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ABSTRACT 

IMPLEMENTATION AND COMPARISON OF RECONSTRUCTION 

ALGORITHMS FOR MAGNETIC RESONANCE – ELECTRIC IMPEDANCE 

TOMOGRAPHY (MR-EIT) 

 

Martín Lorca, Darío 

MSc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. B. Murat Eyüboglu 

February 2007, 122 pages 

 

In magnetic resonance electrical impedance tomography (MR-EIT), cross-

sectional images of a conductivity distribution are reconstructed. When current is 

injected to a conductor, it generates a magnetic field, which can be measured by 

a magnetic resonance imaging (MRI) scanner. MR-EIT reconstruction 

algorithms can be grouped into two: current density based reconstruction 

algorithms (Type-I) and magnetic flux density based reconstruction algorithms 

(Type-II). The aim of this study is to implement a series of reconstruction 

algorithms for MR-EIT, proposed by several research groups, and compare their 

performance under the same circumstances. Five direct and one iterative Type-I 

algorithms, and an iterative Type-II algorithm are investigated. Reconstruction 

errors and spatial resolution are quantified and compared. Noise levels 

corresponding to system SNR 60, 30 and 20 are considered. Iterative algorithms 

provide the lowest errors for the noise-free case. For the noisy cases, the iterative 

Type-I algorithm yields a lower error than the Type-II, although it can diverge for 
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SNR lower than 20. Both of them suffer significant blurring effects, especially at 

SNR 20. Another two algorithms make use of integration in the reconstruction, 

producing intermediate errors, but with high blurring effects. Equipotential lines 

are calculated for two reconstruction algorithms. These lines may not be found 

accurately when SNR is lower than 20. Another disadvantage is that some pixels 

may not be covered and, therefore, cannot be reconstructed. Finally, the 

algorithm involving the solution of a linear system provides the less blurred 

images with intermediate error values. It is also very robust against noise. 

 

Keywords: electrical impedance tomography, magnetic resonance imaging, 

current density imaging 
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ÖZ 

MANYETIK REZONANS – ELEKTRIKSEL EMPEDANS TOMOGRAFISI 

IÇIN GERIÇATIM ALGORITMALARININ GERÇEKLENMESI VE 

KARSILASTIRILMASI 

 

Martín Lorca, Darío 

Yüksek Lisans, Elektrik ve Elektronik Mühendisligi Bölümü 

Tez Yöneticisi: Prof. Dr. B. Murat Eyüboglu 

Subat 2007, 122 sayfa 

 

Manyetik rezonans elektrik empedans tomografisinde (MR-EIT), bir iletkenlik 

dagiliminin kesit görüntüleri olusturulmaktadir. Bir iletkene akim 

uygulandiginda, manyetik rezonans görüntüleme (MRI) tarayicisiyla ölçülebilen 

bir manyetik alan olusmaktadir. MR-EIT geri çatim algoritmalari iki grupta 

toplanmaktadir: akim yogunlugu temelli geri çatim algoritmalari (Tip 1) ve 

manyetik aki yogunlugu temelli geri çatim algoritmalari (Tip 2). Bu çalismanin 

amaci, birçok arastirma grubu tarafindan önerilmis olan bir dizi MR-EIT geri 

çatim algoritmasini gerçeklemek ve ayni sartlar altinda performanslarini 

karsilastirmaktir. Bu çalismada, bes direkt ve bir iteratif Tip 1 algoritma ve bir 

iteratif Tip 2 algoritma incelenmistir. Geri çatim hatalari, uzamsal çözünürlük 

gürültü performaslari incelenmis ve karsilastirilmistir. Gürültü analizinde sistem 

sinyal-gürültü orani (SNR) 60, 30 ve 20’ye karsilik gelen gürültü seviyeleri göz 

önüne alinmistir. Gerçeklenen algoritmalar içinde iteratif algoritmalar, 

gürültüsüz durumlar için en düsük hatayi vermistir. Gürültülü durumlar için, 
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iteratif Tip 1 algoritma, SNR’in 20’den düsük degerleri için iraksayabilmesine 

ragmen, Tip 2’den daha düsük hata vermektedir. Her iki iteratif algoritmada da, 

özellikle SNR 20’de elde edilen görüntülerde kayda deger bir bulaniklik 

olusmaktadir. Geri çatimda integral almayi kullanan iki Tip 1 algoritma, digerleri 

ile karsilastirildiginda yüksek bulanikliga ragmen orta seviyede hatalar 

vermektedirler. Es potansiyel çizgileri kullanan iki geriçatim algoritmasinda, 

çizgiler SNR 20’den düsük oldugu durumlarda dogru olarak bulunamamaktadir. 

