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ABSTRACT 

MODELING AND CONTROL STUDIES FOR A REACTIVE BATCH 
DISTILLATION COLUMN 

 
 
 
 

Bahar, Almıla 

Ph.D., Department of Chemical Engineering 

Supervisor: Prof. Dr. Canan Özgen 

 

May 2007, 162 pages 
 
 
 
 

Modeling and inferential control studies are carried out on a reactive batch 

distillation system for the esterification reaction of ethanol with acetic acid to 

produce ethyl acetate. A dynamic model is developed based on a previous study 

done on a batch distillation column. The column is modified for a reactive system 

where Artificial Neural Network Estimator is used instead of Extended Kalman 

Filter for the estimation of compositions of polar compounds for control 

purposes. 

The results of the developed dynamic model of the column is verified 

theoretically with the results of a similar study. Also, in order to check the model 

experimentally, a lab scale column (40 cm height, 5 cm inner diameter with 8 

trays) is used and it is found that experimental data is not in good agreement 

with the models’. Therefore, the model developed is improved by using different 

rate expressions and thermodynamic models (φ φ− , combination of equations of 

state (EOS) and excess Gibbs free energy (EOS-Gex), γ φ− ) with different 

equations of states (Peng Robinson (PR) / Peng Robinson - Stryjek-Vera 

(PRSV)), mixing rules (van der Waals / Huron Vidal (HV) / Huron Vidal Original 

(HVO) / Orbey Sandler Modification of HVO (HVOS)) and activity coefficient 
 iv



γ φ−models (NRTL / Wilson / UNIQUAC). The  method with PR-EOS together 

with van der Waals mixing rule and NRTL activity coefficient model is selected as 

the best relationships which fits the experimental data. The thermodynamic 

models; EOS, mixing rules and activity coefficient models, all are found to have 

very crucial roles in modeling studies.  

A nonlinear optimization problem is also carried out to find the optimal operation 

of the distillation column for an optimal reflux ratio profile where the 

maximization of the capacity factor is selected as the objective function. 

In control studies, to operate the distillation system with the optimal reflux ratio 

profile, a control system is designed with an Artificial Neural Network (ANN) 

Estimator which is used to predict the product composition values of the system 

from temperature measurements. The network used is an Elman network with 

two hidden layers. The performance of the designed network is tested first in 

open-loop and then in closed-loop in a feedback inferential control algorithm. It 

is found that, the control of the product compositions with the help of an ANN 

estimator with error refinement can be done considering optimal reflux ratio 

profile. 

 
 
 
 

Keywords: Reactive Distillation, Batch Column, Mathematical Modeling, State 

Estimation, Artificial Neural Networks, Optimization 
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ÖZ 

 
 

BİR TEPKİMELİ KESİKLİ DAMITMA KOLONUNDA MODELLEME VE 
DENETİM ÇALIŞMALARI 

 
 
 
 

Bahar, Almıla 

Doktora, Kimya Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Canan Özgen 

 

Mayıs 2007, 162 sayfa 
 
 
 
 

Etanolün asetik asit ile etil asetat üretimi esterleşme reaksiyonu için bir reaktif 

damıtma sisteminde modelleme ve algısal denetim çalışmaları yapılmıştır. Kesikli 

bir damıtma kolonunda daha önce yapılmış bir çalışmaya dayanan dinamik bir 

model geliştirilmiştir. Kolon, denetim çalışmaları için, polar maddelerin 

derişimlerini tahmin etmede Kalman Filtre yerine Sinir Ağları Tahmin Edicisi 

kullanan tepkimeli bir sistem için değiştirilmiştir.  

Kolonun geliştirilen dinamik modelinin sonuçlarının doğruluğu, benzer bir 

çalışmanın sonuçları ile teorik olarak kanıtlanmıştır. Ayrıca, modeli deneysel 

olarak test etmek için, laboratuar ölçekli bir kolon (40 cm yükseklikte, 5 cm iç 

çapında, 8 tepsili) kullanılmıştır ve deneysel verilerin model ile uyuşmadığı 

görülmüştür. Bu yüzden, model, farklı hız ifadeleri ve farklı durum denklemleri 

(Peng Robinson (PR) / Peng Robinson - Stryjek-Vera (PRSV)), karışma kuralları 

(van der Waals / Huron Vidal (HV) / Huron Vidal Orijinal (HVO) / HVO’nun Orbey 

Sandler Modifikasyonu (HVOS)) ve aktivite modelleri (NRTL / Wilson / UNIQUAC) 

kullanan φ φ− γ φ−, durum denklemleri-Gibbs serbest enerji (EOS-Gex),  gibi 

 vi



farklı termodinamik modeller araştırılmıştır. PR durum denklemi, van der Waals 

karışma kuralı ve NRTL aktivite modeli kullanan γ φ−  metodu, en iyi ilişki olarak 

seçilmiştir. Termodinamik modellerin; durum denklemi, karışma kuralları ve 

aktivite modellerinin hepsinin modelleme çalışmalarında çok kritik etkilerinin 

olduğu bulunmuştur. 

Damıtma kolonunun optimum geri akış oranı profilinde çalışmasını sağlamak için, 

kapasite faktörünün maksimum olarak seçildiği amaç fonksiyonunu kullanan, 

doğrusal olmayan bir optimizasyon problemi çözülmüştür. 

Denetim çalışmalarında, damıtma sistemini optimum geri akış oranı profile ile 

çalıştırmak için, sistemin ürün derişimlerini sıcaklık ölçümlerinden tahmin eden 

Yapay Sinir Ağı (YSA) Tahmin Edicisi kullanan bir denetim sistemi tasarlanmıştır. 

YSA, iki katmanlı bir Elman ağıdır. Tasarlanan tahmin edicinin performansı, önce 

açık devrede ve sonra geri beslemeli algısal denetim algoritmasında kapalı 

devrede test edilmiştir. Ürün derişimlerinin denetiminin, optimum geri akış oranı 

profili ile YSA tahmin edicisi kullanılarak (gerektiğinde hata düzeltmesi ile) 

yapılabildiği bulunmuştur. 

 
 
 
 

Anahtar Kelimeler: Tepkimeli Damıtma, Kesikli Kolon, Matematiksel Modelleme, 

Durum Tahmini, Yapay Sinir Ağları, Optimizasyon. 
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CHAPTER 1 

INTRODUCTION 

Reactive distillation operation is a combination of reaction and separation 

operations in a single unit. It has been somehow used in industry for many 

years, but interest in its research and application has increased significantly in 

the last decade (Al-Arfaj and Luyben, 2002d; Wang et al., 2003). The main 

advantage of using reactive distillation is the reduction of capital and operating 

costs due to elimination of equipment, as a result of the operation of the 

combination of the reaction and the separation phases in a single unit. Also, the 

overall reactant conversion increases with the constant recycling of reactants 

and removal of products. Reactive distillation also increases energy efficiency 

due to direct utilization of reaction heat, makes temperature control of reaction 

easy, reacts away azeotropes and simplifies separation. It is particularly effective 

for reversible reactions with low equilibrium constants (Sneesby et al., 1999; Al-

Arfaj and Luyben, 2002c; Wang et al., 2003). 

Modeling and control of reactive distillation is a challenging task because of its 

complex dynamics resulting from the integration of reaction and separation. Its 

behavior is highly nolinear due to changing sign and direction of the process 

gain. Control problems arise due to the complex interactions between vapor-

liquid equilibrium (VLE), chemical kinetics, vapor-liquid mass transfer, and 

diffusion inside the particle catalyst (Sneesby et al., 1999; Bisowarno et al., 

2004). Computer simulation is important for deciding the optimum operation of 

the column, the optimum feed location, the number of separation trays in case 

of continuous column, and the size of the catalyst packed sections in case of 

reactive distillation with a catalyst. 
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The reaction studied in this work is an esterification process where ethanol 

reacts with acetic acid to produce ethyl acetate and water. The working 

temperature of this endothermic, second order and reversible reaction is around 

700C and atmospheric pressure is used (Bakker et al., 2001). In practice the 

equilibrium is often forced towards the ester by azeotropic water removal. This 

reaction system is one of the most frequently used system in reactive distillation 

studies due to the available reaction rate data. In this quaternary system, 

ethanol forms azeotrope with water, ethyl acetate forms azeotropes with water 

(8.2 wt% water, boiling point 70.40C) and with ethanol (30.8 wt% ethanol, 

boiling point 71.80C). A ternary azeotrope between ethyl acetate-water-ethanol 

is also formed (7.8 wt% water, 9.0 wt% ethanol, boiling point 70.30C) (Ullmann, 

1996). The complexity of the VLE and reversibility of the reaction makes the 

system very complicated. Therefore, modeling and testing the model by 

simulation studies for this system is very challenging. 

There are many studies in the literature dealing with this esterification reaction 

of ethanol and acetic acid. Most of these studies considered the numerical 

methods of solution (Suzuki et al., 1971; Komatsu and Holland, 1977; Chang 

and Seader, 1988; Bogacki et al., 1989; Simandl and Svrcek, 1991) and phase 

equilibrium (Bock et al., 1997; Okur and Bayramoğlu, 2001; Park et al., 2006). 

However, all these studies used simplified models in simulation. Some of them 

assumed ideal plates with constant molar holdup and some others neglected the 

tray hydrodynamics. Most importantly, all of these studies were carried out 

under steady state conditions.  

The dynamic simulation of a reactive distillation column for the ethyl acetate 

system in the presence of a catalyst is studied first by Alejski and Duprat (1996). 

Tang et al. (2003) showed that the NRTL model parameters predict the vapor-

liquid equilibrium data of this four component system very well. Both of these 

dynamic studies were focused on a continuous distillation column. Mujtaba and 

Macchietto (1997) developed an optimization algorithm and Monroy-Loperena 

and Alvarez-Ramirez (2000) developed an output-feedback control algorithm for 

the ethyl acetate system in a reactive batch distillation column. However, in all 

these studies, in the dynamic simulation, simplified models were used. 

In reactive distillation columns, always a high conversion is expected with a 

satisfactory purity which obviously, depends on high performance closed-loop 

control of both conversion and purity (Tade and Tian, 2000). Unfortunately, 
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either the conversion or the purity cannot be economically and reliably measured 

on-line. The on-line measurement of compositions is a typical problem in the 

industry (Bahar et al. 2004, Kano et al. 2000, Baratti et al. 1995). In the product 

compositions control systems, on-line measurements of the product 

compositions can be possible with direct composition analyzers such as gas 

chromatographs and NIR (Near-Infra Red) analyzers. However, these 

composition analyzers may introduce high investment and maintenance costs. 

Furthermore, since composition analyzers introduce large time delays to the 

system, designing an effective feedback control system by the use of 

measurements by analyzers can in many cases bring stability problems. Thus, 

instead of composition, temperature control loops can be used in the industry 

aiming to set product compositions at their desired values. In distillation 

columns, the compositions are strong functions of temperatures. However, 

especially in multi-component distillation, the temperature control may not 

always be adequate for composition control, since the tray temperatures do not 

correspond exactly to the product compositions in the face of disturbances (Kano 

et al. 2000, Patke et al. 1982). Therefore, it is important to be able to infer 

compositions from secondary measurements like temperatures, flows, pressures, 

etc. An estimator that utilizes temperature measurements can be used for this 

purpose. Then, these estimations are used for control purposes. This scheme is 

called as the inferential control.  

Most of the works relating with the state estimation in distillation columns are 

based on continuous distillation columns. Unlike continuous columns, very few 

studies deal with the state estimation of batch columns which is widely used in 

the production of fine chemicals. Monitoring and control of composition also play 

an essential role in these units. Batch distillation is more complex, and highly 

nonlinear system compared to continuous distillation. Also it is an intrinsically 

dynamic process which makes the state estimation a more challenging task. As 

stated by Mujtaba and Macchietto (1996) and Oisiovici and Cruz (2000), 

composition profiles and operating conditions may change over a wide range of 

values during the entire operation and the state estimators must be designed to 

deal with the time-varying nature of the batch columns. Furthermore, the batch 

distillation is an attractive choice in reactive distillation as given by Wajge and 

Reklaitis (1999), when the reaction is slow and a large resident time is required 

to attain high conversion and when the reaction is so fast that a significant 

reaction may occur before the continuous column reaches steady state. 
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The identification and control of complex systems with unknown and uncertain 

dynamics has become a topic of considerable importance in the last decades and 

several control strategies have been developed for this purpose. One popular 

strategy among them is the Artificial Neural Networks (ANN) method. An ANN 

can be viewed as a nonlinear empirical model that is especially useful in 

representing input-output data, making predictions in time, classifying data, and 

recognizing patterns from an engineering viewpoint (Himmelblau, 2000). The 

reasons for the use of ANNs is that, they 

− have the ability to evolve good process models by learning from available 

input-output data,  

− require little or no priori knowledge of the system,  

− can solve complex, highly nonlinear problems that cannot satisfactorily be 

handled by some traditional methods. 

In the applications of ANNs, two general approaches are used. In one ANNs are 

used as the process controller; where the network is trained to identify the 

inverse dynamics of the controlled process and then directly used to control the 

process. In the other approach, the developed ANN model of the process is used 

for some type of model-based-control such as model predictive control. The 

latter is the more commonly used application of neural networks for control of 

chemical processes. 

The objective of this study is to develop a mathematical model for the 

esterification reaction of ethanol and acetic acid in a reactive batch distillation 

column using first principles model and then to find an optimal operation policy 

for the column and finally, to design a state estimator using ANN method that 

can estimate the product compositions from temperature measurements to be 

used in the column control algorithm. 

The reactive distillation column that is used in experimental and simulation 

studies are given in Chapter 3. The studies relating with the modeling of the 

column are discussed in Chapter 4. The optimization algorithm and the ANN 

estimator are presented in Chapter 5 and Chapter 6, respectively. The simulation 

code used for modeling, optimization, and estimator design is explained in 

Chapter 7. Finally, the results and discussions of this study are given in Chapter 

8. 



CHAPTER 2 

LITERATURE SURVEY 

In this chapter, previous studies done on reactive batch distillation operation are 

given. The chapter is organized in three subsequent sections as; optimization 

and modeling studies of esterification reaction of ethanol with acetic acid in a 

distillation column, studies on state estimation for the continuous, batch and 

reactive distillation column and lastly previous work on control studies of reactive 

distillation columns. 

2.1 Modeling and Optimization Studies 

Esterification reaction of ethanol and acetic acid to produce ethyl acetate and 

water is the most frequently considered reactive system in the literature 

considering reactive distillation. The modeling studies for this system goes back 

to 1970s. First studies focus especially on numerical solution methods. 

Suzuki et al. (1971) used modified Muller’s method for the convergence of 

temperature and tridiagonal matrix algorithm for the solution of the linearized 

material balance equations in a continuous distillation column at steady state. In 

their simulation, they used only temperature dependent VLE constant and 

Antoine’s correlation for vapor pressure calculations. 

Another method for convergence, which is called multi θ η−  method, is 

developed by Komatsu and Holland (1977) for the same esterification system in 

continuous distillation column. Their VLE constant, K, depends on both 

temperature and liquid composition. In simulation, they used a very simplified 

model for the distillation column. 
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Chang and Seader (1988) applied a robust homotopy-continuation method to 

solve simultaneous nonlinear equations in modeling of the reactive distillation 

column at steady state. They utilized Antoine’s correlation for vapor pressure 

calculations and Margules activity coefficients for the phase equilibrium. They 

compared their results with that of Suzuki et al. (1971) using a different reaction 

rate expression. In their simulations, they obtained a low conversion and a low 

purity ethyl acetate in the distillate. 

Bogacki et al. (1989) proposed the Adam-Moulton method for simulation of the 

continuous reactive distillation under steady and unsteady state conditions. They 

used the same phase equilibrium data as Komatsu and Holland (1977) with a 

temperature independent rate expression and compared the results with their 

experimental data. They proposed that the differences between the results they 

observed might be due to inadequate precision of the VLE and kinetic data or 

may be due to the model simplifications which neglect the column hydraulics, 

plate efficiencies and the heat balance. 

Simandl and Svrcek (1991) compared the simultaneous solution method result 

with that of the inside-outside tearing method in continuous reactive distillation 

at steady state conditions. They used temperature dependent reaction rate and 

Wilson activity coefficient model for the phase equilibrium. 

A dynamic simulation of a continuous reactive distillation column for the 

esterification of ethanol with acetic acid with a homogeneous catalyst of 

sulphuric acid is proposed by Alejski and Duprat (1996). They used the same 

phase equilibrium data of Komatsu and Holland (1977) and temperature 

dependent rate expression. Comparison of simulation results with the 

experimental results showed that the concentration results are not very accurate 

due to the large disturbances imposed, simplifications of the mathematical 

model, inaccuracy of the kinetic and vapor-liquid equilibrium description and due 

to the precision of experimental measurements. 

Bock et al. (1997) analyzed the continuous reactive distillation column for the 

same esterification reaction under steady state conditions. They compared the 

phase equilibrium data of Suzuki (1971) and that obtained from NRTL with the 

experimental data of Komatsu and Holland (1977) and showed that the phase 

equilibrium data of Suzuki (1971) is not suitable. 
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The first study on modeling of a batch distillation column is done by Mujtaba and 

Macchietto (1997). They developed a mathematical model and a nonlinear 

optimization algorithm for maximum profit problem for the same reactive system 

in a batch distillation column. In modeling, they used steady state energy 

balances by assuming adiabatic plates and fast energy dynamics. Furthermore, 

they used the temperature independent rate expression and phase equilibrium 

data of Simandl and Svrcek (1991). 

Another study that considered the batch reactive distillation column for the same 

esterification system is that of Monroy-Loperena and Alvarez-Ramirez (2000). 

They designed an output-feedback control for this system by using an 

approximate unsteady state model and a reduced-order observer to estimate the 

modeling error. In modeling, they used temperature independent rate 

expression and the phase equilibrium data of Mujtaba and Macchietto (1997). 

Okur and Bayramoğlu (2001) compared the liquid activity coefficient models, 

UNIQUAC, UNIFAC, and Margules, on the simulation of continuous reactive 

distillation with esterification reaction of ethanol and acetic acid. They used 

steady state modeling and temperature dependent rate equation. 

Giessler et al. (2001) solved the optimization problem for the reactive batch 

distillation column for different types of models and objective functions. They 

used the same esterification reaction of ethanol and acetic acid. In their 

optimization algorithm, the reflux ratio and the heat duty are selected as the 

optimization variables and they are assumed to be piecewise constant. They 

investigated the effect of the number of time periods, reaction on the trays, 

holdup dynamics, model preciseness, and the difference in the objective 

function. 

Tang et al. (2003) established suitable NRTL model parameters for the 

calculation of liquid activity coefficients. The compositions and temperatures of 

the four azeotropes in the system were predicted well. Vapor association of the 

acetic acid due to dimerization has also been included in their study. They 

obtained high purity ethyl acetate product from the overall system which 

includes two continuous columns (one being reactive distillation column) one 

decanter, and two recycle streams. They also found the optimum operating 

condition of the overall system in order to minimize the total operating cost of 

the system. 
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Another steady state model for the production of ethyl acetate with an acid 

catalyst through a continuous reactive distillation process is developed by Park et 

al. (2006). They used NRTL model for the phase equilibrium calculations and 

obtained high purity ethyl acetate production after further purification of the top 

product using a common distillation column. The comparison of simulation 

results with that of experiments showed that the results are in good agreement. 

On the other hand, relating to dynamic modeling of a reactive batch distillation 

operation, the first study belongs to Wajge and Reklaitis (1999). A maximum 

conversion problem for the optimum operation of the ethyl acetate production in 

a batch distillation column is provided in this study. However, the study does not 

consider the hydrodynamics on the trays and chemical reactions in the vapor 

phase. 

2.2 State Estimation Studies 

In this section, the previous studies on state estimation for continuous, batch, 

and reactive distillation columns are presented. 

2.2.1 State Estimation Studies for Continuous Distillation Column 

Most of the works related to the state estimation in distillation columns are 

based on continuous distillation columns. Starting in 1972, Weber and Brosilow 

presented a method for designing a static estimator which predicts product 

quality from a linear combination of process input and output measurements. 

Since then, many studies are done and given in the M.Sc. study of Bahar (2003).  

Bahar et al. (2004) developed an inferential control methodology that utilized an 

ANN estimator in a model predictive controller algorithm for an industrial multi-

component distillation column. Singular Value Decomposition (SVD) technique 

was used for the selection of the temperature measurement points and a moving 

window neural network estimator was used in order to incorporate the system 

dynamics into account. The performance of the estimator in the open-loop was 

found satisfactorily. Furthermore, the performance of the Model Predictive 

Controller (MPC) that used the state variables obtained from the estimator was 

also found to be satisfactory for set-point tracking and disturbance rejection 

problems.   
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2.2.2 State Estimation Studies for Batch Distillation Columns 

Unlike continuous columns, very few studies were done on the state estimation 

of batch columns which is widely used in the production of fine chemicals. 

However, monitoring and control of composition of products play a very essential 

role in batch columns. Batch distillation is a very complex, nonlinear and a high-

order system. It is also an intrinsically dynamic process which makes the state 

estimation really a challenging task. Composition profiles and operating 

conditions may change over a wide range of values during the entire operation, 

and the state estimators must be designed to deal with the time-varying nature 

of the batch columns (Mujtaba and Macchietto, 1996; Oisiovici and Cruz, 2000). 

Quintero-Marmol and Luyben (1992) presented model-based inferential control 

for multi-component batch distillation systems. They studied the two different 

inferential model-based control schemes: the rigorous steady-state and the 

quasi-dynamic non-linear estimator to estimate the distillate compositions of a 

multi-component distillation column. It was seen that, both estimators provide 

good results using only one-temperature measurement. Some drawbacks of the 

steady-state model are also given in the paper such as; the thermocouple has to 

be located at the end of the column for good results and sometimes another 

thermocouple is needed to predict the end of the batch in the steady-state 

model. 

Oisiovici and Cruz (2000) developed and tested a discrete nonlinear Extended 

Kalman Filter (EKF) estimator for binary and multi-component batch distillation 

columns in order to infer the instantaneous product compositions and the 

composition profile along the column from temperature measurements. They 

calculated and updated on-line the gain of the EKF. They also addressed the 

important issues such as the number of sensors, the presence of temperature 

noise and the sampling rate. 

Fileti et al. (2000) presented a predictive control strategy based on a non-linear 

nonparametric dynamic system model, the dynamic neural network. A neural-

network-based identifier provided n-step-ahead top composition predictions for 

the optimization of the control action. The basic process variables that are 

required to predict the top composition are the running top and bottom 

compositions and the reflux ratio. The network has an input moving window with 

dynamic characteristics. The performance of the control strategy was first tested 
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through rigorous simulations and then on a batch distillation column for a 

ternary system of n-hexane-benzene-toluene. It was observed that ANN offers 

very good predictions of the nonlinear process behavior.  

Zamprogna et al. (2001) developed a virtual sensor based on a recurrent ANN 

for a middle-vessel batch distillation column to estimate the product 

compositions. It was shown that the estimated compositions are in good 

agreement with the actual values. The effects of sensor location, model 

initialization, and temperature measurement noise on the performance of the 

soft sensor were investigated. 

Yıldız et al. (2005) designed an Extended Kalman Filter (EKF) state estimator to 

infer the product composition in a multi-component batch distillation column. 

The EKF parameters which are the diagonal elements of the process noise 

covariance matrix and those of measurement model noise covariance matrix are 

selected in the range where the estimator is stable and selection is based on the 

smallest IAE scores for the reflux-drum and the reboiler composition estimates. 

They found that, although NC-1 temperature measurements are sufficient, using 

NC (number of components) measurements improve the performance of the 

estimator, but increasing the number of temperature measurements further does 

not result in a better performance. They used the designed EKF estimator 

successfully in the composition-feedback inferential control of the column 

operated under variable reflux-ratio policy. 

2.2.3 State Estimation Studies for Reactive Distillation Columns 

Tade and Tian (2000) inferred the reactant conversion from multiple process 

temperatures in a 10-stage pilot plant ethyl tertiary butyl ether (ETBE) reactive 

distillation column. They developed a third-order, two-variable nonlinear 

inferential model by employing the regression method. The two temperatures 

they used in this model were the bottom reactive section temperature and the 

reboiler temperature taken from the simulation of the process. 

Dadhe (2004) used nonlinear models, the neural networks and the support 

vector machines for the nonlinear calibration from the near-infrared 

spectroscopy (NIR) for the on-line estimation of methyl acetate mole fraction in 

a reactive distillation column. One NIR probe was at the top of the column 

directly underneath the condenser and another one was located at the reboiler. 
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For the calculation of prediction intervals, the bootstrap method known from the 

computational statistics was used. The support vector machine showed slightly 

better prediction than the neural network. Although nonlinear methods improved 

the prediction of methyl acetate mole fraction over the linear model, in all of 

these cases, the variance of the prediction interval was too large to consider the 

prediction as a reliable estimate. More calibration data can be gathered or an on-

line adjustment with gas chromatographic measurements can be done to reduce 

the prediction error. 

Venkateswarlu and Kumar (2006) designed an Extended Kalman Filter in order 

to estimate the compositions in a reactive batch distillation column for the 

esterification reaction of ethanol and acetic acid. They used a simulation based 

on data of Mujtaba and Macchietto (1997) using the same column specifications, 

vapor-liquid equilibrium and kinetic data.  

2.3 Control of Reactive Distillation Columns 

Although the dynamics and behavior of reactive distillation column (steady-state 

design, open-loop dynamics and multiplicity) have been investigated extensively, 

there are only few studies on the closed-loop control of reactive distillation 

columns. Therefore, the control of reactive distillation is still an open research 

area. The studies related to the control of reactive distillation columns are given 

below. 

A dynamic simulation of the ETBE reactive distillation column was developed by 

Sneesby et al. (1997) using a dynamic process simulator and this model was 

used for determining the transient open-loop responses of the column and also 

used for control purposes. Control performance was tested by step increases in 

feed rate and feed composition, and for a set-point change. Controlled variable 

was selected as a temperature at the middle of the stripping section. Simple PI 

controllers were used. Dynamic simulations were used to evaluate several 

control configurations but the LV and LB configurations were recommended. 

Sneesby et al. (1999) proposed a two-point control scheme which used simple, 

linear PI controllers to control both the product composition and the reactant 

conversion. They used dynamic simulations to test this control scheme and 

showed that the two-point control scheme is effective and better than one-point 
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control scheme especially for feed rate disturbances and set-point changes. For 

feed composition disturbances, there was a significant offset in the two-point 

control scheme, however, the ether purity deviated less in the two-point control 

scheme according to one-point control scheme. 

Al-Arfaj and Luyben (2000) studied an ideal two-reactant two-product reactive 

distillation system. In a later study, Al-Arfaj and Luyben (2002d) dealed with the 

control of a methyl acetate (two-reactant and two-product) reactive distillation 

system and compared this chemical system with the ideal one. Afterwards, Al-

Arfaj and Luyben (2002a) studied single-feed and double-feed designs of the 

ETBE column and its control schemes in which there were two reactants, one 

product and one inert. A multiple reaction case, the ethylene glycol system 

which has two feeds but only one product, was also studied by Al-Arfaj and 

Luyben (2002b). For this system, a simple PI control scheme in which a 

temperature in the stripping section was controlled by the heat input was found 

to be effective. The stoichiometric balancing of the reactants was achieved and 

the product purity was maintained within reasonable bounds. Al-Arfaj and 

Luyben (2002c) found effective the control scheme for olefin metathesis case, 

which have one-reactant and two-products, in which a temperature in the 

stripping section was controlled by the heat input and another temperature in 

the rectifying section was controlled by the reflux rate. In the study of Al-Arfaj 

and Luyben (2002d), a plant wide flow sheet consisting of one reactor, one 

reactive column, two conventional columns, and two recycles was developed for 

the production of tertiary amyl methyl ether (TAME). The control structure that 

was applied to this flow sheet was such that a temperature in the stripping 

section and a methanol composition in the reactive zone were controlled. The 

other two columns were controlled by simple temperature controllers since there 

was no reaction. The fresh feed of methanol was manipulated to maintain the 

overall methanol balance in the flow sheet. 

Balasubramhanya and Doyle III (2000) developed a low order nonlinear model 

by using traveling wave phenomena. To test the proposed procedure, they used 

a simulated batch reactive distillation column consisting of eight trays for the 

production of ethyl acetate. They used the reduced model of the column in a 

MPC algorithm employing a nonlinear process model to control the temperature 

on the second tray. They used a Nonlinear Quadratic Dynamic Matrix Control 

with State Estimation approach. They used the reduced wave model to predict 

outputs into the future and used a nonlinear optimization routine to calculate the 
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input moves. They showed that the performance of the nonlinear MPC using the 

reduced order model was as good as that of the controller using the detailed 

column model, with an advantage of reduced computational effort. 

Engell and Fernholz (2003) studied the conventional control structures and 

nonlinear MPC for the methyl acetate production in a semi-batch reactive 

distillation column. They used a neural net model of the process in the nonlinear 

predictive control scheme. A static network with external recurrence was used 

because of simpler training of the network. The radial-basis function (RBF) 

networks were used as one-step-ahead predictor of the process. The past and 

present process inputs and past process outputs were the inputs of the net and 

the prediction of the plant output at the next time step was the output of the 

net. The outputs of the net were externally fed back to the input for the 

generation of long-range predictions. A rigorous nonlinear model simulation was 

used to collect the training data. They tested the controller for set-point tracking 

and for disturbance rejection. In case of set-point changes, the nonlinear 

controller reduced the rise time significantly compared to the linear controller. 

For disturbance rejection case, the nonlinear controller gave better performance 

than the linear one. 

Tian et al. (2003) developed a pattern-based predictive control (PPC) algorithm 

for the control of ETBE purity at the bottom of the reactive distillation column. 

The temperature of stage 7 was used as the indicator of the bottoms product 

purity by manipulating the reboiler heat duty. Although the reactive distillation 

process is highly non-linear, the degree of process non-linearity was reduced by 

fixing the reflux flow rate since this study considered one-point control (only the 

bottom product purity). Therefore, direct PI control also showed acceptable 

performance. However, in order to improve the performance, they incorporated 

a pattern-based predictor (PP) with a conventional PI controller. PI controller 

was tuned for set-point tracking for the ITAE index. The PPC system increased 

the performance significantly over the direct PI control system for both set-point 

tracking and disturbance rejection cases. 

Bisowarno et al. (2003) developed a model gain scheduling control for one-point 

control of an ETBE reactive distillation column. They derived simplified input-

output first-order models which identified relevant operating conditions which 

cope with nonlinear characteristics. A switching scheme was used for providing a 

smooth transition between the simple models. The performance of the proposed 
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control scheme outperforms that of the standard PI controller for both set-point 

tracking and disturbance rejection cases. 

Bisowarno et al. (2004) investigated two adaptive PI control strategies, a non-

linear PI (NPI) and a model gain-scheduling (MGS) for ETBE reactive distillation 

column. The LV configuration was used for the control of ETBE purity. The 

primary manipulated variable, the reboiler heat duty was used to control the 

temperature of stage 7. The second manipulated variable, the reflux rate was 

kept constant to achieve high isobutylene conversion. Both adaptive control 

systems were based on a PI controller integrated with a tuning method. For the 

NPI, the controller gain was allowed to vary in order to accommodate the 

directionality in the process gain. In case of both set-point tracking and 

disturbance rejection, it was shown that the performances of the NPI and MGS 

were better than a standard PI control with fixed parameters. 
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CHAPTER 3 

EXPERIMENTAL 

In order to check the results obtained from the simulation studies, experimental 

studies are carried out in a lab-scale batch distillation column. The experimental 

setup and the experimental procedure used for the reactive batch distillation 

column are given below. 

3.1 Experimental Setup 

The batch distillation column that is used in this work has an inner diameter of 5 

cm, a height of 40 cm and has 8 sieve plates with a plate spacing of 5 cm. The 

feed tank, having a 20 L volume, is made from corrosion resistant stainless steel 

and incorporated with two electrically heated cartridge type heating elements. 

Power to the heaters can be continuously varied using a regulator and can 

directly be read from the wattmeter which is calibrated between 0-2 kW. A level 

sensor is situated on the top of the feed tank to prevent the heating elements 

from overheating in case of reboiler run dry. Thermocouples are located at the 

top and bottom of the column (T2 and T3, respectively), at the inlet and outlet of 

the cooling water used in condenser (T6 and T7, respectively), at the reflux line 

(T5), at the condensate (T4) and at the reboiler (T1) to measure the 

temperatures. However, thermocouples cannot be placed along the column to 

measure the temperatures of plates. Different reflux ratio values can be 

manually set by using two electronic timers, which proportion to the position of 

the reflux divider. The reboiler, the condenser, and the column are insulated to 

reduce any heat losses. The schematic representation of the column is given in 

Figure 3.1. 



 

Figure 3.1. Experimental Reactive Batch Distillation Column 

3.2 Experimental Procedure 

In the experiments, the reboiler is first charged with an equimolar mixture of 

ethanol and acetic acid. Ethanol (Merck grade, ≥99.99% w/w purity) and acetic 

acid (Merck grade, ≥99.8% w/w) are used. The cooling water flow rate is 

adjusted to a constant value during the experiments. At the beginning of the 

experiments, the reflux ratio control is set for total reflux and heat is adjusted to 

its maximum value. After a certain time, the heater is adjusted to give a gentle 

bubbling on the trays. This steady state value of boilup rate and the reboiler 
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temperature at this value is approximately 0.56 kW and 900C, respectively. The 

overall column parameters and operating conditions are given in Table 3.1. 

Table 3.1 Experimental Column Parameters and Operating Conditions 

No. of stages (including reboiler and 

total condenser) 

10 

Total fresh feed, mol 311.67 

Feed composition (ethyl acetate, 

ethanol, water, acetic acid), mole 

fraction 

0.0, 0.5, 0.0, 0.5 

Column holdup, mol 

condenser+drum 

internal plates 

 

30 

0.779 

Reboiler heat duty, J/h 2.016x106

Column pressure, bar 1.013 

Cooling water flow rate, lt/min 1.0 

 

In the experiments, the column is first operated at total reflux condition. At this 

period, samples are taken in every 30-minute intervals at the beginning and 

later in 60-minute intervals. After steady state is reached, reflux ratio is set to a 

predefined value and samples are continued to be taken from both the reflux 

drum and from the reboiler in every 60-minute intervals into small bottles. 

Analyses of the collected samples, which are secured in dry ice to stop the 

course of the reaction, are done through Varian CP-3800 Gas Chromatography 

(GC) with Porapak-T packed column and TCD detector. As the carrying gas, 

helium is used. The method and conditions of the GC are given in Table 3.2.  

Calibration of the GC must be done prior to experimental evaluation of 

compositions of the components. Detailed calculations for the calibration of GC 

to find the compositions of the components are given in Appendix B. The areas 

for each component are obtained from GC and the mole fractions of the 

components are calculated by using Equation 3.1 where xA represents the mole 

fraction of component A, Ai represents the area under the curve of component i 
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iand β  represents the correction factor for the ith component according to the 

base component. The results of the calibration, i.e., the correction factors are 

given in Table 3.3.  

    A A
A

A A B B C C D D

Ax
A A A A

β
β β β

=
+ + + β

                          (3.1) 

Table 3.2 The Method and Conditions for GC Analysis 

(a) 

Temperature 

(0C) 

Rate 

(0C/min) 

Hold  

(min) 

Total  

(min) 

75  0.1 0.1 

175 40 10 12.60 

           (b) 

Detector Temperature 225 0C 

Injector Temperature 200 0C 

Carrier Gas Helium 

 

Table 3.3 Calibration Results 

Component, i Correction Factor, iβ  

Ethyl Acetate 0.658 

Ethanol 1.0 

Water 2.259 

Acetic Acid 0.93 

 



CHAPTER 4 

REACTIVE BATCH DISTILLATION OPERATION MODELING 

The unsteady state model developed in this study for the reactive batch 

distillation operation is based on the modeling study done by Yıldız et al. (2005). 

The assumptions that are used in the modeling studies are negligible vapor 

holdup, constant volume of tray liquid holdup, constant liquid molar holdup in 

the reflux-drum, total condenser, negligible fluid dynamic lags, linear pressure 

drop profile, Murphree tray efficiency, approximated enthalpy derivatives and 

adiabatic operation. 

The total molar mass balance, the component mass balance and the energy 

balance for the reactive batch distillation column are given below for reboiler, 

trays and reflux-drum-condenser. 

