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ABSTRACT

MICROSCOPIC STUDY OF NUCLEAR LEVEL DENSITY

Gholami, Mehrdad

Ph.D., Department of Department of Chemistry

Supervisor : Prof.Dr. Mehmet Kıldır

July 2007, 113 pages

Level densities and spin cut-off factors have been investigated within the mi-

croscopic approach based on BCS Hamiltonian. In particular the spin cut-off

parameters have been calculated at neutron binding energies over a large range

of nuclear mass using the BCS theory. The results are compared with their

corresponding macroscopic values. It is found that the values of σ2(E) do not

increase smoothly with A as expected based on macroscopic theory. Instead, the

values of σ2(E) show structures reflecting the angular momentum of the shell

model orbitals near the Fermi energy.

The spin cut-off parameter σ2(E) has also been computed from the knowl-

edge of nuclear level density, at neutron binding energy, Bn and the average

s-wave neutron spacing, (σ2(E) = 1
2
ρ(Bn) < D1/2+ >). The values of σ2(E) are

compared with their corresponding values from the model calculations.

The influence of the isospin in nuclear level density in particular the isospin

cut-off parameter has also been investigated and are compared with their corre-

sponding spin cut-off parameters.
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ÖZ

ATOM ÇEKİRDEKLERİ ENERJİ YÜZEY YOĞUNLUKLARININ

MİKROSCOPİK MODELLE İNCELENMESİ

Gholami, Mehrdad

Doktora, Kimya Bölümü

Tez Yöneticisi : Prof. Dr. Mehmet Kıldır

Haziran 2007, 113 sayfa

Atom çekirdekleri enerji yüzey yoğunlukları ve açısal momentum dağılım

faktörleri, BCS Hamilton’una dayanan mikroskopik modelle incelenmiştir. Özellikle,

açısal momentum dağılım faktörlerinin çekirdeklerin nötron bağlanma enerjisin-

deki değerleri, geniş kütle aralığındaki atom çekirdekleri için hesaplanmıştır.

Bulunan değerler makroskopik modelle elde edilen değerleriyle karışılaştırılmış,

ancak makroskopik modelde beklenen düzgün artış gözlenmemiştir. Buna karşın

açısal momentum dağılım faktörlerinin, çekirdeğin tabakalı yapısı modeline göre

Fermi enerjisi civarındaki orbitallerin açısal momentum değerleriyle ilişkilendirilebilen,

bir yapı gösterdiği sonucuna varılmıştır.

Açısal momentum dağılım faktörlerinin nötron bağlanma enerjisindeki değerleri,

σ2(E), hesaplanan atom çekirdeği enerji yüzey yoğunlukları ve deneysel s-dalga

nötron aralıkları yardımıyla elde edilmiştir, (σ2(E) = 1
2
ρ(Bn) < D1/2+ >).

Böylece elde edilen değerler hesap sonuçlarıyla karşılaştırılmıştır.
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Ayrıca, isospin kuantum sayının atom çekirdekleri enerji yüzey yoğunlukları

üzerine etkisi incelenmiş ve özellikle isospin dağılım faktörlerinin hesaplanarak

bulunan değerleri, açısal momentum dağılım faktörleri değerleriyle karşılaştırılmıştır.

Anahtar Kelimeler: açısal momentum dağılım faktörü, mikroskopik model
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CHAPTER 1

INTRODUCTION

The levels of the nucleus can be divided into two energy regions, namely the

low energy and high energy excitations. This division arises naturally from the

different approaches employed for their analysis; the spectroscopical approach

for the low energy levels and the statistical approach for the high energy lev-

els. The low-lying nuclear excited levels are small in number, well separated,

and rather simple in structure. With increasing excitation energy, the spacing

between the levels is progressively reduced and the nature of the excitations be-

comes very complicated [1]. From the statistical point of view the most relevant

quantity describing the statistical nuclear properties is the level density of the

system, expressed as a function of various constants of motion such as angular

momentum, excitation energy, number of protons and neutrons or simply mass

number, since the density of levels as a function of constants of motion is the

starting point to extract quantities such as entropy and temperature [2].

The most outstanding feature of the total density of levels experimentally

measured is its extremely rapid increase with excitation energy. This is appar-

ent in high-resolution experiments, where only at the lowest excitation energies

it is possible to resolve the peaks corresponding to the transitions to the discrete

levels of the residual nucleus. At a few MeV of excitation energy these peaks

partly overlap and then merge in the continuum. This is also evident when one

compares the spacing of slow neutron resonances (occurring at an excitation

energy equal to the neutron binding energy, around 7-8 MeV) with the spacing
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of levels at very low excitation energy (≈1 MeV). The slow neutron resonance

density is 105 − 106 times greater than the low-energy level density [3]. This

extremely rapid increase is characteristic of the systems where the excitation

energy is distributed among many degrees of freedom, as it is expected in the

nuclear case when several nucleons may be excited simultaneously.As an illus-

tration of this rapid increase of the number of levels in Figure 1.1, the total

number of levels N(U) is plotted as a function of excitation energy U for 29P

[4], which is such a light element that the individual levels are known to quite

high excitation.

The calculation of the density of states for a Fermi gas amounts to counting

the number of different ways in which the excitation energy, U,

U = E − Eg (1.1)

can be distributed among the single particle states. In Eqn. (1.1) E is the total

energy and Eg is the total ground state energy of the Fermion system. When

the logarithmic derivative of the state density, ω(U) with respect to U is referred

to the reciprocal of nuclear temperature,

d[lnω(U)]

dU
=

1

T
(1.2)

the constant level density expression is obtained. A simple thermodynamic argu-

ments suggest an exponential dependence of the level density on the excitation

energy U [5]

ρ(U) =
1

T
exp(U/T ) (1.3)

This expression has been widely used to analyze the spectra of particles emitted

in statistical reactions and it reproduces the energy dependence of the emitted

particle yield to an accuracy comparable with that obtained by use of more

elaborate expressions of ρ(U), or even better, as in the case of quasi-magic

nuclei [6].
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Figure 1.1: The total number of levels as a function of U for 56Mn,55Fe, 56Fe,
57Fe and 58Fe.
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Gilbert et al. [7] showed that a constant temperature expression reproduces,

at low energies, the experimental level densities better than the Fermi gas model,

and later analysis of Fischer et al. [8] and von Egidy et al. [9] confirm it’s

adequacy up to excitation energies around the neutron binding energy.

On the other hand Holbrow and Barschall [10] analysing neutron spectra from

the reaction 103Rh(p, n)103Pd, at different incident energies and the same interval

of emitted neutron energy, found evidence for an increase of nuclear temperature

with increasing excitation energy, which is contrary to that predicted by constant

temperature expression.

A more elaborate expression for the energy dependence of the level density

is provided by the equidistant spacing model in which independent Fermions

are assumed to be distributed among equally spaced single particle levels with

spacing d. This model of nucleus is clearly not realistic in many respects, since it

neglects the residual interactions between the nucleons (so that the total energy

of nucleus is simply obtained by adding the energies of the constituent nucle-

ons) and it gives highly degenerate excited states. However, in a real nucleus

the single particle levels are split into a number of components by the residual

interactions. This splitting greatly increases the number of nuclear states. How-

ever, although this is indeed the case, it is not of practical importance if one is

primarily interested in calculating the cross section of a reaction to the contin-

uum region of the residual nucleus. In this case what is important is the total

spectroscopic strength of the states, and this is independent of whether they

are split or not. Since this splitting affects the actual number of levels, it could

appreciably increase the level density obtained by direct counting of resolved

levels at low excitations. However, such counts become impracticable at quite

low energies and in most cases are not given for high weight for determining the

constants in the level density formula. Analysis of the experimental data shows

that, for most nuclei, a rather accurate expression for the single particle level
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spacing d is provided by the Fermi gas model

d =
2εF

3A
(1.4)

where εF is the Fermi energy and A is the mass number. In the next chapter it

will be shown that the energy and mass dependence of the state density for a

system composed of neutrons and protons in the equidistance spacing model is:

ω(A,U) =

√
π exp(2(aU)1/2)

12a1/4U5/4
(1.5)

where a = π2g0/6, and g0 = gn + gp is the average total single Fermion level

density. Using the energy dependence of the state density one easily finds the

relation between excitation energy and nuclear temperature as

1

T
=

(
a

U

)1/2

− 5

4U
(1.6)

The reciprocal of thermodynamic (statistical) temperature t is defined as the

first derivative of entropy, S with respect to excitation energy. In the equidistant

spacing model, the excitation energy is related to the thermodynamic tempera-

ture by

U = at2 (1.7)

and using for a the expression provided by the Fermi gas model, one obtains

T ' t = (
U

a
)1/2 =

2

π
ε
1/2
F (

U

A
)1/2 (1.8)

in agreement with the energy and mass dependence found, using Eqn. (1.3), in

the analysis of the experimental data of the Holbrow and Barschall [10].

Extensive analyses of the experimental data (for instance, Erba et al. [11];

Facchini and Saetta Menichella [12]) show that for excitation energies around

5− 10 MeV and for the nuclei far from magic regions, a varies linearly with A

(or with N and Z), as shown in Figure 1.2 :

a ≈ A

k
MeV −1 (1.9)

It is found that k ≈ 7.5 − 8, which in the Fermi gas model corresponds to

εF ≈ 20 MeV .

5



0 50 100 150 200 250

0

5

10

15

20

25

30

35

 Calculated

 A/8

a
 (

1
/M

e
V

)

Mass Number, A

Figure 1.2: The total number of levels as a function of U for 56Mn,55Fe, 56Fe,
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The figure shows, for the nuclei in near-magic regions, large deviations occur

from the simple Fermi gas model estimate Eqn. (1.9). These lower values of a

are strongly correlated with the ground state shell correction to the nuclear po-

tential energy [13]. They are due to the larger average spacing of single nucleon

levels around the Fermi energy for magic nuclei or, better, to the energy gap oc-

curring in the single nucleon level sequence at the filling of the shell. These shell

effects tend to disappear with increasing the excitation energy, since at higher

energies the nucleon levels to be considered for evaluating the state density may

have energies quite different from the Fermi energy, and their average spacing

approaches again that predicted by the Fermi gas model. Figure 1.3 shows the

total numbers of levels N(U) =
∑

J

∫ U
0 ρ(U)dU for isobars of cobalt, nickel, and

copper. One may easily compare level density of magic nucleus, Ni, with those

of neighboring nuclei.

Another structure effect in the level densities is apparent when one compares

the level densities of odd-odd, even-odd, and even-even neighboring nuclei. In

Figure 1.4 are shown the total numbers of levels for isotopes of manganese and

iron. One may easily see that at the same excitation energy the odd-odd 56
25Mn31

has a level density greater than those of the even-odd 55
26Fe29 and 57

26Fe31, which

in turn are greater than that of the even-even 58
26Fe32. The effect may also be

observed in higher excitation energies, for instance when one measures the slow

neutron resonance spacings.
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This odd-even effect is related to the nuclear energy gap, due to the pairing

correlations in the nucleus, observed in the case of even-even nuclei at low ex-

citation energies (of the order of one MeV). While odd-odd nuclei, even at very

low excitation energies, have a number of levels which may be described as single

particle excitations and are identified with the shell model configurations, the

neighboring even-even nuclei have, at low energy, a far smaller number of excited

levels and the few observed are associated with collective excitations, rotations,

and vibrations. At energies exceeding a few MeV, the spectra of even nuclei

also rapidly becomes complicated, showing the presence of single-particle exci-

tations. This behavior may be described, to a first approximation, by assuming

that some energy must be spent to break the binding of a pair of nucleons, and

so does not appear as excitation energy. Thus the energy appearing in the state

density expression should not be the true excitation energy U , but an effective

energy

Ueff = U −∆Z −∆N , (1.10)

where ∆Z and ∆N are the proton and neutron pairing energies [14-17].

In addition to energy, other constants of motion may be introduced to char-

acterize the state densities. Among these is the projection M of the total angular

momentum J on the z-axis. The hypothesis of a random coupling of the angular

momenta of the excited particles and holes [18] led to the following expression

for the level density

ρ(A,U, J) =
(2J + 1)

24
√

2σ3

exp [2(aU)1/2 − (J+1/2)2

2σ2 ]

a1/4U5/4
(1.11)

where σ2 is the spin cut-off factor.

The level density plays a major role in all statistical model formula relat-

ing to cross-section and emission widths, and many experiments and analysis

of experimental data have been done to determine with greater accuracy its

parameters and to achieve accurate predictions of these quantities.

10



Furthermore, the superconductivity theory and the BCS Hamiltonian [18,

19], the success of which in dealing with the pairing effects of ground state is

well recognized [20], have also been applied in the evaluation of level densities

[21, 22]. This theory predicts the existence of transition energy, below which the

Fermi gas model is invalidated. In fact in this superconducting phase the energy

temperature relation is much different from the normal phase. In this way the

prediction of low energy behavior of level densities has been much improved [23-

26].

In all level density expressions the level density parameter, a, and the spin

cut-off factor,σ2, are two parameters of importance. There have been some

calculations of level density parameter by some authors [1, 27]. More recently

a realistic calculation have been carried out which rely on the BCS theory [28].

There have also been some calculations of the spin cut-off parameter on the basis

of the Fermi gas model [29, 30], however, so far realistic calculations have never

been applied to obtain the spin cut-off factor, which is important in all statistical

codes. In the present research work we have extended the more realistic approach

to calculate the level density and the spin cut-off parameter for a large number

of nuclei. In calculation we have included a balanced number of even-even, odd

A and odd-odd, light, medium, heavy weight, spherical and deformed nuclei.

