω(t−t′) h̄ω

2T
coth

h̄ω

2T
· 2D(ω) (4.53)

where,

D(ω) = T
∑ |〈i|F̂ |j〉|2 1

ω

[
η

(εj − εi − h̄ω)2 + η2

− η

(εj − εi + h̄ω)2 + η2

]
ni(1− nj) . (4.54)

At low frequencies, D(ω) is just D(ω → 0) = D0 = MTβ0 the classical diffusion

coefficient. On the other hand, the high frequency behavior is restricted by the

magnitude of the coupling matrix elements. If the single particle spectrum is

sufficiently dense, the magnitude of coupling matrix elements must decrease as a

function of energy difference, mainly due to the mismatch of the overlap of the

wave functions. We can represent this behavior by a Gaussian or a Lorentzian

function 〈i|F̂ |j〉2 ∝ exp[−(εj − εi)
2/2∆2] or ∝ 1/ [1 + (εj − εi)

2/2∆2]. Further-

more, because of the Lorentzian factors in Eq.(4.54), we can replace the energy

difference εj − εi with the frequency h̄ω and approximately describe frequency

dependence of diffusion coefficient as D(ω) = D0 exp [−(h̄ω)2/2∆2], here we take

51



the Gaussian for the frequency spectrum. As a result, the correlation function

Eq.(4.53) of the random force can be expressed as,

ξ(t)ξ(t′) = 2D0 · χ(t− t′) (4.55)

where

χ(t− t′) =
∫ +∞

−∞
dω

2π
e−iω(t−t′) h̄ω

2T
coth

h̄ω

2T
· exp

[
−(h̄ω)2/2∆2

]
. (4.56)

The correlation function is characterized by two different parameters, the cut-

off energy and temperature. Figure 4.1 shows the correlation function versus

time at different temperatures T = 0.5 MeV, 1.0 MeV and 5.0 MeV. The results

presented in this work are not very sensitive to the cut-off energy over a range of

values ∆ = 10−20 MeV. Therefore, in this figure and all other figures, we employ

∆ = 15 MeV for the cut-off energy. At relatively high temperature h̄ω ¿ 2T ,

(h̄ω/2T ) coth(h̄ω/2T ) ≈ 1, and the correlation function reduces to its classical

form,

χ0(t− t′) =
∫ +∞

−∞
dω

2π
e−iω(t−t′) exp

[
−(h̄ω)2

2∆2

]

=
1√
2πτ0

exp
[
−(t− t′)2/2τ 2

0

]
. (4.57)

For sufficiently short decay time τ0, it can be approximated by a delta function,

χ0(t−t′) → δ(t−t′), and as a result at high temperatures, the temporal evolution

becomes Markovian and the random force ξ(t) acts like a white noise. However, as

seen from the Figure 4.1, in the quantal regime i.e. at low temperatures h̄Ω ≥ 2T ,

we are faced with a stochastic evolution with a correlated noise [19, 53].
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Figure 4.1: The correlation function is plotted versus time for ∆ = 15 MeV.

4.3.1 Analysis of the Langevin Equation

In order to obtain the joint probability distribution function P (q, p, t) of the

collective variable and its conjugate momentum (q, p) by numerical simulation of

the Langevin equation, in general, we need to generate a sufficiently large ensem-

ble of trajectories. Since, we have a correlated noise problem, we cannot use the

standard methods [43, 46, 54] and we need to adopt suitable algorithms for nu-

merical simulations. However, in the situation that we consider here, the solution

of the Langevin equation (4.47) can be given analytically [10]. Since the equation

is linear with a Gaussian random source, the probability distribution P (q, p, t) of

collective variables is also Gaussian, which is determined by the mean values q(t),
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p(t) and the variances σqq(t) = δq(t)δq(t), σqp(t) = δq(t)δp(t), σpp(t) = δp(t)δp(t)

of collective variables according to,

P (q, p, t) =
1

2πX
exp

{
− 1

2X2

[
(q − q)2σ̃qq + 2(q − q)(p− p)σ̃qp

+(p− p)2σ̃pp

]}
(4.58)

where X2 = σqqσpp − σ2
qp and σ̃ij is the inverse of the 2 × 2 matrix (σij) with

elements σ11 = σqq, σ12 = σqp, σ21 = σpq and σ22 = σpp. The mean values of

collective variables q(t), p(t) are determined by the classical equations of motion,

d

dt
q(t) =

1

M
p(t) and

d

dt
p(t)±MΩ2q(t) = −βp(t) . (4.59)

Equations for variances are deduced from the Langevin equations for the fluctu-

ating quantities δq(t) = q(t)− q(t) and δp(t) = p(t)− p(t),

d

dt
δq(t) =

1

M
δp(t) and

d

dt
δp(t)±MΩ2δq(t) = −βδp(t) + ξ(t) . (4.60)

Multiplying both sides of these equations by δq(t), δp(t) and performing ensemble

averaging, we find

d

dt
σqq(t) =

2

M
σqp(t) (4.61)

d

dt
σqp(t)±MΩ2σqq(t) =

1

M
σpp(t)− βσqp(t) + Dqp(t) (4.62)

d

dt
σpp(t)± 2MΩ2σqp(t) = −2βσpp(t) + 2Dpp(t) (4.63)
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where Dpp(t) = δp(t)ξ(t) and Dqp(t) = δq(t)ξ(t) denotes the momentum and

mixed diffusion coefficients, respectively. In order to evaluate diffusion coeffi-

cients, we need to calculate the dynamical fluctuations of collective variables in

terms of the random force. This is carried out in Appendix A. Using the results

for δp(t) =
∫ t
0 dt′Q(t − t′)ξ(t′) and from Eq.(A.7) and Eq.(A.8), diffusion coeffi-

cients can be expressed in terms of the correlation function of the random force

as,

Dpp(t) =
∫ t

0
dt′Q(t− t′) · ξ(t′)ξ(t) = 2D0

∫ t

0
ds Q(s) · χ(s) (4.64)

and

Dqp(t) =
∫ t

0
dt′S(t− t′) · ξ(t′)ξ(t) = 2D0

∫ t

0
ds S(s) · χ(s) . (4.65)

In these expressions, the initial time is taken to be zero for convenience, t0 = 0,

and the propagators Q(s) and S(s) associated with collective variables are given

by Eq.(A.9) and Eq.(A.10) in Appendix A. At sufficiently high temperatures,

correlation function χ(s) can be approximated by a delta function, and conse-

quently, the momentum diffusion coefficient is time independent and takes its

classical value, Dpp = D0 and furthermore the mixed diffusion coefficient van-

ishes, Dqp = 0. The mixed diffusion coefficient is a genuine non-Markovian term,

and it is absent in the Markovian limit. At low temperatures, due to the non-

Markovian behavior of the correlation function, diffusion coefficients become time
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dependent and their magnitude are strongly modified by the quantum statisti-

cal fluctuations. We, also, note that the modified frequency Ω =
√

Ω2 + (β/2)2

enters in propagators Q(s) and S(s).
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Figure 4.2: The momentum diffusion coefficient, in units of classical diffusion
coefficient, is plotted versus time for ∆ = 15 MeV.

