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ABSTRACT

DEVELOPMENT OF A PHYSICAL THEORY MODEL FOR THE
SIMULATION OF
HYSTERETIC BEHAVIOR OF STEEL BRACES

Calik, Ertugrul Emre
M.S., Department of Engineering Sciences

Supervisor: Assoc.Prof. Dr. Murat Dicleli

April 2007, 158 pages

Bracing members are considered to be effective earthquake-resistant elements as
they improve the lateral strength and stiffness of the structural system and contribute
to seismic energy dissipation by deforming inelastically during severe earthquake
motions. However, the cyclic behavior of such bracing members is quite complex

because it is influenced by both buckling and yielding.

This thesis presents simple but an efficient analytical model that can be used to
simulate the inelastic cyclic behavior of steel braces. This model achieves realism
and efficiency by combining analytical formulations with some semi-empirical
formulas developed on the basis of a study of experimental data. A brace is idealized
as a pin-pin ended member with a plastic hinge located at mid-length of a brace
Input parameters of the model are based on only material properties such as steel
yield strength and modulus of elasticity as well as geometric properties including
cross-sectional area, moment of inertia, etc. The obtained results are verified by the

experimental and available analytical results.

Keywords: earthquake; inelastic buckling; cyclic load; steel brace;

v
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CELIiK CAPRAZ ELAMANLARIN DONGUSEL YUKLER
ALTINDAKI DAVRANISLARINI SIMULE EDEN
TEORIK BiR MODEL

Calik, Ertugrul Emre
M.S., Miihendislik Bilimleri Boliimi
Danisman: Dog¢. Dr. Murat Dicleli

Nisan 2007, 158 sayfa

Celik capraz elemenlar, deprem esnasinda enerji emen ve yapiya rijitlik ve dayanim
saglayan etkili elemanlardir. Ancak bu tiir capraz elemanlar basing altinda
burkulmaya ve ¢ekmede akmaya maruz kaldiklarindan dolayr dongiisel ytkler

altinda oldukg¢a kompleks bir davranis gosterirler.

Bu caligma, celik ¢apraz elemanlarin elastik olmayan dongiisel davraniglarini simule
edebilecek basit ama etkili bir analitik model sunmaktadir. Bu model analitik
formiillerle beraber deneysel verilerden elde edilen yar1 empirik formiilleri
birlestirerek ger¢ek davranisi yansitir. Capraz eleman iki ucu serbest olarak kabul
edilir ve orta noktasinda bir plastic mafsala sahiptir. Model icin gerekli olan
parametreler elemanin malzeme 6zelliklerinden (akma dayanimi, elastisite modiilii
vs.) ve geometrik Ozelliklerinden (kesit alani, atalet momenti vs.) elde edilir. Bu
model kullanilarak elde edilen sonuglar deneysel sonuglarla ve mevcut analitik

modellerin sonuglariyla karsilastirilarak dogrulanmastir.

Keywords: deprem; elastik olmayan burkulma; dongiisel yiik; ¢elik capraz eleman;
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The most common form of seismic resistant construction is based on ductile design.
Steel structures are designed for ductility, where the seismic energy during an
earthquake is dissipated in plastic hinges that occur at the ends of the steel frame
beams or within braces and shear links. In this manner a structure may sustain local

damage, but should not collapse during severe earthquakes.

In steel construction, moment-resisting structural steel frames are widely used as
being highly efficient in absorbing earthquake energy demands. For buildings
having wide facades, such a structural system is economical and has been shown to
be very satisfactory for resisting lateral forces caused by earthquakes. However, in
some instances, as in the case of frames width narrow bay widths, moment-resisting
frames tend to be somewhat flexible. Although such frames are still safe from
collapse during a severe earthquake, they can develop costly non-structural damage.
Consequently, the use of diagonally braced steel frames provides a practical
alternative to moment resisting frames in such applications. Such frames are
frequently used in order to increase the structure’s lateral strength and stiffness.
Since the overall performance of a conventionally braced frame depends mainly on

the performance of the brace, the focus of this study is on the bracing member itself.

During a severe earthquake, the lateral deflections of the frame cause the brace to
alternately stretch and buckle. It is this action, the hysteretic behavior of the brace
that is responsible for the dissipation of the earthquake input energy and in a large

measure for the performance of the frame. However, the hysteretic behavior of such



braces involves complex physical phenomena such as; yielding in tension,
progressive lengthening of the brace called growth effect and buckling in
compression, which also includes the deterioration of the compressive load capacity,
due to Bauschinger effect and the residual kink within the brace itself. Because of
the complexity of this hysteretic behavior, it is difficult to predict the seismic

response of braced frame structures for design purposes.

Many experimental and analytical studies have been conducted on the inelastic
cyclic behavior of steel braces. The experimental studies provided a wide range of
data which have been used to develop analytical models to simulate the inelastic
behavior of braces under severe cyclic load reversals. The developed analytical
models can be categorized in three groups; finite element, phenomenological, and
physical theory models. Finite element models provide a realistic representation of
the brace axial force-deformation behavior. However, they are computationally
expensive. On the other hand, phenomenological models are computationally more
efficient than finite element models. Yet, they usually involve numerous empirical
coefficients and thus can be applied only to specific braces for which test data is
available. Physical theory models combine the advantages of both finite element and
phenomenological models. That is, while they are relatively more universally
applicable and accurate than phenomenological models, they are also more
computationally efficient than finite element models. However, most of the existing
physical theory models are either developed for a specific brace type or fail to
simulate the Bauschinger effect, the degradation in the axial stiffness (growth effect)
and the axial force versus transverse deformation of the brace. In some of these
models approximate regression analyses were used to account for the plastic
condition of a specific brace. Moreover, some of the better physical theory models
are very difficult to use in practice as they involve numerous implicit parameters
that require extra computations to define the cyclic buckling behavior of a particular
brace. Therefore, a physical theory model that is almost as accurate as a finite

element model but easily applicable in practice is required.



Accordingly, this study presents a simple, yet an efficient and a universally
applicable physical theory model that can be used to simulate the complex inelastic
cyclic behavior of steel braces. The model is verified by comparing analytical
calculations to experimental data for several individual steel braces with various

properties.

1.2 Background Information and Literature Review

The inelastic behavior of braces subjected to axial cyclic loading has been
investigated by numerous researchers in the last three decades. As mentioned earlier,
these investigations have included both experimental and analytical studies. These

studies are summarized below.

1.2.1 Review of Experimental Research

Many experiments have been conducted on inelastic behavior of axially loaded steel
braces. However, most of these experiments have dealt with members subjected to
monotonically increasing compression. Only a few experiments have been

performed on the cyclic inelastic behavior of steel braces.

Wakabayashi et al (1973, 1977, and 1980) have performed numerous experiments to
study the inelastic cyclic behavior of steel braces. In these experiments more than 30
small-scale specimens were tested. All of these specimens had identical 15%15 mm
square solid cross sections but various effective slenderness ratios. In addition, tests
on steel braces restrained against rotation at both ends have been conducted.
Twenty-one specimens having square solid cross section and eight specimens having
H-shaped cross section were investigated. These specimens had relatively short
lengths ranging between 193 to 928 mm. From the test data the inelastic cyclic

behavior of braces was obtained and studied.



Sherman (1976) tested axially loaded struts and beam-column tubes used in existing
offshore oil platforms in the as-received condition. The test results were used to
model hysteretic behavior of braces using finite element techniques for further
studying the behavior of offshore platforms under dynamic loads.  Kahn and
Hanson (1976) conducted a series of cyclic experimental tests on 25%12 mm solid
steel bars. The lengths of the bars were varied to produce slenderness ratios of 85,
120, and 210. It was found that the dynamic hysteretic response was nearly identical

to the static response.

Jain et al. (1978) have performed experiments on 18 specimens made from
25.4%25.4 mm hollow cold-rolled steel tubes. Various effective slenderness ratios
were used in the tests. It was concluded that the inelastic hysteretic behavior of steel

members was significantly influenced by their effective slenderness ratio.

Popov et al. (1980) tested four tubular steel braces, representative of one-six scale
offshore construction. The tests were conducted to investigate the effects of material
properties, diameter to wall thickness ratios and effective length of the braces. It was
concluded that local buckling can be expected in such members having thin wall
thicknesses. It was also found that the axial load versus axial axial displacement
curves obtained for the fixed-end specimens were considerably different than those

obtained for the pinned-end ones.

Black et al. (1980) investigated the hysteretic behavior of 24 axially loaded steel
braces, having a variety of cross-sectional shapes and slenderness ratios frequently
encountered in practice. Various loading histories were applied. Since, some of the
formulations, which are derived in this study, are based on the data of the tests
conducted by Black et al (1980), a detailed description of the tests and related

conclusions are presented in a specific sub-section below.



1.2.1.1 Blacketal. (1980)

Black et al. (1980) conducted cyclic axial reversed loading experiments on 24
structural steel braces with a wide range of cross-section geometries. The individual
specimens were selected from standard structural steel shapes primarily on the basis
of two criteria: (1) the slenderness ratios of the test specimens are similar to those
used in practice and (ii) the shapes and proportions of the test specimens need to
represent typical braces in current use. The maximum size of the members was set
by the capacity of the available double-acting hydraulic cylinder.

Included within the 24 selected specimens were six different cross-sectional shapes:
wide-flanges, thin and thick-walled square tubes, thin and thick-walled round pipes,
structural tees, and fabricated double angles, and double channels. The built-up
specimens were of special interest to see if the two elements would effectively act as
a single member during extreme inelastic cycling loading. The material for all the
rolled sections conformed to ASTM specifications for A36 steel; for pipes, to AS3
Grade B steel; for square tubes, to A501 steel.

To assess the effect of end restraint on brace behavior, two boundaries on the
possible end conditions were considered; eighteen of the specimens were pinned at
both ends and had slenderness ratios of 40, 80 and 120; the remaining six specimens
were pinned at one end and fixed at the other and had slenderness ratios of 40 and

80.

The test set up is demonstrated in Fig. 1.1. The test brace was welded to (44 mm-57
mm) thick end plates with full penetration welds. The specimen was attached to the
end fixtures with large high-strength bolts. The specimen length from pin to pin
included heavy end support clevises containing roller bearings and attachment
flanges. Preliminary calculations showed that these end details would not
significantly affect the buckling behavior of a specimen. From the test data, Black et
al. (1980) obtained relations between the applied axial force P and the axial

displacement 6. The P-d curves trace out the hysteretic loops for each brace.
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Fig. 1.1 Test set up of Black et al. (1980)

1.2.2 Review of Analytical Brace Hysteretic Models

Several analytical models have been developed to represent cyclic axial load-
deformation behavior of steel braces. These models can be divided into three
different general types. The finite element, the phenomenological, and the physical
theory brace models. The summary of literature review conducted on each modeling

type is presented below.

1.2.2.1 Finite Element Model

The technique employed in detailed finite element modeling is to subdivide a brace
longitudinally into a series of elements as shown in Fig.1.2. While providing the
most realistic representation of brace’s behavior, the finite element model usually
demands computations too costly to be applied to practical analyses of large-scale
braced structures. This model has been employed by several investigators. Fujimoto
et al (1972) subdivided the cross-section of the longitudinal elements into fibers with

elasto-plastic properties. Marshall (1974) and Sherman and Erzurumlu (1976) used a



series of beams and nonlinear springs to model brace behavior. Riahi et al (1979)
developed a general purpose three dimensional beam-column element with end
plastic hinges and geometric stiffness that are connected in series to model brace
buckling. Powell (1980) employed elements with the critical cross-sections sub-

divided into fibers to predict the inelastic behavior of piping systems.

INDIVIDUAL ELEMENTS
g4 A bl
P |

P

Fig. 1.2 Finite Element Model

1.2.2.2 Phenomenological Model

The basis of these models is to pre-define the shape of the axial force-axial
deformation response of a truss element that represents the brace by employing
either mathematical or empirical results (Fig.1.3). Phenomenological models are
computationally efficient, but usually involve numerous empirical coefficients and

thus can be applied only to specific braces for which test data are available.

Loap

DISPL

Fig. 1.3 Phenomenological Model



Models of this type have been developed by Higginbotham (1973), Nilforsoushan
(1973), Singh (1977), Marshall (1978), Roeder (1977), Jain (1978), Maison (1980).
Higginbotham (1973) curve-fit the analytical results by employing second order

polynomial equations to describe phases C-D, D-F and F-G of brace response

shown in Fig.1.4.
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Fig. 1.4 Higginbotham (1973) Model

Nilforsoushan (1973) developed a model with nine piece-wise linear segments to
define the brace hysteretic loops shown in Fig.1.5. The strength and stiffness in each

segment were defined by a set of input empirical parameters.
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Fig. 1.5 Nilforsoushan (1973) Model



Singh (1977) developed a simpler five segments piece-wise linear model which
could give a realistic fit for members with high (KI/r>120) slenderness ratios as

shown in Fig.1.6.
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—

Fig. 1.6 Singh (1977) Model

Marshall (1978) employed a seven segment piece-wise linear model with an
algorithm defining failure of a brace based on estimating the onset of local buckling

The model is presented in Fig.1.7

LOAD A
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Fig. 1.7 Marshall (1978) Model



Jain (1978) developed a six segment model for members with high slenderness. This

model has two buckling loads, one for the first cycle and one for subsequent cycles

as shown in Fig.1.8. The model also incorporates a feature to account for observed

growth in brace length during buckling and re-straightening.

Fig. 1.8 Jain (1978) Model

Roeder (1977), using a nine segment model similar to that of Nilforsoushan’s,

introduced a feature to permit gradual deterioration of the buckling load between

two bounds. The model is displayed in Fig.1.9.
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Fig. 1.9 Roeder (1977) Model
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Maison (1980) also employed a nine segment model with buckling load
deterioration capabilities similar to that of Roeder’s. This model also accounted for
the hysteretic growth in brace length during buckling and re-straightening as shown

in Fig.1.10

® AXIAL DISPL ,3
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Fig. 1.10 Maison (1980) Model

1.2.2.3 Physical Theory Model

Physical theory models as shown in Fig.1.11 account for the interaction between
bending and an axial effects and are formulated based on physical considerations
that influence inelastic brace behavior. Unlike phenomenological models, input
parameters for physical theory models are generally based on material properties
and common geometric or derived engineering properties of a member (e.g, the
yield strength, the cross-sectional area, cross sectional moment of inertia, plastic
section modulus, etc.). However, the geometric representation of a brace is
considerably simpler than used for a finite element model shown in Fig.1.2. Thus,
physical theory models combine the realism of finite element models with the

computational simplicity of phenomenological models.

11
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Fig. 1.11 Physical Theory Model (Ikeda and Mahin, 1984)

Several physical theory models have been developed to simulate the inelastic
buckling behavior of steel braces. Geometrically, these models consist of a bracing
member that usually has a plastic hinge at mid-length connecting two elastic beam

segments as shown in Fig. 1.12.