Bu iki algoritmanin bir baska dezavantaji da bazi piksellerin kapsanamamasi ve 

dolayisiyla iletkenliklerinin hesaplanamamasidir. Son olarak, bir lineer sistemin 

çözümünü içeren geriçatim algoritmasi, digerlerine göre daha düsük hatali ve  

daha az bulanik görüntüler vermistir. Ayrica bu yöntemin gürültüye karsi da 

dirençli oldugu görülmüstür. 

 

Anahtar Kelimeler: elektriksel empedans görüntüleme, manyetik rezonans 

görüntüleme, akim yogunlugu görüntüleme 
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CHAPTER 1 

INTRODUCTION 

The electrical resistivity of biological tissues differs among various tissue types 

and also with its physiological and pathological state [4]. Therefore, the 

knowledge of the in vivo resistivity distribution of a body would yield 

diagnostically valuable information about anatomy, physiological processes and 

pathology. Some resistivity values are given in Table 1.1. 

Electrical impedance tomography (EIT) is a non- invasive medical imaging 

modality that reconstructs electrical conductivity distribution inside a conductor 

volume [4]. It was proposed in 1978 by Henderson and Webster [14], but the first 

practical realization of a medical EIT was due to Barber and Brown [1]. EIT is 

technically based on generating a current distribution inside the body, either by 

injecting currents with surface electrodes (injected-EIT) [26], or inducing these 

currents by coils placed around the body (induced-EIT) [11], [12]. 

Simultaneously to these injections, electrical or magnetic measurements that 

reflect the internal conductivity distribution are measured [4]. Typically, 

peripheral voltage measurements are acquired via electrodes attached to the 

surface of the conductor object. The process is repeated for several different 

configurations of applied current. From these measurements, the conductivity 

distribution can be extracted by suitable reconstruction algorithms. For both 

approaches to generate the currents inside the subject, the sensitivity of 

peripheral voltage measurements to conductivity perturbations is position-

dependent and degrades as the distance to the surface increases [18], [7], being 

very poor for the most inner regions. The spatial resolution of the conductivity 
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image is related to conductivity accuracy, noise, contrast and number of 

electrodes (or independent measurements) used in the EIT system [29]. Then, 

since the sensitivity is small to inner regions, reconstructed conductivity images 

yield low and space dependent spatial resolution. In static EIT imaging, usually 

thirty two or more electrodes are used to achieve 5% spatial resolution at most 

[20]. 

Table 1.1: Resistivity typical values for different biological tissues. 

Tissue Resistivity ( )·cmΩ  Species 
Blood1 150 Human 
Plasma1 50-60 Mammal 
Cerebrospinal fluid1 65 Human 
Bile1 60 Cow, pig 
Urine1 30 Cow, pig 
Cardiac muscle1 400 Dog 
Lungs1 1500 Mammal 
Lungs2 122 – 202 Human 
Kidney1 370 Mammal 
Liver2 296 – 396 Human 
Heart2 133 – 231 Human 
Brain1 580 Mammal 
Fat1 2500 Mammal 
Bone1 15000 Mammal 
Bone2 91 x 106 – 169 x 106 Human 
Sodium Chloride1 14.9 - 

 

A solution for the position dependency problem of EIT is using data directly 

obtained from inside the subject. But, since there is no non- invasive technique to 

make voltage measurements inside an object, another approach is necessary. By 

using conventional Magnetic Resonance Imaging (MRI), together with 

appropriate phase encoding sequences, it is possible to measure the magnetic flux 

density distribution throughout the imaging region. This idea was firstly 

proposed for determining the field inhomogeneity in an MRI system [21]. In 

                                                 

1 Reproduced from [32]. 
2 Resistivity 95% confidence interval for the tissue. Reproduced from [9]. 
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early 90s, a new imaging modality which reconstructs current density images due 

to injected currents, using magnetic flux density measurements, was proposed by 

Scott et al [27]. This technique is called Magnetic Resonance – Current Density 

Imaging (MR-CDI), or shortly, Current Density Imaging (CDI). These 

measurements, carried out with MRI scanners, can be made with very high 

spatial sampling and high sensitivity to the inner conductivity perturbations. 