The typical values of the frequency parameter h̄Ω ≈ 1.0 MeV of the conditional

saddle and the magnitude of the reduced friction coefficient h̄β/2 ≈ 1.7 MeV are

comparable. As a result, the friction coefficient introduces a sizable modification

of diffusion coefficients, which was not incorporated in the previous investigation

[7]. Figures 4.2 and 4.3 show the diffusion coefficients in units of D0, i.e., Dpp/D0

and Dqp/D0, as a function of time for different values of temperature, T = 0.5

MeV, T = 1.0 MeV and T = 5.0 MeV. In order to illustrate the effect of friction
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Figure 4.3: The mixed diffusion coefficient, in units of classical diffusion coeffi-
cient, is plotted versus time for ∆ = 15 MeV.

on diffusion coefficients, we calculate diffusion coefficients by replacing Ω with

Ω in the propagators Q(s) and S(s). Figures 4.4 and 4.5 compare two different

values of diffusion coefficients Dpp/D0 and Dqp/D0 calculated with Ω and Ω as

a function of time at temperature T = 1.0 MeV. The variances σqq, σqp and σpp

can be determined by solving the coupled differential equations (4.61), (4.62) and

(4.63). However, it is much easier to obtain these variances directly from the

Langevin equation (4.47) with the help of one-sided Fourier transform [51], as

shown in Appendix A.
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Figure 4.4: The momentum diffusion coefficient, in units of classical diffusion
coefficient, is plotted versus time for ∆ = 15 MeV and T=1.0 MeV. The cases
with and without friction are compared.

4.3.2 Quantum Effects on Diffusion Along Conditional Saddle Towards Fusion

In this section, we apply the generalized Langevin approach to investigate the

influence of quantum-statistical fluctuations on diffusion along the fusion barrier,

i.e. the formation probability Pf (t) of compound nucleus. When the conditional

saddle, i.e. the inner fusion barrier, is approximately represented by an inverted

parabola, the formation probability, i.e. the probability to cross the saddle point,

can be calculated analytically in terms of distribution function of the elongation

parameter q as [42, 44, 55],
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Figure 4.5: The mixed diffusion coefficient, in units of classical diffusion coeffi-
cient, is plotted versus time for ∆ = 15 MeV and T=1.0 MeV. The cases with
and without friction are compared.

Pf (t) =
∫ ∞

0
dq

1√
2πσqq(t)

exp

[
−(q − q(t))2

2σqq(t)

]
=

1

2
erfc


− q(t)√

2σqq(t)


 . (4.66)

Here, q(t) and σqq(t) are the mean value and the variance of the elongation pa-

rameter, which are given by Eq.(A.12) and Eq.(A.13) in Appendix A. In these

expressions, (q0, p0) are the mean values of elongation parameter and its conjugate

momentum, and (σq0, σp0) are the associated variances at the initial configura-

tion. As it is stated already, during the approach phase of the collision, system

overcome the Coulomb barrier and some of the initial kinetic energy is dissipated

into internal excitations and a sticking configuration is formed. The quantities
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Figure 4.6: The formation probability is plotted versus initial kinetic energy
minus barrier height. The result of classical diffusion approach is compared with
that of quantum diffusion approach for ∆ = 15 MeV.

(q0, p0) denote the average values of the elongation parameter and its momen-

tum at the sticking configuration. In the second stage of the process, the shape

of the system evolves from a sticking di-nuclear configuration towards formation

of a spherical compound nucleus or re-separate again. The asymptotic value

Pf (t →∞) gives the transmission probability from a di-nuclear configuration to

compound nucleus. In order to compare the results with our previous calculations

[7], we consider collision of 48Ca and 238U nuclei and adopt the same value for

the reduced friction coefficient and the curvature parameter of the conditional

saddle to be β = 5 × 1021s−1 and h̄Ω = 1.0 MeV. We choose the initial position
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q0 to make the height of the conditional saddle to be 4.0 MeV and neglect the

dispersion, i.e. (σq0, σp0), in the initial configuration. In the classical limit, the

variance σqq(t) of the elongation parameter has an analytical expression given by

Eq.(A.16), while in the quantum limit it is given by Eq.(A.20), and involves a

one dimensional numerical integration over the frequency ω. Figure 4.6 shows

the formation probability Pf (t → ∞) of compound nucleus as a function of the

initial kinetic energy K0 = p2
0/2M relative to the fusion barrier VB at tempera-

tures T = 0.5 MeV, T = 1.0 MeV and T = 5.0 MeV. These results, which are

not very sensitive to the cut-off factor ∆, are presented for ∆ = 15 MeV. Solid

lines and dashed lines show the quantum and the classical calculations, respec-

tively. At low temperatures, the quantum statistical fluctuations give rise to an

enhancement of the formation probability, which is relevant to synthesis of su-

perheavy elements by heavy-ion fusion reactions. The quantum enhancement is

slightly less pronounced than that in the previous calculations [7]. The difference

arises from the fact that in previous calculations the mixed diffusion coefficient

Dqp, which is a genuine non-Markovian term, is neglected and the momentum

diffusion coefficient Dpp is calculated with the unperturbed frequency Ω, rather

than Ω.
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CHAPTER 5

NUMERICAL INTEGRATION METHODS FOR STOCHASTIC

DIFFERENTIAL EQUATIONS

In many physical applications one collective variable is not enough to treat

the dynamics appropriately and the solution of the corresponding multi-variable

Langevin or Fokker-Planck equation is required. Furthermore, the effective multi-

variable potentials are nonlinear for many practical applications. Since the ana-

lytical solutions are possible for very special cases, one is urged to use numerical

integration methods where the Langevin formulation is more advantageous than

the Fokker-Planck formulation for a couple of reasons. The Fokker-Planck equa-

tion is a deterministic second order partial differential equation which is extremely

difficult to solve even numerically for systems with a few collective degrees of free-

dom. On the other hand Langevin equation can be written as a set of coupled

first order ordinary differential equations, a property which is very suitable for

numerical analysis of multi-variable systems but the price to pay is that we must

find a way of simulating the stochastic term. The numerical solution in Langevin
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approach is obtained by simulating the stochastic force, performing the numeri-

cal integration many times with different realizations of the simulated force and

finally averaging over these solutions. The simulation and integration are per-

formed simultaneously in some of the integration methods, whereas a preparation

of an array of simulated terms before the integration is required in some other

methods.

In the following sections some major numerical simulation techniques of the

stochastic differential equations will be reviewed and our contribution to the

subject will be introduced in the last section.

5.1 Iteration Method

The Langevin approach has been applied to nuclear fission process of heavy

nuclei for the first time by Abe and coworkers [46]. They have introduced an iter-

ation method (Euler method) to solve Langevin-type equations and then applied

it to find the fission decay width of highly excited 205At nuclei. In the derivation

below, we closely follow their article [46].