L/2 L/2

- 1
L g L

Fig. 1.12 Typical Member Geometry of Point Hinge Model (Ikeda and Mahin,
1980)

One of the first physical theory solutions of post-buckling axial force-axial

displacement relationship for slender braces was proposed by Higginbotham (1973).

12



For braces with high slenderness ratios (Kl/r>120), Higginbotham’s analytical
model predicts the behavior of the first cycle of experimental results with reasonable
accuracy. During later cycles, however, Higginbotham’s model does not consider
the deterioration of buckling loads and results overestimate observed behavior.
Furthermore, since the solution of the analytical model includes elliptic integrals, it

entails costly computation.

Nirforoushan (1973) developed a quite similar but simpler model and used it to
arrive at parameters for his phenomenological model. Singh (1977) also developed a
model having assumptions similar to those of Higginbotham’s. However, he used
the energy method in formulating the basic equations and assumed sine curves for

the deflected shapes of the two beam segments under compression.

Nonaka (1973, 1977) and Gugerli (1982) developed models close to Singh’s model.
Their models, however, included axial and rotational deformation components at the
plastic hinge. They solved the beam-column equation directly. The resultant basic
equations contained trigonometric functions for compressive axial forces and

hyperbolic functions for tensile forces.

Fujiwara (1979 and 1980) formulated a similar model employing the same

assumptions for the plastic hinge and the beam segments.

Wakabayashi ef al (1974, 1976) developed a more general plastic hinge model. The
brace model consisted of two flexurally rigid and axially elastic truss bars and an
inelastic hinge at the center. Since the truss bars were flexurally rigid, complex
functions were not needed to specify their deflected shape thereby greatly

simplifying the computations.
Zayas et al (1981) formulated a physical theory brace model using the displacement

method. Their model included lateral mid-length deflection as a second degree of

freedom which is removed by elastic condensation during the formulation of the

13



element axial stiffness. The deflected shape of the beam segments was represented
by cubic Hermitian polynomials (Hilberland, 1956). Based on this idealization, the
tangent stiffness matrix could be easily formulated.

Soroushian and Alawa (1991) developed a physical theory model for steel braces.
The model incorporates simplified theoretical formulations based on some
assumptions on the experimentally observed physical behavior of steel struts. Some
semi-empirical techniques were used in the model to account for the partial
plastification and degradation of plastic hinge under cyclic load, softening and
yielding along the element length, and possibility of straight element buckling. The
model uses displacement as input, and involves a limited number of degrees of

freedom.

Remennikov and Walpole (1997) formulated a brace model using plastic-hinge
located at the mid-length. Step-wise regression analysis was employed, to
approximate the plastic condition for steel channel sections. The proposed model
combines the analytical formulation of plastic hinge behavior under cyclic load, with
empirical formulae based on a study of experimental data. Also the developed model
accounts for the Bauschinger effect and the degradation in axial brace stiffness with

cyclic loading.

Jin and El-Tawil (2003) developed a physical model which accounts for the gradual
spread of plasticity along the length of the brace and within the cross section,
simulates the degradation of axial stiffness with cycling, and has no restrictions on
the boundary conditions. The model is of the distributed macro-type and makes use
of a bounding surface plasticity model applied at the cross section level to relate
stress resultants to generalized cross section strains, i.e., centroidal axial strain and

curvatures.
Dicleli and Mehta (2007) developed a nonlinear structural model to simulate the

cyclic behavior of steel braces using the nonlinear finite element based software

ADINA (2004). The model is aimed at simulating the inelastic cyclic behavior of

14



braces for design purposes. The nonlinear cyclic axial force-deformation simulation
in ADINA is done for braces with box sections. However, the developed nonlinear
model may be applicable to braces with various sections. The developed model does
not consider the Bauschinger and the growth effects, but it is very easy to use in

practice.

1.3 Research Objective and Scope

The main objective of this study is to develop a physical theory model to accurately
simulate the inelastic cyclic behavior of steel braces including Bauschinger effect,
growth effect, residual kink as well as brace axial force versus transverse
displacement relationship. To achieve the above stated objective a physical theory
model is developed and verified using the available experimental test results on
brace inelastic cyclic behavior in the literature. The physical theory model
developed in this study combines the analytical formulation of the plastic hinge
formed at the vertex of the deformed brace, axial force-axial displacement
relationship of the brace and axial force-transverse displacement of the brace with
some semi-empirical dimensionless formulae developed on the basis of available

experimental data to simulate the Bauschinger and growth effects.

The scope of this study is limited to braces with pin ended connections. Local
buckling and low cycle fatigue effects are beyond the scope of this study.
Consequently, the physical theory model developed as part of this study is more
suitable for braces with slenderness ratios larger than 80 since local buckling effects

are generally associated with braces with lower slenderness ratios.

1.4 Thesis Outline

Chapter 1 of the thesis contains introductory information, literature review as well as

research objectives and scope.

15



Chapter 2 investigates the inelastic cyclic behavior of steel braces based on the
available experimental data. How this behavior is affected by different parameters

(slenderness ratio, section shape, etc.) is also examined.

Chapter 3 develops the moment-axial force (M-P) interaction relationships for six
different brace section shapes. The developed M-P interactions are used in the
analytical formulation of the inelastic cyclic behavior of braces.

Chapter 4 introduces a general physical theory model to simulate the inelastic cyclic
behavior of braces. Using this model, analytical formulations for different zones of

brace axial force-deformation hysteresis is obtained.

Chapter 5 presents a comparison of the analytical hysteresis loops (axial force versus
axial deformation (P-d) and axial force versus transverse deformation (P-4) curves)
obtained using the developed analytical model with the corresponding experimental

data and some of the analytical models available in the literature.

Chapter 6 presents the summary and conclusions obtained from this research study.
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CHAPTER 2

BEHAVIOR OF BRACES

2.1 General

Prior to introducing the analytical model, it is important to study the actual
behavioral characteristics of steel braces in order to identify important features to be

simulated by the analytical model. These behavioral properties are described below.

2.2 Cyclic Axial Load Response

The behavior of axially loaded members is commonly expressed in terms of an axial
load (P), an axial deformation (J), and a transverse displacement (4), at the mid-
length of the brace as shown in Fig.2.1. The sign convention used throughout this
study is such that axial tension forces and deformations are positive, and axial

compression forces and deformations are negative.

0/2 d/2
& - =
R L —_—
P P
| |
L

Fig. 2.1 Deformation of brace under axial load
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To study the inelastic cyclic behavior of steel braces, the axial force-deformation
hysteresis can be broken in to six zones as shown in Fig.2.2a. The definition of these
zones is closely related to the physical interpretation of the behavior. A typical

cyclic axial force-deformation behavior of a steel brace is demonstrated in Fig. 2.2b.

" Jioo
200 =

- 500

p p
(KIPS)O olkN)

B
-100 Lano
A

(a) (b)

Fig. 2.2 Inelastic axial response of a brace under cyclic axial loading (a) Definition
of different zones (b) A sample P-J curve from the experimental data of Black et al.

(1980)

2.2.1 Definition of Hysteretic Zones

The first zone shown in Fig 2.2a is generated by monotonically applying a
compressive strain to a brace from point O to point A. The behavior of this first zone
depends on the slenderness ratio and initial imperfection of the brace. If the brace is

sufficiently slender and perfectly straight, the brace buckles elastically. Due to the
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initial imperfection, the brace shows a small amount of lateral deflection as shown in

Fig.2.1.

Zone 2 is dominated by the inelastic bending of the brace due to the P-4 moment
induced by the compressive axial load, P. This zone is characterized by very large
lateral deflections at the mid-length of the brace and by a plastic hinge in the center
region of the brace formed at the verge of buckling. = The magnitude of P
monotonically decreases with the increasing magnitude of the deformation. The
magnitude of the load must decrease because the P-4 moment cannot exceed the
brace’s plastic moment capacity. Cyclic reversal is shown to take place at point B
where the compressive load is decreased. Immediately after decreasing the
compressive load, the inelastically strained portion of the brace will again begin to

behave elastically.

Zone 3 corresponds to elastic unloading and tension loading of the brace. The slope
of this zone is much smaller than that of Zone 1 due to the large permanent lateral
deflection at the mid-length of the brace, which results in a curved rather than a

straight member.

Zone 4 represents a zone of continued elastic bending with the brace lengthening
while an increasing tensile load is applied. During the application of a tensile force
of an increasing magnitude, the brace elongates and gradually straightens. This is
accompanied by an increasing stiffening of the brace due to the gradual reduction in
the transverse deflection of the brace. During this process, the P-A moments rotate

the initially formed plastic hinge in the opposite sense of direction.

Point E of Fig.2.2a is the point at which the brace is fully straightened. If the tensile
force were removed at this point, the brace would remain essentially straight and be
slightly longer than its original length. The internal bending moment is essentially
zero when point E is reached, and any elongation beyond this point is a purely

uniaxial elongation. Between points E and F is a plastic uniaxial elongation region
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for the brace. This zone is characterized by a nearly constant tensile load with
increasing elongation. If the unloading occurs before point E is reached, then the

plastic uniaxial elongation does not exist.

Point F in Fig.2.2a is a load reversal point. Thus, zone 5 consists of elastic
unloading. The elongation decreases linearly with decreasing tensile load, and the
slope is essentially the same as that of Zone 1. Within the region beyond Point G,
which is described as Zone 6, the brace is compressed by axial force and buckled
again at Point H. However, this bucking load is smaller than that of Point A due to
the Bauschinger effect and the residual kink remaining within the brace if unloading

at Point E occurs before the axial yield capacity of the brace is reached.

2.2.2 Baushinger Effect versus Behavior of Braces

Baushinger effect is a natural property of steel that affects the cyclic axial force-
deformation behavior of steel braces. After steel has been stressed beyond its elastic
limit and in to the plastic range, a number of phenomenons can be observed during
repeated unloading, reloading and stress reversal. First, for the typical stress-strain
relationship of a steel coupon shown in Fig.2.3, unloading to ¢ = 0 and reloading to
the previously attained maximum stress level will be elastic with a stiffness equal to
the original stiffness, £ (modulus of elasticity). Then as also shown in the same
figure, upon stress reversal to ¢ = - g,, a sharp corner in the stress strain curve is not
found at the onset of yielding; instead, stiffness softening occurs gradually with
yielding initiating earlier than otherwise predicted (Bruneau et al., 1998). This

behavior is called the Baushinger effect.
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Fig. 2.3 Baushinger effect

Popov and Black (1981) conducted cyclic axial force deformation tests of a steel
coupon taken from a wide flange steel brace made of ASTM (American Standards
for Testing Materials) A36 mild steel. The cyclic test results are shown in Fig.2.4.
As observed from the figure, the Baushinger effect is a function of the cyclic loading
history. That is, the softening of the material stiffness (modulus of elasticity)
increases with increasing number of load reversals. For the cyclic axial force-
deformation relationship of a brace defined earlier, comparing Figs 2.2 and 2.3 it is
clearly observed that Zones 4 and 6 are affected by the Baushinger effect. The
Baushinger effect results in softening of the slope of Zone 4 in the vicinity of the
transition to Zone 5 and a smaller buckling load (Point H) than that of the initial
cycle (Point A) due to the softening of the modulus of elasticity. Further details are

given in the subsequent sections.

21



KSI MPa
400

a0

20 /
df b a

— 200

STRESS

~STOP

R

-20 |- E

Et 3/8"
- — -200
1 Wex20
~40 = g/r=21
1 1 1 I 1 1 1 -400
-0.008 -0.004 [o] 0.004 0008

STRAIN , in/in

Fig. 2.4 Hysteretic curve from a cyclic coupon test (Black et al. 1980)

2.2.3 Hysteretic Properties of Braces

The most important results from cyclic experiments with braces subjected to
repeated buckling and stretching relate the applied axial load P to the axial
displacement . The P- curves trace out the hysteretic loops. The areas enclosed by
such curves are a measure of hysteretic behavior and energy dissipation during an
earthquake. The most important feature of the hysteretic behavior of braces is the
indication that once a brace had buckled, during subsequent cycles the same
capacity in compression cannot be reached as shown in Fig.2.5. This reduction in the
buckling capacity can be attributed to the presence of a residual lateral displacement
at the mid-length of a brace. Moreover, since the critical section at the mid-length of
a brace experienced severe stress reversals, the influence of the Bauschinger effect
on reducing the steel’s tangent modulus becomes pronounced resulting in even
smaller buckling load levels. However, while during the consecutive inelastic cycles
the maximum compressive loads tend to decrease, the ability of a member to resist

tension remains essentially constant regardless of previous cyclic history.
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Fig. 2.5 Deterioration of buckling loads

In the earlier studies (both experimental and analytical) researchers have identified
three key parameters that affect the hysteretic behavior of a bracing member. These
are; slenderness ratio, end condition, and section shape. These three key parameters

are discussed next.

2.2.3.1 Effect of Brace Slenderness

The cyclic response of a component loaded axially in compression depends
principally on its slenderness. The slenderness ratio (4) is a function of the brace end

condition (k), the brace length (L), and the radius of gyration (7).

A== @.1)
r
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Braces are often described as either slender (large 1), intermediate, or stocky (small
A). The hysteresis loops for braces with different slenderness ratios vary
significantly. The hysteretic loops for braces with large values of Kl/r showed a
more rapid deterioration in their compressive strengths than those with small values
of Kl/r. The ratio of a member’s initial capacity in compression to that in tension is
similarly a function of the braces slenderness ratio, being larger for the more stocky
braces. This is evident in the normalized axial load versus normalized axial
displacement envelope plots presented in Fig.2.6 for braces with slenderness ratios
equal to 40, 80, and 120. In addition, braces with very small slenderness ratios
exhibit a buckling behavior very close to the range of plastic action, and braces with
large slenderness ratios exhibit a buckling behavior very near to that of elastic

buckling.

1.OF  ———Kt/r=120 .
(XC8xIL5 STRUT 1) /

Ke/r = 80 /
(W6x20 STRUT 3) /

— ——=K{/r= 40 /
0.5F (W6x25 STRUT 2)

NORMALIZED AXIAL LOAD P/Py

- I 1 1 L
1.0 -4 -2 o] 2 4 6

NORMALIZED AXIAL DISPLACEMENT 8/8y

Fig. 2.6 Hysteretic envelopes for braces with different K//7’s (Black et al.1980)
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2.2.3.2 Effect of End Conditions

The effect of brace end-restraints on the hysteretic behavior of axially loaded braces
was examined by Black et al (1980). Normalized force-displacement envelopes were
used to compare the hysteretic behavior of braces with identical slenderness ratios
but differing lengths due to end conditions. Sample hysteretic envelopes for braces
with different end condition are presented in Fig.2.7a (I section brace) and Fig.2.7b
(circular tube brace). From Fig.2.7, the similarity of the hysteretic loops for the two
cases considered strongly support the extension of the effective length approach to

other end conditions for evaluating the cyclic inelastic response of bracing members.
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4

(a) I-shaped brace response (b) Circular tube brace response

Fig. 2.7 Hysteretic curves for braces with different end conditions (Black et al.

