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ABSTRACT

RADAR RANGE-DOPPLER IMAGING USING JOINT TIME-
FREQUENCY TECHNIQUES

Akhanli, Deniz
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Glbin Dural

April 2007, 89 pages

Inverse Synthetic Aperture Radar coherently processes the return signal
from the target in order to construct the image of the target. The
conventional methodology used for obtaining the image is the Fourier
transform which is not capable of suppressing the Doppler change in the
return signal. As a result, Range-Doppler image is degraded. A proper
time-frequency transform suppresses the degradation due to time varying
Doppler shift.

In this thesis, high resolution joint-time frequency transformations that can
be used in place of the conventional method are evaluated. Wigner-Ville
Distribution, Adaptive Gabor Representation with Coarse-to-Fine search
algorithm, and Time-Frequency Distribution Series are examined for the

target imaging system.

The techniques applied to sample signals compared with each other. The
computational and memorial complexity of the methods are evaluated and
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compared to each other and possible improvements are discussed. The
application of these techniques in the target imaging system is also
performed and resulting images compared to each other.

Keywords: Inverse Synthetic Aperture Radar, Joint Time-Frequency
Transform, Wigner-Ville Distribution, Adaptive Gaussian Representation,

Time-Frequency Distribution Series
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TUMLESIK ZAMAN-SIKLIK DONUSUMLERI KULLANARAK
RADAR MENZIL-DOPPLER GORUNTULEME

Akhanli, Deniz
Yuksek Lisans, Elektrik Elektronik Mihendisligi Bolimu

Tez Yoneticisi: Prof. Dr. Gllbin DURAL

Nisan 2007, 89 sayfa

Ters Yapay Agiz Aralikl Radar, hedefin goérintisini olusturmak igin
hedeften dbnen isaretleri es evreli olarak isler. Hedefin gorintlst elde
etmek icin kullanilan geleneksel ydontem Fourier déntsimaddr. Fourier
dénlsimi ddénen isaretlerdeki Doppler degisimini bastirma yetisine sahip
degildir. Bunun sonucu olarak menzil-Doppler gorintist bozulur. Uygun
bir zaman-siklik dénlisima zamanla degisen Doppler degisimi sebebiyle

olugsan bozulmay! bastirir.

Bu tez calismasinda, geleneksel metodun yerine kullanilabilecek zaman-
cevrim dondsimleri degerlendirilmistir. Hedef gérintileme sistemleri igin
Wigner-Ville dagiimi, Kabadan Inceye Arama ile Uyarlamali Gabor

Gosterimi ve Zaman-Cevrim Dagilim Siralamalari incelenmistir.
Teknikler o6rnek isaretlere uygulanmigs ve sonuglar Dbirbirleri ile

kargilastiriimistir. Tekniklerin igslemsel ve hafizasal karmasikhdi bulunmus,
sonuglar karsilastinimis ve olasi gelistirmeler &nerilmigtir. Tekniklerin
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hedef goérintileme sistemindeki uygulamalar taklit hedef kullanilarak
gerceklestiriimis ve elde edilen gérintdler birbirleri ile karsilastiriimistir.

Anahtar Kelimeler: Ters Yapay Agiz Aralikh Radar, Tumlesik zaman-
cevrim dbénugstmleri, Wigner-Ville Dagihmi, Uyarlamali Gabor Gdsterimi,

Zaman-Cevrim Dagilim Siralamalari
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All is the same,
Time has gone by,
Someday you come,
Someday you'll die
Somebody has died
Long time ago

C. Pevease
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CHAPTER 1

INTRODUCTION

1.1 Radar Imaging

Radio Detection and Ranging (RADAR) is a system that uses radio waves
to determine and map the location, direction, and/or speed of both moving
and fixed objects such as aircraft, ships, motor vehicles, weather
formations and terrain. It transmits electromagnetic energy to a target and
receives the reflected signal from the target and clutter [1]. From the
received signal, target related information such as location and velocity
can be accurately measured. Therefore, there are many civilian and

military areas where radar is extensively used [2].

In general, radar processes the received signal and extracts information
about the target. The range to the target, i.e., the distance from the radar
to the target measured along the radar line of sight, is estimated by
measuring the time-delay between the transmitted signal and the received
signal. For a moving target, the measurement of the target’s velocity is
based on the well-known Doppler effect. If the radar-transmitted signal is
at frequency f, the reflected signal from the moving target is subject to
Doppler frequency shift from its transmitted frequency, f + fd. This
frequency shift is induced by relative motion between the radar and the
target. In the case where a target has a radial velocity v, the Doppler



frequency shift is determined by the radial velocity of the target and the

wavelength of the radar transmitted waveform [3].

Radar can achieve high resolution in range by employing a high bandwidth
waveform to separate closely spaced radar scatterers on the target [4].
Moreover, by processing the received signal coherently, forming a
synthetic aperture is possible as far as there exists a relative motion
between the radar and the target [5]. Using this fact, resolution in the

dimension perpendicular to the radar’s line of sight can be increased [6].

Synthetic Aperture Radar (SAR) uses this technique in order to achieve
the high resolution. In the SAR case, radar is moving to form the synthetic
aperture. When the target is moving and the radar is stationary, Inverse
Synthetic Aperture Radar (ISAR) uses the Doppler information from the
different scattering mechanism to generate the high-resolution radar

image.

Conventional ISAR imaging, which uses Fourier transform as the imaging
methodology suffers from the image blurring and degradation due to the
time-varying Doppler shifts of the scatterers if the target is not moving
smoothly [1]. Several motion compensation methodologies are introduced
to reduce this blurring and degradation [7], [8].

Another methodology to increase image quality is using joint time-
frequency techniques in place of the conventional transform based
imaging technique. The main advantage of the time-frequency transform
is the instantaneous Doppler frequency shift can be calculated as a
function of time and frequency. Therefore, image degradation due to
Doppler shift of the scatterers are divided into different smaller time

intervals and their effects are limited in the time interval specified by the



time resolution of the joint time-frequency transform [1]. In this thesis, two
high-resolution joint time-frequency transforms are examined and applied
to the ISAR imagery.

1.2 Joint Time-Frequency Transforms

The most important and fundamental variables in signal processing are
time and frequency. Traditionally, signals have been studied either as a
function of time or as a function of frequency [9]. Joint time-frequency
representation, on the other hand, represents the signals in both of the
domains. The signals with time dependent power spectrum can be

represented more powerfully.

The simplest form of the joint time frequency transforms is the Short Time
Fourier Transform (STFT). In STFT, signal is divided into parts in time
domain with a window function and Fourier transform of each part is taken.
However, time and frequency resolutions in this representation are
bounded by well known uncertainty principle. Therefore, obtaining
satisfactory resolution results for signals in general is not possible [9].

Inverse of the sampled STFT is called Gabor expansion. Since the
functions used while analysis and synthesis of STFT is not same,
computing a dual function for Gabor expansion has to be studied. Using
inverse Gabor expansion for infinite signals, generating a compact
representation in joint time-frequency plane is possible with this method
once the synthesis function is computed [10].

Wigner-Ville Distribution (WVD) possess high resolution in both time and
frequency domains. However, if the signal under examination has more

than one time or frequency components, this representation generates



oscillatory interference in between the parts of the signal. This effect is
called cross-term interference and it has no physical meaning. However, it
contributes to the useful characteristics of WVD such as instantaneous

frequency, marginal time and frequency properties [1].

In order to remove the cross-term interference, several methodologies are
proposed. Cohen’s class examines the WVD in ambiguity plane and
applies a kernel function to remove the cross term interference [9].
Adaptive Gaussian Representation (AGR) adaptively determines the
elementary functions to identify the auto-terms [11]. Time Frequency
Distribution Series (TFDS), uses discrete Gabor transform coefficients to
identify the auto-terms on WVD plane and removes the cross-terms that
causes image degradation while leaving the necessary ones in the
representation [12].

In this study, STFT, DGT, WVD, AGR, and TFDS are studied and
explained. Application of the AGR and TFDS to radar imagery is
conducted and results are presented. Time consumed by these two joint

time-frequency transforms is also evaluated and compared.

1.3 Outline of the Thesis

Chapter 2 introduces ISAR image generation and related concepts. After
defining range and cross-range resolution, direct radar imaging technique
is briefly introduced. Conventional method used in the ISAR imaging is
explored by deriving the Doppler resolution, and the mathematical form of
radar return signal is derived and its relationship with Fourier transform is
given. Also step frequency modulated radar and its simulation is basically

given in chapter 2.