Reboiler: 

 1
2 1 1t

dM
1L V R M

dt
ε= − +                                (4.1) 

     1 1
2 2 1 1 1 1

j
j j j

dM x
L x V y R M

dt
ε= − +  j = 1,…,NC                 (4.2) 

         1 1
2 2 1 1 1

( )d M h L h V H Q
dt

= − +                             (4.3) 

Trays: i = 2,…,NT+1; j = 1,…,NC 

 19



1 1
i

i i i i t i
dM

iL V L V R M
dt

ε+ −= + − − +           (4.4) 

1 1, 1 1,

( )i ij
i i j i i j i ij i ij j i

d M x
L x V y L x V y R M

dt
ε+ + − −= + − − + i                   (4.5) 

       1 1 1 1
( )i i

i i i i i i i
d M h

iL h V H L h V H
dt + + − −= + − −                   (4.6) 

Reflux-drum-condenser system: j = 1,…,NC 

         2
1 2 2

NT
NT NT t NT NT

dM V L D R M
dt

ε+
2+ + += − − + +                        (4.7) 

        2 2,
1 1, 2 2, 2, 2

( )NT NT j
NT NT j NT NT j NT j j NT NT

d M x
V y L x Dx R M

dt
ε+ +

2+ + + + + += − − + +      (4.8) 

                   2 2
1 2 2 2 2

( )NT NT
NT NT NT NT NT NT

d M h V H L h Dh Q
dt
+ +

2+ + + + += − − − +

i

           (4.9) 

where x and y are liquid and vapor fractions (mol/mol); M, molar liquid holdup 

(mol); L and V,  liquid and vapor molar flow rates (mol/h); h and H, liquid and 

vapor mixture enthalpy (J/mol); Q1 and QNT+2, reboiler and condenser heat loads 

(J/mol.h); D, distillate flow rate (mol/h) and the subscripts i and j are for stage 

and component numbers; NT and NC are number of trays and number of 

components, respectively (i.e. i = 1 for reboiler, i = 2,...,NT + 1 for trays and i = 

NT + 2 for reflux-drum-condenser unit); Ri is the reaction rate at ith stage in 

mol/h defined as in Equation 4.10, where the definition of the rate expression ri 

is explained in Section 4.6. 

/i i iR r MWρ=  for  i=1,…,NT+2            (4.10) 

In the energy balance equations (Equation 4.3, 4.6 and 4.9), no additional term 

for the heat of reaction is included because when the enthalpies are referred to 

their elemental state. Thus, the heat of reaction is accounted automatically and 

no separate term is needed (Taylor and Krishna, 2002; Mujtaba and Macchietto, 

1997; Monroy-Loperena and Alvarez-Ramirez, 2000). 
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Using Equations 4.1 and 4.2, the time derivative of the compositions in the 

reboiler can be obtained as 

            1 2 2 1 1 1 1
1 1

1

( ) ( )j j j j j
j t

dx L x x V y x
1 jR R x

dt M
ε ε

− − −
= + −           (4.11) 

Similarly, combining Equation 4.4 and Equation 4.5 gives the time derivative of 

the compositions on the trays as 

              1 1, 1 1, 1( ) ( ) ( )ij i i j ij i i j j i ij ij
j i t i ij

i

dx V y x L x x V y x
R R x

dt M
ε ε− − + +− + − − −

= + −

2

   (4.12) 

If the assumption of constant molar liquid holdup in the reflux-drum, is 

employed, Equation 4.7 reduces to 

    1 2 2NT NT t NT NTV L D R Mε+ + + += + −         (4.13) 

and inserting Equation 4.13 to Equation 4.8 gives 

          2, 1 1, 2,
2 2

2

( )NT j NT NT j NT j
j NT t NT NT j

NT

dx V y x
R R x

dt M
ε ε+ + + +

+ +
+

2,+

−
= + −        (4.14) 

Therefore the time derivatives of the compositions throughout the column, which 

are the state equations of the column, are obtained (Equations 4.11, 4.12, and 

4.14). 

In order to solve these equations, the vapor and liquid flow rates Vi and Li are 

required. Extracting l.h.s. of Equation 4.6 and inserting  from Equation 

4.4 as 

/idM dt

       [ ]1 1
( )i i i i i

i i i i i i i i t i
d M h dh dM dh

iM h M h L V L V R
dt dt dt dt

ε+ −= + = + + − − + M       (4.15) 

and equating l.h.s. of Equation 4.6 and Equation 4.15 yield the vapor flow 

entering the ith tray as 
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1 1

1
1

( ) ( ) i
i i i i i i i i t i i

i
i i

dhV H h L h h M h R M
dtV

H h

ε+ +

−
−

− + − + +
=

−
       (4.16) 

Moreover, solving Equation 4.4 for Li gives 

   1 1
i

i i i i t i
dM

iL V L V R M
dt

ε− += + − − +                               (4.17) 

Starting from i = NT+1 and solving Equations 4.15 and 4.17 can yield all the 

flowrates except the vapor flow entering the condenser, VNT+1 and the reflux flow 

entering the top tray, LNT+2. These flow rates can be found depending upon the 

reflux ratio. 

4.1 Calculation of VNT+1 

Finite Reflux Ratio Case: 

If the reflux ratio, R, is defined as 

2NTLR
D

+=                 (4.18) 

Equation 4.13 becomes 

1 2( 1)NT t NT NTV D R R M 2ε+ + += + −         (4.19) 

Employing the assumptions of constant holdup and total condenser and 

expanding l.h.s. of Equation 4.9 give 

  2
2 1 1 2( )NT

NT NT NT NT NT
dhM V H h

dt
+

2Q+ + + += − − +        (4.20) 

Rearranging 

 2
2 1 1 2 2( ) NT

NT NT NT NT NT
dhQ V H h M

dt
+

+ + + + += − −        (4.21) 
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Inserting Equation 4.19 in Equation 4.21, to eliminate VNT+1, results in Equation 

4.22. 

  [ ] 2
2 2 2 1 2( 1) ( ) NT

NT t NT NT NT NT NT
dhQ D R R M H h M

dt
ε +

+ + + + += + − − − 2+        (4.22) 

When the energy balance is applied around the overall column, the following 

equation is obtained. 

    
2

1 2 2
1

( )NT
n n

NT NT
n

d M hQ Q Dh
dt

+

+ +
=

− − = ∑                   (4.23) 

Using Equation 4.22, QNT+2 can be eliminated from Equation 4.23 to find the 

distillate rate, D in the form of 

 

1

1 2 2
1

1 2

( ) ( )

( 1)

NT
n n

t NT NT NT NT
n

NT NT

d M hQ R M H
dtD

R H Rh

ε
+

+ + + +
=

+ +

− + −
=

+ −

∑ 1 2h
              (4.24) 

As a result, by using the distillate rate, D, from Equation 4.24, the required flow 

rates, VNT+1 and LNT+2 can be calculated from Equation 4.19 and 4.18, 

respectively. 

Total Reflux Case: 

In case of total reflux operation, the overhead flow rates, VNT+1 and LNT+2 cannot 

be obtained from the equations derived in finite reflux ratio case, because they 

become undefined for infinite reflux ratio for total reflux operation. Therefore, 

the flow rates must be found from another formulation. 

At total reflux condition, no product is withdrawn from the column (D = 0). Thus, 

  1 2 2NT NT t NT NTV L R M 2ε+ + + += −          (4.25) 

Therefore, if the value of the reflux flow, LNT+2 is found, the vapor flow rate of 

the stream entering the condenser can be obtained. 
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If the energy balance is applied to the total system of all the trays and the 

reboiler, the following equation is obtained by using Equation 4.25 

    
1

1 1
1 2 2 1 2 2

2

( ) ( ) ( )
NT

n n
NT NT NT t NT NT NT

n

d M h d M h Q L h H R M H
dt dt

ε
+

1+ + + + +
=

+ = + − +∑ +     (4.26) 

and arranging Equation 4.26 gives LNT+2 as 

1
1 1

1 2
2

2
1 2

( )( ) NT
n n

t NT NT NT
n

NT
NT NT

d M hd M hQ R
dt dtL

H h

ε
+

2 1M H+ + +
=

+
+ +

− − +
=

−

∑
       (4.27) 

4.2 Holdup Calculations 

The molar holdups on trays can be calculated by utilizing constant volume 

assumption of liquid holdups, as 

            
avg
i

i iavg
i

M v
Mw
ρ

=          (4.28) 

where avg
iρ  is the average density of the mixture on the ith tray, avg

iMw  is the 

average molecular weight of the mixture on the ith tray, vi is the volume of the 

liquid tray holdup.  

The reboiler holdup at any time, t, is calculated from an algebraic equation given 

as  

2
0

1
2 0

( )
tNT

f n
n

M M M D dτ τ
+

=

= − −∑ ∫         (4.29) 

where 0
fM  is the molar amount of feed initially charged to the column. 

4.3 Algebraic Equations 

The mole fraction sum for liquid and vapor phases are stated as  
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1 1

1; 1
NC NC

n n
n n

x y
= =

= =∑ ∑                              (4.30) 

Using the linear pressure drop assumption, the pressure profile can be written as 

1 1 2( ) /i NTP P i P P NT+= − −                    (4.31) 

where Pi is the pressure in ith tray, P1, the pressure in the reboiler and PNT+2, the 

pressure in the reflux drum. 

The effects of non-equilibrium between the liquid and the vapor phases on a tray 

are incorporated to the model by Murphree tray efficiency formulation specifed 

as  

               (4.32) *
1, 1,( )ij i j Murphree ij i jy y Eff y y−= + − −

where  is the composition of vapor in phase equilibrium with liquid on i*
ijy th tray 

with composition xij; yij, the actual composition of vapor leaving ith tray; yi-1,j, the 

actual composition of vapor entering ith tray. 

4.4 Physical Parameters Calculation 

The representative functions for the physical properties of a mixture are 

expressed as a function of composition, temperature and pressure. Peng-

Robinson EOS is used for the calculation of average mixture densities and 

average molecular weights of a mixture. 

Enthalpy departure functions of the vapor and the liquid phases are also 

calculated using the same equation of state. The enthalpy departure of a mixture 

from the ideal gas mixture using the Peng-Robinson EOS is as follows: 

( , , ) ( , , ) ( 1)

( 2 1)ln
2 2 ( 2 1)

IGM
i i m

m
m

m m

m m

H T P x H T P x RT Z
daT a

m

Z BdT
b Z B

− = −

⎛ ⎞ −⎜ ⎟ ⎡ ⎤+ +⎝ ⎠+ ⎢ ⎥
− −⎣ ⎦

       (4.33) 
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where the subscript m denotes a mixture property and ( , , )IGM
iH T P x  is the ideal 

gas mixture enthalpy at the conditions of interest (Sandler, 1999). This equation 

can be used for both vapor and liquid phases, using the appropriate parameters 

for the terms with the subscript m. 

The parameters of critical temperature, , critical pressure, , boiling 

temperature, , molecular weight, Mw , acentric factor, w  and heat capacity 

coefficients,  for each component used in the simulation 

studies are given in Tables 

c
jT c

jP

boil
jT

, , ,a b c d
j j j jCp Cp Cp

j j

Cp

A.1 and A.2  (Perry and Green, 1984). 

4.5 Initial Conditions 

The initialization of differential equations in the model is necessary due to the 

difficulties of the simulation of highly transient process. Therefore, all the 

compositions throughout the column (plate compositions and reflux drum 

compositions) are initialized by the feed compositions, and expressed as 

1,..., 2

1,...,

feed
ij jx x for i NT

j NC

= = +

=
         (4.34) 

The initial flow rates are taken as 

1

1 2

2,..., 2
( )i

QV for i N
H h

T= =
−

+                   (4.35) 

2 1,..., 1i NTL V for i NT+= = +           (4.36) 

4.6 Kinetic Rate Expressions 

The reaction kinetics without catalyst is given by Equation 4.37 and the values of 

the constants k1 and k2 for the forward and backward reaction rate constants are 

given in Table 4.1 (Alejski and Duprat, 1996). The components are numbered as 

follows: ethyl acetate [1], ethanol [2], water [3], acetic acid [4] and used in 

subscripts for the mole fractions of liquid (xi) and vapor (yi) phases. 
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      1 2 4 2 3 1r k x x k x x= −                     (4.37) 

Table 4.1 Reaction Constants (litre/gmol min) 

k1 29100 exp(-7190/T(K)) 

k2 7380 exp(-7190/T(K)) 

 

4.7 Vapor Liquid Equilibrium (VLE) Calculations 

In the modeling of reactive batch distillation column operation, one must 

estimate the compositions of the liquid and vapor mixtures in equilibrium. The 

equilibrium temperature and the composition of vapor phase at equilibrium with 

the liquid phase is represented by 

*[ , ] [( , 1... ), , ]guess
i ij ik i iT y f x k NC T P= =         (4.38) 

where guess
iT  is initial temperature guess for trial-error calculation of equilibrium 

temperature, Ti. In this estimation, thermodynamic modeling of phase 

equilibrium is very important and the selection of proper thermodynamic model, 

which affects the estimation of compositions highly, is very crucial. The starting 

point for all VLE calculations is given below as; 

( , , ) ( , , )L V
i i if T P x f T P y= i                     (4.39) 

where the superscripts L and V represent the liquid and vapor phases, 

respectively and xi and yi represent the mole fraction of species i in the liquid 

and vapor, respectively. The fugacity of a species in a liquid and vapor can be 

computed by using an equation of state (EOS), which is referred as the φ φ−  

method. On the other hand, if an activity coefficient (excess Gibbs free energy) 

model is used for the liquid fugacity calculation this approach is referred as the 

γ φ−  method. (Sandler, 1999). In the simulation studies, four different models 

 27



are used for the calculation of phase equilibrium. The models are explained 

below in detail. 

4.7.1 Model-I: Phase Equilibrium Calculation Using the VLE data from 

Literature 

Vapor-liquid equilibrium data for the ethyl acetate-ethanol-water-acetic acid 

system which is available in the literature (Suzuki et al., 1971) is given in Table 

4.2. This data is utilized in the simulation as a preliminary check.  

Table 4.2 Vapor-Liquid Equilibrium Data 

Ethyl Acetate log K = -2.3 x 103/T + 6.742 

Ethanol log K = -2.3 x 103/T + 6.588 

Water log K = -2.3 x 103/T + 6.484 

K = (2.25 x 10-2)/T - 7.812      for T > 347.6 K 

 

Acetic Acid 

K = 0.001    for T ≤ 347.6 K 

 

4.7.2 Model-II: Phase Equilibrium Calculation Using φ φ−  Approach 

In this approach, an EOS is used to calculate the fugacity of species for both 

liquid and vapor phases. There are many equations of states given in the 

literature such as Peng Robinson, Redlich-Kwong, Redlick-Kwong-Soave, etc. In 

this study, the Peng Robinson EOS is used. The generalized form of the Peng 

Robinson EOS is given in Equations 4.40-4.44.  

        
( )

( ) (
RT a TP

V b V V b b V b
= −

)− + + −
       (4.40) 
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with 

22

( ) 0.45724 ( )c

c

R Ta T T
P

α=                  (4.41) 

     0.07780 c

c

RTb
P

=                             (4.42) 

   1 1
c

T
T

α κ
⎛ ⎞

= + −⎜⎜
⎝ ⎠

⎟⎟                    (4.43) 

  20.37464 1.5422 0.26992wκ = + − w

a

b

                (4.44) 

where w is the acentric factor. However, Equation 4.40 is written for single 

component vapor-liquid systems. In order to apply the Peng Robinson EOS to a 

multi-component mixture, the parameters “a” and “b” in Equation 4.40 must be 

modified by introducing a compositional dependence. In order to obtain these 

mixture parameters, first of all pure component “a” and “b” values are evaluated 

using Equations 4.41 and 4.42. Then, “a” and “b” values for the mixture are 

obtained by making use of the mixing and combining rules (Sandler, 1999). One 

of the most commonly used mixing rules is the van der Waals one-fluid mixing 

rule as given in Equations 4.45 and 4.46. 

            (4.45) 
1 1

N N

i j ij
i j

a x x
= =

=∑∑

                                                 
1

N

i i
i

b x
=

= ∑                            (4.46) 

where aii and b are the parameters for pure component i, and the cross 

coefficients aij is obtained by the combining rules given in Equation 4.47. 

  (1 )ij ii jj ij jia a a k a= − =                     (4.47) 

The binary interaction parameters, kij which are “introduced to obtained better 

agreement in mixture equation of state calculations” (Sandler, 1999), for the 
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ethyl acetate production are given in Table 4.3. The fugacity coefficient of 

species “i” in a mixture is obtained from the Peng Robinson EOS using van der 

Waals one-fluid mixing rule for vapor (V) and liquid (L) phases as given below: 

     

( , , )ln ( 1) ln( )

2
( 2 1)ln

2 2 ( 2 1)

V
V Vi i i

i

i ij V
j i

V

f T P y b Z Z B
y P b

y a
bA Z B

a bB Z B

= − − −

⎡ ⎤
⎡ ⎤+ +⎢ ⎥− − ⎢ ⎥⎢ ⎥ − −⎣ ⎦⎢ ⎥⎣ ⎦

∑       (4.48) 

     

( , , )ln ( 1) ln( )

2
( 2 1)ln

2 2 ( 2 1)

L
L Li i i

i

i ij L
j i

L

f T P x b Z Z B
x P b

x a
bA Z B

a bB Z B

= − − −

⎡ ⎤
⎡ ⎤+ +⎢ ⎥− − ⎢ ⎥⎢ ⎥ − −⎣ ⎦⎢ ⎥⎣ ⎦

∑       (4.49) 

where 

2( )
aPA
RT

=          (4.50) 

   
bPB
RT

=                     (4.51) 

Compressibility factors, ZL and ZV, are computed from the EOS. 

Table 4.3 Binary Interaction Parameters, kij (Burgos-Solarzano et. al., 2004) 

kij Ethyl acetate Ethanol Water Acetic Acid 

Ethyl acetate 0.0 0.022 -0.280 -0.226 

Ethanol 0.022 0.0 -0.935 -0.0436 

Water -0.280 -0.935 0.0 -0.144 

Acetic Acid -0.226 -0.0436 -0.144 0.0 
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In Model-III and Model-IV, activity coefficients must be utilized. In 

thermodynamic VLE calculations, activity coefficient models can be used in two 

ways. In one way, they are used in the traditional γ φ−  approach, which is 

generally used to correlate and predict VLE behavior at low to moderate 

pressures. In the second way, they are incorporated into the EOS which is called 

EOS-Gex method. This second approach is used for the description of the VLE of 

non-ideal mixtures at high pressures. The problem here is to decide on the 

activity coefficient model and on the values of the model parameters. There are 

many activity coefficient models such as van Laar, Margules, Wilson, NRTL, 

UNIFAC, and UNIQUAC. Van Laar and two-constant Margules models depend on 

the overall space-averaged composition of the solution. Orbey and Sandler 

(1998) suggested that “with the same number of adjustable parameters, Wilson, 

UNIQUAC, and NRTL usually represent the properties of the non-ideal mixtures 

better than the models based on the overall composition”. Therefore, in this 

study, NRTL, Wilson, and UNIQUAC models are used and the performances for 

the system under consideration are compared. The adjustable parameters of 

these models can be obtained either from data compilations such as DECHEMA 

Chemistry Data Series or by fitting experimental activity coefficient to phase 

equilibrium data. Three different activity coefficient models are given below in 

detail. 

1. The Non-Random-Two-Liquid (NRTL) Activity Coefficient Model 

The multi-component NRTL equation is given in Equations 4.52-4.57 (Sandler, 

1999).  

1

1

1

N

ji ji jex N
j

i N
i

ji j
i

G x
G

x
RT G x

γ

τ
=

=

=

=
∑

∑
∑

                     (4.52) 

with 

exp( )ij ij ijG α τ= − ,                    (4.53) 

/ ( )ij ij ija b T Kτ = + ,                    (4.54) 
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ij jiα α= ,                     (4.55) 

and 

0iiτ =                              (4.56) 

for which 

1 1

1

1 1 1

ln

N N

ji ji j k kj kjN
j j ij k

i ijN N N
j

ji j k kj k kj
j k k

G x x Gx G

G x x G x G

τ τ
γ τ= =

=

= = =

⎡ ⎤
⎢ ⎥
⎢ ⎥= + −
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑
∑

∑ ∑ ∑
         (4.57) 

NRTL model has three parameters, , ,ij ji ijτ τ α , for each pair of components in the 

multi-component mixture. Their values are obtained from Tang et al. (2003) and 

are given in Table 4.4. 

Table 4.4 NRTL Model Parameters 

Comp. i AcAc AcAc AcAc EtOH EtOH EtAc 

Comp. j EtOH EtAc H2O EtAc H2O H2O 

ija  0 0 -1.9763 1.817306 0.806535 -2.34561 

jia 0 0 3.3293 -4.41293 0.514285 3.853826 

ijb -252.482 -235.279 609.8886 -421.289 -266.533 1290.464 

jib 225.4756 515.8212 -723.888 1614.287 444.8857 -4.42868 

ijα  0.3 0.3 0.3 0.1 0.4 0.364313 

 

2. Wilson Activity Coefficient Model 

The multi-component form of the Wilson equation is given in Equations 4.58 and 

4.59 (Sandler, 1999). 
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1 1
ln

ex N N

i ij
i j

G
jx x

RT
γ

= =

⎛ ⎞
= − Λ⎜

⎝ ⎠
∑ ∑ ⎟                     (4.58) 

for which 

                                     
1 1

1

ln 1 ln
N N

j ji
i j ij N

j j
k jk

k

x
x

x
γ

= =

=

Λ⎛ ⎞
= − Λ −⎜ ⎟

⎝ ⎠ Λ
∑ ∑

∑
                 (4.59) 

Since 1iiΛ = , there are two parameters, ,ij jiΛ Λ , for each binary pair of 

components in the multi-component mixture. The parameters of this model are 

given in Table 4.5 obtained from Suzuki et al. (1970). 

Table 4.5 Wilson Model Parameters 

 System 
12Λ  21Λ  

AcAc – EtOH 0.27558 2.28180 

AcAc – H2O 0.26838 1.22642 

AcAc – EtAc 0.61790 0.89277 

EtOH – H2O 0.15347 0.92038 

EtAc – EtOH 0.55046 0.76670 

EtAc – H2O 0.12353 0.14907 

 

3. Universal Quasichemical (UNIQUAC) Activity Coefficient Model 

The UNIQUAC model is based on statistical mechanical theory. In this model, for 

a system of N components, the activity coefficient of the ith component is given 

by 

                           ln ln ( ) ln ( )i i icombinatorial residualγ γ γ= +                     (4.60) 
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In this equation, the combinatorial term accounts for molecular size and shape 

differences, and the second term accounts largely for energy differences, and 

expressed as in Equations 4.61-4.65. 

                   

1

1 1

1

ln ( ) ln ln
2

ln ( ) 1 ln

N
i i i

i i
ji i i

N N
j ij

i i j ji N
j j

k kj
j

zcombinatorial q l x l
x x

residual q

i j j
φ θ φγ

φ

θ τ
γ θ τ

θ τ

=

= =

=

= + + −

⎡ ⎤
⎢ ⎥⎛ ⎞⎢ ⎥= − −⎜ ⎟
⎢ ⎥⎝ ⎠
⎢ ⎥
⎣ ⎦

∑

∑ ∑
∑

              (4.61) 

with  

                                          5( ) ( 1)i i i il r q r= − − −                                    (4.62) 

                                                

1

i i
i N

j j
j

x q

x q
θ

=

=

∑
                                          (4.63) 

                                               

1

i i
i N

j j
j

x r

x r
φ

=

=

∑
                                           (4.64) 

                                                ln ij
ij

u
RT

τ = −                                         (4.65) 

where  is the volume parameter for species i,  is the surface area parameter 

for species i, 

ir iq

iθ  is the area fraction of species i, iφ  is the segment or volume 

fraction of species i, and  is the average interaction energy for a species i – 

species j interaction. The UNIQUAC model parameters used in this study are 

given in Table 4.6 (Okur and Bayramoglu, 2001; Kang et al., 1992). 

iju
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Table 4.6 UNIQUAC Model Parameters 

 Ethanol Acetic acid Ethyl acetate Water 

Q 1.972 2.092 3.116 1.365 

R 2.1055 2.2024 3.4786 0.90 

 

System iju /R (K) jiu /R (K) 

AcAc – EtOH 268.54 -225.62 

AcAc – H2O 398.51 -255.84 

AcAc – EtAc -112.33 219.41 

EtOH – H2O -126.91 467.04 

EtOH – EtAc -173.91 500.68 

H2O - EtAc -36.18 638.60 

 

4.7.3 Model-III: Phase Equilibrium Calculation Using the Combination of 

EOS Models with Excess Free Energy Models (EOS-Gex Approach) 

Polar fluids exhibit peculiar behavior of high non-linearity and the modeling of 

such systems are difficult. There are two important issues for polar fluids. One of 

them is the EOS and the other is the mixing rule selection. The generalization of 

the Peng-Robinson EOS parameters is especially useful for hydrocarbons and 

inorganic gases. However, “for polar fluids (water, organic acids, alcohols, etc.), 

this simple generalization is not accurate, especially at low temperatures and 

pressures” (Sandler, 1999).  

One of the alternate procedures for the EOS that have been suggested for polar 

fluids is the Peng-Robinson-Stryjek-Vera (PRSV) equation developed by Stryjek 

and Vera (1986) in which Equation 4.44 is replaced with 

0.5
0 1(1 )(0.7 )rTκ κ κ= + + − rT     (4.66) 

where 

2
0 0.378893 1.4897153 0.17131848 0.0196554w wκ = + + + 3w  (4.67) 
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Here  is a parameter specific to each pure compound that is optimized to 

accurately fit low-temperature vapor-pressure data. The Stryjek-Vera 

modification of 

1κ

α  term takes care of the inaccuracies in temperature 

dependence of the “a” term at low temperatures. 1κ  parameters for the 

components used in this study which are obtained from the study Stryjek and 

Vera (1986) are given in Table 4.7. 

Table 4.7 PRSV EOS Parameters, 1κ  

Components 
1κ  

Ethyl acetate 0.0693 

Ethanol -0.03374 

Water -0.06635 

Acetic acid -0.19724 

 

In the selection of the mixing rule, if fitting VLE data with the van der Waals 

one-fluid mixing rule is used, it was found that the binary interaction parameter 

is approximately zero for relatively simple mixtures, such as alkane mixtures. 

However, for non-ideal mixtures, it is not only nonzero but will also change in 

value with temperature. Therefore, accurate correlation of VLE is not possible by 

van der Waals one-fluid mixing rule. There are many studies in the literature for 

which the van der Waals one-fluid mixing rules give false predictions of liquid-

liquid splits. Difficulties are also encountered with water and alcohol mixtures 

(Orbey and Sandler, 1998). “One is led to expect that the combination of a cubic 

EOS with the van der Waals mixing rules can only represent those mixtures that 

are describable by augmented regular solution theory. This excludes polar and 

hydrogen-bonding fluids.” (Orbey and Sandler, 1998). 

One method which can be utilized for the mixing rules is to combine an EOS with 

activity coefficient models (Orbey and Sandler, 1998) such as Huron-Vidal 

(Original) Mixing Rule (HVO). In this mixing rule the mixture EOS parameters 

are given as  
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which is identical to the mixing rule for the b parameter in van der Waals rule, 

and 
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where C* is the EOS-dependent constant, and for the Peng-Robinson equation 

ln( 2 1) / 2 0.62323C∗ = − = − . exGγ , the molar excess Gibbs free-energy 

obtained from any excess free-energy model, is a function of temperature and 

composition only.  

In this case, the fugacity coefficient of species i in the mixture become 
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      (4.70) 

where again the compressibility factor is computed from the EOS. 

Another mixing rule in this category is the Orbey-Sandler modification of the 

Huron-Vidal mixing rule (HVOS). Again “b” is same as in Equation 4.68 and the a 

parameter and the fugacity coefficient of species “i” in the mixture becomes as 

given in Equation 4.71 and Equation 4.72, respectively. 
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4.7.4 Model-IV: Phase Equilibrium Calculation Using γ φ−  Approach 

In VLE descriptions with the γ φ−  approach as given before, an activity 

coefficient model is used for the liquid phase and an EOS is used for the vapor 

phase. At low to moderate pressures, omitting the Ponyting correction factor, the 

equality of the fugacities becomes 

( , , ) ( , , ) ( ) ( , , ) ( , , )L sat V
i i i i i i i i i i

V
if T P x x T P x P T f T P y y P T P yγ φ= = =        (4.73) 

Very non-ideal mixtures can be described with γ φ−  method since an activity 

coefficient model can give very large excess Gibbs free energies of mixing if 

suitable values of parameters are used (Orbey and Sandler, 1998). However, 

there are important disadvantages of this method. Since different methods are 

used for the liquid and the vapor phases, the properties of these two phases 

cannot be identical and therefore it is not useful in description of the critical 

region behavior. Furthermore, in γ φ− φ φ− method unlike  method, other 

thermodynamic properties such as densities and enthalpies cannot be computed 

from the same model. 

4.8 Summary of the Modeling Chapter 

The model equations are summarized in Table 4.8. 
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Table 4.8 Multi-Component Batch Distillation Model Equations 

Compositions and Holdups (Section 4.3) 

Reboiler Dynamics 

2
0

1
2 0

( )
tNT

f n
n

M M M D dτ τ
+

=

= − −∑ ∫  

1 2 2 1 1 1 1
1 1

1
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1 jR R x

dt M
ε ε

− − −
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1j N= …  

Tray Dynamics
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j i t i ij

i

dx V y x L x x V y x
R R x

dt M
ε ε− − + +− + − − −

= + −  
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Reflux-Drum Dynamics

2, 1 1, 2,
2 2
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( )NT j NT NT j NT j
j NT t NT NT j
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dx V y x
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dt M
ε ε+ + + +

+ +
+
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−
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Composition Sums (Section 4.3) 

1
1

NC
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1

1
NC

ly =∑  

Flowrates for given R and Q1 (Section 4.1) 

Overhead Flowrates for Total Reflux

0D =   

1 2 2NT NT t NT NTV L R M 2ε+ + + += −  

1
1 1

1 2
2

2
1 2

( )( ) NT
n n

t NT NT NT
n

NT
NT NT

d M hd M hQ R
dt dtL

H h

ε
+

2 1M H+ + +
=

+
+ +

− − +
=

−

∑
 

Overhead Flowrates for Finite Reflux Ratio
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Table 4.8 Multi-Component Batch Distillation Model Equations (continued) 

Trays

1 1

1
1

( ) ( ) i
i i i i i i i i t i i

i
i i

dhV H h L h h M h R M
dtV

H h

ε+ +

−
−

− + − + +
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−
 

1 1
i

i i i i t i
dM

iL V L V R M
dt

ε− += + − − +  

1 2i NT= + …  

Pressure Drop Profile (Section 4.3) 

1 1 2( ) /i NTP P i P P NT+= − −  

Thermodynamic Models  

VLE Calculation (Section 4.7)

*[ , ] [( , 1... ), , ]guess
i ij ik i iT y f x k NC T P= =  

Murphree Tray Efficiency (Section 4.3)

*
, 1, , 1,( )i j i j Murphree i j i jy y eff y y− −= + −  

Enthalpy Calculations (Section 4.4)

,(( , 1 ), , )i i k ih f x k NC T Pi= = …  

,(( , 1 ), , )i i k i iH f y k NC T P= = …  

Physical Properties (Section 4.4) 

,(( , 1 ), , )avg
i i k i if x k NC T Pρ = = …  

,( , 1avg
i i k )Mw f x k NC= = …  

Kinetic Rate Expression (Section 4.6) 

1 2 4 2 3 1r k x x k x x= −  (1) EtAc, (2) EtOH, (3) H2O, (4) AcAc 
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CHAPTER 5 

OPERATION AND NONLINEAR OPTIMIZATION OF THE 

REACTIVE BATCH DISTILLATION COLUMN 

In this chapter, the operational characteristics of a multi-component batch 

distillation column are given in the first section. In the second section of the 

chapter, the nonlinear optimization problem for the multi-component reactive 

batch distillation column for ethyl acetate production is outlined. 

5.1 Operational Characteristics of a Multi-Component Batch Distillation 

Column 

In batch distillation, the composition of the product depends on the initial still-

pot feed composition, the number of plates in the column and on the reflux ratio 

used. In batch distillation operations, products are specified as follows; slop-cuts 

which are the off-spec products and product-cuts which are the products of 

specified purities (Luyben, 1988). In the batch column operation, there are a 

number of operational stages; start-up period, distillation at total-reflux, 

withdrawal of the lightest product, removal of a slop-cut, withdrawal of the next 

heaviest product, removal of a second slop-cut and so on. “If the aim of 

production is to separate each compound from the feed mixture at the specified 

purity levels, the number of product-cuts is NC in the feed (i.e. NC: number of 

compounds) and the number of the maximum possible slop-cuts is NC-1” (Yıldız 

et al., 2005). In Figure 5.2, a schematic of a multi-component batch distillation 

column system is shown which consists of a reboiler, trays, a condenser, a reflux 

drum, product and slop-cut storage tanks. 
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Figure 5.2. The Schematic of a Multi-Component Batch Distillation 
Column (Yıldız et. al, 2005) 

 

In the operation, the column is first run with total reflux until the distillate 

composition of the lightest component reaches its desired purity, which is same 

as its steady state value. Then, the reflux-ratio is set to a pre-specified value. At 

the same time, the distillate stream is transferred to first product-cut storage 

tank and the distillate product is withdrawn. In time, the degree of purity of the 

lightest component in the first product-cut tank drops. There is a period of time 

in which the distillate will be off-spec of the lightest component until the next 

heavier component to be used for that product reaches its specified composition 

level. Therefore, a slop-cut must be withdrawn until the next heaviest 

component reaches its specified purity. When another specification level is 

reached, then the distillate is again diverted to another product-cut tank. This 

cyclic operation between the product-cut and the slop-cut withdrawal continues 

until all the intermediate compounds are separated which leaves the content of 

the reboiler as the final product-cut rich in the heaviest component. The 
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distillation is continued until the component in the reboiler reaches the desired 

concentration. 

5.2 Nonlinear Optimization of the Reactive Batch Distillation Column 

As can be understood from the explanation above, during the operation of a 

batch distillation column, the first operation is at total reflux. Then the reflux 

ratio changes to a specified value. In the operation, there are two policies for the 

reflux ratio. Either the reflux ratio can be taken as constant after the total reflux 

period or can be adjusted in time to different values. In constant reflux ratio 

policy, only the first product-cut is obtained at the desired purity and the rest 

cannot be attainable. This reflux ratio policy can be applicable in cases where the 

only objective is to obtain the lightest or the heaviest product solely. However, if 

aim is to separate the products from each other, the variable reflux ratio policy 

must be considered. 

The variable reflux ratio policy can only be applied after a study on the optimal 

reflux ratio policy is carried out. The aim in the optimization is multifold, 

depending upon the objective function. 

In a batch distillation column reflux ratio optimization problem, either the purity 

of the products/the amounts of the products/the energy requirement or the costs 

of the raw materials can be considered in the objective function and/or in the 

constraints. Generally, three different formulations of the optimization problem 

are given in the literature: 

1) Maximum distillate problem, where the amount of distillate with a specified 

final concentration for a specified batch time is maximized. 

2) Minimum time problem, where the batch time required to produce a 

prescribed amount of distillate of a specified concentration is minimized. 

3) Maximum profit problem, where a profit function is maximized. 

The optimal operation policy of a batch distillation process can be calculated off-

line if there is reliable process model. In the reactive batch distillation column 

under study, the heat input to the reboiler is constant. Therefore, the only 
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manipulated variable is the reflux ratio, and since it is a function of time, a 

dynamic optimization problem must be solved. A low reflux ratio may lead to an 

excessive withdrawal of the reactants which can affect the conversion inversely. 

On the other hand, a high reflux ratio may result in an undesirable side reaction 

giving undesirable by-products. For this reason, the performance of a reactive 

distillation operation is related with the operation policy in a higher extend than 

that of batch distillation operation without chemical reaction. 

In the reactive distillation process for ethyl acetate production, three binary 

azeotropes (ethanol-water, ethyl acetate-ethanol, and ethyl acetate-water) and 

one ternary azeotrope (ethyl acetate-water-ethanol) is formed as explained in 

Chapter 1. Furthermore, due to the close boiling points between ethanol and 

ethyl acetate (351.7 K and 350.2 K, respectively), the reflux ratio profile needs 

to be adjusted carefully so as to withdraw ethyl acetate selectively over ethanol.  

The three optimization problem formulations given above are considered 

together in the study of Luyben (1988) where maximization of the Capacity 

Factor (CAP) is selected as the performance criteria in the dynamic optimization 

of the reactive batch distillation process. The CAP of a batch distillation is defined 

as the ratio between the total amount of the specified products and the total 

batch time. If P1, P2, P3, and P4 are the amounts of products obtained and the tF 

is the total batch time, the CAP formulation can be given as in Equation 5.1. The 

total batch time includes the time at total reflux and the time producing the 

products and slop cuts. 

1 2 3

F

P P P PCAP
t

4+ + +
=                     (5.1) 

In this optimization problem, there are functional constraints given by the model 

equations and constraints on the reflux ratio itself. There are also constraints on 

the purities of the components in the product-cut tanks since this optimization 

problem is subject to the desired purities of the products collected in the 

product-cut tanks. The desired purity of the ethyl acetate collected in the first 

product-cut tank is selected as 0.52, which is the maximum purity of ethyl 

acetate obtained after total reflux operation. Other desired purities of the 

components collected in the product-cut tanks are selected considering their 

maximum possible purities. 
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The nonlinear optimization problem explained above can be summarized as 

given in Table 5.1. 

