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Abstract

ON FORWARD INTEREST RATE MODELS: VIA RANDOM

FIELDS AND MARKOV JUMP PROCESSES

Altay, Sühan

M.Sc., Department of Financial Mathematics

Supervisor: Prof. Dr. Hayri Körezlioğlu

April 2007, 96 pages

The essence of the interest rate modeling by using Heath-Jarrow-Morton frame-

work is to find the drift condition of the instantaneous forward rate dynamics so

that the entire term structure is arbitrage free. In this study, instantaneous for-

ward interest rates are modeled using random fields and Markov Jump processes

and the drift conditions of the forward rate dynamics are given. Moreover, the

methodology presented in this study is extended to certain financial settings

and instruments such as multi-country interest rate models, term structure of

defaultable bond prices and forward measures. Also a general framework for

bond prices via nuclear space valued semi-martingales is introduced.

Keywords: Term Structure of Interest Rates, Forward Interest Rates, HJM

Framework, Nuclear Space.
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ÖZ

İLERİ TARİHLİ FAİZ ORANLARI ÜZERİNE:RASSAL

ALANLAR VE MARKOV SIÇRAMA SÜREÇLERİ

Altay, Sühan

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Hayri Körezlioğlu

Nisan 2007, 96 sayfa

Heath-Jarrow-Morton çerçevesi içinde yapılan faiz oranı modellerinin en önemli

tarafı ileri tarihli faiz oranlarının dinamiğinin sürüklenme koşulunun verim

eğrisininde arbitrajı engelleyecek şekilde bulunmasıdır.Bu çalışmada, anlık ileri

tarihli faiz oranları rassal alanlar ve Markov sıçrama süreçleri ile modellenmiş

ve anlık ileri tarihli faiz oranlarının dinamikleri ile ilgili şartlar gösterilmiştir.

Ayrıca, burada öne sürülen methodoloji, çoklu ülke faiz modeli, temerrüde

düşebilen bono fiyatlaması ve ileri tarih ölçüleri gibi finansal durumlara ve en-

strümanlara da uygulanmıştır.Son olarak, bono fiyatlarının nükleer uzay değerli

yarımartingaleler ile modellenmesini gösteren genel bir çerçeve sunulmuştur.

Anahtar Kelimeler:Faiz Oranları,İleri tarihli faiz oranları,HJM modeli,Nükleer

uzaylar.
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Chapter 1

Introduction

Modeling the term structure of interest rates has always been an intriguing

activity for both scholars and practitioners. The quest for understanding the

variations in interest rates should not be a surprise to us if we consider the

economic and financial environment that we live in. Every economic activity

more or less has some sort of relation with interest rates. Hence the under-

standing of the behavior of this phenomena is important for gaining insights

about the mainstream economic activities. These economic activities may vary

from macroeconomically oriented ones such as the conduct of monetary pol-

icy, the financing of public debt or forming expectations about real economic

activities and inflation, to more microeconomically oriented ones such as risk

management and pricing of interest rates. In this work, our motivation can be

relatively placed on the microeconomics side of the continuum. If it is needed

to have a further classification, this work can be placed on the shelves of the

mathematical finance part of interest rate modeling, which most of the time

deals with the understanding of the stochastic behavior of interest rates. Hav-

ing positioned our work in the interest rate literature, it is advisable to address

our specific concerns that we try to deal with in this work.

In this work, the term structure of interest rates are investigated in a dis-

parate fashion yet an unified construction is tried to be given at the end. The

disparity of this work mainly stems from the abundance of the previous works

in term structure modeling. Hence in order to capture this fact, we try to give

a complete picture of interest rate modeling in a concise manner and also try

to give a modest contribution to the existing literature. Our contribution is

within the track of identifying the conditions that preclude arbitrage opportu-
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nities in our proposed settings. Our settings primarily fall into the category

of infinite dimensional and jump-augmented models of the term structure of

interest rates. While doing this, we extensively use the framework proposed

by Heath, Jarrow and Morton (HJM) [26], in which the instantaneous forward

rates and the volatility structures of them are utilized. The main result of HJM

[26] is that in order to preclude the arbitrage opportunity the drift term of the

instantaneous forward rate dynamics should be related to the volatility term of

the forward rate dynamics. This relation is cited as HJM drift condition in the

literature. In this work, firstly, we give drift conditions for the forward interest

rate dynamics generated by a jump-diffusion process, in which the jumps are

generated by a Markov Jump Process. The second contribution of this work

is to give extensions of the certain financial settings and instruments such as

multi-country interest rate models, term structure of defaultable bond prices

and forward measures, by positing the forward rates as a two-parameter ran-

dom field proposed by Korezlioglu [38]. The last but not least contribution is

to give a general framework for pricing of zero coupon bonds by modeling the

instantaneous forward rates as a nuclear space valued semi-martingales.

The organization of this study is as follows. In Chapter 2, the basic def-

initions and concepts related to the interest rate modeling and risk-neutral

pricing are given. Then the existing interest rate models are investigated in

Chapter 3. In Chapter 4, the HJM framework that is frequently employed in

this paper is reviewed in detail with its necessary extensions such as Musiela

parameterization. In Chapter 5, we introduce the Markov Jump augmented

interest rate model and characterize the drift condition associated with the

model. Beginning with Chapter 6, we turn to the term structure of interest

rates modeled by random fields by presenting an extensive survey on random

field models and giving the details of our modeling approach that we use in

Chapter 7. In Chapter 7, we present the applications of random field models

that we proposed as extensions to the existing models. And finally, in Chapter

9, as a unifying framework for the cases that we discussed in previous chapters,

pricing of zero-coupon bonds in a nuclear space framework is postulated.

2



Chapter 2

Preliminaries

2.1 Basics of Interest Rate Modelling

In this section, we review some basic concepts of interest rate modeling. The

primary objects of the investigation are different notions of interest rates such as

spot or forward rates and concepts pertaining to the joint evolution of interest

rates, namely fundamental interest rate curves such as yield curve or term

structure of interest rates.

The first definition we consider is the definition of a bank account, or money-

market account. A bank account characterizes a locally riskless investments, in

which profit accrued continuously at the risk-free rate prevailing in the market

at every instant.

Definition 2.1.1 (Bank Account). We denote the value of a bank account at

time t ≥ 0 as B(t). It is assumed that B(0) = 1 and that the bank account

evolves according to the following differential equation

dB(t) = r(t)B(t)dt, B(0) = 1. (2.1)

where r(t) is the instantaneous rate at which the bank account accrues. It

should be noted that r(t) is a positive function of time in this setting. As a

consequence

B(t) = exp
(∫ t

0
r(s)ds

)
. (2.2)

Remark 2.1.1. The instantaneous rate, r(t), is usually referred to as instan-

taneous spot rate or as short rate.

3



It is clear from the above definition that the value of one unit of currency

payable at time T , as of time t, is B(t)
B(T ) . Hence we have another fundamental

definition.

Definition 2.1.2 (Discount factor). The discount factor D(t, T ) between two

time instants t and T , t ≤ T , is the amount at time t equivalent to one unit of

currency payable at time T , and is given by

D(t, T ) =
B(t)
B(T )

= exp
(
−
∫ T

t
r(s)ds

)
. (2.3)

Remark 2.1.2. Since our primary concern is to model the variability of interest

rates themselves, apart from classical Black-Scholes modeling of contingent

claims in which interest rate is assumed to be deterministic, the evolution of r

is a stochastic process, consequently making the bank account and the discount

factors stochastic processes.

Next we turn to the basic instrument in interest rate markets, zero coupon

bond.

Definition 2.1.3 (Zero-coupon bond). A T maturity zero-coupon bond is a

contract that guarantees its holder the payment of one unit of currency at time

T , with no intermediate payments. The contract value at t < T is denoted by

P (t, T ). From the setting, P (T, T ) = 1 for all T .

Zero-coupon bond prices are the basic quantities in interest rate theory, and

all interest rates can be defined in terms of any given family of interest rates.

However, we should bear in mind that although interest rates are always quoted

in financial markets, zero-coupon bonds are relatively theoretical instruments.

Most of the time zero-coupon bond prices are stripped out from more complex

interest rate instruments such as coupon bearing bonds and callable bonds.

In the following, we give definitions of spot rates, which are necessary for

computing zero-coupon bond prices.

Definition 2.1.4 (Continuously compounded spot interest rate). (Yield) The

continuously compounded spot interest rate at time t for the maturity T is

denoted by Y (t, T ) and is the constant rate at which an investment of P (t, T )

units of currency at time t accrues continuously yield one unit of currency at

maturity T. Mathematically,

Y (t, T ) = − lnP (t, T )
T − t

. (2.4)
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the price of the zero-coupon bond with maturity T can be given as,

P (t, T ) = e−Y (t,T )(T−t). (2.5)

Another compounding type that should be mentioned is the simple com-

pounding, in which London Interbank Offer Rates (LIBOR) are quoted.

Definition 2.1.5 (Simply compounded spot interest rate). The simply com-

pounded spot interest rate prevailing at t for the maturity T is denoted by

L(t, T ) and is the constant rate at which an investment has to be made to pro-

duce an amount of one unit of currency at maturity, starting from P (t, T ) units

of currency at time t, when accruing occurs proportionally to the investment

time. In mathematical terms,

L(t, T ) =
1− P (t, T )

(T − t)P (t, T )
. (2.6)

The bond price can be expressed in terms of LIBOR or simply compounded

spot interest rate as

P (t, T ) =
1

1 + L(t, T )(T − t)
. (2.7)

A further compounding method is n-times per year compounded spot in-

terest rate. n-times per year compounding is obtained as follows. If we invest

today one unit of currency at the simply compounded rate R, in one period we

will obtain the amount (1+ R
n ). After this period, we invest such an amount for

one more period and we have (1 + R
n )2. If we keep on reinvesting for n period,

final amount is (1 + R
n )n. Based on this, we have

Definition 2.1.6 (n-times per year compounded spot interest rate). The n-

times per year compounded interest rate at time t for the maturity T is denoted

by Rn(t, T ) and is the constant rate at which an investment has to be made

to produce of an amount one unit currency at maturity, starting from P (t, T )

units of currency at time t, when reinvesting the obtained amounts n times a

year. That is,

Rn(t, T ) =
n

P (t, T )
1

n(T−t)

− n. (2.8)

For n = 1, R is referred to an annually-compounded spot interest rate.

Remark 2.1.3. If number n of compounding times goes to infinity, Y (t, T ) is

obtained.

lim
n→∞

n

P (t, T )
1

n(T−t)

− n = − ln(P (t, T ))
(T − t)

= Y (t, T ) (2.9)
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Moreover, the instantaneous spot rate or short rate is equivalent to above def-

initions in infinitesimal time intervals. In other words, the short rate can be

obtained as a limit of all the different spot rates.

r(t) = lim
T→t

Y (t, T ),

= lim
T→t

L(t, T ),

= lim
T→t

R(t, T ).

(2.10)

The next fundamental concept we consider is the forward interest rate,

which is characterized by three time instants, namely time t at which the rate

is considered, its expiry time T and its time of maturity S, with t ≤ T ≤ S. In

order to define forward rate, we need to describe a plain vanilla forward rate

agreement (FRA) since the notion of forward rate is closely tied to the value

of this instrument.

A FRA is a financial contract that involves three time instants: The current

time t, the expiry time T > t, and the maturity time S > T . The contract gives

its holder an interest rate payment for the period between T and S. According

to this contract, a fixed payment based on a fixed rate K is exchanged against a

floating based on the LIBOR rate, L(T, S), at the time of maturity. Formally,

at time S, one receives (S − T )KN units of currency and pays the amount

(S − T )L(T, S)N where N denotes the notional amount of the contract. The

value of the contract in S is by assuming N = 1 is

(S − T )(K − L(T, S)). (2.11)

By using the definition of the LIBOR rate, (2.11) can be rewritten as

(S − T )K − 1
P (T, S)

+ 1. (2.12)

The value of the term 1
P (T,S) at T is equal to 1, which in turn equals P (t, T )

at time t. Similarly, the remaining terms are equal to P (t, S)(S − T ) + P (t, S)

at time t. Therefore the total value of the FRA is

FRA = P (t, S)(S − T )K − P (t, T ) + P (t, S). (2.13)

In order to preclude arbitrage, this contract’s value has to be zero at time t. By

equating this value to zero and solving for K, the simply compounded forward

rate is defined.

6



Definition 2.1.7. The simply-compounded forward interest rate prevailing at

time t for expiry T > t and maturity S > T is denoted by F (t, T, S) and is

defined by

F (t, T, S) :=
1

S − T

(
P (t, T )
P (t, S)

− 1
)
. (2.14)

In this work, we most of the time deal with the instantaneous counterpart

of the forward rate, which is intuitively a forward interest rate at time t whose

maturity is close to its expiry T . In other words, if the maturity of the forward

rate collapses towards its expiration date we have the instantaneous forward

rate.

lim
S→T

F (t, T, S) =− lim
S→T

1
P (t, S)

P (t, S)− P (t, T )
S − T

,

=− 1
P (t, T )

∂P (t, T )
∂T

.

=− ∂ lnP (t, T )
∂T

.

(2.15)

Definition 2.1.8 (Instantaneous forward interest rate). The instantaneous

forward interest rate prevailing at time t for the maturity T > t is denoted by

f(t, T ) and is defined as

f(t, T ) := lim
S→T

F (t, T, S) = −∂ lnP (t, T )
∂T

, (2.16)

and therefore price of the zero coupon bond is given by

P (t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
. (2.17)

The most important concept in interest rate modeling is the relationship

between interest rate and the time to maturity (time of maturity). A simple,

yet strong tool that shows this relationship is the yield curve (also referred

to term structure of interest rates or zero-coupon curve). Although, there

is a slight ambiguity in the literature about which interest rate is used for

depicting the relationship between interest rates and time to maturity, market

convention is to plot simply-compounded interest rates for all maturities T up

to one year, and annually compounded rates for maturities T larger than one

year. Therefore, we have

Definition 2.1.9 (Term Structure of Interest Rates). The term structure of

interest rates (also referred to ”yield curve” or ”zero-coupon curve”) at time t

7



is the graph of the function

T 7→

{
L(t, T ) if t < T ≤ t+ 1 years

R(t, T ) if T > t+ 1 years.

Yield curves can display a wide variety of shapes. Typically, a yield curve

will slope upwards, with longer term rates being higher, though certain eco-

nomic conditions imply inverted yield curves where longer rates are less than

shorter ones. Therefore, a variety of shapes and changes need to be described

by a robust interest rate model.

2.2 Basics of Risk-Neutral Pricing

-Ex nilhilo nihil fit-1

The main assumption in the seminal paper by Black and Scholes [9] is the ab-

sence of the arbitrage in the financial markets. Intuitively, this assumption is

equivalent to the impossibility of investing zero today and receiving a nonnega-

tive amount that is positive with positive probability. The absence of arbitrage

hence requires that the two portfolios having the same payoff at a given future

date have the same price today. The morale of the Black-Scholes theory con-

cludes that a portfolio constructed suitably should have the same instantaneous

return as that of risk free investment. The first work to develop a model for the

evolution of the term structure of interest rates is done by Vasicek [58] using

Black-Scholes’s arguments. Before reviewing the models of Vasicek and others,

in this section we give a summary of risk-neutral pricing by following Harrison

and Kreps [23], Harrison and Pliska [24, 25], Lamberton and Lapeyre [42], and

Brigo and Mercurio [12].

Note 2.2.1. This construction is generally valid for models that we considered

in this work. However, deviations from this context, if any, will be stated where

it is needed in the following chapters.

Let us define a probability space (Ω,F ,P) and a right continuous filtration

F = {Ft : 0 ≤ t ≤ T}. N + 1 non-dividend paying securities are traded

continuously from time 0 until time T in the considered financial market. Their

prices are modeled by N + 1 dimensional adapted semi-martingale S = {St :
1Latin proverb meaning ”nothing comes out nothing”
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0 ≤ t ≤ T}, whose components are positive. The asset indexed by 0 is a bank

account. Its price hence evolves according to

dS0
t = r(t)S0

t dt

with S0
0 = 1 and r(t) is the instantaneous short rate. S0

t = B(t) and 1/S0
t =

D(0, t) by using the previous section’s notation.

Definition 2.2.1. A trading strategy is (N + 1 dimensional) process φ =

{φt : 0 ≤ t ≤ T}, whose components φ0, φ1, ..., φN are locally bounded and

predictable. The value process associated with a strategy φ is defined by

Vt(φ) = φtSt =
N∑

n=0

φn
t S

n
t , (2.18)

and the gains process associated with a strategy φ by

Gt(φ) =
∫ t

0
φudSu =

N∑
n=0

∫ t

0
φn

udS
n
u , 0 ≤ t ≤ T. (2.19)

Definition 2.2.2. A trading strategy is self-financing if V (φ) ≥ 0 and

Vt(φ) = V0(φ) +Gt(φ), 0 ≤ t ≤ T.

Roughly speaking, a strategy is self-financing if its value changes only due

to changes in asset prices. In other words no additional cash inflows or outflows

occur after the initial value. Similarly it can easily seen that the above relation

holds for discounted processes [24, 25].

Proposition 2.2.1. Let φ be a trading strategy. Then φ is a self-financing

strategy if and only if

Ṽt(φ) = V0(φ) +
∫ t

0
φudS̃u

where Ṽt(φ) = D(0, t)Vt(φ) and S̃t = D(0, t)Su.

From these definitions and proposition, the arbitrage opportunity and the

equivalent martingale measure (risk-neutral measure) can be defined as follows

[23, 24].

Definition 2.2.3. An arbitrage opportunity is a self-financing strategy φ such

that V0(φ) = 0 but P(VT (φ) > 0) > 0.
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Definition 2.2.4. An equivalent martingale measure Q is a probability mea-

sure on the space (Ω,F) such that

1. P and Q are equivalent measures, that is P(A) = 0 if and only if Q(A) = 0,

for every A ∈ F .

2. the Radon-Nikodym derivative dQ
dP belongs to L2(Ω,F ,P).

3. the discounted asset price process S̃ is an (F, Q) martingale, that is

EQ(S̃n
t )|Fu) = S̃n

u , for all n = 1, 2, ..., N and all 0 ≤ u ≤ t ≤ T .

Harrison and Pliska [25] proved the fundamental result that the existence of

an equivalent martingale measure implies the absence of arbitrage opportunities

and provides the mathematical characterization of the unique no-arbitrage price

of any attainable contingent claim.

Definition 2.2.5. A contingent claim is square-integrable and positive random

variable on (Ω,F ,P). A contingent claim H is attainable if there exists some

self-financing φ such that VT (φ) = H. Such a φ is said to generate H, and

Πt = Vt(φ) is the price at time t associated with H.

Proposition 2.2.2. Assume there exists an equivalent martingale measure Q

and let H be an attainable contingent claim. Then for each time t, 0 ≤ t ≤ T ,

there exists a unique price Πt associated with H.

Πt = EQ(D(t, T )H | Ft). (2.20)

If the set of all equivalent martingale measures is nonempty, then it is

possible to derive the unique no-arbitrage price associated with any attainable

contingent claim. And such a price is given by the expected value of the

discounted payoff under the measure Q. Harrison and Pliska [24, 25] also

proved that a financial market is arbitrage free and complete if and only if

there exists a unique equivalent martingale measure.

Definition 2.2.6. A financial market is complete if and only if every contingent

claim is attainable.

The risk neutral pricing and no-arbitrage conditions can be summarized as

follows:
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• The market is free of arbitrage if and only if there exists a martingale

measure.

• The market is complete if and only if the martingale measure is unique.