1980)
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2.2.3.3 Effect of Section Shape

The effect of cross-section shape on the hysteretic behavior of a brace has been
studied independently by several groups of investigators. Jain et al. (1978) tested
small tubes of square section, angles and bars of rectangular cross-section. It was
concluded that differences in the hysteresis loop characteristics of different section
types can be attributed to their different susceptibility to local buckling; thin walled
sections being more likely to fail prematurely by early local buckling. Closed
sections are less likely to suffer torsional buckling, but their strength deteriorates
faster with cycling because of the distortion of the cross section. Black et al.(1980)
tested a variety of full sized steel sections (wide-flanges, double angles, T sections,
pipes and square tubes) with slenderness values equal to 40,80, and 120. It was
noted that cyclic loading reduces the buckling strength of braces, and that the effect
of cross section shape on the hysteretic characteristics is most noticeable in small
slenderness sections where occurrence of local buckling is predominant. Sample
hysteretic envelopes from Black et al. (1980) for different braces each with a

slenderness ratio equal to 80, are presented in Fig.2.8a and Fig.2.8b.
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Fig. 2.8 Hysteretic curves for braces with different cross-section shapes (Black et al
1980)
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Furthermore, Gugerli (1982) tested the effect of section shape and scale effect on the
hysteretic characteristics of rectangular tube and wide-flange sections. It was found
that the hysteresis loops of both section types were similar but fracture was more
critical than local buckling in limiting the resistance and energy dissipating capacity
of the braces. The fracture life of tubes was smaller than that of wide-flanges in

these experiments.
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CHAPTER 3

DERIVATION OF MOMENT-AXIAL FORCE RELATIONSHIPS
FOR STEEL BRACE SECTIONS

The main objective of this chapter is to derive analytical equations defining the
relationships between the moment and axial force for six different brace section
shapes used in practice. The derived equations will be used in the next chapter
within the analytical formulations defining the inelastic cyclic axial force-

deformation behavior of braces.

3.1 Calculation of Reduced Plastic Moment Capacity due to Axial Load

If a member is subjected to the combined action of bending moment and axial force,
the plastic moment capacity of the member is reduced from the full value of M, ,
which is the largest plastic bending moment that the section can carry, to a lesser
value which is designated as the reduced plastic moment, M,,, For the calculation of

M, a number of simplifying assumptions are made as follows;

1. Plane sections remain plain.

2. Member instability (flange local buckling, web local buckling and lateral-
torsinal buckling) is avoided.

3. The elasto-perfectly plastic model is used for the stress strain relationship of

steel (Fig.3.1).
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Fig. 3.1  Elasto-perfectly plastic model for steel.

The value of the reduced plastic moment M, is a property of the cross section. It is
independent of the slenderness ratio and it is immaterial of the axial force as being
compressive or tensile for steel. Fig.3.2 shows the stress-distribution in a
bisymmetrical section at various stages of deformation caused by axial force and

moment, as the moment increases.
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Fig. 3.2 The combined action of M and P
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When full plastification of the section occurs, a portion of the cross-sectional area
carries the axial force. Therefore, the stress block on the compression side is larger
than that on the tension side as shown in Fig.3.2e. Furthermore, as shown in Fig.3.3,
the total stress distribution may be divided into two parts; a part that is associated
with the axial load (Fig.3.3c) and another part that corresponds to the bending
moment (Fig.3.3b). Also note that Fig.3.3b represents the fully plastic moment, M,,.

M, can be calculated as follows,

M, =Cx+Tx (3.1)

where, C is the resultant compressive force, 7 is the resultant tensile force, and x is
the distance between these forces and the axis of symmetry. The second order
moment, M, which is produced by the axial force about the neutral axis, reduces the

plastic moment capacity. Thus,

M,=M,-M (3.2)
0y 0y
%_,
- 'C pI— M
Mpr X é—& p ZO_y o
= S
T
o, Oy
(a) (b) (©)

Fig. 3.3 The analysis of the stress distribution
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In the following sections, the moment-axial force interaction relationships (the
reduced plastic moment capacity) for various section shapes (W, T, square tube,
rectangular tube, double-channel, and double-angle) are presented. In pin-pin ended
braces, buckling occurs about the weak axis of the section so calculations are

presented only about this axis.

3.1.1 W Section

The distribution of fully plastic stresses on the cross-section of a W section is

demonstrated in Fig. 3.4 below.
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Fig. 3.4 Plastic stress distribution in W section

For a W section, the compression (C) and tensile (7) force resultants of the stress
block when the section attains its full plastic moment capacity in the absence of

axial load are calculated as:

C:T:GJ— (33)
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where o, is the yield stress of steel and 4 is the area of the cross section expressed

as;
(3.4)

A=2b;t, +t,d,
In the above equation, by, t5; t,, and d,, are respectively the width of the flange, the

thickness of the flange, the thickness of the web and the depth of the web.

Substituting Eqn. (3.4) in to Eqn. (3.3),

t,d,
C:T:(@g+ ; }5 (3.5)

The distance between the forces and axis of symmetry, x, can be calculated as

follows,
b t ot
bit, L +d,
x= 4 2 4 (3.6)
b.t. + Ld,,
Ay 2

Substituting Eqn. (3.5) and Eqn. (3.6) into Eqn. (3.1), the plastic moment capacity,

M, of this section is obtained as;

bt td
M =L e T, 3.7
P { 2 4 y ( )

For the case where an axial force is also acting on the cross-section, one must

consider two possible cases for the weak axis bending of W sections;
The effect of the axial force P is confined within the web area

1.
2. The effect of the axial force P has penetrated into the flange area
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3.1.1.1 Axial Force Effect Confined Within the Web Area

Fig. 3.5 below demonstrates the stress distribution on one side of the centroid of the
cross-section due to the applied axial load. Note that the intensity of the stress block
is set at 20,. The moment of this half stress block about the centroid of the cross-
section represents the part of the plastic moment capacity consumed by the axial
load. This is done to facilitate the calculation of the reduced plastic moment capacity

of the section.

Iy
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Fig. 3.5 Axial force effect is confined to web (W section)

If the effect of the axial force P is only confined to the web area, the relationship

between the moment and axial force can be calculated as follows (Fig.3.5);
P=20,x,d, +2t,) (3.8)

where x, 1s a distance that describes whether the axial force is confined within the
web area or is penetrated into the flanges. The moment, M, of this axial force about

the axis of symmetry is obtained as:
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M =P (3.9)

Substituting Eqn. (3.8) into Eqn. (3.9)
M=x(d,+2,)o, (3.10)

Now, substituting the above equation into Eqn. (3.2), the reduced plastic moment

capacity of the section is obtained as;
M, =M, -x(d, +2,)o, (3.11)
Next, the axial yield force, P, is defined as follows;

P =04 (3.12)

y y

From Eqns. (3.12) and (3.8), xy can be expressed in the following form;

X, = A L (3.13)
0 2idw+2x_,,i P, '

Substituting Eqn. (3.13) into Eqn. (3.11), the reduced plastic moment capacity of the

section is obtained as a function of the axial load to yield axial load ratio as;

A? P ’
M =M - — | o 3.14
P ’ 4idw+2tf{Py] v .19

It is to be noted that the plastic section modulus, Z is expressed as;
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Z="2 (3.15)

Substituting Eqn. (3.15) into the Eqn. (3.14) and rearranging, the following final

expression for the reduced plastic moment capacity of the section is obtained as

follows;
M A? P ’

P—1- — 3.16
M, 4idw +2t, jZ (Py] ( )

3.1.1.2 Axial Force Effect Penetrated into the Flanges

If the axial force is penetrated into the flange, a procedure similar to that used in the
previous section can be applied to calculate the reduced plastic moment capacity of
the section. Fig. 3.6 below demonstrates the stress distribution on one side of the
centroid of the cross-section due to the applied axial load. This stress distribution
with an intensity of 2o, is again used to facilitate the calculation of the reduced

plastic moment capacity of the section due to the presence of the axial load.
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Fig. 3.6 Axial force effect has penetrated into t flange (W section )
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From Fig.3.6

t,d
}’:20}(2Qx0+-wzwj (3.17)

The distance between the axial force and axis of symmetry, x; is expressed as;

t,t,

thxox—o-i-dw -
X, = 2 2 (3.18)

.
thxo + 7

The moment, M, which is produced by the axial load is then calculated as follows;

M = Px, (3.19)

Substituting Eqns. (3.17) and (3.18) into Eqn. (3.19), the moment produced by the

axial load is calculated as;

2 dwth
M =|2¢,x," + 4 o, (3.20)

Substituting Eqns. (3.7) and (3.20) into Eqn. (3.2), the reduced plastic moment

capacity of the section is expressed as;

b't, du] di,’
MW:P%L+4%;af-nﬂj+“X o, (3.21)

Simplifying the above equation, M,, is expressed as;

t

M =

pr é (bf2 B 4x02 )O-y (3.22)
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Now, the axial yield force, P,, of the section is calculated as:
P =04 (3.23)

From Eqns. (3.23) and (3.17), x¢ can be expressed in the following form;

X, _4 P _dpn (3.24)
4,\ P, 4

Also note that the area of the web, 4,, is equal to;
A, =t d, (3.25)

Now, substituting Eqn (3.25) in to Eqn. (3.24), x, is expressed as;

A
X, AN P_A (3.26)
4.\ P 4

2
tb,’ 2 A
M, =L1|1- f z[ﬁ— ] o, (3.27)
2 4,°p,2\ P, 4

The area of the flange, 4,is presented in terms of the section properties as follows;

A, =2bt, =A-4, (3.28)

From the above equation
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b.t’ = 3.29
sl 4 (3.29)
Substituting Eqn. (3.29) in to Eqn. (3.27), M,, is expressed as;
_ -
i)
b.’t, P A
M =-L1l1-22 o (3.30)

Finally, substituting Eqn. (3.15) in to the above equation and rearranging, M, is

obtained as follows;

2
I
M bt P A
ro_ 2L 1\ Y (3.31)

2
» 27 _ﬂ
A

<

3.1.2 Structural T Section

The expressions obtained for the W sections are slightly modified to obtain the
reduced moment capacity of T sections. It is assumed that the reduced plastic
moment capacity of a T section about its weak axis is equivalent to that of a W
section with identical web depth and a flange thickness equal to half of that of a T
section as shown in Fig 3.7. Thus, replacing the thickness of the flange (#/) by (¢// 2),
in Eqns. (3.16) and (3.31), the relationships between the moment and axial force

(reduced plastic moment capacity) for a T section are calculated as;
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for the case where the axial force has penetrated into the flanges.

tr/2 t/2
¥ -
l
Tt Ibf/z
- L] v
<>
dw

[=

_

(3.32)

(3.33)

Fig. 3.7 W and T sections
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3.1.3 Double Channel Section

The distribution of fully plastic stresses on the cross-section of a double channel

section is demonstrated in Fig. 3.8 below

0y
| c
<¢
X
s Vi $x X, hl{ P
0 br -»>
J tw L f T 20,
- Oy

Iy dy

Fig. 3.8 Plastic stress distribution in double-channel section

For a double-channel section, the compression (C) and tensile (7) force resultants of
the stress block when the section attains its full plastic moment capacity in the

absence of axial load are calculated as:

C=T=0,4 (3.34)

where 4 is the are of one channel and expressed as;

A=2b,t,+1,d, (3.35)

Substituting the above equation into Eqn. (3.34)

C=T=2bt,+1,d,)o, (3.36)
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The distance between the forces and axis of symmetry, x, can be calculated as

follows,

2 r
‘e (3.37)

Substituting Eqns. (3.36) and (3.37) into Eqn. (3.1), the plastic moment capacity,

M, of this section is obtained as;
M, =lt,d, (e, +s)+2b,t,(b, +s) (3.38)

For the case where an axial force is also acting on the cross-section, one must
consider two possible cases for the weak axis bending double channel sections;
1. The effect of the axial force P is confined within the web area

2. The effect of the axial force P has penetrated into the flange area

3.1.3.1 Axial Force Effect Confined Within the Web Area

Fig. 3.9 below demonstrates the stress distribution on one side of the centroid of the
cross-section due to the applied axial load. Note that the intensity of the stress block
is set at 20,. The moment of this half stress block about the centroid of the cross-
section represents the part of the plastic moment capacity consumed by the axial
load. This is done to facilitate the calculation of the reduced plastic moment capacity

of the section.
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Fig. 3.9 Axial force effect is confined to web (Double channel)

If the effect of the axial force P is only confined to the web area, the relationship

between the moment and axial force can be calculated as follows (Fig.3.9);

s
P=20, (xo —Ej(dw +21,) (3.39)
The moment, M, of the axial force about the axis of symmetry is obtained as

M = P(xo 4 ij (3.40)
Substituting Eqn.(3.39) into the Eqn.(3.40)
M = Jy(xo —%j(xo " %j(dw +21,) (3.41)

Now, substituting Eqn. (3.41) into Eqn. (3.2), the reduced plastic moment capacity

of the section is obtained as;
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S S
M, =M _(xo _Ej[xo +5j(dw 221 Yo, (3.42)

Next, the axial yield force, P, is defined as follows;

P=c.4 (3.43)

y Y

From Eqns. (3.43) and (3.39), xy can be expressed in the following form;

w=Se A WP (3.44)
"2 2fa, 121, )\ P, '

Substituting Eqn. (3.44) into Eqn. (3.42), the reduced plastic moment capacity of the

section is obtained as a function of the axial load to yield axial load ratio as;

P

Al P
Mpr = Mp —|:E(Fy]:|[s +7—)2 dw N th (Fy]]O'y (345)

Finally, substituting Eqn. (3.15) in to the above equation and rearranging, the

relationship between M,, and P is obtained as follows;

(3.46)
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3.1.3.2 Axial Force Effect Penetrated into the Flange

If the axial force is penetrated into the flange, a procedure similar to that used in the
previous sections can be applied to calculate the reduced plastic moment capacity of
the section. Fig. 3.10 below demonstrates the stress distribution on one side of the
centroid of the cross-section due to the applied axial load. This stress distribution
with an intensity of 20, is again used to facilitate the calculation of the reduced

plastic moment capacity of the section due to the presence of the axial load.