In chapter 3, joint time-frequency transforms are explained and evaluated
using some sample signals. After introducing STFT, DGT is explained in
detail. DGT is also one of the steps conducting TFDS. WVD and its
properties are given in this chapter. Following WVD, two methodologies to

remove the cross term interference is given, namely AGR and TFDS.

In chapter 4, applications of joint time-frequency methodologies are
evaluated. After giving several simple examples of conventional imaging
methods, joint time frequency imaging methods applied to two target
models with different motion profiles. Moreover, the analysis for measured
data set for Boeing 727 (B727) type aircraft is conducted. Finally,
comparison of methodologies is given in the last part of this chapter.

Chapter 5 concludes the thesis.



CHAPTER 2

INVERSE SYNTHETIC APERTURE RADAR
IMAGING SYSTEM

2.1 Introduction

This chapter serves as a brief introduction to Inverse Synthetic Aperture
Radar (ISAR) imaging.

2.2 Basic ISAR Theory

The radar sensors respond to electromagnetic waves which are scattered
when the propagation of incident waves is disturbed by the presence of an
object. The physical mechanism can be described as follows: the incident
fields induce currents in the volume bounded by the object to generate
scattered fields, subject to constraints imposed by boundary conditions
[14]. Using this response, radar detects the location of the targets such as

aircrafts, ships and ground vehicles.

Range and cross-range resolution determines the quality of the radar
image [15]. Range resolution can be defined as the ability of resolving
point targets separated in range to the radar [13]. Two adjacent point



scatterers can be differentiated from each other if the reflected radar
pulses from each can be received as two different pulses. Therefore, the
radar range resolution is inversely proportional with the radar pulse width
and directly proportional with the bandwidth of the radar pulse [14]. The

expression for range resolution is given as [13]

where £ is the waveform band width and c is the speed of light.

Cross-range is the dimension perpendicular to the axis of the antenna.
Therefore, cross-range resolution can be defined as the ability of
identifying two different scatterers on the same range. Cross-range
resolution is dependent on the antenna beam width. Figure 2.1 explains
the concept of range resolution. The scatterers located in the beam at the

same time can not be identified as different scatterers.

‘ Antenna
Received as Received as Beamwidth
three paints one point /

|

|

RADAR

Figure 2.1: Cross-range resolution depends on antenna beam width.



Radar image can be defined as the spatial distribution of reflectivity
corresponding to the object [14]. In the most direct form, radar imaging
can be accomplished by using range-gated, short pulse radar with a pencil
beam antenna. The systematic scanning of the volume by the radar beam
and the range gate, radar image can be obtained without further
processing. However, there are several disadvantages of this approach.
First of all, Antenna beam width is inversely proportional to the antenna
aperture size. Therefore, in order to obtain high cross-range resolution
with this method, very large antenna apertures must be used. In addition,
cross-range resolution decreases as the range increases because beam
width also increases with range. Finally, several electromagnetic
interactions are not visible when only a part of the target is illuminated
[14].

Synthetic aperture processing is used in order to overcome those
drawbacks of the direct imaging methods. Spatial resolution can be
increased when results of many observations of the object at different
frequencies and angles coherently combined [14]. Coherent processing
maintains the relative phases of successive radar pulses. Thus, the phase
from pulse to pulse is preserved and a phase correction can be applied to
the returned signals to make them coherent for successive inter-pulse
periods [1].

As long as there is a relative motion between the radar and the target, a
synthetic aperture can be formed [1]. Synthetic Aperture Radar (SAR)
uses synthetic processing techniques when the target is stationary and the
radar is moving. Inverse Synthetic Aperture Radar (ISAR), on the other
hand, does the same thing when the radar is stationary and the target is
moving. ISAR uses the Doppler shift information to obtain the cross-range

resolution. The differential Doppler shifts of adjacent scatterers of the



target can be observed; therefore, the distribution of the target’s reflectivity
can be measured by the Doppler spectra [14]. The distribution of the radar
reflectivity can be measured by taking the Fourier transform over the

observation time interval [3].

2.3 Conventional Range-Doppler Imaging

The conventional imaging on range-Doppler plane is achieved using
Fourier transform. In order to use Fourier transform properly, some
restrictions must be applied. During the imaging time, the scatterers must
remain in their range cells and their Doppler frequency shifts must be
constant [14].

Radar range resolution expression is given as Equation (2.1). Regardless
of waveform, this relationship holds [13]. Cross-range resolution is
improved using Doppler shifts as explained. Therefore, developing the
expression for the Doppler resolution is beneficial. Doppler resolution
refers to the ability of resolving scatterers moving at different radial
velocity.

Assume that radar transmits a pulse of the form,
s, (1) = exp(j27f,t) (2.2)
The return signal from the target which moves with a velocity v, in the

radial direction, will be delayed version of the transmitted signal [14]. The

amount of delay will depend on the range of the target.



2r ()

sp(t) =exp(j27f, (1 - ) (2.3)

By taking the time derivative of the phase of the return signal, one may
calculate the frequency of the signal [14].

2r(t)
8(279000_7))
[ A Y

27 ot c ot c

Therefore, Doppler shift induced by a single scatterer can be written as,

£, =2y 2, (2.5)
c A

where A is the wavelength. Since v, is much smaller than speed of light,

f, is much larger than Doppler shift induced.

In order to derive the Doppler resolution, assume there are two identical

scatterers at the same radial range but moving with different velocities, v,
and v,,. This time let the observation time is T, . Received signal will be

the sum of two responses from two scatterers. In order to resolve the two
scatterers, their response in frequency domain should be identifiable one

by one. Therefore their frequency shifts due to Doppler shifts must be

separated by an amount of 1 as shown in Figure 2.2. Hence, this
N

expression can be referred as Doppler resolution.

Ar, = L
TN
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Figure 2.2: Fourier transform of received signal from two scatterers at same range with
different velocities.

The geometry of the radar imaging of an object is shown on Figure 2.3.

Figure 2.3: Geometry of radar image of an object
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Assume at time t=0, a point scatterer on the target is located at (x,,y,)-

The range of the point scatterer at this time can be calculated as,

— (P22 . JA
1y =(R; +dy +2d,R,sin(®,)) (2.7)
where d, = (32 +y2)"> and ©, = arctan(*" ().
0

Assume radar transmitted signal is a sinusoidal waveform with carrier

frequency f., thatis,

s, () = exp(j27.1) (2.8)

The returned baseband signal is [1], then

2
51 = (g, yo) exp( 24T, f) (2.9)

where p(x,,y,) is the reflectivity of the point scatterer.

If point scatterer has only a translational motion with a velocity of v , at

time t, the range becomes,
rt)=r,+vt (2.10)

If the point scatterer only has a rotational motion with angular rotation rate

of Q,the range at time t becomes,

12



r(t)=(R; +d; +2d,R, sin(®, ))% (2.11)
Assuming R, >>d,, Equation (2.11) can be rewritten as [1]
r(t) =R, + x, sin(Qr) + y, cos(Qt) (2.12)
Therefore, range of the point scatterer with complex motion becomes,
r(t) =R, + vt + x,sin(Qt) + y, cos(Qr) (2.13)

Hence, return signal from the entire target can be represented by
integrating the differential point scatterer response over the entire spatial
domain, [14]

o oo

S(f.0= [ [ pCx yyexp(=j2af

—oo—00

2(R, +v,t+ x,sin(t) + y, cos(Qt))
c

Ydxdy

(2.14)

2R, +v,1)
C

[ [ ot vrexp(-j2ar

—o0—00

)dxdy

=exp(—j27f 2(x, sin(€2r) : ¥, cos(Q1))

The objective of radar image processing is to estimate the target's

2R, +v,1)

reflectivity density function, p(x,y) [1]. If the exp(—j2af ) term is

removed, p(x,y)can be obtained by simply taking the inverse Fourier

transform over the spatial dimensions. Removal procedure of this phase

term is called gross motion compensation.
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The cross-range resolution in this case can be written as [1],
Ar, =—— (2.15)

where T is the observation time.

2.4 Step Frequency Modulated Radar

There are several radar waveforms suitable for radar imaging, such as
impulse waveform, Doppler-chirp waveform and stepped frequency
waveform [15]. The simulations conducted for this study is done using
stepped frequency waveform. Therefore, detailed explanation of the basic
parameters of step frequency modulated radar and their relationship with
radar resolution concept will be beneficial.