Second chapter begins with a brief definition of nuclear level density. The

combinatorial and partition function methods are discussed as a technique for

derivation of the level density from single particle spectrum. The Fermi gas

description of nuclear level density is discussed briefly in this chapter. Second

chapter also contains a brief discussion of a technique for deriving spin distri-

bution of nuclear level density. In the third chapter the details of the BCS

Hamiltonian employed in the calculation are discussed. Besides, the complete

statistical formalism with the inclusion of pairing and angular momentum is

presented. The grand partition function, the first integral of the motion like en-
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ergy, particle number and Z-projection of angular momentum are written down

explicitly. The gap equation, entropy expression and the partial derivatives nec-

essary for the calculation of the level density are also presented. We consider the

neutron and proton components of the nucleus at the same time and thermo-

dynamic quantities, including level density, are evaluated for the whole nucleus.

The calculational procedures are presented in the forth chapter. It consists of

calculating the dependence of energy gap parameter ∆, excitation energy and

the spin cut-off parameter, state and level density, all within the framework of

BCS formalism. Summary and conclusions are given in the fifth chapter.
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CHAPTER 2

METHODS AND MODELS FOR CALCULATING

NUCLEAR LEVEL DENSITIES

In the preceding chapter we have seen that the variation of level density with

energy is typical for a system which has a large number of degrees of freedom.

As a consequence the models for the description of the nuclear level densities

mostly picture the nucleus as a gas of Fermions with zero interaction between

them. Thus the nucleus has been considered as a system of free neutrons and

protons confined to the nuclear volume [30-32], as nucleons moving in a shell

model potential [33-38] and as nucleons with residual pairing interactions in a

deformed well potential [38-41]. In all of these cases it is possible to express these

models in terms of elementary excitations of a Fermion system. The philosophy

of these approaches is to replace the complicated nucleon-nucleon interactions by

an average potential, this is a reasonable procedure, particulary as we are only

interested in the average validity of such a picture. In view of this it is necessary

to develop general methods for the theoretical study of the level density of such

systems.

2.1 The combinatorial method

The combinatorial approach is suggested by the definition of the level density.

For a system of noninteracting Fermions, this method amounts to finding the
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number of ways in which the nucleons can be distributed among the available

single-particle levels for a fixed energy of the system. A simple way to illustrate

the combinatorial method is to consider a set of only one kind independent

Fermions distributed among the one particle levels which are equally spaced

with a spacing d [42]. The excited states of such system always appear at

integer multiples of d, sd. At excitation energy 0 system has one state only,

the ground state, at energy 1d one state is produced by exciting the Fermion

in the highest energy level to the next higher energy level. The other excited

states are all degenerate. At energy 2d, for example, there are two states, one

produced by exciting the particle in the highest energy two steps and one by

producing a hole by exciting the particle in the next highest level two steps, at

energy 7d there are fifteen states and so on. In Figure 2.1 we show a typical

configuration of such a system at the excitation of 7d in which two Fermions

are excited and two hole have been created. The number of states at excitation

sd as a function of s is shown in Figure 2.2. The exact solution of this problem

was obtained and tabulated by Euler [43]. A few authors have used this method

in limited calculations [44-46]. A very extended calculation has been performed

by Hillman and Grover [47]. In their calculation, all the possible configurations

are obtained by means of a simple method of enumeration and classification.

The configurations are generated by cycling the occupation number of each of

the single particle levels over all its allowable values. The levels are then sorted

out in terms of particle number, energy, and angular momentum (and possibly

other quantum numbers). The pairing interaction is taken into account.
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Figure 2.1: Typical excited configuration for an equidistantly spaced Fermi sys-
tem of one kind of particles. At the excitation energy of 7d, two particles are
excited and two hole have been created.

Figure 2.2: The exact state density per unit single particle spacing ω(s) for a
Fermi system of one kind of particle with equidistant single particle levels vs.
excitation energy s in units of spacing, d.
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Such a procedure has the advantage of performing an exact counting of the

levels. Furthermore, it allows one to obtain detailed distributions in various

quantities such as angular momentum, parity, gap parameter, etc. Typically, in

a heavy nucleus far from a closed shell, the level density may be of the order of

106 levels/MeV at the neutron binding energy.

2.2 The partition function method

This very powerful method has become a classical tool in statistical mechanics

because of its generality and flexibility. Let the nucleus be defined by its neutron

and proton numbers N and Z and by its energy E. The statistical properties of

the system are contained in the grand partition function:

Z(αN , αZ , β) =
∑

N,Z,E

exp (αNN + αZZ − βE) (2.1)

where αN , αZ , and β are Lagrange multipliers associated with the particle num-

bers and energy. Of particular significance is the quantity t = 1/β which is

commonly known as the statistical temperature.

The summation is over all nuclei with N neutrons and Z protons, and over

all energy eigenvalues E of each nucleus. The sum over the energy eigenstates

can be substituted by an integral:

Z(αN , αZ , β) =
∑

N,Z

∫
ω(E, N, Z) exp (αNN + αZZ − βE) dE (2.2)

The quantity ω(E,N, Z) represents the state density. The above equation also

shows that the grand partition function can be considered a Laplace transform

of the state density. A very elegant method for the inversion of Eqn. (2.2) in the

case of a system of noninteracting Fermions has been described by Williams [48].

This method uses recursion relations for the calculation of the coefficients of a

finite order partition function and yields the exact state density. The method

can be generalized to account for quantum numbers which can be expressed in
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terms of sums over single particle levels. A more general method yielding the

state density makes use of the inverse Laplace transform of Eqn. (2.2):

ω(E, N,Z) =
1

(2πi)3

∮
dαN

∮
dαZ

∮
dβ eS (2.3)

where S = lnZ(αN , αZ , β) − αNN − αZZ + βE. The above contour integrals

are also known as the Darwin-Fowler integrals. So far the only approximation

introduced into the calculation is the continuous approximation whereby the

state density is considered a continuous function. However, the generality of the

method arises from a remarkable approximation which allows one to evaluate

the integrals in Eqn. (2.3).

It can be shown that the integrand has a saddle point whose location is

defined by the equations:

∂S

∂αN

= 0 ;
∂S

∂αZ

= 0 ;
∂S

∂β
= 0 (2.4)

or

∂[lnZ(αN , αZ , β)]

∂αN

= N ;
∂[lnZ(αN , αZ , β)]

∂αZ

= Z ;
∂[lnZ(αN , αZ , β)]

∂β
= −E

(2.5)

The path of integration can be chosen to pass through this point. By expanding

the exponent S in a Taylor series about the saddle point and retaining only the

quadratic terms, the integrals in Eqn. (2.3) yield the following result:

ω(E,N,Z) =
exp S

(2π)3/2D1/2
(2.6)

where D is a 3 × 3 determinant of the second derivatives of lnZ(αN , αZ , β)

with respect to the Lagrange multipliers αN , αZ , and β. All of the quantities

contained in Eqn. (2.6) must be evaluated at the saddle point.

Such an approximation corresponds to the Stirling approximation for the

evaluation of factorials and its accuracy depends upon the magnitude of the

state density itself. The agreement of results based upon the saddle point ap-

proximation with the exact results is good even at low excitation energies [42,
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49]. The elegance of the method is also quite apparent in the way in which

the boundary conditions of the problem are introduced. They appear in a very

simple way in Eqn. (2.5) where the saddle point is defined.

2.3 The Equidistant Model

In this model the same system which it is used previously in the combinatorial

method is also employed in the partition function method [42], generates

ω(U) =
exp{2(π2

6
g0U)1/2}√

48U
(2.7)

where g0 = d−1 is the single particle level density. The expression (2-7) which

gives the solid smooth curve in Figure 2.2 represents a remarkably good approx-

imation to the exact state density that is obtained by the recursion formula of

Euler [43]. The explicit dependence of the state density upon excitation en-

ergy arises from the simple relation between excitation energy and statistical

temperature as given as

U =
π2

6
g0t

2 (2.8)

More realistic expression for level density is obtained in the case of two

Fermion system. If the equidistant spacings are dn and dp, for neutrons and

protons, respectively, the average total Fermion level density g0 = d−1
n + d−1

p =

gn+gp and the total state density for a system composed of two kinds of particles

(neutron and proton) is given approximately in analytical form by

ω(U) = g0(
g2
0

4gngp

)1/2 (6)1/4

12

exp[2(π2g0U
6

)1/2]

(g0U)5/4
(2.9)

If the difference between neutron and proton single particle level density is ne-

glected, gn ' gp, the state density is given by Eqn (1.5).

In this approximation the equidistant spacing model gives a remarkably sim-

ple expression for the state density. At high excitation the exponential factor

in Eqn. (1.5) is dominating. This has led to the commonly found statement
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that level density should vary with energy as exp 2(aU)1/2, where a = π2g0

6
is a

constant. According to the above it must be emphasized that this statement is

valid only for high excitations and for a model similar to the one considered, i.e.

with a fairly well defined average single Fermion spacing near Fermi levels.

2.4 Fermi Gas Model

The simplest system which does not have equidistant levels is the Fermi gas

system, where the single particle level density increases with the square root of

the kinetic energy of the particles. This model which historically has had the

largest impact on the interpretation of experiments was used by Bethe [50] and

Oppenheimer [51] separately.

In Fermi gas model the nucleons are treated as freely moving non-interacting

Fermions in a spherical potential well whose size corresponds to that of the

nucleus, and its depth adjusted so that the Fermi energy raises the highest

nucleons up to the observed binding energy usually near 8 MeV. In this model

the difference between neutron and proton single particle spacing is neglected

and the particles are supposed to occur with equal probability.

The nucleus is considered as a free Fermi gas of neutrons and protons of

both spins confined to move in a nuclear volume V = (4π/3)R3 , R being the

nuclear radius. The Fermi energy is thus given by the phase space occupied in

the ground state

V

h3
4

∫ εF

0
4πp2dp

dε
dε = A (2.10)

The Fermi energy is then

εF =
(

π

3

)2/3 9

4

h̄2

2mnr2
0

(2.11)

where mn is the nucleon mass and r0 the nucleon radius. The density of single

particle levels at the Fermi level is

g0 =
3

2

A

εF

(2.12)
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Here, again the state density given by Eqn. (1.5) is obtained if the difference

between neutron and proton single particle level density is neglected. The level

density parameter, a, is related to mass number, A, and Fermi energy, εF , by

a =
π2A

4εF

(2.13)

Therefore, the only difference between the equidistant and Fermi gas model

expressions given with the Eqn. (1.5) is the value of the level density parameter

a.

To eliminate the singularity at U = 0 Lang and Le Couter [41] replaced the

equation of state Eqn. (1.7) by

U = at2 − t (2.14)

and Eqn. (1.5) becomes

ω(A,U) '
√

π exp(2(aU)1/2)

12a1/4(U + t)5/4
(2.15)

2.5 Spin Dependence

Suppose the projection of angular momentum J in some space fixed axis is

denoted by M . Each level with spin equal to or greater than J will give one

projection of magnitude J on the space fixed axis. Each level with spin equal

to or greater than J+1 will give one projection of magnitude J + 1 on the space

fixed axis. Therefore the difference between the number of projections on the

space fixed axis of magnitude J and J + 1 will give the number of levels of spin

J .

ρ(U,N, Z, J) = P (U,N,Z, M = J)− P (U,N,Z,M = J + 1) (2.16)

The number of cases of angular momentum projection M along the space

fixed axis is given in first approximation by a Gaussian law [32, 42, 49].
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P (U,N, Z, M = J) = P (U,N, Z, M = 0)exp{−M2

2σ2
} (2.17)

Substitution Eqn (2.17) into Eqn (2.16) and using the value J and J + 1 for

M gives

ρ(U,N,Z, J) = P (U,N,Z, M = 0){exp(− J2

2σ2
)− exp(−(J + 1)2

2σ2
)} (2.18)

Since each level has exactly one projection on the space fixed axis of mag-

nitude M = 0, the quantity P (U,N, Z, M = 0) is identical to the total level

density ρ(U,N,Z), Eqn. (2.18) can be written as

ρ(U,N, Z, J) = ρ(U,N, Z){exp(− J2

2σ2
)− exp(−(J + 1)2

2σ2
)} (2.19)

Eqn (2.19) is in convenient form for most computer applications. However,

for a number of applications an approximate form of this equation is useful which

can be easily obtain as

ρ(U,N,Z, J) = ρ(U,N,Z)
2J + 1

2σ2
exp{−(J + 1/2)2

2σ2
} (2.20)

The level density ρ(U,N, Z) is related to the state density ω(U,N, Z) by the

relationship

ρ(U,N,Z) = ω(U,N,Z)/N (2.21)

N is the average number of states per level

N =

∫∞
0 (2J + 1)(2J + 1)e−(J+1/2)2/2σ2

dJ∫∞
0 (2J + 1)e−(J+1/2)2/2σ2dJ

(2.22)

Let x = (J + 1/2)2 then dx = 2(J + 1/2)dJ

N =
2

∫∞
0 x1/2e−x/2σ2

dx∫∞
0 e−x/2σ2dx

=
π1/2(2σ2)3/2

2σ2
(2.23)
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The average number of state per level= (2πσ2)1/2. So the level density of a given

nucleus at a given excitation energy is related to its state density by

ρ(U,N, Z) = ω(U,N, Z)/(2πσ2)1/2 (2.24)

then the level density in Eqn. (2.20) can be expressed in terms of state density

by

ρ(U,N,Z, J) =
ω(U,N, Z)

(2πσ2)1/2

(2J + 1)

2σ2
exp {−(J + 1/2)2

2σ2
} (2.25)

2.6 Spin Cut-off Factor

In the present study, the spin cut-off parameters calculated with the microscopic

theory are compared with their corresponding values in the macroscopic model.

