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ABSTRACT 

APPROACHES FOR MULTI-OBJECTIVE COMBINATORIAL 

OPTIMIZATION PROBLEMS 

LOKMAN, Banu 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Murat KÖKSALAN 

 

June 2007,  85 pages 

In this thesis, we develop two exact algorithms and a heuristic procedure for Multi-

objective Combinatorial Optimization Problems (MOCO). Our exact algorithms 

guarantee to generate all nondominated solutions of any MOCO problem. We test 

the performance of the algorithms on randomly generated problems including the 

Multi-objective Knapsack Problem, Multi-objective Shortest Path Problem and 

Multi-objective Spanning Tree Problem. Although we showed the algorithms work 

much better than the previous ones, we also proposed a fast heuristic method to 

approximate efficient frontier since it will also be applicable for real-sized problems.  

Our heuristic approach is based on fitting a surface to approximate the efficient 

frontier. We experiment our heuristic on randomly generated problems to test how 

well the heuristic procedure approximates the efficient frontier. Our results showed 

the heuristic method works well.  

Keywords: Multiple criteria, combinatorial optimization, efficient solution. 
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ÖZ 

ÇOK AMAÇLI BİLEŞİ OPTİMİZASYONU PROBLEMLERİ 

İÇİN YAKLAŞIMLAR 

 

LOKMAN, Banu 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Murat KÖKSALAN 

 

Haziran 2007, 85 sayfa 

Bu tezde, çok amaçlı bileşi problemleri için kesin çözümler veren iki algoritma ve 

iyi çözümler veren sezgisel bir yöntem geliştirdik. Geliştirdiğimiz iki algoritma tüm 

etkin çözümleri tam olarak bulmayı garantilemektedir. Algoritmalarımızın 

performansını rastgele yarattığımız farklı çok amaçlı bileşi problemleri üzerinde 

(Çok Amaçlı Sırt Çantası Problemi, Çok Amaçlı En Kısa Yol Problemi ve Çok 

Amaçlı Kapsayan Ağaç Problemi) değerlendirdik. Algoritmalarımızın 

performansının daha önceden geliştirilen algoritmalardan iyi olduğunu 

göstermemize rağmen, gerçek hayat büyüklüğündeki problemlerde de uygulanabilir 

olması için etkin çözümlerin bulunduğu bölgeyi yaklaşık olarak tanımlayan  sezgisel 

bir yöntem geliştirdik. Aynı çok amaçlı bileşi problemleri üzerinde denemeler 

yaparak sezgisel yaklaşımımızın etkin çözümleri içeren bölgeyi ne kadar iyi 

tanımladığını deneysel olarak araştırdık ve sezgisel yaklaşımımızın iyi çalıştığını 

gösterdik.  

Anahtar Kelimeler: Çok kriterli, bileşi optimizasyonu, etkin çözüm 
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CHAPTER 1 

1 INTRODUCTION 

Multiobjective Combinatorial Optimization Problems (MOCO) have been a 

potential research area for the last few decades due to the multicriteria and 

combinatorial nature of many real-life problems. Although single objective 

combinatorial problems have been widely studied, the decision makers (DMs) 

usually have to deal with conflicting objectives. However, generalizing the results of 

single objective problems to multiple objectives is not easy. The computational 

complexity may increase substantially. 

Since the number of efficient solutions may be exponential in the problem size and 

the problem may become computationally intractable, to determine all efficient 

solutions is not practical especially for realistically large-sized MOCO problems. 

Therefore, instead of generating all efficient solutions, heuristics are developed in 

order to approximate the efficient frontier. Furthermore, with the help of the 

heuristic procedures, it may be more meaningful to find the preferred solutions 

incorporating decision maker’s preferences.  

Köksalan (1999) developed a heuristic approach that quickly finds a good 

hypothetical solution for the DM. The approach is based on fitting several arcs to 

represent possible locations of efficient solutions. A sample of points are taken on 

these arcs and based on a known utility function. An efficient solution close to the 

best hypothetical solution is proposed as a heuristic solution for the problem. Since 

the procedure utilizes several arcs simultaneously, it is sufficient for each efficient 

solution to be represented by at least one of the chosen arcs. The proposed heuristic 

procedure is implemented on a bicriteria scheduling problem and yields good results 

in negligibly small computational time. Furthermore, the approach is not restricted 

to bicriteria scheduling problems. It can be generalized for problems with two or 

more objectives and applied to other MOCO problems. According to the preference 



 2 

information obtained from the DM, a localized search can also be conducted in order 

to find the preferred efficient solution. 

We develop a heuristic method to approximate the efficient frontier for MOCO 

problems. Our procedure is based on fitting a surface to approximate the efficient 

frontier similar to the approach developed by Köksalan (1999). We experiment on 

various MOCO problems, including the Multiobjective Knapsack Problem (MOKP), 

Multiobjective Shortest Path (MOSP) and Multiobjective Spanning Tree (MOST) 

Problems.  

In order to test how well the heuristic procedure approximates the efficient frontier, 

we developed two exact algorithms to generate all efficient solutions for MOCO 

problems. Our first method finds the efficient solutions iteratively by solving a 

model with increasing number of variables and constraints at each iteration.  Our 

method proposes an improvement to the algorithm developed by Sylva and Crema 

(2004) by decreasing the number of additional constraints and binary variables. 

However, the improved algorithm still requires substantial computational effort as 

the number of efficient solutions increase. Our second method deals with this 

computational complexity and only two additional constraints are inserted to our 

model without adding new constraints or binary variables at each iteration. We solve 

more models but models are much easier in complexity..  

Different from many of the previous exact methods, the proposed methods are not 

restricted to bicriteria problems and can be used for MOCO problems with two or 

more objectives. Our second exact algorithm to generate all efficient solutions has 

been tested on a number of random instances of two, three and four-objective 

problems including knapsack, minimum spanning tree and shortest path problems. 

Since all efficient solutions of these problems are generated, we also test the 

performance of our heuristic method of approximating the efficient frontier on these 

MOCO problems and demonstrate that it works well.  

In Chapter 2, we provide background information on approaches to MOCO 

problems. We develop two different exact methods and demonstrate their 

performances in Chapter 3. We propose a heuristic procedure to approximate the 
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efficient frontier and we report the experimental results in Chapter 4. We will 

present our conclusions in Chapter 5.  
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CHAPTER 2 

2 LITERATURE REVIEW  

A number of exact and approximation methods have been developed to solve 

MOCO problems. The early papers in MOCO usually focused on finding supported 

efficient solutions. As Ehrgott and Gandibleux (2000) argues, weighted linear 

combination of objectives, the most popular exact method, can be used to generate 

all supported efficient solutions by means of varying the weight factors.  

The computational complexity of MOCO problems gets worse due to the 

unsupported solutions. These solutions cannot be obtained by using a weighted 

linear combination of objectives. Furthermore, generating all supported efficient 

solutions may not be easy especially for large-sized MOCO problems.   

The two phase methods provide a general framework for the problem of generating 

all efficient solutions of the biobjective MOCO problem as Ehrgott and Gandibleux 

(2000) argues. In the first phase, all supported efficient solutions are generated using 

the weighted sum scalarization. In the second phase, all unsupported efficient 

solutions are obtained by employing problem specific techniques. The two phase 

method has been modified and applied to several biobjective combinatorial 

problems.  

Visée et al. (1998) proposed a two phase method and branch and bound procedures 

for the biobjective knapsack problem.  Ramos et al. (1998) developed a two phase 

method to generate all efficient trees for the biobjective MOST problem. Steiner and 

Radzik (2003) also proposed a two phase algorithm for the biobjective MOST. 

According to Ehrgott and Gandibleux (2000), the majority of exact methods 

employed to generate all unsupported efficient solutions as well as the supported 

efficient solutions utilize the same idea with the two phase method except from the 

algorithms developed for shortest path problem. They also point out the fact that 
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most of these exact methods are restricted to two objectives and cannot be adapted 

to multiple objectives.  

There also exist exact algorithms especially for the multiobjective shortest path 

(MOSP) problem adapted from the single objective methods.  Martins (1984) 

proposed an algorithm based on the label setting method to generate all efficient 

paths of MOSP problem. Martins (1984) tested the performance of the algorithm on 

MOSP problem with two and four objectives.  Tung and Chew (1992) developed an 

exact algorithm for MOSP problem which is a generalization of the label correcting 

method for the classical shortest path problem. Tung and Chew (1992) applied their 

algorithm on MOSP problem with three objectives. Guerriero and Musmanno 

(2001) also developed a label correcting method to generate the entire set of 

efficient paths. Guerriero and Musmanno (2001)   implemented the algorithm on 

MOSP with two, three and four objectives. Corley (1985) proposed an algorithm for 

MOST problem, which is a generalization of Prim’s algorithm. However, these 

proposed algorithms are problem specific since they generalize the classical shortest 

path methods for the shortest path problem. Therefore, these exact methods to 

generate all efficient paths cannot be applied to other MOCO problems.  

Sylva and Crema (2004) developed an exact algorithm for generating all efficient 

solutions for multiple objective integer linear programs (MOILP). The process of 

generating all efficient solutions starts with the selection of a positive weight vector. 

Taking the linear combination of objectives by using this weight vector, the ILP 

problem is solved. For each efficient solution found, the model is revised by adding 

new constraints and binary variables and solved to obtain a new efficient solution. 

Since addition of new constraints and binary variables for each incoming efficient 

solution increase the complexity of the problem considerably, they also propose a 

method to generate a subset of efficient solutions for relatively large-scaled 

problems and they state that it can also be useful for interactive methods.  

The algorithm of Sylva and Crema (2004) includes the full enumeration of the set of 

efficient solutions which may be impossible especially for large-sized problems. 

Therefore, Sylva and Crema (2007) have proposed a new algorithm in order to find 

a well-dispersed subset of efficient solutions for multiple objective mixed integer 
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linear programs (MOMILP). The approach is based on the procedure developed by 

Sylva and Crema (2004).  

Due to the computational complexity of the all proposed exact methods, the last 

decade witnessed a growing interest in the development and improvement of the 

approximation methods, heuristics and metaheuristics, as discussed in the 

bibliography by Ehrgott and Gandibleux (2000).  

Phelps and Köksalan (2003) proposed an interactive evolutionary metaheuristic for 

MOCO problems which is tested on the MOST problem and MOKP with two, three 

and four objectives. The proposed method handles the computational complexity of 

MOCO by interacting with the DM to guide the search effort toward the preferred 

solutions.  

Zitzler and Thiele (1999) developed an evolutionary algorithm (EA) for MOCO by 

combining some features belonging to previously proposed EA’s. Zitzler and Thiele 

(1999) also provided a comparison of some selected EA’s by taking the MOKP as a 

basis. Zitzler and Thiele (1999) tested the performance of the EA on the MOKP with 

two, three or four objectives.  

Ulungu et al. (1999) proposed a multiobjective simulated annealing method to 

approximate the efficient frontier of MOCO problems. Ulungu et al. (1999) 

implemented the algorithm on the biobjective knapsack problem. The adaptation of 

the proposed algorithm to other MOCO problems requires some problem specific 

preliminary work. 

Hamacher and Ruhe (1994) developed a heuristic procedure based on the two phase 

procedure to approximate the efficient frontier of the biobjective spanning tree 

problem. After obtaining efficient supported efficient trees in the first phase, they 

employed neighborhood search to generate representative solutions. However, the 

generalization of the proposed algorithm for MOST problem with more than two 

objectives and application of the method on other MOCO problems may not be 

possible.  

Zhou and Gen (1999) developed a genetic algorithm (GA) for MOST problem. The 

proposed GA approach aims to obtain a subset of efficient solutions close to ideal 
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point as much as possible. The genetic algorithm also tries to generate solutions 

distributed along the Pareto frontier to provide enough alternatives for the DM. 

Zhou and Gen (1999) tested the performance of the GA on the biobjective spanning 

tree problem. 

Hamacher et al. (2006) proposed two algorithms to determine a representative subset 

of the efficient solution set for discrete bicriterion problem considering several 

quality measures. Although the algorithm may be applied to many biobjective 

combinatorial problems to approximate the efficient frontier, the extension of the 

algorithm for the problems with more than two objectives may be very difficult. 

Hansen (1997) also developed a multiobjective tabu search (MOTS) procedure to 

generate efficient solutions for MOCO problems.  Hansen (1997) tested the 

performance of the algorithm on the knapsack problem with three objectives.  

Shukla and Deb (2006) classified some of the previously proposed classical methods 

to generate multiple efficient solutions according to their working principles. They 

compared the performance of these classical methods with the evolutionary 

generating methods on a number of test problems with two, three and four 

objectives. 

Ehrgott and Gandibleux (2000) presented a review for MOCO while Ehrgott and 

Gandibleux (2004) presented a review of approximation methods for MOCO 

problems.  

Deb (2001 pp. 306-324) proposed several performance metrics to evaluate and 

compare the quality of approximations of the efficient frontier. Deb (2001) 

categorized the performance metrics into groups of metrics evaluating closeness to 

the efficient frontier, metrics evaluating diversity among the efficient solutions and 

metrics evaluating closeness and diversity in a combined manner.  
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CHAPTER 3 

3  EXACT ALGORITHMS TO GENERATE ALL 

NONDOMINATED SOLUTIONS 

We propose two exact algorithms, Algorithm-1 and Algorithm-2, to find all 

nondominated solutions of MOCO problems. After we discuss our propositions and 

findings corresponding to these methods, we present the steps of each algorithm. We 

test the performance of Algorithm-1 and Algorithm-2 on MOKP, MOSP and MOST 

problems. 

3.1 Definitions and Theorems 

Without loss of generality, any MOCO problem can be stated as:  

{ }1 2

( )

" " ( ), ( ),..., ( )

( )

:

:

:

th

i

q

P

Max z x z x z x

subject to

x X

where

z x i objective function

x decision vector

X solution space

q the number of objective functions

∈

=

 

Problem ( )P  usually does not have a unique solution due to the conflicting 

objective vectors. 1 2( , ,..., )qz z z′ ′ ′  is said to dominate 1 2( , ,..., )qz z z′′ ′′ ′′  if i iz z′ ′′≥  for 

all i and i iz z′ ′′>  for at least one i. If there does not exist a decision vector 'x  

satisfying the above conditions, then 1 2( , ,..., )Pz z z′′ ′′ ′′ is said to be nondominated and 

the corresponding decision vector x′′  is said to be an efficient solution.  
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The following theorem is a well known theorem. 

Theorem 1. If 0iλ >  for all 1, 2,...,i q=  and 1 2( *, *,..., *)qz z z is the objective vector 

corresponding to the optimal solution *x  of ( )Pλ , then *x  is an efficient solution to 

problem ( )P and 1 2( *, *,..., *)qz z z is a nondominated objective vector  of ( )P .  

1

( )

( )i i

i

q

P

Max z x

subject to

x X

λ

λ
=

∈

∑  

The efficient solutions that are optimal to the problem with weighted linear 

combination of objectives are said to be supported efficient solutions.  

Algorithm of Sylva and Crema (2004) 

The algorithm of Sylva and Crema (2004) generating all nondominated solutions 

starts with the selection of a positive weight vector 0λ > . The algorithm terminates 

if problem ( )Pλ  is infeasible which implies the problem does not have any efficient 

solution. If the problem is feasible, model ( )Pλ  is revised by adding q  binary 

variables and ( 1)q +  constraints which forbid the feasible solutions dominated by 

the nondominated solution obtained from ( )Pλ . If we have n  nondominated 

solutions, then we solve problem ( )n
Pλ  in order to find ( 1)st

n + nondominated 

solution.  
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( ) ( )

{ }

1

1

( )( )

( )

( ) ( ) 1 1

0,1

1

1,...,

1,...,

q

j j
j

k
j j jk k jk

q

jk
j

jk

n
P

z x

x x t

t

Max

subject to

z z t M j k

k

t

x X

k n

j q

λ

λ
=

=

+ −

∈

≥ − ∀ ∀

≥ ∀

∈

=

=

∑

∑  

 

In problem ( )n
Pλ , 1 2, ,..., ,..., )( k k k k

j qz z z z denotes the th
k nondominated objective vector 

and kM denotes the lower bound for ( )kz x  and  
jkt   is a binary variable such that: 

 

1, ( ) ( ) 1

0,

k

j j

jk

if z x z x
t

otherwise

 ≥ +
= 


 

 

The constraint “
1

1
q

jk
j

t
=

≥∑ ” guarantees that for at least one criterion the optimal 

solution will have a larger value than th
k  nondominated solution.  That is, the new 

solution will not be dominated by any of the existing nondominated solutions. 

