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ABSTRACT 

 
 
 

DEVELOPMENT OF A PHYSICAL THEORY MODEL FOR THE 

SIMULATION OF  

HYSTERETIC BEHAVIOR OF STEEL BRACES 

 

 

Çalık, Ertuğrul Emre 

M.S., Department of Engineering Sciences 

Supervisor: Assoc.Prof. Dr. Murat Dicleli 

 

April  2007,  158 pages 

 

Bracing members are considered to be effective earthquake-resistant elements as 

they improve the lateral strength and stiffness of the structural system and contribute 

to seismic energy dissipation by deforming inelastically during severe earthquake 

motions. However, the cyclic behavior of such bracing members is quite complex 

because it is influenced by both buckling and yielding. 

 

This thesis presents simple but an efficient analytical model that can be used to 

simulate the inelastic cyclic behavior of steel braces. This model achieves realism 

and efficiency by combining analytical formulations with some semi-empirical 

formulas developed on the basis of a study of experimental data. A brace is idealized 

as a pin-pin ended member with a plastic hinge located at mid-length of a brace  

Input parameters of the model are based on only material properties such as steel 

yield strength and modulus of elasticity as well as geometric properties including 

cross-sectional area, moment of inertia, etc. The obtained results are verified by the 

experimental and available analytical results.  

 

Keywords: earthquake; inelastic buckling; cyclic load; steel brace;  
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ÖZ 

 
 
 

ÇELİK ÇAPRAZ ELAMANLARIN DÖNGÜSEL YÜKLER  

ALTINDAKİ DAVRANIŞLARINI SİMULE EDEN  

TEORİK BİR MODEL 

 

 

Çalık, Ertuğrul Emre 

M.S., Mühendislik Bilimleri Bölümü 

Danışman: Doç. Dr. Murat Dicleli 

 

Nisan  2007,  158 sayfa 

 

 

Çelik çapraz elemenlar, deprem esnasında enerji emen ve yapıya rijitlik ve dayanım 

sağlayan etkili elemanlardır. Ancak bu tür çapraz elemanlar basınç altında 

burkulmaya ve çekmede akmaya maruz kaldıklarından dolayı döngüsel yükler 

altında oldukça kompleks bir davranış gösterirler. 

 

Bu calışma, çelik çapraz elemanların elastik olmayan döngüsel davranışlarını simule 

edebilecek basit ama etkili bir analitik model sunmaktadır. Bu model analitik 

formüllerle beraber deneysel verilerden elde edilen yarı empirik formülleri 

birleştirerek gerçek davranışı yansıtır. Çapraz eleman iki ucu serbest olarak kabul 

edilir ve orta noktasında bir plastic mafsala sahiptir. Model için gerekli olan 

parametreler elemanın malzeme özelliklerinden (akma dayanımı, elastisite modülü 

vs.) ve geometrik özelliklerinden (kesit alanı, atalet momenti vs.) elde edilir. Bu 

model kullanılarak elde edilen sonuçlar deneysel sonuçlarla ve mevcut analitik 

modellerin sonuçlarıyla karşılaştırılarak doğrulanmıştır.  

 

Keywords: deprem; elastik olmayan burkulma; döngüsel yük; çelik çapraz eleman;  
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CHAPTER  1 

 

INTRODUCTION 

 
 
 

 
1.1   Introduction 
   

The most common form of seismic resistant construction is based on ductile design. 

Steel structures are designed for ductility, where the seismic energy during an 

earthquake is dissipated in plastic hinges that occur at the ends of the steel frame 

beams or within braces and shear links. In this manner a structure may sustain local 

damage, but should not collapse during severe earthquakes. 

 

In steel construction, moment-resisting structural steel frames are widely used as 

being highly efficient in absorbing earthquake energy demands. For buildings 

having wide facades, such a structural system is economical and has been shown to 

be very satisfactory for resisting lateral forces caused by earthquakes. However, in 

some instances, as in the case of frames width narrow bay widths, moment-resisting 

frames tend to be somewhat flexible.  Although such frames are still safe from 

collapse during a severe earthquake, they can develop costly non-structural damage. 

Consequently, the use of diagonally braced steel frames provides a practical 

alternative to moment resisting frames in such applications. Such frames are 

frequently used in order to increase the structure’s lateral strength and stiffness. 

Since the overall performance of a conventionally braced frame depends mainly on 

the performance of the brace, the focus of this study is on the bracing member itself. 

    

During a severe earthquake, the lateral deflections of the frame cause the brace to 

alternately stretch and buckle. It is this action, the hysteretic behavior of the brace 

that is responsible for the dissipation of the earthquake input energy and in a large 

measure for the performance of the frame. However, the hysteretic behavior of such 
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braces involves complex physical phenomena such as; yielding in tension, 

progressive lengthening of the brace called growth effect and buckling in 

compression, which also includes the deterioration of the compressive load capacity, 

due to Bauschinger effect and the residual kink within the brace itself. Because of 

the complexity of this hysteretic behavior, it is difficult to predict the seismic 

response of braced frame structures for design purposes. 

   

Many experimental and analytical studies have been conducted on the inelastic 

cyclic behavior of steel braces. The experimental studies provided a wide range of 

data which have been used to develop analytical models to simulate the inelastic 

behavior of braces under severe cyclic load reversals. The developed analytical 

models can be categorized in three groups; finite element, phenomenological, and 

physical theory models. Finite element models provide a realistic representation of 

the brace axial force-deformation behavior. However, they are computationally 

expensive. On the other hand, phenomenological models are computationally more 

efficient than finite element models. Yet, they usually involve numerous empirical 

coefficients and thus can be applied only to specific braces for which test data is 

available. Physical theory models combine the advantages of both finite element and 

phenomenological models. That is, while they are relatively more universally 

applicable and accurate than phenomenological models, they are also more 

computationally efficient than finite element models.  However, most of the existing 

physical theory models are either developed for a specific brace type or fail to 

simulate the Bauschinger effect, the degradation in the axial stiffness (growth effect) 

and the axial force versus transverse deformation of the brace. In some of these 

models approximate regression analyses were used to account for the plastic 

condition of a specific brace. Moreover, some of the better physical theory models 

are very difficult to use in practice as they involve numerous implicit parameters 

that require extra computations to define the cyclic buckling behavior of a particular 

brace.  Therefore, a physical theory model that is almost as accurate as a finite 

element model but easily applicable in practice is required. 
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Accordingly, this study presents a simple, yet an efficient and a universally 

applicable physical theory model that can be used to simulate the complex inelastic 

cyclic behavior of steel braces. The model is verified by comparing analytical 

calculations to experimental data for several individual steel braces with various 

properties. 

   

 

1.2   Background Information and Literature Review 

   

The inelastic behavior of braces subjected to axial cyclic loading has been 

investigated by numerous researchers in the last three decades. As mentioned earlier, 

these investigations have included both experimental and analytical studies. These 

studies are summarized below. 

 

 

1.2.1   Review of Experimental Research 

 

Many experiments have been conducted on inelastic behavior of axially loaded steel 

braces. However, most of these experiments have dealt with members subjected to 

monotonically increasing compression. Only a few experiments have been 

performed on the cyclic inelastic behavior of steel braces. 

 

Wakabayashi et al (1973, 1977, and 1980) have performed numerous experiments to 

study the inelastic cyclic behavior of steel braces. In these experiments more than 30 

small-scale specimens were tested. All of these specimens had identical 15×15 mm 

square solid cross sections but various effective slenderness ratios. In addition, tests 

on steel braces restrained against rotation at both ends have been conducted. 

Twenty-one specimens having square solid cross section and eight specimens having 

H-shaped cross section were investigated. These specimens had relatively short 

lengths ranging between 193 to 928 mm. From the test data the inelastic cyclic 

behavior of braces was obtained and studied. 
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Sherman (1976) tested axially loaded struts and beam-column tubes used in existing 

offshore oil platforms in the as-received condition. The test results were used to 

model hysteretic behavior of braces using finite element techniques for further 

studying the behavior of offshore platforms under dynamic loads.   Kahn and 

Hanson (1976) conducted a series of cyclic experimental tests on 25×12 mm solid 

steel bars. The lengths of the bars were varied to produce slenderness ratios of 85, 

120, and 210. It was found that the dynamic hysteretic response was nearly identical 

to the static response. 

 

Jain et al. (1978) have performed experiments on 18 specimens made from 

25.4×25.4 mm hollow cold-rolled steel tubes. Various effective slenderness ratios 

were used in the tests. It was concluded that the inelastic hysteretic behavior of steel 

members was significantly influenced by their effective slenderness ratio. 

     

Popov et al. (1980) tested four tubular steel braces, representative of one-six scale 

offshore construction. The tests were conducted to investigate the effects of material 

properties, diameter to wall thickness ratios and effective length of the braces. It was 

concluded that local buckling can be expected in such members having thin wall 

thicknesses. It was also found that the axial load versus axial axial displacement 

curves obtained for the fixed-end specimens were considerably different than those 

obtained for the pinned-end ones. 

       

Black et al. (1980) investigated the hysteretic behavior of 24 axially loaded steel 

braces, having a variety of cross-sectional shapes and slenderness ratios frequently 

encountered in practice. Various loading histories were applied.  Since, some of the 

formulations, which are derived in this study, are based on the data of the tests 

conducted by Black et al (1980), a detailed description of the tests and related 

conclusions are presented in a specific sub-section below. 
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1.2.1.1   Black et al. (1980)   

 

Black et al. (1980) conducted cyclic axial reversed loading experiments on 24 

structural steel braces with a wide range of cross-section geometries. The individual 

specimens were selected from standard structural steel shapes primarily on the basis 

of two criteria: (i) the slenderness ratios of the test specimens are similar to those 

used in practice and (ii) the shapes and proportions of the test specimens need to 

represent typical braces in current use. The maximum size of the members was set 

by the capacity of the available double-acting hydraulic cylinder.   

 Included within the 24 selected specimens were six different cross-sectional shapes: 

wide-flanges, thin and thick-walled square tubes, thin and thick-walled round pipes, 

structural tees, and fabricated double angles, and double channels. The built-up 

specimens were of special interest to see if the two elements would effectively act as 

a single member during extreme inelastic cycling loading. The material for all the 

rolled sections conformed to ASTM specifications for A36 steel; for pipes, to A53 

Grade B steel; for square tubes, to A501 steel. 

 

To assess the effect of end restraint on brace behavior, two boundaries on the 

possible end conditions were considered; eighteen of the specimens were pinned at 

both ends and had slenderness ratios of 40, 80 and 120; the remaining six specimens 

were pinned at one end and fixed at the other and had slenderness ratios of 40 and 

80.     

 

The test set up is demonstrated in Fig. 1.1. The test brace was welded to (44 mm-57 

mm) thick end plates with full penetration welds. The specimen was attached to the 

end fixtures with large high-strength bolts. The specimen length from pin to pin 

included heavy end support clevises containing roller bearings and attachment 

flanges. Preliminary calculations showed that these end details would not 

significantly affect the buckling behavior of a specimen. From the test data, Black et 

al. (1980) obtained relations between the applied axial force P and the axial 

displacement δ. The P-δ curves trace out the hysteretic loops for each brace. 
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Fig. 1.1 Test set up of Black et al. (1980) 

 

 

 

1.2.2   Review of Analytical Brace Hysteretic Models 

 

Several analytical models have been developed to represent cyclic axial load-

deformation behavior of steel braces. These models can be divided into three 

different general types. The finite element, the phenomenological, and the physical 

theory brace models. The summary of literature review conducted on each modeling 

type is presented below. 

  

 

1.2.2.1   Finite Element Model 

 

The technique employed in detailed finite element modeling is to subdivide a brace 

longitudinally into a series of elements as shown in Fig.1.2. While providing the 

most realistic representation of brace’s behavior, the finite element model usually 

demands computations too costly to be applied to practical analyses of large-scale 

braced structures. This model has been employed by several investigators. Fujimoto 

et al (1972) subdivided the cross-section of the longitudinal elements into fibers with 

elasto-plastic properties. Marshall (1974) and Sherman and Erzurumlu (1976) used a 
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series of beams and nonlinear springs to model brace behavior. Riahi et al (1979) 

developed a general purpose three dimensional beam-column element with end 

plastic hinges and geometric stiffness that are connected in series to model brace 

buckling. Powell (1980) employed elements with the critical cross-sections sub-

divided into fibers to predict the inelastic behavior of piping systems. 

 

  

 

 

 

 

Fig. 1.2   Finite Element Model 

 

  

 

1.2.2.2   Phenomenological Model 

 

The basis of these models is to pre-define the shape of the axial force-axial 

deformation response of a truss element that represents the brace by employing 

either mathematical or empirical results (Fig.1.3). Phenomenological models are 

computationally efficient, but usually involve numerous empirical coefficients and 

thus can be applied only to specific braces for which test data are available.  

 

 

 

 

 

 

 

 

 
Fig. 1.3   Phenomenological Model 
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 Models of this type have been developed by Higginbotham (1973), Nilforsoushan 

(1973), Singh (1977), Marshall (1978), Roeder (1977), Jain (1978), Maison (1980). 

Higginbotham (1973) curve-fit the analytical results by employing second order 

polynomial equations to describe phases C-D, D-F and F-G  of brace response  

shown in Fig.1.4. 

 

 

 

 

 

 

 

 
 

Fig. 1.4    Higginbotham (1973) Model 

 

 

 

Nilforsoushan (1973) developed a model with nine piece-wise linear segments to 

define the brace hysteretic loops shown in Fig.1.5. The strength and stiffness in each 

segment were defined by a set of input empirical parameters.  

 

 

 

 

 

 

 
 

Fig. 1.5   Nilforsoushan (1973) Model 
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Singh (1977) developed a simpler five segments piece-wise linear model which 

could give a realistic fit for members with high (Kl/r>120) slenderness ratios as 

shown in Fig.1.6. 

 

 

 

 

 

  

 

 

 

 

Fig. 1.6   Singh (1977) Model 

 

 

 

Marshall (1978) employed a seven segment piece-wise linear model with an 

algorithm defining failure of a brace based on estimating the onset of local buckling  

The model is presented in Fig.1.7 

 

 

 

 

 

 

 

 
 

Fig. 1.7   Marshall (1978) Model 
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Jain (1978) developed a six segment model for members with high slenderness. This 

model has two buckling loads, one for the first cycle and one for subsequent cycles 

as shown in Fig.1.8. The model also incorporates a feature to account for observed 

growth in brace length during buckling and re-straightening. 

 

 

 

  

 

 

 

 

 
 

Fig. 1.8   Jain (1978) Model 

 

 

Roeder (1977), using a nine segment model similar to that of Nilforsoushan’s, 

introduced a feature to permit gradual deterioration of the buckling load between 

two bounds. The model is displayed in Fig.1.9. 
 
 

 

 

 

 

 

 
 

Fig. 1.9   Roeder (1977) Model 
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Maison (1980) also employed a nine segment model with buckling load 

deterioration capabilities similar to that of Roeder’s. This model also accounted for 

the hysteretic growth in brace length during buckling and re-straightening as shown 

in Fig.1.10 

 

 

 

 

 

 

 

 

 

 
Fig. 1.10   Maison (1980) Model 

 

 

 

1.2.2.3   Physical Theory Model 

 

Physical theory models as shown in Fig.1.11 account for the interaction between 

bending and an axial effects and are formulated based on physical considerations 

that influence inelastic brace behavior. Unlike phenomenological models, input 

parameters for physical theory models are generally based on material properties 

and common geometric or derived engineering properties of a member (e.g, the 

yield strength, the cross-sectional area, cross sectional moment of inertia, plastic 

section modulus, etc.). However, the geometric representation of a brace is 

considerably simpler than used for a finite element model shown in Fig.1.2. Thus, 

physical theory models combine the realism of finite element models with the 

computational simplicity of phenomenological models. 
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Fig. 1.11   Physical Theory Model (Ikeda and Mahin, 1984) 

 

 

 
Several physical theory models have been developed to simulate the inelastic 

buckling behavior of steel braces. Geometrically, these models consist of a bracing 

member that usually has a plastic hinge at mid-length connecting two elastic beam 

segments as shown in Fig. 1.12. 

