

AN EVALUATION OF ASPECT-ORIENTED PROGRAMMING FOR
EMBEDDED REAL-TIME SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

YUSUF BORA KARTAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

MAY 2007

Approval of the Graduate School of (Name of the Graduate School)

Prof. Dr. Canan ÖZGEN
Director

I certify that this thesis satisfies all the requirements as a thesis for the
degree of Master of Science.

Prof. Dr. İsmet ERKMEN
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of
Science.

Dr. Şenan Ece SCHMIDT
Supervisor

Examining Committee Members

Prof. Dr. Semih BİLGEN (METU, EE)

Dr. Şenan Ece SCHMIDT (METU, EE)

Prof. Dr. Hasan GÜRAN (METU, EE)

Asst. Prof. Dr. Cüneyt BAZLAMAÇCI (METU, EE)

Hakkı Özgür GÖREN (ASELSAN)

 iii

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully
cited and referenced all material and results that are not original to this
work.

Name, Last name : Yusuf Bora KARTAL

Signature :

 iv

ABSTRACT

AN EVALUATION OF ASPECT ORIENTED PROGRAMMING FOR
EMBEDDED REAL-TIME SYSTEMS

KARTAL, Yusuf Bora

M.S., Department of Electrical and Electronics Engineering

Supervisor : Dr. Şenan Ece SCHMIDT

May 2007, 81 pages

Crosscutting concerns are the issues in software that cannot be modularized

within a software module. In this thesis work, a detailed evaluation of the use

of Aspect Oriented Programming for the implementation of crosscutting

concerns in embedded real-time systems is presented. The pilot Audio

Switch project implementations are first evaluated in terms of software quality

attributes. Then a detailed analysis of the two implementations, according to

embedded real-time performance metrics has been carried out. Evaluation

results show the benefits of Aspect Oriented Programming in embedded real-

time systems.

Keywords: Aspect Oriented Programming, Crosscutting Concerns,

Embedded Real-Time Systems

 v

ÖZ

İLGİYE ODAKLI PROGRAMLAMANIN GERÇEK ZAMANLI GÖMÜLÜ
SİSTEMLER ÜZERİNDE BİR DEĞERLENDİRMESİ

KARTAL, Yusuf Bora

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Dr. Şenan Ece SCHMIDT

Mayıs 2007, 81 sayfa

Enine-kesen ilgiler tek bir yazılım parçasının içinde gerçeklenemeyip birden

fazla parçaya yayılmış olan işlerdir. Bu tez çalışmasında, İlgiye Odaklı

Programlama’nın gerçek-zamanlı gömülü sistemlerdeki enine-kesen ilgilerin

gerçeklenmesindeki kullanımı değerlendirilmektedir. Örnek Ses Anahtarı

projesinin gerçeklemeleri, öncelikle yazılım kalite özniteliklerine göre

değerlendirilmiştir. Daha sonra, gerçeklemelerin, gerçek-zamanlı gömülü

sistem performans metriklerine göre değerlendirmesi yapılmıştır.

Değerlendirme sonuçları, İlgiye Odaklı Programlamanın gerçek-zamanlı

gömülü sistemlerdeki kullanımının getirdiği faydaları ortaya koymaktadır.

Anahtar Kelimeler: İlgiye Odaklı Programlama, Enine-Kesen İlgiler, Gerçek-

Zamanlı Gömülü Sistemler

 vi

To My Parents and To My Dear

 vii

ACKNOWLEDGMENTS

I would like to thank Dr. Şenan Ece SCHMIDT for her valuable supervision,

support and tolerance throughout the development and improvement of this

thesis.

I am grateful to Hakkı Özgür GÖREN for his support throughout the

development and the improvement of this thesis. I am also grateful to

Aselsan Electronics Industries Inc. for the resources and facilities that I use

throughout thesis.

Thanks a lot to all my friends for their great encouragement and their

valuable help to accomplish this work.

Finally, I would like to thank to my parents for bringing up and trusting in me,

and to my dear, whom I love in deep, for just being there when I need.

 viii

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ...v

ACKNOWLEDGMENTS ... vii

TABLE OF CONTENTS... viii

LIST OF TABLES...xi

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS ... xiv

INTRODUCTION ... 1

CHAPTER II... 5

BACKGROUND ... 5

2.1 Real-Time Systems .. 5

2.1.1 Characteristics of Real-Time Systems... 7

2.1.2 Hard Real-Time Systems... 7

2.1.3 Soft Real-Time Systems .. 8

2.2 Embedded Systems ... 8

2.3 Object-Oriented Design.. 11

2.3.1 Object-Oriented Design Principles... 14

2.3.1.1 Single Responsibility Principle (SRP).................................... 14

2.3.1.2 Open Closed Principle (OCP) ... 14

2.3.1.3 Interface Segregation Principle (ISP) 15

2.3.1.4 Liskov Substitution Principle (LSP).. 15

2.3.1.5 Dependency Inversion Principle (DIP)................................... 16

2.3.1.6 Common Closure Principle (CCP)... 16

2.3.1.7 Stable Dependencies Principle (SDP)................................... 17

2.3.1.8 Stable Abstractions Principle (SAP) 18

2.4 Crosscutting Concerns ... 19

2.5 Aspect Oriented Programming ... 21

2.5.1 How Aspect Oriented Programming Works 23

 ix

2.5.2 An Aspect Language: AspectC++.. 28

IMPLEMENTATION... 32

3.1 Case Study... 32

3.1.1 Motorola MVME 5100 Board.. 33

3.1.2 Real-Time Operating System VxWorks 35

3.2 Project Description ... 36

3.2.1 A/D Converter Block .. 37

3.2.2 Data Processing Block... 37

3.2.3 D/A Converter Block .. 38

3.3 Implemented Non-Functional Concerns ... 41

3.3.1 Logging Concern ... 41

3.3.2 Error Checking Concern: ... 43

3.3.3 Range Checking Concern:... 44

3.3.4 Real-Time Property Concern: .. 46

EVALUATION .. 48

4.1 Software Quality ... 49

4.1.1 Chidamber and Kemerer Metrics Suite .. 50

4.1.1.1 Weighted Methods Per Class (WMC).................................... 50

4.1.1.2 Coupling Between Objects (CBO)... 52

4.1.1.3 Response For A Class (RFC).. 53

4.1.1.4 Lack Of Cohesion In Methods (LCOM) 55

4.1.1.5 Depth of Inheritance Tree (DIT)... 56

4.1.1.6 Number Of Children (NOC) ... 57

4.1.2 Software Quality Results Summary of Audio Switch Project........ 58

4.2 Embedded Real-Time System Performance 59

4.2.1 Memory Usage .. 60

4.2.2 CPU Usage.. 61

4.2.3 Run-Time ... 63

4.2.3.1 A/D Converter Block Run-Time Results 64

4.2.3.2 D/A Converter Block Run-Time Results 66

4.2.3.3 Data Processing Block Run-Time Results............................. 67

4.3 Summary of Embedded Real-Time System Performance.................. 69

CONCLUSION... 72

 x

REFERENCES .. 74

APPENDIX A ... 77

AspectC++ Language Quick Reference ... 77

APPENDIX B ... 79

Motorola MVME 5100 Specifications.. 79

 xi

LIST OF TABLES

Table 4.1 Mapping of C&K Metrics on Software Quality Attributes 58

Table 4.2 Total Effects of AOP on Software Quality Metrics........................ 58

Table 4.3 Effects of AOP Usage on Software Quality Attributes.................. 59

Table 4.4 Effects of AOP on Embedded Real-Time Metrics 70

Table 4.5 Embedded Real-Time Metrics Metrics Summary....................... 70

 xii

LIST OF FIGURES

Figure 2.1 Real-Time System Mechanisms [7] .. 6

Figure 2.2 Components of an Embedded System ... 9

Figure 2.3 A/D Converter Object.. 12

Figure 2.4 A System Made up of Interacting Objects [23]............................ 13

Figure 2.5 Sample Dependency Relation .. 17

Figure 2.6 Sample application of SAP in UML Notation............................... 18

Figure 2.7 Sample Orientation of Modules in a Software Project [11].......... 20

Figure 2.8 Use of Aspect Oriented Programming [24] 23

Figure 2.9 Aspect Weaver ... 24

Figure 2.10 Class Diagram of Object-Oriented Implementation of Logging

Concern in Audio Switch Project.. 25

Figure 2.11 Object-Oriented Implementation of Logging Concern in Audio

Switch Project .. 25

Figure 2.12 Logical Settlement of Aspect-Oriented Implementation of Logging

Concern in Audio Switch Project.. 26

Figure 2.13 Aspect-Oriented Implementation of Logging Concern in Audio

Switch Project .. 26

Figure 2.14 Aspect-Oriented Implementation of Logging Concern 27

Figure 3.1 Thumbnail of MVME 5100 [17] ... 34

Figure 3.2 Software modules of Audio Switch Project 36

Figure 3.3 Summary of Audio Switch Project Operation 40

Figure 3.4 Object-Oriented Implementation of Logging Concern................. 41

Figure 3.5 Aspect-Oriented Implementation of Logging Concern 42

Figure 3.6 Object-Oriented Implementation of Error Checking Concern...... 43

Figure 3.7 Aspect-Oriented Implementation of Error Checking Concern 44

Figure 3.8 Object-Oriented Implementation of Range Checking Concern ... 45

Figure 3.9 Aspect-Oriented Implementation of Range Checking Concern... 45

 xiii

Figure 3.10 Object-Oriented Implementation of Real-Time Property Concern

... 46

Figure 3.11 Aspect-Oriented Implementation of Real-Time Property Concern

... 47

Figure 4.1 WMC Metric Results ... 51

Figure 4.2 CBO Metric Results .. 53

Figure 4.3 RFC Metric Results... 54

Figure 4.4 LCOM Metric Results.. 56

Figure 4.5 Dynamic Memory Usage Results.. 61

Figure 4.6 CPU Usage Results .. 63

Figure 4.7 Average Run-Time Measurement Results of A/D Converter Block

... 65

Figure 4.8 Worst Case Run-Time Measurement Results of A/D Converter

Block .. 65

Figure 4.9 Average Run-Time Measurement Results of D/A Converter Block

... 66

Figure 4.10 Worst Case Run-Time Measurement Results of D/A Converter

Block .. 67

Figure 4.11 Average Run-Time Measurement Results of Data Processing

Block .. 68

Figure 4.12 Worst Case Run-Time Measurement Results of Data Processing

Block .. 68

 xiv

LIST OF ABBREVIATIONS

AOP : Aspect Oriented Programming

A/D : Analog to Digital

C&K : Chidamber and Kemerer

DAC : Digital to Analog Converter

D/A : Digital to Analog

METU : Middle East Technical University

OOP : Object Oriented Programming

RTOS : Real-Time Operating System

SOC : Separation of Concerns

UML : Unified Modeling Language

CHAPTER I

INTRODUCTION

Advances in programming languages have aimed to improve the software

developers’ ability to build up more modular code. Especially in desktop

computing, software quality becomes one of the major components of the

system. Modularity in software implies reusability, maintainability and

testability of the system.

Nowadays, Object Oriented Programming (OOP) is the dominant

programming paradigm where the real-life objects are mapped to software

objects as an abstraction. OOP is a way to develop modular software;

however it still has some limitations in the field of Separation of Concerns

(SOC), which refers to the identification and encapsulation of different

concerns in different software blocks.