Integrating the Langevin equations (2.4) and (2.5) from t to t + ∆t, we get

p(t + ∆t) = p(t) +
∫ t+∆t

t
F (q(t′))dt′ − β

∫ t+∆t

t
p(t′)dt′ + R̃1(t), (5.1)

q(t + ∆t) = q(t) +
1

m

∫ t+∆t

t
p(t′)dt′, (5.2)

with a first order solution

p(t + ∆t) = (1−∆tβ)p(t) + ∆tF (q(t)) + R̃1(t), (5.3)
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q(t + ∆t) = q(t) + ∆t
1

m
p(t), (5.4)

where

R̃1(t) =
∫ t+∆t

t
R(t′)dt′. (5.5)

For given initial values q(0) and p(0), the time evolution of the phase space

variables q and p up to the time t can be calculated by dividing the time into

small steps ∆t = t/N . Then, all the dynamical quantities acquire discrete values

such as p(tn), q(tn) and R̃1(tn) where

tn = n∆t, (5.6)

with n being an integer. R̃1(tn) is a Gaussian stochastic number since it is an

integral of the Gaussian noise R(t) over a short time interval ∆t. The statistical

properties of the stochastic numbers R̃1(tn) can be deduced as

〈R̃1(tn)〉 = 0, (5.7)

and

〈R̃1(tn)R̃1(tn′)〉 = 2mβkBT∆tδnn′ , (5.8)

by using the properties of R(t) given by Eq.(2.7) and Eq.(2.10). The random

numbers R̃1(tn) can be simulated by using mean zero normalized Gaussian ran-

dom numbers ω1(tn) satisfying

〈ω1(tn)〉 = 0, (5.9)

〈ω1(tn)ω1(tn′)〉 = δnn′ , (5.10)
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so that from Eq.(5.3) and Eq.(5.4) the first order solution of the Langevin equa-

tion reads

p(tn+1) = (1−∆tβ)p(tn) + ∆tF (q(tn)) +
√

2mβkBT∆t ω1(tn), (5.11)

q(tn+1) = q(tn) + ∆t
1

m
p(tn). (5.12)

Beginning from the initial conditions at t0, the values of the phase space variables

are calculated step by step by substituting the previous ones in Eq.(5.11) and

Eq.(5.12) to obtain the next ones. This time iteration is repeated until the desired

time evolution t = N∆t is obtained. At each step a random number ω1(tn) with

the suitable statistical properties is generated. This process produces one sample.

Then, an ensemble of solutions is formed by repeating the sampling process many

times over various realizations of the stochastic numbers ω1(tn). Averaging over

these solutions, we obtain the moments of the phase space variables p and q such

as the mean values 〈p(tN)〉 and 〈p(tN)〉 as well as the variances σpp(t), σqq(t) and

σqp(t).

The accuracy of the method can be enhanced by choosing a smaller time step

∆t with the drawback that the integration process becomes more time consuming

since the number of iterations is increased in order to reach the same final time

of the system. Another way of increasing the accuracy is to use higher order

approximations instead of the first order one that we explained. The proper value

of the time step can be found by solving the Langevin equation with different

65



values of the time step and checking the convergence of the results. Then the

largest value of the time step for which the desired convergence is achieved can

be chosen.

Most of the high level programming languages have internal uniform random

number generators. The pseudo random Gaussian numbers ω1(tn) are generated

by using the Box-Muller algorithm which transforms a set of uniformly distributed

random numbers into a set of normal (Gaussian) distributed random numbers

[56].

5.2 Stochastic Runge-Kutta Method

An extension of the Runge-Kutta method to include the stochastic differen-

tial equations has been accomplished by Honeycutt [54]. She has developed the

method for the white and Gaussian exponentially correlated noise. We closely

follow her article in subsequent part.

For simplicity, only one-dimensional stochastic differential equation in the

form,

ẋ = f(x) + R(t), (5.13)

where the mean zero white noise R(t) has the correlation Eq.(5.8), is considered.

Using the iteration method explained in the previous section the second order
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solution of Eq.(5.13) is obtained as

x(t + ∆t) = x(t) +
∫ t+∆t

t
R(t′)dt′ +

∫ t+∆t

t
f(x′)dt′

= x(t) +
∫ t+∆t

t
R(t′)dt′ +

∞∑

k=0

1

k!

dkf(x)

dxk

∫ t+∆t

t
(x′ − x)kdt′

= x(t) +
∫ t+∆t

t
R(t′)dt′ + ∆tf(x)

+
∞∑

k=1

1

k!

dkf(x)

dxk

∫ t+∆t

t

[∫ t′

t
R(t′′)dt′′ + (t′ − t)f(x)

+
∞∑

j=1

1

j!

djf(x)

dxj

∫ t′

t
(x′′ − x)jdt′′




k

dt′

= x(t) + ∆tf(x) +
1

2
∆t2f(x)

df(x)

dx
+ ξ(t) + O(∆t3), (5.14)

where the Taylor expansion of f(x′) about x = x(t) is used, the the result for

x′ − x with x′ = x(t′) is substituted into itself and only the terms up to the

order ∆t2 are kept. The stochastic portion of the equation is denoted by ξ(t) and

explicitly given by

ξ(t) =
∫ t+∆t

t
R(t′)dt′ +

df(x)

dx

∫ t+∆t

t
dt′

∫ t′

t
dt′′R(t′′)

+
1

2

d2f(x)

dx2

∫ t+∆t

t

[∫ t′

t
R(t′′)dt′′

]2

dt′. (5.15)

The statistical properties of ξ(t) read

〈ξ(t)〉 =
1

2
D∆t2

d2f(x)

dx2
, (5.16)

〈ξ2(t)〉 = 2D∆t + 2D∆t2
df(x)

dx
. (5.17)

The solution of deterministic differential equations of the form

ẋ = f(x), (5.18)
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can be found by using the standard Runge-Kutta method. The second order

approximation is given by

x(t + ∆t) = x(t) +
1

2
∆t (F1 + F2) , (5.19)

where

F1 = f(x),

F2 = f(x + ∆tF1). (5.20)

The stochastic noise included in any extension of Runge-Kutta method must

satisfy the properties Eq.(5.16) and Eq.(5.17). The proper extension is given by

x(t + ∆t) = x(t) +
1

2
∆t (F1 + F2) +

√
2D∆t φ1, (5.21)

where

F1 = f(x(t) +
√

2D∆t φ2)

F2 = f(x(t) + ∆tF1 +
√

2D∆t φ3). (5.22)

φ1, φ2 and φ3 are mean zero Gaussian random numbers and their correlation

properties are going to be derived later. Substituting the expansions of F1 and

F2 about x(t) into Eq.(5.21) one obtains

x(t + ∆t) = x(t) + ∆tf(x) +
1

2
∆t2f(x)

df(x)

dx
+ ξ′(t) + O(∆t3), (5.23)

where

ξ′(t) =
√

2D∆t φ1 +
1

2
∆t
√

2D∆t
df(x)

dx
(φ2 + φ3)

+
1

2
D∆t2

d2f(x)

dx2

(
φ2

2 + φ2
3

)
. (5.24)
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The statistical properties of the last equation are

〈ξ′(t)〉 =
1

2
D∆t2

d2f(x)

dx2

(
〈φ2

2〉+ 〈φ2
3〉

)
, (5.25)

〈ξ′2(t)〉 = 2D∆t〈φ2
1〉+ 2D∆t2

df(x)

dx
〈φ1(φ2 + φ3)〉. (5.26)

Comparing the properties of the stochastic term ξ(t) derived from the iteration

method Eq.(5.16) and Eq.(5.17) with that of ξ′(t) derived from the Stochastic

Runge-Kutta Eq.(5.25) and Eq.(5.26), we get three independent coupled equa-

tions,

〈φ2
1〉 = 1,

〈φ1(φ2 + φ3)〉 = 1,

〈φ2
2〉+ 〈φ2

3〉 = 1, (5.27)

for the three stochastic variables which suggests that one variable ψ is enough

to solve Eq.(5.27). For simplicity, the choice 〈ψ〉 = 0 and 〈ψ2〉 = 1 can be used.