The algorithm keeps adding binary variables and constraints until the problem 

becomes infeasible. If the problem is infeasible, then we conclude that the number 

of all nondominated solutions is equal to n . 
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Propositions for Algorithm 1 

Our first algorithm proposes an improvement to this algorithm by decreasing the 

number of binary variables and constraints inserted to the model iteratively.  

We demonstrate our propositions and algorithms on an example. We will work on 

the following knapsack problem with 15 items and three objectives, 153D KP− , 

which has 29 nondominated solutions as seen in Table 3.1. 

{ }

{ }

15

1 2

15

1

3

3

" " ( ), ( ), ( )

0,1

1,2,3
j

ij j i

j

D KP

Max z x z x z x

subject to

w x C

x

i
=

−

≤

∈

=∑

 

15

1

15

1

( )

:

:

:

1,

0,

2

j

j

i ij j

ij

ij

i

j

ij j

i

z x p x

p profit of item j for knapsack i

w weight of item j for knapsack i

C capacity of knapsack i

if item j is selected
x

otherwise

w x

C

where

=

=

=


= 


=

∑

∑

 

 

In our first proposition, we claim that we can obtain the nondominated solution with 

the best value of a selected criterion by selecting the weights properly.  
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Table 3.1 Nondominated vectors corresponding to the 153D KP−  

  1z  2z
 3z

 
1 402 469 521 
2 420 393 508 
3 318 477 487 
4 459 455 486 
5 376 536 476 
6 425 511 475 
7 476 426 473 
8 469 534 456 
9 443 538 446 

10 490 464 443 
11 482 497 440 
12 472 499 429 
13 499 468 427 
14 422 543 421 
15 471 518 420 
16 395 551 415 
17 500 543 413 
18 492 576 410 
19 510 428 406 
20 508 571 402 
21 518 467 400 
22 510 500 397 
23 515 526 384 
24 534 482 381 
25 450 587 376 
26 536 594 348 
27 557 504 346 
28 543 549 330 
29 569 509 236 

  

Proposition 1.  For a sufficiently small 0ε > , the optimal solution to problem 

( )iP will give an efficient solution to problem ( )P  with maximum iz value. 

 

( )

( ) ( )i j
j i

iP

Max z x z x

subject to

x X

ε
≠

+

∈

∑
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Proof.  We know ( )iP will yield an efficient solution to problem ( )P  since 0ε >  by 

using Theorem 1. Furthermore, since ε  is sufficiently small, problem ( )iP will not 

sacrifice from the maximum value of ,  the objective functionth

iz i . Therefore, the 

optimal solution to problem ( )iP  will give the efficient solution to the problem 

( )P with maximum 
iz  value.                        �   

 

We should note that ε  value is not unique; it is problem dependent.  How the 

value of epsilon should be selected to obtain the nondominated solution with 

maximum iz  value is discussed by (see Steuer 1986 pp.425) for a Tchebycheff 

program.  It is similar in our case. 

 

We denote this maximum value of iz as 
( )1iz  and the corresponding nondominated 

objective function vector as: 

 

 (1)(1) (1) (1) (1) (1) (1)1 2 1 1
, ,..., , , ,...,i qi i i i iii i

e z z z z z z
         
         

− +

 
 
 

= . 

 

Similarly, we denote the iz  value obtained in the th
k solution of the problem in the 

nonincreasing order of iz values as ( )i kz  such that 
( ) ( )1

1,2,...,i ik k
k Nz z

+
≤ ∀ =  

where N  is the number of all nondominated vectors. 

( )( ) ( ) ( ) ( ) ( ) ( )1 2 1 1
, ,..., , , ,...,ki k qi k i k i k i k i kii i

e z z z z z z
         
         

− +

 
 
 

=  denotes the 

corresponding objective vector. We denote the set of the nondominated vectors 

found until iteration n  as { }( )( ) :1i i kn k nS e= ≤ ≤ . 
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In our example, we select the main objective function’s index as three such that 

3i = . If we take 0.0001ε = , then the model 3( )P will give the nondominated 

objective vector 3(1) =(402, 469, 521)e . The nondominated vector has maximum 3z  

value among all nondominated vectors as seen in Table 3.2, which demonstrates our 

proposition. If we selected 0ε = , then it would be possible to find an inefficient 

solution different from the solutions in Table 3.1.  

 

According to our definition, 3( )ke  denotes the nondominated solution with th
k

 best 

value of 3z  as also indicated in Table 3.2. Furthermore, we define the set 

{ }3 3( )( ) :1kn k nS e= ≤ ≤ such that it includes n  nondominated solutions with the 

best 3z  values. For instance, the set 3(2)S includes the solutions { }3(1) 3(2),e e  in the 

following table such that ( ){ }3(2) 402,469,521 ,(420,393,508)S = . 

 

In proposition 1, we showed that we can obtain the nondominated solution with the 

best value of the selected criterion. On the other hand, Proposition 2 claims that we 

can find the nondominated solution with ( 1)st
n + best value of the selected criterion 

by using the nondominated solutions with n best values of the selected criterion.  
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Table 3.2 Verification of Proposition 1 on 153D KP−  

  1z  2z
 3z

 3 1 2z z zε ε+ +
 

3(1)e
 

402 469 521 521.09 

3(2)e
 

420 393 508 508.08 

3(3)e
 

318 477 487 487.08 

3(4)e
 

459 455 486 486.09 

3(5)e
 

376 536 476 476.09 

3(6)e
 

425 511 475 475.09 

3(7)e
 

476 426 473 473.09 

3(8)e
 

469 534 456 456.10 

3(9)e
 

443 538 446 446.10 

3(10)e
 

490 464 443 443.10 

3(11)e
 

482 497 440 440.10 

3(12)e
 

472 499 429 429.10 

3(13)e
 

499 468 427 427.10 

3(14)e
 

422 543 421 421.10 

3(15)e
 

471 518 420 420.10 

3(16)e
 

395 551 415 415.09 

3(17)e
 

500 543 413 413.10 

3(18)e
 

492 576 410 410.11 

3(19)e
 

510 428 406 406.09 

3(20)e
 

508 571 402 402.11 

3(21)e
 

518 467 400 400.10 

3(22)e
 

510 500 397 397.10 

3(23)e
 

515 526 384 384.10 

3(24)e
 

534 482 381 381.10 

3(25)e
 

450 587 376 376.10 

3(26)e
 

536 594 348 348.11 

3(27)e
 

557 504 346 346.11 

3(28)e
 

543 549 330 330.11 

3(29)e
 

569 509 236 236.11 
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Proposition 2.  For a sufficiently small 0ε >  and sufficiently large 0M >  , if all the 

nondominated vectors in set { }( )( ) :1i i kn k nS e ≤ ≤= are known, then the optimal 

solution to ( )( )
i n

P will give the nondominated objective function vector, ( 1)i ne + , with 

( 1)th
n + best iz value. If ( )( )

i n
P  is infeasible, then set { }( )( ) :1i i kn k nS e ≤ ≤=  is the 

entire set of nondominated vectors.  

( )

{ }

( )

( )( )

1

0,1

1 (1)

1 (2)

1,...,

1,...,

1, ( ) 1

0,

jk

i j
j i

j j i k

jk
j i

jk

k
j j

jk

i n
P

t

Max z z

subject to

z z M j i k

t k

t

x X

k n

j q

where

if z z x
t

otherwise

ε

  

≠

≠

−

∈





+

≥ + − ∀ ≠ ∀

= ∀

∈

=

=

≥ +
=

∑

∑

 

 

Proof. Let us first consider the case 1n =  where we know only the nondominated 

vector, (1)ie .  Since summation of 1jt  is equal to 1, exactly one of the constraints 

“ ( )1(1)
11j jj i

Mz z t
  

− −≥ + ” will be binding and the others will be redundant for 

sufficiently large M value. Therefore, at least one objective function value of the 

new efficient solution will be strictly greater than its value in (1)ie  which guarantees 

a different nondominated vector. Since our aim is to maximize iz  as much as 

possible and guarantee to obtain a different efficient solution, we will obtain the 

nondominated vector, (2)ie , with the second best 
iz . In case of infeasibility, we 

conclude that there is only one nondominated objective vector.  



 17 

Similarly, for 1n > , “ ( )( )
11 jkj j i k

tz z M
  

−≥ + − ” guarantees that the new efficient 

solution will be different from all the efficient solutions in set ( )i nS . Since the 

model will try to maximize iz  as much as possible where n-best nondominated 

vectors of iz  are forbidden by the constraints with “ 1jk
j i

t
≠

=∑ ”, we will obtain the 

nondominated vector, ( 1)i ne + , with the  ( 1)th
n +

 best iz . If the problem is infeasible, 

we can conclude that { }( )( ) :1i i kn k nS e ≤ ≤=  is the entire set of nondominated 

vectors.                              �  

 

Let us go back to our example problem 153D KP− . Since we know 

3 3(1)(1) =(402, 469, 521)S e= , we can write the corresponding 3(1)P  model as the 

following: 

{ }

15

1 2

3

3

1 11

2 21

11 21

11 21

3(1)( )

1

, 0,1

402 1

469 1

1,...,

D KPP

z zMax z

subject to

z M Mt

z M Mt

t t

t t

x X

k n

ε ε

−

+

+ =

∈

+

≥ + − +

≥ + − +

∈

=

 

Since exactly one of the t  variables will take the value of one, the nondominated 

vector 3(1) =(402, 469, 521)e will be infeasible. Then, model 
1533(1)( ) D KPP − will give 

the feasible nondominated vector 3(2) =(420,393,508)e since it has the largest 

3z value among all other feasible solutions. If we consider the 

problem
1533(29)( ) D KPP − , then the problem will be infeasible since all the 

nondominated solutions in set 3(29)S are forbidden by the related constraints which 

implies our problem 153D KP−  has 29 nondominated objective vectors.  



 18 

Corollary 1. All nondominated solutions to problem ( )P  can be generated by 

solving ( )( )
i n

P iteratively until the model becomes infeasible.  

3.2 Algorithm 1 

Step 0. Initialization 

Let W = ∅ and 0n = where W is the set of nondominated vectors and n W= . 

Step 1. Solve model ( )iP .  

( )

i j
j i

iP

Max z z

subject to

x X

ε
≠

+

∈

∑   

If the problem is feasible, denote the optimal objective vector as (1)ie and 

let { }(1)W =  (1)iie S=   and 1n n← + . Go to Step 2. Otherwise, stop. The problem 

does not have a feasible solution.  

Step 2. Solve the model ( )( )
i n

P .  

{ }

( )

( )( )

0,1

1 (1)

1 (2)

1,..,

i j
j i

j jkj i k

jk
j i

jk

i n
P

Max z z

subject to

z z M Mt j i k

t k

t j i k n

x X

ε

  

≠

≠

∈

+

≥ + − + ∀ ≠ ∀

= ∀

∀ ≠ =

∈

∑

∑
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If the problem is feasible, denote its optimal objective vector as ( 1)i ne +  and   let 

{ }( 1)  ( 1)ii nW W ne S+= ∪ = +  and 1n n← + . Repeat Step 2.  

If the problem ( )( )
i n

P  is infeasible, go to Step 3. 

Step 3. Stop. W ( )i nS= is the entire set of nondominated vectors for the problem 

( )P  and the number of all nondominated vectors is n W= . 

3.3 Algorithm 2 

Our first algorithm improves the algorithm of Sylva and Crema (2004) since the 

number of binary variables and constraints introduced to the model for each new 

efficient solution is decreased. The algorithm developed by Sylva and Crema (2004) 

introduce ( 1)q + additional constraints and q binary variables at each iteration. On 

the other hand, we introduce ( )q  additional constraints and ( 1)q −  binary variables 

to the problem for each nondominated vector. However, the additional constraints 

and variables still grow and cause computational difficulty. We develop a new 

algorithm to further improve Algorithm 1.  

3.3.1 Three Criteria Case 

We first develop the algorithm for the three criteria case. 

Definitions and Theorems 

Instead of using binary variables and constraints, we develop a new algorithm 

employing a sorting and searching mechanism to find the nondominated vectors. Let 

us order the vectors in ( )i nS such that ( )( ) ( ) ( ) ( )
1 ( ) 2 ( ) 3 ( )( )

, ,r j r j r j r j

i n i n i ni n
z z ze
          

= denotes the 

vector having ( 1)j − vectors with thr objective function values less than or equal to 

that of ( )

( )

r j

i n
e . That is ( )

( )

r j

i n
e denotes the th

j  vector when these vectors are ordered in 

the nondecreasing order of rz such that ( ) ( 1)
( ) ( )

r j r j

r i n r i n
z z

      

+≤  where 1 1j n≤ ≤ − . Let 
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( )r

i nS denote the list of these solutions that are in the nondecreasing order of 

objective r . 

If we consider our problem 153D KP−  and we take 4n = , then set 1
3 (4)S includes the 

nondominated vectors in the set 3(4)S , which includes the first 4 nondominated 

objective vectors with the best 3z value. While 3(4)S  includes nondominated 

solutions in nonincreasing order of 3z , 1
3 (4)S includes the same solutions but in 

nondecreasing order of 1z  as seen in Table 3.3 and Table 3.4.  

 

Table 3.3 The nondominated vectors of 153D KP− in 3(4)S  

3(4)S
 1z  2z

 3z
 

3(1)e
 

402 469 521 

3(2)e
 

420 393 508 

3(3)e
 

318 477 487 

3(4)e
 

459 455 486 

 

Table 3.4 The nondominated vectors of 153D KP− in 1
3 (4)S  

1
3 (4)S

 1z  2z
 3z

 
1(1)

3(4)
e

 
318 477 487 

1(2)

3(4)
e

 
402 469 521 

1(3)

3(4)
e

 
420 393 508 

1(4)

3(4)
e

 
459 455 486 

 

Our first algorithm iteratively solves problem ( )( )
i n

P which takes the current set of 

nondominated vectors, ( )i nS , as its input and gives the nondominated vector, 

( )( 1) 1 ( 1) 2 ( 1) 3 ( 1)
, ,i n i n i n i n

e z z z
          

+ + + +
= ,  as discussed in Chapter 3.2. 
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{ }

{ }

[ ]

[ ]

3( )

3( )

3( )

3( )

( )( )

)

0,1

1,2,3

1, 1

0, 1

1

1 (1

1,...,

, ,

i r a

a

a a k

r r k

r kr k

ka k

k

k

i n
P

where

if z z

if z z

Max z z z

subject to

z z Mt k

z z M t k

t

x X

k n

i r a

i r a

t

ε ε

  

  

+

∈

≥ +
= 

≥ +

+

≥ + − ∀

≥ + − − ∀

∈

=

≠ ≠

∈

 

 

In this model, i  denotes the main objective function’s index, r  corresponds to the 

objective function we will use to order the vectors in ( )r

i nS and a  is the index of the 

remaining objective function. Note that we could differentiate between the M  

values used in different constraints as rM  and aM . However, it is sufficient to use a 

single big M  value that is large enough to satisfy all constraint requirements.   

 Instead of solving model ( )( )
i n

P  iteratively whose complexity increases 

considerably as n  grows, we solve the following ( 1)n +  models. 

( )

( )

( )

( )

( )

( )

( )

( )

( )

i r a

r z

a z

r j

i n

r j

r i n

r j

a i n

P

Max z z z

subject to

z lb P

z lb P

x X

ε ε+ +

≥

≥

∈

 

 where  
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[ ]

[ ]{ }

( )
( )

( )
( )

( )

( )

( )

( )

0,1,...,

,        0
( )

1,      otherwise

,                     
( )

 max 1,      otherwise

r jz

r i n

r hz

a i n

r j

r i n

r j

a i n

n h j

j n

M if j
lb P

z

M if j n

lb P
z

≥ >

=

− =
=  +

− =
= 

+

 

We denote the nondominated vector obtained from problem 
( )

( )
( )

r j

i n
P  as 

[ ] [ ] [ ]( )1 ( 1) 2 ( 1) 3 ( 1)( 1)

( ) ( ) ( )( ) , ,
i n i n i ni n

r j r j r jr j
cz cz czce

+ + ++
= , which can also be interpreted as the th

j  

candidate solution.  

 

Note that the nondominated solution with the best ( 1)st
n +  iz  value is the best 

candidate with maximum iz  value as discussed in Proposition 3.  

Proposition 3. [ ] [ ]{ }( 1) ( 1)
( ) ( )

( 1) ( 1)

( )

0

: max
i i n i i n

r m r j
i n i n

r m

j n

e ce cz cz
+ ++ +

≤ ≤

 
 

= = 
 
 

. 