• In an arbitrage free market, not necessarily complete, the price of any

attainable claim uniquely given, either by the value of the associated

replicating strategy, or by the risk neutral expectation of the discounted

claim payoff under any of the equivalent risk-neutral martingale measure.
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Chapter 3

Term Structure Models

3.1 Overview

The development of term-structure models has been marked by certain mile-

stones. Even before Black-Scholes, studies are concentrated on the stochastic

nature of the interest rates and researchers modeled the evolution of inter-

est rates as a random walk. After Black-Scholes seminal paper, Vasicek [58]

introduced a general no-arbitrage framework in which the short rate has a

mean-reverting property. Cox, Ingersoll, and Ross (CIR) [29] then extended

the previous works by modeling the term structure in the context of a well-

defined economic environment and constructed a model that does not allow

negative interest rates. In term structure literature the Vasicek and the CIR

models are coined as equilibrium models since they explicitly specify the market

prices of risk and describe the variations of the term structure based on eco-

nomic fundamentals. Several extensions to equilibrium models are presented

by incorporating the stochastic volatility or multiple factors to the existing

ones. However, due to their dependence on economic fundamentals, equilib-

rium models are considered not desirable for pricing interest rate derivatives.

In practical applications, matching the model’s bond prices to the current term

structure is more important than understanding the relationship between the

shape of the term structure and its forecast for future economic conditions.

This can be justified by the fact that the trading of derivatives involves simul-

taneous hedging of the the risk exposure by using the underlying security. This

necessitates that the derivative price should be based on the market price of

the underlying security. Pioneered by Ho and Lee [27] and then followed by
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Heath, Jarrow and Morton (HJM) [26], no-arbitrage models have the feature

of matching the term structure and hence enable pricing of interest rate deriva-

tives by considering the entire yield curve. Although no-arbitrage models give

impetus to interest rate models that use the framework of HJM in different

contexts such as jump-augmented diffusion, multi-factor and multi-state, they

are not free from complications. One complication is the unobservable nature

of the instantaneous forward rates. Additionally, continuous compounding of

the instantaneous forward rate rules out the popular specification of interest

rates as a log-normal process. This led to to the development of the market

or LIBOR models [10, 32, 47] that study the directly observable interest rates

such as LIBOR and swap rates. As a completely different approach, random

field or string models describe the dynamics of the forward curve by infinite

dimensional shocks to it. In other words, each point on the forward curve has

its own shock parameterized by its time of maturity or time to maturity. The

first works by using infinite dimensional framework are developed by Kennedy

[34, 35] for Gaussian case. After then Goldstein [20] and Santa-Clara and

Sornette [52] extended Kennedy’s work to more general processes.

In this section, we give a brief review of equilibrium models and no-arbitrage

models by mentioning the most renowned models such as Vasicek, CIR, Ho-

Lee, Hull-White and etc. Among the no-arbitrage models, the HJM framework,

which embodies most of the interest rate models deserves a special attention

since our work frequently uses the methodology employed by HJM [26]. There-

fore, we thoroughly examine its properties in Chapter 4. Also we devote an

entire chapter about infinite dimensional models so that we prefer to discuss

their properties at that part.

3.2 Equilibrium Models

The equilibrium models starts with certain assumptions about the economic

environment in which the modeling occurs. Moreover, these assumptions led

certain specifications about the state variables that describe the state of the

economy. The foremost aspect of those specifications is the explicit definition of

the market price of the risk. Although equilibrium models can be investigated

by a more general framework called affine term structure models postulated by

Duffie and Kan [16] and further developed by Dai and Singleton [15], we prefer
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to investigate them by two main section, one-factor models and multi-factor

models.

3.2.1 One-Factor Models

The motivation behind modeling the term structure as a one-factor model is

attributed not only to its simplicity but also to the fact that most of the varia-

tion in changes of the yield curve is due to the variation in the level of interest

rates. Therefore, it is both desirable and pragmatic to take r(t) as the single

factor related to the yield curve. That is why one-factor models are generally

cited as short rate models. The dynamics of the short rate are given by the

following stochastic differential equation

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dW (t), (3.1)

meaning that the change in the short rate can be separated into a drift term µdt

and a random shock term represented by an increment of a Brownian motion

dW (t), with an instantaneous volatility of σ(r). Similarly, the bond dynamics

can be represented as

dP (t, T )
P (t, T )

= µP (t, T )dt+ σP (t, T )dW (t). (3.2)

Of course, the drift of the bond price dynamics, µP (t, T ), is directly related to

the drift of the short rate dynamics, µ(r). The volatility terms are also related

to each each other. The no arbitrage condition implies the following relation

λ(r(t)) :=
µP − r(t)
σP (t, T )

, (3.3)

where λ(r) is the market price of risk, which can be described as the required

compensation in the form of expected excess return over the risk-free rate per

unit of risk measured by the volatility of the return. It can be shown that the

market price of risk is independent of the maturity date and hence same for

all bonds in the market. As mentioned before, the specification of the market

price of risk makes implicit assumptions about investor preferences, production

technologies and endowment processes in the considered economy. Once the

market price of risk has been determined, it is easy to determine the short rate

process under risk-neutral probability measure Q. That is,

dr(t) = [µ(t, r(t))− λ(r(t))σ(t, r(t))]dt+ σ(t, r(t))dWQ(t), (3.4)
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and the bond price dynamics under Q becomes

dP (t, T )
P (t, T )

= r(t)dt+ σp(t, T )dWQ(t). (3.5)

All one-factor models are constructed by specifying the drift and volatility

terms as well as determining the λ, market price of risk. Once these figures are

determined bond price can be found by risk-neutral pricing formula

P (t, T ) = EQ

[
exp

(
−
∫ T

t
r(s)ds

)
| Ft

]
. (3.6)

We presented here two famous one-factor model examples, namely Vasicek and

CIR, without dealing with their derivations. More detailed treatment of one-

factor models can be found in [59, 30].

The Vasicek model

In the Vasicek Model [58], short rate follows an Ornstein-Uhlenbeck process

given by

dr(t) = α[β − r(t)]dt+ σdW (t), (3.7)

where α measures the speed of mean reversion, β is the long-run mean to which

the short rate is reverting, and σ is the volatility of the short rate. Here all the

parameters are assumed to be constant. Therefore the market price of risk is

constant. In a risk-neutral world, the dynamics of the short rate becomes

dr(t) = α[β̃ − r(t)]dt+ σdWQ(t), (3.8)

where β̃ = β−λσ
α . The price of the zero-coupon bond then can be given by

P (t, T ) = exp[A(t, T )−B(t, T )r(t)], (3.9)

in which A(t, T ) and B(t, T ) are deterministic functions and found by solving

ordinary differential equations. This not only allows closed form solutions for

bond prices and interest derivatives but also implies that spot rates for all ma-

turities are linear in short rate. Although bringing easiness in applications for

pricing interest rate instruments, Vasicek model is subject to generating nega-

tive interest rates, an undesirable property for pricing interest rate derivatives.
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The Cox-Ingersoll-Ross model

Cox, Ingersoll and Ross [29] developed the term structure model that uses a

square-root diffusion process in a general equilibrium framework for the con-

sidered economy. The dynamics of the short rates under observed measure is

given by

dr(t) = α[β − r(t)]dt+ σ
√
r(t)dW (t). (3.10)

The main feature of this model is that the above process has a reflecting bound-

ary at r(t) = 0 under the proper choice of α and β and therefore does not allow

negative interest rates. The market price of risk becomes λ(r(t)) = γ
√

r(t)

σ .

Hence, under the risk-neutral measure Q, the short rate evolves according to

dr(t) = α̃[β̃ − r(t)]dt+ σ
√
r(t)dWQ(t), (3.11)

in which short rate has a mean-reverting speed of α̃ = α + γ and a long-run

mean of β̃ = γβ
α+γ . The bond price is exponentially affine in short rate as in the

Vasicek model.

Both Vasicek and CIR models are parts of the family of affine models, where

bond price is an exponentially affine function of factors. In the following, we

review some models of multi-factor models along with the affine term structure

models.

3.2.2 Multi-factor Models

Multi-factor models assumes that the dynamics of the term structure of interest

rates driven by several factors, making the yield a function of these factors.

Several representations of factors related to macroeconomic shocks and or level,

slope or curvature of the yield curve can be postulated in such modeling. There

are lots of empirical evidence supporting the multi factor explanation of the

variation in interest rates [43]. The first model that we consider here is the

model presented by Brennan and Schwartz [11].

The Brennan-Schwartz model

Developed by Brennan and Schwartz [11], the model uses the dynamics of the

two yields, namely short rate and long rate. The rationale to model the yield

curve by short and long rate is that difference between short rate and long rate
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approximates the slope of the yield curve. So this model accounts both level

and slope effects of the term structure. The model dynamics is given by

dr(t) = α1(r(t), `(t), t)dt+ β1(r(t), `(t), t)dW1(t),

d`(t) = α2(r(t), `(t), t)dt+ β2(r(t), `(t), t)dW2(t).
(3.12)

where W1(t) and W2(t) are correlated Brownian motions. Once the market

price of risk associated with each risk factor is determined, bond prices can be

determined as in the case of one-factor models. The Brennan-Schwartz model

can be exploited with any two yields of finite maturities instead of short and

long rates, which are extracted from consol yields.

The Longstaff-Schwartz model

Another popular two-factor model that incorporates the dynamics of the short

rate and its variance was developed by Longstaff and Schwartz [44]. They

developed the model within the CIR framework by using the general equilibrium

setting. In that setting, two state variables, X and Y , represent the state of

the economy; each follows a square-root process:

dX(t) = (α− βX(t)) + σ
√
XdW1(t), (3.13)

dY (t) = (µ− νX(t)) + φ
√
XdW2(t), (3.14)

where W1(t) and W2(t) are independent Brownian motions. As in the CIR

case, the short rate and its variance is linear in its state variables. The price

of a zero-coupon bond is shown to be exponentially linear in r and its variance

v. That is,

P (t, T ) = exp[A(t, T )r(t) +B(t, T )v(t)],

where A and B are functions obtained analytically and relate the bond price

to the state variables.

Affine Models

As it is illustrated in the models presented so far, if it is modeled properly,

certain models can give an tractable way of computing bond prices and interest

rate options. That is, if yields are linear of factor(s) that explain variations

of interest rate dynamics, the complexity of interest rate modeling decreases

substantially. In this section, very concise review of the affine models, or more

17



precisely, multi-factor affine models are presented. In a multi-factor model,

there are N factors, X1, X2, ..., XN . Let X(t) be the vector (X1, X2, ..., XN )′

that evolves according to a multidimensional diffusion process

dX(t) = µ(X(t))dt+ σ(X(t))dW (t), (3.15)

where µ(X(t)) is an N -dimensional vector, σ(X(t)) is an N × N matrix, and

W (t) is a vector of N independent Brownian motions. As Duffie and Kan

[16] postulated, in an affine model the instantaneous short rate is a linear

combination of the factors:

r(t) = a0 +
N∑

i=1

aiXi(t), (3.16)

where ai are constant coefficients. The drift and volatility matrix for the factors

are also affine functions of the factors X(t). The elements of X(t) in this

setup can be any macroeconomic variable or state variable that is pertaining

to variations in the interest rate evolutions. Duffie and Kan [16] showed that,

the zero coupon bond prices in these models are given by,

P (t, T ) = exp[A(t, T )−B(t, T )′X(t)] (3.17)

where A(t, T ) and B(t, T ) satisfy a set of ordinary differential equations with

proper initial conditions.

Remark 3.2.1. Although we placed the affine type models in the equilibrium

models section since most of the affine models in the literature are analyzed in

the equilibrium framework, certain no-arbitrage models that we will discuss in

the next section can be analyzed in an general affine framework.

3.3 No-Arbitrage Models

The equilibrium models discussed so far are analyzed in a specified economy

hence leaving the interest rate models prone to arbitrage opportunities, since

these models are generally estimated to explain the observed historical patterns

in the dynamics of the term structure. This approach may not be practical for

the pricing and hedging of interest rate derivatives, which need matching of

the current yield curve so that there is no arbitrage opportunity. In order to

make a factor model match the current yield curve, most cited way is make
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the coefficients in a factor model vary deterministically with time. This type

of models take the bond prices prevailing in the market as given and price

interest rates derivatives accordingly. Therefore, the main objective of this

modeling framework is finding a fair value of derivatives as in the Black-Scholes

case, rather than spotting mispricing in the underlying bond themselves. In

this section, we review the Ho-Lee model [27], the Hull-White model [28] and

the Black-Derman-Toy model [7], which are still popular models in industry

practice.

The Ho-Lee model

Ho and Lee [27] developed an interest rate model that allows the drift of the

short rate process to be time varying by postulating that the short rate follows

a random walk. In that model, short rate dynamics is given by

dr(t) = θ(t)dt+ σdW (t). (3.18)

By specifying the volatility term σ as a constant, drift term θ(t) can be com-

pletely characterized to match the current market conditions. That is, the drift

θ can be found as

θ(t) =
∂f(0, t)
∂t

+ σ2t, (3.19)

where f(0, t) is the instantaneous forward rate for time t seen at time zero

(current yield curve). We will turn to the Ho-Lee model back when discussing

HJM framework.

The Hull-White model

Despite its simplicity, the Ho-Lee model does not account for the mean-reversion

in the short rate dynamics. To encounter this problem and to match the cur-

rent yield curve, Hull and White [28] proposed time varying counterparts of

the Vasicek and CIR models. As an extended Vasicek model, the short rate

dynamics under risk neutral measure is given by

dr(t) = [θ(t)− βr(t)]dt+ σdWQ(t). (3.20)

Matching the current term structure requires calibrating θ(t) to be

θ(t) =
∂f(0, t)
∂t

+ βf(0, t) +
σ2

2β
(1− e−2β). (3.21)

19



The practical implementation of Hull-White model entails that the zero-coupon

bond prices are computed as in the affine class of term structure and that the

option pricing can be obtained by a trinomial tree efficiently.

Remark 3.3.1. Bond price formula both in the Ho-Lee and Hull-White mod-

els are exponentially affine in short-rate. That is, P (t, T ) = exp[A(t, T ) +

B(t, T )r(t)].

The Black-Derman-Toy

In an attempt to model the interest rates as a lognormally distributed process,

Black, Derman and Toy [7] proposed to build a binomial tree equivalent to the

following continuous time process

d ln r(t) =
[
θ(t) +

∂σ(t)/∂t
σ(t)

ln r(t)
]

+ σ(t)dW (t). (3.22)

In that setting, short rate r(t) has a log-normal distribution, thus avoiding

negative interest rates, and also has time-varying parameters θ(t) and σ(t) for

matching the current yield curve. As an extension of Black-Derman-Toy model,

Black and Karasinski [8] proposed a model that accounts for the mean-reversion

property. This model has the form

d ln r(t) = [θ(t)− β(t) ln r(t)]dt+ σ(t)dW (t). (3.23)

Both Black-Derman-Toy and Black-Karasinki model can be implemented through

a trinomial tree procedure.

3.4 Market Models

The models, most of the time cited as market models or LIBOR models, deal

with directly observable market rates, such as LIBOR or swap rates quoted in

the market. This class of term structure models has a widespread practice in the

financial industry not only because they use directly observable interest rates

but also they are consistent with the well-established market formulas, Black’s

cap and swaption formula [6] for two basic interest rate derivative products.

Before market models, actually there were no modeling approach that validates

Black’s formulas, which use the same underlying hypotheses as Black-Scholes’s
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stock option pricing formula. Therefore, the advent of market models provides

a legitimate and rigorous treatment of Black’s formulas.

The first market models are developed by Brace, Gaterek, and Musiela

(BGM) [10], Jamshidian [32], and Miltersen, Sandmann, and Sondermann [47].

Although their results are similar, all of them have different assumptions and

methodologies to obtain a Black type formulas. For example, BGM derive

the processes of market quoted rates in the HJM framework and deduce the

necessary restrictions in the HJM model to ensure that market rates are log-

normal. On the other hand, Jamshidian’s approach is to find a numeraire and

a measure in which the market quoted rates are martingales. Both approaches,

however, result in Black like formulas for interest rate cap and swaps.
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Chapter 4

Heath-Jarrow-Morton

Framework

Interest rate models that we review in previous chapter, models using instan-

taneous short rate as the state variable, have certain advantages. For example,

specifying r(t) as the solution of an stochastic differential equation allows us

to work within the partial differential framework and also makes possible to

obtain tractable formulas for bond and derivative prices. However, short-rate

models have also clear drawbacks. Some of them can be summarized as fol-

lows. First of all, it is unreasonable to assume that the entire bond market is

governed by one or few explanatory variables. Moreover, it is very difficult to

obtain a realistic volatility structure for the forward rates without introducing

a complex short rate model. Also, matching the current yield curve becomes

difficult as the short rate model becomes realistic [3].

Realizing these facts, Heath, Jarrow and Morton (HJM) [26] developed a

continuous time general framework for modeling the entire yield curve. The

stepping stone of their approach is to choose instantaneous forward rates as

fundamental quantities to construct an arbitrage free term structure. In that

framework, instantaneous volatility structures are also used to build the for-

ward rate dynamics. We now give a motivating example [12] to facilitate the

understanding of HJM framework.

Let us take the following dynamics for the short rate under the risk-neutral

measure. This is a very simple case of Ho-Lee model.

dr(t) = θdt+ σdW (t). (4.1)
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Since this model is an affine model, the price of the zero-coupon bond is given

by

P (t, T ) = exp
[
σ2

6
(T − t)3 − θ

2
(T − t)2 − (T − t)r(t)

]
. (4.2)

From the definition of instantaneous forward rate

f(t, T ) = −∂ lnP (t, T )
∂T

= −σ
2

2
(T − t)2 + θ(T − t) + r(t). (4.3)

Differentiating this and substituting the short rate dynamics we obtain

df(t, T ) = σ2(T − t)dt+ σdW (t). (4.4)

As it is seen from the last equation, the drift σ2(T − t) is determined via

volatility σ. That is, drift term is determined by a certain transformation of

the volatility term. This is not a mere coincidence for our example, instead it

is a general fact proved by Heath, Jarrow and Morton [26]. In the sequel, we

give a detailed analysis of the HJM framework both under objective and risk-

neutral probability measures and a different approach to the HJM framework

where the forward rates are parameterized by time to maturity rather than

time of maturity.

4.1 Dynamics of Forward Rates

Assume that f(0, T ), 0 ≤ T ≤ τ , where τ is the longest maturity in the market,

is known at time 0. f(0, T ) is called the initial forward curve. The dynamics

of instantaneous forward rates under actual measure P are given by

f(t, T ) = f(0, T ) +
∫ t

0
α(s, T )ds+

∫ t

0
σ(s, T )dW (s). (4.5)

In a differential form, it is written as

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t). (4.6)

The process α(t, T ) and σ(t, T ) may be random. For each fixed T , they are

adapted processes in t variable. In this section we assume that forward dy-

namics are governed by a single Brownian motion, yet the results can be easily

generalized to multiple Brownian motions.

First of all, we know that bond prices are given by

P (t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
.
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Note that the differential of −
∫ T
t f(t, u)du is given by

d

(
−
∫ T

t
f(t, u)du

)
= f(t, t)dt−

∫ T

t
df(t, u)du. (4.7)

Therefore, by using f(t, t) = r(t)

d

(
−
∫ T

t
f(t, u)du

)
= r(t)dt−

∫ T

t
[α(t, u)dt+ σ(t, u)dW (t)]du (4.8)

Let us define

α∗(t, T ) :=
∫ T

t
α(t, u)du (4.9)

σ∗(t, T ) :=
∫ T

t
σ(t, u)du (4.10)

By using the above definitions and changing the order of integration by Fubini

theorem we have

d

(
−
∫ T

t
f(t, u)du

)
= r(t)dt− α∗(t, T )dt− σ∗(t, T )dW (t). (4.11)

Let g(x) = ex. Then the price of the zero-coupon bond price is given by

P (t, T ) = g

(
−
∫ T

t
f(t, u)du

)
. (4.12)

By using the Ito’s formula, we have

dP (t, T )
P (t, T )

=
[
r(t)− α∗(t, T ) +

1
2
(σ∗(t, T ))2

]
dt− σ∗(t, T )dW (t). (4.13)

According to the risk-neutral pricing principles, in order to guarantee that there

is no arbitrage opportunity, we should seek a probability measure Q under

which each discounted bond price, P̃ (t, T ), is a martingale. The discounted

bond price is defined

P̃ (t, T ) =
P (t, T )

exp
(∫ t

0 r(u)du
) . (4.14)

By using Ito’s integration by parts formula, we reach

dP̃ (t, T )

P̃ (t, T )
=
(
−α∗(t, T ) +

1
2
(σ∗(t, T ))2

)
dt− σ∗(t, T )dW (t). (4.15)

In order to use the Girsanov theorem, right hand side of the above equation

should be written as −σ∗(t, T )[λ(t)dt+ dW (t)]. Then using the Girsanov the-

orem to change the probability measure Q (risk-neutral measure) under which

WQ(t) =
∫ t

0
λ(u)du+W (t), (4.16)
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is a Brownian motion, the dynamics of the discounted bond prices can be

written as

dP̃ (t, T ) = −P̃ (t, T )σ∗(t, T )dWQ(t). (4.17)

Then, it would follow that the discounted bond price process is a martingale.