Table 5.1 Optimization Problem 

Objective Function:              

                              Capacity Factor max
R

subject to: 

                              1. Model equations

                              2. Purity constraints on the product cuts:

                                  Desired purity of EtAC in product-cut tank 1 = 0.52 

                                  Desired purity of EtOH in product-cut tank 2 = 0.50 

                                  Desired purity of H2O in product-cut tank 3 = 0.65 

                                  Desired purity of AcAc in reboiler = 0.999 

                              3. Constraints on the reflux ratio:  

                                  0 / 1pR L V< = ≤  
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CHAPTER 6 

INFERENTIAL CONTROL AND ARTIFICIAL NEURAL NETWORK 

STATE ESTIMATOR 

In this study, an inferential control methodology that uses Artificial Neural 

Network (ANN) estimator to infer the product compositions from temperature 

measurements and provides a feedback control by using the optimal reflux 

profile of the column is developed. In this chapter, the theoretical background of 

the inferential control strategy, the observability criteria and the ANN estimator 

are explained. 

6.1 Inferential Control 

When the controlled output of the process cannot be conveniently measured on-

line, measurements of a secondary variable can be used to estimate the 

controlled variable in time. If the disturbances can be measured and an 

adequate process model is available, then feed-forward control can be used to 

keep the unmeasured output at its desired value instead of inferential control. 

However, in the presence of unmeasured disturbances, inferential control is the 

only solution that can be used to control an unmeasured process output. 

The control of multi-component distillation columns is a typical example of this 

type of process control problem. Here, the major input disturbances are 

variations in the feed composition, temperature, and flow rate. Controlled 

quantities are the product compositions. Composition analyzers such as gas 

chromatographs can be used to measure the product composition but these are 

expensive, difficult to maintain and introduce undesirable time delays in the 

feedback control loop. In industry, to maintain a constant temperature on one of 



the trays close to the product withdrawal location using feedback control is a 

method commonly used (Joseph and Brosilow, 1978). For a binary distillation 

column, the Gibbs phase rule indicates that there is a unique relation between 

composition and temperature if pressure is constant. Therefore, a 

thermodynamic equation could be employed to relate the temperature of the 

tray at one end of the column to the corresponding product composition. 

However, for the separation of multi-component mixtures, the tray temperature 

does not correspond exactly to the product composition. Therefore, approximate 

methods must be used to estimate the compositions (Bahar, 2003).  

Inferential control system uses measurements of secondary process outputs to 

infer the effect of immeasurable disturbances on primary process outputs. The 

estimator uses the values of the available measured outputs, together with the 

material and energy balances that govern the process, to estimate the values of 

the unmeasured controlled variables. These estimates, in turn, are used by the 

controller to adjust the values of the manipulated variables. The structure of 

inferential control configuration used in this study is given in Figure 6.1 (adapted 

from Stephanopoulos, 1984). 

 

Figure 6.1 The Structure of Inferential Control Configuration 
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6.2 Observability Criteria and Selection of Measurements 

Most control laws used in the batch distillation are feedback laws and the state-

space description of dynamics realizes that the information required for feedback 

control is the state of the system (Jacobs, 1974). As in the case of batch 

distillation, in most real controlled processes, the system state (i.e. compositions 

in the batch distillation) is not identical with the observable outputs (i.e. 

temperatures in the distillation) but there is a time-varying relationship between 

the states, X and the outputs, z as given in Equation 6.1. 

k kz(t ) = h(X(t ); t )k                                          (6.1) 

Therefore, the question arises whether or not it is possible to evaluate the state 

form observations of the output (i.e. measurements). The observability criteria is 

to be satisfied for solving the problem of inferring immeasurable state variables 

from measurements in the minimum possible length of time (Yıldız et al., 2005).  

Since the estimated compositions are used in the control of the column 

operation, the temperature measurements that are used as inputs to the 

estimator must be suitably selected in order to provide accurate estimation of 

the compositions because the measurement locations have significant effects on 

the performance. 

It is not suitable to use all the available temperature measurements as inputs to 

the estimator because of the measurement redundancy. As Venkateswarlu and 

Kumar (2006) stated, inappropriate use of measurements may lead to numerical 

problems such as singularity, over-parameterization, and reduction of estimation 

accuracy. 

The observability concept plays an important role in the design of control 

systems in state space. Although most physical systems are observable, 

corresponding mathematical models may not be observable. For this reason, it is 

necessary to know the conditions under which a system is observable. “A system 

is said to be observable at time t0 if, with the system in state X (t0), it is possible 

to determine this state from the observation of the output over a finite time 

interval” (Ogata, 1997). Employing a degree-of-freedom concept, Yu et al. 

(1987) found that a distillation column is observable if the number of 
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measurements is at least (NC - 1). The study for multi-component batch 

distillation column of Quintero-Marmol et al. (1991) and Yıldız et al. (2005), 

dealing with the design of an Extended Luenberger Observer and Extended 

Kalman Filter, respectively, concluded that, even though the linear observer in 

theory needs only (NC - 1) temperature measurements to be observable, the 

nonlinear observer needed at least (NC) thermocouples to be effective. 

Furthermore, Yıldız et al. (2005) showed that increasing the number of 

temperature measurements above NC does not result in better performance. 

Venkateswarlu and Kumar (2006) found in their study that the reboiler and the 

top tray are the most sensitive temperature measurement locations for a multi-

component batch distillation column. Similarly, Yıldız et al. (2005) concluded that 

the temperature measurement locations should be spread throughout the 

column homogeneously and should include the reboiler and the top tray. 

6.3 Artificial Neural Networks 

“A neural network is a massively parallel distributed processor made up of 

simple processing units, which has a natural propensity for storing experimental 

knowledge and making it available for use” (Haykin, S., 1999). 

6.3.1 Historical Development 

The neural networks (NNs) modern era began with the work of McCulloch and 

Pitts (1943). They describe in their study, a logical calculus of NNs that united 

the studies of neurophysiology and mathematical logic. “Their formal model of a 

neuron was assumed to follow an all-or-none law. With a sufficient number of 

such simple units, and synaptic connections set properly and operating 

synchronously, they showed that a network so constituted would, in principle 

compute any computable function. This was a very significant results and with it, 

it is generally agreed that the disciplines of NN and of artificial intelligence were 

born” (Haykin, S., 1999). 

The Hebb’s book (The Organization of Behavior) in 1949 was the next major 

development in NNs. In this book, an explicit statement of a physiological 

learning rule for synaptic modification was presented for the first time. The 

important problem of designing a reliable network with neurons that may be 
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viewed as unreliable components was solved by von Neumann (1956) using the 

idea of redundancy. This motivated Winograd and Cowan (1963) to suggest the 

use of a distributed redundant representation for NNs. After 15 years from the 

paper of McCulloch and Pitt, a new approach to the pattern recognition was 

introduced by Rosenblatt (1958) in his work on the perceptron, a novel method 

of supervised learning. 

Some technological, psychological and financial factors (high computing labor) 

contributed to the decrease of interest in NNs in the 1970s. Many of the 

researchers, except those in psychology and neurosciences, moved away from 

the field during that decade. Only after 1980s some contributions to the theory 

and design of NNs were made, and the interest in NNs again increased. The 

paper by Hopfield in 1982 and the two-volume book by Rumelhart and McLelland 

in 1986 were the most important publications in the 1980s. Today, NNs is found 

to be a subject in the neurosciences, psychology, mathematics, physical sciences 

and engineering (Haykin, S., 1999). 

6.3.2 Features of Artificial Neural Networks 

There are many advantages of Artificial Neural Networks (ANNs) over first 

principles models or other empirical models. ANNs can be highly nonlinear. Their 

structure can be more complex and therefore they are more representative than 

most other empirical models. They are quite flexible models and the structure 

does not have to be pre-specified. 

ANNs learn with input-output data. One of the most important characteristics of 

neural networks is the ability to utilize the data and to organize the information 

into a form that is useful. Typically, this form constitutes a model that represents 

the relationship between the input and the output variables.  

A neural network (NN) memory is distributed since the information is spread 

among all of the weights that have been adjusted in the training process. These 

connection weights are the memory units of neural networks and the values of 

the weights represent the current state of the knowledge of the network. 

Therefore, each individual unit of knowledge is distributed across all the memory 

units in the network. Furthermore, it shares these memory units with all other 

items of information stored in the network.  The NN is also associative. Because, 

if the trained network is presented with a partial input, the network choose the 
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closest match in the memory to that input and generate an output that 

corresponds to a full input. 

NNs are fault-tolerant, since the information storage is distributed over all 

weights. Even when a large number of the weights are destroyed, the 

performance of the NN degrades gradually. While the performance suffers, the 

system does not fail catastrophically since the information is not contained in 

just one place but instead, it is distributed throughout the network.  

NNs are also capable of pattern recognition, which requires the NN to match 

large amounts of input information simultaneously and generate a categorical or 

generalized output with a reasonable response to noisy or incomplete data. For a 

complex system with many sensors and possible fault types, real-time response 

is a difficult challenge to both human operators and expert systems. However; 

while the training time for a neural network may be long, once it has been 

trained to recognize the various conditions or states of a complex system, it only 

takes one cycle of the neural network to detect or identify a specific condition or 

state (Tsoukalas and Uhrig 1997).  

6.3.3 Biological Neurons 

ANNs are based on the modeling of the behavior of neurons found in the human 

brain. The biological neural network consists of nerve cells (neurons) as shown in 

Figure 6.2. In the cell body (soma of the neuron), which includes the neuron’s 

nucleus most of the neural computation occurs. The signals generated in soma 

are transmitted to other neurons through an extension on the cell body called 

axon or nerve fibres. Another extension on the cell body is dendrites. They are 

like bushy tree and are responsible from receiving the incoming signals 

generated by other neurons. The axon is separated into several branches and at 

the very end the axon enlarges and forms terminal buttons. Terminal buttons 

are placed in special structures called the synapses which are the junctions 

transmitting signals from one neuron to another.  



 

Figure 6.2 Structure of a Biological Neuron 

 

All interconnections are not equally weighted. Some have a higher priority (a 

higher weight) than others do. Also, some are excitory and some are inhibitory. 

These differences are due to the differences in chemistry, the existence of 

chemical transmitter and modulating substances inside and near the neurons, 

the axons, and in the synaptic junction. This nature of interconnection between 

neurons and weighting of messages is also fundamental to ANNs.  

In terminal buttons, the synaptic vesicles which hold several thousand molecules 

of chemical transmitters take place. When a nerve impulse arrives at the 

synapse, some of these chemical transmitters are discharged into synaptic cleft, 

(the narrow gap between the terminal button of the neuron transmitting the 

signal and the membrane of the neuron receiving it). The membrane of the post-

synaptic cell gathers the chemical transmitters. This cause either decrease or 

increase in the efficiency of the local sodium and potassium pumps depending on 

the type of the chemicals released into the synaptic cleft. The synapses, whose 

activation decreasing the efficiency of the pumps cause depolarization of the 

resting potential. On the other hand, the synapses increasing the efficiency of 

pumps results in hyper-polarization. The first kind of synapses which encourage 

depolarization is called excitatory and the others which discourage it are called 

inhibitory synapses. If the decrease in the polarization is adequate to exceed a 

threshold, then the post-synaptic neuron fires.  
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6.3.4 Artificial Neurons 

A NN resembles the brain since knowledge is acquired by the network from its 

environment through a learning process, and synaptic weights are used to store 

the acquired knowledge. Engineering systems are considerably less complex 

than the brain, hence from an engineering viewpoint, ANN can be viewed as 

nonlinear empirical models that are especially useful in representing input-output 

data, making predictions in time, classifying data, and recognizing patterns.  

Figure 6.3 shows the basic structure of a neuron model. A neuron receives one 

or more input signals. The artificial neuron (processing element) given in this 

Figure 6.3 has N inputs (u1, u2,…,uN) and each input is weighted according to the 

value wj (w1, w2, …, wN), which is called a weight. These weights in the artificial 

model are similar to the synaptic strength between two connected neurons in the 

human brain. A negative value for a weight indicates an inhibitory connection 

while a positive value indicating excitatory one. The weighted signals are 

summed and the resulting signal called the activation, a, given by the formula as 

in Equation 6.2, is sent to a transfer function, f, which can be any type of 

mathematical function. θ represents the threshold in artificial neuron, and it may 

be assigned a positive value in artificial neurons unlike biological neurons. If θ is 

positive, it is usually referred as bias (Bahar, 2003).  

 

Figure 6.3 Basic Structure of an Artificial Neuron 
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Originally, the neuron output function, f(a), in McCulloch-Pitts model proposed as 

threshold function, however, linear, ramp, and sigmoid functions are also widely 

used output functions. 

A collection of neurons connected to each other forms the ANN. Connection 

weights of neurons are represented in the form of matrix w, element wij of which 

is the connection weight between ith and jth neurons. 

6.3.5 Types of Artificial Neural Networks 

The arrangement of the interconnections between the NNs and the nature of the 

connections determine the structure of a NN. How the strengths of the 

connections are adjusted or trained to achieve a desired overall behavior of the 

network is governed by its learning algorithm. Neural networks can be classified 

according to their structures and learning algorithms. 

Basic Structures of Neural Networks 

Neural networks can have two different structures as feed-forward networks and 

recurrent networks. 

Feed-forward neural networks: The neurons are organized in the form of 

layers. Figure 6.4 is a structure of a feed-forward (layered) neural network. A 

group of neurons, called the input layer, receives a signal from some external 

source and passes this information to the network. In general, this input layer 

does not process the signal unless it needs scaling. Another group of neurons, 

called the output layer, return signals to the external environment. The 

remaining groups of neurons in the network are called hidden layers since they 

do not receive signals from or send a signal to an external source. A typical NN 

consists also a bias term, which acts on a neuron like an offset. The function of 

the bias is to provide a threshold for the activation of neurons. The bias input is 

connected to each of the hidden and output neurons in a network. Signals flow 

from the input layer through the output layer in one direction. The neurons are 

connected from one layer to the next (input to hidden, hidden to hidden, hidden 

to output), but not within the same layer or to the previous layer (Bahar, 2003). 



 

Figure 6.4 Basic Structure of a Feed-Forward Network 

 

In a feed forward neural network, if there is only the layer of input neurons and 

a single layer of neurons constituting the output layer, then they are called 

single layer network. If there are one or more hidden layers, such networks are 

called multilayer networks.  

Examples of feed-forward networks include the multilayer perceptron (MLP), the 

learning vector quantization (LVQ) network, and the group-method of data 

handling (GMDH) network (Bulsari, 1995). 

A feed-forward network doesn’t have a dynamic memory. In order to use it for a 

dynamic system, generally moving window method is used. This method 

employs both the current and the past inputs and outputs of the system as 

inputs to the network and has been used satisfactorily for representing a 

dynamic system (Bahar et al., 2004, Jazayeri-Rad, 2004). One of the drawbacks 

of this method is its slow computation due to the large number of inputs. The 

large number of inputs also makes the identifier highly susceptible to external 

noise. Another drawback is that, the training structure is different from the recall 

structure and frequently the networks seem to have been trained well with the 

training structure but have poor performance with the recall structure. Thus, to 

obtain a satisfactory independent simulation of a dynamic system is not easy 

(Pham and Liu, 1995). In feed-forward networks, the output at any instant is 

dependent only on the inputs and the weights at that instant; therefore, these 

networks have no dynamic memory. 
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Recurrent networks: In a recurrent network, connections may be made 

between neurons in nonadjacent layers or within the same layer or feedback 

connections from a neuron in one layer to a neuron in a previous layer. Thus, 

signals can flow in both forward and backward directions and the output of that 

neuron becomes a function of both inputs from the previous layer at time t and 

its own output that existed at an earlier time. Because of this property, recurrent 

networks have a dynamic memory. Examples of recurrent networks include the 

Hopfield network, the Elman network, and the Jordan network. The Elman 

network is one of the simplest type that can be trained using the 

backpropagation learning algorithm and is therefore used in this study. 

In an Elman network, in addition to the input units, hidden units, and output 

units, there are also context units. The input and output units have an 

interaction with the outside environment, however the hidden and context units 

have not. The input units only pass the signals without changing them. The 

output units sum the signals fed to them. The hidden units can have linear or 

nonlinear activation functions. The context units are used only to memorize the 

previous activations of the hidden units. The Elman network is only partially 

recurrent since the recurrent connections are fixed and the feed-forward 

connections are modifiable. At a specific time, k, the previous activations of the 

hidden units (at time k-1) and the current inputs (at time k) are used as inputs 

to the network. These inputs are propagated forward to produce the outputs. 

The standard backpropagation learning rule is then employed to train the 

network. After this training step, the activations of the hidden units at time k are 

sent back through the recurrent links to the context units and saved there for 

the next training step (time k+1). 
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In Figure 6.5, a sample structure for an Elman network is given. The external 

inputs to the network is denoted by U(k-1), the network outputs is denoted by 

Y(k), the activations of the hidden units and the outputs of the context units are 

denoted by X(k) and Xc(k), respectively. These can be represented as in 

Equation 6.3 when the weight matrices are denoted as W W . F is the 

nonlinear vector function. 

    

( ) { ( ), ( 1)}
( ) ( 1)

( ) ( )

xc c xu

c

yx

X k F W X k W U k
X k X k
Y k W X k

= −

= −

=

         (6.3) 



 

Figure 6.5 Basic Structure of an Elman Network 

In particular, when linear hidden units are adopted and the biases of the hidden 

and outputs units are assumed to be zero. Standard state space descriptions of 

dynamic systems can be written as in Equation 6.4. 

     

( ) ( ) ( 1)
( ) ( 1)

( ) ( )

= + −

= −

=

xc c xu

c

yx

X k W X k W U k
X k X k
Y k W X k

          (6.4) 

The order of the models depends on the number of states, which is also the 

number of hidden units. Theoretically, an Elman network is able to model an nth 

order dynamic system (where n is the number of units in the hidden layer) if it 

can be trained to do so. An Elman network will be significantly smaller in 

structure than a feed-forward network when n is large (Pham and Liu, 1995). 

Learning in Neural Networks 

When NN is used for modeling, generally, there is no direct analytical method of 

calculating the values of the weights. Instead, the NN must be trained with a set 

of data of the process to be modeled. The procedure of estimating the values of 

the weights and establishing the NN structure is called “training” and the 

algorithm used to do this is called a “learning algorithm”. Learning and recall are 

the two major functions that NN perform. In the learning process, the connection 

weights of ANN are adapted to produce the desired output vector in response to 

a stimulus vector presented to the input buffer. The learning algorithm is a type 
 57



 58

of optimization algorithm. Recall is the process of accepting an input stimulus 

and producing an output response in accordance with the network weight 

structure. Recall is an integral part of the learning process since a desired 

response to the network must be compared to the actual output to create an 

error function.  

Two types of learning algorithms exist as supervised and unsupervised learning 

algorithms. In supervised learning, the ANN is trained to give the desired 

response to a specific input stimulus. Examples of supervised learning algorithms 

include the delta rule, the generalized delta rule or backpropagation algorithm 

and the LVQ algorithm. The vast majority of learning in engineering applications 

involves supervised learning. A stimulus is presented at the input layer 

representing the input vector and another stimulus is presented at the output 

buffer representing the desired response to the given input. The difference 

between actual output and desired response constitutes an error, which is used 

to adjust the connection weights. Reinforcement learning is a special case of 

supervised learning. Instead of using a teacher to give target outputs, a 

reinforcement learning algorithm employs a critic only to evaluate the goodness 

of the neural network output corresponding to a given input. An example of this 

type learning algorithm is the genetic algorithm (GA).  

In unsupervised learning, the desired outputs are not known. Only the input 

patterns are presented to the NN which automatically adapts the weights of its 

connections to cluster the input patterns into groups with similar features. This 

type of learning is sometimes referred to as self-organizing learning, i.e., 

learning to classify without being taught. Examples of unsupervised algorithms 

include the Kohonen, and Carpenter-Grossberg Adaptive Resonance Theory 

(ART) competitive learning algorithms.  

Backpropagation Training in Elman Networks 

Regardless of the training algorithm used to calculate the values of the weights, 

all of the training methods go through the same general steps as: 

1. For a specified ANN architecture, the values of the weights in the network 

are initialized as small random values; 

2. The input and output data are scaled; 



3. The inputs of the training set are sent to the network and the resulting 

outputs are calculated; 

4. Some measure (an objective function) of the error between the outputs of 

the network and the known correct (target) values is calculated; 

5. The gradients of the objective function with respect to each of the individual 

weights are calculated; 

6. The weights are adjusted in such a way that minimizes the error, starting 

from the output layer and going backward to input layer; 

7. The procedure is repeated from step 3 for each vector in the training set 

until the error for the set is lower than the required minimum error. 
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( 1)X k − 1 1( 1) ( 2)xc c xu
k kk W U k− −− + −

( 1)cX k − ( 2)X k

In this study, the backpropagation algorithm is used for training. The weights of 

the Elman network are estimated recursively and found that, the feedback 

depends on  which can be represented by W X . 

 depends on −  which is equal to 2 2( 2) ( 3)c xu
k kW X k W U k− −
xc − + − . For 

this reason, ( )cX k  depends on the weights of different previous time instants. 

When the backpropagation method is applied, the dependence of the (c )X k  on 

the weights should also be taken into account. Assuming that, there is only one 

input unit and one output unit in the Elman network. The training data set is 

(u(k), yd(k)), k = 1,2, …, N. Here, u denotes the input, and yd denotes the 

desired value of the output. When one input-output data pair is presented to the 

network at time k, the squared error at the network output, e can be defined as: 

                                        21 ( ( ) ( ))
2

= −k de y k y k                                        (6.5) 

For the whole training data set, the summed squared error is: 
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If pattern-based learning is conducted, the weights are modified at each time 

step k. For Wyx
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For Wxu and Wxc, 
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(k), wi
xc is the ith row of Wxc, wi

yx is the ith 

element of Wyx. As discussed previously, the internal feedback is dependent on 

Wxc. Therefore, 

y k y k w
w

where xi(k) is the ith element of X

from Equation 6.4, 
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This equation shows that there is a dynamic trace of the gradient. This is similar 

odification 

in the gradient descent algorithm is   

c
c T xci

ixc xc
i

X k w
w w

to standard backpropagation since the general expression for weight m

                                              η ∂
∆ = −

∂
keW                                  

W
         (6.11) 

where η is a positive constant, called learning factor.  

If the dependence of X(k-1) on Wxc is ignored, the above algorithm degenerates 

to the standard backpropagation algorithm (Pham and Liu, 1995). 
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 with the fewest number of layers and neurons which still 

quickly and efficiently give the minimum root-mean-squares (RMS) error can be 

r improves the network’s 

prediction capability. However, adding an extra hidden layer commonly gives 

6.3.7 Applications of Artificial Neural Networks 

NNs have been employed in a wide range of applications; including modeling and 

prediction, classification and pattern recognition, clustering, signal processing, 

and optimization. In this study, it is used for prediction of state variables. 

6.3.6 ANN Architecture 

The input/output mapping of a network is established according to the weights 

and the activation functions of their neurons in input, hidden and output layers. 

The number of input neurons corresponds to the number of input variables in the 

NN, and the number of output neurons is the same as the number of desired 

output variables. The choice of the number of hidden layers and the neurons in 

the hidden layer(s) is not as straightforward as input and output layers since it 

depends on the network application. However, the number of hidden layers can 

be chosen based on the training of the network, using various configurations. 

The configuration

selected. In general, adding a second hidden laye

prediction capabilities similar to those of two-hidden layer networks, but requires 

longer training times due to the more complex structures (Zilouchian and 

Jamshidi, 2001). 
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CHAPTER 7 

SIMULATION CODE AND ALGORITHM 

The developed unsteady state dynamic model (Chapter 4) of the reactive batch 

distillation column and the designed ANN estimator (Chapter 6) are simulated 

utilizing MATLAB Sofware. The simulation code, the algorithm for the program, 

the thermodynamic library and the ANN estimator which are included in the main 

program are given below. 

7.1 Main Simulation Code 

The simulation codes are written as m-files and given in Appendix C. A method 

of Euler’s integration is used for integration of ordinary differential equations of 

the model. The main simulation program consists of four m-files, “Glob_Decs.m”, 

“Glob_Initial.m”, “Cont_Plant_Mfile.m”, and “PressureProfile.m”. The overall 

structure of the simulation code is given in Table 7.1 and the overall flow 

diagram is shown in Figure 7.1. The algorithm given in Figure 7.1 is a modified 

version of what is given by Yıldız (2002). The modifications are in the column 

(normal versus reactive), in compounds (hydrocarbon versus polar) and in the 

estimator (EKF versus ANN). 

In the program algorithm, the simulation begins with “Glob.Decs.m” and 

“Glob_Initial.m”, which are responsible for defining and initializing the 

operational parameters. Following the initialization, the main integration loop 

starts with “thermo_LIBRARY.dll”, in which physical properties (densities and 

molecular weights) and thermodynamical properties (equilibrium temperatures, 

vapor compositions and vapor/liquid enthalpies) of the mixtures are evaluated. 

After all the physical data are evaluated, vapor flow rates throughout the column 
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are calculated using the energy equations. The ordinary differential equations 

are then integrated and the current liquid flow rates are calculated. Then the 

integration loop goes to the first step of the algorithm. Pressure profile in the 

column is calculated by “PressureProfile.m”. The main file ”Cont_Plant_Mfile.m”, 

where the simulation of whole plant is realized, executes all the m-files including 

the ANN estimator. Simulation codes for the thermodynamic library and for the 

ANN estimator will be briefly explained in the following sections. 

Table 7.1 Overall Structure of the Simulation Code 

Main Program Code 

Glob_Decs.m 

Glob_Initial.m 

Cont_Plant_Mfile.m 

Pressure_Profile.m 

Thermodynamic Library “thermo.LIBRARY.dll” 

Thermodynamic Library MATLAB Interface Code 

thermo_Init.m 

thermo_Equilibrium.m 

thermo_Enthalpy.m 

thermo_Density.m 

Thermodynamic Library FORTRAN dll Code 

thermo_LIBRARY.f 

thermo_LIBRARY.h 

common_plant.h 

parameter.h 

thermo_data.dat 

ANN Estimator Code 

training.m 

find_R_interval.m 

normalize_sim_input.m 

simulate.m 

unnormalize_sim_output.m 



 

Figure 7.1 Flow Diagram of the Main Program Algorithm (adapted 
from Yıldız, 2002) 
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Figure 7.1 Flow Diagram of the Main Program Algorithm (continued) 
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7.2 Thermodynamic Library Code 

The thermodynamic library has two parts, one part is written using MATLAB 

Software and the other part is written in FORTRAN Programming Language. The 

MATLAB part forms only an interface between the MATLAB and FORTRAN, since 

all the calculations are done in FORTRAN. The library has functions for phase 

equilibrium, enthalpy, density, and molecular weight calculations. In the MATLAB 

part, “thermo_Init.m” initializes the library. “thermo_Equilibrium” calls the 

function from FORTRAN which calculates the phase equilibrium temperature and 

vapor composition for a given liquid composition, pressure, and an initial guess 

for the equilibrium temperature. “thermo_Enthalpy” calls the function where the 

liquid and vapor phase enthalpies are evaluated from given parameters of liquid 

and vapor composition, temperature and pressure. “thermo_Density” calls the 

function that calculates the average liquid density and molecular weight for the 

mixture using its liquid composition, temperature, and pressure. All the functions 

in FORTRAN are coupled in a single FORTRAN project, “thermo_LIBRARY.f”. 

FORTRAN “dll” codes also includes the files “thermo.LIBRARY.h”, 

“common_plant.h”, and “parameter.h”, which provide the definitions of some 

algorithmic parameters. Through the input “thermo_data.dat” file, the properties 

of the components are supplied. The MATLAB interface codes and FORTRAN 

codes can be found in Appendix C.2 and Appendix C.3, respectively. 

7.3 ANN Estimator Code 

The m-files used for neural network is given in Appendix C.4. The neural network 

is trained by using the m-file “training.m”. The first step in training a network is 

to create the network object. The function newelm creates an Elman network. It 

requires four inputs and returns the network object. The first input is an R by 2 

matrix of minimum and maximum values for each of the R elements of the input 

vector. The second input is an array containing the sizes of each layer. The third 

input is a cell array containing the names of the transfer functions to be used in 

each layer. The final input contains the name of the training function to be used. 

When the network is created, the weights and biases of each layer are initialized 

and the network is ready for training. 

The training process requires a set of examples of network inputs (temperatures 

at selected trays) and target outputs (distillate compositions). The m-file 
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“training.m” takes the examples for the distillation column from normalized data 

“input_norm” and “output_norm”. During training, the weights and biases of the 

network are iteratively adjusted to minimize the network performance function. 

The default performance function for Elman network is mean square error (mse), 

the average squared error between the network outputs and the target outputs. 

The program uses a back-propagation training algorithm, trainbfg, to adjust the 

weights of the network in order to minimize the sum-squared error of the 

network. This is done by continually changing the values of the network weights 

in the direction of steepest descent with respect to the error. The change in each 

weight is proportional to that element’s effect on the sum-squared error of the 

network. The changes to the weights and biases of the network are obtained by 

multiplying the learning rate (lr) times the negative of the gradient. The larger 

the learning rate, the bigger the step. If the learning rate is made too large, the 

algorithm will become unstable. If the learning rate is set too small, the 

algorithm will take a long time to converge.  The training status will be displayed 

every show iterations of the algorithm. Other parameters like epochs, goal, and 

time determine when training is stopped. The training will stop if the number of 

iterations exceeds epochs, if the performance function drops below goal, or if the 

training time is longer than time seconds. In this study; the performance goal, 

the learning rate, and the epochs are chosen as 1×10-7, 0.0001 and 500, 

respectively. 

Once the network is trained, it is saved and used for online estimation. At each 

estimation time interval, as given in Table 7.1, “find_R_interval.m” finds the 

interval of the reflux ratio and also finds the maximum and minimum values of 

the input and output variables by interpolation. Each input element to the 

network is normalized to a value between -1 and 1 by using 

“normalize_sim_input.m”. The network outputs are obtained in “simulate.m” by 

calling the function sim that takes the network input and the network object net 

that was created earlier. The network output is then converted to its original 

value through “unnormalize_sim_output.m”. 
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CHAPTER 8 

RESULTS AND DISCUSSION 

The results of the modeling and the control studies of the reactive batch 

distillation tray column are discussed separately in three sections given below; 

considering modeling, experimentation, optimization and state estimation using 

ANN for control. 

8.1 Modeling Studies 

Modeling studies are carried in three steps. In the first step, simulation studies 

are done and then the results are checked with the simulation data obtained 

from the literature. In the second step, experimental studies are done and data 

is collected at total and different reflux ratios. In the third step, the experimental 

data and the simulation results are compared and the dynamic model is 

improved by selecting the appropriate thermodynamic model for the VLE 

calculations. 

8.1.1 Simulation Results 

Modeling studies carried in this study are explained in Chapter 4 in detail. The 

proposed model is checked first with similar studies found from the literature. 

(Mujtaba and Macchietto, 1997 and Monroy-Loperena and Alvarez-Ramirez, 

2000). The detailed column parameters used by for comparison are given in 

Table 8.1. 

 



Table 8.1 Column Parameters 

No. of stages (including reboiler and total 

condenser) 

10 

Total fresh feed, kmol 5.0 

Feed composition (ethyl acetate, ethanol, 

water, acetic acid), mole fraction 

0.0, 0.45, 0.1, 0.45 

Column holdup, kmol 

     condenser 

     internal plates 

 

0.1 

0.0125 

Condenser vapor load, kmol/h 2.5 

Column pressure, bar 1.013 

 

 
In the comparison test studies, the VLE data of Model-I which is given in Section 

4.7.1 and the rate expression given in Equation 8.1 are used. 

                                          c  1 1 2 2 4[ /( min)]r gmol L k c c k c3= −         (8.1)  

where k1 = 4.76 x 10-4 and k2 = 1.63 x 10-4 and ci represents the 

concentration in terms of gmol/L for the ith component. 

The comparison of simulation studies at total reflux and at reflux ratio of 0.95 

are given in Figures 8.1 and 8.2, respectively. As can be seen from the figure the 

results are almost the same. This indicates that the developed dynamic model in 

this study is as good as the previous models to represent this non-linear and 

complex problem of reactive batch distillation column behavior. 

8.1.2 Experimental Results 

After seeing that the simulation results are similar to that of the literature, 

experiments (Chapter 3) are performed in a lab-scale distillation column in order 

to check the model results with the experimental data. The experiments are 

done at total reflux for 8.5 hours until the first steady state is reached. After the 

steady state is reached, the operation is continued with an arbitrary reflux ratio 

of 5.72. The compositions of distillate and the reboiler data are collected with 

respect to time and are shown in Figure 8.3. 
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                    (a)            (b) 

Figure 8.1. Distillate Compositions at Total Reflux (a) Results of 
Monroy-Loperena and Alvarez-Ramirez (2000) (b) 
Results of the Simulation in This Study 

          

       (a)             (b) 

Figure 8.2. Distillate Compositions at R=0.95 (a) Results of Monroy-       
Loperena and Alvarez-Ramirez (2000) (b) Results of the 
Simulation in This Study 
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(a) 

 

(b) 

Figure 8.3. Experimental Results 
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arison of Experimental Data and Simulation Results 

he match 

between the two steady state results is obtained. The dynamic change of the 

ompared 

with the experimental data both for distillate and reboiler compositions of the 

omponents at steady state reached at total reflux conditions in Figure 8.4. It 

can be seen from the figure that the steady state values (t = 20 hour) are too 

different from each other. Thus, there is no need to check the dynamic behavior 

with a finite reflux ratio when the steady state values are so different. 

The comparison of the results of the theoretical studies found from literature 

with the results of the theoretical studies done revealed that, the model used is 

as good as others. However, the results of the previous studies taken from the 

literature are not in good agreement with the results of the experiments in terms 

of steady state composition values reached under total reflux conditions. The 

differences seen can be due to either VLE expression or the rate expression 

used. Therefore, studies are carried out to find the source of the error. 

 

8.1.3 Comp

There is a difference in the starting conditions of the experiments and 

simulation. As it was explained in Chapter 4, the simulation code is written by 

taking the concentrations across the column as same with the reboiler feed 

compositions. Therefore, although the trends of the profiles of the compositions 

of the components are similar, they cannot be compared up to the steady state 

point. Therefore, the dynamic comparison can only be done after t

compositions of the distillate and the reboiler of the experiment are compared at 

the given reflux ratio with that of simulation results using different VLE models 

and rate expressions as given in Table 8.2. 

i) Model-I 

The results of the simulation study which uses Model-I (Table 8.2) is c

c



 

(a) 

 

(b) 

Figure 8.4. Experimental and Simulation Results (with Model-I) for 
Distillate and Reboiler Compositions at Total Reflux 
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ii) Model-II 

In Model-II (Table 8.2), φ φ−  method with Peng-Robinson EOS and van der 

Waals mixing rule are used. The results of this simulation and the experiments 

re given in Figure 8.5 for total reflux operation. It is found that there are great 

differences in the attained steady state points. Thus, there is no need to check 

the dynamic trends. Therefore, another model must be checked. 

iii) Model-III 

In Model-III, six different model approaches are tried. These are related to the 

use of different models for EOS, mixing rule and activity coefficient. These model 

approaches are given in Table 8.2. 

Model-III-A

a

 

The dynamic results of the simulation and the experiments are given in Figure 

8.6 for a constant reflux ratio of 5.72. The time at which steady state is reached 

at total reflux is shown as zero. It is found that the steady state values reached 

at total reflux are in a better agreement with experimental data compared to 

Model-I and Model-II. The checks that will be done from this point on will be 

based on the data taken after steady state is reached. It can be seen from 

Figure 8.6 that the results are somewhat improved especially for the reboiler 

compositions. However, the dynamic trends for distillate compositions 

deteriorate and it can be understood that either the PR EOS or HVO mixing rule 

is not appropriate for this system. 

Model-III-B 

In Model-III-B, EOS is changed to PRSV with the same mixing rule and the 

activity coefficient model. The performa ce of the system with this model is 

given in Figure 8.7 and the IAE sc this VLE model are given in Table 

8.2. As it can be seen, distillate compositions are much better than in the Model-

III-A which uses PR. However, the reboiler compositions become worse in this 

case and therefore this model also does not give satisfactory results. 

 

n

ores with 
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(a) 

 

(b) 

Figure 8.5. Experimental and Simulation (with Model-II) Results for 
Distillate and Reboiler Compositions at Total Reflux 
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          (a) 

 
 

          (b) 

Figure 8.6. Experimental and Simulation (with Model-III-A) Results 
for Distillate and Reboiler Compositions at Reflux Ratio of 
5.72 after Total Reflux 
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          (a) 

 

         (b) 

Figure 8.7. Experimental and Simulation (with Model-III-B) Results 
for Distillate and Reboiler Compositions at Reflux Ratio of 
5.72 after Total Reflux 
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Model-III-C 

In this model, mixing rule is changed to HVOS and it is used together with PRSV 

EOS and NRTL activity coefficient model. The results are given in Figure 8.8 and 

Table 8.2. The results for both distillate and reboiler compositions are improved 

significantly with this thermodynamic model. 

