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ABSTRACT

A NEW FORMULATION FOR THE ANALYSIS OF
BONDED ELASTIC LAYERS

Pinarbasi, Seval
Ph. D., Department of Civil Engineering
Supervisor: Assoc. Prof. Dr. Ugurhan Akyiiz

April 2007, 248 pages

Elastic layers bonded to reinforcing sheets are widely used in many
engineering applications, e.g., as elastic foundations to machinery, as seismic
isolators to structures, etc. Because of its practical importance, the behavior of
bonded elastic layers under some basic deformation modes (e.g., compression,
bending and shear modes) has attracted the attention of many researchers. However,
the analytical works available in literature involve, with the object of obtaining
design formulas, many simplifying assumptions. In this dissertation, a new
formulation is developed for the analysis of bonded elastic layers, which removes
most of the assumptions used in the earlier formulations. Since the displacement
boundary conditions are included in the formulation itself, there is no need to start

the formulation with some assumptions on stress and/or displacement distributions
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or with some limitations on geometrical and/or material properties. For this reason,
the solutions derived from this formulation are valid not only for “thin” layers of
strictly/nearly incompressible materials but also for “thick” layers and/or
compressible materials.

The advanced solutions obtained within the framework of the new
formulation are used to study the behavior of bonded elastic layers under basic
deformation modes. The effects of three key parameters, shape factor, Poisson’s
ratio and reinforcement flexibility, on effective layer moduli, displacement/stress
distributions, and location/magnitude of maximum stresses are investigated. It is
shown that the stress assumptions of the “pressure” method are inconsistent with the
results obtained for thick layers and/or compressible materials and/or flexible
reinforcements, and that the assumption “plane sections remain plane” is not valid,

in general.

Keywords: Bonded Elastic Layers, Elastomeric Bearing, Seismic Isolation, Shape

Factor, Poisson’s Ratio
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UST VE ALT YUZEYLERINDEN YAPISTIRILMIS
ELASTiK TABAKALARIN ANALIZI ICiN YENI BiR
FORMULASYON

Pinarbasi, Seval
Doktora, Insaat Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Ugurhan Akyiiz

Nisan 2007, 248 sayfa

Ust ve alt yiizeylerinden giiclendirici plakalara yapistirilmis elastik tabakalar,
elastik makina temelleri ve sismik yapi izolatorleri gibi pek c¢ok miihendislik
uygulamasinda yaygin olarak kullanilmaktadir. Pratik ©nemi nedeni ile,
giiclendirilmis elastik tabakalarin bazi temel deformasyon modlar1 (basing, egilme
ve kayma modlar gibi) altindaki davraniglar1 bir ¢ok arastirmacinin dikkatini
cekmistir. Ancak, literatiirde konu ile ilgili mevcut analitik c¢aligmalar, tasarim
formiilleri elde edilmesi amaci ile, bir ¢ok basitlestirici kabul icermektedir. Bu
tezde, giiclendirilmis elastik tabakalarin bazi temel deformasyon modlarindaki
davraniglarinin analizi i¢in yeni bir formiilasyon gelistirilmistir. Bu formiilasyon,

daha onceki ¢alismalarda kullanilan kabiillerin pek cogunu elimine etmektedir.
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Deplasman sinir kosullar1 formiilasyonun i¢inde yer aldigi icin analize, tabakadaki
gerilme ve/veya deplasman dagilimlan iizerine bazi varsayimlar yapilarak ya da
tabakanin geometrik ve/veya malzeme Ozelliklerine bazi sinirlandirmalar getirilerek
baslanmasi gerekmemektedir. Bu nedenle, bu formiilasyondan elde edilen ¢oziimler
sadece sikistirllamaz ya da sikistirllamaza yakin malzemelerden {iretilen “ince”
tabakalar icin degil sikistirilabilir malzemelerden iiretilen “kalin” tabakalar icin de
gecerlidir.

Yeni formiilasyon cercevesinde elde edilen ileri ¢oziimler, gii¢lendirilmis
elastik tabakalarin temel deformasyon modlarindaki davraniglarinin incelenmesinde
kullanmilmistir. Analizlerde, ii¢ anahtar parametrenin, tabakanin sekil faktori,
malzemenin Poisson orani ve gii¢lendirici plakalarin rijitliklerinin, etkili tabaka
modiilleri, tabakadaki deplasman ve gerilme dagilimlar1 ile tabakada olusan
maksimum gerilmelerin yer ve biiyiikliigii tizerindeki etkileri incelenmistir. Kalin
tabaka ve/veya sikistirilabilir tabaka ve/veya esnek donat1 durumlari i¢in elde edilen
sonuglarin yaygin olarak kullanilan basing metodundaki gerilme varsayimlarn ile
tutarsiz oldugu kanitlanmig; “diizlem kesitler diizlem kalir” varsayiminin genel

olarak gecerli olmadig gosterilmistir.

Anahtar Kelimeler: Gii¢lendirilmis Elastik Tabakalar, Elastomerik Yastik, Sismik

Izolasyon, Sekil Faktorii, Poisson Orani
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CHAPTER 1

INTRODUCTION

1.1 BONDED ELASTIC LAYERS

Elastic layers bonded to reinforcing sheets have long been used as suspension
and support systems, compression and shear mountings, and as sealing components
[1]. Earlier studies on “bonded elastic layers” [2,3] have shown that the reinforcing
plates bonded to top and bottom faces of an elastic layer may cause considerable
changes on the layer behavior. These studies have also shown that the effects of the
bonded surfaces on the layer behavior highly depend on the geometric and material
properties of the layer, and become much more pronounced as material
compressibility decreases, i.e., as Poisson’s ratio approaches 0.5, since, as stated by
Lindley [4], “for materials such as rubber which have a low shear modulus but a
relatively high bulk modulus, any restrictions on their freedom to change shape can
have a very marked effect on their stiffness in compression”.

It is now very well known that not only the compression but also the bending
stiffness of a bonded rubber layer may be several orders of magnitude greater than
that of the corresponding unbonded layer. It is to be noted that despite their
significant effects on the compressive or bending behavior, the bonded surfaces do
not influence the shear behavior of the layer considerably. This is an important
property considering that the resistance of a soft elastic layer to compression and

bending can be increased without compromising from its flexibility in shear.



Composed of several elastomer layers sandwiched between and bonded to
steel plates, “elastomeric bearings” have been developed using this favorable
mechanical property of bonded elastic layers. In the earlier applications, elastomeric
bearings were primarily used as expansion bearings for highway bridges to
accommodate thermal expansion and slow differential movements, helicopter rotor
bearings, wharf fenders, elastic foundations to machinery and motors and as sealing
components. Recently, their applications have been extended to seismic isolation,
which is a new earthquake resistant design concept in which flexible and energy
dissipating elements are inserted at the base of the structure to reduce the
transmission of seismic force from the soil to the structure. The main philosophy
behind this technique is to shift the fundamental period of the structure sufficiently
away from both its fixed-base period and the predominant period of most
earthquakes so that the behavior of the entire structure can be governed by its first
mode where the deformations are concentrated at the isolation level, while the
superstructure moves almost rigidly.

Combination of soft elastomer layers, which provide flexibility in horizontal
direction to shift the period of the isolated structure away from its fixed-base period,
with comparatively rigid steel plates, which provide resistance to support the heavy
weight of the superstructure and to resist possible rotations, in a single unit makes
multi-layered steel-laminated elastomeric bearings (Figure 1.1) favorable to use as
effective seismic isolators [5-7].

Under the applied loads, the behavior of a steel-laminated elastomeric bearing
is controlled primarily by the elastomer thickness. Independent from the interior
steel-elastomer composition, the fotal elastomer thickness is the main parameter
determining the shear stiffness of the bearing. On the other hand, the thickness of
the individual “bonded elastomer layers” governs the behavior of the bearing under
compression and bending. In fact, as shown by many analytical and experimental
studies, it is the aspect ratio of a typical interior bonded elastomer layer (Figure
1.2), named as shape factor (S), which mainly controls the compressive and

bending behavior of a multi-layered elastomeric bearing.



Figure 1.1 A typical steel-reinforced elastomeric bearing used in seismic
isolation technique (taken from [8])
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Figure 1.2 Definition of shape factor for a cylindrical steel-reinforced
elastomeric bearing (taken from [9])



Shape factor of a bonded elastic layer is defined as the ratio of “one loaded
area” to the “entire force free area”, i.e., the area of the perimeter free to bulge, as
illustrated in Figure 1.2 [9]. Accordingly, “thin” layers which have high shape
factors, called HSF (high shape factor) layers, have considerably high compressive
and bending stiffnesses while “thick™ layers which have low shape factors, called
LSF (low shape factor) layers, have low stiffnesses. As it can easily be inferred, an
HSF bearing is mainly designed to provide isolation only in the horizontal direction
while an LSF bearing can provide three dimensional (3D) isolation.

While most of the elastomeric bearings used in seismic isolation technique are
reinforced with steel plates, in a recent study, Kelly [10] proposed to replace steel
reinforcement with fiber reinforcement to produce cost-effective light-weight
isolators to be used in developing countries. Since with recent technology, the fiber
materials with elastic stiffness comparable to that of steel can be produced, it is
possible to produce a fiber-reinforced bearing which matches the behavior of the
steel-reinforced bearing [11]. Even though the idea of using fiber reinforcement in
seismic isolation bearings is very new, the viability of the concept has already been
shown through several experimental studies [12-15].

Although the use of bonded elastic layers for reducing the devastating effects
of severe earthquakes on structures is relatively new, its use in engineering
applications is not new, as already mentioned. In fact, the studies on bonded rubber
layers, or more generally on bonded elastic layers, go back as early as the beginning
of the twentieth century. Even though the behavior of most elastomers can be highly
nonlinear and they may undergo considerable finite deformations, in most of these
analytical treatments, linear behavior is assumed and the derivations are performed
for small strains because the use of finite strain analysis with nonlinear constitutive
models usually leads to highly nonlinear and complex equations [7]. Further, with
the purpose of obtaining simple design formulas, some simplifying assumptions are
used in these studies, such as parabolic bulging assumption for the lateral boundary
of the layer, the assumption that horizontal plane sections remain plane during
deformation, rigidity assumption for the reinforcing sheets, “pressure” assumption

for the state of stress, incompressibility assumption for the layer material, etc. [16].



It can also be recognized that most of the earlier studies on bonded elastic
layers have focused on the derivation of closed form expressions only for the
stiffnesses, particularly the compressive stiffness, of the layers. On the other hand,
as emphasized by Gent et al. [17], the knowledge of the detailed displacement and
stress distributions, and the location and magnitude of the critical local stresses
developing in the layer is also essential for a rational design. For instance, an
important parameter that can control the design of a bonded elastic layer is the
bulging of the layers. Control of bulging is essential because increased bulging
implies increased shear strain [18]. Similarly, the interfacial stresses, i.e., the
stresses developing at the bonded faces, become one of the main parameters for the
design of the reinforcements. Reinforcing sheets can fail due to excessive shear or
normal stresses. Likewise, the knowledge of stress distribution at reinforcement-
rubber bond is essential for the bond design. In some cases, even the failure of the
elastomer itself may be taken as a design criterion, which can be evaluated only if
the detailed stress distributions are known [17].

Thus, in order to study the behavior of a bonded elastic layer thoroughly, it is
necessary to investigate not only the stiffness of the layer but also the displacement
and stress distributions developing in the layer in detail. However, as already
discussed, most of the earlier studies on bonded elastic layers have been based on
assumed displacement fields with assumed stress distributions, which usually lead
to approximate and/or ‘‘average’’ solutions, hindering a comprehensive study on
displacement and stress distributions over the entire layer and on the effects of the

geometrical and material properties on the layer behavior.

1.2 AIM OF THE DISSERTATION

The main object of this dissertation is

(i) to develop a new formulation for linear analysis of bonded elastic layers by
removing most of the in-priori assumptions used in the earlier formulations,

and



(i) to study comprehensively, by using the advanced solutions obtained from
this new formulation, the behavior of bonded elastic layers under their

fundamental deformation modes.

The new analytical formulation presented in this dissertation is developed by
employing an approximate theory proposed by Mengi [19], which is based on a
modified version of the Galerkin Method. The use of the theory by Mengi [19] in
the formulation brings in the following distinct advantages over the other

formulations in literature:

¢ Since the displacement boundary conditions are included in the formulation
itself, any possible inconsistency between the assumed displacement field
and the boundary conditions at the bonded surfaces are eliminated. Thus,
there is no need to start the formulation with some assumptions on stress
and/or displacement distributions, or some limitations on the geometrical
and material properties.

¢ Since the effect of compressibility is naturally included in the formulation,
the solutions are valid not only for incompressible or nearly incompressible
materials but also for highly compressible materials.

e Because of the appearance of face variables in the approximate theory, there
is no need to make additional assumptions when the flexibility of the
reinforcement is included in the formulation.

e The order of the theory is arbitrary; this facilitates improving the prediction
of the theory and obtaining solutions much closer to the exact by increasing

its order.

Consequently, within the framework of this new formulation, it is possible to
derive the solutions in a form which can be used for the comprehensive study of
stress and displacement distributions at any section in a bonded elastic layer.

While studying the behavior of bonded elastic layers in their basic
deformation states, the main emphases are given to the investigation of the effects

of three key parameters



e shape factor of the layer
e Poisson’s ratio of the layer material
e flexibility of the reinforcing sheets
on
e effective moduli of the layer
e displacement and stress distributions over any section in the layer
¢ Jocation and magnitude of maximum stresses developing in the layer.
The effects of the existence of a central hole on compressive behavior of bonded

elastic discs are also examined in the dissertation.

1.3 SCOPE AND ORGANIZATION OF THE DISSERTATION

The dissertation starts with a review chapter where the theory and the earlier
studies on bonded elastic layers are discussed (CHAPTER 2). Then, in CHAPTER
3, the new formulation proposed in this dissertation for the analysis of bonded
elastic layers is presented. Since in the dissertation, the main emphasis is given to
the elastic layers bonded to rigid reinforcements, first, the rigidly-bonded case is
discussed in this chapter for three fundamental deformation modes: (i) uniform
compression, (ii) pure bending and (iii) apparent shear. For each deformation mode,
keeping the order of the theory arbitrary, the relevant equations are presented in
general forms, in view of displacement boundary conditions at the top and bottom
faces of the layer. To have a formulation applicable to all possible shapes (circular
as well as infinite-strip, square and rectangular shapes), the reduced governing
equations, originally derived in rectangular Cartesian coordinates, are also extended
to cylindrical coordinates. The constants which appear in the approximate theory
are determined and tabulated by choosing the distribution functions employed in the
theory as Legendre polynomials. Regardless of the layer shape or order of the
theory, determination of displacement/stress distributions and relevant effective
modulus for each deformation mode is also formulated and presented. Then, in the
same chapter (CHAPTER 3), the formulation is extended to the case where the

elastic layer is bonded to extensible reinforcements. This case is discussed for three



simple deformation modes: (i) uniform compression, (ii) pure bending and (iii) pure
warping. Similar to the rigid-reinforcement case, for each deformation mode,
reduced governing equations are derived by keeping the shape of the layer and
order of the theory arbitrary. However, in this case, the relevant equations are
presented only in rectangular Cartesian coordinates.

CHAPTER 4 contains the application of the general formulation for various
shapes of bonded elastic layers. In this chapter, closed form solutions for
displacement/stress distributions and effective layer moduli are obtained, through
the solution of governing equations presented in CHAPTER 3, for the cases

involving an elastic layer of

¢ infinite-strip shape, bonded to rigid reinforcements
¢ solid and hollow circular shape, bonded to rigid reinforcements

¢ infinite-strip shape, bonded to extensible reinforcements.

CHAPTER 5 is devoted to the assessment of the new formulation proposed in
the dissertation, which involves comparing the analytical solutions derived using
first order theory for elastic layers of infinite-strip, circular and hollow-circular
shapes, bonded to rigid reinforcements with the numerical solutions. For this
purpose, some simple ‘numerical’ problems are designed and analyzed using a
widely used numerical technique: boundary element method (BEM).

The solutions obtained in CHAPTER 4 are used

¢ in CHAPTER 6, to investigate the effects of shape factor and Poisson’s ratio
on the behavior of infinite-strip elastic layers bonded to rigid surfaces

¢ in CHAPTER 7, to study the effect of the presence of a central hole on the
compressive behavior of elastic discs bonded to rigid reinforcements

¢ in CHAPTER 8, to investigate the effect of reinforcement flexibility on the

behavior of bonded infinite-strip elastic layers.

Finally, in view of the findings of the dissertation, some conclusions are

stated in CHAPTER 9.



CHAPTER 2

THEORY ON BONDED ELASTIC LAYERS

2.1 ELASTIC LAYERS BONDED TO RIGID SURFACES

As stated by Gent and Meinecke [20], there are three basic deformation
modes for an elastic layer bonded to rigid surfaces (Figure 2.1a): (i) uniform
compression/extension (Figure 2.1b), (ii) pure bending (Figure 2.1c) and (iii)
apparent shear (Figure 2.1d). Comprehensive analysis of a bonded elastic layer
under each fundamental deformation mode is essential for understanding the effects
of the bonded surfaces.

As already mentioned, in the last century, many researchers have studied the
behavior of bonded elastic layers, specifically bonded rubber layers. Most of these
studies have been conducted to determine the compression stiffness of the rigidly-
bonded rubber layers. According to Kelly [7], “the first analysis of the compression
stiffness was done using an energy approach by Rocard” in 1937 “and further
developments were made” by Gent and Lindley [2] and Gent and Meinecke [20]”.
These earliest studies put forward three basic assumptions for small deformation

and linear analysis of bonded elastic layers:

(1) horizontal plane sections remain plane after deformation,

(i) initially vertical lateral surfaces take a parabolic shape in the deformed
configuration (parabolic bulging assumption),

(1i1) state of stress at any point in the material is dominated by the hydrostatic

pressure (“pressure” assumption).
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Figure 2.1 An elastic layer bonded to rigid surfaces under its three basic
deformation modes

These three assumptions can be accepted as the fundamental assumptions of
the linear theory developed for the analysis of bonded elastic layers since most of
the earlier studies on this subject have been conducted based on these three
assumptions. As it will be discussed later in detail, even if different formulations are
used, these fundamental assumptions always lead to the same differential equation
in terms of the “pressure” term, which is commonly called as the “pressure
equation”. Most of the case, the solution of this differential equation was sufficient
for the analysis since the effective stiffness of the layer can easily be derived once
the pressure distribution is obtained. Thus, it seems to be reasonable to name all the
formulations developed based on these three fundamental assumptions as the
“pressure method”. Since most of the studies in literature have been based on this

method of analysis, in the following sections, first, the pressure method is reviewed.
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In this review, only the formulations of Gent and Lindley [2] and Kelly [7] are
discussed with some detail. For the other formulations, the related references should
be referred. After defining these two methodologies, the closed form expressions
derived using different formulations are presented without giving details on their
derivations. Other studies including those that used energy methods, variational
methods and finite or boundary element methods are also mentioned shortly.

Considering that several different notations have been defined and used in the
previous studies for the geometrical properties of the elastic layer and/or for the
coordinate system to which the derived equations are referred, it seems to be
reasonable and practical to define the notation that is used throughout this chapter at
this point. Table 2.1 summarizes the geometrical properties of the commonly used
cross sectional shapes for bonded elastic layers, namely, infinite strip (IS), hollow
circular (HC) and rectangular (RC) shapes. It should be noted that circular (C)
section is a special case of HC section in which a=0. Similarly, square (SQ) section
is a special case of RC section in which b=a.