However, in order to say that we must solve the following equation for λ(t).(
−α∗(t, T ) +

1
2
(σ∗(t, T ))2

)
dt− σ∗(t, T )dW (t) = −σ∗(t, T )[λ(t)dt+ dW (t)].

(4.18)

That is, we should find a process λ(t), denoted as market price of risk in the

literature, satisfying

−α∗(t, T ) +
1
2
(σ∗(t, T ))2 = −σ∗(t, T )λ(t) (4.19)

These are the market price of risk equations, one for each maturity. However,

in our case we have only one process λ since source of uncertainty is due to

a single Brownian motion. By differentiating the above equation and using

the definitions of α∗(t, T ) and σ∗(t, T ) we have the HJM drift condition under

actual measure.

α(t, T ) = σ(t, T )[σ∗(t, T ) + λ(t)] (4.20)

Hence the following theorem summarizes the above discussion.

Theorem 4.1.1. A term structure model for a zero-coupon bond prices of all

maturities, 0 ≤ T ≤ T ∗, is arbitrage free if there exists a process λ(t) such that

α(t, T ) = σ(t, T )[σ∗(t, T ) + λ(t)] (4.21)

holds for all 0 ≤ t ≤ T ≤ τ .

4.2 Heath Jarrow Morton Framework under Risk

Neutral Measure

In order to reach a drift condition under risk-neutral measure, we may apply

equation (4.21) with λ(t) = 0. Thus, if we start modeling directly under the

martingale measure the drift condition becomes

α(t, T ) =σ(t, T )σ∗(t, T )

=σ(t, T )
∫ T

t
σ(t, u)du

(4.22)
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And the forward rate dynamics are written as

df(t, T ) = σ(t, T )σ∗(t, T )dt+ σ(t, T )dWQ(t). (4.23)

We know from our previous discussion that the discounted bond price process

follows the dynamics

dP̃ (t, T ) = −P̃ (t, T )σ∗(t, T )dWQ(t).

By applying Ito’s formula to d(B(t)dP̃ (t, T )) where B(t) is the bank account

process defined before, we can reach the dynamics of the bond prices

dP (t, T ) = r(t)P (t, T )dt− σ∗(t, T )P (t, T )dWQ(t). (4.24)

As it is postulated in risk-neutral pricing framework, the underlying assets,

zero-coupon bonds, have an risk free return under the martingale measure Q.

4.3 How to Use HJM Methodology ?

As it is evident from the above discussions, in order to use HJM framework for

asset pricing, the only needed parameter is the volatility term σ(t, T ) of the

instantaneous forward rates. Once the volatility term is specified under actual

measure, thanks to Girsanov theorem, it does not change under risk-neutral

measure. And then it is very easy to compute the bond price of any maturity.

Here is the methodology,

• Specify the volatility structure, σ(t, T ).

• Determine the drift parameters according to the HJM condition α(t, T ) =

σ(t, T )σ∗(t, T ).

• Extract the current forward rate structure f(0, T ) from the market data.

• Find forward rates by integrating

f(t, T ) = f(0, T ) +
∫ t

0
α(s, T )ds+

∫ t

0
σ(s, T )dW (s).

• Compute the bond prices by

P (t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
.
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4.4 Musiela Parameterization

In most of the practical applications, it is convenient to use time to maturity

rather than time of maturity. That is, the forward rates are modeled with

a fixed time to maturity rather than a fixed maturity date. Mathematically

speaking,

Definition 4.4.1. The forward rates g(t, x) are defined for all x ≥ 0 by the

relation

g(t, x) = f(t, t+ x). (4.25)

Also the dynamics of the forward rates under risk-neutral measure are given

as

g(t, x) = g(0, x) +
∫ t

0
α(s, x)ds+

∫ t

0
σ(s, x)dW (s). (4.26)

And from the knowledge of the instantaneous forward rates for all times to

maturity between 0 and T − t, the price at time t of a zero-coupon bond with

maturity T can be obtained by

P (t, T ) = exp
(
−
∫ T−t

0
g(t, x)dx

)
. (4.27)

The differential of −
∫ T−t
0 g(t, x)dx can be given by

d

(
−
∫ T−t

0
g(t, x)dx

)
= g(t, T − t)dt−

∫ T−t

0
dg(t, x)dx. (4.28)

Let h(x) = ex. Then the price of the zero-coupon bond price is given by

P (t, T ) = h

(
−
∫ T−t

0
g(t, x)dx

)
. (4.29)

By using the Ito’s formula, we have

dP (t, T )
P (t, T )

=

[
g(t, T − t)−

∫ T−t

0
α(t, y)dy +

1
2

(∫ T−t

0
σ(t, y)dy

)2
]
dt

−
(∫ T−t

0
σ(t, y)dy

)
dW (t)

(4.30)

Hence the discounted bond price dynamics is governed by

dP̃ (t, T )

P̃ (t, T )
=

[
−r(t) + g(t, T − t)−

∫ T−t

0
α(t, y)dy +

1
2

(∫ T−t

0
σ(t, y)dy

)2
]
dt

−
(∫ T−t

0
σ(t, y)dy

)
dW (t).

(4.31)
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The no-arbitrage condition requires that the dynamics of the discounted bond

prices be martingale. This is equivalent to imposing that the drift of dP̃ (t, T )

be zero. Hence we have

−r(t) + g(t, T − t)−
∫ T−t

0
α(t, y)dy +

1
2

(∫ T−t

0
σ(t, y)dy

)2

= 0. (4.32)

If we denote x = T − t we can rewrite above equation as

g(t, x) = r(t) +
∫ x

0
α(t, y)dy − 1

2

(∫ x

0
σ(t, y)dy

)2

(4.33)

If we differentiate this modified condition with respect to x we obtain

α(t, x) =
∂g(t, x)
∂x

+ σ(t, x)
(∫ x

0
σ(t, y)dy

)
(4.34)

This condition is similar to the drift condition in the classical HJM framework,

where forward rates are parameterized by time of maturity, except the first

term that involves the slope of the forward rate at time t for time to maturity

x. The parameterization that we discuss here is first proposed by Musiela [48].
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Chapter 5

Applications of HJM

Frameworks in a

Jump-Diffusion Setting

The existence of jumps in interest rate markets is evident by both central

market interventions and reactions to the unexpected news in the financial

markets. Monetary authorities, mostly central banks, often use interest rates

as their toolkit for implementing their monetary policies. And this will eventu-

ally alters the term structure of interest rates prevailing in the market. Several

interest rate models are proposed to account this fact, namely the jump be-

havior of interest rates. The basic types of models include firstly the ones that

exploits the HJM framework such as Jarrow and Madan [33], Bjork et. al.

[4, 5] and Shirakawa [55]. The other models generalizes the ordinary factor

models that we discussed before and augments them with jump processes. An-

other approaches try to explicitly model the interest rate setting behavior of

the monetary authorities. A detailed literature review on jump models can be

found in the book of Jessica and Weber [30].

In this section we briefly mention the general interest rate setting proposed

by Bjork et. al [4, 5] and give a specialized example, in which the jump part

is modeled by a general Markov jump process. In our case, we identify the

related drift condition in order to preclude the arbitrage.
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5.1 General Formulation of the Term Structure with

a Marked Point Process

The most general framework that encompasses most of the term structure mod-

els, including jump augmented ones, was developed by Bjork, Masi, Kabanov,

and Rungaldier [5] and Bjork, Kabanov and Rungaldier [4]. The key feature

of their modeling approach is that one needs a measure over a continum of

possible hedging instruments instead of a vector of quantities of a finite set of

hedging instruments [30]. In that setting, suppose that the bond price process

under actual measure is

dP (t, T )
P (t−, T )

= α(t, T )dt+ σ(t, T )dW (t) +
∫

E
θ(t, T, x)µ(dt, dx) (5.1)

where W (t) is a Brownian motion under P, α(t, T ) and σ(t, T ) are the ordinary

drift and volatility functions, and µ is a marked point process on a mark space

E. E can be regarded as Rn, N or any finite set. µ can also be seen as a jump

process taking values in E, and hence θ(t, T, x) can be thought as the volatility

function for the jumps. In this setting, µ has a compensator ν(dt, x) of the

form ν(dt, dx) = λ(t, dx)dt so that the λ is the intensity of µ and

µ(dt, x)− λ(t, dx)dt

is a martingale.

Bjork et al. [4] showed that the a martingale measure exists if

α(t, T ) + Γ(t)σ(t, T ) +
∫

E
Φ(t, x)θ(t, T, x)λ(t, dx) = r(t). (5.2)

This is the extension of the HJM forward rate drift restriction that we previ-

ously discussed. Here Γ(t) is the market price of risk for the Brownian motion

and Φ(t, x) corresponds to a market price of risk for the marked point process.

For the forward rate process under risk-neutral measure, Bjork et. al [4, 5]

showed that if the dynamics of the forward rate is given by

df(t, T ) = a(t, T )dt+ b(t, T )dWQ(t) +
∫

E
δ(t, T, x)µ(dt, dx), (5.3)

the drift condition is specified as

a(t, T ) = b(t, T )
∫ T

t
b(t, s)ds−

∫
E
δ(t, T, x)eγ(t,T,x)λQ(t, dx), (5.4)
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and the bond price process under Q is

dP (t, T )
P (t−, T )

= r(t)dt+ S(t, T )dWQ(t) +
∫

E
(eγ(t,T,x)µ̃(dt, dx), (5.5)

where µ̃ is the Q-compensated process µ̃(dt, dx) = µ(t, dx)− λQ(t, dx)dt, and

S(t, T ) = −
∫ T

t
σ(t, s)ds,

γ(t, T, x) = −
∫ T

t
δ(t, T, x)ds,

λQ(t, dx) = Φ(t, x)λ(t, x).

5.2 Term Structure Modeling with Markov Jump-

Diffusion Processes

In this framework, we model the forward rate dynamics as a Jump-Diffusion

Process, where the jump part is characterized by a Markov Jump Process.

Before going into mathematical foundations of Markov Jump Processes, they

can be described as follows. If the process is in state x then it stays there

for an exponential period of time with mean λ−1, that is, time between jumps

is exponentially distributed with parameter λ(x), after which it jumps from x

to a new state x + ζ(x), where the distribution of the jump sizes is given by

P (ζ(x) ≤ y) = R(x, y).

5.2.1 Markov Jump Process

Definition 5.2.1 (Markov Jump Process). For all t ≥ 0.

X(t) = X(0) +
∞∑

n=1

Un(I(Tn ≤ t) (5.6)

where Tn and Un have the following conditional distributions. Given that

X(Tn) = x, Tn+1 − Tn is exponentially distributed with mean λ−1(x), and

independent of the past; the jump Un+1 = X(Tn+1)−X(Tn) is independent of

the past and has a distribution that depends only on x.

Fn(t) = P(Tn+1 − Tn ≤ t|FTn) = 1− e−λ(X(Tn))t (5.7)
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and for some family of distribution function C(x, .)

P(X(Tn+1)−X(Tn) ≤ y|FTn) = C(X(Tn), y)

E(X(Tn+1)−X(Tn)|FTn) = a(X(Tn))

In the sequel, we assume that λ(x) is always non-negative since if for some

x, λ(x) = 0 then once the process gets into x it stays in it forever, which we

called such a state, x, absorbing. Also we assume that λ(x) is finite on finite

intervals, so that there are no states that process leaves x instantaneously.

In order to use the Markov jump processes in our settings, we need to

identify the compensator of X.

Theorem 5.2.1. Let X be a Markov jump process such that for all x, the

holding time parameter is positive, λ(x) > 0, and the size of the jump from x

is integrable with mean a(x).The compensator of X is given by

S(t) =
∫ t

0
λ(X(s))a(X(s))ds (5.8)

Proof. See Klebaner Theorem 9.15 [37]

We can conclude from the above theorem that a Markov Jump Process X

has a semimartingale representation.

X(t) = X(0) + S(t) +D(t) = X(0) +
∫ t

0
λ(X(s))a(X(s))ds+D(t) (5.9)

where D(t) denotes the purely discontinuous martingale. In differential form,

it can be written as,

dX(t) = λ(X(t))a(X(t))dt+ dD(t). (5.10)

Now we are ready to begin with the term structure modeling.

5.2.2 Bond Price Dynamics

Price of a zero coupon bond, P (t, T ), at time t with time of maturity T is given

by,

P (t, T ) = exp
(
−
∫ T

t
f(t, s)ds

)
(5.11)
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where forward rate, f(t, s), satisfies the equation,

f(t, T ) = f(0, t) +
∫ t

0
α(s, T )ds+

∫ t

0
σ(s, T )dW (s)

+
∫ t

0
Φ(s, T )[dX(s)− λ(X(s))a(X(s))ds]

(5.12)

Then P (t, T ) = exp(L(t)). where L(t) = −
∫ T
t f(t, u)du. We can find the

differential of L(t) by,

dL(t) = d

(
−
∫ T

t
f(t, u)du

)
= f(t, t)dt−

∫ T

t
df(t, u) (5.13)

Hence dL(t) is given by using f(t, t) = r(t) where r(t) denotes short rate.

dL(t) = r(t)dt−
∫ T

t
α(t, u)dtdu−

∫ T

t
σ(t, u)dW (t)du

−
∫ T

t
Φ(t, u)dX(t)du+

∫ T

t
Φ(t, u)λ(X(t))a(X(t))dtdu

(5.14)

Defining

α∗(t, T ) :=
∫ T

t
α(t, u)du

σ∗(t, T ) :=
∫ T

t
σ(t, u)du

Φ∗(t, T ) :=
∫ T

t
Φ(t, u)du

and using the Stochastic Fubini Theorem for changing the order of integration,

we can represent dL(t) as follows,

dL(t) = r(t)dt− α∗(t, T )dt− σ∗(t, T )dW (t)− Φ∗(t, T )dX(t)

+ Φ∗(t, T )λ(X(t))a(X(t))dt
(5.15)

In an integral form, we read

L(t) = L(0) +
∫ t

0
[r(s)− α∗(s, T )]ds−

∫ t

0
Φ∗(s, T )[dX(s)− λ(X(s))a(X(s))ds]

−
∫ t

0
σ∗(s, T )dW (s)

(5.16)

Under the proper choice of functions α(t, T ), σ(t, T ) and Φ(t, T ), L(t) can be

characterized as a regular right continuous with left limits process (cádlag) and

it can be represented as a sum of two processes, a local martingale(sum of the

second and the third term) and a process of finite variation. Therefore we can

conclude that L(t) is a semi-martingale.

33



Proposition 5.2.1. Itó formula for semi-martingales.

Let X(t) be a semi-martingale. For any C2 function f : [0, T ]×R 7−→ R

f(X(t))− f(X(0)) =
∫ t

0
f ′(X(s−))dX(s)) +

1
2

∫ t

0
f ′′(X(s−))d〈Xcm, Xcm〉(s)

+
∑
s≤t

(f(X(s))− f(X(s−))− f ′(X(s−))∆X(s))

(5.17)

where Xcm refers to the continuous martingale part of X.

Proof. See R. Cont and Tankov [14] Proposition 8.19

By applying Ito’s formula for f(x) = ex, we have the expression for the zero

coupon bond.

P (t, T )− P (0, T ) =
∫ t

0
P (s−, T )

(
r(s)ds− α∗(s, T )ds+

1
2
σ∗(s, T )2ds

)
−
∫ t

0
P (s−, T )Φ∗(s, T )[dX(s)− λ(X(s))a(X(s))ds]

−
∫ t

0
P (s−, T )σ∗(s, T )dW (s)

+
∑
s≤t

(P (s, T )− P (s−, T )− P (s−, T )∆L(s))

(5.18)

Since P (s, T ) = f(L(s)) we obtain

P (s, T )
P (s−, T )

= exp(Φ∗(s, T )∆X(s))

and therefore

∆P (s, T ) = P (s−, T )
[
P (s, T
P (s−, T

− 1
]

= P (s−, T ) (exp(Φ∗(s, T )∆X(s))
(5.19)

This leads to the last term of P (t, T ) to be,∑
s≤t

(P (s, T )− P (s−, T )− P (s−, T )∆L(s))

=
∑
s≤t

P (s−, T ) [exp(Φ∗(s, T )∆X(s))− 1− Φ∗(s, T )∆X(s)]
(5.20)

34



This term can be seen as a jump process in X(s) and therefore its compensator

can be computed as follows heuristically.

A(t) =
∑
s≤t

P (s−, T )
∑
k∈Λ

{exp(Φ∗(s, T )[k −X(s)])− 1− Φ∗(s, T )[k −X(s)]}

× P(X(s), k)λ(X(s))ds

(5.21)

where P(X(s), .) is the transition probability of the Markov jump process X(s)

and Λ is the state space of X(s). This term can also be expressed as

A(t) =
∫ t

0

∫
Λ
P (s−, T )[exp(Φ∗(s, T )y)− 1− Φ∗(s, T )y)]C(dy, x)λ(x)ds

(5.22)

Therefore, after discounting the bond price process, P (t, T ), by β(t) =
∫ t
0 r(s)ds,

we obtain discounted bond price process.

P̃ (t, T ) = P̃ (0, T ) +
∫ t

0
P̃ (s−, T )

(
−α∗(s, T )ds+

1
2
σ∗(s, T )2ds

)
+
∫ t

0
P̃ (s−, T )Φ∗(s, T )λ(X(s))a(X(s))ds

−
∫ t

0
P̃ (s−, T )σ∗(s, T )dW (s)−

∫ t

0
P d(s−, T )Φ∗(s, T )dX(s))

+
∫ t

0

∫
Λ
P̃ (s−, T )[exp(Φ∗(s, T )y)− 1− Φ∗(s, T )y)](µ̃X(ds, dy))

+
∫ t

0

∫
Λ
P̃ (s−, T )[exp(Φ∗(s, T )y)− 1− Φ∗(s, T )y)]C(dy, x)λ(x)ds

(5.23)

where µ̃X(ds, dy) is the compensated process such that

µ̃X(ds, dy) = µX(ds, dy)− νX(ds, dy),

in which µX((0, t]×A) =
∑

s≤t IA(∆X(s)) is defined to be the random measure

of jumps and νX its compensator. We require discounted bond price process

P̃ (t, T ) be a martingale, therefore, we can characterize the no-arbitrage condi-

tion as follows.

α∗(t, T ) =
1
2
σ∗(t, T )2 +

∫
Λ
[exp(Φ∗(s, T )y)− 1− Φ∗(s, T )y)]C(dy, x)λ(x)

(5.24)
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Chapter 6

Random Field Models

6.1 Overview and Motivation

One of the most important problems in modeling the term structure and pricing

the interest rate derivatives is to adequately account for the correlation struc-

ture between rates of different maturities. This affects directly the hedging

of derivatives and hence results in continuous calibration of the term struc-

ture modeling. The multi-factor models that previously discussed in Chapter 3

could not handle this situation since the correlation structure is specified by a

limited number of factors, resulting a inadequate representation of the natural

relationship between bonds. Although the no-arbitrage models, generalized by

HJM framework, are supposed to be consistent with the current term structure,

they are not guaranteed to be consistent with the future innovations of the term

structure. This inconsistency result in continuous recalibration of the model

parameters, which are assumed to be deterministic [20]. Therefore, both multi-

factor and no-arbitrage models have inherent inconsistencies, which stems from

the complications between models assumptions and practical applications.

