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ABSTRACT

LEPTON FLAVOR VIOLATION IN THE TWO HIGGS DOUBLET MODEL

Sundu, Hayriye

Ph.D., Department of Physics

Supervisor: Prof. Dr. Erhan Onur İltan

May 2007, 91 pages.

The lepton flavor violating interactions are interesting in the sense that they are

sensitive the physics beyond the standard model and they ensure considerable

information about the restrictions of the free parameters, with the help of the

possible accurate measurements. In this work, we investigate the lepton flavor

violating H+ → W+l−i l
+
j and the lepton flavor conserving H+ → W+l−i l

+
i (li =

τ, lj = µ) decays in the general two Higgs doublet model and we estimate decay

widths of these decays. After that, we analyze lepton flavor violating decay τ →

µνiνi in the same model and calculate its branching ratio. We observe that the

experimental results of the processes under consideration can give comprehensive

information about the physics beyond the standard model and the existing free

parameters.
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Keywords: Lepton flavor violation, Lepton flavor conservation, Standard Model,

Two Higgs doublet model, Decay width, Branching ratio.
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ÖZ

İKİ HİGGS DUBLET MODELİNDE LEPTON ÇEŞNİ BOZULMASI

Sundu, Hayriye

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Erhan Onur İltan

Mayıs 2007, 91 sayfa.

Lepton çeşni bozan etkileşmeler, standart model ötesi fiziǧe duyarlı olmaları ve

teorik modellerdeki serbest deǧişkenlerin deneysel hassas ölçümler yardımıyla

sınırlandırılmaları hakkında önemli bilgiler içermesi sebebiyle ilgi çekicidir. Bu

çalışmada, lepton çeşni bozan H+ → W+l−i l
+
j ve lepton çeşni koruyan H+ →

W+l−i l
+
i (li = τ, lj = µ) bozunumlarını genel iki Higgs dublet modeli çerçevesinde

inceledik ve bu bozunumlar için bozunma genişliklerini hesapladık. Buna ek

olarak, lepton çeşni bozan τ → µνiνi bozunumunu aynı modelde inceledik ve dal-

lanma oranını hesapladık. Bu süreçlerin deneysel sonuçları kullanılarak, standart

model ötesinde var olabilecek yeni fizik ve ortaya çıkabilecek serbest deǧişkenler

hakkında kapsamlı bilgi edinilebilineceǧini gözlemledik.
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CHAPTER 1

INTRODUCTION

The Standard Model (SM) is the simplest model which combines the electromag-

netic and weak interactions. It is a comprehensive theory that explains all the

hundreds of particles and complex interactions with only six quarks, six leptons

and force carrier particles. The SM which is proposed by Glashow-Weinberg-

Salam [1]-[2] has been a remarkable success story of modern theoretical and ex-

perimental high-energy physics, during the last decades. The discovery of neutral

weak interactions and the production of intermediate vector bosons W±, Z0 with

the expected properties increased our confidence in the model [3]. The SM con-

tains the spin one-half quarks, leptons, the spin one gauge bosons and the spin

zero Higgs field as fundamental degrees of freedom. For the details of the model

construction see Chapter 2 and also textbooks [4]-[8] and review [9]-[11] existing

in the literature.

The SM answers many of the questions about the structure and stability of

matter with its six types of quarks, six types of leptons and three forces. But
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the SM is not complete and there are still many unsolved questions: What is

the reason beyond the hierarchy of fundamental forces? What is the origin of

the masses of fundamental particles and their mass hierarchies? Are quarks and

leptons actually fundamental or made up of even more fundamental particles?

Do neutrinos have finite masses? Does the Higgs boson exist? What is the origin

of CP violation? Is it possible to unify the strong and electroweak interactions,

as one has unified the electromagnetic and weak interactions? What is the unob-

served dark matter which creates visible gravitational effects in the cosmology?

Such questions stimulate the physicists to study the new physics beyond the SM

in order to understand the problems under consideration . There are several can-

didates for the models beyond the SM. The multi Higgs doublet model [12, 13],

the minimal supersymmetric model (MSSM) [14, 15, 16, 17], the Zee model [18],

the see-saw model [19], left-right (super) symmetric model (LRSM) [20], tecni-

color models [21], extra dimensions [22, 23, 24] and Randrall-Sundrum model

[25, 26] are some examples of these models.

The flavor changing neutral current (FCNC) processes are governed in the SM

by the Glashow-Iliopoulos-Maiani (GIM) mechanism [27]. In this scenario such

transitions are forbidden at tree level and leading contributions which can produce

these processes only result from the one-loop diagrams known as the penguin and

box diagrams [28]. The FCNC is referred to when the hadronic state changes

its flavor composition without a change in charge. The experimental search of
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such procceses represents an important test of the validity of the SM, either by

confirming its prediction or by indicating the need for physics beyond the SM

if observed at larger probabilities [28, 29, 30]. In other words, FCNC processes

have long served as a good thinking ground and a good experimental probe of

new physics in each stage of the development of high energy physics [31].

The violation of flavor symmetry in the leptonic sector, known as lepton fla-

vor violation (LFV), is of special interest to physicists. FCNC processes due to

LFV are strictly forbidden in the SM with massless neutrinos. However, there

is evidence for a very important new property of the neutrinos, i.e. they have

masses and, as a result, mix with each other to lead to the phenomenon of neu-

trino oscilation [32]. Evidences that the neutrinos are massive particles come

from three anomalous effects, the Liquid Scentilator Neutrino Detector (LSND)

excess [33], the atmospheric anomaly [34] and solar neutrino deficit [35]. The

atmospheric and the solar results are the most convincing one but the LSND has

the small probability of mixing, compared to the atmospheric and solar anomalies

[32]. Another clue that neutrinos have masses is the cosmological data. From

cosmological data, the 2dF and SDSS galaxy redshift surveys and the WAMP

measurement of the cosmic microwave background (CKM) temperature fluctua-

tions, mass of the neutrino is restricted limits of
∑
mν < (0.7− 1.0) eV (95%CL)

[36]. The discovery in neutrino oscillations suggests that the lepton flavor is not

strictly conserved in nature. In the SM, LFV decays are allowed by introducing
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the neutrino mixing with non zero neutrino masses. However, their branching

ratios (BRs) are much below the experimental limits due to the smallness of

neutrino masses. The conservation of the lepton flavor can be broken with the

extension of the SM [37]. So, search for LFV in charged lepton processes is one

of the promising way to look for physics beyond the SM [38].

The LFV interactions reach great interest since they are rich and clean theo-

retically. They are clean because they are free from the nonperturbative effects;

they are rich because they ensure considerable information about the restrictions

of the free parameters, appearing in the new models, with the help of the possible

accurate measurements since the loop effects are necessary for their existences.

Among the LFV interactions, the flavor changing Z decay, such as Z → eµ,

Z → eτ and Z → µτ are important for the search of neutrinos, their mixing and

possible masses, and the physics beyond the Standard model (SM) (see [39] and

references therein). With the Giga-Z option of the Tesla project, the production of

Z bosons at resonance is expected to increase [40] and this forces to study on such

Z decays more precisely. In order to describe the LFV Z decays, there is a need to

extend the SM. One of the candidate model is so called νSM, by taking neutrinos

massive and permitting the lepton mixing mechanism [41]. In this case the lepton

sector is analogous to the quark sector. In this model, the theoretical predictions

for BRs of the LFV Z decays are extremely small in the case of internal light

neutrinos [42, 43] and far from the experimental limits obtained at LEP 1 [44].
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To enhance the BRs of the corresponding LFV Z decays some other scenarios

have been studied. The possible scenarios are the extension of νSM with one

heavy ordinary Dirac neutrino [43], the extension of νSM with two heavy right-

handed singlet Majorana neutrinos [43], the Zee model [18], the model III version

of the two Higgs doublet model (2HDM), which is the minimal extension of the

SM [39, 45], the supersymmetric models [46, 47], top-color assisted technicolor

model [21].

Since quark mixing through the CKM matrix and neutrino oscillations are

now established in the SM, the question may be asked why no mixing in the

charged lepton has been observed [48]. In fact lepton flavor can change in the SM,

mediated through a virtual W boson. However, the BR scales with the neutrino

mass over the W mass by the fourth power in the case of LFV decays, the result

at the order of the magnitude of 10−60 and, thus, immeasurably small [48]. So,

the LFV processes are important and deserve to be analyzed experimentally and

theoretically. Among them the radiative LFV li → ljγ (i 6= j; i, j = e, µ, τ) decays

received great interest and there are various experimental and theoretical works

done in the literature. In [49], µ → eγ is searched by the MEGA experiment at

the Los Alamos Meson Physics Facility (LAMPF) and the upper limit of the BR

for this decay is found to be < 1, 2×10−11 with 90% confidence. Furthermore, the

MEG experiment searches for the LFV decay µ → eγ will pull the BR down to

the values of the order of 10−13 and it will go into data taking in 2007 [48]. Also,
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a new experiment at PSI has been described and aimed to reach to a sensitivity

of BR ∼ 10−14 for µ → eγ decay [50]. The LFV τ → eγ decays have been

searched in the Belle detector at the KEKB asymemetric e+e− collider and the

upper limit of the BR is obtained as 3.9 × 10−7 90% CL [51]. Another radiative

LFV decay τ → µγ has been searched at the BABAR detector at the PEP-II

storage ring and the upper limit of the BR is obtained as 9.0 × 10−8 in the [52]

and 6.8 × 10−8 in the [53] at 90% CL. From the theoretical point of view, there

are extensive works on the radiative LFV decays in the literature. These decays

were analyzed in the supersymmetric models in [15, 16, 17, 54]. [55, 56] were

devoted to the radiative LFV decays in the framework of the 2HDM and in the

[57] such decays were studied in a model independent way. In another work [58],

they were analyzed in the framework of the 2HDM and in the supersymmetric

model. Due to the extremely high suppression of the SM contribution to this

decay, it is a very clean signature of physics beyond the SM.

Another motivation to search for new physics beyond the SM is electric dipole

moments of fermions (EDMs). Elementary particles can possess EDM only if

CP is violated. CP violation is carried by the complex CKM matrix elements in

the quark sector and the possible lepton mixing matrix elements in the lepton

sector, in the framework of the SM. However, the estimated fermion EDMs in

the SM are negligibly small. So, this stimulates one to investigate these physical

quantities in the framework of the new models beyond the SM. There are extensive
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theoretical and experimental works done on the EDMs of fermions. From the

experimental point of view, the experimental results of the fermion EDMs are

de = (1.8± 1.2± 1.0)× 10−27e cm [59], dµ = (3.7± 3.4)× 10−19e cm [60] and dτ =

(3.1) × 10−16e cm [61] respectively. Also, the lepton EDMs have been predicted

in various theoretical models beyond the SM. In [62], using the seesaw model the

lepton electric dipole moments has been analyzed. [63] was devoted to the EDMs

of the leptons in the model III version of the 2HDM and de has been predicted

at the order of the magnitude of 10−32 e− cm. The work [64] was related to the

lepton EDM in the framework of the SM with the inclusion of non-commutative

geometry. In [65], the effects of non-universal extra dimensions on the electric

dipole moments of fermions in the 2HDM have been estimated. The EDMs of

charged leptons were investigated in the split fermion scenario in the 2HDM in

[66]. Furthermore, charged lepton EDMs were estimated in the framework of the

2HDM with the inclusion of two extra dimensions in [67].

As a summary, LFV interactions are important and give a comprehensive in-

formation about the new physics. Also, they have reached great interest with the

improvement of experimental measurements. Such type of interactions are stud-

ied in different models beyond the SM. Among them, the simplest extention of the

SM with one extra Higgs doublet is the 2HDM. The 2HDM, obtained by introduc-

ing another doublet, would automatically lead to FCNC problem in its Yukawa

sector representing interactions between the Higgs fields and fermions [68].
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This thesis is organized as follows. In Chapter 2 we give a brief review of the

SM. Chapter 3 is devoted to the construction of the 2HDM and its different ver-

sions. In Chapter 4 we investigate lepton flavor violating (LFV) H+ → W+l−i l
+
j

and lepton flavor conserving (LFC) H+ → W+l−i l
+
i (li = τ, lj = µ) decays in the

2HDM, allowing the FCNC at tree level [69]. After giving the expression for the

matrix element for this decay, the decay width of LFC and LFV decays are cal-

culated. In Chapter 5, the LFV τ → µνiν decay is investigated in the framework

of the general 2HDM [70]. The BR is calculated and the limits of the BR’s of the

decay modes are discussed with respect to sensitivity of the model parameters.