Then let φi = aiψ and substitute this into previous equation gives

a2
1 = 1,

a1(a2 + a3) = 1,

a2
2 + a2

3 = 1. (5.28)

Choosing a2 = 0 we get the final result:

x(t + ∆t) = x(t) +
1

2
∆t (F1 + F2) +

√
2D∆t ψ, (5.29)
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where

F1 = f(x(t)),

F2 = f(x(t) + ∆tF1 +
√

2D∆t ψ). (5.30)

The stochastic Runge-Kutta method can be applied to exponentially corre-

lated noises as well. Refer to [54] for details.

5.3 Spectral Method

A very powerful method for simulating stochastic terms has been developed as

an application of the fast Fourier transformation [57, 58, 59]. Any noise having

a correlation function whose Fourier transform exist, can be simulated by this

method.

Consider the Fourier transform of the mean zero Gaussian random noise given

by

R̂(ω) =
∫ ∞

−∞
e−iωtR(t)dt. (5.31)

The correlation of the mean zero noise R̂(ω) reads

〈R̂(ω)R̂(ω′)〉 =
∫ ∞

−∞

∫ ∞

−∞
e−iωt−iω′t′〈R(t)R(t′)〉dtdt′. (5.32)

This integral can be solved by change of variables for stationary noises satisfying

〈R(t)R(t′)〉 = 〈R(t− t′)R(0)〉 to give

〈R̂(ω)R̂(ω′)〉 = 2πδ(ω + ω′)Ĉ(ω), (5.33)
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where Ĉ(ω) =
∫∞
−∞ e−iωtC(t)dt and C(t) = 〈R(t)R(0)〉 is the correlation function

of the random force R(t). The Eq.(5.33) is known as Wiener-Khintchine theorem

which states that the correlation of the random noises in the frequency space is

proportional to the Fourier transform of the correlation function. This important

result is the starting point of the spectral method. By discretizing the time in

N = 2n intervals of size ∆t, the discrete Wiener-Khintchine theorem becomes

〈R̂(ωµ)R̂(ων)〉 = N∆tĈ(ωµ)δµ+ν,0. (5.34)

Then the noise in the frequency space can be constructed as

R̂(ωµ) =
√

N∆tĈ(ωµ)α(ωµ), (5.35)

where R̂(ω0) = R̂(ωN), ωµ = 2πµ/N∆t, and µ = 0, 1, 2, ..., N . α(ωµ) = αµ are

complex mean-zero Gaussian random numbers with the correlation

〈αµαν〉 = δµ+ν,0, (5.36)

and they satisfy αµ = α∗−µ. Let us write α in terms of its real and imaginary parts

as αµ = aµ + ibµ. Since α0 is real, 〈a2
0〉 = 1 and b0 = 0 and all other mean-zero

random numbers have the correlation

〈a2
µ〉 = 〈b2

µ〉 =
1

2
. (5.37)

The random noises R̂(ωµ) are put into an array and then inverse fast Fourier

transform is used to obtain the noises R(tµ) in time domain which satisfy the
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desired correlation relation. The iteration method is used to integrate the deter-

ministic part of the Langevin equation and for each step the random numbers

generated by the spectral method are used. The implementation of the spec-

tral method into the stochastic Runge-Kutta method has also been achieved [60].

The spectral method is different than the previous ones since it is used only to

simulate the random noise.

Note that in this method a construction of the random noises is needed before

they are used in the algorithm. The preparation of the random numbers is more

time consuming than the previous methods since the Fourier transformation of

the whole noise array is required next to the random number generation in the

frequency space.

5.4 Integration Method

A very fast and accurate algorithm for the exponentially correlated colored

noise has been developed by Fox and coworkers [61].

Consider the same stochastic differential equation Eq.(5.13) but with a colored

noise satisfying the properties

〈R(t)〉 = 0,

〈R(t)R(t′)〉 = Dλe−λ|t−t′|, (5.38)

where D is the diffusion coefficient or more generally noise strength and λ = τ−1
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is the inverse of the correlation time. The stochastic differential equation (5.13)

with the exponential colored noise Eq.(5.38) can be transformed to a pair of

equations

dx

dt
= f(x) + ε(t), (5.39)

dε

dt
= −λε + λg(t), (5.40)

where the noise is white (delta correlated),

〈g(t)〉 = 0,

〈g(t)g(t′)〉 = 2Dδ(t− t′). (5.41)

Formally integrating Eq.(5.40) we get

ε(t) = ε(0)e−λt + λ
∫ t

0
e−λ(t−t′)g(t′)dt′. (5.42)

with the mean values

〈ε(t)〉 = ε(0)e−λt,

〈ε(t)ε(t′)〉 = Dλe−λ|t−t′| +
[
ε2(0)−Dλ

]
e−λ(t+t′). (5.43)

Introducing a secondary averaging over the distribution of initial values ε(0),

W (ε(0)) =
1√

2πDλ
exp

[
−ε2(0)

2Dλ

]
, (5.44)

we obtain the desired statistical properties which are

{〈ε(t)〉} = 0,

{〈ε(t)ε(t′)〉} = Dλe−λ|t−t′|. (5.45)
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The curly brackets indicate the secondary average.

The integral method is derived as follows. Rewrite Eq.(5.42) by replacing t

with t + ∆t to obtain

ε(t + ∆t) = ε(0)e−λ(t+∆t) + λ
∫ t+∆t

0
e−λ(t+∆t−t′)g(t′)dt′. (5.46)

Comparing this equation with Eq.(5.42) we can write

ε(t + ∆t) = ε(t)e−λ∆t + h(t). (5.47)

where

h(t) = λ
∫ t+∆t

t
e−λ(t+∆t−t′)g(t′)dt′, (5.48)

is a mean zero Gaussian noise with the variance given by

〈h2(t)〉 = Dλ
(
1− e−2λ∆t

)
. (5.49)

Note that the Eq.(5.47) is exact in a sense that it includes all orders of ∆t. Hence,

this method is superior over the others with the drawback that it can be applied

only to exponentially correlated noises.

The deterministic part of the Langevin-like equation (5.39) is integrated by

using iteration method, for instance to the second order approximation, hence

the final result reads

x(t + ∆t) = x(t) + ∆tf(x) +
1

2
∆t2f(x)

df(x)

dx
+ ε(t), (5.50)

ε(t + ∆t) = ε(t)e−λ∆t + h(t). (5.51)
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Another advantage of this method is that for each iteration in time only two

Gaussian random numbers, one for the initial value ε and another for h are

needed regardless of the approximation order of the deterministic part. In the

previous methods (Itertion and Stochastic Runge-Kutta methods), as the order of

the approximation is increased, the needed number of generated random numbers

per iteration in time is increased which in turn means that the computation time

is increased as well.