In linear elasticity, the state of an isotropic material in its undeformed
configuration can be described by two basic elastic constants [21]: bulk modulus K,
which is used to define the resistance of the material to hydrostatic pressure, and
shear modulus g, which is used to define the resistance of the material to simple
shearing forces. The other elastic constants; namely, Young’s modulus E, Poisson’s
ratio v, and Lamé constant A can easily be derived from these constants using the
simple relations given below:

_ 9K,U, V:l3K—2ﬂ and /1:31{—2;1 .
3K + 2 3K+ 3 2.1

The selection of the two basic elastic constants to be used in the equations is
usually related to the formulation. The presentation of the fundamental equations or
the resulting expressions may be much easier when the suitable “pair” of material
constants is used. Since the conversions between these elastic constants can easily
be made using Egs. (2.1), in the following sections, the form of the equations is not

changed and the researchers’ preference for the two elastic constants is accepted.
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Table 2.1 Definition of the notation for bonded layers of different shapes
(Figure for the rectangular shape is taken from [22])

. . Shape
Shape Geometrical Properties Factor
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2.1.1 Compressive Behavior

The vertical stiffness (K,) of a bearing composed of several bonded rubber
layers (without any horizontal displacement) is given by the following well-known

expression [6]:

K, == 2.2)

where A is the cross sectional area of the reinforcing plates, ¢, is the total rubber
thickness and E. is named as the “effective compression modulus” of the bearing.
Effective (or sometimes called apparent) compression modulus of a multilayered
steel laminated elastomeric bearing can be determined from the -effective
compression modulus of its typical interior rubber layer bonded to steel plates,
which is simply the ratio of the nominal compressive stress (o;) to the nominal

compressive strain (&) as follows:

GL‘
b= 2.3)
in which
P A
o == and ¢, = (2.4)

where P is the applied compressive load, A is the corresponding vertical
displacement and ¢ is the thickness of the typical interior rubber layer, as shown in
Figure 2.1a,b.

As discussed in detail by Lindley [4], there are three limiting cases for the
compression of an elastic layer.

1. Compression without any restraint: if a layer is free from any lateral restraint

(§—0), it will be in “homogeneous compression” state under a uniaxial load.
Compression modulus in this case, denoted as (E.)o, can be written in terms of

elastic modulus £ and Poisson’s ratio v as [23,24]:

E for symmetrical cross sections

E) =
(£, )0 o) -~ for plane strain case (2.5)
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ii. Compression with complete lateral restraint: This case corresponds to the

compression of an infinite strip layer whose bulging at the lateral faces is
completely restrained (S—oc). Compression modulus in this case, denoted as

(E.)«, can be expressed in terms of E and v as:

1=
(EJw—aj;jgzg (2.6)

iii. Bulk compression: Under equal hydrostatic pressure in all three directions, the

behavior of the layer is governed by the bulk modulus K, which is related to

(E¢)s with

_ (1+v)
K_3a—vﬂ - (2.7

From Eq. (2.7), it is clear that (E.).=K for all materials (equality holds only
for incompressible materials). Thus, it can be concluded that the compression
modulus of a bonded elastic layer (E,) is always greater than (E.)y, which requires
perfect slip, but smaller than (E.)., which requires infinite lateral restraint. While
LSF layers are closer to the lower bound (E.)o, as shape factor increases, E.
approaches to the upper bound (E,).. This range is very sensitive to the Poisson’s
ratio of the material and can increase considerably as »—0.5. Thus, as stated in [4],
“for materials such as rubber which have a low shear modulus but a relatively high
bulk modulus, any restrictions on their freedom to change shape can have a very
marked effect on their stiffness in compression”.

This effect of bonding the on compressive behavior of rubber layers was
investigated by Gent and Lindley [2] through an experimental study in which the
behavior of various bonded rubber blocks with different geometries was examined
under uniform compression. The tested blocks had one of the following four shapes:
C, HC with R/a ratios of 8, 4 or 2, SQ or RC with a/b ratio of 3. The discrete points,
in the shapes of circles, squares and rectangles, plotted in the graphs presented in
Figure 2.2a-b show the experimental data obtained by the researhers for the

compression modulus of the tested blocks [2].
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Figure 2.2 Compression modulus of bonded rubber blocks (taken from [2])

It should be noted the points plotted in the shapes of squares and circles in
Figure 2.2a correspond to the experimental data, respectively, for SQ and C-shaped
rubber blocks. Similarly, the points plotted in the shapes of rectangles and circles in
Figure 2.2b correspond to the data obtained from the tests of RC and HC-shaped
blocks. The test results for the HC-shaped blocks with different R/a ratios are
differentiated by plotting the data for the blocks with a R/a ratio of 8 in the shape of
“empty” circles and those with R/a ratios of 4 or 2 in the shape of “filled” circles.
The graphs in Figure 2.2 clearly illustrate the strong effect of the shape factor of a
bonded elastic layer on its compression modulus: the compression modulus of an
HSF layer can be about 500 times greater than that of an LSF layer.

It is to be noted that the continuous and dashed curves tried to fit to the test
data in Figure 2.2a,b were drawn, by the researchers, using the approximate
relations they derived for the compression modulus of IS and C-shaped bonded

elastic layers. In their theoretical study, Gent and Lindley [2] considered that, under
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uniform comprssion, the total displacement of a bonded rubber layer is composed of
the superposition of two simple displacements; (1) pure homogeneous compression
of the corresponding unbonded layer and (2) the additional displacement required to
keep the points on the bonded surfaces in their original positions. Under
homogenous compression, the deformation of the layer is uniform. Thus, for
incompressible case, the compressive stress developing in IS and C-shaped bonded

layers under the /st stage deformations, (0;1; s and 03 ¢) are

oS s = _4TE56 and o . =—E¢, (2.8)
Note that as in Eq. (2.8), a superscript consisting of the initial letters of the
researchers’ surnames (e.g., GL in this case) will be added to any formula/equation
that will be given in this review for reader’s convenience.

The formulation of the second stage deformations requires some simplifying
assumptions on the displacement and stress distributions in the layer. Using the
fundamental assumptions of the pressure method and assuming strict
incompressibility (¥=0.5), Gent and Lindley [2] derived the following well-known

pressure equation,

Vip= & (2.9)
where
2 _d’p 9p » o _d’p ldp
Vip(x,y)= e %" or Vip(r)= P (2.10)

in Cartesian coordinates or cylindrical coordinates, respectively. It is to be noted
that their formulation was rather complicated. They derived the incompressibility
equation from the geometry of an IS-shaped layer by equating the volumes
contained between the central vertical plane and a plane at a distance x from the
center in the deformed and undeformed states as shown in Figure 2.3. Similarly,
they derived the equilibrium equation in the horizontal direction by computing the
excess hydrostatic pressure (dp,) that is required to maintain the parabolic bulging

of an interior section of width dx (Figure 2.3).
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Figure 2.3 Deformed and undeformed configurations for an IS-shaped bonded
elastic layer under uniform compression (taken from [20])

Using the “pressure free boundary conditions” at the lateral surfaces, Gent
and Lindley [2] solved Eq. (2.9) and obtained the following expressions for the
pressure distribution in IS and C-shaped bonded layers (0;; s and oy ¢):

2

2
05 =—po =—2E€.S’ (1—%} Ol =—Pac =—4EES’ (1—%j 2.11)

It should be noted that before deriving the expressions for the compression
modulus, it is necessary to superpose the first and second stage solutions; i.e., add
Egs. (2.8) and Egs. (2.11).

Thus, the Gent and Lindley’s formulation leads to the following well-known

expressions for the compression modulus of IS and C-shaped incompressible

bonded layers (E,, ; and E .):

ci,IS —

oL _%E(Hsz) and E% =E(1+25%) (2.12)

It is worth mentioning that, realizing the significant effect of the material
compressibility in HSF rubber layers, Gent and Lindley [2] also proposed an “ad-
hoc” modification -independent of the shape of the layer- to account for the bulk
compressibility of rubber on compression modulus.

1 1 1

£ —§+E (2.13)

where E,. is the compression modulus including material compressibility and E,; is

the compression modulus obtained assuming strict incompressibility. To evaluate
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the validity of their analytical formulation, the researchers compared the predictions
of their analytical solutions with the experimental results (Figure 2.2). It is to be
noted that the continuous curve in Figure 2.2a is plotted using the second of Eqgs.
(2.12). Similarly, the continuous curve in Figure 2.2b is plotted using the first of
Egs. (2.12). Since these “incompressible” curves deviate from the experimental data
considerably especially when S is large, the researchers also plot the “compressible”
curves, in dashed lines, using Eq. (2.13). By comparing their analytical predictions
with the test data, Gent and Lindley [2] suggested that the E, expression derived for
C-shaped layers (the second of Egs. (2.12)) can be used for layers with compact
sections; i.e., nearly square or circular cross section with a small hole, while the use
of the E. expression derived for IS-shaped layers (the first of Egs. (2.12)) is more
convenient for layers with very dissimilar side lengths or large holes.

Recognizing the similarity of the pressure equation to the equation of torsion
problem for torsional stress function, Gent and Meinecke [20] solved the pressure
equation for different shapes by adopting the problem to its corresponding torsion
problem. The following expression for “incompressible” compression modulus for
RC-shaped layers (E; gc) is worth mentioning in this review:

4 2 ab+?’ 4a>  192a 1 nmb

3 3a*+b°+21 b, Ssn

which leads to the following simple expression for the special SQ case (E.;so):

aZ
E? = E(l + 0.562t—2j (2.15)

It is to be noted that the expression in the first parenthesis in Eq. (2.14), which
represents the contribution of the first stage solution, is an empirical relation
suggested in [20] in such a way that it satisfies the two basic requirements: it yields
1.0 for symmetrical shapes and 4/3 for plane strain case.

For the prediction of the pressure method for the compression modulus of
incompressible HC-shaped layers, it is necessary to refer to the more recent studies.
The expression derived by Gent [24] for the compression modulus of

incompressible HC-shaped bonded layers (E.; yc) can be expressed as
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ESyc=E 1+%{(R2 +a2)—(II’:TZI))] (2.16)

Although the incompressibility assumption is generally accepted as a realistic
assumption for LSF rubber layers, the contribution of bulk compression of rubber to
the total compression of the layer has to be considered for HSF rubber layers [25].
Lindley [26] may be accepted as the first researcher attempting to derive closed
form expressions for the “compressible” compression modulus of bonded elastic
layers. In his analytical treatment, which was based on an energy approach, in
addition to the three fundamental assumptions of the pressure method, he assumed
that the distribution of bulk strain over any horizontal section is parabolic. He
obtained closed-form expressions for the compressible compression modulus of IS
and C-shaped layers.

Compared to the above-mentioned formulations of the pressure method,
Kelly’s formulation [7] can be said to be much simpler and more methodological.
He started his formulation by simplifying the displacement field of the rubber layer
based on the displacement assumptions of the pressure method. Thus, for a bonded
elastic layer with an arbitrary shape, Kelly [7] wrote the displacements in the x, y
and z directions, denoted as u, v and w respectively, in the form of:

2

u(x,,7) = uo<x,y><1—4t—§>

2

v(x, y,2) = vo(x,y)(l—tiz) (2.17)

w(x,y,z) =w(2)

where uy and vy are the maximum bulging of the layer in x and y directions,
respectively. From Eq. (2.17), it is easy to see that the displacement function in z
direction represents directly the first kinematics assumption, i.e., the assumption
that the horizontal planes remain horizontal, while the first two functions written for
the horizontal components are based on the second kinematics assumption, i.e., the

parabolic bulging.
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In the case of strict incompressibility, the incompressibility equation, i.e.,

E,+€,+€. =0 when written in terms of the normal strain components

(e..,€

xx? = yy?

£, ), can be written, in terms of the displacement functions, as:

4z
(2., +vo,y)(1 __2J+ w,=0 (2.18)

where the commas imply partial differentiation with respect to the indicated
coordinate. If the effect of compressibility is wanted to be included, the equation of

incompressibility must be replaced with € _+¢& +¢€_=-p/K, where K is the bulk

modulus of the material, which leads to

2
D
(“o,x”o,y)(l——z}fw,z =% (2.19)

Assuming infinitesimal strains and linearly elastic material behavior, integrating Eq.
(2.18) or Eq. (2.19) through the layer thickness, writing equilibrium equations in x
and y directions and using the stress assumption of the pressure method (i.e., that

o

yy? Tz

o,=0,=0_=-p where o

xx?

are normal stress components), the

following equations are obtained for the pressure term p(x,y)

12

Vip=-—3¢ (2.20)

for the incompressible case and

12u 12u
Vip= et 2.21)

for the compressible case. It is to be noted that in equilibrium equations, shear stress

7., was assumed to be negligible when compared to the normal stresses, i.e., to the
pressure, and to the other shear stresses 7, and 7.

Thus, Kelly’s formulation leads to the same pressure equation resulted from
Gent and Lindley’s formulation (Eq. (2.9)) for the incompressible case. As already
mentioned, this is due to the fact that both formulations were based on the same
fundamental assumptions. When Eq. (2.21) is compared with Eq. (2.20), it can be

seen that including the material compressibility in the formulation results in an
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addition of one compressibility term to the original (incompressible) pressure
equation. Indeed, as shown later by Gent [24], exactly the same equation can be
obtained when Gent and Lindley’s approach was directly applied to the
compressible materials.

Since Kelly’s formulation leads to the same expressions for the
incompressible case, only the compressible solutions are mentioned here. By
applying Kelly’s formulation, Chalhoub and Kelly [27,28] derived the following
closed form expressions for the pressure distribution and “compressible”

compression modulus of IS and C-shaped layers under uniform compression:

Ax) I,(Ar) ]
o = ke [1-SONAD | g pek 2 ke | 1o DalAD)
P g{ cosh( oy | 4 Pie £, 1(AR) | (2.22)
and
tanh(Aw) - 21 (AR)
E* =K|1-—22 d E . =K|l-———F"—
ce,IS |: lW } an cc,C |: (ﬂR)IO (ﬂR)_ (223)
where
12u
A= o (2.24)

Realizing that the presence of even a very small hole in the center of a steel
laminated elastomeric bearing can decrease the compression modulus of the bearing
enormously, Constantinou et al. [16] analyzed this compression problem for bonded
annular layers using the pressure method and obtained the following expression for

the compressible compression modulus of HC-shaped bonded rubber layers:

| 20K ()= K (ﬁ )]

d(Sz [ o l(ﬂ )]( 1/2
N 2B (/3)] K . (2.25)
K -SK (L) (——
d(S2 S ) [So 1(160) Sl l(ﬁz)](48ﬂ)
where
_R _a _ 48# )2 _ 48U/
S"_2t’ 5 2t p.= K - A Si(K)

(2.26)
d=1,(B)K\(B)—1,(B)K,(f,),
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In Egs. (2.23) to (2.26), Iy, I; and K; are modified Bessel functions of the first kind
of zero order, first kind of first order and second kind of first order, respectively.
Constantinou et al. [16] pointed out that the existence of a central hole does not only
reduce the compression modulus of the bearing but also increase the shear strain
developing in the elastomer due to compression substantially. Emphasizing the fact
that maximum shear strain is considered as ‘“the most consistent measure of
potential fatigue failure and potential delamination of the bearing”, they proposed
some simple design formulae for the calculation of the maximum shear strain due to
the compression. They also simplified the E. expression predicted by the pressure
method and proposed to calculate the E. of an HC-shaped bonded elastic layer from
the expression derived for a C-shaped layer by using the shape factor of the annular
layer.

The predictions of the pressure method for the compression modulus of the
layers with the remaining two shapes, SQ and RC shapes, can be found in Refs.
[3,29]. Koh and Kelly [3] presented the following expression for the compressible

compression modulus of SQO-shaped bonded rubber layers in their appendix:

£ _BE o5 ] (1_ tanh(ﬁn)j

oS 220
where
» [ 1-2v , _o 1
ﬂn—[%+72 oy S| ad @ =n-07 (2.28)

For the compressible compression modulus of RC-shaped bonded elastic layers,

Yeoh et al. [29] derived the following expression:

961 b
El e —{ ;SL Ry PRy E taﬂh(ﬂna)}} (2.29)
where
n’n’ L 12u
=( e Kﬂ) (2.30)

It can easily be recognized that Eqgs. (2.23), (2.25), (2.27) and (2.29) include

only the second stage solutions. It is known that as the shape factor of a layer
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increases, the constant term in E,. coming from the first stage solution becomes
negligibly small compared to the shape-factor-dependent terms coming from the
second stage. Thus, it is a common practice to ignore the first stage solutions in the
design of bonded elastic layers with high shape factors. However, it should not be
forgotten that it may be essential to include the first stage solutions corresponding
to homogenous compression of the layer especially if the shape factor of the layer is
low and/or the compressibility of the material is high.

As already stated, the pressure method assumes “fluid-like stress state”.
Without using this assumption, Koh and Kelly [3] derived expressions for the
compression modulus of SQ-shaped layers using two direct solutions. In their first
solution, they retained the displacement assumptions of the pressure method and
derived solutions in single series form using variable transform method. In their
second solution, they further eliminated the assumption on the bulging shape;
instead of assuming a parabolic bulge shape, they described the bulging shape in
terms of Fourier series. They concluded that the basic assumptions used in the
pressure method are valid for rubber bearings commonly used in seismic isolation.

In a similar way, using the same displacement field proposed by Kelly [7] but
removing the pressure assumption, Tsai and Lee [30] derived closed form
expressions for the compressible compression modulus of IS, C and SQ-shaped

bonded elastic layers. The expressions they obtained for IS and C-shaped layers are

A tanh(aw)
E, :2””{1_(/“2#) o } (2.31)
L _ _ A 1
Ele =24+ 4| 1= ) @R (aR) (2.32)
21,(aR)
where
o = 12u
A2 (2.33)

In their formulation, Tsai and Lee [30] used a direct solution formulated in terms of

the “mean pressure”. Comparing their solutions with the pressure solution, they
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concluded that the pressure assumption is valid only for HSF layers and nearly or
strictly incompressible materials.

The study of Koh and Lim [25] may be accepted as the first study attempting
to derive an analytical solution for the compressible compression modulus of
bonded RC-shaped layers without using the pressure assumption. Their method of
treatment is very similar to the first direct solution in [3]. Later, Tsai [22] extended
the method of treatment proposed by Tsai and Lee [30] to RC-shaped layers and
derived a closed form solution for their compression modulus in single series form,
which they showed to converge faster than the double series given in [25].

The studies of Horton et al. [31,32] differ from the many others in that they
eliminated the parabolic bulging assumption while keeping the assumption that
plane sections remain plane. In their formulation, they first assumed strict
incompressibility and, then, used the ad-hoc modification proposed by Gent and
Lindley [2] to account for the bulk compression of rubber. With a similar analytical
approach they had used for the derivation of radial and tilting stiffness of cylindrical
rubber bush mountings, they derived closed form expressions for the compression
modulus of IS, C and HC-shaped bonded rubber blocks. The authors concluded that
the shape of the bulging could not be approximated by a parabolic shape for
extremely low shape factors (e.g., $=0.2). Their results were in good agreement
with the experimental results obtained by Mott and Rolland [33], who investigated
the compressive behavior of very slender rubber cylinders (with 0.1<5<0.3).

The study of Moghe and Neff [34] is also worth mentioning in that they
obtained exact solutions to the compression problem of bonded elastic cylinders by
using the small deformation and linear elasticity theory. Involving infinite series of
Bessel and trigonometric functions, their solutions are, however, too complex and is
not convenient for design calculations.