Chapter 6 represents our conclusions. In Appendix A, we present the local and

global gauge invariance. Appendix B is devoted to the spontaneous symmetry

breaking and Higgs mechanism. In Appendix C we present the propagators and

vertices which we used in our calculations. Appendix D is related to Feynman

parametrization and dimensional regularization.
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CHAPTER 2

THE STANDARD MODEL

The SM is a quantum field theory which comprise all known particles and three

out of the four known fundamental interactions. The elementary particles called

fermions are leptons and quarks and the fundamental interactions are the strong,

weak, electromagnetic and gravity (see for example [7], [71]). The gauge par-

ticles are W± and Z0 bosons-photon-gluon for the weak-electromagnetic-strong

interactions, respectively. The gravitational interaction is not described in the

SM.

At this stage, we would like to give a brief information about the Fermi theory

which describe the weak interaction phenomenology in the mid-1950.

2.1 Fermi Theory

In 1934, Fermi tried to describe the weak interactions existing in the β−decay

n → p + e− + νe in terms of quantum field theory [72] and he assumed that

the emission of an electron-neutrino pair was analogous to the electromagnetic
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emission of a photon and theory was the first field theory in which the processes

were described in terms of creation and annihilation of particles.

The form vector-axial (V-A) of the weak interactions was generalized by Feyn-

man and Gell-Mann in 1958 through the current-current interactions [73]. This

consists in writing the weak lagrangian in the form [4]

LF =
GF√

2
Jα(x)J†

α(x) , (2.1)

where GF is the Fermi coupling and Jα(x) = ψ1γα(1 − γ5)ψ2, where ψ is the

fermion field.

However, there are some problems in the Fermi theory. The main problem

is its non-renormalizability due to the four-fermi interaction. When evaluating

Feynman diagrams beyond the tree level, one encounters divergences due to the

bad ultraviolet behaviour of the theory. Another problem of the Fermi theory is

the unitarity. The unitarity requires that the scattering amplitudes are limited.

However, the bad high-energy behaviour of the non-renormalizable theory leads

to increasing amplitudes. As a result, the unitarity is violated in the Fermi theory.

For example, if we consider νe + e→ νe + e decay, the differential cross-section is

obtained as

dσ

dΩ
=
G2
Fk

2

π2
, (2.2)

then the cross-section is written as

σ =
4G2

Fk
2

π
, k2 � m2

e. (2.3)
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Since the interaction is point-like the scattering goes entirely via the s-wave, and

partial wave unitarity then requires that

σ <
π

2k2
. (2.4)

Then, the energy k is obtained as

k4 <
π2

8G2
F

. (2.5)

So, we can say that the Fermi theory is an effective theory up to energies k '

300GeV/c and above this energy, the interaction Eq. (2.1) will violate unitarity.

Furthermore, if one tries to evaluate higher order corrections, horrible divergences

are found. Since this divergences cannot be eliminated by renormalization, the

Fermi theory of weak interactions is non-renormalizable. To eliminate this

ν

k

ν

e
e

e

νe

e e

Figure 2.1: νe + e −→ νe + e diagram for pointlike interaction .

problem, the idea is that the weak interaction are mediated by a vector boson

similar to electromagnetic interactions where the mediating particle is photon.

Since weak interactions are short range, we would rather need to exchange a

massive particle. Therefore, Eq. (2.1) is replaced by a new weak Lagrangian

given as

L = gw(JµW
µ + h.c), (2.6)

11



where Wα(x) is the field of the vector boson which is to be the analogue of the

photon field Aα(x) and the coupling constant gW is dimensionless. Then the

differential cross section for the diagram νe + e −→ νe + e is written as

e

e ν

W

e

ν e

+

Figure 2.2: Diagram for νe + e −→ νe + e.

dσ

dΩ
=

2g4
Wk

2

π2(q2 −m2
W )2

; (k2 ≥ m2
e) , (2.7)

where mW is the mass of the W± boson and q is the momentum transfer vector

defined as q2 ' −2k2(1 − cos θ). Eq. (2.7) reduces to the Fermi result Eq. (2.2)

as q2 −→ 0 provided

g2
W

m2
W

=
GF√

2
. (2.8)

The introduction of the intermediate vector bosons in the theory is an im-

provement in the high-energy behaviour of the amplitudes. As a result, we see

that the ingredients of electroweak interactions are intermediate massive vector

bosons, conservation of the various leptonic numbers and renormalizability. As

12



we shall see, in order to satisfy all these requirements new ideas in particle physics

have been necessary, namely, local gauge invariance (see Appendix A for details),

spontaneous symmetry breaking (SSB) and Higgs mechanism (see Appendix B).

2.2 The Standard Model

The SM of particle physics consists of the idea of local gauge invariance and

SSB to implement a Higgs mechanism [1]. The local gauge symmetry under

consideration is SU (2)L × U (1)Y and the SSB obeys the scheme SU (2)L ×

U (1)Y → U (1)Q where the subscript L means that SU (2) only acts on left-

handed doublets (in the case of fermions), Y is the generator of the original

U (1) group, and Q correspond to an unbroken generator (the electromagnetic

charge). Specifically, the symmetry breaking is implemented by introducing a

scalar doublet [1]

Φ =




φ+

φ0


 =




φ1 + iφ2

φ3 + iφ4


 (2.9)

It transforms as an SU (2)L doublet, thus its weak hypercharge is one. In order

to induce the SSB (see Appendix B) the doublet should acquire a VEV different

from zero

〈Φ〉 =




0

v/
√

2


 . (2.10)
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The generators of the local gauge symmetry SU (2)L × U (1)Y are τi and Y

defined as

τi ≡
σi
2

(2.11)

where σi are the Pauli matrices. These generators obey the following lie algebra

[τi, τj] = iεkijτk ; [τi, Y ] = 0 (2.12)

When the symmetry is spontaneously broken, the doublet acquire a VEV and we

can see easily that all generators of the SU (2)L × U (1)Y are broken [74]

τ1〈Φ〉 =
1

2




v/
√

2

0


 6= 0 ; τ2〈Φ〉 =

1

2




−iv/
√

2

0


 6= 0

τ3〈Φ〉 =
1

2




0

−v/
√

2


 6= 0 ; Y 〈Φ〉 =




0

v/
√

2


 6= 0 (2.13)

The unbroken generator is defined by Gellman-Nijishima relation [75] as

Q =
(
τ3 +

Y

2

)
; Q〈Φ〉 = 0 (2.14)

According to the Goldstone theorem, the number of Goldstone bosons generated

after the symmetry breaking is equal to the number of broken generators. There-

fore, instead of working with four broken generators we shall work with three

broken generators and unbroken one, Q. This scheme ensures for the photon to

remain massless, while the other three gauge bosons acquire masses [1].

14



2.2.1 The Weinberg-Salam Model

The Weinberg-Salam Model combine the weak and electromagnetic interac-

tions [76, 77, 78]. From the phenomenology of the weak interactions, we know

that, we require both charge-changing leptonic currents and neutral currents.

Given that the weak interactions are to be mediated by our gauge vector bosons,

we require three vector bosons W j
µ(j = 1, 2, 3). The simplest group that con-

tains the required three generators is SU(2). However, it is clear that this is not

enough if we wish to include electromagnetic interactions as well. Thus we need

one further gauge vector boson, called as Bµ, and correspondingly a group with

one generator, U(1). The overall gauge group is then SU(2)L ⊗ U(1)Y with a

total of four generators. The Weinberg-Salam Lagrangian reads

LWS = LkinG + LkinF + LH , (2.15)

(see [8] for details), where G-F-H denote gauge-fermion-Higgs.

The Higgs part of Lagrangian contains three kinds of terms, namely,

LH = LkinHG + LY + V (Φ+Φ). (2.16)

where the Higgs potential of the Lagrangian reads

V (Φ+Φ) = µ2(Φ+Φ) − λ(Φ+Φ)2 (2.17)

with the free parameters µ2 and λ and Φ is defined as in Eq. (2.9). For µ2 > 0,

the scalar field Φ develops a non zero VEV given in Eq. (2.10) and the vacuum
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expectation value is υ = µ/
√

2λ (' 246GeV ). Here the Higgs mass is to be

yielded as a consequence of the Higgs mechanism (see Appendix B) and it reads

mH =
√

2λυ.

The LkinHG part of the lagrangian is responsible for the interaction of the gauge

and Higgs particles and it is given by

LkinHG = DµΦ (DµΦ)∗, (2.18)

with

DµΦ = (∂µ +
ig′

2
Y Bµ + igτiW

i
µ)Φ, (2.19)

and W i
µ and Bµ are SUL(2) and UY (1) gauge fields. The corresponding kinetic

term for the gauge fields is

LkinG = −1

4
F µν
i F i

µν −
1

4
BµνBµν , (2.20)

where F i
µν(i = 1, 2, 3) is the SU(2)L field strength,

F i
µν = ∂µW

i
ν − ∂νW

i
µ − gεijkW j

µW
k
ν , (2.21)

and Bµν is the UY (1) field strength,

Bµν = ∂µBν − ∂νBµ. (2.22)

The gauge boson fields W 1
µ , W

2
µ , W

3
µ couple to the weak isospin and Bµ couples

to the weak hypercharge.
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The LY part of the Lagrangian describes the interaction among the Higgs

bosons and fermions, so called the Yukawa Lagrangian,

LY = ηDijQiLΦDjR + ηUijQiLΦ̃UjR + ηEij`iLΦEjR, (2.23)

where

Φ̃ = iτ2Φ
∗, (2.24)

Qi,L are left-handed quark doublets, DjR and UjR are right-handed singlets of

the up and down sectors of quarks, `i,L are left-handed lepton doublets and EjR

are right-handed lepton singlets (see section (2.2.2) for quark-lepton doublets

and singlets ), the parameters ηU,D,Eij ‘s are responsible for the masses of up-down

quarks and leptons, with family indices i and j (Here ηU,D,Eij ‘s are flavor diagonal

Yukawa couplings). In Eq. (2.23), there is not any right-handed neutrino term

which is based on the assumption that the neutrinos are massless.

The fermionic sector of the Lagrangian which include both the left-handed

and rigth-handed chiralities can be presented as

LkinF =
∑

ψL

ψL i 6DψL +
∑

ψR

ψR i 6DψR, (2.25)

where 6D = γµDµ. ψL and ψR are left-handed weak isodoublets and right-handed

weak isosinglets, respectively. Right-handed chiral fermions do not couple to weak

isospin, so their covariant derivative has the simple form

DµψR = (∂µ + i
g′

2
Y Bµ)ψR, (2.26)
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where g′ is the coupling constant for U(1)Y group. The corresponding covariant

derivative for the SU(2)L doublet ψL is given in terms of the SU(2)L gauge

coupling g

DµψL = (∂µ +
ig′

2
Y Bµ + igτiW

i
µ), (2.27)

After a proper normalization, the gauge fields can be written in a form which

corresponds to the physical photon and Z0 boson fields [1]

Aµ = sinθWW
3
µ + cosθWBµ,

Zµ = cosθWW
3
µ − sinθWBµ, (2.28)

where θW is the weak mixing angle or the Weinberg angle and defined as

sinθW =
g′√

g2 + g′2
; cosθW =

g√
g2 + g′2

. (2.29)

It is appropriate to redefine the other two components of the weak fields, which

correspond to the physical charged weak bosons,

W+
µ =

√
1

2
(W 1

µ − iW 2
µ)

W−
µ =

√
1

2
(W 1

µ + iW 2
µ ) (2.30)

Finally, mass eigenstates of the gauge bosons are obtained [1]

M2
W± =

1

4
g2υ2 ; M2

Z =
1

4
υ2(g′2 + g2). (2.31)

Notice that in general, the Yukawa Lagrangian is CP violating due to complex

Yukawa couplings. The Hermiticity of the Yukawa Lagrangian implies that there
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Table 2.1: The known quarks and leptons. Here and elsewhere we take c = 1.