 

 

 

 

 

 

 

 

 

 
Fig. 1.12   Typical Member Geometry of Point Hinge Model (Ikeda and Mahin, 

1980) 

 

 

One of the first physical theory solutions of post-buckling axial force-axial 

displacement relationship for slender braces was proposed by Higginbotham (1973). 
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For braces with high slenderness ratios (Kl/r>120), Higginbotham’s analytical 

model predicts the behavior of the first cycle of experimental results with reasonable 

accuracy. During later cycles, however, Higginbotham’s model does not consider 

the deterioration of buckling loads and results overestimate observed behavior. 

Furthermore, since the solution of the analytical model includes elliptic integrals, it 

entails costly computation.  

 

Nirforoushan (1973) developed a quite similar but simpler model and used it to 

arrive at parameters for his phenomenological model. Singh (1977) also developed a 

model having assumptions similar to those of Higginbotham’s. However, he used 

the energy method in formulating the basic equations and assumed sine curves for 

the deflected shapes of the two beam segments under compression. 

 

Nonaka (1973, 1977) and Gugerli (1982) developed models close to Singh’s model. 

Their models, however, included axial and rotational deformation components at the 

plastic hinge. They solved the beam-column equation directly. The resultant basic 

equations contained trigonometric functions for compressive axial forces and 

hyperbolic functions for tensile forces. 

 

Fujiwara (1979 and 1980) formulated a similar model employing the same 

assumptions for the plastic hinge and the beam segments. 

 

Wakabayashi et al (1974, 1976) developed a more general plastic hinge model. The 

brace model consisted of two flexurally rigid and axially elastic truss bars and an 

inelastic hinge at the center. Since the truss bars were flexurally rigid, complex 

functions were not needed to specify their deflected shape thereby greatly 

simplifying the computations. 

 

Zayas et al (1981) formulated a physical theory brace model using the displacement 

method. Their model included lateral mid-length deflection as a second degree of 

freedom which is removed by elastic condensation during the formulation of the 
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element axial stiffness. The deflected shape of the beam segments was represented 

by cubic Hermitian polynomials (Hilberland, 1956). Based on this idealization, the 

tangent stiffness matrix could be easily formulated. 

Soroushian and Alawa (1991) developed a physical theory model for steel braces. 

The model incorporates simplified theoretical formulations based on some 

assumptions on the experimentally observed physical behavior of steel struts. Some 

semi-empirical techniques were used in the model to account for the partial 

plastification and degradation of plastic hinge under cyclic load, softening and 

yielding along the element length, and possibility of straight element buckling. The 

model uses displacement as input, and involves a limited number of degrees of 

freedom. 

 

Remennikov and Walpole (1997) formulated a brace model using plastic-hinge 

located at the mid-length. Step-wise regression analysis was employed, to 

approximate the plastic condition for steel channel sections. The proposed model 

combines the analytical formulation of plastic hinge behavior under cyclic load, with 

empirical formulae based on a study of experimental data. Also the developed model 

accounts for the Bauschinger effect and the degradation in axial brace stiffness with 

cyclic loading. 

    

Jin and El-Tawil (2003) developed a physical model which accounts for the gradual 

spread of plasticity along the length of the brace and within the cross section, 

simulates the degradation of axial stiffness with cycling, and has no restrictions on 

the boundary conditions. The model is of the distributed macro-type and makes use 

of a bounding surface plasticity model applied at the cross section level to relate 

stress resultants to generalized cross section strains, i.e., centroidal axial strain and 

curvatures. 

 

Dicleli and Mehta (2007) developed a nonlinear structural model to simulate the 

cyclic behavior of steel braces using the nonlinear finite element based software 

ADINA (2004). The model is aimed at simulating the inelastic cyclic behavior of 
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braces for design purposes. The nonlinear cyclic axial force-deformation simulation 

in ADINA is done for braces with box sections. However, the developed nonlinear 

model may be applicable to braces with various sections. The developed model does 

not consider the Bauschinger and the growth effects, but it is very easy to use in 

practice. 

 

1.3   Research Objective and Scope  

 

The main objective of this study is to develop a physical theory model to accurately 

simulate the inelastic cyclic behavior of steel braces including Bauschinger effect, 

growth effect, residual kink as well as brace axial force versus transverse 

displacement relationship. To achieve the above stated objective a physical theory 

model is developed and verified using the available experimental test results on 

brace inelastic cyclic behavior in the literature. The physical theory model 

developed in this study combines the analytical formulation of the plastic hinge 

formed at the vertex of the deformed brace, axial force-axial displacement 

relationship of the brace and axial force-transverse displacement of the brace with 

some semi-empirical dimensionless formulae developed on the basis of available 

experimental data to simulate the Bauschinger and growth effects.  

 

The scope of this study is limited to braces with pin ended connections.  Local 

buckling and low cycle fatigue effects are beyond the scope of this study.  

Consequently, the physical theory model developed as part of this study is more 

suitable for braces with slenderness ratios larger than 80 since local buckling effects 

are generally associated with braces with lower slenderness ratios.   

 

 

1.4   Thesis Outline 

 

Chapter 1 of the thesis contains introductory information, literature review as well as 

research objectives and scope.  
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Chapter 2 investigates the inelastic cyclic behavior of steel braces based on the 

available experimental data. How this behavior is affected by different parameters 

(slenderness ratio, section shape, etc.) is also examined. 

 

Chapter 3 develops the moment-axial force (M-P) interaction relationships for six 

different brace section shapes. The developed M-P interactions are used in the 

analytical formulation of the inelastic cyclic behavior of braces. 

Chapter 4 introduces a general physical theory model to simulate the inelastic cyclic 

behavior of braces. Using this model, analytical formulations for different zones of 

brace axial force-deformation hysteresis is obtained. 

 

Chapter 5 presents a comparison of the analytical hysteresis loops (axial force versus 

axial deformation (P-δ) and axial force versus transverse deformation (P-Δ) curves) 

obtained using the developed analytical model with the corresponding experimental 

data and some of the analytical models available in the literature. 

 

Chapter 6 presents the summary and conclusions obtained from this research study.  
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CHAPTER 2 

 

BEHAVIOR OF BRACES 

 

 

 

2.1    General  

      

Prior to introducing the analytical model, it is important to study the actual 

behavioral characteristics of steel braces in order to identify important features to be 

simulated by the analytical model. These behavioral properties are described below.  

 

 

2.2   Cyclic Axial Load Response 

 

The behavior of axially loaded members is commonly expressed in terms of an axial 

load (P), an axial deformation (δ), and a transverse displacement (Δ), at the mid-

length of the brace as shown in Fig.2.1. The sign convention used throughout this 

study is such that axial tension forces and deformations are positive, and axial 

compression forces and deformations are negative. 

 

 

 

 

 

 

 

 

Fig. 2.1   Deformation of brace under axial load 
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To study the inelastic cyclic behavior of steel braces, the axial force-deformation 

hysteresis can be broken in to six zones as shown in Fig.2.2a. The definition of these 

zones is closely related to the physical interpretation of the behavior.  A typical 

cyclic axial force-deformation behavior of a steel brace is demonstrated in Fig. 2.2b. 

 

 

 

 

 
                              (a)                                                                     (b) 

 

Fig. 2.2   Inelastic axial response of a brace under cyclic axial loading (a) Definition 

of different zones (b) A sample P-δ curve from the experimental data of Black et al. 

(1980) 

 

 

 

2.2.1   Definition of Hysteretic Zones  

 

The first zone shown in Fig 2.2a is generated by monotonically applying a 

compressive strain to a brace from point O to point A. The behavior of this first zone 

depends on the slenderness ratio and initial imperfection of the brace. If the brace is 

sufficiently slender and perfectly straight, the brace buckles elastically. Due to the 
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FE 
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initial imperfection, the brace shows a small amount of lateral deflection as shown in 

Fig.2.1.  

 

Zone 2 is dominated by the inelastic bending of the brace due to the P-Δ moment 

induced by the compressive axial load, P. This zone is characterized by very large 

lateral deflections at the mid-length of the brace and by a plastic hinge in the center 

region of the brace formed at the verge of buckling.   The magnitude of P 

monotonically decreases with the increasing magnitude of the deformation. The 

magnitude of the load must decrease because the P-Δ moment cannot exceed the 

brace’s plastic moment capacity. Cyclic reversal is shown to take place at point B 

where the compressive load is decreased. Immediately after decreasing the 

compressive load, the inelastically strained portion of the brace will again begin to 

behave elastically. 

  

Zone 3 corresponds to elastic unloading and tension loading of the brace. The slope 

of this zone is much smaller than that of Zone 1 due to the large permanent lateral 

deflection at the mid-length of the brace, which results in a curved rather than a 

straight member. 

   

Zone 4 represents a zone of continued elastic bending with the brace lengthening 

while an increasing tensile load is applied. During the application of a tensile force 

of an increasing magnitude, the brace elongates and gradually straightens. This is 

accompanied by an increasing stiffening of the brace due to the gradual reduction in 

the transverse deflection of the brace. During this process, the P-Δ moments rotate 

the initially formed plastic hinge in the opposite sense of direction. 

  

Point E of Fig.2.2a is the point at which the brace is fully straightened. If the tensile 

force were removed at this point, the brace would remain essentially straight and be 

slightly longer than its original length. The internal bending moment is essentially 

zero when point E is reached, and any elongation beyond this point is a purely 

uniaxial elongation. Between points E and F is a plastic uniaxial elongation region 
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for the brace. This zone is characterized by a nearly constant tensile load with 

increasing elongation. If the unloading occurs before point E is reached, then the 

plastic uniaxial elongation does not exist. 

 

Point F in Fig.2.2a is a load reversal point. Thus, zone 5 consists of elastic 

unloading. The elongation decreases linearly with decreasing tensile load, and the 

slope is essentially the same as that of Zone 1. Within the region beyond Point G, 

which is described as Zone 6, the brace is compressed by axial force and buckled 

again at Point H. However, this bucking load is smaller than that of Point A due to 

the Bauschinger effect and the residual kink remaining within the brace if unloading 

at Point E occurs before the axial yield capacity of the brace is reached. 

 

 

2.2.2 Baushinger Effect versus Behavior of Braces  

 

Baushinger effect is a natural property of steel that affects the cyclic axial force-

deformation behavior of steel braces.  After steel has been stressed beyond its elastic 

limit and in to the plastic range, a number of phenomenons can be observed during 

repeated unloading, reloading and stress reversal. First, for the typical stress-strain 

relationship of a steel coupon shown in Fig.2.3, unloading to σ = 0 and reloading to 

the previously attained maximum stress level will be elastic with a stiffness equal to 

the original stiffness, E (modulus of elasticity). Then as also shown in the same 

figure, upon stress reversal to σ = - σy, a sharp corner in the stress strain curve is not 

found at the onset of yielding; instead, stiffness softening occurs gradually with 

yielding initiating earlier than otherwise predicted (Bruneau et al., 1998). This 

behavior is called the Baushinger effect. 

 

 

 

 

 



 21

Baushinger Effect 

Baushinger Effect 

σ 

ε 

-σy 

σy 

E EE

E

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3   Baushinger effect 

 

 

 

Popov and Black (1981) conducted cyclic axial force deformation tests of a steel 

coupon taken from a wide flange steel brace made of ASTM (American Standards 

for Testing Materials) A36 mild steel. The cyclic test results are shown in Fig.2.4. 

As observed from the figure, the Baushinger effect is a function of the cyclic loading 

history.  That is, the softening of the material stiffness (modulus of elasticity) 

increases with increasing number of load reversals. For the cyclic axial force-

deformation relationship of a brace defined earlier, comparing Figs 2.2 and 2.3 it is 

clearly observed that Zones 4 and 6 are affected by the Baushinger effect.  The 

Baushinger effect results in softening of the slope of Zone 4 in the vicinity of the 

transition to Zone 5 and a smaller buckling load (Point H) than that of the initial 

cycle (Point A) due to the softening of the modulus of elasticity.  Further details are 

given in the subsequent sections. 
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Fig. 2.4   Hysteretic curve from a cyclic coupon test (Black et al. 1980) 

 

 

 

2.2.3   Hysteretic Properties of Braces 

     

The most important results from cyclic experiments with braces subjected to 

repeated buckling and stretching relate the applied axial load P to the axial 

displacement δ. The P-δ curves trace out the hysteretic loops. The areas enclosed by 

such curves are a measure of hysteretic behavior and energy dissipation during an 

earthquake. The most important feature of the hysteretic behavior of braces is the 

indication that once a brace had buckled, during subsequent cycles the same 

capacity in compression cannot be reached as shown in Fig.2.5. This reduction in the 

buckling capacity can be attributed to the presence of a residual lateral displacement 

at the mid-length of a brace. Moreover, since the critical section at the mid-length of 

a brace experienced severe stress reversals, the influence of the Bauschinger effect 

on reducing the steel’s tangent modulus becomes pronounced resulting in even 

smaller buckling load levels. However, while during the consecutive inelastic cycles 

the maximum compressive loads tend to decrease, the ability of a member to resist 

tension remains essentially constant regardless of previous cyclic history.   



 23

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5   Deterioration of buckling loads  

 

 

   

In the earlier studies (both experimental and analytical) researchers have identified 

three key parameters that affect the hysteretic behavior of a bracing member. These 

are; slenderness ratio, end condition, and section shape. These three key parameters 

are discussed next.  

 

 

2.2.3.1   Effect of Brace Slenderness      

  

The cyclic response of a component loaded axially in compression depends 

principally on its slenderness. The slenderness ratio (λ) is a function of the brace end 

condition (k), the brace length (L), and the radius of gyration (r). 

 

r
kL

=λ          (2.1) 

 

2.cycle buckling 
       (385 kN) 

1.cycle buckling 
     (445 kN)

Initial buckling 
    (899 kN) 
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Braces are often described as either slender (large λ), intermediate, or stocky (small 

λ). The hysteresis loops for braces with different slenderness ratios vary 

significantly. The hysteretic loops for braces with large values of   Kl/r showed a 

more rapid deterioration in their compressive strengths than those with small values 

of  Kl/r. The ratio of a member’s initial capacity in compression to that in tension is 

similarly a function of the braces slenderness ratio, being larger for the more stocky 

braces. This is evident in the normalized axial load versus normalized axial 

displacement envelope plots presented in Fig.2.6 for braces with slenderness ratios 

equal to 40, 80, and 120. In addition, braces with very small slenderness ratios 

exhibit a buckling behavior very close to the range of plastic action, and braces with 

large slenderness ratios exhibit a buckling behavior very near to that of elastic 

buckling. 

 

 

 

           

 

 

 

 

 

 

 

 

 

 

Fig. 2.6   Hysteretic envelopes for braces with different Kl/r’s (Black et al.1980) 
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2.2.3.2   Effect of End Conditions  

  

The effect of brace end-restraints on the hysteretic behavior of axially loaded braces 

was examined by Black et al (1980). Normalized force-displacement envelopes were 

used to compare the hysteretic behavior of braces with identical slenderness ratios 

but differing lengths due to end conditions. Sample hysteretic envelopes for braces 

with different end condition are presented in Fig.2.7a (I section brace) and Fig.2.7b 

(circular tube brace). From Fig.2.7, the similarity of the hysteretic loops for the two 

cases considered strongly support the extension of the effective length approach to 

other end conditions for evaluating the cyclic inelastic response of bracing members. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

         (a) I-shaped brace response                           (b) Circular tube brace response 

 

Fig. 2.7   Hysteretic curves for braces with different end conditions (Black et al. 

1980) 
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2.2.3.3   Effect of Section Shape  

 

The effect of cross-section shape on the hysteretic behavior of a brace has been 

studied independently by several groups of investigators. Jain et al. (1978) tested 

small tubes of square section, angles and bars of rectangular cross-section. It was 

concluded that differences in the hysteresis loop characteristics of different section 

types can be attributed to their different susceptibility to local buckling; thin walled 

sections being more likely to fail prematurely by early local buckling. Closed 

sections are less likely to suffer torsional buckling, but their strength deteriorates 

faster with cycling because of the distortion of the cross section. Black et al.(1980) 

tested a variety of full sized steel sections (wide-flanges, double angles, T sections, 

pipes and square tubes) with slenderness values equal to 40,80, and 120. It was 

noted that cyclic loading reduces the buckling strength of braces, and that the effect 

of cross section shape on the hysteretic characteristics is most noticeable in small 

slenderness sections where occurrence of local buckling is predominant. Sample 

hysteretic envelopes from Black et al. (1980) for different braces each with a 

slenderness ratio equal to 80, are presented in Fig.2.8a and Fig.2.8b.  