In literature, there are also studies investigating the compressive behavior of
bonded elastic layers using variational or energy approaches. As an example,
Papoulia and Kelly [35] formulated the compression problem of bonded elastic
layers using the principle of minimum potential energy. They first derived the

Euler-Lagrange equations for a bonded elastic layer of arbitrary shape and, then,
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solved the equations for the IS-shape. They realized that to have a consistent result,
they had to release the assumption that horizontal plane sections remain plane. In
another study, Ling [36] investigated the compressive behavior of HC-shaped
layers. His analysis was based on the so called Perturbation-Ritz method and stated
to be valid only for HSF layers and slightly compressible materials.

The studies conducted to investigate the compressive behavior of bonded
elastic layers are surely not limited to the analytical studies. Several researchers
[9,37,38] studied the behavior of bonded elastic layers using numerical methods,
such as, dynamic relaxation, boundary element or finite element methods. Main
advantage of using these methods is that they do not usually include assumptions on
neither displacement nor stress distributions. However, it is generally difficult and
unpractical to study the behavior of bonded layers for various geometrical and
material properties by using numerical methods. Moreover, these solutions are also
approximate and mostly very sensitive to modeling.

Several experimental studies were also conducted to examine the compressive
behavior of rubber layers bonded to rigid plates. Since in a compression test, the
most easily obtained characteristic of the layer is its compression modulus, most of
these studies (see, e.g., Ref. [2]) concentrated on the determination of the
compression modulus of the test specimens. The study of Hall [1] can be accepted
as the first study attempting to measure the stress distributions in a bonded rubber
layer subjected to uniform compression. He found that the shape of the pressure
distribution over the bonded surfaces of a cylindrical bonded rubber layer is
approximately parabolic under very small compressions, as predicted by the
pressure method. While Hall [1] investigated only the C-shaped layers and thew
normal stress distribution under compression, Gent et al. [17] studied both the shear
and normal stress distributions over the bonded faces of different sized C and SQ-
shaped bonded rubber blocks under both compression and shear loads. They also
tried to measure the stress singularities at the edges, which, they concluded, “must

be confined to extremely small regions in the neighborhood of the edges”.
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2.1.2 Bending Behavior

Another important mechanical property of an elastomeric bearing is its
bending (also called tilting) stiffness. Bending stiffness of an elastomeric bearing
can be denoted as (EI).y, with an analogy to the elastic beam theory, or simply Kj.
Bending stiffness is usually one of the key parameters in the design of a rubber
bearing since it is the fundamental parameter determining its buckling behavior [7].
Similar to the compression modulus, the bending modulus of an elastomeric
bearing, E;, can be determined from the bending modulus of a typical interior
bonded rubber layer.

For a bonded elastic layer which is purely bended by bending moments so that
the bonded faces rotate with respect to each other about y axis with a relative angle
of rotation ¢ (Figure 2.1c), the effective bending modulus can be determined from
the ratio of bending stiffness to the moment of inertia / of the layer about the axis of
rotation. Similar to an elastic beam, if the bending stiffness of the layer is defined as
the ratio of the applied moment M to the resultant curvature x; the effective bending

modulus Ej, can be obtained from

K
Eh:Tb and Kh=M with &= (2.34)

[
K t
As in the compression case, the bending behavior of an elastic layer can
change considerably if its lateral movement is restricted at its top and bottom faces.
For this reason, most of the earlier studies on bonded elastic layers have also
included analytical formulations to derive their bending modulus. In these studies,
the bending problem for a bonded elastic layer is generally handled using the same
analytical approach with the same assumptions imposed in the corresponding
compression problem.
Using the method of treatment proposed by Gent and Lindley [2], Gent and
Meinecke [20] derived and tabulated the bending stiffness factors to be used in the
calculation of the bending modulus of bonded elastic layers for various shapes.

3

Thus, the predictions of the pressure method for the “incompressible” bending

stiffness of IS and C-shaped bonded layers (Ej; ;s and Ej; ) can be expressed as
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Ebi,IS = 3E(1+5S j and Ehi,C E(l'i‘ 3 S j (235)
It is to be noted that, for incompressible case and under pure bending, the pressure

equation becomes,

12u

Vip=- oK (2.36)

whose solution leads to the following expressions for the pressure distribution in IS
and C-shaped bonded elastic layers of incompressible materials under pure bending:

2 2

2 X r
pbiJS:gEK'SZ(l—ij and pbi,CZZEKSZ(l_FjrCOSQ (2.37)

For RC-shaped bonded elastic layers bended about an axis parallel to the 2b

side, the solution of the pressure equation leads to the following expression for Ej:

ab +1°
4 2 o
5 A 2
EGM _E 3 3i+b2+2t2
bi,RC — 4 (2.38)

24a | &1 nzb )" nh
+——9) —|1-| — | tanh| —

RS ()
which simplifies, for the special square case, to

2
EM = E{1+0.1856“—2} (2.39)
> t :

Gent and Meinecke [20] also investigated the “internal rupture” phenomenon
observed in a bonded elastic layer subjected to tension/bending when the critical
local hydrostatic pressure is reached. They defined the internal rupture of the layer
as the failure of the layer where “any small cavity will increase indefinitely in size”.
This occurs when the magnitude of hydrostatic tension exceeds a critical value,
typically, the value 3/4E where E is the Young’s modulus of the rubber. Using the

pressure method, Gent and Meinecke [20] obtained the following values for the
location (xf ) and magnitude (@) of the critical rotation at which an IS-shaped

bonded rubber layer fails due to internal rupture under pure bending:
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As in the compression case, the formulation of Gent and Meinecke [20] was

(2.40)

based on the assumption of incompressibility. However, just like the compressive
behavior, the material compressibility is a crucial parameter affecting the bending
behavior of HSF layers and therefore has to be included in the formulations.
Including the material compressibility and using the same approach he used for the
compression case, Lindley [39] derived a closed form expression for the
compressible bending modulus of IS-shaped bonded layers.

Similarly, Kelly [7] formulated this bending problem by applying the same
methodology he used for the compression problem. By modifying the displacement

field as

477 K
M(X, y’Z) = uo(-x’ y)(l_t_z)_zzz

v(x, y,2) =V, (x, )1 _“tiz) (2.41)
w(x, y,z) =—KxzZ

he derived the pressure equation for the compressible, bending case as:

12u 12u p
Vip=—"TFkx +_t2 e (2.42)
Solving this pressure equation for two different shapes, Chalhoub and Kelly [27,
28] derived the following expressions for the “compressible” bending modulus of IS

and C-shaped bonded elastic layers:

3 Aw
EX =K|1- -1
be,IS |: (lw)Z Lanh(lw) :|j| (243)
K __AL(AR)
E. c.=K [1 ARV GR) RJ (2.44)

where A is defined as in Eq. (2.24).
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Eliminating the stress assumption of the pressure method, Tsai and Lee [40]
obtained the following closed form expressions for the compressible bending

modulus of IS and C-shaped bonded layers:

A 3 aw
E™ =2u+A|1- ~1

1_(%) Rl (aR)—-2I,(aR)
4 2(1+128*)I,(aR) — aRI (aR)

Eyc =24+ /{ (2.46)
where « is defined in Eq. (2.33). They also obtained a solution for the bending
modulus of SQ-shaped layers in series form whose coefficients are required to be
solved numerically. Recently, Tsai [41] formulated a new procedure to treat the
bending problem of bonded circular layers by directly establishing the relations in
terms of the “average” horizontal displacements. He pointed out that the expression
derived by Tsai and Lee [40] for the bending modulus yields results very close to
the results of this approach although in this earlier formulation one additional
constraint had to be made.

Recently, Horton et al. [42] studied the linear and incompressible behavior of
C-shaped rubber blocks under combined shear and bending. After obtaining general
expressions, they examined three special loading cases: (a) pure bending, (b)
cantilever loading and (c) apparent shear. For pure bending case, they derived
closed form expressions for the bending modulus and stress distributions. It is to be
noted that although they eliminated the bulging assumption in their formulation,
they kept the incompressibility assumption and the assumption that plane sections

remain plane.

2.1.3 Apparent Shear Behavior

In their common use, bonded rubber layers may also undergo shearing
deformations in such a manner that one of the bonded surfaces of the layer displaces
in its own plane with respect to the other bonded face, which frequently remains

fixed in its place (Figure 2.1d). As stated in [43], this deformation state is not
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“simple shear” since a state of simple shear requires suitable additional forces at the
lateral surface of the layer. Absence of these additional forces leads to the addition
of the bending deformations to the simple shear deformations in the resulting
deformation state. In literature, this state of deformation is commonly named as
“apparent shear”.

It is widely accepted that the effect of bonded surfaces to the shear behavior
of the layer is negligible. This is a very realistic assumption for HSF layers.
However, as also stated in [20], bending displacements may become an important
component of the total displacement when the layer thickness is relatively large.

Although many analytical studies have been conducted on the compressive
and bending behavior of bonded elastic layers, there is rather limited work in
literature on their apparent shear behavior. Rivlin and Saunders [43] studied
experimentally the apparent shear behavior of cylindrical mountings with different
geometries. They also suggested an approximate expression for the apparent shear
modulus of bonded elastic layers using an approximate theory developed with the
aid of the similarity of the problem to the problem of a cantilever beam loaded at its
free end. Ignoring the end effects, they formulated the resulting tip deflection from
the superposition of the displacements due to simple shear and bending. They, then,
defined the apparent shear modulus by regarding that the combined deflection is
resulted from only simple shear. Thus, they obtained the following relationship for
the “incompressible” apparent (44;) shear modulus in terms of the true shear

modulus () for incompressible materials.

RS 1

ﬂai = Il'l N /,lAtz (247)
12E1

Despite the slight overestimation of the analytical results to the experimental
results, the authors declared a good agreement on the whole considering the
approximate nature of the analytical treatment they used.

Later, Gent and Meinecke [20] recognized that Rivlin and Saunders [43]

ignored the effect of bonded surfaces to the bending modulus and they proposed to

30



use the “modified” bending modulus in Rivlin’s formula. Then, the revised formula

for the incompressible apparent shear modulus can be expressed as

M 1

/’lai :ﬂ 2
1+ HAL
12E,1

(2.48)

The expression obtained by Horton et al. [42] for the incompressible apparent
shear modulus seems to have the same form with the expression proposed in [20].
The basic difference in these expressions arises from the fact that while the E,
expression used by Gent and Meinecke [20] was derived based on the parabolic

bulging assumption, the expression used by Horton et al. [42] does not include it.

2.2 ELASTIC LAYERS BONDED TO FLEXIBLE REINFORCEMENTS

Kelly [44] can be accepted as the first researcher who studied the effect of the
reinforcement flexibility on the behavior of rubber bearings. He developed an
approximate theory for the buckling analysis of rubber bearings that includes the
effect of the reinforcement flexibility. Different from the existing theories, he
considered both the shear and warping of the cross section in his formulation. Since
he assumed ‘“‘inextensible” reinforcements, he did not study the effect of the
reinforcement extensibility on the effective stiffnesses of the bearing.

Recently, Tsai and Kelly [45,46] extended Kelly’s theory [44] in a way that
the effect of the reinforcement extensibility on the effective stiffnesses of the
bearing was also included in the analysis. In their formulation, they derived closed
form expressions for the effective compression, bending and warping stiffnesses of
an IS-shaped fiber-reinforced elastomeric bearing. For this purpose, they analyzed
linear behavior of a single rubber layer bonded to extensible reinforcements, with
no flexural rigidity, under the combined effects of the compressive load P, bending
moment M and warping moment Q (Figure 2.4). It is to be noted that in this study,
Tsai and Kelly [46] assumed strictly incompressible (v=0.5) behavior for the rubber

layer.
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Figure 2.4 Deformation of an elastic layer bonded to flexible reinforcements
under the effects of the compression force P, bending moment M and warping
moment Q (taken from [46])

At this point, it is also important to note that as emphasized in [45], “the
terminology of warping used here is not associated with torsion; it just specifies the
distortion of the cross-section created by moment and shear”.

While the study of Tsai and Kelly [46] can be accepted as the first study
where the derivation for the warping stiffness of a rubber layer bonded to flexible
reinforcements appears, it is indeed Kelly [10] who first analyzed the compressive
and bending behavior of a rubber layer bonded to flexible reinforcements. In [10],
Kelly clearly explained how the effect of the reinforcement flexibility can be
incorporated into the formulation he developed for the analysis of rigidly-bonded
elastic layers and derived closed-form expressions for the incompressible

compression and bending modulus of a fiber-reinforced IS-shaped rubber layer.
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Kelly’s approach was later applied to RC and C-shaped rubber layers by Tsai
and Kelly [47]. However, their solutions were still based on the incompressibility
assumption. Incorporation of the material compressibility to the formulation was
again shown by Kelly [13], who derived the “compressible” compression modulus
for IS-shaped rubber layers bonded to flexible reinforcements.

In the following sections, first, the Kelly’s approach [10] to incorporate the
reinforcement flexibility into the pressure method is discussed. Then, the closed
form expressions derived for the compression and bending modulus of the layers
using this formulation are presented. Different from Kelly’s approach, the study of
Tsai [48] is also discussed shortly. Finally, the studies conducted to determine the

warping behavior of bonded elastic layers are reviewed shortly.

2.2.1 Compressive Behavior

In [10], Kelly explains how the reinforcement flexibility can be incorporated
to the pressure method. Since the analysis for elastic layers bonded to flexible
reinforcements is somewhat more complicated than that for layers bonded to rigid
reinforcements, he developed his formulation for IS-shaped layers. Similar to the
rigidly-bonded case, Kelly [10] started his formulation by simplifying the
displacement field for the rubber layer using the basic displacement assumptions of
the pressure method. Since he assumed that the reinforcements to which the elastic
layer is bonded are flexible in extension with no flexural rigidity, he incorporated
the effect of the reinforcement flexibility to the formulation by considering an
additional displacement term in the horizontal direction (u;). Assumed to be
constant through the layer thickness, this term is “intended to accommodate the
stretching of reinforcement” [10]. Thus, the simplified form of the displacement
field for an IS-shaped elastic layer bonded to flexible reinforcements under uniform

compression (Figure 2.4b) can be written as:

2

u(x,z) = uo(x)(l —t—ij +uy(x), w(x,z) =w(z) (2.49)

where u; is the extension of the reinforcement in the x direction.
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Incompressibility condition, when written in terms of the displacement
components and after integrated through the layer thickness, becomes
3 _3A

U, +—u  =——
0,x 2 1,x 2 ¢ (250)
The pressure assumption, when used in the equation of stress equilibrium for the
rubber layer in the horizontal direction, leads to the following equation in terms of

the pressure term and the displacement of the elastomer:

8y
Pa=m"5t (2.51)

Another equation comes from the equilibrium equation written for the flexible
reinforcements (Figure 2.5). Considering that the equivalent thickness of the
reinforcing sheet, denoted as fy, is much smaller than the thickness of the layer ¢, the
sheet can be idealized to be in the plane state of stress. Thus, the normal force per
unit length in the reinforcement in the x direction N,,, can be expressed in terms of
the shear stresses at the top and bottom rubber layers denoted, respectively 7. (z=-

t/2) and 7,,(z=t/2), as (Figure 2.5)

Nox =T w2 Cxeloein (2.52)
which can be written in terms of the rubber displacement as
8
N, ()=, 2.53)

[ S —_— .

L 4
z=t/2 - T f T (z=-1/2)
t

R Ny <[ ]=» No+dN,
Z=—t/ 2 —_— —j'— e — " ——
) — —1 tr P
Z=-t/2 7z ,_.._4 dX — T sz(z_ )
X ¢ f—dx —
z=t/2 | _Ltf
| T

Figure 2.5 Forces on a reinforcing sheet bonded to IS-shaped rubber layers at its
top and bottom faces (taken from [47])
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The stretching force N, in the reinforcement can be related to the extensional strain
u; x, in view of the linearly elastic stress strain relation, as follows:

(Nxx —Vy N ¥y )

(2.54)
Et;

u .. =

WX

where E; and W are, respectively, elastic modulus and Poisson’s ratio of the
reinforcement and N,, is the internal normal force per unit length in the

reinforcement in y direction. Since for the plane strain case, N, =v N, Eq. (2.54)

reduces to

W,=— (2.55)

where “in plane stiffness of the reinforcement”, denoted as ky, is

k. = Eftf
=1 V; (2.56)
Eq. (2.55), when inserted into Eq. (2.53), results in
8u
ul XX = _EMO (257)

Thus, the complete set of equations for the three unknown functions of the problem,

ug, uy and p, is

3A 811 811
Uy +Eul’x :ET P, = —t—zuo and U = —auo (2.58)

-

The necessary boundary or symmetry conditions for the solution of the above set of
equations are

u(0)=0, u(0)=0, p(Ew)=0 and N _(Fw)=ku (fw)=0 (2.59)

While Kelly [10] solved these equations by solving the displacement components
first, it is possible to obtain the pressure distribution directly from the pressure
equation. It is not difficult to show that for an IS-shaped rubber layer bonded to
flexible reinforcement, the pressure equation becomes

Vipo g 12,

EIRL k_ft (2.60)
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The solution of the pressure equation, in view of the condition p(xw) =0, yields

k, {1_ cosh(ax) }g

Poyas = r cosh(aw) (2.61)
where
12u
ot ===
1 (2.62)

from which the incompressible compression modulus for IS-shaped layers bonded
to flexible reinforcements E. ;s is determined as

£X _k_f[l_ tanh(aw)}

cif IS — aw (263)

At this point, it is worth studying Eq. (2.60) thoroughly. Comparison of Eq. (2.60)
with Egs. (2.20) shows that inclusion of the reinforcement flexibility adds an
additional pressure term to the pressure equation. What may be more interesting to
realize is that the reinforcement flexibility influences the layer behavior in the same
way the material compressibility affects. This can be seen from the comparison of
Eq. (2.60) with Egs. (2.21). Thus, the stiffness expressions derived for the
compressible layers bonded to rigid reinforcements can easily be adapted to the
incompressible layers bonded to flexible reinforcements. This can be done, for
example, by replacing K with k¢/t. As an example, it can be shown that if this
replacement is done in the first of Eq. (2.23), exactly the same equation as Eq.
(2.63) is obtained. However, it should be noted that this conclusion is valid only for
the IS-shaped layers. For the other shapes, it may not always be possible to write
the pressure equation in its regular form due to the complex form of the differential
equations. In such cases, the pressure distribution cannot be obtained without
solving the unknown displacement functions.

Kelly’s approach was later applied to C and RC-shaped layers by Tsai and
Kelly [47], who derived the following expression for the incompressible
compression modulus of circular discs bonded to flexible reinforcements (Ec):

g Kk A+v)l (@RI (aR)-21(aR)
T2 (@R (@R~ (1-v ), (aR) (2.64)
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Due to its lengthy form, the expression derived for the rectangular case is not
presented here (one may refer to Ref. [47]). However, considering that the
rectangular case is the more general 3D case, some discussion is made on the
derivation of the reinforcement equilibrium equations in terms of the reinforcement
displacements when the layer has a finite length. From Eq. (2.49), it can be inferred

that the most general forms of the displacement functions are
2

u(x,z)=u,(x) (1 - %] +u,(x)

2

v(x,z7)= vo(x)(l—iiz}pvl(x) (2.65)

w(x,z) =w(z)

where v, is the extension of the reinforcement in the y direction.
Figure 2.6 illustrates the internal forces acting on an infinitesimal area of the
reinforcing sheet in an RC-shaped bonded elastic layer. Then, the most general form

of the equilibrium equations for the sheet in the two horizontal directions can be

written as
Nxx,x + NX\ y =7 =t/2 TXZ —t/2
(2.66)
NW!}’ + NXY»X - T)’Z z=t/2 B Tﬂ =—t/2

—1_) Nyy+dNyy

Ty (Z=-1/2)

i i it

iJ Noem [ N
" \& T (z=t/-5)- h
P t}l ‘—i_ XZ L

ny<1— * I‘_ dx _"1

Z
4
2
¥
T (2=-1/2)

—— el ol sliin..