In 1992, Zhang [35] proposed the use of electrical current density distribution, 

measured using MR-CDI, together with conventional EIT voltage measurements 

to obtain the conductivity distribution inside an object. This technique is named 

as Magnetic Resonance – Electrical Impedance Tomography (MR-EIT). By 

knowing this magnetic flux density and current density distribution, both the 

spatial resolution and accuracy of the reconstructed resistivity images using 

conventional EIT are improved. The inner current density distribution is also 

dependent on the size, shape and position of the surface electrodes, besides their 

own conductivity properties. In MR-EIT, current injection needs at least four 

surface electrodes, which is much less than the number of electrodes needed in 

EIT. Also, the boundary shape of the subject is easily known, through the MR 

images. This eliminates the problem related with modeling error. In this study, 

two oppositely placed electrodes are used as an electrode set. Each different 

electrode set and the amount of applied current is called a current injection 

profile.  

Summarizing, when a current is injected into a subject via surface electrodes, it 

creates a voltage and a current density distribution J
r

. The injection current on 

lead wires and J
r

 inside the subject generate a magnetic flux density distribution 

B
r

, which is measured by MR-CDI technique using a MRI system. Afterwards, it 

is possible to compute J
r

 from 0J B µ=∇×
r r

. Then, MR-EIT reconstruction 

algorithms utilize either J
r

 or B
r

, in addition to measured boundary voltages, to 

obtain high resolution cross-sectional conductivity (or resistivity) images of a 

subject. 
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1.1 Objectives of the Thesis 

Several MR-EIT reconstruction algorithms have been proposed by different 

research groups since 1992. These algorithms use different conductivity models, 

injected current, electrode configuration, noise models and levels, etc, making 

very difficult to compare them and see the advantages and disadvantages of each 

method. The objectives of this thesis are: 

• To classify some of the recent reconstruction algorithms, depending if 

they use as input data current density or magnetic flux density 

distribution. 

• To implement some current density based algorithms proposed previously 

by other studies. 

• To develop and implement a novel current density based reconstruction 

algorithm. 

• To implement a magnetic flux density based algorithm, suggested 

previously by other researchers. 

• To define a common conductivity model and a set of conditions in order 

to compare them objectively. 

Three of the current density based algorithms which have been studied were 

proposed by Ider et al in 2003 [15]. Another one, called J-substitution algorithm 

was published by Kwon et al in 2002 [20]. Finally, the equipotential – projection 

reconstruction algorithm, proposed in 1999 by Eyüboglu US patent [8] and 

applied to real data by Özdemir [25], has been extended for the case where no 

voltage measurements are needed in order to get a relative conductivity 

distribution. As a magnetic flux density based reconstruction method, the 

harmonic zB  algorithm, proposed by Oh et al [22] in 2003 has been studied. 
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1.2 Organization of the Thesis 

In Chapter 2, the forward and inverse problems in MR-EIT are defined and 

formulated. The extraction of the induced magnetic flux density from MRI 

images is also explained. Besides, a classification of several reconstructed 

algorithms is given. In Chapter 2, five previously proposed reconstruction 

algorithms, based on current density, are explained. In Chapter 4, one magnetic 

flux density based reconstruction algorithm is explained. In Chapter 5, two 

conductivity models are introduced. One is simulated data, while the other is 

experimental data, collected by the 0.15T METU-EE MRI system by previous 

researchers [2], [24]. Then, the reconstruction of both models is performed by 

using all of the studied algorithms, and a comparison is carried out. The thesis 

concludes with Chapter 6, where a summary is given, final conclusions are 

drawn and future work is proposed. 
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CHAPTER 2 

THEORY 

2.1 Introduction 

In this chapter, firstly, the forward problem in MR-EIT is formulated. The 

governing differential equation is a Poisson’s relation with Neumann boundary 

conditions. Analytical solution to this problem does not exist for complex 

conductivity distributions. Then, numerical methods must be used instead. The 

finite element method (FEM) and Cell-Centered Finite Difference Method 

(CCFD) are utilized. Once the potential distribution is known, the magnetic field 

density distribution can be calculated by Biot-Savart law. But, in practice, the 

magnetic flux density distribution induced by injected currents is the only thing 

that can be measured using a MRI system. The procedure to extract the magnetic 

flux density is explained later in this section. Finally, the inverse problem is 

defined and formulated and a classification of reconstruction algorithms is given. 