Proof.  Without loss of generality, let us take 1r = , 2a =  and 3i = . According to 

Proposition 2, 3( )( )
n

P will give the next unknown nondominated vector 3( 1)ne + . Since 

the contents of 3( )nS is equivalent to the set 1
3 ( )nS , we can rewrite problem 

3( )( )
n

P as follows: 

{ }

3( )

3 1 2

1

2

1( )
1 3( )

1( )
2 3( )

( ' )

1 1,...,

1 (1 )

0,1

n

j

j

j

j

n

j

n

P

Max z z z

subject to

z z Mt j n

z z M t j

x X

t

ε ε

  

  

+ +

≥ + − ∀ =

≥ + − − ∀

∈

∈

 



 23 

Without loss of generality, we can say that exactly one of the following cases will 

hold for 
3( 1)1 n

z
 
 

+
, which is 1z  value of the optimal solution of the problem 3( )( ' )nP .  

Case (a) If 1(1)
1 3( 1) 1 3( )n n

M z z
      +

− ≤ ≤ , then { }1( )
2 3( 1) 2 3( )

max 1h

n n

n h

z z
      +

≥

≥ + . 

Case (b) If 1( ) 1( 1)
1 3( ) 1 3( 1) 1 3( )

1j j

n n n
z z z
          

+

+
+ ≤ ≤ , then { }1( )

2 3( 1) 2 3( )
max 1h

n n

n h j

z z
      +

≥ >

≥ + . 

Case (c) If 1( )
1 3( ) 1 3( 1)

1n

n n
z z
      +

+ ≤ , then 
2 3( 1)n

z M
  +

≥ − . 

According to the solution space, case (a) corresponds to model 
1(0)

3( )
( )

n
P , case (b) 

corresponds to the model 
1( )

3( )
( )

j

n
P and case (c) corresponds to model

1( )

3( )
( )

n

n
P . Since the 

aim is to maximize z3 as much as possible, all of the possible cases are to be 

compared according to their z3 values. Since we define the nondominated vector 

obtained from problem 
1( )

3( )
( )

j

n
P as 

3( 1)

1( )
n

jce
+

, we can write the following equation: 

[ ] [ ]{ }3 3( 1) 3 3( 1)
1( ) 1( )

3( 1) 3( 1)

1( )

0

: max
n n

m j
n n

m

j n

e ce cz cz
+ ++ +

≤ ≤

 
 

= = 
 
 

                                �  

The corresponding j  value for the best candidate solution gives the position of the 

new nondominated solution in the list ( 1)r

i nS + . Therefore, we do not need to sort 

the solutions at each iteration as discussed in Corollary 2. If we have the best 

candidate  solution for different values of j , then we select the one with the largest 

index to determine the position. 

 

Corollary 2.  If 
( 1) ( 1) ( 1) ( 1)

( ) ( 1)and
i n i n i n i n

r m r m
e ce e ce

+ + + +

+
= ≠ , then ( 1)

( 1) 1
r
i

i

S n

e n
J m

+
+

= +  

where ( 1)
( 1)

r
i

i

S n

e n
J

+
+

denotes the place of ( 1)i ne + in the list ( 1)r

i nS + . 
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Proof. Since
( 1) ( 1) ( 1) ( 1)

( ) ( 1)and
i n i n i n i n

r m r m
e ce e ce

+ + + +

+
= ≠ , we know 

( 1)i n
e

+
is the 

nondominated vector obtained from model
( )

( )
( )

r m

i n
P . As stated in the proof of 

Proposition 3, we consider three special cases including: 

Case (a) If 0m = , then (1)
( 1) ( )r

r

r i n i n
M z z

      +
− ≤ ≤  which implies ( 1)

( 1) 1
r
i

i

S n

e n
J

+
+

= . 

Case (b) If m j= ( 0, )j j n≠ ≠ , then ( ) ( 1)
( ) ( 1) ( )

1
r r

r j r j

i n r i n i n
z z z

          

+

+
+ ≤ ≤ which 

implies ( 1)
( 1) 1
r
i

i

S n

e n
J j

+
+

= + . 

Case (c) If m n= , then ( )
( ) ( 1)

1
r

r n

i n r i n
z z

      +
+ ≤ which implies ( 1)

( 1) 1
r
i

i

S n

e n
J n

+
+

= + . 

Considering all possible cases, if
( 1) ( 1) ( 1) ( 1)

( ) ( 1)and
i n i n i n i n

r m r m
e ce e ce

+ + + +

+
= ≠ , then 

( 1)
( 1) 1
r
i

i

S n

e n
J m

+
+ = + .                                    �  

Let us work on our example problem 153D KP−  and assume we try to find 3(4)e  by 

solving problem
1533(3)( ) D KPP − , where the nondominated solutions in 1

3 (3)S  are 

forbidden. 

{ }

15

1 2

1 2

2

3

3

1 1

2 1

2

1 3

2 3

3(3)( )

)

402 1

469 1 (1 )

)

0,1

318 1

477 1 (1

420 1

393 1 (1

1,2,3

D KP

k

P

z z

z M Mt

z M M

Max z

subject to

z M Mt

z M M t

t

z M Mt

z M M t

t k

x X

ε ε

−

+

≥ + − +

≥ + − + −

∈

+

≥ + − +

≥ + − + −

≥ + − +

≥ + − + −

∀ =

∈
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( ) ( ) ( ){ }

( ) ( ) ( ){ }
3

1
3

(3) 402, 469,521 , 420,393,508 , 318,477,487 ,

(3) 318,477, 487 , 402,469,521 , 420,393,508 .

where

S

S

=

=

 

The feasible region corresponding to problem
1533(3)( ) D KPP − is demonstrated in Figure 

3.1 where corresponding third criterion values for 1 2( , )z z pairs are encircled. The 

known nondominated solutions with three best 3z  values are encircled in this figure. 

The best candidate solution, nondominated solution with the fourth best 3z value, is 

also encircled. The shaded area indicates the dominated region we would like to 

avoid.  

521

508

487

486

476

475

473

456
446

443

440429

427

421

420

415

413

410

406

402

400

397

384

381

376
348

346

330

236

390

430

470

510

550

590

310 350 390 430 470 510 550

z1

z
2

 

Figure 3.1 Feasible criterion space of
1533(3)( ) D KPP − and the nondominated solutions 

 

Instead of solving model 
1533(3)( ) D KPP −  which has 3 binary variables and 6 

constraints, we solve the following 4 models including only two new constraints 

regardless of the value of n  as seen in Figure 3.2 
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15

1 2

1

1(0)

3(3) 3

3

1

2

( )

max(477,469,393) 1

D KPP

z zMax z

subject to

z M

z

x X

ε ε

−

++

≥ −

≥ +

∈

 

15

1 2

1(1)

3(3) 3

3

1

2

( )

318 1

max(469,393) 1

D KPP

z zMax z

subject to

z

z

x X

ε ε

−

++

≥ +

≥ +

∈

 

15

1 2

1(2)

3(3) 3

3

1

2

( )

402 1

max(393) 1

D KPP

z zMax z

subject to

z

z

x X

ε ε

−

++

≥ +

≥ +

∈

 

15

1 2

2

1(3)

3(3) 3

3

1

2

( )

420 1

D KPP

z zMax z

subject to

z

z M

x X

ε ε

−

++

≥ +

≥ −

∈

 

Figure 3.2 Problems 
15

1( )

3(3) 3( )
j

D KPP −  

 

We demonstrate the feasible regions corresponding to each problem 
15

1( )

3(3) 3( )
j

D KPP − in 

Figures 3.3, 3.4, 3.5 and 3.6. The known nondominated solutions with three best 3z  

values and the candidate solutions for each problem are marked on these figures. 

The shaded areas demonstrate the infeasible regions.  
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Figure 3.3 Feasible criterion space of 
15

1(0)

3(3) 3( ) D KPP − and the candidate solution 
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Figure 3.4 Feasible criterion space of 
15

1(1)

3(3) 3( ) D KPP −  and the candidate solution 
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Figure 3.5 Feasible criterion space of 
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1(2)

3(3) 3( ) D KPP −  and the candidate solution 
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Figure 3.6 Feasible criterion space of 
15

1(3)

3(3) 3( ) D KPP −  and the candidate solution 
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Table 3.5 The nondominated vectors corresponding to problems 
15

1( )

3(3) 3( )
j

D KPP −  

The problem 
 Corresponding 

Nondominated Vector 1z  2z
 3z

 

15

1(0)

3(3) 3( ) D KPP −
 3(4)

1(0)
ce

 
376 536 476 

15

1(1)

3(3) 3( ) D KPP −
 3(4)

1(1)
ce

 
376 536 476 

15

1(2)

3(3) 3( ) D KPP −
 3(4)

1(2)
ce

 
459 455 486 

15

1(3)

3(3) 3( ) D KPP −
 3(4)

1(3)
ce

 
459 455 486 

 

[ ] { } ( )3 3(4)
1(3)

3(4) 3(4)

1(3) : max 476, 476,486,486 459,455,486e ce cz
  

= = = 
  

 

 

Furthermore, 
3(4) 3(4) 3(4)

1(2) 1(3)
e ce ce= = , 

3(4)

1(2)
ce  does not satisfy Corollary 2 because 

3(4) 3(4)

1(3)
e ce=  is also true. Then, we set 3m = and insert 

3(4)
e  just after the 

nondominated vector 1(3)

3(3)
e such that 

1
3

3

(4)
(4) 3 1 4

S

e
J = + = . We should note that this case 

corresponds to case c since 3m n= =  as discussed before. We obtain the following 

ordered nondominated solutions in 1
3 (4)S by using the nondominated vectors in 

1
3 (3)S .  

( ) ( ) ( ) ( ){ }1
3 (4) 318,477,487 , 402,469,521 , 420,393,508 , 459,455,486 .S =  

 

Corollary 3. The following algorithm yields all nondominated solutions.  
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An algorithm for three dimensional problem 

Step 0. Initialization 

Let W = ∅ and 0n = where W is the set of nondominated vectors and n W= . 

Step 1. Solve model ( )iP .  

( )

i j
j i

iP

Max z z

subject to

x X

ε
≠

+

∈

∑   

If the problem is feasible, denote its optimal objective vector as 

[ ] [ ] [ ]( )1 (1) 2 (1) 3 (1)
(1) (1) (1)

(1) , ,
i i i

r r r
i z z ze = and let { }(1)  iW We= ∪  where (1)r

i WS =   and  

(1) (1)
(1)

i i

re e= .Go to Step 2.   

If the problem is infeasible, stop. The problem does not have any feasible solution.  

Step 2. 1n n← +  

Step.2.0. Let 0,   max -j M= =  

Step.2.1. If j n> , go to Step 2.5. Otherwise, go to Step 2.2. 

Step 2.2. Solve the problem
( )

( )

r j

i n
P . If the problem is feasible, let the objective vector 

corresponding to the optimal solution as 
( 1)i n

j
ce

+
, then go to Step 2.3. Otherwise, go 

to Step 2.4. 

Step 2.3.  If [ ]( 1) max
i i n

j
cz

+
> , then update [ ]( 1)max ,

i i n

j
cz m j

+
= = .  

Step 2.4.  1j j← + . Go to Step.2.1.  

Step 2.5. If max -M= , go to Step 3. Otherwise, go to Step 2.6. 
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Step.2.6. Let 
( 1)

( )( 1)i
i n

r m
e n ce

+
+ = and insert ( 1)ie n + in the position ( 1)

( 1) 1
r
i

i

S n

e n
J m

+
+ = +  of 

the list ( )r

i nS  by changing the positions 

( ) ( ) ( )
( ) ( ) ( )1     1, 0

j

j j j

j j
j

r r r
i i i

i i i

S S S

e e e

n n n
n n nJ J for J m n n← + ≥ + < ≤ . Update ( 1) =  i nW We + ∪  

and then repeat Step 2.  

Step 3. Stop.  ( )r

iW nS= is the entire set of nondominated vectors for the problem 

(P) and n W= . 

As seen in our algorithm, after solving model ( )iP to find (1)ie , we need to solve 

1n +  models in order to find the next nondominated solution ( 1)ie n +  where 

1,..., 1n N= − . If N  is the number of all nondominated vectors of problem ( )P , 

then we need to solve 
1

1

( 1)
1 ( 1) 1 (2 ... )

2

N

n

N N
n N

−

=

+
+ + = + + + =∑  models 2( ( ))O N . 

The above algorithm does not transfer any information about the candidate solutions 

to the following iterations. We may decrease the number of models solved by 

keeping some information in the memory. In fact, there should be many models 

yielding the same solution since we have only N  nondominated solutions although 

we solve 
( 1)

2

N N +
models each of which gives one of the nondominated solutions.  

If we go back to our example, both 
15

1(0)

3(3) 3( ) D KPP −  and 
15

1(1)

3(3) 3( ) D KPP − give the same 

nondominated vector 3(5)e . However, since our aim is to find 3(4)e  at that step, we do 

not keep these eliminated candidate nondominated vectors which will be found 

again in future iterations.  

If the new nondominated solution is inserted to ( 1)st
m + position, then the candidate 

solutions corresponding to the solutions in th
j solution satisfying  1j m≥ +  will not 

change in the following iteration. 
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Proposition 4. If ( 1)
( 1) 1
r
i

i

S n

e n
J m

+
+ = +  and 1m j+ ≤ , then 

( 2) ( 1)

( 1) ( )
i n i n

r j r j
cce e

+ +

+
= . 

Proof. Without loss of generality, let us take 1r =  and 3i = . As stated in previous 

definitions, the optimal solution of problem 
1( )

3( )
( )

j

n
P gives the nondominated vector 

[ ] [ ] [ ]( )1 3( 1) 2 3( 1) 3 3( 1)3( 1)

1( ) 1( ) 1( )1( ) , ,
n n nn

j j jj
cz cz czce

+ + ++
= . 

 

3 1 2

1 1

2 2

1( )

3( )

1( )

3( )

1( )

3( )

( )

( )

( )

z

z

j

n

j

n

j

n

P

Max z z z

subject to

z lb P

z lb P

x X

ε ε+ +

≥

≥

∈

 

where 

[ ]

[ ]{ }

1( )1
1 3( )

1( )2
2 3( )

1( )

3( )

1( )

3( )

0,1,...,

,       0
( )

1,      otherwise

,                     
( )

 max 1,      otherwise

jz

n

hz

n

j

n

j

n

n h j

j n

M if j
lb P

z

M if j n

lb P
z

≥ >

=

− =
=  +

− =
= 

+

 

Since
3
1

1

( 1)
( 1) 1

S n

e n
J m

+

+
= + , we know the new solution 3( 1)ne + will be inserted in the 

( 1)st
m +  position of 1

3 ( )nS . Therefore, all solutions in position j  of the list 1
3 ( )nS  

such that 1m j+ ≤  will change their positions such that they will take place in the 

( 1)st
j +  position of the list 1

3 ( 1)nS + . Then we can write 
3( 1) 3( )

1( 1) 1( )
n n

j j
cce e

+

+
= which 

implies [ ] [ ] [ ] [ ]1 3( 1) 1 3( ) 2 3( 1) 2 3( )
1( 1) 1( ) 1( 1) 1( ),

n n n n

j j j j
cz cz cz cz

+ +

+ += = . Furthermore, we obtain 

1 1

1( 1) 1( )

3( 1) 3( )
( ) ( )z z

j j

n n
lb P lb P

+

+
=  and 2 2

1( 1) 1( )

3( 1) 3( )
( ) ( )z z

j j

n n
lb P lb P

+

+
=  which implies 

1( 1)

3( 1)
( )

j

n
P

+

+
 is 
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equivalent to model
1( )

3( )
( )

j

n
P . Then we can conclude that the optimal solutions 

corresponding to these problems will be the same such that 
( 2) ( 1)

( 1) ( )
i n i n

r j r j
cce e

+ +

+
= .      �  

The candidate solutions corresponding to the solutions in th
j solution, such that  

j m≤ , will also not change if az value of the new nondominated solution is larger 

than the corresponding lower bounds for  az  values. 

 

Proposition 5.  If ( 1)
( 1) 1
r
i

i

S n

e n
J m

+
+

= +  and 
[ ]{ }( )

( )( 1)
max ,i h

a r na r n n h j
z z a r a i

  + ≥ >
≤ ≠ ≠  

m j≥ , then 
( 2) ( 1)

( ) ( )
i n i n

r j r j
cce e

+ +
= . 