Figure 2.6 Forces on an infinitesimal area of a reinforcing sheet bonded to RC-
shaped rubber layers (taken from [47])
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To be able to write the equilibrium equations in terms of the displacements of the
reinforcement, it is necessary to relate the internal forces to the displacements.
Using the linearly elastic stress strain relations, the internal forces can be expressed

in terms of the displacement components as follows:

N_= kf (”1,x + val,y) , Nyy = kf (vL_v + Vf”1,x)

N, :kf(l‘;fj(ul,y )

where the in-plane stiffness of the reinforcement kyis as defined in Eq. (2.56). Then,

(2.67)

the most general form of the equilibrium equations in terms of the reinforcement

displacements and interfacial shear stresses becomes

1-v,
U TV iV +T(u1,yy + vl,xy) = k_(fxz w2 " T z=—t/2)
f
(2.68)
1-v, 1
v, VA —— (w4 )= k_(Tﬂ T Z:_I/Z)
f

Kelly [13] also investigated the effect of the material compressibility on the
compressive behavior of IS-shaped rubber layers bonded to flexible reinforcements.
He showed that the material compressibility can be incorporated into the
formulation just as done in the rigidly-bonded case, i.e., by replacing the
incompressibility condition €, +¢& +€_ =0 with € +¢& +€_=-p/K. Then,
the complete set of the equations for the three unknown functions becomes

3 3A 3 8 8
uO,x +_ul,x = ____£ ’ p,x = __éluo’ ul,xx = __ﬂuo (269)
t k,t

It is again easy to reduce these equations into a single pressure equation, which can

be expressed as

12 12u 12
Vip=— f‘gc+(k‘t‘+K§‘jp (2.70)
f

from which the compressible compression modulus for fiber-reinforced IS-shaped

layer E.s is determined as
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(2.71)

where
B =+ with A2=122 and oo =124

2
Kt k it

(2.72)

By applying the approach Tsai and Lee [30] used for the analysis of rigidly-
bonded elastic layers, Tsai [48] derived analytical expressions for the compressible
compression modulus of IS-shaped layers bonded to flexible reinforcements. In his
study, he investigated the effect of the boundary conditions at the ends of a fiber
reinforced bearing on its compression modulus. The following expression he
derived for the compressible compression modulus of IS-shaped elastic layers
bonded to flexible reinforcement under uniform compression is worth mentioning in

this review:

2UA Ao (a tanh(B,w)
E' o =2u+ + L -—
where
12u 12u

2 _ 2 2 . 2 _ 2 _
B, =o,+0; with o = and o =

1 (2.74)

(A+2u)1 ’

2.2.2 Bending Behavior

Adaptation of Kelly’s formulation [10] to the bending case is very similar.
Under the effect of bending moments M, (Figure 2.4a,c), the displacement field for
the elastic layer-idealized to IS-shape- can be simplified as:

u(x,2) = 1, (x)(1 —‘%) (0 + S WD) =k 2.75)

from which the complete set of the equations for the three unknown functions of the

problem, uy, u; and p, can be obtained as

Uy, +—-u = 57)6 P.=—"3 Uy, U, =———1U (2.76)
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The necessary boundary or symmetry conditions for the solution of the above
equations are

0, (0)=0, u,(0)=0, p(Ew)=0 and N (Ew)=ku (Ew)=0  (2.77)

Thus, the pressure equation for the bending case has the following form:
Vip=——Fxk+——p (2.78)

The solution of the pressure equation, in view of the condition p(xw) =0, leads to

124

_ k| x _ sinh(ax)
p(x)= { — Iy

: kw where o’ =
t | w sinh(aw)

(2.79)

from which the incompressible bending modulus for IS-shaped layers bonded to

flexible reinforcements Ep /s is determined as

X _k_f 3 aw
Enpis = t {1 (aw){tanh(aw) 1ﬂ (2.80)

Kelly’s approach [10] was later applied to C and RC-shaped layers by Tsai

and Kelly [47], who derived the following expression for the incompressible

bending modulus of circular discs bonded to flexible reinforcements:

w K (1+vf){ (aR)I,(aR) 41, (arR) }
By = (2.81)

bfC T T (aR) I (aR)-2(1-Vv,)I,(aR)

It is to be noted that the compressive behavior of a reinforcing sheet can be
very different from its tensile behavior. Then, the above-mentioned formulation,
which is developed ignoring this behavior difference in the reinforcing sheet, will
not be valid under pure bending. However, it is well known that such bonded elastic
layers are usually subjected to compression in addition to bending. For instance, in
their use, multilayered fiber-reinforced elastomeric bearings should support the
heavy weight of the superstructure. Considering that the tension created in the
reinforcement due to the compressive load typically exceeds the compression
created by the bending moment in such elements, this assumption seems to be valid
for practical use [47]. However, its limitation should always be kept in mind when

the solutions derived based on this assumption are used.
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2.2.3 Warping Behavior

As already mentioned, Kelly [44] can be accepted as the first researcher who
studied the warping behavior of bonded elastic layers. In his study, he first
developed a beam theory for buckling analysis of short beams including the shear
deformation and warping of the cross section. Considering the cross sectional

warping as an independent kinematic quantity, he defined the displacement field as
ux2)=3(2) and wr2)=A()-9()r+()x) g

where d and A are the displacements of “the middle surface” in x and z directions
respectively; @is the “average angle of rotation of the section”, ® is the “measure of
the warping of the section” and Q, also called “warping function”, is the function
describing the warping pattern of the section.

Assuming elastic behavior and using linear stress-strain relations, the axial
stress in a uniform short beam can be written in terms of the displacement
components as

0. =EN-E¢x+E®'Q (2.83)

where the prime indicates derivation with respect to z.

Kelly [44] defined three axial stress resultants for this problem:

p= J‘ o.dA, M= —j o _xdA and Q= Io'zszA (2.84)
A A A |

As it can be understood from Eqgs. (2.84), to incorporate the effect of the section
warping into the classical beam theory, it is necessary to define a new stress
resultant Q, called the resultant “warping moment”, besides the known stress
resultants P (resultant axial load) and M (resultant bending moment). Then, it is not
difficult to show that these stress resultants are related to their kinematic variables
by

P=EAN, M=EIl¢ and Q=EJP®’ (2.85)

where the warping related cross sectional property J, which can be thought as a kind

of sectional inertia, named “warping inertia”, is defined as
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_ 2
J—J;Q dA 256

Thus, the axial stress in a unifom short beam can be written in terms of the
stress resultants as

o =L M Lq (2.87)
A 1

Eq. (2.87) indicates that, as in the classical beam theory, the variation of the axial
stress over the cross section of a short beam is uniform under uniform compression
and linear under pure bending. Eq. (2.87) also indicates that the axial stress
distribution due to warping moment Q has the shape of the warping function €.

As stated by Tsai and Kelly [45], who verified the theory by Kelly [44] using
the principle of virtual work, “it is convenient to select the warping function € such
that the axial force and bending moment are independent of Q”. Thus, in view of

Eq. (2.87), one has the following two conditions for the warping function €:

deAzo and jgdizo (2.88)
A A

In other words, it is necessary to select (x) in such a way that it is orthogonal to
both 1 and x. From the first of Egs. (2.88), it is seen that  has to be an odd function
of x. As stated in [45], “there are many forms that the warping function could take”

but “the simplest function” is “a cubic polynomial” in the form of

Q(x) = (ij + f(ij (2.89)
w w

where f'is a constant that should be determined from the second of Egs. (2.88). It
can be shown that f=-3/5 for a uniform short beam.

It is known that the axial stress distribution in a bonded elastic layer can
considerably be different than that in Eq. (2.87). In fact, for a rubber layer bonded
to inextensible reinforcements with no flexural rigidity, one can write the following
equation, using the pressure method and assuming strict incompressibility, for the

axial stress:

Vo, =——F¢ (2.90)
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which, in view of Eq. (2.82), equals to

Vio.. :_12ﬂ(A’—¢’x+cI>’Q) (2.91)

t2

Kelly [44] showed that if a cubic function as in Eq. (2.89) is selected as the warping
function, the value of f that “permits the uncoupling of the constitutive equation for
bending moment M and warping resultant Q" has to be -3/7.

When Eq. (2.90), with a cubic function for Q(x), is solved with the condition
that o,,(+w)=0, the axial stress distribution in a bonded elastic layer is determined as

2 3
ok (%—1)A’+Zt—'gw3(x—3—iJ¢’

w w

0. = (2.92)

Then, the relations between the stress resultants and their kinematic quantities can

be written as

P= ECAA/ , M = Eb1¢/ and Q = EWJ(I)/ (293)
where
E =4uS* | E :f;zs2 and E =3;zs2
c ’ b 5 w 15 (2.94)

In Egs. (2.93) and (2.94), the “effective warping modulus” E, can be
determined from the ratio of the warping stiffness K,,, which can be defined as the
ratio of the resultant warping moment Q to the resultant change in ®, to the warping

inertia J. In other words, for the effective warping modulus E\,, one has

_K, _9
E = F; where KW_(I)' (2.95)

w

Thus, as shown by Kelly [44], the buckling theory developed for uniform
short beams can also be applied to elastomeric bearings consisting of several
bonded rubber layers provided that the effects of the individual bonded rubber
layers are accounted for by using the effective stiffnesses of the bearing.

As it can be understood from Egs. (2.94), Kelly [44] included the effects of

neither the reinforcement extensibility nor the material compressibility in his
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formulation. The effect of the reinforcement flexibility is later incorporated into this
buckling theory by Tsai and Kelly [46].

In fact, the warping behavior of an elastic layer bonded to flexible
reinforcements can be studied similar to its bending behavior. It can be inferred
from [46], the displacement field (Figure 2.4d) for an IS-shaped layer bonded to
flexible reinforcements under a warping moment Q can be simplified, based on the

kinematic assumptions of the pressure method, as
47’ z
u(x,z) =u,(x, y)l1 —t—z) +u,(x) and w(x,z)= QCI); (2.96)

From Eq. (2.96), it is clear that similar to the compression and bending cases, the
displacement of the layer in the horizontal direction is first written based on the
parabolic bulging assumption, then the flexibility of the reinforcement is taken into
consideration by adding the term u;, which is assumed to be constant through the
thickness. The effect of the cross section warping is considered with the term ®Q
in the vertical displacement. It is worth noting that Tsai and Kelly [46] defined this
term as “a kinematic displacement function that produces no rotation of the section
but measures the deviation from plane of the deformed cross section”.

Following the same procedure defined for the “incompressible” compression

problem, one can obtain the following set of equations for the warping problem:

3 3P 8u U U y7i
u —u =———Q, =——u +-—>0Q |, =y + PO
0,x 2 1,x 2 / X t2 0 ¢ X ul,xx ; uO kft X (297)
which can be reduced to
12u 1 P 12u
Vip= Q+—1Q  |— |+—=
p 2 H D ,nj J k1 p (2.98)

Realizing that “term on the right-hand side of” Eq. (2.98), “ tZQM/12 , which is

equal to x/(2wS?), is negligible because the pressure approach is applicable to

isolators with shape factors greater than about five” and selecting the simplest cubic
function (Eq. (2.89)) as their warping function, Tsai and Kelly [46] derived the

following expression for the pressure distribution under pure warping:
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k, |(xY 6 |x 6 |sinh(ax) | @
px)=——+ (—j +Hf+ r il R A 2 | - (2.99)
t w (a'w) w (aw) sinh(aw) | t
where «is as defined in Eq. (2.62). They also derived a closed-form expression for
the incompressible warping stiffness of an /S-shaped elastic layer bonded to flexible
reinforcements, which can be expressed as

w16 1 3
K. 5= ﬂt—z[g )’ (—7— f ﬂ (2.100)

It is to be noted that, in their formulation, Tsai and Kelly [46] also considered the
effect of the flexural deformation of the reinforcements. The additional term coming
from this effect is not included in the expression presented in Eq. (2.100).

As far as the constant fin the warping function is concerned, the formulation
proposed by Tsai and Kelly [46] should be examined thoroughly. It can be realized
that the authors selected the warping function Q such that the virtual work done by
the normal stress in the elastomeric layer can be written in an uncoupled form as far
as the applied deformations are concerned. In what follows, this formulation is
reviewed shortly.

Under the combined effects of the compressive load P, bending moment M

and warping moment Q (Figure 2.4), the axial stress ¢, in an IS-shaped elastic

layer bonded to flexible reinforcements can be written as o =0_,+0_, +0_,,

zz,P

where o

zz,P”? o

.n and o_, denote the axial stresses representing the effects of
individual loadings P, M and Q, respectively. Similarly, if the axial displacement of
the layer is assumed to vary linearly in the vertical direction, axial strain €, under
the combined effects of these loadings can be written as £_ = —% —?x +%Q . To
achieve the following decoupled form for the virtual work done by the axial stress

in the layer,

t/2 w
[ [o.de.dadz= [ (0. ,00-0. , x5p+0.. Q5D (2.101)

—t/2 A —-w

the following conditions must be satisfied:
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jf o, ,dx=0, }K o pxdx =0

b —-w

zz,P

j 0. ,dx =0, j . ,Qdx=0 (2.102)

—-w

}K GZZ’Qxdx =0, }K 0. ,Qdx=0
It is clear that the first two conditions given in Egs. (2.102) are satisfied trivially if
the cross section is symmetric about the x and y axes. It can also be seen that the
third and fourth conditions are satisfied easily if the warping function is selected to
be an odd function of x. Thus, there remain two conditions to be satisfied by the
selected warping shape, the fifth and sixth conditions in Eqgs. (2.102).

Tsai and Kelly [46] showed that if the cubic function given in Eq. (2.89) is
selected as the warping function, it is possible to compute the constant f from these
two conditions, both of which, they showed, yield the same result. The expression
derived in [46] for the constant f has the following form for an IS-shaped bonded

elastic layer of incompressible materials:

2 2
—(a
=] 14—+ aWIS( W)l (2.103)
) tanh(aw) 5@’

It should be kept in mind that Tsai and Kelly [46] used the pressure method
while determining the axial stress distribution in the layer. Moreover, as mentioned
previously, they simplified the pressure equation by removing one term from the
right hand side of the pressure equation. On the other hand, if a more complicated
analysis is used to determine the stress distributions, it can be really tedious to
determine the correct form of the warping function. At this point, it is worth
reemphasizing that Tsai and Kelly [45, 46] used such an uncoupling in their virtual
work expression in order to simplify their stability analysis. Thus, this condition

should not be considered as a requirement on the warping shape.
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CHAPTER 3

THE NEW FORMULATION FOR THE ANALYSIS OF
BONDED ELASTIC LAYERS

The main objective of this dissertation, as already mentioned, is to study the
behavior of bonded elastic layers under basic deformation modes using a new
analytical formulation which removes most of the in-priori assumptions used in the
earlier formulations. In this chapter, this new formulation is presented.

As discussed in the previous chapter, most of the earlier studies on bonded
elastic layers have been based on assumed displacement fields with assumed stress
distributions, which usually lead to approximate and/or ‘‘average’’ solutions. These
assumptions have somehow hindered the comprehensive study of the stress and/or
displacement distributions over the entire layer. As indicated by Papoulia and Kelly
[35], variational approaches, such as, the principle of minimum potential energy can
also be used in the analysis of bonded layers. These approaches can satisfactorily
eliminate the stress assumptions commonly used in the formulations. However,
even these approaches necessitate the selection of the form of the displacement
functions in advance to satisfy the displacement boundary conditions. Thus, their
success also depends on how well the behavior is “guessed” at the beginning.

The approximate theory that is used in this dissertation, the theory developed
by Mengi [19], overcomes this difficulty; inclusion of the displacement boundary
conditions in the formulation itself eliminates any possible inconsistency between
the assumed displacement field and the boundary conditions at the bonded surfaces.

Thus, there is no need to start the formulation with some assumptions on
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stress/displacement distributions or with some limitations on geometrical and
material properties. Since the effect of compressibility is naturally included in the
formulation, the solutions are valid not only for incompressible or nearly
incompressible materials but also for highly compressible materials. Furthermore,
since the theory has “orders”, it is possible to improve its prediction and obtain
solutions much closer to the exact by only increasing the order of the theory.
Consequently, by using this new formulation, it is possible to derive the solutions in
a form which can be used for the comprehensive study of stress/displacement
distributions at any section in a bonded elastic layer. Furthermore, it is also possible
to investigate the effects of geometric and material properties on the layer behavior
thoroughly.

In the following sections, first the approximate theory proposed by Mengi
[19] is reviewed. Then, using this theory, the linear (small) deformation analysis of
bonded elastic layers under some basic static deformation modes is presented. Since
in this dissertation, the main emphasis is given to the elastic layers bonded to rigid
reinforcements, the rigidly-bonded case is discussed first. For each deformation
mode, the order of the theory is left arbitrary and the relevant equations are
presented in general forms, in view of the displacement boundary conditions at the
top and bottom faces of the layer. To have a formulation applicable to all possible
shapes (circular as well as infinite-strip, square and rectangular shapes), the reduced
governing equations which are derived in rectangular Cartesian coordinates are also
extended to cylindrical coordinates. The constants which appear in the approximate
theory are determined and tabulated by choosing the distribution functions
employed in the theory as Legendre polynomials. Regardless of the layer shape or
order of the theory, determination of the displacement/stress distributions and the
relevant effective modulus for each deformation mode are also formulated and
presented. After the formulation of the rigidly-bonded case, the case where the
elastic layer is bonded to flexible reinforcements is also considered. For this case,
the reduced governing equations are derived only in rectangular Cartesian

coordinates.
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3.1 REVIEW OF THE APPROXIMATE THEORY USED IN THE
DISSERTATION

The new formulation proposed in this dissertation for the analysis of bonded
elastic layers is developed by using the approximate theory proposed by Mengi
[19]. Formulated originally to analyze the dynamic behavior of thermoelastic plates
by using a modified version of the Galerkin Method, this approximate theory
assumes that the material is isotropic and linearly elastic and that the layer has a
uniform thickness of 2A4. The layer is referred to a Cartesian coordinate system (x;

X2 x3), where the x1x3 plane coincides the mid-plane of the layer (Figure 3.1).

X2

h Elastic Layer

A S _ S x
O,

Figure 3.1 Cartesian coordinate system defined for a layer

X3

The approximate theory contains two types of field variables: “generalized”
variables representing the weighted averages of displacements and stresses over the
thickness of the layer and ‘“face” variables representing the displacements and
tractions on the lateral faces of the layer. The inclusion of the face variables as the
field variables in the theory eliminates any inconsistency which may exist between
the displacement distributions assumed over the thickness of the layer and the
boundary conditions on its flat faces. The theory due to Mengi [19] differs in this

respect from others available in literature.
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In the development of the theory, a set of “distribution functions”
{¢n (x,),n=012,...,x, =x, /h} is chosen. The elements ¢, (n =0—(m+2)) are
retained in the set for m™ order theory. Keeping the last two elements @,., and

@.., 1n the set is essential for establishing the constitutive equations for the face

variables.
The theory is composed of two sets of equations. The first set of equations is

derived by taking the weighted averages of the elasticity equations with the use of

@, (n=0—m) as the weighting functions. The second set of equations representing

the “constitutive equations for the face variables” is obtained through the expansion

of the displacements in terms of the distribution functions @, (n=0—(m+2)) and

using them in the exact constitutive equations of the tractions on the flat faces of the
layer. With this procedure, the governing equations of the approximate theory are
obtained in terms of some constants whose values may be computed once the
distribution functions are selected.
In what follows, a summary for the derivation of the equations of the
approximate theory is given for the static case (for more details, see Ref. [19]).
Written in indicial notation, the fundamental equations of linear elasticity,

equilibrium (in the absence of body forces) and constitutive equations are

9,7; =0  (iy=1-3) 3.1)

7 :ﬂ(a;uj +ajui)+5ijﬂ'akuk (iy=1-3) (3.2)

where A and g are Lamé’s constants; u; are the displacement components; 7; are the
stress components; and d; is the Kronecker delta. In writing Eqgs. (3.1) and (3.2), the
summation convention is used, where any repeated index indicates summation over
its range. Moreover, d; implies partial differentiation with respect to x;.