5.5 Integration Method for two-term exponentially correlated colored noise

5.5.1 Motivation

As discussed in Chapter 4, the quantum effects on the collective modes of

heavy-ion fusion reactions manifest themselves in the Gaussian c-number noise

R(t) with a correlation function given by [8, 19, 53],

〈R(t)R(t′)〉 = MkBT
∫ +∞

−∞
dω

π
e−iω(t−t′) h̄ω

2kBT
coth

(
h̄ω

2kBT

)
Γ(ω), (5.52)

where Γ(ω) = J(ω)/Mω and J(ω) represents the spectral density of the intrinsic

degrees of freedom. The most interesting feature of this correlation function (see

Figure 4.1) is that it has a negative long time tail which is something particular to

quantum systems. By choosing a Lorentzian profile Eq.(2.33) for the distribution

of intrinsic degrees of freedom Γ(ω), the ω integration in Eq.(5.52) can be carried
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out by using the residue theorem to give

〈R(t)R(t′)〉 = MkBT

{
h̄

2τkBT
cot

(
h̄

2τkBT

)
β

τ
e−

1
τ
|t−t′|

+
∞∑

n=1

2βωn

ω2
nτ

2 − 1
e−ωn|t−t′|

}
, (5.53)

where ωn = 2kBTπn/h̄ are the Matsubara frequencies. The correlation function is

now expressed as a superposition of exponential terms with positive and negative

coefficients.

In the previous section we have seen that the integration method is a very

powerful method for simulating exponentially correlated noises. Since the quan-

tum noise can be expressed as a sum of exponential terms, it is desirable to extend

the method to include a noise with multi-exponential correlation. This method

has already been proposed for superposition of exponential terms with positive

coefficients [57, 59]. In order to perform a simulation of the quantum noises of

the form given by Eq.(5.52) which has a negative part at the long time tail, we

have to include exponential terms with negative coefficients as well. We have

made a progress towards this direction by introducing a simulation technique for

a two-term exponential form of the correlation function with a negative coefficient

and we closely follow the derivation of [9] below.
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5.5.2 The Method

We consider again the stochastic equation (5.13),

ẋ = f(x) + R(t). (5.54)

where this time the mean-zero Gaussian random noise R(t) has a correlation

given by a linear combinations of two exponentials,

〈R(t)R(t′)〉 = D1λ1e
−λ1|t−t′| + D2λ2e

−λ2|t−t′|. (5.55)

Here, D1 and D2 are the respective noise strengths and λ−1
1 and λ−1

2 are the

correlation times of respective terms. As an extension of the integral method, it

is possible to develop an algorithm for numerical simulation of the exponentially

correlated colored noise by replacing Eq.(5.54) by a set of three equations [59],

ẋ = f(x) + R(t), (5.56)

Ṙ1(t) = −λ1R1(t) + λ1g1(t), (5.57)

Ṙ2(t) = −λ2R2(t) + λ2g2(t). (5.58)

where R(t) = R1(t) + R2(t). In these equations, the stochastic sources g1 and g2

are mean-zero Gaussian white noises with second moments given by,

〈g1(t)g1(t
′)〉 = 2D′

1δ(t− t′), (5.59)

〈g2(t)g2(t
′)〉 = 2D′

2δ(t− t′), (5.60)

〈g1(t)g2(t
′)〉 = 2D′

12δ(t− t′), (5.61)
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where D′
1, D′

2 and D′
12 are parameters to be determined by the correlation function

Eq.(5.55). When both coefficients D1 and D2 are positive, R1 and R2 behave as

independent random numbers and therefore the mixed diffusion coefficient can

be taken to be zero, D′
12 = 0. On the other hand, when one of the coefficients, D1

or D2, is negative, the mixed diffusion coefficient D′
12 must take a finite negative

value.

As shown in Appendix B, solutions of Eq.(5.57) and Eq.(5.58) lead to the

two-term exponentially correlated colored noise,

{〈R(t)〉} = 0 (5.62)

{〈R(t)R(t′)〉} =
(
D̃1 + D̃12

)
e−λ1|t−t′| +

(
D̃2 + D̃12

)
e−λ2|t−t′|, (5.63)

where in addition to the ensemble averaging < .. >, an average {..} over the

initial R(0) values must be carried out for the Gaussian distribution,

P (R(0)) =
1

2π
√

∆
exp

{
− 1

2∆

[
R2

1(0)D̃1 + 2R1(0)R2(0)D̃12 + R2
2(0)D̃2

]}
,(5.64)

where D̃1 = D′
1λ1, D̃2 = D′

2λ2, D̃12 = D′
12

2λ1λ2

λ1+λ2
and ∆ = D̃1D̃2 − D̃ 2

12.

Integrating Eq.(5.57) and Eq.(5.58) and using the results Eq.(B.1) and Eq.(B.2)

we find the solutions of R1 and R2 as

R1(t + ∆t) = e−λ1∆tR1(t) + h1(t, ∆t), (5.65)

R2(t + ∆t) = e−λ2∆tR2(t) + h2(t, ∆t), (5.66)
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where

h1(t, ∆t) = λ1

∫ t+∆t

t
e−λ1(t+∆t−s)g1(s)ds, (5.67)

h2(t, ∆t) = λ2

∫ t+∆t

t
e−λ2(t+∆t−s)g2(s)ds. (5.68)

The second moments of the mean zero h-functions are given by,

〈h2
1(t, ∆t)〉 = D̃1

(
1− e−2λ1∆t

)
, (5.69)

〈h2
2(t, ∆t)〉 = D̃2

(
1− e−2λ2∆t

)
, (5.70)

〈h1(t, ∆t)h2(t, ∆t)〉 = D̃12

(
1− e−(λ1+λ2)∆t

)
. (5.71)

Now that all the mean values of the noises are known, we can construct the

correlated noises. The initial R values satisfying the distribution Eq.(5.64) can

be simulated as

R1(0) = C11 ω1, (5.72)

R2(0) = C21 ω1 + C22 ω2, (5.73)

where ω1 and ω2 are Gaussian random numbers satisfying

〈ωi〉 = 0, (5.74)

〈ωiωj〉 = δij, i = 1, 2 j = 1, 2. (5.75)

Using the correlation properties of R1(0) and R2(0) given by Eqs.(B.11,B.12,B.13),

the coefficients C11, C21 and C22 are found as

C11 = D̃
1/2
1 , (5.76)
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C21 =
D̃12

D̃
1/2
1

, (5.77)

C22 =
(
D̃2 − C2

21

)1/2
. (5.78)

The time evolution of R values given by Eq.(5.65) and Eq.(5.66) and satisfying

Eqs.(5.69,5.70,5.71) can be simulated according to

R1(t + ∆t) = R1(t)e
−λ1∆t + F11 ω3, (5.79)

R2(t + ∆t) = R2(t)e
−λ2∆t + F21 ω3 + F22 ω4, (5.80)

In these expressions ω3 and ω4 are again uncorrelated Gaussian random numbers

with zero mean and unit variances, and the coefficients are given by,

F11 =
[
D̃1

(
1− e−2λ1∆t

)]1/2
, (5.81)

F21 =
D̃12[

D̃1 (1− e−2λ1∆t)
]1/2

(
1− e−(λ1+λ2)∆t

)
, (5.82)

F22 =
[
D̃2

(
1− e−2λ2∆t

)
− F 2

21

]1/2
. (5.83)

The Eqs.(5.76,5.78,5.83) impose certain conditions on the magnitude of diffusion

coefficients, which can be expressed as,

D̃1 > 0, (5.84)

D̃2 > 0, (5.85)

D̃2
12

D̃1D̃2

< 1, (5.86)

D̃2
12

D̃1D̃2

<
(1− e−2λ1∆t)(1− e−2λ2∆t)

(1− e−(λ1+λ2)∆t)
2 . (5.87)
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The first two conditions are also necessary for the validity of the autocorrelation

functions Eq.(5.59) and Eq.(5.60) at t = t′. Since the right hand side of Eq.(5.87)

is less than one, we can discard the third condition Eq.(5.86). The right hand side

of Eq.(5.87) is also rapidly decreasing function of the time step ∆t and approaches

its asymptotic value as

lim
∆t→0

(1− e−2λ1∆t)(1− e−2λ2∆t)

(1− e−(λ1+λ2)∆t)
2 =

4λ1λ2

(λ1 + λ2)
2 , (5.88)

which is a stronger condition. Finally, besides the conditions Eq.(5.84) and

Eq.(5.85), we have

D̃2
12

D̃1D̃2

≤ 4λ1λ2

(λ1 + λ2)
2 . (5.89)

With these conditions in mind, we turn our attention in expressing the diffusion

coefficients D̃1, D̃2 and D̃12 in terms of the given parameters D1, D2, λ1 and λ2.