Step frequency modulated radar transmitted pulse waveform can be
represented as,

5,(1) = cos(f, +iAf ) w(t) (2.16)

Where f, is carrier frequency, Afis frequency step size, i is the pulse

index ranging from zero to number of pulses used, and window

function w(z) is defined as,

1, ~Le<L
w(t) = 2 2 (2.17)

0, otherwise

14



The stepped frequency modulated radar transmits N bursts that are
composed of M pulses over an integration time. Figure 2.4 shows the

frequency of pulses on each bursts.

fregquency

EEEEEE .
) eEEEE———

.-.-.-,‘

=k

L "

uuuuuu

Figure 2.4: Frequency of pulses over the integration time

The bandwidth of the stepped frequency modulated radar can be derived
from the explanation above. Since each frequency of each consecutive
pulse in a burst is increased by an amount of Af, and there are M pulses

in a burst, bandwidth of the radar becomes S =MAf . Therefore range

resolution offered by a stepped frequency modulated radar is, [1]

- C
VALY (2.18)
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In stepped frequency modulated radar, each consecutive pulse is
transmitted after an interval, which is called Pulse Repetition Interval

(PRI). Pulse Repetition Frequency (PRF) can be defined as PRF =%’RI'

Therefore, image integration time, or observation time, can be calculated
as the product of PRI, number of pulses, and number of bursts. As
mentioned before, observation time directly affects the cross-range

resolution. The formulation for cross-range resolution for step frequency
. _ﬂ’ . .
modulated radar is AFCV_AQMNPRI' Figure 2.5 illustrates the step

frequency modulated inverse synthetic aperture radar imaging of a moving

target.
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Figure 2.5: Stepped-frequency ISAR imaging of a moving target [9]
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2.5 ISAR Data Simulation

Man-made targets have a large variety of backscattering properties.
Discontinuities are scatterers whose effective extends are relatively small
in terms of the wavelength so that they essentially act as fixed point
scatterers. Smooth extended surfaces are flat or rounded plates on the
vehicle. If the surface happens to be illuminated at its broadside aspect, it
will generate a huge return. Cavity type reflectors like exhaust of an
engine duct of a fighter aircraft, generates multiple delayed returns which
spread in range and Doppler [16].

The target modeled with a set of point scatterers or scattering centers,
described by their reflectivity and locations in the target coordinate system.
The term reflectivity has been used to refer to the amplitude and phase of
the echo response at a given viewing angle for a given set of radar
parameters. This coordinate system embedded on the target, its origin is
the geometric center of the target. Although it can not represent the many
real life situations, the point scatterer model is simple and helpful for
studying algorithms of image formation, auto focusing, motion
compensation and the effect of target motion on ISAR images. In the
simulation radar is located at the origin of the Earth centre Earth fixed
(ECEF) coordinate system. In other words, radar is considered stationary
all the time as ISAR theory suggests. Figure 2.6 shows an aircraft model

composed of point scatterers.
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The procedure of simulation for a stepped frequency ISAR raw data
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Figure 2.6: A point scatterer aircraft model

generation can be summarized as follows [15];

Step 1: Select radar parameters (center frequency, frequency step size,

PRI, number of pulses, number of bursts, etc)

Step 2. Select a point scatterer model for the target. (Locations of the

point scatterers and their individual reflectivities)

Step 3: Select target motion parameters (initial position, velocity etc.)
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Step 4: Transmit the radar signal repeatedly, update the target position,

and calculate the return signal

Step 5: Arrange the return signals into a matrix of size number of bursts by

number of pulses

Step 6: Perform the gross motion compensation

After gross motion compensation step, the data can be applied to the
radar imaging algorithms.

19



CHAPTER 3

JOINT TIME-FREQUENCY TRANSFORMATIONS
FOR RADAR IMAGING

3.1 Introduction

In this chapter, several joint time frequency transforms are introduced and
discussed. Although it can not meet many necessities such as resolution,
instantaneous frequency, etc, short time Fourier transform is examined in
detail because it gives the basic understanding of joint time frequency
analysis of signals. Inverse of sampled short time Fourier transform or
discrete Gabor transform is discussed next. Discrete Gabor transform is
one of the fundamental steps of conducting time frequency distribution
series analysis of a signal, which is explained in detail in the last section of
this chapter. After discrete Gabor transform, Wigner-Ville distribution is
explained. Apart from time frequency distribution series, adaptive
Gaussian representation is also examined in this chapter as a means of
suppression of cross-term interference generated by Wigner-Ville
distribution.

Each time-frequency transform is exemplified with several sample signals.
Sample signal no. 1 is composed of sum of three sinusoidal functions at
frequencies 1 kHz, 2 kHz and 7.7 kHz. Sample signal no. 2 is sum of
sinusoidal functions like sample signal no.1. Two impulses added to this
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functions at 2 msec and 4 msec. Sample signal 3 is only two impulses with
hit times of 2 msec. and 3.6 msec. All the three signals have 128 samples
and sampling interval for these signals is 0.04 msec. These signals are
selected due to their extreme time-frequency characteristics. In addition to
those three signals, sound of bat is also examined with some of the
transformations explained. This signal has nonlinear frequency changes
and has a sampling interval of 7 microseconds. The data is obtained from
http://www-dsp.rice.edu/software/TFA/RGK/BAT/batsig.sig. Time plots of
the sample signals and the bat signal are given in Figure 3.1 and 3.2,
respectively.

magnitude
magnitude

Figure 3.1: (a) Sample signal No.1 (b) Sample Signal No. 2
(c) Sample Signal No. 3
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Figure 3.2: Bat Signal

3.2 Short Time Fourier Transform (STFT)

In regular Fourier transform, the signal under examination is compared
with the complex sinusoidal functions which spread into the entire time
domain and therefore not concentrated in time domain. As a result of this
fact, Fourier transform does not explicitly indicates how the signal evolves
in time although this information is hidden in the phase term. In order to
overcome this problem, one may decide to use functions which are
localized in both time and frequency domains simultaneously instead of
complex sinusoidal functions. The idea can be formulated as follows; [23]

STET (t,w) = js(r);/;ﬁw(r)dr = js(r)y*(r—z)e*ﬁ”dr (3.1)

There are several ways to understand the Equation (3.1). The equation

formulates a regular Fourier transform of the signal s(z)y (r —t). Assuming
the window function y has a short time duration, by moving the window

function and taking Fourier transforms, one can obtain a rough idea of how
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the signal’s frequency content changes with time. The Figure 3.3 depicts

the idea.
sif)
1t) .
fime
-
\/ Y S |
& = E
Y Y Y
_ A
9
B =STFT
=
g time
L -

Figure 3.3: STFT operation.

Alternatively, one can interpret the equation under examination as follows;

the signal s(r) is compared with a set of elementary functions
y (t—t)exp{-jwr} that are concentrated in both time and frequency
domains. Suppose that the function s(z) is centered at +=0 and its

Fourier transform is centered at w=0. If the time duration and frequency

bandwidth of s(z) are A, and A, then STFT(t,w) in (3.1) indicates a

signal's behavior in the vicinity of [t—A ,r+A, |x[w—A ,w+A ] [23].

w?
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Unfortunately, A, and A are bounded to each other by the well-known

uncertainty principle [23]. That is,

AA, >— (3.2)
The equality holds when y(¢) is a Gaussian function. A function h(r) that

satisfies the following differential equation also satisfies the uncertainty
principle with equality [23], [28].

4 h(t) = kth(t) (3.3)
dt

A simple solution to this differential equation is,

_kp
2

h(t) =ce (3.4)

The window function must be of a unit norm function in order not to disturb
the signal under examination. This fact injects another constraint besides
uncertainty principle, which helps to find out the constant c. This constraint

can be formulated as follows;
E, = j Ih(e)"dr =1 (3.5)
Therefore, optimum window function to evaluate STFT is [28],

h(r) =4 %e ol (3.6)
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The square of STFT is named STFT spectrogram. It depicts a signal’s

energy distribution over time-frequency domain.
Synthesis problem for STFT can be analyzed as follows;

Taking the inverse Fourier transform with respect to STFT(¢,w) in

Equation (3.1) yields,

1 e _ 1 j(u—-7)o
- [STFT(t,w)e do=—- [[ sz -t)ededw 67)

= [s(e)n(z - t)S(u—7)dz = s(u) r(u—1)

Let u =1 then,

1

=200

j STFT (t,w)e™“dw (3.8)

Which implies given STFT(t,w) for all @ and r the signal s(t) can be

recovered completely.

For the digital signal processing application, it is necessary to extend the
STFT framework to discrete time signal. Each Fourier transform in the
STFT has to be replaced by the discrete Fourier transform. The resulting
STFT is discrete in both time and frequency [23].