The weighted averages of fundamental equations are established by applying

+h
the operator L' = i .[ ()@ dx, with n=0-m to Eqgs. (3.1) and (3.2), which gives

—h
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0,7 +09,75 +(R' —=7,,))=0  (n=0-m) (3.3)

where
P ROD ere R = R =1, -7, forevenn
h R =1} +7,, foroddn
3.4)
with 75, =7,[ _,
T o= 1% dg,
7,,=L't,, with L —E:[l(,) i, dx, (3.5)
and
7, = Qu+A)u +A0,u; + AS, —u,)
Ty = A0 U] +0uy)+Qu+A)(S) —u,)
Th = Qu+ Ao ul +A0u! + A(S; —ul)
n " W —n (3.6)
T ::ua1u2 +u(S) —u')
T3 :ﬂall"; +ﬂa3”1n
Ty, = posuy + ((Sy —uy')  (n=0-m)
where
S’ (ST =u—u f .
5 = S/ M rere Gro S = sy forevenm L )
2 S’ =u’+u; foroddn #=th
3.7)

u =Ly,

In the derivation of Eqgs. (3.3) to (3.7), it is assumed that ¢, is even function of X,

for even n and odd function of X, for odd n. Also, it may be assumed without loss

ae,

X

of generality that ¢ = is related to ¢, by ¢ = Zanqij , implying that 7,; and
=0

u;" are related to 7,, and u;' by

m

—n = 1 j ;
(72”“,‘ )_chnj (Tzli’uij) (38)
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where the constants ¢, may be computed whenever the distribution functions are

selected.
For the derivation of the constitutive equations for the face variables R;", the
displacements u; are expanded in terms of ¢ (k=0,1,2,...,m+2) as

m+2

u; = ;ali¢k (3.9)

where a,i are some coefficients which are functions of x; and xs. It is to be noted
that Eq. (3.9) is not an assumption on the shape of the displacements u; over the
thickness of the layer; it is the representation of u; in terms of the complete shape
(base) functions @, in fact, this representation would be exact for m — oo, When L"
(n=0-m) operator is applied to this expression, one obtains

m+2

) i ; 1 h
u' = Zdnkak where d,, =L"¢, :E J.¢n¢kdx2 (3.10)
—h

k=0

Assumed properties of ¢ lead to the following uncoupled system of equations for

the determination of the coefficients a; :

p+2 ) + p+2 )
u'=Y d,a and %: > a¢ () (n=02,...,p) forevenk

k=0,2 k=0,2

e P (3.11)
u' =Y d,a and o= > aig () (n=13,..., p’) forodd k

k=1,3 k=1,3

where p=m and p’=m-1 for even m and p=m-1 and p’=m for odd m. From the
solutions of the above equations, the coefficients a,i are determined in terms of u;'
and S as
a, = Zp: fkjul.j + fipS; for k=02,...,p+2
j=0,2

) (3.12)
a = z fitl + fiyaS; for k=13,..., p'+2

j=13

where the coefficients f,; (k,j=0-(m+2)) may be computed whenever ¢, are chosen.
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Finally, to obtain the constitutive equations for the face variables, one should

use Eq. (3.9)in R” =7, +7,, with 7,, = u(d,u, +du,)+ AJ,0,u, , which gives

+ o, 2U L k| oo
R =ﬂ(8152)+7(2 Y +7S))

k=1,3

- - 21” c k + o+
R :ﬂ(al‘sz)"'T(z Y 7 S))

k=0,2

. . L 2u+ ) & o
R =10,S, +83S3)+(’UT)(Z ik +yS;)

k=1,3
(3.13)
_ _ o 2Qu+A) & o
R, = A(3,S, +90,S; )+L(Z Yoty +7'S3)
k=0,2
. Loo2u & .
RS = p(@,S))+ (3, yl +7°S7)
k=1,3
- - 2 C + o+
Ry = u@,5)+ 2y +7°8))
h k=0,2
where
p+2
Y= f,8) for j=13,..., p
k=1,3
p+2
7/‘ = z fkj¢k (1) for j:0,2,..., P (314)
k=0,2
p+2 p+2
V= z fk,p’+2¢k M, y= z fk,p+2¢k @
k=13 k=0,2

In the approximate theory, the weighted forms of the equilibrium equations
[3(m+1) equations] and constitutive equations [6(m+1) equations] provide [9(m+1)]
equations. In addition, six equations come from the boundary conditions at the top
and bottom faces of the layer. These boundary conditions specify one of the traction
or displacement components, or their combination, in each direction on each face of
the layer. On the other hand, the constitutive equations for the face variables
provide six more equations. Thus, the number of available equations in the

approximate theory is [9(m+1)+12], which is sufficient to compute the unknowns

(7},u,S;,R), whose number is also [9(m+1)+12].
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3.2 APPLICATION OF THE APPROXIMATE THEORY TO ELASTIC
LAYERS BONDED TO RIGID SURFACES

Figure 3.2a shows the undeformed configuration of an elastic layer of uniform
thickness ¢ bonded to rigid plates at its top and bottom faces. The deformed
configurations of the layer under its three fundamental deformation modes are

shown in Figure 3.2b-d.

T e JL
h=t/2 = ermmrrrwrrrrrrrrzrrzzs T:E A2

X1

,,,,,,,,,,,,,,,,,,,,, 7L TIFFFFFFFFFFFFF g Fry i 5,2

a. undeformed shape b. deformed shape under uniform
compression
X2 X9
M

. R X
| / 1

M F\_4M 32
c. deformed shape under pure d. deformed shape under apparent
bending shear

Figure 3.2 Undeformed and deformed configurations for an elastic layer bonded
to rigid plates under its three basic deformation modes

In the first deformation mode (Figure 3.2b), the layer is compressed uniformly
by a uniaxial compressive force P such that the bonded faces approach uniformly

towards each other with a relative vertical displacement A. In the second
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deformation mode (Figure 3.2c¢), the layer is purely bended by the bending moments
M so that the bonded faces rotate with respect to each other about x3 axis with a
relative angle of rotation ¢. Finally, in the third mode (Figure 3.2d), the bonded
layer is subjected to the combined effects of the shearing force F and the bending
moments M=tF/2 so that the bonded faces move with respect to each other in
horizontal direction with a relative horizontal displacement J.

The object in this section is to formulate each problem within the framework
of the approximate theory presented in Section 3.1. In the formulation, the layer is
referred to the same rectangular frame employed in the approximate theory. In the
derivations and results presented in subsequent sections, the distribution functions

in the approximate theory are chosen as Legendre polynomials of the first kind. The

coefficients c,;, a, y; and y* of the theory for these distribution functions are

listed in Table 3.1 and Table 3.2.

It is worth noting that any distribution functions @ may be chosen in the
approximate theory as long as they form a complete set implying that the prediction
of the approximate theory approaches the actual response as the number of the
terms retained in the set {¢,} increases. Legendre polynomials, P,(x,), selected as
the distribution functions in the present study, are orthogonal implying that the
completeness of the set {@,} is satisfied automatically; besides, the orthogonality of

P, facilitates the computations of constants appearing in the theory.

Table 3.1 ¢, coefficients (¢, s are Legendre polynomials)

Il o0 1 2 | 3 | 4
n

0ol o 0ol o] 0] O
1 1 0 | 0] 0] 0
2] 0 3 0] 0 0
3] 1 0 5101 0
41 0o 3 0 710
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Table 3.2 Coefficients a. and constants ¥, §* for the 0", 1 and 2™ order

theories (@, ’s are Legendre polynomials)

m| a (k=0-(m+2)) | y(=0-m) | ¥ | v
u!
0 S; /2 {-3} 32 | 172
SHi2—u!
ul
3u; -3
: ST 12—u) {—15} )3
S;/2-3u]
_ 0 -
3u; -10
2 Su’ -15 5 3
S /2-3u; -35
ST /2—-5u] —u) |

3.2.1 Derivation of Reduced Governing Equations
3.2.1.1 Uniform Compression

From the deformed configuration of a uniformly compressed bonded elastic
layer shown in Figure 3.2b, it is clear that the vertical displacement u, is
antisymmetric whereas the horizontal displacements u; and u3 are symmetric about

the mid-plane of the layer. Since the distribution functions are even functions of X,
for even n and odd functions of X, for odd n, one has

u =u; =0 and u, =0 foroddn
(3.15)

—n

u' =u; =0 and u, =0 forevenn
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Furthermore, since the elastic layer is bonded at its top and bottom faces, the
material points at the bonded faces can only displace uniformly in the axial

direction; this implies that

+ + + _A
u, =u; =0 and u, =u, x2:ih:+5 (3.16)
which leads to

Sf=8;=8;=0 and S, =-A (3.17)

from which it is obvious that

. . . —A/t forevenn
S/ =8)=0 foralln, §;=
0 foroddn

(3.18)

(9,5,9,8/)=0 for i=1-3 foralln
Then, the constitutive equations for the face variables and the weighted form

of the constitutive equations have the following uncoupled forms:

e constitutive equations for the face variables:

w4 T k .
R =t—2(2 yat) (i=1,3) foreven n,

k=0,2

, (3.19)
. 4o & k _
R; :—Z(Z Vi, —AY) for odd n
k=1,3
e weighted constitutive equations:
A
T = a0 u, + A0,u; —L—ﬂﬁ;
i t
A
o = D u + A — L2
t for even n
n n n AA —n
Ty = /7.(’)11/!1 +0!33u3 —T—/ll/lz (3.20)
T)y = MO\u3 + 40 u)
z.n — un _ I/—tn
1: 0, Zn 'u_ln} for odd n
Ty = MOy — i,

where @ =2u+ A, and other R and 7 being zero.
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Substitution of Egs. (3.19) and (3.20) into Eq. (3.3) gives the following

governing equations for the weighted displacements u;":

n n n —n 4 £ —n
00,y + 10 ;' + (A + )0, u; — A0, +t_él( z 7/1(”1]() =7y

k=0,2

) for even n
n n n —n 4# N k =n
a0y + 10y + (A + ()0 ) — 40,1, +—5-( z yaul) =72
" S0 (3.21)
n n —n ., da & da . . _,
1O 1y + 01y — 10\ 1," — O, it +t_2(z %(ué‘)—t—sz =7,, foroddn
k=1,3
where #" and 7, are related to ;' and 7,; by, in view of Eq. (3.8),
o=y 2N i
', 7,) :72%1' (u/,7y) (3.22)
j=0

in which 7, can be expressed in terms of u! by Egs. (3.20). Egs. (3.21) with Egs.

(3.20) and (3.22) comprise the reduced governing equations for the problem of

uniform compression of bonded elastic layers.
3.2.1.2 Pure Bending

Similar to the uniform compression case, under pure bending, the vertical
displacement u, is antisymmetric while the horizontal displacements u; and us are
symmetric about the mid-plane of the layer (Figure 3.2c). Therefore, Egs. (3.15) are
valid also for the bending problem, for which the displacement boundary conditions

at the bonded faces of the layer are

+ + + ¢
uy =u; =0 and u; =u, =‘—"5X1 (3.23)

which leads to
S§F=8;=8;=0 and S, =¢x, (3.24)

¢x,/t forevenn

S'=S8;=0 foralln, S;={ 0 forodd n (3.25)
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Substituting Egs. (3.15), (3.24) and (3.25) into the governing equations of the
theory and following the same procedure described in Section 3.2.1.1, one can

obtain the reduced form of the governing equations for the bending problem as

* weighted constitutive equations:

A _
T =00 u +Adu; +—¢x1 — Au,
t

(01 _
Ty, = A0,u + Ad,u; +—¢x1 — o,
t for even n

n n n ﬂ/ —n
Ty = ialul +a¢83u3 +T¢X1 —11/12 (326)

7 :ﬂalug +,u83u1"

Ty, = HO,uy — plity’
ln : | _ln for odd n
(25 :ﬂasuz — Hu,

* weighted equilibrium equations:

_aan“ln +ﬂaz3“1n +(ﬂ'+/‘)813“§ _ﬁ“alb_‘zn_

+‘t—f‘<2 yu )+ (A+ )2

k=0,2 t

00 ! + 10, il + (A + )0, jul' — 0,1 |

4 4 =T
AW (3.27)

k=0,2

for even n

ﬂan”; +:ua33”; _luall’_tln _ﬂa3”_‘3n

da & dar
+t_2(z 7ku§)+t_27 Px,

k=1,3

=7,, foroddn

In Egs. (3.27), it/" and 7,; are related to u and 7). by Eq. (3.22), where 7J, can be

expressed in terms of u; by Egs. (3.26).
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3.2.1.3 Apparent Shear

Apparent shear of the layer shown in Figure 3.2a results in the deformed
shape shown in Figure 3.2d, from which it is obvious that the boundary conditions

at the bonded faces are

and uy =uy =0 (3.28)
Then,
Sf=87=8;=0 and S =6

o/t forevenn (3.29)

Sy =8;=0 foralln, Sl”:{ 0 forodd
or odd n

Contrary to the compression and bending cases, under apparent shear, the
vertical displacement u, is symmetric whereas the horizontal displacements u; and
u3 are antisymmetric about the mid-plane of the layer. That is,

u' =u; =0 and u, =0 forevenn

— — (3.30)
' =u; =0 and u, =0 foroddn

Following the same procedure employed in Section 3.2.1.1, the governing

equations for the apparent shear problem may be obtained as

e weighted form of constitutive equations:

no__ n n —n
T =00 u, + Adu; — Au,

no_ n n —n
Ty, = A0,u, + Ad,u; — o,

for even n
Ty, = A0 + o0 uy — A,
Tyy = UO\u3 + Lou (3.31)
T, = uo u”—,uﬁ”+,ué
2 2 ! t for odd n

no_ n —n
Tyy = MOju; — Uit
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e weighted form of equilibrium equations:

_a/‘an”ln + 10 ) + (A + )0 5uy — /wlﬁzn_

4 & 4u . =7,
SO AR !
- = z for odd n
00 5y + 10,y + (A + p@)0,u — A0y

p' = fn

+ LSy & (3.32)
i k=13 A

MO 1ty + O 3514y — 10,11," — UOiay

4a & =7,, forevenn
+t_2( z Yiity) z

k=0,2

In Egs. (3.32), i and 7, are related to u" and 7, by Eq. (3.22) where 7, can be

expressed in terms of u; by Egs. (3.31).

3.2.2 Reduced Governing Equations in Cylindrical Coordinates

For circular cross sections, it is convenient to write the governing equations of
the approximate theory in cylindrical coordinates (r,8,z). Referring to the cylindrical
coordinate system defined in Figure 3.3, the fundamental equations of linear

elasticity can be written in cylindrical coordinates as:

Figure 3.3 Cylindrical coordinate system defined for axisymmetric case
(taken from [30])
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e equilibrium equations in the absence of body forces:

1 1
ar’z'-rr +_aﬁfrt9 + azTrz +_(Trr _7’.1919) = O
r r

1 2
0,7, +—0,T,+0.7, +—7,=0
rvré r 6%00 270z r ré (333)

1 1
0.7, +;agr& +0.T, Tt = 0

® constitutive equations:

T, =00.u, +/1(189u9 +lu, +0.u,)
r r
1 1
Tyg = 0(—0 uy +—u, )+ A0, u, +0_u_)
r r

T, =00 u +A0,u, +lagu€ +lur)
g g (3.34)

1 1
Ty = ,u(;agur +0.u, —;ug)
T, =p10,u_+09.u,)
1
T, = M0 uy,+—09,u.)
r

Following the same procedure used in the derivation of the governing equations in
rectangular Cartesian coordinates in Section 3.1, the governing equations of the

approximate theory in cylindrical coordinates can be expressed as:
weighted form of equilibrium equations (n=0-m):

1 1
T, +— 0,/ +— (T, —Tp) + (R —7;) =0
r

ar rr
0,2, +—3, 10 + 21 +(Ry ~T4) =0
rvré r 6" 60 r ré 0 20 (335)
n 1 n 1 n n —=n
0,7 +—0,7, +—7. +(R'-7")=0
r
where
R! R =t/ -7, f
. R, () where R' =% =T~ or even n 536
2h R’ =7} +7, foroddn '
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and

_ — 1% _d¢
7;=L't, where L :E_Ih(')d_zdz (i=r,6)) (3.37)

e weighted form of constitutive equations (n=0-m):

" =0 u’ +/1(189u; +luf)+/1(S: —u’")
r r
n 1 n 1 n n n —n
Tpe = 0(=0 uy +—u’ )+ A00,u’ )+ A(S” —u")
r r

7! =A00,u! +189u;’ +luf)+a’(S;’ —u)
r r

(3.38)
n 1 n n 1 n
70 = 1(—0,u +0 uy ——uy,)
r r
T =0 u’ +u(S" —u'")
n 1 n n —n
THZ :lu;aﬁuz +IU(S9 _”9)
where
S (1) A S”=u —u;, forevenn
S'=—"— where S'=9" ! ! i=r,0z

2h {s; =u’+u~ foroddn ( ) 639)

e constitutive equations for the face variables:

. oo 2u & o
R =p@SH+=E (Y yul+7°5))
h k=1,3
- - 2 - + o+
R = 1@,S)+7(Y yut +7'S7)
h k=0,2
»
R = p@,87 +20,5; +25+22(Y yutt +7°50)
‘ r r h =5 ‘

(3.40)

) 1l 1 2L P
R =u(d,S  +-0,S, +—S. )+7( Dyl +ySH
r r

k=0,2

. 1. o 2u & .
Ry = (9,S: )+7“<Z Y +7°S,)

k=13

_ 1 .2 2 ot
R, :;U(;aesz )+7ﬂ(z 7ku§ +7'Sy)

k=0,2
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3.2.2.1 Uniform Compression

Under uniform compression, the deformation of a bonded elastic disc will
obviously be axisymmetric, implying that ug=0 and that radial and axial
displacements are independent of @; i.e., u,=u.(r,z), u;=u.(r,z). It is also clear that u,
is antisymmetric while u, is symmetric about the mid-plane of the layer which

leads, in view of the special properties of the distribution functions, to

u; =0 and u' =0 foroddn

(3.41)
u'=0 and u =0 forevenn
The boundary conditions at the bonded faces of the layer implies
+ + _ A
u =0 and w =ul|_, ,=%7 (3.42)
Then, S (i=r,z) becomes
S;‘r = S; =0 and §,=-A (3.43)
which leads to
20 foralln S —A/t forevenn
= or all n, =
' ‘ 0 for odd n (3.44)
Then, Egs. (3.38) and (3.40) reduce to the following uncoupled forms:
e constitutive equations for the face variables:
" =a0,u’ +iuf —&—Zﬁ:
r t
Tp = A0, U +guf —%—ﬂﬁ;’ for even n
(3.45)
o =+ -
2 p p ,

T =uo,u’ — " foroddn
e weighted form of constitutive equations:

n 4# Z k n 4“ S k 4
R :_Z(Z yu') forevenn, R =—2(z Y, —Ay") foroddn (3.46)

k=0,2 k=1,3
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where other R and 7; are zero. Through the substitution of Egs. (3.45) and (3.46)

into Eqgs.(3.35), one obtains the following governing equations for the weighted

displacements u;":

a a A & iy —
oo, u'+—ou’ —7uf — A0, u’ +t_2( z y,u,)=7" forevenn

r k=0,2
oy » (3.47)
1, +29 " — g3 i — L + 22 (Y yut) =LAy =7 foroddn
- r ‘ r 1" O3 ‘ t h
where
—n —n _ 2 m .. ..
(T5.u") = 7;% (z2.u]) (3.48)

in which Z'Z{. can be expressed in terms of u;' by Eqs.(3.45). Eqgs. (3.47) with Egs.