Proof. Without loss of generality, let us take 1r = , 2a =  and 3i = . Since we know 

the new solution 3( 1)ne + will be inserted in the ( 1)st
m +  position of  1

3 ( )nS , then all 

solutions in position j of the list 1
3 ( )nS such that 1m j+ ≤  will not change their 

positions and we will have 
3( 1) 3( )

1( ) 1( )
n n

j je e
+

= . Then we can write 

[ ] [ ] [ ] [ ]1 3( 1) 1 3( ) 2 3( 1) 2 3( )
1( ) 1( ) 1( ) 1( ),

n n n n

j j j jz z z z
+ +

= =  which implies 1 1

1( ) 1( )

3( 1) 3( )
( ) ( )z z

j j

n n
lb P lb P

+
= . 

Furthermore, [ ] [ ]2 3( 1) 2 3( )
1( 1) 1( )

n n

j jz z
+

+ =  for 1j m≥ +  means 

 [ ]{ } [ ]{ }( )1( ) 1( )
2 3( 1) 2 3( ) 2 3( 1)1

max max max ,h h

n n nn h j n h j
z z z

+   ++ ≥ > ≥ >
=  for j m≤ . Since we know 

[ ]{ }1( )
2 3( )2 3( 1)

max h

nn n h j
z z

  + ≥ >
≤  for  j m≤ , then  

[ ]{ } [ ]{ }1( ) 1( )
2 3( 1) 2 3( )1

max maxh h

n n
n h j n h j

z z
++ ≥ > ≥ >

= . Then we 

can write 2 2

1( ) 1( )

3( 1) 3( )
( ) ( )z z

j j

n n
lb P lb P

+
= . Because both 1 1

1( ) 1( )

3( 1) 3( )
( ) ( )z z

j j

n n
lb P lb P

+
=  and   

2 2

1( ) 1( )

3( 1) 3( )
( ) ( )z z

j j

n n
lb P lb P

+
= , we know

1( 1)

3( 1)
( )

j

n
P

+

+
is equivalent to model

1( )

3( )
( )

j

n
P . Then, we 

can conclude that the optimal solutions corresponding to these problems will be the 

same such that 
( 2) ( 1)

( ) ( )
i n i n

r j r j
cce e

+ +
= .                        �  
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Specific to our example problem, since the new nondominated vector 
3(4)

e will be 

placed at the end of the list 1
3 (4)S and it has a larger 2z value than the previous lower 

bounds for 2z , we should update the candidate nondominated vectors.  

 

We should also note that we can detect if the optimal solution will be identical to 

any of the previous ones by keeping the lower bounds and corresponding solutions 

as discussed in Proposition 6.  

 

Proposition 6. If problem 
( )1

( )1
( )

r j

i n
P  with the lower bounds 

( )1

( )1
( )z

r j

i nr
lb P  and 

( )1

( )1
( )z

r j

i na
lb P gives the nondominated vector 

[ ] [ ] [ ]( )
1 1 1

1 1 1
1 ( 1) 2 ( 1) 3 ( 1)

1

( 1)1

( ) ( ) ( )( )
, ,

i n i n i ni n

r j r j r jr j
cz cz czce

+ + ++
=  

and problem 
( )2

( )2
( )

r j

i n
P has the lower bounds 

( )2

( )2
( )z

r j

i nr
lb P  and 

( )2

( )2
( )z

r j

i na
lb P such that 

[ ]1

1
( 1)

( ) ( )1 2

( ) ( )1 2

( )( ) ( )z z i n

r j r j

i n i n

r j

rr r
lb P lb P cz

+
≤ ≤  and 

[ ]1

1
( 1)

( ) ( )1 2

( ) ( )1 2

( )( ) ( )z z a i n

r j r j

i n i n

r j

a a
lb P lb P cz

+
≤ ≤ , where 

r a i≠ ≠ , then 1

( 1)1

( )

i n

r j
ce

+
will be also an optimal solution for the problem 

( )2

( )2
( )

r j

i n
P . 

 Proof. Since 
[ ]1

1
( 1)

( )2

( )2

( )( )z i n

r j

i n

r j

rr
lb P cz

+
≤  and 

[ ]1

1
( 1)

( )2

( )2

( )( )z a i n

r j

i n

r j

a
lb P cz

+
≤ , then the 

nondominated vector [ ] [ ] [ ]( )
1 1 1

1 1 1
1 ( 1) 2 ( 1) 3 ( 1)

1

( 1)1

( ) ( ) ( )( )
, ,

i n i n i ni n

r j r j r jr j
cz cz czce

+ + ++
=  is also feasible for the 

problem 
( )2

( )2
( )

r j

i n
P . To get contradiction, let us assume that 1

( 1)1

( )

i n

r j
ce

+
is not an optimal 

solution for problem 
( )2

( )2
( )

r j

i n
P . Then assume that problem 

( )2

( )2
( )

r j

i n
P  has an optimal 

solution 2 1

( 1) ( 1)2 1

( ) ( )

i n i n

r j r j
cce e

+ +
≠  and 

[ ] [ ] [ ]( )
2 2 2

2 2 2
1 ( 1) 2 ( 1) 3 ( 1)

2

( 1)2

( ) ( ) ( )( )
, ,

i n i n i ni n

r j r j r jr j
cz cz czce

+ + ++
= . Since 

1

( 1)2

( )

i n

r j
ce

+
is not an optimal solution for problem 

( )2

( )2
( )

r j

i n
P and both problems try to 

maximize iz  as much as possible, then [ ] [ ]2 1

2 1
( 1) ( 1)

( ) ( )
i i n i i n

r j r j
cz cz

+ +
> . Furthermore, we can 

write 
[ ]2

2
( 1)

( )2

( )2

( )( )z i n

r j

i n

r j

rr
lb P z

+
≤  and 

[ ]2

2
( 1)

( )2

( )2

( )( )z a i n

r j

i n

r j

a
lb P z

+
≤  in order to provide the 
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feasibility. Since we also know 
( ) ( )1 2

( ) ( )1 2
( ) ( )z z

r j r j

i n i nr r
lb P lb P≤  and 

( ) ( )1 2

( ) ( )1 2
( ) ( )z z

r j r j

i n i na a
lb P lb P≤ , we obtain 

[ ]2

2
( 1)

( )1

( )1

( )( )z r i n

r j

i n

r j

r
lb P cz

+
≤  and 

[ ]2

2
( 1)

( )1

( )1

( )( )z a i n

r j

i n

r j

a
lb P cz

+
≤  which implies 2

( 1)2

( )

i n

r j
ce

+
 is also a feasible solution for problem 

( )1

( )1
( )

r j

i n
P . However, since we obtain [ ] [ ]2 1

2 1
( 1) ( 1)

( ) ( )
i i n i i n

r j r j
cz cz

+ +
> , implying that 2

( 1)2

( )

i n

r j
ce

+
 has a 

better objective function value, then 
[ ] [ ] [ ]( )

1 1 1

1 1 1
1 ( 1) 2 ( 1) 3 ( 1)

1

( 1)1

( ) ( ) ( )( )
, ,

i n i n i ni n

r j r j r jr j
cz cz czce

+ + ++
=  will not 

be an optimal solution to the problem 
( )1

( )1
( )

r j

i n
P . We obtain a contradiction so we can 

conclude that 1

( 1)1

( )

i n

r j
ce

+
will be also an optimal solution for problem 

( )2

( )2
( )

r j

i n
P .         �  

We can also detect whether the problem is feasible or not by storing the lower 

bounds that created infeasibility in previous iterations.  

Corollary 4. If problem 
( )1

( )1
( )

r j

i n
P  with lower bounds 

( )1

( )1
( )z

r j

i nr
lb P and 

( )1

( )1
( )z

r j

i na
lb P is 

infeasible and problem 
( )2

( )2
( )

r j

i n
P  has lower bounds 

( )2

( )2
( )z

r j

i nr
lb P  and 

( )2

( )2
( )z

r j

i na
lb P  such 

that 
( ) ( )1 2

( ) ( )1 2
( ) ( )z z

r j r j

i n i nr r
lb P lb P≤  and 

( ) ( )1 2

( ) ( )1 2
( ) ( )z z

r j r j

i n i na a
lb P lb P≤ , where r a i≠ ≠ , then 

problem 
( )2

( )2
( )

r j

i n
P will also be infeasible.                                                  �  

Proof. In order to get contradiction, we assume that the problem 
( )2

( )2
( )

r j

i n
P  is feasible 

and it has the optimal solution, 2

( 1)2

( )

i n

r j
ce

+
. Then, 2

( 1)2

( )

i n

r j
ce

+
will also be a feasible 

solution to problem 
( )1

( )1
( )

r j

i n
P  which contradicts the fact that problem 

( )1

( )1
( )

r j

i n
P is 

infeasible.                     �  

Corollary 5. If problem 
( )1

( )1
( )

r j

i n
P  is infeasible and 1 2

( ) ( )1 2

( ) ( )

i n i n

r j r j
e e= , then problems 

( )2

( )2
( )

r j

i n
P  will also be infeasible for 2 1n n≥ .   
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Proof. Problem 
( )1

( )1
( )

r j

i n
P has the lower bounds: 

 
[ ]

[ ]{ }

1

1

1
1

( )
( )

( )
( )

( )1

( )1

( )1

( )1

1

1 1

,       0
( )

1,     otherwise

,                     
( )

 max 1,      otherwise

r jz

r i n

r hz

a i n

r j

r i n

r j

a i n

n h j

M if j
lb P

z

M if j n

lb P
z

≥ >

− =
=  +

− =
= 

+

 

where [ ] [ ] [ ]( )
1 1 1

1 1 1
1 ( ) 2 ( ) 3 ( )

1

( )1

( ) ( ) ( )( )
, ,

i n i n i ni n

r j r j r jr j
z z ze = and a i r≠ ≠ .  

Since 1 2

( ) ( )1 2

( ) ( )

i n i n

r j r j
e e= , then we can write 

( ) ( )1 2

( ) ( )1 2
( ) ( )z z

r j r j

r ri n i j
lb P lb P= and 1 2j j≤ according 

to the discussions in Propositions 4 and 5. Since both 1 2j j≤  and 1 2n n≤ , we 

obtain [ ]{ } [ ]{ }
1 2

1 2

( ) ( )
( ) ( )1 2

max maxr h r h

a i n a i nn h j n h j
z z

≥ > ≥ >
≤ which implies 

( ) ( )1 2

( ) ( )1 2
( ) ( )z z

r j r j

a ai n i n
lb P lb P≤ . Since 

problem 
( )1

( )1
( )

r j

i n
P with lower bounds 

( )1

( )1
( )z

r j

r i n
lb P and 

( )1

( )1
( )z

r j

a i n
lb P is infeasible, then 

problem 
( 2)

( 2)
( )

r j

i n
P will also be infeasible since 

( ) ( )1 2

( ) ( )1 2
( ) ( )z z

r j r j

r ri n i n
lb P lb P=  and 

( ) ( )1 2

( ) ( )1 2
( ) ( )z z

r j r j

a ai n i n
lb P lb P≤ according to the Corollary 5.            �  

If we look at our example, model 
15

1(1)

3(3) 3( ) D KPP − with lower bounds 
1(1)

3(3)1
319zlb P  =  

 

and 
1(1)

2 3(3)
470zlb P  =  

 gives the nondominated vector ( )
3(4)

1(1) 376, 536, 476ce = . 

Then, we store these lower bounds and corresponding nondominated vectors in an 

archive because problems 
15

1( )

3( ) 3( )
j

n D KPP − with lower bounds 
1(1)

3(3)1
319 ( ) 376zlb P≤ ≤  

and 
1( )

2 3( )
470 ( ) 536z

j

n
lb P≤ ≤  will give the same nondominated vector 

( )376, 536, 476 . In case of infeasibility, we also keep the lower bounds in a 

different archive since if our problem is infeasible with lower bounds 

1(1)

3(3)1
( ) 319zlb P =  and 

1(1)

2 3(3)
( ) 470zlb P = , then problems  

15

1( )

3( ) 3( )
j

n D KPP −  with lower 

bounds 
1(1)

3(3)1
319 ( )zlb P≤  and  

1( )

2 3( )
470 ( )z

j

n
lb P≤ will also be infeasible. Furthermore, 
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if the candidate nondominated vector 
3(4)

1(1)
ce  is infeasible, we keep this information 

by marking it infeasible. The corresponding candidate vector in the next iteration 

will also be infeasible since the lower bounds will be at least ( )319, 470 . 

 

Remark. We may not need to solve many of 
( 1)

2

N N +
models by storing 

information. We can detect some solutions that will be identical with previous 

solutions and may not need to solve many of the models. 

 

Algorithm 2 for the three criteria case 

Step 0. Initialization 

Let W = ∅  , I = ∅ , C = ∅  , IC = ∅  and 0n = , 

where  

W : The nondominated solutions obtained. 

{ },  f f

z zr a
I lb lb =    : The set of lower bound pairs resulting in infeasibility. 

( ){ }1 2 3C = , , : , ,  c c c c c

c cz zr a
lb lb e e z z z  =  : The set of candidate efficient solutions and 

corresponding lower bound pairs. 

{ }( )

( )
: ( ) is infeasible, 0

r j

i n
IC j P j n= ≤ ≤ : The set of j values for which 

( )

( )

r j

i n
P is 

infeasible. 

n : The current number of nondominated solutions. 

( )
( )

( )
( )

1,         is to be solved to update its candidate solution  

0,                                                                           

r j

r j
i n

i n

if P
SOLVE

otherwise


= 
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Step 1. Solve model ( )iP .  

( )

i r a

iP

Max z z z

subject to

x X

ε ε+ +

∈

 

If the problem is feasible, denote its optimal objective vector as 

[ ] [ ] [ ]( )1 (1) 2 (1) 3 (1)
(1) (1) (1)

(1) , ,
i i i

r r r
i z z ze =  and update: 

(1) =  iW We ∪  where
(1) (1)
(1)(1)  and r

i i i

r
WS e e= =  . 

(0)

(1)
( )z

r

r i
lb P M= − , [ ](1)

(0)

(1)

(1)( ) 1z a i

r

a a

r
lb P z= +  

[ ](1)

(1)

(1)

(1)( ) 1z r i

r

r i

r
lb P z= + , 

(1)

(1)
( )z

r

a i
lb P M= − .  

(0) (1)

(1) (1)
1

r r

i i
SOLVE SOLVE= = . Go to Step.2.   

If the problem is infeasible, stop. The problem does not have any feasible solution.  

Step 2. 1n n= + .  

Step 2.0. 0,   max -j M= =  

Step 2.1. If j n> , go to Step 2.11. Otherwise, go to Step 2.2. 

Step 2.2. If 0j

nSOLVE = , then go to Step 2.8. Otherwise, go to Step 2.3. 

Step 2.3.  If j IC∈  , then go to Step 2.10. Otherwise, go to Step 2.4. 

Step 2.4. If ,f f

z zr a
lb lb I ∈  such that 

( )

( )
( ) f

z

r j

r i n zr
lb P lb≥  and 

( )

( )
( ) f

z

r j

a ai n zlb P lb≥   then go 

to Step 2.9. Otherwise, go to Step 2.5. 
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Step 2.5. If , ,c c

cz zr a
lb lb e C ∈  such that 

( )

( )
( ) c

z

r j

r i n zr

c
rz lb P lb≥ ≥  and 

( )

( )
( ) c

z

r j

a i n za

c
az lb P lb≥ ≥ then 

( 1) c
i n

j
ce e

+
= . Go to Step 2.8. Otherwise, go to Step 2.6. 

Step 2.6. Solve the problem 
( )

( )

r j

i n
P . If the problem is feasible, denote its optimal 

objective vector as 
( 1)i n

j
ce

+
and go to Step 2.7. Otherwise, go to Step 2.9. 

Step 2.7. Update: 

( ) ( )

( ) ( ) ( 1)
C C ( ), ( ),  z z

r j r j

r ai n i n i n

j
lb P lb P ce

+

 ← ∪
  

 

Step 2.8. If [ ]( 1)
max

i i n

j
cz

+
≥ , then update [ ]( 1)

max ,
i i n

jcz m j
+

= = . Go to Step 2.10. 

Step 2.9.  Update 
( ) ( )

( ) ( )
I I ( ), ( )z z

r j r j

r ai n i n
lb P lb P ← ∪   

 and { }IC j IC← ∪ . 

Step 2.10. 1j j← + . Repeat Step 2.1.  

Step 2.11. If max -M= , go to Step 3. Otherwise, go to Step 2.12. 