There are two commonly used paths to obtain spin cut-off parameters. The spin

cut-off parameter is given by [42]

σ2 = g < m2 > t (2.26)

where g is the density of single particle levels, < m2 > is the average square of

the spin projection for the single particle levels near the Fermi energy and t is

the thermodynamic temperature. The quantity of g < m2 > for a Fermi gas

of nucleus can be shown to be related to rigid body moment of inertia of the

nucleus, =, by

g < m2 >=
=
h̄2 (2.27)

The rigid body moment of inertia for a spherical nucleus is given by

= =
2

5
mnAR2 (2.28)
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where A is the mass number of the nucleus, mn is the nucleon mass and R

is the nucleus radius. If R is taken as 1.20A1/3fm then

σ2
rigid = 0.0138A5/3t (2.29)

The thermodynamic temperature, t, and excitation energy, U are related by the

expression

U = at2 − t (2.30)

An alternative method of determining σ2 is to relate single particle level density,

g, to the level density parameter, a through the equation

a =
π2

6
g (2.31)

Jensen and Luttinger [52] estimated from the shell model energy levels

< m2 >= 0.146A2/3 (2.32)

with some fluctuations due to shell effects. Putting the above equations together

we obtain

σ2
GC = 0.0888A2/3

√
a(U − E0) (2.33)

where E0 is the back shift energy.

2.7 Residual Interaction

The previous treatment was based on the approximation of the noninteracting

nucleons. However, we know that there are residual interaction between nucleons

and these may alter the energy dependence of the level density, especially at low

energy. The most obvious of these interactions is the pairing interaction which

as discussed in the introduction, reduces the state density by forbidding, states

near the Fermi energy to be occupied by unpaired nucleons [1, 49]. We simply

note that the comparison of level densities of neighboring even-even, even-odd,

and odd-odd nuclei suggests, as first proposed by Hurwitz and Bethe [62], that,
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to first order approximation, pairing effects might be accounted for by using

excitation energies U−∆Z−∆N instead of true energies U in the state and level

densities expressions. ∆Z and ∆N , loosely speaking, are the energies necessary

to break a proton or a neutron pair and are related to the energy gap associated

with the pairing correlation in the ground state. ∆Z and ∆N are positive and

different from zero, and they can be deduced from the comparison of the ground

state masses of neighbouring even-even, even-odd, and odd-odd nuclei. Tables

of pairing energies, widely used in the literature are given by Cameron [14],

Nemirovski and Adamchuck [15], Cameron and Elkin [53] and Truran et al.

[17].

More refined calculations [54] suggest that this simple procedure to account

for pairing effect should apply only above a critical temperature Tc. Also, angular

momentum reduces the pairing correlation, which vanishes above a critical value

Mc. Thereafter, in this case also, the usual procedure to account for the pairing

interaction remains valid.

2.8 Shell Model

Comparing the spacing of the nuclear levels observed in neutron resonances, one

notices that the level density is strongly influenced by nuclear shell structure.

The density of resonances for magic or nearly magic nuclei is one to three order

of magnitude smaller than mid-shell nuclei at the same excitation energy [12,

42, 55]. It has been pointed out that this effect is related to the larger single

particle spacing in the magic nuclei near the ground state rather than to a shift

of the entire energy scale of excited nuclei [14, 37, 42, 56].

The importance of the shell effects was first emphasized by Bloch [35], who

developed general methods to deal with the mathematical problem. His shell

model was succeeded by Rosenzweig, paying attention to a marked effect in the

level density [37, 57], usually named after him. It is an effect depending on to
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what extent the last shell is filled in the ground state. Rosenzweig has shown

that this effect is describable as a simple shift of the excitation energy. Though

the effect should be taken into account at least in highly degenerate shells, there

are some reasons, to believe that it is smaller than what might be first thought

[42].

Newson has derived phenomenological description [58] of the neutron reso-

nance spacing by considering only the pair excitation within the partially filled

major shells. The success of his model seems to be a rather general consequence

of the shell model and may be rather independent of the special model used. This

indicates the desirability of the introduction of a more realistic single fermion

level structure into the calculation of the level density.

The main difficulty in obtaining numerical results lies in the evaluation of

the grand partition function with such a realistic single particle level structure.

This could well be done by use of the microscopic theory which will be discussed

in the next section.

2.9 Deformed Nuclei

The sequence of single particle levels depend on the shape of the nuclear po-

tential acting upon the nucleons. Discontinuities in the level density sequence,

such as large gaps, may occur for neutron and proton numbers different from the

magic values of spherical nuclei depending on the deformation of the nucleus.

Consideration of nuclear deformation is of particular importance for understand-

ing of many aspects of nuclear properties. The fact that the sequence of single

particle level dependence on the deformation has obviously greater importance

in the evaluation of the state and level density of a deformed nucleus as discussed

in previous sections. Deformation is characteristic of nuclei with 150 < A < 250

(in particular with 160 < A < 190 and 230 < A < 250) at rather low excitation

energies. Calculations by Moretto [54] and Mosel et al. [59] indicate that, by
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increasing the excitation energy, the effect of deformation on level density tends

to disappear.

26



CHAPTER 3

BCS MODEL

3.1 Basic Formulas

Consider a system of nucleons interacting with the pairing force. For a spheri-

cally symmetric nuclei, in addition to being characterized by energy εk, the single

fermion states also characterized by the projection of the angular momentum

on the z-axis, mk . In the superconducting theory, the nucleons having angular

momentum (mk,−mk) couple so as to form a quasi bound particle.

The state density of such an N nucleon system of energy E is related to the

logarithm of grand partition function [60],

lnZ(α, β) = −β
∑

k

(εk − λ− Ek) + 2
∑

k

ln[1 + exp(−βEk)]− β
∆2

G
(3.1)

where α and β are two Lagrangian multipliers associated with the nucleon num-

ber and Ek = [(εk−λ)2 +∆2]1/2 is the quasiparticle energy and ∆ is the pairing

parameter. λ = α
β

is the chemical potential and G is the strength of pairing. Eq.

(3.1) is valid only if the quantities ∆, λ and β satisfy the following gap equation:

2

G
=

∑

k

1

Ek

tanh
βEk

2
(3.2)

The state density is the inverse Laplace transform of the grand partition func-

tion,

ω(N,E) = [
1

2πi
]2

∮
dα

∮
dβZ(α, β)exp(−αN + βE) (3.3)
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The above contour integrals can be evaluated by the method outlined previously

[31], the result is:

ω(N, U) =
exp(S)

2πD1/2
(3.4)

here the entropy S can be written as:

S = 2
∑

k

ln[1 + exp(−βEk)] + 2β
∑

k

Ek

1 + exp(βEk)
(3.5)

and ”D”is a 2 × 2 determinant with its elements given in terms of the second

derivations of the grand partition function.

D =
1
β2

∂2lnZ
∂λ2

∂
∂β

[ 1
β

∂lnZ
∂λ

]

∂
∂β

[ 1
β

∂lnZ
∂λ

] ∂2lnZ
∂β2

(3.6)

The second derivatives of the grand partition function are:

1

β2

∂2lnZ

∂λ2
=

∑

k

akE
2
k −∆2

∑

k

(ak − bk)−∆
∂∆

∂λ

∑

k

(εk − λ)(ak − bk) (3.7)

∂

∂β
[
1

β

∂lnZ

∂λ
] = −β∆

∂∆

∂β

∑

k

(εk − λ)(ak − bk)−
∑

k

(εk − λ)E2
kak (3.8)

∂2lnZ

∂β2
=

∑

k

akE
2
k [E

2
k + β∆

∂∆

∂β
] (3.9)

where

ak =
1

2E2
k

sech2[
1

2
βEk], bk =

1

βE3
k

tanh[
1

2
βEk] (3.10)

and

∂∆

∂λ
=

∑
k(εk − λ)(ak − bk)

∆
∑

k(ak − bk)
,
∂∆

∂β
= −

∑
k E2

kak

β∆
∑

k(ak − bk)
(3.11)

In addition, the nucleon number N and energy E are given by
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N =
1

β

∂lnZ

∂λ
=

∑

k

nk (3.12)

E =
−∂lnZ

∂β
=

∑

k

εknk − ∆2

G
(3.13)

where the occupation probability, nk is given by

nk = 1− εk − λ

Ek

tanh
βEk

2
(3.14)

The statistical properties of a nucleus is defined in terms of its neutron and

proton numbers N and Z and the total energy E. Since the neutron -proton

superfluids are independent, their correlation can be neglected. Then the above

derivation can be extended to include a nuclear system. For a nucleus of N

neutrons of energies ε
(n)
k with magnetic quantum numbers m

(n)
k and Z protons

of energies ε
(p)
k with magnetic quantum numbers m

(p)
k , the constants of motion

are then neutron and proton numbers given by Eqn. (3.12) and the total energy

given by Eqn. (3.13).

The total state density for a system of N neutrons and Z protons at an

excitation energy U = Un + Up is given as Eqn. (2.6)

ω(N, Z, U) =
exp(S)

(2π)3/2D1/2
(3.15)

here S = Sn + Sp is the total entropy and ”D” is now a 3 × 3 determinant

defined by

D = (
1

β2

∂2lnZ

∂λ2
p

)Dn + (
1

β2

∂2lnZ

∂λ2
n

)Dp (3.16)

where Dn and Dp are 2× 2 determinant similar to relation (3.6).

Since the level density ρ(U,N, Z) is related to the state density ω(U,N,Z)

by the relationship
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ρ(U,N, Z) = ω(U,N, Z)/(Average number of state per level)

Since the average number of state per level= (2πσ2)1/2, hence the total level

density for a nuclear system at excitation energy U = E − Eg is given by

ρ(N, Z, U) =
ω(N, Z, U)

(2πσ2)1/2
(3.17)

where σ2 is the total spin cut-off parameter defined as:

σ2 = σ2
n + σ2

p (3.18)

with

σ2
n =

1

2

∑

k

mn2

k sech2[
1

2
βEn

k ] (3.19)

Similar relation can be given for σ2
p case.

3.2 Energy Gap and Critical Temperature

In view of the importance of pairing energy in nuclear level density, we have

calculated its dependence on nuclear temperature. For a nuclear system char-

acterized by its single particle energies εk and magnetic quantum numbers mk,

calculations are done in the following way.

1. At zero temperature Eqs.(3.2) and (3.12) are solved for λ(0) and the pair-

ing strength G for known particle number N and pairing energy parameter

∆. The initial values of ∆ for neutron and for proton were computed using

the following relations [15]

∆n = 11.56N−0.552 (3.20)

∆p = 11.40Z−0.567 (3.21)

30



2. The critical temperature, Tc and the corresponding chemical potential λc

are evaluated by setting ∆ = 0 and solving the same equations for specified

nucleon number, N and pairing strength, G obtained from step 1.

3. The quantities λ(T ) and ∆(T ) are then evaluated for a given value of T

by solving Eqns. (3.2) and (3.12) with the values of N and G from (1).

4. These values of λ(T ) and ∆(T ) are used to compute other thermodynamic

quantities which will be discussed in the next sections.

It is worth nothing that the pairing strength G depends on the number of

single particle levels which are included in the calculation. The number of single

particle levels as long as sufficient levels are included so that the levels of largest

’k’ have very small occupational probabilities. Temperature dependence of the

energy gap parameters for both the neutron and proton system for 243Cm and

244Am are shown in Figures 3.1 and 3.2.
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3.3 Excitation Energy and Entropy

Dependence of the excitation energy of the nuclear system with temperature can

be evaluated as follows :

1. The intrinsic energy of the ground state, En(0) is obtained from (3-13) for

known values of λ(0) and G obtained in section 3.2.

2. In the same way, the intrinsic energy En(T ) is obtained from known values

of λ(T ) and ∆(T ) obtained again in section (3-2). Thus the excitation

energy of the neutron system at temperature T is given by Un = En(T )−
En(0). The excitation energy of the proton system is obtained in the same

way, Up = Ep(T )−Ep(0) , Thus the total excitation energy at temperature

T is U = Un+Up. The excitation energy for neutron and proton system for

243Cm and 244Am nuclei are plotted as a function of temperature in Figures

3.3 and 3.4. The arrows indicate the energies of the phase transition for

neutrons and protons from the superconducting state to the normal state.

3. The entropy of the neutron and proton system is evaluated from Eqn. (3.5)

at temperature T from the values of λ(T ) and ∆(T ) obtained in section

3.2. From the additivity property of entropy, the total entropy is obtained

as, S = Sn + Sp . The entropies are plotted as a function of temperature

in Figures 3.5 and 3.6 for 243Cm and 244Am. Again the arrows indicate

the phase transition from superconducting state to the normal state.
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3.4 Odd Particle System

For an odd particle system, blocking is important and must be included. When

a level near the Fermi surface is occupied by an odd particle, the effect of the

pairing correlation is reduced. The reduction necessary depends on which level

is occupied. The change in ∆ between the even and odd case due to the blocking

of one level by the odd particle is estimated as [61].