(3.45) and (3.48) constitute the reduced governing equations for the compression

problem of bonded elastic discs for any order of the theory.
3.2.2.2 Pure Bending

Under pure bending, u, is antisymmetric while u, and ug are symmetric about
the mid-plane of the layer. Thus, the weighted displacement components have the

following properties:

u' =u,=0 and u] =0 foroddn

—n _ —n n (3.49)
u' =uy, =0 and u; =0 forevenn
The boundary conditions at the bonded faces of the layer implies that
- + _ ¢
U, =u, =0 and u, —‘_"EI”COSG (3_50)
Then,
SriZS;ZSZZO and S =¢rcosé (3.51)
S S -0 foralln S ¢grcos@/t forevenn
=S, = or all n, =
e : 0 foroddn (3.52)
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Substituting Egs. (3.49), (3.51) and (3.52) into the governing equations of the
theory (Egs. (3.35), (3.38) and(3.40)) and following the same procedure described

in the previous sections, one can obtain the following uncoupled equations for the

bending problem:

* weighted constitutive equations:

Agrcos @

A A _
T =0 u' +—u' +—09,u, + —Au!

r r

o 14 Agrcos@ ,_
o =0+ L+ Lo+ 200088

r r ‘

a@rcos @ _
¢—_aun

Z

A A
no__ n n n
7., —Mrur +7ur +789u3 +

n _;l'l n n M oa
Tro _7aaur + 4o, u, _7“9

n o __ n —n
T8 = o u’ — i
. M~ ., _, foroddn
THZ :7a€uz _luu€

* weighted equilibrium equations:

i a o U A+
n n n n n
C@rrur +78rur _?ur +Faﬁt9ur +Tar9u0

a+u
}"2

P
3 us — A0, LA AT =

2
k=0,2

¢

+(A+ ,u);cos o

Ko, Oy

Zup +
2 78
r

n +/1+_’ua u”

2 Tl oY,
r

Mo u, +%aru2 -

o+ R A ) R
+ 2:“<’99ur—7<’iguz+t—fl(z 7,ty)

r k=02
¢

t

sin @

—(A+ )

M M —n_ M Mo —
1o u! +7aruf +789€u; — o " —7ur" —789u;

da & da
+—2(z 7kuf)+t—27/ ¢)"COS€

k=1,3
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3.2.2.3 Apparent Shear

Under apparent shear, u, is symmetric whereas u, and ug are antisymmetric

about the mid-plane of the layer. That is,

u' =u,=0 and u =0 forevenn

—n _—n n (3.55)
u' =uy, =0 and u, =0 foroddn
The boundary conditions at the bonded faces, in this case, are
£ o + o . +
u —iEcose, uy, —+5s1n0 and u; =0 (3.56)
Then,
S§f=8,=5"=0, S =dcosf and S,=-Fsinb
§!=0 foralln,
(3.57)
dcos@/t forevenn —0sin@/t forevenn
S’ = and S, =
0 foroddn 0 foroddn

Following the same procedure employed in the previous sections, the
governing equations for the apparent shear problem may be obtained, in cylindrical

polar coordinates, as

e weighted form of constitutive equations:

A A
no__ n n n —n
T =00 u +7ur +739u9 — Au!
a a —
Ty =A0 U +—u' +—0 uy — A"
/{ /{ for odd n
0 =0 u’ +—u +—0d,u, — o’
r r
n _/’l n n /’l n (358)
Tro _789“r + 10, u, _7“9
no__ n —n 5 6
T = o, u — i +ﬂ700s
for even n

Ty, =%agu; — Mty —,u;sine
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e weighted form of equilibrium equations:

aarrur +— a I/l ) lll 800 r l+ﬂar0u;
r r r
OH_Iuaa 9_/18 + (ZVk r =Tr'l
r k=13

+4—‘§l;/’5cos9

- ! 4 Z for odd n

19,165+ 520 1 = Eay + 50 + 2D
r r r

a+ AL _, —n

+ “ag ——a +—(27k“9) =7,

k=1,3

(3.59)

—i—’f ¥y osind

rrz

(Znu)

k=0,2

10 u +”a ! +ﬁagg " —"———"—éagﬁ;

=7, forevenn

3.2.3 Determination of Displacement/Stress Distributions

Egs. (3.21), (3.27) and (3.32) (or Egs. (3.47),(3.54) and (3.59) in cylindrical

coordinates) constitute the three sets of partial differential equations for the
weighted displacements u' governing the behavior of a bonded elastic layer under

its three basic deformation modes. Necessary boundary conditions for the solution

of these differential equations are the traction-free boundary conditions at the lateral
bulge-free surfaces. Once the governing equations are solved for u;', determination

of displacements and stress distributions is straightforward.

For various orders of the theory, the distributions of the displacements u; (i=1-
3, in rectangular coordinates) may be computed in terms of ! and S as, in view

of the coefficients in Table 3.2 and of Eq. (3.9),
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2 1
u =+ (0 )( 22y, ( )(6’“2 ~2) (n=0)

u, = ul+ Guy B 2>+< )(6%__) <——3 ><20x2 —ﬁ)( _1)
(3.60)
W0+ G )4 5 )(ﬁ——) (——3 )(20x2 3%,
t
" 702 15x2 (m=2)
AL sy -2 —)
2 t

In cylindrical polar coordinates (i=r,6,z), Eqs. (3.60) are still valid; only the
parameter z must be used in place of x;.
Substitution of the displacement components into Eq. (3.2) (or Eq. (3.34))

determines the stress distributions.

3.24 Compression, Bending and Apparent Shear Moduli

The effective modulus of the layer under its any deformation state may be
determined whenever the stress distributions are obtained. As discussed in
CHAPTER 2, the effective compression modulus E, or effective bending modulus

E;, of a bonded elastic layer can easily be obtained from the following equations:

o, _ P _A
EC = gc where . —Z and gc = p (361)
_K, M _9

where / is the inertia moment of horizontal layer section about the bending axis.
Similarly, the apparent shear modulus 4, of a bonded elastic layer can be

determined from the ratio of nominal shear stress 7to nominal shear strain ¥ that is,

,ua = y whnere = 1 an Y= p (363)

For any deformation state, the applied load can be computed by integrating

the related face stress 7, (or T;) over the horizontal section of the layer. Similarly,

the applied moment can be determined by integrating, over the horizontal area, the
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moment of the related face stress about the bending axis. Since zeroth order theory
corresponds to averaging the variables through the layer thickness, ;. (or 2'2. ),
instead of 7,, (or 77;), should be used in the calculation of the forces or moments

for this order. Thus, the compressive force P, bending moment M and shear force F

in Egs. (3.61) to (3.63) may be obtained, in Cartesian coordinates, from
(P,M,F)=[[(=2,,73,x,,7,)dA  for m=0
' (3.64)
(P,M,F) = [[ (=25, 7%, 75)dA form=1.2,....
A
where, in view of that R, =7, —7,, =0 for the uniform compression and pure
bending problems, and R =7,-7,=0 and R, =7,,+7,, =0 for the apparent

shear problem,

. 20 & 2a —A  for uniform compression
(25 :T(z V) +—y B, ,5={

k=13 t

¢x, for pure bending

. _ 20 &
T =Ty :T( Z Yty ) (3.65)
€02 for apparent shear

L 2u & 2u
fa=7”(27kuf)+7”75

k=1,3

Egs. (3.64) and (3.65) take the following forms in cylindrical polar coordinates:

(P,M,F)=[[(~22,7%rc0s6,2°)dA  for m=0
A

A + (3.60)
(P,M,F)= H(—T;Z,T;Zrcos 0,77)dA form=1,2,....
A

where, 7° =/(z0)* +(z5.)* and 7" =/(7})* +(7,.)" are, respectively, the resultant

average and face shear stresses. The face stresses (Tlf) can be determined, in view
of that R, =7 —7_ =0 for the uniform compression and pure bending problems,
and R =7, -7_=0, R,=7, -7, =0 and R =7 +7_=0 for the apparent

shear problem, as
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. 2a ¢ 200 _ —A for uniform compression
= QL nu)+==r B, ﬁ={

i3 t ¢rcos @ for pure bending

200 3&
+ - _ k
Tzz - _Tzz __( z 7/kuz)
-y

. (3.67)
p
T.= 2_,u( z yul)+ 27,11 y Oocos@ for apparent shear

rz
k=1,3

. 2u &

k=1,3

2T’u ¥y osind

3.3 APPLICATION OF THE APPROXIMATE THEORY TO ELASTIC
LAYERS BONDED TO FLEXIBLE REINFORCEMENTS

For an elastic layer of uniform thickness ¢ bonded to flexible reinforcements,
with equivalent thickness #;, at its top and bottom faces (Figure 3.4a), three
fundamental deformation modes can be defined corresponding to the three
fundamental loading types; compression, bending and shear. In the first deformation
mode (Figure 3.4b), the layer is compressed uniformly by a uniaxial compressive
force P such that the top and bottom reinforcements approach uniformly towards
each other with a relative vertical displacement A.

While it is possible to apply “uniform” compression to an elastic layer even
when it is bonded to extensible reinforcements with no flexural rigidity, it is not
possible to apply “pure” bending or “apparent” shear to the layer since the flexible
reinforcements will induce distortion (warping) in the bonded faces of the layer in
these cases. In other words, the second and third modes are indeed much more
complex in the flexible-reinforcement case since the influence of “warping” of the
reinforcements has to be included in these modes.

From these two complex deformation modes, only the bending mode is
considered in this dissertation. Furthermore, in order to obtain comparable results
with the previously-analyzed rigid-reinforcement case, and for the simplicity of the
analysis, this complex deformation mode is studied as the superposition of the two

simpler modes: pure bending and pure warping.
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Figure 3.4 Undeformed and deformed configurations for an elastic layer bonded
to flexible reinforcements under compression and bending (taken from [46])

In the pure bending mode (Figure 3.4¢), the layer is purely bended by bending
moments M so that the top and bottom reinforcements remain plane and rotate with
respect to each other about x3 axis with a relative angle of rotation ¢. It is important
to note that the reinforcements are not allowed to warp in the pure bending mode;
the effect of reinforcement warping is considered in the pure warping mode. In the
pure warping mode (Figure 3.4d), the bonded layer is subjected to the warping
moment Q so that the top and bottom reinforcements deform about x3 axis with a
warping shape (P/2)Q(x;) with no rotation from their plane.

The object in this section is again to formulate and analyze each problem
within the framework of the approximate theory presented in Section 3.1. Similar to
the rigidly-bonded cases studied in Section 3.2, the layer is referred to the same

rectangular frame employed in the approximate theory and Legendre polynomials
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are used as the distribution functions in the approximate theory. Thus, for the

coefficients c,., a,, 7, and y* of the theory, Table 3.1 and Table 3.2 can be

referred to. The formulation uses the two assumptions put forward by Kelly [10] on
the behavior of the reinforcements: (i) the reinforcements are flexible in extension
but have no flexural rigidity and (ii) the displacement field of the reinforcements

can be idealized in accordance with the plane state of stress.

3.3.1 Derivation of Reduced Governing Equations
3.3.1.1 Uniform Compression

Figure 3.4b illustrates the deformed shape of an elastic layer bonded to
flexible reinforcements under uniform compression. When Figure 3.4b is compared
with Figure 3.2b, it can be seen that the main characteristics of the deformation field
remains the same even when the reinforcements are flexible: the vertical
displacement is antisymmetric and the horizontal displacements are symmetric
about the mid-plane of the layer, implying that Egs. (3.15) are still valid.

While the flexibility of the reinforcement does not affect the form of the
“weighted” displacements, it does affect the formulation through the “face”
displacements. Since the reinforcing sheets at the top and bottom faces of the layer
are no longer rigid, the first of Egs. (3.16) is longer be valid. Considering that the
horizontal displacements are symmetric about the mid-plane of the layer, Egs.

(3.16) can be revised in the following form:

+ - + - * _A
u, =u,, u; =u, and u, =+5 (3.68)

Then, one has
S =8,=5,=0, S =2u =2u, S5;=2u;=2u; and S;=-A (3¢9

It can be inferred from Egs. (3.69) that when the reinforcement flexibility is

included in the formulation, two additional unknowns appear in the governing

equations. Any pair from {(Sl+ ST, (u] ), (uy )} can equally be selected as

73



these additional unknowns. In this study, the displacements at the top face of the
layer (u,",u;) are used as the additional “unknown face displacements”.
Thus, S can be written in terms of the displacements at the top face of the

layer as

n
i

0 forevenn for (i=13) and S’ —A/t forevenn
= or (i=1,3) an =
21/tl+ /t foroddn : 2 0 foroddn (370)

Then, the constitutive equations for the face variables and the weighted
constitutive equations can be written, in terms of the unknown weighted and face

displacements, as

e constitutive equations for face variables:

p
R' = ‘i_'f( > ;/kul.")+8t—'f y'u” (i=1,3) forevenn,

k=0,2
. (3.71)
4a| & 2
R; =—2a'(z ¥, uh —7’Aj+l(aluf +83u3+) for odd n
k=13 t
* weighted constitutive equations:
A
T = a0 u, + A0,u; —L—ﬂﬁ;
’ t
A
o = D u+ M — L2 —
t for even n
A
Ty, = A0 u;' + ao,u; —AT — i,
. . ., (3.72)
Tyy = MO U3 + L0 su,
n n —n 2 +
Ty, = M0 \u; — pit, +_'u”1
for odd n

n n —n 2# +
Ty = MOy — M, +T”3

where =21+, and other R and 7 being zero.

Substitution of Eqgs. (3.71) and (3.72) into Eq. (3.3) gives the following

governing equations for the unknown displacements " and (i, ,u;):
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* weighted equilibrium equations:

aau”ln +:ua%3”1n +(/1+,u)awu§ _/181”_‘2
= 'fn
+_( z yk 1 )+_ !
(e 0.2
- Z for even n
0633”; +:uan”; +(l+ﬂ)al3“1n _ﬂa3ﬁ2n
=7
( z Yeus) +—7’ iy B (3.73)
i k=02 i

ﬂallu; +llla33u; _ﬂall’_‘ln 3”3 (Z 7 2)
=13 =7,, forodd n

4o\ - 2(4+ b
—t—A7 w(alul +a31/t3)

where " and 7, are related to u' and 7,, by Eq. (3.22), in which 7, can be
expressed in terms of u" and (4, ,u;) by Egs. (3.72).
Due to the addition of (u,",u;), the number of equations in Egs. (3.73) is now

surely not sufficient to determine all the unknowns. Two additional equations for
the two additional unknown displacements come from the equilibrium equations
written for the reinforcing sheets.

In this study, only the monotonically-deformed “interior” bonded layers are
analyzed. In this case, the deformation in a reinforcing sheet is constrained by the
deformation of the elastic layers at the top and bottom of the sheet. This constraint
is taken accounted for approximately in the present study through the use of the
shear stresses at the interfaces between the reinforcing sheet and the layers. Internal
forces on an infinitesimal area of a reinforcing sheet bonded to elastic layers at its
top and bottom surfaces are illustrated in Figure 3.5, where N;; and N33 are the

stretching forces per unit length in the x; and x3 directions, N3 is the in-plane shear
force per unit length, and 7, and 7,, are the bonding shear stresses. It is assumed

that the reinforcing sheet is under the influence of the plane state of stress.
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Figure 3.5 Forces on an infinitesimal area of a reinforcing sheet bonded to rubber
layers at its top and bottom faces (taken from [47])

As discussed in Section 2.2.1, equilibrium equations for the reinforcing sheet in the
two horizontal directions can be written as, in view of the assumption that the
deformations and so the face shear stresses are equal at the same level of the top and

bottom layers,

aan +a3N13 = 7;1 =Ty
. ~ (3.74)
a3N33 + a1Nl3 =TTy

Using the linearly elastic stress strain relations, internal forces Nij, N33 and Nj3 can

be expressed in terms of the displacement components as follows:

N, =k, [aluf +Vf83u;}, Ny =k, [a3u; +Vfalu1+}

3.75
N =k (1 ij[a u, +a3u1] G-7)
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where “in-plane stiffness of the reinforcement” &y is defined as

E.t
k,=—L1 (3.76)
! .
1-v;

It should be noted that while writing Eqgs. (3.75), perfect bond is assumed between
the elastic layer and flexible reinforcements. In other words, the extensions of the

reinforcing sheet in x; and x3 axes are taken to be equal to the face displacements.
Substituting Egs. (3.75) and (3.71), in view of that R =7,, —7,, =tR' for
even n, into Egs. (3.74), the two additional equations in terms of ' and (&, ,u;)

are obtained as

R P Ll ZNRS I Y7 8 . .
0,4 +Tf813”3 +Tfaz3”1 :Z_T(k_zo;zykulk)—i_T}/ U,
_ (3.77)
Y N L L 4u 3 8u .
033 +Tf813u1 +Tfan”3 :Z_T(k_zo;zyku;()—i_T}/ uz_

Egs. (3.73) and (3.77) with Eq. (3.22) and Egs. (3.72) comprise the reduced
governing equations for the problem of uniform compression of elastic layers

bonded to flexible reinforcements.
3.3.1.2 Pure Bending

The bending problem can be treated similarly. Since the reinforcement
flexibility does not affect the form of the weighted displacements, it is sufficient to

replace Egs. (3.68) with
e —
2

u1+ =u, , U; =u, and Uy =% X (378)

Then,
S, =8,=8,=0, S =2u =2u, S;=2u;=2u; and S, =¢x

¢x, /t forevenn (3.79)
0 foroddn

n
i

_{ 0 forevenn

for (i=1,3) and S, =
2u /t for odd n

Following the same procedure described for the compression problem, one

can obtain the reduced form of the governing equations for the bending problem as
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* weighted constitutive equations:
A _

T =00 u +A0u; +—¢x1 — Au,
t

n n n a —n

Ty, = A0,u, + A0,u; +—¢x1 —ai,

t for even n

A _

Ty, = A0 u' +00,u; +—¢x1 — Au,
t

. . . (3.80)

Tyy = HO\u; + 051,

= lualuz ' + ;U 1+
5 for odd n
ol = 0. — T+

* weighted equilibrium equations:

aan“f +ﬂaz3“1n +(l+/‘)813“§ - A0 L_‘zn_

=7,
(Z 7ku1)+</1+ﬂ)¢+ Yul

k=0,2

6@33u3 + 10, uy + (A + @)o,u — ﬂaﬂz”

for even n

4 < 8u . . &
23 )+ B G381

k=0,2

O 1t} +ﬂa33“; _:ua Uy — Oty

4a ) =7,, foroddn

(Z Yiu z)+ 2 7¢x1 (ﬂ"‘/i)(aluf"'aﬂg

k=13

e additional equations coming from reinforcement equilibrium:

. 1+v R e .
d,,1 +Tfal3u3 +Tfa33”1 X [ (z 7ku1 )+_7 u, +/‘¢}
f t

k=0,2

(3.82)
+ 1+v + 1-v + 1 41u N 8;” o+
a33”3 + > L a13”1 + 5 L au”% = { t_( E 7k”§)+_t Y us

kf k=02

Egs. (3.81) and (3.82) with Eq. (3.22) and Egs. (3.80) comprise the reduced

governing equations for the bending problem of elastic layers bonded to flexible

reinforcements.
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3.3.1.3 Pure Warping

Warping of the layer shown in Figure 3.4a results in the deformed shape
illustrated in Figure 3.4d. From Figure 3.4d, it can be seen that the vertical
displacement of the layer is antisymmetric while its horizontal displacements are
symmetric about the mid-plane of the layer. Thus, the warping problem can be
treated similar to the bending problem.