Step 2.12. 
( 1)

( )( 1)i
i n

r m
e n ce

+
+ =  and insert ( 1)ie n + in position ( 1)

( 1) 1
r
i

i

S n

e n
J m

+
+ = +  of the 

list ( 1)r

i nS +  by changing the positions 

( ) ( ) ( )
( ) ( ) ( )1     1, 0

j

j j j

j j
j

r r r
i i i

i i i

S S S

e e e

n n n
n n nJ J for J m n n= + ≥ + < ≤ .   

Before insertion, update: 

Initialize 1 1h

nSOLVE + = , 0 h 1n≤ ≤ + . 

( 2) ( 1)

( 1) ( )
i n i n

r h r h
cce e

+ +

+
= and change 1

1 0h

nSOLVE
+

+ =  if 1 1n h m+ ≥ ≥ + . 

( 2) ( 1)

( ) ( )
i n i n

r h r h
cce e

+ +
= and 1 0h

nSOLVE + =  if 0 1h m≤ < +  and 

( )

( )( 1)
1 ( ) ,z

r h

a i na r n
z lb P a r a i

  +
+ ≤ ≠ ≠  
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[ ]( 1)

( )

( 1)

( )( ) 1z r i n

r h

r i n

r h
lb P z

++
= +  , 0 h 1n≤ ≤ +  

( )

( 1) ( 1)
( ) 1z

r h

a i n a r n
lb P z

  + +
= +  for all 1h m< +  if 

( )

( )( 1)
1 ( ) ,z

r h

a i na r n
z lb P a r a i

  +
+ > ≠ ≠  

[ ]( 1)

( 1)

( 1)

( 1)( ) 1z r i n

r m

r i n

r m
lb P z

+

+

+

+= +  

( 1) ( )

( 1) ( )
( ) ( )z z

r m r m

a ai n i n
lb P lb P

+

+
=  

1
1 1m

nSOLVE
+

+ =  

{ } { }1IC IC h h← ∪ + −  for h IC∈ and 1h m≥ +  

( 1)W =  i n We + ∪  and then repeat Step 2.  

Step 3. Stop. ( )r

iW nS=  is the entire set of nondominated vectors for problem (P) 

and n W= . 

3.3.2 Generalization of Algorithm 2  

We can generalize Algorithm 2 for problems with more than three objectives. 

Similar to the three criteria case, we employ a sorted list, 1 ( )i

r
nS where the solutions 

in ( )i nS are in the nondecreasing order of objective 1r . However, we also define a 

new set of solutions, [ ] { }11 1
1

( ) ( )

( ) ( )
( ) : ( ),j

i i

r rr j r j

i n i n
n n j jS Se e= ∈ < , which includes only 

the nondominated solutions with the index greater than 1j  in 1 ( )i

r
nS . Furthermore, 

we use a second list [ ]11 2, ( )j

i

r r
nS , where the solutions in [ ]11 ( )j

i

r
nS  are sorted in the 

nondecreasing order of objective 2r . We denote the nondominated solution in the 

2
th

j position of [ ]11 2, ( )j

i

r r
nS  as 1 1 2 2

( )

,

i n

r j r j
e

   
      . For each different 1j  and 2j values, we 

determine the lower bounds corresponding to models 1 1 2 2

( )

,

i n

r j r j
P

   
       as described for 
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the example on Table 3.9 and  in Figure 3.2. If we have q  objectives, then we solve 

,...,1 1 2 2 2 2

( )

, q q

i n

r j r j r j
P

    
        − −

for each different value of ( 1,..., 2)k k nj = − .  

 Let us demonstrate the algorithm on a knapsack problem with 10 items and four 

objectives, 104D KP− , which has 14 nondominated solutions as seen in Table 3.6.  

 

Table 3.6 Nondominated vectors corresponding to the 104D KP−  

  1z  2z
 3z

 4z
 

1 326 344 218 359 
2 263 366 229 349 
3 304 356 168 338 
4 259 366 280 336 
5 389 301 194 325 
6 237 378 230 315 
8 366 319 264 288 
7 263 312 297 288 
9 382 295 250 281 

10 317 306 274 272 
11 299 341 326 265 
12 315 317 312 258 
13 277 353 276 244 
14 319 263 329 210 

 

Without loss of generality, let us take 4i = , 1 1r = and 2 2r = . Assume we have 3 

nondominated solutions having the largest 4z values among all the nondominated 

vectors as demonstrated in Table 3.7 and Table 3.8.  
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Table 3.7 The nondominated vectors of 104D KP− in the set 4 (3)S  

4 (3)S   1z  2z
 3z

 4z
 

4(1)e
 

326 344 218 359 

4(2)e
 

263 366 229 349 

4(3)e
 

304 356 168 338 

 

Table 3.8 The nondominated vectors of 104D KP− in the set 1
4 (3)S  

1
4 (3)S   1z  2z

 3z
 4z

 
1(1)

4(3)
e

 
263 366 229 349 

1(2)

4(3)
e

 
304 356 168 338 

1(3)

4(3)
e

 
326 344 218 359 

 

By using these nondominated vectors, we solve the following models to find the 

nondominated vector 4(4)e .  

10

1 2

4(3) 10

1 2

4(3) 10

1 2

4(3) 10

1 2 2

1 2

1

2

3

4

4

1 ,2
1 4

1 ,2
2 4

1 ,2
3 4

4(3)

1 ,2
( )

( )

( )

( )

D KP

j j

D KP

j j

D KP

j j

D KP

j j

z

z

z

P

z z z

lb

lb

lb

Max z

subject to

z P

z P

z P

x X

ε ε ε

   
   

      

      

      

−

−

−

−

+ ++

≥

≥

≥

∈

 

where the lower bounds are given in Table 3.9. 
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Table 3.9 Lower Bounds for 
10

1 2
44(3)

1 ,2
( ) D KP

j j
P

   
   

−  

1j  2j  1z
lb

 2zlb
 3z

lb
 

2 0j =
 M−  M−  max(229,168,218) 1+  

2 1j =
 M−  344+1 max(168,229) 1+  

2 2j =
 M−  356+1 max(229) 1+  

1 0j =

 

2 3j =
 M−  366+1 M−  

2 0j =
 

263+1 M−  max(168,218) 1+  

2 1j =
 

263+1 344+1 max(168) 1+  1 1j =
 

2 2j =
 

263+1 356+1 M−  

2 0j =
 

304+1 M−  max(218) 1+  1 2j =

 2 1j =
 

304+1 344+1 M−  

1 3j =  2 0j =  326+1 M−  M−  

 

These lower bounds are determined according to the sorting mechanism described 

for 1 0j = and 2 1j =  in Figure 3.7.  

 

 

Figure 3.7 Determination of the lower bounds for problem 
1044(3)

0 11 ,2
( ) D KPP

   
   

−  
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Table 3.10 Candidate solutions corresponding to problem
10

1 2
44(3)

1 ,2
( ) D KP

j j
P

   
   

−  

1j  2j  Corresponding Candidate Solution 

2 0j =  ( )
4(4)

0 01 ,2
259,366,280,336ce

   
    =

 

2 1j =  ( )
4(4)

0 11 ,2
259,366,280,336ce

   
    =

 

2 2j =  ( )
4(4)

0 21 ,2
259,366,280,336ce

   
    =

 

1 0j =

 

2 3j =  ( )
4(4)

0 31 ,2
237,378,230,315ce

   
    =

 

2 0j =  ( )
4(4)

1 01 ,2
389,301,194,325ce

   
    =

 

2 1j =  ( )
4(4)

1 11 ,2
277,353,276,244ce

   
    =

 
1 1j =  

2 2j =  4(4)

1 21 ,2
ce

   
    infeasible 

2 0j =  ( )
4(4)

2 01 ,2
366,319,264,288ce

   
    =

 1 2j =

 
2 1j =  4(4)

2 11 ,2
ce

   
    infeasible 

1 3j =

 
2 0j =  ( )

4(4)

3 01 ,2
389,301,194,325ce

   
    =

 

 

Since our aim is to maximize 4z  as much as possible, we select the candidate with 

the largest 4z  value. Since all 
4(4) 4(4) 4(4)

0 0 0 1 0 21 ,2 1 ,2 1 ,2
, ,ce ce ce

           
             have the same largest 

value, we select the last one such that ( )4(4) 4(4)

0 21 ,2
259,366,280,336cee

   
   = = . Since 

1 0j = for
4(4)

0 21 ,2
ce

   
    , we insert 4(4)e  in the first position of the list 1

4 (3)S . 

Furthermore, since it is inserted at the beginning, the lower bounds 1 0j > will not be 

changed which implies they will give the same nondominated solutions. Then, since 

their position in the list is changed, we can write 1 2 1 21

4(5) 4(4)

1 ,2 1 ,2j j j j
ce ce

              +
= for 1 0j > . 

In case of infeasibility of the model 
10

1 2
44(3)

1 ,2
( ) D KP

j j
P

   
   

−  , we conclude that 

10

11 2
44(4)

,
( ) D KP

j j
P

+

− is also infeasible for the problems 1 0j > according to the 

propositions discussed. For instance, in our problem 
1044(3)

1 21 ,2
( ) D KPP

   
   

− is infeasible as 
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seen in Table 3.10, then we can write 
1044(3)

2 21 ,2
( ) D KPP

   
   

− will also be infeasible 

without solving the model.  

Another observation is the fact that we do not need to solve all the problems 

corresponding to each 1 2( ),j j pair since there may be equivalent problems giving 

the same nondominated vector. For instance, since 

[ ]10 10 1 4(4)1 1

1 0 ,2 0
4 44(3) 4(3)

0 0 0 11 ,2 1 ,2
( ) ( )D KP D KPz zlb P lb P z

                      
− −≤ ≤  ,  

 [ ]10 10 2 4(4)2 2

0,0
4 44(3) 4(3)

0,0 0,1( ) ( )D KP D KPz zlb P lb P z− −≤ ≤   and  

 
[ ]10 10 3 4(4)3 3

0,0
4 44(3) 4(3)

0,0 0,1( ) ( )D KP D KPz zlb P lb P z− −≤ ≤ , then we obtain 

( )
4(4) 4(4)

0 1 0 01 ,2 1 ,2
259,366, 280,336ce ce

       
       = = without solving the model again.  

As seen in Table 3.10, we have 

 
1

11 2

1
00 0

( 1)( 2)
1 ( 1 ) ( 1) ( ) ( 1) ... 2 1

2

n

j

n jn

j j

n n
n j n n n

=

−

= =

+ +
= + − = + + + − + + + =∑ ∑ ∑  models to 

find ( 1)th
n + solution by using n  solutions we know. Therefore, if the number of 

nondominated vectors is equal to N , then we have 
1

1

( 1)( 2)
1

2

N

n

n n−

=

+ +
+∑ problems to 

be solved in the worst case 3( ( ))O N . However, since there should be models giving 

the same nondominated solutions as discussed before, we may not need to solve 

many of them. By transferring information to the next iterations, we can determine 

the candidate solutions without solving the model as shown in our example. When 

we have q objectives, the number of models to be solved to find ( 1)st
n + solution by 

using n  solutions in the worst case will be equal to 
1 22

1 2 3

31 1

2

...

0 0 0 0

... 1
q

qj j j

n j j jn j n j jn

j

−

−

− − −−

= = =

−− −

=
∑ ∑ ∑ ∑ . If 

we have N nondominated solutions, then the number of models to be solved will be 

1 22

1 2 3

31 1

2

...1

1 0 0 0 0
1 ... 1

q

q

N

n j j j

n j j jn j n j jn

j

−

−

− − −−−

= = = =

−− −

=

+∑∑ ∑ ∑ ∑   in worst case 1( ( ))q
O N

− .  
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3.4 Computational Experiments 

We compare our two exact algorithms with the algorithm developed by Sylva and 

Crema (2004) on Multiobjective Knapsack Problem (MOKP). We generate the 

weights and profits of the items, as integers uniformly distributed between 10 and 

100. We take the capacity of the knapsacks as half of total weight. In addition, we 

take 0.001ε = . As the number of nondominated solutions increase, the complexity 

of the algorithm proposed by Sylva and Crema increase considerably as seen in the 

computational times indicated in Table 3.11. Therefore, we have worked on small-

sized, 10 and 15 items, knapsack problems with three objectives. ( 3q = ).  

 

{ }

{ }

1 2

1

1

" " ( ), ( ),..., ( )

0,1

( )

:

:

:

1

1,2,...,
j

j

q

m

ij j i

j

m

i ij j

ij

ij

i

j

MOKP

Max z x z x z x

subject to

w x C

x

z x p x

p profit of item j for knapsack i

w weight of item j for knapsack i

C capacity of knapsack i

if item j is selected to put in kn
x

i q

where

=

=

≤

∈

=

=

=∑

∑

1

0

2
:

:

j

m

ij j

i

apsacks

otherwise

w x

C

q the number of knapsacks

m the number of items

=





=

∑
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Table 3.11 Comparison of Algorithms on MOKP with 3q =  

Solution Time 
(CPU Time in seconds) 

Number 
of  

items 
Problem 

Number of 
nondominated 
vectors ( )N  Sylva and Crema Algorithm-1 Algorithm-2 

1 12 1.06 0.41 0.50 

2 12 1.06 0.39 0.47 

3 23 3.58 1.36 0.98 

4 27 9.78 2.08 1.34 

15 

5 29 12.94 1.69 1.50 

1 38 188.69 11.14 3.36 

2 49 645.76 43.22 5.28 

3 54 428.73 24.39 5.30 

4 81 38503.59 61.8 8.80 

25 

5 131 55708.38 224.69 16.78 

 

The three algorithms in Table 3.11 are all exact algorithms generating all 

nondominated solutions. Therefore, we employ corresponding solution times as a 

performance measure. Algorithm 1 outperforms the algorithm developed by Sylva 

and Crema as seen in the computational times. This is expected since we decrease 

the number of binary variables and constraints iteratively inserted for each new 

nondominated solution. The computational times depend on N  because we keep 

adding new binary variables and constraints until all nondominated solutions ( )N   

are obtained which increases the computational complexity at each iteration.  Table 

3.11 also indicates that there is a significant increase in the difference in the 

computational times even when N  is slightly increased.  

 

Table 3.12. Comparison of Algorithm-1 and Algorithm-2 on MOKP with 3q =  

Solution Time 
(CPU Time in seconds) Number of 

items 
Problem 

Number of  
nondominated 
vectors ( )N  Algorithm-1 Algorithm-2 

1 76 50.16 7.41 
2 163 243.05 19.45 
3 168 996.42 32.03 

25 

4 182 473.64 28.63 
1 280 16919.64 184.23 
2 356 14064.81 217.77 50 
3 519 100670.52 312.17 
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Although, Algorithm 1 outperforms the algorithm of Sylva and Crema, the 

additional constraints and variables still grow and cause computational difficulty in 

Algorithm 1. On the other hand, Algorithm 2 involving a sorting and search 

mechanism performs better than Algorithm 1. The number of models we solve in 

Algorithm 2 is larger but each model has the same number of constraints and 

variables regardless of the solutions on hand. While the computational times of 

Algorithm 1 and Algorithm 2 for the knapsack problem with 15 items are not much 

different in Table 3.11, we observe that the relative performance of Algorithm 2  

gets much better  as the problem size increases as seen in Table 3.12.  

We further tested the performance of Algorithm 2 on MOCO problems including the 

random instances of MOKP, MOST and MOSP problems with three and four 

objectives ( 3, 4q q= = ).  

In order to have a mathematical program, we formulate the minimum spanning tree 

problem as a multicommodity flow problem. Then we can write MOST problem as 

follows: 

 

{ }

{ }

1 2

1 1

1 1

" " ( ), ( ),..., ( )

1

   1 1

1 1,2,..., 2,3,...,

0

, 1,2,..., 2,3,...,

,

0,1

ij ij q ij

n n

ij
i j

n n
k k

ij ji
j j

k
ij ij

ij ji ij

ij

MOST

Max z w z w z w

subject to

w

i

f f i k i n k n

otherwise

f w i j n k n

w w x i j

x

= =

= =

=

=


− = − = = =



≤ = =

+ = ∀

∈

∑∑

∑ ∑
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th

1 1

( ) 1,2,...,

:  unit cost of flow from node  to node in criterion

1 any flow exists from node  to node 

0

:  total flow from node  to node  in units

n n

v ij ij
i j

ijv

ij

ij

where

z w w v q

c i j v

if i j
x

otherwise

w i j

= =

= =


= 


∑∑

:  total flow of commodity  from node  to node  in unitsk
ijf k i j

 

 

If we have a complete graph with n nodes, we define node 1 as the supply node of 

n commodities and the remaining nodes as demand nodes where each demand node 

has a demand for a different commodity of exactly one unit. Therefore, the 

difference of outflow and the inflow of commodity k  will be equal to 1 for the 

demand node  k  whereas it will be equal to -1 for the supply node 1. All other nodes 

will be transshipment nodes for this commodity k . This model will give us a 

spanning tree since using only one supplier will guarantee a connected graph. In 

addition, no cycles will occur in this connected graph to minimize the cost. In our 

experiments, we generate cost parameters as integers uniformly distributed between 

10 and 100. 