∆odd ∼= ∆even(0)− 1

(∆even(0))2
[
∑

k 6=k′

1

E3
k

]−1 (3.22)

where k’ indicates a state occupied by the odd particle. The actual calculation,

in which the blocking effect has been included exactly indicates a difference

between even and odd system of the order of 20 percent. These results are

roughly in agreement with Eqn. (3.22). We have investigated the blocking

effect by two different methods.

i) By reducing the strength of pairing parameter ∆. The change in ∆ leads to a

change in the particle occupational probabilities. After a proper reduction

in ∆ , the odd particle system is treated in a way analogous to the even

particle system.

ii) By adjusting the ground state for nuclear pairing. The statistical functions

here were calculated from the adjacent doubly even nucleus and then the

energy scale was shifted by an energy equivalent to that required to pro-

duce one quasi-particle. It turns out that the results of both procedures

give generally identical level densities especially at higher excitation ener-

gies. The occupation probabilities for neutrons and protons for 244Am is

shown in Figures 3.7. The effect of pairing interaction is apparent near

the Fermi energy

39



0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

O
cc

u
p
at

io
n
 P

ro
b
ab

il
it

ie
s

Single Particle Energies (MeV)

 Neutron System

 Proton System

Figure 3.7: Occupation probabilities of double degenerate single particle levels
at excitation energy of 2.0 MeV, for 244Am.

40



3.5 Nuclear State and Level Density

In performing calculation of state and level density the energies and spins of the

single particle levels were first obtained from Seeger potential [62]. The relative

energies and spins for 244Am is given in Table 3.1. Some of the energies up to

30 MeV together with their spins are displayed in Figure 3.8 for neutrons and

protons separately. Note that the Fermi energies are indicated for neutron and

proton components. In actual calculation however, many more single-particle

levels were introduced. Next the values of En , Sn and ω(N, Un) were calculated

from Eqns. (3.13), (3.5) and (3.4) using the values of λT and ∆T obtained in

section (3-2). The spin cut - off factor σ2
n is calculated using Eqn. (3.18) from

the known valued of eigenvalues ε
(n)
k and their corresponding magnetic quantum

numbers m
(n)
k . Then the calculation are repeated for proton component. Finally,

the quantities σ2 , ω(N, Z, U) and ρ(N,Z, U) are calculated with Eqns. (3.19),

(3.15) and (3.17), the total excitation energy U = Un + Up.

In Figures 3.9 and 3.10 the logarithm of the state density is plotted as a

function of excitation energy for 243Cm and 244Am nucleus.

It should be noted that the initial values of ∆0
n and ∆0

p used in our analysis

in order to calculate the gap parameters Gn and Gp were determined using

equations (3-20) and (3-21) respectively [15]. Since ∆0
n and ∆0

p are deduced

from mass differences, they also include shell effects.
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Table 3.1: Energies of single particle levels with their spins for 244Am nucleus.

k Energies of Proton Spin Energies of Neutron Spin

1 0.00 1/2 0.00 1/2
2 5.16 3/2 5.20 3/2
3 5.76 1/2 5.77 1/2
4 7.44 1/2 7.40 1/2
5 10.09 5/2 10.19 5/2
6 11.09 3/2 11.15 3/2
7 11.32 1/2 11.36 1/2
8 12.84 3/2 12.77 3/2
9 13.11 1/2 13.05 1/2
10 14.78 7/2 14.93 1/2
11 15.01 1/2 14.97 7/2
12 15.99 5/2 16.16 5/2
13 16.50 3/2 16.63 3/2
14 16.84 1/2 16.97 1/2
15 18.18 5/2 18.10 5/2
16 18.57 3/2 18.50 3/2
17 19.13 1/2 18.99 1/2
18 19.25 9/2 19.54 9/2
19 20.25 3/2 20.17 3/2
20 20.51 1/2 20.43 1/2
21 20.57 7/2 20.85 7/2
22 21.32 5/2 21.55 5/2
23 21.86 3/2 22.09 3/2
24 22.10 1/2 22.32 1/2
25 22.87 1/2 22.72 1/2
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Table 3.1: Continue.

k Energies of Proton Spin Energies of Neutron Spin

26 23.40 7/2 23.32 7/2
27 23.48 11/2 23.77 5/2
28 23.82 5/2 23.90 11/2
29 24.87 9/2 24.85 3/2
30 25.02 3/2 24.99 1/2
31 25.16 1/2 25.27 9/2
32 25.37 5/2 25.30 5/2
33 25.79 3/2 25.73 3/2
34 25.79 7/2 26.08 1/2
35 26.18 1/2 26.16 7/2
36 26.48 5/2 26.85 5/2
37 26.92 3/2 27.27 3/2
38 27.14 1/2 27.48 1/2
39 27.48 13/2 27.95 3/2
40 28.12 3/2 28.04 13/2
41 28.34 1/2 28.18 1/2
42 28.43 9/2 28.39 9/2
43 28.88 7/2 28.87 7/2
44 28.91 11/2 29.46 11/2
45 29.96 9/2 30.29 7/2
46 30.32 7/2 30.46 5/2
47 30.61 5/2 30.48 9/2
48 30.77 7/2 30.73 1/2
49 30.87 5/2 30.73 3/2
50 30.88 3/2 30.84 5/2
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3.6 Spin Cut-off Factor

The spin cut-off parameter which is an important parameter in all statistical

model codes is usually determined by counting levels with given spins and by

fitting the spin distribution with

f(J) = exp(
−J2

2σ2
)− exp(

−(J + 1)2

2σ2
) (3.23)

where σ2 is the variance of the distribution. This formula has been applied for

measured spin distribution of 20F nucleus. The parameter σ2, has been deduced

by fitting the data using least square method. The fitted distribution for the

best value of σ2 is plotted in Figure 3.11.

The spin cut-off parameter can also be determined from the knowledge of

the single particle energies and their corresponding magnetic quantum numbers.

This is done using:

σ2(E) =
1

2

∑

k

m2
nk

sech2(
1

2
βEk) +

1

2

∑

k

m2
pk

sech2(
1

2
βEk) (3.24)

which is made up of the sum of the neutron and proton components. This is

shown in Figures 3.12 and 3.13 where σ2
n and σ2

p as well as σ2 = σ2
n + σ2

p are

plotted as a function of excitation energy for 243Cm and 244Am nuclei.

47



0 1 2 3 4 5

0

5

10

15

20

25

(4, 1)

(3, 9)

(2, 20)(1, 23)

(0, 8)

20

9
F

11

2
= 2.74

F
re

q
u
en

cy
 o

f 
ea

ch
 s

p
in

, 
N

(J
)

Nuclear Spin, J

Figure 3.11: The spin distribution for 20F . The histogram showing the experi-
mental spin distribution and the solid curve is a fit.

48



-10 0 10 20 30 40 50 60 70

50

100

150

200

250

300

243

Cm

S
p
in

 C
u
t-

o
ff

 P
ar

am
et

er
, 

2

Excitation Energy (MeV)

2

n
2

p
2

t

Figure 3.12: The Spin Cut-off parameter from microscopic theory. The individ-
ual contributions of neutron and proton are shown for 243Cm .

49



0 10 20 30 40 50 60 70

-20

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

244

Am

S
p
in

 C
u
t-

o
ff

 P
ar

am
et

er
, 

2

Excitation Energy (MeV)

2

n
2

p
2

t

Figure 3.13: The Spin Cut-off parameter from microscopic theory. The individ-
ual contributions of neutron and proton are shown for 244Am .

50



3.7 Nuclear Isospin

Consider a single nucleon, either neutron or proton. Introduce a quantum num-

ber Iz which we call isospin projection. By definition it is given a value of 1/2

for proton and -1/2 for neutron. The word projection means that there is a total

isospin and an axis which has a projection. We will define total isospin below

and the axis is entirely fictitious.

The total isospin projection of a system with N, neutrons and Z, protons is

Iz = 1/2(Z −N) (3.25)

then we consider the proton and neutron as different quantum states of the

same particle, the nucleon. So, in any system with more than one nucleon, the

total isospin projection Iz measures the proton excess of the system.

By introducing N = A− Z, equation (1) becomes

Iz = 1/2(Z − A + Z) ⇒ Iz = Z − 1/2A ⇒ Z = Iz + A/2 (3.26)

Since in any nuclear reaction the total charge Z and the total nucleon number

A, are conserved then the total isospin projection, Iz must also be conserved.

There is no fundamental importance attached to the isospin projection num-

ber Iz beyond what we already discussed. It sometimes offers a convenient way

of writing the total wave function. For a single nucleon the two possible values

of Iz reminds us of the ordinary spin projection ms for a single nucleon.

In the spin formalism, total spin quantum number S= 1/2 for a single parti-

cle, S= 0 or 1 for two particles etc. It is possible and convenient to use such a

formalism to express the symmetry of the total wave functions. Lets first con-

sider the ordinary spin state of two nucleons. The total spin quantum number

S are either S= 0 or S= 1, in the former case ms = 0 in the later case ms = -1,

0 and +1.
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Table 3.2: Symmetries of the two nucleon system.

Symmetry

I Iz Particle Isospin Space spin Total

Singlet 0 0 np Antisym. Sym. Antisym.

Triplet 1 1, 0, -1 pp, np, nn Sym. Antisym. Antisym.

The total spin quantum number S is associated with magnitude of angular

momentum,

P 2
s = S(S + 1)h̄2 (3.27)

So there is a concrete physical quantity associated with S. In contrast, now

an abstract quantum number isospin,I, is introduced which is equal to 1/2 for

a single nucleon. A total isospin quantum number I is either 0 or 1 for two

nucleons.

Considering two nucleons the isospin quantum number then is I = 0 isospin

singlet, and projection Iz must be zero. According to Eqn (3.25) this means

that Z = N = 1; that is system consists of a proton and a neutron.

For I = 1 we have an isospin triplet, and the projection can be either -1, 0 or

1 representing two neutrons, a neutron and a proton or two protons. Figure 3.14

shows an energy diagram of the three possible two body systems, the dineutron,

the deuteron and the diproton. Only the J = 1+ state of the deuteron is a

bound state, the others are virtual states.

In the case of deuteron ground state, both particles are in the symmetric

space-spin states which is possible due to the antisymmetry in isospin part of

the wavefunction. However, two protons or two neutrons can not occupy this

state because of their symmetric isospin wavefunctions. Table 3.2 summarizes

the results for two nucleons.
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In the isospin formalism, the total wave function is written as a product of a

(Spacepart) × (SpinPart) × (IsospinPart). The form of spin part is identical

to the form of isospin part.

3.8 Isospin Dependent Nuclear Level Density

As described above by considering the proton and neutron as different quantum

states of the same particle, the total isospin projection of a system with N

neutrons and Z protons is, Iz.

It has been pointed out for some time that the isospin quantum number is a

good quantum number even for states of high excitation energies [61]. We have

studied the influence of the isospin on the nuclear level densities and the spin

cut-off parameter on the basis of spin formalism. The isospin dependent nuclear

level density is

ρ(U, I) = ρ(U)f(I) (3.28)

with spin distribution as

f(I) =
2I + 1

2σ2
Iz

exp[
−(I + 1/2)2

2σ2
Iz

] (3.29)

where σ2
Iz

= 1/4gt, g is the density of single particle levels.

The spin cut-off parameter is given by the relation [35]

σ2
Iz

= g < m2
i > t (3.30)

where < m2
i > is the average squared of the nucleon isospin projections. Due to

isospin, for light nuclei, the neutron and proton single particle levels coincide.

So, the energy levels require a further two fold degeneracy, since they can be

occupied by a neutron or by a proton. This arise because of the nucleon isospin

projections (±1/2). So, the average of the square of the isospin projections
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< m2
i >= 1/4, thus the isospin cut-off parameter [1]

σ2
Iz

= 1/4gt (3.31)

where the nuclear temperature at neutron binding energy is

t =
1 +

√
1 + 4a(Bn − E0)

2a
(3.32)

a, is the level density parameter in MeV −1 and E0 is the back shift energy in

MeV. Combining Eqns. (3.31) and (3.32) together with the value of g in terms

of a gives

σ2
Iz

=
3(1 +

√
1 + 4a(Bn − E0))

4π2
(3.33)
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CHAPTER 4

CALCULATIONS AND RESULTS

4.1 Introduction

Nuclear level densities are important in all statistical model calculations. Ana-

lytical expressions which contain free parameters adjusted on scarce experimen-

tal data are the Bethe and Constant Temperature formula. They mainly differ

in the low excitation energy region where pairing corrections play an important

role.[4, 9].

Sophisticated theoretical approaches have been developed to study level den-

sities. In particular is the microscopic approach based on the BCS Hamiltonian

[18]. In all level density expressions, two parameters are of importance, namely,

the level density parameter a and the spin cut off factor, σ2. There have been

some calculations of the level density parameter by some authors [63, 64]. More

recently a realistic calculation of the level density parameter was performed

which relies on the BCS theory [28]. There have also been some calculations of

the spin cut-off parameter on the basis of the Fermi gas model[65, 67]. However,

so far realistic calculations have never been applied to obtain the spin cut off

factor which is important in all statistical model codes. Having seen a good

agreement of the BCS results with experimental data [68, 69] for the level den-

sity ρ(U) and for the level density parameter a(E) [28, 70], in the present work

we have extended the more realistic approach to calculate the level density and
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spin cut-off parameter for a large number of nuclei.