STFTlk.n]= S slipli -kl (3.9)

i=0

The sample signal no. 2, which is shown in Figure 3.1, is analyzed with

two different window functions for the demonstration of STFT. Both
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windows are same length Gaussian windows with unit energy. However,
their variances are different as shown in Figure 3.4. The first window has a
small variance in time domain and as a result it has a large variance in
frequency domain. Therefore, STFT computed using this window is
capable of resolving the time changes better. The result of the STFT
analysis is shown in Figure 3.5. The impulses can be identified from the
figure. The second window has large time variance, therefore its time
resolution is suffering. However, unlike Figure 3.5, Figure 3.6 has good
frequency resolution and two sinusoidal functions can be identified
precisely.

window function 1
DB T T T T T T

06+ A

0.4+ .

ragnitude

0.z

samples

window function 2
D2 T T T T T

015 .

0.1+ A

magnitude

0.08 .

samples

Figure 3.4: Gaussian windows used in the computation of STFT
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Figure 3.5: STFT of sample signal 2 with the 1* window function of Figure 3.4
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Figure 3.6: STFT of sample signal 2 with the 2" window function of Figure 3.4
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3.3 Discrete Gabor Transform (DGT)

In 1946, Dennis Gabor suggested to represent a signal in time-frequency
plane by means of functions that occupies the smallest possible area on
the plane [29]. The idea of Gabor can be formulated as follows [23]:

oo oo oo oo

> > C,,h(t—mT)e™ (3.10)

M=—o0 N=—c0 M=—00 N=—c0

B2y
=
I
g
g
_30

3
=
3
=
I

where T is time-sampling interval and Q is frequency-sampling interval.
For almost any signal h(t), its time-shifted and frequency modulated

version can be used as Gabor elementary functions. The existence
condition of Equation (3.10) for arbitrary signal h(z) is [24],

TQ<27 (3.11)
TQ =27 is called critical sampling and TQ < 2ris called over-sampling.

If the set of Gabor elementary functions {h,,,}is complete, there exists a

dual function #(t) such that the Gabor coefficients can be computed by

the regular inner product rule [23]. That is,
C,nr = [ s(1)7,,, ()t =[ s(1)y' (t—mT)e ™ dt = STFT(mT,nQ) (3.12)
As it can be seen from Equation (3.12), Gabor coefficients can be

computed using STFT in which dual function y(r) used as window. Hence,

discrete Gabor expansion is also named as inverse sampled STFT.
However there are several difficulties related with the computation and the
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time-frequency localization of the dual function. Although for continuous
time STFT analysis and synthesis functions are same, it is not the case for
sampled STFT representation. Unfortunately, Balian-Low theorem states

that h,, ,(t) do not form an orthogonal basis unless h(t) is badly localized
in time or frequency [1]. This means, unlike Fourier transform, dual
function y(t)is not equal to h(t). Therefore, ¥(t) is not necessarily
localized both in time and frequency as h(t). As a consequence, Gabor
coefficients C,, , may not reflect the local behavior of the signal [23]. Figure
3.7 shows a window and its dual function at critical sampling. Although the

window is concentrated in frequency and in time, its dual is concentrated

neither in time nor in frequency.

25 T T T T T T

181 -

05r -

magnitude
[}
1

N5k m

_25 | 1 1 1 | 1
1]

samples

Figure 3.7: Gaussian type curve is the analysis window. The other is its dual at the critical

sampling.
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Several methodologies were developed to implement discrete Gabor
expansion, such as filter bank methods [20], Zak-transform based
methodologies [21], [22], pseudo-frame approach [23] and the approach
introduced by Bastiaans [24], [25] which is expanded by Wexler and Raz
[26] and later by Qian and Chen [24] Following treatment explains the last

methodology mentioned above.

Substituting Equation (3.12) into right side of the Equation (3.10) yields,

S =[S() Y D 7, (), (O (3.13)

M=—c0 N=—0c0

In order to satisfy the Equation (3.13), the following equality must hold.

S S Y (B (1) = S(t— 1) (3.14)

M=—c0 N=—c0

Applying Poisson-sum formula, the Equation (3.14) is reduced to single

integration which is called Wexler-Raz identity [26].

TS [ Ayt - mT,)e" dt = 5(m)s(n)
2r
(3.15)
where T, = 27[9 and Q, = 27%-

For periodic discrete time signals, Gabor expansion can be defined by
sampling the Equations (3.10) and (3.12) [23]
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<

SINeT
§lk1=Y_> C,, ,hik— mAM]e* N/t (3.16)

0 n=

3
if

Cpn = D SIKIFTk — mAM]e "Nt (3.17)

Applying a similar procedure as done in the continuous case and applying
discrete Poisson-sum formula one may obtain the discrete version of

Wexler-Raz identity or the discrete version of Equation (3.15) [23], [26],

fh’[m mN]e 2™ 5[] = %5[m]§[n] (3.18)

k=0

where 0<n<AM and 0<m<AN. The equation can be rewritten in the

matrix form as following,

H ot Vixa = M

(3.19)
My = (1,0,0....0)"
where p=AMAN and the matrix entries are generated by
H(mAM + n,i) = A[i + mN]e 2™t (3.20)

0<m<AN,0<n<AM, 0<ij<L

For critical sampling, solution of Equation (3.19) is unique if matrix H is
nonsingular and as stated before it is not concentrated in both frequency
and time domains. However, at oversampling the system s

underdetermined and there exists more than one solution for y(¢) [24].

One can impose additional constraint for the selection of dual functions

produced by the underdetermined system as follows [26], [24].
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2

(3.21)

A
I'= min |[-———A[i]
| 7]

VHY =u

Above constraint dictates a selection of a normalized y(r) which is most
similar to A[i]. Since, h[i] is expected to be localized in time and
frequency, the function y(r) which is most similar to A[i] is also localized

and therefore Gabor coefficients reflects the local behavior of the signal. In

[24], the dual function selected in this manner is called y(r),, and the

opt
resulting representation of the signal by Gabor coefficients is called

orthogonal-like Gabor representation.

The detailed treatment to Equation (3.21) can be found at [26] and [24]. If
matrix H is full row rank, resulting equation is [24],

Yo =H'(HH") " 1t (3:22)

which is the pseudo-inverse of matrix H.

Once optimum dual function is found, it is rather trivial to compute the
Gabor coefficients using Equation (3.12). Details of this computation can
be found at [23], [24].

Figure 3.8 (a) shows an analysis function with length of 128 samples that
is used in periodic Gabor expansion. Figure 3.8 (b) shows the dual of the
function generated with intent to analyze a function of same length using
periodic discrete Gabor expansion. The time sampling step is 16 and dual
generated with critical sampling. It is clear from the figure that the dual

function is not concentrated in time and frequency domains. Therefore,
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Gabor coefficients of sample signal no. 2, which are the sampled STFT of
the signal using the dual function as window, does not represent the
signals local behavior as shown in Figure 3.8 (c). However, reconstruction

using the Gabor coefficients is successful with a reconstruction error of

2.312107°.
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Figure 3.8: Periodic discrete Gabor analysis of sample signal no. 2 of Figure 3.1(b) at
critical sampling, (a) analysis function, (b) dual function, (c) Gabor coefficients.
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The same configuration as in the above example evaluated again with
only change in oversampling ratio. Dual function for the same Gaussian
analysis function is computed with doubling the number of the frequency
bins. Figure 3.9 (a) shows the dual function in this case. This time the dual
function is localized and as a result the sinusoidal terms and impulses can
be identified at Figure 3.9 (b).

03

0261

magnituds

. . . . .
o 20 40 B0 a0 100 120 140
sarmples

tirne samples

(a) (b)

Figure 3.9: Periodic discrete Gabor analysis of sample signal no. 2 of Figure 3.1(b) at
double oversampling (a) dual function, (b) Gabor coefficients.

When the same analysis carried for quadruple oversampling, the dual
function and analysis function becomes nearly identical. The norm of their
differences becomes as small as 0.0044. Since the time sampling steps
kept constant, this refinement affects the frequency resolution. Figure 3.10

(a) and (b) shows the results for the quadruple oversampling case.
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Figure 3.10: Periodic discrete Gabor analysis of sample signal no. 2 of Figure 3.1(b) at

quadruple oversampling (a) dual function, (b) Gabor coefficients.
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Figure 3.11: Bat signal using periodic discrete Gabor expansion with full resolution

The expansion explained above is useful when analyzed signal has
relatively small number of samples. Any finite signal that can be periodized
is a natural candidate for periodic discrete Gabor expansion. However,

there are many applications where the signal to be analyzed composed of
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large number of samples. Since in periodic discrete Gabor expansion,
analysis and dual functions must be of same size with the signal, it is not
suitable for those signals. Following is the treatment for infinite length

signal case.