OOP is good at separating the functional concerns of the software, which

defines the core functionality of the system. However, system software is not

only composed of functional concerns. Besides the functional concerns, there

are some non-functional concerns like logging, error handling, which are

especially used in the software development life cycle. These concerns,

when implemented by the OOP techniques, have a crosscutting behavior

over the functional software blocks. Their implementations are spread over

many software modules. Because of this crosscutting behavior, these

concerns are named as Crosscutting Concerns.

Crosscutting concerns hinder the modularity of the system software and

degrade the software quality of the system. To avoid this degradation, SOC

is needed for the modularization of crosscutting concerns.

 2

Aspect-Oriented Programming (AOP), which is built on the existing OOP

techniques, is the latest advancement in programming techniques in the

pursuit of SOC. AOP has proposed new concepts for the programmers to

easily modularize and control the crosscutting functionality of the software. A

large number of studies are carried out to show the use of AOP in non-real-

time desktop computing systems. However application of AOP in the field of

embedded real-time systems is not fully studied yet.

Embedded real-time systems differ significantly from the desktop computing

systems. They have special requirements and resource constraints, which

drive the software development process. The software developed for an

embedded real-time system should be predictable, and should be able to

work with the least powerful computers that can meet the functional and

performance requirements of the system. [1]

Traditionally, using the procedural programming languages like C is used in

developing embedded real-time system software. Moreover the low level

Assembly language is used to develop most of the embedded applications.

However none of these languages have the simplicity of OOP languages.

OOP is not yet fully integrated to the embedded real-time software

development process because of its overhead.

The main reason for the performance overhead of OOP is the message

passing and context switching issues. Especially the overhead of the

crosscutting concerns is not tolerable.

In this thesis, the evaluation of Aspect Oriented Programming is made for the

embedded real-time systems on the Audio Switch project. A comparison

between AOP and OOP is made according to both software quality attributes

and embedded real-time performance metrics.

Audio Switch project is a software implementation of an audio matrix. There

are forty input channels, each of which can be switched to sixteen different

audio outputs separately. The switch can be controlled via a graphical user

interface. The user can increase or decrease the signal levels of each input

channel. Moreover the user can add a volume offset or completely mute any

 3

input channels. Each input channel can be switched to one or more output

channels. Besides these, the user has the ability to multiplex several input

channels to one or more output channels.

The aim of the research is to determine if AOP is techniques provide better

separation of crosscutting concerns in the field of embedded real-time

systems. Moreover, it is tried to figure out if AOP gives better performance

results in terms of embedded real-time performance metrics.

In this work, an embedded real-time application is developed to compare the

performance of object-oriented and aspect-oriented programming techniques

in the implementation of non-functional crosscutting concerns.

As stated in [21, 25] Chidamber and Kemerer (C&K) Metric Suite provides

the most comprehensive and best-validated set of measures. C&K metrics

suite was generated to fulfill the need for an evaluation metrics suite for

Object-Oriented Design methodology. These metrics give numerical results

to measure the four software attributes of the system. These metrics are

proposed by Shyam R. Chidamber and Chris F. Kemerer in [20] and widely

adopted for evaluating the quality of object-oriented system design.

The two implementations are first compared according the Chidamber and

Kemerer Metrics Suite to see the difference of the implementations in terms

of software quality attributes. Then, another comparison is carried out to see

the differences of the two implementations in terms of embedded real-time

performance metrics. Percent CPU usage, percent memory usage and run-

time differences are examined in this context.

The remainder of this thesis organized as follows: In Chapter II background

information about embedded real-time systems, Object Oriented

Programming and Aspect Oriented Programming is given. Moreover the

phenomenon of Separation of Concerns and Crosscutting Concerns are also

discussed in this chapter.

In Chapter III the pilot Audio Switch project is discussed. The operating

environment and the implementation of the project are described in detail. In

 4

this chapter the implementation is divided into three sub-blocks. Each of

these sub-blocks and their relations are described in detail.

In Chapter IV the evaluation results of the Audio Switch project are given.

The results given in this chapter are divided into two sub-groups, according

to the evaluation procedures. In the first group the evaluation results of the

software quality metrics are given. In the second group, the evaluation results

of the embedded real-time performance metrics are explored in detail.

Finally in Chapter V the evaluation results and the implementation itself are

summarized. Moreover, the advantages and disadvantages of using AOP in

the implementation of crosscutting concerns in embedded real-time systems

are presented in this chapter. In addition to these, some possible

improvements that can be gathered using AOP in embedded real-time

systems are discussed in this chapter.

 5

CHAPTER II

BACKGROUND

This chapter describes the embedded systems, real-time systems; object-

oriented programming and the aspect-oriented programming paradigms. In

particular, object-oriented and aspect-oriented programming paradigms will

be addressed.

2.1 Real-Time Systems

Systems in which, the production time of the output is as significant as the

output itself, are defined as real-time systems [1]. In real-time systems, each

input corresponds to an action in the real domain, so the output of the system

should relate with the reaction in the real domain. The lag between the input

and output times of a real-time system should be acceptably small.

Because of their real domain relations, the correctness of real-time systems

is not only related with the correctness of their outputs but also the

production time of the outputs. The correct function at the correct time is the

key concept for real-time systems. A real-time system, which should

complete a job in 10 microseconds, should complete that job within that time

interval, otherwise the system fails. Unpredictable delays in real-time

systems are not acceptable.

Real-time systems can be found in many different areas ranging from control

systems to multimedia video conferencing.

Most real-time systems operate in mission critical environment in which

events must be processed in a strict order within bounded delays. Hence the

 6

real-time systems must provide a set of real-time mechanisms or services.

Five standard mechanisms are: Task Management, Interprocess

Communication, Dynamic Memory Allocation, Device I/O Management and

Timers. Figure 2.1 shows the interaction between these mechanisms in a

real-time system:

 Figure 2.1 Real-Time System Mechanisms [7]

The first mechanism, task management, is the priority-based scheduling and

management of processes. The second is inter-process communication,

which allows processes to pass messages between each other in a reliable

and timely manner. Dynamic memory allocation provides processes with

dynamic pools of memory that can be shared by multiple processes for the

fast sharing of data. Device I/O management controls all devices in a real-

time fashion. Timer services offered by real-time systems include task delay

and time-outs, and they are used to enforce the bounded timing

requirements. [7]

In general the real-time systems are either event triggered based on

interrupts or time-triggered based on deadlines. [2]

 7

2.1.1 Characteristics of Real-Time Systems

According to [3,4,5] the real-time systems have some common distinguishing

characteristics. These characteristics are as follows:

• Real-time systems are predictable. The time needed for a job is

within predictable limits.

• Real-time systems are responsive. They interact with their

surroundings via some peripherals.

• They are robust. They give correct results under unpredictable and

even erroneous conditions.

• They are usually embedded within larger systems such that their

behavior is indistinguishable from that of the entire system.

• They are often distributed.

• They do their job by executing multiple tasks concurrently regarding

their priorities.

Real-time systems have deadlines to complete their jobs. They are divided

into two distinct groups according to the strictness of the timing limits: hard

real-time and soft real-time systems.

2.1.2 Hard Real-Time Systems

A hard real-time system is a system in which the distribution of its met and

missed deadlines during a window of time w is precisely bounded. [6] The

timing constraints of hard real-time systems should be met precisely.

Even a small delay in such systems is unacceptable. In hard-real time

systems delay means failure in the system operation. The automatic breaking

system in the automobiles is a typical example for hard real-time systems. A

 8

delay in the system operation means failure and can cause a crash. Missing

the deadlines may result in catastrophic consequences or loss of system

performance.

2.1.3 Soft Real-Time Systems

Soft real-time systems are the systems in which, missing some of the

deadlines is occasionally acceptable. However it is still important to fulfill the

timing requirements. In other words, the position of the missing dead lines is

important. Consecutive misses may cause system failure.

In these systems delay does not always mean failure for the system. Real-

time multimedia broadcasting is a typical example for soft real-time systems.

Small delays in the file transfer can be acceptable if the user does not

recognize it. However it is still important not to exceed the timing limits for

data quality. [7]

To summarize a real-time system is a system, which should provide an

appropriate response within a certain time bound

2.2 Embedded Systems

An embedded system is a physical system that employs computer control for

a specific purpose. Unlike a general purpose computing system, an

embedded system does one or a few predefined tasks. Embedded systems

do not provide standard computing services and they usually form a part of a

larger system. [1]

Embedded systems usually have limited user interface. They usually operate

for long time periods. The computer in an embedded system is strictly related

to its operating environment (peripherals). A computerized dishwasher is a

 9

typical example for an embedded system where the main system provides a

non-computing function with the help of an embedded computer.

A typical embedded system has a central processing unit (CPU), a main

memory unit (MMU) and its peripherals such as device drivers, converters

and interfaces. The CPU is responsible for computing the algorithms running

for the system operation. The input and output data are kept in the main

memory unit.

 The peripherals in an embedded system are usually specialized device

drivers, which give control service for the use of specific hardware. The

system communicates with the outside world via these peripherals. Figure

2.2 shows the typical components of an embedded system.

 Figure 2.2 Components of an Embedded System

Analog Digital Analog

Memory

Coprocessors

Controllers

Converters

Processor

Interface

Software

ASIC

 10

An embedded system is not always a separate block. It is usually built in the

device that it is controlling. “Embedded systems are usually constructed with

the least powerful computers that can meet the functional and performance

requirements.”[1]

Embedded systems can be seen in a wide range of application areas ranging

from medical applications (heart monitors) to military applications (weapon

control systems).

Although embedded systems can be basic units, which are responsible for

very specific jobs, they can also be very complex systems doing several jobs

at the same time. Embedded systems have some resource constraints

related to their work and operating environment.

In real-life, most of the embedded systems have real-time specifications.

These kind of embedded systems are called Embedded Real-Time Systems.

The real-time embedded systems design becomes more and more

complicated, with the increasing demands from the embedded systems and

from the nature of being real-time. [8] They have to control different

hardware. Besides this, they have to have higher performance and reliability.

These requirements change the development style of embedded systems.

One of the main characteristics of the embedded systems is their context

dependency. The term context dependency here implies the environment in

which the system is operating. Because of being context dependent the

system should be able to change its behavior with respect to the

environmental changes.

Context-dependent systems have three important conceptual parts: One part

consists of the sensors, which provides the communication of the system

with its environment. The second part is made up of the logic to decide

contexts based on the data gathered from those sensors. And the last part

consists of the internal processing that is triggered by the determined

contexts. [8]

As the embedded systems become more and more complicated, the

software controlling those systems are becoming more and more

 11

complicated though. The increasing complexity in the software requires a

new design approach. Nowadays Object Oriented Design is the most popular

and dominant design methodology for embedded systems software.

2.3 Object-Oriented Design

Object-oriented design is nowadays the most popular and dominant

development paradigm in the software development life cycle. Before going

through the details and main principles of object-oriented design, it is worth to

give the meaning of the term “object” and show the mapping between the

real domain problems and software objects.

The term “object” is now being widely used in the design process. An object

is an encapsulation of the information related to a specific task. It is an entity

that keeps state information and has defined operations controlling its

functionality. The operations of an object provide an interface to the other

objects. The object functionality is controlled by both its state and those

predefined operations. Object functionality, in other words, its response to

outside effects is determined by the called operation and its current state.

Objects keep their state information in their attributes. Hence it can be said

that the reaction of an object to an outside action is decided by looking at the

attributes and methods of that object. Here the term “method” is used to refer

to the implementation of an object operation. Figure 2.3 shows a software

object with its attributes and operations.