Quarks Leptons
Charge 2/3 Charge −1/3 Charge −1 Charge 0

Mass(Gev) Mass(Gev) Mass(Gev) Mass(Gev)
u 0.0015–0.003 d 0.003–0.007 e 0.000511 νe < 3 × 10−9

c 1.25 ± 0.09 s 0.095 ± 0.025 µ 0.106 νµ < 190 × 10−6

t 174.2 ± 3.3 b 4.2 ± 0.07 τ 1.777 ντ < 18.2 × 10−3

are terms in pairs of the form:

ηijΨiLΦΨjR + η∗ijΨjRΦ†ΨiL. (2.32)

However a transformation under CP gives

ΨiLΦΨjR ↔ ΨjRΦ†ΨiL, (2.33)

and leaves the coefficients ηij and η∗ij unchanged. In fact CP is conserved in LY

only if ηij = η∗ij. Moreover, the family indices i and j are symmetric.

2.2.2 The Fermions and Bosons

The leptons are the fundamental fermions lacking strong interactions and the

quarks are the fundamental building blocks of strongly interacting particles. The

quarks are distinguished from the leptons by possesing a three fold charge known

as color which enables them to interact strongly with another. All fermions are

summarized in Table 2.1 [79].

In the SM, all fermions are placed in to left-handed doublets and right-handed

singlets. The doublets and singlets of the quarks are (see for example [7])
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u

d




L

,




c

s




L

,




t

b




L

,

dR, uR, sR, cR, bR, tR. (2.34)

On the other hand, the lepton doublets and singlets are




e

νe




L

,




µ

νµ




L

,




τ

ντ




L

,

eR, τR, τR. (2.35)

The charged weak interactions couple the upper members of the SU(2)L fermion

doublets to the lower members (rotated quark doublets of the weak eigenstates

in the case of quarks)




u

d′




L

,




c

s′




L

,




t

b′




L

(2.36)

where the weak eigenstates of the down-type quarks can be defined as linear

combinations of the mass eigensates by using the Cabibbo-Kobayashi-Maskawa

(CKM) mixing matrix Vij




d′

s′

b′




=




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b




. (2.37)
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Table 2.2: The elementary bosons according to SM .

Name Charge(e) Spin Mass (GeV) Force mediated
Photon 0 1 0 Electromagnetic
W± +1 1 80.403 ± 0.029 Weak nuclear
Z0 0 1 91.1876 ± 0.0021 Weak nuclear

Gluon 0 1 0 Strong nuclear
Higgs 0 0 > 114.4

The non-diagonal elements of the CKM matrix allow flavor transitions between

families. The experimentally measured values of the matrix elements are [79]

Vij =




0.97377 ± 0.00027 0.2257 ± 0.0021 0.00431 ± 0.0003

0.230 ± 0.011 0.957 ± 0.017 ± 0.093 0.0416 ± 0.0006

0.0074 ± 0.0008 0.0406 ± 0.0027 > 0.78




. (2.38)

The gauge bosons are mediating particles which are responsible for the elec-

tromagnetic, weak and strong forces. In the Table 2.2, the elementary bosons

in the SM are summarized [79]. The W± and Z0 bosons are the elementary

particles that mediate the weak force. Their discovery at CERN in 1983 has been

heralded as a major success for the SM of the particle physics. The Higgs boson

is predicted by electroweak theory. It is the only SM particle not observed yet.

Many physicists expect the Higgs to be discovered at the Large Hadron Collider

(LHC) particle accelerator which starts operation in autumn 2007 at CERN.
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CHAPTER 3

BEYOND THE STANDARD MODEL

The SM has been extremely successful in describing the experimentally observed

particle physics phenomenology up to the electroweak energy scale of the order of

100 GeV. When going to higher energy scales, the SM becomes insufficient and

unsatisfactory.

In the SM, the Higgs mechanism is presently only a hypothesis as no exper-

imental evidence for it has been found. After the LHC experiment at CERN,

the Higgs mechanism is expected to be proven right or wrong. Even if the Higgs

mechanism of the SM is proven to be right, the SM gives no answers to many

fundamental questions given in the introduction section, so a new physics beyond

the SM is needed. There are many models beyond the SM such as multi Higgs

doublet model (MHDM), supersymmetric model (SUSY), technicolor model, etc..

The work done in this thesis based on the most primitive candidate of MHDM,

the 2HDM.

22



3.1 The Two Higgs Doublet Model

The simplest extension of the SM, compatible with the gauge invariance, is

the so called 2HDM, which consists of adding a second Higgs doublet with the

same quantum numbers as the first one. What is the motivation to introduce the

second doublet? (see for example [74] and the references therein.) First, there is

not any fundamental reason to assume that the Higgs sector must be minimal.

Second motivation comes from the hierarchy of Yukawa couplings in the third

generation of quarks, the ratio between the masses of the top and bottom quarks

is of the order of mt/mb ≈ 174/5 ≈ 35 . Since, in the SM, up and bottom quarks

get masses from the same Higgs doublet, there is a non natural hierarchy between

their corresponding Yukawa couplings. However, if one doublet (φ1) gives masses

to the up quarks and the other doublet (φ2) gives masses to the down quarks,

then the hierarchy of their Yukawa couplings could be more natural. Another

motivation lies on the study of some rare processes called FCNC. It is well known

that these kind of processes are severely suppressed by experimental data, despite

they seem not to violate any fundamental law of nature. In the SM with massless

neutrino, FCNC are absent in the lepton sector and in the quark sector they are

prohibited at tree level and further supressed at one loop by the GIM mechanism

[80]. Owing to the addition of the second doublet in the 2HDM, the Yukawa

interactions lead naturally to tree level FCNC. Therefore, FCNC processes would
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imply the presence of new physics effects.

As explained above, we introduce a new Higgs doublet, so the Higgs sector

includes two Higgs doublets with the same quantum numbers [81]

φ1 =
1√
2







0

v1 +H0


 +




√
2χ+

iχ0





 , (3.1)

φ2 =
1√
2




√
2H+

v2 +H1 + iH2


 , (3.2)

with the vacuum expectation values

< φ1 >=
1√
2




0

v1


 , < φ2 >=

1√
2




0

v2


 , (3.3)

where v = (v2
1 + v2

2)
1/2 = (

√
2GF )−

1

2 = 246GeV. Here H0 is the SM Higgs boson,

H1 and H2 are the CP even and CP odd neutral Higgs bosons and H+ is the

charged Higgs boson.

In the 2HDM, the kinetic term of the SM Lagrangian Eq. (2.18) is extended

to

LkinHG = (DµΦ1)
+(DµΦ1) + (DµΦ2)

+(DµΦ2) (3.4)

where the covariant derivative Dµ is defined by Eq. (2.19). This Lagrangian

endows the gauge bosons with mass and provides the interactions among gauge

and Higgs bosons.
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The most general renormalizable CP invariant Higgs potential subject to

gauge invariance with discrete symmetry φ1 → −φ1 [81]

V (φ1, φ2) = λ1(φ
+
1 φ1 − υ2

1)
2 + λ2(φ

+
2 φ2 − υ2

2)
2

+ λ3[(φ
+
1 φ1 − υ2

1) + (φ+
2 φ2 − υ2

2)]
2

+ λ4[(φ
+
1 φ1)(φ

+
2 φ2) − (φ+

1 φ2)(φ
+
2 φ1)]

+ λ5[Re(φ
+
1 φ2) − υ1υ2]

2

+ λ6[Im(φ+
1 φ2)]

2 , (3.5)

where λi are real. Unlike the SM case, in the 2HDM the Higgs potential is not

unique, and each potential leads to different Feynman rules.

3.1.1 The Yukawa Lagrangian in 2HDM

The most general gauge invariant Lagrangian that couples the Higgs fields to

fermions reads

L2HDM
Y = ηUijQiLΦ̃1UjR + ηDijQiLΦ1DjR + ξUijQiLΦ̃2UjR + ξDijQiLΦ2DjR +

ηEij liLΦ1EjR + ξEij liLΦ2EjR + h.c., (3.6)

where Φ1,2 represent the Higgs doublets, Φ̃1,2 ≡ iσ2Φ1,2, ηij and ξij are non

diagonal 3 × 3 matrices in general, so called Yukawa couplings, and i, j denote

family indices. DjR refers to the three down-type weak isospin quark singlets

DjR ≡ (dR, sR, bR) , UjRj refers to the three up-type weak isospin quark singlets
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UjR ≡ (uR, cR, tR) and ER to the three charged leptons. Finally, QiL, liL denote

the quark and lepton weak isospin left-handed doublets respectively.

It is possible that 2HDM can be categorized into four types by explicitly

imposing ad-hoc discrete symmetry.

• The 2HDM type I

If we impose the following discrete symmetry sets,

Φ1 → −Φ1 and Φ2 → Φ2

D(E)jR → −D(E)jR and UjR → −UjR (3.7)

the Lagrangian is obtained as

L2HDM
Y (type I) = ηUijQiLΦ̃1UjR + ηDijQiLΦ1DjR

+ηEij liLΦ1EjR + h.c., (3.8)

In the quark sector, Φ2 decouples from the Yukawa sector and only Φ1

couples and gives masses to the up and down sectors. This case is known

as the 2HDM type I.

• The 2HDM type II

When we use the following discrete symmetry sets,

Φ1 → −Φ1 and Φ2 → Φ2

D(E)jR → −D(E)jR and UjR → UjR (3.9)

26



then the Lagrangian becomes

L2HDM
Y (type II) = ηDijQiLΦ1DjR + ξUijQiLΦ̃2UjR

+ηEij liLΦ1EjR + h.c., (3.10)

Therefore, in the quark sector, Φ1 couples and gives masses to the down

sector while Φ2 couples and gives to the up sector. In this case we call it,

the 2HDM type II.

• The 2HDM type III

If there is no discrete symmetry, we obtain the model III in the 2HDM. The

Yukawa Lagrangian for the model III is as in Eq. (3.6)

L2HDM
Y (type III) = ηUijQiLΦ̃1UjR + ηDijQiLΦ1DjR + ξUijQiLΦ̃2UjR +

ξDijQiLΦ2DjR + ηEij liLΦ1EjR + ξEij liLΦ2EjR + h.c.

(3.11)

It is more convenient to choose the VEV of the doublets in the following

way [82]

< Φ1 >=




0

v√
2


 ; < Φ2 >= 0 . (3.12)

The two doublets in this case are of the form

Φ1 =




χ+

v+H0+iχ0

√
2


 ; Φ2 =




H+

H1+iH2√
2


 . (3.13)
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The Φ1 and Φ2 doublets correspond to the scalar doublet of the SM and

the new scalar fields respectively. Although H± is the charged scalar mass

eigenstate, H0 and H1 are not the neutral mass eigenstates. The mass

eigenstates H
0
, h0, A0 are obtained as

H
0

= (H0cosα−H1sinα)

h0 = (−H0sinα +H1cosα)

A0 = H2 (3.14)

where α is a mixing angle. If the mixing angle α = 0, H0 and H1 coincide

with the mass eigenstates. Notice that the most general CP invariant Higgs

potential in SU(2)L×U(1) gauge group is given in Eq. (3.5). In the model

type III, FCNC is permitted in the tree level and the Flavor Changing (FC)

part of the Yukawa Lagrangian looks like

L2HDM
Y,FC = ξUijQiLΦ̃2UjR + ξDijQiLΦ2DjR + ξEij liLΦ2EjR + h.c., (3.15)

• The 2HDM type IV

In the Model IV, the up-type quarks get masses from φ2 and down-type

quarks and leptons get masses from φ1. In this model, VEV of the doublets

are chosen in the following way [83]

< Φ1 >=




0

υ1


 ; < Φ2 >=




0

υ2e
iξ


 . (3.16)
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In this case the λ6(Im(Φ†
1Φ2)−v1 v2 sinξ)

2 term in the Higgs potential (see

Eq. (3.5)) is responsible for the CP violation in the Higgs sector.
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CHAPTER 4

H+ →W+l−i l
+
j DECAY

Although the SM of electroweak interactions [1] are very successful in explaining

all experimental data available until now, the electroweak symmetry breaking

mechanism still has to be established and the Higgs sector still remains untested.