Let s[i] be a finite signal with length L, and synthesis window A[/] with
length L . One can construct following periodic sequences from these

signals as following [24].

S = &l 4 kL= 0 -L<i<0
Uil =sli+ L°]_{s[i] 0 <i<L, (3.23)
- ~ h[i] 0<i<L
AliT=hli+ ko] =1 o[l] L:::L

k=0,t1,%2,......

These sequences are periodic with L, =L+ L, . One can apply the periodic

discrete Gabor expansion to these sequences. Moreover, discrete Wexler-
Raz identity may be directly applied to the periodized synthesis window.

Lo-1

hli + mN]e‘Z”””A"”f/[i] = d0[m]o[n]
=0 (3.24)
0Sm<% and 0 <n<AM

If #Ailis defined as

i] 0<i<L
A=Ak = DS

k=0,t1%2,......

(3.25)

then the Equation (3.24) can be rewritten as [24]
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L1

ZE[I"' mN]e—27rnI/AM7/*[i] — 5[m]5[n]

i (3.26)
0Sm<%-1 and 0 £n<AM
where h[i]is defined as
— = h[i] 0<i<L
Bl =Rli+kQL-Ny={ 0SS (3.27)
0 L<i<?L-N

k=0,t1,%2,......
After this treatment, discrete Wexler-Raz identity is completely

independent from length of the analyzed signal. Again, one can write the

Equation (3.26) in matrix form.

Hy =p (3.28)
4 =(1,0,0....0)"

This time H is a (2AM/N)L—AMx L matrix constructed by,

H(mAM +n,i) = h[i + mN]e ™"

05m<%—1,05n<AM,05i<L (3.29)

It is worth restating that above analysis is valid only if dual function is
defined as in Equation (3.25).

With L remaining finite, letting L, — o thereby L, — o, the periodic

discrete Gabor expansion defined for periodic sequences §[/], A[i]and
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71i] becomes discrete Gabor transform pair for infinite sequences in

following form [24]. That is,

0 N-1

1= 3 3Gy Hli-mame™ (3.30)
C,p, = 3 slily i - maM]e™'™ (3.31)
i=0

Equation (3.31) is called discrete Gabor Transform and Equation (3.30) is

called inverse discrete Gabor transform.

Similar to the periodic case, oversampled DGT has an orthogonal-like
representation. The dual function that should be used in order to obtain
this representation is [27],

You =H (HH™) "1 (3.32)

The dual functions of two different types of signals are computed at
different oversampling rates and the results are presented in Figure 3.12
and 3.13. At Figure 3.12 (a), the double oversampling rate is used and the
error (defined as the norm of the difference of the function and dual)
between the function and its dual is computed as 0.1553. When the
oversampling rate is 4, the function and the dual are visually identical (see
Figure 3.12 (b)). The error between these two functions is calculated as
0.0037. Figure 3.13 shows the results for a chirp-like signal to
demonstrate the algorithm presented can be applied to signals other than
Gaussians. Again, for quadruple oversampling, function and its dual are
nearly identical. The error value for double oversampling is 0.32 while for
quadruple oversampling it is 0.0103. Once the dual function is determined,
computation of the Gabor coefficients is exactly the same as in the

periodic Gabor expansion [24]. Therefore, no examples are given here.
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3.4 Wigner — Ville Distribution (WVD)

The square of the Fourier transform is called power spectrum. Wiener -
Khinchin theorem states that power spectrum can also be considered as

Fourier transform of the auto-correlation function [23].
PS(w) =|S(w)[ = [R(r)e " dz (3.33)
where auto-correlation function R(r) is defined by,

R(r) = [ s(t)s'(t-7)at (3.34)

This representation does not show how the signal’'s frequency content
evolves in time. Instead of Equation (3.34), one can define a time
dependent auto-correlation function in order to obtain a power spectrum
which is time dependent. That is,

P(t,w) = j R(t,7) e " dr (3.35)

In  Wigner-Ville distribution (WVD), time dependent auto-correlation
function is defined as [23], [12],

T, = T
R(I,T)—S(['l‘a)s (1—5) (336)

Therefore Wigner-Ville distribution is formulated as,
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WVD(t,) = [ s(t + %)s‘(t - %)e"w’dr (3.37)

WVD satisfies time marginal and frequency marginal conditions.
Moreover, it is a real valued function and it has instantaneous frequency
property which shows the accuracy of the transform for observing the
frequency content of a signal. The conditional mean frequency obtained by
the WVD is equal to the mean frequency value at that time [28].

Cross-WVD is defined by using cross correlation function of the form of
the Equation (3.36).

(T

WVD, ,(t,0) = | s(t+%)g’( S e (3.38)

Although WVD possesses many useful characteristics it has a main
deficiency, cross-term interference. Let the signal to be analyzed

composed of two signals, i.e. s(r) =s,(¢)+s,(¢). Using Equation (3.37),
WVD, (t,w)=WVD, (t,@)+WVD,_(t,@)+2Re{WVD, (t.w)} (3.39)

Unfortunately, WVD of sum of signals is not equal to the sum of their
respective WVDs. In fact Equation (3.39) suggests that each pair of auto-
terms creates a cross-term. Cross-terms reflect the correlation of the
corresponding pair of auto-terms. Its location and rate of oscillation are
determined by the time and frequency centers of auto-terms [23]. Although
the cross-terms has have limited contribution to properties of WVD, it often

obscures time dependent spectrum patterns [14].
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Sample signal no.1, which is composed of three sinusoidal functions, is
examined and result is shown on Figure 3.14. At the midpoint of auto-
terms oscillatory cross terms can be seen. The oscillation is in the time
domain and the rate of oscillation depends on the separation of auto terms
in the frequency domain.
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Figure 3.14: WVD of sample signal no. 1,

Sample signal no. 3 is also examined with WVD. This signal is composed
of two impulses. Therefore, it occupies the entire frequency domain. At the
midpoint of these impulses, cross term that oscillates in frequency can be
seen at the Figure 3.15.

The last example for WVD is shown on Figure 3.16. The signal under

examination is the bat signal which is evaluated before using discrete
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Gabor transform at Figure 3.11. The development in the resolution in both
time and frequency domains is obvious. However, cross term interface

makes the auto terms completely unidentifiable.
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Figure 3.15: WVD of sample signal no. 3
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Figure 3.16: WVD of bat signal
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The methods developed to reduce cross-term interference will be

discussed next.

3.5 Adaptive Gaussian Representation (AGR)

One of the methods for suppressing cross-term interference in WVD is
adaptive representation of the signal. Adaptive signal expansion is defined
as [23],

s(t)= Y. B,h,(1) (3.40)

p

Constant B, shows the similarity between the elementary function
h,(t)and the signal s(f) and can be calculated using regular inner

product.

B, =< s(t),h,(t)> (3.41)

P

The procedure of computing adaptive signal expansion is as follows:

Step 1:Set p=0 and s,(t) = s(t) Then find an elementary function among

the set of possibilities that maximizes B, in the sense of,

(3.42)

‘Bpr = mh?x‘< s, (1), hy(t) >‘2
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Step 2: Compute the residual by,
S,u(t)=8,(t)—B,h,(t) (3.43)

If the energy of the elementary signal is taken as unity, the energy of the

residual signal is,
Jsoa0] =Jss(l [, (344)
Step 3: Increase p by one and repeat Step 1 and Step 2.

These steps summarized in Figure 3.17.

p+l
P+l I'-:"p'+1

5

P+ pl

L J

Figure 3.17: Computation procedure of adaptive representation.

The energy of the residual signal converges to zero as number of
iterations increases provided that there exists an elementary function that

is not orthogonal to the residual signal [11]. In other words, signal s(t) can
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be represented exactly by using infinite number of elementary functions
[28]. This suggests that the energy of the signal can also be computed

using,
s =8, (3.45)
=0

The main task of the adaptive signal representation is to find a set of

elementary functions {h,(t)}, that most resemble the signal’s time-

frequency structures and at the same time satisfy the Equations (3.40) and
(3.41) [23].

Since the elementary function will contain three parameters for time
center, frequency center and time width, trying to find an analytical
solution for the best elementary function may not be feasible. Therefore,
an iterative approach can be used for finding the best representation of the
signal [11], [28], [29].