 12

 Figure 2.3 A/D Converter Object

The objects in the software are the mappings of the real-domain objects. In

Figure 2.3 the A/D converter object is the software controller of the analog to

digital converter in the real-life. Its job is, coordinating the sample flow in the

A/D converter memory map.

As in this case the software objects in the object oriented design approach

are the mappings of the real objects in the real-domain problems. Hence it is

easy to construct software for a real-life problem by using object-oriented

design methodology.

In a system software, each object keeps state information related to a

specific job. The entire system operation is performed by the interaction

between the objects. The interactions between the software objects are

performed via message passing. The common region between the software

objects is lowered in the object oriented design methodology. Figure 2.4

illustrates the message passing between the objects in an object-oriented

design.

 13

 Figure 2.4 A System Made up of Interacting Objects [23]

In some distributed systems the message passing between the software

objects is performed by text messages. The receiving entity parses the

message and does the requested job in that message. But if the software

objects exist in the same program the message passing is performed via

method call or event passing.

There are several principles that object-oriented design relies on. The main

principles of object-oriented design are the principle of “high cohesion” and

“low coupling”.

The term “cohesion” in software development, is a measure of how strongly

the total lines of code in an object’s implementation work together to do a

specific job. In software development, high cohesion is preferable, high

cohesive objects, in other words objects dealing with a specific job are more

adaptable to the environmental changes. Moreover high cohesion implies the

reusability and maintainability of the software object.

The term “coupling” in software development is a measure of the degree to

which each module in the software relies on each of the other modules in the

project. Low coupling is more preferable in object-oriented software design,

because loosely coupled objects are easy to manage. In object-oriented

 14

design a small change in an object may cause unmanageable changes in the

modules, to which it is related.

Thus, high cohesion and low coupling are the key aspects of an object

oriented software design.

2.3.1 Object-Oriented Design Principles

Martin et. al. [9] lists the eight principles of object-oriented module design that

provide high cohesion and low coupling (dependency). Next, these eight

principles are described.

2.3.1.1 Single Responsibility Principle (SRP)

This principle imposes that a software object in an object-oriented design

should deal with only one specific job. If a class is related to more than one

job, in other words, if an object has more than one responsibility, any change

in one of those responsibilities may cause that object to change. This change

may not be so straightforward regarding the other responsibilities that the

object should deal with. Hence, it is difficult to modify, change or reuse that

object. This makes the object to be unchangeable and rigid. Thinking of the

starting point of object-oriented design, this is not the point that it desires to

reach.

In fact the Single Responsibility Principle is the object-oriented design

solution to the classic “Separation of Concerns” problem, which is the

problem of having more than one concern within one software module.

2.3.1.2 Open Closed Principle (OCP)

A change in an object may cause a cascade of changes in the other objects

that are dependent to the changing object. This causes a fragile formation in

the object-oriented design. This situation is another form of rigidity.

 15

The Open-Closed Principle is a design strategy to prevent the fragile

formation of the software design. According to this principle a software entity

should be closed to modifications but still open to extension via sub-classing

or composition. Hence, by preventing changes in the original entity OCP tries

to prevent the brittle software formation.

There are still some cases that modification in the original module is the only

way to satisfy the software requirements. No extensions via sub-classing or

composition are available for those cases.

2.3.1.3 Interface Segregation Principle (ISP)

If an interface in system software gives service to more than one object a

small change in that interface affects the clients. If a method in the interface

is changed, that forces unwanted changes in the other objects that are not

using that method. This is because all the objects are coupled to the same

interface.

Interface Segregation Principle aims to solve this problem. It states that an

object should only depend on the narrowest interface that satisfies the

object’s requirements. If the interfaces in a system software design are

separated according to this principle the changes in those interfaces are

localized.

However there can be still some requirements that make two different objects

coupled to the same interface.

2.3.1.4 Liskov Substitution Principle (LSP)

Liskov Substitution Principle states that, subtypes should be substitutable for

their base types. In other words the behavior of the derived classes should

not alter the behavior of their base classes in the ways that alter the behavior

of the objects that are dependent to the base class.

 16

2.3.1.5 Dependency Inversion Principle (DIP)

In a system software if an object is dependent on another object directly or

indirectly in more than one ways that causes a fragile design. If a class A is

dependent on a class B that is dependent on another class C. And if class A

is also dependent on class C, that situation causes a fragile system

formation, because both objects depend on unnecessary details.

The Dependency Inversion Principle aims to solve these problems by stating

the following simple rules:

• “High level modules should not depend on low level modules”

• “High level and low level modules should depend on abstractions”

• “Abstractions should not depend on details, details should depend on

abstractions.” [10]

Applications of Dependency Inversion Principle can be seen in layered

architectures where higher layers are dependent on lower layers over some

interface classes.

2.3.1.6 Common Closure Principle (CCP)

Common Closure Principle is in fact the analog of Single Responsibility

Principle. It is just the package-applied version of SRP.

As in SRP Common Closure Principle aims to localize the change within

packages by designing the packages such that they are dealing with single

specific job.

Common Closure Principle states that, the software package with all of its

components should be closed together against the same kinds of changes.

One change made to a package should affect all the classes in that package

and should not affect any other classes outside that package.

This principle aims to make the software more cohesive. So it becomes easy

to maintain and reuse. It is useful when thinking of the functional

 17

requirements of a system, but it is simply useless when considering the

nonfunctional crosscutting concerns in the system software.

2.3.1.7 Stable Dependencies Principle (SDP)

Changes in the objects, forces their dependent objects to change. This

changes become more difficult to manage with the increasing dependency

relationships.

Stable Dependencies Principle aims to solve this problem by giving a stable

dependency formation in the software design.

It states that the dependency between two objects should be from less stable

to more stable object. A less stable object should be dependent to a more

stable object, because less stable objects are open to changes and this

changes have effects on the object’s dependents.

 So the dependency relation should be arranged such that the object that has

the lowest probability of change should be at the bottom layer.

 Figure 2.5 Sample Dependency Relation

 18

In the above figure Class B should be more stable than class A, regarding

the Stable Dependencies Principle.

2.3.1.8 Stable Abstractions Principle (SAP)

Stable Dependencies Principle guides software to stability. What can we do

if we need flexibility in our design? The answer is Open Closed Principle. The

system objects should be designed to be closed to modification and open to

extensions.

Stable Abstractions Principle combines these two principles. It states that

one can achieve stability and flexibility at the same time by using stable

abstractions. Stability is achieved by putting the stable abstractions in

different packages from the less stable implementations. Figure 2.6 illustrates

this principle.

 In this figure, ClassA takes service from ClassB via its interface class

IClassB that is more stable than the implementation ClassB. By taking the

interface class into separate package stability is achieved. Here the interface

class is more stable than the implementation class.

 Figure 2.6 Sample application of SAP in UML Notation

 19

The above object-oriented design principles aims to achieve a modular and

reusable design. By applying these principles one can achieve easily

manageable system software considering the functional behavior.

Object-oriented design principles are good at modularization of the system

functional behavior. Whereas it is not the case when we consider the non-

functional system requirements that crosscut the software modules.

Such concerns that are scattered along the functional blocks of the system

are called “crosscutting concerns”. By using object-oriented programming it is

not possible to have a well modularized design for those non-functional

concerns. In the next section the not, on of “crosscutting concerns” is

described.

2.4 Crosscutting Concerns

Software development is becoming a more complex issue, as the

requirements get more complex. The software should handle a large number

of wishes, requirements and needs. Software development, therefore have to

deal with a large number of concerns. The term “concern” here is used to

illustrate any matter of interest.

Some concerns in the software development process are related with the

functional requirements of the product itself. However, there are some

concerns, which are mostly related to the development process itself. These

concerns are usually non-functional concerns. The term “concern” here is

used to illustrate any matter of interest.

Separation of concerns is a basic principle of software engineering. The

separation of concerns principle comes out from the fact that, dealing with

complex problems is only possible by dividing them into simpler sub-

problems.

The most well known result of separation of concerns principle is

modularization. Each module in the software is designed to deal with only

one specific concern. Modular units in system software are easily

 20

manageable and reusable building blocks. Separation of concerns can be

said to improve manageability and reusability of the system

By using the predominant object-oriented design techniques, it is possible to

separate the functional concerns of the software. An expert software

designer can build a modular program handling the functional behavior of the

system by using object-oriented design methodology. Whereas, regardless of

the programmer’s experience, there are some non-functional concerns which

using the traditional object-oriented design techniques cannot separate.

These concerns crosscut the behavior and implementation of several or

sometimes many functional modules of the software. So they are called as

“crosscutting concerns”. Figure 2.7 shows a typical placement of the software

modules in a sample software project.

 Figure 2.7 Sample Orientation of Modules in a Software Project [11]

The white blocks show the functional building blocks of the project. As seen

from the figure the functional blocks are well modularized. Whereas the

horizontal lines scattered to the functional blocks. Horizontal lines, showing

the logging concern in this example, are scattered along several modules. So

the red-colored concern is said to be a crosscutting concern.

 21

Typical examples of crosscutting concerns in the software development

process are logging, error handling, memory management and

synchronization. For real-time systems, because of the nature of being real-

time, timing becomes a crosscutting concern though.

Crosscutting concerns causes two main problems in the software. The first

problem is the scattering problem. The design of crosscutting concerns are

scattered in several blocks as seen in Figure 2.7 for the logging concern. The

second problem is the design of one block becomes dependent to the design

of other blocks, which is called “tangling”.

Scattering and tangling makes the system software harder to modularize.

The un-modularized concerns preclude the reuse of the functional blocks of

the design.

As stated above, traditional object-oriented design techniques are not able to

modularize those crosscutting concerns. So it can be said that there is a gap

in the object-oriented design process in the field of separation of concerns

[12].

The Separation of Concerns problem in the object-oriented design process

can be solved by using Aspect Oriented Programming techniques as stated

by Rashid and Blair in [13].

2.5 Aspect Oriented Programming

Object Oriented Programming has been introduced as a fundamental

technology that aid software engineering since; real domain problems can

easily be mapped to an object-oriented domain. In other words it is easy to

solve the real-life problems when thinking in an object-oriented manner.

The object-oriented design paradigm is a good design methodology, guiding

software towards the solution of real life problems. However, as discussed in

the previous section, object-oriented programming is not good at solving

issues related to non-functional concerns.

 22

The problems that object-oriented programming is not good at solving are

called as crosscutting concerns. Crosscutting concerns, which are introduced

in the previous section, are the concerns that crosscut the system

functionality.

As stated in [14], Aspect Oriented Programming (AOP) is a programming

paradigm that supports the modular implementation of the crosscutting

concerns. The software units that are used for modularizing those

crosscutting concerns of the system in AOP are called as “aspects”. Aspects

are described in [15] as a piece of code that describes a recurring property of

a program.

Aspects provide crosscutting modularity to system software. In other words,

programmers can use these units as modular units for crosscutting

functionality of the system software.

In the object-oriented design methodology, since the crosscutting concerns of

the system are scattered over the functional modular units, they are hard to

control. Using aspects in implementing this crosscutting functionality,

programmers are able to control the crosscutting behavior of their code more

easily. Gregor Kickzales, an aspect pioneer, said that “Programmers could

thus think of write, view, edit and otherwise address these issues as a unit,

implementing changes or upgrades across all applicable code sections,

rather than by having to modify each applicable piece of code.”

Aspects thus make the programmers’ life easier. By the help of aspects

programmers get the power to control the crosscutting functionality in their

code. Figure 2.8 shows the use of aspects and their benefits to system

modularity from the point of programmer’s view.