 

 

 

 

 

 

 

 

 

 

 

                     

                         (a)                                                                  (b) 

Fig. 2.8   Hysteretic curves for braces with different cross-section shapes (Black et al 
1980) 
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Furthermore, Gugerli (1982) tested the effect of section shape and scale effect on the 

hysteretic characteristics of rectangular tube and wide-flange sections. It was found 

that the hysteresis loops of both section types were similar but fracture was more 

critical than local buckling in limiting the resistance and energy dissipating capacity 

of the braces. The fracture life of tubes was smaller than that of wide-flanges in 

these experiments. 
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CHAPTER 3 

 

 

DERIVATION OF MOMENT-AXIAL FORCE RELATIONSHIPS 

FOR STEEL BRACE SECTIONS 

 

 

 

The main objective of this chapter is to derive analytical equations defining the 

relationships between the moment and axial force for six different brace section 

shapes used in practice. The derived equations will be used in the next chapter 

within the analytical formulations defining the inelastic cyclic axial force-

deformation behavior of braces.   
  

  

 3.1   Calculation of Reduced Plastic Moment Capacity due to Axial Load 

     

 If a member is subjected to the combined action of bending moment and axial force, 

the plastic moment capacity of the member is reduced from the full value of Mp , 

which is the largest plastic bending moment that the section can carry, to a lesser 

value which is designated as the reduced plastic moment, Mpr, For the calculation of 

Mpr a number of simplifying assumptions are made as follows; 

 

1. Plane sections remain plain. 

2. Member instability (flange local buckling, web local buckling and lateral-

torsinal buckling) is avoided. 

3. The elasto-perfectly plastic model is used for the stress strain relationship of 

steel (Fig.3.1). 
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Fig. 3.1      Elasto-perfectly plastic model for steel. 

 

 

 

The value of the reduced plastic moment Mpr is a property of the cross section. It is 

independent of the slenderness ratio and it is immaterial of the axial force as being 

compressive or tensile for steel.   Fig.3.2 shows the stress-distribution in a 

bisymmetrical section at various stages of deformation caused by axial force and 

moment, as the moment increases. 

 

 

 

                                                                            

 

 

 

 

                           

                         (a)           (b)           (c)           (d)                     (e) 

 

Fig. 3.2   The combined action of M and P 
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When full plastification of the section occurs, a portion of the cross-sectional area 

carries the axial force. Therefore, the stress block on the compression side is larger 

than that on the tension side as shown in Fig.3.2e. Furthermore, as shown in Fig.3.3, 

the total stress distribution may be divided into two parts; a part that is associated 

with the axial load (Fig.3.3c) and another part that corresponds to the bending 

moment (Fig.3.3b). Also note that Fig.3.3b represents the fully plastic moment, Mp. 

Mp can be calculated as follows, 

 

TxCxM p +=          (3.1) 

 

where, C is the resultant compressive force, T is the resultant tensile force, and x is 

the distance between these forces and the axis of symmetry. The second order 

moment, M, which is produced by the axial force about the neutral axis, reduces the 

plastic moment capacity. Thus,  

 

MMM ppr −=         (3.2) 

 

 

 

 

 

 

 

 

 

          (a)                                          (b)                                          (c) 

 

Fig. 3.3   The analysis of the stress distribution 
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In the following sections, the moment-axial force interaction relationships (the 

reduced plastic moment capacity) for various section shapes (W, T, square tube, 

rectangular tube, double-channel, and double-angle) are presented. In pin-pin ended 

braces, buckling occurs about the weak axis of the section so calculations are 

presented only about this axis. 

 

 

3.1.1   W Section  

  

The distribution of fully plastic stresses on the cross-section of a W section is 

demonstrated in Fig. 3.4 below. 

 

 

 
Fig. 3.4   Plastic stress distribution in W section 

 

 

 

For a W section, the compression (C) and tensile (T) force resultants of the stress 

block when the section attains its full plastic moment capacity in the absence of 

axial load are calculated as: 

 

2
ATC yσ==         (3.3) 

 

x

C 

T

P 
2σy 

σy 

σy 

bf /2

dw 

tf 

tw 

x
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where σ, is the yield stress of steel and A is the area of the cross section expressed 

as; 

 

wwff dttbA += 2         (3.4) 

In the above equation, bf, tf, tw, and dw are respectively the width of the flange, the 

thickness of the flange, the thickness of the web and the depth of the web. 

Substituting Eqn. (3.4) in to Eqn. (3.3), 

 

y
ww

ff
dttbTC σ⎟

⎠
⎞

⎜
⎝
⎛ +==

2
       (3.5) 

 

The distance between the forces and axis of symmetry, x, can be calculated as 

follows, 

 

2

424
ww

ff

ww
w

f
ff

dttb

ttd
b

tb
x

+

+
=        (3.6) 

 

Substituting Eqn. (3.5) and Eqn. (3.6) into Eqn. (3.1), the plastic moment capacity, 

Mp, of this section is obtained as; 

 

y
wwff

p
dttb

M σ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

42

22

       (3.7) 

 

For the case where an axial force is also acting on the cross-section, one must 

consider two possible cases for the weak axis bending of W sections; 

1. The effect of the axial force P is confined within the web area 

2. The effect of the axial force P has penetrated into the flange area 
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P 
xo

2σy 
bf /2

dw 

tf 

tw 

3.1.1.1   Axial Force Effect Confined Within the Web Area  

  

Fig. 3.5 below demonstrates the stress distribution on one side of the centroid of the 

cross-section due to the applied axial load. Note that the intensity of the stress block 

is set at 2σy. The moment of this half stress block about the centroid of the cross-

section represents the part of the plastic moment capacity consumed by the axial 

load. This is done to facilitate the calculation of the reduced plastic moment capacity 

of the section. 

 

 

 

  

 

 

 

 

 

 

Fig. 3.5   Axial force effect is confined to web (W section) 

 

 

 

If the effect of the axial force P is only confined to the web area, the relationship 

between the moment and axial force can be calculated as follows (Fig.3.5); 

 

( )fwy tdxP 22 0 += σ         (3.8) 

 

where x0  is a distance that describes whether the axial force is confined within the 

web area or is penetrated into the flanges. The moment, M, of this axial force about 

the axis of symmetry is obtained as:  
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2
0x

PM =          (3.9) 

 

Substituting Eqn. (3.8) into Eqn. (3.9) 

 

( ) yfw tdxM σ22
0 +=         (3.10) 

 

Now, substituting the above equation into Eqn. (3.2), the reduced plastic moment 

capacity of the section is obtained as; 

 

( ) yfwppr tdxMM σ22
0 +−=       (3.11) 

 

Next, the axial yield force, Py is defined as follows; 

 

AP yy σ=          (3.12) 

 

From Eqns. (3.12) and (3.8), x0 can be expressed in the following form; 

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

yfw P
P

td
Ax

220        (3.13) 

 

Substituting Eqn. (3.13) into Eqn. (3.11), the reduced plastic moment capacity of the 

section is obtained as a function of the axial load to yield axial load ratio as; 

 

( ) y
yfw

ppr P
P

td
AMM σ

2
2

24 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−=       (3.14) 

 

It is to be noted that the plastic section modulus, Z is expressed as;  
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x1

P 
xo

2σy 
bf /2 

dw 

tf 

tw 

y

pM
Z

σ
=          (3.15) 

 

Substituting Eqn. (3.15) into the Eqn. (3.14) and rearranging, the following final 

expression for the reduced plastic moment capacity of the section is obtained as 

follows; 

 

( )
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2

24
1 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−=
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M
M

      (3.16) 

 

 

3.1.1.2   Axial Force Effect Penetrated into the Flanges  

    

 If the axial force is penetrated into the flange, a procedure similar to that used in the 

previous section can be applied to calculate the reduced plastic moment capacity of 

the section.  Fig. 3.6 below demonstrates the stress distribution on one side of the 

centroid of the cross-section due to the applied axial load.  This stress distribution 

with an intensity of 2σy is again used to facilitate the calculation of the reduced 

plastic moment capacity of the section due to the presence of the axial load. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6   Axial force effect has penetrated into t flange (W section ) 
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From Fig.3.6  

 

⎟
⎠
⎞

⎜
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The distance between the axial force and axis of symmetry, x1 is expressed as; 

 

2
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The moment, M, which is produced by the axial load is then calculated as follows; 

 

1PxM =          (3.19) 

 

Substituting Eqns. (3.17) and (3.18) into Eqn. (3.19), the moment produced by the 

axial load is calculated as; 
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0        (3.20) 

Substituting Eqns. (3.7) and (3.20) into Eqn. (3.2), the reduced plastic moment 

capacity of the section is expressed as; 
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    (3.21) 

 

Simplifying the above equation, Mpr is expressed as; 

 

( ) yf
f

pr xb
t

M σ2
0

2 4
2
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Now, the axial yield force, Py, of the section is calculated as: 

 

AP yy σ=          (3.23) 

 

From Eqns. (3.23) and (3.17), x0 can be expressed in the following form; 

 

⎟
⎟
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−=
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P
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t
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yf40        (3.24) 

 

Also note that the area of the web, Aw is equal to; 

 

www dtA =          (3.25) 

 

Now, substituting Eqn (3.25) in to Eqn. (3.24), xo is expressed as; 
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Next, substituting Eqn. (3.26) into Eqn. (3.22), Mpr is expressed as; 
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The area of the flange, Af is presented in terms of the section properties as follows; 

 

wfff AAtbA −== 2         (3.28) 

 

From the above equation 
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Substituting Eqn. (3.29) in to Eqn. (3.27), Mpr is expressed as; 
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Finally, substituting Eqn. (3.15) in to the above equation and rearranging, Mpr is 

obtained as follows; 
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3.1.2   Structural T Section  

  

The expressions obtained for the W sections are slightly modified to obtain the 

reduced moment capacity of T sections. It is assumed that the reduced plastic 

moment capacity of a T section about its weak axis is equivalent to that of a W 

section with identical web depth and a flange thickness equal to half of that of a T 

section as shown in Fig 3.7. Thus, replacing the thickness of the flange (tf) by (tf / 2), 

in Eqns. (3.16) and (3.31), the relationships between the moment and axial force 

(reduced plastic moment capacity) for a T section are calculated as; 
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for the case where the axial force is confined within the web and; 
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⎥
⎥
⎥
⎥
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for the case where the axial force has  penetrated into the flanges. 

 

 

 

 

 

  
    

 

 

 

 

 

Fig. 3.7   W and T sections 
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3.1.3   Double Channel Section 

  

The distribution of fully plastic stresses on the cross-section of a double channel 

section is demonstrated in Fig. 3.8 below 

 
 

Fig. 3.8   Plastic stress distribution in double-channel section 

 

 

  

For a double-channel section, the compression (C) and tensile (T) force resultants of 

the stress block when the section attains its full plastic moment capacity in the 

absence of axial load are calculated as: 

 

ATC yσ==          (3.34) 

 

where A is the are of one channel and  expressed as; 

 

wwff dttbA += 2         (3.35) 

 

Substituting the above equation into Eqn. (3.34) 

 

( ) ywwff dttbTC σ+== 2        (3.36) 

s 

tw 

tf 

bf 

x
x

xo

C

T 

P 

2σy 

σy

dw 

σy 
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The distance between the forces and axis of symmetry, x, can be calculated as 

follows, 

  

ffww

f
ff

w
ww

tbdt

sb
tbstdt

x
2

22
2

22
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟

⎠
⎞

⎜
⎝
⎛ +

=      (3.37) 

 

Substituting Eqns. (3.36) and (3.37) into Eqn. (3.1), the plastic moment capacity, 

Mp, of this section is obtained as; 

  

( ) ( )[ ]sbtbstdtM fffwwwp +++= 2       (3.38) 

 

For the case where an axial force is also acting on the cross-section, one must 

consider two possible cases for the weak axis bending double channel sections; 

1. The effect of the axial force P is confined within the web area 

2. The effect of the axial force P has penetrated into the flange area 

  

 

3.1.3.1   Axial Force Effect Confined Within the Web Area 

     

Fig. 3.9 below demonstrates the stress distribution on one side of the centroid of the 

cross-section due to the applied axial load. Note that the intensity of the stress block 

is set at 2σy. The moment of this half stress block about the centroid of the cross-

section represents the part of the plastic moment capacity consumed by the axial 

load. This is done to facilitate the calculation of the reduced plastic moment capacity 

of the section. 
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tw

tf 

bf 

xo P 

2σy 

dw 

s 

 

 

 

 

 

 

 

 

 

Fig. 3.9   Axial force effect is confined to web (Double channel) 

 

 

 

 

If the effect of the axial force P is only confined to the web area, the relationship 

between the moment and axial force can be calculated as follows (Fig.3.9); 

  

 

( )fwy tdsxP 2
2

2 0 +⎟
⎠
⎞

⎜
⎝
⎛ −= σ        (3.39) 

The moment, M, of the axial force about the axis of symmetry is obtained as 

⎟
⎠
⎞

⎜
⎝
⎛ +=

40
sxPM         (3.40) 

 

Substituting Eqn.(3.39) into the Eqn.(3.40) 

 

( )fwy tdsxsxM 2
22 00 +⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ −= σ       (3.41) 

 

Now, substituting Eqn. (3.41) into Eqn. (3.2), the reduced plastic moment capacity 

of the section is obtained as; 
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 ( ) yfwppr tdsxsxMM σ2
22 00 +⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ −−=     (3.42) 

 

Next, the axial yield force, Py is defined as follows; 

 

AP yy σ=          (3.43) 

 

From Eqns. (3.43) and (3.39), x0 can be expressed in the following form; 

 

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+=

yfw P
P

td
Asx

2220        (3.44) 

 

Substituting Eqn. (3.44) into Eqn. (3.42), the reduced plastic moment capacity of the 

section is obtained as a function of the axial load to yield axial load ratio as; 

 

 

( ) y
yfwy

ppr P
P

td
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P
PAMM σ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

222
    (3.45) 

 

Finally, substituting Eqn. (3.15) in to the above equation and rearranging, the 

relationship between Mpr and P is obtained as follows; 
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Z

s
P
P

td
A

P
PA

M
M yfwy

p

pr ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−=
222

1     (3.46) 
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x1 
s 

tw 

tf 

bf 

xo P 

2σy

dw 

3.1.3.2   Axial Force Effect Penetrated into the Flange 

 

 If the axial force is penetrated into the flange, a procedure similar to that used in the 

previous sections can be applied to calculate the reduced plastic moment capacity of 

the section.  Fig. 3.10 below demonstrates the stress distribution on one side of the 

centroid of the cross-section due to the applied axial load.  This stress distribution 

with an intensity of 2σy is again used to facilitate the calculation of the reduced 

plastic moment capacity of the section due to the presence of the axial load. 