S$ v XOI $ P $XJ
- - Ibf < )

Fig. 3.10 Axial force effect has penetrated into flange (double channel)

From Fig. 3.10
P=20, [twdw + 2(% - %}f} (3.47)

The distance between the axial force and axis of symmetry, x; is expressed as
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t, s N X, S
2 )M T
(3.48)

The moment, M, which is produced by the axial load is then calculated as follows;
M = Px, (3.49)

Substituting Eqns. (3.47) and (3.48) into Eqn. (3.49), the moment produced by the

axial load is calculated as;

M= {a’wtw(tw +5)+ 2(x0 —%](xo +%)t f}ay (3.50)

Substituting Eqns. (3.38) and (3.50) into Eqn. (3.2), the reduced plastic moment, M,,,

is obtained as follows:

M, = {Zb‘ftf (bf + S)_ 2[’% - %)(xo + %jtf }Gy (3.51)

Now, the axial yield force, P,, of the section is calculated a;

P =04 (3.52)

y b

From Eqn. (3.47) and Eqn.(3.52), xy can be expressed in the following form;

d,t
X, :i P _apr, .l (3.53)
4t \ P, A 2

Also note that the area of the web, 4,, is equal to;
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A, =td, (3.54)

Now, substituting Eqn. (3.54) into Eqn. (3.53), xy can be expressed as;

4
R O (3.55)
a,\ P 4] 2

Next, substituting Eqn. (3.55) into Eqn.(3.51), M,, is expressed as;

M, = {21” b+ s)—g{Pi - fj’ J{s + f[; - AAW ﬂ}ay (3.56)
y f y

The area of the flange, 4y, is presented in terms of the section properties as follows;

A, =A-4, =4bt, (3.57)

From the above equation the thickness of the flange, #, is expressed as;

A—A
t, = 14 3.58
/ m (3.58)

Substituting Eqn. (3.58) into Eqn. (3.56), the reduced moment capacity of the

section is expressed as;

A-4 A P 4
M, = W(s+b)—f P Ao 2l (3.59)
8 2 2P, 4
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Finally, substituting Eqn. (3.15) into the above equation and rearranging, the

relationship between the M, and M, is obtained as follows;

{P_Aw]
A
M, 4 (l_/jj(ﬁb)_[P 4 ) (3.60)

3.1.4 Double Angle Section

The expressions obtained for the double-channel sections are slightly modified to
obtain the reduced plastic moment capacity of double-angle sections. It is assumed
that the reduced plastic moment capacity of a double-angle section about its weak
axis is equivalent to that of a double-channel section with identical web depth and a
flange thickness equal to half of that of a double-angle section as shown in Fig 3.11.
Thus, replacing the thickness of the flange (#) by (¢// 2), in Eqns. (3.46) and (3.60),
the relationships between the moment and axial force (reduced plastic moment

capacity) for a double-angle section are calculated as;

N EE) B G

3.61

v, ~ (3.61)

p
for the case where the axial force is confined within the web and;
M, A A P, 4

ro o AN A (s+b)- £ A 2 (3.62)
M, 27 A A

1 _ W
A
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for the case where the axial force has penetrated into the flanges.

(/2 ty/2 tr
e’ = <~
] B |
l
s$ T o s
|
J ) £
| |
dy dw

Fig. 3.11 Double-channel and double-angle sections

3.1.5 Box Section

The distribution of fully plastic stresses on the cross-section of a box section is

demonstrated in Fig. 3.12 below

Nt oy

Fig. 3.12 Stress distribution of box sections
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For a box section, the compression (C) and tensile (7) force resultants of the stress
block when the section attains its full plastic moment capacity in the absence of

axial load are calculated as;
A
C:T:Uyz (3.63)

Where A is the area of the box section expressed as;
A=2t(b+d) (3.64)

Substituting Eqn. (3.64) into Eqn. (3.63),

C=T=tb+d)o, (3.65)

The distance between the forces and the axis of symmetry, x, can be calculated as

follows,
bt(; + ;’j + ZC;’tZ
= 3.66
¥ (b+d) (.66)

Substituting Eqns. (3.63) and (3.64) into Eqn. (3.1), the plastic moment capacity,

M, of this section is obtained as;
d’t
M, = bz(t+d)+T o, (3.67)

For the case where an axial force is also acting on the cross-section, one must

consider two possible cases for box sections;
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1. The effect of the axial force P is confined within the web area

2. The effect of the axial force P has penetrated into the flanges

3.1.5.1 Axial Force Effect Confined Within the Web Area

Fig. 3.13 below demonstrates the stress distribution on one side of the centroid of
the cross-section due to the applied axial load. Note that the intensity of the stress
block is set at 20,. The moment of this half stress block about the centroid of the
cross-section represents the part of the plastic moment capacity consumed by the
axial load. This is again done to facilitate the calculation of the reduced plastic

moment capacity of the section.

D
d 20,
T - —— i
XO$ < <
N4
v i

Fig. 3.13 Axial force effect is confined to the web (Box Section)

If the effect of the axial force, P is only confined to the web area, the relationship

between the moment and axial force can be calculated as follows (Fig.3.5);

P =40 xt (3.68)
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The moment, M, of the axial force P about the axis of symmetry is obtained as;

M= P%O (3.69)

Substituting Eqn. (3.68) into Eqn. (3.69)
M =2x,to, (3.70)

Now, substituting the above equation into Eqn. (3.2), the reduced plastic moment

capacity of the section is obtained as;

M, =M,-2xto, (3.71)
Next, the yield force, P, is defined as follows;

P =o4 (3.72)

y

From Eqns. (3.68) and (3.72), xy can be expressed in the following form;

Al P
o-4(2) 579

Substituting Eqn. (3.73) into Eqn. (3.71), the reduced plastic moment capacity of the

section is obtained as a function of the axial load to yield axial load ratio as;

2
A P
M,=M, ——(—J o, (3.74)

Finally, substituting Eqn. (3.15) into the above equation and rearranging, the

relationship between M, and P is obtained as follows;
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2
M 2
po NP (3.75)
M 81z |\ P,

3.1.5.2 Axial Force Effect Penetrated into the Flanges

If the axial force has penetrated into the flange, a procedure similar to that used in
the previous sections can be applied to calculate the reduced plastic moment
capacity of the section. Fig. 3.14 below demonstrates the stress distribution on one
side of the centroid of the cross-section due to the applied axial load. This stress
distribution with an intensity of 20, is again used to facilitate the calculation of the

reduced plastic moment capacity of the section due to the presence of the axial load.

<
I dsr2 D E—
b/2 ¥ X0 ¢

Nt 20'y

Fig. 3.14 Axial force effect has penetrated into the flange (box section)

From Fig. (3.14)
d
P=2c, [b[xo - Ej + a’t} (3.76)

Distance between the axial force and axis of symmetry, x; is expressed as;
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(i)

dfl — |+ | xg—— || xg +—

¥ = 4) 2 2 2 (3.77)
b[xo—ngrdt

The moment, M, which is produced by the axial load is then calculated as follows;
M = Px, (3.78)

Substituting Eqns. (3.76) and (3.77) into Eqn. (3.78), the moment produced by the

axial load is calculated as;

M = {d—% + b(x0 - i](xo + iﬂa , (3.79)
2 2 2) 7

Substituting Eqns. (3.79) and (3.67) into Eqn. (3.2), the reduced plastic moment

capacity of the section is expressed as;

d2

2

M, - [bt(t L) b[xo _ Tﬂay (3.80)
Note that the thickness, ¢ of the section is equal to;

t=— (3.81)

Substituting Eqn. (3.81) into Eqn. (3.80), the reduced plastic moment capacity of the

section is expressed as;
M, = b(g—xo j{§+x0 jay (3.82)
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Now, the axial yield force P, of the section is calculated as;
P =0,4 (3.83)

From Eqns. (3.76) and (3.83), xy can be expressed in the following form;

2
o (3.84)
2b 2b( P,

Next, substituting Eqn. (3.84) into Eqn. (3.82), the reduced plastic moment capacity

of the section is expressed as;

2 g2 2 2
Mo—p =4 AP birdT AP (3.85)
’ 2 26\ P )| 26 2b| P

Also note that the area A4 of the box section is expressed as;

A=b>—d> (3.86)

From the above equation, the following relationship can be built;
2b° —A=b"+d’ (3.87)

Substituting Eqns. (3.86) and (3.87) into Eqn. (3.85), M, is expressed as

" zé[l_zJ{b_i(l_ﬁﬂa (.58
"2 P ) 2 P

Finally, substituting Eqn. (3.15) into the above equation and rearranging, the

relationship between the M, and P is obtained as follows;
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M, :A(I_zJ{b_i(l_ﬁJ] 359
M, 2z P 26 P,

3.1.6 Pipe Section

The distribution of fully plastic stresses on the cross-section of a pipe section is

demonstrated in Fig. 3.15 below

~
()
=
A
O
YVYVVVY
—
\ 4
<>
=

Fig. 3.15 Bending effect (Pipe section)

For a pipe section, the compression (C) and tensile (7) force resultants of the stress
block when the section attains its full plastic moment capacity in the absence of

axial load are calculated as;

) (3.90)

where A is the area of the cross section expressed as;

A=2mt (3.91)
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In the above equation r is the radius of pipe. Substituting Eqn. (3.91) into Eqn.
(3.90)

C=T=mto, (3.92)

The distance between the forces and the centroid of the section is expressed as;
x=— (3.93)
T

Substituting Eqns. (3.92) and (3.93) into Eqn. (3.1), the plastic moment capacity,

M,, of this section is obtained as;
M, =4r’to, (3.94)

The portion of the plastic moment capacity which is consumed by the axial force

(Fig. 3.16), P, can be calculated as follows;

Fig. 3.16 Axial force effect (Pipe section)

From Fig. (3.16), the axial force P is obtained as:
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P=4prto, (3.95)
Next, the yield axial force, Py, is defined as follows;

P =04 (3.96)

y y

From Eqns. (3.91) and (3.92), the angle, S, is expressed as follows;
p="—— (3.97)

The distance between the axial force and the centroid is obtained as;

2 (rrt) - 2art(rsin(a)j

T a

X, = 3.98
: mwt —=2art (3.98)
Simplifying the above equation, x; is expressed as;
X, = M (3.99)
V2
——a
2

The moment, M, which is produced by the axial load is then calculated as follows;
M = Px, (3.100)

Substituting Eqns. (3.91) and (3.96) into the Eqn. (3.97)

M :Mwmy (3.101)
——a
2
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Also note that, a is expressed as;
a=—-p (3.102)

Substituting Eqn. (3.102) into Eqn. (3.101), the moment due to the axial load is

obtained as;
M = 4#{1 — sin(g — ﬂﬂay (3.103)

Next, substituting Eqn.(3.97) into Eqn.(3.103), M is expressed as;

M =472 1—sin| Z_ZL (3.104)
2 2P

y

Simplifying the above equation, M is obtained as follows;

M =42 1-cod =L (3.105)
2P,

Substituting Eqns. (3.94) and (3.105) into Eqn. (3.2), the reduced plastic moment

capacity of the section is expressed as;
2 2 T P
M, =4r'tc, —4r t{l - COS(EFH% (3.106)

Simplifying the above equation, M,, is expressed as follows;
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p

M =4tcod ZL |6 (3.107)
2p |

y

Finally, substituting Eqn. (3.15) into the above equation and rearranging, the

relationship between M,, and P is obtained as follows;

M
r o 2L (3.108)
M 2

3.2 Comparison of the Moment Axial Force Interaction Relationships

A summary of moment axial force interaction relationship equations derived for
various sections are given in Tables 3.1 and 3.2 for the cases where the axial force is
confined within the web and penetrated in to the flanges respectively. Fig. 3.17
presents the moment-axial force interaction relationships for various section shapes
with similar cross-sectional areas. The figure is plotted using the normalized

equations derived above.
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Fig. 3.17 Moment-Axial Force interaction diagram for various sections
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Table 3.1 Weak axis bending, P-M,, interaction relations for different sections

(Axial force is only confined to the web area)
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Table 3.2 Weak axis bending, P-M,,, interaction relations for different sections
(Axial force has penetrated into the flange area)
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CHAPTER 4

ANALYTICAL SIMULATION OF HYSTERETIC BEHAVIOR OF
STEEL BRACES

In this chapter, an analytical model is developed to enable the formulation of the
inelastic buckling behavior of steel braces within each hysteretic zone. The model
employs (i) a large displacement analysis procedure to account for the second order
effects due to the presence of axial loads and transverse deformations of the brace
and (i1) inelastic axial and bending behavior of the brace to simulate the plastic
hinge formation at the mid-length of the brace upon inelastic buckling. In this study
it is assumed that the plastic hinge has elasto-perfectly plastic mechanical properties
and thus, forms instantaneously when the reduced plastic moment capacity of the
section is attained at the buckling load. Moreover, the analytical model is developed
for pin-pin ended braces. Thus, it may not be used to accurately simulate the
inelastic cyclic buckling behavior of braces with other end conditions such as fixed-

pinned or fixed-fixed.

4.1 Proposed Analytical Model

In the model, an initial eccentricity, e, is introduced at the end of the brace member
to produce an initial imperfection that will produce buckling as demonstrated in
Fig.4.1. Then, a plastic hinge with a moment-axial force interaction capability is
placed at the mid-length of the brace element. The initial eccentricity is chosen such

that when the axial load reaches the buckling load P, of the brace, the reduced
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plastic moment capacity M, corresponding to the buckling load is reached as well.
Beyond this point, the axial load capacity of the member constantly decreases due to
the combined effects of second order moments and moment-axial force interaction
as the member folds. For the model to work as intended the initial eccentricity must
be known. The derivation of this initial eccentricity is outlined in the diction below.
In the derivation of the analytical equations, compressive loads (e.g. buckling load is

negative) and axial shortenings are assumed to be negative.

Plastic Hinge———— @'} Mo
- - ~ ~
e 4 S

—>F hL— Ee

P| |P

L
Fig. 4.1 Brace Buckling Model

4.1.1 Derivation of Brace Initial Eccentricity
It is assumed that the deformed shape of the brace prior to buckling can be

approximated by a sinusoidal function of the form given in Eq. (4.1) and displayed
in Fig. 4.2 below.
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Fig. 4.2 Approximated deformed shape

From Fig. 4.2, the transverse displacement (4) at a location x from the left end of the

brace can be expressed as the following form;
A= AbSin[%xj (4.1)

where, 4, is the maximum transverse displacement at buckling. The displacement,

Ay, can be calculated using the unit dummy load method (Popov, 1999).
Ay =2 [ =R (4.2)

Where, E and [ are respectively the modulus of elasticity and moment of inertia
about the buckling axis of the brace. M is the second order moment at the buckling
load and m is the moment due to the unit dummy load applied at the location and in

the direction of the displacement to be calculated. From Fig. 4.3 M is expressed as;

M=-P, [e + AbSin[% xﬂ (4.3)
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1 A=A, sin[zxj
L

Ph

Fig. 4.3 Free body diagram for M

From Figs. 4.4a and 4.4b the moment, m, due to the unit dummy load is calculated

as;

(4.4)

N | =

| )
I

1/2

<
—
IS}
G —

L/2 X

(a) (b)

Fig. 4.4 (a) Unit dummy load at the center (b) Free body diagram due to the unit
load.