 23

 Figure 2.8 Use of Aspect Oriented Programming [24]

The left half of Figure 2.8 shows sample system software designed by

traditional object-oriented methodology. The blocks show different functional

modules of the system. The highlighted boxes in the blocks show the

crosscutting non-functional system code, scattered among the functional

modules. The functional blocks that contain many crosscutting code inside

are called as badly modularized. This is because, those modules are hard to

manage and reuse. They are dealing with more than one system property.

The right half of Figure 2.8 shows the AOP implementation of the same code.

In that half the crosscutting functionality of the system is well modularized

within aspect code. So, the entire functional modules and the crosscutting

functionality of the system are made to be well modularized by the use of

aspect-oriented programming.

2.5.1 How Aspect Oriented Programming Works

Aspect-Oriented Programming was first introduced in [16] by Gregor

Kickzales. Aspect-Oriented Programming is introduced as an additional patch

to the Object Oriented Software Design to solve the modularity problem of

crosscutting concerns in system software.

 24

AOP aims to reach, modify and extend the component code of system

software without changing any building blocks in the system structure. Aspect

Oriented Programming introduces two new elements as tools for software

development: aspect language and aspect weaver.

Aspect language is used to program the aspects and differs from the

component language of the system. Aspect language uses some special

symbols and wildcards to reach the component code of the system.

 Aspect weaver, on the other hand, is used to weave the aspect code into the

component code. The aspect code, hung to special locations in the

component code, is weaved into the component code by passing them

through the aspect weaver. The output of the weaver is a combination of the

component code and aspect code. The woven code produces the executable

after passing it through a standard compiler.

In fact, crosscutting concerns still exists in the resultant code produced by the

aspect weaver. However, from the programmer’s point of view we deal with

this crosscutting functionality in a more modular way.

The role of aspect weaver in Aspect Oriented Programming is illustrated in

Figure 2.9 below.

 Figure 2.9 Aspect Weaver

 25

In the above figure aspect code is the code segment implementing the

crosscutting functionality of the system. The component code on the other

hand deals only with the functional behavior of the system.

The operation procedure of AOP is shown with an illustrative example below.

The example is a typical implementation of the logging concern taken from

the Audio Switch project. Figure 2.10 and Figure 2.11 shows the object-

oriented implementation of this concern and figures Figure 2.12 and Figure

2.13 show the aspect-oriented counterpart of the same concern.

 Figure 2.10 Class Diagram of Object-Oriented Implementation of Logging Concern in

Audio Switch Project

 Figure 2.11 Object-Oriented Implementation of Logging Concern in Audio Switch
Project

 26

 Figure 2.12 Logical Settlement of Aspect-Oriented Implementation of Logging
Concern in Audio Switch Project

 Figure 2.13 Aspect-Oriented Implementation of Logging Concern in Audio Switch
Project

For the object-oriented implementation of the logging concern in the Audio

Switch project, a “Log” class with a “LogOperation” method is implemented.

The “DAC” class uses the logging facility of the “Log” class via message

passing. The implementation of the “LogOperation” method of Log class and

“ControlBufferIndeks” method of the DAC class are shown in Figure 2.11

above. As seen in Figure 2.11 above the logging concern crosscuts the

implementation of DAC class in the object-oriented implementation.

On the other hand the aspect-oriented implementation of the same logging

concern is more modular. As seen in Figure 2.12 the Log class in the object-

oriented implementation is replaced with a “Log” aspect implementation. The

 27

message passing and the crosscutting behavior of the logging concern are

eliminated with the use of advice code given in Figure 2.13. The link between

the functional DAC class and the non-functional “LogAspect” aspect is

handled by the aspect weaver as given in Figure 2.9.

From the programmers point of view the crosscutting logging functionality

becomes more modular and controllable. In the resultant woven project code

there is still crosscutting concerns. However, the implementation of the

crosscutting functionality differs from the object-oriented implementation in

the woven code there is no message passing between software objects for

the implementation of crosscutting concerns. A slice of the woven code for

the logging concern described in the above figures is given in Figure 2.14

below.

 Figure 2.14 Aspect-Oriented Implementation of Logging Concern

As stated previously, aspect language is a programming language extension

that is used to program the aspects separately. For the adoption of Aspect

Oriented Programming to software, tool and language support is a

prerequisite. There are several aspect-oriented language extensions. The

most popular two language extensions of aspect-oriented programming are

AspectJ (aspect-oriented extension of Java) and AspectC++ (aspect-oriented

 28

extension of C++). In this thesis work AspectC++ is used in the development

phase.

Aspect Oriented programming was predominantly applied in Java. So

AspectJ was the predominant aspect-oriented language extension. Since

Java language does not respond the requirements of real-time and

embedded systems design, the need for an aspect weaver and aspect

language extension for C++ appeared.

 Adoption of AOP to C++ was late when compared to Java. Since developing

a weaver in C++ is a tedious task, the production of the weaver and

AspectC++ language was a bit late when compared with AspectJ. But by the

studies of aspectC++ research group the fully-fledged AOP support is

brought into the C++ domain.

2.5.2 An Aspect Language: AspectC++

Aspect Oriented Programming (AOP) is a programming paradigm that is

used to implement the crosscutting concerns in the object-oriented domain.

AOP is a popular programming paradigm used in Java language.

Adoption of AOP to C++ was late when compared to Java. Spinczyk et. al.

explains the cause of this delay in [14] as the complexity of C++ language.

Considering the domain requirements of embedded and real-time systems

C++ is more powerful than Java. For systems, for which the run-time and

memory efficiency are crucial factors, C++ has nearly no alternatives. The

need to a C++ language extension of Aspect Oriented Programming is

emerged from this fact.

 The AspectC++ research group has designed an aspect weaver for the C++

language and has produced a language extension of AOP for C++ language,

namely AspectC++ language.

AspectC++ is an aspect-oriented extension of C++ language; therefore every

valid C++ code is also a valid AspectC++ code. AspectC++ brings two new

 29

language elements to pure C++. These new language elements are the “join

points” and “advice”. AspectC++ uses “match expressions” and “pointcuts” to

form the aspects. These new programming structures are defined in the

following paragraphs, but its is worth to note that these structures in the

AspectC++ language are very similar to their corresponding structures in the

AspectJ language.

A “join point” in AspectC++ is referred to a static location in the program

structure. “Advice” is the code segment that affects the static program

structure at the join point locations. AspectC++ gives the programmers the

ability of hanging advice code to the static program structure at the joinpoints.

AspectC++ defines three types of advice definitions: “code advice”,

“introductions” and “aspect order definitions”. The code advice defines the

execution time of the advice code by using “before”, “after” and “around”

keywords. Programmers can control their aspect code to run before, after or

around a specific function in the code structure by using these keywords.

These keywords and code advice itself are meaningful only within aspects.

If there are more than one code advice, defined in different aspects, hung at

the same join point in the program structure, the programmer can arrange the

operation order of those code advice by using the aspect order definitions.

A set of join points defined in AspectC++ is called a “pointcut”. Pointcut

expressions are defined by “match expressions”. Match expressions are

used to identify the exact place where the pointcut refers. “Named pointcuts”

can be defined anywhere in the program, whereas advice can only be

defined within aspects. The following example illustrates all these concepts

clearly.

aspect LogService {

pointcut AllOperations() = % Processor::%(int);

advice execution(AllOperations()) : after() {

cout<< “Operation From Processor Class is invoked” << endl;

}};

 30

In the above example, the “AllOperations()” pointcut is defined by using

match expressions and it refers to all operations in Processor class expecting

an integer variable and returning any type. The special symbol “%” is a

wildcard used in match expressions.

Code advice, that is hung to the join points by using the “execution” and

“after” keywords, is defined to operate after the execution of the operations

defined in the pointcut AllOperations().

Both the code advice and join point definition encapsulated within a named

pointcut is defined in the “LogService” aspect. As stated previously, the

programmer has the chance of defining the named pointcut outside the

aspect, whereas the “code advice” should be defined within the aspect.

In the following example there is a second aspect defined that has different

code advices hung to exactly the same join points in the code structure.

aspect TraceService {

advice execution(“% Processor::%(int)”) : after()

{

cout<< “Operation From Processor Class is passed” << endl;

} };

As in the above example match expressions can be used directly in the

advice definition. Here the problem is: both the LogService and TraceService

aspects contain advices referring to same locations in the code structure.

The order of the execution of these two advices can be arranged by using the

aspect order definitions. Use of the following order definition advice defined

in the LogService aspect will operate before the advice defined in the

TraceService aspect.

advice “Processor” : order (“LogService”, “TraceService”)

 31

The above order definition implies that within all of the advice definitions

defined in the namespace of Processor Class, the advice defined in

LogService aspect will be operated first and the advice code defined in the

TraceService aspect will be operated afterwards.

AspectC++ has special keywords and wildcards, used to define match

expressions. Moreover programmers have the ability to reach the context

information of the structured code within aspects. The keywords and

wildcards used to reach the context information and control flow of the code

are listed in the AspectC++ Language Quick Reference (see Appendix A).

AOP usage in the implementation of non-functional crosscutting concerns

provide several benefits as mentioned in the previous parts. However, since

there is not any standardized weaver the, the resultant code produced by the

aspect weaver has the potential to produced unexpected errors. Looking at

the literature, although some papers point out this possibility, there is not any

example of such errors caused of the aspect weaver.

 32

CHAPTER III

IMPLEMENTATION

This chapter describes the Audio Switch project that is implemented to

observe the advantages and disadvantages of Aspect Oriented Programming

in embedded real-time systems.

Implementation details of the project and the operating environment of the

running code are given in this chapter. In the first section, brief information

about the run-time environment is given. Implementation details of the project

are explored in the following sections.

3.1 Case Study

Audio Switch project is a software implementation of an audio matrix realized

in a professional environment. There are forty input channels, each of which

can be switched to sixteen different audio outputs separately. The switch

can be controlled via a graphical user interface. The user can increase or

decrease the signal levels of each input channel. Moreover the user can add

a volume offset or completely mute any input channels. Each input channel

can be switched to one or more output channels. Besides these, the user has

the ability to multiplex several input channels to one or more output channels.

Implemented audio switch is designed as an embedded system. There is a

Motorola MVME 5100 main board with a PowerPC 7410 central processing

unit. The main board has an internal clock frequency of 400MHz. The project

software is running on the real-time embedded operating system VxWorks.

 33

The system’s main functionality can briefly be described in three steps. First

step is collecting the sampled input data from the input channels of the A/D

converter, which are mapped to specific memory locations in the main

board’s memory. Then the sampled data is processed according to the

requirements of the user. The input data is processed in this step and the

switching paths are formed. Finally the output signal samples are pushed to

the output channels of the D/A converter, which are mapped to specific

memory locations in the main board’s memory.

Sampling the analog input signal and generating the analog outputs from the

sampled data is done by the A/D and D/A converter hardware. The role of the

software on this procedure is only in the control level. The sampling rate,

discrete or continuous sampling types are arranged by the software.

In the next sections, detailed information about the main board and the

operating system VxWorks that the system software is running on is given.

3.1.1 Motorola MVME 5100 Board

As stated in [17] “The MVME5100 Series is the flagship of the Motorola

PowerPlus II VME Architecture line, enabling supercomputing levels of

performance in a single VME bus slot.” Board contains a MPC7410

microprocessor unit with 32 megabyte of cache. Four peripheral mezzanine

cards can be connected through 64-bit mezzanine connector.