  

 

 

 

 

 

 

 

 

 

 

Fig. 3.10   Axial force effect has penetrated into flange (double channel) 

 

 

 

From Fig. 3.10 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+= fwwy tsxdtP

2
22 0σ       (3.47) 

 

The distance between the axial force and axis of symmetry, x1 is expressed as 
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fww

f
w

ww

tsxtd

sxtsxsttd
x

⎟
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⎞

⎜
⎝
⎛ −+

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ +

=

2
2

422
2

22

0

0
0

1      (3.48) 

 

The moment, M, which is produced by the axial load is then calculated as follows; 

 

1PxM =          (3.49) 

 

Substituting Eqns. (3.47) and (3.48) into Eqn. (3.49), the moment produced by the 

axial load is calculated as; 

 

( ) yfwww tsxsxsttdM σ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ −++=

22
2 00     (3.50) 

 

Substituting Eqns. (3.38) and (3.50) into Eqn. (3.2), the reduced plastic moment, Mpr  

is obtained as follows: 

 

( ) yffffpr tsxsxsbtbM σ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ −−+=

22
22 00     (3.51) 

 

Now, the axial yield force, Py, of the section is calculated a; 

 

AP yy σ=          (3.52) 

 

From Eqn. (3.47) and Eqn.(3.52), x0 can be expressed in the following form; 

 

240
s

A
td

P
P

t
Ax ww

yf

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=        (3.53) 

 

Also note that the area of the web, Aw is equal to; 
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www dtA =          (3.54) 

 

Now, substituting Eqn. (3.54) into Eqn. (3.53), x0 can be expressed as; 

 

240
s

A
A

P
P

t
Ax w

yf

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=        (3.55) 

 

 

Next, substituting Eqn. (3.55) into Eqn.(3.51), Mpr is expressed as; 

 

( ) y
w

yf

w

y
fpr A

A
P
P

t
As

A
A

P
PAsbbtM σ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+=

42
2   (3.56) 

 

The area of the flange, Af , is presented in terms of the section properties as follows; 

 

fwf btAAA 4=−=         (3.57) 

 

From the above equation the thickness of the flange, tf  is expressed as; 

 

b
AA

t w
f 4

−
=          (3.58) 

 

Substituting Eqn. (3.58) into Eqn. (3.56), the reduced moment capacity of the 

section is expressed as; 

( ) y
w

w
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y

w
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A
A

A
A

P
P
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A

A
P
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⎥
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⎢
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−
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  (3.59) 
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Finally, substituting Eqn. (3.15) into the above equation and rearranging, the 

relationship between the Mpr and Mp is obtained as follows; 

 ( )
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⎪
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  (3.60) 

   

 

3.1.4   Double Angle Section 

 

The expressions obtained for the double-channel sections are slightly modified to 

obtain the reduced plastic moment capacity of double-angle sections. It is assumed 

that the reduced plastic moment capacity of a double-angle section about its weak 

axis is equivalent to that of a double-channel section with identical web depth and a 

flange thickness equal to half of that of a double-angle section as shown in Fig 3.11. 

Thus, replacing the thickness of the flange (tf) by (tf / 2), in Eqns. (3.46) and (3.60), 

the relationships between the moment and axial force (reduced plastic moment 

capacity) for a double-angle section are calculated as; 
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for the case where the axial force is confined within the web and; 
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  (3.62) 
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 for the case where the axial force has penetrated into the flanges. 

 

 

 
Fig. 3.11   Double-channel and double-angle sections 

 

 

 

3.1.5   Box Section 

 

The distribution of fully plastic stresses on the cross-section of a box section is 

demonstrated in Fig. 3.12 below 

  

 

 
Fig. 3.12   Stress distribution of box sections 
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For a box section, the compression (C) and tensile (T) force resultants of the stress 

block when the section attains its full plastic moment capacity in the absence of 

axial load are calculated as; 

 

2
ATC yσ==         (3.63) 

 

Where A is the area of the box section expressed as; 

 

)(2 dbtA +=          (3.64) 

 

Substituting Eqn. (3.64) into Eqn. (3.63), 

 

 

ydbtTC σ)( +==         (3.65) 

 

The distance between the forces and the axis of symmetry, x, can be calculated as 

follows, 

 

( )tdb

dtddtbt
x

+

+⎟
⎠
⎞

⎜
⎝
⎛ +

= 42
2

22         (3.66) 

 

Substituting Eqns. (3.63) and (3.64) into Eqn. (3.1), the plastic moment capacity, 

Mp, of this section is obtained as; 

 

( ) yp
tddtbtM σ⎥
⎦

⎤
⎢
⎣

⎡
++=

2

2

       (3.67) 

 

For the case where an axial force is also acting on the cross-section, one must 

consider two possible cases for box sections; 
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x0

P 

t

d 
b

2σy 

1. The effect of the axial force P is confined within the web area 

2. The effect of the axial force P has penetrated into the flanges 

  

 

3.1.5.1   Axial Force Effect Confined Within the Web Area 

 

Fig. 3.13 below demonstrates the stress distribution on one side of the centroid of 

the cross-section due to the applied axial load. Note that the intensity of the stress 

block is set at 2σy. The moment of this half stress block about the centroid of the 

cross-section represents the part of the plastic moment capacity consumed by the 

axial load. This is again done to facilitate the calculation of the reduced plastic 

moment capacity of the section. 

  

 

 

 

 

 

 

 

 

 

Fig. 3.13   Axial force effect is confined to the web (Box Section) 

 

 

 

If the effect of the axial force, P is only confined to the web area, the relationship 

between the moment and axial force can be calculated as follows (Fig.3.5); 

 

txP y 04σ=          (3.68) 
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The moment, M, of the axial force P about the axis of symmetry is obtained as; 

2
0x

PM =          (3.69) 

 

Substituting Eqn. (3.68) into Eqn. (3.69) 

 

ytxM σ2
02=          (3.70) 

 

Now, substituting the above equation into Eqn. (3.2), the reduced plastic moment 

capacity of the section is obtained as; 

 

yppr txMM σ2
02−=         (3.71) 

 

Next, the yield force, Py is defined as follows; 

 

AP yy σ=          (3.72) 

 

From Eqns. (3.68) and (3.72), x0 can be expressed in the following form; 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

yP
P

t
Ax
40          (3.73) 

 

Substituting Eqn. (3.73) into Eqn. (3.71), the reduced plastic moment capacity of the 

section is obtained as a function of the axial load to yield axial load ratio as; 

 

y
y

ppr P
P

t
AMM σ

2
2

8 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=        (3.74) 

 

Finally, substituting Eqn. (3.15) into the above equation and rearranging, the 

relationship between Mpr and P is obtained as follows; 
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2
2

8
1 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

yp

pr

P
P

tZ
A

M
M

        (3.75) 

 

 

3.1.5.2   Axial Force Effect Penetrated into the Flanges 

 

If the axial force has penetrated into the flange, a procedure similar to that used in 

the previous sections can be applied to calculate the reduced plastic moment 

capacity of the section.  Fig. 3.14 below demonstrates the stress distribution on one 

side of the centroid of the cross-section due to the applied axial load.  This stress 

distribution with an intensity of 2σy is again used to facilitate the calculation of the 

reduced plastic moment capacity of the section due to the presence of the axial load. 

   

   

 

 

 

 

 

 

 

Fig. 3.14   Axial force effect has penetrated into the flange (box section) 

 

 

 

From Fig. (3.14)  

 

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −= dtdxbP y 2

2 0σ        (3.76) 

 

Distance between the axial force and axis of symmetry, x1 is expressed as; 

2σyt 
P 

x1 
b/2 x0 

d/2
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dtdxb

dxdxbddt
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2

2224
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00

1       (3.77) 

  

The moment, M, which is produced by the axial load is then calculated as follows; 

 

 1PxM =          (3.78) 

 

Substituting Eqns. (3.76) and (3.77) into Eqn. (3.78), the moment produced by the 

axial load is calculated as; 

 

y
dxdxbtdM σ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ −+=

222 00

2

      (3.79) 

 

Substituting Eqns. (3.79) and (3.67) into Eqn. (3.2), the reduced plastic moment 

capacity of the section is expressed as; 

 

( ) ypr
dxbdtbtM σ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+=

4

2
2

0       (3.80) 

 

Note that the thickness, t of the section is equal to; 

 

2
dbt −

=          (3.81) 

 

Substituting Eqn. (3.81) into Eqn. (3.80), the reduced plastic moment capacity of the 

section is expressed as; 

 

ypr xbxbbM σ⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ −= 00 22

       (3.82) 
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Now, the axial yield force Py of the section is calculated as; 

 

AP yy σ=          (3.83) 

 

From Eqns. (3.76) and (3.83), x0 can be expressed in the following form; 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

yP
P

b
A

b
dx

22

2

0         (3.84) 

 

Next, substituting Eqn. (3.84) into Eqn. (3.82), the reduced plastic moment capacity 

of the section is expressed as; 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝
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⎥
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⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
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b
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b
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b
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2222

2222

    (3.85) 

 

Also note that the area A of the box section is expressed as; 

 
22 dbA −=          (3.86) 

From the above equation, the following relationship can be built; 

 
2222 dbAb +=−         (3.87) 

 

Substituting Eqns. (3.86) and (3.87) into Eqn. (3.85), Mpr is expressed as 

 

y
yy

pr P
P

b
Ab

P
PAM σ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠
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⎝
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⎟
⎠

⎞
⎜
⎜
⎝

⎛
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2
1

2
     (3.88) 

 

Finally, substituting Eqn. (3.15) into the above equation and rearranging, the 

relationship between the Mpr and P is obtained as follows; 
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     (3.89) 

 

 

3.1.6   Pipe Section 

 

The distribution of fully plastic stresses on the cross-section of a pipe section is 

demonstrated in Fig. 3.15 below 

  

 

 

                   C 

 

 

 

 

 

Fig. 3.15   Bending effect (Pipe section) 

 

 

 

For a pipe section, the compression (C) and tensile (T) force resultants of the stress 

block when the section attains its full plastic moment capacity in the absence of 

axial load are calculated as; 

  

2
ATC yσ==

        (3.90) 

where A is the area of the cross section expressed as; 

 

rtA π2=          (3.91) 

t 
T

x 

σy 

  
r 

x
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In the above equation r is the radius of pipe. Substituting Eqn. (3.91) into Eqn. 

(3.90) 

 

yrtTC σπ==          (3.92) 

 

The distance between the forces and the centroid of the section is expressed as; 

 

π
rx 2

=          (3.93) 

 

Substituting Eqns. (3.92) and (3.93) into Eqn. (3.1), the plastic moment capacity, 

Mp, of this section is obtained as; 

 

yp trM σ24=          (3.94) 

 

The portion of the plastic moment capacity which is consumed by the axial force 

(Fig. 3.16), P, can be calculated as follows; 

 

 

 

    

 

 

 

 

 

Fig. 3.16   Axial force effect (Pipe section) 

 

 

 

From Fig. (3.16), the axial force P is obtained as: 

x1 
2σy

β 
. 

P
x0 

t 

 r
βα
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yrtP σβ4=          (3.95) 

 

Next, the yield axial force, Py, is defined as follows; 

 

AP yy σ=          (3.96) 

 

From Eqns. (3.91) and (3.92), the angle, β, is expressed as follows; 

 

yP
P

2
πβ =          (3.97) 

 

The distance between the axial force and the centroid is obtained as; 

 

( ) ( )

rtrt

rrtrtr

x
απ

α
ααπ

π
2

sin22

1 −

⎟
⎠
⎞

⎜
⎝
⎛−

=       (3.98) 

 

Simplifying the above equation, x1 is expressed as; 

 

( )[ ]
απ
α

−

−
=

2

sin1
1

rx         (3.99) 

 

The moment, M, which is produced by the axial load is then calculated as follows; 

 

1PxM =          (3.100) 

 

Substituting Eqns. (3.91) and (3.96) into the Eqn. (3.97) 

 

( )[ ]
yrtrM σβ

απ
α 4

2

sin1

−

−
=        (3.101) 
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Also note that, α is expressed as; 

 

βπα −=
2

         (3.102) 

 

Substituting Eqn. (3.102) into Eqn. (3.101), the moment due to the axial load is 

obtained as; 

 

ytrM σβπ
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=

2
sin14 2       (3.103) 

 

Next, substituting Eqn.(3.97) into  Eqn.(3.103), M is expressed as; 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

yP
PtrM

22
sin14 2 ππ       (3.104) 

 

Simplifying the above equation, M is obtained as follows; 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

yP
PtrM

2
cos14 2 π        (3.105) 

 

Substituting Eqns. (3.94) and (3.105) into Eqn. (3.2), the reduced plastic moment 

capacity of the section is expressed as; 

 

y
y

ypr P
PtrtrM σπσ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

2
cos144 22      (3.106) 

 

Simplifying the above equation, Mpr is expressed as follows; 
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y
y

pr P
PtrM σπ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2
cos4 2        (3.107) 

 

Finally, substituting Eqn. (3.15) into the above equation and rearranging, the 

relationship between Mpr and P is obtained as follows; 

  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

yp

pr

P
P

M
M

2
cos π         (3.108) 

 

 

3.2 Comparison of the Moment Axial Force Interaction Relationships 

 

A summary of moment axial force interaction relationship equations derived for 

various sections are given in Tables 3.1 and 3.2 for the cases where the axial force is 

confined within the web and penetrated in to the flanges respectively. Fig. 3.17 

presents the moment-axial force interaction relationships for various section shapes 

with similar cross-sectional areas. The figure is plotted using the normalized 

equations derived above.  
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Fig. 3.17   Moment-Axial Force interaction diagram for various sections 
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Table 3.1   Weak axis bending, P-Mpr interaction relations for different sections 

(Axial force is only confined to the web area) 
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Table 3.2   Weak axis bending, P-Mpr interaction relations for different sections 
(Axial force has penetrated into the flange area) 
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CHAPTER 4 

 

 

ANALYTICAL SIMULATION OF HYSTERETIC BEHAVIOR OF 

STEEL BRACES 

 

 

 

In this chapter, an analytical model is developed to enable the formulation of the 

inelastic buckling behavior of steel braces within each hysteretic zone. The model 

employs (i) a large displacement analysis procedure to account for the second order 

effects due to the presence of axial loads and transverse deformations of the brace 

and (ii) inelastic axial and bending behavior of the brace to simulate the plastic 

hinge formation at the mid-length of the brace upon inelastic buckling. In this study 

it is assumed that the plastic hinge has elasto-perfectly plastic mechanical properties 

and thus, forms instantaneously when the reduced plastic moment capacity of the 

section is attained at the buckling load. Moreover, the analytical model is developed 

for pin-pin ended braces. Thus, it may not be used to accurately simulate the 

inelastic cyclic buckling behavior of braces with other end conditions such as fixed-

pinned or fixed-fixed.  

 

 

4.1   Proposed Analytical Model  

   

In the model, an initial eccentricity, e, is introduced at the end of the brace member 

to produce an initial imperfection that will produce buckling as demonstrated in 

Fig.4.1. Then, a plastic hinge with a moment-axial force interaction capability is 

placed at the mid-length of the brace element. The initial eccentricity is chosen such 

that when the axial load reaches the buckling load Pb of the brace, the reduced 
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plastic moment capacity Mpr corresponding to the buckling load is reached as well. 

Beyond this point, the axial load capacity of the member constantly decreases due to 

the combined effects of second order moments and moment-axial force interaction 

as the member folds.  For the model to work as intended the initial eccentricity must 

be known.  The derivation of this initial eccentricity is outlined in the diction below. 

In the derivation of the analytical equations, compressive loads (e.g. buckling load is 

negative) and axial shortenings are assumed to be negative. 

 

 

 

 

  

 

 

 

 

Fig. 4.1   Brace Buckling Model 

 

 

4.1.1   Derivation of Brace Initial Eccentricity 

     

It is assumed that the deformed shape of the brace prior to buckling can be 

approximated by a sinusoidal function of the form given in Eq. (4.1) and displayed 

in Fig. 4.2 below.  

 

 

 

 

 

 

 

Plastic Hinge 

P

Δ

L

P
e 

Mpr 



 65

Pb 

x

Δ Δb 
e 

L 

Sinusoidal 
deformed shape 

Undeformed shape 

Pb 

 

 

 

 

 

 

 

Fig. 4.2   Approximated deformed shape 

 

 

 

From Fig. 4.2, the transverse displacement (Δ) at a location x from the left end of the 

brace can be expressed as the following form; 

 

⎟
⎠
⎞

⎜
⎝
⎛Δ=Δ x

L
Sinb

π         (4.1) 

 

where, Δb is the maximum transverse displacement at buckling. The displacement, 

Δb, can be calculated using the unit dummy load method (Popov, 1999). 

 

∫=Δ
2/

0

2
L

b dx
EI

Mm         (4.2) 

 

Where, E and I are respectively the modulus of elasticity and moment of inertia 

about the buckling axis of the brace. M is the second order moment at the buckling 

load and m is the moment due to the unit dummy load applied at the location and in 

the direction of the displacement to be calculated. From Fig. 4.3 M is expressed as; 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛Δ+−= x

L
SinePM bb

π        (4.3) 
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1/2 

 

 

 

 

 

 

 

 

Fig. 4.3   Free body diagram for M 

 

 

From Figs. 4.4a and 4.4b the moment, m, due to the unit dummy load is calculated 

as; 

2
xm =           (4.4) 

 

 

 

 

 

 

                           

 

                          (a)                                                                      (b) 

 

Fig. 4.4   (a) Unit dummy load at the center (b) Free body diagram due to the unit 

load. 