These problems are addressed by many researchers through the last decade

and increasing number of studies are conducted in order to properly capture the

correlation among bonds with different maturities. One of the pioneered and

advanced techniques employed for modeling term structure dynamics in order

to address these problems is using the infinite dimensional framework, referred

most of the time as random field or string models, popularized by Kennedy

[34, 35], Goldstein [20], and Santa-Clara and Sornette [52]. They showed that

the correlation structure can be modeled in a parsimonious manner without

36



need to continuous recalibration. The basic idea of their approach is to allow

each instantaneous forward rate driven by its own shock, parameterized by time

of maturity. Each of these shocks is imperfectly correlated with shocks to other

instantaneous forward rates of different maturities. This approach, in addition

to handle inconsistent practice of recalibration, offers a more parsimonious de-

scription of the term structure dynamics. Indeed, only one parameter needs to

be estimated to measure how the correlation of innovations between two for-

ward rates drop as a function of difference in time to maturity[20]. As another

advantage, random field framework entails that the best hedging instrument

for a bond is another one with similar maturity. This fact, shown by [20], is

clearly contrary to the predictions of multi-factor models, which asserts that

a 30-year bond can be perfectly hedged by an appropriate position in shorter

maturity bonds such as 1-month or 1-year.

Although the theoretical framework of random field models is much more

complex than their previous counterparts, the pricing of bond option is surpris-

ingly straightforward. If the model is Gaussian, the volatility and correlation

structures are deterministic and therefore bond prices are shown to be log-

normally distributed. Since the bond prices are lognormally distributed, it is

possible to obtain Black type option prices[34]. If the volatility and correlation

structures are stochastic, as Goldstein [20] showed, the closed form solutions to

the option prices are not attainable. However, by using the characteristics func-

tions it is possible to represent option prices in a way that facilitate numerical

computation.

6.2 Random Fields

Definition 6.2.1 (Random Field). A real, scalar random field X(t) is a col-

lection of random variables at points with coordinates t = (t1, ..., tn) in an

n-dimensional parameter space.

Definition 6.2.2 (Gaussian Random Field). A Gaussian random field is a

random field where all finite dimensional distributions (fidis) are multivariate

normal. As a consequence, a Gaussian random field is completely determined

by specifying the mean and the covariance structure.

Random fields are defined by their covariance structure. A simple example
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is given by the Brownian sheet. W (t, s) is a Brownian sheet if

E[W (t1, s1)−W (t2, s2)] = 0 (6.1)

E[W (t1, s1)W (t2, s2)] = (t1 ∧ t2)(s1 ∧ s2) (6.2)

for all t1, t2, s1, s2. For example, if W1(t) and W2(t) are two independent Brow-

nian motions, then W (t, s) = W1(t)W2(s) is a random field having (6.1) and

(6.2).

6.3 Pioneers of the Random Field Models

In this section we give a thorough summary of the first studies that employed

random field approach in term structure modeling. Our primary concerns are

the works done by Kennedy [34, 35], Goldstein [20], and Santa-Clara and Sor-

nette [52].

6.3.1 Kennedy Model

Kennedy [34] postulated his term structure model by specifying the instanta-

neous forward rates as

f(t, T ) = µ(t, T ) +X(t, T ), (6.3)

where X(t, T ) is a mean zero random field and µ(t, T ) is a drift term to de-

termined by no-arbitrage. Also, it is assumed that the covariance structure

is

cov(X(t1, T1), X(t2, T2)) = c(t1 ∧ t2, T1, T2) (6.4)

for some function c with c(s, T1, T2) = c(s, T2, T1). When X(t, T ) is Gaussian, c

is a function of t1∧t2 ifX(t, T ) has independent increments in the t-direction. In

order to find closed form solutions for option prices, Kennedy imposed certain

assumptions in a Gaussian setup and is able to reduce the random field model

to a tree parameter family interest rate model. The main result of Kennedy is

given

Theorem 6.3.1 (Kennedy). If X(t, T ) is Gaussian, the discounted bond prices

are martingales under risk-neutral measure Q if

µQ(t, T ) = µQ(0, T ) +
∫ t

0
[c(t ∧ u, u, T )− c(0, u, T )]du, (6.5)
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for all t < T . Moreover, if X(t, T ) is Gaussian and discounted bond prices are

martingales under Q, then the covariances must be of the form

cov(X(t1, T1), X(t2, T2)) = c(t1 ∧ t2, T1, T2) (6.6)

The conditions imposed are mostly related to the generalizations of the

usual Markov property in a random field setting. These properties place very

strong constraints on the underlying process.

Definition 6.3.1. X(t, T ) is Markov if

1. For 0 ≤ t1 ≤ t2 ≤ t3, t1 ≤ T1, t3 ≤ T2, given X(t2, T2) then X(t1, T1) and

X(t3, T2) are independent.

2. For 0 ≤ t1 ≤ t2 ≤ T1 ∧ T2, given X(t2, T1) then X(t1, T1) and X(t2, T2)

are independent

The first property implies that X(t, T ) is Markov in t-direction for t ≤ T ,

with T fixed. Additionally, if X(t, T ) has independent increments in the t-

direction, then X(t, T ) has the first property.

Theorem 6.3.2 (Kennedy). If f(t, T ) is Markov and has independent incre-

ments then the covariance function satisfies

c(t, T1, T2) = ν(t)g(T1, T2) (6.7)

for some function ν and g where ν is non-decreasing and g is symmetric and

non-negative definite.

Definition 6.3.2. A process X(t, T ) is stationary if for all T > 0 the joint

distributions of X(t, T ) are the same as those of X(t + u, T + u), for every

u > 0.

The stationary assumption makes the covariance structure more specific.

Theorem 6.3.3 (Kennedy). If f(t, T ) is Markov, stationary, and has inde-

pendent increments, then

c(t, T1, T2) = eλ(t−T1∧T2)h(|T1 − T2|) (6.8)

where λ > 0 and |h(x)| ≤ h(0)e−(1/2)λx.
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Definition 6.3.3 (Markov in T -direction). X(t, T ) is Markov in the T -direction

if for t ≤ T1 ≤ T2 ≤ T3, X(t, T1) and X(t, T3) are independent, given X(t, T2).

Definition 6.3.4 (Strict Markov Property). If X(t, T ) is Markov and Markov

in the T -direction then it is strictly Markov.

As stated in [35], short rate process is Markov if and only if f(t, T ) is

strictly Markov. Also strict Markov property defines a three parameter family

of models with a restricted functional form of covariance structure. This result

is given in the following theorem.

Theorem 6.3.4 (Kennedy). If f(t, T ) is strictly Markov, stationary and has

independent increments, then

c(t, T1, T2) = σ2eλt+(2µ−λ)(T1∧T2)−µ(T1+T2) (6.9)

for constants σ, λ > 0, µ ≥ 1
2λ.

6.3.2 Goldstein Model

Goldstein [20] generalized Kennedy’s results [34, 35] to non-Gaussian processes

and proposes a methodology to price the interest rate options using the Heston’s

approach, which uses characteristic functions. Goldstein postulated that the

forward rates are governed under risk-neutral measure by

df(t, T ) = µ(t, T )dt+ σ(t, T )dZT (t) (6.10)

with the correlation structure

corr[dZT1(t), dZT2(t)] = c(t, T1, T2)dt (6.11)

Goldstein claims that the drift condition is given by the following theorem.

Theorem 6.3.5 (Goldstein). The discounted bond process

P̃ (t, T ) = e−
R t
0 r(u)duP (t, T )

is a martingale under the martingale measure if

µ(t, T ) = σ(t, T )
∫ T

t
σ(t, u)c(t, T, u)du. (6.12)
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Proof. By the definition of P (t, T )

P (t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
Using Ito’s Lemma the differential of the dP (t, T ) is obtained as

dP (t, T )
P (t, T )

= r(t)dt−
∫ T

t
df(t, u)du+

1
2

[∫ T

t
df(t, u)du

]2

(6.13)

Since
dP̃ (t, T )

P̃ (t, T )
=
dP (t, T )
P (t, T )

− r(t)dt (6.14)

and in order X(t, T ) be a martingale, the drift of the instantaneous forward

rate must satisfy ∫ T

t
µ(t, u)du =

1
2

[∫ T

t
df(t, u)du

]2

(6.15)

Taking derivative with respect to T

µ(t, T ) =
[∫ T

t
df(t, u)du

]
df(t, T ) =

∫ T

t
σ(t, u)dZu(t)σ(t, T )dZT (t)du

=σ(t, T )
∫ T

t
σ(t, u)c(t, T, u)du

(6.16)

Remark 6.3.1. When we take c(.) as unity, the above model recovers the

original HJM formulation.

6.3.3 String Model

Santa-Clara and Sornette [52] offered a new class of models for the term struc-

ture of interest rates by allowing each instantaneous forward rate to be driven

by a stochastic shock while constraining the shocks so that the forward rate

curve is always continuous. They postulated the shocks to the forward curve as

stochastic string shocks and constructed them as solutions of stochastic partial

differential equation (SPDE). Santa-Clara and Sornette modeled the dynamics

of the forward rate under Q by using Musiela notation, that is, they parame-

terized the forward rates by time to maturity instead of time of maturity.

df(t, x) = α(t, x)dt+ σ(t, x)dZ(t, x) (6.17)

They also imposed several requirements on Z to qualify as a string shock to

the forward rate curve
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1. Z(t, x) is continuous in x at all times t.

2. Z(t, x) is continuous in t for all x.

3. The string is martingale in time t, E[dtZ(t, x)] = 0, for all x.

4. The variance of the increments is equal to the time change, var[dtZ(t, x)] =

dt, for all x.

5. The correlation of the increments does not depend on t.

They showed that the first two conditions are satisfied by taking Z to be the

solution of a stochastic partial differential equation with at least one partial

derivative in x and t. Condition 3, 4, and 5 make strings Markovian. More-

over, they showed that all strings shocks produced as solutions to SPDEs have

Gaussian distributions. The drift (no-arbitrage) condition is stated as

α(t, x) =
∂f(t, x)
∂x

+ σ(t, x)
(∫ x

0
c(x, y)σ(t, y)dy

)
(6.18)

where c(x, y) = corr(dtZ(t, x), dtZ(t, y)).

6.4 Other Related Models

Besides the pioneering works that we discussed in previous section, there are

numerous works that extend the basic models using random field approach. In

this section we try to give very brief summary of these works. These works

incorporates stochastic volatility, modeling of the defaultable term structures,

estimation and simulations of bond prices by taking random field models as

their starting point.

Kimmel [36] modeled the term structure of interest rates by using a random

field with a conditional volatility. Kimmel developed a class of random field

models in which the volatility of bond yields and forward rates depend on a set

of latent variables. These latent variables themselves follow a diffusion process.

By following this approach, Kimmel found a way that easily characterizes nec-

essary and sufficient conditions for existence and uniqueness of a forward rate

process for the absence of arbitrage.

There are relatively few studies about the estimation and calibration of

random field models. One of them is Pang’s [51] work that show how a Gaussian
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random field interest rate term structure model can be calibrated to the market

prices. In that work, Pang also showed that calibrating a Gaussian random field

model is easier than calibrating a multi-factor Gaussian HJM type interest rate

model. Another study that is related to the estimation of random field models

is due to Bester[2] in which he compared the performance of affine type interest

rate models to that of random field models by using Monte-Carlo Markov Chain

estimation technique. The striking result is that the random field models are

much better able to fit the patterns of volatility and correlation in existing bond

price data. Also there is a study by McDonald and Beard [45] that investigates

the simulation procedures for random field models.

As an extension to defaultable term structure modeling we can mention two

works, one by Furrer [18] and the other by Ozkan and Schmidt [50]. Furrer

studied applications of random field modeling to default intensities of a class

of obligors and to the modeling of firm values in structural credit risk frame-

work. On the other hand, Ozkan and Schmidt [50] studied the modeling of

the defaultable term structure by using Levy random fields hence extended

the existing framework to a more general class of processes that incorporate

discontinuities.

Lastly, we would like to mention the work done by Hamza et. al [22]. In

that work, rather than using a random field approach, researchers try to charac-

terize a mathematical framework, which generalizes every interest rate model,

including random field models and jump models, by using semi-martingale the-

ory.

6.5 Korezlioglu’s Approach

Korezlioglu [41] studied the representation of zero coupon bond prices in terms

of the random fields generated by a two-parameter Brownian sheet. In his

work, the main objective is to present the adequate representation theorem for

the Radon-Nikodym density of the risk neutral probability following previous

works [41] and [40] and to look for the drift conditions under the risk-neutral

probability as well as the working probability.

In this section, we give the necessary mathematical setting for the two-

parameter processes and stochastic calculus related to them. Moreover, in

order to form the basis for the applications that we will present in the next
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chapter, we review [38] and [39] in detail.

6.5.1 Model Settings

The probability space is (Ω,A,P) on which the Brownian sheet is defined.

Definition 6.5.1. A Brownian sheet W = {W (t, s), (t, s) ∈ R} is a process

having the following properties:

• Almost all trajectories of W are continuous,

• ∀(t, s),W (t, 0) = W (0, s) = 0 a.s.

• W has independent increments. That is, if t1 ≤ t2, t′1 ≤ t′2, s1 ≤ s2,

s′1 ≤ s′2 are such that the rectangles (t1, t2)× (s1, s2) and (t′1, t
′
2)× (s′1, s

′
2)

are disjoint then the variations of W over the these rectangles are inde-

pendent, i.e., W (t2, s2)−W (t2, s1)−W (t1, s2)+W (t1, s1) and W (t′2, s
′
2)−

W (t′2, s
′
1)−W (t′1, s

′
2) +W (t′1, s

′
1) are independent.

• W (t2, s2)−W (t2, s1)−W (t1, s2) +W (t1, s1) has the normal distribution

with mean zero and variance (t2 − t1)× (s2 − s1).

Given a filtration F = {Ft ∈ R+} a two-parameter process W is called a

F-Brownian sheet, if it is a Brownian sheet such that ∀(t, s), W (t, s) is Ft-

measurable and for t1 < t2 and s1 < s2 the increment W (t2, s2)−W (t2, s1)−
W (t1, s2) +W (t1, s1) is independent of Ft1

Definition 6.5.2. A process X(t, s) is said to be F-progressive if ∀t the map

(u, s, ω) 7→ X(u, s, ω) from [0, t]×R+×Ω is B[0,t]⊗B+⊗A measurable, where

B indicates the Borel field.

The parameter domain is restricted to {(t, s) : 0 ≤ t ≤ τ, 0 ≤ s ≤ τ}, where

τ is the highest maturity time on market. Let FW
t,s be the σ-algebra generated

by W (u, v), 0 ≤ y ≤ t, 0 ≤ s ≤ τ} and all A-negligible sets of Ω and define

Ft,s = ∩ε>0,λ>0FW
t+ε,s+λ. {Ft,s} is called the natural filtration of W and it is

taken that A = Fτ,τ .

A two-parameter Brownian martingale used in [38] and our work is defined

by

M(t, s) =
∫ t

0

∫ s

0
F (u, v)W (du, dv), (6.19)
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where F is a bounded two-parameter process progressively measurable with

respect to the filtration F and satisfying

E
∫ τ

0

∫ τ

0
F 2(u, v)dudv <∞. (6.20)

The dynamics of instantaneous forward interest rates under risk-neutral mea-

sure is represented by

f(dt, s) = µQ(t, s)dt+ σQ(t, s)MQ(dt, s) (6.21)

As in the case of one-parameter processes, in order to change the working

probability measure to the risk neutral probability, the Martingale Representa-

tion and Girsanov theorems are needed in a two-parameter setting. The given

theorems are based on [41, 40], where the Brownian sheet is represented as a

distribution-valued Brownian motion.

Theorem 6.5.1. Let M be a local F-martingale. Then there is a F-progressive

process {H(t, s), (t, s) ∈ [0, τ ]× [0, τ ]} such that∫ τ

0

∫ τ

0
H2(t, s)dtds <∞ (6.22)

and

M(t) = M(0) +
∫ t

0

∫ τ

0
H(u, v)W (du, dv). (6.23)

Proof. The proof of this theorem is based on the Martingale Representation

Theorem given in [41, 40] for distribution valued square-integrable martingales,

which can be extended to local martingales by the usual localization method.

From this, it can be stated

Theorem 6.5.2. Let Q be a probability measure on A, equivalent to P. Then

the martingale

L(t) = E
(
dQ

dP
|Ft

)
(6.24)

has the following representation

L(t) = exp
{
−
∫ t

0

∫ τ

0
λ(u, v)W (du, dv)− 1

2

∫ t

0

∫ τ

0
λ2(u, v)dudv

}
(6.25)

where λ is F-progressive process such that
∫ τ
0

∫ τ
0 λ

2(u, v)dudv <∞.

45



Proof. According to the martingale representation theorem L(t) has the fol-

lowing representation

L(t) = 1 +
∫ t

0

∫ τ

0
H(u, v)W (du, dv). (6.26)

If the Ito’s formula is applied to lnL(t)

d(lnL(t)) = − 1
L(t)

∫ τ

0
H(t, v)W (dt, dv)− 1

2
1

L2(t)

(∫ τ

0
H2(t, v)dv

)
dt. (6.27)

Notice L(t) > 0 for each t. Hence,

λ(t, s) :=
H(t, s)
L(t)

(6.28)

then λ is progressively measurable and∫ τ

0

∫ τ

0
λ2(t, s)dtds <∞ (6.29)

Thus d(ln(L(t)) can be written as

d(ln(L(t)) = −
∫ τ

0
λ(t, v)W (dt, dv)− 1

2

∫ τ

0
λ2(t, v)dvdt. (6.30)

And the representation of L(t) follows from above equation.

The Girsanov Theorem can be stated then,

Theorem 6.5.3. Under the equivalent martingale probability measure Q, the

process

WQ(t, s) =
∫ t

0

∫ s

0
λ(u, v)dudv +W (t, s) (6.31)

is a F-Brownian sheet.

Proof. The proof is given in [41]. Another proof without using nuclear space

valued martingales is given in [38].