4.2 Method of calculations

In the present study nuclear level density and spin cut-off factor have been

determined at neutron binding energies for 295 nuclei between 20F and 253Cf

using microscopic theory. The steps necessary to calculate level density ρ(U)

and the relevant spin cut-off parameter σ(U) as outlined above are as follows:

For a set of single particle levels and particular choice of temperature, T, the

parameter λ and ∆ are estimated and a set of occupational probabilities is

calculated using Eqn. (3.14). Next, the stationary point conditions are checked

for a given nucleon number using Eqn. (3.12). If the conditions are not met, the

values of λ and ∆ are adjusted and the procedure is repeated until the saddle

point conditions are satisfied. Once the proper set of nk values are computed,

the entropy Sk is calculated using Eqn. (3.5). The energy En is calculated by

applying Eqns. (3.13) and (3.14) at particular temperature, T. The excitation

energy Un is then determined by subtracting the energy at T=0. The quantities

σn, ω(N, Un) are then calculated using Eqns. (3.19) and (3.4). A similar set of

calculations are used to calculate Up and Sp for proton system. The total level

density and spin cut-off factor are then calculated from Eqns. (3.17) and (3.18).

4.3 Calculations of the spin cut-off parameter

4.3.1 Calculations of σ2, Using Microscopic Model

A systematic study of the behavior of level density and of the spin cut off param-

eter across a large mass region has been performed using the microscopic model.

The results for even- even nuclei are shown in Table 4.1. Their corresponding

rigid body values, σ2
rigid = 0.0138A5/3[1+

√
1+4aU
2a

], as well as their values obtained

from the Gilbert and Cameron expression, σ2
GC = 0.0888A2/3

√
a(U − E0), where
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a is the level density parameter, U is the excitation energy and E0 is the back

shift energy [69] are also given in Table 4.1. These results are plotted in Figure

4.1 for comparison. Similar results for odd-odd nuclei are listed in Table 4.2 and

are plotted in Figure 4.2. The same results for odd-A nuclei are listed in Table

4.3 and are plotted in Figure 4.3. Examination of these figures reveals that the

values of the spin cut off factor deduced from the BCS theory do not increase

smoothly with A, as expected on the basis of macroscopic theory with rigid

body moment of inertia, instead the values of σ2(U) show structure reflecting

the angular momentum of shell model orbitals near the Fermi energy.

We have found it worth while to compare our results with those obtained

using the analytic expression, σ2
BSFG = 0.0146A5/3 1+

√
1+4a(U−E0)

2a
, introduced

recently [67]. The σ2 values computed from this for all nuclei under study at

neutron binding energy (U = Bn) of Ref. [70] are plotted in Figure 4.4. The

corresponding values of σ2 from microscopic theory are also shown in Figure 4.4

for comparison. Examination of this figure reveals that although the results from

both methods are in general agreement, they differ for nuclei near major shells;

in particular, this difference is very large for nuclei near the doubly magic nuclei

A ' 208. This may be accounted for by the fact that in microscopic theory

the realistic single particle orbitals are used which is ignored in the empirical

expression above.
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Table 4.1: Comparison of Spin Cut-off Parameter, σ2 from different methods for
even-even nuclei.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

12 26 Mg 11.09 4.50 0.41 5.41 5.30 5.51 6.77
14 30 Si 10.61 3.32 -3.89 5.95 7.77 9.50 5.33
16 34 S 11.42 4.66 -0.12 6.83 8.26 8.78 7.15
20 44 Ca 11.13 7.36 -0.07 10.05 9.84 10.44 17.31
22 48 Ti 11.63 6.92 -1.23 11.06 11.99 13.30 17.86
22 50 Ti 10.94 6.69 0.99 9.83 12.69 12.84 14.27
24 54 Cr 9.720 7.05 -0.62 10.83 13.28 14.47 14.86
26 58 Fe 10.04 7.61 -1.02 12.21 14.59 16.15 15.17
28 60 Ni 11.39 7.29 -0.85 12.86 16.75 18.34 13.94
28 62 Ni 10.60 7.82 -0.57 13.00 16.48 17.88 15.53
30 68 Zn 10.20 9.74 -0.19 14.88 16.82 17.96 20.58
32 74 Ge 10.20 12.04 -0.29 17.59 17.33 18.59 28.15
34 78 Se 10.50 11.98 -0.35 18.48 19.23 20.67 31.92
36 84 Kr 10.52 10.26 0.13 17.58 23.63 24.85 26.28
38 88 Sr 11.11 9.320 1.00 17.05 27.55 27.87 27.70
40 92 Zr 8.63 11.46 0.32 17.67 23.62 24.54 24.40
40 94 Zr 8.22 13.87 0.66 18.79 21.63 21.99 24.40
42 96 Mo 9.15 12.95 -0.04 20.32 24.45 25.93 28.50
42 98 Mo 8.64 14.26 -0.14 21.12 23.41 24.95 28.60
44 100 Ru 9.67 14.13 -0.18 22.58 25.67 27.40 33.10
44 102 Ru 9.22 15.35 0.18 22.84 24.84 26.03 33.70
46 106 Pd 9.56 15.60 0.13 24.12 26.73 28.09 38.23
46 108 Pd 9.22 16.13 0.34 24.10 26.63 27.67 40.87

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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Table 4.1: Continue.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

48 112 Cd 9.40 16.33 -0.1 25.70 28.36 30.16 45.50
48 114 Cd 9.04 16.70 0.28 25.25 28.35 29.54 45.60
50 118 Sn 9.33 15.10 0.68 24.41 32.11 32.76 48.60
50 120 Sn 9.11 14.80 0.70 24.10 32.99 33.58 47.20
52 124 Te 9.43 16.68 0.19 27.41 33.29 34.88 50.23
52 126 Te 9.11 16.10 0.23 26.68 34.27 35.80 46.40
54 130 Xe 9.25 15.91 0.34 27.14 36.59 38.03 45.66
54 132 Xe 8.94 15.20 0.40 26.22 37.80 39.13 38.35
56 136 Ba 9.11 15.24 0.14 27.45 40.03 42.02 38.75
56 138 Ba 8.61 13.47 0.78 24.37 42.59 43.08 34.34
58 142 Ce 7.17 17.83 0.88 25.59 35.35 35.12 33.05
60 144 Nd 7.82 17.29 0.53 27.39 38.32 39.21 39.27
60 146 Nd 7.56 19.19 0.19 29.30 36.56 38.22 40.61
60 148 Nd 7.33 23.23 0.25 31.86 33.36 34.70 39.41
62 148 Sm 8.14 19.80 0.21 31.13 38.12 39.82 46.62
62 150 Sm 7.99 21.83 0.07 32.96 36.71 38.68 46.72
62 152 Sm 8.26 22.66 -0.13 34.86 37.40 39.87 50.32
64 156 Gd 8.54 21.64 -0.27 35.53 40.65 43.66 58.12
64 158 Gd 7.94 21.41 -0.38 34.63 40.32 43.61 58.44
66 162 Dy 8.20 21.42 -0.46 35.92 42.68 46.34 66.95
66 164 Dy 7.66 21.07 -0.07 33.95 42.53 45.19 70.93
68 168 Er 7.77 21.30 -0.40 35.66 44.32 48.03 77.65
70 170 Yb 8.47 21.13 -0.32 37.13 47.32 50.96 84.19
70 172 Yb 8.02 22.21 -0.25 37.22 45.79 49.18 84.09
70 174 Yb 7.46 21.47 0.04 34.94 45.90 48.43 77.57

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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Table 4.1: Continue.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

72 178 Hf 7.63 22.87 -0.21 37.61 46.61 49.97 77.87
72 180 Hf 7.39 22.18 -0.3 36.96 47.52 51.24 75.22
74 184 W 7.41 22.82 -0.12 37.65 48.65 51.86 66.70
76 188 Os 7.99 23.15 0.07 39.46 51.89 54.67 62.61
76 190 Os 7.79 22.84 0.01 39.13 52.55 55.57 56.87
78 196 Pt 7.92 20.72 0.00 38.39 58.67 62.07 36.97
80 200 Hg 8.03 18.00 0.001 36.50 65.72 69.52 31.07
80 202 Hg 7.75 17.36 -0.24 36.02 66.96 71.89 28.16
90 230 Th 6.79 29.74 -0.28 48.37 58.98 63.65 89.21
92 234 U 6.84 29.81 -0.26 49.08 60.85 65.55 101.59
92 236 U 6.54 31.35 -0.28 49.62 58.85 63.54 107.58
92 238 U 6.15 31.32 -0.36 48.69 57.96 63.01 –
93 239 Np 6.22 30.20 -1.07 50.72 59.77 68.25 104.1
94 240 Pu 6.53 30.50 -0.43 49.99 61.33 66.93 108.24
94 242 Pu 6.31 31.87 -0.40 50.44 59.78 65.17 106.88
96 244 Cm 6.80 29.39 -0.08 49.30 65.51 69.69 116.09
96 246 Cm 6.46 29.22 -0.20 48.63 64.97 69.78 109.86
96 248 Cm 6.21 29.94 0.06 47.57 63.83 67.23 100.03
98 250 Cf 6.62 29.57 0.06 49.09 67.15 70.74 108.55

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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Figure 4.1: Comparison of Spin Cut-off Parameter, σ2 from different methods
for even-even nuclei.
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Table 4.2: Comparison of Spin Cut-off Parameter, σ2 from different methods for
odd-odd nuclei.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

9 20 F 6.60 3.12 -4.78 3.90 3.3 4.47 4.34
11 24 Na 6.96 3.42 -4.87 4.70 4.35 5.86 5.10
13 28 Al 7.72 3.93 -2.29 5.14 5.47 6.51 4.27
17 36 Cl 8.58 4.38 -1.88 6.55 8.22 9.53 6.30
17 38 Cl 6.11 5.95 0.91 5.58 6.52 6.41 6.27
19 40 K 7.80 5.15 -2.47 7.55 8.6 10.34 8.75
19 42 K 7.53 5.35 -4.97 8.77 8.99 12.04 8.45
21 46 Sc 8.76 6.83 -2.85 10.15 9.84 11.89 15.76
23 52 V 7.31 6.88 -1.53 9.65 11.06 12.79 11.33
25 56 Mn 7.27 7.54 -2.85 11.35 11.88 14.68 11.72
27 60 Co 7.49 8.1 -2.2 12.05 13.02 15.54 10.91
29 64 Cu 7.92 8.38 -2.62 13.35 14.6 17.67 12.65
29 66 Cu 7.07 8.84 -1.7 12.77 14.17 16.59 13.79
31 70 Ga 7.65 9.84 -1.93 14.65 15.33 18.03 13.34
31 72 Ga 6.52 11.06 -2.49 15.34 14.01 17.27 17.52
33 76 As 7.33 12.17 -2.53 17.45 15.39 18.75 22.36
35 80 Br 7.89 12.22 -2.33 18.42 17.33 20.74 25.70
35 82 Br 7.59 11.68 -2.16 17.89 18.16 21.64 22.58
37 86 Rb 8.65 9.90 -1.91 17.69 22.82 26.54 22.90
37 88 Rb 6.08 10.25 -1.44 15.42 19.71 23.05 14.75
39 90 Y 6.86 9.35 -0.82 15.11 22.73 25.35 19.10
41 94 Nb 7.23 12.35 -1.51 19.07 21.63 25.04 21.80
43 100 Tc 6.76 15.88 -1.61 22.06 20.36 23.85 23.90

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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Table (4.2): Continue.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

45 104 Rh 7.00 15.62 -2.01 23.29 22.28 26.59 26.90
47 108 Ag 7.27 15.82 -1.8 24.13 24 28.23 30.50
47 110 Ag 6.81 17.29 -1.54 24.49 22.9 26.71 32.40
49 114 In 7.27 15.14 -0.97 23.32 26.89 30.19 37.50
49 116 In 6.78 16.54 -1.1 24.12 25.56 29.05 37.30
51 122 Sb 6.81 16.47 -1.41 25.41 27.91 32.30 38.00
51 124 Sb 6.47 16.02 -1.64 25.16 28.4 33.47 36.50
53 128 I 6.83 16.39 -1.7 26.66 30.36 35.72 37.04
53 130 I 6.46 15.84 -1.55 25.67 30.9 36.21 35.16
55 134 Cs 6.89 15.66 -2.04 27.5 33.71 40.36 29.04
55 136 Cs 6.83 14.54 -2.01 26.63 35.76 42.79 25.75
57 140 La 5.16 15.65 -1.37 24.2 31.62 37.39 23.52
59 142 Pr 5.84 15.63 -0.87 24.76 34.36 38.83 28.27
61 148 Pm 5.89 20.50 -0.97 29.48 32.06 36.49 31.72
63 152 Eu 6.31 23.32 -1.86 34.91 32.37 38.79 38.42
63 154 Eu 6.44 22.24 -1.86 34.66 34.26 40.94 41.65
63 156 Eu 6.34 20.18 -1.3 31.95 36.55 42.28 44.95
65 160 Tb 6.38 20.80 -1.33 33.13 37.62 43.58 51.52
67 166 Ho 6.24 20.37 -1.29 33.23 40.05 46.36 60.39
69 170 Tm 6.59 20.42 -1.34 34.69 42.71 49.39 69.90
71 176 Lu 6.29 21.05 -1.24 35.12 43.57 50.24 65.92
73 182 Ta 6.06 21.21 -1.2 35.39 45.07 51.98 56.73
75 186 Re 6.18 21.90 -1.15 36.66 46.37 53.25 52.38
75 188 Re 5.87 22.33 -1.28 36.82 45.6 53.02 45.12
77 192 Ir 6.20 23.02 -1.26 38.73 47.72 55.19 39.47
77 194 Ir 6.07 21.56 -1.35 37.64 49.71 57.93 30.58