Model-III-D and Model-II-E 

In order to see the effects of different activity coefficient models, Wilson and 

UNIQUAC activity coefficient models are used in EOS-Gex approach. The distillate 

and reboiler liquid compositions with Wilson model (Model-III-D) and UNIQUAC 

model (Model-III-E) are given in Figures 8.9 and 8.10, respectively. The IAE 

scores with these models are given in Table 8.2. It can be seen from the figures 

that while the NRTL and Wilson models give similar results, UNIQUAC performs 

poorly. Since NRTL model gives slightly better results than Wilson model, NRTL 

model is selected to be the mos ctivity coefficient model for this 

system. This activity coefficient model will be used also in Model-IV. 

iv) Model-IV 

In this model, NRTL activity coefficient model is used for the liquid phase and 

PRSV-EOS with the van der Waals mixing rule (Model-IV-A) and PR-EOS (Model-

IV-B) is used for the vapor phase. 

It can be seen from Figure 8.11 and from the IAE scores given in Table 8.2, that 

the distillate compositions are improved compared to the Model-III. Although the 

reboiler compositions become a little worse, they are in an acceptable range. 

Unlike Model-III, PR-EOS also gives similar results with PRSV in Model-IV as can 

be seen in Figure 8.12 and IAE scores given in Table 8.2. 

 

 

t proper a



 

          (a) 

 

          (b) 

Figure 8.8. Experimental and Simulation (with Model-III-C) Results 
for Distillate and Reboiler Compositions at Reflux Ratio of 
5.72 after Total Reflux 
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            (a) 

 

           (b) 

Figure 8.9. Experimental and Simulation (with Model-III-D) Results 
for Distillate and Reboiler Compositions at Reflux Ratio of 
5.72 after Total Reflux 
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          (a) 

 

           (b) 

Figure 8.10 Experimental and Simulation (with Model-III-E) Results 
for Distillate and Reboiler Compositions at Reflux Ratio of 
5.72 after Total Reflux 
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           (a) 

 

          (b) 

Figure 8.11. Experimental and Simulation (with Model-IV-A) Results 
for Distillate and Reboiler Compositions at Reflux Ratio 
of 5.72 after Total Reflux 
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          (a) 

 

          (b) 

Figure 8.12. Experimental and Simulation (with Model-IV-B) Results 
for D iler Compos at R at
of 5.72 after Total Reflux 

istillate and Rebo itions eflux R io 
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v) Summary of Th

The summary of th scores for different thermodynamic 

m in the study are given in Tab  Co g t  

scores for distillat  it can be concluded that, Model-

IV- ses the tradition

ermodynamic Models 

e descriptions and the IAE 

odels that are used le 8.2. mparin he IAE

e and reboiler compositions,

A which u al γ φ−  approach with NRTL ac  

model for the liquid phase and the  for the vapor phase, is 

the best model for nol-acetic acid-ethyl acetate-water 

system. Nevertheless, Model-IV-B  uses the traditional 

tivity coefficient

 PRSV equation of state

the quaternary etha

 which γ φ−  approach with 

RTL activity coefficient model for the liquid phase and the PR-EOS for the vapor 

hase, which is simple to use also gives similar result with a very close IAE 

core. Thus, both methods can be recommended to be used in the simulation of 

thanol esterification reaction with acetic acid in a batch distillation column. 

i) VLE Data Check 

 experimental data for the system ethanol-acetic acid-ethyl acetate-water is 

le in the literature. Therefore, the best selected thermodynamic model 

erforms very well when used in the reactive distillation column modeling, which 

 tested with the experimental VLE data taken from the literature. Table 8.3-b 

ives the equilibrium vapor compositions of the components (yi) and the 

quilibrium temperatures, obtained from the simulation and from the study of 

ang et al. (1992), for the liquid compositions (xi) given in Table 8.3-a. From the 

omparison of the VLE Model-IV-A with the experimental VLE data, it can be said 

at this VLE model gives satisfactorily accurate results. 
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Table 8.2 Summary of Thermodynamic Models 

IAE Scores  

Model 
 

Description 
Distillate Reboiler Overall 

Model-I VLE data from literature    

Model-II φ φ−  method  

with PR + van der Waals 

   

Model-III-A EOS-Gex method  

with PR + HVO + NRTL 

6.080 1.049 7.129 

Model-III-B EOS-Gex method  

with PRSV + HVO + NRTL 

4.514 2.805 7.320 

Model-III-C EOS-Gex method  

with PRSV + HVOS + NRTL 

2.131 0.621 2.751 

Model-III-D EOS-Gex method  

with PRSV + HVOS + Wilson 

2.437 0.552 2.989 

Model-III-E EOS-Gex method  

with PRSV + HVOS + UNIQUAC 

2.915 0.877 3.791 

γ φ−Model-IV-A  method  

with PRSV + van der Waals + NRTL 

1.321 1.026 2.347 

γ φ−Model-IV-B  method  

with PR + van der Waals + NRTL 

1.279 1.072 2.351 
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 during the operation for each 

product-cut and slop-cut and the durations of these operations are obtained from 

the optimization algorithm. 

For the solution of the optimization problem, fmincon algorithm, available in 

oolbox is used. fmincon attempts to find a constrained 

mimimum of a eral variables starting timate. 

However, while usin , the function to be mimimized straints 

must both be con e optimization of the nonlinear problem in this 

study, fmincon a local solutions. For this reason, the solution 

depends mostly o imate given. Therefore, the optimization run is 

done with differe tes within the range of constra nd a global 

optimum is foun duct-cut and slop-cut operations. The whole 

reactive batch distillation column model is simulated for each case with the 

specified desired purities in product-cut tanks. The reflux ratio which makes the 

apacity factor maximum is selected as the optimum value for that period of 

operation (i.e., 1st product-cut, 1st slop-cut, 2nd product-cut, and so on). 

The system studied is a four component system of ethanol-acetic acid-water-

product cut tanks is 240.61 moles and that in slop-cut tanks is 71.06 moles. 

8.2 Nonlinear Optimization 

The objective function in the nonlinear optimization of the ethanol esterification 

system is selected as the maximization of the capacity factor as stated in 

Chapter 5. With this objective function, the maximum product amount at 

specified purities in minimum time is aimed to be obtained. In this optimization 

problem, the reflux ratio for each product-cut and slop-cut operations and their 

durations are the optimization variables. The total batch time, tF is a dependent 

variable in the optimization algorithm. A piecewise constant reflux ratio profile is 

used since the reflux ratio is kept constant during each of the product-cut and 

slop-cut operations. The optimum reflux ratio value

MATLAB Optimization T

 scalar function of sev at an initial es

g fmincon  and the con

tinuous. In th

lso gives only 

n the initial est

nt initial estima ints a

d for each pro

c

ethyl acetate, therefore, three slop-cuts are obtained in the operation of reactive 

batch distillation column. Table 8.4 shows the optimal reflux ratio profile 

obtained in order to give three product-cuts with the desired purities of 0.52, 

0.50, and 0.65 from the reactive mixture of ethyl acetate, ethanol, water, and 

acetic acid with the initial compositions of 0.0, 0.5, 0.0, and 0.5. The heaviest 

component in the system, acetic acid, is collected in the reboiler with a desired 

purity of 0.999. With this optimal reflux ratio policy, 77.2% of the feed can be 

collected in product-cut tanks since the total amount of products collected in 
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lation column. This is 

mainly due to the close boiling points of these two components as stated in 

lux Ratio Profile 

The purities of ethyl acetate and ethanol in product-cut tanks (52% and 50%, 

respectively) are low despite the use of reactive distil

Chapter 5. Another reason is that acetic acid is the highest component in the 

system and it remains mostly in the bottom of the column. Therefore, the 

production of ethyl acetate is limited by the lack of reactant acetic acid. Similar 

low values are also reported in the literature (Wajge and Reklaitis, 1999; Chang 

and Seader, 1988). In order to make use of the obtained slop-cuts, they can be 

further reprocessed through next operation. There are studies in the literature 

considering this issue like Bock et al. (1997) and Tang et al. (2003). The system 

under study is based on a single batch operation. 

Table 8.4 Optimum Ref

Optimum Reflux Profile

Time Interval (hour) 

0 – 9.15 

9.15 – 27.75 

27.75 – 29.43 

29.43 – 32.33 

36.21 – 38.17 

Reflux Ratio 

Total reflux 

8.21 

2.08 

3.26 

21.78 

32.33 – 35.12 

35.12 – 36.21 

1.94 

3.98 

 

8.3 Artificial Neural Network State Estimator 

For the inferential control of the distillation column under study, in order to 

operate the system effectively and efficiently, the time duration of the periods 

e faced to limit the product compositions at their 

maximum purities with the help of optimization program. However, this 

for each reflux ratio must b

necessitates the information about the composition values of the products. Thus, 

composition measurements at distillate and reboiler levels must be done. 

However, there are some drawbacks for these measurements (Chapter 6) and 

the compositions must be estimated. Therefore, temperature measurements 
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distillate compositions) that corresponds to its inputs (temperatures 

and reflux ratio) is found by interpolating the two networks, in which reflux ratio 

falls into. For example, when the reflux ratio value, R is between R1 and R2, the 

output of the 8.3 where di 

represents the distance between R and Ri.  

                                 

throughout the column are used to estimate the distillate compositions by the 

use of ANN which is frequently used in the industry also.

The dynamic system under study is highly nonlinear and it is observed that the 

composition profiles in the column changes significantly with different reflux ratio 

values. Thus, forming only one neural network and training it with input-output 

data obtained for various reflux ratio values is not reasonable. Therefore, a 

separate network is formed for each reflux ratio values and the value of the 

reflux ratio is also given to the estimator as input. The output of the ANN 

estimator (

estimator is found as given in Equations 8.2 and 

1 1

2 2

d R R

d R
                

R

= −

= −
                             (8.2)  

     1destimator output outp= × 2dN + ×2 1
1 2 1 2

ut of AN output of ANN
d d d d+ +

     (8.3) 

Each ANN is designed considering the network’s architecture, normalization 

rformance with respect to verification and generalization 

Considering the discussions given in Chapter 6, four temperature measurement 

roughout the column; the reboiler, 2nd tray, 5th tray, 

and the top tray (8th tray); are used in the estimation by neural networks. 

issue, and network pe

tests. 

8.3.1 Selection of Measurement Points 

locations equally spaced th

8.3.2 Range of Variables 

The neural network is trained with temperature and composition data generated 

by the help of simulation, utilizing unsteady state responses for different reflux 

ratio values. Neural networks cannot make accurate estimations if the operating 
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ational range within the maximum and 

minimum values for both input/output variables. 

In this study, the reflux ratio (L/V) is changed between 0.5 and 1.0 for the 

input/output data are outside their training data range. Therefore, the training 

data set should include sufficient oper

constant reflux ratio period after the steady state is reached for total reflux. The 

lower values of the reflux ratio are found to be not suitable for separation in 

distillation. In order to extend the training range, the reflux ratio profiles, which 

are in the range of ± 20% of the optimal reflux profile, are also used in the 

training of the network. The 13 values of reflux ratio used in training are given in 

Table 8.5. 

Table 8.5 Reflux Ratio Values Used in ANN Training 

Reflux Ratio Trend After Total Reflux Values of Reflux Ratio (L/V) 

Constant 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 1.0 

 

Variable with respect to a profile 

Roptimal  

± 10% Roptimal

± 20% Roptimal

 

In the training of the ANN, back-propagation training algorithm is used which is 

simple, easy to apply and successful in application. The training of the ANN is 

ratio ion program. 

Considering the discussions given in Chapter 6, an Elman Network is used in this 

have four 

neurons in the output layer. Two hidden layers, with 20 neurons in the first 

hidden layer and 34 neurons in the second hidden layer, are used in the network 

done by using the dynamic data which are collected using the values of reflux 

s given in Table 8.5 utilizing the MATLAB simulat

8.3.3 ANN Architecture 

study. Since four composition values for the four components in the distillate are 

desired to be taken as outputs from the neural network, it must 
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ently preferred transfer functions in the network structure, 

i.e. tan-sigmoid transfer functions for the hidden layers and purelin transfer 

ork weights, which is not very effective in many 

of the training algorithms such as backpropagation algorithm. For this reason, 

the collected training data are needed to be scaled. Each input and output 

parameter, p, is normalized to the range [-1….1] as pn according to Equation 8.4 

befor lues of 

data parameter p are pmax and pmin. Any future input-output data are normalized 

by the same method, and the network output is then converted back to its 

original values.  

structure. The frequ

function for the output layer, are used. 

8.3.4 Normalization 

Neural networks require the same order of magnitude for their input and output 

data. If the input and the output variables are not of the same order of 

magnitude, some variables may appear to have more significance than they 

actually do. The training algorithm has to compensate for order-of-magnitude 

differences by adjusting the netw

e being used in the neural network. The maximum and minimum va

min
min

max min max min

2( )(1 ( 1)) ( ) ( 1)
( )n

p pp p p
p p p p

1−− −
= × − + − =

− −
−   (8.4) 

8.3.5 Estimator Performance 

An important aspect of developing neural networks is determining how well the 

network performs once training is completed. Checking the performance of a 

trained network involves two main criteria:  

− how well the neural network recalls the output vector from data sets used to 

train the network (called the verification step);  

− how well the network predicts responses from data sets that were not used 

in the training phase (called the recall or generalization step).  

After training the neural network, the ANN estimator performance must be found 

using the model for both the verification and the generalization tests. 
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Verification Tests 

In the verification rformance is evaluated utilizing the 

specific initial input used in training. Thus, the previously used input data pattern 

ined network. The network then attempts to predict the 

corresponding output. In Figures 8.13 - 8.15, the responses of the distillate 

step, the network’s pe

is introduced to the tra

compositions for reflux ratios (L/V) of 0.7, 0.9 and for the optimum reflux ratio 

profile are shown respectively. It can be seen that, the network output will differ 

only slightly from the actual output data. It must be noticed that, in testing the 

network, the weight factors of ANN are not changed, they are frozen at their last 

values when training is ceased. 

 

Figure 8.13. Actual and Estimated Distillate Compositions with Total 
Reflux Followed by a Reflux Ratio of 0.7 



 

Figure 8.14. Actual and Estimated Distillate Compositions with Total 
Reflux Followed by a Reflux Ratio of 0.9 

 

Figure 8.15. Actual and Estimated Distillate Compositions with 
Optimal Reflux Profile 
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Generalization Tests 

Recall or generalization testing is conducted in the same manner as verification 

testing. However, in this case, input data with which the ANN is not trained, but 

which is in the range of the trained data set, is used. In this testing, the ANN 

measures how well the network can generalize what it has learned, and can form 

rules to make decisions about the data it has not previously learned. In the 

generalization step, new input patterns (whose results are known to us, but not 

to the network) are fed to the trained network. The responses of the column 

distillate compositions for a reflux ratio (L/V) of 0.75, 0.83, and 0.895 are shown 

in Figures 8.16 - 8.18, respectively. Furthermore, the responses of the column to 

a 10% increase and to a 5% decrease in the optimal reflux ratio profile are given 

in Figure 8.19 and 8.20, respectively. 

It can be seen from the figures that, the network estimates the outputs by 

interpolation with a good accuracy. Observing the success of the designed ANN 

after  the 

next step. 

verification and generalization tests, it is used in the control system as

 

Figure 8.16. Actual and Estimated Distillate Compositions with Total 
Reflux Followed by a Reflux Ratio of 0.75 



 

Figure 8.17. Actual and Estimated Distillate Compositions with Total 
Reflux Followed by a Reflux Ratio of 0.83 

 

Reflux Followed by a Reflux Ratio of 0.895 
Figure 8.18. Actual and Estimated Distillate Compositions with Total 
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Figure 8.19. Actual and Estimated Distillate Compositions with 10% 
Increased Optimal Reflux Profile 

 

Figure 8.20. Actual and Estimated Distillate Compositions with 5% 
Decreased Optimal Reflux Profile 
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8.4 Control Studies with the Designed ANN Estimator 

The ANN estimator is designed for utilizing it in the inferential control algorithm 

for composition control of the reactive batch distillation column. Thus, the 

performance of the ANN estimator is tested within this control algorithm. The 

control algorithm uses an actual scheduling policy explained in Chapter 4. The 

compositions in the reflux drum or in the product-cut tanks are the inputs to the 

controller as measured variables and the reflux ratio of the column is the 

manipulated variable. The optimal reflux ratio profile of the column is used as 

the pre-set reflux ratio values in the control algorithm. The tank, to which the 

distillate stream has to be diverted and the time for diversion (i.e. to change the 

reflux ratio to optimized pre-set value) are decided by the input compositions to 

the controller and by utilizing the actual scheduling policy. In the control 

structure, the compositions are supplied by the ANN estimator. The block 

diagram of this control scheme is shown in Figure 8.21. In control studies, the 

verified column simulation model is used to find the “actual” composition val es 

to adjust the operation scheduling (i.e. the reflux ratio policy). The same 

procedure is repea he compositions using the 

ANN estimator. Thus, for performance measures, IAE scores in the estimation of 

the compositions, the capacity factor, and the total batch time are considered 

and used. 

 

u

ted with the estimated values of t

 

Figure 8.21. Block Diagram of the Control Scheme 

8.4.1 Control Studies with Actual Composition Values 

Control studies by simulation are carried out by taking the composition data 

directly from the column model as the feedback to the controller. The desired 

product purities in the product-cut tanks are the set points of the controller 

which are 0.52, 0.5, 0.65, and 0.999. The response of the column in terms of 
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djusted in time by the controller, are also shown. This response 

resulted in the capacity factor and the total batch time of 5.35 mol/h and 38.17 

h, respectively. 

 

distillate compositions is given in Figure 8.22. In the figure, reflux ratio values, 

which are a

 

Figure 8.22. Distillate Compositions Change with respect to Time 
Using Actual Composition Values 

8.4.2 Control Studies with Estimated Composition Values 

In order to see the performance of the ANN estimator in the closed-loop control 

system, the same simulation is done by using the estimated compositions as the 

feedback to the controller. The response of the reflux drum compositions and the 

optimum reflux ratio values (adjusted in time by the controller) are given in 

Figure 8.23. As can be seen from the figure, the IAE scores of the compositions 

are high. Furthermore, errors in the capacity factor and the total batch time, 

which are in this case 6.36 mol/h and 34.59 h, are 19% and 9%, respectively. 

These differences in the performance measures are considered to be large. 

Therefore, in order to improve the performance of the ANN estimator in the 

closed-loop algorithm, it is considered to refine the error in the composition 

estimation by using the actual distillate composition measurements obtained 
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directly from the column in certain time intervals. In a real plant, composition 

measurements for such a system can be done in 15 minutes intervals. Therefore, 

the estimated compositions can be corrected in every 15 minutes interval. In 

Figure 8.23, it is observed that deviation in composition profiles start after total 

reflux period. Thus, a correction at this point is crucial. As a first trial, a 

correction during the total reflux period and one just after this period is 

considered. 

 

Figure 8.23. Distillate Compositions with Estimated Composition 
Feedback 



8.4.3 Control Studies with Estimated Composition Values (With Error 

Refinement) 
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 Figure 8.24, response in the compositions in the reflux drum, in the feedback 

inferential control algorithm, with error refinement by using only two actual 

distillate composition values taken from the column are shown. One of these 

meas ken 

just after total refl tio 

values adjusted in time by the controller are shown with dashed line. The IAE 

scores in the estimations of four components in the reflux drum are remarkably 

reduced. In addition, the errors in the capacity factor and the total batch time 

(5.34 mol/h and 37.41 h) are also reduced to 5% and 2%, respectively. 

In

urements is taken during total reflux operation and the other one is ta

ux operation as explained above. The optimum reflux ra

 

Figure 8.24. Distillate Compositions with Estimated Compositions 
Feedback with Two Error Refinement 
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Furthermore, in order to be sure about the error refinement time, the estimated 

values are compared with the ones obtained from simulation at discrete time 

intervals and the estimation errors are calculated. When the estimation errors 

are above their tolerance level, then the errors are refined. Until the time when 

the new product composition ed, the estimation errors are 

assumed to be constant. When new composition values (measurements from 

real plant) are obtained, the estimation errors are also updated. Figure 8.25 

shows the reflux drum liquid compositions obtained by using this procedure and 

the optimum reflux ratio value y the controller. The capacity 

factor and the total batch time in this case are 5.34 mol/h and 37.41 h, 

respectively. The IAE scores in the estimations and the errors in the capacity 

factor and the total batch time are almost same with the two measurement case. 

 

data are obtain

s adjusted in time b

As a result of this analysis, it can be said that the reactive batch distillation 

column can be controlled for variable reflux ratio policy by the use of the 

designed ANN estimator. 



 

Figure 8.25. Distillate Compositions with Estimated Compositions 
Feedback with an Error Tolerance Level for Error 
Refinement 
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CHAPTER 9 

CONCLUSIONS 
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In thi tive 

where ter. The 

estimator used in the inferential control algorithm is an ANN. 

• A dynamic first principles model is developed for the reactive batch distillation 

column by modifying previously developed batch distillation column simulation 

• In simulation studies, nearly same results are obtained with literature. 

mod

accu

• Among the three thermodynamic model approaches; 

s work, the inferential control of a multi-component batch reac

distillation column is studied. The reaction studied is an esterification reaction 

ethanol and acetic acid reacts to produce ethyl acetate and wa

(Yıldız et. al., 2005). 

However, when compared with the experimental data, it is found that, the 

el that uses the VLE and rate expressions given in the literature is not 

rate.  

,φ φ γ φ− − , EOS-G ; 

whic

PRS als, HVO, HVOS), 

ex

h are used in combined with two different equation of states (PR and 

V) and with three different mixing rules (van der Wa

φ φ−  approach is shown to be inappropriate for this system. EOS-Gex 

approach with PRSV and HVOS performs 

sfactory

models ( he smallest IAE score for the 

distillate and reboiler compositions. 

well, however this approach is not 

 with PR and/or HVO. Among the different activity coefficient 

NRTL, Wilson, UNIQUAC), NRTL gives t

sati

γ φ−  approach performs even better than 

vapor phas

EOS-Gex method with NRTL model for the liquid phase and PRSV EOS for the 

e. The γ φ−  approach, with PR EOS together with van der Waals 
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mix

stru  the rest of the study. 

• It c

very eling studies. 

prob

obje

the 

is a dden layers.  It has 20 neurons in the first 

outp

• The performance of the designed neural network is found to be good in open-

the 

opti efined reflux ratio values required in the 

d in 

com

• It can be said as a result of estimation and control studies that, it is possible 

des

pas

ing rule and NRTL model, gives also very small errors and has simple 

cture and is used through

an be said as a result of modeling studies that the thermodynamic part is 

 important in mod

• The optimal reflux ratio profile is obtained through a nonlinear optimization 

lem, where maximization of the capacity factor is selected as the 

ctive function. 

• An ANN estimator is designed to estimate the distillate composition values of 

column from available four temperature measurements. The network used 

n Elman network with two hi

hidden layer, 3 neurons in the second hidden layer and 4 neurons in the 

ut layer.  

loop. In the closed-loop, the estimated compositions are given as inputs to 

controller and a scheduling policy is used as the control law by using the 

mal reflux ratio profile as pre-d

control law and it is found that the estimation accuracy must be increase

order to have a better composition control in the column. The actual 

position values are used to refine the error in the estimation.  

to control the compositions in this reactive distillation column by using the 

igned ANN estimator, by refining the errors in estimation whenever they 

s their tolerance levels. 
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APPENDIX A 

PROPERTIES OF THE COMPONENTS 

Table A.1 Physical Parameters of the Components 

(kg/kmol) (kg/lt) (K) 

Pc 

(MPa) 

w Tboil 

(K) 

Component Mw Density Tc 

Ethyl acetate 88.106 0.90 523.2 3.830 0.360 350.3 

Ethanol 46.069 0.790 516.2 6.394 0.635 351.5 

Water 18.015 1.0 647.3    22.129 0.344 373.2 

Acetic acid 60.052 1.05 594.4 5.796 0.432 391.1 

Table A.2 Heat Capacity Constants of the Components1

Component a b c d 

Ethyl acetate  7.235 4.072e-1 -2.092e-4 2.855e-8 

Ethanol 19.875 2.095e-1 -1.037e-4 2.004e-8 

Water 50.811 2.129e-1 -6.310e-4  64.830e-8 

Acetic acid  4.840 2.549e-1 -1.753e-4 4.949e-8 

1 Cp = a + bT + cT2 + dT3 (J/mol K) where T is in K. 
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APPENDIX B 

 GAS CHROMATOGRAPH 

In the experiments, pure ethanol (≥99.9%), pure acetic acid (≥99.8), pure ethyl 

ary mixtures from these substances are prepared and 

analyzed through GC. For binary mixtures, Equation 3.1 becomes as in Equation 

B.1. Thus, for known amounts of binary mixtures, the correction factors can be 

calculated from this equation by taking one of the components as base 

component. In this study, base component is selected as ethanol and thus its 

correction factor is taken to be equal to 1. Other correction factors are calculated 

by the analysis of the prepared binary mixtures and by the use of Equation B.1. 

The calculation of correction factors for the calibration of GC are given in 

Sections B.1-B.3.  

                           

CALIBRATION OF

acetate supplied by Merck, and pure water are used. The molecular weights and 

the densities of the substances used are given in Table A.1. For calibration, 

known amounts of bin

(1 )

A A
A

A A B B

A A A A A A B B

A A A A B B

B B B

A A A

Ax
A A

A x A x A

x A x A

x A
x A

β
β β

β β β

β β

β
β

=
+

= +

− =

=

                            (B.1) 

B.1 Correction Factor Calculation for Acetic Acid 

50% EtOH – 50% AcAc mixture 

0.5 (2479)(1) 0.918
0.5 (2700) AcAc

AcAc

β
β

= ⇒ =
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30% EtOH – 70% AcAc mixture 

0.3 (1588)(1) 0.970
0.7 (3819) AcAcβ AcAcβ= ⇒ =  

60% EtOH – 40% AcAc mixture 

0.6 (2863)(1) 0.901
0.4 (2118) AcAc

AcAc

β
β

= ⇒ =  

etic acid does not change with composition, therefore 

average value of these three numbers, 0.930 is taken as the correction factor of 

The correction factor for ac

acetic acid. 

B.2 Correction Factor Calculation for Water 

O mixture 50% EtOH – 50% H2

2

(3911)(1) 2.4
0.5 (1624) H Oβ

β
= ⇒ =

0.5

2

08
H O

 

e 30% EtOH – 70% H2O mixtur

2

2

0.3 (2937)(1)
= ⇒ 2.217

(3091) H O
H O

β
β

=  

ixture 

0.7

70% EtOH – 30% H2O m

20.3 (926) H Oβ
0.7 (4650)(1) 2.152H Oβ= ⇒ =  

2

The correction factor for water does not change with composition, therefore 

bers, 2.259 is taken as the correction factor of average value of these three num

water. 



B.3 Correction Factor Calculation for Ethyl Acetate 

50% EtOH – 50% EtAc mixture 

0.5 (1850)(1) 0.607EtAcβ
β

= ⇒ =  
0.5 (3047) EtAc

30% EtOH – 70% EtAc mixture 

0.3
=

(1179)(1) 0.731β⇒ =  
0.7 (3762) EtAc

EtAcβ

70% EtOH – 30% EtAc mixture 

0.7 (2961)(1) 0.636β= ⇒ =  
0.3 (1995) EtAc

EtAcβ

for ethyl acetate does not change with composition, 

e numbers, 0.658 is taken as the correction 

The correction factor 

therefore average value of these thre

factor of ethyl acetate. 
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APPENDIX C 

SOURCE CODE 

C.1 Main Program Code 

Glob_Decs.m 

%----------------     Programming Definitions     ------------------------% 
== 

========= 

al Dummy4; 

nt fraction zero 

 ID 

rogramming Definitions     --------------- % 
tion Definitions       --------------------% 
=================== 

================================= 

% =================================================
% Simulation Parameters 
% ==========================================
% Dummy variables 
global Dummy1;  global Dummy2;  global Dummy3;  glob
% Output Warnnings 
global OUT_WARNNING; 
% tolerance for the decision to make the compone
global zero_tolerance; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Output File
% Liquid Profile file 
global FID_lprofile; 
% Vapor Profile file 
global FID_vprofile; 
% Temperature Profile file 
global FID_tprofile; 
% Holdup Profile file 
global FID_holdup; 
% Liquid and Vapor Flowrate Profile file 
global FID_lvflow; 
% Controller Outputs file 
global FID_control; 
% Estimator Outputs file 
global FID_estimator; 
% Tank Outputs file 
global FID_tank; 
% Capacity factor file 
global FID_cap; 
% -------------------     End P
% -------------------     Simula
% ===============================
% Step time and Time Span 
% =================
% Initial Time (hour) 
global tstart; 
% Integration time step (hour) 
global DeltaT; 
% Time Span of Simulation (hour) 
global tfinal; 
global num_step; 
% Displaying time step (hour) 
global disp_DeltaT; 
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owrates (or reflux ratios) 

  ------------------% 
  -------------- % 

Definitions 
================================== 

%%%%%%%%%%%%%%%%%%%%%%%   Column Specs. 
- in the order of volatilities :  
   1st is most volatile and last is least volatile  

d Specs. 
he still pot (moles) 

on Params. 

drum pressure (Pa) 

t Simulation Parameters      ----------------% 

l profile when R isnot constant  
e. 

er; 

% ================================================== 
% Time Step to Estimate and Control 
% ================================================== 
% Time Step to Estimate (hour) 
global estimate_DeltaT; 
% ================================================== 
% Define Controller types and Initialize Type of Controller 
% ================================================== 

%%%%%%%%%% Type of Controllers %%%%%%%%%%%%%%%%%%%%%%%
% The open-loop controller with using predefined switching times and  
% corresponding distillate fl
global Cont_OL; 
% The closed-loop controller with the actual composition feed-back 
global Cont_CL_ActualFB; 
% The closed-loop Controller with the estimated composition feed-back 
global Cont_CL_EstFB; 
% Current Type of Controller 
global Type_Controller; 
% -----------------     End Simulation Definitions     
% ----------------- Real Plant Simulation Parameters      

== % =================================================
% Physical System 
% =================
%%%%%%%%%
% Number of Components 
%                     
global NC; 
% Number of Trays 
global NT; 
% Murphree Efficiency 
global Eff_Murphree; 
% Tray Efficiencies 
global Eff; 
% Tray(s) Volumetric holdups (m3) 
global Tray_Vol_Holdup; 
% Initial reflux drum liquid holdup (moles) 
global Drum_M_Holdup_initial; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Fee
% Total amount of feed charged to t
global M_Feed; 
% Feed compositions (moles/moles) 
global X_Feed; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Initial Operati
% Initial Boiler load (J/hour) 
global Q_Boiler_initial; 

tio (D/L0) (ratio) % Initial One Over Reflux ra
global R_Ratio_inv_initial; 
% Initial Distillate Flow Rate (mol/hour) 
global D_DistillRate_initial; 

distilled (moles) % Initial Amount of product 
global M_Distilled_initial; 
% Initial still pot and reflux 
global Press_Pot_initial; 
global Press_Drum_initial; 

onents % Stochiometric coefficients of reaction comp
global epsilon; 
% -------------  End Real Plan
% Indication of whether the system continues with constant reflux ratio   
% after total reflux steady state or not 
global constant_R_Ratio; 
% Reflux Ratio 
global R_Ratio; 
% Percent change in R profile from the optima
% after total reflux steady stat
global Rpercent; 

    % Output Measurement Index
global EST_MeasurementOrd
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% Estimation time  
global est_time; 
% Correction interval multiplication 
global corr_int; 
%Estimation error 
global est_error; 

Glob_Initial.m 

% ------------------     Programming Initialization  --------------------- % 
===================== 

% Dummy variables 
; Dummy3=0.0; Dummy4=0.0; 

on to make the component fraction zero 

%%% Output File ID Creation 
= cd; 

profile.txt']);    

 

ldup.txt']);  

le 
xt']); 

('lvflow.txt','at'); 

pen('tank.txt','at'); 

pen('cap.txt','at'); 
---------------- % 
----------------- % 

============= 

================ 

% ==============================
% Simulation Parameters Settings 
% =================================================== 

Dummy1=0.0; Dummy2=0.0
% Output Warnnings 
OUT_WARNNING = 1; 

si% tolerance for the deci
zero_tolerance = 9e-180; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 Current_Directory fclose all; 
% Liquid Profile file 

irectory '\' 'ldelete([Current_D
FID_lprofile = fopen('lprofile.txt','at'); 
% Vapor Profile file 

_Directory '\' 'vprofile.txt']);   delete([Current
FID_vprofile = fopen('vprofile.txt','at'); 
% Temperature Profile file 
delete([Current_Directory '\' 'tprofile.txt']);    
FID_tprofile = fopen('tprofile.txt','at'); 
% Holdup Profile file 

nt_Directory '\' 'hodelete([Curre
FID_holdup = fopen('holdup.txt','at'); 
% Liquid and Vapor Flowrate Profile fi
delete([Current_Directory '\' 'lvflow.t
FID_lvflow = fopen
% Controller Outputs file 

l.txt']); delete([Current_Directory '\' 'contro
FID_control = fopen('control.txt','at'); 
% Estimator Outputs file 
delete([Current_Directory '\' 'estimator.txt']);   

xt','at'); FID_estimator = fopen('estimator.t
% Tank Outputs file 
delete([Current_Directory '\' 'tank.txt']);FID_tank=fo
% Capacity Factor file 
delete([Current_Directory '\' 'cap.txt']);FID_cap = fo
% ----------------     End Programming Initialization  ---

 Simulation Initialization    ---% ------------------    
% =====================================
% Step time and Time Span 
% ==================================
% Initial Time (hour) 
tstart = 0.0; 
% Integration time step (hour) 
DeltaT = 0.0003; 
% Time Span of Simulation (hour) 
tfinal = 38.1729; 
%tfinal = 30.0; 
num_step = round((tfinal - tstart)/DeltaT); 
% Displaying time step (hour) 
disp_DeltaT = 0.01; 

========================== % ========================
% Time Step to Estimate and Control 

======= % ===========================================
% Time Step to Estimate (hour) 
estimate_DeltaT = 1*DeltaT;  %1*DeltaT;  %round(3*(1/60)/DeltaT)*DeltaT; 
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-- % 

 last is least volatile  

t (moles) 

tal data 
s) 
 

Params. 

our) 

tilled (moles) 

 coeff. 
on); 

lation Initialization -------------- % 
alization  ------------------------ % 

% ================================================== 
% Define Controller types and Initialize Type of Controller 
% ================================================== 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Type of Controllers 

 using predefined switching times and  % The open-loop controller with
% corresponding distillate flowrates (or reflux ratios) 
Cont_OL = 1; 
% The closed-loop controller with the actual composition feed-back 
Cont_CL_ActualFB = 2; 
% The closed-loop Controller with the estimated composition feed-back 
Cont_CL_EstFB = 3; 
% Current Type of Controller 
Type_Controller = Cont_CL_EstFB; 

d Simulation Initialization ------------------- %% ---------------------- En
% --------------    Real Plant Simulation Initialization    ------------

======== % ===========================================
% Physical System Settings 
% =================================================== 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Column Specs. 