 

 

 

Substituting the values of M and m from Eqns. (4.3) and (4.4) into Eqn. (4.2) and 

integrating; 

M

Pb

⎟
⎠
⎞

⎜
⎝
⎛Δ=Δ x

Lb
πsin  

e

x 

L/2 

1 1/2 1/2 
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( )
EI

ePL bb
b 2

22

8
8

π
π Δ+−

=Δ        (4.5) 

 

Thus, from the above equation Δb is obtained as; 

 

e

EI
LP

EI

PL

b

b
b

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=Δ

2

2

2

18
π

       (4.6) 

 

When the axial load is equal to the buckling load, the second order moment at the 

vertex of the brace element is equal to the reduced plastic moment, Mpr, of the brace. 

Accordingly, from Fig. 4.2 the following expression is formulated;  

 

( ) prbb MeP =Δ+−         (4.7) 

 

From the above equation, e is expressed as: 

 

b
b

pr

P
M

e Δ−−=         (4.8) 

 

Substituting Eqn. (4.6) into Eqn. (4.8) and rearranging, e is obtained as follows; 

 

⎟
⎟
⎟
⎟
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PLEI
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e
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b
b

pr

2

2

2

18
1

π

      (4.9) 

 

Note that in the above equations, Pb needs to be taken as negative since it is an axial 

compressive load. 
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4.2   Analytical Formulations 

    

In this section, the brace axial force-displacement relationships are formulated for 

each one of the hysteretic zones defined in Chapter 2. In the derivation of the 

analytical equations for each hysteretic zone, the deformed shape of the brace which 

was earlier assumed to have a sinusoidal shape (Fig.4.2) is simulated by two line 

segments as illustrated in Fig.4.5. Actually, tests conducted by Black et al.(1980) 

confirm that the braces deform in the form of two line segments beyond buckling as 

illustrated Fig.4.6  

 

 

 

 

 

 

 

 

 

 

Fig. 4.5   Approximated sine shape by two linear segments. 
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Fig. 4.6   Deformed braces after the completion of the tests (Black et al. 1980) 

 

 

 

The total axial displacement δ of the brace results from shortening due to bending 

effect (δb) and axial displacement due to the applied axial force (δa).  Accordingly; 

 

 

ba δδδ −=          (4.10) 

 

Note that in the above equation the axial displacement due to the bending effect is 

presented as a negative value, since from the geometry of the brace buckling model 

shown in Fig. 4.5, under compressive or tensile axial load, the axial displacement 

from bending effect is always negative.  

 

The axial displacement due to the axial force is expressed as; 

 

AE
PL

a =δ          (4.11) 
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From the geometry of the deformed brace in Fig. 4.5, the transverse displacement, Δ, 

of the brace can be obtained as; 

 

22

222
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛=Δ bLL δ

        (4.12) 

 

Using the above equation, the axial displacement due to the bending effect, δb, is 

expressed as; 

 

22 4Δ−−= LLbδ          (4.13) 

 

Next substituting Eqns. (4.11) and (4.13) into Eqn. (4.10), the total axial 

displacement, δ, of the brace is obtained as follows; 

 

22 4Δ−+−= LL
AE
PLδ        (4.14) 

 

The above equation will be used to obtain the cyclic axial force-displacement 

relationship of the brace for each hysteretic zone.     

 

 

4.2.1   Zone 1 

 

Zone 1 (Segment O-A, in Fig. 2.2a) is associated with the initial compressive 

loading of a brace which approaches the buckling load at point A. For this elastic 

range, using Eqn. (4.6) for any axial load level, the transverse displacement Δ can be 

obtained as follows; 
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       (4.15) 

 

Substituting the above equation into Eqn. (4.14), axial displacement is expressed as;  
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4.2.2   Zone 2  

   

Zone 2 (Segment A-B, in Fig 2.2a) is dominated by the inelastic bending of the 

brace due to the P-Δ moments generated by the compressive axial load P. The 

magnitude of P monotically decreases with the increasing magnitude of transverse 

deformation as explained earlier in Chapter 2. To satisfy static moment equilibrium 

at the mid-length of the brace, the following relationship must be satisfied in 

reference to Fig.4.5; 

 

( ) prMeP =+Δ−         (4.17) 

 

Solving the above equation, Δ, is obtained as follows; 

e
P

M pr −−=Δ         (4.18) 

 

Next, substituting Eqn. (4.18) into Eqn. (4.14), the axial displacement is expressed 

as; 
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The analytical results obtained for Zones 1 and 2 are compared with the 

experimental results of Black et al. (1980) in Figs. 4.7 and 4.8 for brace # 3 (W 

section, KL/r=80) and 11 (2C section, KL/r=120) respectively. Note that in these 

figures the first loading cycles are compared for Zones 1 and 2. In the figures, axial 

force versus axial displacement as well as axial force versus transverse displacement 

relationships of the analytical and experimental results for the first loading cycles 

are compared. As observed from the figures a fairly good agreement is found 

between the analytical and experimental results. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7   Comparison of experimental and analytical results for Brace 3, Zones 1 

and 2; (a) axial force versus axial displacement, (b) axial force versus transverse 

displacement 
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Fig. 4.8   Comparison of experimental and analytical results for Brace 11, Zones 1 

and 2; (a) axial force versus axial displacement, (b) axial force versus transverse 

displacement 

  

 

 

4.2.3   Brace Growth Effect   

  

Starting from the end of Zone-2, the brace is subjected to elastic unloading and 

tension loading. During this process, the brace elongates gradually and straightens. 

Even though the brace for several cycles is subjected to the same magnitude of 

maximum tensile force which may be less than the yield force, the axial 

displacement continues to increase. This causes a progressive lengthening called 

brace growth. Brace growth effect must be included in the formulation of Zones 3 

and 4 to obtain accurate results for the simulation of the inelastic cyclic axial force-

displacement behavior of steel braces. 

  

(a) (b) 
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Brace growth phenomenon is shown in Fig.4.9. For the first cycle, although the axial 

behavior of the brace excluding the transverse deformation effects is totally elastic, 

there is an apparent translation from Point E', which is the axial displacement of the 

brace excluding the effect of brace growth, to Point E. For the second cycle, the 

brace growth corresponds to the distance from Point F to Point K only. Note that the 

distance between Points E and F is not considered as a growth effect. However, in 

this case, the plastic axial deformation between points E and F can not be fully 

recovered since upon unloading from Point F, the buckling of the brace takes place 

at Point G at an axial load level much smaller than the yield axial force level. This 

phenomenon, although not considered as a growth effect, contributes to the 

permanent elongation of the brace length and can directly be considered in the 

formulation of the axial force-deformation hysteretic relationship of the brace as an 

unrecovered plastic deformation. 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

Fig. 4.9   Brace Growth idealization 
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According to Kahn et al. (1976), Popov et al. (1980), and Goel et al.  (1981), the 

brace growth is proportional to the extent of shortening (S1 or S2 in Fig. 4.9) it 

experienced during previous cycles. Also Popov et al (1981) and Jin and El-Tawil 

(2003) concluded that the brace growth is directly related to the accumulated plastic 

strain energy. This energy depends on the cumulative axial plastic displacement in 

compression and cumulative axial plastic displacement in tension. Since the plastic 

axial displacement in compression is kinematically related to the transverse plastic 

displacement of the brace (Popov, 1981), the brace growth effect is assumed to be a 

function of the cumulative transverse plastic displacement in compression plus the 

cumulative axial plastic displacement in tension. For example in Fig. 4.9, the 

transverse displacement in region A-B is responsible for the growth effect between 

Points E and E' whereas the cumulative transverse displacements in regions A-B and 

G-H and the plastic axial displacement in region E-F are responsible for the growth 

effect between points F and K.  Methods based on the cumulative plastic strain 

energy necessitate extra computational steps to include the growth effect in the 

hysteretic behavior of the braces. Consequently, defining the growth effect as a 

function of the transverse and plastic axial displacements simplifies the 

incorporation of this effect in the hysteretic behavior of the braces.   

 

To include the growth effect in the analytical formulations of Zones 3 and 4, the 

normalized brace growth versus normalized cumulative plastic displacement 

relationships were calculated using the eleven pin-pin ended braces tested by Black 

et al. (1980). The properties of these braces are listed in Table 4.1. The test data and 

computations related to the brace growth effect are given in Appendix A. The 

normalized brace growth, FG, called growth factor thereafter, is defined as the 

difference between the axial displacement, δi, at cycle i and the axial displacement 

δi-1, at cycle i-1 normalized with respect to the elastic displacement, δe, 

corresponding to an axial load range measured from the level of the axial load at the 

end of Zone 2 (P2), to the level of the axial load where the growth is measured at the 

end of Zone 4 (P4). Thus; 
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e

ii
GF

δ
δδ 1−−

=         (4.20) 

 

in  Eqn. (4.20) δe is expressed as; 

 

AE
LPP

e
)( 24 −

=δ         (4.21) 

 

The normalization of the growth effect using such an axial load range is performed 

since the growth effect influences the hysteretic curve between the end of Zones 2 

and 4 as observed from Fig. 4.10. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10   Growth effect between the ends of Zones 2 and 4  
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The normalized cumulative plastic displacement, Dc, is defined as the cumulative 

plastic transverse deformation at the end of the compression cycle (Δ2-Δb) 

normalized with respect to the transverse displacement, Δb, of the brace at buckling 

(just before the plastic rotation at the vertex of the brace is initiated) plus the 

cumulative plastic deformation, δp, in tension normalized with respect to yield axial 

displacement, δy. Thus; 

 

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

Δ
Δ−Δ

=
n

i y

p

b

b
cD

δ
δ2        (4.22) 

 

In the above equation, Δ2 is the transverse displacement at the end of the 

compression cycle (Zone 2) and n is the number of cycles. 

 

The relationships between the growth factor and normalized cumulative plastic 

displacements are plotted in Fig.4.11, Fig.4.12, and Fig.4.13 for three different brace 

slenderness ratios of 40, 80 and 120 respectively. Note that the normalizations are 

performed to obtain a universally applicable relationship between the brace growth 

and cumulative plastic displacements.  
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Table 4.1   Properties of steel braces 

 

Brace 

No 

Brace 

Shape 

σy(MPa) Py(kN) Pbu(kN) L(mm) Kl/r e(mm) Δb(mm)

1 W 8×20 278 1114 423 3810 120 12.2 47.3 

2 W 6×25 291 1375 1170 1550 40 9.2 2.86 

3 W 6×20 277 1050 899 3070 80 2.22 9.3 

4 W 6×20 277 1050 894 3070 80 2.35 9.5 

5 W 6×20 277 1050 676 3070 80 5.9 27.3 

7 W 

6×15.5 

345 1018 894 1480 40 0.7 0.3 

8 2L 6×3 

½ ×3/8 

281 1236 877 2830 80 7.5 17 

11 2C 

8×11.5 

245 1061 467 3000 120 1.5 31 

13 WT 

8×22.5 

288 1238 872 3190 80 8.5 19.5 

15 Pipe 

4×0.237 

327 667 489 3070 80 3.5 15.6 

18 TS 

4×4×0.5 

565 2190 1210 2760 80 1.8 36 
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Fig. 4.11   Normalized growth factor versus normalized cumulative displacement 

relationship for Kl/r =40. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12   Normalized growth factor versus normalized cumulative displacement 

relationship for Kl/r =80. 
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Fig. 4.13   Normalized growth factor versus normalized cumulative displacement 

relationship for Kl/r =120 

 

 

 

A nonlinear logarithmic regression analysis procedure is employed to obtain a 

relationship between the growth factor, FG and the normalized cumulative plastic 

displacement, Dc of the brace. The obtained relationships for three different 

slenderness ratios are presented below;  

 

For slenderness ratio of 40; 

 
04.065.0 cG DF =         (4.23) 

 

For slenderness ration of 80; 

 
57.008.0 cG DF =         (4.24) 

 

For slenderness ratio of 120; 
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35.01.0 cG DF =          (4.25) 

 

To obtain a universal relationship between the growth factor and the normalized 

cumulative plastic displacements of the brace that is applicable at any slenderness 

ratio (e.g. 75, 96) different than 40, 80 and 120, an analytical relationship between 

FG, Dc and KL/r must be formulated. This could be achieved by conducting a two 

dimensional regression analyses of the available data. However, to decide on the 

type curve fitting technique, first, the relationship between the growth factor and the 

slenderness ratio at different normalized cumulative plastic displacement values are 

plotted in Fig 4.14(a) and (b) for Dc=10 and Dc=100 respectively. It is observed that 

the relationship between the growth factor and slenderness ratio at different 

normalized cumulative plastic displacement values are polynomial but not similar.   

  

 

                         (a)                                                                  (b) 

 

Fig. 4.14   Growth factor effect with different cumulative displacements (a) 

normalized cumulative displacement is equal to 10 (b) normalized cumulative 

displacement is equal to 100 
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Thus an adaptive polynomial curve fitting technique is used to obtain the growth 

factor as a function of the normalized cumulative plastic displacement and the 

slenderness ratio. For this purpose, the growth factor is assumed to have the 

following analytical form; 

 
2

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+=

r
Klc

r
KlbaFG        (4.26) 

 

From the above equation and Eqns. (4.23), (4.24) and (4.25), the growth factors at 

KL/r= 40, 80, and 120 are expressed as follows; 

 

( ) ( ) 04.02 67.04040 cDcba =++       (4.27) 

 

( ) ( ) 57.02 08.08080 cDcba =++       (4.28) 

 

( ) ( ) 35.02 1.0120120 cDcba =++       (4.29) 

 

The above equations can be represented in matrix form as follows,  
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04.0

1.0
08.0
67.0

144001201
6400801
1600401

c

c

c

D
D
D

c
b
a

     (4.30) 

 

Using Gaussian- Elimination method (Burden and Faires, 2001), the coefficients, a, 

b and c of the polynomial equation (4.26) are calculated as follows; 

 

 
35.057.004.0 1.008.0367.03 ccc DDDa ×+×−×=     (4.31) 
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40

1.0
2
367.0

2
508.04 35.004.057.0

ccc DDD
b

×−×−×
=     (4.32) 

 

3200
67.08.0.021.0 04.057.035.0

ccc DDD
c

×+×−×
=     (4.33) 

 

 

The experimentally obtained and analytically calculated growth factors are 

compared in Fig. 4.15 for brace 1 (KL/r=120), brace 3 (KL/r=80), brace 7 

(KL/r=40), and brace 13 (KL/r=80). It is observed that the growth factor is simulated 

reasonably well for braces with various slenderness ratios. However, the growth 

factors for braces with slenderness ratios of 80 and 120 are simulated better than that 

of the brace with slenderness ratio of 40.  
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Fig. 4.15    Comparison of experimental and analytical brace growth 
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Note that the coefficients a, b and c are functions of Dc. Thus, Eqn. (4.26) gives an 

exact match to Eqns. (4.23), (4.24) and (4.25) at slenderness ratios of 40, 80 and 120 

respectively.  Using Eqn.(4.26), the relationships between the growth factor FG and 

the normalized cumulative plastic displacement Dc are presented in Fig. (4.16) for 

different slenderness ratios.  It is observed that the growth effect is more pronounced 

at intermediate slenderness ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.16   FG-Dc relations for different slenderness ratios 

 

 

 

4.2.4    Zone  3   

    

Zone 3 is associated with the elastic unloading of the brace. The deformed shape of 

the brace in this unloading stage due to bending effect is demonstrated in Fig. 4.17  

The dashed line shows the deformed shape of the brace at the end of Zone 2, 

whereas the solid line shows the deformed shape of the brace when the compressive 

axial load is dropped to a lower magnitude upon unloading.   
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Fig. 4.17   Deformed brace shape in Zone-3 due to the bending effect 

 

 

 

From the geometry of Fig.4.17, the transverse displacement, Δ, of the brace at any 

axial load level, P, is expressed as; 

 

cΔ−Δ=Δ 2        (4.34) 

 

A mentioned earlier, in the above equation, 2Δ  is the transverse displacement at the 

end of Zone 2 where the unloading starts and cΔ  is the change in the transverse 

displacement due to the effect of unloading. The change in the transverse 

displacement can be calculated using the unit dummy load method (Popov,1999) 

 

∫=Δ
2/

0

2
L

c dx
EI

Mm         (4.35) 

 

To satisfy the static equilibrium of the free body diagram of the already buckled 

brace given in Fig. 4.17, the following expression must be satisfied 

 

( )
c

c Px
L

eM ⎥⎦
⎤

⎢⎣
⎡ Δ−Δ

+= 22
       (4.36) 
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L/2 

1/21/2 

 
m  

 

x 

Where cP  is the change in the axial load level with reference to the axial load, P2, at 

the end of Zone 2 and is expressed as, 

 

2PPPc −=          (4.37) 

 

  

 

 
 

 

 

 

 

 

Fig. 4.18  Free Body Diagram for M 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.19   Unit dummy load at center 
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From Fig.4.19, the unit dummy load moment due to a unit load applied at the vertex 

of the brace is expressed as; 

 

2
xm =        (4.38) 

 

Substituting Eqns. (4.36) and (4.38) into Eqn. (4.35), Δc is expressed as:  

 

( )
dxxPx

L
e

EI c

L
c

c 2
22 2/

0

2∫ ⎥⎦
⎤

⎢⎣
⎡ Δ−Δ

+=Δ      (4.39) 

 

Integrating the above equation, Δc is obtained as; 
  

112
5.1

2

2

+

Δ+
=Δ

LP
EI
e

c

c        (4.40) 

 
Substituting Eqn.(4.37) into Eqn.(4.40) Δc is obtained as a function of the known 

hysteresis parameters as follows; 

 

( ) 112
5.1

2
2

2

+
−

Δ+
=Δ

LPP
EI
e

c         (4.41) 

 
Next, substituting Eqn. (4.41) into Eqn. (4.34), the transverse displacement Δ, is 

expressed as; 

 

 

( ) 112
5.1

2
2

2
2

+
−

Δ+
−Δ=Δ

LPP
EI
e        (4.42) 

 

Substituting Eqn. (4.42) into Eqn. (4.14), the axial displacement, δ of the brace is 

obtained as follows; 
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Zone 3 is affected by the brace growth effect. Thus, this effect must be included in 

Eqn. (4.43).    To distribute the growth effect between the ends of Zones 2 and 4, 

proportional to the level of axial load, the growth factor, FG is first multiplied by the 

elastic displacement δe, at any axial load range P-P2 and then added to Eqn. (4.43). 