Our preliminary experiments for the MOSP problem showed that the number of 

nondominated solutions is small when we use a complete graph. Typically, there 

were several paths from source to sink with relatively small number of arcs and 

these dominate many other paths. In order to overcome this difficulty, we generate 

special random graphs instead of a complete graph. We define source and sink nodes 

as nodes 1 and n  respectively as seen in Figure 3.8. Then we iteratively generate a 

random integer for the number of nodes per stage, 1 2 1 1( 1), ( ),..., ( )s sn n n n n −− − −  

uniformly distributed between [ ]( 2)*0.08,( 2)*0.12n n− −  (i.e. between 8% to 

12%, and on the average 10% of the number of nodes excluding the source and sink 

nodes.). We keep on generating as long as the number of nodes left satisfy, 

12 1.02( 2) 1sn n n−− − ≤ − + . Then, we stop and calculate the number of nodes 
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corresponding to the last stage, s , as the number of nodes left such that 

1s sn n −− where 1sn n= − .  

 

 

 

Figure 3.8 Generation of Random Graphs for Shortest Path Problems 

 

After determining the number of nodes for each stage, we define the edges that will 

be included in our graph and generate corresponding integer costs, ijc , from discrete 

uniform distribution as below:  

 

1

(10,50), , 1,...,

(30,100), , 1,..., 1

,

k

ij k k

UNIF i j Stage and i j k s

c UNIF i Stage j Stage k s

M otherwise

+

∈ < =


= ∈ ∈ = −
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M is sufficiently large number to guarantee that the corresponding edge will not be 

included in the random graph. We allow flows to the adjacent nodes in the same 

stage or to nodes in the next stage. Then, we formulate MOSP as below: 

 

{ }

{ }

1 2

th

1 1

1 1

" " ( ), ( ),..., ( )

   1 1

1 ,

0

0,1

( ) 1,2,...,

:  unit cost of arc between node  and node in crit

ij ij q ij

n n

ij ij
j j

ij

n n

v ij ijv ij
i j

ijv

MOSP

Max z x z x z x

subject to

i

x x i k i k

otherwise

x

where

z x c x v q

c i j v

= =

= =

=


− = − = ∀



∈

= =

∑ ∑

∑∑

erion

1 arc between node  and node  is used

0ij

if i j
x

otherwise


= 


 

 

According to the given formulations, we test the performance of Algorithm-2 on 

generated random instances of MOKP, MOST and MOSP problems with three and 

four objectives. The summary of the results are presented in Table 3.13 whose 

details take place in Appendix A. 
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Table 3.13 Performance of Algorithm-2 on Random Problems * 

Number of  
nondominated 

vectors ( )N  

Number of 
Models Solved 

( )MS  

Solution Time 
(CPU Time ) 

( )ST  

Avg. Sol. 
Time  

( / )ST N  

MS

N
 

Problem 

Avg. 
Std.  
Dev. 

Avg. 
Std.  
Dev. 

Avg. 
Std.  
Dev. 

Avg. 
Std.  
Dev 

Avg. 
Std.  
Dev 

MOKP 
25 items 

3q =  

211.8 150.2 449.2 278.3 22.8 9.8 0.1 0.1 2.2 0.1 

MOKP 
50 items 

3q =  

570.2 271.7 1224.2 542.7 438.3 280.5 0.7 0.2 2.2 0.1 

MOKP 
100 items 

3q =  

6786.2 2954.6 12654.6 5264.5 71149.2 60411.1 8.9 4.6 1.9 0.1 

MOKP 
25 items 

4q =  

425.4 155.1 4293.6 2019.7 677.4 420.6 1.5 0.4 9.8 1.3 

MOST 
Problem 
10 nodes 

3q =  

625.4 104.8 1326.2 195.8 941.5 297.4 1.5 0.3 2.1 0.1 

MOSP 
Problem 
25 nodes  

3q =  

86.4 55.9 195.2 129.4 5.2 4.7 0.1 0.0 2.2 0.1 

MOSP 
Problem 
50 nodes 

3q =  

266.2 38.9 604.8 89.4 82.8 20.5 0.3 0.0 2.3 0.0 

MOSP 
Problem 

100 nodes 
3q =  

469.6 98.7 1019.4 205.4 703.2 232.9 1.5 0.2 2.2 0.0 

MOSP 
Problem 

150 nodes 
3q =  

731.4 187.5 1538.2 374.2 3761.3 998.0 5.1 0.2 2.1 0.0 

MOSP 
Problem 

200 nodes 
3q =  

778.0 180.9 1631.4 357.2 10491.8 2848.6 13.4 0.8 2.1 0.1 

MOSP 
Problem 
25 nodes 

4q =  

205.6 71.5 1850.2 890.7 55.5 39.2 0.2 0.1 8.8 1.6 

MOSP 
Problem 
50 nodes 

4q =  

376.8 46.5 3217.4 48.5 657.7 56.0 1.8 0.3 8.6 1.0 

* Averages or Standard Deviations for 5 problems per cell 
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If we consider the problems with 3q = , we solve N  increasing-sized models where 

we insert two new constraints and binary variables at each step of Algorithm-1. On 

the other hand, we may need to solve 
( 1)

2

N N +
problems in the worst case of 

Algorithm 2 2( . . ( ))i e O N if we cannot predict the optimal solution of any problem 

without solving the model by using the information kept in our archives. On the 

other hand, we will solve N models in the best case ( . . ( ))i e O N where we always 

have the opportunity to determine the next nondominated solution by using the 

solutions kept in the archive after we solve N  models. Then, the number of models 

solved, MS , to find all N  nondominated solutions will be in the interval 

( 1)

2

N N
N MS

+
≤ ≤ . Since all these MS  problems are equal-sized in terms of the 

variables and constraints, we use the average number of models solved per 

nondominated solution,
MS

N
, as a performance measure. According to the data in the 

Tables 3.13, we observe that 
MS

N
is in the interval [ ]1.82,2.33  with an average of 

2.14 when 3q = . That is, we roughly solve 2 models for each nondominated 

solution in average. This indicates the importance of the information obtained from 

the archives of Algorithm 2 since 
( 1)

2

N N
MS

+
<< especially for large N values. 

The value of MS  decreases up to 0.03 % of 
( 1)

2

N N +
 as demonstrated in Table 

3.14.   Furthermore, the ratio,
MS

N
, is not so sensitive to the value of N which 

implies that we solve approximately the same number of models for each 

nondominated solution. We should also note that all models include only two 

additional constraints regardless of the value of N . 
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Table 3.14 Percentage of Models solved when 3q =  for all problem types 

Number of  nondominated 
vectors ( )N  

*100
( 1) / 2

MS

N N +
(%) 

32 13.45 
56 7.52 
76 5.81 
81 5.42 
84 5.49 

163 2.71 
168 2.72 
179 2.54 
182 2.47 
206 2.20 
249 1.81 
280 1.60 
283 1.60 
295 1.52 
298 1.54 
356 1.27 
375 1.18 
391 1.13 
434 0.99 
470 0.83 
486 0.92 
519 0.84 
534 0.81 
549 0.78 
554 0.76 
594 0.74 
599 0.70 
617 0.70 
655 0.66 
664 0.64 
693 0.61 
704 0.55 
721 0.58 
733 0.59 
784 0.54 
798 0.52 
843 0.49 
912 0.46 

1022 0.41 
1056 0.39 
2790 0.14 
5652 0.07 
6500 0.06 
8288 0.04 

10701 0.03 
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If we consider the instances with 4p = , then 
MS

N
 again  does not seem to be 

sensitive to the value of N where the ratio is within the interval [ ]6.56,11.50 with an 

average value of 9.06. The value of 
MS

N
 is larger compared to the case of 3q =  for 

all instances indicating that it increases with the number of objectives. We should 

also note that the number of models to be solved in the worst case is 

1

1

( 1)( 2)
1

2

N

n

n n−

=

+ +
+∑  (i.e. 3( )O N ) for 4q =  is also larger than 

( 1)

2

N N +
. We can 

write 
1

1

( 1)( 2)
1

2

N

n

n n
N MS

−

=

+ +
≤ ≤ +∑  since the number of models to be solved in the 

best case is equal to N . As we discuss for 3q = , if we consider the random instances 

demonstrated in Table 3.15, we observe
1

1

( 1)( 2)
1

2

N

n

n n
MS

−

=

+ +
<< +∑  especially for 

large N values .The value of MS  decreases up to 0.02 % of 
1

1

( 1)( 2)
1

2

N

n

n n−

=

+ +
+∑ .  

 

Table 3.15 Percentage of Models solved when 4q = for all Problem types 

Number of 
nondominated 
vectors ( )N  

1

1

*100
( 1)( 2)

1
2

N

n

MS

n n−

=

+ +
+∑

(%) 

877 0.40 
1431 0.08 
1499 0.18 
1700 0.11 
2271 0.11 
3166 0.05 
3173 0.07 
3175 0.02 
3216 0.05 
3250 0.04 
3280 0.02 
3581 0.03 
4164 0.04 
4754 0.02 
7269 0.02 
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Although we develop two exact algorithms, Algorithm 1 and Algorithm 2, to 

generate all efficient solutions and Algorithm 2 provides substantial decrease in the 

computational times, determining all nondominated solutions may still not be very 

practical especially for realistically large-sized MOCO problems. The total number 

of efficient solutions could be prohibitively large. We also tested the performance of 

Algorithm 2 on a MOKP with 200 items and three objectives which has 27260 

nondominated solutions. We observed that it takes very long time, 184608.70 

seconds, to find all these nondominated solutions.  Therefore, we propose a heuristic 

method to approximate the efficient frontier for MOCO problems. We test the 

performance of our heuristic method on the same random instances utilizing 

nondominated solutions of these problems we generated.  
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CHAPTER 4 

4 THE HEURISTIC APPROACH 

MOCO problems are typically computationally hard. Finding a single efficient 

solution may be hard and there may be prohibitively many efficient solutions.  We 

develop a heuristic method to approximate the efficient frontiers of MOCO 

problems. Our approach is based on fitting a surface similar to the approach 

developed by Köksalan (1999). Using this approximation, we may search for 

regions that are preferred by the DM and generate the actual nondominated solutions 

in those preferred regions. Alternatively, we may use an interactive approach to find 

the best solution of the DM and the heuristic approach can be utilized to find a 

starting solution for such an approach.  

A variation of this approach for continuous solution space problems is developed by 

Karasakal and Köksalan (2001) where they try to approximate the efficient surface 

for problems having a polyhedral solution space. They fit a weighted pL function 

and estimate the p  and weight values using several representative efficient 

solutions.  

Let 1 2( , ,...,  )IP IP IP
qz z z and 1 2( , ,...,  )NP NP NP

qz z z   denote the ideal point and nadir point 

respectively corresponding to problem ( )P  below:  

{ }1 2

( )

" " ( ), ( ),..., ( )q

P

Max z x z x z x

subject to

x X∈

 

where ( )( )1,...,
maxIP

i i j
j N

z z
=

=  and ( )( )1,...,
minNP

i i j
j N

z z
=

= . We denote iz value of th
j  

nondominated solution as ( )i jz  and the number of all nondominated solutions as N .  
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We should note that if we have a minimization problem, then 

( )( )1,...,
minIP

i i j
j N

z z
=

= and ( )( )1,...,
maxNP

i i j
j N

z z
=

= . 

4.1 Fitting a Surface to Approximate the Efficient Frontier 

We scale the values 1 2( , ,...,  )pz z z corresponding to each nondominated solution and 

obtain 1 1 2 2
1 2 3

1 1 2 2

( , ,..., ) , ,...,
IPIP IP

q q

NP IP NP IP NP IP
q q

z zz z z z
z z z

z z z z z z

 −− −′ ′ ′ =   − − − 
so that 0 1iz ′≤ ≤  for 

1,2,...,i q= . Note that we prefer the values closer to zero in each scaled objective i , 

since the value of iz  approaches the value of the ideal point IP
iz as iz ′ approaches to 

zero. That is, we minimize the scaled objectives. This observation is valid for both 

minimization and maximization type problems.  

Theorem. Let  

{ }1 2

( )

" " ( ), ( ),..., ( )q

P

Min y x y x y x

subject to

x X

′

∈

 

If ( )P and ( )P′ are equivalent problems except for the objective functions where 

1,...,i q= , ( ) ( )i iy x z x= −  and 1 2( , ,..., )qz z z′ ′ ′ and 1 2( , ,..., )qy y y′ ′ ′  are the scaled 

nondominated solutions corresponding to the equivalent problems ( )P and 

( )P′ respectively, then 1 2 1 2( , ,..., ) ( , ,..., )q qz z z y y y′ ′ ′ ′ ′ ′= . 

 

Proof. If 1 2( , ,...,  )p

IP IP IPz z z and 1 2( , ,...,  )p

NP NP NPz z z   denote the ideal point and nadir 

point respectively corresponding to maximization problem ( )P , then we know 

( )( )1,...,
maxIP

i i j
j N

z z
=

= and ( )( )1,...,
minNP

i i j
j N

z z
=

= . Multiplying all values by -1, we can write 

( )( )1,...,
minIP

i i j
j N

z z
=

− = −  and ( )( )1,...,
maxNP

i i j
j N

z z
=

− = − . We can also write ideal point and 
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nadir point ( )( )1,...,
minIP

i i j
j N

y y
=

=  and ( )( )1,...,
maxNP

i i j
j N

y y
=

= since ( )yP  is a minimization 

problem.  Using the relation ( ) ( )i j i jy z= − , we obtain ( )( )1,...,
minIP IP

i ii j
j N

y z z
=

= − = −  and 

( )( )1,...,
maxNP NP

i ii j
j N

y z z
=

= − = − . Since we scale the nondominated solutions such that 

IP
i i

i NP IP
i i

z z
z

z z

−′ =
−

  and 
IP

i i
i NP IP

i i

y y
y

y y

−′ =
−

, then we can write  

 
( )

( )

IP IP IP
i i i i i i

i iNP IP NP IP NP IP
i i i i i i

z z z z y y
z y

z z z z y y

− − − − −′ ′= = = =
− − − − −

which means 

 1 2 1 2( , ,..., ) ( , ,..., )q qz z z y y y′ ′ ′ ′ ′ ′=                 �  

 

Our approach is based on the fact that for an efficient solution if we would like to 

obtain a better value in th
i objective function, then we should sacrifice from the other 

criteria. In other words, as iz′ approaches to zero, then at least one objective jz′  will 

worsen substantially and may approach to 1. We approximate pL  function such that 

at the extreme hypothetical nondominated solutions we have the structure that when 

0iz′ = , 1jz′ =  for all j i≠ . That is, the pL  curve will pass from the scaled solutions 

in set ( ) ( ) ( ){ }0,1,...,1 , 1,0,1,...,1 ,..., 1,1,...,1,0S = . Then, we can define a surface 

including all the solutions in S  by using the pL distance function: 

1 2(1 ) (1 ) ... (1 ) 1 , 0p p p

qz z z p′ ′ ′− + − + + − = ≥ . 

If we find a p value such that the pL surface is close enough to the nondominated 

solutions, then we can approximate the efficient frontier by fitting this pL surface. By 

selecting a scaled nondominated solution as a reference point ( )1 2, ,..., qr r r , we can 

determine the p value such that the corresponding pL surface will pass through this 

scaled nondominated solution  and satisfy 21(1 ) (1 ) ... (1 ) 1p p p
qr r r− + − + + − = . 

Alternatively, we may select more than one reference point and find the p value such 
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that the corresponding pL surface will be at minimum distance to the reference 

points.  

We take a single nondominated solution that is at minimum Tchebycheff distance 

from the ideal point as a reference point to determine the p  value.  That is, we 

select  the nondominated solution ( ) ( )1 2 1( *) 2( *) ( *), ,..., , ,...,q j j q jr r r z z z=  as the 

reference point of a maximization type problem such that 

( )( ) ( )( ) ( *)1,..., 1,..., 1,...,
min max maxIP IP

i ii j i j
j N i q i q

z z z z
= = =

− = − . For minimization problems, we find 

the reference point ( )1( *) 2( *) ( *), ,...,j j q jz z z  that satisfies 

( )( ) ( )( ) ( *)1,..., 1,..., 1,...,
min max maxIP IP

i ii j i j
j N i q i q

z z z z
= = =

− = − . We can solve model (max)iP  or (min)iP  

to obtain reference point ( )1( *) 2( *) ( *), ,...,j j q jz z z  .  