2.2 The Forward Problem of MR-EIT 

2.2.1 Definition 

In MR-EIT, current is injected to the object with surface electrodes. This current 

is distributed inside, as a function of the inner conductivity distribution. If a non-

alternating current flows on a conductive media, then static potential and 

magnetic flux density distributions appear. In the current MR systems, the only 

measurable field quantity inside the object is the magnetic flux density. From 

there, the conductivity distribution can be reached and calculated. But firstly, it is 
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necessary to understand and formulate what is happening inside the object when 

a current is injected. 

The forward problem in MR-EIT imaging is defined as the calculation of 

peripheral potential values and magnetic flux density distribution for a known 

inner conductivity distribution, and given boundary conditions [1]. 

The forward problem can be used for the generation of the simulated data and the 

formulation of the inverse problem. It can be also used in iterative reconstruction 

algorithms. There, the procedure starts with an initial conductivity guess, solves 

the forward problem and calculates the error between the computed and 

measured field quantities. In each iteration, the conductivity values are updated 

in some way, and the forward problem is solved again, until the calculated error 

is smaller than a given tolerance value. 

2.2.2 Formulation 

The injection of a current I into an isotropic nonmagnetic and conductive object, 

occupying a volume Ω  with a boundary ∂Ω , generates a current density 

distribution inside the object, related to the conductivity distribution σ  in its 

interior. This current injection is applied by surface electrodes attached to the 

boundary ∂Ω  during a finite time, short enough to assume that the conductivity 

distribution is time independent during the pulses [23]. See Figure 2.1. 

The nonlinear relation between conductivity σ  and potential distribution φ  is 

given by the boundary value problem (BVP) defined by Poisson’s relation as: 

 ( )· 0 in σ φ∇ ∇ = Ω . (2.1) 

The electrical current on the boundary of the imaging region is specified for  

MR-EIT problem by imposing the following Neumann boundary condition: 

 

on positive current electrode

on negative current electrode
ˆ

0 elsewhere,

J

J
n
φ

σ


∂ 
− = −

∂ 


 (2.2) 
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where n̂ denotes the unit outward normal vector at the boundary ∂Ω , and J is the 

current density at ∂Ω . 

 

 

Figure 2.1: A cubical object Ω  with a two-dimensional internal resistivity 
distribution ρ  is placed in a MRI system. In order to image that internal 
resistivity, the current is injected through two surface electrodes. 

Once the potential field distribution is found, the electrical field distribution can 

be calculated as: 

 E φ=−∇
r

. (2.3) 

Then, the corresponding current density distribution is obtained with Ohm’s 

relationship: 

 J Eσ=
r r

. (2.4) 

The magnetic flux density generated by this current density distribution is given 

by Biot-Savart law: 

 0
2

ˆ
4

RJ a
B dv

R
µ
π

×
= ∫

r
r

, (2.5) 
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where 0µ  is the permeability of the free space, R is the distance between the 

source ( )', ', 'x y z  and field ( ), ,x y z  points, ˆRa  is the unit vector from the source 

point to the field points, and dv is the differential unit of volume. The source 

points are elements of the imaging slice SΩ , but the field points can be off-slice.  

Finite element method (FEM) or finite difference method are commonly used to 

solve the forward problem given in (2.1) and (2.2). 

2.2.3 Cell-Centered Finite Difference Method Implementation 

Cell-Centered finite differences (CCFD) is one of the most popular methods for 

numerical solutions of second-order elliptic boundary value problems [19]. In 

this thesis, it is used to solve the forward problem in iterative algorithms. 