Korezlioglu showed that the drift conditions of HJM type and Musiela type

models both under risk-neutral and working probabilities. Additionally, a new

model, ”mixed HJM-Musiela”, is proposed. The drift conditions found are

similar to the ones that studied before [20], [34, 35] and [52].
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6.5.2 HJM-type Model

In that model P (t, T ) is represented as follows; P (t, T ) = exp
(
−
∫ T
t f(t, s)ds

)
where f is the instantaneous forward rate that satisfies the equation under Q.

f(t, s) = k(s) +
∫ t

0
µQ(u, s)du+

∫ t

0
σ(u, s)MQ(du, s) (6.32)

where k(s) ia a non-random Lebesgue-integrable function, µQ is Lebesgue-

integrable and σ is continuous both being F-progressive processes. To find

the drift condition, Korezlioglu [39] followed an approach similar to that of

we reviewed in the chapter related to HJM framework. A longer and more

involving approach that gave the same results is given in [38]. The differential

of −
∫ T
t f(t, s)ds is given by

d

(
−
∫ T

t
f(t, s)ds

)
= f(t, t)−

(∫ T

t
µQ(t, s)ds

)
dt−

∫ T

t
σ(t, s)MQ(dt, s)dt

(6.33)

The last integral above can be rewritten by using the Stochastic Fubini Theorem

and Lemma 4.1 of [38]∫ T

t
σ(t, s)MQ(dt, s)dt =

∫ t

0

(∫ T

t
σ(t, s)ds

)
MQ(dt, dv)

+
∫ T

t

(∫ T

v
σ(t, s)ds

)
MQ(dt, dv)

(6.34)

Hence the dynamics of the discounted bond prices, P̃ (t, T ), can be written as

dP̃ (t, T )

P̃ (t, T )
=
(∫ T

t
µQ(t, s)ds

)
dt−

∫ t

0

(∫ T

t
σ(t, s)ds

)
MQ(dt, dv)

−
∫ T

t

(∫ T

v
σ(t, s)ds

)
MQ(dt, dv)

+
1
2

[∫ t

0

(∫ T

t
σ(t, s)ds

)
F 2(t, v)dv

]
dt

+
1
2

[∫ T

t

(∫ T

v
σ(t, s)ds

)
F 2(t, v)dv

]
dt

(6.35)

Drift condition under risk-neutral probability measure

By the fundamental theorem of asset pricing, discounted asset prices should be

martingale in order to preclude arbitrage. So, technically this corresponds to
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that of the drift term should be zero. Then∫ T

t
µQ(t, s)ds =

1
2

[∫ t

0

(∫ T

t
σ(t, s)ds

)
F 2(t, v)dv

]
+

1
2

[∫ T

t

(∫ T

v
σ(t, s)ds

)
F 2(t, v)dv

] (6.36)

Differentiating this with respect to T , and collecting the integrals, the drift

condition is obtained as

µQ(t, T ) = σ(t, T )
[∫ T

t

(
σ(t, s)

∫ s

0
F 2(t, v)dv

)
ds

]
(6.37)

The model can be extended to the case where the process F (t, s) depends on

T . Let FT (t, s) can be a progressive process process in t such that

E
∫ τ

0

∫ τ

0

(∫ s

0
F 2

s (u, v)dv
)
duds <∞ (6.38)

And the martingale M can be replaced by

M(t, s) =
∫ t

0

∫ s

0
F 2

s (u, v)W (du, dv). (6.39)

Then the drift condition becomes

µQ(t, T ) = σ(t, T )
[∫ T

t
σ(t, s)

(∫ s

0
FT (t, v)Fs(t, v)dv

)
ds

]
(6.40)

By using the fact that the covariation of the two martingales MQ(., s) and

MQ(., s′) is

〈MQ(., s),MQ(., s′)〉 =
∫ t

0

∫ s∧s′

0
Fs(u, v)F ′

s(u, v)dudv (6.41)

and using the definition of the covariance in previous works [34, 35, 20].

d〈MQ(., s),MQ(., s′)〉 = c(t, s, s′) (6.42)

the drift condition (6.40) can be written as

µQ(t, T ) = σ(t, T )
∫ T

t
σ(t, s)c(t, T, s)ds (6.43)

Drift condition under working probability

In order to derive the drift condition, the only thing to do is replace WQ by its

expression in terms of W in the equation of f(t, T ). Hence,

f(dt, s) = µQ(t, s)dt+ σ(t, s)
(
M(dt, s) +

(∫ s

0
F (t, v)λ(t, v)dv

)
dt

)
=
(
µQ(t, s) + σ(t, s)

∫ s

0
F (t, v)λ(t, v)dv

)
dt+ σ(t, s)M(dt, s)

= µ(t, s)dt+ σ(t, s)M(dt, s).

(6.44)
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Then the drift condition under working probability is shown to be

µ(t, T ) = σ(t, T )
[∫ T

t
σ(t, s)

(∫ s

0
F 2(t, v)dv +

∫ s

0
F (t, v)λ(t, v)dv

)
ds

]
.

(6.45)

6.5.3 Musiela-type Model

In that model P (t, T ) is represented as follows; P (t, T ) = exp
(
−
∫ T−t
0 g(t, x)dx

)
where g is the instantaneous forward rate that satisfies the equation under Q.

g(t, x) = h(s) +
∫ t

0
µQ(u, x)du+

∫ t

0
σ(u, x)MQ(du, x) (6.46)

where h(s) ia a non-random Lebesgue-integrable function, µQ is Lebesgue-

integrable and σ is continuous both being F-progressive processes. By using

the same methodology, the drift condition under risk-neutral measure Q is

specified as,

µQ(t, x) =
∂g(t, x)
∂x

+ σ(t, x)
∫ x

0

(∫ x

v
σ(t, y)dy

)
F 2(t, v)dv (6.47)

6.5.4 Mixed-Musiela-type Model

Korezlioglu [39] proposed a new type of interest rate model that eliminates the

computation of the slope of the yield curve in drift condition yet has ability

to parameterize the forward interest rate with time to maturity. This type of

modeling will be used in our modeling of the term structure in a nuclear space

framework. In this model, P (t, T ) is represented by

P (t, T ) = exp
(
−
∫ T

t
h(t, s)ds

)
(6.48)

where h is the instantaneous forward rate that satisfies the equation under Q.

h(t, s) = m(s) +
∫ t

0
µQ(u, s− u)du+

∫ t

0
σ(u, s− u)MQ(du, s− u) (6.49)

where m(s) ia a non-random Lebesgue-integrable function, µQ is Lebesgue-

integrable and σ is continuous both being F-progressive processes. The drift

condition under risk-neutral measure Q is given by

µQ(t, x) = σ(t, x)
∫ x

0

(∫ x

n
σ(t, v)dv

)
F 2(t, n)dn. (6.50)
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Chapter 7

Applications of the Random

Field Model

In that section, we give three applications of the random field model by using

Korezlioglu’s setting that we discussed in previous chapter. The applications

considered here are the identification of the forward measure, the term struc-

ture modeling in a multi-country setting and the defaultable term structure

modeling respectively. In all of these applications, the two-parameter setting is

utilized. We try to keep all of them self contained, meaning that the necessary

literature review and the definitions pertaining to each subject are mentioned

briefly.

7.1 Forward Measure

The method of a forward risk adjustment was first pioneered by Jamshidian [31]

under the name of a forward risk-adjusted process. Then the formal definition

of a forward probability measure was introduced by Geman et. al. [19] under

the name of forward neutral probability. The main idea in Geman’s study is

that the forward price process of any financial asset follows a (local) martingale

under the forward neutral probability. In that section we try to identify the

forward measure related to the interest rate models driven by a two-parameter

processes. For a complete discussion and the approach taken in this section,

we referred to the book of Musiela and Rutkowski [49].

In this section, we identify the forward measure in a two-parameter setting

in which the dynamics of the instantaneous forward rates are given by HJM-
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type and Musiela-type equations discussed previously.

7.1.1 Forward Measure under HJM-type model

Price of a zero coupon bond, P (t, T ), at time t with time of maturity T is given

by,

P (t, T ) = exp

(
−
∫ T

t
f(t, s)ds

)
(7.1)

where forward rate, f(t, s), satisfies the equation,

f(t, s) = k1(s) +
∫ t

0
µQ(u, s)du+

∫ t

0
ϕ(u, s)MQ(du, s) (7.2)

Let us also first define an auxiliary forward process FP (t) as,

FP (t) := FP (t, T, T ∗) :=
P (t, T )
P (t, T ∗)

= exp

(∫ T ∗

T
f(t, s)ds

)
(7.3)

for all T ≤ T ∗. In order to identify the forward measure associated with time

T ∗ we need to find an equivalent martingale measure under which FP (t) is a

martingale [49]. FP (t) can be written as,

FP (t) = exp(L(t)), (7.4)

where L(t) is defined as below

L(t) =
∫ T ∗

T
k1(s)ds+

∫ T ∗

T

(∫ t

0
µQ(u, s)du

)
ds

+
∫ T ∗

T

(∫ t

0
ϕ(u, s)MQ(du, s)

)
ds.

(7.5)

Hence,

dL(t) =

(∫ T ∗

T
µQ(t, s)ds

)
dt+

∫ T ∗

T
ϕ(t, s)MQ(dt, s)ds (7.6)

The second term in the above equation can be written as,∫ T ∗

T
ϕ(t, s)MQ(dt, s)ds =

∫ T ∗

T

(∫ T ∗

s=v
ϕ(t, s)ds

)
MQ(dt, dv)

+
∫ T

0

(∫ T ∗

s=T
ϕ(t, s)ds

)
MQ(dt, dv).

(7.7)
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By applying Ito’s formula,

dtFP (t)
FP (t)

=

(∫ T ∗

T
µQ(t, s)ds

)
dt+

∫ T ∗

T

(∫ T ∗

s=v
ϕ(t, s)ds

)
MQ(dt, dv)

+
∫ T

0

(∫ T ∗

s=T
ϕ(t, s)ds

)
MQ(dt, dv)

+

1
2

∫ T ∗

v=T

(∫ T ∗

s=v
ϕ(t, s)ds

)2

F 2(t, v)dv

 dt
+

1
2

∫ T

v=0

(∫ T ∗

s=T
ϕ(t, s)ds

)2

F 2(t, v)dv

 dt

(7.8)

Now, in order to find an equivalent probability measure P ∗, we have to translate

WQ in such a way that FP (t) becomes a martingale under P ∗. To do that, we

use the Martingale Representation and Girsanov Theorems for two parameter

processes. That is, if

E
[
dP∗

dQ
|Ft

]
= exp

{
−
∫ t

0

∫ T ∗

0
λ(u, v)WQ(du, dv)− 1

2

∫ t

0

∫ T ∗

0
λ(u, v)2dudv

}
(7.9)

for some predictable process λ for which the right hand of side of the above

equation (7.9) has Q expectation 1, then by the Girsanov theorem

W ∗(t, s) = WQ(t, s) +
∫ t

0

∫ s

0
λ(u, v)dvdu (7.10)

is a P∗ Brownian sheet. Let us put,

M∗(t, s) =
∫ t

0

∫ s

0
F (u, v)W ∗(du, dv) (7.11)

and M∗(t, s) becomes

M∗(t, s) = MQ(t, s) +
∫ t

0

∫ s

0
F (u, v)λ(u, v)dvdu (7.12)

Replacing MQ with M∗, we can write equation (7.8) as

dtFP (t)
FP (t)

=
[
. . . . . . . . . . . .

]
dt+

∫ T ∗

T

(∫ T ∗

s=v
ϕ(t, s)ds

)
M∗(dt, dv)

+
∫ T

0

(∫ T ∗

s=T
ϕ(t, s)ds

)
M∗(dt, dv)

(7.13)
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The martingale condition is that the expression which is the coefficient of dt

must be equal to zero. That is,

0 =
∫ T ∗

T
µQ(t, s)ds+

1
2

∫ T ∗

v=T

(∫ T ∗

s=v
ϕ(t, s)ds

)2

F 2(t, v)dv

+
1
2

∫ T

v=0

(∫ T ∗

s=T
ϕ(t, s)ds

)2

F 2(t, v)dv

−
∫ T ∗

T

(∫ T ∗

s=v
ϕ(t, s)ds

)
F (t, v)λ(t, v)dv

−
∫ T

0

(∫ T ∗

s=T
ϕ(t, s)ds

)
F (t, v)λ(t, v)dv

(7.14)

If we differentiate equation (7.14) with respect to T ∗, we obtain,

0 = µQ(t, T ∗) + ϕ(t, T ∗)
∫ T ∗

v=T

(∫ T ∗

s=v
ϕ(t, s)ds

)
F 2(t, v)dv

+ ϕ(t, T ∗)
∫ T

v=0

(∫ T ∗

s=T
ϕ(t, s)ds

)
F 2(t, v)dv − ϕ(t, T ∗)

∫ T ∗

v=T
F (t, v)λ(t, v)dv

− ϕ(t, T ∗)
∫ T

v=0
F (t, v)λ(t, v)dv

(7.15)

After rearranging the above equation,we can find the condition that ensures

FP (t) be a martingale.

µQ(t, T ∗) = ϕ(t, T ∗)
∫ T ∗

v=0
F (t, v)λ(t, v)dv

− ϕ(t, T ∗)
∫ T ∗

s=T

(∫ s

v=0
ϕ(t, s)F 2(t, v)dv

)
ds

(7.16)

Under the hypothesis that ϕ(t, T ∗) 6= 0 for every t, we can write,

µQ(t, T ∗)
ϕ(t, T ∗)

=
∫ T ∗

v=0
F (t, v)λ(t, v)dv −

∫ T ∗

s=T

(∫ s

v=0
ϕ(t, s)F 2(t, v)dv

)
ds (7.17)

Furthermore suppose that
µ(t, T ∗)
ϕ(t, T ∗)

is differentiable in T ∗, then we can write

∂

∂T ∗

[
µQ(t, T ∗)
ϕ(t, T ∗)

]
= F (t, T ∗)λ(t, T ∗)−

∫ T ∗

v=0
ϕ(t, T ∗)F 2(t, v)dv (7.18)
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If moreover F (t, T ∗) 6= 0 for every t then we get the market price of risk

associated with time of maturity T ∗,

λ(t, T ∗) =
1

F (t, T ∗)

[
∂

∂T ∗

[
µQ(t, T ∗)
ϕ(t, T ∗)

]
+
∫ T ∗

v=0
ϕ(t, T ∗)F 2(t, v)dv

]
(7.19)

Therefore, we can characterize the forward martingale measure associated with

the date T ∗ by specifying λ(t, T ∗) as above.

7.1.2 Forward Measure under Mixed Musiela-HJM type model

Price of a zero coupon bond, P (t, T ), at time t with time of maturity T is given

by,

P (t, T ) = exp

(
−
∫ T

t
h(t, s)ds

)
(7.20)

where forward rate, h(t, s), satisfies the equation,

h(t, s) = k3(s) +
∫ t

0
βQ(u, s− u)du+

∫ t

0
δ(u, s− u)MQ(du, s− u) (7.21)

Let us also define an auxiliary forward process FP (t) as we did previously,

FP (t) := FP (t, T, T ∗) :=
P (t, T )
P (t, T ∗)

= exp

(∫ T ∗

T
h(t, s)ds

)
(7.22)

for all T ≤ T ∗. We want to find an equivalent martingale measure under which

FP (t) is a martingale. FP (t) can be written as

FP (t) = exp(L(t)) (7.23)

where L(t) is defined as below

L(t) =
∫ T ∗

T
k3(s)ds+

∫ T ∗

T

(∫ t

0
βQ(u, s− u)du

)
ds

+
∫ T ∗

T

(∫ t

0
δ(u, s− u)MQ(du, s− u)

)
ds

(7.24)

Hence,

dtL(t) =

(∫ T ∗

T
βQ(t, s− t)ds

)
dt+

∫ T ∗

T
δ(t, s− t)

(∫ s−t

0
MQ(dt, dn)

)
ds

=

(∫ T ∗−t

T−t
βQ(t, v)dv

)
dt+

∫ T ∗−t

T−t
δ(t, v)

(∫ v

n=0
MQ(dt, dn)

)
dv

(7.25)

54



The second term in equation (7.25) can be written as,∫ T ∗−t

T−t
δ(t, v)

(∫ v

n=0
MQ(dt, dn)

)
dv =

∫ T−t

n=0

(∫ T ∗−t

v=T−t
δ(t, v)dv

)
MQ(dt, dn)

+
∫ T ∗−t

n=T−t

(∫ T ∗−t

v=n
δ(t, v)dv

)
MQ(dt, dn)

(7.26)

By applying Ito’s formula,

dtFP (t)
FP (t)

=

(∫ T ∗−t

T−t
βQ(t, v)dv

)
dt+

∫ T−t

n=0

(∫ T ∗−t

v=T−t
δ(t, v)dv

)
MQ(dt, dn)

+
∫ T ∗−t

n=T−t

(∫ T ∗−t

v=n
δ(t, v)dv

)
MQ(dt, dn)

+

1
2

∫ T−t

n=0

(∫ T ∗−t

v=T−t
δ(t, v)dv

)2

F 2(t, n)dn

 dt
+

1
2

∫ T ∗−t

n=T−t

(∫ T ∗−t

v=n
δ(t, v)dv

)2

F 2(t, n)dn

 dt
(7.27)

Now, in order to find an equivalent probability measure P ∗,we have to translate

WQ in such a way that FP (t) becomes a martingale under P ∗. To do this, we

use the Martingale Representation and Girsanov Theorems for two parameter

processes.Then,

E
[
dP∗

dQ
|Ft

]
= exp

{
−
∫ t

0

∫ T ∗

0
λ(u, v)WQ(du, dv)− 1

2

∫ t

0

∫ T ∗

0
λ(u, v)2dudv

}
(7.28)

for some predictable process λ for which the right hand of equation(9) has Q
expectation 1. By the Girsanov theorem

W ∗(t, s) = WQ(t, s) +
∫ t

0

∫ s

0
λ(u, v)dvdu (7.29)

is a P∗ Brownian sheet. Let us put,

M∗(t, s) =
∫ t

0

∫ s

0
F (u, v)W ∗(du, dv) (7.30)

and M∗(t, s) becomes

M∗(t, s) = MQ(t, s) +
∫ t

0

∫ s

0
F (u, v)λ(u, v)dvdu (7.31)
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Replacing MQ with M∗,we can write equation (7.27) as

dtFP (t)
FP (t)

=
[
. . . . . . . . . . . .

]
dt+

∫ T ∗−t

n=0

(∫ T ∗−t

v=T−t
δ(t, v)dv

)
MQ(dt, dn)

+
∫ T ∗−t

n=T−t

(∫ T ∗−t

v=n
δ(t, v)dv

)
MQ(dt, dn)

(7.32)

The martingale condition is that the expression which is the coefficient of dt

must equal to zero.That is,

0 =
∫ T ∗−t

T−t
βQ(t, v)dv +

1
2

∫ T−t

n=0

(∫ T ∗−t

v=T−t
δ(t, v)dv

)2

F 2(t, n)dn

+
1
2

∫ T ∗−t

n=T−t

(∫ T ∗−t

v=n
δ(t, v)dv

)2

F 2(t, n)dn

−
∫ T−t

n=0

(∫ T ∗−t

v=T−t
δ(t, v)dv

)
F (t, n)λ(t, n)dn

−
∫ T ∗−t

n=T−t

(∫ T ∗−t

v=n
δ(t, v)dv

)
F (t, n)λ(t, n)dn

(7.33)

If we differentiate equation (7.33) with respect to T ∗, we obtain,

0 = βQ(t, T ∗ − t) + δ(t, T ∗ − t)
∫ T−t

n=0

(∫ T ∗−t

v=T−t
δ(t, v)dv

)
F 2(t, n)dn

+ δ(t, T ∗ − t)
∫ T ∗−t

n=T−t

(∫ T ∗−t

v=n
δ(t, v)dv

)
F 2(t, n)dn

− δ(t, T ∗ − t)
∫ T−t

n=0
F (t, n)λ(t, n)dn

− δ(t, T ∗ − t)
∫ T ∗−t

n=T−t
F (t, n)λ(t, n)dn

(7.34)

After rearranging the above equation,we can find the condition that ensures

FP (t) is a martingale.

βQ(t, T ∗ − t) = δ(t, T ∗ − t)
∫ T ∗−t

n=0
F (t, n)λ(t, n)dn

− δ(t, T ∗ − t)
∫ T ∗−t

v=T−t

(∫ v

n=0
δ(t, v)F 2(t, n)dn

)
dv

(7.35)

Under the hypothesis that δ(t, T ∗ − t) 6= 0 for every t,we can write,

βQ(t, T ∗ − t)
δ(t, T ∗ − t)

=
∫ T ∗−t

n=0
F (t, n)λ(t, n)dn−

∫ T ∗−t

v=T−t

(∫ v

n=0
δ(t, v)F 2(t, n)dn

)
dv

(7.36)
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Furthermore suppose that
βQ(t, T ∗ − t)
δ(t, T ∗ − t)

is differentiable in T ∗, then we can write by denoting T ∗ − t = x

∂

∂x

[
βQ(t, x)
δ(t, x)

]
= F (t, x)λ(t, x)− δ(t, x)

∫ x

n=0
F 2(t, n)dn (7.37)

If moreover F (t, x) 6= 0 for every t then we get the market price of risk associ-

ated with time to maturity x,

λ(t, x) =
1

F (t, x)

[
∂

∂T ∗

[
βQ(t, x)
δ(t, x)

]
+ ϕ(t, x)

∫ x

n=0
F 2(t, n)dn

]
(7.38)

Therefore, we can characterize the forward martingale measure associated with

the date T ∗ by specifying λ(t, T ∗) as above.

7.2 Term Structure Modeling in a Multi-Country

Setting

7.2.1 Overview

In this section, an arbitrage-free model of the term structure of interest rates

on multi country setting is extended by assuming that the processes driving the

foreign and domestic instantaneous forward rates are two parameter processes,

namely random fields parameterized by current time and time to maturity.