For the warping problem, one has
w=u, ul=u; and u, :i%Q(xl) (3.83)
which leads to
S =8;=8=0, S =2u" =2u, S;=2u=2u;, S, =0Q(x,)

®Q(x,)/t forevenn  (3.84)

- 0 forevenn
- 0 forodd n

! . for (i=1,3), S, =
2u; /t for odd n

Following the same procedure described for the compression/bending
problem, the reduced form of the governing equations for the warping problem can

be obtained as

* weighted constitutive equations:

AD _
T, =00u + A0 u; +—Q - A
’ t

o
no_ n n —n
Ty, = A0 u; + A0, u; +TQ—a’u2

for even n
o= D+l + 220w
t
n n n (3.85)
T3 = :ua1”3 +:ua3“1
n n —n 2 +
T ::ualuz — Hu, +7'u”1
for odd n

n n —n 2# +
Ty = MOuy — M, +T”3
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weighted equilibrium equations:

_a/‘anuf +:ua33”;1 +(l+ﬂ)813”§ — A0 iy

f}’l
P )+ G004y |
N = for even n
a0l + o, ! +(/1+,u)al3uf — A0,
=7"
+_( z Yu 3)+ 7 Uy B (3.86)
k=0,2
ﬂallu; +ﬂa33“; _:ua 0 — 01ty
=7,, foroddn
(Z Y. 2)+ = g+ (ﬂ+,1)(a w +ouy )| 7
k=1,3
additional equations coming from reinforcement equilibrium:
. 1+v . 1-v .1 RS )+—
oy + > ! 03t + > ! d33, :k_ k20:2 o
N e N | |
O3ty +——"0, 3 +——"0,u; =— (z Vi %)+_

Egs. (3.86) and (3.87) with Eq. (3.22) and Eqgs. (3.85) comprise the reduced

governing equations for the warping problem of elastic layers bonded to flexible

reinforcements.

3.3.2 Determination of Displacement/Stress Distributions and Effective

Moduli of the Layer

Egs. {(3.73),(3.77)}, or {(3.81),(3.82)} or {(3.86),(3.87)} constitute three sets

of differential equations for the unknown weighted and face displacements

{u',u ,u; } governing the behavior of an elastic layer bonded to flexible

reinforcements under the three studied deformation modes. Necessary boundary

conditions for the solution of these equations are the traction-free boundary
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conditions at the lateral bulge-free surfaces of the elastic layer and the force-free

boundary conditions at the edges of the reinforcing sheets. Once the governing
equations are solved for {u,u, ,u; }, the displacement and stress distributions can
be determined as discussed in Section 3.2.3.

Similarly, the effective compression and bending moduli of the layer can be

derived by using the Eqgs. (3.61) and (3.62) with the Egs. (3.64). However, in this

case, it should be recognized that the face axial stresses 7, become, in view of that

R, =7,,—17,, =0 for all problems,

. . o 2a L 200 _
7y, = A d,u; +a3u3]+7(z yku§)+77/ B where

k=13
—A for uniform compression (3.88)
[ =1¢x, for pure bending
PQ for warping

Thus, in the computation of the force and moment resultants given in the second of
Egs. (3.64), Egs. (3.88) must be used.
Referring to Section 2.2.3, the warping modulus (E,) of an elastic layer

bonded to flexible reinforcements can be defined as

_K, _ 9 _ (o2
E = y where K = D/7 and J = J;Q dA (3.89)
where the warping moment Q can be computed from
_ ([0 _ _ ([ —
0= J 0.QdA form=0 and Q= jA [.0dA form=12,... (3.90)
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CHAPTER 4

ANALYSIS OF BONDED ELASTIC LAYERS USING
THE NEW FORMULATION

The governing equations given in the previous chapter constitute the most
general equations derived for a bonded elastic layer with any arbitrary shape. The
formulation can easily be applied to a layer of any symmetrical shape to analyze its
behavior under its basic deformation modes. In this chapter, the application of the
formulation is demonstrated for bonded elastic layers with different cross sectional
shapes and/or under different loadings.

The new formulation presented in the previous chapter is first applied to
infinite-strip (IS) shaped elastic layers bonded to rigid surfaces. For each
deformation mode, the governing equations are solved for the displacements, from
which closed form expressions for the displacement/stress distributions and the
relevant modulus are derived. The theory is then applied to elastic discs bonded to
rigid reinforcements under uniform compression. By solving the governing
equations for both circular (C) and hollow circular (HC) shaped layers, closed form
expressions are derived for the compression modulus and displacement/stress
distributions in a bonded elastic disc with and without a central hole.

The capability of the formulation in analyzing the behavior of bonded elastic
layers even when the bonded surfaces are not rigid is also shown by applying the
formulation to IS-shaped elastic layers bonded to extensible reinforcements. For
each deformation mode, closed form expressions are derived, for this case, for the

displacement/stress distributions and relevant modulus.
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4.1 ANALYTICAL SOLUTIONS FOR ELASTIC LAYERS BONDED TO
RIGID SURFACES

4.1.1 Bonded Elastic Strips

In the analyses presented in this section, it is assumed that the length of the
bonded rectangular layer is much longer than its width (2w) and thickness (#). Thus,
this layer may be approximated by an IS-shaped bonded elastic layer in a state of
plane strain. When the centerline of the strip is taken to coincide with x3 axis, one
has u3=0. Moreover, the nonzero displacements are independent of xj3; i.e.,
u1=u;(x1,X2), up=ur(x1,x2). The compression problem is solved by using both zeroth
and first order theories. After showing that the zeroth order theory indeed results in
the same solutions obtained in literature by the formulations which “average” the
variables through the layer thickness, the bending and apparent shear problems are

solved by using only the first order theory.
4.1.1.1 Uniform Compression

4.1.1.1.1 Solution for Zeroth Order Theory

For the zeroth order theory (m=0, p=0 and p’=-1), the weighted equilibrium

equation in x; direction (third of Egs. (3.21)) is trivially satisfied. In view of Eq.
(3.22) and Table 3.1 and Table 3.2 for m=0, the weighted form of the equilibrium

equation in x; direction (first of Egs. (3.21)) becomes

) 12
du’ —foul =0 with f =4 4.1
at
Since u; is antisymmetric about x;=0, the solution of Eq. (4.1) for ulo is
uy = a,, sinh(5,,x,) 4.2)

where @ is an integration constant which can be determined from the traction-free

=0 at the lateral boundary. While the

x=tw

boundary conditions 7}, =0 and 7,
X

=tw

first condition is trivially satisfied, the second condition requires
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AA

L (4.3)
which leads to
WAA_ 1
at B,cosh(S,w) (4.4)

Then, the displacements u; (i=1,2) and the effective compression modulus E. can be
computed from the first of Eqs.(3.60) and Eq. (3.61), in view of the first of Egs.
(3.64) and (3.65), as

u:ééi sinh(f,,x,) 1_4x22) u :—éx
"2t a B,cosh(B,w) 0 ?

- (4.5)
g tanh(S,,w)

T a (Bw
It is noteworthy that the effect of compressibility is naturally included in the
formulation. The above expressions clearly indicate that the zeroth order theory,
which is the lowest order theory, simply corresponds to the averaging the field
variables and equations over the layer thickness. Therefore, for the compression
modulus, it gives the same expression obtained by Tsai and Lee [30] (Eq. (2.31)). In
addition, the selection of polynomial functions as the distribution functions leads to

a parabolic bulging shape in the zeroth order theory.

4.1.1.1.2 Solution for First Order Theory

In the first order theory (m=1, p=0 and p’=1), the governing equations should
be analyzed both for n=0 and n=1, separately. It may be seen that, for n=0, the
governing equations for the first order theory are identical to those derived for the
zeroth order theory. That is, the expression obtained for %, remains unchanged and

Eqgs. (4.2) and (4.4) are still valid. Considering Eq. (3.22) and Table 3.1 and Table

3.2 for the first order theory and recalling from the zeroth order theory that

aA
0o _ 0
(253 _/lalul -

5 (4.6)
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the additional variable u, can be obtained from the solution of the nontrivial
equilibrium equation in x; direction for n=1 (third of Egs. (3.21)), that is, from

60 1)__(“#)(8 0y 1008

H(Oyu = =0 4.7)

Necessary boundary condition for the solution of the above equation comes

from the nontrivial boundary condition that 7,

=0, which yields

x=tw

(0], ==[u] _, 48)

Substituting Eqgs. (4.2) and (4.4) into Egs. (4.7) and (4.8), one gets the following

governing equation and boundary condition for u,:

2 A+u A A cosh(Bx) lOaA

ou — By ==
14, 1621142 t 4 oat COSh(ﬁlOW) ,Ul 4.9)
with
| _ . 2 A Atanh(B,w)
[ ], ., “tar B (4.10)
10
where
LY
B = s B = (4.11)

The solution of Eq. (4.9) for u, subject to the boundary condition in Eq. (4.10) is

2u+AAA 1 cosh(Bx) A

=a,, cosh +—
=4, Cos (1821)61) t U oat ﬁé_ﬁzzl COSh(,BlOW) 6 4.12)

where the integration constant ay; is given by

24A 1 tanh(ﬁlow){ “+d By }
(4.13)

a, = 2 2
tat BB, sinh(B,w) U Bo-PB

Then, the displacement distributions and the effective compression modulus can be
obtained through the use of the second of Eqgs. (3.60) and Egs. (3.61) as, in view of
the second of Eqgs. (3.64) and first of Egs. (3.65),
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u = Eéi Sinh(IBIO'xl) 1— 4.X22 )
"2t a p,cosh(B,w) t’

30 AAx, ,, 4x

bt 3G P B

tatt r?

1 tanh(f,w) [1— u+i B
BioBs, sinh(f, w) M 16120 _16221
LA A 1 cosh(B,x)

u Py — B cosh(B,w)

}cosh( Boix)
(4.14)

A

E - a_l_z tanh(S,,w)
a  (Bow)

When the solutions in Egs. (4.14) obtained by the first order theory are
compared with those derived from the zeroth order theory (Egs. (4.5)), it may be
seen that increasing the order of the theory from zero to one eliminates the common
assumption used in literature, namely, plane horizontal section remains plane during
deformation. On the other hand, parabolic bulging assumption is still included in the

resulting expressions.
4.1.1.2 Pure Bending

For the bending problem, in view of Eqgs. (3.15) and (3.27), the first order

theory has two nontrivial equations for the two unknown weighted displacements,

u) and u,. The first equation comes from the first of Eqgs. (3.27) with n=0, which

reduces to the following governing equation for u,, in view of Eq. (3.22) and Table

3.1 and Table 3.2 for m=1,

A+u ¢ 12u
0 2.0 _ v 2 _
oy — Pty = o 1 where [, = ar (4.15)
Necessary boundary condition for the solution of Eq. (4.15) for u, is: 7)) =0,

which requires
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0w ], ==>"(2w) (4.16)

Then, one has, for u/,

u° :_ig wcosh(f,,x,) +'u+i¢t
1 at ﬂlo sinh(ﬁmw) ]2Iu 4.17)

The second equation for u, comes from the third of Egs. (3.27) for n=1.
Considering Eq. (3.22) and Table 3.1 and Table 3.2 for m=1, the second of Egs.

(3.26) for n=0, and Eq. (4.17) for u, the equation for u, reduces to

3, — Bru __2A+u A g wsinh(Bx) 1

O 60
x with f[? =——
t 4 at sinh(B,w) ut’ & P ur> (418

Nontrivial boundary condition at the lateral sides: 1'112‘ ., =0 yields
X =xw

(o)== i o

L) T

tat B,tanh(B,w) 6u (4.19)

Using this boundary condition, u, may be determined as

- . 2u+ildg 1 wsinh(f,,x,) [
U, = a,, sinh(f3,,x,) t 4 atfB-p sinh(B,w) * 6 " (4.20)

where the constant ay; is given by

24¢ w  coth(B,w) 1_/1_'_1 5
a.. = tat ff, cosh(f,w) H 16120 _16221
’ +Qi ! 4.21)

6 1 3, cosh( B, w)

Then, the displacement components u; and the effective bending modulus E, may be
obtained from the second of Egs. (3.60) and Egs. (3.62) as, in view of the second of
Egs. (3.64) and first of Egs.(3.65),
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- _gif wecosh(f,,x,) +,u+/l¢t (1_4L22)
' 2at B,sinh(B,w) 8u 1

%125,
t t
_Eig w COth(ﬂlOW) |:1_:U+2’ 2:810 > }sinh(ﬁﬂxl)
0 = t at B,p, cosh(B,w) i Bo-p
C || 304 sinh(Bx)  30A¢utA__w sinh(Bx)
2 pBycosh(Byw) t ar p Bi— B sinh(B,w)
(4.22)
XX
t
1 2(1— Bow j+
u+i B | (Bow) tanh(5,,w)
o g 15Aa] H Bo-B| 1 Bow (1_tanh(,321w)j
b U | (B,,w) tanh(S,,w) Byw

N 1 - Bow 1_tanh(,321w)
(1321"‘))2 tanh(f,,w) Boyw

4.1.1.3 Apparent Shear

When the first order theory is applied to the apparent shear problem, one has,

in view of Egs. (3.30), two unknown weighted displacements: u; and u; . The

governing equation for u; comes from the third of Eqs. (3.32) for n=0, which, in

view of Eq. (3.22) and Table 3.1 and Table 3.2 for m=1, simplifies to

12¢
0_ p2 0 _ 2 _
0,1, = Bt =0 where S, ur’ (4.23)
From the nontrivial boundary condition 7, _,. =0, one also has
o
] =7 (4.24)

Thus, u;) can be obtained as, through the solution of Eq. (4.23) for becomes u;) in

view of the boundary conditions in Eq. (4.24),
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L= _é sinh(,,x,)
2y B, cosh(B,,w) (4.25)

For n=1, only nontrivial equation is the first of Egs. (3.32). Considering Eq.
(3.22) and the coefficients in Table 3.1 and Table 3.2 for m=1, the second of Eqgs.

(3.31) for n=0, and Eq. (4.25) for uj , the governing equation for u, is obtained as

2 A+ u 6 cosh(B,,x) 10u . 60u
a11”11_ 1211/‘11 = - s — 2 with 18121 =72 (4.26)
t a tcosh(B,w) ot at
The boundary condition at the lateral sides: Z'fl‘ _,. =0 requires
I:a ul] :_zié tanh(ﬁzow)
L g =w rat ﬁZO (427)
Then, one obtains u, as
2u+A6 1 cosh(fB,x,) O
l/ll1 =a COSh(ﬁ“.xl) - D) 2 2071 +— (428)
t a tp,—p, cosh(B,w) 6

where

a, =

246 1 tanh(B,,w) {1_ u+A 18220 }

rat A BL-B

tat BB, sinh(S,w) (4.29)

Consequently, the displacement components u; and the apparent shear modulus £,
are evaluated from the second of Eqgs. (3.60) and Eqs.(3.63), in view of the second
of Egs. (3.64) and (3.65), as

30 A 8 tanh(B,,w) cosh(B,x) {1_ u+i B }
ﬁ(l—
t

U = tat  f,fy sinh(fw) A BB 4_)522)
30u+A5 1 cosh(Byx) r?
t a1 By =P cosh(Bw)
+25
P (4.30)

uz:[_éé sinh(f ) }(l_ﬂ;)
2t B,,cosh(fB,,w) t

tanh(S,,w)
=y 1-—L2077
e
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4.1.2 Bonded Elastic Discs

4.1.2.1 Uniform Compression

Figure 4.1a and Figure 4.1¢ show the undeformed configurations of a bonded
disc of thickness # and radius R respectively in the absence and presence of a central
hole of radius a. When compressed by the amount A by a uniaxial compressive
force P, the bonded discs have the deformed shapes illustrated in Figure 4.1b and
Figure 4.1d, respectively.

PE T FFFIFFF TP FTFTFFTFTFTFTFTTT JL
h=t/2 <. ,,,,,,,,,,,,,,,,,,,,, i A2

1111111111111111111111 7L A A A A jz ‘ '2

(1) solid disc

© (d) ’
llllllllllllllll P
) S T + AR
____________ - ¢ r
7Lh=t/2 /\ /
brrrrrrrs e i SN i % A2
2R

(i1) annular disc

Figure 4.1 Undeformed and deformed configurations of a bonded disc (i) without
and (ii) with a central hole under uniform compression
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It can be recalled from Section 3.2.2.1, Egs. (3.47) with Egs. (3.45) and (3.48)
constitute the reduced governing equations for the problem of uniform compression
of bonded elastic discs for any order of the theory. The presence of a central hole
does not change these equations but influences the solutions through the boundary
conditions. For the solution of the differential equations given in Egs. (3.47),
necessary boundary conditions are the traction-free boundary conditions at the

lateral bulge-free surfaces, which can be formulated as

n

T

rr

,=0 forevenn and 7| . =0 foroddn
r=r

r=r =

R for solid sections (4.31)

where r = )
a,R for hollow sections

which are still not sufficient to obtain solutions for the solid sections. For C-shaped
layers, the additional conditions come from the fact that displacements must be

finite at the centroid, i.e., at r=0.

4.1.2.1.1 Solid Circular Sections

If the compression problem for the bonded solid disc illustrated in Figure
4.1a-b is formulated using the first order theory (m=1, p=0 and p’=1), in view of
Egs. (3.41), there will be two nonzero weighted displacements, u’ and ui, which

can be determined by solving Eqgs. (3.47) for both n=0 and n=1.
For n=0, the first of Eqgs. (3.47) directly provides the governing equation for

u’. Using the relation given in Eq. (3.48) and the coefficients in Table 3.1 and

Table 3.2 for m=1, this equation can be simplified as

A R 2 _12u
o u +;8,u, —(5+fou; =0 where S, = o (4.32)
the solution of which is in the form:
u, = a,l,(Bor) +a, K (Br) (4.33)

where a, and a,; are constants to be determined from the boundary conditions, and,

I, and K represent the modified Bessel functions of first and second kind of order
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one, respectively. As already mentioned, for a solid circular section, u! must be

finite at =0, which implies that a,; is zero. The other integration constant, a,, can

be obtained from the boundary condition that 7. . = 0. Inview of the first of Eqgs.

r=

(3.45) with n=0, this equation requires

Au AA
{aruf +——’} =— 4.34)
r=R

Then, the constants appearing in Eq. (4.33) would be

AA 1
T 2/[ and arl = O
B 1y(BoR) R LB R (4.35)

arO

For n=1, the nontrivial equation comes from the weighted equilibrium
equation along z direction, i.e., the second of Eqgs. (3.47), which simplifies, in view

of the coefficients given in Table 3.2, as

R N @36

Considering the relation in Eq. (3.48), and using the third of Egs. (3.45) with

n=0, for TSZ , Eq. (4.36) can further be reduced, in view of Table 3.1, to
a,,u;+1a,u; — Bhu! -2 ﬂ+ﬂ)[a,u?+luf}+loaf where £, :60_? (4.37)
r tou r Ut Ut .