There is an up to 512-megabyte onboard memory, which can be expanded to

1 gigabyte via memory mezzanines. The internal clock frequency of the

board is 400 megahertz.

There are four programmable, 32 bit real-time clocks. There is an Ethernet

interface with ten to a hundred megabits per second transfer capacity. The

main board can operate with +-5 or +-12 volts voltage ranges. It can operate

within 0 to 55 °C temperature ranges.

 34

Motorola MVME 5100 provides booting a variety of operating systems. These

operating systems and their producers are listed below.

• VxWorks (Wind River Systems, Inc)

• Integrity (Green Hills)

• Linux (various partners)

Figure 3.1 shows a photo of the card. In this figure, main parts of the board

such as VME bus slots, CPU and the PCI expansion slots can be seen

clearly.

 Figure 3.1 Thumbnail of MVME 5100 [17]

A detailed description of the board specifications can be found in Appendix B.

Based on the specifications of the board, it can be said that Motorola MVME

5100 board is suitable for embedded real-time applications.

 35

3.1.2 Real-Time Operating System VxWorks

A real-time operating system (RTOS) schedules multiple tasks according to

some initialized priority levels. The tasks follow a predictable operation order.

RTOS responds to generated events, almost instantaneously. This property

makes an RTOS the ideal control system for mission and time critic

applications.

As discussed in the background chapter, real-time systems have some time

lines. It is also the case in the Audio Switch project. The A/D converters

sample the data with a sampling frequency of 8000 samples per second.

That means, in each 125us period of time, new samples are generated and

written over to the previous samples. Hence, the system software should be

able to collect the samples from all input channels within 125 us. If this time

line is missed, several samples are overwritten which causes loss of data.

Besides this hard real-time property, the system software should also be able

to process all the collected samples within 100 ms. This time limit is not a

hard real-time property for the system. Regarding to the human ear’s

sensitivity, some delay in this processing issue is acceptable.

Since the implemented Audio Switch project has real-time needs a real-time

operating system is required and VxWorks is chosen as the operating system

of the project.

“VxWorks was created in the early 1980s, when Wind River's founders set

out to scale the expertise they'd gathered in the Real-Time Systems Group at

the Lawrence Berkeley Laboratory from large physics experiments to device

control systems.” [18]

The main reasons of choosing VxWorks as the RTOS of the Audio Switch

project can be listed as follows:

• There are powerful development tools that make VxWorks easy to

configure and use.

• It follows the advances of the hardware evolution with its new

releases.

 36

• “It is the most widely used and tested commercial embedded

operating system.” [18]

In fact due to the above reasons VxWorks is the most widely used embedded

RTOS.

3.2 Project Description

Audio Switch project is a forty-input sixteen-output audio matrix

implementation. Switching paths are formed between the input and output

channels. The user controls the switch via a graphical user interface. The

user can form the switching paths; modify the signal level of any input

channels by using the interface.

The project can be examined in three separate blocks. The first block is the

A/D Converter block, which is responsible for collecting the audio samples

from the predefined memory locations at the main boards memory. Second

block is the Data Processing block, which is responsible for forming the

switching paths and processing the incoming audio signal samples. The last

block is the D/A Converter block, which is responsible for pushing the

processed samples to the predefined memory locations in the main boards

memory, so that the D/A converter can play the audio correctly. These three

blocks and their relations can be seen in Figure 3.2.

 Figure 3.2 Software modules of Audio Switch Project

 37

It is here worth to note that the above blocks are just conceptual blocks; they

are not the software packages in the project implementation. In the following

subsections these three blocks are described in detail.

3.2.1 A/D Converter Block

The first responsibility of the audio switch is to collect the sampled data of the

analog to digital converter hardware within 125us period. This 125us period is

a strict time limit for proper operation, because the hardware samples new

data in each 125 us period. If the sampled data are not collected in within this

time limit, new data are created and overwritten on the previous uncollected

samples. This causes a data loss, which is an undesired event.

The A/D Converter block’s responsibility is to collect the sampled data without

exceeding the timing deadline. As discussed in the previous sections,

VxWorks has four programmable real-time clocks. It can also set up interrupts

to these real-time clocks. The clock resolutions can be up to 10000 ticks per

second. One of these real-time clocks is used to connect an interrupt service

routine. The clock resolution is set to 8000 ticks per second so at each 125 us

period an interrupt flag is set and the sampled data of the 40 input channels

are collected. Then these sampled data is passed to the Data Processing

block to be processed and sent to the D/A Converter block according to the

set switching paths.

3.2.2 Data Processing Block

The main responsibility of the implemented audio switch is forming the

switching paths and processing the input data. The name processing here is

adding or subtracting some volume offset, muting some input channels, or

increasing the signal level with a multiplicative factor.

 38

There are 40 input data buffers, each of which are kept for a single input

channel in the audio switch project. All of the buffers are circular buffers and

their sizes are set to keep 1000 samples at a time. These buffers are filled

with the A/D Converter block as described in the previous section. Since at

each 125 us period, new samples are pushed to the input buffers, the buffers

are filled in 125 ms. So it is needed to collect all the samples such that no

data is lost because of the overwriting in the circular input buffers.

In order to avoid buffer overflow at each input channel another timer is set to

give a triggering event in 100 ms. 100 ms time period is selected regarding

the human ear sensitivity as the human ear cannot recognize this much

delay.

Within 100 ms time period the system software should be able to collect all

the incoming unprocessed samples from the input buffers, modifying them

according to the modification factors set by the user and passing them to the

D/A Converter block.

User interaction on the whole system operation is centered at the Processing

block. The modification factors and switching path information entered by the

user at the graphical user interface are taken into consideration at this block.

So it can also be considered as the control block of the system.

3.2.3 D/A Converter Block

The last step in the system operation is to push resultant processed and

switched data into the memory locations addressed to the digital to analog

converter hardware memory. The D/A converter hardware has the capability

of collecting the samples put in its addressed memory location at each 125

us period. Within this period the hardware takes new samples and plays

audio using those signals. In order to get the correct audio at the hardware

output, new samples should be pushed to its addressed memory locations at

each 125 us period. If this timeline is exceeded, the hardware plays the same

sample more than once, which causes a distortion in the output signal.

 39

In order to avoid the signal distortion the system software should be capable

of pushing new samples at each 125 us period. This work is handled in the

D/A Converter Block. There are 16 input buffers, one for each output

channel, located at this block. The buffer sizes are set to 1000 because of

the same reason as the input buffer sizes.

Since 125 us is a strict time limit, the system should complete this work

preempting whatever it does at that time. For this purpose an interrupt-

triggered operation is needed. Since there is an interrupt set for the A/D

Converter block’s operation, it is also used to trigger the D/A Converter

block’s operation. Using the same interrupt the system is arranged to push

the processed samples to the predefined memory locations addressed to the

D/A converter hardware memory.

With this last conceptual block the system software satisfies its functional

requirements. However, besides these functional requirements, there are

also some non-functional requirements needed for the system development

and reliability. These non-functional requirements can be listed as logging,

error handling, memory management and timing (real-time). As it is

described in the background chapter, these requirements are the most

common crosscutting concerns in embedded system software development.

By using object-oriented design techniques it is not possible to modularize

these non-functional requirements.

In this thesis, these non-functional requirements which constitute crosscutting

concerns of the Audio Switch project, are implemented both using the object-

oriented and aspect-oriented programming techniques. These two

implementations are compared with respect to both software quality metrics

and embedded real-time performance metrics. The comparison metrics and

the results obtained from the analyses are given in the evaluation chapter.

Project implementation and the functionality of the A/D Converter block, Data

Processing block and the D/A Converter block are summarized in Figure 3.3.

 40

 Figure 3.3 Summary of Audio Switch Project Operation

As described in Figure 3.3 audio samples are collected from the input

channels of the A/D converter, then these samples are processed according

to the user requirements. Then the processed samples are sent to the D/A

converter memory to form the audio output. The user interaction is in the data

processing block. The switching path formation and the processing issues

are done according to the parameters that are set by the user.

 41

3.3 Implemented Non-Functional Concerns

In the Audio Switch project, the most common crosscutting concerns in the

software development process are tried to implement. The implemented

crosscutting concerns and their descriptions are given in the following

sections.

3.3.1 Logging Concern

Regardless of the functional requirements of the implementation, logging is

an indispensable need for especially the software development process. It is

the mostly known non-functional crosscutting concern in the software

development life cycle.

In the object-oriented implementation of this concern in Audio Switch project,

this functionality is realized within a class. All the functional classes in the

implementation use this functionality, via message calling form the Log class.

The object-oriented implementation of logging concern in the object-oriented

domain is shown in Figure 3.4 below.

 Figure 3.4 Object-Oriented Implementation of Logging Concern

 42

The above figure shows the logging concern in the Audio Switch project for a

set of classes in the implementation. In the object-oriented implementation,

any change in the Log class has the potential risk of causing changes in the

other classes, which have relations with the Log class.

In the aspect-oriented implementation of this concern, the Log class in the

above figure is replaced with an aspect. The relations of the other classes to

the Log class are broken, and all those relations are handled via joinpoints

defined in the Logging aspect. The general implementation of the Logging

aspect is given in the following figure for all the classes of the Audio Switch

project.

MyTimer Processor Switch

aspect LogAspect {

 advice execution("% %::%()") : before(){
 ;
 ;
 }

};

 Figure 3.5 Aspect-Oriented Implementation of Logging Concern

As seen from Figure 3.5, the relations of the classes are replaced with the

given pointcut expression in the LogAspect. The functionality of Log Class in

the object-oriented implementation is handled in the advice code given in the

LogAspect aspect.

 43

3.3.2 Error Checking Concern:

Error checking is an important concern, for especially mission critic

applications. Error checking in the Audio Switch project handles memory

errors and operational errors. This functionality in the object-oriented

implementation of the Audio Switch project is implemented in the

ErrorChecking class. The classes that do error checking have relations to the

ErrorChecking class. In all of the classes where error checking is needed,

special error checking statements are inserted into the functional code

blocks. The object-oriented implementation is illustrated in Figure 3.6, with a

set of classes that need error checking.

ManageSKC Processor ADC

+HandleMemoryError()
+HandleOperationError()

ErrorChecking

 Figure 3.6 Object-Oriented Implementation of Error Checking Concern

In the object oriented implementation, in addition to the inserted error

checking code into the functional code blocks, the classes doing error-

checking reports the caused errors to the ErrorChecking class via message

passing. Hence, any change in this concern causes a series of changes in all

of the classes that do error checking.

 44

In the aspect-oriented implementation of error checking, all these issues are

handled within a single error checking aspect. The general visualization of

the aspect-oriented implementation of error checking concern is give in

Figure 3.7 below, with a set of related classes.

ManageSKC Processor ADC

aspect ErrorHandling{
 advice execution("% %::new(...)") : after(){
 if((*(int*)tjp->result()) == 0)
 ...;
 }
};

 Figure 3.7 Aspect-Oriented Implementation of Error Checking Concern

In the above figure, the aspect-oriented implementation of the error checking

concern is shown, just for the memory error checking to provide an opinion

about the whole implementation. The relations in the object-oriented

implementation are replaced with pointcut definitions in the aspect code.

Hence, the error checking concern is made to be more modular.

3.3.3 Range Checking Concern:

Range checking is an application specific concern, which is caused by the

needs of the A/D and D/A converter hardware. The converters are capable of

processing samples up to 12 bits. The samples, which are grater than this

value, cause distortion in the audio data. Range checking is done in order to

avoid this distortion. This concern is implemented as crosscutting code

 45

scattered into the functional code blocks in the object-oriented design. An

example of the object-oriented implementation is given in Figure 3.8 below.