The adaptive spectrogram decomposes the signal into sum of weighted
elementary functions. One may apply WVD to the decomposed signal to

better control the cross terms. That is,

WVD,(t,w) = WVD(Z B,h,(t)) (3.46)
P
Rearranging above equation yields,

WVD,(t,w) = z BpWVth (t,w)+ Z BpB; WVthhq (t,w) (3.47)
p

p#q
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The first group represents the auto-terms and the second group
represents the cross-terms [23]. WVD satisfies the time and frequency

marginal conditions. So,

Istt)[ == j [wvD,(t )dtdew (3.48)

—Z\B\ jj wvD, ( ta))dtda)+— jj ZB B,WVD, , (t,0)dtde

If the energy of the elementary functions are selected as unity,

ls)| = \B\ +—”ZBBWVD (t, w)dtdew (3.49)

Using Equation (3.45), one can easily see that in Equation (3.49), the term

corresponding to the cross-terms contains zero energy,

— j j > B,BWVD, , (t,w)dtdw=0 (3.50)

pP#q

Therefore, a time dependent spectrum, namely Adaptive Spectrogram
(AS) safely defined as,

AS(t.0)= Y |B,[ WD, (t.w) (3.51)

Theoretically, the elementary functions used for the adaptive signal
expansion can be very general. However, to better characterize the signal,
it is desirable for the elementary functions to be localized in time and
frequency simultaneously. Because the Gaussian type signal achieves

lower bound of the uncertainty principle, it is a natural choice for adaptive
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representation [23]. The adaptive representation that uses the Gaussian
functions as elementary functions is called Adaptive Gaussian

Representation [28]. So h,(t) can be formulated as,

Vi -a
< JA eTp(f‘Tp)ze/th (3.52)
T

h,(t, ) :[—p

where T is the time center, Q is the frequency center and %a is the
P

variance of the Gaussian function [28].

In the adaptive representation, the variance of the elementary function is
adjustable. The time and frequency centers of the elementary function are
not fixed. Adjusting the variance changes the duration of the elementary

function, and adjusting the parameters (7,Q,) change the localization

center. Changing the variance and the time-frequency center of the
elementary function makes possible to represent the time and frequency

behaviors locally.

WVD of Equation (3.52) is [23],
WVD, (t,0) =2exp {—{ap(t— T ) +M}} (3.53)

Therefore, adaptive spectrogram becomes,

(0-Q,)

a,

AS(t,w) = 2Z‘Bp‘2 exp{{ap(f— T, +
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Determination of the time center, frequency center and the variance
parameters in an optimum manner is the main problem of adaptive
Gaussian representation. There are several solutions to this problem.
Coarse to fine search [11], matching pursuit algorithm [29], hybrid
matching pursuit algorithm [28] can be listed. In this study only matching
pursuit algorithm is examined. The details of the other algorithms and their

comparison can be found at [28].

The maximization problem given in Equation (3.42) can be restated for
Gaussian type elementary functions as following.

B, = max |< s, (t).h,(t) >

b
4
TpQp.c1,

‘2

(3.55)

Instead of finding an analytical solution, the coarse to fine search
algorithm tries to find the three variables that satisfies the Equation (3.55)
in an iterative manner [11]. Expanding the inner product in the Equation
(2.55) yields,

2 (3.56)
=Tp) ejthdt

Since the above equation is nothing but the Fourier transform of

—Q,
P (1-T. )

sp(l‘)eT "), once the parameters a,and T, are selected, the third
parameter Q can be found as the frequency that contains largest Fourier

transform coefficient.

The steps used in finding optimal parameters given below,
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Step 1: Select a,in a predetermined manner.

Step 2: Change T, throughout the signal and compute the Fourier

-
transform of the product sp(t)exp{Tp(t—Tp)Z} until finding the largest

magnitude Fourier transform coefficient.
Step 3: Repeat steps 1 and 2.

Once the elementary function which is most similar to the signal is found,

coefficient B, and remainder signal can be found and the procedure of

computing adaptive spectrogram is iterated until the energy of the

remainder signal is smaller than a predetermined limit.

In the simulations, selection policy used for determining «,can be
described as follows. «,is selected so that variance of the elementary

function is equal to the duration of the residual signal and at each iteration

step, «,value is increased to decrease the variance of the function to the

half of the previous value. The iterations stopped when the energy of the
remainder signal becomes smaller than 1% of the original signal [28]. The
resulting two-sided adaptive spectrograms for sample signals no. 1, no. 2
and no.3 and for bat signal are given in Figure 3.18. They have no cross-
term interference and good resolution. However, Figure 3.18 (c), which
shows the AGR of the sample signal no. 3, has an interesting interference
in between the pulses. While searching for elementary function, a large
variance Gaussian which covers both impulses is considered as a best fit
elementary function. Therefore those elementary functions are seen on

the adaptive representation. If the search procedure starts with a larger
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a,value, those interferences become weaker. The Figure 3.18 (d)

simulates another extreme scenario for adaptive Gaussian representation.
The frequency change in the signal can not be represented properly with
the frequency modulated Gaussian elementary functions. One way to
solve this problem is adding another parameter to elementary function to
control the frequency change rate. However, no practical optimization
methodology to compute the parameters is presented [23].
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Figure 3.18: (a), (b), (c), (d) are AGR of sample signals no.1, no.2, no.3 and bat signal
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3.6 Time Frequency Distribution Series (TFDS)

If the WVD of a signal can be decomposed into a sum of localized and
symmetric functions, it may be possible to suppress cross-term
interference by selecting only the low-order harmonics [1]. This
decomposition can be achieved using discrete Gabor transformation. The
elementary functions used in the Gabor expansion are time and frequency
shifted Gaussian functions [12]. From a theoretical point of view, two
dimensional form of discrete Gabor transform is very suitable. However,
there are several drawbacks such as computational expense, difficulty of
the generation of the two dimensional dual function and requirement of
knowing the WVD of the signal in advance [23]. Therefore, a natural
choice would be one dimensional discrete Gabor transformation. The
signal to be analyzed can be decomposed using 1D-DGT using Equation
(3.10),

s(t)y= > Coohy (1) (3.57)

Corn = [S()7,, (0t =[ S(t)7 (t—~mT)e ™ dt = STFT(mT,nQ) (3.58)

m,

As discussed in chapter 2.3, orthogonal-like decomposition ensures that
Gabor coefficients reflect the signal’s local behavior. Taking the WVD of
both sides of Equation (3.57) yields,

*

WVD,(t,w)=> > C,,C

m,n~m',n

WVD, ,(t, @) (3.59)

m,nm',n'

where,
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WVDh,h‘(taa)) =Zexp{_a(t_ m+m 1 n+n 9)2}

TR - (-

a (3.60)

exp{—j n+2n' Q(m- m')T}exp{j[(m— m)Tw+(n-n"Qt}

Taking a closer look to Equation (3.59) will be beneficial. Equation (3.59)
says that WVD is composed of localized and symmetric elementary
functions of the form of Equation (3.60). Those elementary functions has

two dimensional Gaussian envelope located in the midpoint of the time

and frequency centers of h(t)and h'(t) which is M*M T in time and

516 in frequency. They oscillate in time and frequency in a rate which

is determined by difference of the time and frequency centers of h(t) and
h'(t). That is, WVD cross-terms oscillates in a rate of (m—m")T in time
and (n—-n")Q in frequency Based on this analysis, Time Frequency

Distribution Series (TFDS) is defined as

D
TFDS,(t,®) =Y P,(t,w) (8.61)
d=0
where P,(t,w) is the set of those WVD,,.(t,w) which have a similar

contribution to the useful properties and similar influence to the cross-
term. Because the impact to the cross term and as well as the useful

properties are determined by the harmonic frequencies, (m—m")T and
(n-n"Q, P,(t,w) can be considered as a set of WVD,,.(t,w) in which
|m—m'|+|n—n|=d. In other words, including the cross-terms around the

auto-terms with a Manhattan distance of d can control the cross-term

contribution to the useful properties [23]. Therefore, P,(t,w)is,
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*

P(tw)= Y C,.C

m,n~m',n'

WVD, ,.(t, ) (3.62)
|[m-m'|+|n-n'|=d
Ford =0, P,(t,w) is a two dimensional linear time and frequency invariant

interpolation filter in the form of Equation (3.63). The filter input |Cm’,, *isa

sampled spectrogram using a Gaussian function. The filter impulse
response is a two dimensional localized Gaussian function, which is low-
pass and time and frequency invariant. Hence, TFDS,(t,w)= F,(t,w) is
similar to the STFT spectrogram [12]. As D goes to the infinity, TFDS
converges to the WVD.