 - in the order of volatilities :  % Number of Components
%1st is most volatile and
NC = 4; 
% Number of Trays 
NT = 8; 
% Murphree Efficiency 
Eff_Murphree = 0.85; 
% Tray Efficiencies 
Eff = Eff_Murphree * ones(NT,NC); 
% Tray(s) Volumetric holdups (m3) 
%Tray_Vol_Holdup = 8.3999e-004; % paper data 

rimental data Tray_Vol_Holdup = 5.5887e-005; % expe
% Initial reflux drum liquid holdup (moles) 
%Drum_M_Holdup_initial = 100;   % paper data 
Drum_M_Holdup_initial = 30;  % experimental data 

ecs. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Feed Sp
d charged to the still po% Total amount of fee

%M_Feed = 5000;   % paper data 
M_Feed = 311.67;   % experimen
% Feed compositions (moles/mole

; 0.5];X_Feed = [0.0; 0.5; 0.0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Initial Operation 
% Initial Boiler load (J/hour) 
%Q_Boiler_initial = 1.066e+08;  % paper data 
Q_Boiler_initial = 2.016e6;% exp. data 
% Initial One Over Reflux ratio (D/L0) (ratio) 
R_Ratio_inv_initial = 0.0; 
% Initial Distillate Flow Rate (mol/h
D_DistillRate_initial = 0.0; 
% Initial Amount of product dis

 0.0; M_Distilled_initial =
% Initial still pot and reflux drum pressure (Pa) 
Press_Pot_initial = 101325.0; 
Press_Drum_initial = 101325.0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Reaction Params. 
% Stoichiometric coefficients of components 

1]; epsilon = [+1 -1 +1 -
% Summation of stoic.
epsilon_t = sum(epsil
% -------------    End Real Plant Simu
% -----------------     Estimator Initi

1);  EST_X0 = zeros(NC*(NT+2),
% Output Measurement Index  
EST_MeasurementOrder = [1, 1+2, 1+5, 1+NT]; 
% Number of States 
EST_NumStates = size(EST_X0,1); 
% Number of Measurements 
EST_NumMeasurement = 4; 
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ble R enter percent change from optimal profile 

 0.25 

-------------------- % 

% constant reflux ratio after total reflux (1) or not (0) 
constant_R_Ratio = 0; 
% if it continues with constant R enter R_Ratio_p =L/V = R_Ratio/(1+R_Ratio)
R_Ratio_p = 0.83; 
% if it continues with varia
Rpercent = 0; 
% First measurement is taken at t =
est_time = 0.25; 
% Initial correction interval multiplication 
corr_int = 1; 
% Initial estimation errors 
est_error = [0.0 0.0 0.0 0.0]; 
% --------------     End Estimator Initialization  ---

Cont_Plant_Mfile.m 

function Cont_Plant_Mfile 
 Clear command window %
clc; 

global variables % Include all 
Glob_Decs; 
% Initialize thermo_LIBRARY.dll 
thermo_Init(0); 
% Initialize all global variables 
display('Global variables are initializing ...'); 

Initial; Glob_
display('Global variables have been initialized.'); 

====== 

ltaT)*DeltaT; 

=== 

ly still pot,tray(s),reflux drum liquid comp. = that of the feed  
c(i,:) = X_Feed.'; end; 

) 

% ================================================== 
% Step time and Time Span 
% ============================================
% Current Simulation Time (hour) 
t = tstart; 
% Previuos integration step Time (hour) 
t_prv = t; 
% Current displaying time step (hour) 
disp_t = tstart; 
% ================================================== 
% Time Step to Estimate and Control 
% ================================================== 
%% Time Step to Estimate (hour) 

%round(3*(1/60)/Deestimate_DeltaT = 1*DeltaT;  %1*DeltaT;  
% Current Estimation time (hour) 
estimate_t = tstart; 

======% =========================================
% Initialize Real Plant  
% ================================================== 

ation Params. %%%%%%%%%%%%%%%%%%%%%%%%%%%%   Initial Oper
ler load (J/hour) % Boi

Q_Boiler = Q_Boiler_initial; 
% One Over Reflux ratio (D/L0) (ratio) 
R_Ratio_inv = R_Ratio_inv_initial; 
 Distillate Flow Rate (mol/hour) %
D_DistillRate = D_DistillRate_initial; 
% Amount of product distilled (moles) 
M_Distilled = M_Distilled_initial; 
% Initial still pot, tray(s), reflux drum pressure (Pa) 
Press(1,1) = Press_Pot_initial; 

; Press(NT+2,1) = Press_Drum_initial
Press(2:NT+1,1) = PressureProfile(Press(1), Press(NT+2)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%   Initialize liquid compositions 
% Instantaneous still pot,tray(s),reflux drum liquid comp. (moles/moles) 

 zeros(NT+2,NC); X_frac =
tial% Ini

for i=1:NT+2;  X_fra
%%%%%%%%%%%%%%%%%%%%%%%%%%   Define physical properties 
% Instantaneous still pot, tray(s), reflux drum vapor comp. (moles/moles
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 drum temperature (K) 

moles) 

es) 

/m3) 

ight (kg/mol) 

liquid holdups 
amount (moles) 

Holdups   

flowrates 
lux drum (moles/hour)   

/hour)  

anks (moles/moles) (2*(NC-1)xNC)    

orage tanks (moles) 

========================== 
onstant (m3/(mol.h)) 

eros(NT+2,1); 
l.h)) 

mol.h))  
; 

ight 

k 

 

=========== 

Y_frac = zeros(NT+2,NC); 
% Instantaneous still pot, tray(s), reflux
Temp = 350.0 * ones(NT+2,1); 
% Instantaneous still pot,tray(s), reflux drum liq. phase enthalpy (J/
H_l_Enthalpy = zeros(NT+2,1); 
% Instantaneous still pot,tray(s),reflux drum vapor phase enthalpy (J/mol
H_v_Enthalpy = zeros(NT+2,1);    
% Instantaneous still pot,tray(s),reflux drum liq.phase avg density (kg
Ro_l_Density = zeros(NT+2,1); 

ay(s),reflux drum avg molecular we% Instantaneous still pot,tr
Mw_MolWeight = zeros(NT+2,1); 
%%%%%%%%%%%%%%%%%%%%%%%%   Define and Initialize 
% Instantaneous still pot, tray(s), reflux drum total holdup 
M_Holdup = zeros(NT+2,1); 
% ----------------------------------------  Initialize Molar 
% Initial reflux drum liquid holdup (moles) 
M_Holdup(NT+2,1) = Drum_M_Holdup_initial; 
%%%%%%%%%%%%%%%%%%%   Define and Initialize liquid and vapor 
% Instantaneous liq. flow rates leaving tray(s) and ref
%  L_flow(1) : dummy 
L_flow = zeros(NT+2,1); 
% Instantaneous vapor flow rates leaving still pot and tray(s) (moles
% V_flow(NT+2) : dummy 
V_flow = zeros(NT+2,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Define outputs 
Out_Temp = zeros(NT+2,1); 
%%%%%%%%%%%%%%%%%%%   Define and Initialize storage tank compositions 
% Instantaneous compositions in storage t
Tank_X_frac = zeros(2*(NC-1), NC); 

up amount in st% Instantaneous total hold
Tank_M_Holdup = zeros(2*(NC-1), 1); 
% ================================================== 
% Initialize Reaction Parameters 
% ========================

ard reaction rate c% Forw
k1 = z
% Backward reaction rate constant (m3/(mo
k2 = zeros(NT+2,1); 
% Reaction rate (m3/(
te = zeros(NT+2,1)ra

% Reaction rate (1/h) = r*Ro_l_Density/Mw_MolWe
rate_ro_mw = zeros(NT+2,1); 
% ================================================== 
% Initialize Estimator 
% ================================================== 
 [outputs] = INIT_ESTIMATE; 
% Measurement of Plant Outputs 
sim_i = zeros(1,EST_NumMeasurement); 
% Measurement of Plant Inputs 
EST_u = zeros(2,1); 
% Instantaneous compositions in storage tanks (moles/moles) 
EST_Tank_X_frac = zeros(2*(NC-1), NC); 
% Instantaneous total holdup amount in storage tanks (moles) 
EST_Tank_M_Holdup = zeros(2*(NC-1), 1); 

or% Max. and min. values of the inputs and outputs used in the neural netw
i_max = zeros(1,4); 
i_min = zeros(1,4); 
o_max = zeros(1,4);
o_min = zeros(1,4); 
% Error in the estimated compositions 

ror = zeros(1,4); est_er
% =======================================
% Initialize Controller 
% ================================================== 
% CONT_SetPoints: Controller Set Points of Product Specifications 
CONT_Num_Oper_Stage   : Number of different operation stage % 
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llate Flow rate values of different operation 

lProfile] = INIT_CONTROL; 

===================== 

mation of Real Plant Starts ###########%   

, H_v_Enthalpy, Ro_l_Density, Mw_MolWeight]=...     
hys_Vars(t, X_frac, Press, Temp); 

rac(i,1)*X_frac(i,3);  

ht, M_Holdup); 

p 

ariables 

intial vapor and liquid flow rates 

 

low(1) : dummy 

oldup(t, M_Holdup, M_Distilled); 
%%%%%%%%%% 

 
 

Reflux(t,... 
el_H_l_Enthalpy,... 
); 

withdrawal 
 V_flow] = P_Calc_LV_for_Finite_Reflux(t, ... 
alpy, M_Holdup, Del_M_Holdup, Del_H_l_Enthalpy,... 
atio_inv, rate_ro_mw, epsilon_t); 

rac, Y_frac, Temp, M_Holdup, L_flow, V_flow, ... 
_ro_mw, epsilon_t); 

% CONT_DistillProfile   : Disti
%  stages (Products and/or Slopcuts) 
[CONT_SetPoints, CONT_Num_Oper_Stage, CONT_Distil
% Define Controller Outputs 
CONT_QBoiler = zeros(1,1); 
CONT_RRatioinv = zeros(1,1); 
% Initialize Activated Tank Index 
Tank_Activated = 0;  

tup:0, ) % Initialize Current Stage Number (star
e = 0; CONT_Curr_Stag

% ================================================== 
% Integration Starts  
% =============================
for i=0:num_step; 

###### Find Current Infor%#####
% Find current physical variables 
[Y_frac, Temp, H_l_Enthalpy
P_Calc_P
 
%%%%%%%%%%%%%%%%%%%%%%%%%%% Calculate reaction rate 
for i=1:NT+2; 
k1(i) = 1740*exp(-7150/Temp(i));  % m3/(mol.h) 
k2(i) = 442.8*exp(-7150/Temp(i)); % m3/(mol.h) 
rate(i) = k1(i)*X_frac(i,2)*X_frac(i,4)-k2(i)*X_f

% m3/(mol.h) 
i)/Mw_MolWeight(i); % 1/h rate_ro_mw(i) = rate(i)* Ro_l_Density(

end; 
% Calculate current trays molar holdups 
[M_Holdup]=P_Calc_Mol_Tray_Holdups(t, Ro_l_Density, Mw_MolWeig

%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate current Reflux-Drum molar holdu
[M_Holdup] = P_Calc_Mol_Drum_Holdup(t, M_Holdup); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if t<=0;  % For initialization of variables depending on physical v
% not available in initialization section 
% Calculate current distillate, vapor and liquid flow rates 
% Use initial values 
% -------------------------  Calculate 
% Initialize still pot vapor flow rate 
V_flow(1) = Q_Boiler/(H_v_Enthalpy(1) - H_l_Enthalpy(2)); 
Initialize tray(s) vapor flow ratesV_flow(NT+2) : dummy% 

for i=2:NT+1;V_flow(i) = V_flow(1); end; 
% Initialize tray(s) and reflux drum liquid flow rates  L_f
for i=NT+2:-1:2;L_flow(i) = V_flow(1);  end;    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Pot Holdup % Calculate Initial Still 
[M_Holdup] = P_Calc_Mol_Still_H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
else 
% Calculate current Approximated derivatives 
[Del_M_Holdup, Del_H_l_Enthalpy, Del_M_Hl] = P_Calc_Apprx_Deriv(t,...
M_Holdup, H_l_Enthalpy, t_prv, M_Holdup_prv, H_l_Enthalpy_prv);
 
% Calculate current distillate, vapor and liquid flow rates 
if R_Ratio_inv == 0; %% for total reflux condition 
[D_DistillRate, L_flow, V_flow] = P_Calc_LV_for_Total_

alpy, M_Holdup, Del_M_Holdup, DH_l_Enthalpy, H_v_Enth
Del_M_Hl, Q_Boiler, R_Ratio_inv, rate_ro_mw, epsilon_t
else %% for distillate 
[D_DistillRate, L_flow,
H_l_Enthalpy, H_v_Enth
Del_M_Hl, Q_Boiler, R_R
end;    
end; 
% Find Derivatives 

f[DX_frac] = P_f(t, X_
Q_Boiler, D_DistillRate, R_Ratio_inv, rate
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 for future use  
Enthalpy_prv] = P_Keep_Current_Vars(t, ... 

ent Information of Real Plant Ends ############%   

d Controller Simulation Starts #############% 
te_t) & (t >= (2-1.00001)*estimate_t); 

rmalize_sim_input(sim_i, i_max, i_min); 
 the network that was created previously 

onstant_R_Ratio, Rpercent, sim_i_norm); 
 

mpositions 

evel 
output, X_frac, 

_int <= t < 0.251*corr_int) 

1,:) - X_frac(NT+2,:); 
rror(1,2))|abs(estim_error(1,3))... 
) 

 new real plant inputs) 

Cont_OL  % Run the open-loop system with using predefined switching 

inv, Tank_Activated, CONT_Curr_Stage] = ... 

ck 

Stage, CONT_DistillProfile,Tank_Activated,EST_Tank_X_frac, ... 

Mfile]'); 

 update) time 
   

##% 

% Get Real Plant Outputs 
Out_Temp = [Temp]; 
% Keep current parameters
[t_prv, M_Holdup_prv, H_l_

 M_Holdup, H_l_Enthalpy);
%########## Find Curr
 
%########## Estimator an

stimaif (t <= 1.00001*e
   % Take measurements @ t 
   % Take Plant Outputs 
   sim_i = Out_Temp(EST_MeasurementOrder(:)).'; 
   % Find Predicted System Outputs by using ANN 
   % Find the reflux ratio interval and max. and min. values 
_max, i_min, o_max, o_min]=find_R_interval(R_Ratio_p, ... [i

constant_R_Ratio, Rpercent); 
   % Normalize the network inputs  
   [sim_i_norm] = no
   % Simulate
 [sim_output] = simulate(R_Ratio_p, c

malize the network outputs   % Unnor
   [sim_output] = unnormalize_sim_output(sim_output, o_max, o_min); 
   % Calculate the estimation errors in distillate co
%  if the correction times are to be specified 
%  [sim_output] = refine_error(t, NT, sim_output, X_frac);  
%  if corrections will be done when the error is above its tolerance l
% [sim_output,est_time, flag] = refine_error_tol(t, NT, sim_
flag, est_time, est_e); 
if (0.25*corr
corr_int = corr_int + 1; 

(estim_error(1,:) = sim_output
if (abs(estim_error(1,1))|abs(estim_e
|abs(estim_error(1,4)) >= 1.0000e-003
est_error = estim_error; 
end; 
end; 
   % Correct the estimated compositions 
sim_output = sim_output - est_error; 
EST_X = sim_output; 
 
% Run controller (Find
 switch  Type_Controller 
 case 
%times and corresponding distillate flowrates (or reflux ratios) 
 [CONT_QBoiler, CONT_RRatioinv, Tank_Activated] = CONTROL(t, X_frac, ... 
Q_Boiler, R_Ratio_inv, CONT_SetPoints, CONT_Num_Oper_Stage, ... 
CONT_DistillProfile);  
 case Cont_CL_ActualFB % Run the closed-loop system with the actual 
%composition feed-back 

_QBoiler, CONT_RRatio [CONT
CONTROL_real(t, X_frac, Q_Boiler, R_Ratio_inv, CONT_SetPoints, ... 
CONT_Num_Oper_Stage, CONT_DistillProfile, Tank_Activated, Tank_X_frac, ... 
CONT_Curr_Stage);  
 case Cont_CL_EstFB% Run the CL system with the estimated comp. feed-ba
 [CONT_QBoiler, CONT_RRatioinv, Tank_Activated, CONT_Curr_Stage] = ... 
CONTROL_real(t, EST_X, Q_Boiler, R_Ratio_inv, CONT_SetPoints, ... 

um_Oper_CONT_N
CONT_Curr_Stage); 
 otherwise 
 error('Type of controller doesn''t match [Cont_Plant_
 end 

asurement (or% Set next me
estimate_t = estimate_t + estimate_DeltaT; 
end; 
%############# Estimator and Controller Simulation Ends #########
 
if t >= disp_t; 
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); 
mator and controller data to Screen 
t_to_scr(t, EST_X); 

e 
mp, M_Holdup, L_flow, V_flow); 

_Tank_X_frac, ... 

ltaT; 

s 

#%   
current holdup amount and composition in storage tanks 

anks(t, DeltaT, Tank_X_frac, ... 
Rate, Tank_Activated); 

 distilled 
unt(t,DeltaT,D_DistillRate,M_Distilled); 

t Holdup 
stilled); 

rac] = P_Int_Euler(t, DeltaT, X_frac, DX_frac); 

); 
#######% 

d); 

#######%   

  

Factor 
)+Tank_M_Holdup(3,1)+Tank_M_Holdup(5,1)+ ... 

e 

===================================== 
 Files 

 file 

% Write plant data to Screen 
write_plant_to_scr(t, X_frac
% Write esti
write_estcon
% Write plant data to fil
write_plant_to_file(t, X_frac, Y_frac, Te
% Write estimator and controller data to file 
write_estcont_to_file(t, CONT_QBoiler, CONT_RRatioinv, EST_X); 

e tank compositions and holdups % Writ
%Tank_X_frac 
EST_Tank_X_frac 
write_tank_to_file(t, Tank_X_frac, Tank_M_Holdup, EST
EST_Tank_M_Holdup); 

_t + disp_Dedisp_t = disp
end; 

ulation when the distillation finishe% Stop sim
if (Tank_Activated == -1) 
break; 
end; 

####### Real Plant Simulation Starts ############%###########
% Calculate 
[Tank_X_frac, Tank_M_Holdup] = P_Calc_T
Tank_M_Holdup, X_frac(NT+2,:), D_Distill
% Calculate current amount of product

led_Amo[M_Distilled] = P_Calc_Distil
Calculate current Still Po% 

[M_Holdup] = P_Calc_Mol_Still_Holdup(t, M_Holdup, M_Di
% Take Integration 
[t_dummy, X_f
% Normalizes Plant States 

 P_Normalize_States(t, X_frac[X_frac] =
%############### Real Plant Simulation Ends #########
%################### Estimator Starts ##################%  
% Estimate current holdup amount and composition in storage tanks 
[EST_Tank_X_frac, EST_Tank_M_Holdup] = EST_Tanks(t, DeltaT, ... 

rac, EST_Tank_M_Holdup, EST_Tank_X_f
EST_X(1,:),D_DistillRate,Tank_Activate
% Normalize States 
% [EST_X] = EST_Norm_States(t, EST_X); 

###########%################ Estimator Ends ##
 
%############### Set Current Time #####################% 
t = t + DeltaT; 
%################ Set Current Time ####################%   
% Manipulate real plant inputs by controller outputs 
Q_Boiler = CONT_QBoiler; 
R_Ratio_inv = CONT_RRatioinv; 
end; 
% Calculate the Capacity 
P = (Tank_M_Holdup(1,1CA

M_Holdup(1,1))/t; 
% Write Capacity Factor to fil
write_cap_to_file(t,Tank_M_Holdup(1,1),Tank_M_Holdup(2,1), ... 
Tank_M_Holdup(3,1),Tank_M_Holdup(4,1),Tank_M_Holdup(5,1), ... 

1),M_Holdup(1,1),CAP); Tank_M_Holdup(6,
=====% ========

% Close Output
% ================================================== 
% Liquid Profile file 
fclose(FID_lprofile); 
% Vapor Profile file 

profile); fclose(FID_v
% Temperature Profile file 
fclose(FID_tprofile); 
% Holdup Profile file 
fclose(FID_holdup); 
% Liquid and Vapor Flowrate Profile
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_Mfile 

nctions   --------------------- % 

ity, ... 

ros(size(TempPr)); 
); 

--------------------  Buble Point Calculation 
es) 

Dummy3] = thermo_Equilibrium(TempPr(i), Press(i), X_frac(i,:)); 
Dummy3; 

fic phase enthalpies 
till pot,tray(s),reflux drum liq.-vap.phase enthalpies(J/moles) 

] = thermo_Enthalpy(Temp(i), Press(i), 

average desity and average molecular weight 
kg/m3) 
) 

ess(i), 

==== 

fclose(FID_lvflow); 
% Controller Outputs file 
fclose(FID_control); 
% Estimator Outputs file 
fclose(FID_estimator); 
% Tank Outputs file 
fclose(FID_tank); 
% Capacity Factor file 
fclose(FID_cap); 
% ================================================== 
% Simulation finishes 
% ================================================== 
fprintf('Simulation finished successfully.\n\n');   
% ----------------------------End of Main Program function Cont_Plant
 
% -----------------Real Plant Simulation Fu
%================================================= 
% P_Calc_Phys_Vars 
% Return    
%   Find current physical variables 
% given  
%   Time, t; Previous system variables (Temp at previous time step is for 
%initial guess) 
%================================================    
function [Y_frac, Temp, H_l_Enthalpy, H_v_Enthalpy, Ro_l_Dens
Mw_MolWeight] = P_Calc_Phys_Vars(t, X_frac, Press, TempPr) 
Glob_Decs; 
%% Calculated only by using liquid composition and Pressure 
% Set sizes 

= zeros(size(X_frac)); Y_frac 
Temp = ze
H_l_Enthalpy = zeros(size(TempPr)
H_v_Enthalpy = zeros(size(TempPr)); 
Ro_l_Density = zeros(size(TempPr)); 

r)); Mw_MolWeight = zeros(size(TempP
-----------------%  ----------

% Calculate still pot, tray(s),reflux drum temp.&vapor comps(moles/mol
for i=1:NT+2; 
[Temp(i), 
Y_frac(i,:) = 
if (i>1) & (i<NT+2); 
Y_frac(i,:) = Y_frac(i-1,:) + Eff(i-1,:).*(Y_frac(i,:) - Y_frac(i-1,:)); 
end; 
end; 

---------------------------  Calculate speci%  ---------
% Calculate s
for i=1:NT+2; 
[H_l_Enthalpy(i), H_v_Enthalpy(i)
X_frac(i,:), Y_frac(i,:)); 
end; 

quid phase %  --------Caculate li
% Calculate still pot,tray(s),reflux drum liq. phase avrg. densities (
% Calculate still pot,tray(s),reflux drum avg. molecular weight (kg/mol
for i=1:NT+2;   
[Mw_MolWeight(i), Ro_l_Density(i)] = thermo_Density(Temp(i), Pr
X_frac(i,:)); 
end; 
%end P_Calc_Phys_Vars 
 
%===============================================

Holdups % P_Calc_Mol_Tray_
% Return    
%   Calculate current trays molar holdups 
% given  
%   Time, t; Avg. Density, Ro_l_Density; Avg. Molecular Weight, 
Mw_MolWeight; 
%================================================== 
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Tray_Holdups(t, Ro_l_Density, ... 

 (Ro_l_Density(i) / Mw_MolWeight(i)) * Tray_Vol_Holdup; 

rrent Reflux-Drum molar holdup 

pr; 

p_pr) 

is constant 
) = M_Holdup_pr(NT+2); 

y forward differentiation 

H_l_Enthalpy)/dt approximated by forward differentiation 
lpy_prv)/del_t; 

r_Total_Reflux 

====================================== 
. 

size(1,1)); 
_Holdup)); 

function [M_Holdup] = P_Calc_Mol_
Mw_MolWeight, M_Holdup_pr) 
Glob_Decs; 
% Set size 
M_Holdup = M_Holdup_pr; 
% Calculate tray(s) molar holdups (mol) 
for i=2:NT+1; 
M_Holdup(i) =
end; 
%end P_Calc_Mol_Tray_Holdups 
 
%================================================== 
% P_Calc_Mol_Drum_Holdup 
% Return    

e cu%   Calculat
% given  
%   Time, t; Previous Holdups, M_Holdup_
%=================================================== 
function [M_Holdup] = P_Calc_Mol_Drum_Holdup(t, M_Holdu
Glob_Decs; 
Set size % 

M_Holdup = M_Holdup_pr; 
% Reflux Drum Molar holdup 
M_Holdup(NT+2
%end P_Calc_Mol_Drum_Holdup 
 
%=================================================== 
% P_Calc_Apprx_Deriv 
% Return    

e Approximated derivatives %   Calculat
% given  
%   Time, t; 
%=================================================== 
function [Del_M_Holdup,Del_H_l_Enthalpy,Del_M_Hl]= P_Calc_Apprx_Deriv(t, ...  

 M_Holdup_prv, H_l_Enthalpy_prv) M_Holdup, H_l_Enthalpy, t_prv,
ob_Decs; Gl

% Set sizes 
Del_M_Holdup = zeros(size(M_Holdup)); 
Del_H_l_Enthalpy = zeros(size(H_l_Enthalpy)); 
Del_M_Hl = zeros(size(M_Holdup)); 
% Calculate step size 
del_t = t - t_prv; 
% d(M_Holdup)/dt approximated b
Del_M_Holdup = (M_Holdup - M_Holdup_prv) / del_t; 
% d(H_l_Enthalpy)/dt approximated by forward differentiation 
Del_H_l_Enthalpy = (H_l_Enthalpy - H_l_Enthalpy_prv) / del_t; 
% d(M_Holdup*
Del_M_Hl = (M_Holdup.*H_l_Enthalpy - M_Holdup_prv.*H_l_Entha
%end P_Calc_Apprx_Deriv 
 
%=================================================== 
% P_Calc_LV_fo
% Return    
%   Calculates liquid and vapor flow rates for total reflux condition 
%   or for D=0 
% given  
%   Time, t; 
%=============
function [D_DistillRate, L_flow, V_flow] = P_Calc_LV_for_Total_Reflux(t, ..
H_l_Enthalpy, H_v_Enthalpy, M_Holdup, Del_M_Holdup, Del_H_l_Enthalpy, ... 
Del_M_Hl, Q_Boiler, R_Ratio_inv, rate_ro_mw, epsilon_t) 
Glob_Decs; 
% set sizes 
D_DistillRate = zeros(
flow = zeros(size(ML_

V_flow = zeros(size(M_Holdup)); 
flow rate  % Calculate distillate 
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up(2:NT+1) ); 
) ); 

p-M_Holdup(1)* ... 

py(NT+1))/(H_v_Enthalpy(NT+1)-H_l_Enthalpy(NT+2)); 
tr(Q_Boiler) '\n']); 
m2str(H_l_Enthalpy(1)) '   SumDel_M=' ... 

m_Del_M_Hl) '\n']); 
_Enthalpy(NT+1)) '   h(NT+2)=' ... 

)) '\n']);  

L_flow(NT+2) - epsilon_t*rate_ro_mw(NT+2)*M_Holdup(NT+2); 
f(['V' num2str(NT+1) '=' num2str(V_flow(NT+1)) '   L'... 
um2str(L_flow(NT+2)) '\n']); 
vapor and liquid flow rates  

(i)) + L_flow(i+1)* ...  
 ... 

V_flow(i) - Del_M_Holdup(i)+ ... 
o_mw(i)*M_Holdup(i); 

1)) '   L' ... 

ux 

=================== 

es liquid and vapor flow rates for distillate withdrawal 
 different than zero. 

low, V_flow] = P_Calc_LV_for_Finite_Reflux(t, ...  

; 

om top tray 
 

from reflux drum 

ates  

epsilon_t*rate_ro_mw(i)* ... 
l_Enthalpy(i)); 

Holdup(i) + ... 

D_DistillRate = 0.0; 
% Calculate liquid flow rate from reflux drum 
sum_Del_M_Holdup = sum( Del_M_Hold
sum_Del_M_Hl = sum( Del_M_Hl(2:NT+1
L_flow(NT+2)=(Q_Boiler+H_l_Enthalpy(1)*sum_Del_M_Holdu
Del_H_l_Enthalpy(1)-sum_Del_M_Hl+epsilon_t*rate_ro_mw(NT+2)* ... 
M_Holdup(NT+2)* H_v_Enthal
% fprintf(['Qb=' num2s

h(1)=' nu% fprintf(['
num2str(sum_Del_M_Holdup) '\n']); 
% fprintf(['M(1)=' num2str(M_Holdup(1)) '   Del_Hl(1)=' ... 
num2str(Del_H_l_Enthalpy(1)) '\n']); 
% fprintf(['SumDel_Mh=' num2str(su

str(H_v% fprintf(['H(NT+1)=' num2
m2str(H_l_Enthalpy(NT+2nu

% Calculate vapor flow rate from top tray 
V_flow(NT+1) = 
% % % % % % fprint
num2str(NT+2) '=' n

e other % Calculat
for i=NT+1:-1:2; 
V_flow(i-1)=(V_flow(i)*(H_v_Enthalpy(i)- H_l_Enthalpy
(H_l_Enthalpy(i) - H_l_Enthalpy(i+1))+ M_Holdup(i)*Del_H_l_Enthalpy(i) +
H_l_Enthalpy(i)*epsilon_t*rate_ro_mw(i)*M_Holdup(i)) / ...   

_l_Enthalpy(i)); (H_v_Enthalpy(i-1) - H
L_flow(i) = V_flow(i-1) + L_flow(i+1) - 
epsilon_t*rate_r
% % % fprintf(['V' num2str(i-1) '=' num2str(V_flow(i-
num2str(i) '=' num2str(L_flow(i)) '\n']); 
end;  
% pause 
%end P_Calc_LV_for_Total_Refl
 
%===============================
% P_Calc_LV_for_Finite_Reflux 
% Return    
%   Calculat
%   or for D!=0 or D
% given  
%   Time, t; 
%=================================================== 
function [D_DistillRate,L_f
H_l_Enthalpy, H_v_Enthalpy, M_Holdup, Del_M_Holdup, Del_H_l_Enthalpy, ... 
Del_M_Hl, Q_Boiler, R_Ratio_inv, rate_ro_mw, epsilon_t) 
Glob_Decs; 

sizes % set 
D_DistillRate = zeros(size(1,1)); 
L_flow = zeros(size(M_Holdup)); 
V_flow = zeros(size(M_Holdup)); 

te flow rate % Calculate distilla
/ R_Ratio_invR = 1 

Dummy1 =  sum(Del_M_Hl(1:NT+1)); 
D_DistillRate = ( Q_Boiler - Dummy1 + epsilon_t*rate_ro_mw(NT+2)* ... 
M_Holdup(NT+2)*(H_v_Enthalpy(NT+1)-H_l_Enthalpy(NT+2))) / (... 

l_Enthalpy(NT+2) ); (R+1)*H_v_Enthalpy(NT+1) - R*H_
 rate fr% Calculate vapor flow

V_flow(NT+1)= D_DistillRate*(R+1)-epsilon_t*rate_ro_mw(NT+2)*M_Holdup(NT+2);
% Calculate liquid flow rate 
L_flow(NT+2) = D_DistillRate * R; 
% Calculate other vapor and liquid flow r

NT+1:-1:2; for i=
V_flow(i-1) = ( V_flow(i)*(H_v_Enthalpy(i) - H_l_Enthalpy(i)) + ... 
L_flow(i+1)*(H_l_Enthalpy(i) - H_l_Enthalpy(i+1))+ M_Holdup(i)* ... 
Del_H_l_Enthalpy(i)+ H_l_Enthalpy(i)*
M_Holdup(i)) / (H_v_Enthalpy(i-1) - H_
L_flow(i) = V_flow(i-1) + L_flow(i+1) - V_flow(i) - Del_M_
epsilon_t*rate_ro_mw(i)*M_Holdup(i); 
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e_Reflux 

============================ 

stilled 

c_Distilled_Amount(t,t_prv,D_DistillRate, ... 

Distilled_Amount(t,delta_t,D_DistillRate,... 

pr + D_DistillRate*delta_t; 
unt 

===== 
_Holdup 

total holdup amount (moles/hour) 
) = M_Feed-sum(M_Holdup_pr(2:NT+1))-M_Holdup_pr(NT+2)-M_Distilled; 

dup 

================ 

rivatives for the continuous states. 
=============================== 

dup, L_flow, ... 

x drum liquid compositions 

 ... 
 ... 

1,j)*epsilon_t*rate_ro_mw(1)); 

j)) + ... 
Y_frac(i,j)- ... 

_Holdup(i)) + (epsilon(j)*rate_ro_mw(i)- ... 
_mw(i)); 

rac(NT+2,j)) ) / ... 

end;  
%end P_Calc_LV_for_Finit
 
======================%=

% P_Calc_Distilled_Amount 
% Return    
%   Calculate current amount of product di
% given  
%   Time, t; 
%================================================== 
%function [M_Distilled] = P_Cal
M_Distilled_pr) 
function [M_Distilled] = P_Calc_
M_Distilled_pr) 
Glob_Decs; 
% set size 
M_Distilled = 0.0; 
% Calculate amount of product distilled 
M_Distilled = M_Distilled_

_Calc_Distilled_Amo%end P
 
%=============================================
% P_Calc_Mol_Still
% Return    
%   Calculate Still Pot Holdup 
given  % 

%   Time, t; 
%=================================================== 
function [M_Holdup] = P_Calc_Mol_Still_Holdup(t, M_Holdup_pr, M_Distilled); 
Glob_Decs; 
% Set sizes 
M_Holdup = M_Holdup_pr; 
% Instantaneous still pot 
M_Holdup(1
%end P_Calc_Mol_Still_Hol
 
%===================================
% P_f 
% Return the de
%====================
function [DX_frac] = P_f(t, X_frac, Y_frac, Temp, M_Hol
V_flow, Q_Boiler, D_DistillRate, R_Ratio_inv, rate_ro_mw, epsilon_t) 
Glob_Decs; 
DX_frac = zeros(size(X_frac)); 

aneous still pot,tray(s),reflu% Instant
%derivatives (moles/moles/hour) 
for j=1:NC; 
% still pot 
DX_frac(1,j) = (( L_flow(2)*(X_frac(2,j)-X_frac(1,j)) -

) ) / M_Holdup(1)) +V_flow(1)*(Y_frac(1,j)-X_frac(1,j)
rate_ro_mw(1)-X_frac((epsilon(j)*

% tray(s) 
for i=2:NT+1; 
DX_frac(i,j) = (( V_flow(i-1)*(Y_frac(i-1,j)-X_frac(i,

(i+1,j)-X_frac(i,j)) - V_flow(i)*(L_flow(i+1)*(X_frac
) / MX_frac(i,j)) 

X_frac(i,j)*epsilon_t*rate_ro
end; 
% reflux drum 
DX_frac(NT+2,j) =  (( V_flow(NT+1)*(Y_frac(NT+1,j)-X_f

 M_Holdup(NT+2)) + (epsilon(j)*rate_ro_mw(NT+2)- ...
j)*epsilon_t*rate_ro_mw(NT+2)); X_frac(NT+2,

end; 
% end mdlDerivatives 
 
%================================================== 

ent_Vars % P_Keep_Curr
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 ...; 
============ 

ious step still pot, tray(s), reflux drum total holdup amount (moles) 

; 

ke integral 

rac, DX_frac) 

States(t, X_frac_Pr) 

s zero %%%%%%%% 
liquid compositions (moles/moles) 

component ', num2str(j), ' liquid fraction 

j) < zero_tolerance;    
 

),reflux drum liquid compositions (moles/moles) 
 

ion in the Stage no  ',num2str(1),'  is zero. ', 
]); 

itions (moles/moles) 

alize_States]  

% Return    
%   Keeps current parameters for future use  
% given  

me: t; Variables at t:%   Ti
%=======================================
function [t_prv, M_Holdup_prv, H_l_Enthalpy_prv]= P_Keep_Current_Vars(t, ... 
M_Holdup, H_l_Enthalpy); 
% Previous step time 

= t; t_prv 
% Prev
M_Holdup_prv = M_Holdup; 
% Previous step still pot,tray(s),reflux drum liq. phase enthalpy (J/moles) 
H_l_Enthalpy_prv = H_l_Enthalpy

rs %end P_Keep_Current_Va
 
%=================================================== 
% P_Int_Euler 
% Return    
%   Ta
% given  
%   Time: t; Integration Step: delta_t; Previous States: X_frac; 
%   Derivatives: DX_frac; 
%=================================================== 
function [t_new, X_frac_new] = P_Int_Euler(t, delta_t, X_f
t_new = t + delta_t; 

_new = X_frac + DX_frac*delta_t; X_frac
%end Int_Euler 
 
%=================================================== 

_States % P_Normalize
% Return    
%   Normalizes Plant States 
% given  
%   Time: t;States: X_frac_Pr; 

==================================== %==============
function [X_frac] = P_Normalize_
Glob_Decs; 
% Set size 
X_frac = X_frac_Pr; 
% %%%%%%%%%%%%%%   Make the low composition

k for still pot,tray(s),reflux drum % Chec
for j=1:NC; 
if isnan(X_frac_Pr(1,j));  
error(['Stage no ', num2str(1) ,' 
is Nan'] ); 
end; 
if X_frac_Pr(1,
display(['Stage no ',num2str(1),' composition of comp. ', num2str(j), ' (...
',num2str(X_frac_Pr(1,j)),' )  made zero']); 
frac(1,j) = 0.0; X_

end; 
end; 
% %%%%%%% Normalize the liquid compositions (moles/moles) %%%%%%%%%% 
% Normalize still pot,tray(s
dummy1 = sum(X_frac_Pr(1,:));

1 > 0.0);  if ~(dummy
error(['Sum of comp. fract
num2str(X_frac_Pr(1,:)) 
else 
X_frac(1,:) = X_frac_Pr(1,:) / dummy1;  
end; 
% %%%%%%%%%% Check compositions are in the limit of [0,1] %%%%%%%%% 
% Check still pot,tray(s),reflux drum liquid compos
for j=1:NC;  

j)>1);  if (X_frac(1,j)<0 | X_frac(1,
error(['Composition out of limit ! - [Norm
X_frac(',num2str(1),',:) = ', num2str(X_frac(1,:))] );  
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============== 

======== 
P_Calc_Tanks(t, DeltaT, X, M, X_Drum, D_Rate, Active); 

on  
e, 1)==0) 

(1, :) * deltaM )/( ... 