 Figure 3.8 Object-Oriented Implementation of Range Checking Concern

The above figure shows the implementation of range checking concern in

DAC class. Any change in the range checking mechanism causes a series of

changes in all classes, where range-checking code is scattered. The aspect-

oriented implementation of this issue is shown in Figure 3.9 with a small

example below.

 Figure 3.9 Aspect-Oriented Implementation of Range Checking Concern

Figure 3.9 shows the aspect-oriented implementation of range checking

concern given in Figure 3.8 This implementation makes the range checking

concern more modular and easily controllable. Any change in this concern

only affects the code in the RangeChecking aspect given in Figure 3.9.

 46

3.3.4 Real-Time Property Concern:

As described in the previous sections, the Audio Switch project has three

real-time concerns, two of which are hard real-time. In order to have a control

on these real-time properties, run-time of the corresponding operations

should be measured. For this purpose, in the object oriented implementation

a time measurement class is implemented. The three classes that have real-

time specs have relations to this class. The run-time measures and

corresponding actions are handled in this class via message passing. The

object-oriented implementation of this concern is illustrated in Figure 3.10

below.

ADC Processor DAC

+StartTimer()
+StopTimer()
+DisplayTotalTime()

TimeMeasurement

 Figure 3.10 Object-Oriented Implementation of Real-Time Property Concern

Any change in the decision procedure in the TimeMeasurement class given

in the above figure, will cause a series of changes in the related classes.

Hence, object-oriented implementation of this concern is not modular.

The aspect-oriented implementation of the concern is given in Figure 3.10.

 47

ManageSKC Processor ADC

aspect TimeMeasure {
 advice execution("% Processor::SwitchSample(...)") : around(){
 ...;
 }

 advice execution("% ADC::GetSample(...)") : around(){
 ...;
 }

 advice execution("% DAC::PutSample(...)") : around(){
 ...;
 }
 };

 Figure 3.11 Aspect-Oriented Implementation of Real-Time Property Concern

In the aspect-oriented implementation, the responsibility of the

TimeMeasurement class is given to the TimeMeasure aspect. The message

passing between the functional classes and the TimeMeasurement class in

Figure 3.11 is handled by the pointcut definitions in the TimeMeasure aspect

above. Hence, real-time property concern becomes more modular by the

application of AOP.

 48

CHAPTER IV

EVALUATION

Audio Switch project software is implemented by using the object-oriented

design methodology. Unified Modeling Language (UML) is used to model the

system software. It is implemented in C++ language, using the Rhapsody

design tool. Rhapsody provides support for programming in C, C++ and Ada

languages.

As described in the previous chapter, implementation of the functional

modules of the system software is done by using object-oriented

programming. However, the non-functional crosscutting concerns are

implemented both by using the object-oriented and aspect-oriented

programming techniques. The two different implementations are compared

according to selected software quality and embedded real-time performance

metrics.

The crosscutting concerns are implemented and added to the project step by

step and at each step resulting implementations are evaluated. This is done

to show the impact of AOP by increasing amount of crosscutting concerns in

the system software.

Effects of the crosscutting concerns on the metric results do not change with

the addition order of the concerns in the project implementation.

In this chapter the evaluation metrics and results of the evaluation process

are described. First, the evaluation results from the point of software quality

are given, and then the results of embedded real-time performance metrics

are explored in the following sections.

 49

4.1 Software Quality

Software quality can be described as the measure of implementation quality

of software. Several metrics are proposed to measure the software quality of

object-oriented designed system software. These metrics mainly focus on the

integration of operation and data to form a system object [19].

Since AOP is based on the existing object-oriented programming concept,

software quality metrics are used to evaluate the difference between these

two approaches in implementing the crosscutting concerns of the Audio

Switch project.

This evaluation process, regarding the software quality, is mainly focused on

four system attributes. These system attributes are:

• Reusability,

• Maintainability,

• Understandability,

• Testability.

The above software attributes are in fact, the aims that object-oriented

programming desires to achieve.

AOP was previously evaluated in terms of software quality on some desktop

computing systems. Most of these studies use the Chidamber and Kemerer

(C&K) Metrics Suite to quantify the software quality. As stated in [21, 25]

Chidamber and Kemerer (C&K) Metric Suite provides the most

comprehensive and best validated set of measures to quantify the software

quality.

Because of the above reasons, Chidamber and Kemerer (C&K) Metrics Suite

is used. In the following section the C&K metrics and the evaluation results

with respect to these metrics are presented.

 50

4.1.1 Chidamber and Kemerer Metrics Suite

C&K metrics suite was generated to fulfill the need for an evaluation metrics

suite for Object-Oriented Design methodology. These metrics give numerical

results to measure the four software attributes of the system. These metrics

are proposed by Shyam R. Chidamber and Chris F. Kemerer in [20] and

widely adopted for evaluating the quality of object-oriented system design.

While collecting the metric results aspects are regarded as classes and

advices are regarded as the class operations.

The C&K Metric Suite consists of six evaluation metrics. These metrics are:

• Weighted Methods Per Class (WMC)

• Coupling Between Objects (CBO)

• Response For A Class (RFC)

• Lack of Cohesion In Methods (LCOM)

• Depth of Inheritance Tree (DIT)

• Number of Children (NOC)

In the next sections, the metric descriptions and the evaluation results are

given in detail. The metric results are taken by using the “Understand for

C++” tool produced by the Scientific Toolworks Inc. Understand for C++ is a

metric measurement tool for C++ source code. It evaluates the software

according to the C&K metrics suite and produces numerical results.

4.1.1.1 Weighted Methods Per Class (WMC)

WMC is the measure of total method complexities of a class. Complexity of a

method is calculated with respect to the usage of loops, and conditional

statements within that method. Loops and conditional statements increase

the method complexity. If a class has n methods with complexities of c1 …

cn, then the metric gives a result of “WMC = ∑ci” [20].

 51

WMC is designed to measure the understandability, reusability and

maintainability of the software. [20]

First of all the WMC metric results are computed for the object-oriented

implementation of the software without any non-functional crosscutting

concerns. Then real-time property concern, error and range checking

concerns and finally the logging concern are added respectively.

The result of WMC metric is given in Figure 4.1.

0

50

100

150

200

250

300

350

0 13.6 20.3 25

Percentage of Crosscutting Concerns(%)

WMC vs Implented Crosscutting Concerns

OOP

AOP

 Figure 4.1 WMC Metric Results

The above figure shows the change in WMC metric with the increasing

crosscutting concerns lines of code percentage in the project code. The

above WMC metric results are the total for all classes present in the system

software.

Since AOP defines the crosscutting functionality of the system in aspects it is

expected to decrease the total number of classes and operations in the

system software. Moreover, since it is possible to give advices to many

classes within one aspect, this will therefore decrease the number of tangled

methods in a class and decrease the method complexity.

The decrease in the number of methods and method complexity by applying

AOP in the implementation of crosscutting concerns, result in an observable

decrease in the WMC metrics of the system. Decrease in WMC method will

 52

cause an improvement of system reusability, understandability and

maintainability, as stated in. [20]

4.1.1.2 Coupling Between Objects (CBO)

Coupling between two classes is defined as the use of methods of instance

variables of a class within another class. [20] If a class is connected to

another class with a relation, rather than inheritance, that means these two

classes are coupled.

CBO of a class is the number of other classes that are coupled. Coupling

between classes hinders modular design and prevents reuse of the system

objects. Low coupling implies better design. CBO is a measure of system

reusability, understandability, maintainability and testability.

First of all the CBO metric results are computed for the object-oriented

implementation of the software without any non-functional crosscutting

concerns. Then real-time property concern, error and range checking

concerns and finally the logging concern are added respectively.

CBO metric results for the Audio Switch project are taken as the total

measure of all classes within the system software. The metric results

comparing the aspect oriented and object oriented implementation is given in

Figure 4.2.

 53

0

10

20

30

40

50

60

0 13.6 20.3 25

Percentage of Crosscutting Concerns(%)

CBO vs Implemented Crosscutting Concerns

OOP

AOP

 Figure 4.2 CBO Metric Results

Implementing crosscutting concerns with AOP is expected to decrease the

coupling between the functional objects. However, another type of coupling

between the functional objects and the defined aspects are occurred. This

type of coupling does not increase the CBO metric, because no methods or

instance variables of the aspects are called within the functional objects of

the project. So, application of AOP, in the implementation of crosscutting

concerns, is expected to decrease the coupling between system objects.

In Figure 4.2, the decrease in CBO metric of the Audio Switch project, with

the application of AOP, is shown. This decrease implies a more modular,

reusable and understandable system design. In other words, application of

AOP is said to improve the software quality.

4.1.1.3 Response For A Class (RFC)

RFC is defined as the response set of a class, where the response set is the

set of methods than can potentially be executed in response to a message

received. [20]

 54

RFC includes the messages, outside of the class, that can be invoked by that

class. Since, in object-oriented programming, the interaction between the

objects is done via message passing, RFC also measures the potential

communication between a class and the other classes in the software.

RFC designed to measure the system understandability, maintainability and

testability. [20] It is hard to test, understand and reuse a class with a high

RFC value.

Increasing RFC implies increasing software complexity, which makes the

class harder to test and reuse. AOP is expected to decrease the RFC results

of the software by reducing the number of called methods within a class.

First of all the RFC metric results are computed for the object-oriented

implementation of the software without any non-functional crosscutting

concerns. Then real-time property concern, error and range checking

concerns and finally the logging concern are added respectively.

The RFC metric results of the Audio Switch project are given in Figure 4.3

0

50

100

150

200

250

300

350

400

0 13.6 20.3 25

Percentage of Crosscutting Concerns(%)

RFC vs Implemented Crosscutting Concerns

OOP

AOP

 Figure 4.3 RFC Metric Results

Implementing the crosscutting concerns with AOP is expected to result in a

decrease in the number of methods that can be invoked in response to a

received message. This is simply because the method calls used to

 55

implement the non-functional crosscutting functionality of the system are

replaced with less advice code.

Decrease in the RFC metric of system software implies a more reusable and

easily understandable implementation. Since, application of AOP in the

implementation of crosscutting concerns results in a decrease in the systems

total RFC metric, AOP can be said to increase the understandability and

testability of the software.

4.1.1.4 Lack Of Cohesion In Methods (LCOM)

Cohesion of an object can be defined as the measure of a class’

concentration on doing a job. A class, which is responsible for more than one

specific job, is said to be low cohesive. High cohesion implies reusability,

maintainability and testability of the system software.

LCOM metric measures the number of methods, within a class, which has no

similarity. The similarity between the instance methods of a class is

measured by looking at the invoked functions within those methods. [20] If

the intersection of the sets of invoked functions of two instance methods is

null, then it implies a low cohesive object implementation.

First of all the LCOM metric results are computed for the object-oriented

implementation of the software without any non-functional crosscutting

concerns. Then real-time property concern, error and range checking

concerns and finally the logging concern are added respectively.

The LCOM metric results of the Audio Switch project are given in Figure 4.4.

 56

0

200

400

600

800

1000

1200

0 13,6 20,3 25

Percentage of Crosscutting Concerns(%)

LCOM vs Implemented Crosscutting Concerns

OOP

AOP

 Figure 4.4 LCOM Metric Results

Since AOP modularizes the crosscutting concerns in the system software,

the crosscutting responsibilities of the functional objects in the system

software are eliminated. This elimination is expected to cause a decrease in

the LCOM metric. A decrease in the metric implies more cohesive object

implementation in the system software.