From the the boundary condition at the lateral sides, one has, in view of the

second of Eqgs. (4.31) for n=1, T:Z‘ T 0, which implies

1 2 0
[P ] =71w]. (4.38)

Finally, substitution of Eq. (4.33) with Egs. (4.35) into Egs. (4.37) and (4.38) leads

to the following governing equation and boundary condition for ui :

21 2A+u 100A
e = [a,6B.01,(B,or )]+7 (4.39)

d,.u. +larui -p
r

rrz Z

with
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[Qul] = 26;’0 I,(B,R) (4.40)

The solution of Eq. (4.39) subject to the boundary condition in Eq. (4.40) with the

condition that u; must be finite at =0 gives

2u+d B A
Cu BT @4

ui = adIO(lelr)-'_

where

alzzaro L(B,R) {1_/1"‘1 o }
) ! ,lell(ﬁle) M :Brzo _16721

Consequently, u,and u, can be determined, as defined in Section 3.2.3, as

(4.42)

3 47
ur = Earoll (ﬂror)(l _t_Z)

5 (4.43)

4

Il(ﬁrOR)IO(Iler)|:1_lu+ﬂ B }
G- a2
t t t

_ &a B.i1,(B.R) K By=B
t

“+A B
+1,(b,or) 2 a8
IB ﬁro_ﬂzl

In addition, using Eqgs. (3.61), the second of (3.66) and the first of (3.67), one can
obtain the effective compression modulus for bonded elastic discs as
12

L,(B,R) (4.44)
T I

E =a-

It is to be noted that the first order theory leads to the same expression derived
by Tsai and Lee [30] (Eq. (2.32)). Also, it can be verified that this expression is the
same as the prediction of the zeroth order theory for E.. This is also the case for the
horizontal displacement. Thus, similar to the strip case, the main contribution of the
use of the first order theory in the formulation is to eliminate the commonly used
assumption that plane sections remain plane during deformation. Removal of this
assumption leads to an improved expression for the axial displacement u,, which, in
turn, improves the stress expressions, enabling one to study the stress distributions

over any section of the layer thoroughly.
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4.1.2.1.2 Hollow Circular Sections

As already mentioned, the solution of annular discs differs from the solution
of solid discs only with regard to the boundary conditions. That is, for the first order

theory, the governing equations derived for the unknown weighted displacements
uf and ui, 1.e., Egs. (4.32) and (4.37), are valid also for the hollow sections; but, in
this case, instead of vanishing the weighted displacements at the centroid, one has,

in view of Egs. (4.31), the following two boundary conditions in addition to the

ones in Eqgs. (4.34) and (4.38):

ar | o

(4.45)

0], =2[w],

From the boundary conditions given in Eq. (4.34) and the first of Egs. (4.45),

the integration constants a,o and a,; appearing in Eq. (4.33) can be determined as

S Y SR " S o e
t AA —AA t AA —AA .
where
A1 = aﬂrOIO (ﬂroR)_zﬂ@
:aﬁroKo(ﬁroR)"‘z/‘M
4.47)
A aﬁrOI (ﬁrO ) 2/'1 l(ﬂoa)
A, =af K, (B a)+2u—1E0? l(ﬂroa)
a

Substitution of Eq. (4.33) with Egs. (4.46) into Eqs. (4.37), (4.38) and the

second of Egs. (4.45) gives the following governing equation and the boundary

conditions for ui for the case of hollow circular sections:

s 1 2A+u 10aA

arruz +— r a l/l - zluz :? /,l [ rOﬂrOI (ﬂror) arlﬁrOK (ﬂror)]-i_

(4.48)
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with

; 2
[aruz ],:R = R [a,01,(B,R) +a, K, (B,,R)]

) (4.49)
[arui :|r:a = 7 [aroll (IBrOa) + arlKl (ﬁroa)]

By solving Eq. (4.48) with the conditions given in Egs. (4.49), one can obtain u. as

1 A
u, =a,l,(B,r)+a,Ky(B.r)+Bla,dy(B,e)—a,Ky(B,r)] 6 (4.50)
where
po2HtA_ By
tou BB .51
and
a.= ClKl(lela)_CzKl(lelR)
‘! B. [Il (B.RK (B,a) -1, (B a)K, (:leR)]
(4.52)
a. = ClI,(B.,a)-C,I(B,R)
“ B [11 (B.RK, (B,a)-1,(B.,0)K, (IBAR)]
with
C = [arOII (B,oR)+a,K, (:BroR)]x {% - Bﬁr0:|
(4.53)

C,= [arOI1 (B,a)+a, K, (,Broa)] x[% - B,Bro}

Then, the displacements u, and u, for bonded annular discs subject to uniform

compression become

472
u, :%[aroll(ﬁror)+arll(l (,Bror)](l—t—i)

PPN (4.54)
t t? t

a,l, (:ler) + azZKO(ﬁzlr)
u =15
) +B [arOIO (B,or)—a,K, (:Bror)]

Substituting the expression for ui in the first of Egs. (3.67) and then using the

second of Egs. (3.66) and Eqgs. (3.61), E. for a bonded disc with a central circular

hole can be determined as
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24 {arO[Rll(ﬂrOR)_all(ﬁrOa)] }
E-q-—="

' é(RZ — az) —a, [RKl(;BroR) - aKl(;Broa)] (4.55)
t

It can be shown that the above expression for E. is identical to the expression
predicted by the zeroth order theory. However, it may be noted that, similar to the
solid case, the first order theory removes the assumption that plane sections remain
plane and leads to improved expressions for the axial displacement, in turn, for the

stress distributions.

4.2 ANALYTICAL SOLUTIONS FOR ELASTIC LAYERS BONDED TO
FLEXIBLE REINFORCEMENTS

4.2.1 Bonded Elastic Strips

As discussed in Section 4.1.1, a bonded elastic layer whose length is much
larger than its width (2w) and thickness (f) can be approximated as an IS-shaped
bonded elastic layer in a state of plane strain. Thus, for an elastic strip bonded to

flexible reinforcements, the displacement along the “infinite” length of the layer
vanishes, 1.e., u3=0, implying that uf =(. Moreover, the nonzero displacements u;,
up and the stretching of the reinforcements in the direction of finite length of the
layer u; are independent of x3, i.€., u1=u;(x1,X2), a=ur(x1,%2) and u; = u; (x,) .

As in the case of rigidly-bonded layers, only the compression problem is
solved by using both the zeroth and first order theories. After showing that the
zeroth order theory results in the same solutions obtained in literature by the

formulations which “average” the variables through the layer thickness, the bending

and warping problems are solved by using only the first order theory.
4.2.1.1 Uniform Compression

4.2.1.1.1 Solution for Zeroth Order Theory

When the zeroth order theory (m=0, p=0 and p’=-1) is applied to the

compression problem, one has, in view of Eqgs. (3.15) and (3.68), two unknown
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displacements: one weighted displacement u and one face displacement u;" . The

first equation for these two unknowns comes from the first of Eqgs. (3.73), which in

view of Eq. (3.22) and and Table 3.1 and Table 3.2 for m=0, can be simplified as

+ 12u
anuf —,5120 [ulo —Uu, } =0 where ,3120 = W (4.56)

The equilibrium of the forces in the reinforcing sheet in x; direction generates
the second equation for the unknown displacements. Thus, from the first of Egs.

(3.77), in view of Table 3.2, one has

. . 12
0,1 — 3] [”1 - ”?] =0 where S = k_ll; (4.57)
f

From Egs. (4.56), it is clear that

N 1
[”10 — ]:‘pan“? (4.58)

10

Substituting Eq. (4.58) into Eq. (4.57), one obtains

a + _ _16_1218 0
uy = ,62 1t (459)
10

whose solution can be written, in view of that the horizontal displacement u; is

antisymmetric about x;=0, in the form of

B o
u =—"5u +dx (4.60)
Bro
where d; is an integration constant to be determined from the boundary conditions.

Substitution of Eq. (4.60) into Eq. (4.56) gives the following differential equation

for the unknown weighted displacement ) :
a11”10 - 12”10 = _ﬂlz()dlxl where 1812 = 18120 +18121 4.61)

When Eq. (4.61) is solved for ulo and then the solution is substituted into Eq. (4.60)

to determine u,, the following expressions are obtained for the unknown

displacements in terms of the two integration constants d; and ao:
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2
0 . B
u, = a,,sinh(Bx,)+=2d x,
11

(4.62)

) 2
u = _ﬁ_lzlalo sinh(B,x,) + ﬂ_lgdlxl
10 B

Noting that the force displacement relations given in Egs. (3.75) reduce, for
the simple strip case, to a single equality: N, =k, (alu; ), the constants d; and a;o

can be related by using the force-free boundary condition at the edges of the

reinforcement, i.e., by the condition N, |X ., =0,as
=

4
10

d =a, ﬁ;ﬁf cosh(Bw) (4.63)

The second condition for the determination of the unknown constants comes from

the stress-free boundary conditions at the lateral faces of the layer. While the

condition that 7}, =0 is satisfied trivially, the condition that 7;;| =0

x=tw

implies, in view of the first of Egs. (3.72) with n=0,

AA
0 -
[’ ], . = (4.64)
which leads to
Y
Y at B cosh(Bw) (4.65)

Thus, the unknown displacements u and u; can be expressed as

u

0 _&éﬁ_ﬁ p +,3_120 sinh(f3,x,)
't 1512 1 13121 B, cosh(Bw)

ut _&éﬂ_ﬁ Y — Sinh(ﬁlxl)
"“art B B cosh(Bw)

(4.66)

Then, the displacements u; (i=1,2) can be computed from the first of Egs. (3.60) as
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ggyf_ﬁ{x B sinh(Bx) }(l_ﬁj

2ta B B B cosh(Bw) £
u =
AL B sinh(Bx,) |[6x,” 1
| , cosh(Bw) |\ ¢ 2
A
I/tz = —TXZ
The first of Egs. (4.67) can be further simplified as
3A A sinh(Bx,) 4x,) ALS sinh(f,x,)
W=--= - (4.68)
2 t a B cosh(Bw) t tap B, cosh(Bw) '

Realizing that the second term on the right hand side of Eq. (4.68) equals u,” (refer

to the second of Egs. (4.66)), one, thus, has

, A4 sinh(Bx) (| 4x") .
' 2t a B cosh(Bw) 2 ! (4.69)

When Eq. (4.69) and the second of Eqs. (4.67) are compared with the first and
second of Egs. (4.5), it can be concluded that the reinforcement flexibility mainly
affects the horizontal displacement of the layer. An additional displacement term
appears in u; expression. In fact, this term simply equals to the extension of the
reinforcement due to the tension generated by the shear stresses developed at the
bonded faces of the layer. It may also be noted that this additional term is
independent of x,. In other words, it is constant through the layer thickness.

It is worth noting that the inclusion of the effect of the reinforcement
flexibility in the expression for the horizontal displacement thorugh an additional
term which is constant over the layer thickness is not an initial assumption used in
the formulation; it is the conclusion drawn when the formulation is applied by using
the zeroth order theory and by selecting polynomial functions as the distribution
functions. On the other hand, as it can easily be recalled from Section 2.2.1, this
was an initial assumption on the displacement field of the layer in the formulations
of Kelly [10] or Tsai [48]. Keeping in mind that the zeroth order theory simply

corresponds to averaging the field variables and equations over the layer thickness,
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as roughly done in these studies, it can be deduced that this assumption seems to be
as realistic as the parabolic bulging assumption.
From the comparison of Eq. (4.69) with the first of Egs. (4.5), it can also be

seen that the appearance of the second term, u," in Eq. (4.69), is not the only change

in the expression of the horizontal displacement in the flexible-reinforcement case.

To include the effect of the reinforcement flexibility properly, it is also necessary to

replace the parameter 3, by S =+ + B , where [, depends on geometrical

and material properties of both the layer (4,f) and the reinforcing sheets (Ey, vy, #y).
After deriving the displacement distributions, it is not difficult to derive the

effective compression modulus for the layer. Using Eqgs. (3.61), with the first of

Egs. (3.64) and Eq. (3.88), one can obtain the following closed-form expression for

the compression modulus E,:

Y) 2 P32
E =g By tanh(Bw) A" B, (4.70)

T a g B @ B
It is to be noted that this expression is different from Kelly’s expression (i.e., Eq.
(2.71)) because the pressure method is based on the pressure assumption. In
addition, it should not be forgotten that the expression derived by Kelly [13]
considers only the second stage deformations ignoring the first stage deformations
coming from homogenous compression of the layer. On the other hand, it can be
shown that the E. expression derived using the zeroth order theory (i.e., Eq. (4.70))
is the same as that derived by Tsai [48] (i.e., Eq. (2.73)), who eliminated the

pressure assumption in his formulation.

4.2.1.1.2 Solution for First Order Theory

When the order of the theory is increased from zero to one (m=1, p=0 and

p’=1), the number of the unknown displacements increases from two to three. In
addition to u) and u", one also has u, as an unknown function. As in the case of

the rigid reinforcement, for n=0, the governing equations for the first order theory

are identical to those derived from the zeroth order theory. Thus, the expressions
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derived for u and u, i.e., Egs. (4.66), remain the same in the first order theory.

Using Eq. (3.22) with Table 3.1 and Table 3.2 for m=1 and recalling from the zeroth
order theory that

oA
7y, = A0,u) - 4.71)

the additional variable u, can be obtained from the solution of the nontrivial

equilibrium equation in x; direction for n=1 (third of Egs. (3.73)), that is, from

60 2(A+p) .1 100A
anué _F“; = ? i [81”1O —o,u, ]+ ur’ (4.72)
From Egs. (4.66), one has, for the difference [ulo —u, ] ,
o +7_AA sinh(Bx)
[ul h ] Tat B, cosh(SBw) (4.73)
1 1

which when inserted into Eq. (4.72) gives the following equation for u,

| g _2A+ M A A cosh(fx) | 100A

au“z — Pyl =

where 3] _ 00
t 4 ot cosh(Bw) urf o (4.74)

Necessary boundary condition for the solution of Eq. (4.74) comes from the

condition that 7),| =0, which yields

x=tw

2 N
(e ], ., =Tl =ui] L, (4.75)
which becomes, in view of Eq. (4.73),

_ . 2 A A tanh(Bw)
[ou] ., = P (4.76)

Before trying to solve this equation, it seems to be beneficial to compare Eqs. (4.74)
and (4.76) with Egs. (4.9) and (4.10), i.e., with the equations obtained for the rigid-

reinforcement case. From the comparison of Eq. (4.74) with Eq. (4.9), one can see
that the governing equation for u, for the flexible-reinforcement case remains

almost the same as that when the reinforcing sheets are rigid. The only difference is
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on the coefficient in the cosh terms. The flexibility of the reinforcements changes

the coefficient from S, to S, . Thus, there is no need to solve Eq. (4.74). Instead,

the solution derived for the rigid-reinforcement case can be adapted to this problem.
However, for such an adaptation, it is necessary to show that the boundary
conditions of the problems are also similar. From the comparison of Eq. (4.76) with
Eq. (4.10), one can see that the boundary conditions for the governing equations of
the problems are in fact similar. Thus, the solution derived for u, for the rigid-
reinforcement cases, i.e., the second of Eq. (4.14), can be used also for the case

where the reinforcements are flexible provided that S, is used in place of S, .
As far as the horizontal displacement is concerned, since the expressions
derived for u) and u’ by using the zeroth order theory remains unchanged in the

first order theory, Eq. (4.68) also remains the same. One can also show that the E.
expression predicted by the zeroth order theory also remains unchanged when the
order of the theory is increased from zero to one. Thus, for an IS-shaped elastic
layer bonded to flexible reinforcements at its top and bottom faces, the predictions
of the first order theory for the displacement distributions and the effective modulus

of the layer under uniform compression are

_3AA_sinh(fx) (1_4xij+éiﬁ_ﬁ(x __sinh(Bx,) j

YT a [, cosh(Bw) t* t a S, cosh(Bw)
0A8x% 4%,
raot t t
| tanh(Bw) {1_;”/1 2/31 2 }osh(ﬁnxl)
' BB, sinh(f3,,w) u o p=p

4.77)

LAt A 1  cosh(Byx)
H 1812 - 15221 COSh(,BIW)
A

E - 0{—/1—2’5—123 tanh( 3 w) _/1_2,8_121
a :51 (:Blw) 24 :81
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4.2.1.2 Pure Bending

When the formulation is applied to the bending problem by using directly the

first order theory, one has, similar to the compression problem, three unknown
displacements, u,', u) and u;. For these three unknowns, two equations come from
the weighted equilibrium equations: the first of Egs. (3.81) with n=0 and the third of

Egs. (3.81) with n=1. The third equation is obtained from the equilibrium equation
written for the reinforcing sheets: the first of Egs. (3.82). Of these three equations,

two equations are independent of u}, as in the compression case. Thus, u and u

can be determined first.
The first of Egs. (3.81) with n=0 can be reduced, in view of Eq. (3.22) and
Table 3.1 and Table 3.2 for m=1, to the following equation:

124
at’

u A+
9, = By [”1 — U }: aﬂ 0 where  f = (4.78)

In a similar way, using the coefficients given in Table 3.2 for m=1, the first of Egs.

(3.82) can be simplified as

. . Biue 124
o,u — f3 [”1 _uﬂ:ﬁ_};;? where = ki (4.79)

Similar to the compression problem, by eliminating the terms in the brackets in Egs.
(4.78) and (4.79) and then by integrating the resulting equation twice in xj, the

following relation can be obtained between u, and u;':

ur =B O—ﬁ—gifxl +d, (4.80)

IBIO ﬁloat 2

where d, is an integration constant. It is to be noted that unlike the compression

problem, in bending problem the horizontal displacement is symmetric about x;=0.

Thus, for the weighted displacement u,', one has the following equation:

Ao x? A+
811”‘10_ 12”‘10: 121&’? 1 1610 27 aﬂﬂ where :61 :610+:811 (4.81)

from which one can obtain % and u;, in view of Eq. (4.80), as
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uf:allcosh(ﬁlxl)—’g—lzlg?%+lgl if{ﬁlo /J ,;md

B BiAox _ B Ad| B B 5
u =—Aancosh(,31 x)—2u Qx_l _Pu ¢{ 10 4 } Puog
10 181 at 2 IBIOﬁl ot IBI ﬂ’ IBI
where a;; is the second integration constant to be determined from the boundary
conditions. The condition N, l| =0, implying [8 u, ] T 0, leads to
a :_ﬁ_iiﬂﬂ
" B at sinh(Bw) (4.83)

It should be noted that the nontrivial boundary condition at the lateral bulge-

=0, results in the same expression for

x=tw

0
11

aj1. The remaining constant d, can be obtained from the condition that [uf ] W= 0,

which yields
d. = 1511 A ¢|:1510 } ,8121 &Q ,BIW
T BLat| A B atsinh(Bw) (4.84)
Then, u) and u become
2
_&ig IBI |:1611 +COSh(,Bl.X1 :|
0 _ 161 « t sinh(Bw) ,310

ﬁﬁwx_@Lg(ﬁ{ B }
(4.85)

Bar B

As already mentioned, the third equation for the solution of u, comes from
the third of Egs. (3.81) with n=1, which can be simplified, in view of Eq. (3.22) and
Table 3.1 and Table 3.2 for m=1, as

60 2(A+ ) .1 1009
d,, i_F“i:? U 