TFDS,(t,w) = R(t@)=2 Y |C..,

mn=—co

? exp {—a(t— mT)? —é(a)— nQ)Z} (3.63)

Discrete formulation for the TFDS is nothing but a sampling process if the

signal under examination is band limited [23].

DTFDS[i,K1=TFDS,(tw)| 5, for —é <k <é (3.64)

=iAt,0=——
LAt

TFDS analysis is applied to all of the sample signals and the bat signal.
Results show that, TFDS of order 3 or 4 gives the best results in terms of

resolution and the cross-term interference.

Figure 3.20 (a) shows TFDS of order 0 for sample signal no. 1. Figure
3.20 (b) shows TFDS of order 3 for the same signal. Increasing D results
in an improvement of the resolution of the representation since cross-

terms with lower oscillation rates contributes the desired characteristics of
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the WVD. However as the order increases, cross-terms show themselves
on the plane as interference. As Figure 3.20 (c) indicates, contribution of P
of order 5 contains heavy oscillatory cross term parts of WVD. Therefore,
TFDS of order 5 also starts to posses those cross terms as demonstrated
in Figure 3.20 (d). Although P of order 5 contains cross-terms it is still
developing the resolution of auto terms unlike P of order 20 which is
shown at Figure 3.20 (e). P of order 20 only contributes to the cross terms
of WVD. As the order increases, TFDS approaches to the WVD. Figure
3.20 (e) demonstrates this fact using sample signal no.1. All of the cross
terms generated by the auto term pairs are clearly visible at the mid-point
of the auto-terms.
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Figure 3.20: (a) TFDS of order 0, (b) TFDS of order 3
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Figure 3.20 (cont’d): (c) P of order 5, (d) TFDS of order 5
(e) P of order 20 and (f) TFDS of order 20 for sample signal no. 1

Sample signal no. 3 contains 2 impulses, unlike sample signal no. 1 which
contains 3 sinusoidal functions. Figure 3.21 contains TFDS analysis
results for sample signal no. 3. Results that are similar to the results of
sample signal no. 1 are obtained.
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Performance of TFDS is rather poor for sample signal no. 2 which is
composed of two impulses and two sinusoidal functions. TFDS uses
Gabor coefficients of the signal in order to determine the auto terms of the
signal on the WVD plane. Since the Gabor coefficients are obtained using
sampled STFT, they also inherit some of the drawbacks of STFT. As
demonstrated in Figure 3.5 and 3.6, STFT can not give good time and
frequency resolutions at the same time because the resolution of the
window function in time and frequency domains are bounded by
uncertainty principle. Figure 3.22 shows TFDS of order 0 and of order 3 for
sample signal no. 2. Performance of AGR is much better in this case
because the elementary functions used in AGR have variable variance.
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Figure 3.21: (a) TFDS of order 0, (b) TFDS of order 3
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Figure 3.21: (cont’d) (c) P of order 15 and (d) TFDS of order 15 of sample signal no. 3
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Figure 3.22: (a) TFDS of order 0 and (b) TFDS of order 3 for sample signal no. 2
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Figure 3.23: (a) TFDS of order 0, (b) TFDS of order 4 and (c) TFDS of order 20 for the
bat signal

The bat signal successfully represented with TFDS as shown in Figure
3.23. Better mapping of chirp type signals is possible with TFDS when
compared with AGR.
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CHAPTER 4

APPLICATION OF JOINT TIME-FREQUENCY
TRANSFORMS TO RADAR IMAGERY

4.1 Introduction

In this chapter, joint time frequency methodologies are applied to the

stepped frequency radar imaging system.

4.2 Radar Imaging Using Joint Time-Frequency
Transforms

The time frequency properties of the joint time-frequency transform are
very useful to achieve superior resolution and unbiased estimation of the
instantaneous frequency spectrum [9]. By replacing the conventional
Fourier transform with a joint time frequency transform, two dimensional
range-Doppler Fourier frame becomes three dimensional time-range-
Doppler image cube. The Doppler shift due to the complex motion of the
target can be treated as time-invariant for the each frame encapsulated in
the image cube [14]. Therefore, the necessity of a Doppler tracking
algorithm is meaningless for a radar imaging system that uses joint time-

frequency transforms for target imaging.
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Figure 4.1 explains the structure of a radar imaging system with joint time-

frequency transform.

Radar Receiver |

vy '

Range Tracking

Time-Frequency Analysis

o
bty ——
—-

Range Profiles

M-Range Cells

N Pulses

Figure 4.1: The structure of a radar imaging system with joint time-frequency
transform [9]

When compared with Figure 2.5, only difference is each range bin is
processed with time-frequency transform.

4.3 Results

In following sub-chapters simulation results are given.

62



4.3.1 Single Stationary Point Scatterer

The first example used in the simulations is the single stationary point
scatterer located at x = 1000 m. and y = 0 m. in the image projection
plane. The radar sensor is located at the origin of the coordinate system.
This data set is used to verify the step frequency modulated radar

simulation system.

Range profiles are obtained by taking inverse Fourier transform of each
burst as indicated in Figure 2.5. As it can be seen from Figure 4.5, for
single stationary scatterer case, range profiles are composed of impulses
at the range bin corresponding to the range of the scatterer. In order to
obtain the image using conventional imaging, discrete Fourier transform of
each range bin is taken. Since the discrete Fourier transform of the

constant function is an impulse, we can identify the scatterer.

pulses bursts

Figure 4.2: Range profile of single stationary point scatterer
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bursts

Figure 4.3: Surface plot of the radar image of single stationary point scatterer using
Fourier transform

4.3.2 Two Stationary Point Scatterers at Different Ranges

Second data set generated is used for similar purposes as in the single
point scatterer case. It contains two different stationary scatterers placed
at different ranges on image projection plane. The first scatterer is located
at x = 1000 m. and y = 0 m. and the second scatterer is located at x =
1010 m.andy =0 m.

Similar to the single scatterer case explained in chapter 4.3.1 in this case

two constant functions can be seen on range profiles. Therefore, two

different scatterers can be identified on Figure 4.5
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Figure 4.4: Range profile of two stationary scatterers at different ranges
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Figure 4.5: Conventional radar image of two stationary scatterers at different ranges
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4.3.3 Two Point Scatterers at Different Cross Ranges

The third set is again composed of two scatterers as in 4.3.2. However,
this time only one of the scatterers is stationary. The other scatterer
rotates around the other one in order to verify if the system can generate
the Doppler shift and therefore, cross-range resolution. The scatterers are
separated 5 m. in image projection plane.

In order to obtain two impulses as a result of a discrete Fourier transform
operation, the waveform must be a sinusoidal function. This is the case for
Figure 4.6. Phase shift caused by Doppler shift due to the rotation causes
the change in the response of the rotating scatterer. This change triggers
the sinusoidal fluctuation in the range profile as shown in Figure 4.6. As
the rotation rate increases, frequency of the fluctuation of the range profile
also increases. This causes much more separated image signature for the
scatterers which can be observed by comparing Figure 4.7 and 4.9.
However, as rotation rate increases, the rotating scatterer drift out from the
initial range cell it is located. Moreover, time varying nature of the Doppler
shift becomes more visible, which causes the degradation shown in Figure
4.8. As a result, blur is observed at the rotating scatterer signature shown
in Figure 4.9.
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bursts pulses

Figure 4.6: Range profiles of two scatterers at same range, separated 5m in cross-range,
rotation rate is 3 deg/sec
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Figure 4.7: Conventional image of two scatterers at same range, separated 5m in cross-
range, rotation rate is 3 deg/sec
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bursts pulses

Figure 4.8: Range profiles of two scatterers at same range, separated 5m in cross-range,
rotation rate is 18 deg/sec
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Figure 4.9: Conventional image of two scatterers at same range, separated 5m in
cross-range, rotation rate is 18 deg/sec
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4.3.4 Rotating Mig-25 Simulation

The time-frequency transform imaging techniques are applied to the data
provided by V.C. Chen at http:/airborne.nrl.navy.mil/~vchen/data/. This
data is composed of 128 point scatterers. The Stepped Frequency Radar
used for the simulation operates at 9GHz and has a bandwidth of
512MHz. For each pulse, 64 complex range samples were saved. The file
contains 512 successive pulses. The Pulse repetition frequency is 15KHz.
Basic motion compensation processing without polar reformation has been
applied to the data without pulse compression. The target rotates with 10

deg/sec.
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Figure 4.10: Range profile for Mig-25 simulation
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Figure 4.11: Image of Mig-25 simulation using Fourier Transform