Equating the Eq.(5.55) to Eq.(5.63), we have

D1λ1 = D̃1 + D̃12, (5.90)

D2λ2 = D̃2 + D̃12. (5.91)

Here, we have two equations but three unknown parameters D̃1, D̃2 and D̃12

which means that one of these parameters is free and can be fixed in several

ways. We choose to fix D̃12 by convention. Then using these two equations, the

condition Eq.(5.89) can be written as

f(D̃12) = −(λ1 − λ2)
2

4λ1λ2

D̃2
12 − (D1λ1 + D2λ2)D̃12 + D1λ1D2λ2 ≥ 0. (5.92)

81



If both the parameters D1 and D2 are positive, the inequality above will always

be valid for D̃12 = 0. Hence the algorithm reduces to the superposition method

[59]. If D1D2 < 0, we have a more interesting case, in which the correlation

function may have a negative portion, see Figure 5.1. Then the maximum of the

function f(D̃12) is given by

f(D̃
(max)
12 ) =

λ1λ2

(λ1 − λ2)
2 (D1λ1 + D2λ2)

2 + D1λ1D2λ2 ≥ 0, (5.93)

where

D̃
(max)
12 = − 2λ1λ2

(λ1 − λ2)
2 (D1λ1 + D2λ2) . (5.94)

Once the inequality Eq.(5.93) is satisfied, we have at least one solution for D̃12,

namely Eq.(5.94). The validity of correlation function Eq.(5.55) at t = t′ as well

as the condition Eq.(5.93) impose certain restrictions on the given parameters as

D1 + D2 > 0, (5.95)

D1λ1 + D2λ2 > 0, (5.96)

D1λ
2
1 + D2λ

2
2 ≥ 0. (5.97)

Even though the conditions above seem to be restrictions only due to the al-

gorithm, they are indeed also physical restrictions. For any multi-exponential

correlation function of the form

χ(|t− t′|) = 〈ε(t)ε(t′)〉 =
∑

i

Diλie
−λi|t−t′| (5.98)

there are three physical restrictions:
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1.
∑

i Diλi > 0. This is for the consistency of the correlation function at t = t′.

2.
∑

i Di > 0. In the classical (Markovian) limit, that is all λi → ∞, the

correlation function reduces to the form 2
∑

i Diδ(t − t′). And again for

consistency in the classical limit one needs this condition.

3.
∑

i Diλ
2
i ≥ 0. The time derivative of the correlation function at t = t′ must

be negative or zero indicating the initial decrease of the correlation function.

The equality case corresponds to Gaussian-like correlation functions where

the roots of Eq.(5.92) are equal and given by Eq.(5.94).

The correlated algorithm incorporates these physical restrictions naturally. The

three conditions above are also needed to guarantee a positive definite power

spectrum of the noise [19]. The four possible shapes of the correlation function

with two exponential terms satisfying the conditions D1D2 < 0 and Eq.(5.96)

are shown in Figure 5.1 for four arbitrary examples. Two of the examples are

unphysical due to violation of one of the conditions.

For a given correlation function in the form Eq.(5.55), which can be corre-

sponding to a specific physical system or can be a fit of a correlation function,

one must fix the value of D̃12 which in general can assume any value between

the roots of Eq.(5.92). The numerical computations show that among these val-

ues the choice of D̃12 is not very affective, hence it is appropriate to fix it as in
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χ(
τ)

τ

(unphysical) 10e-2τ -6e-4τ

7e-2τ -3e-4τ

7e-4τ -3e-2τ

(unphysical) 10e-4τ -6e-2τ

Figure 5.1: Four examples of the correlation function, Eq.(5.55) with D1D2 < 0
are indicated. Two of the examples are unphysical due to violation of one of the
conditions, Eqs.(5.95,5.96,5.97).

Eq.(5.94). Then, the simulation algorithm to the first order follows as,

x(t + ∆t) = x(t) + [f(x) + R1(t) + R2(t)] ∆t, (5.99)

where R1(t + ∆t) and R2(t + ∆t) are given by Eq.(5.79) and Eq.(5.80) with the

initial values determined by Eq.(5.72) and Eq.(5.73).

5.5.3 Test and Application of the Correlated Algorithm

In order to test the accuracy of the algorithm, we apply it to the free diffusing

particle in momentum space with the two-term exponentially correlated noise

where the analytical solution can be easily obtained. The corresponding simple
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stochastic differential equation is given by

ṗ = R(t), (5.100)

where R(t) is a mean-zero Gaussian random number with the correlation Eq.(5.55).

The average value of p does not change in time and remains equal to the initial

value, 〈p(t)〉 = p(0), and the variance can be easily calculated to give,

σ2
p(t) = −2

[
D1

λ1

(
1− e−λ1t − λ1t

)
+

D2

λ2

(
1− e−λ2t − λ2t

)]
. (5.101)

In the simulations, we consider a correlation function of the form

χ(t) = 〈R(t + s)R(s)〉 = 7e−4|t| − 3e−2|t|. (5.102)

We fix the mixed diffusion coefficient as D̃12 = −16, take the time step as

∆t = 10−2 and the sharp initial value p(0) = 5. Figure 5.2 shows a comparison

of exact correlation function (solid line) with simulations (dashed line with 103

initial values and dotted line with 104 initial values). Figure 5.3 and Figure 5.4

show a comparison of the analytical results for the mean value and the variance

of the variable p with simulations. Simulations carried out with 104 and 105

realizations are indicated by dashed lines and dotted lines respectively. As seen

from the figures, already with 105 realization, the simulations provide a perfect

agreement with the analytical results.