Firstly, let the square target imaging region ( ) ( ): , ,S L L L LΩ − × −  be uniformly 

divided into N N×  sub squares i jN+Ω , containing the resistivity values of the 

image at their center point ( ),i jx y , where 0, , 1i N= −K  and 0, , 1j N= −K .  

The voltage at the center point ( ),i jx y of every cell i jN+Ω can be approximated 

by: 

 ( ): ,i jN i jv V x yρ+ = . (2.6) 

In this cell-centered finite difference method, the resistivity ρ is assumed to be 

constant on each sub square kΩ , denoted by kρ , where 21, ,k N= K . There are 

three types of sub squares: interior cells, boundary cells and corner cells, which 

will correspond with nine different cases (Figure 2.2(b)) in the implementation of 

the algorithm. 

Firstly, one fixed element kΩ  which lies in the interior of Ω will be studied and 

its expression derived. Later, the resulting equations for the rest are directly 

given. 
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Then, considering an inner element kΩ , where 

 1 for 1 , 2k i jN i j N= + + ≤ ≤ − . 

 

  
(a) (b) 

Figure 2.2: Cell-Centered Finite Difference Method. (a) Resistivity kρ  at every 
element kΩ  and surrounding elements. (b) In the implementation, nine different 
types of elements are considered. 

Since ( )( )· 1/ 0k Vρρ∇ ∇ =  yields on each element, integrating by parts, the 

following results: 

 ( )1 1
0 ·

k
kk k

V
V dr ds

n
ρ

ρρ ρΩ
∂Ω

∂
= ∇ ∇ =

∂∫ ∫r
. (2.7) 

On the other hand, using the simplest quadrature rule, the following 

approximation can be obtained: 

 

1 1

1 1

1
, ,

2 2

, , ,
2 2

k

i i i i
x j x j

k k

j j j j
y i y i

V x x x xh
ds V y V y

n

y y y y
V x V x

ρ
ρ ρ

ρ ρ

ρ ρ
+ −

∂Ω

+ −

∂  + +   ≈ ∂ − ∂   ∂    

+ +    
+∂ − ∂    

   

∫
 (2.8) 
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where h denotes the side length of each subsquare kΩ . 

The four terms in (2.8) are the values of the normal derivative of Vρ at the 

midpoints of the four sides of the element kΩ . Since all of them can be 

calculated similarly, only the expression for the third term is derived. The 

interface condition between two adjacent elements kΩ  and k N+Ω can be 

approximated as: 

 

1 1, ,
2 2

j j j j
i k k N i

k k N

y y y y
V x v v V xρ ρ

ρ ρ

+ +
−

+

+ +   
− −   

   ≈ , (2.9) 

which produces: 

 1,
2

j j k N k N k k
i

k N k

y y v v
V xρ

σ σ
σ σ

+ + +

+

+  +
=  + 

. (2.10) 

Defining 

 1
, , 1

1

andk k N k k
k k N k k

k k N k k

a a
σ σ σ σ

σ σ σ σ
± ±

± ±
± ±

= =
+ +

, (2.11) 

then, the third term in (2.8) can be approximated as 

 ( )1
,, 2

2
j j

k y i k k N k N k

y y
h V x a v vρσ +

+ +

+ 
∂ ≈ − 

 
. (2.12) 

Similar procedures for the other three terms in (2.8), produces the expression of 

the inner points of Ω : 

 
, , , ,

, 1 , 1 , 1 , 1 ,

0

,
k k N k k N k k N k k N

k k k k k k k k k k k

a v a v

a v a v a v
+ + − −

+ + − −

= +

+ + −
 (2.13) 

where, 

 { }, , , , 1 , 1k k k k N k k N k k k ka a a a a+ − + −= + + + . (2.14) 

Similarly, the expression for the elements kΩ  on the left boundary ∂Ω , that is, 
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 1 for 0 and 1 2k i jN i j N= + + = ≤ ≤ − , 

can be obtained as explained above, resulting: 

 
( ) , , , ,

, 1 , 1 ,

,

,
k k k N k k N k k N k k N

k k k k k k k

I L y a v a v

a v a v
+ + − −

+ +

− = +

+ −
 (2.15) 

where, 

 { }, , , , 1k k k k N k k N k ka a a a+ − += + +  (2.16) 

and 

 ( ), q
k

k I
I L y j ds

∂Ω ∂Ω
− = ∫ I

. (2.17) 