Tanks 
lant Simulation Functions   -------------- % 

-------------% 
=============== 

 (don't modify global variables not owned by this function) 

r 

les 

ed 
============================================== 

=============================== 
ot owned by this function) 

es of the system 

mperatures on selected trays 

===================== 
) 

============================== 

rn    

========= 
tates(t, X_frac_Pr) 

ow compositions zero %%%%%%%% 
or still pot,tray(s),reflux drum liquid compositions (moles/moles) 

end; 
end; 
%end P_Normalize_States 
 

===============%======================
% P_Calc_Tanks 
% Return    
%   Storage Tank Holdups and Compositions 

=========================%==================
nction [X, M] = fu

if Active~=0; 
% Calculate increase in holdup 
deltaM = D_Rate*DeltaT;  
% Calculate tank's compositi

M == 0) & M(Activif ((delta
X(Active, :) = zeros(size(X(Active, :))); 
else 
X(Active, :) = ( X(Active, :) * M(Active, 1) + X_Drum
M(Active, 1) + deltaM ); 
end; 
% Calculate tank's current holdup 
M(Active, 1) = M(Active, 1) + D_Rate*DeltaT; 
end; 
%end P_Calc_
% --------------------End Real P
 
% -------------------------  Estimator Functions  -----------
% ====================================
% INIT_ESTIMATE
% perform 
%   Initialize esimato
% given 
%   All Global variab
% output 

y output requir%   an
%=====
function [outputs] = INIT_ESTIMATE 
Glob_Decs; 
outputs = []; 

E % end INIT_ESTIMAT
% ====================
%ESTIMATE (don't modify global variables n
% perform 
%   Estimates the stat

n % give
%   te
% output 
%   distillate compositions 
% ==============================

 ESTIMATE(tfunction [outputs] =
Glob_Decs; 
outputs = []; 
% end ESTIMATE 
%=====================

Norm_States % EST_
% Retu
%   Normalizes Plant States 
% given  
%   Time: t;States: X_frac_Pr; 

=================%=========================
function [X_frac] = EST_Norm_S
Glob_Decs; 
% Set size 
X_frac = X_frac_Pr; 

%%%%%%   Make the l% %%%%%%%%
k f% Chec

for j=1:NC; 
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', num2str(j), ' ...        

tr(1),' composition of comp. ', num2str(j), ... 
' )  made zero']); 

1,j) = 0.0; 

%%% 
rum liquid compositions (moles/moles) 

 

 ',num2str(1),' ...          

) = X_frac_Pr(1,:) / dummy1;  

States]  
:))] );  

===== 

Tank Holdups and Compositions  

ve); 

  

ive, :) * M(Active, 1) + X_Drum(1, :) * deltaM ) /... 

 
_Rate*DeltaT; 

--  End Estimator Functions  ------------------------- % 

-------------------- % 

ROL   (don't MODIFY GLOBAL VARIABLES not owned by this function) 

omponent system 

 Product Specifications  
 
 0.65; 0.999]; 

if isnan(X_frac_Pr(1,j));  
error(['Stage no ', num2str(1) ,' component 
liquid fraction is Nan'] ); 
end; 
if X_frac_Pr(1,j) < zero_tolerance;    
 % display(['Stage no ',num2s
' ( ',num2str(X_frac_Pr(1,j)),
X_frac_Pr(
end; 
end; 
% %%%%%%%% Normalize the liquid compositions (moles/moles) %%%%%
% Normalize still pot,tray(s),reflux d
dummy1 = sum(X_frac_Pr(1,:));
if ~(dummy1 > 0.0);  
error(['Sum of comp. fraction in the Stage no 

str(X_frac_Pr(1,:)) ]); is zero. ', num2
else 
X_frac(1,:
end; 
% %%%%%%%%%%%% Check compositions are in the limit of [0,1] %%%%%%%% 
% Check still pot, tray(s), reflux drum liquid compositions (moles/moles) 
for j=1:NC;  
if (X_frac(1,j)<0 | X_frac(1,j)>1);  
error(['Composition out of limit ! - [Normalize_

c(1,X_frac(',num2str(1),',:) = ', num2str(X_fra
end; 
end; 
%end EST_Norm_States 
%==============================================
% EST_Tanks 
% Return    
% Storage 
%=================================================== 
function [X, M] = EST_Tanks(t, DeltaT, X, M, X_Drum, D_Rate, Acti
if Active~=0; 

 holdup % Calculate increase in
deltaM = D_Rate*DeltaT;
% Calculate tank's composition  
if ((deltaM == 0) & M(Active, 1)==0) 
X(Active, :) = zeros(size(X(Active, :))); 
else 
X(Active, :) = ( X(Act
( M(Active, 1) + deltaM ); 
end; 

ulate tank's current holdup% Calc
M(Active, 1) = M(Active, 1) + D
end; 
%end EST_Tanks 
% -----------------
 
% --------------------  Controller Functions  --------
%=================================================== 
% INIT_CONT
% perform 
%   Initilialize controller 
% given  
%   All Global variables 
% output 
%   any output required 
% Number of operating stages is increased for a four c
%=================================================== 
function [SetPoints, Num_Oper_Stage, DistillProfile] = INIT_CONTROL 
Glob_Decs; 
% Controller Set Points of
SetPoints   =  zeros(NC,1);

0.52; 0.5;%SetPoints   = [
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only distillate comps,so use AcAc dist.setpoint that 
eboiler setpoint (0.999) 

865]; 

llate Flow rate values of different operation stages (Products and/or 

per_Stage,1); 

=========================== 
BAL VARIABLES not owned by this function) 

rr_Stage_new] = ... 
_Ratio_inv_pr, CONT_SetPoints, ... 

_prv, X_tank, ... 

 1x4 matrix! 
ation 

etPoints(1,1))   

urr_Stage==1)%1st product-cut distillation to 1st product-cut tank 

s(1,1)) 

 slop-cut distillation to 1st slop-cut tank 

t distillation to 2nd product-cut tank 
X_tank(3,2)>=CONT_SetPoints(2,1))) 

to 2nd slop-cut tank 

% Estimator predicts 
%corresponds to AcAc r
SetPoints   = [ 0.52; 0.5; 0.645; 0.272
% Number of different operation stage 
Num_Oper_Stage  =  7; 
% Disti
%Slopcuts) 
DistillProfile  =  zeros(Num_O
%end INIT_CONTROL 
 
%========================
% CONTROL_real   (don't MODIFY GLO
% perform 
%   Controls the system    
% given  

lobal variables at time t; %   Current Time, t; All G
% output 
%   any output required 
%=================================================== 

o_inv, Tank_Active, CONT_Cufunction [Q_Boiler, R_Rati
CONTROL_real(t, X_frac, Q_Boiler_pr, R
CONT_Num_Oper_Stage, CONT_DistillProfile, Tank_Active
CONT_Curr_Stage) 
Glob_Decs; 
% Find new Reflux ratio (L0/D) 
% here X_frac (distillate compositions) is a
if (CONT_Curr_Stage==0) %----------- Total Reflux oper
if (X_frac(1,1)<CONT_SetPoints(1,1)) 
R_Ratio = -1; 
Tank_Active = 0; 
CONT_Curr_Stage = 0; 
elseif (X_frac(1,1)>=CONT_S
'0->1' 
CONT_Curr_Stage = 1; 
end; 
end; 
if (CONT_C
if ((X_tank(1,1)==0) | (X_tank(1,1)>=CONT_SetPoints(1,1))) 
R_Ratio = 0.891382/(1.0-0.891382); 
Tank_Active = 1; 
CONT_Curr_Stage = 1; 
elseif (X_tank(1,1)<CONT_SetPoint
'1->2' 
CONT_Curr_Stage = 2; 
end; 
end; 
if (CONT_Curr_Stage==2) % 1st
if (X_frac(1,2)<CONT_SetPoints(2,1)) 
  R_Ratio = 0.675/(1.0-0.675); 
Tank_Active = 2;   

  CONT_Curr_Stage = 2; 
elseif (X_frac(1,2)>=CONT_SetPoints(2,1)) 
   '2->3' 
CONT_Curr_Stage = 3; 
end; 
end; 
if (CONT_Curr_Stage==3)%2nd product-cu
    if ((X_tank(3,2)==0) | (
        R_Ratio = 0.764999/(1.0-0.764999); 
        Tank_Active = 3; 
        CONT_Curr_Stage = 3; 
    elseif (X_tank(3,2)<CONT_SetPoints(2,1)) 
        '3->4' 
        CONT_Curr_Stage = 4; 
    end; 
end; 
if (CONT_Curr_Stage==4)   % 2nd slop-cut distillation 
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=CONT_SetPoints(3,1)) 

o 3rd product-cut tank 
ts(3,1))) 

<CONT_SetPoints(3,1)) 

 3rd slop-cut distillation to 3rd slop-cut tank 
nt in the whole 

stillate comps,so use AcAc dist.setpoint that 
boiler setpoint (0.999) 

tem    

ime t; 

 ... 

    if (X_frac(1,3)<CONT_SetPoints(3,1)) 
        R_Ratio = 0.659999/(1.0-0.659999); 
        Tank_Active = 4; 

e = 4;         CONT_Curr_Stag
    elseif (X_frac(1,3)>
        '4->5' 
        CONT_Curr_Stage = 5; 
    end; 
d; en

if (CONT_Curr_Stage==5)%3rd product-cut distillation t
    if ((X_tank(5,3)==0) | (X_tank(5,3)>=CONT_SetPoin
        R_Ratio = 0.799/(1.0-0.799); 
        Tank_Active = 5; 

_Curr_Stage = 5;         CONT
    elseif (X_tank(5,3)
        '5->6' 
        CONT_Curr_Stage = 6; 
    end; 
end; 
if (CONT_Curr_Stage==6) %
% In reality, the fraction of the total amount of the compone
%column is to be checked 
% Estimator predicts only di
%corresponds to AcAc re
    if (X_frac(1,4)<CONT_SetPoints(4,1))  
        R_Ratio = 0.9561/(1.0-0.9561); 
        Tank_Active = 6; 
        CONT_Curr_Stage = 6; 
    elseif (X_frac(1,4)>=CONT_SetPoints(4,1)) 
        '6->7' 
        CONT_Curr_Stage = 7; 
    end; 
end; 
if (CONT_Curr_Stage==7)         %----------- Distillation stops 

v_pr;     R_Ratio = 1/R_Ratio_in
  Tank_Active = -1;   

end; 
% Keep Current Stage # 
CONT_Curr_Stage_new = CONT_Curr_Stage; 
% Convert Reflux ratio (L0/D) to One Over Reflux ratio (D/L0) 

=-1) if (R_Ratio=
    R_Ratio_inv = 0; 
else 
    R_Ratio_inv = 1.0 / R_Ratio; 
end; 
% Find Reboiler load (J/hour) 
    % Constant Reboiler Load 
    Q_Boiler = Q_Boiler_pr; 
%end CONTROL_real 
 
%=================================================== 
% CONTROL           (don't MODIFY GLOBAL VARIABLES not owned by this 
function) 
% perform 
%           Controls the sys
given  % 

%           Current Time, t; All Global variables at t
% output 
%           any output required 
%=================================================== 

Boiler, R_Ratio_inv, Tank_Active] = CONTROL(t, X_frac,function [Q_
Q_Boiler_pr, R_Ratio_inv_pr, CONT_SetPoints, CONT_Num_Oper_Stage, ... 
CONT_DistillProfile) 
Glob_Decs; 
if constant_R_Ratio ==1.0 
 if (t < 9.15) 
   R_Ratio = -1; 
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(1-R_Ratio_p); 

 

 1; 

_Ratio + R_Ratio*Rpercent/100.0;  

/hour) 
    % Constant Reboiler Load 
    Q_Boiler = Q_Boiler_pr; 

% -------------------  End Controller Functions  ------------------------ % 
 

imulation loop control user interface functions    ------ % 
====== 

    formats = ''; for i=1:l; formats = [formats ' %f']; end;   
   Real: ' formats ' '], t, reshape(data, 1, ... 

   Tank_Active = 0; 
 elseif (t >= 9.15) 
    R_Ratio_p = 0.83; 
  R_Ratio = R_Ratio_p/  

    Tank_Active = 1; 
 end; 
end; 
if constant_R_Ratio == 0.0 
%Find new Reflux ratio (L0/D) 

15)     if (t<9.
        R_Ratio = -1; 
        Tank_Active = 0; 
    elseif (t>=9.15 & t<27.7512)  
        R_Ratio = 0.891382/(1.0-0.891382); 
        R_Ratio = R_Ratio + R_Ratio*Rpercent/100.0;    
        Tank_Active = 1; 
    elseif (t>=27.7512 & t<29.4318)  
        R_Ratio = 0.675/(1.0-0.675); 
        R_Ratio = R_Ratio + R_Ratio*Rpercent/100.0;  
        Tank_Active = 1; 
    elseif (t>=29.4318 & t<32.3259)  
        R_Ratio = 0.764999/(1.0-0.764999); 
        R_Ratio = R_Ratio + R_Ratio*Rpercent/100.0;  
        Tank_Active = 1;
    elseif (t>=32.3259 & t<35.1237)  
        R_Ratio = 0.659999/(1.0-0.659999); 
        R_Ratio = R_Ratio + R_Ratio*Rpercent/100.0;  
        Tank_Active =
    elseif (t>=35.1237 & t<36.2127)  

0.799/(1.0-0.799);         R_Ratio = 
tio = R        R_Ra

        Tank_Active = 1; 
>= 36.2127)      elseif (t 

        R_Ratio = 0.9561/(1.0-0.9561); 
        R_Ratio = R_Ratio + R_Ratio*Rpercent/100.0;  
        Tank_Active = 1; 
    end; 
end; 
% Convert Reflux ratio (L0/D) to One Over Reflux ratio (D/L0) 

_Ratio==-1) if (R
    R_Ratio_inv = 0; 
else 
    R_Ratio_inv = 1.0 / R_Ratio; 
end; 
% Find Reboiler load (J

%end CONTROL 

% -------       S
%=============================================
% write_plant_to_scr 
%=================================================== 
function write_plant_to_scr(t, X_frac) 
Glob_Decs; 
    % Reflux Drum Liquid composition 
    data = X_frac(NT+2,:); 
    l = prod(size(data)); 

    fprintf(['%9.4f' '   
prod(size(data))) ); 
%end write_plant_to_scr 
 
%=================================================== 
% write_estcont_to_scr 
%=================================================== 
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:l; formats = [formats ' %f']; end;   
dummy, 1, prod(size(dummy))) ); 

) 

; 
l; formats = [formats '; %f']; end;   

fprintf(FID_lprofile, ['%9.4f' formats '\n'], t, reshape(X_frac, 1, l)); 

%f']; end;   
reshape(Y_frac, 1, l)); 

fprintf(FID_holdup, ['%9.4f' formats '\n'], t, reshape(M_Holdup, 1, l)); 

formats = ''; for i=1:l; formats = [formats '; %f']; end;   
'%9.4f' formats '\n'],t,reshape([L_flow;V_flow],1,l)); 
ile 

rite to file 

Ratioinv)); 
mats = [formats '; %f']; end;   

, '%9.4 ' for .. 

function write_estcont_to_scr(t, EST_X) 
Glob_Decs; 
% Estimated Reflux Drum Liquid composition 
dummy = EST_X(1,:) ; 
l = prod(size(dummy)); 
formats = ''; for i=1
fprintf(['    Estd: ' formats '\n'], reshape(
%end write_estcont_to_scr 
 

===== %==============================================
% write_plant_to_file 
%=================================================== 
function  write_plant_to_file(t,X_frac,Y_frac,Temp,M_Holdup, L_flow, V_flow
Glob_Decs; 

 % Liquid Profile file
l = prod(size(X_frac))
formats = ''; for i=1:

% Vapor Profile file 
l = prod(size(Y_frac)); 
formats = ''; for i=1:l; formats = [formats '; 
fprintf(FID_vprofile, ['%9.4f' formats '\n'], t, 
% Temperature Profile file 
l = prod(size(Temp)); 
formats = ''; for i=1:l; formats = [formats '; %f']; end;   
fprintf(FID_tprofile, ['%9.4f' formats '\n'], t, reshape(Temp, 1, l)); 
% Holdup Profile file 
l = prod(size(M_Holdup)); 
formats = ''; for i=1:l; formats = [formats '; %f']; end;   

% Liquid and Vapor Flowrate Profile file 
l = prod(size(L_flow)) +  prod(size(V_flow)); 

fprintf(FID_lvflow, [
%end write_plant_to_f
 
%=================================================== 

r and controller data % w _estcont_to_file : Write estimato
%=================================================== 

o ); functi n write_estcont_to_file(t, CONT_QBoiler, CONT_RRatioinv, EST_X
Glob_Decs; 
% Controller Outputs file 

 + prod(size(CONT_Rl = prod(size(CONT_QBoiler))
l; forformats = ''; for i=1:

fprintf(FID_control, ['%9.4f ' formats '\n'], t, CONT_QBoiler, 
CONT_RRatioinv); 
% Estimator Outputs file 
%   l = prod(size(EST_X)) + prod(size(IAE)); 
l = prod(size(EST_X)); 
formats = ''; for i=1:l; formats = [formats '; %f']; end;   

 .%   fprintf(FID_estimator [ f mats '\n'], t, reshape(EST_X, 1,
prod(size(EST_X))), reshape(IAE, 1, prod(size(IAE))) ); 
fprintf(FID_estimator, ['%9.4f ' formats '\n'], t, reshape(EST_X, 1, ... 

 prod(size(EST_X))) );
%end write_estcont_to_file 
 

====================================== %=============
% write_tank_to_file : Write tank data to file 
%=================================================== 

l, M_actual, X_est, M_est); function write_tank_to_file(t, X_actua
Glob_Decs; 
l = prod(size(X_actual)) + prod(size(M_actual))+prod(size(X_est)) + ... 
prod(size(M_est)) ; 
formats = ''; for i=1:l; formats = [formats '; %f']; end; 
fprintf(FID_tank, ['%9.4f ' formats '\n'], t, reshape(X_actual, 1, ... 
prod(size(X_actual))),   reshape(M_actual, 1, prod(size(M_actual))),...                   
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oldup,Tank2_Holdup,Tank3_Holdup, ... 
,M_Holdup,CAP); 

))+prod(size(Tank2_Holdup))+ ... 
up))+prod(size(Tank4_Holdup))+ ... 
p))+prod(size(Tank6_Holdup))+ ... 
prod(size(CAP)); 
1:l; formats = [formats '; %f']; end; 

 ... 
,reshape(Tank2_Holdup, 1, ... 

           

reshape(X_est, 1, prod(size(X_est))),...                           
reshape(M_est, 1, prod(size(M_est)))); 
%end write_tank_to_file 
 
%=================================================== 
% write_cap_to_file : Write capacity factor to file 
%=================================================== 
function write_cap_to_file(t, Tank1_H
Tank4_Holdup,Tank5_Holdup,Tank6_Holdup
Glob_Decs; 
l=prod(size(Tank1_Holdup
prod(size(Tank3_Hold
prod(size(Tank5_Holdu
prod(size(M_Holdup)),
formats = ''; for i=
fprintf(FID_cap, ['%9.4f ' formats '\n'], t,reshape(Tank1_Holdup, 1,
prod(size(Tank1_Holdup)))
prod(size(Tank2_Holdup))),...                                                
reshape(Tank3_Holdup, 1, prod(size(Tank3_Holdup))),...                        
reshape(Tank4_Holdup, 1, prod(size(Tank4_Holdup))),...    
reshape(Tank5_Holdup, 1, prod(size(Tank5_Holdup))),...                                    

ldup))),reshape(M_Holdup, 1, ... 

tions    ------- % 

res (Tank6_Holdup, 1, prod(size(Tank6_Hohape
prod(size(M_Holdup))),reshape(CAP, 1, prod(size(CAP)))); 
%end write_opt_to_file 
% ------   End Simulation loop control user interface func

Pressure_Profile.m 

%=================================================== 

Pa) 

========= 
essureProfile(fP_Pot,fP_Drum) 

not scalar(s). [PressureProfile]'); 

t - i*fdelP_Tray; end; 

ode 

% PressureProfile 
% Return    

      pressure profile through the column (%     
% for a given 
%           Still pot and reflux drum pressures (Pa) 

=======================%===================
function [fP_Tray]=Pr
Glob_Decs; 
if (size(fP_Pot)~=1 | size(fP_Drum)~=1) 
   err or('fP_Pot and/or fP_Drum are 
end; 
fP_Tray = zeros(NT,1); 

/NT; fdelP_Tray = (fP_Pot-fP_Drum)
 fP_Pofor i=1:NT; fP_Tray(i) =

% end PressureProfile 

C.2 Thermodynamic Library MATLAB Interface C

thermo_Init.m 

function thermo_Init(check_input_parameters) 
ction thermo_Init(c% fun heck_input_parameters) 

e 

ters = 1 then initialization routine writes the  

% Thermophysical and physical property calculation MEX File Interfac
% ------------- Initialization routine ------------- 

check_input_parame%  if 
%  input parameters read from 'plant_data.dat' to 'plant_data_check.dat' 
thermo_LIBRARY('init',check_input_parameters); 

thermo_Equilibrium.m 

function [Tequi, y] = thermo_Equilibrium(T,P,x) 
% function [Tequi, y] = thermo_Equilibrium(T,P,x) 
% Thermophysical and physical property calculation MEX File Interface 

-------- Equilibrium routine ------------- 
%[Tequi,y]: Equilibrium temperature(K), Equil. Vap. phase fractions(mol/mol) 
% -----
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d %(T,P,x): Initial Equilibrium temperature guess(K), Pressure(Pa), Liqui
%phase fractions(mol/mol)  
 [Tequi, y] = thermo_LIBRARY('equilibrium',T,P,x); 

thermo_Enthaly.m 

function [hl,hv] = thermo_Enthalpy(T,P,x,y) 
 thermo_Enthalpy(T,P,x,y) % function [hl,hv] =

% Thermophysical and 
Entha

physical property calculation MEX File Interface 
lpy routine ------------- 

/mol), vapor phase fractions(mol/mol) 
hl_d, Y('enthalpy',T,P,x,y); 

% ------------- 
%  [hl,hv]      : Liquid and Vapor phase specific enthalpy (J/mol) 
%  (T,P,x,y)    : Initial Equilibrium temperature guess(K), Pressure(Pa), 
      ions(mol%    Liquid phase fract
 [ hv_d] = thermo_LIBRAR
hl = hl_d - 20000.0; 
hv = hv_d - 20000.0; 

thermo_Density.m 

fu n [mwa, densa] = tnctio hermo_Density(T,P,x) 
% function [mwa, densa] = thermo_Density(T,P,x) 
% Thermophysical and physical property calculation MEX File Interface 

mwa, r weight(kg/mol),avg. liq. phase density (kg/m3) 

FORTRAN dll Code 

% ------------- Density routine ------------- 
%[ densa]: Avg. molecula
%( ) : Initial EquiliT,P,x brium temperature guess(K), Pressure(Pa), Liquid 
%phase fractions(mol/mol)  
 [mwa, densa] = thermo_LIBRARY('density',T,P,x); 

C.3 Thermodynamic Library 

thermo_LIBRARY.f 

C -------------------------------------------------------------------------- 
lant_Subroutines  

--------------------------------- 
LA BAHAR Date:01/05/2006 
-------------------------------- 
) 

nd and right-hand side variables 
n plhs, prhs 

! mx Functions declarations  
ng! mx Functions declarations  

loc_err  ! Dummy variables 

me for fortran use 
Input fortran pointers 
nput5_pr, Input6_pr,   

tput fortran pointers 
utput5_pr,   

------------------ Input arguments for fortran use 
put2, int_Input3,   

Input2, real_Input3, 

, int_Output2, int_Output3,  

C MEX File Gateway implementation for P
ur YILDIZ C Date : 08-05-2001 by Uğ

C -----------------------------------------
C     Modified for gama-fi approach by ALMI
C ------------------------------------------

plhs, nrhs, prhssubroutine mexFunction(nlhs, 
include 'thermo_LIBRARY.h' 
include 'parameter.h' 
integer plhs(*), prhs(*)! pointer to left-ha
integer nlhs, nrhs  ! # of variables i
integer mxCreateFull, mxGetString   

umeric, mxIsStriinteger mxGetM, mxGetN, mxIsN
us, alinteger m, n, size, stat

integer Func_name_ptr   ! Function name fortran pointers 
character*100 Func_name   ! Function na
c ---------------------------------------------------
integer Input1_pr, Input2_pr, Input3_pr, Input4_pr, I
 & x_pr, y_pr, z_pr 
c -------------------------------------------------- Ou
integer Output1_pr, Output2_pr, Output3_pr, Output4_pr, O
 & Output6_pr 

------------------c -----
integer,allocatable, dimension (:) :: int_Input1, int_In
 & int_Input4, int_Input5, int_Input6 
real*8,allocatable, dimension (:) ::  real_Input1, real_
real_Input4, real_Input5, real_Input6 
integer Input1_sz,Input2_sz,Input3_sz,Input4_sz,Input5_sz,Input6_sz 
c ---------------------------------------- Output arguments for fortran use 
integer,allocatable, dimension (:) :: int_Output1
 & int_Output4, int_Output5, int_Output6 
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tput6_sz 

 requested.  

 

st be a row vector. - 
') 

. 

name,100) 
String is successful. 

--------------------- ! Call initialization function 

ts) is required for the 
mo_LIBRARY.dll]') 

) call mexErrMsgTxt('Input #1 is not a 
ARY.dll]') 

xt('Input #1 is not a scalar. - 

ut1) 
- (init) [thermo_LIBRARY.dll]') 

1_pr,int_Input1,1) 

) 

 - (init) 

l enthalpy function 
)) then 

 (enthalpy) 

ntalphies) are required. - 

real*8,allocatable, dimension (:) ::  real_Output1, real_Output2, 
real_Output3, real_Output4, real_Output5, real_Output6 
integer Output1_sz,Output2_sz,Output3_sz,Output4_sz,Output5_sz,Ou
real*8  x, y(3,3), z(3,3)  
C     ------------------------ Check for at least one function is
if (nrhs .lt. 1) then 
call mexErrMsgTxt('Not a proper function selected. - [thermo_LIBRARY.dll]') 
endif 

sString(prhs(1)) .ne. 1) thenif (mxI
call mexErrMsgTxt('Function name parameter must be a valid string. - 
[thermo_LIBRARY.dll]') 
endif 
m = mxGetM(prhs(1)) 
n = mxGetN(prhs(1)) 
if (m .ne. 1) then 

nction name parameter mucall mexErrMsgTxt('Fu
&[thermo_LIBRARY.dll]
endif 
C     ----------------------------------------- Call the requested function
C Get the string contents (dereference the input integer). 

prhs(1),Func_status = mxGetString(
C Check if mxGet
if (status .ne. 0) then 
call mexErrMsgTxt('String length must be less than 100. - 
[thermo_LIBRARY.dll]') 
endif 
c -------------------
if (Func_name.eq.'init') then 
status = 1 
if (nrhs .ne. 2) then 

number of componencall mexErrMsgTxt('One input (
initialization. - (init) [ther
endif 
if (mxIsNumeric(prhs(2)) .ne. 1
&numeric. - (init) [thermo_LIBR
m = mxGetM(prhs(2)) 
n = mxGetN(prhs(2)) 
if (n .ne. 1 .or. m .ne. 1) call mexErrMsgT
&(init) [thermo_LIBRARY.dll]') 

hs(2))   Input1_pr = mxGetPr(pr
status = 0 
allocate (int_Input1(1),STAT = alloc_err) 
status = status + alloc_err  
if (status .ne. 0) then 
if (allocated(int_Input1)) deallocate(int_Inp

cation error. call mexErrMsgTxt('Memory allo
endif  
call mxCopyPtrToInteger4(Input
status = 1 
call init(int_Input1,status) 
if (status.eq.0) then  
call mexPrintf('thermo_LIBRARY is initialized. - (init
[thermo_LIBRARY.dll]') 
else 
call mexErrMsgTxt('thermo_LIBRARY can not be initialized.
[thermo_LIBRARY.dll]') 
endif 
c ------------------------------------------------ ! Cal
elseif ((Func_name.eq.'enthalpy') .and. (lib_Inited.eq.1
if (nrhs .ne. 5) then 

ired. -call mexErrMsgTxt('Four inputs (T,P,x,y) is requ
&[thermo_LIBRARY.dll]') 
elseif (nlhs .ne. 2) then 
call mexErrMsgTxt('Two outputs (liquid and vapor e
&(enthalpy) [thermo_LIBRARY.dll]') 
endif 
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ne. 1) call mexErrMsgTxt('Input #2 is not a 
rmo_LIBRARY.dll]') 

a 
dll]') 

. - 

hs(3)) 
*n 

hs(4)) 
hs(4)) 
*n 

 
RY.dll]') 

s(5)) 
hs(5)) 
*n 

 

2)) 

t2)) deallocate(real_Output2) 
 

_sz) 
ut1, 

if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('Input #1 is not a 
&numeric. - (enthalpy) [thermo_LIBRARY.dll]') 
if (mxIsNumeric(prhs(3)) .
&numeric. - (enthalpy) [the
if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsgTxt('Input #3 is not 
&numeric. - (enthalpy) [thermo_LIBRARY.
if (mxIsNumeric(prhs(5)) .ne. 1) call mexErrMsgTxt('Input #4 is not a 
&numeric. - (enthalpy) [thermo_LIBRARY.dll]') 
m = mxGetM(prhs(2)) 
n = mxGetN(prhs(2)) 
Input1_sz = m*n 
if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar
&(enthalpy) [thermo_LIBRARY.dll]') 

hs(3))   m = mxGetM(pr
  n = mxGetN(pr

 = m  Input2_sz
if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #2 is not a scalar. - 
&(enthalpy) [thermo_LIBRARY.dll]') 
  m = mxGetM(pr
  n = mxGetN(pr

 = m  Input3_sz
if (n .ne. nj .or. m .ne. 1) call mexErrMsgTxt('Input #3 is not a NC-element
&row vector. - (enthalpy) [thermo_LIBRA

m = mxGetM(prh
  n = mxGetN(pr

 = m  Input4_sz
if (n .ne. nj .or. m .ne. 1) call mexErrMsgTxt('Input #4 is not a NC-element
&row vector. - (enthalpy) [thermo_LIBRARY.dll]') 
Input1_pr = mxGetPr(prhs(
Input2_pr = mxGetPr(prhs(3)) 
Input3_pr = mxGetPr(prhs(4)) 
Input4_pr = mxGetPr(prhs(5)) 
plhs(1) = mxCreateFull(1,1,0) 
plhs(2) = mxCreateFull(1,1,0) 
Output1_pr = mxGetPr(plhs(1)) 
Output2_pr = mxGetPr(plhs(2)) 
status = 0 
allocate (real_Input1(1),STAT = alloc_err) 
status = status + alloc_err  
allocate (real_Input2(1),STAT = alloc_err) 
status = status + alloc_err  
allocate (real_Input3(nj),STAT = alloc_err) 
status = status + alloc_err  
allocate (real_Input4(nj),STAT = alloc_err) 
status = status + alloc_err  
allocate (real_Output1(1),STAT = alloc_err) 
status = status + alloc_err  
allocate (real_Output2(1),STAT = alloc_err) 
status = status + alloc_err  
if (status .ne. 0) then 
if (allocated(real_Input1)) deallocate(real_Input1) 
if (allocated(real_Input2)) deallocate(real_Input2) 
if (allocated(real_Input3)) deallocate(real_Input3) 
if (allocated(real_Input4)) deallocate(real_Input4) 
if (allocated(real_Output1)) deallocate(real_Output1) 

cated(real_Outpuif (allo
call mexErrMsgTxt('Memory allocation error. - (enthalpy)
&[thermo_LIBRARY.dll]') 
endif  
call mxCopyPtrToReal8(Input1_pr,real_Input1,Input1_sz) 
call mxCopyPtrToReal8(Input2_pr,real_Input2,Input2_sz) 

_pr,real_Input3,Input3_sz) call mxCopyPtrToReal8(Input3
call mxCopyPtrToReal8(Input4_pr,real_Input4,Input4
call enth(real_Input1, real_Input2, real_Input3, real_Input4, real_Outp
&real_Output2) 

xCopyReal8ToPtr(real_Output1,Output1_pr,1) call m
call mxCopyReal8ToPtr(real_Output2,Output2_pr,1) 
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 (lib_Inited.eq.1)) then 

density) are required. 

nput #1 is not a 

'Input #2 is not a 

'Input #3 is not a 

 is not a scalar. -

#2 is not a scalar. - 

e. nj .or. m .ne. 1) call mexErrMsgTxt('Input #3 is not a NC-element 
ctor. - (density) [thermo_LIBRARY.dll]') 

1,0) 

 

loc_err  
1(1),STAT = alloc_err) 
loc_err  

eal_Output2(1),STAT = alloc_err) 

_Input1) 
ed(real_Input2)) deallocate(real_Input2) 
ed(real_Input3)) deallocate(real_Input3) 

 deallocate(real_Output1) 
deallocate(real_Output2) 
location error. - (density) 

BRARY.dll]') 

put1_sz) 
ut2_sz) 
put3_sz) 

routine pr_dens(t,p,x,mwa,densa) 

put1_pr,1) 
tput2_pr,1) 

--------------------- ! Call equilibrium function 
.'equilibrium') .and. (lib_Inited.eq.1)) then  

c ----------------------------------------------- ! Call density function 
elseif ((Func_name.eq.'density') .and.
if (nrhs .ne. 4) then 
call mexErrMsgTxt('Three inputs (T,P,x) is required. - (density) 
&[thermo_LIBRARY.dll]') 
elseif (nlhs .ne. 2) then 
call mexErrMsgTxt('Two outputs (Avg. mol. weight and 
&- (density) [thermo_LIBRARY.dll]') 
endif 
if (mxIsNumeric(prhs(2)) .ne. 1) call mexErrMsgTxt('I
&numeric. - (density) [thermo_LIBRARY.dll]') 
if (mxIsNumeric(prhs(3)) .ne. 1) call mexErrMsgTxt(
&numeric. - (density) [thermo_LIBRARY.dll]') 
if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsgTxt(
&numeric. - (density) [thermo_LIBRARY.dll]') 
m = mxGetM(prhs(2)) 
n = mxGetN(prhs(2)) 
Input1_sz = m*n 
if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input #1
&(density) [thermo_LIBRARY.dll]') 
m = mxGetM(prhs(3)) 
n = mxGetN(prhs(3)) 
Input2_sz = m*n 
if (n .ne. 1 .or. m .ne. 1) call mexErrMsgTxt('Input 
&(density) [thermo_LIBRARY.dll]') 
m = mxGetM(prhs(4)) 
n = mxGetN(prhs(4)) 
Input3_sz = m*n 
if (n .n

ve&row 
Input1_pr = mxGetPr(prhs(2)) 
Input2_pr = mxGetPr(prhs(3)) 
Input3_pr = mxGetPr(prhs(4)) 
plhs(1) = mxCreateFull(1,
plhs(2) = mxCreateFull(1,1,0) 

hs(1))Output1_pr = mxGetPr(pl
Output2_pr = mxGetPr(plhs(2)) 
status = 0 
allocate (real_Input1(1),STAT = alloc_err) 

rr  status = status + alloc_e
allocate (real_Input2(1),STAT = alloc_err) 
sta = status + alloc_etus rr  
allocate (real_Input3(nj),STAT = alloc_err) 
status = status + al
allocate (real_Output

atus + alstatus = st
allocate (r
status = status + alloc_err  
if (status .ne. 0) then 

ocated(real_Input1)) deallocate(realif (all
if (allocat
if (allocat
if (allocated(real_Output1))
if (allocated(real_Output2)) 

xErrMsgTxt('Memory alcall me
&[thermo_LI
endif  
call mxCopyPtrToReal8(Input1_pr,real_Input1,In
call mxCopyPtrToReal8(Input2_pr,real_Input2,Inp

CopyPtrToReal8(Input3_pr,real_Input3,Incall mx
c sub
call pr_dens(real_Input1, real_Input2, real_Input3, real_Output1, 
real_Output2) 
call mxCopyReal8ToPtr(real_Output1,Out

al_Output2,Oucall mxCopyReal8ToPtr(re
-c --------------------

c_name.eqelseif ((Fun
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 required. - (equilibrium) 

sgTxt('Two outputs (T and vapor comp.) are required. - 

1) call mexErrMsgTxt('Input #1 is not a 
ermo_LIBRARY.dll]') 

ric(prhs(3)) .ne. 1) call mexErrMsgTxt('Input #2 is not a 

Txt('Input #3 is not a 
 

(prhs(2)) 
 = m*n 

. m .ne. 1) call mexErrMsgTxt('Input #1 is not a scalar. - 
brium) [thermo_LIBRARY.dll]') 
tM(prhs(3)) 

1) call mexErrMsgTxt('Input #2 is not a scalar. - 
thermo_LIBRARY.dll]') 

tM(prhs(4)) 
tN(prhs(4)) 
sz = m*n 

)  
 is not a NC-element row vector. - (equilibrium) 

hermo_LIBRARY.dll]') 

) 

 alloc_err) 

,S

2(nj),
rr  

t1) 
) t2) 

t2) 

tr(real_Output1,Output1_pr,1) 
tr(real_Output2,Output2_pr,nj) 
--------------------------- ! No relevant function  

if (nrhs .ne. 4) then 
call mexErrMsgTxt('Three inputs (T, P, x) is
&[thermo_LIBRARY.dll]') 

(nlhs .ne. 2) then elseif 
call mexErrM
&(equilibrium) [thermo_LIBRARY.dll]') 
endif 
if (mxIsNumeric(prhs(2)) .ne. 