Substituting the values of M and m from Eqns. (4.3) and (4.4) into Eqn. (4.2) and

integrating;
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_—I’Bex’ +84,)

A 4.5
’ 87 El (43)
Thus, from the above equation 4, is obtained as;
L’P,
A, =— b e (4.6)
8EI| 1+ P‘;L
n EI

When the axial load is equal to the buckling load, the second order moment at the
vertex of the brace element is equal to the reduced plastic moment, M,,, of the brace.

Accordingly, from Fig. 4.2 the following expression is formulated;

_f)b(e—‘rAb):Mpr (47)
From the above equation, e is expressed as:

M r
e=——2—A, (4.8)

Substituting Eqn. (4.6) into Eqn. (4.8) and rearranging, e is obtained as follows;

oe or (4.9)

Note that in the above equations, P, needs to be taken as negative since it is an axial

compressive load.

67



4.2 Analytical Formulations

In this section, the brace axial force-displacement relationships are formulated for
each one of the hysteretic zones defined in Chapter 2. In the derivation of the
analytical equations for each hysteretic zone, the deformed shape of the brace which
was earlier assumed to have a sinusoidal shape (Fig.4.2) is simulated by two line
segments as illustrated in Fig.4.5. Actually, tests conducted by Black et al.(1980)

confirm that the braces deform in the form of two line segments beyond buckling as

illustrated Fig.4.6
Sine shape
— — — — Linear approximation
- ~ -
- op/2
A 4 L/E SS N <]
(.
—_— —
= P
L/2-6p/2

Fig. 4.5 Approximated sine shape by two linear segments.
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L
o

Fig. 4.6 Deformed braces after the completion of the tests (Black et al. 1980)

The total axial displacement J of the brace results from shortening due to bending

effect () and axial displacement due to the applied axial force (d,). Accordingly;

5=6,-0, (4.10)

Note that in the above equation the axial displacement due to the bending effect is
presented as a negative value, since from the geometry of the brace buckling model
shown in Fig. 4.5, under compressive or tensile axial load, the axial displacement

from bending effect is always negative.

The axial displacement due to the axial force is expressed as;

_PL

== 4.11
« = (4.11)
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From the geometry of the deformed brace in Fig. 4.5, the transverse displacement, 4,

of the brace can be obtained as;

LY (L 5,
T

Using the above equation, the axial displacement due to the bending effect, Jy, is

expressed as;

5, =L—-~NIL*—4N (4.13)

Next substituting Eqns. (4.11) and (4.13) into Eqn. (4.10), the total axial

displacement, o0, of the brace is obtained as follows;

5:%—“ L’ —4N° (4.14)

The above equation will be used to obtain the cyclic axial force-displacement

relationship of the brace for each hysteretic zone.

4.2.1 Zonel

Zone 1 (Segment O-A, in Fig. 2.2a) is associated with the initial compressive
loading of a brace which approaches the buckling load at point A. For this elastic
range, using Eqn. (4.6) for any axial load level, the transverse displacement 4 can be

obtained as follows;
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A=— e (4.15)
PL
8EI| 1+ —;
n-EI

Substituting the above equation into Eqn. (4.14), axial displacement is expressed as;

2
5:£—L+ L4 Lp e (4.16)
AE PI?
SEI| 1+ 5
w°El
4.2.2 Zone 2

Zone 2 (Segment A-B, in Fig 2.2a) is dominated by the inelastic bending of the
brace due to the P-4 moments generated by the compressive axial load P. The
magnitude of P monotically decreases with the increasing magnitude of transverse
deformation as explained earlier in Chapter 2. To satisfy static moment equilibrium
at the mid-length of the brace, the following relationship must be satisfied in

reference to Fig.4.5;

~P(A+e)=M,, (4.17)
Solving the above equation, 4, is obtained as follows;
A My (4.18)
= — —e .
P

Next, substituting Eqn. (4.18) into Eqn. (4.14), the axial displacement is expressed

as;
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2
M
5:££—L+ [P —4 ——2 ¢
AE P

(4.19)

The analytical results obtained for Zones 1 and 2 are compared with the
experimental results of Black et al. (1980) in Figs. 4.7 and 4.8 for brace # 3 (W
section, KL/7=80) and 11 (2C section, KL/r=120) respectively. Note that in these

figures the first loading cycles are compared for Zones 1 and 2. In the figures, axial

force versus axial displacement as well as axial force versus transverse displacement

relationships of the analytical and experimental results for the first loading cycles

are compared. As observed from the figures a fairly good agreement is found

between the analytical and experimental results.

0
i
i | 280
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N S 1000
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— Analytical
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Fig. 4.7 Comparison of experimental and analytical results for Brace 3, Zones 1

and 2; (a) axial force versus axial displacement, (b) axial force versus transverse

displacement
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Fig. 4.8 Comparison of experimental and analytical results for Brace 11, Zones 1
and 2; (a) axial force versus axial displacement, (b) axial force versus transverse

displacement

4.2.3 Brace Growth Effect

Starting from the end of Zone-2, the brace is subjected to elastic unloading and
tension loading. During this process, the brace elongates gradually and straightens.
Even though the brace for several cycles is subjected to the same magnitude of
maximum tensile force which may be less than the yield force, the axial
displacement continues to increase. This causes a progressive lengthening called
brace growth. Brace growth effect must be included in the formulation of Zones 3
and 4 to obtain accurate results for the simulation of the inelastic cyclic axial force-

displacement behavior of steel braces.
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Brace growth phenomenon is shown in Fig.4.9. For the first cycle, although the axial
behavior of the brace excluding the transverse deformation effects is totally elastic,
there is an apparent translation from Point E', which is the axial displacement of the
brace excluding the effect of brace growth, to Point E. For the second cycle, the
brace growth corresponds to the distance from Point F to Point K only. Note that the
distance between Points E and F is not considered as a growth effect. However, in
this case, the plastic axial deformation between points E and F can not be fully
recovered since upon unloading from Point F, the buckling of the brace takes place
at Point G at an axial load level much smaller than the yield axial force level. This
phenomenon, although not considered as a growth effect, contributes to the
permanent elongation of the brace length and can directly be considered in the
formulation of the axial force-deformation hysteretic relationship of the brace as an

unrecovered plastic deformation.

S

Fig. 4.9 Brace Growth idealization
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According to Kahn et al. (1976), Popov et al. (1980), and Goel et al. (1981), the
brace growth is proportional to the extent of shortening (S; or S, in Fig. 4.9) it
experienced during previous cycles. Also Popov et al (1981) and Jin and El-Tawil
(2003) concluded that the brace growth is directly related to the accumulated plastic
strain energy. This energy depends on the cumulative axial plastic displacement in
compression and cumulative axial plastic displacement in tension. Since the plastic
axial displacement in compression is kinematically related to the transverse plastic
displacement of the brace (Popov, 1981), the brace growth effect is assumed to be a
function of the cumulative transverse plastic displacement in compression plus the
cumulative axial plastic displacement in tension. For example in Fig. 4.9, the
transverse displacement in region A-B is responsible for the growth effect between
Points E and E' whereas the cumulative transverse displacements in regions A-B and
G-H and the plastic axial displacement in region E-F are responsible for the growth
effect between points F and K. Methods based on the cumulative plastic strain
energy necessitate extra computational steps to include the growth effect in the
hysteretic behavior of the braces. Consequently, defining the growth effect as a
function of the transverse and plastic axial displacements simplifies the

incorporation of this effect in the hysteretic behavior of the braces.

To include the growth effect in the analytical formulations of Zones 3 and 4, the
normalized brace growth versus normalized cumulative plastic displacement
relationships were calculated using the eleven pin-pin ended braces tested by Black
et al. (1980). The properties of these braces are listed in Table 4.1. The test data and
computations related to the brace growth effect are given in Appendix A. The
normalized brace growth, Fg, called growth factor thereafter, is defined as the
difference between the axial displacement, d;, at cycle i and the axial displacement
0.1, at cycle i-1 normalized with respect to the elastic displacement, J,,
corresponding to an axial load range measured from the level of the axial load at the
end of Zone 2 (P»), to the level of the axial load where the growth is measured at the

end of Zone 4 (P,). Thus;
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F, = 01 = 0wy (4.20)

in Eqn. (4.20) 6. is expressed as;

5=z ;]? ) (4.21)

The normalization of the growth effect using such an axial load range is performed
since the growth effect influences the hysteretic curve between the end of Zones 2

and 4 as observed from Fig. 4.10.

4.cycle

Fig. 4.10 Growth effect between the ends of Zones 2 and 4
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The normalized cumulative plastic displacement, D,, is defined as the cumulative
plastic transverse deformation at the end of the compression cycle (4,-4p)
normalized with respect to the transverse displacement, 4,, of the brace at buckling
(just before the plastic rotation at the vertex of the brace is initiated) plus the
cumulative plastic deformation, J,, in tension normalized with respect to yield axial

displacement, d,. Thus;

“(A,—-A, O
D =) |—=2—t+ 2L (4.22)
5 A, 0,
In the above equation, 4, is the transverse displacement at the end of the

compression cycle (Zone 2) and 7 is the number of cycles.

The relationships between the growth factor and normalized cumulative plastic
displacements are plotted in Fig.4.11, Fig.4.12, and Fig.4.13 for three different brace
slenderness ratios of 40, 80 and 120 respectively. Note that the normalizations are
performed to obtain a universally applicable relationship between the brace growth

and cumulative plastic displacements.
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Table 4.1 Properties of steel braces

Brace | Brace | oy(MPa) | Py(kN) | Pyy(kN) | L(mm) | Kl/r | ¢(mm) | Ay,(mm)
No Shape
1 W 8x20 278 1114 423 3810 | 120 | 12.2 473
2 W 6x25 291 1375 1170 1550 40 9.2 2.86
3 W 6x20 277 1050 899 3070 80 2.22 93
4 W 6x20 277 1050 894 3070 80 2.35 9.5
5 W 6x20 277 1050 676 3070 80 59 27.3
7 W 345 1018 894 1480 40 0.7 0.3
6x15.5
8 2L 6x3 281 1236 877 2830 80 7.5 17
Y2 X3/8
11 2C 245 1061 467 3000 | 120 1.5 31
8x11.5
13 WT 288 1238 872 3190 80 8.5 19.5
8x22.5
15 Pipe 327 667 489 3070 80 3.5 15.6
4x0.237
18 TS 565 2190 1210 2760 80 1.8 36
4x4x0.5
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Fig. 4.11 Normalized growth factor versus normalized cumulative displacement

relationship for K//r =40.
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Fig. 4.12 Normalized growth factor versus normalized cumulative displacement

relationship for K//r =80.
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Fig. 4.13 Normalized growth factor versus normalized cumulative displacement

relationship for K//r =120

A nonlinear logarithmic regression analysis procedure is employed to obtain a
relationship between the growth factor, Fz and the normalized cumulative plastic
displacement, D. of the brace. The obtained relationships for three different

slenderness ratios are presented below;

For slenderness ratio of 40;

F, =0.65D"" (4.23)

For slenderness ration of 80;

F.=0.08D."" (4.24)

For slenderness ratio of 120;
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F.=0.1D"" (4.25)

To obtain a universal relationship between the growth factor and the normalized
cumulative plastic displacements of the brace that is applicable at any slenderness
ratio (e.g. 75, 96) different than 40, 80 and 120, an analytical relationship between
Fg, D. and KL/r must be formulated. This could be achieved by conducting a two
dimensional regression analyses of the available data. However, to decide on the
type curve fitting technique, first, the relationship between the growth factor and the
slenderness ratio at different normalized cumulative plastic displacement values are
plotted in Fig 4.14(a) and (b) for D~10 and D.~100 respectively. It is observed that
the relationship between the growth factor and slenderness ratio at different

normalized cumulative plastic displacement values are polynomial but not similar.

0 40 80 120 0 40 80 120
0.8 1.2
0.6 0.8
5 04 ©
0.2 0-4
KU 0 KIF 0
(@) (b)

Fig. 4.14  Growth factor effect with different cumulative displacements (a)
normalized cumulative displacement is equal to 10 (b) normalized cumulative

displacement is equal to 100
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Thus an adaptive polynomial curve fitting technique is used to obtain the growth
factor as a function of the normalized cumulative plastic displacement and the
slenderness ratio. For this purpose, the growth factor is assumed to have the

following analytical form;

F.=a+ b(ﬁj + c(ﬁ} (4.26)
r r

From the above equation and Eqns. (4.23), (4.24) and (4.25), the growth factors at
KL/r= 40, 80, and 120 are expressed as follows;

a+b(40)+c(40)* =0.67D,"" (4.27)
a+b(80)+c(80)° =0.08D, " (4.28)
a+b(120)+¢(120)* =0.1D,** (4.29)

The above equations can be represented in matrix form as follows,

1 40 1600 Ya) (0.67D°**
1 80 6400 | b|=|0.08D " (4.30)
1 120 14400 | c 0.1D. "%

Using Gaussian- Elimination method (Burden and Faires, 2001), the coefficients, a,

b and c of the polynomial equation (4.26) are calculated as follows;

a=3%0.67D."" —3%0.08D.* +0.1x D " (4.31)
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4x00&1“7—5x067Df“—§x01Df“

2 2
b= 4.32
40 (432)

_0.1xD," -2%0.0.8D,"" +0.67xD,""

4.33
3200 (4.33)

c

The experimentally obtained and analytically calculated growth factors are
compared in Fig. 4.15 for brace 1 (KL/=120), brace 3 (KL/=80), brace 7
(KL/r=40), and brace 13 (KL/r=80). It is observed that the growth factor is simulated
reasonably well for braces with various slenderness ratios. However, the growth
factors for braces with slenderness ratios of 80 and 120 are simulated better than that

of the brace with slenderness ratio of 40.
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Fig. 4.15 Comparison of experimental and analytical brace growth
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Note that the coefficients a, b and c are functions of D.. Thus, Eqn. (4.26) gives an
exact match to Eqns. (4.23), (4.24) and (4.25) at slenderness ratios of 40, 80 and 120
respectively. Using Eqn.(4.26), the relationships between the growth factor Fz and
the normalized cumulative plastic displacement D, are presented in Fig. (4.16) for
different slenderness ratios. It is observed that the growth effect is more pronounced

at intermediate slenderness ratios.
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Fig. 4.16 Fg-D, relations for different slenderness ratios

4.2.4 Zone 3

Zone 3 is associated with the elastic unloading of the brace. The deformed shape of
the brace in this unloading stage due to bending effect is demonstrated in Fig. 4.17
The dashed line shows the deformed shape of the brace at the end of Zone 2,
whereas the solid line shows the deformed shape of the brace when the compressive

axial load is dropped to a lower magnitude upon unloading.
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L/2-5,/2

Fig. 4.17 Deformed brace shape in Zone-3 due to the bending effect

From the geometry of Fig.4.17, the transverse displacement, 4, of the brace at any

axial load level, P, is expressed as;
A=A, -A, (4.34)

A mentioned earlier, in the above equation, A, is the transverse displacement at the
end of Zone 2 where the unloading starts and A_ is the change in the transverse

displacement due to the effect of unloading. The change in the transverse

displacement can be calculated using the unit dummy load method (Popov,1999)
A, = —dx (4.35)

To satisfy the static equilibrium of the free body diagram of the already buckled

brace given in Fig. 4.17, the following expression must be satisfied

M= {wa}P (4.36)
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Where P, is the change in the axial load level with reference to the axial load, P, at

the end of Zone 2 and is expressed as,

P=P-P (4.37)

c

— T

Fig. 4.18 Free Body Diagram for M

12}

‘ S

| L2 .