The blurring effect of rotation is completely removed using AGR. This can
be easily seen by comparing Figure 4.12 and 4.11. This is also the case
for TEDS, for which the results are given in Figure 4.13. However, results
obtained using TFDS has poorer image quality when compared to images
obtained using AGR.
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Figure 4.12: Images of Mig-25 generated using AGR
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Figure 4.13: Images of Mig-25 generated by using TFDS of order 3
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4.3.5 Target with Translational Motion and Velocity
Fluctuation

This data set is generated using the point scatterer model shown in Figure
4.14. Although the scatterers in the model can be represented in two
dimensions, the simulation for the data set has done in three dimensions.
The scatterer located at (0, 0) in the Figure is chosen as reference
scatterer and initially it is located at (70, 1600, 100) in meters and the
other scatterers of the model placed according to this reference scatterer.
The radar sensor is located at the origin of the three dimensional
coordinate system. The target moves with a speed of v=120 m/s at z=100
m plane with an angle of 130 degrees to y-axis on this plane. A sinusoidal
velocity fluctuation is added in order to add a small phase error to return
signal. This will cause an additional degradation in the resulting
conventional image. Figure 4.15 shows the location of the target in radar
coordinate system and Figure 4.16 is the plot of the speed profile of the

target during the observation time.
The radar used in this simulation is assumed operating at 9 GHz and

frequency step size of 2.35 MHz. 64 pulses are used in each bursts and

256 bursts are used to generate a total observation time of 0.819 seconds.
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Figure 4.15: Sketch of the initial position of the target
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Figure 4.17: Range profile of target with fluctuating translational speed

75



10F 9
ZD I apamn ]
- |IIIII l“ll‘l
L B |I
ey 30F ! A
E mEL
. LII .
401 e B
I-- im 1
- L
a0+ ! A
60 A
20 40 60 a0 100 120
doppler
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Figure 4.19: Images of target with fluctuating translational speed using AGR
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Figure 4.19: (Cont'd) Images of target with fluctuating translational speed using AGR

The conventional image obtained again suffers from blur as shown in
Figure 4.18. Both TFDS and AGR images selected from the image cubes

generated by these time-frequency transforms reduces the blurring as
shown in Figure 4.19 and 4.20.
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Figure 4.20: Images of target with fluctuating translational speed using TFDS of order 3
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4.3.6 Measured Data Set

In order to verify the algorithms presented here, the measured data set
given in the web page http://airborne.nrl.navy.mil/~vchen/tftsa.html
(accessed January 14, 2007) is used. The data is composed of the range
profiles for a B727 aircraft. The stepped frequency radar used in the
measurement has a center frequency of 9 GHz. Total number of bursts is
128 and each burst contains 128 pulses with different frequencies.
Bandwidth of each burst is 150 MHz. therefore range resolution of the
image is 1 meter. No information on the effective rotation rate of the target
and pulse repetition interval of the radar is provided. As a result, cross-
range resolution, sample times are not known. Therefore Doppler axes of

the images generated are presented as cross-range samples.

Figure 4.21 and Figure 4.22 show the range profiles and the conventional
image respectively. As it can be seen from Figure 4.22, unlike simulated
data sets, image is noisy. Although the systematic analysis of the system
under noise is not evaluated in this thesis, some conclusions may be
drawn. Reflections from body and tail parts of the aircraft are much more

visible in this data set when compared with nose or wing parts.

Figure 4.23 shows images obtained by using AGR. The body and the tail
parts can be identified from the figures as expected. Since the basis
functions are adaptively selected in AGR, only the noise around the
dominant responses is leaked into the images. Again the resolution is
increased and blurring and degradation of the images are decreased

visibly.
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80



range [m]

range [m]

20 g 20F
a0 1w
il P 1 E wml
1_._' = [=in] h
&0 g ol
- -h p
i
100 B 1oL
120 L 1 1 1 L L ] 120
@ “ - oy 1 o 2‘0 4‘0 5‘0 Eb 1 60 12‘0
Cross-range samples Cross-range samples
(a) (b)
20
20r B
40
a0 B
Ea
B0 [ q o R
3 5 *
&
g0 ] 80
- |
h y
100 ] 100
120 R 120
L L 1 L 1 L 1 1 Il 1 L 1
20 40 &0 a0 100 120 20 40 60 a0 100 120

Cross-range samples

(c)

Cross-range samples

(d)
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Figure 4.24 shows images obtained by using TFDS. When compared with
AGR, TFDS has again poorer image quality as in the simulated data
case. Moreover TFDS image cube contains images which possess the
noise similar to the conventional image case as shown in Figure 4.24 (a).
Again TFDS spent more time than the AGR.
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4.4 Comparison of the Joint Time Frequency Imaging
Methods

Both TFDS and AGR are successful compared to the conventional
algorithm when image quality is considered. The effect of time-varying
Doppler effect and blurring are completely removed from the image.
However, AGR implementation yields better results than TFDS of order 3
and 4. As indicated in [9], TFDS gives satisfactory resolution but it is far
away from the image quality of AGR.

Imaging times for conventional method, AGR and TFDS of order 3 are

given for rotating Mig-25 and target with translational motion simulations in
table 4.1.

Table 4.1: Imaging times for simulations

Conventional AGR TFDS (3)
Imaging
Mig-25 0.016 95.073 581.314
Target with 0.009 26.891 367.224
Translational
motion
g/letasured Data [ 0.009 24.475 410.288
e

Although their superior performance of image quality, time-frequency
transform methodologies consume times to generate image cubes that
can not be compared with the conventional methodology. There are
several propositions to reduce the time of AGR [28], [29] but they can not
achieve the speed of Fourier transform.
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Besides its lower image quality, TFDS consumes huge amount of time
when compared with AGR. Although the algorithm has some improvement
opportunities like using look-up tables for elementary functions or using
the symmetry of elementary functions [9], basically those methodologies

does not reduce the computational complexity of the algorithm.

This comparison shows that AGR is superior to TFDS.
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CHAPTER 5

CONCLUSIONS

Inverse Synthetic Aperture Radar (ISAR) is a two-dimensional imaging
radar. It uses target’s own motions to retrieve range-Doppler information of
targets. The distribution of the reflectivity mapped on range-Doppler plane
is referred to as an ISAR image. In this work, conventional imaging
method and two advanced joint time-frequency imaging methods are
investigated. In order to extract the Doppler shift from the raw data, the
fastest and simplest method is conventional Fourier transform
methodology. However, the efficiency of the methodology drastically drops
when the target under examination has relatively fast and complex motion
profile. The time-varying nature of the Doppler shift begins to possess
more and the scatterers start to drift out from their initial range cells under
complex motion circumstances. More complex motion compensation
schemas must be applied to the data in order to obtain better image

quality using Fourier transform.

Image quality can be improved highly using joint time frequency
transforms instead of Fourier transform and the need for complex motion
compensation algorithms totally disappear. Two different joint time-
frequency techniques are implemented for this purpose, namely Adaptive
Gaussian Representation (AGR) and Time Frequency Distribution Series
(TFDS).
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TFDS decomposes the signal into elementary functions using Discrete
Gabor Transform (DGT). Coefficients of DGT hold the information of the
auto-terms of the signal in the form of modulated Gaussian signals.
Therefore, auto-terms and the cross-terms of the WVD can be controlled
on WVD plane. Therefore, obtaining a high-resolution time-frequency

transform which is free of cross-term interference becomes possible.

AGR with Coarse-to-Fine search methodology finds the elementary
functions by adaptively searching the signal for the best fitted elementary
function. Since the elementary functions that are adaptively computed has
variable variance, this representation gives the best image quality.
However, signals with variable frequency content like chirp-type signals,

can not be represented effectively with this representation.

Application of the radar imagery shows the main drawback of these two
methods. Although superior image quality, time spent by the AGR and
TFDS has an order that can not be compared with the conventional
methodology. Especially TFDS has unacceptable processing time.
Therefore, possibilities to reduce the computational complexity of these
two representations must be examined. The methods to reduce the time
for TFDS is given in [9], however, those recommendations do not reduce
the computational complexity of the implemented algorithm. Therefore the
upper bound for the TFDS algorithm is still the same after those
improvements. To implement AGR more effectively, developed
methodologies sacrifices from the image quality [29], [28].

Adaptive joint time-frequency transforms can also be applied to the motion
compensation algorithms for the conventional imaging methodology. As a
future work, analysis of image quality and processing time for such a

configuration for imaging radar would be interesting.
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