Accordingly the axial displacement versus force relationship for Zone 3 including 

the growth effect is defined as follows;   
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Note that Zone-3 ends when the second order moment due to the axial force is equal 

to the reduced plastic moment capacity, prM , of the brace.  The following 

relationship can be used to determine the level of axial load, P3 at which Zone 3 

ends;  

 

( ) prMPe =+Δ 3          (4.45) 

 

 

4.2.5   Zone 4 

 

In this zone, unlike Zone 3, the behavior of the brace is plastic. That is, the product 

of the axial load and transverse displacement again becomes equal to the plastic 

moment capacity of the brace under the applied axial load. The deformed shape of 
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e

Plastic hinge

the brace in this reversed loading stage due to bending effect is demonstrated in Fig. 

(4.20) 

 

 

 

 
 
 
 
 
 
 
 
 

 

Fig. 4.20   Deformed brace shape in zone 4 due to bending effect 

 

 

 

To satisfy static moment equilibrium at the mid-length of the brace within Zone 4, 

the following relationship must be satisfied; 

 

( ) prMPe =+Δ        (4.46) 

 

Solving Δ from the above equation 
  

e
P

M pr −=Δ        (4.47) 

 

Note that when the axial force is equal to the yield force, Py, the reduced plastic 

moment capacity of the brace must become zero due to the moment-axial force 

interaction relationship. Thus, the second order moment must be equal to zero to 

satisfy the state of static equilibrium presented analytically in Eqn. (4.46) when 

P=Py.  However, the presence of the initial eccentricity, e, makes this impossible. 
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For this reason, e must be multiplied by a factor that makes it gradually approach to 

zero at the yield axial load level of the brace. Accordingly Eqn (4.47) is modified to 

satisfy static equilibrium at the yield axial load level as follows;  

⎟
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⎠
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e
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M

y
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Substituting Eqn. (4.48) into Eqn. (4.14) with the growth effect, the following 

expression is obtained that defines the axial force-displacement relationship of the 

brace within Zone 4; 
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The analytical results obtained for Zones 1, 2, 3 and 4 are compared with the 

experimental results of Black et al. (1980) for braces 3 and 11 in Figs. 4.21 and 4.22 

respectively. In the figures, axial force versus axial displacement as well as axial 

force versus transverse displacement relationships of the analytical and experimental 

results are compared. Although for Zones 1 and 2 the analytical and experimental 

results for the first loading cycles are compared, for Zones 3 and 4, the analytical 

and experimental results are compared for loading cycles 3 and 8 of Brace 3 and 11 

respectively.  As observed from the figures a fairly good agreement is found 

between the analytical and experimental results.  It is to be noted that the sharp 

transition from Zone 3 to Zone 4 in the analytical plots results from the elasto-

perfectly plastic moment curvature relationships used in the development of the 

equations.  It is anticipated that this will not have a significant affect on the 

magnitude of the hysteretic energy dissipated per cycle.  However, such a 

simplification facilitates the derivation of the analytical equations for each zone and 

makes the proposed hysteretic model easily applicable in practice.  
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Fig. 4.21   Comparison of experimental and analytical results for Brace 3, Zones 1, 

2, 3, and 4; (a) axial force versus axial displacement, (b) axial force versus 

transverse displacement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  4. 22   Comparison of experimental and analytical results for Brace 11, Zones 

1, 2, 3, and 4; (a) axial force versus axial displacement, (b) axial force versus 

transverse displacement 
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Δ=Δp- Δe 

Sinusoidal shape

Δe 

Δp 

 -Plastic deformation- -Elastic deformation- 

4.2.6   Zone 5 

     

In Zone 5, the brace is unloaded elastically. Within this zone, the transverse 

deflection of the brace decreases to such an extent that the elastic deflections 

become relatively significant in relation to the plastic deflections. Consequently, the 

deformed shape of the brace becomes as shown in Fig.4.23.  This deformed shape 

needs to be considered in the derivation of the equations to simulate the elastic 

unloading of the brace within this zone. The deformed shape of the brace consists of 

a plastic and an elastic part as shown in Fig.4.23 

 

 

 

  

 

 
 
 
 

 
 

Fig. 4.23   Superposition of plastic and elastic parts for the deformed shape in zone 5 
 
 
 
 
 

From Fig. 4.23, the maximum transverse deflection Δ is expressed as; 

 

ep Δ−Δ=Δ          (4.50) 

 

Based on the above equation, the maximum transverse deflection, Δ4, of the brace at 

the end of Zone 4 is expressed as; 

 

444 ep Δ−Δ=Δ         (4.51) 

 



 94

(b)(a) 
Me4

P 

x

x
L

p42Δ

x

Mp4 

P 
e

⎟
⎠
⎞

⎜
⎝
⎛Δ x

Le
πsin4

where, Δp4 and Δe4 are respectively, the maximum plastic and elastic transverse 

displacements at the end of Zone 4.  Using unit dummy load method, the elastic 

transverse displacement is expressed as,  

 

∫=Δ
2/

0
4 2

L

e dx
EI

Mm         (4.52) 

where, 

 

44 ep MMM −=         (4.53) 

 

In the above equation, Mp4 and Me4 are the second order moments due to the plastic 

and elastic parts of the transverse deflections respectively.  

 

 

  

 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4.24    Plastic and elastic second order moments 

 
 
 
 
 

From Fig. 4.24, these second order moments, MΔp4 and MΔe4, are formulated as 

follows; 
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Fig. 4.25   Unit dummy load at center 
 

 
 
 
 
From Fig.4.25, the moment due to the unit dummy load is expressed as; 
 

2
xm =           (4.56) 

 
 
Solving for Δp4 from Eqn. (4.51) and substituting in Eqn. (4.54), Mp4 is expressed as; 
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Substituting Eqns. (4.55) and (4.57) into Eqn. (4.53), the total second order moment 

due to the effect of the axial loading is expressed as; 
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Next, substituting Eqns. (4.56) and (4.58) into Eqn. (4.52), the elastic part of the 

transverse displacement is calculated as follows; 
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In the expression above, Δe4 is at both sides of the equation.  Thus, solving for Δe4, 

the following equation is obtained for the elastic part of the transverse displacement; 
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Next, substituting Eqn. (4.60) into Eqn. (4.51), the transverse displacement of the 

brace is expressed as follow; 
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From the above equation, the plastic part of the transverse displacement Δp4  is 

obtained as; 
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It is to be noted that in Zone 5, the plastic part of the transverse displacement has a 

constant value. Consequently, the plastic transverse displacement, Δp4, at the end of 
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the Zone 4 is equal to the plastic transverse displacement at any applied axial load 

level within Zone 5. That is, 

 

4pp Δ=Δ          (4.63) 

 

Substituting the above equation into Eqn. (4.62), the following expression is 

obtained for the plastic part of the transverse displacement within Zone 5; 
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Then, from Eqn. (4.60), the elastic part of the transverse displacement, Δe, at any 

axial load level is obtained as; 
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Now, substituting Eqns. (4.64) and (4.65) into Eqn. (4.50),the  transverse 

displacement of the brace is obtained as follows; 
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(4.66) 

 

Finally, substituting the above equation into Eqn.(4.14), the axial load-displacement 

relationship of the brace within Zone 5 is expressed as; 
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Δ=Δ5+Δc 

e
P P 

Δc 

Δ5

4.2.7   Zone 6 

 

Within this zone, the axial compressive load is gradually increased from zero to a 

level where buckling is initiated again. In this zone, the buckling load capacity is 

less than the initial buckling load capacity defined in Zone 1. The degradation of the 

buckling load capacity is caused by the Baushinger effect as well as the residual 

transverse displacement of the brace resulting from the plastic hinge rotations during 

the previous cycles. Baushinger effect degrades the initial elasticity modulus, E to a 

smaller value Et with increasing number of cycles.  Therefore, in the derivation of 

the analytical equations to simulate the axial force-deformation relationship within 

this zone, the effect of the residual transverse displacement at the end of Zone 5 and 

the Bauschinger effect in terms of a reduced modulus of elasticity (Et, tangent 

modulus) must be included. 

 

 

 

 

 

 

 

 

 

Fig. 4.26   Deformed brace shape in zone 6 due to bending effect 

 

 

 

From Fig.4.26, the transverse displacement Δ is expressed as; 

 

cΔ+Δ=Δ 5          (4.68) 
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Where 5Δ  is the residual transverse displacement at the end of Zone 5 and cΔ  is the 

change in the transverse displacement of the brace due to the effect of reloading 

starting at the end of Zone 5. The change in the transverse displacement can be 

calculated using the unit dummy load method (Popov, 1999) as follows; 
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Fig. 4.27   Free body diagram for M 
 
 
 
 
 

From Fig.4.27, the second order moment, M, is expressed as;  
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From Fig. 4.20, the moment expression due to the unit dummy load is obtained as;  
 

2
xm =           (4.71) 

 
Now, substituting Eqns. (4.70) and (4.71) into Eqn.(4.69), Δc is obtained as follows; 
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Next, substituting the above equation into Eqn.(4.68), the transverse displacement, 

Δ, is calculated as; 
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Finally, substituting the above equation into Eqn.(4.14), he axial load-displacement 

relationship of the brace within Zone 6 is expressed as 
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4.2.7.1    Formulation of the Tangent Modulus    

   

As observed from Fig.(2.3), the Bauschinger effect produces a degradation of the 

modulus of elasticity within the positive strain-negative stress and the negative 

strain-positive stress regions of the stress strain relationship of steel. It is also a 

known fact that the degradation in the elastic modulus is a function of the previous 

number of axial displacement cycles. Since, buckling load of a brace is a function of 

the tangent modulus of the material, smaller buckling loads are generally obtained at 

subsequent cycles of compression loading of the brace. This effect needs to be 

included in the analytical equations derived for Zone 6. This requires obtaining an 

expression for the elastic tangent modulus, Et as a function of the number of cycles.  
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Accordingly, in this study, it is assumed that the degradation of the elastic modulus 

depends on the normalized cumulative plastic displacement of the brace as in the 

case of the growth effect. Using the experimental data of Black et al. (1980), the 

buckling load Pb at the subsequent cycles following the first cycle of the P-δ curves 

is obtained as a function of Dc. It is noteworthy that as explained earlier the 

reduction in the buckling capacity of a brace is a function of both the residual 

transverse displacement of the brace and the tangent modulus.  Thus, the cycles that 

include the residual transverse displacement effect is excluded from the data used 

for obtaining the tangent modulus as a function of the normalized cumulative plastic 

displacement of the brace. To obtain a relationship between the tangent modulus Et 

and cumulative displacement Dc the following steps are employed. 

  

First, from the experimental P-δ hysteretic curves of the braces tested by Black et al. 

(1980), experimental buckling loads, Pb, at subsequent loading cycles following the 

first cycle are obtained. Then, these buckling loads are substituted in Eqn. (4.18) to 

calculate the transverse displacement at buckling. Following this, Eq. 4.15 is 

rearranged to obtain the tangent modulus of elasticity as a function of the, buckling 

load, the transverse displacement at buckling and the properties of the brace as 

follows; 
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Next, the buckling load, Pb obtained from the experimental data of Black et al. 

(1980), the transverse displacement at buckling, Δb,  the moment of inertia and 

length of the brace are substituted in Eqn.(4.75) to calculate the elastic tangent 

modulus, Et for each load cycle of the axial force-displacement hysteresis of the 

brace.  Next, the ratio, FB=Et/E of the tangent modulus to the elastic modulus is 

calculated and plotted as a function of the normalized cumulative plastic 

displacement, Dc, for all the braces from the tests of Black et al. (1980) considered 
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in this study. The FB=Et/E versus Dc plots for slenderness ratios of 40, 80, and 120 

are shown in Figs. 4.29, 4.30 and 4.31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.28   Tangent elasticity versus cumulative displacement (Kl/r =40) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.29   Tangent elasticity versus cumulative displacement (Kl/r =80) 
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Fig. 4.30   Tangent elasticity versus cumulative displacement (Kl/r =120) 

 

 

 

A nonlinear logarithmic regression analysis procedure is employed to obtain a 

relationship between FB=Et/E and Dc of the braces. The obtained relationships for 

three different slenderness ratios are presented below;  

 

   For slenderness ratio of 40; 

    
12.037.0 −= cB DF         (4.76) 

 

  For slenderness ratio of 80; 

  

 
18.065.0 −= cB DF         (4.77) 

 

   For slenderness ratio of 120; 
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 26.01.1 −= cB DF         (4.78) 

To obtain a universal relationship between FB and the normalized cumulative plastic 

displacements of the brace that is applicable at any slenderness ratio different than 

40, 80 and 120, an analytical relationship between FB, Dc and KL/r must be 

formulated.  For this purpose an adaptive polynomial curve fitting technique is used 

to obtain FB=Et/E ratio as a function of the normalized cumulative plastic 

displacement and the slenderness ratio. Accordingly the FB=Et/E ratio is assumed to 

have the following analytical form; 
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From the above equation and Eqns. (4.76), (4.77) and (4.78), the FB=Et/E ratio at 

KL/r= 40, 80, and 120 are expressed as follows; 
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The above equations can be represented in matrix form as follows,  
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Using Gaussian- Elimination method (Burden and Faires, 2001), the coefficients, a, 

b and c of the polynomial Eqn. (4.26) are calculated as follows; 

 
26.018.012.0 1.165.0337.03 −−− ×+×−×= ccc DDDa     (4.84) 
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3200
37.065.021.1 12.018.026.0 −−− ×+×−×

= ccc DDDc     (4.86) 

 

Note that the coefficients a, b and c are functions of Dc. Thus, Eqn. (4.79) gives an 

exact match to Eqns. (4.76), (4.77) and (4.78) at slenderness ratios of 40, 80 and 120 

respectively.  Substituting Eqn. (4.79) into Eqn. (4.75) and solving for Pb, the 

analytical buckling load is obtained as follows; 
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The ratio of the experimental buckling load to the analytical buckling load 

calculated using the above equation is plotted as a function of the cycle number in 

Fig. 4.31 for various braces taken from the tests of Black et al. (1980). It is observed 

that most of the data has a small dispersion around 1.0.  This indicates a reasonably 

good agreement between the analytical and experimental buckling load.  This also 

validates the accuracy of the FB=Et/E ratio formulated above. Furthermore, using 

Eqn.(4.79), the relationships between the FB=Et/E ratio and the normalized 

cumulative plastic displacement Dc are presented in Fig. (4.32) for different 

slenderness ratios. From the figure, a larger reduction of the elastic tangent modulus 

is observed at smaller Dc and KL/r ratios  and at larger  Dc and KL/r ratios. 
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Fig. 4.31   Experimental and analytical buckling load ratios 
 
 
 
 
 

 

 

 

 

 

 

 

     

 
 
 

 
Fig. 4.32    Et/E versus cumulative displacement 
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transverse displacement relationships are compared. Although for Zones 1 and 2 the 

analytical and experimental results for the first loading cycles are compared, for the 

subsequent zones (3, 4, 5, 6) the analytical and experimental results are compared 

for loading cycles 3 and 8 of Brace 3 and 11 respectively.  A fairly good agreement 

is found between the experimental and analytical results. It is also observed that the 

degradation of the buckling capacity is simulated quite well by the developed 

analytical hysteretic model.  