As a second application, let us consider a more realistic system where a particle

undergoes a diffusion over a parabolic barrier, then the system can be described
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Figure 5.2: The comparison of the exact correlation function with simulated ones
(dashed line with 103 initial values and dotted line with 104 initial values).

by the following Generalized Langevin Equation (GLE),

q̇(t) = p(t), (5.103)

ṗ(t) = −∂V

∂q
−

∫ t

0
χ(t− t′)p(t′)dt′ + R(t), (5.104)

where

χ(t) = D1λ1e
−λ1t + D2λ2e

−λ2t (5.105)

and the potential is

V (q) =
1

2
(q2

0 − q2(t)). (5.106)

Here, we assume that the memory kernel has a two-term exponential form. And
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from the fluctuation-dissipation theorem, we have

〈R(t)〉 = 0, (5.107)

〈R(t)R(t′)〉 = χ(|t− t′|). (5.108)

The mass of the particle as well as the temperature is chosen to be unity for

convenience. Eq.(5.104) can be written as

ṗ = −∂V

∂q
+ R̃1 + R̃2, (5.109)

˙̃R1 = −λ1R̃1 −D1λ1p + λ1g1, (5.110)

˙̃R2 = −λ2R̃2 −D2λ2p + λ2g2, (5.111)
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where g1 and g2 are the correlated white noises Eqs.(5.59,5.60,5.61) and

R̃1(t) = R1(t)−D1λ1

∫ t

0
e−λ1(t−t′)p(t′)dt′, (5.112)

R̃2(t) = R2(t)−D2λ2

∫ t

0
e−λ2(t−t′)p(t′)dt′. (5.113)

Here R1 and R2 are given by Eq.(B.1) and Eq.(B.2). Note that the initial values

of both R̃i and Ri are the same (i=1,2). With this knowledge, the time evolution

of the system to the first order follows as

q(t + ∆t) = q(t) + p(t)∆t, (5.114)

p(t + ∆t) = p(t) +

(
−∂V

∂q
+ R̃1(t) + R̃2(t)

)
∆t, (5.115)

R̃1(t + ∆t) = R̃1(t)e
−λ1∆t −D1p(t)

(
1− e−λ1∆t

)
+ F11 ω3, (5.116)
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R̃2(t + ∆t) = R̃2(t)e
−λ2∆t −D2p(t)

(
1− e−λ2∆t

)
+ F21 ω3

+F22 ω4, (5.117)

where the F functions are the ones given in Eqs.(5.81,5.82,5.83).

By extending the approach of [62] to two-term exponential correlation, it

is possible to obtain analytical results for the mean values and variances. The

analytical expression for passing probability over the parabolic is given by Eq.(4.3)

[44, 45]

P (t, q0, p0) =
1

2
Erfc

(
− 〈q(t)〉√

2σq(t)

)
. (5.118)

where 〈q(t)〉 and σ2
q (t) denotes the mean value and variance of the variable q.

The analytical expressions for these quantities are given by,

〈q(t)〉 = R(t)q0 + Q(t)p0, (5.119)

where

R(t) =
4∑

i=1

{
D1λ1(s + λ2) + D2λ2(si + λ1)∏

n 6=i(si − sn)

+
si(si + λ1)(si + λ2)∏

n6=i(si − sn)

}
esit, (5.120)

Q(t) =
4∑

i=1

(si + λ1)(si + λ2)∏
n6=i(si − sn)

esit, (5.121)

and

σ2
q (t) =

4∑

i,j=1

(si + λ1)(si + λ2)(sj + λ1)(sj + λ2)∏
n 6=i(si − sn)

∏
m6=j(sj − sm)

× [D1λ1Aij(t, λ1) + D2λ2Aij(t, λ2)] (5.122)
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where

Aij(t, λ) =
1

si + sj

[
1

si + λ
+

1

sj + λ

]
e(si+sj)t

−
[

e(si−λ)t

(si − λ)(sj + λ)
+

e(sj−λ)t

(si + λ)(sj − λ)

]

+
1

si + sj

[
1

si − λ
+

1

sj − λ

]
. (5.123)

In these expressions si (i = 1, 2, 3, 4), denote the roots of the secular equation

s4 + (λ1 + λ2)s
3 + (λ1λ2 + D1λ1 + D2λ2 − 1)s2

+ [λ1λ2(D1 + D2)− (λ1 + λ2)] s− λ1λ2 = 0 (5.124)

which is the denominator of the Laplace transform of q(t) derived from the given

GLE.

The passing probability over the parabolic barrier can be numerically calcu-

lated by generating sufficiently large number of events where Eqs.(5.114-5.117)

are used for each event, counting the number of events for which the particle

diffused over the barrier and dividing this number by the total number of events.

On the other hand, the analytical result of the over-passing probability can be

obtained by using Eq.(5.118) which, for large times, approaches an asymptotic

value that can be written as a function of the initial kinetic energy K = 1
2
p2

0 and

the barrier height B = 1
2
q2
0.

For the computations, we choose the correlation function as in Eq.(5.102)

again and take sharp initial values for q and p as q0 = −2 and p0 = (2K)1/2 where
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K is the initial kinetic energy. The numerical computations (simulations) are

obtained with the time step ∆t = 10−2, the mixed diffusion coefficient D̃12 = −16

which is found from Eq.(5.94), 104 realizations of the algorithm and time iteration
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Figure 5.5: The passing probability over the barrier is plotted versus the initial
kinetic energy in arbitrary units. The analytical and numerical results (dashed
line) are shown for the correlation χ(t) = 7e−4|t| − 3e−2|t|. The computations are
done with the time step, ∆t = 10−2 and 104 realizations.

up to t = 10 which is enough for the probability to reach its asymptotic value. The

numerical (dashed line) and analytical (solid line) results are shown in Figure 5.5

where the passing probability is plotted as a function of the initial kinetic energy.

The results are in a good agreement with each other.
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CHAPTER 6

CONCLUSION

The synthesis of the superheavy elements and hence the heavy ion fusion reactions

are hotly debated and important subjects in nuclear physics. In most of the

studies, the reaction mechanism of the fusing heavy nuclei is viewed as a classical

diffusion process where the quantum statistical effects are ignored. Since the

superheavy elements are stabilized by the shell correction energies, they should

be synthesized at low excitation energies. Then, the quantum fluctuations are

expected to play an important role on the dynamics.

In the first part of this study, a c-number quantum Langevin equation has been

derived for the formation process of the heavy ion fusion reaction. A simple model

where the fusion barrier is represented by an inverted parabola has been adopted.

The memory effects has been incorporated into the transport coefficients and the

correlation function of the stochastic force has been obtained in accordance with

the quantum fluctuation-dissipation theorem. It is shown that the over-passing

probability is enhanced at low temperatures when the quantum statistical effects

are included [8].
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The correlation function of the quantum noises exhibits a negative long time

tail and when a Lorentzian cut-off is used it is possible to express the correlation

function as a series of exponential terms with positive and negative coefficients.

There is the superposition method for simulating the noises with correlation func-

tions which contain many exponential terms. However, this method is restricted

to the situations in which the correlation function of the noise is expressed as

a sum of exponential terms with only positive coefficients. In the second part

of the study, a simulation method for exponentially correlated colored noises is

introduced as an extension of the superposition method to include negative terms

as well [9].
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APPENDIX A

THE SOLUTION OF THE LANGEVIN EQUATION

In this Appendix, we analyze solutions of the Langevin Eq.(4.47) together with

dq/dt = p/M by employing one-sided Fourier transform [51]. After performing

the Fourier transform, we obtain

−q0 − iωq(ω) =
p(ω)

M
, (A.1)

−p0 − iωp(ω)±MΩ2q(ω) = −βp(ω) + ξ(ω), (A.2)

where (q0, p0) are the initial conditions, q(ω) =
∫∞
0 dt exp(iωt)q(t) is the one-sided

Fourier transform of the coordinate. The p(ω) and ξ(ω) are similarly defined.