The main goals of future colliders such as LHC and International Linear Collider

(ILC) are to study the scalar sector of the SM. Moreover, the scalar sector of

the SM can be enlarged and some simple extensions such as the Minimal MSSM

and 2HDM are intensively studied. In the 2HDM, the electroweak symmetry

breaking is generated by two Higgs doublets field Φ1 and Φ2. After electroweak

symmetry breaking we are left with five physical Higgs particles; two charged

H±, two CP-even H0, h0 and one CP-odd A0.

The charged Higgs production has been studied in several theoretical and ex-

perimental works. A search for pair-produced charged Higgs bosons was analyzed

with the L3 detector at LEP and its mass was obtained as mH+ > 76.5 (GeV ) [84].

The CDF and D0 collaborations have studied H+ bosons at tevatron, in the case
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of pp̄ → tt̄, with at least one of the top quark decaying via t → H+b and they

estimated the charged Higgs mass lower limits as mH+ > 77.4 (GeV ) [85]. In

[86], a search for pair produced charged Higgs boson is performed using the data

from the DELPHI detector at LEP II and the existence of this particle with

mass lower than 76.7 (74.4)GeV in the type I (II) 2HDM is excluded and the

charged Higgs boson in the 2HDM model II has the following lower mass limits

mH+ > 79.3 (GeV ) in [87] and mH+ ≥ 1.71 tanβ (GeV ) where tanβ is the ratio

of vacuum expectation values of two Higgs doublets [88].

In the calculation of the BR of the charged Higgs boson, the dominant decays

are H+ → W+h0, H+ → τ+ν and H+ → tb̄ [89, 90, 91, 92]. The total decay

width of the charged Higgs boson is approximated by

Γtot(H
+) = Γ(H+ →W+h0) + Γ(H+ → tb̄) + Γ(H+ → τ+ν) + Γ(H+ → cs̄).

In [92], the various BRs of the charged Higgs boson decays have been obtained

as:

BR(H+ → tb̄) < 1 ,

BR(H+ → τ+ν) < 0.1 ,

BR(H+ →W+h0) < 0.01 ,

BR(H+ → µ+ν) < 0.001 ,

BR(H+ → cs̄) < 0.0001 , (4.1)

for tanβ ∼ 10 and mH+ ∼ 400GeV , in the framework of the MSSM. These results
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are strongly sensitive to the choice of tanβ, and increasing values of tanβ make

H+ → τ+ν and H+ → µ+ν more dominant compared to the decay H+ → W+h0.

In [93], H+ → W+h0 has been predicted to be of the order of O(1) , in the context

of the effective lagrangian extension of the 2HDM.

Our task in this chapter is devoted to the analysis of the LFV H+ →W+l−i l
+
j

and the LFC H+ → W+l−i l
+
i (li = τ, lj = µ) decays in the framework of the

general 2HDM with massless neutrinos. The LFV interactions are interesting,

since they do not exist in the SM. On the other hand, the high statistic results

of the superkamiokande atmospheric neutrino experiment and the solar neutrino

experiment have made one to believe that LFC is not exact [94]. In any case we

expect that the contribution of possible lepton mixing mechanism to the BR’s of

such LFV processes are negligible small.

4.1 The Calculation of the H+ → W+l−i l
+
j

In this section, we derive the basic steps for calculating the LFV H+ →

W+l−i l
+
j and LFC H+ → W+l−i l

+
i (li = τ, lj = µ) decays in the general 2HDM.

To this aim, let us first present part of the Lagrangian responsible for this LFV

decay. From Eq. (3.11), the flavor changing part of the Yukawa Lagrangian in

the leptonic sector is seen to be

LY,FC = ξEij liLΦ2EjR + h.c., (4.2)
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where i, j are family indices of leptons, L and R denote chiral projections L =

1/2(1 − γ5) and R = 1/2(1 + γ5) respectively.

Fist of all, we consider LFV decay H+ →W+l−i l
+
j which exists with the chain

processes H+ → W+(h0∗, A0∗) → W+l−i l
+
j , given in figure Fig. (4.1), where

h0, A0 are CP even and odd neutral Higgs bosons beyond the SM and li, lj are

different leptons flavors, e, µ, τ . This process is driven by the FC interaction in

the leptonic sector and the strength of this interaction is carried by the Yukawa

couplings ξEij
1, which are the free parameters of the general 2HDM. The Yukawa

couplings can have complex entries in general and be restricted by using experi-

mental measurements.

H HW W
+

+ + +

h A
0 0

l l
j j

l l
i i

− + − +

a b) ( )(

Figure 4.1: Tree level diagrams contribute to Γ(H+ →W+ l−i l
+
j ), i = e, µ, τ decay

in the general 2HDM.

Now, we would like to calculate amplitude M of LFV H+ →W+ l−i l
+
j decay.

It is evident that we have only four types of interaction vertices and the propaga-

tors for massive scalar particles which we present in Appendix C. The amplitude

1 In the following we replace ξE with ξE
N where ”N” denotes the word ”neutral”.
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of this decay is defined as

M = Mh0 +MA0 , (4.3)

where Mh0 and MA0 are the contributions of h0 and A0 bosons to the amplitude

(see Fig. (4.1) (a) and (b)). At this stage we present the details of calculations

of these amplitudes. The amplitude, Mh0 reads, (see Fig. (4.2)):

H+ W+

l−i l+j

k h0

p− kp

q −q
′

Figure 4.2: Tree level diagrams for h0 .

Mh0 = W+[− ig
2

(p+ k)µ]H
− i

k2 −m2
h0 + imh0Γh0

li
−
[− i

2
√

2
[(ξEN,ji + ξ∗EN,ij) + (ξEN,ji − ξ∗EN,ij)γ5]]l

−
j , (4.4)

and, M †
h0

becomes:

M †
h0 = H+[

ig

2
(p+ k)ν ]W

− −i
k2 −m2

h0 − imh0Γh0

lj
−
[
i

2
√

2
[(ξEN,ji + ξ∗EN,ij) + (ξEN,ji − ξ∗EN,ij)γ5]]l

−
i . (4.5)
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H+ W+

l−i l+j

k A0

q −q
′

p− kp

Figure 4.3: Tree level diagrams for A0 .

The amplitude MA0 can be written similar to the Mh0 (see Fig. (4.3)) and it

reads :

MA0 = W+[−g
2
(p+ k)µ]H− i

k2 −m2
A0 + imA0ΓA0

li
−
[

1

2
√

2
[(ξEN,ji − ξ∗EN,ij) + (ξEN,ji + ξ∗EN,ij)γ5]]l

−
j , (4.6)

and

M †
A0 = H+[−g

2
(p+ k)ν]W− −i

k2 −m2
A0 − imA0ΓA0

lj
−
[− 1

2
√

2
[(ξEN,ji − ξ∗EN,ij) + (ξEN,ji + ξ∗EN,ij)γ5]]l

−
i . (4.7)

As a result, the square of the total amplitude is defined as

|M |2 = |Mh0 |2 + |MA0 |2 + 2Re[M †
A0 Mh0 ], (4.8)
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where

M †
h0 Mh0 =

g2

4
(p+ k)µ(p+ k)ν[−gµν +

(p− k)µ(p− k)ν
m2
W+

]|ph0|2

Tr[(A+Bγ5)(6q ′ +mlj )(A+Bγ5)(6q +mli)],

M †
A0 MA0 =

g2

4
(p+ k)µ(p+ k)ν[−gµν +

(p− k)µ(p− k)ν
m2
W+

]|pA0|2

Tr[(A′ +B′γ5)(6q ′ +mlj )(A
′ +B′γ5)(6q +mli)],

M †
A0 Mh0 =

ig2

4
(p+ k)µ(p+ k)ν[−gµν +

(p− k)µ(p− k)ν
m2
W+

]ph0p∗A0

Tr[(A+Bγ5)(6q ′ +mlj )(−A′ − B′γ5)(6q +mli)], (4.9)

and the factors A, B, A′, B′ are

A = − i

2
√

2
(ξEN,ji + ξ∗EN,ij) ,

A′ =
1

2
√

2
(ξEN,ji − ξ∗EN,ij) ,

B = − i

2
√

2
(ξEN,ji − ξ∗EN,ij) ,

B′ =
1

2
√

2
(ξEN,ji + ξ∗EN,ij). (4.10)

Here ph0 and pA0 are defined as

ph0 =
i

k2 −m2
h0 + imh0 Γh0

; pA0 =
i

k2 −m2
A0 + imA0 ΓA0

. (4.11)

In Eq. (4.9), the parameters p, q, q′ and k are the four momentum vectors of the

charged Higgs boson H+, incoming lepton li, outgoing lepton lj and the transfer

four momentum respectively. The decay widths Γh0 and ΓA0 are the total decay

widths of the h0 and A0 respectively. For the matrix element square of the process

36



H+ →W+l−i l
+
j , we eventually get [69]

|M |2 =
g2

2
h {
((

(mlj +mli)
2 − k2

)
|A|2 +

(
(mlj −mli)

2 − k2
)
|B|2

)
|ph0|2

+

((
(mlj +mli)

2 − k2
)
|A′|2 +

(
(mlj −mli)

2 − k2
)
|B′|2

)
|pA0|2

− 4mlj mliIm[(AA′∗ −BB′∗) ph0 p∗A0 ]

− 2(m2
lj

+m2
li
− k2) Im[(AA′∗ +BB′∗) ph0 p∗A0 ]} , (4.12)

where

h =
k4 + (m2

H± −m2
W )2 − 2 k2(m2

H± +m2
W )

m2
W

. (4.13)

Finally, the decay width Γ(H+ → W+l−i l
+
j ) is obtained in the H± boson rest

frame by using the well known expression

dΓ =
(2 π)4

2mH±

|M |2 δ4(p−
3∑

i=1

pi)
3∏

i=1

d3pi
(2π)32Ei

, (4.14)

where p (pi, i=1,2,3) is four momentum vector ofH+ boson, (W+ boson, incoming

lj, outgoing li leptons).

4.2 Numerical Analysis and Discussion

This section is devoted to the analysis of the charged Higgs decays H+ →

W+ (τ−µ++τ+µ−) andH+ → W+ τ−τ+. The Yukawa couplings 2 ξ
E

N,τµ and ξ
E

N,ττ

play the main role in the leptonic part of the LFV H+ → W+ (τ−µ+ +τ+µ−) and

2 The Yukawa couplings are complex in general and we use the parametrization ξE
N,ij =√

4GF
√

2
ξ̄E
N,ij where GF = 1.6637× 10−5(GeV −2) is the fermi constant.
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LFC H+ →W+ (l−τ l
+
τ ) process respectively. These couplings are free parameters

of the model used and they should be restricted by respecting the appropriate

present and forthcoming experimental measurements. The upper limit of the

coupling ξ
E

N,τµ has been predicted as < 30± 5 GeV, by using experimental result

of anomalous magnetic moment of muon in [95]. However, the strength of the

coupling ξ
E

N,ττ is an open problem and waiting for new experimental results in

the leptonic sector. Furthermore, the total decay widths of Γh0 and ΓA0 are

unknown parameters and we expect that they are at the same order of magnitude

of ΓH0 ∼ (0.1 − 1.0)GeV , where H0 is the SM Higgs boson. Now we start to

analyze the three-body decay H+ →W+ (τ−µ+ + τ+µ−).

In Fig.(4.4), we present ξ̄EN,τµ dependence of the decay width Γ for the decay

H+ → W+ (τ−µ+ + τ+µ−), for the real coupling ξ̄EN,τµ, ΓA0 = Γh0 = 0.1GeV ,

mh0 = 85GeV and mA0 = 90GeV . Here solid, dashed and small dashed lines

represent the cases for the Higgs mass mH± = 200, 300 and 400GeV respectively.

It can be easily seen from the Fig.(4.4) that the Γ is strongly sensitive to the

coupling ξ̄EN,τµ, since it is proportional to its square . Moreover, this figure shows

that the Γ enhances with the increasing values of the charged Higgs mass, as ex-

pected. The Γ is at the order of magnitude of 10−11GeV for mH± = 200GeV and

it enhances to the values 10−5GeV for mH± = 400GeV , for even the intermediate

values of ξ̄EN,τµ.