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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Table (4.2): Continue.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

79 198 Au 6.51 19.03 -1.44 37.11 56.79 66.10 20.97
81 204 Tl 6.66 15.51 -1.28 34.15 67.13 77.25 23.38
81 206 Tl 6.50 11.72 -0.94 28.92 78.22 88.18 22.80
83 210 Bi 4.60 13.32 -1.69 28.71 64.17 78.61 22.49
91 232 Pa 5.57 29.72 -0.61 45.42 54.4 60.49 79.66
91 234 Pa 5.22 30.69 -0.64 45.24 52.62 58.86 84.71
93 238 Np 5.49 28.88 -1.2 47.39 57.21 66.56 91.19
95 242 Am 5.54 28.71 -1.34 48.48 59.26 69.6 94.08
95 244 Am 5.36 29.00 -1.22 47.89 58.85 68.69 105.59
97 250 Bk 4.96 29.52 -1.04 46.91 58.5 67.82 70.70

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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Figure 4.2: Comparison of Spin Cut-off Parameter, σ2 from different methods
for odd-odd nuclei.
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Table 4.3: Comparison of Spin Cut-off Parameter, σ2 from different methods for
odd-A nuclei.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

12 25 Mg 7.33 3.63 -4.57 4.99 4.62 6.1 5.39
12 27 Mg 6.45 4.65 -0.84 4.65 4.33 4.84 3.96
14 29 Si 8.47 4.08 0.58 4.76 5.93 6.07 4.13
14 31 Si 6.59 4.59 0.40 4.67 5.54 5.7 3.62
15 33 P 7.94 4.78 0.63 5.40 6.55 6.67 4.78
16 33 S 8.64 4.42 -1.26 6.05 7.10 8.00 4.61
16 35 S 6.99 5.04 0.08 5.61 6.61 6.96 4.16
18 41 Ar 6.10 7.10 -0.54 7.25 6.73 7.40 8.89
20 43 Ca 7.93 7.00 -1.77 8.98 8.29 9.64 12.46
20 45 Ca 7.41 7.30 -1.03 8.82 8.48 9.53 12.47
22 47 Ti 8.88 6.33 -3.22 10.12 10.69 13.08 15.91
22 49 Ti 8.14 7.17 -0.56 9.39 10.30 11.24 13.24
22 51 Ti 6.37 6.64 1.90 6.66 10.24 9.21 8.06
23 51 V 11.05 6.65 -1.54 11.18 13.22 14.87 16.02
24 51 Cr 9.26 6.79 -2.25 10.80 12.04 14.10 16.65
24 53 Cr 7.94 6.62 -1.18 9.74 12.11 13.66 13.05
24 55 Cr 6.25 7.72 -0.93 9.56 10.61 11.98 10.19
26 55 Fe 9.30 6.64 -1.38 10.81 13.85 15.63 13.04
26 57 Fe 7.65 7.51 -2.23 11.33 12.56 14.98 11.48
26 59 Fe 6.58 8.59 -1.19 10.99 11.55 13.20 10.86
28 59 Ni 9.00 7.21 -2.00 11.98 14.67 17.06 10.34
28 61 Ni 7.82 8.13 -1.31 11.86 13.62 15.50 10.61
28 63 Ni 6.84 9.00 -0.47 11.40 12.78 13.95 11.18

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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Table (4.3): Continue.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

28 65 Ni 6.10 9.74 -0.02 11.08 12.24 12.98 12.15
30 65 Zn 7.98 9.60 -1.63 13.78 14.00 16.17 12.44
30 67 Zn 7.05 10.43 -1.54 13.87 13.29 15.44 13.57
30 69 Zn 6.48 11.05 -0.97 13.56 13.02 14.71 15.16
30 71 Zn 5.83 11.81 0.06 12.58 12.54 13.20 16.39
32 71 Ge 7.42 12.23 -1.76 16.13 13.79 16.14 16.61
32 73 Ge 6.78 12.56 -1.95 16.25 13.65 16.28 17.82
32 75 Ge 6.51 12.09 -1.56 15.59 14.29 16.73 19.81
32 77 Ge 6.07 12.30 -1.12 15.12 14.32 16.41 20.36
34 75 Se 8.03 12.75 -1.91 17.78 15.34 17.97 21.56
34 77 Se 7.42 12.85 -1.62 17.32 15.38 17.88 22.30
34 79 Se 6.96 12.06 -1.93 16.93 16.11 19.13 22.31
34 83 Se 5.82 12.82 -1.15 15.96 15.56 17.92 13.42
36 79 Kr 8.37 12.79 -1.75 18.60 17.04 19.74 26.28
36 81 Kr 7.87 13.42 -1.53 18.67 16.83 19.38 26.25
36 85 Kr 7.12 12.96 -1.13 17.75 17.70 20.08 18.23
38 85 Sr 8.53 12.44 -1.83 19.49 19.71 22.89 28.09
38 87 Sr 8.43 10.12 -1.08 17.10 22.71 25.44 23.53
38 89 Sr 6.37 9.88 -0.06 14.10 20.94 22.25 16.50
40 91 Zr 7.19 10.63 -0.20 15.92 22.13 23.72 20.80
40 93 Zr 6.73 12.04 -0.17 16.61 20.83 22.29 19.75
40 95 Zr 6.46 12.67 0.29 16.35 20.60 21.33 19.10
40 97 Zr 5.58 12.20 0.76 14.37 20.31 20.05 17.80
42 93 Mo 8.07 10.61 -0.64 17.52 24.25 26.59 26.60
42 95 Mo 7.37 12.47 -0.88 18.74 22.11 24.67 23.10
42 97 Mo 6.82 13.73 -1.05 19.50 20.97 23.75 22.70

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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Table (4.3): Continue.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

42 99 Mo 5.92 15.73 -1.26 20.20 18.90 21.91 20.80
42 101 Mo 5.40 17.63 -1.44 21.15 17.61 20.85 20.00
44 103 Ru 6.23 16.13 -1.73 22.11 20.40 24.26 24.40
44 105 Ru 5.91 18.10 -1.30 22.58 19.34 22.51 24.90
46 105 Pd 7.09 15.66 -1.35 22.72 22.76 26.16 26.30
46 107 Pd 6.54 16.72 -1.07 22.58 21.83 24.83 27.70
46 109 Pd 6.15 18.45 -1.34 23.82 20.78 24.15 29.60
46 111 Pd 5.76 20.06 -0.94 23.77 19.85 22.57 30.20
48 107 Cd 7.93 15.04 -0.93 23.09 25.30 28.21 27.60
48 109 Cd 7.33 16.37 -0.72 23.25 24.03 26.58 24.50
48 111 Cd 6.97 16.75 -1.11 23.87 23.91 27.14 33.30
48 113 Cd 6.54 17.47 -0.92 23.69 23.37 26.33 33.40
48 115 Cd 6.14 18.17 -0.61 23.25 22.87 25.31 34.90
48 117 Cd 5.77 18.35 -0.96 23.59 22.73 25.88 33.60
50 113 Sn 7.74 15.28 -0.26 22.95 27.17 29.21 36.60
50 115 Sn 7.54 14.80 0.25 21.83 28.09 29.25 38.80
50 117 Sn 6.94 15.55 -0.06 22.16 27.09 28.76 38.70
50 119 Sn 6.49 16.19 -0.18 22.31 26.40 28.29 38.60
50 121 Sn 6.17 15.18 0.06 20.92 27.43 28.88 37.40
50 123 Sn 5.95 15.74 -0.56 22.23 27.17 30.01 34.60
50 125 Sn 5.73 14.14 -0.46 20.78 29.02 31.85 31.80
52 123 Te 6.94 17.39 -0.77 25.43 27.74 30.87 40.66
52 125 Te 6.57 17.69 -0.75 25.25 27.53 30.66 37.90
52 127 Te 6.29 16.60 -0.77 24.29 28.62 31.99 33.90
52 129 Te 6.09 16.64 -0.87 24.39 28.89 32.57 29.50
52 131 Te 5.93 15.85 -0.54 23.20 30.03 33.12 22.90

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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Table (4.3): Continue.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

54 129 Xe 6.91 16.55 -1.03 25.98 30.77 34.78 37.02
54 131 Xe 6.62 17.39 -0.86 26.13 30.14 33.81 31.08
54 133 Xe 6.44 15.88 -0.7 24.64 31.99 35.55 27.03
54 135 Xe 6.38 14.83 -0.06 22.85 33.86 35.99 21.73
55 135 Cs 8.83 14.51 -0.25 26.81 39.97 42.85 35.35
56 131 Ba 7.49 17.67 -1.00 28.06 31.71 35.62 41.74
56 133 Ba 7.19 17.35 -1.04 27.65 32.20 36.33 37.42
56 135 Ba 6.97 15.93 -0.88 26.13 34.02 38.08 32.21
56 137 Ba 6.90 14.31 0.01 23.43 36.69 38.78 28.13
56 139 Ba 4.72 14.59 -0.19 20.18 31.10 33.53 19.73
57 139 La 8.78 13.64 -0.19 26.36 43.23 46.21 37.03
58 137 Ce 7.48 18.06 -0.76 28.8 33.76 37.41 37.01
58 141 Ce 5.43 16.05 0.12 22.20 32.34 33.84 27.20
58 143 Ce 5.14 18.92 -0.09 24.16 29.61 31.57 24.88
60 143 Nd 6.12 16.60 0.26 23.95 34.44 35.68 32.02
60 145 Nd 5.75 18.79 -0.34 26.23 32.07 34.87 30.46
60 147 Nd 5.29 21.25 -0.59 27.66 29.56 32.89 29.27
60 149 Nd 5.04 23.71 -1.01 29.89 27.89 32.20 28.39
60 151 Nd 5.33 22.39 -0.98 29.94 30.19 34.63 30.63
62 145 Sm 6.76 15.64 0.20 24.82 38.13 39.76 37.74
62 149 Sm 5.87 21.44 -0.73 29.69 31.62 35.39 34.07
62 150 Sm 7.99 21.83 0.07 32.96 36.71 38.68 46.72
62 151 Sm 5.60 24.11 -1.43 32.77 29.72 35.06 33.99
62 153 Sm 5.87 23.03 -1.42 32.90 31.82 37.35 36.87
62 155 Sm 5.81 21.52 -0.85 30.68 33.53 37.87 41.46
63 153 Eu 8.55 20.36 -1.48 36.29 40.66 46.44 51.80

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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Table (4.3): Continue.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

63 155 Eu 8.15 20.49 -0.87 34.84 40.47 44.97 54.22
64 153 Gd 6.25 24.20 -1.37 34.49 31.96 37.21 39.22
64 155 Gd 6.43 23.51 -1.33 34.61 33.63 38.93 42.66
64 157 Gd 6.36 22.37 -1.24 33.70 35.06 40.40 49.36
64 159 Gd 5.94 21.81 -1.05 32.18 35.12 40.16 45.36
64 161 Gd 5.63 21.11 -0.75 30.52 35.57 39.95 50.54
66 157 Dy 6.97 23.95 -1.21 36.17 35.35 40.40 46.53
66 159 Dy 6.83 21.55 -1.21 34.31 37.78 43.23 50.30
66 161 Dy 6.45 22.36 -1.29 34.58 36.83 42.53 51.04
66 163 Dy 6.27 21.38 -1.28 33.67 37.96 43.91 57.77
66 165 Dy 5.72 21.50 -1.02 32.14 36.95 42.28 55.57
68 163 Er 6.90 23.31 -1.18 36.36 37.99 43.36 55.85
68 165 Er 6.65 22.31 -1.26 35.48 38.97 44.80 59.17
68 167 Er 6.44 21.88 -1.08 34.53 39.54 45.06 62.79
68 169 Er 6.00 21.42 -0.88 32.96 39.44 44.55 62.18
68 171 Er 5.68 21.78 -0.83 32.59 38.84 43.87 60.93
69 171 Tm 7.49 21.17 -0.71 36.03 44.98 49.70 76.5
70 169 Yb 6.87 23.54 -1.00 36.93 40.05 45.22 66.55
70 171 Yb 6.62 21.68 -0.95 35.02 41.87 47.24 69.19
70 173 Yb 6.37 21.05 -0.89 34.07 42.57 47.94 67.86
70 175 Yb 5.82 21.19 -0.70 32.65 41.43 46.27 61.24
70 177 Yb 5.57 21.84 -0.70 32.76 40.68 45.56 56.92
71 177 Lu 7.07 21.30 -0.80 36.24 46.21 51.46 72.47
72 175 Hf 6.71 22.61 -0.95 36.56 42.86 48.33 68.96
72 177 Hf 6.38 22.70 -0.90 35.98 42.55 47.95 65.88
72 179 Hf 6.10 22.41 -0.90 35.32 42.72 48.28 62.38

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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Table (4.3): Continue.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

72 181 Hf 5.70 22.85 -0.22 33.04 41.69 44.92 54.49
73 181 Ta 7.58 23.18 -0.03 37.72 47.45 50.29 71.88
73 183 Ta 6.93 21.77 -0.43 36.25 47.84 52.11 62.23
74 181 W 6.68 22.61 -0.73 36.78 45.25 50.31 66.18
74 183 W 6.19 22.09 -0.77 35.49 44.98 50.33 56.95
74 185 W 5.75 23.32 -0.80 35.66 42.99 48.42 47.56
74 187 W 5.47 24.07 -0.75 35.52 42.01 47.26 43.25
76 187 Os 6.29 23.25 -1.00 37.82 45.75 51.96 52.86
76 189 Os 5.92 23.61 -0.96 37.29 44.87 51.04 42.95
76 191 Os 5.76 23.43 -1.12 37.38 45.24 52.11 36.26
76 193 Os 5.58 23.07 -0.78 35.93 45.73 51.50 29.29
77 192 Ir 6.20 23.02 -1.26 38.73 47.72 55.19 39.47
77 193 Ir 7.77 22.18 -0.91 41.14 54.69 61.02 42.87
78 193 Pt 6.25 24.05 -1.12 39.50 47.25 54.11 37.34
78 195 Pt 6.11 20.27 -1.23 36.40 51.95 59.99 31.22
78 197 Pt 5.85 20.02 -1.04 35.31 52.09 59.60 25.89
78 199 Pt 5.57 21.00 -0.42 33.94 50.49 55.29 21.19
80 199 Hg 6.66 19.93 -0.93 37.23 56.52 63.65 27.48
80 201 Hg 6.23 17.90 -0.21 32.71 58.88 63.27 24.16
82 205 Pb 6.73 15.03 -0.71 32.65 69.17 76.75 25.19
82 207 Pb 6.74 11.15 0.97 24.92 82.30 80.93 25.25
82 209 Pb 3.94 12.36 0.21 21.22 61.59 63.50 15.74
88 227 Ra 4.56 32.06 -0.84 43.47 45.82 52.56 55.33
90 229 Th 5.24 32.77 -0.99 47.49 49.14 56.50 63.04
90 231 Th 5.12 31.82 -0.8 45.86 50.05 56.76 71.77
90 233 Th 4.79 32.43 -0.81 45.29 48.69 55.53 71.55

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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Table (4.3): Continue.