Solving for q(ω) and p(ω), we have

q(ω) = iq0
ω + iβ

ω2 ∓ Ω2 + iωβ
− 1

M

p0 + ξ(ω)

ω2 ∓ Ω2 + iωβ
, (A.3)

p(ω) =
±MΩ2q0

ω2 ∓ Ω2 + iωβ
+ iω

p0 + ξ(ω)

ω2 ∓ Ω2 + iωβ
· (A.4)

Time dependence of the collective variables are found by the inverse Fourier

transformation,

q(t) =
∫ +∞

−∞
dω

2π
exp(−iωt)q(ω), (A.5)

p(t) =
∫ +∞

−∞
dω

2π
exp(−iωt)p(ω) . (A.6)
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Integration over ω in these expressions can be carried out with the help of Cauchy

theorem. Here, we give the results for a parabolic potential barrier,

q(t) = q0R(t) + p0S(t) +
∫ t

0
dt′S(t− t′)ξ(t′) (A.7)

and

p(t) = q0 (MΩ)2 S(t) + p0Q(t) +
∫ t

0
dt′Q(t− t′)ξ(t′) (A.8)

where Q(t), S(t) and R(t) are given by,

Q(t) = exp

(
−β

2
t

) (
cosh Ωt− β

2Ω
sinh Ωt

)
(A.9)

S(t) =
1

MΩ
exp

(
−β

2
t

)
sinh Ωt (A.10)

and

R(t) = exp

(
−β

2
t

) (
cosh Ωt +

β

2Ω
sinh Ωt

)
(A.11)

where Ω =
√

Ω2 + (β/2)2. The solutions can be given in a similar manner for a

parabolic potential well. The mean values of collective variables are obtained by

taking the ensemble average of Eq.(A.7) and Eq.(A.8),

q(t) = q0R(t) + p0S(t) and p(t) = q0 (MΩ)2 S(t) + p0Q(t) . (A.12)

The variances are given by,

σqq(t) = σq0R
2(t) + σp0S

2(t) +
∫ t

0
ds

∫ t

0
ds′S(s)S(s′)2D0χ(s− s′) (A.13)
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σqp(t) = σq0 (MΩ)2 R(t)S(t) + σp0S(t)Q(t)

+
∫ t

0
ds

∫ t

0
ds′S(s)Q(s′)2D0χ(s− s′) (A.14)

and

σpp(t) = σq0 (MΩ)4 S2(t) + σp0Q
2(t)

+
∫ t

0
ds

∫ t

0
ds′Q(s)Q(s′)2D0χ(s− s′) . (A.15)

In these expressions, first two terms describe propagation of the initial fluctua-

tions of the coordinate and momentum distributions σq0, σp0 and the last term

arises from dynamical fluctuations generated by the random force.

For calculation of the formation probability of compound nucleus, we need an

explicit expression for variance σqq(t) of the collective variable. In the Markovian

limit, using the fact that the correlation function behaves like a delta function,

χ(s − s′) → δ(s − s′), we obtain the known analytical result for the dynamical

part of the σqq(t) [44],

σχ
qq(t) =

∫ t

0
ds

∫ t

0
ds′S(s)S(s′)2D0δ(s− s′)

=
T

MΩ2
e−βt

[
β2

2Ω
2 (sinh Ωt)2 +

β

2Ω
(sinh 2Ωt)− e+βt + 1

]
. (A.16)

In the classical limit, the dynamical part of the σqp(t) and σpp(t) are similarly

given by,

σχ
qp(t) =

∫ t

0
ds

∫ t

0
ds′S(s)Q(s′)2D0δ(s− s′)

=
βT

Ω
2 e−βt(sinh Ωt)2 (A.17)
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and

σχ
pp(t) =

∫ t

0
ds

∫ t

0
ds′Q(s)Q(s′)2D0δ(s− s′)

=
MTβ

Ω
e−βt sinh Ωt

[
cosh Ωt− β

2Ω
sinh Ωt

]
+ MT

(
1− e−βt

)
. (A.18)

For quantal calculations, introducing the Fourier transform of the correlation

function,

χ(s− s′) =
∫ +∞

−∞
dω

2π
e−iω(s−s′)χ̃(ω) (A.19)

we can express the dynamical part of the variance in terms of a one-dimensional

numerical integration over the frequency ω as,

σχ
qq(t) =

∫ +∞

−∞
dω

2π

∣∣∣S̃t(ω)
∣∣∣
2
χ̃(ω)2D0 (A.20)

where S̃t(ω) =
∫ t
0 dsS(s)e−iωs. Dynamical parts of variances σqp(t) and σpp(t) can

be evaluated in a similar manner to give,

σχ
qp(t) =

∫ +∞

−∞
dω

2π
S̃t(ω)Q̃∗

t (ω)χ̃(ω)2D0, (A.21)

σχ
pp(t) =

∫ +∞

−∞
dω

2π

∣∣∣Q̃t(ω)
∣∣∣
2
χ̃(ω)2D0, (A.22)

where Q̃t(ω) =
∫ t
0 dsQ(s)e−iωs.
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APPENDIX B

THE AUTOCORRELATION FUNCTION OF THE NOISE

The solution of Eq.(5.57) and Eq.(5.58) are given by

R1(t) = e−λ1tR1(0) + λ1

∫ t

0
e−λ1(t−s)g1(s)ds, (B.1)

R2(t) = e−λ2tR2(0) + λ2

∫ t

0
e−λ2(t−s)g2(s)ds. (B.2)

Since R(t) = R1(t) + R2(t), we have

〈R(t)〉 = e−λ1t〈R1(0)〉+ e−λ2t〈R2(0)〉. (B.3)

Let R1(0) and R2(0) be mean-zero Gaussian random numbers, then averaging

over these random numbers we find

{〈R(t)〉} = 0. (B.4)

By using the Eqs.(5.59,5.60,5.61), the correlations of R1 and R2 can be found as

〈R1(t)R1(t
′)〉 = D̃1e

−λ1|t−t′| +
[
〈R2

1(0)〉 − D̃1

]
e−λ1(t+t′), (B.5)

〈R2(t)R2(t
′)〉 = D̃2e

−λ2|t−t′| +
[
〈R2

2(0)〉 − D̃2

]
e−λ2(t+t′), (B.6)

〈R1(t)R2(t
′)〉 = D̃12e

−λ12|t−t′| +
[
〈R1(0)R2(0)〉 − D̃12

]
e−(λ1t+λ2t′), (B.7)

102



where λ12 = λ1 for t > t′ and λ12 = λ2 for t′ > t. Again averaging over the

random numbers R1(0) and R2(0) we find

{〈R1(t)R1(t
′)〉} = D̃1e

−λ1|t−t′|, (B.8)

{〈R2(t)R2(t
′)〉} = D̃2e

−λ2|t−t′|, (B.9)

{〈R1(t)R2(t
′)〉} = D̃12e

−λ12|t−t′|, (B.10)

once these random numbers satisfy the following equations

{〈R2
1(0)〉} = D̃1, (B.11)

{〈R2
2(0)〉} = D̃2, (B.12)

{〈R1(0)R2(0)〉} = D̃12. (B.13)

Now we have enough information to build the autocorrelation of R(t) and it is

found to be

{〈R(t)R(t′)〉} =
(
D̃1 + D̃12

)
e−λ1|t−t′| +

(
D̃2 + D̃12

)
e−λ2|t−t′|. (B.14)
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