Fig. (4.5) represents the mH± dependence of the Γ for the fixed values of
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Figure 4.4: ξ̄EN,τµ dependence of the decay width Γ(H+ →W+ (τ−µ++τ+µ−)), for
the real coupling ξ̄EN,τµ, ΓA0 = Γh0 = 0.1GeV mh0 = 85GeV and mA0 = 90GeV .
Here solid (dashed, small dashed) line represents the case for the mass value
mH± = 200 (300, 400)GeV .

ξ̄EN,τµ = 1GeV , ΓA0 = Γh0 = 0.1GeV , mh0 = 85GeV and mA0 = 90GeV . It is

observed that the Γ reaches large values at the order of magnitude of 10−5 even

for the small coupling ξ̄EN,τµ = 1GeV . This is interesting in the determination of

the upper limit for the charged Higgs mass mH± and also the coupling ξ̄EN,τµ.

Fig. (4.6) denotes the total decay width Γh0 dependence of the decay width

Γ for ΓA0 = Γh0 , ξ̄EN,τµ = 1GeV , mH± = 400GeV , mh0 = 85GeV and mA0 =

90GeV . It is evident from the Fig. (4.6) that Γ is sensitive to Γh0 and its value

decreases with increasing value of the Γh0 .
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Figure 4.5: The mH± dependence of the decay width Γ(H+ → W+ (τ−µ+ +
τ+µ−)) for the fixed values of ξ̄EN,τµ = 1GeV , ΓA0 = Γh0 = 0.1GeV , mh0 =
85GeV and mA0 = 90GeV .

Now, we make the same analysis for the LFC process H+ → W+ τ−τ+. In

Fig. (4.7) we present the ξ̄EN,ττ dependence of the decay width Γ, for the real

coupling, ΓA0 = Γh0 = 0.1GeV , mh0 = 85GeV and mA0 = 90GeV . Here solid,

dashed and small dashed lines represent the cases for the mass value mH± = 200,

300 and 400GeV , respectively. It is seen from the Fig. (4.7) that the Γ is

strongly sensitive to the coupling ξ̄EN,ττ and it enhances with the increasing values

of the charged Higgs mass. The Γ is placed in the interval 10−9 − 10−4 (GeV ) for

200(GeV ) ≤ mH± ≤ 400(GeV ), at the intermediate values of the coupling ξ̄EN,ττ .
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Figure 4.6: Γh0 dependence of the decay width Γ(H+ →W+ (τ−µ+ + τ+µ−)) for
ΓA0 = Γh0, ξ̄EN,τµ = 1GeV , mH± = 400GeV , mh0 = 85GeV and mA0 = 90GeV .

Fig. (4.8) denotes the mH± dependence of the Γ for ξ̄EN,ττ = 10GeV , ΓA0 =

Γh0 = 0.1GeV , mh0 = 85GeV and mA0 = 90GeV . From the figure it is observed

that the Γ reaches large values of the order of magnitude of 10−4, even for the

small coupling ξ̄EN,ττ = 10GeV . The determination of the upper limit for the

coupling ξ̄EN,ττ would be possible with the measurement of the process under

consideration.

Fig. (4.9) represent Γh0 dependence of the decay width Γ for ΓA0 = Γh0, for

ξ̄EN,ττ = 10GeV , mH± = 400GeV , mh0 = 85GeV and mA0 = 90GeV . It is

observed that the Γ is sensitive to Γh0 and decreases with its increasing value,

similar to the LFV process H+ →W+ τ−µ+.
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Figure 4.7: ξ̄EN,ττ dependence of the decay width Γ(H+ → W+ τ−τ+), for the
real coupling ξ̄EN,ττ , ΓA0 = Γh0 = 0.1GeV mh0 = 85GeV and mA0 = 90GeV .
Here solid (dashed, small dashed) line represents the case for the mass value
mH± = 200 (300, 400)GeV .

Finally, we consider the coupling ξ̄EN,ij as a complex matrix

ξ̄EN,ij = |ξ̄EN,ij| eiθij , (4.15)

and study the sin θij dependence of the decay width. We observe that the decay

width is not sensitive to the complexity of the coupling ξ̄EN,ij.
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Figure 4.8: The mH± dependence of the decay width Γ(H+ → W+ τ−τ+) for
the fixed values of ξ̄EN,ττ = 10GeV , ΓA0 = Γh0 = 0.1GeV , mh0 = 85GeV and
mA0 = 90GeV .
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Figure 4.9: Γh0 dependence of the decay width Γ(H+ → W+ τ−τ+) for ΓA0 = Γh0,
ξ̄EN,ττ = 10GeV , mH± = 400GeV , mh0 = 85GeV and mA0 = 90GeV .
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CHAPTER 5

τ → µνiνi DECAY IN THE GENERAL TWO HIGGS DOUBLET

MODEL

In the leptonic sector of the SM, the charged FC interactions with the massless

neutrinos are forbidden due to the absence of a CKM type matrix. However, if

neutrinos νi are massive particles and the lepton numbers Li, which denote the

leptons of ith family, are not conserved, the lepton sector is an exact analogue of

the quark sector and there exists a similar CKM type matrix, Maki-Nakagawa-

Sakata (MNS) matrix Vlν [96], and its elements are measured in neutrino oscilla-

tion experiments. It has been shown that the mixing between the muon neutrino

and the heaviest mass eigenstate of the neutrino sector, the Vµ 3 element, is nearly

maximal [97, 98]. The experiments on solar neutrinoes [97], [99] (the reactor ex-

periments such as CHOOZ [100]) predicted the mixing between electron neutrino

and the second heaviest mass eigenstate of the neutrino sector, the Ve 2 element

the heaviest mass eigenstate of the neutrino sector, the Ve 3 element). Notice that

the corner element Ve 3 is much smaller than the others. On the other hand some
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off-diagonal elements of MNS matrix, such as Vµ 3 are large and the MNS matrix

is far from diagonal in contrast to the CKM matrix (see for example [101] for more

discussion on lepton mixing). With the inclusion of MNS matrix to the SM, so

called extended SM, the existence of the LFV processes, τ → µ transition would

be possible. However, we expect that the tiny masses of the internal neutrinos

bring small contribution even with the choice of maximal mixing in the leptonic

sector. (See for example [102], for the discussion of the existence of the MNS ma-

trix and its effects on a special LFV process). So, LFV interactions give strong

signal about the new physics beyond and there are many models which appear in

the literature as an extension of the SM to describe the LFV interaction. Such

interactions are studied in a model independent way in [57], in the framework

of the 2HDM [103], in supersymmetric models [15, 16, 17, 104, 105, 106, 107].

There are on-going and planned experiments for µ → eγ (τ → µγ) and the cur-

rent limits for their branching ratios (BR) are 1.2× 10−11 [49] (1.1× 10−6 [108]).

The numerical estimates predict that the BR of the proceses τ → eēe, τ → eµ̄µ

are at the order of the magnitude of 10−6 [109], which is a measurable value in

the LEP experiments and τ factories.

In this chapter, we analyze the BR of the LFV τ → µν̄iνi, i = e, µ, τ decay in

the general 2HDM and study their dependencies on free parameters of the model

used. This process exists with the help of internal scalar bosons h0 and A0 in

order to obtain the flavor changing transition τ → µ and the internal Z boson
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in order to get the output ν̄ν. There have been some experimental studies on

this process in the literature [110]. The BR’s of the LFV decay τ → µν̄iνi can be

used for the prediction of the upper limit of the Yukawa couplings. These are all

discussed in numerical analysis and discussion section.

5.1 The Calculation of the τ → µνiνi

In this section, we outline the basic steps of the calculation the amplitude

M and the BR for the one-loop LFV τ → µνiνi decay in the framework of the

general 2HDM (see Eq. (4.2) for the definition of the FC part of the Yukawa

Lagrangian in the leptonic sector).

The general effective vertex for the interaction of off-shell Z-boson with a

fermionic current is obtained as

Γ(REN)
µ (τ → µZ∗) = f1 γµ + f2 γµγ5 + f3 σµνk

ν + f4 σµνγ5k
ν , (5.1)

where k is the momentum transfer, k2 = (p− p′)2, p (p′) are the four momentum

vectors of incoming (outgoing) lepton (see Fig. (5.2 - 5.3 - 5.4) ).

The LFV τ → µν̄iνi decay exists with the FC transition τ → µ, which is

carried by the internal scalar bosons h0 and A0. On the other hand, the internal

Z boson is responsible for the output ν̄ν (see Fig. (5.1)).
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Figure 5.1: One loop diagrams contribute to τ → µ ν̄i νi, i = e, µ, τ decay due to
the neutral Higgs bosons h0 and A0 in the general 2HDM. Solid lines represent
leptons and neutrinos, curly (dashed) lines represent the virtual Z boson (h0 and
A0 fields).
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There are two types of diagrams in the Fig. (5.1), the self energy diagrams

(Fig. (5.1) (a) (b)) and the vertex diagrams (Fig. (5.1) (c), (d), (e)). At this

point, we present the details of the calculations for the self-energy and vertex

diagrams. Notice that, the vertices and propagators used in the calculations are

given in Appendix C.

Now, we consider the contribution of self-energy diagram to the effective vertex

(see Fig. (5.2)):

p

l2l2l2

p− k p
′

− q p
′

l1
i

qZ0

h0, A0

k

Figure 5.2: The self energy diagram for l2 → l1 transition.

Γµa,h0 =
4GF√

2

∫
d4q

(2π)4

−i
2
√

2
[(ξ

E

N,l1i
+ ξ

E∗
N,il1

) + (ξ
E

N,l1i
− ξ

E∗
N,il1

)γ5]
i

6p ′− 6q −mi

−i
2
√

2
[(ξ

E

N,l2i
+ ξ

E∗
N,il2

) + (ξ
E

N,l2i
− ξ

E∗
N,il2

)γ5]
i

q2 −m2
h0

i

6p− 6k −ml2

( −i g
cos θw

)
γµ(cLL+ cRR) ,

Γµa,A0 =
4GF√

2

∫
d4q

(2π)4

1

2
√

2
[(ξ

E

N,l1i
− ξ

E∗
N,il1

) + (ξ
E

N,l1i
+ ξ

E∗
N,il1

)γ5]
i

6p ′− 6q −mi

−1

2
√

2
[(ξ

E

N,l2i
− ξ

E∗
N,il2

) + (ξ
E

N,l2i
+ ξ

E∗
N,il2

)γ5]
i

q2 −m2
A0

i

6p− 6k −ml2

( −i g
cos θw

)
γµ(cLL+ cRR) , (5.2)

On the other hand, vertex diagrams have two different types, Fig. (5.1) (c), (d),

and Fig. (5.1) (e). Now, first, we present the details of the calculation for the
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effective vertex due to (c) part of Fig. (5.1) and it reads

l2
q − k

A0

i
p− qp p

′

l1

q
h0

Z0

k

Figure 5.3: The one loop of the vertex diagram for (c) in the Fig. (5.1).