As seen in Figure 4.4, the impact of AOP is observed as expected in the

Audio Switch project. In other words, AOP improves the reusability,

maintainability and testability of the Audio Switch project.

4.1.1.5 Depth of Inheritance Tree (DIT)

DIT is the maximum number of steps from the node to the root of the

inheritance tree. [20] A root node has a DIT measure of 0. DIT is a measure

of the number of ancestor classes that can affect a class.

DIT is a measure of understandability, reusability and testability. If a class

has a high value of DIT measure, it means that class has a large number of

inherited methods, which makes the behavior of the method harder to

predict. Deeper trees in the software imply design complexity.

 57

Number of inherited methods within a class makes the reuse of the class

more difficult. So it is desired to keep a low DIT value for reusable software.

First of all the DIT metric results are computed for the object-oriented

implementation of the software without any non-functional crosscutting

concerns. Then real-time property concern, error and range checking

concerns and finally the logging concern are added respectively.

DIT measurements of both implementations give the same outputs. Since

there are no interface classes used in the implementation of the non-

functional crosscutting concerns in the Audio Switch project, DIT measures

are not applicable for the comparison of the two implementations. However,

we can say that, for Audio Switch project, using AOP in the implementation of

crosscutting concerns does not increase the DIT measures at all.

4.1.1.6 Number Of Children (NOC)

NOC is defined as the number of immediate subclasses subordinating to a

class in the class hierarchy. It is a measure of the number of classes that will

inherit the methods of the parent class.

NOC, as the DIT does, measures the understandability, reusability and

testability of the software. Greater number of subclasses shows an improper

use of inheritance and sub-classing. If a class has a large number of

subclasses, that class requires more time for testing. In other words, more

subclasses imply the increasing complexity of the parent class, which makes

the testability of the class harder.

First of all the NOC metric results are computed for the object-oriented

implementation of the software without any non-functional crosscutting

concerns. Then real-time property concern, error and range checking

concerns and finally the logging concern are added respectively.

NOC measurements of both implementations give the same results. This is

because there are no subclass implementations in the implementation of the

nun-functional crosscutting concerns of the project software. Hence, NOC is

said to be un-applicable for the comparison of the software quality of the

 58

Audio Switch project. However, we can say that AOP can improve the results

of the NOC measurements if a subclass in the inheritance tree has a non-

functional crosscutting property.

4.1.2 Software Quality Results Summary of Audio Switch Project

Looking from the software quality point of view, the below table, drawn

considering the works in [20], shows the mapping of the C&K Metrics on the

general software quality attributes and the AOP improvements.

WMC CBO RFC LCOM DIT NOC

Understandability X X X X

Reusability X X X X X

Maintainability X X X X

Testability X X X X

 WMC CBO RFC LCOM DIT NOC

Percent AOP
Improvement
on the whole
project

24% 34% 20% 20% 0% 0%

Table 4.1 Mapping of C&K Metrics on Software Quality Attributes

Table 4.2 Total Effects of AOP on Software Quality Metrics

 59

 Affect of AOP Usage

Understandability Improved

Reusability Improved

Maintainability Improved

Testability Improved

Considering Table 4.1, Table 4.2 and Table 4.3 it can be said that; using

AOP techniques in implementing the crosscutting functionality of C++ based

embedded real-time systems improves the system software quality. Hence

AOP usage in embedded real-time systems can be thought as an alternative

in the implementation of crosscutting concerns.

4.2 Embedded Real-Time System Performance

The domain of embedded real-time systems is dominated with resource

constraints. Especially memory usage and run-time are the main restrictions

that shape the embedded real-time software development. To cope with

these restrictions, embedded real-time software developers avoid using the

structured software design techniques. Hence, most embedded real-time

applications are developed in C language.

Object Oriented Programming is still less in demand as some of its concerns

like message passing and use of instance variables cause non-negligible

performance costs. Software quality metrics such as reusability and

understandability and the phenomenon of separation of concerns are

considered to be less important [22].

Since AOP reduces some of the overheads of OOP, AOP can provide a

performance increase in the field of embedded real-time applications. In this

section and the following sections, embedded real-time performance

comparison of OOP and AOP in the implementation of non-functional

Table 4.3 Effects of AOP Usage on Software Quality Attributes

 60

crosscutting concerns is presented. The performance comparison results of

the Audio Switch project are given in the following sections.

The comparison is done on three comparison metrics, which are:

• Memory Usage

• CPU Usage

• Run-Time

In the following sections, detailed description of the metric results, gathered

from the Audio Switch project’s software are given.

4.2.1 Memory Usage

Memory usage of a program can be viewed as the static and dynamic

memory usages. Static memory usages can be easily measured by looking in

to the linker map file of the object code. Whereas, dynamic memory usage

tests should be performed on the running targets.

Since the dynamic memory usage is the critical issue for embedded systems,

in this thesis dynamic memory usage of the Audio Switch project is

measured.

Memory usage tests are done on the running target to observe the dynamic

memory usage of the two implementations with the increasing amount of

crosscutting concerns in the project code. The measurements are done using

a special spy agent running on VxWorks.

The memory usage test results are given in Figure 4.5. Memory usage

percentages of the two different implementations are plotted with respect to

the increasing amount of crosscutting concerns in the project code.

 61

0

5

10

15

20

25

0% 13.60% 20.30% 25%

Crosscutting Concern Percentage

Percent Memory Usage vs Implemented Crosscutting
Concerns

OOP

AOP

 Figure 4.5 Dynamic Memory Usage Results

The main reasons of the memory increase in OOP are the usage of virtual

functions as they both increase the size of the caller and the called side;

dynamic data structures and global instance construction [22]. Relations are

also an important reason for the increase in the memory usage.

Since, implementation of the crosscutting concerns within aspects decreases

the use of virtual function declarations and global instance creations, the

memory usage of the AOP version of the Audio Switch project is smaller than

the OOP version.

Increasing amount of crosscutting code will result in an increase in the

memory usage differences between the two implementations. Looking at the

results, given in Figure 4.5, it can be said that AOP decreases the dynamic

memory usage of the running code, so it seems to be suitable for the

embedded applications from the point of memory requirements view.

4.2.2 CPU Usage

CPU usage of a task can be defined as the percentage of the CPU resources

that are assigned to the running task to complete its responsibilities. Since

 62

the running system code is composed of parallel running tasks, CPU usage

of the total project code can be defined as the cumulative CPU usages of the

running tasks.

Regarding the resource constraints of the embedded systems, CPU usage is

an important performance criterion. Increasing CPU usage means increasing

cost in embedded system design. Implementing a project code, doing the

same job, with a lower CPU usage is a need for embedded real-time

systems.

Object Oriented Programming, when compared with procedural

programming, has some degradations in the CPU usage performance of the

system. In other words OOP needs more CPU percentage to satisfy the

same requirements than the traditionally programmed counterpart.

The performance degradation of the OOP in terms of CPU usage is mainly

caused by the use of virtual function calls and message passing between two

parallel running tasks. Message passing between two tasks needs a context

switching operation to save the attributes and current state information of the

running task, which obviously needs CPU usage.

Implementing crosscutting concerns using AOP is expected to result in an

improvement in the CPU Usage performance of the system. Since the AOP

reduces virtual function calls and message passing, there is an obvious

decrease in the CPU usage percentage of the running code.

The results of CPU usage metric, taken from the Audio Switch project are

given in Figure 4.6 below. The results are given with respect to the increasing

percentage of the crosscutting code in the running system.

 63

0

5

10

15

20

25

30

35

40

45

50

0% 13,60% 20,30% 25%

Crosscutting Concern Percentage

Percent CPU Usage vs Implemented Crosscutting Concerns

OOP

AOP

 Figure 4.6 CPU Usage Results

As seen in the above graph, AOP decreases the CPU usage of the system

code. It is here worth to node that both implementations do exactly the same

process and satisfy the requirements of the system.

With the increasing percentage of the AOP implemented code, the effects of

AOP become more significant. So we can say that, AOP improves the

system’s CPU usage performance. Moreover as the AOP implemented code

percent increases in the total project code, the CPU usage performance

improvements become more observable.

4.2.3 Run-Time

As discussed in the previous chapters, run time has critical importance for

real-time systems. Especially for hard real-time systems, the timing deadlines

are strict deadlines. Lags in the output production times are not tolerated in

real-time systems. Mostly a lagging output means an incorrect output for

those systems.

 64

As in all real-time systems, run-time is significantly important for the Audio

Switch project. As discussed in the Chapter |||, the system has three real time

constraints, two of which are hard real-time constraints.

Consequent runs of the same application can give different results in terms of

run time in nearly all of the operating systems. So, for real-time systems, the

time measurements are generally taken as the worst case running time of

multiple iterations. Because of this reason, the worst-case run-time of the

processes of the Audio Switch project is measured. In addition to the worst

case measurements the average run time measures are taken in order to

give a feeling about the general operation time of the processes.

The measurements are taken by using the “high resolution time stamping”

property of the VxWorks operating system. So it could be possible to take

measurements in 0,01 us resolution.

Run time measurement results of the Audio Switch project are given in the

next sections. First, the two hard real-time jobs run times are given, then the

soft real-time job measurements presented in the following section.

 The run-time measurements are measured over 100 runs of the project

code. So the worst-case run-time measurements give the maximum run time

of those 100 runs.

4.2.3.1 A/D Converter Block Run-Time Results

As described in the implementation chapter, A/D Converter Block of the

Audio Switch Project has a hard real-time property. The incoming audio

samples from the A/D Converter hardware should be collected within 125 us

period, in order to prevent overwriting problems and data loss.

The average and worst case run-time results of this hard real-time property

are given in Figure 4.7 and Figure 4.8 below.

 65

0

5

10

15

20

25

30

35

40

45

13.60% 20.30% 25%

Crosscutting Concern Percentage

Average Run Time vs Implemented Crosscutting Concerns

OOP

AOP

 Figure 4.7 Average Run-Time Measurement Results of A/D Converter Block

0

10

20

30

40

50

60

70

80

90

100

13.60% 20.30% 25%

Crosscutting Concern Percentage

Worst Case Run Time vs Implemented Crosscutting Concerns

OOP

AOP

 Figure 4.8 Worst Case Run-Time Measurement Results of A/D Converter Block

As seen from the above two graphs AOP usage in the implementation of

crosscutting concerns of the Audio Switch Project resulted in a decrease in

the run-time. Especially the worst-case run-time decreases significantly. This

 66

decrease in the run-time can is mainly caused by the decrease in the use of

virtual functions and message passing between the software modules.

4.2.3.2 D/A Converter Block Run-Time Results

D/A Converter block has also a hard real-time responsibility. This block

should be capable of pushing the processed audio samples to the addressed

memory locations of the D/A Converter hardware in 125 us period. For a

successful operation and prevention of data loss the operation time should

not exceed the time line.

The average and worst case run-time results of this hard real-time property

are given in Figure 4.9 and Figure 4.10 below.