σ2(Bn)

Z A Element Bn a E0 a) b) c) d)

92 233 U 5.74 30.33 -0.72 47.09 55.02 61.63 85.40
92 235 U 5.30 30.32 -0.93 46.48 53.69 61.42 81.65
92 237 U 5.13 30.74 -0.88 46.20 53.22 60.77 86.22
92 239 U 4.81 31.80 -0.82 45.74 51.42 58.68 82.94
93 239 Np 6.22 30.20 -1.07 50.72 59.77 68.25 104.10
94 239 Pu 5.65 29.31 -0.89 47.33 57.96 65.78 94.37
94 241 Pu 5.24 30.65 -1.02 47.63 55.41 63.84 90.55
94 243 Pu 5.03 31.64 -0.90 47.38 54.18 62.05 82.27
94 245 Pu 4.70 32.85 -0.62 45.97 52.12 58.54 79.74
95 243 Am 6.37 28.38 -1.07 50.23 64.20 73.19 104.45
96 243 Cm 5.69 28.13 -0.40 45.26 61.11 66.78 96.84
96 245 Cm 5.52 29.38 -0.98 48.05 59.69 68.30 97.53
96 247 Cm 5.16 29.00 -0.82 46.04 58.95 66.97 86.75
98 251 Cf 5.11 31.64 -0.75 48.10 57.60 65.08 72.85

a) : Calculated with Gilbert and Cameron Expression.
b) : Calculated with Rigid Body approximation.
c) : Calculated with Back Shift Fermi Gas (BSFG) Expression.
d) : Calculated with Microscopic Theory.
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4.3.2 Calculations of σ2, from the Level Spacing Information

We have also computed the spin cut-off parameter for all nuclei under study

from the knowledge of the nuclear level density at neutron binding energy, Bn

and the average s-wave neutron spacing < D1/2+ > which is [27]

σ2 = ρ(Bn) < D1/2+ > /2 (4.1)

To do this, we have first computed nuclear level density around neutron bind-

ing energy from microscopic theory. The values of the average s-wave neutron

spacing < D1/2+ > were taken from compilation of Ignatyuck et. al [71, 72].

The deduced values of σ2(E) from Eqn. (3.22) together with their correspond-

ing level densities obtained from the BCS approach and the average resonance

spacing for selected odd A nuclei are listed in Table 4.4. Study of this table

reveals that the σ2(E) values obtained from microscopic theory are much larger

than their values obtained from the knowledge of the average spacing. However,

if the values of the spin cut off factor deduced from Eqn. (4.1) are multiplied

by a factor of F = 0.25Z( Z
N

+ 1) the agreement between the two sets of results

becomes very satisfactory. The corrected values of the spin cut off factors are

also listed in Table 4.4 and are plotted in Figure 4.5.
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Table 4.4: The Spin Cut-off Parameter, σ2 at neutron binding energy for odd-A
Spherical Nuclei.

Spin Cut-off Parameter, σ2

N Z A Element ρ(Bn) Dexp a b c

13 12 25 Mg 2 1000000 5.39 1.00 5.77
17 16 33 S 10 87000 4.61 0.44 3.38
23 18 41 Ar 5 286000 8.89 0.72 5.74
21 20 41 Ca 25 74000 10.24 0.93 9.03
23 20 43 Ca 27 59000 12.46 0.80 7.45
25 20 45 Ca 20 148000 12.47 1.48 13.32
25 22 47 Ti 89 45000 15.91 2.00 20.71
27 22 49 Ti 34 200000 13.24 3.40 33.94
29 22 51 Ti 7 380000 8.06 1.33 12.86
27 24 51 Cr 147 76000 16.65 5.59 63.31
29 24 53 Cr 31 47000 13.05 0.73 7.99
31 24 55 Cr 13 95000 10.19 0.62 6.57
29 26 55 Fe 93 25000 13.04 1.16 14.33
31 26 57 Fe 45 62000 11.48 1.40 16.67
31 28 59 Ni 77 27000 10.34 1.04 13.85
33 28 61 Ni 63 39000 10.61 1.23 15.9
35 28 63 Ni 41 39000 11.18 0.80 10.07
37 28 65 Ni 29 64000 12.15 0.93 11.41
35 30 65 Zn 147 9000 12.44 0.66 9.21
37 30 67 Zn 100 6200 13.57 0.31 4.21
39 30 69 Zn 72 27000 15.16 0.97 12.9
39 32 71 Ge 346 4000 16.61 0.69 10.08
41 32 73 Ge 184 10000 17.82 0.92 13.1

a) : σ2, Calculated with Microscopic Model.
b) : σ2 = 1

2
ρ(Bn) < D+

1/2 >.

c) : σ2 = 1
2
ρ(Bn) < D+

1/2 > ×[0.25Z( Z
N

+ 1)] (Modified Formula).
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Table (4.4): Continue.

Spin Cut-off Parameter, σ2

N Z A Element ρ(Bn) Dexp a b c

43 32 75 Ge 149 14000 19.81 1.04 14.55
45 32 77 Ge 104 43000 20.36 2.24 30.61
41 34 75 Se 1571 370 21.56 0.29 4.52
43 34 77 Se 750 1800 22.30 0.68 10.27
45 34 79 Se 415 4500 22.31 0.93 13.93
47 34 81 Se 206 10000 19.98 1.03 15.09
49 34 83 Se 41 69000 13.42 1.41 20.37
45 36 81 Kr 2400 1100 26.25 1.32 21.38
47 38 85 Sr 4127 950 28.09 1.96 33.68
49 38 87 Sr 2380 1000 23.53 1.19 20.07
51 38 89 Sr 137 12000 16.50 0.82 13.63
51 40 91 Zr 408 5000 20.80 1.02 18.20
53 40 93 Zr 467 4200 19.75 0.98 17.21
55 40 95 Zr 389 7500 19.10 1.46 25.20
51 42 93 Mo 2064 900 26.60 0.93 17.78
53 42 95 Mo 1027 670 23.10 0.34 6.48
55 42 97 Mo 913 1400 22.70 0.64 11.83
65 48 113 Cd 3948 200 33.40 0.39 8.24
67 48 115 Cd 3404 560 34.90 0.95 19.63
63 50 113 Sn 11937 330 36.60 1.97 44.16
65 50 115 Sn 14942 230 38.80 1.72 38.00
67 50 117 Sn 7562 350 38.70 1.32 28.89
69 50 119 Sn 5431 730 38.60 1.98 42.73
71 50 121 Sn 3356 1700 37.40 2.85 60.77

a) : σ2, Calculated with Microscopic Model.
b) : σ2 = 1

2
ρ(Bn) < D+

1/2 >.

c) : σ2 = 1
2
ρ(Bn) < D+

1/2 > ×[0.25Z( Z
N

+ 1)] (Modified Formula).

78



Table (4.4): Continue.

Spin Cut-off Parameter, σ2

N Z A Element ρ(Bn) Dexp a b c

73 50 123 Sn 1582 2500 34.60 1.98 41.65
75 56 131 Ba 80111 55 41.74 2.20 53.87
79 56 135 Ba 8003 380 32.21 1.52 36.38
81 56 137 Ba 2624 1850 28.13 2.43 57.47
83 56 139 Ba 84 18000 19.73 0.76 17.73
79 58 137 Ce 33837 63 37.01 1.07 26.80
83 58 141 Ce 491 5500 27.20 1.35 33.26
85 58 143 Ce 397 8900 24.88 1.77 43.10
83 60 143 Nd 3031 1700 32.02 2.58 66.58
109 72 181 Hf 41371 100 54.49 2.07 61.83
107 74 181 W 380889 8 66.18 1.52 47.68
109 74 183 W 77096 55 56.95 2.12 65.85
111 74 185 W 16343 140 47.56 1.14 35.27
113 74 187 W 15190 150 43.25 1.14 34.88
111 76 187 Os 83876 33 52.86 1.38 44.30
119 80 199 Hg 26866 90 27.48 1.21 40.43
123 82 205 Pb 15344 530 25.19 4.07 138.93

a) : σ2, Calculated with Microscopic Model.
b) : σ2 = 1

2
ρ(Bn) < D+

1/2 >.

c) : σ2 = 1
2
ρ(Bn) < D+

1/2 > ×[0.25Z( Z
N

+ 1)] (Modified Formula).
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4.4 Isospin Dependent Nuclear Level Density

The isospin dependent level density for 30P and 32S nuclei as a function of ex-

citation energy for various isospins using Eqns. (3.28) and (3.29)was computed.

First nuclear level density ρ(E) were calculated as a function of energy as out

lined in the previous chapter. The isospin dependent level density were then

calculated by combining Equations (3.28) and (3.29). The results are given in

Tables 4.5 and 4.6 and are displayed in Figures 4.6 and 4.7. Examination of

these figures show that different isospin components of the level density sums

up to total nuclear level density, ρ(E).
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Table 4.5: Calculated Level Density for 30P for various isospin.

Energy ρ(U)BCS ρ(U, 0) ρ(U, 1) ρ(U, 2) ρ(U, 3) ρ(U, Iall)

2.47 0.14391 0.10138 0.05262 0.00262 1.87083E-5 0.15664
2.65 0.25915 0.16931 0.10307 0.00707 8.2928E-5 0.27953
5.12 0.57656 0.35107 0.2441 0.02186 3.8053E-4 0.61741
6.90 1.5446 0.88045 0.68508 0.07677 0.00187 1.64416
8.95 4.9102 2.63933 2.25388 0.30645 0.01002 5.20967
11.39 18.098 9.14401 8.51764 1.36857 0.05737 19.0876
13.71 80.631 38.54323 38.62547 7.18342 0.37493 84.72705
15.44 250.64 113.67777 121.50777 25.70814 1.62916 262.52284
16.92 484.58 209.06235 236.64949 56.15313 4.22554 506.09051
18.50 938.42 386.01907 459.96656 120.93419 10.60415 977.52396

Table 4.6: Calculated Level Density for 32S for various isospin.

Energy ρ(U)BCS ρ(U, 0) ρ(U, 1) ρ(U, 2) ρ(U, 3) ρ(U, Iall)

3.43 0.31909 0.10138 0.12374 0.00769 7.65816E-5 0.34515
4.85 0.78079 0.16931 0.32568 0.02728 4.29435E-4 0.83761
6.73 2.3745 0.35107 1.04454 0.11227 0.00256 2.53041
8.88 8.8439 0.88045 4.04334 0.53665 0.01689 9.37312
11.39 38.965 2.63933 18.31238 2.91185 0.12001 41.10652
13.34 231.08 9.14401 110.69656 20.58692 1.0699 242.81424
14.62 420.86 38.54323 204.15498 43.54638 2.7903 440.72038
15.99 784.98 113.67777 383.61973 92.3372 7.09622 819.52697
17.46 1489.1 209.06235 730.13551 195.69752 17.67562 1550.40625
19.002 2858.3 386.01907 1401.5388 413.56743 43.13175 2968.51605
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Figure 4.6: Level density of 30P as a function of energy and isospin.
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4.5 Isospin Cut-off Parameter

We have made study of isospin cut-off parameter (GC) for a large range of nuclei

from 19F to 253Cf using the known values of a, E0, and Bn taken from Ref. [71].

The results are listed in Table 4.7 and are displayed in Figure 4.8, where isospin

cut-off parameter is plotted in terms of mass number. Examination of this

figure shows interesting results namely, that it shows structure in certain mass

regions. The isospin cut-off parameter (BSFG) is also computed using different

sets of parameters of a, E0, and Bn taken from Ref. [72]. The results are listed

in Table 4.7 and are plotted in Figure 4.9. It is clear that the isospin cut-off

parameters show the similar structure at certain mass regions. The isospin cut-

off parameters calculated using two different sets of a, E0, and Bn values are

plotted in Figure 4.10 for comparison.