In most of the applications related to derivative securities with two or more

economies, exchange rates are assumed to be random, mostly modeled as a

geometric brownian motion, whereas interest rates are assumed to be constant.

The first models that incorporate stochastic interest rates in the framework of

Black-Scholes [9] are due to Feiger and Jacquillant [17] and Grabbe [21]. How-

ever, as mentioned by Amin and Jarrow [1], this type of modeling could not

integrate the complete characteristics of the term structure into the valuation

because of its incapabilities in valuing American-type options. As the short-

comings of BS approach to interest rate modeling was overcomed by the seminal

paper of Heath, Jarrow and Morton [26] (see Chapter 4), the first application

of HJM methodology in foreign currency options are given by Amin and Jar-

row [1]. In their work, they characterize the drift conditions of the foreign and
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domestic forward rates and exchange rates by using the same technique, bas-

ing on martingale measure approach, developed by HJM for stochastic interest

rates.

The modeling of stochastic interest rates in a cross-currency setting has

been investigated by many researchers, for a complete discussion and lists of

publications reader is referred to [49].

Like in the setting of one country term structure models driven by ran-

dom fields that models the forward rate dynamics by incorporating the second

parameter as representing the random shocks arising from time to maturity,

we use a two parameter process for both domestic and foreign forward rates.

Moreover, for the modeling of term structures in multi-country setting, it is

usual to take into account the fact that the fluctuations of interest rates and

exchange rates are correlated. Therefore, we use the same two parameter pro-

cess in modeling both interest rates and exchange rates, although for exchange

rate it reduces to a one parameter process. Yet, by appropriate choice of the

driving process this approach is satisfactory enough to model the correlation

both between exchange rate and interest rates and among different maturities

of instantaneous forward rates.

In the sequel, apart from deriving the drift condition for exchange rate

dynamics, our modeling is based on the domestic martingale measure, Q. It

is easy to represent the same conditions and price processes in the objective

probability measure P by using the discussions of Korezlioglu [38, 39] and

Chapter 6.

7.2.2 Model

Assume that there are two bond markets, one domestic and one foreign. We

take as given a standard HJM model for the domestic forward rates fd(t, T )

dynamics of the form

dfd(t, s) = αd(t, s)dt+ σd(t, s)M(dt, s) (7.39)

where M(t, s) is a two parameter martingale under the domestic martingale

measure Q defined by

M(t, s) =
∫ t

0

∫ s

0
F (u, v)W (du, dv) (7.40)
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The foreign forward rates are denoted by ff (t, T ), and their dynamics, still

under the domestic martingale measure Q, are assumed to be given by

dff (t, s) = αf (t, s)dt+ σf (t, s)M(dt, s) (7.41)

Note 7.2.1. The same two parameter process defined by (7.40) is driving both

the domestic and the foreign bond market.

The exchange rate X(t) (denoted in units of domestic currency per unit of

foreign currency) has the Q dynamics.

dX(t)
X(t)

= µx(t)dt+ σx(t)M(dt, t)

= µx(t)dt+
∫ t

0
σx(t)M(dt, dn)

(7.42)

Provided that domestic and foreign savings accounts are defined by

Bd(t) = e
R t
0 rd(u)du (7.43)

Bf (t) = e
R t
0 rf (u)du (7.44)

where rd(t) and rf (t) are domestic and foreign short interest rates respectively,

we can show that under domestic martingale measure µx(t) is equal to the

spread between domestic short rate and foreign short rate.

Suppose that the dynamics of X(t) under the objective probability measure

P are given by

dX(t) = X(t)αx(t)dt+X(t)σx(t)MP (dt, t) (7.45)

One can invest by buying foreign currency and depositing it in a foreign cur-

rency bank account, however he can also achieve the same investment strategy

by investing in a domestic asset with the price process, Be(t) where,

Be(t) = Bf (t)X(t)

The dynamics of Be(t) can be found by applying Ito’s Lemma

dBe(t) = Be(t)(αx(t) + rf (t))dt+Be(t)σx(t)MP (dt, t) (7.46)

Using the general result that every domestic asset has the short rate as its local

rate of return under martingale measure Q in order to preclude arbitrage , it

can be shown that the dynamics of Be under Q are given by,

dBe(t) = Be(t)rd(t) +Be(t)σx(t)M(dt, t) (7.47)
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Applying the Ito’s formula to Be(t)
Bd(t) , which equals X(t) by definition,we obtain

the dynamics of foreign exchange, X(t) as

dX(t)
X(t)

= (rd(t)− rf (t))dt+ σx(t)M(dt, t) (7.48)

Under a foreign martingale measure, the coefficient processes for the foreign

forward rates will definitely satisfy HJM drift condition, however what we want

to accomplish in this paper is to establish a foreign market drift condition under

the domestic martingale measure Q.

Let U(t, s) denote the time t value of the foreign zero-coupon bond maturing

at time s in units of the domestic currency. We then have the following,

U(t, s)
Bd(t)

= X(t)eY (t) := V (t) (7.49)

where Y (t) = −
∫ s
t ff (t, u)du−

∫ t
0 rd(u)du.

In order to identify the drift condition V (t) should be martingale,i.e., the ex-

pression which is the coefficient of dt term in dV (t) must be equal to zero.

Therefore, next we find dV (t) by applying Ito’s Formula

dV (t) = X(t)d(eY (t)) + eY (t)dX(t) + d〈X(t), eY (t)〉t (7.50)

Then

d(Y (t)) = dt

(
−
∫ s

t
ff (t, u)du−

∫ t

0
rd(u)du

)
= rf (t)dt− rd(t)dt

−
∫ s

t
αf (t, u)dudt

−
∫ s

t
σf (t, u)M(dt, u)du

(7.51)

The last integral can be written as by changing the order of integration using

stochastic Fubini Theorem,∫ s

t
σf (t, u)M(dt, u)du =

∫ t

0

(∫ s

t
σf (t, u)du

)
M(dt, dn)

+
∫ s

t

(∫ s

n
σf (t, u)du

)
M(dt, dn)

(7.52)
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Therefore d(eY (t)) is equal to

d(eY (t)) = eY (t)[(rf (t)dt− rd(t)dt−
∫ s

t
αf (t, u)dudt

+
1
2

∫ t

0
(
∫ s

t
σf (t, u)du)2F 2(t, n)dndt

+
1
2

∫ s

t
(
∫ s

n
σf (t, u)du)2F 2(t, n)dndt

−
∫ t

0
(
∫ s

t
σf (t, u)du)M(dt, dn)

−
∫ s

t
(
∫ s

n
σf (t, u)du)M(dt, dn)]

(7.53)

Now, in order to find dV (t) we have to find d〈X(t), eY (t)〉t. As it is evident from

the domain of integration of the martingales M(dt, dn) in dX(t) and d(eY (t)),

d〈X(t), eY (t)〉t can be given as,

d〈X(t), eY (t)〉t = −V (t)
∫ t

0
σx(t)

(∫ s

t
σf (t, u)du

)
F 2(t, n)dndt (7.54)

Finally we find the dynamics of the V (t)

dV (t)
V (t)

=
[
. . . . . . . . . . . .

]
︸ ︷︷ ︸

A(t)

dt−
∫ s

t
σf (t, u)M(dt, u)du (7.55)

where A(t) is given by,

A(t) =
1
2

[∫ t

0
(
∫ s

t
σf (t, u)du)2F 2(t, n)dn

]
+

1
2

[∫ s

t
(
∫ s

n
σf (t, u)du)2F 2(t, n)dn

]
−
∫ s

t
αf (t, u)du−

∫ t

0
σx(t)

(∫ s

t
σf (t, u)du

)
F 2(t, n)dn

(7.56)

The martingale condition for V (t) is that A(t), which is the coefficient of dt,

must equal to zero. That is,∫ s

t
αf (t, u)du =

1
2

[∫ t

0
(
∫ s

t
σf (t, u)du)2F 2(t, n)dn

]
+

1
2

[∫ s

t
(
∫ s

n
σf (t, u)du)2F 2(t, n)dn

]
−
∫ t

0
σx(t)

(∫ s

t
σf (t, u)du

)
F 2(t, n)dn

(7.57)

If we differentiate this expression with respect to s, we find the modified drift
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condition of foreign bond dynamics under domestic martingale measure.

αf (t, s) = σf (t, s)
[∫ s

u=t

(∫ u

n=0
σf (t, u)F 2(t, n)dn

)
du−

∫ t

0
σx(t)F 2(t, n)dn

]
(7.58)

7.2.3 Modeling of the Yield Spread

What we want to do next is to define the process g(t, s) known as yield spread

by the following equation

g(t, s) = ff (t, s)− fd(t, s)

and governed by the dynamics under domestic martingale measure.

dg(t, s) = αg(t, s) + σg(t, s)M(dt, s)

Our aim now is to derive the appropriate drift condition for the coefficient

process αg in terms of σg, σd. By the definition of the yield spread, it is

obvious that we have the relationships

αf (t, s) = αd(t, s) + αg(t, s) (7.59)

σf (t, s) = σd(t, s) + σg(t, s) (7.60)

Using the fact that the domestic and foreign forward rates satisfy the HJM

drift condition and the foreign market yield spread equation (7.59) and (7.60),

we can conclude that

αg(t, s) = σd(t, s)
[∫ s

u=t

(∫ u

n=0
σg(t, u)F 2(t, n)dn

)
du−

∫ t

0
σx(t)F 2(t, n)dn

]
(7.61)

Summing up all the findings up to now, we now provide two theorems that

characterize the necessary and sufficient conditions needed on certain dynamics

to ensure that the multi-country model of interest rates is arbitrage free.

Theorem 7.2.1. The arbitrage free dynamics of the foreign and domestic for-

ward interest rates.
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(i)The dynamics of the domestic forward interest rates under domestic mar-

tingale measure are given by

dfd(t, s) = σn(t, s)
[∫ s

u=t

(∫ u

n=0
σd(t, u)F 2(t, n)dn

)
du

]
+ σd(t, s)M(dt, s)

(7.62)

(ii)The dynamics of the foreign forward interest rates under domestic martin-

gale measure are given by

dff (t, s) = σf (t, s)
[∫ s

u=t

(∫ u

n=0
σf (t, u)F 2(t, n)dn

)
du−

∫ t

0
σx(t)F 2(t, n)dn

]
+ σf (t, s)M(dt, s)

(7.63)

(iii)The dynamics of the exchange rate under domestic martingale measure are

given by
dX(t)
X(t)

= (rd(t)− rf (t))dt+ σx(t)M(dt, t) (7.64)

These expressions for the domestic and foreign interest rates led to the

following.

Theorem 7.2.2. Given the dynamics of the foreign and domestic forward rates

(7.62),(7.63) and the exchange rate (7.64),

(i)The dynamics of the foreign zero coupon bond prices under domestic mar-

tingale measure are given by

dPf (t, s)
Pf (t, s)

=[rf (t) +
∫ t

0
σx(t)

(∫ s

t
σf (t, u)du

)
F 2(t, n)dn]dt

−
∫ s

t
σf (t, u)M(dt, u)du

(7.65)

(ii)The dynamics of the domestic zero coupon bond prices under domestic mar-

tingale measure are given by

dPd(t, s)
Pd(t, s)

= rd(t)dt−
∫ s

t
σd(t, u)M(dt, u)du (7.66)

(iii)The dynamics of the foreign zero coupon bond prices in terms of domestic

currency, Pfd(t, s), under domestic martingale measure are given by

dPfd(t, s)
Pfd(t, s)

= rd(t)dt+ σx(t)M(dt, t)−
∫ s

t
σf (t, u)M(dt, u)du (7.67)
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where
∫ s
t σk(t, u)M(dt, u)du for k ∈ {d, f} can be decomposed as∫ s

t
σk(t, u)M(dt, u)du =

∫ t

0

(∫ s

t
σk(t, u)du

)
M(dt, dn)

+
∫ s

t

(∫ s

n
σk(t, u)du

)
M(dt, dn)

(7.68)

Corollary 7.2.3. The arbitrage free dynamics of the yield spreads under the

domestic martingale measure are given by

dg(t, s) = σd(t, s)
[∫ s

u=t

(∫ u

n=0
σg(t, u)F 2(t, n)dn

)
du−

∫ t

0
σx(t)F 2(t, n)dn

]
+ σg(t, s)M(dt, s)

(7.69)

Now, we can extend our model as [38, 39] do via defining the F (t, .) function

explicitly depending on the time to maturity in M(t, s). That is we can express

M(dt, s) as

M(dt, s) =
∫ s

0
Fs(t, v)M(dt, dv) (7.70)

If we do so, we can write the equation (19) as∫ s

t
αf (t, u)du =

1
2

[∫ t

0

(∫ s

t
σf (t, u)Fu(t, n)du

)2

dn

]

+
1
2

[∫ s

t

(∫ s

n
σf (t, u)Fu(t, n)du

)2

dn

]

−
∫ t

0
σx(t)

(∫ s

t
σf (t, u)Fu(t, n)du

)
Ft(t, n)dn

(7.71)

Hence differentiating this expression with respect to s our drift condition be-

comes,

αf (t, s) = σf (t, s)[
∫ s

t

(∫ u

0
σf (t, u)Fs(t, n)Fu(t, n)dn

)
du

−
∫ t

0
σx(t)Fs(t, n)Ft(t, n)dn]

(7.72)

By using the definition of covariance structure c(t, s1, s2) of the random field

M(t, s) as we did in Chapter 6.

c(t, s1, s2)dt = d〈M(., s1),M(., s2)〉 =
∫ s1

V
s2

0
Fs1(t, n)Fs2(t, n)dndt, (7.73)

we reached the drift condition for foreign forward rates under domestic mar-

tingale measure as,

αf (t, s) = σf (t, s)
[∫ s

t
σf (t, u)c(t, s, u)du+ σx(t)c(t, t, s)

]
(7.74)
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Similarly, the drift condition for the yield spread dynamics under domestic

martingale measure is given by,

αg(t, s) = σd(t, s)
[∫ s

t
σg(t, u)c(t, s, u)du+ σx(t)c(t, t, s)

]
(7.75)

7.3 Defaultable Term Structure Modeling

In this chapter, we extend the HJM approach for two parameter processes to

the defaultable term structure modeling. In the first part, modeling is done by a

classical HJM approach, finding the drift restrictions, applied to any defaultable

zero coupon bond price with zero recovery as in Schonbucher’s study [54].

7.3.1 Model Settings

In credit risk modeling, the main ingredient is the modeling of the default event,

which can be defined as any random event whose occurrence affects the ability

of the counterparty in a financial contract to fulfill a contractual commitment

to meet his or her obligations stated in the contract. Most of the mathematical

literature on modeling the default event is devoted to the modeling of the

random time when the default event occurs,that is, default time.

Let us denote the default time by τ . We assume that default time, τ is a

stopping time, which means that τ is a random variable τ : Ω 7→ R+
⋃
{∞}

such that {τ ≤ t} ∈ Ft, for every t ≥ 0. We denote N(t) := I{τ≤t} as the

default indicator function and A(t) as the predictable compensator of N(t). In

our context A(t) has an intensity h(t), which is a non-negative and progres-

sively measurable process called default intensity. Therefore, we can define the

martingale K(t) as the compensated process of N(t) such that

K(t) = N(t)−A(t) (7.76)

where

A(t) =
∫ t

0
h(u)du

In this context, we enlarge the filtration F as by including the information on

default process, N(t). Hence in this part, filtration is generated by both the

two parameter process and default indicator process. For using in the sequel,

we now give certain definitions related to the defaultable zero-coupon bond

pricing.

65



Definition 7.3.1. Setup and Basics

1. The risk free instantaneous forward rates f(t, s) have Q dynamics

df(t, s) = α(t, s)dt+ σ(t, s)M(dt, s) (7.77)

2. The defaultable instantaneous forward rates fc(t, s) have Q dynamics

dfc(t, s) = αc(t, s)dt+ σc(t, s)M(dt, s) (7.78)

3. The instantaneous risk-free short rates r(t) and the instantaneous de-

faultable short rates rc(t) are defined as

r(t) = f(t, t)

and

rc(t) = fc(t, t)

4. The corresponding bank account processes for risk-free and defaultable

bank accounts are given by

B(t) = exp
(∫ t

0
r(u)du

)
and

Bc(t) = I{τ>t} exp
(∫ t

0
rc(u)du

)
Definition 7.3.2. The time t price of the bond with maturity s is denoted by

Pc(t, s). The payoff at maturity time s of this bond can be given as I{τ>s} =

1−N(t). The price of the risky zero coupon bond price can be given by

Pc(t, s) = (1−N(t))exp
(
−
∫ s

t
fc(t, u)du

)
(7.79)

7.3.2 Defaultable Bond Price Dynamics

Now, we are ready to develop an arbitrage free term structure model. Firstly,

by the Ito’s formula, we can find the dynamics of the defaultable zero-coupon

bond. Writing X(t) = −
∫ s
t fc(t, u)du, we can find for τ > t.

dPc(t, s) =(1−N(t))d(eX(t)) + d(1−N(t))eX(t)

=(1−N(t))eX(t)[dX(t) +
1
2
d〈X(t), X(t)〉]− dN(t)eX(t)

(7.80)
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By using the facts that 1−N(t) is equal to one for τ > t and X(t) is continuous.

dPc(t, s)
Pc(t−, s)

= dX(t) +
1
2
d〈X(t), X(t)〉 − dN(t) (7.81)

where

d(X(t)) = dt

(
−
∫ s

t
fc(t, u)du

)
= rc(t)dt−

∫ s

t
αc(t, u)dudt

−
∫ s

t
σc(t, u)M(dt, u)du

(7.82)

The last integral can be written as by changing the order of integration using

stochastic Fubini Theorem,∫ s

t
σc(t, u)M(dt, u)du =

∫ t

0

(∫ s

t
σc(t, u)du

)
M(dt, dn)

+
∫ s

t

(∫ s

n
σc(t, u)du

)
M(dt, dn)

(7.83)

Then, by using (7.82), (7.83) and the definition of compensated process K(t).

dPc(t, s)
Pc(t−, s)

=
[
rc(t)− h(t)−

∫ s

t
αc(t, u)du+

1
2

∫ t

0
(
∫ s

t
σf (t, u)du)2F 2(t, n)dn

+
1
2

∫ s

t
(
∫ s

n
σf (t, u)du)2F 2(t, n)dn

]
dt

−
∫ t

0

(∫ s

t
σc(t, u)du

)
M(dt, dn)

−
∫ s

t

(∫ s

n
σc(t, u)du

)
M(dt, dn)− dK(t)

(7.84)

The dynamics of the discounted bond prices P̃c(t, s) can be obtained as follows,

dP̃c(t, s)

P̃c(t−, s)
=
[
rc(t)− r(t)− h(t)−

∫ s

t
αc(t, u)du

+
1
2

∫ t

0
(
∫ s

t
σf (t, u)du)2F 2(t, n)dn

+
1
2

∫ s

t
(
∫ s

n
σf (t, u)du)2F 2(t, n)dn

]
dt

−
∫ t

0

(∫ s

t
σc(t, u)du

)
M(dt, dn)

−
∫ s

t

(∫ s

n
σc(t, u)du

)
M(dt, dn)− dK(t)

(7.85)

From the main hypothesis that the discounted asset prices are martingale, it is

required that the drift term of the above equation be zero. Therefore, the drift
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condition becomes

r(t) =rc(t)− h(t)−
∫ s

t
αc(t, u)du+

1
2

∫ t

0
(
∫ s

t
σf (t, u)du)2F 2(t, n)dn

+
1
2

∫ s

t
(
∫ s

n
σf (t, u)du)2F 2(t, n)dn

(7.86)

7.3.3 Default Intensity

The compensated process K(t) is a discountinuous martingale, which have a

finite variation by the definition of N(t) and A(t). Therefore the stochastic

exponential of −K(t) can be written as

ε(−K(t)) = e−Kc(t)
∏
u≤t

(1−∆K(u)) = exp{
∫ t

0
h(u)du}

∏
u≤t

(1−∆K(u)) (7.87)

Since K(t) has only one jump at t = τ , the stochastic exponential can be

expressed as

ε(−K(t)) = I{τ>t} exp{
∫ t

0
h(u)du} (7.88)

Now, considering the discounted defaultable bank account process B̃c(t), which

can be stated as,

B̃c(t) = I{τ>t}exp{
∫ t

0
(rc(u)− r(u))du} (7.89)

By the main hypothesis that every discounted(with risk-free) asset is a mar-

tingale under risk-neutral measure Q, we assume that this expression is a mar-

tingale. However, it is seen that (7.89) is the stochastic exponential of the

process

K∗(t) = −N(t) +
∫ t

0
(rc(u)− r(u))du (7.90)

This can also be verified by taking the logarithm of the (7.89). Since the

compensator of the process N(t) is unique, we reached the following conclusion

similar to [54].