Γµc =
4GF√

2

∫ d4q

(2π)4

1

2
√

2
[(ξ

E

N,l1i − ξ
E∗
N,il1) + (ξ

E

N,l1i + ξ
E∗
N,il1)γ5]

i

6p− 6q −mi

−i
2
√

2
[(ξ

E

N,l2i
+ ξ

E∗
N,il2

) + (ξ
E

N,l2i
− ξ

E∗
N,il2

)γ5]
i

q2 −m2
h0

g

2 cos θw
(2q − k)µ

i

(q − k)2 −m2
A0

. (5.3)

Furthermore, the effective vertex due to (e) part of Fig. (5.1) is calculated as

l2 i i l1

Z0

p p− q p
′

− q

h0, A0

p
′

q

k

Figure 5.4: The one loop of the vertex diagram for (e) in the Fig. (5.1).
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Γµe,h0 =
4GF√

2

∫
d4q

(2π)4

−i
2
√

2
[(ξ

E

N,l1i + ξ
E∗
N,il1) + (ξ

E

N,l1i − ξ
E∗
N,il1)γ5]

i

6p ′− 6q −mi

ig

cos θw
γµ(cV + cAγ5)

i

6p− 6q −mi

−i
2
√

2
[(ξ

E

N,l2i
+ ξ

E∗
N,il2

) + (ξ
E

N,l2i
− ξ

E∗
N,il2

)γ5]
i

q2 −m2
h0

,

Γµe,A0 =
4GF√

2

∫ d4q

(2π)4

1

2
√

2
[(ξ

E

N,l1i − ξ
E∗
N,il1) + (ξ

E

N,l1i + ξ
E∗
N,il1)γ5]

i

6p ′− 6q −mi

ig

cos θw
γµ(cV + cAγ5)

i

6p− 6q −mi

−1

2
√

2
[(ξ

E

N,l2i
− ξ

E∗
N,il2

) + (ξ
E

N,l2i
+ ξ

E∗
N,il2

)γ5]
i

q2 −m2
A0

. (5.4)

In the calculation of the momentum integrals, we used the Feynman parametriza-

tion in order to put the loop integrals into quadratic forms (see the Appendix D

for details of Feynman parametrization). By using the dimensional regularization

method (see Appendix D), the divergent terms are extracted in each diagrams

and they cancel each other in the sum. Since Γµ is sandwiched between l1(p
′)

and l2(p), we used the following on shell mass conditions,

l1(p
′) 6p ′ = ml1 l1(p

′), 6pl2(p) = m2l2(p), (5.5)

and

6p ′2 = p′
2

= m2
l1 ,

6p2 = p2 = m2
l2
. (5.6)

Taking into account all the masses of internal and external leptons (anti-leptons)

and, following the procedure as stated, the explicit expressions for f1, f2, f3 and
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f4 can be obtained as [70]:

f1 =
g

64 π2 cos θW

∫ 1

0
dx

1

m2
l2
−m2

l1

{
cV (ml2 +ml1)

(
(−mi η

+
i +ml1(−1 + x) ηVi ) ln

Lself1, h0

µ2

+ (mi η
+
i −ml2(−1 + x) ηVi ) ln

Lself2, h0

µ2

+ (mi η
+
i +ml1(−1 + x) ηVi ) ln

Lself1, A0

µ2

− (mi η
+
i +ml2(−1 + x) ηVi ) ln

Lself2, A0

µ2

)

+ cA (ml2 −ml1)

(
(−mi η

−
i +ml1(−1 + x) ηAi ) ln

Lself1, h0

µ2

+ (mi η
−
i +ml2(−1 + x) ηAi ) ln

Lself2, h0

µ2

+ (mi η
−
i +ml1(−1 + x) ηAi ) ln

Lself1, A0

µ2

+ (−mi η
−
i +ml2(−1 + x) ηAi ) ln

Lself2, A0

µ2

)}

− g

64 π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{
m2
i (cA η

A
i − cV η

V
i ) (

1

LverA0

+
1

Lverh0

)

− (1 − x− y)mi

(
cA (ml2 −ml1) η

−
i (

1

Lverh0

− 1

LverA0

)

+ cV (ml2 +ml1) η
+
i (

1

Lverh0

+
1

LverA0

)

)
− (cA η

A
i + cV η

V
i )

(
−2 + (k2 x y +ml1 ml2 (−1 + x + y)2) (

1

Lverh0

+
1

LverA0

) − ln
Lverh0

µ2

LverA0

µ2

)

− (ml2 +ml1) (1 − x− y)

(
ηAi (xml1 + y ml2) +mi η

−
i

2LverA0 h0

+
ηAi (xml1 + y ml2) −mi η

−
i

2Lverh0 A0

)
+

1

2
ηAi ln

LverA0 h0

µ2
ln
Lverh0 A0

µ2

}
,

f2 =
g

64 π2 cos θW

∫ 1

0
dx

1

m2
l2
−m2

l1

{
cV (ml2 −ml1)
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(
(mi η

−
i +ml1(−1 + x) ηAi ) ln

Lself1, A0

µ2

+ (−mi η
−
i +ml2(−1 + x) ηAi ) ln

Lself2, A0

µ2

+ (−mi η
−
i +ml1(−1 + x) ηAi ) ln

Lself1, h0

µ2

+ (mi η
−
i +ml2(−1 + x) ηAi ) ln

Lself2, h0

µ2

)

+ cA (ml2 +ml1)

(
(mi η

+
i +ml1(−1 + x) ηVi ) ln

Lself1, A0

µ2

− (mi η
+
i +ml2(−1 + x) ηVi ) ln

Lself2, A0

µ2

+ (−mi η
+
i +ml1(−1 + x) ηVi ) ln

Lself1, h0

µ2

+ (mi η
+
i −ml2(−1 + x) ηVi )

ln Lself2, h0

µ2

)}

+
g

64 π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{
m2
i (cV η

A
i − cA η

V
i ) (

1

LverA0

+
1

Lverh0

)

− mi (1 − x− y)

(
cV (ml2 −ml1) η

−
i + cA (ml2 +ml1) η

+
i

)
(

1

Lverh0

− 1

LverA0

)

+ (cV η
A
i + cA η

V
i )

(
− 2 + (k2 x y −ml1 ml2 (−1 + x + y)2)(

1

Lverh0

+
1

LverA0

)

− ln
Lverh0

µ2

LverA0

µ2

)
− (ml2 −ml1) (1 − x− y)

(
ηVi (xml1 − y ml2) +mi η

+
i

2LverA0 h0

+
ηVi (xml1 − y ml2) −mi η

+
i

2Lverh0 A0

)
− 1

2
ηVi ln

LverA0 h0

µ2
ln
Lverh0 A0

µ2

}
,

f3 = −i g

64 π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{(
(1 − x− y) (cV η

V
i + cA η

A
i )

( xml1 + y ml2) + mi (cA (x− y) η−i + cV η
+
i (x+ y))

)
1

Lverh0

+

(
(1 − x− y) (cV η

V
i + cA η

A
i ) (xml1 + y ml2)

− mi (cA (x− y) η−i + cV η
+
i (x+ y))

)
1

LverA0
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− (1 − x− y)

(
ηAi (xml1 + yml2)

2

( 1

LverA0 h0

+
1

Lverh0 A0

)

+
mi η

−
i

2

( 1

Lverh0 A0

− 1

LverA0 h0

))}
,

f4 = −i g

64 π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{(
(1 − x− y)

(
− (cV η

A
i + cA η

V
i )

( xml1 − yml2)
)
−mi (cA (x− y) η+

i + cV η
−
i (x + y))

)
1

Lverh0

+

(
(1 − x− y)

(
− (cV η

A
i + cA η

V
i ) (xml1 − y ml2)

)

+ mi (cA (x− y) η+
i + cV η

−
i (x+ y))

)
1

LverA0

+ (1 − x− y)

(
ηVi
2

(ml1 x−ml2 y)
( 1

LverA0 h0

+
1

Lverh0 A0

)

+
mi η

+
i

2

( 1

LverA0 h0

− 1

Lverh0 A0

))}
, (5.7)

where

Lself1 {2}, h0 (A0) = m2
h0 (A0) (1 − x) + (m2

i −m2
l1 {2}

(1 − x)) x ,

Lverh0 (A0) = m2
h0 (A0) (1 − x− y) +m2

i (x+ y) − k2 x y ,

Lverh0 A0 (A0 h0) = m2
A0 (h0) x+m2

i (1 − x− y) + (m2
h0 (A0) − k2 x) y , (5.8)

and

ηVi =
4GF√

2

(
ξ
E

N,l1i
ξ
E ∗
N,il2

+ ξ
E ∗
N,il1

ξ
E

N,l2i

)
,

ηAi =
4GF√

2

(
ξ
E

N,l1i
ξ
E ∗
N,il2

− ξ
E ∗
N,il1

ξ
E

N,l2i

)
,

η+
i =

4GF√
2

(
ξ
E ∗
N,il1ξ

E ∗
N,il2 + ξ

E

N,l1iξ
E

N,l2i

)
,

η−i =
4GF√

2

(
ξ
E ∗
N,il1

ξ
E ∗
N,il2

− ξ
E

N,l1i
ξ
E

N,l2i

)
. (5.9)
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The parameters cV and cA are cA = −1
4

and cV = 1
4
− sin2 θW . In Eq. (5.9) the

flavor changing couplings ξ
E

N,lj i
represent the effective interaction between the

internal lepton i, (i = e, µ, τ) and outgoing (incoming) j = 1 (j = 2) one. The

parameter µ in Eq. (5.7) is the renormalization scale, the functions f1, f2, f3,

f4 are finite and independent of µ. During the calculation, we take only the τ

lepton in the internal line and we neglect all the Yukawa couplings except ξ
E

N,ττ

and ξ
E

N,τµ in the loop calculation. Details of this choice is discussed in discussion

section.

After calculating the f1, f2, f3 and f4, the matrix element M for the process

τ → µ ν̄i νi, i = e, µ, τ is calculated in the general 2HDM, by connecting the

τ → µ transition and the ν̄iνi output with the help of the internal Z boson.

p1

νi νi

− p2

Z0

l2 l1

p
′p

k

Figure 5.5: The diagram for τ → µ ν̄i νi decay.

The box in the Fig. (5.5) includes all the possible diagrams in Fig. (5.1). l1

and l2 are µ and τ lepton respectively. The Matrix element and its hermition
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conjugate are obtained as

M = [l1(f1 γµ + f2 γµγ5 + f3 σµνk
ν + f4 σµνγ5k

ν)l2]
−igµλ

k2 −m2
Z0

[ νi
−ig

4 cos θw
γλ(1 − γ5)νi],

M † = [l2(f
†
1 γµ′ + f †

2 γµ′γ5 + f †
3 σµ′ν′k

ν′ − f †
4 σµ′ν′γ5k

ν′)l1]
igµ′λ′

k2 −m2
Z0

[ νi
ig

4 cos θw
γλ′(1 − γ5)νi]. (5.10)

After a little algebra, absolute square of the amplitude becomes

|M |2 =
g2

cos2 θw

1

(k2 −m2
Z0)2

[−k4(|f1|2 + |f2|2 + |f3|2(m2
l1 + 4E1ml2 + 2ml1ml2

− m2
l2
) + |f4|2(m2

l1
+ 4E1ml2 − 2ml1ml2 −m2

l2
) − 2Im|f †

1f3|(ml1 +ml2)

+ 2Im|f †
2f3|(ml1 +ml2) + 2Im|f †

1f4|(ml1 −ml2) + 2Im|f †
2f4|(−ml1 +ml2)

− 2Re|f †
1f2| − 2Re|f †

3f4|(m2
l1 −m2

l2))

− k2(|f1|2(−m2
l1

+m2
l2
− 4E1ml2 + 2ml1ml2) + |f2|2(−m2

l1
+m2

l2

− 4E1ml2 − 2ml1ml2) + (|f3|2 + |f4|2)(−m4
l1
−m4

l2
− 4E1m

2
l1
ml2

− 8E2
1m

2
l2 + 2m2

l1m
2
l2 + 4E1m

3
l2) + 2Im|f †

1f3|(m3
l1 −m2

l1ml2

− ml1m
2
l2

+m3
l2
) + 2Im|f †

2f3|(−m3
l1
− 4E1ml2(ml1 +ml2)

− ml1ml2(ml1 −ml2) +m3
l2
) + 2Im|f †

1f4|(−m3
l1
− 4E1ml2(ml1 −ml2)

+ ml1ml2(ml1 +ml2) −m3
l2) + 2Im|f †

2f4|(m3
l1 −m3

l2 +m2
l1ml2 −ml1m

2
l2)

+ 2Re|f †
1f2|(m2

l1
−m2

l2
+ 4E1ml2) + 2Re|f †

3f4|(m4
l1

+m4
l1
− 2m2

l1
m2
l2

+ 4E1ml2(m
2
l1
−m2

l2
)))

− 4E1ml2(m
2
l1 +ml2(2E1 −ml2))(|f1|2 + |f2|2)] , (5.11)
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where ml1 and ml2 are masses of the µ and τ leptons, respectively and E1 is the

energy of the outgoing neutrino.