The results of isospin cut-off parameter (GC) are compared with the spin

cut-off parameter deduced from the BCS theory in Figure 4.11. In order to

allow easy comparison the values of the isospin cut-off parameter are multiplied

by a, level density parameter. We note that the position of the peaks coincide

with that predicted from the BCS theory.
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Table 4.7: The Isospin Cut-off parameters calculated using a, E0, and Bn values
from Ref [71] and Ref [72].

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

20 F 0.81 0.99
24 Na 0.88 1.05
25 Mg 0.82 1.08
26 Mg 0.95 1.13
27 Mg 0.80 0.96
28 Al 0.94 1.03
29 Si 0.86 0.94
30 Si 0.88 1.13
31 Si 0.80 0.89
33 P 0.90 0.98
33 S 0.96 1.09
34 S 1.01 1.19
35 S 0.88 0.98
36 Cl 1.01 1.11
38 Cl 0.95 0.93
41 Ar 0.94 1.12
40 K 1.05 1.18
42 K 1.08 1.32
41 Ca 1.05 1.19
43 Ca 1.10 1.33
44 Ca 1.24 1.46
45 Ca 1.08 1.27
46 Sc 1.27 1.43

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Table 4.7: Continue.

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

47 Ti 1.14 1.41
48 Ti 1.25 1.51
49 Ti 1.11 1.28
50 Ti 1.17 1.32
51 Ti 0.90 0.91
51 V 1.34 1.47
52 V 1.16 1.26
51 Cr 1.19 1.42
53 Cr 1.08 1.26
54 Cr 1.14 1.38
55 Cr 1.02 1.21
56 Mn 1.21 1.41
55 Fe 1.17 1.36
57 Fe 1.14 1.39
58 Fe 1.21 1.47
59 Fe 1.11 1.32
60 Co 1.27 1.43
59 Ni 1.20 1.43
60 Ni 1.27 1.52
61 Ni 1.18 1.39
62 Ni 1.26 1.50
63 Ni 1.14 1.31
65 Ni 1.10 1.25

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Table 4.7: Continue.

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

64 Cu 1.31 1.51
66 Cu 1.27 1.42
65 Zn 1.29 1.54
67 Zn 1.26 1.52
68 Zn 1.37 1.61
69 Zn 1.23 1.46
71 Zn 1.17 1.34
70 Ga 1.38 1.56
72 Ga 1.37 1.60
71 Ge 1.39 1.69
73 Ge 1.35 1.67
74 Ge 1.53 1.79
75 Ge 1.30 1.58
77 Ge 1.26 1.51
76 As 1.50 1.74
75 Se 1.48 1.79
77 Se 1.42 1.72
78 Se 1.53 1.81
79 Se 1.35 1.65
81 Se 1.30 1.52
83 Se 1.25 1.52
80 Br 1.55 1.78
82 Br 1.48 1.70

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Table 4.7: Continue.

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

79 Kr 1.52 1.81
81 Kr 1.49 1.79
84 Kr 1.45 1.65
85 Kr 1.37 1.65
86 Rb 1.45 1.63
88 Rb 1.25 1.41
85 Sr 1.50 1.80
87 Sr 1.34 1.57
88 Sr 1.42 1.55
89 Sr 1.12 1.29
90 Y 1.25 1.37
91 Zr 1.26 1.43
92 Zr 1.35 1.56
93 Zr 1.29 1.46
94 Zr 1.43 1.64
95 Zr 1.29 1.42
97 Zr 1.17 1.24
94 Nb 1.51 1.66
93 Mo 1.35 1.54
95 Mo 1.40 1.62
96 Mo 1.49 1.74
97 Mo 1.41 1.66
98 Mo 1.51 1.78

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Table 4.7: Continue.

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

99 Mo 1.4 1.70
101 Mo 1.41 1.75
100 Tc 1.65 1.83
100 Ru 1.61 1.87
102 Ru 1.63 1.87
103 Ru 1.47 1.80
105 Ru 1.50 1.82
104 Rh 1.64 1.88
105 Pd 1.54 1.83
106 Pd 1.68 1.92
107 Pd 1.52 1.79
108 Pd 1.67 1.90
109 Pd 1.54 1.87
111 Pd 1.54 1.84
108 Ag 1.68 1.90
110 Ag 1.69 1.91
107 Cd 1.59 1.83
109 Cd 1.59 1.82
111 Cd 1.57 1.85
112 Cd 1.69 1.97
113 Cd 1.55 1.81
114 Cd 1.68 1.92
115 Cd 1.52 1.76

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Table 4.7: Continue.

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

117 Cd 1.49 1.77
114 In 1.65 1.78
116 In 1.67 1.81
113 Sn 1.58 1.76
115 Sn 1.52 1.66
117 Sn 1.50 1.66
118 Sn 1.62 1.82
119 Sn 1.47 1.66
120 Sn 1.59 1.77
121 Sn 1.39 1.54
123 Sn 1.40 1.62
125 Sn 1.32 1.50
122 Sb 1.66 1.85
124 Sb 1.61 1.81
123 Te 1.60 1.84
124 Te 1.72 1.97
125 Te 1.56 1.81
126 Te 1.66 1.90
127 Te 1.48 1.72
129 Te 1.47 1.71
131 Te 1.41 1.62
128 I 1.66 1.88
130 I 1.60 1.79

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Table 4.7: Continue.

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

129 Xe 1.56 1.82
130 Xe 1.67 1.89
131 Xe 1.56 1.81
132 Xe 1.60 1.81
133 Xe 1.48 1.70
135 Xe 1.39 1.57
134 Cs 1.64 1.88
135 Cs 1.68 1.82
136 Cs 1.58 1.80
131 Ba 1.68 1.94
133 Ba 1.63 1.90
135 Ba 1.54 1.78
136 Ba 1.63 1.86
137 Ba 1.43 1.59
138 Ba 1.48 1.64
139 Ba 1.19 1.37
139 La 1.62 1.76
140 La 1.42 1.62
137 Ce 1.68 1.93
141 Ce 1.33 1.48
142 Ce 1.52 1.69
143 Ce 1.40 1.59
142 Pr 1.50 1.64

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Table 4.7: Continue.

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

143 Nd 1.44 1.58
144 Nd 1.59 1.79
145 Nd 1.50 1.71
146 Nd 1.65 1.89
147 Nd 1.53 1.78
148 Nd 1.76 2.03
149 Nd 1.58 1.90
151 Nd 1.58 1.89
148 Pm 1.72 1.88
145 Sm 1.49 1.62
148 Sm 1.74 1.98
149 Sm 1.62 1.89
150 Sm 1.81 2.08
151 Sm 1.69 2.06
152 Sm 1.88 2.17
153 Sm 1.70 2.05
155 Sm 1.63 1.90
152 Eu 1.90 2.18
153 Eu 1.95 2.25
154 Eu 1.87 2.14
155 Eu 1.90 2.15
156 Eu 1.77 1.97
153 Gd 1.79 2.14

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Table 4.7: Continue.

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

155 Gd 1.79 2.13
156 Gd 1.88 2.18
157 Gd 1.74 2.06
158 Gd 1.80 2.11
159 Gd 1.66 1.96
161 Gd 1.59 1.84
160 Tb 1.80 2.00
157 Dy 1.89 2.21
159 Dy 1.78 2.08
161 Dy 1.76 2.08
162 Dy 1.83 2.15
163 Dy 1.69 2.01
164 Dy 1.74 2.02
165 Dy 1.62 1.91
166 Ho 1.76 1.96
163 Er 1.85 2.17
165 Er 1.78 2.10
167 Er 1.73 2.03
168 Er 1.78 2.08
169 Er 1.65 1.93
171 Er 1.62 1.89
170 Tm 1.80 2.01
171 Tm 1.84 2.08

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Table 4.7: Continue.

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

169 Yb 1.85 2.15
170 Yb 1.86 2.15
171 Yb 1.75 2.03
172 Yb 1.84 2.14
173 Yb 1.69 1.96
174 Yb 1.73 2.00
175 Yb 1.61 1.87
177 Yb 1.60 1.86
176 Lu 1.79 1.99
177 Lu 1.82 2.05
175 Hf 1.80 2.08
177 Hf 1.75 2.03
178 Hf 1.82 2.11
179 Hf 1.70 1.98
180 Hf 1.77 2.06
181 Hf 1.63 1.85
181 Ta 1.92 2.10
182 Ta 1.77 1.97
183 Ta 1.80 2.00
181 W 1.79 2.05
183 W 1.71 1.96
184 W 1.79 2.07
185 W 1.68 1.96

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Table 4.7: Continue.

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

187 W 1.66 1.94
186 Re 1.81 2.01
188 Re 1.78 2.00
187 Os 1.77 2.06
188 Os 1.88 2.14
189 Os 1.72 2.02
190 Os 1.84 2.11
191 Os 1.70 2.01
193 Os 1.66 1.92
192 Ir 1.85 2.07
193 Ir 1.94 2.19
194 Ir 1.78 2.00
193 Pt 1.79 2.10
195 Pt 1.64 1.93
196 Pt 1.77 2.03
197 Pt 1.59 1.86
199 Pt 1.55 1.78
198 Au 1.73 1.95
199 Hg 1.70 1.95
200 Hg 1.67 1.91
201 Hg 1.53 1.71
202 Hg 1.62 1.87
204 Tl 1.58 1.77

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Table 4.7: Continue.

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

206 Tl 1.38 1.50
205 Pb 1.48 1.69
207 Pb 1.23 1.30
208 Pb 1.19 1.26
209 Pb 0.99 1.11
210 Bi 1.25 1.47
227 Ra 1.74 2.08
229 Th 1.90 2.25
230 Th 1.96 2.28
231 Th 1.85 2.16
233 Th 1.79 2.13
232 Pa 1.99 2.14
234 Pa 1.96 2.12
233 U 1.92 2.21
234 U 1.97 2.29
235 U 1.84 2.17
236 U 1.96 2.30
237 U 1.81 2.14
238 U 1.89 2.25
239 U 1.77 2.11
238 Np 1.95 2.19
239 Np 2.00 2.33
239 Pu 1.87 2.18

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Table 4.7: Continue.

Isospin Cut-off Parameter, σ2
Iz

Mass Number Element a) b)

240 Pu 1.93 2.30
241 Pu 1.83 2.18
242 Pu 1.94 2.30
243 Pu 1.82 2.16
245 Pu 1.78 2.09
242 Am 1.96 2.22
243 Am 1.98 2.29
244 Am 1.92 2.18
243 Cm 1.82 2.07
244 Cm 1.95 2.24
245 Cm 1.85 2.18
246 Cm 1.88 2.20
247 Cm 1.77 2.08
248 Cm 1.86 2.14
249 Cm 1.76 2.06
250 Bk 1.89 2.10
250 Cf 1.93 2.20
251 Cf 1.85 2.15
253 Cf 1.78 2.08

a) : Calculated using the values of a, E0, and Bn from Ref[72].
b) : Calculated with parameters of a, Ebs, and Bn from Ref[71].
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Figure 4.8: The Isospin Cut-off parameter plotted as a function of mass number,
A. The parameters of a, E0, and Bn are taken from Ref [71].
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Figure 4.9: The Isospin Cut-off parameter plotted as a function of mass number,
A. The parameters of a, E0, and Bn are taken from Ref [72].
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Figure 4.10: Comparison of the Isospin Cut-off parameter for two different sets
of parameters a, E0, and Bn.
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Figure 4.11: Comparison of the Isospin Cut-off parameter multiplied by a using
parameters of a, E0, and Bn from Ref [71] with that of Spin Cut-off parameter
from the BCS theory.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

Nuclear level density is an important quantity in the nuclear reaction theory.

In this work program we have shown that the microscopic theory provides more

precise information on the energy dependence of the nuclear level densities.

The spin cut-off parameter which is an important parameter in all statis-

tical model codes has been computed for the first time using the microscopic

approach. The spin cut-off parameter has been computed for a large range of

nuclear mass by including a balanced number of even-even , odd A and odd-odd,

light, medium weight and heavy and spherical and deformed nuclei. Our results

indicate that the spin cut-off parameter, σ2 values at neutron binding energy,

Bn show structure reflecting the angular momentum of the shell model orbitals

near the Fermi energy. For example there are four strong peaks in Figure 4.1

where the difference between current and the rigid body calculations are huge.

The same results are seen in Figure 4.2 and Figure 4.3. Examination of the

single particle level schemes for nuclei in these mass regions indicate that the

orbitals with large angular momentum are responsible for these differences. In

particular the 1f5/2 , 1g7/2, 2d5/2 and 1i11/2 proton orbitals and 1g9/2, 1h9/2,

1h11/2 and 1i13/2 neutron orbitals play an important role in the σ2(Bn) values.

This finding is no longer consistent with the claims made by some authors [27]

that the spin cut-off parameter corresponds to their rigid body values.

In summary, in this work we have presented more realistic calculations of the
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spin cut-off parameter for a wide range of mass region and show that the values

σ2(Bn) obtained from the macroscopic methods are approximate. They are

completely inadequate near magic nuclei; instead, significant shell and pairing

effects appear for these nuclei.

The influence of the isospin has also been introduced in the calculations of

the nuclear level densities. Such results for 30P and 32Si are reported in section

(4-4). The isospin cut-off parameter has also been obtained as outlined in section

(4-5). The results are displayed in chapter 4 are interesting in that they show

structure similar to that observed in the spin cut-off parameters. This finding

confirms the generally reported shell structure.[28, 67, 73]

Finally, we have presented a method of computing the isospin dependent

nuclear level density, in particular the isospin cut-off parameter.
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