K(t)−K∗(t) =
∫ t

0
(h(u)− rc(u)− r(u))du (7.91)

Hence, the default intensity is equal to the credit spread defined by γ(t) =

rc(t)− r(t)

h(t) = rc(t)− r(t) (7.92)
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By inserting (7.92) into the drift condition we found in (7.86), drift condition

becomes, ∫ s

t
αc(t, u)du =

1
2

∫ t

0
(
∫ s

t
σf (t, u)du)2F 2(t, n)dn

+
1
2

∫ s

t
(
∫ s

n
σf (t, u)du)2F 2(t, n)dn

(7.93)

Differentiating this expression with respect to s we obtain the drift condition

for the defaultable instantaneous forward rates as,

αc(t, s) = σc(t, s)
[∫ s

u=t

(∫ u

n=0
σc(t, u)F 2(t, n)dn

)
du

]
(7.94)

By using the definition of the covariance structure c(t, s1, s2) of the random

field M(t, s) as we did in Chapter 6.

c(t, s1, s2)dt = d〈M(., s1),M(., s2)〉 =
∫ s1

V
s2

0
Fs1(t, n)Fs2(t, n)dndt (7.95)

We reached the drift condition for defaultable forward rates under martingale

measure as,

αc(t, s) = σc(t, s)
[∫ s

t
σc(t, u)c(t, s, u)du

]
(7.96)

Up to now, the modeling is under the risk-neutral martingale measure Q. Now

we give the corresponding change of measure theorem that is used for transfer-

ring from objective probability measure to risk-neutral probability measure.

Theorem 7.3.1 (Change of Measure). Assume that the default process has an

intensity h(t). Let θ(t, s) and φ(t) a strictly positive Ft progressive processes

such that ∫ T ∗

0

∫ T ∗

0
θ(u, v)dudv <∞

and ∫ T ∗

0
|φ(u)− 1|h(u)du <∞

Defining the process

dL(t)
L(t−)

= −
∫ s

0
θ(t, u)W (dt, du) + [φ(t)− 1]K(dt) (7.97)

where L(0)=1. Then there is a probability measure Q equivalent to P such that

WQ(dt, s) =
∫ s

0
θ(t, v)dtdv +W (dt, s) (7.98)

gives the WQ Brownian sheet and

hQ(t) = φ(t)h(t) (7.99)

is the intensity of the default indicator process under Q.
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Proof. It follows directly by replacing W (t) in [54] with our M(t, s).
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Chapter 8

Zero Coupon Bond Prices

Via Nuclear Space Valued

Semi-Martingales

8.1 Introduction

One of the most recent and advanced techniques employed for modeling term

structure dynamics is using the infinite dimensional framework, referred most

of the time as random field or string models. The basic motivation behind using

infinite dimensional settings is their ability to capture the correlation structure

of zero-coupon bonds with different maturities in a parsimonious and accurate

manner. Using finite dimensional models leads to certain inconsistencies not

only in practical implementations such as hedging contingent claims and cali-

bration of term structure but also in statistical descriptions of the bond prices

[13]. Although infinite dimensional models are not a panacea for all the com-

plications inherited with finite dimensional counterparts, they become popular

in term structure modeling especially with the introduction of random field

models by Kennedy [34, 35] and Goldstein [20]. For an extensive review of

these model, reader is referred to the Chapter 6 of this thesis. In this section,

we extend the infinite-dimensional framework by placing the stochastic com-

ponents, both continuous and discontinuous, of the forward rate on a pair of

nuclear spaces in duality and finding the martingale condition of discounted

zero-coupon bond prices to preclude the arbitrage.

In this part, we introduce a noise process taking values in the dual F ′ of a
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nuclear space F , which is also supposed to be nuclear. Such examples of nu-

clear dual pairs are well known items of mathematical analysis. For example,

any finite dimensional vector space is nuclear, since any operator on a finite

dimensional vector space is nuclear. Additionally and more relevant to our

interest, the space of smooth functions on any compact manifold, the Schwartz

space of smooth functions on Rn, for which the derivatives of all orders are

rapidly decreasing and the space of infinitely differentiable functions with com-

pact support can be given as examples of nuclear spaces. This would stress

the importance of our approach. The stochastic integration with respect to F ′-

valued square integrable martingales have almost all trajectories in a Hilber-

tian subspace of F ′. Hence, this observation reduces the stochastic integration

with respect to F ′ valued square integrable martingales to the stochastic inte-

gration on a Hilbert space. This idea is fully used in [41] where the method of

Metivier and Pistone [46] was revised. This same approach has been used here

as follows. The forward interest rate is represented as

f(t, s) = f(0, s) +
∫ t

0
µ(u, s− u)du+

∫ t

0
σ(u, s− u)dM(u)

This type of model was also considered by Ozkan and Schmidt [50] for the case

of square integrable Hilbert space valued Levy Processes where σ was consid-

ered as a uniformly bounded functional. In our approach, the stochastic inte-

gral with respect to F ′-valued square integrable martingales has an extended

version to not necessarily continuous functional valued processes. Instead of

giving a result concerning the global representation of f(t, T ), given above, we

wanted to separate the continuous and discontinuous parts of M . However, as

a remark, we can not use the same σ for both the continuous and discontin-

uous parts of M because they do not guarantee the same space of integrable

processes.

In the following, we give first the necessary mathematical preliminaries

regarding the nuclear space valued martingales and their stochastic integral.

After giving foundations, the next section is devoted to the case of a general

square integrable martingale and the corresponding extended HJM condition.

The second model that we consider concerns the case where the discontinuous

part of M is generated by a F ′ valued Markov Jump Process. Finally we

consider the case of a square integrable Levy Process with values in F ′. Our

result is very similar to that of [50]. The difference lies only in our extended

definition of stochastic integrals.
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8.2 Preliminaries and Construction of Stochastic In-

tegral

8.2.1 Nuclear Spaces

The topological vector spaces considered here are over the field R. Given two

locally convex vector spaces in duality (E,E′), where E′ denotes the dual of E,

e′(e) or (e′, e) or, if more precision is needed, (e′, e)E′E will represent the value

of e′ ∈ E′ at e ∈ E. For any absolutely convex set A ⊂ E, pA will denote its

gauge. For two locally convex spaces E and F , the space of continuous linear

mappings of E into F is denoted by L(E,F ). We refer to Schaefer’s book [53]

for the general properties of topological vector spaces and definitions used in

this work.

Definition 8.2.1 (Nuclear Space). A nuclear space is a locally convex topolog-

ical vector space V such that for any seminorm p we can find a larger seminorm

q so that the natural map from Vq, Banach space given by completing V using

the seminorm q, to Vp is a nuclear operator.

Let E be a complete nuclear space. If U is an absolutely convex neighborhood

of zero in E, E(U) is the completion of the normed space (E/p−1
U (0), pU ) and

k(U) the canonical mapping of E into E(U). For two absolutely continuous

convex neighborhoods of 0, U and V in E such that U ⊂ V , the canonical

mapping of E(U) into E(V ) is denoted by k(V,U) and satisfies the relation:

k(V,U) ◦ K(U) = k(V ). Since E is nuclear there exists a neighborhood base

Uh(E) such that ∀ U ∈ Uh(E), E(U) is a separable Hilbert space and for all

U, V ∈ Uh(E) such that U ⊂ V the canonical mappings k(U) and k(V,U) are

nuclear operators.

If B is any non-empty closed, bounded and absolutely convex subset of E, then

E[B] denotes the Banach subspace of E generated by B and equipped with the

norm pB. The canonical injection of E[B] into E is denoted by i(B). For two

bounded and absolutely convex closed subsets A and B of E such that A ⊂ B,

the canonical injection of E[A] into E[B] is denoted by i(B,A).
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8.2.2 Construction of the Stochastic Integral

The stochastic integral on nuclear spaces was introduced by Ustunel [56] for

semi-martingales, by Korezlioglu and Martias [41] for square integrable mar-

tingales and Brownian motion.

In this work F represents a nuclear space which is separable and complete. Its

strong topological dual F ′ is also supposed to be complete and nuclear.The fact

that F and F ′ are complete nuclear spaces implies their reflexivity.

For U ∈ Uh(F ), U0 denotes its polar and F ′[U0] is shown to be isometric to

F (U)′, the topological dual of F (U).

All random variables and processes considered here are supposed to be defined

on the same probability space (Ω,A,P), equipped with the filtration (Ft)t∈R+

satisfying the usual conditions.

We put Ω′ = R+×Ω. A mappingX : Ω′ → F ′ is called a weakly measurable pro-

cess, if for all φ ∈ F ′ and all t ∈ R+, Xt(φ) is a real random variable. We refer

to Ustunel [56] for an introduction to nuclear space valued semi-martingales. A

real-valued semi-martingale is a right-continuous adapted process {Xt, t ∈ Rt}
having the following decomposition.

xt = mt + at, a0 = 0

where m is a local martingale and a is a finite(bounded) variation process. The

space S denotes the Banach space of real-semimartingales having finite norms

‖x‖1 = inf

[
E
(

[x, x]
1
2∞ +

∫ ∞

0
|das|

)]
where the infimum is taken over all decompositions x = m+a and where [x, x]∞
denotes the total quadratic variation of x. If x is a special semi-martingale,

i.e., if a is predictable, then the decomposition x = m + a is unique. Now we

give the definition of a F ′ valued semi-martingale.

Definition 8.2.2. LetX be a weakly measurable process on (Rt×Ω,B(Rt)
⊗
A)

with values in F ′. Then X is called a (F ′-valued) semi-martingale if for any

φ ∈ F the stochastic process (t, ω) 7→ (φ,X(t, ω))F,F ′ has a modification

(t, ω) 7→ X̃t(φ)(ω) which is a semi-martingale in S.

Ustunel [56] defined a F ′-valued semi-martingale as a projective system of semi-

martingales and gave the above class of semi-martingales as a particular class.
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We consider here only this type of semi-martingales because of their interesting

property expressed in the following.

Proposition 8.2.1. There is a neighborhood G ∈ Uh(F ) such that almost all

trajectories of X are in F ′[G0].

Definition 8.2.3. A weakly measurable F ′-valued process X is called a square

integrable martingale if for all φ ∈ F , X(φ) := ((Xt(ω), φ)F ′,F ; (t, ω) ∈ Ω), has a

modification in M2(R), the space of real valued square integrable martingales.

Similarly, M is said to be a square integrable martingale if for all φ ∈ F ,

M(φ) has a modification in M2
c(R), the space of continuous real valued square

integrable martingales.

Remark 8.2.1. We rather adopted here the above definition for possible fu-

ture applications. In this paper we only deal with F ′-valued square integrable

martingales. Therefore we could give the characterization of square integrable

F ′-valued martingales by replacing the space S of semi-martingales by the space

S of real-valued square-integrable martingales as in [41, 40].The property we

are interested in is that there is a neighborhood G ∈ Uh(F ) such that almost

all trajectories of a F ′-valued square integrable martingale are in F ′[G0].

In what follows M2(F, F ′) will represent the space of F ′-valued square inte-

grable martingales and M a particular element of this space. We denote by

Uh(F,M) the set of all neighborhoods U ∈ Fh(F ) such that M is the injec-

tion of an F ′[U0]-valued square integrable martingales according to the above

proposition.

Now we fix a neighborhood G ∈ Uh(F,M). We identify F (G) with F ′[G0] and

we denote both of them by H. This is a separable Hilbert space and M is a

H-valued square-integrable martingale. At this point we need some notations

concerning nuclear and Hilbert-Schmidt operators on H.

• L(H,H) is the space of all bounded operators on H into H with the

uniform norm ‖ . ‖.

• L1(H,H) is the space of nuclear operators on H into H with the norm

‖ . ‖1.

• L2(H,H) is the space of Hilbert-Schmidt operators on H into H with the

Hilbert Schmidt norm ‖ . ‖2.
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• H
⊗̂

1H (resp. H
⊗̂

2H) is the projective(resp. Hilbertian) tensor prod-

ucts of H with H.

For notational convenience,H
⊗̂

1H (resp. H
⊗̂

2H) are identified with L1(H,H)

(resp.L2(H,H) under the isometry which puts h
⊗
k into a one-to-one corre-

spondence with (., h)H . Here and in what follows ( . , . )H denotes the scalar

product on H. H-valued martingales are always taken with their cadlag ver-

sions.We denote by M2(H), the space of H(separable)-valued square-integrable

martingales.

Definition 8.2.4. Given two martingales M,N ∈ M2(H), the space of square

integrable H-valued martingale, there is a unique H
⊗̂

1H-valued cadlag pre-

dictable process with integrable variation, denoted by 〈M,N〉 and called the

”oblique” bracket of (M,N), such that M
⊗
N − 〈M,N〉 is a H

⊗̂
1H-valued

martingale vanishing at t = 0. The bracket process 〈M,M〉 that we denote by

〈M〉 is called the increasing process of M . We put βt := ‖〈M〉t‖1. This process

is the unique predictable increasing process with integrable variation for which

‖M‖2 − β is a martingale vanishing at t = 0.

From now on M will represent a given martingale in M2(H) and λ will denote

the measure dPdβ. All the operations that we carry out here on stochastic pro-

cesses and operators are only valued λ− a.e. and in order to simplify the nota-

tions, we will not always mention it. There exists a predictable process Q with

values in the cone of symmetric and non-negative elements of L1(H,H), unique

up to a λ-equivalence, such that ‖Q‖1 = 1, λ− a.e. and 〈M〉t =
∫ t
0−Qsdβs.

We consider the following factorization of Q(t, ω); for λ − a.e. there is a pre-

dictable operator D(t, w) ∈ L2(H) such that Q = DD∗, where D∗ denotes the

adjoint of D.

We define a new scalar product on H by

∀f, g ∈ H (f, g) eH(t,w)
= (D∗(t, ω)f,D∗(t, ω)g)H (8.1)

We complete H with respect to this scalar product and get a Hilbert space that

we denote by H̃(t, ω). Obviously, f 7→ D∗(t, ω)f is extended to an isometry

from H̃(t, ω) into H.
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We can construct an orthonormal basis {ẽn(t, ω), n ∈ N} of H̃(t, ω) of pre-

dictable processes such that {ẽn(t, ω)} is also an element of H [41]. Let X be

a predictable process such that X(t, w) ∈ H̃(t, ω) and∫ ∞

0−
‖X(t, ω)‖2

eH(t,ω)
dλ(t, ω) <∞ (8.2)

Such a process can be written as follows

X(t, ω) =
∞∑

n=0

an(t, ω)ẽn(t, ω) (8.3)

where an is a predictable real process such that
∞∑

n=0

∫ ∞

0−
a2

n(s, ω)dλ(s, w) <∞. (8.4)

The vector space Λ2 of all predictable H̃-valued processes X satisfying (8.2)

or equivalently (8.4) is a Hilbert Space, denoted as Λ2(D,H) with the scalar

product,

(X,Y )Λ2 =
∫ ∞

0−
(X(s, ω), Y (s, ω)) eH(s,ω)

dλ(s, ω) (8.5)

or equivalently

(X,Y )Λ2 =
∞∑

n=0

∫ ∞

0−
an(s, ω)b(s, ω)dλ(s, ω) (8.6)

with

Y (t, ω) =
∞∑

n=0

bn(t, ω)ẽn(t, ω) (8.7)

We refer to [46, 41] for the definitions and properties of a stochastic integral

on Hilbert spaces. Let X.M be the square integrable martingale defined by

(X.M)(t, ω) =
∫ t

0−
X(s, ω)dM(s, ω) (8.8)

We have

〈X.M, Y.M〉(t, ω) =
∫ t

0−
(X(s, ω), Y (s, ω)) eH(s,ω)

dβ(s, ω) (8.9)

Let us put

Mn(t, ω) =
∫ t

0−
ẽn(s, ω)dM(s, ω) (8.10)

Finally, using (8.9) we get

〈Mn,Mm〉(t, ω) =
∫ t

0−
(ẽn(s, ω), ẽm(s, ω)) eH(s,ω)

dβ(s, ω)

= β(t, ω), if n = m

= 0, if n 6= m

(8.11)
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{Mn, n ∈ N} is thus a sequence of mutually orthogonal square-integrable real

martingales, with a common increasing process β(t, ω). If X is represented by

(8.3) the stochastic integral (8.8) is then given by

(X.M)(t, ω) =
∞∑

n=0

∫ t

0−
an(s, ω)dMn(s, ω) (8.12)

with

〈X.M〉(t, ω) =
∞∑

n=0

∫ t

0−
a2

n(s, ω)dβ(s, ω) (8.13)

and

E[(X.M)t]2 =
∞∑

n=0

∫ t

0−
a2

n(s, ωdλ(s, ω) (8.14)

In conclusion, the stochastic integral (with respect to M) of any process X in

Λ2(D,H) provides a real square integrable martingale such that ‖X‖2
Λ2 is equal

to the left hand side of (8.2). Such a process X has the representation (8.3),

with ‖X‖2
Λ2 given by the left hand side of (8.4). Each element of Λ2 has the

representation (8.3) with the stochastic integral given by (8.12) and having the

properties (8.13) and (8.14).

Now, we go back to our martingale M ∈ M2(F, F ′) considered as a H(∼=
F (G) ∼= F ′[G0])-valued squared martingale. We know from [41] that there is a

predictable process 〈M〉, unique up to an evanescent set (with respect to λ),

with values in the set of symmetric, nonnegative nuclear operators L(F, F ′)

such that, ∀f, g ∈ F

(〈M〉f, g)F ′,F = 〈M(f),M(g)〉 (8.15)

with M(f)(t, ω) = (M(t, ω), f)F ′,F .We call 〈M〉 the increasing process of M .

Let 〈MG〉 be the increasing process of M considered as a H-valued martingale.

We then have the following diagram.

F

〈M〉

@@
k(G) // H

〈MG〉 // H ′ i(G) // F ′

Consider the following representation of 〈MG〉:

〈MG〉(t, ω) =
∫ t

0−
QG(s, ω)dβG(s, ω) (8.16)
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We use again the factorization QG = DG◦D∗
G whereDG is a predictable process

with values in the Hilbert-Schmidt operators on H. Let us put D = i(G) ◦DG.

Then D∗ = D∗
G ◦ k(G). For f, g ∈ F we introduce a scalar product

(f, g) eH(t,ω)
= (D∗f,D∗g)H (8.17)

We complete F with respect to this scalar product. As in the Hilbertian case

we can construct a Hilbert space of H̃(t, ω)-valued predictable process X such

that ∫ ∞

0−
‖X(t, ω‖2 eH(t,ω)

dλ(s, ω) <∞. (8.18)

Remark 8.2.2. Remember that this space is constructed over the equivalence

classes with equivalence relation f1 ∼ f2 if and only if pG(f1− f2) = 0. We can

also identify this space with space Λ2 generated by H(∼= F (G) ∼= F ′[G0]).

Here Λ2(D,F, F ′) will denote the space of H̃(t, ω)-valued predictable processes

satisfying the above diagram. We can repeat here verbatim what we have

said for Λ2(D,F ). We are interested in the representation (8.3) of elements of

Λ(D,F, F ′) with the series representation (8.10) of the elements of M2(F, F ′)

and the definition of the stochastic integral by (8.12), followed by (8.13) and

(8.14).