Finally, the decay width Γ is obtained in the τ lepton rest frame using the

well known expression Eq. (4.14) and we get

dΓ =
|M |2

128π3mτ

dE1dE3 (5.12)

where E1 and E3 are the muon and outgoing neutrino energies, respectively.

5.2 Numerical Analysis and Discussion

In the 2HDM the τ → µZ∗ transition can be switched on with the internal

neutral Higgs bosons h0 and A0, and internal leptons e, µ, τ . This brings un-

known free parameters ξ
E

N,µj and ξ
E

N,τj , i, j = e, µ, τ and since these couplings

are free parameters of the theory, they should be restricted by using the present

and forthcoming experimental limits of physical quantities, such as BR of var-

ious leptonic decays and electric dipole moments (EDM), anomalous magnetic

moments (AMM) of leptons. In general, these Yukawa couplings are complex

and they ensure non-zero lepton EDM. By assuming that only the internal τ

lepton contribution is large, the Yukawa couplings which do not contain τ index

can be neglected. Such a choice respects the statement that the strength of the

couplings are related with the masses of leptons denoted by the indices of them,

similar to the Cheng-Sher scenario [111]. Furthermore, we take ξ
E

N,ij symmetric
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with respect to the indices i and j. Finally, we are left with the couplings ξ
E

N,ττ

and ξ
E

N,τµ, which are complex in general.

The measurements of the BRs of τ → µ ν̄i νi, i = e, µ, τ decays [110] are

based on counting the number of candidate jets and correcting for efficiency and

event selection. In addition to this, the backgrounds coming from tau decaying

to hadrons or cosmic rays should be detected. In the process, we study the

output containing ν̄i νi, i = e, µ, τ and the extraction of this output from the

most probable one ν̄µ ντ (BR ∼ 17.37 ± 0.09% [112]), which exist in the SM

theoretically, is difficult from experimental point of view.

In the present work, we studied the BR of the process τ → µ ν̄i νi, i = e, µ, τ

and we used the numerical value ξ
E

N,τµ in the interval 5GeV < |ξ̄EN,τµ| < 25GeV .

Here, the upper limit for the coupling |ξ̄EN,τµ| has been estimated in [95] as ∼

30GeV . In this work, it is assumed that the new physics effects are of the order

of the experimental uncertainty of muon AMM, namely 10−9 by respecting the

new experimental world average announced at BNL [113]

aµ = 11 659 203 (8)× 10−10 , (5.13)

which has about half of the uncertainty of previous measurements. Here we have

not used any restriction for the coupling ξ̄EN,ττ except that we choose its numerical

value larger compared to ξ̄EN,τµ. In addition to this, we expect the upper limit

of ξ̄EN,ττ by taking the upper limit of ξ̄EN,τµ and the BR of the process as 10−6.
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Table 5.1: The numerical values of the physical parameters used in the numerical
calculations.

mτ 1.78 (GeV)
mZ 91 (GeV)
mW 80 (GeV)

sw
√

0.23
GF 1.16637 × 10−5(GeV −2)
ΓZ 2.49 (GeV)
Γτ 2.27 × 10−12 (GeV )

Throughout our calculations we used the input values given in Table (5.1)
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Figure 5.6: ξ̄EN,ττ dependence of the BR for real couplings and mh0 = 85GeV ,
mA0 = 90GeV . Here solid (dashed, small dashed, dotted, dash-dotted) line
represents the case for ξ̄EN,τµ = 5GeV (10, 15, 20, 25) GeV.

The Fig. 5.6 represents ξ̄EN,ττ dependence of the BR for real couplings. Here

solid, dashed, small dashed, dotted, dash-dotted lines represent the cases for

ξ̄EN,τµ = 5, 10, 15, 20, 25 GeV , respectively. From this figure, we say that the BR

enhances with the increasing values of both couplings and it reaches to values at

order of magnitude of 10−4.
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Fig. 5.7 shows the possible values of ξ̄EN,ττ and the ratio
ξ̄E
N,τµ

ξ̄E
N,ττ

for the fixed

values of the BR, BR = 10−4 (solid line) and BR = 10−6 (dashed line). For

ξ̄E
N,τµ

ξ̄E
N,ττ

= 0.1, the BR = 10−4 is obtained if the coupling is ξ̄EN,ττ ∼ 150GeV and

the BR = 10−6 is obtained if the coupling is ξ̄EN,ττ ∼ 50GeV . The possible

experimental search of the process τ → µ ν̄i νi, i = e, µ, τ would ensure a strong

clue in the prediction of the upper limit of the coupling ξ̄EN,ττ .
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Figure 5.7:
ξ̄E
N,τµ

ξ̄E
N,ττ

for mh0 = 85GeV , mA0 = 90GeV and the fixed values of the

BR, BR = 10−4 (solid line) and BR = 10−6 (dashed line).

In Fig. 5.8, we present the mh0 dependence of the BR for the fixed values of

ξ̄EN,τµ and ξ̄EN,ττ , ξ̄
E
N,τµ = 10GeV , ξ̄EN,ττ = 100GeV . In this figure, we say that the

BR is sensitive to mh0 and it decreases with the increasing values of mh0 .

In Fig. 5.9, we take the coupling ξ̄EN,ττ complex ξ̄EN,ττ = |ξ̄EN,ττ | eiθττ . This

figure represents the sin θττ dependence of the BR for ξ̄EN,ττ = 100GeV for four

different values of ξ̄EN,τµ, namely ξ̄EN,τµ = 5, 10, 15, 20GeV (solid, dashed, small
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Figure 5.8: mh0 dependence of the BR for the fixed values of ξ̄EN,τµ = 10GeV ,
ξ̄EN,ττ = 100GeV and mA0 = 90GeV .

dashed, dotted lines) . From this figure it can be shown that the BR is not

sensitive to the complexity of the coupling ξ̄EN,ττ .
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Figure 5.9: The sin θττ dependence of the BR for mh0 = 85GeV , mA0 = 90GeV ,
ξ̄EN,ττ = 100GeV and three different values of ξ̄EN,τµ, ξ̄

E
N,τµ = 5, 10, 15, 20GeV

(dashed, small dashed, dotted lines).
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CHAPTER 6

CONCLUSIONS

Although, the SM has passed many experimental tests and has been confirmed

even in precision measurements, many physicists believe that it does not represent

the final theory. Currently, there are many questions still open in the SM. For

instance, within the concepts of the SM, there are no complete understanding

about the hierarchy of charged fermion mass spectra and the smallness of neutrino

masses, also little is known on the origin of flavor mixing and CP violation.

Recently experiments on neutrino physics has suggested that neutrinos should

be massive and lepton mixing should be exist. But the theoretical values of

the BRs of LFV interactions calculated in the framework of the SM within the

massive neutrino are extremely small. So, new physics beyond the SM becomes

inevitable for investigation of fermion masses and flavor mixing problems. The

LFV interactions and their BRs are being still investigated at many experiments

such as MEG experiment [48], MEGA experiment [49], in the Belle detector

at the KEKB [51] and BABAR detector at the PEP-II [52, 53]. Furthermore,
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there are numerous new experiments, planned for the next decade, to investigate

electroweak physics and Higgs potential, at LHC and ILC [114]. For instance, at

LHC, which will be operational by 2007, a proton-proton collision experiment is

already scheduled. Because of the high collision energy that will be available at

LHC, it will be possible to have large mass reach for direct discoveries. Also, the

ILC, which will bring the electron to collision with positron, will start to take

data in the middle of the next decade. Striking features of the ILC are its clean

experimental environment, polarized beams, and known collision energy, enabling

precision measurement and therefore detailed studies of directly accesible new

particles as well as a high sensitivity to indirect effects of new physic. Therefore,

the experimental works stimulate the theoretical studies on various decays and

the LFV decays beyond the SM are among the important candidates. The LFV

interactions are rich from the theoretical point of view since they exist at the loop

level and the measurable quantities of these decays carry considerable information

about the free parameters of the model used.

Within the general 2HDM, we have analyzed the FCNC processes in the lep-

tonic sector. In the 2HDM, five types of Higgs particles exist, two CP-even boson

h0 and H0, one CP-odd A0, and two charged particles H±. Experimental dis-

coveries of these particles would become a clear signature for the presence of a

non-minimal Higgs sector and the physics beyond the SM.

In the present work, we have investigated LFV interactions H+ → W+l−i l
+
j
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and τ → µνiν decays within the general 2HDM. Under the assumption that CKM

type matrix in the leptonic sector does not exist, LFV interactions arise with the

help of the neutral Higgs bosons h0 and A0, in the general 2HDM. In this model,

there are many free parameters, namely, complex Yukawa couplings, ξU,Dij where

i,j are flavor indices, masses of charged and neutral Higgs bosons, mH± , mh0 , mA0 .

These free parameters should be restricted using the experimental measurements.

First, we would like to summarize our results for the H+ → W+l−i l
+
j processes:

• The decay widths of the Γ(H+ → W+ (τ−µ+ + τ+µ−)) and Γ(H+ →

W+ τ−τ+ are in the interval (10−11 − 10−5))GeV and (10−9 − 10−4)GeV ,

respectively, for 200(GeV ) ≤ mH± ≤ 400(GeV ), and for the intermediate

values of the couplings ξ̄EN,τµ ∼ 5GeV and ξ̄EN,ττ ∼ 30GeV . With the possi-

ble experimental measurement of the processes under consideration, strong

clues would be obtained in the prediction of the upper limit of the coupling

ξ̄EN,τµ (ξ̄EN,ττ ). This result is also informative in the determination of the

charged Higgs mass, mH±.

• We observe that the decay widths Γ(H+ → W+ (τ−µ+ + τ+µ−)) and

Γ(H+ →W+ τ−τ+) are strongly sensitive to the charged Higgs mass, mH± .

• We observe that the decay widths Γ(H+ → W+ (τ−µ+ + τ+µ−)) and

Γ(H+ → W+ (τ−τ+) are not sensitive to the possible complexity of the

Yukawa couplings.
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A possible discovery of charged Higgs bosons would be a solid proof for physics

beyond the SM. The discovery of these particles and measurement of their proper-

ties would also provide useful information about the structure of the more general

theory. Therefore, the experimental and theoretical investigations of these decays

of the charged Higgs boson would ensure strong clues in the determination of the

physics beyond the SM and the existing free parameters.

Next, we have analyzed the LFV τ → µνiνi decay in the framework of the

general 2HDM. In this model, the τ → µZ∗ transition can be switched on with the

internal neutral Higgs bosons h0 and A0, and internal leptons e, µ, τ . This brings

unknown free parameters ξEN,µj and ξEN,τj, i, j = e, µ, τ which can be restricted

using the experimental measurements. Now, we present the summary of our

results:

• We predict the BR at the order of the magnitude of 10−6 − 10−5 for the

range of the couplings, ξ̄EN,ττ ∼ 30 − 100GeV and ξ̄EN,τµ ∼ 10 − 25GeV .

We predict the upper limit of the coupling for the h0(A0)− τ − τ vertex as

∼ 0.3 in the case that the BR is ∼ 10−6.

• We observe that the BR is sensitive to the neutral Higgs masses mh0 and

mA0 , but it is not sensitive to the possible complexity of the Yukawa cou-

plings.

With the possible experimental measurement of the process τ → µ ν̄i νi, i =
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e, µ, τ , a considerable information for the upper limit of the coupling ξ̄EN,ττ would

be obtained. Notice that, in [95], the upper limit of the coupling ξ̄EN,τµ was

predicted by using experimental result of anomalous magnetic moment of muon.