(max)

( )

i

IP
i i

P

Min

subject to

z z x i

x X

α

α− ≤ ∀

∈

 

(min)

( )

i

IP
i i

P

Min

subject to

z x z i

x X

α

α− ≤ ∀

∈

 

After finding the p  value, we find representative points on this pL surface and 

rescale to find corresponding nondominated solutions.  

4.2 Performance Measures 

In order to evaluate how well the heuristic method approximates the efficient 

frontier, we find a representative point on the pL surface for each nondominated 

solution. Then, we assess the corresponding values of performance measures.  
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4.2.1 Finding Representative Points on the pL  Surface  

We determine the point on the pL surface that is at minimum distance for each 

nondominated solution ( )1( ) 2( ) ( ), ,...,j j q jz z z 1,...,j N=  and we denote the 

representative point corresponding to this nondominated solution as 

( )1( ) 2( ) ( ), ,...,j j q jrz rz rz  . We also denote the scaled nondominated solution and the 

scaled representative point ( )1( ) 2( ) ( ), ,...,j j j q jE z z z′ ′ ′ ′=  and 

( )1( ) 2( ) ( ), ,...,j j j q jR rz rz rz′ ′ ′ ′= ,  respectively.  

We find the representative point sets using both Euclidean and Tchebycheff distance 

measures. We define following performance measures to assess how well the 

efficient frontier is represented. 

Average Deviation 

1

1

( ) ( )

( ) ( )
11

N

qi j i j Nq
j

i j i j
i ji

rz z

rz z
N

q Nq

=

===

′ ′−

′ ′−

= =

∑
∑∑∑

 

Maximum Tchebycheff Distance = ( )( )( ) ( )1,..., 1,...,
max max i j i j

j N i q
rz z

= =
′ ′−  

Average Tchebycheff Distance =
( )( )( ) ( )1,...,

1

max
N

i j i j
i q

j

rz z

N

=
=

′ ′−∑
 

 

4.2.1.1  Representative Points Using the Euclidean Distance Measure 

We solve problem ( )rep jP  to find scaled representative point 

( )1( ) 2( ) ( ), ,...,j j j q jR rz rz rz′ ′ ′ ′= on the pL surface that is at minimum Euclidean distance 

from scaled nondominated solution ( )1( ) 2( ) ( ), ,...,j j j q jE z z z′ ′ ′ ′= .  
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( )

( )

( )

2

( ) ( )
1

( )
1

( )

1 1

0 1

rep j

q

i j i j
i

q
p

i j
i

i j

P

Min z rz

subject to

rz

rz

=

=

′ ′−

′− =

≤ ≤

∑

∑

 

This corresponds to solving the following problem for each j using the p value 

already obtained. 

Instead of solving nonlinear optimization models for each nondominated solution, 

we can use geometric methods to minimize Euclidean distances from points to 

surfaces. Since we define ( )1( ) 2( ) ( ), ,...,j j j q jR rz rz rz′ ′ ′ ′=  as the point on the pL surface 

that is at closest Euclidean distance to ( )1( ) 2( ) ( ), ,...,j j j q jE z z z′ ′ ′ ′= , then the vector 

( )1( ) 1( ) 2( ) 2( ) ( ) ( ), ,...,j j j j j j q j q jE R rz z rz z rz z′ ′ ′ ′ ′ ′ ′ ′= − − −
������

must be normal to the surface at 

jR . Furthermore, the vector v
�

 obtained by the partial derivatives of the pL surface at 

jR will also be normal to the pL surface at jR . Thus, the vector v
�

 must be parallel to 

the vector j jE R′ ′
������

such that  j jE R tv′ ′ =
������ �

 for some scalar t. If we arrange the terms of 

the equation for the pL surface, then we can take the partial derivatives and find 

vector v
�

 as follows: 

( )( )
1

1 1 0 (1)
q

p

i j
i

rz
=

′− − =∑  

( )
( )

( ) ( ) ( )( )

( )
11

( )
( )

1 1 1

1( ) 2( ) ( )

1 1

1

1 , 1 ,..., 1

q
p

i j
pi

i j

i j

p p p

j j q j

rz

p rz
rz

v p rz p rz p rz

−=

− − −

 
′∂ − − 

  ′= − − ⇒
∂

′ ′ ′= − − − − − −

∑

�

 

( )( ) ( )( )
1 1

( ) ( ) ( ) ( )1 1 , (2)
p p

j j i j i j i j i jE R tv rz z tp rz t rz i
− −

′ ′ ′ ′= ⇒ − = − − = − − ∀
������ �
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We cannot easily determine scaled representative point ( )1( ) 2( ) ( ), ,...,j j j q jR rz rz rz′ ′ ′ ′=  

from these nonlinear equations. Furthermore, we have a constraint that restricts 

( )i jrz′ to take values only between 0 and 1. Thus, we employ a solver to 

determine ( )1( ) 2( ) ( ), ,...,j j j q jR rz rz rz′ ′ ′ ′= . Therefore, we may still need to solve model 

( )rep jP . Figures 4.1 and 4.2 illustrate the nondominated solutions and representative 

solutions found by using the Euclidean distance measure corresponding to a MOKP.  
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Figure 4.1 Approximation of Efficient Frontier for MOKP (100 items, 126N = ) 
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Figure 4.2 Approximation of the Efficient Frontier for MOKP  

(100 items, 10701N = ) 

 

4.2.1.2  Representative Points Using the Tchebycheff Distance Measure 

We solve problem  ( )rep jP′  to determine representative point 

( )1( ) 2( ) ( ), ,...,j j j q jR rz rz rz′ ′ ′ ′= on pL surface that is at minimim Tchebycheff distance 

from  nondominated solution ( )1( ) 2( ) ( ), ,...,j j j q jE z z z′ ′ ′ ′=  using the p value already 

obtained. 

• Nondominated Solutions  • Representative Solutions on pL  curve 
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( )

( )

( ) ( )

( ) ( )

( )
1

( )

1 1

0 1

rep j

i j i j

i j i j

q
p

i j
i

i j

P

Min

subject to

z rz i

z rz i

rz

rz i

α

α

α

=

′

′ ′− ≤ ∀

′ ′− + ≤ ∀

′− =

′≤ ≤ ∀

∑

 

4.3 Computational Experiments 

We tested the performance of the heuristic procedure on the same problems of 

Section 3.4 for which we obtained all nondominated solutions using Algorithm-2. 

We found the set of representative points by using both Euclidean and Tchebycheff 

distances. In order to test the performance of the heuristic, we used the performance 

measures defined in previous chapter. The results are demonstrated in Appendix B. 

We employ the average deviation as our performance measure in evaluating the 

representative points obtained using the Euclidean distance measure. According to 

Table 4.1, average deviation is in the interval [0.002,0.037]  with the average value 

of 0.016. If we consider each problem separately, then we observe that the average 

deviation for MOKP is in [0.002,0.037]  with the average of 0.014, for MOST 

problem is in [0.004,0.019]  with the average of 0.012 and for MOSP is in 

[0.007,0.032]  with the average of 0.018. Since average deviation may depend on 

the number of objectives and the number of nondominated solutions, we should 

compare the problems having the same number of objectives and approximately 

same number of nondominated solutions. According to this observation, we observe 

that the heuristic approach works well especially for MOKP where the average 

deviation decreases up to 0.002. We also observe that the heuristic method also 

works well for relatively large-sized models where even Algortihm 2 takes very long 

to generate all efficient solutions. For the problem with maximum number of 

nondominated solutions among our test problems, the average deviation is found as 

only 0.008 as can be seen in Table B.1 in Appendix B. This allows us to represent 
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the efficient frontier of large-sized problems instead of generating all nondominated 

solutions.  

 

Table 4.1 Performance of the Heuristic Method on Random Problems when 

representative points are found by using Euclidean distance measure * 

Number of nondominated 

vectors ( )N  
p value Average 

Deviation ** 
Problem 

Avg. 
Std.  
Dev. 

Avg. 
Std.  
Dev. 

Avg. 
Std.  
Dev. 

MOKP 

100 items 2q =  153.80 25.51 2.112 0.089 0.005 0.002 
MOKP 

200 items 2q =  370.60 76.14 2.140 0.221 0.004 0.001 
MOKP 

25 items 3q =  211.80 150.25 2.340 0.388 0.023 0.006 
MOKP 

50 items 3q =  570.20 271.69 2.740 0.326 0.015 0.006 
MOKP 

100 items 3q =  6786.20 2954.61 2.416 0.145 0.008 0.003 
MOKP 

25 items 4q =  425.40 155.06 3.228 0.909 0.028 0.007 
MOST Problem 

15 nodes 2q =  81.80 10.01 2.100 0.127 0.008 0.006 
MOST Problem 

10 nodes 3q =  625.40 104.76 2.406 0.152 0.015 0.004 
MOSP Problem 

200 nodes 2q =  36.20 3.49 3.346 0.619 0.015 0.005 
MOSP Problem 

25 nodes 3q =  86.40 55.89 2.812 0.227 0.026 0.004 
MOSP Problem 

50 nodes 3q =  266.20 38.87 3.002 0.353 0.019 0.005 
MOSP Problem 

100 nodes 3q =  469.60 98.73 3.400 0.435 0.014 0.004 
MOSP Problem 

150 nodes 3q =  731.40 187.51 3.698 0.248 0.012 0.003 
MOSP Problem 

200 nodes 3q =  778.00 180.92 4.030 0.315 0.009 0.002 
MOSP Problem 

25 nodes 4q =  205.60 71.50 3.990 0.922 0.028 0.003 
MOSP Problem 

50 nodes 4q =  376.80 46.47 4.008 0.700 0.022 0.005 

* Averages or Standard Deviations for 5 problems per cell 

** Average for all nondominated solutions 
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We also tested the performance of the heuristic approach finding representative 

points on the pL surface by using the Tchebycheff distance measure. We employ the 

maximum Tchebycheff distance and average Tchebycheff distance as our 

performance measures. Since we measure the Tchebycheff distances in the scaled 

graph, our performance measure will take a value between 0 and 1.  

According to the results in Table 4.2, the maximum Tchebycheff distance is in the 

interval [ ]0.006,0.220 with the average value of 0.070. It gives Tchebycheff 

distances corresponding to the worst represented points of the selected test 

problems. On the other hand, average Tchebycheff distance takes into account 

Tchebycheff distances for all nondominated solutions. The average Tchebycheff 

distance is in the interval [ ]0.002,0.078 with the average value of 0.022.  

Since the pL  surface passes through the points 

( ) ( ) ( ){ }0,1,...,1 , 1,0,1,...,1 ,..., 1,1,...,1,0S = , we assume at the extreme nondominated 

solutions we have the structure that when 0iz′ = , 1jz′ =  for all j i≠ . In fact, this is 

not exactly the case for the problems with more than two objectives. Therefore, the 

nondominated solutions at the extreme points may not be well represented. That 

may explain the difference between the maximum Tchebycheff distances and 

average Tchebycheff distances. 

These performance measures also show that our heuristic works well even for large-

sized problems for which exact algorithms are not so practical. 

 

 

 

 

 

 



 68 

Table 4.2 Performance of the Heuristic Method on Random Problems when 

representative points are found by using Tchebycheff distance measure * 

Number of  
nondominated 

vectors ( )N  
p value 

Maximum 
Tchebycheff 

Distance 

Average 
Tchebycheff 

Distance 
Problem 

Avg. 
Std.  
Dev. 

Avg. 
Std.  
Dev. 

Avg. 
Std.  
Dev. 

Avg. 
Std.  
Dev. 

MOKP 

100 items 2q =  
153.80 25.51 2.11 0.09 0.014 0.004 0.005 0.002 

MOKP 

200 items 2q =  
370.60 76.14 2.14 0.22 0.012 0.004 0.005 0.002 

MOKP 

25 items 3q =  
211.80 150.25 2.34 0.39 0.093 0.018 0.030 0.008 

MOKP 

50 items 3q =  
570.20 271.69 2.74 0.33 0.062 0.017 0.020 0.009 

MOKP 

100 items 3q =  
6786.20 2954.61 2.42 0.14 0.039 0.011 0.010 0.004 

MOKP 

25 items 4q =  
425.40 155.06 3.23 0.91 0.164 0.036 0.043 0.021 

MOST Problem 

15 nodes 2q =  
81.80 10.01 2.10 0.13 0.024 0.012 0.010 0.006 

MOST Problem 

10 nodes 3q =  
625.40 104.76 2.41 0.15 0.072 0.016 0.019 0.005 

MOSP Problem 

200 nodes 2q =  
36.20 3.49 3.35 0.62 0.040 0.008 0.019 0.007 

MOSP Problem 

25 nodes 3q =  
86.40 55.89 2.81 0.23 0.099 0.007 0.034 0.006 

MOSP Problem 

50 nodes 3q =  
266.20 38.87 3.00 0.35 0.079 0.013 0.025 0.007 

MOSP Problem 

100 nodes 3q =  
469.60 98.73 3.40 0.43 0.064 0.014 0.020 0.007 

MOSP Problem 

150 nodes 3q =  
731.40 187.51 3.70 0.25 0.065 0.016 0.015 0.004 

MOSP Problem 

200 nodes 3q =  
778.00 180.92 4.03 0.32 0.051 0.006 0.012 0.002 

MOSP Problem 

50 nodes 4q =  
205.60 71.50 3.99 0.92 0.126 0.014 0.045 0.009 

MOSP Problem 

25 items 4q =  
376.80 46.47 4.01 0.70 0.116 0.034 0.033 0.007 

* Averages or Standard Deviations for 5 problems per cell 
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Although the heuristic method represents the efficient frontier well and it is practical 

for large-sized problems, there may be still some difficulties especially for the 

problems with more than two objectives.  

Problem ( )iP   

( )

( ) ( )

i

i j
j i

P

Max z x z x

subject to

x X

ε
≠

+

∈

∑  

will give the nondominated solution with the best iz value, which we denote as IP
iz , 

for sufficiently small  ε  as we discuss in previous section. That is, we can find the 

ideal criterion vector by solving problems ( )iP  for each 1,2,...,i q= .  

 

On the other hand, there does not exist an exact way to find the nadir criterion as 

Korhonen et al. (1996) discuss. For the special case, 2q = , problem 1( )P  and 

2( )P will give the nondominated vector 1 2( , )IP NP
z z and 1 2( , )NP IP

z z respectively where 

1 2( , ,...,  )IP IP IP
qz z z  and 1 2( , ,...,  )NP NP NP

qz z z   denote the ideal point and nadir point 

respectively corresponding to problem ( )P  below where ( )( )1,...,
maxIP

i i j
j N

z z
=

=  and 

( )( )1,...,
minNP

i i j
j N

z z
=

= .  However, this cannot be generalized for the problems 2q > .  

1

1 2

( )

( ) ( )

P

Max z x z x

subject to

x X

ε+

∈

 

2

2 1

( )

( ) ( )

P

Max z x z x

subject to

x X

ε+

∈
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To estimate the nadir point, we solve problems ( )iP for each 1, 2,...,i q= . We denote 

the nondominated solution vector for the optimal solution as 

( )1( 2( () ) ), ,..., ,...,IP IP IP IP
ii i q iz z z z . ( )

IP
j iz  is the th

j objective function value corresponding to 

the nondominated solution with the maximum iz value. Then we estimate the nadir 

point from the “payoff table” such that ( )ˆ minNP IP
j j i

i j
z z

≠
= , where ( )1 2ˆ ˆ ˆ, ,...,NP NP NP

qz z z  

denotes the estimated nadir criterion vector.  

Since we have all nondominated solutions available using Algorithm-2 for the test 

problems, we do not need to estimate the nadir. However, we also use 

( )1 2ˆ ˆ ˆ, ,...,NP NP NP
qz z z instead of the known nadir point to evaluate the performance of 

the heuristic method even when nadir point is estimated.   

According to the results in Table 4.3, the increase in the average deviations are not 

so significant. That implies we can use the estimated nadir point for large-sized 

problems without sacrificing much from the heuristic approach’s performance.  