c. - (equilibrium) [th&numeri
if (mxIsNume
&numeric. - (equilibrium) [thermo_LIBRARY.dll]') 
if (mxIsNumeric(prhs(4)) .ne. 1) call mexErrMsg
&numeric. - (equilibrium) [thermo_LIBRARY.dll]')

etM(prhs(2)) m = mxG
n = mxGetN

szInput1_
if (n .ne. 1 .or
&(equili
m = mxGe
n = mxGetN(prhs(3)) 
Input2_sz = m*n 
if (n .ne. 1 .or. m .ne. 
&(equilibrium) [
m = mxGe
n = mxGe
Input3_
if (n .ne. nj .or. m .ne. 1
call mexErrMsgTxt('Input #3
&[t
Input1_pr = mxGetPr(prhs(2)) 
Input2_pr = mxGetPr(prhs(3)) 
Input3_pr = mxGetPr(prhs(4)
plhs(1) = mxCreateFull(1,1,0) 
plhs(2) = mxCreateFull(1,nj,0) 
Output1_pr = mxGetPr(plhs(1)) 
Output2_pr = mxGetPr(plhs(2)) 
status = 0 
allocate (real_Input1(1),STAT = alloc_err) 
status = status + alloc_err  

(real_Input2(1),STAT =allocate 
status = status + alloc_err  
allocate (real_Input3(nj) TAT = alloc_err) 
status = status + alloc_err  
allocate (real_Output1(1),STAT = alloc_err) 
status = status + alloc_err  

Output STAT = alloc_err) allocate (real_
status = status + alloc_e
if (status .ne. 0) then 
if (allocated(real_Input1)) deallocate(real_In

l
pu

if (allocated(real_Input2)  deal ocate(real_Inpu
if (allocated(real_Input3)) deallocate(real_Input3) 
if (allocated(real_Output1)) deallocate(real_Output1) 
if (allocated(real_Output2)) deallocate(real_Output2) 
call mexErrMsgTxt('Memory allocation error. - (equilibrium) 
&[thermo_LIBRARY.dll]') 
endif  
call mxCopyPtrToReal8(Input1_pr,real_Input1,Input1_sz) 
call mxCopyPtrToReal8(Input2_pr,real_Input2,Input2_sz) 
call mxCopyPtrToReal8(Input3_pr,real_Input3,Input3_sz) 
c subroutine pr_equil(t,p,x,yy)    ' t is also an output 

_Outpucall pr_equil(real_Input1, real_Input2, real_Input3, real
real_Output1 = real_Input1 
call mxCopyReal8ToP
call mxCopyReal8ToP
c -----------------
else 
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ion is 

 ! Memory deallocation  
ut1) 

(real_Input4)) deallocate(real_Input4) 
(real_Input5)) deallocate(real_Input5) 
(real_Input6)) deallocate(real_Input6) 
(int_Input1)) deallocate(int_Input1) 
(int_Input2)) deallocate(int_Input2) 
(int_Input3)) deallocate(int_Input3) 
(int_Input4)) deallocate(int_Input4) 
(int_Input5)) deallocate(int_Input5) 
(int_Input6)) deallocate(int_Input6) 

eallocate(real_Output1) 
deallocate(real_Output2) 
deallocate(real_Output3) 
deallocate(real_Output4) 
deallocate(real_Output5) 
deallocate(real_Output6) 
eallocate(int_Output1) 
eallocate(int_Output2) 
deallocate(int_Output3) 

-- ---------------- thermo_LIBRARY 

 

ta.dat',IOSTAT=I_O_err, ERR = 100) 

il(i),pc(i),wc(i) 

i),cenh2(i),cenh3(i),cenh4(i) 

----------------------------------------- 

rmo_data_check.dat') 
rance' 
rance 

call mexErrMsgTxt('Library is not initialized or No relevant funct
&requested. - [thermo_LIBRARY.dll]') 
endif 
c --------------------------------------------
if (allocated(real_Input1)) deallocate(real_Inp
if (allocated(real_Input2)) deallocate(real_Input2) 
if (allocated(real_Input3)) deallocate(real_Input3) 
if (allocated
if (allocated
if (allocated
if (allocated
if (allocated
if (allocated
if (allocated
if (allocated
if (allocated
if (allocated(real_Output1)) d
if (allocated(real_Output2)) 
if (allocated(real_Output3)) 
if (allocated(real_Output4)) 
if (allocated(real_Output5)) 
if (allocated(real_Output6)) 
if (allocated(int_Output1)) d
if (allocated(int_Output2)) d

ocated(int_Output3)) if (all
if (allocated(int_Output4)) deallocate(int_Output4) 
if (allocated(int_Output5)) deallocate(int_Output5) 
if (allocated(int_Output6)) deallocate(int_Output6) 
return 
end 
C ----------------------------- --
Initialization routine 
subroutine init(check_input,st)
integer check_input, st 
include 'thermo_LIBRARY.h'   

'parameter.h' include 
include 'common_plant.h' 
C-- Initialization of the 'plant' common statement in 'common_plant.h' ----- 
C ------ written by MTD (Revised by Uğur Yıldız) 

: i,j,I_O_err  integer :
integer :: thermo_LIBRARY_dummy_pr, thermo_LIBRARY_dummy_pi 
C tolerance = 1.d-7 
open(5,file='thermo_da
read(5,*) 
read(5,*) tolerance 
read(5,*) 
read(5,*) 
do i=1,nj 
read(5,*) mw(i),tc(i),tbo
enddo 
read(5,*) 
read(5,*) 
do i=1,nj 
read(5,*) (del(i,j),j=1,nj) 
enddo 
read(5,*) 
read(5,*) 
do i=1,nj 
read(5,*) cenh1(
enddo 
close(5) 
C ----------------------------
if (check_input .eq. 1) then 
open(6,file='the
write(6,*) 'tole
ite(6,1) tolewr

write(6,*) 
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 Tc(K)      Tboil(K)    Pc(Pa)            w' 

(i),cenh3(i),cenh4(i) 

 (init) 

------------------------------------- 

--- 
p,x,y,hl,hv) 

enthalpy 

  description of change 

                      !pressure 
           !liquid phase fractions 
          !vapour phase fractions 
      Locals 

                            ======== 
                    !ideal liquid mixture enthalpy             

     !liquid enthalpy departure  
      !vapour enthalpy departure 

write(6,*) 'Mw(kg/mol)     
do i=1,nj 
write(6,2) mw(i),tc(i),tboil(i),pc(i),wc(i) 
enddo 
write(6,*) 
write(6,*) 'del(binary interaction parameters)' 
do i=1,nj 
write(6,3) (del(i,j),j=1,nj) 
enddo 
write(6,*) 
write(6,*) '   cenh1         cenh2          cenh3       cenh4(J/molK)' 
do i=1,nj 
write(6,4) cenh1(i),cenh2
ddo en

close(6) 
endif 
lib_Inited = 1 
st = 0 
return 
100 if (I_O_err.ne.0) then  
call mexErrMsgTxt('"thermo_data.dat" couldn"t be opened. -
&[thermo_LIBRARY.dll]') 
lib_Inited = 0 
st = 1  
turn re

endif 
1 format(d11.3) 
2 format(5d15.3) 
3 
format(d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1
&,:,d13.1,:,d13.1,:,d13.1,:,d13.1,:,d13.1) 
4 format(4d15.3) 
end subroutine 
C  Write statements in these routines are exchanged with mexErrMsgTxt and 
CmexPrintf and also 'parameter.h' and 'plant_data.dat' are modified. 
-------------------------------------C 

C Peng-Rabinson EOS Subroutines Written by Mustafa T. DOKUCU Date:16-05-2001 
c -----------------------------------------------------------------------
subroutine enth(t,
!Usage: 

eal gas mixture ! to calculate the id
!Record of revisions: 
!   date programmer 
!   ==== ==========   ===================== 
! 18/03/2001    MTD      original code 
implicit none 
include 'parameter.h' 
include 'common_plant.h' 
!                                     Inputs 
!                                  ======== 
real*8 :: t                         !temperature                      
real*8 :: p   
real*8 :: x(nj)          
real*8 :: y(nj)           

                  !      
!       
real*8 :: hl1   
real*8 :: hv1                       !ideal vapour mixture enthalpy 
real*8 :: dhl                  

 dhv                 real*8 ::
real*8 :: enigl                     !ideal gas enthalpy 
real*8 :: enigv                     !ideal gas enthalpy 
real*8 :: cl1,cv1 
real*8 :: cl2,cv2 
real*8 :: cl3,cv3 
real*8 :: cl4,cv4 
integer:: i,j 
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at(nj),lheatb(nj),trb(nj),tr(nj) 

  Outputs 
==== 

 !liquid enthalpy 
!vapour enthalpy 

) * y(i) 

(t-trf) + (1.d0/2.d0) * cv2 * (t**2 - trf**2) + (1.d0/3.d0) * 
rf**3) + (1.d0/4.d0) * cv4 * (t**4 - trf**4)       

nth(t p,y,ifase,dhv) 
l + l + 20000.d0 
gv + d v + 20000.d0 

--------------------------------------- 
e pr_compr(a_mixture,b_mixture,z_liq,z_vap) 

us d for ies 

 
== 

   original code 

         ======== 

vap_cplx 
liq_cplx 

        Outputs 
   ========= 

ype declaration of the input variables to complex 

integer:: ifase 
real*8 :: enthv(nj),enthl(nj),lhe
real*8 :: lheata,lheatk,lheatc 
!                                  
!                                   =====
real*8 ::  hl                     
real*8 ::  hv                      
cl1  = 0.d0 
cv1  = 0.d0 
cl2  = 0.d0 
cv2  = 0.d0 
cl3  = 0.d0 
cv3  = 0.d0 
cl4  = 0.d0 
cv4  = 0.d0 
do i = 1,nj 
cl1 = cl1 + cenh1(i) * x(i)  
cl2 = cl2 + cenh2(i) * x(i) 
cl3 = cl3 + cenh3(i) * x(i) 

 cenh4(i) * x(i) cl4 = cl4 +
cv1 = cv1 + cenh1(i) * y(i) 
cv2 = cv2 + cenh2(i) * y(i) 
cv3 = cv3 + cenh3(i) * y(i) 
cv4 = cv4 + cenh4(i
enddo 
enigl=cl1*(t-trf)+(1.d0/2.d0)*cl2*(t**2-trf**2)+(1.d0/3.d0)*cl3*(t**3-
trf**3)+(1.d0/4.d0)*cl4*(t**4 - trf**4) 
enigv = cv1 * 
cv3 * (t**3 - t
ifase = 0 
call pr_enth(t,p,x,ifase,dhl)  
ifase = 1 
call pr_e ,
hl = enig dh

hhv = eni
return 
end subroutine 
c -----------------------------------
subroutin
!Usage: 

por  ! to solve the cubic eqution for the liquid and va
!compressibility factors e the estimation of spec
!fugacities   
!Record of revisions: 

mer!   date  program description of change 
======= ===================== !   ====  

! 14/02/2001    MTD  
implicit none 
include 'parameter.h' 
include 'common_plant.h' 

             Inputs !            
!               
real*8 :: a_mixture 
real*8 :: b_mixture 
!                         Locals 

           ======== !             
complex*8:: z_
complex*8:: z_
complex*8:: s1 
complex*8:: a 
complex*8:: b 
!                 
!                     
real*8:: z_vap 
real*8:: z_liq 
 
!convert the t



 144

ure,0.d0) 
ixture,0.d0) 

*2- 
*a**2+24.0d0*a**2*b**2-120.0d0*a**2*b- 

+336.0d0*a*b**3-480.0d0*b**4+12.0d0*a**3-96.0d0*b**6- 
**(1.d0/3.d0)/12.0d0+(a-10.d0/3.d0*b**2-4.d0/3.d0*B- 
36.0d0*a+144.0d0*a*b-48.0d0*b**2- 

*3.0d0+48.0d0*b+8.0d0+12.0d0*sqrt(24.0d0*a*b-24.0d0*b**2- 
.0d0*a*b**2-3.0d0*a**2+24.0d0*a**2*b**2-120.0d0*a**2*b- 
.0d0*a*b**3-480.0d0*b**4+12.0d0*a**3-96.0d0*b**6-384.0d0 

(1.d0/3.d0) 

d0-b/3.d0+cmplx(0.d0,1.d0)*sqrt(3.d0)*((-  
48.d0*b**2-224.d0*b**3+48.d0*b+8.d0+12*sqrt(24.d0*a*b- 

b**2-3.d0*a**2+24.d0*a**2*b**2- 
a*b**3-480.d0*b**4+12.d0*a**3-96.d0*b**6- 

0*b**5))**(1.d0/3.d0)/6.d0+(2.d0*a-20.d0/3.d0*b**2-8.d0/3.d0*b- 
/3.d0)/(-36.d0*a+144.d0*a*b-48.d0*b**2- 

2.d0*sqrt(24.d0*a*b-24.d0*b**2- 
*3+264.d0*a*b**2-3.d0*a**2+24.d0*a**2*b**2-120.d0*a**2*b- 
*4+336.d0*a*b**3-480.d0*b**4+12.d0*a**3-96.d0*b**6-  
)**(1.d0/3.d0))/2.d0 

ase compressibility 
b-48.d0*b**2-224.d0*b**3+48.d0*b+8.d0+12.d0* 
d0*b**3+264.d0*a*b**2- 

*a**2+24.d0*a**2*b**2-120.d0*a**2*b-48.d0*a*b**4+336.d0*a*b**3- 
384.d0*b**5))**(1.d0/3.d0)/6.d0-(2.d0*a- 
3.d0)/(-36.d0*a+144.d0*a*b-48.d0*b**2-  

**3+48.d0*b+8.d0+12.d0*sqrt(24.d0*a*b-24.d0*b**2- 
3.d0*a**2+24.d0*a**2*b**2-120.d0*a**2*b- 
480.d0*b**4+12.d0*a**3-96.d0*b**6-384.d0    
.d0-b/3.d0 

e if the liquid compressibility root is a complex # 
sibility root returned as equal to vapor phase 

x) > tolerance) then  
ap_cplx) 

----------------------------------------------------------- 

 of the Peng-Robinson EOS which is 

ons: 
rammer  description of change 
===== ===================== 

    original code 

a = cmplx(a_mixt
b = cmplx(b_m
!calculate the liquid phase compressibility 
s1=-(-36.0d0*a+144.0d0*a*b-48.0d0*b**2-  

d0*sqrt(24.0d0*a*b-24.0d0*b* & 224.0d0*b**3+48.0d0*b+8.0d0+12.0
 & 192.0d0*b**3+264.0d0*a*b**2-3.0d0
 & 48.0d0*a*b**4
 & 384.0d0*b**5))

/(- & 1.d0/3.d0)
 & 224.0d0*b*
 & 192.0d0*b**3+264
 & 48.0d0*a*b**4+336
 & *B**5))**
 
z_liq_cplx = s1+1.d0/3.

*a+144.d0*a*b-&& 36.d0
& 24.d0*b**2-192.d0*b**3+264.d0*a*
&120.d0*a**2*b-48.d0*a*b**4+336.d0*
& 384.d
2.d0& 

& 224.d0*b**3+48.d0*b+8+1
& 192.d0*b*
& 48.d0*a*b*
& 84.d0*b**5)
 

e vapor ph!calculate th
z_vap_cplx =(-36.d0*a+144.d0*a*
& sqrt(24.d0*a*b-24.d0*b**2-192.
& 3.d0
& 480.d0*b**4+12.d0*a**3-96.d0*b**6-

/3.d0*b**2-8.d0/3.d0*b-2.d0/& 20.d0
& 224.d0*b
& 192.d0*b**3+264.d0*a*b**2-
& 48.d0*a*b**4+336.d0*a*b**3-

0/3&*b**5))**(1.d0/3.d0)+1.d
 
!there is no liquid phas
!in this case the compres
!compressibility 

(z_liq_cplif (aimag
z_liq = real(z_v
else 
z_liq = real(z_liq_cplx) 
endif 
!the root found for the vapor compressibility is erronaeous if it is  
!a complex # in this case the compressibility root returned as zero to the 
!mainprogram 
if (aimag(z_vap_cplx) > tolerance) then 
call mexPrintf('vapor phase compressibility can not be calculated. - 
&(pr_compr) [thermo_LIBRARY.dll]\n') 
c        write(*,*) 'vapor phase compressibility can not be calculated' 
z_vap = 0.d0 
else 
z_vap = real(z_vap_cplx) 
endif 
return 

e end subroutin
c ---------------
subroutine pr_cons(t,a,aij,b) 
!Usage: 
!to calculate the constants A and B

p239 (Sandler) !explained in 
!Record of revisi
!    date prog
!   ==== =====
! 12/03/2001    MTD  
implicit none 
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.h' 
     Inputs 
     ======== 

       !temperature [K] 
            Locals 
           ======== 
         !constant 
        !constant 
       !constant 

 !reduced temperature  

         Outputs 

ecies 
!b of the species 
interacting a's of the species 

57235529d0 * ((rg * tc(i))**2) / pc(i)     !eqn 4.7-1(first part) 
01d-2 * rg * tc(i) / pc(i)           !eqn 4.7-2  
4226d0 - 0.26992d0 * wc(i)) * wc(i) !eqn 4.7-4 

c(i) 
* (1.d0 - dsqrt(tr)) 

                            !eqn 4.7-3 
                       !eqn 4.7-1(whole) 

(nj-1) 
+1),nj 

 = (1.d0 - del(i,j)) * dsqrt(a(i) * a(j))         !eqn 7.4-9 

----------------------------------------------------------------- 
r_dens(t,p,x,mwa,densa) 

 
late the average molecular weight and the     

visions: 
programmer  description of change 
==========  ===================== 
   MTD    original code 

zx(nj) 
j) 

include 'parameter.h' 
include 'common_plant
!                    

   !                
  real*8:: t    

!             
!             
real*8 :: ac(nj)
real*8 :: xk     
real*8 :: alsqr  
real*8 :: alpha     !constant  
real*8 :: tr           
integer:: i 
integer:: j 
!                
!                        ========= 
real*8 :: a(nj)         !a of the sp
real*8 :: b(nj)         
real*8 :: aij(nj,nj)    !
do i=1,nj 
ac(i) = 0.4
b(i)  = 7.7796074000000
xk    = 0.37464d0 + (1.5
tr    = t / t
alsqr = 1.d0 + xk 
alpha = alsqr * alsqr           
a(i)  = alpha * ac(i)              
enddo 
do i=1,
do j=(i
  aij(i,j)
  aij(j,i) = aij(i,j) 
  enddo 
enddo    
return 

ne end subrouti
c ---------
subroutine p
!Usage:
! to calcu
!density of the liquid phase using Peng-Robinson EOS  
!Record of re
!   date 
!   ==== 
! 25/03/2001 
implicit none 
include 'parameter.h' 
include 'common_plant.h' 
!                         Inputs 
!                        ======== 
real*8 :: t 
real*8 :: p  
real*8 :: x(nj) 
!                         Locals 
!                        ======== 
real*8 :: aa 
real*8 :: bb 
real*8 :: ca 
real*8 :: cb 
real*8 :: a(nj) 

:: b(nj) real*8 
real*8 :: 
real*8 :: aij(nj,n
real*8 :: z_liq 
real*8 :: z_vap 
real*8 :: zz 
real*8 :: vv 
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),dens(nj),tr(nj), conca,dens_cons 
utputs 

          ========= 

-------------------------------------------------- 
x,ifase,dh) 
                                                           
py departure of a mixture                                        
r p425                                                       

                                 
                                

ogrammer          description of change                          
========         =======================  

      MTD                  original code                              
 
eter.h' 
plant.h' 
         Inputs 
        ======== 

      Locals 

real*8 :: sumx 
integer:: i 
integer:: j 

ns(njreal*8 :: adens(nj),bde
!                         O
!              
real*8 :: mwa 
real*8 :: densa 
mwa  = 0.d0 

d0 sumx = 0.
do i = 1,nj 
sumx = sumx + x(i) 
enddo 

 do i = 1,nj
  zx(i) = x(i) / sumx 
enddo 
do i = 1,nj 
        mwa = mwa + mw(i) * zx(i) 
enddo 
 
call pr_cons(t,a,aij,b) 
aa = 0.d0 
bb = 0.d0 
do i = 1,nj 
bb = bb + zx(i) * b(i) 
do j = 1,nj 
if (i == j) then 
aa = aa + zx(i) * zx(i) * a(i) 
else 

 aa = aa + zx(i) * zx(j) * aij(i,j)
endif 
enddo 
enddo   
ca = aa * p / ((rg * t)**2) 
cb = bb * p /  (rg * t) 
call pr_compr(ca,cb,z_liq,z_vap) 
zz    = z_liq 
vv    = zz * rg * t / p 
densa = mwa / vv   
return  
end subroutine 
c ------------------------
subroutine pr_enth(t,p,z
!Usage:                  

e enthal!to calculate th
!as explained in Sandle
!Peng-Robinson EOS is explained in p239       
!Record of revisions:                          
!   date    pr

   ==!   ====     
!12/03/2001  
implicit none
include 'param
include 'common_
!                
!                
real*8 :: t 
real*8 :: p 
real*8 :: zx(nj) 
!                   
!                        ======== 
real*8 :: zz 
real*8 :: a(nj) 
real*8 :: b(nj) 
real*8 :: xk(nj) 
real*8 :: aij(nj,nj) 
real*8 :: c1,c2,c3,c4,c5,c6,c7,c8,c9 
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) 
:: dh0,dh1,dh2 
: i 
: j 

utputs 
======= 

(i) 

,j) 

 p / (rg * t) 
mpr(ca,cb,z_liq,z_vap) 

hen 

.54226d0 - 0.26992d0 * wc(i)) * wc(i) !eqn 4.7-4 

2.d0) * (-1 + del(i,j)) * rg**4  
- xk(i) + xk(i) * dsqrt(tr(i))) 
- xk(j) + xk(j) * dsqrt(tr(j))) 
sqrt(tr(j)) -tc(j) * xk(i) * dsqrt(tr(j)) * xk(j) 
 * xk(j)-tc(i) * xk(j) * dsqrt(tr(i))  
sqrt(tr(i)) * xk(i) 
k(i) * dsqrt(tr(i)))**2 
(j) * dsqrt(tr(j)))**2 / pc(i) / pc(j)    
dsqrt(tr(i)) * dsqrt(tr(j)) 

i)**2 * c7 * tc(j)**2 * c8) * pc(i) * pc(j) * 
j)) 
 zx(j) * (c1 * c2 * c3 * cnum / cden) 

cb) 

real*8 :: a1,a2,a3,a4 
real*8 :: anum,aden 
real*8 :: cnum,cden 
real*8 :: damdt 

8 :: aa real*
real*8 :: ca 
real*8 :: bb 
real*8 :: cb 
real*8 :: z_liq 

 :: z_vap real*8
real*8 :: tr(nj
real*8 
integer:
integer:
integer:: ifase 
!                         O
!                        ==
real*8:: dh  
call pr_cons(t,a,aij,b) 
aa = 0.d0 
bb = 0.d0 
do i = 1,nj 
bb = bb + zx(i) * b(i) 
do j = 1,nj 
if (i == j) then 
aa = aa + zx(i) * zx(i) * a
else 
aa = aa + zx(i) * zx(j) * aij(i
endif 
enddo 
enddo   
ca = aa * p / ((rg * t)**2) 
cb = bb *
call pr_co
if (ifase == 0) t
zz = z_liq 
else 
zz = z_vap 
endif 
do i = 1,nj   
 xk(i) = 0.37464d0 + (1
enddo 
damdt = 0.d0 
do i= 1,nj 
do j = 1,nj  
tr(i) = t / tc(i) 
tr(j) = t / tc(j) 
c1 = (-0.457235529d0/
c2 =   tc(i) * (-1.d0 
c3 =   tc(j) * (-1.d0 
c4 =  -tc(j) * xk(i) * d
c5 =   2.d0 * xk(i) * t
c6 =  -tc(i) * xk(j) * d
c7 = (-1.d0 - xk(i) + x
c8 = (-1.d0 - xk(j) + xk
c9 =   pc(i) * pc(j) * 
cnum = c4 + c5 + c6 
cden = dsqrt(rg**4 * tc(
dsqrt(tr(i)) * dsqrt(tr(
damdt = damdt + zx(i) *
enddo 
enddo    
a1 = dsqrt(2.d0) 
a2 = a1 + 1.d0 
a3 = a1 - 1.d0 
a4 = a1 * 2.d0 
anum = zz + (a2 * 



 148

cb) 
)*(zz -1.d0) 

/a4/bb  
 
)     

----------------------------------------------------------- 
uil(t,p,x,yy) 

the bubble point temperature using  
imilar to VLMU.BAS of Sandler 

ons: 

============ 

 to find equilibrium staff   
a zero-fraction component exist. some checks were performed before 
ation. 

6   ALMILA    modified for gama-fi method with NRTL activity 
del 

            ! t is also an output                            
                          

nj)                           
            Locals 
            ======== 

dt2                         
                           
j)                          

                     

j) 

),ant_cons_c(nj)  
nj),sumy1 

j,xgij1 
gij(nj,nj) 

         =========                         

aden = zz - (a3 * 
dh0 = (rg * t
dh1 = (t*damdt - aa)
dh2 = dlog(anum/aden)

h0 + dh1*dh2dh  = (d
return  
end subroutine 
c ---------------

ine pr_eqsubrout
!Usage: 
! to calculate 
!Peng-Robinson EOS s
!Record of revisi

ate programmer  description of change !    d
!   ===      ========    ========

/2001   MTD       original code ! 12/03
! 12/06/2001   UGUR       to be able
! when 
!calcul
! 01/05/200
!coefficient mo
implicit none 
include 'parameter.h' 
include 'common_plant.h' 

      Inputs !                   
!                        ======== 
real*8:: t    
real*8:: p     
real*8:: x(
!             

  !          
real*8 :: s(2),sum,sumy                   
real*8 :: dt1,
real*8 :: dlnp 

s(nreal*8 :: p
real*8 :: xk1(nj)                         
real*8 :: a(nj)      
real*8 :: aij(nj,nj)                      
real*8 :: b(nj)                           
real*8 :: zx(nj)                          

:: fugacity(nj)  real*8 
real*8 :: f1(nj),f2(nj)  
real*8 :: zz,zz1,zz2   
real*8 :: y1(nj),y2(n
real*8 :: yk   
real*8 :: test,ttest  
real*8 :: dsdt,dlt,dd 
real*8 :: neg_dd,neg_dlt                      
real*8 :: tbg,tcg 
integer:: i 

:: j integer
integer:: k 
integer:: nc 
integer:: kkk 
integer:: nloop 
integer:: iconv 

:: ifase integer
integer:: itest 
integer:: kvalue 
logical:: reguess  

:: ant_cons_a(nj),ant_cons_b(njreal*8 
real*8 :: gama(
integer:: loop 
real*8 :: alact(nj),tagx1,tagx2,total,xgk
real*8 :: bij(nj,nj),alp(nj,nj),ta(nj,nj),

                   Outputs !      
!               
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d0) then 

) = 1195.130d0 
2) = 1648.220d0 

b(4) = 1555.120d0  

 

dex(i)) 

  
 x(comp_index(i))/sum  

0 

to 4630 

 coeffients from NRTL model 
) = -4.41293d0 

0 

real*8 yy(nj) 
integer:: comp_index(nj) 
common /nc/ nc 

ent check ! zero compon
j=0 
do i=1,nj 
if (x(i).gt.0.0
j=j+1 
comp_index(j) = i 
else 
yy(i) = 0.0d0 
endif 
end do 
nc = j 
ant_cons_a(1) = 4.13361d0 

s_a(2) = 5.33675d0 ant_con
ant_cons_a(3) = 5.11564d0 
ant_cons_a(4) = 4.54456d0 
ant_cons_b(1
ant_cons_b(
ant_cons_b(3) = 1687.537d0 
ant_cons_
ant_cons_c(1) = 212.470d0 
ant_cons_c(2) = 230.918d0 
ant_cons_c(3) = 230.170d0 

0d0ant_cons_c(4) = 224.65
sum = 0.0d0 
do i = 1,nc 
  sum = sum + x(comp_in
enddo 

,ncdo i = 1
  x(comp_index(i)) =
enddo 
loop = 
10loop = loop+1 

o if (loop .gt. 1800) g
sumy = 0.0d0 
c Activity
aij(1,2
aij(2,1) =  1.817306d0 
aij(1,3) = -2.34561d0 
aij(3,1) =  3.853826d0 
aij(1,4) =  0.0d0 
aij(4,1) =  0.0d0 
aij(2,3) =  0.806535d0 
aij(3,2) =  0.514285d0 
aij(2,4) =  0.0d
aij(4,2) =  0.0d0 
aij(3,4) =  3.3293d0 
aij(4,3) = -1.9763d0 
bij(1,2) =  1614.287d0 
bij(2,1) = -421.289d0 
bij(1,3) =  1290.464d0 
bij(3,1) = -4.42868d0 
bij(1,4) =  515.8212d0 
bij(4,1) = -235.279d0 
bij(2,3) = -266.533d0 
bij(3,2) =  444.8857d0 
bij(2,4) =  225.4756d0 
bij(4,2) = -252.482d0 

.888d0 bij(3,4) = -723
bij(4,3) =  609.8886d0 
alp(1,2) = 0.1d0 
alp(1,3) = 0.364313d0 
alp(1,4) = 0.3d0 
alp(2,3) = 0.4d0 
alp(2,4) = 0.3d0 
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alp(i,j)*ta(i,j)) 

(comp_index(j),comp_index(i))*gij(comp_index(j),comp_index(i))* 
x(j)) 

)) 

ex(k))*gij(comp_index(k),comp_index(j)) 

d0 

))*ta(comp_index(k),comp_index(j))*gij(comp_index( 
 

total + x(comp_index(j))*gij(comp_index(i),comp_index(j))/xgkj* 
a(comp_index(i),comp_index(j)) - tagx2/xgkj) 

(i)) = tagx1 / xgij1 + total 
i)) = dexp(alact(comp_index(i))) 

on 

x(i)) = ant_cons_a(comp_index(i))-(ant_cons_b(comp_index(i)) 

0d5 

_index(j)) = yy(comp_index(j))*1.0d0/sumy 
_index(j)) = y2(comp_index(j)) 

ex(i))  

 0 

alp(3,4) = 0.3d0 
do i=1,nj-1 
do j=i+1,nj 
alp(j,i) = alp(i,j) 
enddo  
enddo 
do i=1,nj 
ta(i,i) = 0.0d0 
enddo 
do i=1,nj 
do j=1,nj 
if (i .eq. j) then 
ta(i,j) = 0.0d0 
else 
ta(i,j) = aij(i,j) + bij(i,j)/t 
endif 
gij(i,j) = dexp(-
enddo 
enddo 
do i=1,nc 
tagx1 = 0.0d0 
xgij1 = 0.0d0 
do j = 1,nc 
tagx1=tagx1+a
& x(comp_inde
xgij1 = xgij1 + x(comp_index(j))*gij(comp_index(j),comp_index(i
enddo 
total = 0.0d0 
do j=1,nc 
xgkj = 0.0d0 
do k=1,nc 
xgkj = xgkj + x(comp_ind
enddo 
tagx2 = 0.0
do k=1,nc 

agx2+x(comp_index(ktagx2=t
& k),comp_index(j))
enddo 
total = 
     &(t
enddo 
alact(comp_index
gama(comp_index(
enddo 
c end of NRTL lngama 

Pressure calculati!Vapor 
do i=1,nc 
ps(comp_inde
     &/(t-273.15d0+ant_cons_c(comp_index(i)))) 
ps(comp_index(i)) = (10**ps(comp_index(i))) * 1.
enddo 
!End of vapor pressure calculation 
do i=1,nc 
!y*p*fiv=x*gama*pvap 

p_index(i)) = x(comp_index(i))*gama(comp_index(i))*ps(comp_index(i))/p yy(com
sumy = sumy + yy(comp_index(i)) 
enddo 
do j=1,nc 
y2(comp
yy(comp
enddo 
!call pr_cons 
call pr_cons(t,a,aij,b) 
11 do i = 1,nc 

yy(comp_ind  zx(comp_index(i)) = 
enddo 

 vapor!phase



 151

gacity) 

y(comp_index(i))  

(

omp_index(i)) .lt. 1.0d-16) yy(comp_index(i))=0.0d0 
ex(i)) .gt. 1.0d0)   yy(comp_index(i))=1.0d0 

yy(comp_index(i)) = yy(comp_index(i))*1.0d0/sumy1 

cendif 
then 

endif 
dlt 
o to 10 

mexErrMsgTxt('not converging: one-phase region or poor initial 

tial guess' 

------------- 

                                                  
 explained in Sandler p409              
                                      

                                     
e                           
                          

           
 when a zero-

include 'common_plant.h' 
!                         Inputs 
!                        ======== 
real*8 :: t                             
real*8 :: p                             

ifase = 0 
!call pr_fuga 
call pr_fuga(t,p,ifase,zx,zz,a,aij,b,fu
do i = 1,nc 
  f2(comp_index(i)) = fugacit
enddo  
sumy1 = 0.0d0 
do i=1,nc 

dex(i))*ps(comp_index(i))*yyyy(comp_index(i))=x(comp_index(i))*gama(comp_in
comp_index(i))/f2(comp_index(i)) 
if (yy(c
if (yy(comp_ind
enddo 
do i=1,nc 
sumy1 = sumy1+yy(comp_index(i)) 
enddo 
dsdt = (sumy-sumy1)/0.005d0 
if ((sumy-sumy1) .lt. tolerance) go to 12 
sumy=sumy1 
do i=1,nc 

enddo 
go to 11 
12 if (dabs((sumy1-1.0d0)/dsdt) < 0.0026d0) return 
dlt = (sumy1-1.0d0)/dsdt 
cif (loop < 11) then 
cdd = 20.0d0 
cendif 
cif (loop >= 11) then 
dd = 5.0d0 

if (dlt > dd) 
t = t+dd 
endif 
if (dlt > dd) go to 10 
neg_dd = -1.d0 * dd 
if (dlt < neg_dd) then 
t = t-dd 

neg_dlt = -1.0d0 * 
if (neg_dlt > dd) g
t = t + dlt + 0.0025d0 
go to 10 
630   call 4
guess. - (pr_equil) [thermo_LIBRARY.dll]') 
c4630  write(*,*) 'not converging: one-phase region or poor ini
return 
end subroutine  
c -------------------------------------------------------------
ubroutine pr_fuga(t,p,ifase,zx,zz,a,aij,b,fugacity) s
   !Usage:                          
   !to calculate the species fugacity f(T,P,xi) as

      !Peng-Robinson EOS is explained in p239    
  !Record of revisions:                       

!  date     programmer   description of chang
  ====     ========  =======================!
!12/03/2001  MTD           original code                   

staff!12/06/2001  UGUR     to be able to find equilibrium 
!fraction component exist.  
!some checks were performed before calculation. 
implicit none 
include 'parameter.h' 
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real*8 :: a(nj)                         
real*8 :: b(nj)                         

j(nj,nj) 

 ======== 
             
            
            

real*8 :: bb                                                    
                    
                    

x(i)) * a(comp_index(i)) 
_index(j)) * a(comp_index(j)) 

),comp_index(j)) 

real*8 :: zx(nj)          

real*8 :: ai
integer:: ifase                    

             Locals !            
!                       
real*8 :: c1               
real*8 :: c2                

  real*8 :: c3              
real*8 :: sa(nj)                        
real*8 :: aa                            

real*8 :: cb        
real*8 :: ca        
real*8 :: zz 
real*8 :: z_liq 
real*8 :: z_vap 
real*8 :: fox(nj) 

 ag1 real*8 ::
real*8 :: ag2 
real*8 :: ag3 
integer:: nc 
integer:: i 
integer:: j 
real*8 :: ant_cons_a(nj),ant_cons_b(nj),ant_cons_c(nj),ps(nj) 
!                         Outputs 

               ========= !         
real*8 ::fugacity(nj)                  
integer:: comp_index(nj) 
common /nc/ nc 
! zero component check 
j=0 
do i=1,nj 
if (zx(i) .gt. 0.d0) then 
j=j+1 
comp_index(j) = i 
endif 
end do 
nc = j 
c1 = dsqrt(2.d0) 
c2 = 1.d0 + c1 
c3 = c1 - 1.d0 
do i = 1,nc 
sa(comp_index(i)) = 0.d0 
enddo 
aa = 0.d0 
bb = 0.d0 
do i = 1,nc 
bb = bb + zx(comp_index(i)) * b(comp_index(i)) 
do j = 1,nc 
if (i == j) then 

p_indeaa    = aa + zx(comp_index(i)) * zx(com
sa(comp_index(j)) = sa(comp_index(j)) + zx(comp
else 
aa=aa+zx(comp_index(i))*zx(comp_index(j))*aij(comp_index(i

(i))* sa(comp_index(j))=sa(comp_index(j))+zx(comp_index
& aij(comp_index(i),comp_index(j)) 
endif 
enddo 
enddo   
ca = aa * p / ((rg*t)**2) 
cb = bb * p / (rg*t) 
call pr_compr(ca,cb,z_liq,z_vap) 
if (ifase == 0) then 
zz  = z_vap 
else 
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)) / bb) 
-cb)-ag1*ag2*ag3 

 fox(comp_index(i)) 

zz  = z_liq 
endif 
ag1 = (zz + c2 * cb) / (zz - c3 * cb) 
ag1 = dlog(ag1) 
ag2 = ca / (2.d0 * cb * c1) 
do i = 1,nc 
ag3    = (2.d0 * sa(comp_index(i)) / aa) - (b(comp_index(i
fox(comp_index(i))=(b(comp_index(i))*(zz-1.d0)/bb)-dlog(zz
fox(comp_index(i)) = dexp(fox(comp_index(i))) 