Remark 8.2.3. The construction of the stochastic integral we developed here

entirely depends on the factorization of Q = DD∗. One can prove that

Λ2(D,H) does not depend on this factorization. If Q = BB∗ is another fac-

torization, then Λ2(D,H) = Λ2(B,H). Moreover, each element of Λ2(B,H)

is an isometric image of an element of Λ2(D,H) [41]. One can prove a better

statement. X.M can be defined independently on the factorization of Q. The

proof of this fact will be given in a forthcoming paper.

Next we will give the modeling approach of bond prices by using the above

construction.

8.3 Application to Bond Prices

In this section we consider zero-coupon bond prices where forward interest rates

are expressed in terms of semi-martingales. More precisely, if P (t, T ) represents
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the zero-coupon bond price at t with maturity T , then

P (t, T ) = exp

(
−
∫ T

t
f(t, s)ds

)
(8.19)

where the forward interest rate f(t, s) is

f(t, s) = f(0, s) +
∫ t

0
µ(u, s− u)du+

∫ t

0
σc(u, s− u)dMc +

∫ t

0
σd(u, s− u)dMd

(8.20)

with Mc and Md being square integrable continuous and discontinuous mar-

tingales, respectively. This type of forward interest rate formula was already

considered by [39] under the name of mixed HJM-Musiela type model.

Note 8.3.1. We use here the notation of the preceding section by putting an

index c or d to the element, corresponding to Mc and Md, respectively. For βi,

λi, Qi, Di, Hi(t, ω), ei,n(t, ω), Λ2
i with i = c or d, respectively.

In what follows, Md can be seen as the compensated process of Xd, a pure

jump process which may have the semimartingale representation

Xd(t) = Md(t) +K(t)

where K(t) is the compensator of the process Xd(t). We can define the random

measure of the jumps of the process Xd as

δ((0, t]×B) =
∑
u≤t

IB(∆Xd)

for a Borel set of H. Additionally, the compensator of δd, νd can be defined

such that

Md =
∫ t

0

∫
H
m(δd − νd)(du, dm).

We suppose that the probability measure P we have been considering here is

a risk neutral probability measure, implying that the discounted bond prices

P (t, T ) are P martingales. We have the following assumptions for forward rate

dynamics.

Assumption 8.3.1. For each (u, s), such that u ≤ t ≤ s ≤ T , σi(u, s − u) is

supposed to belong to Λ2
i . Moreover it is assumed that∫ T

0

∫ T

0
|µ(u, s)|duds <∞ (8.21)
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We define

µ∗(u, T ) =
∫ T−u

0
µ(u, s)ds (8.22)

and

σ∗i (u, T ) =
∫ T−u

0
σi(u, s)ds (8.23)

It can be seen that σ∗i (., T ) is also in Λ2
i . Notice that the short term interest

rate is f(t, t).

Under the above assumptions, we can prove the following theorem.

Theorem 8.3.1. Let P̃ (t, T ) be the discounted bond price,that is,

P̃ (t, T ) =
[
exp(−

∫ t

0
f(u, u)du)

]
P (t, T ).

Then it has the following expression as a semi-martingale.

P̃ (t, T ) = P̃ (0, T )−
∫ t

0
P̃ (u−, T )µ∗(u, T )du−

∫ t

0
P̃ (u−, T )σ∗c (u, T )dMc(u)

−
∫ t

0
P̃ (u−, T )σ∗d(u, T )dMd(u) +

1
2

∫ t

0

∞∑
n=0

P̃ (u−, T )[σ∗c,n(u, T )]2dβc,n

+
∫ t

0−

∫
H
P̃ (u−, T ) {exp [σ∗d(u−, T )m]− 1− σ∗(u−, T )m} δd(du, dm)

(8.24)

Remark 8.3.1. Let us consider the series expansion

σ∗c (t, T ) =
∞∑

n=0

∫ ∞

0
σ∗c,n(u, T )ec,n (8.25)

and ∫ t

0
σ∗c (u, T )dMc(u) =

∞∑
n=0

∫ t

0
σ∗c,n(u, T )dMc,n(u) (8.26)

where

σ∗c,n(u, T ) =
∫ T−u

0
σc,n(u, s)ds

We could then write∫ t

0
P̃ (u−, T )σ∗c (u, T )dMc(u) =

∫ t

0

∞∑
n=0

P̃ (u−, T )σ∗c,n(u, T )dMc,n(u) (8.27)

and ∫ t

0
P̃ (u−, T )d〈σ∗c (., T ).M〉u =

∫ t

0

∞∑
n=0

P̃ (u−, T )[σ∗c,n(u, T )]2dβc,n (8.28)
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Proof. The proof of the theorem is an immediate consequence of the Ito formula

applied to P̃ (t, T ). Let us first give its expression. Put

Y (t) =
∫ T

0
f(t, s)ds

Differentiating Y (t) and using the Fubini Theorem we find,

Y (t) =−
∫ t

0
f(u, u)du+

∫ t

0

(∫ T

t
µ(u, s− u)ds

)
du

+
∫ t

0

(∫ T

t
σc(u, s− u)ds

)
dMc(u) +

∫ t

0

(∫ T

t
σd(u, s− u)ds

)
dMd(u)

=−
∫ t

0
f(u, u)du+

∫ t

0
µ∗(u, T )du

+
∫ t

0
σ∗c (u, T )dMc(u) +

∫ t

0
σ∗d(u, T )dMd(u)

(8.29)

According to the above assumptions, the last two stochastic integrals are well

defined and give square-integrable martingales. The Ito formula applied to

P̃ (t, T ) = exp

[(
−
∫ t

0
f(u, u)du− Y (t)

)]
gives

P̃ (t, T ) =P̃ (0, T )−
∫ t

0
P̃ (u−, T )µ∗(u, T )du−

∫ t

0
P̃ (u−, T )σ∗c (u, T )dMc(u)

−
∫ t

0
P̃ (u−, T )σ∗d(u, T )dMd(u) +

1
2

∫ t

0
P̃ (u−, T )d〈σ∗c (., T ).M〉u

+
∑
u≤t

[
P̃ (u, t)− P̃ (u−, T )− P̃ (u−, T )∆Y (u)

]
(8.30)

We need to express the last sum in terms of ∆Md. We have

P̃ (u, T )

P̃ (u−, T )
= exp [σ∗d(u, T )∆Md(u)] (8.31)

and

∆P̃ (u, T ) = P̃ (u−, T )

[
P̃ (u, T )

P̃ (u−, T )
− 1

]
(8.32)

Therefore,∑
u≤t

[
P̃ (u, t)− P̃ (u−, T )− P̃ (u−, T )∆Y (u)

]
=
∑
u≤t

P̃ (u−, T ) {exp[σ∗d(u, T )∆Md(u)]− 1− σ∗d(u, T )∆Md(u)}
(8.33)
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The last term can also be written as∫ t

0−

∫
H
P̃ (u−, T ) {exp [σ∗d(u−, T )m]− 1− σ∗(u−, T )m} δd(du, dm)

Then by using remark (8.3.1), we find the bond price formula.

From this we deduce the following proposition.

Proposition 8.3.1 (Extended Heath-Jarrow-Morton drift condition). Since

P̃ (t, T ) should be a martingale, we have∫ t

0
P̃ (u−, T )µ∗(u, T )du =

1
2

∫ t

0

∞∑
n=0

P̃ (u−, T )[σ∗c,n(u, T )]2dβc,n

+
∫ t

0−

∫
H
P̃ (u−, T )ρm(u, T )νd(du, dm)

(8.34)

where

ρm(u, T ) = exp [σ∗d(u−, T ).m]− 1− σ∗(u−, T ).m

Proof. In order for P̃ (t, T ) to be a martingale we need to cancel all the terms

of (8.24) which are not stochastic integrals. By rearranging the equation (8.24)

as

P̃ (t, T ) = P̃ (0, T )−
∫ t

0
P̃ (u−, T )µ∗(u, T )du−

∫ t

0
P̃ (u−, T )σ∗c (u, T )dMc(u)

−
∫ t

0
P̃ (u−, T )σ∗d(u, T )dMd(u) +

1
2

∫ t

0

∞∑
n=0

P̃ (u−, T )[σ∗c,n(u, T )]2dβc,n

+
∫ t

0−

∫
H
P̃ (u−, T )ρm(u, T )(δd(du, dm)− νd(du, dm))

+
∫ t

0−

∫
H
P̃ (u−, T )ρm(u, T )νd(du, dm)

(8.35)

the martingale condition implies

P̃ (t, T ) =P̃ (0, T )−
∫ t

0
P̃ (u−, T )σ∗c (u, T )dMc(u)−

∫ t

0
P̃ (u−, T )σ∗d(u, T )dMd(u)

+
∫ t

0−

∫
H
P̃ (u−, T )ρm(u, T )(δd(du, dm)− νd(du, dm))

(8.36)

Then condition (8.34) is automatically satisfied.
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Corollary 8.3.2. If the measures β and ν are absolutely continuous with re-

spect to the Lebesque measure, then the drift condition becomes,

µ∗(t, T ) =
1
2

∞∑
n=0

[σ∗c,n(u, T )]2
dβc(t)
dt

+
dχ(t)
dt

(8.37)

where

χ(t) =
∫ t

0

∫
H
{exp [σ∗d(u−, T ).m]− 1− σ∗d(u−, T ).m} ν(du, dm)

We will see various cases where the above absolute continuity conditions

are satisfied. As the first example, the absolute continuity of ν is obtained in

the case where Md is derived from a Markov Jump Process.

8.3.1 Bond Prices with Markov Jump Process

Let {X(t), t ∈ [0, T ]} be a Markov Jump Process with values {fn, n ∈ N} ⊂
F ′.In order to guarantee the right continuity we suppose that X takes its values

at the jump points. The sojourn time at the value X(t) is an exponential

random variable with parameter λ(X(t)) ∈ (0,+∞). We suppose that

supn λ(fn) <∞

This ensures the regularity, i.e., the process does not explode. Let p(fj , fi) be

the transition probability of X from state fj to state fk. If X(t) is the state

just before the jump to fj , the jump size is represented by

ξ(X(t)) = fj −X(t)

Suppose that

E[|ξ(X(t))|] =
∑
j∈N

p(X(t), fj)|fj −X(t)| <∞. (8.38)

we then put

E[ξ(X(t))] =
∑
j∈N

p(X(t), fj)(fj −X(t)) (8.39)

This is the conditional expected size of jumps. We define

K(t) =
∫ t

0
λ(X(s))E[ξ(X(s))]ds (8.40)

We claim that this is the compensator ofX. In fact, the probability that a jump

occurs in the elementary interval (t, t+dt] when X is in state X(t) is λ(X(t))dt
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and the conditional expected jump size is E[ξ(X(t))]. Therefore dX(t)−dK(t)

is the increment of a martingale.

In view of Definiton 2.3, we would like to look for conditions under which

N(t) = X(t)−K(t)

is a square integrable martingale. Let us choose φ ∈ F and define,

Nφ(t) := (N(t), φ)F,F ′

Xφ(t) := (X(t), φ)F,F ′

Kφ(t) := (K(t), φ)F,F ′

Consider first the real valued Markov Jump Process Xφ(t). It has a cadlag

version because of the right continuity and regularity of X. Let us put

E[ξφ(Xφ(t))] =
∞∑

j=0

p (X(t), f(j))[(fj , φ)F,F ′ −Xφ(t)]

=
∞∑

j=0

p (X(t), f(j))(fj −X(t), φ)F,F ′

= (E[ξ(X(t))], φ)F ′F .

(8.41)

It is also seen that

Kφ(t) = (K(t), φ)F,F ′ =
∫ t

0
λ(X(s))(E[ξ(X(s))]ds (8.42)

is the compensator of Xφ. Here again λ(X(t))(E[ξ(X(t))]dt represents the

conditional expectation of the jump size of Xφ given that that there is a jump

of X(t) in the interval (t, t+ dt]. Now, we need to give conditions under which

Nφ is a square integrable martingale.

Proposition 8.3.2. For k = 1 and 2, define

E[|ξφ(Xφ(t))|k] =
∞∑

j=0

p (X(t), f(j))|(fj , φ)F,F ′ −Xφ(t)|k (8.43)

If there is a positive constant C such that

E[|ξφ(Xφ(t))|k] ≤ C(1 + |Xφ(t)|k) (8.44)

then Nφ is a square integrable martingale.
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Proof. If (8.44) holds we can write

λ(X(t))E[|ξφ(X(t))|k] ≤ supn λ(fn)C(1 + |Xφ(t)|k)

Therefore, according to Klebaner[37], Nφ is a square-integrable martingale.

As a consequence, according to Definition 8.2.3 we see that the compensated

Markov Jump Process N(t) is a F ′-valued square-integrable martingale. This

will represent our Md in the general setting of the previous section.

Proposition 8.3.3. If the dynamics of the forward interest rates are given by

the following,

f(t, s) = f(0, s) +
∫ t

0
µ(u, s− u)du+

∫ t

0
σ(u, s− u)dX(u) (8.45)

where X is a Markov Jump Process, then the drift condition becomes

µ∗(t, T ) =
∫

H
{exp [σ∗(u−, T ).m]− 1− σ∗(u−, T ).m}λ(X(t))E(ξ(X(t))

(8.46)

Proof. By using the definition of the compensator of X(t) and the Corollary

(8.3.2)

8.3.2 Bond Prices with Levy Processes

Here we consider a centered Levy process

L(t) = W (t) +Md(t)

where Md(t) is the compensated jump part of L. In order to follow our ap-

proach, we suppose that L is a square integrable martingale. We use again the

Hilbertian space H(∼= F (G) ∼= F ′[G]) where all trajectories of L are concen-

trated. It is known [57] that the Hilbert space valued Levy Process has the

increasing process

〈L〉t =
∫ t

0
Qdt =

∫ t

0
(Q/TrQ)(TrQ)dt.

With our preceding notations, the covariance operator Qt = Q/TrQ and βL
t =

tT rQ. Instead of factorizing Qt we construct H̃(t, ω) in such a way that the

measure λ(dt, dω) is replaced by dtP(dω). We consider the factorization D◦D∗
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of Q withD ∈ L2(H,H). Let us define a scalar product (f, g) eH = (D∗f,D∗g)H .

The completion of H under this scalar product (f, g) eH is denoted by H̃. If

{ẽn, n ∈ N} is an orthogonal basis in H̃, then the space Λ2 is the space of

predictable processes X such that

X(t, ω) =
∞∑

n=0

an(t, ω)ẽn(t, ω) (8.47)

where an is a predictable real process such that

∞∑
n=0

∫ ∞

0−
a2

n(s, ω)dsP(dω) <∞. (8.48)

The vector space Λ2 of all predictable H̃-valued processes X satisfying (8.2)

or equivalently (8.4) is a Hilbert Space, denoted as Λ2(D,H) with the scalar

product,

(X,Y )Λ2 =
∫ ∞

0−
(X(s, ω), Y (s, ω)) eH(s,ω)

dsP(dω) (8.49)

or equivalently

(X,Y )Λ2 =
∞∑

n=0

∫ ∞

0−
an(s, ω)b(s, ω)dsP(dω) (8.50)

with

Y (t, ω) =
∞∑

n=0

bn(t, ω)ẽn(t, ω) (8.51)

With this setting, we have the following HJM condition.

Proposition 8.3.4. If the dynamics of the forward interest rates are given by

the following,

f(t, s) = f(0, s) +
∫ t

0
µ(u, s− u)du+

∫ t

0
σ(u, s− u)dL(u) (8.52)

where

L(t) = W (t) +Md(t),

then the drift condition becomes

µ∗(t, T ) =
1
2

∞∑
n=0

[σ∗(u, T )]2 +
∫

H
{exp [σ∗(u−, T ).x]− 1− σ∗(u−, T ).x}F (dx)

(8.53)

where F (dx) denotes the Levy measure of the jumps.
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Proof. By taking Mc(t) = W (t) and using corollary 8.3.2 with ν(dt, dx) =

dtF (dx).

Remark 8.3.2. The above condition is similar to the one found in [50] for

default free case where the Levy random field drives the forward interest rates.

The condition in Proposition (8.3.4) differs from the one in [50] that the eigen-

values of the covariance operator do not appear in (8.53). This is due to the

construction of the stochastic integral described in section 2.

8.4 Relation between Nuclear-Spaced Martingales

and Two Parameter Processes

In this part, we try to find the connection between the nuclear-spaced martin-

gales that we discuss in this section and the two-parameter processes we inves-

tigated in chapter 7. Let M(t, s) =
∫ t
0

∫ s
0 F (u, v)M(du, dv) be a two-parameter

continuous square integrable martingale. M(t, .) can then be considered as

martingale with values in L2[0, T ]. Let us consider the dual pair (D,D′). We

can inject L2[0, T ] into (D)′ and take H ′ = L2[0, T ]. Let φ, ψ ∈ D. The

quadratic covariance of the integrals φ(s)M(., s) and ψ(s)M(., s) is given by

X(t) = 〈
∫ T

0
M(., s)φ(s)ds,

∫ T

0
M(., s)ψ(s)ds〉t (8.54)

This is equivalent to

X(t) = 〈
∫ T

0
φ(s)

(∫ s

0
M(., v)dv

)
ds,

∫ T

0
ψ(s)

(∫ s

0
M(., v)dv

)
ds〉t

= 〈
∫ T

0

(∫ T

v
φ(s)ds

)
M(., v)dv,

∫ T

0

(∫ T

v
ψ(s)ds

)
M(., v)dv〉t

=
∫ T

0

(∫ T

v
φ(s)ds

)
F (t, v)dv

(∫ T

v
ψ(s)ds

)
F (t, v)dv

(8.55)

The last term can also be expressed as∫ T

0

∫ s

0

(∫ T

v
φ(v′)dv′

)
F 2(t, v)dvψ(s)ds. (8.56)

Additionally, letQ denote the covariance operator ofM(t, .). We can deduce

that

(D∗
t φ)(s) =

∫ T

0
φ(s)dvF (t, s) (8.57)
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Hence we can conclude that by Qt = DtD
∗
t

(DtD
∗
t )(s) =

∫ s

0

(∫ T

v
φ(v′)dv′

)
F 2(t, v)dv

Qt(s) =
∫ s

0

(∫ T

v
φ(v′)dv′

)
F 2(t, v)dv

(8.58)

Therefore, the relation that we are looking for can be given as

X(t) =
∫ T

0
Qtφ(s)ψ(s)ds (8.59)
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Chapter 9

Conclusion

In this work, besides giving a concise review of term structure models, we tried

to focus on the two class of interest rate models. One is jump-augmented and

the other is the random field models. By using the HJM framework, we charac-

terized the drift conditions of the models that we proposed. Our first proposed

term structure model is the one where the instantaneous forward interest rates

are governed by both a Brownian motion and a Markov-Jump Process. The

other models that we investigated are related to random field extensions of

certain financial settings. In this respect, we proposed a multi-country term

structure model in which term structures of both countries and the exchange

rate between them is modeled in a two-parameter process setting. Our aim

here is to capture the covariance between markets. Therefore, we characterize

drift conditions necessary to prevent arbitrage opportunities by taking this into

account. Moreover, a defaultable term structure model is investigated in the

same manner. Lastly forward measure approach for the two-parameter process

is clarified.

As a unified framework, we gave a model that encompasses most of the

infinite dimensional interest rate models. To do this, we used the nuclear

space valued semi-martingales. In order to show how our proposed methodol-

ogy work, we gave an example, where the instantaneous forward interest rate

dynamics is governed by a Levy Random Field Process.

Although countless further research topics are identified, in our opinion the

most important progress can be made by investigating how a real data match

with our models. For instance, performance of the Markov-Jump Process in

estimation of interest rate model parameters or the benefits of random field

90



models in a multi-country or in a credit risk environment can be investigated

empirically to justify the existence of our models.

A more general and realistic models can be tackled by utilizing the infinite

dimensional tools, since they allow for any dynamical system use of patterns

(functions of an independent variable) as parameters. Thus histories, spatial

distributions, probability distributions can be used as parameters. This is a

distinguishing advantage of infinite dimensional techniques.
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