 

 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.33   Comparison of experimental and analytical results for Brace 3, Zones 1, 

2, 3, 4, 5, and 6; (a) axial force versus axial displacement, (b) axial force versus 

transverse displacement 
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Fig. 4.34    Comparison of experimental and analytical results for Brace 11, Zones 1, 

2, 3, 4, 5, and 6; (a) axial force versus axial displacement, (b) axial force versus 

transverse displacement 
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CHAPTER   5 
 

 
COMPARISION OF ANALYTICAL AND EXPERIMENTAL  

 
RESULTS 

 
 
 
 
 

In this chapter, the developed analytical hysteretic model is verified using the 

experimental cyclic axial force – axial deformation and axial force – transverse 

deformation relationships of the braces tested by Black et al. (1980). Furthermore, in 

order to observe its capabilities compared to other existing models, the analytical 

model developed in this study is compared with the refined physical theory models 

of Ikeda and Mahin (1984) and Jin and El-Tawil (2003) as well as with the   

phenomenological model of Ikeda et al. (1984).    

 

 

5.1     Selection of the Braces for Verification Purposes 

 

Eleven braces were selected from the specimens used by Black et al. (1980) to 

verify the developed analytical model. Since the effective slenderness ratio has been 

shown to be one of the most important parameters affecting the hysteretic behavior 

of braces, the eleven braces were selected to have three different slenderness ratios 

of 40, 80 and 120. Included within the eleven selected braces were six different 

cross-sectional shapes: W, T, pipe, box, double channel, and double angle. A 

common slenderness ratio of 80 was used for specimens with different section types 

to allow for a direct comparison of the results due to the variation in the section type 

of the brace. On the basis of its common use in steel braced frame construction, the 

W section was chosen as a basic shape for the comparison of the analytical results 
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with the experimental ones.  Therefore, six out of the eleven specimens are chosen 

to have W sections. Three of the W sections were W 6×20’s with a commonly used 

slenderness ratio of KL/r = 80. Three additional W sections with the following sizes 

and slenderness ratios were selected; (i) W 8×20, KL/r=120, (ii) W6×15.5, KL/r=40 

and (iii) W6×25, KL/r=40. The other brace sections were; (i) Double-channel, 2C 

8×11.5, KL/r=120, (ii) Double-angle 2L 6×3 ½ ×3/8, KL/r =80, (iii) T, WT 8×22.5, 

KL/r=80, (iv) Pipe, 4×0.237, KL/r=80 and (v) Box, TS 4×0.5, KL/r=80.  

 

 

5.2    Experimental Displacement Histories Applied on the Braces   

 

All the test specimens were subjected to quasi-statically applied cycles of reversed 

axial displacements. These cycles generally resulted in compressive loads causing 

inelastic buckling followed by tensile loads sufficient to cause yielding in the brace. 

Since loading cycles were continued until the axial strength of the specimen was 

exhausted, some braces experienced more cycles than others. Load histories of the 

eleven braces used in this study for verification purposes are presented in Fig. 5.1 

 

 

5.3 Comparison of Analytical and Experimental Results  

 

5.3.1 Comparison of Hysteresis Loops 

 

In this section the analytical axial force-axial displacement and axial force-

transverse displacement hysteresis of the eleven braces are compared with their 

experimental counterparts. The results are presented in Figs. 5.2 – 5.12.  

 

Fig. 5.2 displays the analytical and experimental hysteresis loops of Brace 1. As 

mentioned earlier, this brace is made of a W 8×20 section and has a slenderness ratio 

of 120. As observed from the plots of Fig. 5.2, the analytical hysteresis loops closely 

match their experimental counterparts. Fig 5.3 displays the analytical and 
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experimental hysteresis loops of a similar brace with a section size of W 6x25 but 

with a slenderness ratio of 40 (Brace 2). As observed from the plots of Fig. 5.3, the 

hysteretic behavior of this brace is not simulated as well as the one with a 

slenderness ratio of 120. Especially the analytical growth effect does not closely 

match the experimental one for this particular brace. This is mainly due to the 

dominancy of the local buckling effect in braces with a low slenderness ratio, which 

is not considered in the proposed analytical model,  

 Fig. 5.4 displays the analytical and experimental hysteresis loops of Brace 3. As 

mentioned earlier, this brace is made of a W 6×20 section and has a slenderness ratio 

of 80. Compared to other braces, the hysteresis loops of this brace are quite legible. 

As observed from the plots of Fig. 5.4, the analytical hysteresis loops almost 

perfectly match their experimental counterparts. 

 

Fig. 5.5 displays the analytical and experimental hysteresis loops of Brace 4. Similar 

to Brace 3, this brace is also made of a W 6×20 section and has a slenderness ratio 

of 80. However, this braces experiences two distinct tensile plastic deformations 

following the end of Zone 4 at cycles 4 and 5. As observed from the plots of Fig. 

5.5, the analytical hysteresis loops match their experimental counterparts quite well. 

 

Fig. 5.6 displays the analytical and experimental hysteresis loops of Brace 5 which 

is also made of a W 6×20 section and has a slenderness ratio of 80. However, in the 

case of this brace, the first displacement cycle is applied in tension causing axial 

yielding of the specimen. Due to Bauschinger effect, the buckling load in the first 

compression cycle following this tensile loading cycle is smaller than those of 

Braces 3 and 4 which are identical to this brace (W 6×20 and KL/r=80) as observed 

from the experimental results shown in Fig. 5.6. Comparison of the analytical 

hysteresis loops with the experimental ones reveals that the reduction in the buckling 

load capacity due to the initial tensile loading cycle (Bauschinger effect) as well as 

other parts of the hysteresis loops are analytically simulated reasonably well.  
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Fig. 5.7 displays the analytical and experimental hysteresis loops of Brace 7. This 

brace is made of a W 6×15.5 section and has a slenderness ratio of 40. In this brace, 

the first displacement cycle is also applied in tension causing axial yielding of the 

specimen. Comparison of the analytical hysteresis loops with the experimental ones 

reveals that the buckling load capacity in the first compressive displacement cycle is 

computed reasonably well. Furthermore, the experimental hysteresis loops are 

analytically simulated better than that of Brace 2 which also has a slenderness ratio 

of 40.  This is mainly results from the reduced buckling capacity of Brace 7 due to 

the initial tensile loading cycle causing Baushinger effect to kick in. This 

phenomenon reduced the magnitude of the compression loads in the subsequent 

cycles and hence alleviated the effect of local buckling within the brace. 

Fig. 5.8 displays the analytical and experimental hysteresis loops of Brace 8. This 

brace is made of a double L6×3-1/2× 3/8 built-up section and has a slenderness ratio 

of 80. Fig 5.9 displays the analytical and experimental hysteresis loops of Brace 11. 

This brace is made of a double C 8×11.5 built-up section and has a slenderness ratio 

of 120. As observed from the plots of Figs. 5.8 and 5.9, the analytical model 

proposed in this study simulates the cyclic inelastic behavior of the two built-up 

braces very well. 

 

Fig. 5.10 displays the analytical and experimental hysteresis loops of Brace 13. This 

brace is made of a T8×22.5 section and has a slenderness ratio of 80. In this brace, 

although most of the tensile displacement cycles at the end of Zone 4 reach the yield 

point in tension, a few of these tensile cycles (cycles 9, 11, 13 and 14) stopped 

before tensile axial yielding of the brace takes place. This results in a residual 

transverse displacement (residual kink) within the brace upon the removal of the 

load (i.e at P=0 at the end of Zone 5). This residual kink further reduces the buckling 

capacity of the brace in the subsequent cycle as observed from the experimental 

hysteresis loops presented in Fig. 5.10. The analytical plots presented in the figure 

reveals that the proposed analytical model is capable of successfully simulating the 

reduction of the buckling load capacity of the brace due to the effect of the residual 

kink. 
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Figs. 5.11 and 5.12 display the analytical and experimental hysteresis loops of Brace 

15 and 18. Both braces are made of tubular sections. Brace 15 is made of a pipe 

section O4×0.257 and has a slenderness ratio of 80. Brace 18 is made of a square 

box section TS4×0.5 and has a slenderness ratio of 80 as well. As observed from the 

plots of Figs. 5.11 and 5.12, the analytical model proposed in this study simulates 

the cyclic inelastic behavior of the two tubular braces reasonably well. 

 

 

5.3.2 Comparison of the Hysteresis Envelopes 

  

Because of an infinite variety of cyclic patterns that may be applied to a brace, it is 

convenient to make use of envelops for a family of hysteresis loops obtained at the 

end of the applied displacement history for comparison purposes. This makes a one-

to-one comparison of the analytical and experimental cyclic behavior of the 11 

braces on the same graph possible. Comparison of the experimental and analytical 

envelops are presented Figs. 5.13-5.23. As observed from the figures a reasonably 

good agreement is found between the analytical and experimental hysteresis 

envelopes.  Only a slight discrepancy is observed between the hysteresis envelopes 

within the envelope of Zone 3 and envelope merging the ends of Zone 4.  

 

 

5.4   Comparison of the Proposed Analytical Model with the Available Models 
 

In this section, the analytical model developed in this study is compared with the 

refined physical theory models of Ikeda and Mahin (1984) (Figs. 5.24-5.27) and Jin 

and El-Tawil (2003) (Fig. 5.28) as well as with the   phenomenological model of 

Ikeda et al. (1984) (Fig. 5.29-36).   As observed from the figures, in most cases, the 

proposed analytical model simulates the inelastic cyclic axial force-deformation 

behavior of braces better than those of the existing analytical models considered in 

this study.  
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Fig. 5.1   Displacement Histories 
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Fig. 5.1 (continued)    Displacement Histories 
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Fig. 5.2   Comparison of Analytical and Experimental Curves for Brace 1 (a) Axial 

Force-Axial Displacement  (b)  Axial Force- Transverse Displacement 
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Fig. 5.3   Comparison of Analytical and Experimental Curves for Brace 2 (a) Axial 

Force-Axial Displacement  (b)  Axial Force- Transverse Displacement 
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Fig. 5.4   Comparison of Analytical and Experimental Curves for Brace 3 (a) Axial 

Force-Axial Displacement  (b)  Axial Force- Transverse Displacement 
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Fig. 5.5   Comparison of Analytical and Experimental Curves for Brace 4 (a) Axial 

Force-Axial Displacement  (b)  Axial Force- Transverse Displacement 
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Fig. 5.6   Comparison of Analytical and Experimental Curves for Brace 5 (a) Axial 

Force-Axial Displacement  (b)  Axial Force- Transverse Displacement 
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Fig. 5.7   Comparison of Analytical and Experimental Curves for Brace 7 (a) Axial 

Force-Axial Displacement  (b)  Axial Force- Transverse Displacement 
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Fig. 5.8   Comparison of Analytical and Experimental Curves for Brace 8 (a) Axial 

Force-Axial Displacement  (b)  Axial Force- Transverse Displacement 
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Fig. 5.9   Comparison of Analytical and Experimental Curves for Brace 11 (a) Axial 

Force-Axial Displacement  (b)  Axial Force- Transverse Displacement 
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Fig. 5.10   Comparison of Analytical and Experimental Curves for Brace 13 (a) 

Axial Force-Axial Displacement  (b)  Axial Force- Transverse Displacement 
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Fig. 5.11   Comparison of Analytical and Experimental Curves for Brace 15 (a) 

Axial Force-Axial Displacement  (b)  Axial Force- Transverse Displacement 
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Fig. 5.12   Comparison of Analytical and Experimental Curves for Brace 18 (a) 

Axial Force-Axial Displacement  (b)  Axial Force- Transverse Displacement 
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Fig. 5.13 Comparison of experimental and analytical P-δ and P-Δ envelopes for 
Brace 1 
 
  
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Fig. 5.14 Comparison of experimental and analytical P-δ and P-Δ envelopes for 
Brace 2 
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Fig. 5.15 Comparison of experimental and analytical P-δ and P-Δ envelopes for 
Brace 3 
 
 

 
 
  
 
 
 
 
  
 
 
 
 
 
 
  

 
 
 
Fig. 5.16 Comparison of experimental and analytical P-δ and P-Δ envelopes for 
Brace 4 
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Fig. 5.17 Comparison of experimental and analytical P-δ and P-Δ envelopes for 
Brace 5 
 
  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
Fig. 5.18 Comparison of experimental and analytical P-δ and P-Δ envelopes for 
Brace 7 
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Fig. 5.19 Comparison of experimental and analytical P-δ and P-Δ envelopes for 
Brace 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
  
 
 
Fig. 5.20 Comparison of experimental and analytical P-δ and P-Δ envelopes for 
Brace 11 
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Fig. 5.21 Comparison of experimental and analytical P-δ and P-Δ envelopes for 
Brace 13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Fig. 5.22 Comparison of experimental and analytical P-δ and P-Δ envelopes for 
Brace 15 
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Fig. 5.23 Comparison of experimental and analytical P-δ and P-Δ envelopes for 
Brace 18 
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Fig. 5.24  Comparision of the proposed analytical model with the refined physical 

theory  model of Ikeda and Mahin (1984) and  the test results of Black et al. (1980) 

for Brace 1 
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Fig. 5.25  Comparision of the proposed analytical model with the refined physical 

theory  model of Ikeda and Mahin (1984) and  the test results of Black et al. (1980) 

for Brace 3. 
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Fig. 5. 26  Comparision of the proposed analytical model with the refined physical 

theory  model of Ikeda and Mahin (1984) and  the test results of Black et al. (1980) 

for Brace 7 
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Fig. 5.27  Comparision of the proposed analytical model with the refined physical 

theory  model of Ikeda and Mahin (1984) and  the test results of Black et al. (1980) 

for Brace 18 

 

-1250

-750

-250

250

750

1250

-75 -50 -25 0 25

δ  (mm)

P 
(k

N
)

Analytical

Experimental

IKEDA-MAHIN
(1984)



 137

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.28  Comparision of the proposed analytical model with model of Jın and El-

Tawil (2003) and  the test results of Black et al. (1980) for Brace 15 
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Fig. 5.29  Comparision of the proposed analytical model with the phenomenological  

model of Ikeda et al. (1984) and  the test results of Black et al. (1980) for Brace 1 
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Fig. 5.30  Comparision of the proposed analytical model with the phenomenological  

model of Ikeda et al. (1984) and  the test results of Black et al. (1980) for Brace 2 
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Fig. 5.31  Comparision of the proposed analytical model with the phenomenological  

model of Ikeda et al. (1984) and  the test results of Black et al. (1980) for Brace 4 

 
 
 
 
 
 
 
 

IKEDA ET AL.
(1984)

Experimental

-1000

-500

0

500

1000

1500
-55 -30 -5 20 45

δ  (mm)

P 
(k

N
)

Analytical



 141

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.32  Comparision of the proposed analytical model with the phenomenological  

model of Ikeda et al. (1984) and  the test results of Black et al. (1980) for Brace 5 
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Fig. 5.33  Comparision of the proposed analytical model with the phenomenological  

model of Ikeda et al. (1984) and  the test results of Black et al. (1980) for Brace 7 
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Fig. 5.34  Comparision of the proposed analytical model with the phenomenological  

model of Ikeda et al. (1984) and  the test results of Black et al. (1980) for Brace 8 
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Fig.  5.35 Comparision of the proposed analytical model with the phenomenological  

model of Ikeda et al. (1984) and  the test results of Black et al. (1980) for Brace 13 
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Fig.  5.36 Comparision of the proposed analytical model with the phenomenological  

model of Ikeda et al. (1984) and  the test results of Black et al. (1980) for Brace 15 
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CHAPTER  6 

 
 

CONCLUSION 
 

 

 

This study presents a simple, yet an efficient and a universally applicable physical 

theory model that can be used to simulate the complex cyclic inelastic behavior of 

steel braces. Although, several analytical models have been developed for 

simulating the cyclic inelastic behavior of steel braces, most of these analytical 

models are either developed for a specific brace type or fail to account for certain 

inelastic behavioral characteristics such as degradation of the compressive load 

capacity, progressive lengthening of the brace called brace growth as well as the 

axial force - transverse displacement relationship of the brace. Moreover, some of 

the better analytical models are very difficult to use in practice as they involve 

numerous implicit parameters that require extra computations to define the cyclic 

inelastic behavior of a particular brace.   