The expression for the elements kΩ  on the right boundary ∂Ω , that is, 

 1 for 1 and 1 2k i jN i N j N= + + = − ≤ ≤ − , 

results: 

 
( ) , , , ,

, 1 , 1 ,

,

,
k k k N k k N k k N k k N

k k k k k k k

I L y a v a v

a v a v
+ + − −

− −

= +

+ −
 (2.18) 

where, 

 { }, , , , 1k k k k N k k N k ka a a a+ − −= + +  (2.19) 

and 

 ( ), q
k

k I
I L y j ds

∂Ω ∂Ω
= ∫ I

. (2.20) 

The expression for the elements kΩ  on the upper boundary ∂Ω , i.e. , 

 1 for 1 2 and 0k i jN i N j= + + ≤ ≤ − = , 

results: 

 
( ) , 1 , 1 , 1 , 1

, , ,

,

,
k k k k k k k k k

k k N k k N k k k

I x L a v a v

a v a v
+ + − −

+ +

= +

+ −
 (2.21) 
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where, 

 { }, , 1 , 1 ,k k k k k k k k Na a a a+ − += + +  (2.22) 

and 

 ( ), q
k

k I
I x L j ds

∂Ω ∂Ω
= ∫ I

. (2.23) 

The expression for the elements kΩ  on the lower boundary ∂Ω , 

 1 for 1 2 and 1k i jN i N j N= + + ≤ ≤ − = − , 

results: 

 
( ) , 1 , 1 , 1 , 1

, , ,

,

,
k k k k k k k k k

k k N k k N k k k

I x L a v a v

a v a v
+ + − −

− −

− = +

+ −
 (2.24) 

where, 

 { }, , 1 , 1 ,k k k k k k k k Na a a a+ − −= + +  (2.25) 

and 

 ( ), q
k

k I
I x L j ds

∂Ω ∂Ω
− = ∫ I

. (2.26) 

Finally, similar arguments can be used to obtain the expressions for the four 

corner elements kΩ , 

 1 for , 0 or 1k i jN i j N= + + = − . 

The expression for the left upper corner element, where 1k = , comes to be: 

 ( ) ( )1 1 , , , 1 , 1 ,, , k k N k k N k k k k k k kI L y I x L a v a v a v+ + + +− + = + − , (2.27) 

where, 

 { }, , , 1k k k k N k ka a a+ += +  (2.28) 

and 
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 ( ) ( )1 1, , q
k

I
I L y I x L j ds

∂Ω ∂Ω
− + = ∫ I

. (2.29) 

Considering the left lower corner element, with ( 1) 1k N N= − + , it results: 

 ( ) ( )( 1) 1 ( 1) 1 , , , 1 , 1 ,, ,N N N N k k N k k N k k k k k k kI L y I x L a v a v a v− + − + − − + +− + − = + − , (2.30) 

where, 

 { }, , , 1k k k k N k ka a a− += +  (2.31) 

and 

 ( ) ( )( 1) 1 ( 1) 1, , q
k

N N N N I
I L y I x L j ds− + − + ∂Ω ∂Ω

− + − = ∫ I
. (2.32) 

The expression for the right upper corner element, where k N= , comes to be: 

 ( ) ( ) , , , 1 , 1 ,, ,N N k k N k k N k k k k k k kI L y I x L a v a v a v+ + + +− + = + − , (2.33) 

where, 

 { }, , , 1k k k k N k ka a a+ += +  (2.34) 

and 

 ( ) ( ), , q
k

N N I
I L y I x L j ds

∂Ω ∂Ω
− + = ∫ I

. (2.35) 

Considering the right lower corner element, where 2k N= , it results: 

 ( ) ( )2 2 , , , 1 , 1 ,, , k k N k k N k k k k k k kN N
I L y I x L a v a v a v− − − −− + − = + − , (2.36) 

where, 

 { }, , , 1k k k k N k ka a a− −= +  (2.37) 

and 

 ( ) ( )2 2, , q
k

N N I
I L y I x L j ds

∂Ω ∂Ω
− + − = ∫ I

. (2.38) 
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Now, with the set of equations from (2.13) to (2.36), it is possible to build a 

linear equation system as follows: 

 A =x b , (2.39) 

where A is a 2 2N N× matrix, x is a vector containing the unknown voltages at the 

center of every kΩ element ( )21 2, , ,
N

v v v=x K , and b is the injection current 

vector associated with qI . 