We also tested whether the performance of heuristic method is sensitive to small  

changes in the p value or not. Considering all nondominated solutions, we search for 

a better p value which minimizes total Euclidean distance between nondominated 

solutions and their representative points on this corresponding pL surface by 

adjusting the p value in each iteration. Although the average deviations decrease 

with this p value, the difference is also not much as seen in Table 4.3.  
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Table 4.3 Effect of p value and nadir point estimation errors on the performance of 

the Heuristic 

  
Nadir Point 
is known * 

Nadir point is 
Estimated ** 

p Search 

Algorithm is 
employed *** 

 

Number of  
nondominated 

vectors 
 ( )N  

p  
value 

Average 
Deviation 

p  
value 

Average 
Deviation 

p  
value 

Average 
Deviation 

76 2.90 0.024 2.71 0.026 2.56 0.019 
163 1.87 0.027 1.53 0.036 1.89 0.027 
168 2.26 0.025 1.67 0.039 2.37 0.024 
182 2.51 0.026 1.93 0.038 2.30 0.023 
470 2.16 0.014 1.62 0.017 2.24 0.011 
280 2.62 0.012 2.2 0.015 2.55 0.011 
356 3.03 0.018 2.59 0.021 2.82 0.016 
519 3.14 0.025 2.99 0.027 2.64 0.019 
784 2.41 0.009 2.13 0.011 2.37 0.009 
912 2.50 0.013 2.04 0.019 2.36 0.009 

2790 2.65 0.009 2.64 0.009 2.59 0.009 
5652 2.39 0.004 2.19 0.005 2.39 0.004 
6500 2.40 0.006 2.25 0.007 2.40 0.006 
8288 2.39 0.013 2.14 0.015 2.31 0.012 

MOKP 
3q =  

10701 2.25 0.008 1.84 0.011 2.27 0.008 
207 4.85 0.037 4.33 0.044 3.03 0.026 
394 2.79 0.035 2.19 0.044 3.03 0.030 
403 2.74 0.020 2.3 0.026 2.72 0.020 
491 2.92 0.025 2.46 0.029 2.80 0.025 

MOKP 
4q =  

632 2.84 0.025 2.11 0.034 2.83 0.025 
32 2.80 0.029 2.32 0.047 2.55 0.027 MOSP 

3q =  664 3.71 0.007 3.00 0.011 3.62 0.007 

* Nadir point is obtained from the set of all nondominated solutions 

** Nadir point is estimated from the “payoff table” 

*** p value which minimizes the Euclidean distance between nondominated solutions and 

represenatative points is employed 

 

 



 72 

CHAPTER 5 

5 CONCLUSIONS 

We developed two exact algorithms to generate all nondominated solutions for 

MOCO problems. We compared the performance of our algorithm with the 

algorithm proposed by Sylva and Crema (2004). Although we showed that our 

algorithms work much better on selected test problems including MOKP, MOST 

and MOSP problems, computational times increase considerably as the problem size 

and the number of conflicting objectives increase. This is natural since the number 

of nondominated solutions increase substantially as we demonstrated.  Therefore, it 

still may not be applicable to many real-life problems.  

We proposed a fast heuristic method to approximate the efficient frontier of MOCO 

problems. Our heuristic method is based on fitting an pL surface to approximate the 

efficient frontier. We showed the method approximates the efficient frontier well on 

our test problems whose nondominated solutions are generated by the help of our 

exact algorithm. Furthermore, it can be used for realistically large sized problems 

since we demonstrated that it performs well for those problems.  

Interacting with the DM, we may search for the preferred regions of the pL surface 

and generate the actual efficient solutions in those regions. Therefore, we may not 

need to generate all nondominated solutions and save substantial computational 

effort.  

As a future work, it may be a good idea to focus on a selected region and find 

preferred solutions incorporating decision maker’s preferences. Therefore, our exact 

algorithms may be modified to deal with some parts of the efficient frontier. Such a 

procedure may prove very useful when employed together with our heuristic 

procedure.  
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We may also modify the exact algorithms by using some smart start techniques for 

solving the integer programs since we solve a number of models at each iteration.  

For example, the solutions of previous iterations can be introduced as the starting 

solution of the current iteration.  This however, still would not make the problems 

where binary variables are continuously introduced very practical, since they 

increase the complexity substantially. 

For the heuristic approach, we may test the performance when the nadir point is 

estimated with the minimum nadir point as a future research. This may overestimate 

the true nadir point and hence the range of criterion values.  This in turn may 

possibly negatively effect the representation of the whole space.  We may compare 

its performance with the one where the nadir is estimated from the efficient payoff 

table and the one where the nadir is exactly known. Since the performance may be 

problem dependent, it may be useful to test on different problems with different size.  
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APPENDIX A 

A. RESULTS FOR ALGORITHM 2 

Table A.1 Performance of Algorithm-2 on Random Knapsack Problems  

q

 
Number 
of items 

Problem 
Number of  

nondominated 
vectors ( )N  

Number of 
Models 
Solved 
( )MS  

Solution 
Time 
 (CPU 

Time in 
seconds) 

( )ST  

Average 
Solution 

Time  
( / )ST N  

MS

N  

1 76 170 7.41 0.10 2.24 
2 163 362 19.45 0.12 2.22 
3 168 386 32.03 0.19 2.30 
4 182 411 28.63 0.16 2.26 

25 

5 470 917 26.48 0.06 1.95 
1 280 629 184.23 0.66 2.25 
2 356 809 217.77 0.61 2.27 
3 519 1128 312.17 0.60 2.17 
4 784 1655 790.45 1.01 2.11 

50 

5 912 1900 686.63 0.75 2.08 
1 2790 5493 9636.91 3.45 1.97 
2 5652 10553 43992.41 7.78 1.87 
3 6500 12476 43369.13 6.67 1.92 
4 8288 15079 93843.58 11.32 1.82 

3 

100 

5 10701 19672 164904.06 15.41 1.84 
1 207 1700 228.51 1.10 8.21 
2 394 4164 470.03 1.19 10.57 
3 403 3581 574.31 1.43 8.89 
4 491 4754 770.80 1.57 9.68 

4 25 

5 632 7269 1343.59 2.13 11.50 
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Table A.2 Performance of Algorithm-2 on Random Minimum Spanning Tree 

Problems  

q  
Number 
of nodes 

Problem 
Number of  

nondominated 
vectors ( )N  

Number 
of 

Models 
Solved 

( )MS  

Solution 
Time 

(CPU Time 
in seconds) 

( )ST  

Average 
Solution 

Time  
( / )ST N  

MS

N  

1 486 1083 800.80 1.65 2.23 
2 549 1179 717.01 1.31 2.15 
3 655 1419 841.05 1.28 2.17 
4 704 1376 887.19 1.26 1.95 

3 10 

5 733 1574 1461.55 1.99 2.15 
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Table A.3 Performance of Algorithm-2 on Random Shortest Path Problems  

q  
Number 
of nodes 

Problem 

Number of  
nondominated 

vectors  
( )N  

Number 
of 

Models 
Solved 
( )MS  

Solution 
Time 
 (CPU 

Time in 
seconds) 

( )ST  

Average 
Solution 

Time  
( / )ST N  

MS

N  

1 32 71 1.19 0.04 2.22 
2 56 120 2.34 0.04 2.14 
3 81 180 4.61 0.06 2.22 
4 84 196 4.67 0.06 2.33 

25 

5 179 409 13.19 0.07 2.28 
1 206 468 57.36 0.28 2.27 
2 249 563 71.41 0.29 2.26 
3 283 643 80.16 0.28 2.27 
4 295 665 109.78 0.37 2.25 

50 

5 298 685 95.50 0.32 2.30 
1 375 829 521.63 1.39 2.21 
2 391 867 489.34 1.25 2.22 
3 434 931 597.61 1.38 2.15 
4 554 1170 981.03 1.77 2.11 

100 

5 594 1300 926.63 1.56 2.19 
1 599 1255 2906.81 4.85 2.10 
2 617 1328 3276.38 5.31 2.15 
3 664 1403 3403.64 5.13 2.11 
4 721 1521 3757.91 5.21 2.11 

150 

5 1056 2184 5461.56 5.17 2.07 
1 534 1164 6602.11 12.36 2.18 
2 693 1478 9743.00 14.06 2.13 
3 798 1642 10548.70 13.22 2.06 
4 843 1734 11011.99 13.06 2.06 

3 

200 

5 1022 2139 14553.06 14.24 2.09 
109 877 20.42 0.19 8.05 109 
170 1499 33.09 0.19 8.82 170 
218 1431 41.55 0.19 6.56 218 
230 2271 62.48 0.27 9.87 230 

25 

301 3173 120.06 0.40 10.54 301 
337 3166 727.78 2.16 9.39 337 
338 3216 624.92 1.85 9.51 338 
355 3250 695.36 1.96 9.15 355 
423 3175 654.28 1.55 7.51 423 

4 

50 

431 3280 585.97 1.36 7.61 431 
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APPENDIX B  

B. RESULTS FOR THE HEURISTIC METHOD 

Table B.1 Performance of the Heuristic on Random Knapsack Problems when 

representative points are found by using Euclidean distance measure 

q  
Number 
of items 

Problem 
Number of 

nondominated 
vectors ( )N  

p value Average 
Deviation  

1 126 2.19 0.003 
2 137 2.09 0.004 
3 147 2.03 0.002 
4 170 2.22 0.008 

100 

5 189 2.03 0.005 
1 266 2.47 0.004 
2 339 2.24 0.004 
3 384 2.05 0.005 
4 390 2.04 0.006 

2 

200 

5 474 1.90 0.002 
1 76 2.90 0.024 
2 163 1.87 0.027 
3 168 2.26 0.025 
4 182 2.51 0.026 

25 

5 470 2.16 0.014 
1 280 2.62 0.012 
2 356 3.03 0.018 
3 519 3.14 0.025 
4 784 2.41 0.009 

50 

5 912 2.50 0.013 
1 2790 2.65 0.009 
2 5652 2.39 0.004 
3 6500 2.40 0.006 
4 8288 2.39 0.013 

3 

100 

5 10701 2.25 0.008 
1 207 4.85 0.037 
2 394 2.79 0.035 
3 403 2.74 0.020 
4 491 2.92 0.025 

4 25 

5 632 2.84 0.025 
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Table B.2 Performance of the Heuristic on Random Minimum Spanning Tree 

Problems when representative points are found by using Euclidean distance measure 

q  
Number 

of 
nodes 

Problem 
Number of 

nondominated 
vectors ( )N  

p value Average 
Deviation  

1 68 1.97 0.006 
2 76 2.26 0.006 
3 85 2.08 0.004 
4 86 1.99 0.009 

2 15 

5 94 2.20 0.018 
1 486 2.48 0.010 
2 549 2.19 0.017 
3 655 2.44 0.019 
4 704 2.33 0.013 

3 10 

5 733 2.59 0.016 
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Table B.3 Performance of the Heuristic on Random Shortest Path Problems when 

representative points are found by using Euclidean distance measure 

q  

Number 
of 

nodes 
Problem 

Number of 
nondominated 
vectors ( )N  

p value Average 
Deviation 

1 32 3.87 0.015 
2 34 3.30 0.018 
3 36 3.11 0.017 
4 38 2.46 0.007 

2 200 

5 41 3.99 0.017 
1 32 2.80 0.029 
2 56 2.99 0.021 
3 81 2.80 0.029 
4 84 3.02 0.027 

25 

5 179 2.45 0.022 
1 206 3.49 0.022 
2 249 3.07 0.016 
3 283 3.11 0.024 
4 295 2.56 0.020 

50 

5 298 2.78 0.013 
1 375 3.89 0.013 
2 391 3.00 0.014 
3 434 3.78 0.022 
4 554 2.94 0.011 

100 

5 594 3.39 0.011 
1 599 3.57 0.015 
2 617 3.95 0.014 
3 664 3.71 0.007 
4 721 3.91 0.011 

150 

5 1056 3.35 0.013 
1 534 3.77 0.008 
2 693 4.32 0.012 
3 798 3.95 0.009 
4 843 3.71 0.008 

 
3 

200 

5 1022 4.40 0.008 
1 109 4.97 0.030 
2 170 4.90 0.027 
3 218 3.64 0.032 
4 230 2.83 0.024 

25 

5 301 3.61 0.026 
1 337 3.25 0.022 
2 338 4.92 0.019 
3 355 3.53 0.021 
4 423 3.80 0.030 

4 

50 

5 431 4.54 0.019 
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Table B.4 Performance of the Heuristic on Random Knapsack Problems when 

representative points are found by using Tchebycheff distance measure 

q  
Number 
of items 

Problem 
Number of 

nondominated 
vectors ( )N  

p value 
Maximum 

Tchebycheff 
Distance 

Average 
Tchebycheff 

Distance 

1 126 2.19 0.012 0.004 
2 137 2.09 0.014 0.005 
3 147 2.03 0.010 0.003 
4 170 2.22 0.019 0.009 

100 

5 189 2.03 0.017 0.006 
1 266 2.47 0.014 0.005 
2 339 2.24 0.010 0.005 
3 384 2.05 0.013 0.005 
4 390 2.04 0.017 0.007 

2 

200 

5 474 1.90 0.006 0.002 
1 76 2.90 0.082 0.033 
2 163 1.87 0.114 0.033 
3 168 2.26 0.098 0.032 
4 182 2.51 0.105 0.034 

25 

5 470 2.16 0.068 0.016 
1 280 2.62 0.057 0.015 
2 356 3.03 0.082 0.023 
3 519 3.14 0.077 0.034 
4 784 2.41 0.048 0.011 

50 

5 912 2.50 0.044 0.016 
1 2790 2.65 0.054 0.011 
2 5652 2.39 0.030 0.005 
3 6500 2.40 0.029 0.008 
4 8288 2.39 0.049 0.016 

3 

100 

5 10701 2.25 0.035 0.010 
1 207 4.85 0.165 0.078 
2 394 2.79 0.220 0.045 
3 403 2.74 0.171 0.026 
4 491 2.92 0.134 0.034 

4 25 

5 632 2.84 0.130 0.032 
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Table B.5 Performance of the Heuristic on Random Minimum Spanning Tree 

Problems when representative points are found by using Tchebycheff distance 

measure 

q  Number of 
nodes 

Problem 
Number of 

nondominated 
vectors ( )N  

p value 
Maximum 

Tchebycheff 
Distance 

Average 
Tchebycheff 

Distance 

1 68 1.97 0.017 0.007 
2 76 2.26 0.019 0.007 
2 85 2.08 0.017 0.005 
3 86 1.99 0.023 0.010 

2 15 

4 94 2.20 0.046 0.021 
1 486 2.48 0.055 0.012 
2 549 2.19 0.084 0.020 
3 655 2.44 0.090 0.024 
4 704 2.33 0.056 0.016 

3 10 

5 733 2.59 0.077 0.022 

 

 

 

 

 

 

 

 

 

 

 

 

 



 85 

Table B.6 Performance of the Heuristic on Random Shortest Path Problems when 

representative points are found by using Tchebycheff distance measure 

q  Number of 
nodes 

Problem 
Number of 

nondominated 
vectors ( )N  

p value 
Maximum 

Tchebycheff 
Distance 

Average 
Tchebycheff 

Distance 

1 32 3.87 0.042 0.020 
2 34 3.30 0.040 0.024 
3 36 3.11 0.047 0.023 
4 38 2.46 0.026 0.008 

2 200 

5 41 3.99 0.045 0.022 
1 32 2.80 0.108 0.042 
2 56 2.99 0.103 0.029 
3 81 2.80 0.096 0.037 
4 84 3.02 0.100 0.036 

25 

5 179 2.45 0.090 0.027 
1 206 3.49 0.079 0.031 
2 249 3.07 0.076 0.021 
3 283 3.11 0.086 0.034 
4 295 2.56 0.095 0.024 

50 

5 298 2.78 0.059 0.017 
1 375 3.89 0.073 0.020 
2 391 3.00 0.069 0.018 
3 434 3.78 0.072 0.033 
4 554 2.94 0.067 0.014 

100 

5 594 3.39 0.039 0.016 
1 599 3.57 0.052 0.021 
2 617 3.95 0.065 0.011 
3 664 3.71 0.065 0.011 
4 721 3.91 0.052 0.016 

150 

5 1056 3.35 0.090 0.018 
1 534 3.77 0.050 0.011 
2 693 4.32 0.048 0.016 
3 798 3.95 0.044 0.012 
4 843 3.71 0.055 0.010 

 
3 

200 

5 1022 4.40 0.058 0.011 
1 109 4.97 0.138 0.054 
2 170 4.90 0.124 0.049 
3 218 3.64 0.140 0.052 
4 230 2.83 0.121 0.032 

25 

5 301 3.61 0.105 0.040 
1 337 3.25 0.157 0.032 
2 338 4.92 0.075 0.029 
3 355 3.53 0.142 0.029 
4 423 3.80 0.116 0.045 

4 

50 

5 431 4.54 0.091 0.031 

 

 