0

2

4

6

8

10

12

14

13,60% 20,30% 25%

Crosscutting Concern Percentage

Average Run Time vs Implemented Crosscutting Concerns

OOP

AOP

 Figure 4.9 Average Run-Time Measurement Results of D/A Converter Block

 67

0

2

4

6

8

10

12

14

16

18

20

13.60% 20.30% 25%

Crosscutting Concern Percentage

Worst Case Run Time vs Implemented Crosscutting Concerns

OOP

AOP

 Figure 4.10 Worst Case Run-Time Measurement Results of D/A Converter Block

The code of this block does not have much responsibility, so the percentage

of crosscutting code to the total lines of code for this block is nearly a half. So

the impact of AOP on real-time systems can be seen clearly in the above

graphs. Especially the worst-case run-time differences show the

improvements of using AOP significantly. As explained in the previous

section the decrease in the run-time is mainly caused of the decrease of

virtual function calls and message passing.

4.2.3.3 Data Processing Block Run-Time Results

Data Processing block has a soft real-time responsibility that it should

complete within 100 ms period. This block, as described previously, has the

responsibility of data modification with respect to the user needs. Moreover

this block is also responsible for collecting all the samples buffered in the

incoming A/D data buffers and pushing all the processed samples into the

outgoing D/A data buffers within this time period.

 68

The average and worst case run-time results of this hard real-time property

are given in Figure 4.11 and Figure 4.12 below. Since the operation time is in

the order of ms the results are given in ms resolution.

0

20

40

60

80

100

120

13,60% 20,30% 25%

Crosscutting Concern Percentage

Average Run Time vs Implemented Crosscutting Concerns

OOP

AOP

 Figure 4.11 Average Run-Time Measurement Results of Data Processing Block

0

20

40

60

80

100

120

140

160

13,60% 20,30% 25%

Crosscutting Concern Percentage

Worst Case Run Time vs Implemented Crosscutting
Concerns

OOP

AOP

 Figure 4.12 Worst Case Run-Time Measurement Results of Data Processing Block

 69

The Data Processing block has the most time consuming responsibility set

among the three logical blocks of the Audio Switch project. The percentage

of the crosscutting code within this block is less when compared with the

other two building blocks. So the average run-time difference between the

twp implementations is not as significant as the previous results. However,

when we look at the worst-case run-time results, there is a point that is not

observed in the previous block measurements. When the crosscutting

concern’s lines of code percentage in the project code reaches to 25% the

worst case run-time of the Data Processing Block exceeds the 100 ms time

line, which causes a delay in the transfer of the processed data. Since the

incoming and outgoing data buffers are large enough this much lag does not

cause a data loss. However the AOP version gives reasonable run-time

measurement results lowers the effect of the delay.

Looking at the run-time of the above three blocks, it can be observed that

AOP provides an improvement in the run-time metrics of the software.

Moreover looking at the differences between the average and the worst-case

run-time results, we can say that AOP usage makes the system less variable

in terms of run-time. This is because of the variable delays caused in case of

message calls to satisfy the crosscutting functionality of the system. Since

run-time is a critical issue for real-time systems, application of AOP seems to

have beneficial results in embedded real-time systems.

4.3 Summary of Embedded Real-Time System Performance

The embedded real-time performance results of the Audio Switch project are

given in the previous sections.

Application of AOP provides a decrease of 4% in the dynamic memory usage

of the running application, when the crosscutting code is 25% of the entire

system code. From the metric results on dynamic memory usage, it can be

concluded that effects of AOP is increasing with the increasing use of

aspects in the system code.

 70

The CPU usage results show that, aspect usage in the implementation of

crosscutting concerns provides a decrease in the CPU usage of the entire

software. In other words, with the application of AOP, the system satisfies its

requirements with a lower CPU usage.

AOP also has an improvement in terms of run-time. Especially, effects of

AOP can be seen clearly in Figure 4.12, where the AOP implemented code

and OOP implemented code percentage are nearly same. So, it can be said

that AOP can be used to code a faster algorithm in embedded real-time

systems.

The embedded real-time metric results of the Audio Switch Project are given

in Table 4.4 and Table 4.5 below. Table 4.4 gives the metrics results for the

project, in which all the mentioned crosscutting concerns are implemented.

 Memory
Usage

CPU
Usage

Worst-Case
Run-Time

A/D
Converter
Block

Worst-Case
Run-Time

D/A
Converter
Block

Worst-
Case Run-
Time Data
Processing
Block

Percent AOP
Improvement
on the whole
project

25% 15% 50% 64% 38%

 Effect of AOP Usage

Memory Usage Decreased

CPU Usage Decreased

Run-Time Decreased

Table 4.4 Effects of AOP on Embedded Real-Time Metrics

Table 4.5 Embedded Real-Time Metrics Metrics Summary

 71

To sum up, it can be said that AOP usage in the implementation of

crosscutting concerns in embedded real-time systems provides an

improvement in terms of embedded real-time performance metrics.

 72

CHAPTER V

CONCLUSION

Separation of Concerns is a key concept in software development. Object

Oriented Programming is good at modularizing the functional behavior of the

systems. However it has some problems in crosscutting concern

modularization. Aspect Oriented Programming, which is developed over the

existing OOP concepts, can be used to circumvent these problems of the

OOP. In addition to crosscutting concern modularization, the embedded real-

time performance improvements make AOP a solution to solve the

performance overhead problem of OOP. Hence AOP can be a more suitable

development methodology for embedded real-time systems.

In addition to above contributions, this study shows the power of AspectC++

as an AOP language that can be used in the implementation of embedded

real-time software. It is observed that, as an AOP language AspectC++ is

nearly as powerful as its Java version AspectJ.

In the evaluation of the implemented Audio Switch project, two different

evaluation approaches are applied. First, the two different implementations

are considered from the point of software quality view. Then the project

implementations are examined with respect to their embedded real-time

performance.

The crosscutting concerns in the project are selected as to be the most

common crosscutting concerns, which can be seen in nearly all software

projects. So the evaluation results can be generalized to the field of

embedded real-time systems.

The evaluation process is carried out by, gradually increasing the amount of

crosscutting code in the system software. This is done to show the change in

 73

the impact of AOP to embedded real-time systems with respect to the

increasing amount of aspect code in the system software.

Looking at the software quality metric results given in the Evaluation chapter,

it can be concluded that AOP provides an observable improvement in the

software quality attributes. In other words AOP is said to improve the

reusability, maintainability, testability and understandability of the system

software. Moreover, from the point of programmers view AOP makes the

system’s crosscutting concerns more modular. So, programmer gains the

ability to easily control and modify the crosscutting functionality of the

system, as it is the case for functional-concerns in OOP.

Embedded real-time performance results, shows that, AOP provides a

significant performance improvement in CPU usage, memory usage and run-

time of the system software. When we consider the resource constraints and

performance requirements of embedded real-time systems, it is a fact that

AOP has a significant impact on embedded real-time systems. Especially,

when we look at the difference between worst-case and average run-time

results of the Audio Switch project AOP is said to prevent the unpredictable

timings in message passing issues.

When we consider the results of the evaluation process as a whole, it can be

said that using AOP techniques in the implementation of crosscutting

concerns has a positive impact in the field of embedded real-time systems.

This impact becomes more observable with the increasing amount of aspect

code in the systems software.

Since the impact of AOP becomes more observable with the increasing

amount of aspect code, as a future work implementation of an embedded

project totally by using AOP techniques can be considered. Furthermore

AOP can be examined as an alternative to OOP. Since OOP is not widely

used in embedded real-time systems because of its performance overhead,

AOP can be more suitable for the applications of this field.

 74

REFERENCES

[1] S. Agrawal & P. Bhatt, "Real-time Embedded Software Systems", TATA

Technology Review, 2001

[2] Nissanke, N., "Real-time Systems", Prentice Hall, 1997

[3] Burns, A. and A. Wellings, "Real-time Systems and Programming

Languages", Addison-Wesley, 2001

[4] Wehrmeister, M.A., Pereira, C.E., Becker, L.B.; "Object-oriented

methodology to the development of embedded real-time systems", 3rd IEEE

International Conference on Industrial Informatics, 2005

[5] Hayes, R.G., “Real-time Java”, Department of Electrical Engineering and

Computer Science College of Science and Engineering Loyola Marymount

University: Los Angeles, USA, December 2000,

[6] Guillem Bernat,Alan Burns and Albert Llamosi, "Weakly Hard Real-Time

Systems", IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 4,

APRIL 2001

[7] Joseph C. Sremack, "Investigating Real-Time System Forensics",

Workshop of the 1st International Conference on Security and Privacy for

Emerging Areas in Communication Networks", 2005.

[8] Tomoji Kishi, Natsuko Noda, "Aspect-Oriented Context Modeling for

Embedded Systems", Early Aspects Workshop 2004

[9] Martin, R., Newkirk, J., and Koss, R., "Agile Software Development,

Principles, Patterns, and Practices", Prentice Hall, 2003.

[10] Dean Wampler, "Aspect-Oriented Design Principles: Lessons from

Object-Oriented Design", AOSD Workshop 2007

[11] Bruno Harbulot, "Introduction to Aspect-Oriented Software

Development", ELF Developers' Forum – Manchester, October 2005

 75

[12] Lars Rosenhainer, "Identifying Crosscutting Concerns in Requirements

Specifications", Early Aspects Workshop, 2004

[13] Awais Rashid and Lynne Blair, "Aspect-oriented Programming and

Separation of Crosscutting Concerns" British Computer Society The

Computer Journal The Computer Journal, Vol. 46, No. 5, 2003

[14] Olaf Spinczyk , Daniel Lohmann a and Matthias Urban, "Advances in

AOP with AspectC++", from

 http://www.aspectc.org/fileadmin/publications/somet-2005.pdf

[15] Miller, S.K.; "Aspect-oriented programming takes aim at software

complexity", IEEE Computer Journal Volume 34, Issue 4, April 2001

[16] Kiczales, G., et al. "Aspect-Oriented Programming.", ECOOP. June

1997.

[17] “ Motorola MVME 5100 Data Sheet ", from

https://mcg.motorola.com/us/ds/pdf/ds0008.pdf

[18] "VxWorks Center", from

 http://www.windriver.com/vxworks/index.html

[19] Rosenberg, L.H., "Applying and Interpreting Object Oriented Metrics",

Software Assurance Technology Center, July 2003, from

http://www.satc.gsfc.nasa.gov/

[20] Chidamber, S., Kemerer, C., "A metrics suite for object oriented design",

IEEE Transactions on Software Engineering 20, Pages 476–493, 1994

[21] Shiu Lun Tsang; Clarke, S.; Baniassad, E., "An evaluation of aspect-

oriented programming for Java-based real-time systems development",

Proceedings of Seventh IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing, 2004.

[22] Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schröder-Preikschat,

"Lean and Efficient System Software Product Lines - Where Aspects Beat

Objects", Transaction of Aspect-Oriented Software Development (TAOSD),

2006

 76

[23] Ian Sommerville, "Object-Oriented Design", March 2004 from

http://sunset.usc.edu/~neno/cs477_2003/March4.ppt

[24] Daniel Lohman, Olaf Spinczyk, "Aspect-Oriented Programming with C++

and AspectC++", 2005 from

http://www.aspectc.org/fileadmin/publications/aosd-2005-tut-2x2.pdf

[25] Harrison, R., Counsell S.J., and Nithi R.V. “An Evaluation of the MOOD

Set of Object-Oriented Software Metrics” in Proceedings IEEE Transactions

on Software Engineering, Vol.24, No.6, 1998, pp. 491-496.

[26] Baris Aydinoz, Semih Bilgen, " The effect of design patterns on object-

oriented metrics and software error-proneness ", 2006, from

http://etd.lib.metu.edu.tr/upload/2/12607591/index.pdf

 77

APPENDIX A

AspectC++ Language Quick Reference

 78

 79

APPENDIX B

Motorola MVME 5100 Specifications

 80

 81