Fig. 4.19 Unit dummy load at center
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From Fig.4.19, the unit dummy load moment due to a unit load applied at the vertex

of the brace is expressed as;

X
m=— 4.38
5 (4.38)
Substituting Eqns. (4.36) and (4.38) into Eqn. (4.35), 4. is expressed as:
L/2
2(A, —A
A, =ij or 282 mA) P~ ax (4.39)
El Y L 2
Integrating the above equation, 4. is obtained as;
1.5e+A,
=————= 4.40
¢ 12EI (4.40)
- +1
PL

Substituting Eqn.(4.37) into Eqn.(4.40) 4. is obtained as a function of the known

hysteresis parameters as follows;

1.5e+ A
A, =~ 2 (4.41)

(P-P)L’ i

Next, substituting Eqn. (4.41) into Eqn. (4.34), the transverse displacement 4, is

expressed as;

1.5e+A,
12E1

(P-P)

A=A, - (4.42)

Substituting Eqn. (4.42) into Eqn. (4.14), the axial displacement, ¢ of the brace is

obtained as follows;
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2

PL 1.5¢+ A
O=—"ul+ |[IP—4A —— "2
AE " 2 12EI

(PP,

(4.43)
+1

Zone 3 is affected by the brace growth effect. Thus, this effect must be included in
Eqn. (4.43).  To distribute the growth effect between the ends of Zones 2 and 4,
proportional to the level of axial load, the growth factor, Fg is first multiplied by the
elastic displacement J,, at any axial load range P-P, and then added to Eqn. (4.43).
Accordingly the axial displacement versus force relationship for Zone 3 including

the growth effect is defined as follows;

PL 1.5¢e+A (P-P)L
S=—"-L+ |IP-4A,—— 2 | +F | — 2 4.44
AE ©12EL " G{ AE } (149
(P—p)L’

Note that Zone-3 ends when the second order moment due to the axial force is equal

to the reduced plastic moment capacity,M ,, of the brace. The following

relationship can be used to determine the level of axial load, P; at which Zone 3

ends;
(A+e)p, =M, (4.45)
4.2.5 Zone 4

In this zone, unlike Zone 3, the behavior of the brace is plastic. That is, the product
of the axial load and transverse displacement again becomes equal to the plastic

moment capacity of the brace under the applied axial load. The deformed shape of
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the brace in this reversed loading stage due to bending effect is demonstrated in Fig.

(4.20)

Li2-5,/2

Fig. 4.20 Deformed brace shape in zone 4 due to bending effect

To satisfy static moment equilibrium at the mid-length of the brace within Zone 4,

the following relationship must be satisfied;

(A+e)P=M, (4.46)
Solving 4 from the above equation

M 7
A=—2—¢ (4.47)

Note that when the axial force is equal to the yield force, P,, the reduced plastic
moment capacity of the brace must become zero due to the moment-axial force
interaction relationship. Thus, the second order moment must be equal to zero to
satisfy the state of static equilibrium presented analytically in Eqn. (4.46) when

P=P,. However, the presence of the initial eccentricity, e, makes this impossible.
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For this reason, e must be multiplied by a factor that makes it gradually approach to
zero at the yield axial load level of the brace. Accordingly Eqn (4.47) is modified to
satisfy static equilibrium at the yield axial load level as follows;

M, (P-P
A="2 o (4.48)
P P -P,

Substituting Eqn. (4.48) into Eqn. (4.14) with the growth effect, the following
expression is obtained that defines the axial force-displacement relationship of the

brace within Zone 4;

2
M pP-P _
s=LL v gL o +F, (P-p) (4.49)
AE AE

The analytical results obtained for Zones 1, 2, 3 and 4 are compared with the
experimental results of Black et al. (1980) for braces 3 and 11 in Figs. 4.21 and 4.22
respectively. In the figures, axial force versus axial displacement as well as axial
force versus transverse displacement relationships of the analytical and experimental
results are compared. Although for Zones 1 and 2 the analytical and experimental
results for the first loading cycles are compared, for Zones 3 and 4, the analytical
and experimental results are compared for loading cycles 3 and 8 of Brace 3 and 11
respectively. As observed from the figures a fairly good agreement is found
between the analytical and experimental results. It is to be noted that the sharp
transition from Zone 3 to Zone 4 in the analytical plots results from the elasto-
perfectly plastic moment curvature relationships used in the development of the
equations. It is anticipated that this will not have a significant affect on the
magnitude of the hysteretic energy dissipated per cycle. However, such a
simplification facilitates the derivation of the analytical equations for each zone and

makes the proposed hysteretic model easily applicable in practice.
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Fig. 4.21 Comparison of experimental and analytical results for Brace 3, Zones 1,

2, 3, and 4; (a) axial force versus axial displacement, (b) axial force versus

transverse displacement
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Fig. 4.22 Comparison of experimental and analytical results for Brace 11, Zones

1, 2, 3, and 4; (a) axial force versus axial displacement, (b) axial force versus

transverse displacement
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4.2.6 Zone>5

In Zone 5, the brace is unloaded elastically. Within this zone, the transverse
deflection of the brace decreases to such an extent that the elastic deflections
become relatively significant in relation to the plastic deflections. Consequently, the
deformed shape of the brace becomes as shown in Fig.4.23. This deformed shape
needs to be considered in the derivation of the equations to simulate the elastic
unloading of the brace within this zone. The deformed shape of the brace consists of

a plastic and an elastic part as shown in Fig.4.23

+ — SR
4, )4\
| | 14,
L Sinusoidal shape
-Plastic deformation- -Elastic deformation-

Fig. 4.23 Superposition of plastic and elastic parts for the deformed shape in zone 5

From Fig. 4.23, the maximum transverse deflection 4 is expressed as;

A=A, -A, (4.50)

Based on the above equation, the maximum transverse deflection, 44, of the brace at

the end of Zone 4 is expressed as;

A=A, —A 4.51)

P4 e4
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where, 4,4 and 4.4 are respectively, the maximum plastic and elastic transverse
displacements at the end of Zone 4. Using unit dummy load method, the elastic

transverse displacement is expressed as,

L/2
Mm
A,=2| —dx 4.52
ed 2[ EI ( )
where
M=Mp4—Me4 (4.53)

In the above equation, M,, and M., are the second order moments due to the plastic

and elastic parts of the transverse deflections respectively.

M,
24,
I X
v I
4p_ _Je <p_\_— T e4sm( j
|%| 3_
(a) (b)

Fig. 4.24 Plastic and elastic second order moments

From Fig. 4.24, these second order moments, My,, and M., are formulated as

follows;



2AP4
M, =|e+ 7 x |P, (4.54)

M, = {AM sin(%xﬂﬂ (4.55)

T 12 12 T T

1/2

Fig. 4.25 Unit dummy load at center

From Fig.4.25, the moment due to the unit dummy load is expressed as;

m =

X
2 (4.56)

Solving for 4,4 from Eqn. (4.51) and substituting in Eqn. (4.54), M, is expressed as;

2(A,, +A
M,, :[e+¥x}’4 (4.57)

Substituting Eqns. (4.55) and (4.57) into Eqn. (4.53), the total second order moment

due to the effect of the axial loading is expressed as;
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21A , +A
M = e+mx—A sin| Zx | |P (4.58)
L e4 L 4

Next, substituting Eqns. (4.56) and (4.58) into Eqn. (4.52), the elastic part of the

transverse displacement is calculated as follows;

LI’A 2
. P4{— ﬂ;+24[3e+2(Ae4+A4)]}

(4.59)

ed = E]

In the expression above, 4.4 is at both sides of the equation. Thus, solving for 4.4,

the following equation is obtained for the elastic part of the transverse displacement;

7’ L*P,(3e+2A,)

= 4.60
“ 20°P,(12-7*)+241°El (4.60)

Next, substituting Eqn. (4.60) into Eqn. (4.51), the transverse displacement of the

brace is expressed as follow;

7’ L’P,(3e+2A,)
A=A, - 4 4 4.61
U 2P (127 )+ 2472 EI (6

From the above equation, the plastic part of the transverse displacement 4, is

obtained as;

212P,(3¢+2A
S — Al er 4)2 (4.62)
202P,(12- 72 )+ 247 EI

p4

It is to be noted that in Zone 5, the plastic part of the transverse displacement has a

constant value. Consequently, the plastic transverse displacement, 4,,, at the end of

96



the Zone 4 is equal to the plastic transverse displacement at any applied axial load

level within Zone 5. That is,

(4.63)

Substituting the above equation into Eqn. (4.62), the following expression is

obtained for the plastic part of the transverse displacement within Zone 5;

2712
A a4 L P4(3f+2A4)2 (464
’ 202P,(12- 7% )+ 247°El
Then, from Eqn. (4.60), the elastic part of the transverse displacement, 4., at any

axial load level is obtained as;

7’ L’P (3e+2A,)
© T 2I2P(12-7)+24x2El

(4.65)

Now, substituting Eqns. (4.64) and (4.65) into Eqn. (4.50),the transverse

displacement of the brace is obtained as follows;

N P, B P
20P,(12- 7% )+ 247°EI 20 P(12— 7 )+ 247 EI

- 7’ (3e+2A,)

A,

(4.66)

Finally, substituting the above equation into Eqn.(4.14), the axial load-displacement

relationship of the brace within Zone 5 is expressed as;

2
s=TL Ly |r-ala+ - R; - P2 — |7’ *(3e+24,)
AE 22P(12-7)+247°El  21°P(12 -7 )+ 247°El

(4.67)
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4.2.7 Zone 6

Within this zone, the axial compressive load is gradually increased from zero to a
level where buckling is initiated again. In this zone, the buckling load capacity is
less than the initial buckling load capacity defined in Zone 1. The degradation of the
buckling load capacity is caused by the Baushinger effect as well as the residual
transverse displacement of the brace resulting from the plastic hinge rotations during
the previous cycles. Baushinger effect degrades the initial elasticity modulus, £ to a
smaller value E; with increasing number of cycles. Therefore, in the derivation of
the analytical equations to simulate the axial force-deformation relationship within
this zone, the effect of the residual transverse displacement at the end of Zone 5 and
the Bauschinger effect in terms of a reduced modulus of elasticity (£; tangent

modulus) must be included.

- -~ ~ de
AP Ll I N
_ Je e
P P

Fig. 4.26 Deformed brace shape in zone 6 due to bending effect

From Fig.4.26, the transverse displacement 4 is expressed as;

A=A, +A, (4.68)
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Where Aj is the residual transverse displacement at the end of Zone 5 and A, is the

change in the transverse displacement of the brace due to the effect of reloading
starting at the end of Zone 5. The change in the transverse displacement can be

calculated using the unit dummy load method (Popov, 1999) as follows;

"2 Mm
l E— (4.69)

) M
(A +A, )Sin(%j

— 1 e

I
P !

Fig. 4.27 Free body diagram for M

From Fig.4.27, the second order moment, M, is expressed as;

M = P{e +(A +A, )Sm(ﬂﬂ (4.70)
X
From Fig. 4.20, the moment expression due to the unit dummy load is obtained as;

m =

X
5 4.71)

Now, substituting Eqns. (4.70) and (4.71) into Eqn.(4.69), 4. is obtained as follows;
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8
1.5@+72A5

+1

P’

Next, substituting the above equation into Eqn.(4.68), the transverse displacement,

A4, 1s calculated as;

(4.73)

Finally, substituting the above equation into Eqn.(4.14), he axial load-displacement

relationship of the brace within Zone 6 is expressed as

8
PL , 15€+?A2
5:E—L+ L —4 AS +W (474)
S+l
PL

4.2.7.1 Formulation of the Tangent Modulus

As observed from Fig.(2.3), the Bauschinger effect produces a degradation of the
modulus of elasticity within the positive strain-negative stress and the negative
strain-positive stress regions of the stress strain relationship of steel. It is also a
known fact that the degradation in the elastic modulus is a function of the previous
number of axial displacement cycles. Since, buckling load of a brace is a function of
the tangent modulus of the material, smaller buckling loads are generally obtained at
subsequent cycles of compression loading of the brace. This effect needs to be
included in the analytical equations derived for Zone 6. This requires obtaining an

expression for the elastic tangent modulus, E; as a function of the number of cycles.
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Accordingly, in this study, it is assumed that the degradation of the elastic modulus
depends on the normalized cumulative plastic displacement of the brace as in the
case of the growth effect. Using the experimental data of Black et al. (1980), the
buckling load P, at the subsequent cycles following the first cycle of the P-d curves
is obtained as a function of D.. It is noteworthy that as explained earlier the
reduction in the buckling capacity of a brace is a function of both the residual
transverse displacement of the brace and the tangent modulus. Thus, the cycles that
include the residual transverse displacement effect is excluded from the data used
for obtaining the tangent modulus as a function of the normalized cumulative plastic
displacement of the brace. To obtain a relationship between the tangent modulus £,

and cumulative displacement D, the following steps are employed.