 

The developed model incorporates simplified theoretical formulations of the 

inelastic behavior of steel braces. In the analytical model, some semi-empirical 

techniques were used to account for the partial plastification (brace growth) and 

degradation of buckling capacity due to Baushinger effect. The analytical model 

developed in this study is verified by comparing the analytically obtained hysteresis 

loops with their experimental counterparts.  Furthermore, in order to observe its 

capabilities compared to other existing models, the analytical model developed in 

this study is compared with the refined physical theory models of Ikeda and Mahin 

(1984) and Jin and El-Tawil (2003) as well as with the   phenomenological model of 

Ikeda et al. (1984).   Followings are the conclusions derived from this study; 
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• Based on the form of the analytical equations derived in this study to 

simulate the cyclic inelastic behavior of steel braces, it may be concluded 

that the developed analytical model is computationally more efficient than 

many existing models available in the literature. Furthermore, the developed 

analytical model is easier to use in practice than many existing models 

available in the literature since the input parameters of the model are based 

only on the geometric and material properties of the brace. 

• The developed analytical model successfully accounts for brace growth and 

degradation of buckling capacity due to Baushinger effect and residual kink 

present within the brace.  Furthermore, different than the existing analytical 

models, the semi-empirical analytical equations developed to simulate the 

growth and Bauschinger effects in the proposed model are universally 

applicable to steel braces with various section types and slenderness ratios. 

This is achieved by correlating the experimental results to the geometric and 

structural properties of the brace using dimensional analysis techniques.  

• The developed analytical model also accounts for the reduction in buckling 

capacity following an initial tensile yielding of the brace in relation to   

Bauschinger effect.  

• The analytically obtained axial force – axial displacement as well as axial 

force – transverse displacement hysteresis loops compare reasonably well 

with the experimental ones. 

•  Comparing the results obtained from the analytical model developed in this 

study with the results obtained from the refined physical theory models of 

Ikeda and Mahin (1984) and Jin and El-Tawil (2003) as well as with the 

phenomenological model of Ikeda et al. (1984), it is observed that, in most 

cases, the proposed analytical model simulates the inelastic cyclic axial 

force-deformation behavior of braces better than those of the existing 

analytical models considered in this study.  
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APPENDICES 

 
 

DATA USED FOR THE GENERATION OF GROWTH FACTOR 

AND MODULUS ELASTICITY EQUATIONS 

 

 

 

This appendix presents data used to calculate growth factor and modulus of 

elasticity equations for braces. The data is listed in Table. A1-A11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

           Table A1.  Data for growth factor and degraded modulus of elasticity calculatıons for Brace 1   
                

Δ2-Δb δ δe n.δe δi-δi-1 n.(δi-δi-1) n(Δ2-Δb) δp/δy P4 P2 P4-P2 Et/E Dc 
39.0 5.8 3.6 1.6 2.2 0.6 13.4   1375.0 -849.0 2224.0 0.4 19.5 
59.0 8.1 3.4 2.4 2.3 0.8 20.3   1375.0 -670.0 2045.0 0.3 39.8 

104.0 11.4 3.0 3.9 3.3 1.4 35.9   1340.0 -462.0 1802.0 0.2 75.7 
144.0 16.6 2.8 6.0 5.2 2.1 49.7   1340.0 -358.0 1698.0 0.2 125.3 
161.0 16.6 2.2 7.4 0.0 1.5 55.5   1050.0 -311.0 1361.0 0.1 180.8 
195.0 24.4 2.6 9.3 7.8 1.9 67.2   1375.0 -226.0 1601.0   248.1 
205.0 24.4 2.3 10.7 0.0 1.4 70.7   1210.0 -188.0 1398.0 0.1 318.7 

 
 
 
 
 
           Table A2.  Data for growth factor and degraded modulus of elasticity calculatıons for Brace 2   
 

Δ2-Δb δ δe n.δe δi-δi-1 n.(δi-δi-1) n(Δ2-Δb) δp/δy P4 P2 P4-P2 Et/E Dc 
53.7 5.3 3.4 1.6 1.9 0.6 16.3 0.9 927.0 -420.0 1347.0 0.3 21.4 
69.7 6.3 3.0 2.1 1.1 0.5 21.1   898.0 -313.0 1211.0 0.2 42.5 
91.7 8.2 2.8 2.9 1.9 0.8 27.8   890.0 -248.0 1138.0 0.2 70.3 

117.7 9.7 2.7 3.6 1.5 0.7 35.7   897.0 -190.0 1087.0 0.2 106.0 
138.7 11.2 2.7 4.1 1.5 0.6 42.0   925.0 -161.0 1086.0 0.2 148.0 
155.7 12.7 2.7 4.7 1.5 0.6 47.2   946.0 -138.0 1084.0 0.2 195.2 
182.7 15.8 2.7 5.8 3.1 1.1 55.4   981.0 -108.0 1089.0 0.2 250.5 
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             Table A3.  Data for growth factor and degraded modulus of elasticity calculatıons for Brace 3 
 

Δ2-Δb δ δe n.δe δi-δi-1 n.(δi-δi-1) n(Δ2-Δb) δp/δy P4 P2 P4-P2 Et/E Dc 
85.7 7.1 5.5 1.3 1.6 0.3 9.2   1050.0 -310.0 1360.0 0.4 9.2 
106.7 9.6 5.3 1.8 2.5 0.5 11.5   1050.0 -270.0 1320.0 0.3 20.7 
161.7 13.4 5.0 2.7 3.8 0.9 17.4   1050.0 -193.0 1243.0 0.3 38.1 
175.7 17.2 5.0 3.4 3.8 0.8 18.9   1050.0 -193.0 1243.0 0.3 57.0 

 
 
 
 
 
 

            Table A4.  Data for growth factor and degraded modulus of elasticity calculatıons for Brace 4   
 

Δ2-Δb δ δe n.δe δi-δi-1 n.(δi-δi-1) n(Δ2-Δb) δp/δy P4 P2 P4-P2 Et/E Dc 
67.43 6.4 5.82814 1.098121 0.57186 0.098121 7.045977  1050 -389 1439 0.45 11.4 
93.43 9.4 5.556781 1.691627 3 0.593506 9.7628  1050 -322 1372 0.37 21.16 
147.43 14 5.196319 2.694215 4.6 1.002588 15.40543  1050 -233 1283 0.35 36.2 
212.43 21 5.018113 4.18484 7 1.490625 22.19749 0.705 1050 -189 1239 0.31 59.1 
298.43 36 4.977612 7.232384 15 3.047544 31.18391 2.59 1050 -179 1229 0.28 92.87 
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             Table A5.  Data for growth factor and degraded modulus of elasticity calculatıons for Brace 5   
 

Δ2-Δb δ δe n.δe δi-δi-1 n.(δi-δi-1) n(Δ2-Δb) δp/δy P4 P2 P4-P2 Et/E Dc 
135.79 12 4.787256 2.506655 7.212744 1.506655 6.718951  947 -235 1182  21.88 
181.79 14.9 4.59285 3.244173 2.9 0.737518 8.995052  935 -199 1134  38.9 
215.79 17.7 4.641451 3.813462 2.8 0.569289 10.67739  965 -181 1146  49.5 
246.79 21.3 4.637401 4.59309 3.6 0.779627 12.21128  982 -163 1145  61.75 
276.79 25.5 4.856108 5.251119 4.2 0.658029 13.6957 0.564356 1050 -149 1199 0.265 76 
322.79 32 4.783206 6.690074 6.5 1.438955 15.9718  1050 -131 1181 0.25 92 

 
 
 
 
             Table A6.  Data for growth factor and degraded modulus of elasticity calculatıons for Brace 7   
 

Δ2-Δb δ δe n.δe δi-δi-1 n.(δi-δi-1) n(Δ2-Δb) δp/δy P4 P2 P4-P2 Et/E Dc 
50.87 5.3 5.116511 1.035862 0.183489 0.035862 2.969644  1220 -371 1591 0.71 4.93 
79.87 6.7 4.727386 1.417274 1.4 0.381412 4.66258  1177 -293 1470 0.5 13.32 
110.87 7.9 4.489409 1.759697 1.2 0.342423 6.472271  1163 -233 1396  19.8 
135.87 9.2 4.363989 2.108163 1.3 0.348466 7.931699  1149 -208 1357 0.34 27.72 
172.87 11.1 4.280375 2.593231 1.9 0.485068 10.09165  1156 -175 1331 0.33 37.72 
180.87 14 4.302886 3.25363 2.9 0.660399 10.55867  1177 -161 1338 0.31 48.3 
209.87 17.5 4.33183 4.039863 3.5 0.786234 12.25161  1206 -141 1347 0.31 60.53 
230.87 20.3 4.338261 4.679294 2.8 0.63943 13.47752  1236 -113 1349 0.3 74 
254.87 22.3 4.302886 5.182568 2 0.503274 14.87858 0.502755 1236 -102 1338 0.29 89.4 
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          Table A7.  Data for growth factor and degraded modulus of elasticity calculatıons for Brace 8   
 

Δ2-Δb δ δe n.δe δi-δi-1 n.(δi-δi-1) n(Δ2-Δb) δp/δy P4 P2 P4-P2 Et/E Dc 
52.3 4.7 3.934626 1.194523 0.765374 0.194523 2.796791  935 -391 1326 0.57 4.63 
86.3 6.4 3.42722 1.867403 1.7 0.67288 4.614973  870 -285 1155 0.46 9.24 

100.3 9.1 3.548879 2.56419 2.7 0.696787 5.363636  943 -253 1196 0.43 14.6 
145.3 12.5 3.418318 3.656769 3.4 1.092579 7.770053  957 -195 1152 0.4 22.37 
193.3 17.2 3.566682 4.822409 4.7 1.165639 10.3369  1050 -152 1202 0.37 41.5 
231.3 21.4 3.596355 5.950469 4.2 1.12806 12.36898  1090 -122 1212 0.37 53.87 
272.3 25 3.617126 6.911564 3.6 0.961095 14.5615  1100 -119 1219 0.33 68.42 
309.3 28.6 3.640864 7.855277 3.6 0.943713 16.54011  1122 -105 1227 0.31 84.96 
342.3 33.2 3.715047 8.936631 4.6 1.081353 18.30481  1151 -101 1252 0.25 103.27 

 
 

 
 
       Table A8.  Data for growth factor and degraded modulus of elasticity calculatıons for Brace 11   

 
Δ2-Δb δ δe n.δe δi-δi-1 n.(δi-δi-1) n(Δ2-Δb) δp/δy P4 P2 P4-P2 Et/E Dc 
55.5 7.2 5.868116 1.22697 1.331884 0.22697 2.846154  1171 -411 1582 0.46 6.3 
89.5 8.9 5.37107 1.657026 1.7 0.430056 4.589744  1135 -313 1448 0.41 9.15 
127.5 10 4.859186 2.057958 1.1 0.400932 6.538462  1057 -253 1310 0.36 15.7 
169.5 13.3 4.851767 2.741269 3.3 0.683311 8.692308  1107 -201 1308 0.27 24.4 
185.5 17.3 4.948209 3.496214 4 0.754945 9.512821  1150 -184 1334 0.255 33.9 
225.5 22.4 5.00014 4.479875 5.1 0.983661 11.5641  1193 -155 1348 0.255 45.45 
268.5 28 4.989012 5.612334 5.6 1.132459 13.76923  1210 -135 1345 0.255 71.4 
316.5 35 4.99643 7.005001 7 1.392667 16.23077  1238 -109 1347 0.25 102 
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          Table A9.  Data for growth factor and degraded modulus of elasticity calculatıons for Brace 13   
 

Δ2-Δb δ δe n.δe δi-δi-1 n.(δi-δi-1) n(Δ2-Δb) δp/δy P4 P2 P4-P2 Et/E Dc 
115.97 7.2 6.478603 1.111351 0.721397 0.111351 8.265859  667 -194 861 0.49 25.47 
124.97 11.6 6.328113 1.83309 4.4 0.721739 8.907341 0.398498 667 -174 841 0.47 34.8 
177.97 16.2 6.124951 2.644919 4.6 0.811829 12.68496 0.637597 667 -147 814 0.45 48.11 
250.97 23 5.869118 3.918817 6.8 1.273898 17.8881  667 -113 780 0.37 64.8 

 
 
 
 
 
 

          Table A10.  Data for growth factor and degraded modulus of elasticity calculatıons for Brace 15 
 

Δ2-Δb δ δe n.δe δi-δi-1 n.(δi-δi-1) n(Δ2-Δb) δp/δy P4 P2 P4-P2 Et/E Dc 
105.4 6.6 6.282966 1.050459 0.317034 0.050459 6.75641  642 -193 835 0.48 13.98 
114.4 8.1 6.147525 1.2892 1.5 0.238741 7.333333  642 -175 817 0.4 21.32 
152.4 10.7 5.951887 1.703017 2.6 0.413817 9.769231  642 -149 791 0.37 31.1 
164.4 13.24 5.869118 2.107285 2.54 0.404268 10.53846  642 -138 780 0.355 41.624 
222.4 17.8 5.83902 2.833057 4.56 0.725772 14.25641 0.358648 667 -109 776 0.335 56.238 
245.4 23 5.763775 3.660692 5.2 0.827635 15.73077 0.239099 667 -99 766 0.31 72.2 
305.4 27.9 5.568137 4.440578 4.9 0.779886 19.57692 0.537972 667 -73 740 0.31 92.32 
310.4 33.4 5.3725 5.315961 5.5 0.875383 19.89744  667 -47 714 0.31 112 
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    Table A11.  Data for growth factor and degraded modulus of elasticity calculatıons for Brace 18 
 

Δ2-Δb δ δe n.δe δi-δi-1 n.(δi-δi-1) n(Δ2-Δb) δp/δy P4 P2 P4-P2 Et/E Dc 
11.2 4.7 3.853567 1.219649 0.846433 0.219649 1.435897  485 -319 804 0.375 1.44 
61.2 6.6 3.412611 1.934003 1.9 0.714354 7.846154  485 -227 712 0.325 10.16 
72.2 7.6 3.326338 2.284795 1 0.350792 9.25641  485 -209 694 0.275 19.41 

103.2 9.2 3.182548 2.890766 1.6 0.605971 13.23077  485 -179 664 0.25 32.64 
113.2 11 3.134618 3.5092 1.8 0.618434 14.51282  485 -169 654 0.23 47.15 
184.2 16.5 2.986035 5.525722 5.5 2.016522 23.61538  500 -123 623 0.2 97.8 
199.2 20.2 3.043551 6.636984 3.7 1.111262 25.53846  519 -116 635 0.2 123.4 
253.2 25 2.971656 8.412817 4.8 1.775833 32.46154  519 -101 620 0.195 155.8 
299.2 30.5 2.909347 10.48345 5.5 2.070634 38.35897  519 -88 607 0.19 194.15 
337.2 38 2.861417 13.28013 7.5 2.796681 43.23077  519 -78 597 0.19 237.4 
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