)) * p *fugacity(comp_index(i)) = zx(comp_index(i
enddo  
return 
end subroutine 

thermo_LIBRARY.h 

common /thermo_LIBRARY/ lib_Inited 
integer :: lib_Inited  ! Toggle for checking whether thermo_LIBRARY.dll 
!is initialized. 

common_plant.h 

common /plant/ whs,whr,ds,dr,wls,wlr,mvb,mvd,tolerance,  
el(nj,nj),cenh1(nj), & mw(nj),tc(nj),tboil(nj),pc(nj),wc(nj),d

& cenh2(nj),cenh3(nj),cenh4(nj) 
real*8 :: whs,whr,ds,dr,wls,wlr,mvb,mvd,tolerance 
real*8 :: mw,tc,tboil,pc,wc,del 
real*8 :: cenh1,cenh2,cenh3,cenh4 

parameter.h 

C This parameters were modified as the common statement labeled as 

f components 
constant  
temperature 

C'parameter'   
! number ointeger ,parameter :: nj = 4      

real*8 ,parameter :: rg = 8.313999999999999d0 ! ideal gas 
real*8 ,parameter :: trf= 273.15d0            ! reference 

thermo_data.dat 

tolerance (Component order: ethyl acetate, ethanol, water, acetic acid) 

 
1d0 
4d0 
4d0 
9d0 

0 

  1.000d-7 
 
Mw(kg/mol)      Tc(K)      Tboil(K)    Pc(Pa)            w
 88.106d-3     523.25d0    350.3d0    3.830d6         0.36
 46.069d-3     513.92d0    351.5d0    6.148d6         0.64
 18.015d-3     647.30d0    373.2d0    2.209d7         0.34

        0.45 60.052d-3     592.71d0    391.1d0    5.786d6 
 
del(binary interaction parameters) 
  0.000d0   0.022d0    -0.280d0    -0.226d0      
  0.022d0   0.000d0    -0.935d0    -0.0436d0 

d0  -0.280d0  -0.935d0     0.000d0    -0.144
 -0.226d0  -0.0436d0   -0.144d0     0.000d
 
   cenh1         cenh2          cenh3       cenh4(J/molK) 
  7.235d0      4.072d-1      -2.092d-4     2.555d-8 
  9.014d0      2.095d-1      -1.037d-4     2.004d-8 
 32.218d0      0.192d-2       1.055d-5    -3.593d-9 
  4.840d0      2.549d-1      -1.753d-4     4.949d-8 
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C.4 ANN Estimator Code 

training.m 

net = newelm(minmax(input_norm),[20,34,4],{'tansig','tansig','purelin'},... 
'trainbfg'); 
net.trainParam.show=1; 
net.trainParam.lr=0.0001; 
net.trainParam.epochs=500; 
net.trainParam.goal=1e-7; 
[net,tr]=train(net,input_norm,output_norm); 

find_R_interval.m 

% ==============================================
erval a

===== 
% This function finds the reflux ratio int

riables 
nd finds the max. and min. 

by interpolation. 
-------------------------------------- 

er total reflux;  
er total reflux 
R profile when the 
ux 
----------------- 

 
=========== 

 = find_R_interval(R_Ratio_p, ... 

zeros(1,4); % Maximum value of the first input 
mum value of the first input 
mum value of the first output 

t 
t 
t 

second output 
second output 

.1541]; 

88.2249]; 
106 343.8205]; 

197 0.8773]; 

*i_min_1; 
1+d2)*o_max_1; 

% values of the input and output va
% -----------------------------------
% inputs 
% R_Ratio_p: L/V ratio of the column = R/(1+R) 
% constant_R_Ratio:  
% it is 1.0,when the column is operating at constant R aft

iable R aft% it is 0.0,when the column is operating at var
% Rpercent: indicates the percent change from the optimal 
%column operates at variable reflux ratio after total refl

----------% ----------------------------------------------
% outputs 
% i_max: Maximum values of the input variables 
% i_min: Minimum values of the input variables 

s % o_max: Maximum values of the output variable
iables% o_min: Minimum values of the output var

======% ==================================
n]function [i_max, i_min, o_max, o_mi

constant_R_Ratio, Rpercent) 
i_max = zeros(1,4);  
i_min = zeros(1,4);   
o_max = zeros(1,4);  

eros(1,4);  o_min = z
_1 = i_max

i_min_1 = zeros(1,4); % Mini
axio_max_1 = zeros(1,4); % M

o_min_1 = zeros(1,4); % Minimum value of the first outpu
i_max_2 = zeros(1,4); % Maximum value of the second inpu

 second inpui_min_2 = zeros(1,4); % Minimum value of the
f the o_max_2 = zeros(1,4); % Maximum value o

o_min_2 = zeros(1,4); % Minimum value of the 
if constant_R_Ratio == 1.0 
    if (R_Ratio_p == 1.0)  

4.2783];         i_max = [364.7221 364.2783 364.2783 36
18 343        i_min = [354.6084 343.9560 343.24

        o_max = [0.5760 0.8532 0.2261 0.5]; 
        o_min = [0 0.1974 0 1.17e-4];  
    elseif (R_Ratio_p>=0.5) & (R_Ratio_p<0.6) 

8866 3        i_max_1 = [389.8986 389.8963 389.
04 344.1        i_min_1 = [361.1863 346.75

        o_max_1 = [0.5203 0.8532 0.3
        o_min_1 = [0 0.0325 0 1.17e-4]; 
        i_max_2 = [389.9045 389.9041 389.8937 388.4182]; 
        i_min_2 = [361.1863 346.7502 344.1106 343.8205]; 
        o_max_2 = [0.5204 0.8532 0.4059 0.9077]; 
        o_min_2 = [0 0.0187 0 1.17e-4]; 
        d1 = abs(R_Ratio_p - 0.5); 
        d2 = abs(0.6 - R_Ratio_p); 

)*i_max_1;         i_max = d1/(d1+d2)*i_max_2 + d2/(d1+d2
d1+d2)        i_min = d1/(d1+d2)*i_min_2 + d2/(

        o_max = d1/(d1+d2)*o_max_2 + d2/(d
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88.4182]; 
343.8205]; 

.9077]; 

_max_1; 

84.0034]; 
106 343.8205]; 
.6979]; 

; 

min_1; 
_max_1; 

6059]; 
1106 343.8205]; 
0.8907]; 

; 

  d2 = abs(0.85 - R_Ratio_p); 
        i_max = d1/(d1+d2)*i_max_2 + d2/(d1+d2)*i_max_1; 

*o_max_2 + d2/(d1+d2)*o_max_1; 
1; 

7502 344.1106 343.8205]; 

4.2783]; 
1106 343.5710]; 

        d1 = abs(R_Ratio_p - 0.85); 
        d2 = abs(0.89 - R_Ratio_p); 
        i_max = d1/(d1+d2)*i_max_2 + d2/(d1+d2)*i_max_1; 
        i_min = d1/(d1+d2)*i_min_2 + d2/(d1+d2)*i_min_1; 
        o_max = d1/(d1+d2)*o_max_2 + d2/(d1+d2)*o_max_1; 
        o_min = d1/(d1+d2)*o_min_2 + d2/(d1+d2)*o_min_1; 
    elseif (R_Ratio_p>=0.89) & (R_Ratio_p<0.9) 
        i_max_1 = [376.4271 372.5482 371.2858 364.2783]; 
        i_min_1 = [361.1795 346.7502 344.1106 343.5710]; 
        o_max_1 = [0.5301 0.8532 0.3516 0.5]; 
        o_min_1 = [0 0.3157 0 1.17e-4];  
        i_max_2 = [370.4641 364.2783 364.2783 364.2783]; 

        o_min = d1/(d1+d2)*o_min_2 + d2/(d1+d2)*o_min_1; 
    elseif (R_Ratio_p>=0.6) & (R_Ratio_p<0.7) 
        i_max_1 = [389.9045 389.9041 389.8937 3

106         i_min_1 = [361.1863 346.7502 344.1
059 0        o_max_1 = [0.5204 0.8532 0.4

        o_min_1 = [0 0.0187 0 1.17e-4]; 
        i_max_2 = [389.8650 389.8617 389.7480 384.0034]; 
        i_min_2 = [361.1863 346.7502 344.1106 343.8205]; 
        o_max_2 = [0.5206 0.8532 0.5075 0.6979]; 
        o_min_2 = [0 0.0645 0 1.17e-4]; 
        d1 = abs(R_Ratio_p - 0.6); 
        d2 = abs(0.7 - R_Ratio_p); 
        i_max = d1/(d1+d2)*i_max_2 + d2/(d1+d2)*i_max_1; 

min_1;         i_min = d1/(d1+d2)*i_min_2 + d2/(d1+d2)*i_
d1+d2)*o        o_max = d1/(d1+d2)*o_max_2 + d2/(

        o_min = d1/(d1+d2)*o_min_2 + d2/(d1+d2)*o_min_1; 
    elseif (R_Ratio_p>=0.7) & (R_Ratio_p<0.8) 
        i_max_1 = [389.8650 389.8617 389.7480 3
        i_min_1 = [361.1863 346.7502 344.1

 0        o_max_1 = [0.5206 0.8532 0.5075
-4]        o_min_1 = [0 0.0645 0 1.17e

        i_max_2 = [389.9063 389.9074 389.8468 387.6059]; 
        i_min_2 = [361.1863 346.7502 344.1106 343.8205]; 
        o_max_2 = [0.5210 0.8532 0.6145 0.8907]; 
        o_min_2 = [0 0.0095 0 1.17e-4]; 
        d1 = abs(R_Ratio_p - 0.7); 
        d2 = abs(0.8 - R_Ratio_p); 
        i_max = d1/(d1+d2)*i_max_2 + d2/(d1+d2)*i_max_1; 
        i_min = d1/(d1+d2)*i_min_2 + d2/(d1+d2)*i_

1+d2)*o        o_max = d1/(d1+d2)*o_max_2 + d2/(d
        o_min = d1/(d1+d2)*o_min_2 + d2/(d1+d2)*o_min_1; 
    elseif (R_Ratio_p>=0.8) & (R_Ratio_p<0.85) 
        i_max_1 = [389.9063 389.9074 389.8468 387.
        i_min_1 = [361.1863 346.7502 344.

         o_max_1 = [0.5210 0.8532 0.6145
]        o_min_1 = [0 0.0095 0 1.17e-4

        i_max_2 = [384.6589 377.6219 372.2896 364.7180]; 
        i_min_2 = [361.1861 346.7502 344.1106 343.8205]; 
        o_max_2 = [0.5216 0.8532 0.6196 0.5]; 
        o_min_2 = [0 0.1905 0 1.17e-4];  

 abs(R_Ratio_p - 0.8);         d1 =
      

        i_min = d1/(d1+d2)*i_min_2 + d2/(d1+d2)*i_min_1; 
        o_max = d1/(d1+d2)
        o_min = d1/(d1+d2)*o_min_2 + d2/(d1+d2)*o_min_
    elseif (R_Ratio_p>=0.85) & (R_Ratio_p<0.89) 

_max_1 = [384.6589 377.6219 372.2896 364.7180];         i
        i_min_1 = [361.1861 346.
        o_max_1 = [0.5216 0.8532 0.6196 0.5]; 
        o_min_1 = [0 0.1905 0 1.17e-4]; 

max_2 = [376.4271 372.5482 371.2858 36        i_
        i_min_2 = [361.1795 346.7502 344.
        o_max_2 = [0.5301 0.8532 0.3516 0.5]; 
        o_min_2 = [0 0.3157 0 1.17e-4];  
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        i_min_2 = [361.1397 346.7502 343.9951 343.4998]; 
        o_max_2 = [0.5360 0.8532 0.1653 0.5]; 
        o_min_2 = [0 0.2999 0 1.17e-4];  
        d1 = abs(R_Ratio_p - 0.89); 
        d2 = abs(0.9 - R_Ratio_p); 
        i_max = d1/(d1+d2)*i_max_2 + d2/(d1+d2)*i_max_1; 
        i_min = d1/(d1+d2)*i_min_2 + d2/(d1+d2)*i_min_1; 
        o_max = d1/(d1+d2)*o_max_2 + d2/(d1+d2)*o_max_1; 
        o_min = d1/(d1+d2)*o_min_2 + d2/(d1+d2)*o_min_1; 
    elseif (R_Ratio_p>=0.9) & (R_Ratio_p<0.95) 
        i_max_1 = [370.4641 364.2783 364.2783 364.2783]; 
        i_min_1 = [361.1397 346.7502 343.9951 343.4998]; 
        o_max_1 = [0.5360 0.8532 0.1653 0.5]; 
        o_min_1 = [0 0.2999 0 1.17e-4];  
        i_max_2 = [364.7221 364.2783 364.2783 364.2783]; 
        i_min_2 = [359.5993 345.1851 343.3504 343.2073]; 

        d2 = abs(0.95 - R_Ratio_p); 
        i_max = d1/(d1+d2)*i_max_2 + d2/(d1+d2)*i_max_1; 
        i_min = d1/(d1+d2)*i_min_2 + d2/(d1+d2)*i_min_1; 
        o_max = d1/(d1+d2)*o_max_2 + d2/(d1+d2)*o_max_1; 
        o_min = d1/(d1+d2)*o_min_2 + d2/(d1+d2)*o_min_1; 
    elseif (R_Ratio_p>=0.95) & (R_Ratio_p<1.0) 
        i_max_1 = [364.7221 364.2783 364.2783 364.2783]; 
        i_min_1 = [359.5993 345.1851 343.3504 343.2073]; 
        o_max_1 = [0.56724 0.8532 0.21387 0.5]; 
        o_min_1 = [0 0.21851 0 1.17e-4];  
        i_max_2 = [364.7221 364.2783 364.2783 364.2783]; 
        i_min_2 = [354.6084 343.9560 343.2418 343.1541]; 
        o_max_2 = [0.5760 0.8532 0.2261 0.5]; 
        o_min_2 = [0 0.1974 0 1.17e-4];  
        d1 = abs(R_Ratio_p - 0.95); 
        d2 = abs(1.0 - R_Ratio_p); 
        i_max = d1/(d1+d2)*i_max_2 + d2/(d1+d2)*i_max_1; 
        i_min = d1/(d1+d2)*i_min_2 + d2/(d1+d2)*i_min_1; 
        o_max = d1/(d1+d2)*o_max_2 + d2/(d1+d2)*o_max_1; 
        o_min = d1/(d1+d2)*o_min_2 + d2/(d1+d2)*o_min_1; 
    end; 
end; 
if constant_R_Ratio == 0.0 
    if (Rpercent == 0.0) 
        i_max = [389.8419 389.6200 385.4282 370.2828]; 
        i_min = [361.1776 346.7498 344.1105 343.5611]; 
        o_max = [0.5309 0.8532 0.6532 0.5]; 
        o_min = [0 0.0882 0 1.17e-4];  
    elseif (Rpercent>0.0) & (Rpercent<10.0) 
        i_max_1 = [389.8419 389.6200 385.4282 370.2828]; 
        i_min_1 = [361.1776 346.7498 344.1105 343.5611]; 
        o_max_1 = [0.5309 0.8532 0.6532 0.5]; 
        o_min_1 = [0 0.0882 0 1.17e-4];  
        i_max_2 = [386.9120 378.8623 372.5038 366.3068]; 
        i_min_2 = [361.1377 346.7502 343.9911 343.4980]; 
        o_max_2 = [0.5361 0.8532 0.6673 0.5]; 
        o_min_2 = [0 0.1466 0 1.17e-4];  
        d1 = abs(Rpercent - 0.0); 
        d2 = abs(10.0 - Rpercent); 
        i_max = d1/(d1+d2)*i_max_2 + d2/(d1+d2)*i_max_1; 
        i_min = d1/(d1+d2)*i_min_2 + d2/(d1+d2)*i_min_1; 
        o_max = d1/(d1+d2)*o_max_2 + d2/(d1+d2)*o_max_1; 
        o_min = d1/(d1+d2)*o_min_2 + d2/(d1+d2)*o_min_1; 
    elseif (Rpercent>=10.0) & (Rpercent<20.0) 
        i_max_1 = [386.9120 378.8623 372.5038 366.3068]; 
        i_min_1 = [361.1377 346.7502 343.9911 343.4980]; 
        o_max_1 = [0.5361 0.8532 0.6673 0.5]; 
        o_min_1 = [0 0.1466 0 1.17e-4];  

        o_max_2 = [0.56724 0.8532 0.21387 0.5]; 
        o_min_2 = [0 0.21851 0 1.17e-4];  
        d1 = abs(R_Ratio_p - 0.9); 
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        i_max_2 = [382.0114 374.2861 371.9075 364.2783]; 
        i_min_2 = [361.0607 346.7502 343.8830 343.4504]; 
        o_max_2 = [0.5403 0.8532 0.6031 0.5]; 
        o_min_2 = [0 0.2186 0 1.17e-4];  
        d1 = abs(Rpercent - 10.0); 
        d2 = abs(20.0 - Rpercent); 
        i_max = d1/(d1+d2)*i_max_2 + d2/(d1+d2)*i_max_1; 
        i_min = d1/(d1+d2)*i_min_2 + d2/(d1+d2)*i_min_1; 
        o_max = d1/(d1+d2)*o_max_2 + d2/(d1+d2)*o_max_1; 
        o_min = d1/(d1+d2)*o_min_2 + d2/(d1+d2)*o_min_1; 
    elseif (Rpercent>=-10.0) & (Rpercent<0.0) 
        i_max_1 = [389.9035 389.8734 389.4124 379.6643]; 
        i_min_1 = [361.1834 346.7502 344.1106 343.6387]; 
        o_max_1 = [0.5247 0.8532 0.6412 0.5928]; 
        o_min_1 = [0 0.0418 0 1.17e-4]; 
        i_max_2 = [389.8419 389.6200 385.4282 370.2828]; 
        i_min_2 = [361.1776 346.7498 344.1105 343.5611]; 
        o_max_2 = [0.5309 0.8532 0.6532 0.5]; 
        o_min_2 = [0 0.0882 0 1.17e-4];  
        d1 = abs(Rpercent - (-10.0)); 
        d2 = abs(0.0 - Rpercent); 
        i_max = d1/(d1+d2)*i_max_2 + d2/(d1+d2)*i_max_1; 
        i_min = d1/(d1+d2)*i_min_2 + d2/(d1+d2)*i_min_1; 
        o_max = d1/(d1+d2)*o_max_2 + d2/(d1+d2)*o_max_1; 
        o_min = d1/(d1+d2)*o_min_2 + d2/(d1+d2)*o_min_1; 
    elseif (Rpercent>=-20.0) & (Rpercent<-10.0) 
        i_max_1 = [389.9044 389.9010 389.7948 385.5087]; 
        i_min_1 = [361.1853 346.7502 344.1106 343.7321]; 
        o_max_1 = [0.5221 0.8532 0.6392 0.8141]; 
        o_min_1 = [0 0.0151 0 1.17e-4];  
        i_max_2 = [389.9035 389.8734 389.4124 379.6643]; 
        i_min_2 = [361.1834 346.7502 344.1106 343.6387]; 
        o_max_2 = [0.5247 0.8532 0.6412 0.5928]; 
        o_min_2 = [0 0.0418 0 1.17e-4]; 
        d1 = abs(Rpercent - (-20.0)); 
        d2 = abs(-10.0 - Rpercent); 
        i_max = d1/(d1+d2)*i_max_2 + d2/(d1+d2)*i_max_1; 
        i_min = d1/(d1+d2)*i_min_2 + d2/(d1+d2)*i_min_1; 
        o_max = d1/(d1+d2)*o_max_2 + d2/(d1+d2)*o_max_1; 
        o_min = d1/(d1+d2)*o_min_2 + d2/(d1+d2)*o_min_1; 
    end;   
end; 

normalize_sim_input.m 

% ================================================== 
% This function normalizes the network inputs to a value btw -1 and 1. 
% inputs 
% sim_i: inputs to the network 
% i_max: maximum values for the network inputs 
% i_min: minimum values for the network inputs 
% outputs 
% sim_i_norm: normalized network inputs 
%================================================== 
function [sim_i_norm] = normalize_sim_input(sim_i, i_max, i_min) 
in1 = 2*(sim_i(:,1)-i_min(1,1))/(i_max(1,1)-i_min(1,1)) -1; 
in2 = 2*(sim_i(:,2)-i_min(1,2))/(i_max(1,2)-i_min(1,2)) -1; 
in3 = 2*(sim_i(:,3)-i_min(1,3))/(i_max(1,3)-i_min(1,3)) -1; 
in4 = 2*(sim_i(:,4)-i_min(1,4))/(i_max(1,4)-i_min(1,4)) -1; 
% fprintf('INPUTS Normalized \n'); 
sim_i_norm = [in1 in2 in3 in4]; 
sim_i_norm = sim_i_norm'; 
% fprintf('INPUTS Combined \n'); 
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simulate.m 

% =================================================== 
% Simulates the network and finds output to given input by interpolation 
% ------------------------------------------------------------------------- 
% inputs 
% R_Ratio_p: L/V ratio of the column = R/(1+R) 
% constant_R_Ratio:  
% it is 1.0,when the column is operating at constant R after total reflux;  
% it is 0.0,when the column is operating at variable R after total reflux 
%Rpercent:indicates percent change from the optimal R profile when the 
%column operates at variable reflux ratio after total reflux 
% sim_i_norm: normalized network inputs 
% ------------------------------------------------------------------------- 
% output 
% sim_output: network output 
% =================================================== 
function [sim_output] = simulate(R_Ratio_p, constant_R_Ratio, Rpercent, 
sim_i_norm) 
sim_output=zeros(4,1); 
if constant_R_Ratio == 1.0 
    if (R_Ratio_p == 1.0)  
        load E1; 
        sim_output(:,1)=sim(E1,sim_i_norm(:,1)); 
    elseif (R_Ratio_p>=0.5) & (R_Ratio_p<0.6) 
        d1 = abs(R_Ratio_p - 0.5); 
        d2 = abs(0.6 - R_Ratio_p); 
        load E05; 
        net1=E05; 
        load E06; 
        net2=E06; 
        sim_output_1(:,1)=sim(net1,sim_i_norm(:,1)); 
        sim_output_2(:,1)=sim(net2,sim_i_norm(:,1)); 
  sim_output(:,1)=d1/(d1+d2)*sim_output_2(:,1)+d2/(d1+d2)*sim_output_1(:,1); 
    elseif (R_Ratio_p>=0.6) & (R_Ratio_p<0.7) 
        d1 = abs(R_Ratio_p - 0.6); 
        d2 = abs(0.7 - R_Ratio_p); 
        load E06; 
        net1=E06; 
        load E07; 
        net2=E07; 
        sim_output_1(:,1)=sim(net1,sim_i_norm(:,1)); 
        sim_output_2(:,1)=sim(net2,sim_i_norm(:,1)); 
        sim_output(:,1)=d1/(d1+d2)*sim_output_2(:,1) + 
d2/(d1+d2)*sim_output_1(:,1); 
    elseif (R_Ratio_p>=0.7) & (R_Ratio_p<0.8) 
        d1 = abs(R_Ratio_p - 0.7); 
        d2 = abs(0.8 - R_Ratio_p); 
        load E07; 
        net1=E07; 
        load E08; 
        net2=E08; 
        sim_output_1(:,1)=sim(net1,sim_i_norm(:,1)); 
        sim_output_2(:,1)=sim(net2,sim_i_norm(:,1)); 
  sim_output(:,1)=d1/(d1+d2)*sim_output_2(:,1)+d2/(d1+d2)*sim_output_1(:,1); 
    elseif (R_Ratio_p>=0.8) & (R_Ratio_p<0.85) 
        d1 = abs(R_Ratio_p - 0.8); 
        d2 = abs(0.85 - R_Ratio_p); 
        load E08; 
        net1=E08; 
        load E085; 
        net2=E085; 
        sim_output_1(:,1)=sim(net1,sim_i_norm(:,1)); 
        sim_output_2(:,1)=sim(net2,sim_i_norm(:,1)); 
sim_output(:,1)=d1/(d1+d2)*sim_output_2(:,1)+d2/(d1+d2)*sim_output_1(:,1); 
    elseif (R_Ratio_p>=0.85) & (R_Ratio_p<0.89) 
        d1 = abs(R_Ratio_p - 0.85); 
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        d2 = abs(0.89 - R_Ratio_p); 
        load E085; 
        net1=E085; 
        load E089; 
        net2=E089; 
        sim_output_1(:,1)=sim(net1,sim_i_norm(:,1)); 
        sim_output_2(:,1)=sim(net2,sim_i_norm(:,1)); 
sim_output(:,1)=d1/(d1+d2)*sim_output_2(:,1)+d2/(d1+d2)*sim_output_1(:,1); 
    elseif (R_Ratio_p>=0.89) & (R_Ratio_p<0.9) 
        d1 = abs(R_Ratio_p - 0.89); 
        d2 = abs(0.9 - R_Ratio_p); 
        load E089; 
        net1=E089; 
        load E09; 
        net2=E09; 
        sim_output_1(:,1)=sim(net1,sim_i_norm(:,1)); 
        sim_output_2(:,1)=sim(net2,sim_i_norm(:,1)); 
 sim_output(:,1)=d1/(d1+d2)*sim_output_2(:,1)+d2/(d1+d2)*sim_output_1(:,1); 
    elseif (R_Ratio_p>=0.9) & (R_Ratio_p<0.95) 
        d1 = abs(R_Ratio_p - 0.9); 
        d2 = abs(0.95 - R_Ratio_p); 
        load E09; 
        net1=E09; 
        load E095; 
        net2=E095; 
        sim_output_1(:,1)=sim(net1,sim_i_norm(:,1)); 
        sim_output_2(:,1)=sim(net2,sim_i_norm(:,1)); 
  sim_output(:,1)=d1/(d1+d2)*sim_output_2(:,1)+d2/(d1+d2)*sim_output_1(:,1); 
    elseif (R_Ratio_p>=0.95) & (R_Ratio_p<1.0) 
        d1 = abs(R_Ratio_p - 0.95); 
        d2 = abs(1.0 - R_Ratio_p); 
        load E095; 
        net1=E095; 
        load E1; 
        net2=E1; 
        sim_output_1(:,1)=sim(net1,sim_i_norm(:,1)); 
        sim_output_2(:,1)=sim(net2,sim_i_norm(:,1)); 
  sim_output(:,1)=d1/(d1+d2)*sim_output_2(:,1)+d2/(d1+d2)*sim_output_1(:,1); 
    end; 
end; 
if constant_R_Ratio == 0.0 
    if (Rpercent == 0.0) 
        load Eopt; 
        sim_output(:,1)=sim(Eopt,sim_i_norm(:,1)); 
    elseif (Rpercent>0.0) & (Rpercent<10.0) 
        d1 = abs(Rpercent - 0.0); 
        d2 = abs(10.0 - Rpercent); 
        load Eopt; 
        net1=Eopt; 
        load Epl10opt; 
        net2=Epl10opt; 
        sim_output_1(:,1)=sim(net1,sim_i_norm(:,1)); 
        sim_output_2(:,1)=sim(net2,sim_i_norm(:,1)); 
  sim_output(:,1)=d1/(d1+d2)*sim_output_2(:,1)+d2/(d1+d2)*sim_output_1(:,1); 
    elseif (Rpercent>=10.0) & (Rpercent<20.0) 
        d1 = abs(Rpercent - 10.0); 
        d2 = abs(20.0 - Rpercent); 
        load Epl10opt; 
        net1=Epl10opt; 
        load Epl20opt; 
        net2=Epl20opt; 
        sim_output_1(:,1)=sim(net1,sim_i_norm(:,1)); 
        sim_output_2(:,1)=sim(net2,sim_i_norm(:,1)); 
  sim_output(:,1)=d1/(d1+d2)*sim_output_2(:,1)+d2/(d1+d2)*sim_output_1(:,1); 
    elseif (Rpercent>=-10.0) & (Rpercent<0.0) 
        d1 = abs(Rpercent - (-10.0)); 
        d2 = abs(0.0 - Rpercent); 
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        load Eopt; 
        net1=Eopt; 
        load Emin10opt; 
        net2=Emin10opt; 
        sim_output_1(:,1)=sim(net1,sim_i_norm(:,1)); 
        sim_output_2(:,1)=sim(net2,sim_i_norm(:,1)); 
  sim_output(:,1)=d1/(d1+d2)*sim_output_2(:,1)+d2/(d1+d2)*sim_output_1(:,1); 
    elseif (Rpercent>=-20.0) & (Rpercent<-10.0) 
        d1 = abs(Rpercent - (-20.0)); 
        d2 = abs(-10.0 - Rpercent); 
        load Emin10opt; 
        net1=Emin10opt; 
        load Emin20opt; 
        net2=Emin20opt; 
        sim_output_1(:,1)=sim(net1,sim_i_norm(:,1)); 
        sim_output_2(:,1)=sim(net2,sim_i_norm(:,1)); 
  sim_output(:,1)=d1/(d1+d2)*sim_output_2(:,1)+d2/(d1+d2)*sim_output_1(:,1); 
    end; 
end; 

unnormalize_sim_output.m 

% =================================================== 
% This function unnormalizes the network output 
% ------------------------------------------------------------------------- 
% inputs 
% sim_output: network output 
% o_max: maximum values of the network outputs 
% o_min: minimum values of the network outputs 
% ------------------------------------------------------------------------- 
% output 
% sim_output: unnormalized network output 
% ================================================== 
function [sim_output] = unnormalize_sim_output(sim_output, o_max, o_min) ... 
sim_output=sim_output'; 
s1 = sim_output(1,1); 
s2 = sim_output(1,2); 
s3 = sim_output(1,3); 
s4 = sim_output(1,4); 
o1=(s1+1)/2*(o_max(1,1)-o_min(1,1))+o_min(1,1); 
o2=(s2+1)/2*(o_max(1,2)-o_min(1,2))+o_min(1,2); 
o3=(s3+1)/2*(o_max(1,3)-o_min(1,3))+o_min(1,3); 
o4=(s4+1)/2*(o_max(1,4)-o_min(1,4))+o_min(1,4); 
% fprintf('sim_output UNnormalized \n'); 
sim_output = [o1 o2 o3 o4]; 
%sim.output is summed up&divided by this sum to have the sum of conc.=1.0 
    sum=sim_output(1,1)+sim_output(1,2)+sim_output(1,3)+sim_output(1,4); 
    sim_output(1,1)=sim_output(1,1)/(sum); 
    sim_output(1,2)=sim_output(1,2)/(sum); 
    sim_output(1,3)=sim_output(1,3)/(sum); 
    sim_output(1,4)=sim_output(1,4)/(sum); 
%the concentrations are checked, if less then zero, it is equated to zero. 
for j=1:4; 
    if sim_output(1,j) < 0 
            sim_output(1,j)=0; 
    end; 
end; 
 
 
 
 
 
 
 
 
 



 161

CURRICULUM VITAE 

PERSONAL INFORMATION 
 
Surname, Name : Bahar, Almıla 
Nationality: Turkish (TC) 
Date and Place of Birth: 5 September 1978, Ankara 
Marital Status: Single 
Phone: +90 312 2102636 
Fax: +90 312 2102600 
email : abahar@metu.edu.tr 

EDUCATION 
 
Degree Institution Year of Graduation 
MS METU Chemical Engineering Department 2003 
BS METU Chemical Engineering Department 2000 
High School Atatürk High School, Ankara 1995 

WORK EXPERIENCE 
 

Year Place Enrollment 
2000-2007 METU Chemical Engineering Department Research Assistant 

FOREIGN LANGUAGES 
 

Fluency in English, Intermediate German 

PUBLICATIONS 
 

1. Bahar A., Güner E., Özgen C., Halıcı U., “Design of State Estimators for the 
Inferential Control of an Industrial Distillation Column”, 2006 IEEE World 
Congress on Computational Intelligence – International Joint Conference on 
Neural Networks, Vancouver, BC, Canada, July 16-21, 2006. 
 
2. Bahar A., Özgen C., Leblebicioğlu K., Halıcı U., “An Artificial Neural Network 
Estimator Design for the Inferential Model Predictive Control of an Industrial 



 162

Distillation Column”, Industrial and Engineering Chemistry Researchl, Vol. 43, 
No.19, 2004. 
 
3. Bahar A., Güner E., Özgen C., “Endüstriyel Bir Damıtma Kolonunda Yapay 
Sinir Ağı ve Adaptif Sinirsel Bulanık Tahmin Metotlarının Kullanımı”, 6. Ulusal 
Kimya Mühendisliği Kongresi, Ege Üniversitesi, İzmir, Eylül 2004. 
 
4. Bahar A., Özgen C., Halıcı U., “Endüstriyel Çok Bileşenli Bir Damıtma 
Kolonunun Yapay Sinir Ağı Kullanan Model Öngörümlü Denetleçle Denetimi”, 
Türk Otomatik Kontrol Ulusal Toplantısı, ODTÜ, Ankara, Türkiye, Eylül 2002. 

HOBBIES 
 

Tennis, Reading Book, Movies 

 


	INTRODUCTION
	LITERATURE SURVEY
	2.1 Modeling and Optimization Studies
	2.2 State Estimation Studies
	2.2.1 State Estimation Studies for Continuous Distillation C
	2.2.2 State Estimation Studies for Batch Distillation Column
	2.2.3 State Estimation Studies for Reactive Distillation Col

	2.3 Control of Reactive Distillation Columns

	EXPERIMENTAL
	3.1 Experimental Setup
	3.2 Experimental Procedure

	REACTIVE BATCH DISTILLATION OPERATION MODELING
	4.1 Calculation of VNT+1
	4.2 Holdup Calculations
	4.3 Algebraic Equations
	4.4 Physical Parameters Calculation
	4.5 Initial Conditions
	4.6 Kinetic Rate Expressions
	4.7 Vapor Liquid Equilibrium (VLE) Calculations
	4.7.1 Model-I: Phase Equilibrium Calculation Using the VLE d
	4.7.2 Model-II: Phase Equilibrium Calculation Using  Approac
	1. The Non-Random-Two-Liquid (NRTL) Activity Coefficient Mod
	2. Wilson Activity Coefficient Model
	3. Universal Quasichemical (UNIQUAC) Activity Coefficient Mo

	4.7.3 Model-III: Phase Equilibrium Calculation Using the Com
	4.7.4 Model-IV: Phase Equilibrium Calculation Using  Approac

	4.8 Summary of the Modeling Chapter

	OPERATION AND NONLINEAR OPTIMIZATION OF THE REACTIVE BATCH D
	5.1 Operational Characteristics of a Multi-Component Batch D
	5.2 Nonlinear Optimization of the Reactive Batch Distillatio

	INFERENTIAL CONTROL AND ARTIFICIAL NEURAL NETWORK STATE ESTI
	6.1 Inferential Control
	6.2 Observability Criteria and Selection of Measurements
	6.3 Artificial Neural Networks
	6.3.1 Historical Development
	6.3.2 Features of Artificial Neural Networks
	6.3.3 Biological Neurons
	6.3.4 Artificial Neurons
	6.3.5 Types of Artificial Neural Networks
	Basic Structures of Neural Networks
	Learning in Neural Networks
	Backpropagation Training in Elman Networks

	6.3.6 ANN Architecture
	6.3.7 Applications of Artificial Neural Networks


	SIMULATION CODE AND ALGORITHM
	7.1 Main Simulation Code
	7.2 Thermodynamic Library Code
	7.3 ANN Estimator Code

	RESULTS AND DISCUSSION
	8.1 Modeling Studies
	8.1.1 Simulation Results
	8.1.2 Experimental Results
	8.1.3 Comparison of Experimental Data and Simulation Results
	i) Model-I
	ii) Model-II
	iii) Model-III
	iv) Model-IV
	v) Summary of Thermodynamic Models
	vi) VLE Data Check

	8.2 Nonlinear Optimization
	8.3 Artificial Neural Network State Estimator
	8.3.1 Selection of Measurement Points
	8.3.2 Range of Variables
	8.3.3 ANN Architecture
	8.3.4 Normalization
	8.3.5 Estimator Performance
	Verification Tests
	Generalization Tests

	8.4 Control Studies with the Designed ANN Estimator
	8.4.1 Control Studies with Actual Composition Values
	8.4.2 Control Studies with Estimated Composition Values
	8.4.3 Control Studies with Estimated Composition Values (Wit


	CONCLUSIONS
	B.1 Correction Factor Calculation for Acetic Acid
	B.2 Correction Factor Calculation for Water
	B.3 Correction Factor Calculation for Ethyl Acetate
	C.1 Main Program Code
	C.2 Thermodynamic Library MATLAB Interface Code
	C.3 Thermodynamic Library FORTRAN dll Code
	C.4 ANN Estimator Code
	PERSONAL INFORMATION
	EDUCATION
	WORK EXPERIENCE
	FOREIGN LANGUAGES
	PUBLICATIONS
	HOBBIES