First, from the experimental P-d hysteretic curves of the braces tested by Black et al.
(1980), experimental buckling loads, P, at subsequent loading cycles following the
first cycle are obtained. Then, these buckling loads are substituted in Eqn. (4.18) to
calculate the transverse displacement at buckling. Following this, Eq. 4.15 is
rearranged to obtain the tangent modulus of elasticity as a function of the, buckling
load, the transverse displacement at buckling and the properties of the brace as

follows;

(4.75)

Next, the buckling load, P, obtained from the experimental data of Black et al.
(1980), the transverse displacement at buckling, 4,, the moment of inertia and
length of the brace are substituted in Eqn.(4.75) to calculate the elastic tangent
modulus, E; for each load cycle of the axial force-displacement hysteresis of the
brace. Next, the ratio, Fp=E/E of the tangent modulus to the elastic modulus is
calculated and plotted as a function of the normalized cumulative plastic

displacement, D,, for all the braces from the tests of Black et al. (1980) considered
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in this study. The F=E/E versus D, plots for slenderness ratios of 40, 80, and 120
are shown in Figs. 4.29, 4.30 and 4.31.
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Fig. 4.28 Tangent elasticity versus cumulative displacement (Kl/r =40)
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Fig. 4.29 Tangent elasticity versus cumulative displacement (K1/r =80)
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Fig. 4.30 Tangent elasticity versus cumulative displacement (Kl/r =120)

A nonlinear logarithmic regression analysis procedure is employed to obtain a
relationship between Fp=E/E and D, of the braces. The obtained relationships for

three different slenderness ratios are presented below;

For slenderness ratio of 40;
F,=0.37D,"" (4.76)

For slenderness ratio of 80;

F, =0.65D~"" 4.77)

For slenderness ratio of 120;
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F,=1.1D "% (4.78)

To obtain a universal relationship between Fz and the normalized cumulative plastic
displacements of the brace that is applicable at any slenderness ratio different than
40, 80 and 120, an analytical relationship between Fjp, D. and KL/r must be
formulated. For this purpose an adaptive polynomial curve fitting technique is used
to obtain Fp=E/E ratio as a function of the normalized cumulative plastic
displacement and the slenderness ratio. Accordingly the Fz=F/FE ratio is assumed to

have the following analytical form;

Fy=a+ b[ﬁj + c(ﬁj (4.79)

r r

From the above equation and Eqns. (4.76), (4.77) and (4.78), the F3=FE/FE ratio at
KL/r= 40, 80, and 120 are expressed as follows;

a+b(40)+ (407 = 037(D.) (4.80)
a+b(80)+c(80)* =0.65(D, )" (4.81)
a+b(120)+c(120)* =1.1(D, )** (4.82)

The above equations can be represented in matrix form as follows,

1 40 1600\ a) (037D,7"
1 80 6400 | b|=|0.65D,"" (4.83)
1 120 14400 )\ c 1.1D, 7"
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Using Gaussian- Elimination method (Burden and Faires, 2001), the coefficients, a,

b and c of the polynomial Eqn. (4.26) are calculated as follows;

a=3x037D,"" =3x0.65D, """ +1.1xD,"* (4.84)
4x0.65D, """ 2 0.37D, " _Exl‘ch—o.ze
’ ; : (4.85)
40

—-0.26 —0.18 -0.12
L _L1xD, —2><0.§5210)8 +0.37xD, (456)

Note that the coefficients a, b and ¢ are functions of D.. Thus, Eqn. (4.79) gives an
exact match to Eqns. (4.76), (4.77) and (4.78) at slenderness ratios of 40, 80 and 120
respectively. Substituting Eqn. (4.79) into Eqn. (4.75) and solving for P, the

analytical buckling load is obtained as follows;

2
8AbE{a + b(Klj + C(KIJ ]I
r r
Lz[eJr 82Ab]
V4

The ratio of the experimental buckling load to the analytical buckling load

F=-

(4.87)

calculated using the above equation is plotted as a function of the cycle number in
Fig. 4.31 for various braces taken from the tests of Black et al. (1980). It is observed
that most of the data has a small dispersion around 1.0. This indicates a reasonably
good agreement between the analytical and experimental buckling load. This also
validates the accuracy of the Fp=E/E ratio formulated above. Furthermore, using
Eqn.(4.79), the relationships between the Fp=E/E ratio and the normalized
cumulative plastic displacement D, are presented in Fig. (4.32) for different
slenderness ratios. From the figure, a larger reduction of the elastic tangent modulus

is observed at smaller D, and KL/r ratios and at larger D, and KL/r ratios.

105



& Brace 3
m Brace 4
A Brace5
2 . & Brace 8
O Brace 11
A Brace 13
O Brace 15

Cycle 10 15

Fig. 4.31 Experimental and analytical buckling load ratios
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Fig. 4.32 Et/E versus cumulative displacement

The analytical results obtained for Zones 1, 2, 3, 4, 5, and 6 are compared with the
experimental results of Black et al. (1980) for brace 3 and brace 11 in Fig. (4.33)

and Fig.(4.34) respectively. Both axial force-axial displacement and axial force-
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transverse displacement relationships are compared. Although for Zones 1 and 2 the
analytical and experimental results for the first loading cycles are compared, for the
subsequent zones (3, 4, 5, 6) the analytical and experimental results are compared
for loading cycles 3 and 8 of Brace 3 and 11 respectively. A fairly good agreement
is found between the experimental and analytical results. It is also observed that the
degradation of the buckling capacity is simulated quite well by the developed

analytical hysteretic model.

15 10 5 0 5 10 15 0 50 100 150 200
. ., T : ; 1500 : “ : 1500
— — Experimental " ' — — Experimental
— Analytical n 1000 T pnaytical | 0%
R - oesneses : 500 | RN nnnnnnnnnnn nnnnnnnnnnnnn nnnnnnnnnnnnn 500
o / 40 a ' " 0
uuuuuuuuu S E- 500 -500
B 1 1000 5 E E 1000
A (mm)
(a) (b)

Fig. 4.33 Comparison of experimental and analytical results for Brace 3, Zones 1,
2, 3,4, 5, and 6; (a) axial force versus axial displacement, (b) axial force versus

transverse displacement
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Fig. 4.34 Comparison of experimental and analytical results for Brace 11, Zones 1,
2, 3,4, 5, and 6; (a) axial force versus axial displacement, (b) axial force versus

transverse displacement
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CHAPTER 5

COMPARISION OF ANALYTICAL AND EXPERIMENTAL

RESULTS

In this chapter, the developed analytical hysteretic model is verified using the
experimental cyclic axial force — axial deformation and axial force — transverse
deformation relationships of the braces tested by Black et al. (1980). Furthermore, in
order to observe its capabilities compared to other existing models, the analytical
model developed in this study is compared with the refined physical theory models
of lkeda and Mahin (1984) and Jin and El-Tawil (2003) as well as with the

phenomenological model of Ikeda et al. (1984).

5.1 Selection of the Braces for Verification Purposes

Eleven braces were selected from the specimens used by Black et al. (1980) to
verify the developed analytical model. Since the effective slenderness ratio has been
shown to be one of the most important parameters affecting the hysteretic behavior
of braces, the eleven braces were selected to have three different slenderness ratios
of 40, 80 and 120. Included within the eleven selected braces were six different
cross-sectional shapes: W, T, pipe, box, double channel, and double angle. A
common slenderness ratio of 80 was used for specimens with different section types
to allow for a direct comparison of the results due to the variation in the section type
of the brace. On the basis of its common use in steel braced frame construction, the

W section was chosen as a basic shape for the comparison of the analytical results
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with the experimental ones. Therefore, six out of the eleven specimens are chosen
to have W sections. Three of the W sections were W 6x20’s with a commonly used
slenderness ratio of KL/r = 80. Three additional W sections with the following sizes
and slenderness ratios were selected; (i) W 8x20, KL/r=120, (ii) W6x15.5, KL/r=40
and (iif) W6x25, KL/r=40. The other brace sections were; (i) Double-channel, 2C
8x11.5, KL/r=120, (ii) Double-angle 2L 6x3 %2 x3/8, KL/r =80, (iii) T, WT 8x22.5,
KL/r=80, (iv) Pipe, 4x0.237, KL/r=80 and (v) Box, TS 4x0.5, KL/r=80.

5.2 Experimental Displacement Histories Applied on the Braces

All the test specimens were subjected to quasi-statically applied cycles of reversed
axial displacements. These cycles generally resulted in compressive loads causing
inelastic buckling followed by tensile loads sufficient to cause yielding in the brace.
Since loading cycles were continued until the axial strength of the specimen was
exhausted, some braces experienced more cycles than others. Load histories of the
eleven braces used in this study for verification purposes are presented in Fig. 5.1

5.3 Comparison of Analytical and Experimental Results

5.3.1 Comparison of Hysteresis Loops

In this section the analytical axial force-axial displacement and axial force-
transverse displacement hysteresis of the eleven braces are compared with their
experimental counterparts. The results are presented in Figs. 5.2 - 5.12.

Fig. 5.2 displays the analytical and experimental hysteresis loops of Brace 1. As
mentioned earlier, this brace is made of a W 8x20 section and has a slenderness ratio

of 120. As observed from the plots of Fig. 5.2, the analytical hysteresis loops closely

match their experimental counterparts. Fig 5.3 displays the analytical and
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experimental hysteresis loops of a similar brace with a section size of W 6x25 but
with a slenderness ratio of 40 (Brace 2). As observed from the plots of Fig. 5.3, the
hysteretic behavior of this brace is not simulated as well as the one with a
slenderness ratio of 120. Especially the analytical growth effect does not closely
match the experimental one for this particular brace. This is mainly due to the
dominancy of the local buckling effect in braces with a low slenderness ratio, which
is not considered in the proposed analytical model,

Fig. 5.4 displays the analytical and experimental hysteresis loops of Brace 3. As
mentioned earlier, this brace is made of a W 6x20 section and has a slenderness ratio
of 80. Compared to other braces, the hysteresis loops of this brace are quite legible.
As observed from the plots of Fig. 5.4, the analytical hysteresis loops almost

perfectly match their experimental counterparts.

Fig. 5.5 displays the analytical and experimental hysteresis loops of Brace 4. Similar
to Brace 3, this brace is also made of a W 6x20 section and has a slenderness ratio
of 80. However, this braces experiences two distinct tensile plastic deformations
following the end of Zone 4 at cycles 4 and 5. As observed from the plots of Fig.

5.5, the analytical hysteresis loops match their experimental counterparts quite well.

Fig. 5.6 displays the analytical and experimental hysteresis loops of Brace 5 which
is also made of a W 6x20 section and has a slenderness ratio of 80. However, in the
case of this brace, the first displacement cycle is applied in tension causing axial
yielding of the specimen. Due to Bauschinger effect, the buckling load in the first
compression cycle following this tensile loading cycle is smaller than those of
Braces 3 and 4 which are identical to this brace (W 6x20 and KL/r=80) as observed
from the experimental results shown in Fig. 5.6. Comparison of the analytical
hysteresis loops with the experimental ones reveals that the reduction in the buckling
load capacity due to the initial tensile loading cycle (Bauschinger effect) as well as
other parts of the hysteresis loops are analytically simulated reasonably well.
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Fig. 5.7 displays the analytical and experimental hysteresis loops of Brace 7. This
brace is made of a W 6x15.5 section and has a slenderness ratio of 40. In this brace,
the first displacement cycle is also applied in tension causing axial yielding of the
specimen. Comparison of the analytical hysteresis loops with the experimental ones
reveals that the buckling load capacity in the first compressive displacement cycle is
computed reasonably well. Furthermore, the experimental hysteresis loops are
analytically simulated better than that of Brace 2 which also has a slenderness ratio
of 40. This is mainly results from the reduced buckling capacity of Brace 7 due to
the initial tensile loading cycle causing Baushinger effect to kick in. This
phenomenon reduced the magnitude of the compression loads in the subsequent
cycles and hence alleviated the effect of local buckling within the brace.

Fig. 5.8 displays the analytical and experimental hysteresis loops of Brace 8. This
brace is made of a double L6x3-1/2x 3/8 built-up section and has a slenderness ratio
of 80. Fig 5.9 displays the analytical and experimental hysteresis loops of Brace 11.
This brace is made of a double C 8x11.5 built-up section and has a slenderness ratio
of 120. As observed from the plots of Figs. 5.8 and 5.9, the analytical model
proposed in this study simulates the cyclic inelastic behavior of the two built-up

braces very well.

Fig. 5.10 displays the analytical and experimental hysteresis loops of Brace 13. This
brace is made of a T8x22.5 section and has a slenderness ratio of 80. In this brace,
although most of the tensile displacement cycles at the end of Zone 4 reach the yield
point in tension, a few of these tensile cycles (cycles 9, 11, 13 and 14) stopped
before tensile axial yielding of the brace takes place. This results in a residual
transverse displacement (residual kink) within the brace upon the removal of the
load (i.e at P=0 at the end of Zone 5). This residual kink further reduces the buckling
capacity of the brace in the subsequent cycle as observed from the experimental
hysteresis loops presented in Fig. 5.10. The analytical plots presented in the figure
reveals that the proposed analytical model is capable of successfully simulating the
reduction of the buckling load capacity of the brace due to the effect of the residual
kink.
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Figs. 5.11 and 5.12 display the analytical and experimental hysteresis loops of Brace
15 and 18. Both braces are made of tubular sections. Brace 15 is made of a pipe
section 0O4x0.257 and has a slenderness ratio of 80. Brace 18 is made of a square
box section TS4x0.5 and has a slenderness ratio of 80 as well. As observed from the
plots of Figs. 5.11 and 5.12, the analytical model proposed in this study simulates

the cyclic inelastic behavior of the two tubular braces reasonably well.

5.3.2 Comparison of the Hysteresis Envelopes

Because of an infinite variety of cyclic patterns that may be applied to a brace, it is
convenient to make use of envelops for a family of hysteresis loops obtained at the
end of the applied displacement history for comparison purposes. This makes a one-
to-one comparison of the analytical and experimental cyclic behavior of the 11
braces on the same graph possible. Comparison of the experimental and analytical
envelops are presented Figs. 5.13-5.23. As observed from the figures a reasonably
good agreement is found between the analytical and experimental hysteresis
envelopes. Only a slight discrepancy is observed between the hysteresis envelopes

within the envelope of Zone 3 and envelope merging the ends of Zone 4.

5.4 Comparison of the Proposed Analytical Model with the Available Models

In this section, the analytical model developed in this study is compared with the
refined physical theory models of Ikeda and Mahin (1984) (Figs. 5.24-5.27) and Jin
and EI-Tawil (2003) (Fig. 5.28) as well as with the phenomenological model of
Ikeda et al. (1984) (Fig. 5.29-36). As observed from the figures, in most cases, the
proposed analytical model simulates the inelastic cyclic axial force-deformation
behavior of braces better than those of the existing analytical models considered in

this study.
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CHAPTER 6

CONCLUSION

This study presents a simple, yet an efficient and a universally applicable physical
theory model that can be used to simulate the complex cyclic inelastic behavior of
steel braces. Although, several analytical models have been developed for
simulating the cyclic inelastic behavior of steel braces, most of these analytical
models are either developed for a specific brace type or fail to account for certain
inelastic behavioral characteristics such as degradation of the compressive load
capacity, progressive lengthening of the brace called brace growth as well as the
axial force - transverse displacement relationship of the brace. Moreover, some of
the better analytical models are very difficult to use in practice as they involve
numerous implicit parameters that require extra computations to define the cyclic

inelastic behavior of a particular brace.

The developed model incorporates simplified theoretical formulations of the
inelastic behavior of steel braces. In the analytical model, some semi-empirical
techniques were used to account for the partial plastification (brace growth) and
degradation of buckling capacity due to Baushinger effect. The analytical model
developed in this study is verified by comparing the analytically obtained hysteresis
loops with their experimental counterparts. Furthermore, in order to observe its
capabilities compared to other existing models, the analytical model developed in
this study is compared with the refined physical theory models of Ikeda and Mahin
(1984) and Jin and EI-Tawil (2003) as well as with the phenomenological model of
Ikeda et al. (1984). Followings are the conclusions derived from this study;
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Based on the form of the analytical equations derived in this study to
simulate the cyclic inelastic behavior of steel braces, it may be concluded
that the developed analytical model is computationally more efficient than
many existing models available in the literature. Furthermore, the developed
analytical model is easier to use in practice than many existing models
available in the literature since the input parameters of the model are based
only on the geometric and material properties of the brace.