As a result, the future theoretical and experimental investigations of the process

τ → µ ν̄iνi would be informative in the determination of the physics beyond the

SM and the free parameters existing in this model.
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APPENDIX A

GLOBAL AND LOCAL GAUGE INVARIANCE

In the Lagrangian field theory formalism, the equations of motion describing the

time evolution of a free fermions are defined by the fermion Lagrangian (see for

example [115]),

Lfree = Ψ(iγµ∂µ −m)Ψ (A.1)

where Ψ is the fermion spinor. We can see that such Lagrangian is invariant

under global gauge transformation defined as

Ψ → Ψ′ = eiθΨ. (A.2)

where θ is space-time invariant parameter. Nevertheless, such Lagrangian is not

invariant under local gauge transformation defined by

Ψ → Ψ′ = eiqθ(x)Ψ. (A.3)

Since the physical measurable quantities should not change in local gauge trans-

formations, the equation of motion must be unchanged. As the equation of motion
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are derived from the Lagrangian, their invariance can be ensured if we require

that the Lagrangian of the theory must be invariant under local gauge transfor-

mations. We can modify our Lagrangian and make it gauge invariant by replacing

the normal derivative ∂µ by the covariant derivative Dµ ≡ ∂µ + iqAµ where Aµ

is a four vector field that transforms as Aµ → Aµ + ∂µθ(x). So, the Lagrangian

Eq. (A.1) becomes

L = Ψ(iγµDµ −m)Ψ = Ψ(iγµ∂µ −m)Ψ − qAµΨγ
µΨ = Lfree − JµAµ. (A.4)

It is easy to see that this new Lagrangian is invariant under the combined trans-

formations Ψ → eiqθ(x)Ψ and Aµ → Aµ + ∂µθ (x) . If Aµ is defined as the four

vector electromagnetic potential, then Jµ = qΨγµΨ is the four-vector electro-

magnetic current. With the addition of the local gauge invariant kinetic term

that describe the propagation of free photons in the Lagrangian, the Lagrangian

of Quantum Electrodynamics (QED) is obtained as

LQED = Lfree − JµAµ −
1

4
F µνFµν , (A.5)

where the electromagnetic field tensor Fµν reads

Fµν ≡ ∂µAν − ∂νAµ. (A.6)
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APPENDIX B

SPONTANEOUS SYMMETRY BREAKING AND THE HIGGS

MECHANISM

Using the local gauge invariance (see Appendix A for the details) is not enough

to predict particle physics phenomenology since it leads to massless gauge bosons

that do not correspond to physical reality. If the vacuum of a system ( minimum

of the potential) is degenerate, this minimum is not invariant under the sym-

metry of the Lagrangian. When the vacuum does not have the symmetry of the

Lagrangian, we can say that the symmetry has been spontaneously broken. After

this phenomenon, some other massless particles, called Goldstone bosons, appear

in the spectrum. However, if the Lagrangian possesses a local gauge symmetry

an interrelation among gauge and Goldstone bosons endows the former with a

physical mass, while the latter disappear from the spectrum, this phenomenon is

called the Higgs mechanism [116]. To explain the mechanism we shall use a toy

model describing a couple of self interacting complex scalar fields φ and φ∗. The
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local gauge invariant Lagrangian is defined as

L = −1

4
FµνF

µν +
1

2
|Dµφ|2 − V (φ∗φ) , (B.1)

where φ = φ1 + iφ2 is a complex field and

Dµ ≡ ∂µ + iqAµ ; Fµν ≡ ∂µAν − ∂νAµ . (B.2)

This Lagrangian has already the local gauge invariance described by simultaneous

transformations

φ(x) → e−iqθ(x)φ(x) ; Aµ(x) → Aµ(x) + ∂µθ(x) . (B.3)

The potential term of the Lagrangian is defined as

V (φ) ≡ −1

2
µ2 |φ|2 +

1

4
λ2(φ∗φ)2 , (B.4)

where the values of λ2 must be positive to keep the energy of the vacuum bounded

from below, but the value of µ2 can be either positive or negative [7]. If µ2 < 0,

the potential V (φ) posseses a unique minimum at φ = 0 which preserves the

symmetry of the Lagrangian. However, if µ2 > 0, the Lagrangian has a continuum

degenerate set of vacuum lying on a circle of radius µ/λ

〈|φ|2〉 = 〈φ1〉2 + 〈φ2〉2 =
µ2

λ2
≡ ν2 , (B.5)

any of them might be chosen as the fundamental state, but no one of them is

invariant under local phase rotation. According to the definition made above,

78



the symmetry of the Lagrangian has been spontaneously broken. Choosing a

particular minimum:

〈φ1〉 =
µ

λ
≡ ν ; 〈φ2〉 = 0 , (B.6)

〈φ1〉 has acquired a Vacuum Expectation Value (VEV) . It is convenient to in-

troduce new fields [74]

η ≡ φ1 − v ; ξ ≡ φ2 , (B.7)

and expanding the Lagrangian in terms of these new fields we obtain:

L =
[
1

2
(∂µη)(∂

µη) − µ2η2
]

+
1

2
[(∂µξ)(∂

µξ)] +

[
−1

4
FµνF

µν +
q2v2

2
AµA

µ

]

−2iqv (∂µξ)A
µ +

{
q [η (∂µξ) − ξ (∂µη)]A

µ + vq2 (ηAµA
µ)

+
q2

2

(
ξ2 + η2

)
AµA

µ − λµ
(
η3 + ηξ2

)
− λ2

4

(
η4 + 2η2ξ2 + ξ4

)}

+
µ2v2

4
. (B.8)

In this Lagrangian we can say that the particle spectrum consists of three fields:

a vector boson Aµ with mass qυ , a field η with mass
√

2µ and a massless field

ξ called a Goldstone boson. However, this Lagrangian obtain some non-physical

term such that (∂µξ)A
µ which does not have an interpretation in the Feynman

formalism. In order to remove the unwanted terms, Eq. (B.3) can be redefined

in terms of φ1 and φ2

φ→ eiθ(x)φ = [φ1 cos θ (x) − φ2 sin θ (x)] + i [φ1 sin θ (x) + φ2 cos θ (x)] (B.9)
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where θ (x) ≡ −qλ (x), and

θ (x) = − arctan

(
φ2 (x)

φ1 (x)

)
. (B.10)

Using the Eqs. (B.3), (B.9) and (B.10), the Lagrangian is obtained as,

L =
[
1

2
(∂µη)(∂

µη) − µ2η2
]

+

[
−1

4
FµνF

µν +
q2v2

2
AµA

µ

]

+

{
q2v (ηAµA

µ) +
q2

2
η2AµA

µ − λµη3 − λ2

4
η4

}
+
µ2v2

4
. (B.11)

So, we have got rid of the massless field ξ and all its interactions in the Lagrangian.

On the other hand, we are left with a massive scalar field η which is a Higgs

particle and a massive four vector field Aµ .

Notice that, in the SM, the Higgs mechanism creates three massive vector

bosons (W±, Z) and one massless vector boson (the photon).
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APPENDIX C

THE PROPOGATORS AND THE VERTICES

In order to calculate amplitude of decays, we used basic propagators and some

vertex factors. The propagators which we used in the text are defined as follows:

• the fermion propagator is

p

i
6p−m

fermion

• h0 Higgs boson propagator is

p

h0

i

p2
−m2

h0
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• A0 Higgs boson propagator is

p

i
p2
−m2

A0

A0

Figure C.1: Propogators.

The vertices used in the text read:

• h0 - lj - li interaction

h0

li

lj

−i

2
√

2
[(ξU,D

ij + ξ
U,D∗
ji ) + (ξU,D

ij − ξ
U,D∗
ji )γ5]

• A0 - lj - li interaction

A0

li

lj

1

2
√

2
[(ξU,D

ij − ξ
U,D∗
ji ) + (ξU,D

ij + ξ
U,D∗
ji )γ5]
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• W± - H± - A0 interaction

H±

A0

W±
−g
2 (p + p

′)µ

p

p
′

• W± - H± - h0 interaction

H±

h0

W±

∓
ig
2 cos(α)(p + p

′)µ

p

p
′

Notice that we take that there is no mixing between CP-even Higgs bosons

H0 and h0 and we choose the corresponding mixing angle α = 0 in our

work.
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• Z0 - li - lj interaction

Z0

li

lj

−ig
cos θw

γµ(cLL + cRR)

where g = e
sin θw

, cL = −1
2

+ sin2 θw, cR = sin2 θw.

• Z0 - νi - νi interaction

Z0

νi

νi

−ig
2 cos θw

γµ L
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• Z0 - A0 - h0 interaction

Z0

A0

p2

g
2 cos θw

(p1 + p2)
µ

p1

h0

Figure C.2: Vertices.
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APPENDIX D

THE FEYNMAN PARAMETRIZATION AND DIMENSIONAL

REGULARIZATION

D.1 The Feynman Parametrization

The Feynman Parametrization is very useful to calculate the loop integrals

and the idea behind is that the different denominators are combined into a sin-

gle denominator and the combined denominator is reduced to standard form by

translating the internal loop momentum. The most general form of the Feynman

Parametrization is

Πn
i=1

1

A
αj

i

=
Γ(α)

Πn
i=1Γ(αi)

∫ 1

0
(Πn

i=1dxix
αj−1
i )

δ(1 − x)

(
∑n
i=1 xiAi)

α
, (D.1)

where αi(i = 1, 2, ..., n) are arbitrary complex numbers and Γ(αi) is the gamma

function. α ≡ ∑n
i=1 αi and x ≡ ∑n

i=1 xi. With the above given formula, mul-

tiplication of propagators appearing during the calculation of the loop integrals

are parametrized in the most appropriate form i.e., in case of two and three
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multiplication we have

1

AB
=

∫ 1

0

dx

[Ax +B(1 − x)]2
,

1

ABC
= 2

∫ 1

0
dx
∫ 1−x

0

dy

[Ay +B(1 − x− y) + Cx]3
. (D.2)

D.2 The Dimensional Regularization

The regularization is a method of dealing with infinite and divergent expres-

sions by introducing an auxiliary concept of a regulator. The correct physical

result is obtained in the limit in which the regulator goes away, but the virtue

of the regulator is that for finite value, the result is finite. Regularization is only

a mathematical method and has no physical consequences. We have several reg-

ularization schemes. In our calculation, we used the dimensional regularization.

The dimensional regularization is a particular way to get rid of infinities that

occur when one evaluates Feynman diagrams. The basic idea of the dimensional

regularization is that the spacetime dimension d is lower than four and any loop-

momentum integral will converge for sufficiently small d. So momentum integral

become

∫
d4q

(2π)4
⇒ µ4−d

∫
ddq

(2π)d
, (D.3)

where µ is an arbitrary mass parameter.

Some Dirac algebra in d-dimension are given as:

{γµ, γν} = 2gµν,
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γµγµ = d,

γµγνγ
µ = (2 − d)γν,

gµµ = gµνg
µν = d. (D.4)

After that, the one loop momentum integrals can be calculated with the help

of the Feynman Parametrization and the dimensional regularization from the

references [117]-[118]:

∫ ddl

(2π)d
1

(l2 − ∆)n
=

(−1)ni

(4 π)d/2
Γ(n− d/2)

Γ(n)
(
1

∆
)n−d/2,

∫
ddl

(2π)d
l2

(l2 − ∆)n
=

(−1)n−1i

(4 π)d/2
d

2

Γ(n− d/2 − 1)

Γ(n)
(

1

∆
)n−d/2−1,

∫
ddl

(2π)d
lµlν

(l2 − ∆)n
=

(−1)n−1i

(4 π)d/2
gµν
2

Γ(n− d/2 − 1)

Γ(n)
(
1

∆
)n−d/2−1,

∫
ddl

(2π)d
(l2)2

(l2 − ∆)n
=

(−1)ni

(4π)d/2

d(d+ 2)

4

Γ(n− d/2 − 1)

Γ(n)
∆−n+ d

2
+2,

∫
ddl

(2π)d
lµlνlρlσ

(l2 − ∆)n
=

(−1)ni

(4π)d/2

Γ(n− d/2 − 2)

Γ(n)
∆−n+ d

2
+2

× 1

4
(gµνgρσ + gµρgνσ + gµσgνρ). (D.5)

where d = 4− ε in the ε→ 0 limit. At this stage, we consider special case n = 2 :

(
1

∆
)2− d

2 = 1 − ε

2
lnL + ....,

Γ(2 − d

2
) =

2

ε
− γ +O(ε). (D.6)

Finally, we get

∫
ddl

2πd
1

(l2 − ∆)n
= i

(2

ε
− (ln∆ + γ − ln4π) +O(ε)

)
(D.7)

where γ = 0.5772 is the Euler-Mascheroni constant. 2
ε

term is infinite when

ε → 0. We can get rid off infinities by a renormalization procedure. However,
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sum of the all possible diagrams contributing the process considered make the

coefficient of 1
ε

zero.
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