The developed analytical model successfully accounts for brace growth and
degradation of buckling capacity due to Baushinger effect and residual kink
present within the brace. Furthermore, different than the existing analytical
models, the semi-empirical analytical equations developed to simulate the
growth and Bauschinger effects in the proposed model are universally
applicable to steel braces with various section types and slenderness ratios.
This is achieved by correlating the experimental results to the geometric and
structural properties of the brace using dimensional analysis techniques.

The developed analytical model also accounts for the reduction in buckling
capacity following an initial tensile yielding of the brace in relation to
Bauschinger effect.

The analytically obtained axial force — axial displacement as well as axial
force — transverse displacement hysteresis loops compare reasonably well
with the experimental ones.

Comparing the results obtained from the analytical model developed in this
study with the results obtained from the refined physical theory models of
Ikeda and Mahin (1984) and Jin and El-Tawil (2003) as well as with the
phenomenological model of Ikeda et al. (1984), it is observed that, in most
cases, the proposed analytical model simulates the inelastic cyclic axial
force-deformation behavior of braces better than those of the existing

analytical models considered in this study.
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APPENDICES

DATA USED FOR THE GENERATION OF GROWTH FACTOR
AND MODULUS ELASTICITY EQUATIONS

This appendix presents data used to calculate growth factor and modulus of

elasticity equations for braces. The data is listed in Table. A1-All
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Table Al. Data for growth factor and degraded modulus of elasticity calculations for Brace 1
Ao-Ap ) 89 n .89 8i‘8i_1 n. (8]'8].1) n (Az‘Ab) 8p/8y P, P, P.-P, Et/E D.
39.0 5.8 3.6 1.6 2.2 0.6 13.4 1375.0 | -849.0 | 22240 | 0.4 19.5
59.0 8.1 3.4 2.4 23 0.8 20.3 1375.0 | -670.0 | 2045.0 | 0.3 39.8
104.0 | 11.4 3.0 3.9 3.3 1.4 35.9 1340.0 | -462.0 | 1802.0 | 0.2 75.7
144.0 | 16.6 2.8 6.0 5.2 2.1 49.7 1340.0 | -358.0 | 1698.0 | 0.2 125.3
161.0 | 16.6 2.2 7.4 0.0 1.5 55.5 1050.0 | -311.0 | 1361.0 | 0.1 180.8
195.0 | 24.4 2.6 9.3 7.8 1.9 67.2 1375.0 | -226.0 | 1601.0 248.1
205.0 | 24.4 23 10.7 0.0 1.4 70.7 1210.0 | -188.0 | 1398.0 | 0.1 318.7
Table A2. Data for growth factor and degraded modulus of elasticity calculations for Brace 2
A>-Ap ) Oc Nn.% 0i-0i.1 n. (8i-8i.1) n (Az-Ab) 80/6\/ P4 P, Ps-P> E./E D,
53.7 5.3 3.4 1.6 1.9 0.6 16.3 0.9 927.0 | -420.0 | 1347.0 | 0.3 21.4
69.7 6.3 3.0 2.1 1.1 0.5 21.1 898.0 | -313.0 | 1211.0 | 0.2 425
91.7 8.2 2.8 2.9 1.9 0.8 27.8 890.0 | -248.0 | 1138.0 | 0.2 70.3
117.7 9.7 2.7 3.6 15 0.7 35.7 897.0 | -190.0 | 1087.0 | 0.2 106.0
138.7 | 11.2 2.7 4.1 1.5 0.6 42.0 925.0 | -161.0 | 1086.0 | 0.2 148.0
155.7 | 12.7 2.7 4.7 1.5 0.6 47.2 946.0 | -138.0 | 1084.0 | 0.2 195.2
182.7 | 15.8 2.7 5.8 3.1 1.1 55.4 981.0 | -108.0 | 1089.0 | 0.2 250.5
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Table A3. Data for growth factor and degraded modulus of elasticity calculations for Brace 3

Ao>-Ay ) Se n .Se 0i-0;.1 n .(Si-Si_l) n(Az-Ab) 80/6\/ P, P, Ps-P> Et/E D,

85.7 7.1 5.5 1.3 1.6 0.3 9.2 1050.0 | -310.0 | 1360.0 0.4 9.2
106.7 9.6 5.3 1.8 2.5 0.5 11.5 1050.0 | -270.0 | 1320.0 0.3 20.7
161.7 13.4 5.0 2.7 3.8 0.9 17.4 1050.0 | -193.0 | 1243.0 0.3 38.1
175.7 17.2 5.0 3.4 3.8 0.8 18.9 1050.0 | -193.0 | 1243.0 0.3 57.0

Table A4. Data for growth factor and degraded modulus of elasticity calculations for Brace 4

As-Ap ) 8e n .89 8;-8;.1 n .(8i—8i_1) n(Az-Ab) 8p/8y P4 P, P4-P, Et/E D.
67.43 6.4 5.82814 | 1.098121 | 0.57186 | 0.098121 | 7.045977 1050 -389 1439 0.45 11.4
93.43 9.4 | 5556781 | 1.691627 3 0.593506 | 9.7628 1050 -322 1372 0.37 | 21.16
147.43 14 5.196319 | 2.694215 4.6 1.002588 | 15.40543 1050 -233 1283 0.35 36.2
212.43 21 5.018113 | 4.18484 7 1.490625 | 22.19749 | 0.705 | 1050 -189 1239 0.31 59.1
298.43 36 4977612 | 7.232384 15 3.047544 | 31.18391 | 2.59 1050 -179 1229 0.28 | 92.87
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Table A5. Data for growth factor and degraded modulus of elasticity calculations for Brace 5

Ar-Ay, 5 8e n.8e 8-8.1 | N.(8-81.0) | n(A-Ay) | 8,08, P, P, | P,P, | EJE D,
135.79 | 12 | 4.787256 | 2.506655 | 7.212744 | 1.506655 | 6.718951 947 -235 | 1182 21.88
181.79 | 14.9 | 4.59285 | 3.244173 2.9 0.737518 | 8.995052 935 -199 | 1134 38.9
215.79 | 17.7 | 4.641451 | 3.813462 2.8 0.569289 | 10.67739 965 -181 | 1146 49.5
246.79 | 21.3 | 4.637401 | 4.59309 3.6 0.779627 | 12.21128 982 -163 | 1145 61.75
276.79 | 25.5 | 4.856108 | 5.251119 4.2 0.658029 | 13.6957 | 0.564356 | 1050 | -149 | 1199 | 0.265 76
322.79| 32 | 4.783206 | 6.690074 6.5 1.438955 | 15.9718 1050 | -131 | 1181 | 0.25 92
Table A6. Data for growth factor and degraded modulus of elasticity calculations for Brace 7
Az'Ab o) 8e n .89 5i 'ai—l n. (Si-&_l) n (Az-Ab) 80/8\/ P4 P2 P4- P2 Et/E Dc
50.87 5.3 |5.116511 | 1.035862 | 0.183489 | 0.035862 | 2.969644 1220 | -3714 | 1591 | 0.71 4.93
79.87 6.7 | 4.727386 | 1.417274 1.4 0.381412 | 4.66258 1177 | -293 | 1470 0.5 13.32
110.87 | 7.9 | 4.489409 | 1.759697 1.2 0.342423 | 6.472271 1163 | -233 | 1396 19.8
135.87 | 9.2 | 4.363989 | 2.108163 1.3 0.348466 | 7.931699 1149 | -208 | 1357 | 0.34 | 27.72
172.87 | 11.1 | 4.280375 | 2.593231 1.9 0.485068 | 10.09165 1156 | -175 | 1331 | 0.33 | 37.72
180.87 | 14 | 4.302886 | 3.25363 2.9 0.660399 | 10.55867 1177 | -161 | 1338 | 0.31 48.3
209.87 | 17.5 | 4.33183 | 4.039863 3.5 0.786234 | 12.25161 1206 | -141 | 1347 | 0.31 | 60.53
230.87 | 20.3 | 4.338261 | 4.679294 2.8 0.63943 | 13.47752 1236 | -113 | 1349 0.3 74
254.87 | 22.3 | 4.302886 | 5.182568 2 0.503274 | 14.87858 | 0.502755 | 1236 | -102 | 1338 | 0.29 89.4
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Table A7. Data for growth factor and degraded modulus of elasticity calculations for Brace 8

Ar-Ay o) 8e n .Se Si-&_l n. (Si-&_l) n (Az-Ab) SD/SV P, P, PP, Et/E D.
52.3 4.7 | 3.934626 | 1.194523 | 0.765374 | 0.194523 | 2.796791 935 -391 | 1326 | 0.57 4.63
86.3 6.4 3.42722 | 1.867403 1.7 0.67288 | 4.614973 870 -285 | 1155 | 0.46 9.24
100.3 9.1 | 3.548879 | 2.56419 2.7 0.696787 | 5.363636 943 -253 | 1196 | 0.43 14.6
145.3 | 12,5 | 3.418318 | 3.656769 3.4 1.092579 | 7.770053 957 -195 | 1152 0.4 22.37
193.3 | 17.2 | 3.566682 | 4.822409 4.7 1.165639 | 10.3369 1050 | -152 | 1202 | 0.37 415
231.3 | 21.4 | 3.596355 | 5.950469 4.2 1.12806 | 12.36898 1090 | -122 | 1212 | 0.37 | 53.87
272.3 25 3.617126 | 6.911564 3.6 0.961095 | 14.5615 1100 | -119 | 1219 | 0.33 | 68.42
309.3 | 28.6 | 3.640864 | 7.855277 3.6 0.943713 | 16.54011 1122 | -105 | 1227 | 0.31 | 84.96
342.3 | 33.2 | 3.715047 | 8.936631 4.6 1.081353 | 18.30481 1151 | -101 | 1252 | 0.25 | 103.27
Table A8. Data for growth factor and degraded modulus of elasticity calculations for Brace 11

Ao>-Ap ) 6e n .83 0i-0i.1 n. (6i-6i.1) n (Az-Ab) SD/SV P, P, P4-Ps Et/E D.
55.5 7.2 | 5.868116 | 1.22697 | 1.331884 | 0.22697 | 2.846154 1171 -411 1582 0.46 6.3
89.5 8.9 5.37107 | 1.657026 1.7 0.430056 | 4.589744 1135 -313 1448 0.41 9.15
127.5 10 | 4.859186 | 2.057958 1.1 0.400932 | 6.538462 1057 -253 1310 0.36 15.7
169.5 13.3 | 4.851767 | 2.741269 3.3 0.683311 | 8.692308 1107 -201 1308 0.27 24.4
185.5 17.3 | 4.948209 | 3.496214 4 0.754945 | 9.512821 1150 -184 1334 | 0.255 33.9
225.5 22.4 | 5.00014 | 4.479875 5.1 0.983661 | 11.5641 1193 -155 1348 | 0.255 | 45.45
268.5 28  |4.989012 | 5.612334 5.6 1.132459 | 13.76923 1210 -135 1345 | 0.255 71.4
316.5 35 4.99643 | 7.005001 7 1.392667 | 16.23077 1238 -109 1347 0.25 102
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Table A9. Data for growth factor and degraded modulus of elasticity calculations for Brace 13

Ay-Ay 3 8e n.8e 8i-8.1 | N.(8-814) | N(Ay-Ay) | 8,18, P, P, | PsP, | EJE D,
115.97 7.2 |6.478603 | 1.111351 | 0.721397 | 0.111351 | 8.265859 667 -194 861 0.49 25.47
124.97 | 11.6 |6.328113| 1.83309 4.4 0.721739 | 8.907341 | 0.398498 | 667 -174 841 0.47 34.8
177.97 | 16.2 |6.124951 | 2.644919 4.6 0.811829 | 12.68496 | 0.637597 | 667 -147 814 0.45 48.11
250.97 23  |5.869118 | 3.918817 6.8 1.273898 | 17.8881 667 -113 780 0.37 64.8
Table A10. Data for growth factor and degraded modulus of elasticity calculations for Brace 15
Ap-Ay 5 Se N.3e §-8i1 | N.(5:-8i1) | N(Ar-AL) | 8,08, P, P, PP, | EJE D,
105.4 6.6 |6.282966 | 1.050459 | 0.317034 | 0.050459 | 6.75641 642 -193 835 0.48 13.98
114.4 8.1 |6.147525| 1.2892 1.5 0.238741 | 7.333333 642 -175 817 0.4 21.32
152.4 10.7 |5.951887 | 1.703017 2.6 0.413817 | 9.769231 642 -149 791 0.37 31.1
164.4 | 13.24 |5.869118[2.107285| 2.54 | 0.404268 | 10.53846 642 -138 780 0.355 | 41.624
222.4 17.8 | 5.83902 [2.833057| 4.56 | 0.725772 |14.25641 |0.358648 | 667 -109 776 0.335 | 56.238
245.4 23 | 5.763775 | 3.660692 5.2 0.827635 | 15.73077 | 0.239099 | 667 -99 766 0.31 72.2
305.4 27.9 |5.568137 | 4.440578 4.9 0.779886 | 19.57692 | 0.537972 | 667 -73 740 0.31 92.32
310.4 33.4 5.3725 |5.315961 5.5 0.875383 | 19.89744 667 -47 714 0.31 112
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Table A11. Data for growth factor and degraded modulus of elasticity calculations for Brace 18
A>-Ap ) Se n .Se 8i-6i1 n. (6i-6i.1) n (Az-Ab) 8p/6y P, P, Ps-P> Et/E D.
11.2 4.7  |3.853567(1.219649 | 0.846433 | 0.219649 |1.435897 485 -319 804 0.375 1.44
61.2 6.6 |3.412611[1.934003| 1.9 0.714354 | 7.846154 485 -227 712 0.325 10.16
72.2 7.6 |3.3263382.284795 1 0.350792 | 9.25641 485 -209 694 0.275 19.41
103.2 9.2 |3.182548|2.890766| 1.6 0.605971 |13.23077 485 -179 664 0.25 32.64
113.2 11  |3.134618| 3.5092 1.8 0.618434 |14.51282 485 -169 654 0.23 47.15
184.2 16.5 |2.986035|5.525722| 55 2.016522 |23.61538 500 -123 623 0.2 97.8
199.2 20.2  |3.043551|6.636984| 3.7 1.111262 |25.53846 519 -116 635 0.2 123.4
253.2 25 |2.971656 |8.412817| 4.8 1.775833 |32.46154 519 -101 620 0.195 155.8
299.2 30.5 |2.909347/10.48345| 55 2.070634 | 38.35897 519 -88 607 0.19 194.15
337.2 38 |2.861417[13.28013| 7.5 2.796681 |43.23077 519 -78 597 0.19 237.4