However, this A matrix is very ill-conditioned, with condition number 1016 and 

rank 2 1N − . Then, the linear system (2.39) has been solved by using the 

preconjugate gradient method. This iterative solving method produces a sequence 

of iteration vectors ( ) , 1,2,kx k = K , that converge to the desired solution, 

provided a tolerance and a maximum number of iterations. This method needs a 

symmetric and positive definite coefficient matrix. Therefore, A must be 

multiplied by its transpose, so that the actual linear system to be solved becomes: 

 T TA A A=x b , (2.40) 

where TA  is the transpose of A. 

The preconjugate gradient method has been preferred to an explicit 

decomposition of A, since the A matrix is very large and this iterative method 

converges much faster and using much less memory. 

2.2.4 Discretization of Biot-Savart law 

In this section, a matrix equation between the magnetic flux density and current 

density is derived [1]. The Biot-Savart law can be rewritten as: 

 0
3

'
4

I d l R
dB

R
µ

π
×

=
ur r

r
, (2.41) 

for a differential current element 'Idl
ur

, where I is the current in one finite element 

and 'dl
ur

 is the direction of the current. The current density vector calculated 

previously is placed at the center of each element and weighted by the area A of 

the corresponding element. The differential current element can be rewritten as: 
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 ( )ˆ ˆ ˆ' x x y y z zIdl A a J a J a J= + +
ur

. (2.42) 

Similarly, the vector R
r

, between the source and field points can be explicitly 

written as: 

 ( ) ( ) ( )ˆ ˆ ˆ' ' 'x y zR x x a y y a z z a= − + − + −
r

. (2.43) 

Therefore, the total magnetic flux density can be found integrating Equation 

(2.41) as follows: 

 ( ) ( )0
3

'
'

4
S

J r R
B r dv

R
µ
π Ω

×
= ∫

r rrr r
 (2.44) 

Evaluating the cross product in Equation (2.44),  neglecting the effect of each 

current element on itself, and considering the two-dimensional case, where zJ  is 

zero, the Equation (2.44) can be written in a matrix format as follows: 

 
x

x

y
y

z

   
    

−     
      −      

z

z

y x

b 0 D
j

b = D 0
j

D Db

, (2.45) 

where xj and yj are the column vectors of xJ , yJ values for the elements in the 

subject, respectively, and xb , yb and zb are the column vectors of xB , yB and 

zB at the field points, respectively. 

The matrices xD , yD  and zD  contain the components of the cross product:  

 0
2

ˆ
4

RdS a
R

µ
π

×
. (2.46) 

Their values only depend on the magnitude and direction of the R
r

 and 

ˆ /Ra R R=
r r

 vectors, between the field and source points. Therefore, since they 

are constant for a fixed mesh structure, they can be computed once and reused if 

necessary.  



 
17 

2.3 Extraction of Magnetic Flux Density from MR Images 

The magnetic flux density generated by the conductivity currents inside a 

conductive object can be obtained by using an MRI scanner and calculating the 

phase shifts between the image with the injected current and the one without. In 

this section, the derivation of this statement is given next [1]. 

The magnetization when no current is injected can be expressed as: 

 ( ) ( ) { }, , Cj Bt j
CM x y M x y e γ φ+= . (2.47) 

When a current  is applied for a duration CT , the magnetization accumulates a 

phase in the component of the magnetic flux density parallel to the main MR 

magnet: 

 ( ) ( ) ( ){ }, ,
, , J z C Cj Bt B x y T j

cjM x y M x y e
γ φ + + = . (2.48) 

Taking the ratio between (2.48) and (2.47), the effects of the phase 

inhomogeneities and other image artifacts are eliminated: 

 
( )
( )

( ) ( ), , ,,

,
J z C JNj B x y Tcj j x y

C

M x y
e e

M x y
γ γθ= = , (2.49) 

where ( ),JN x yθ  is called the normalized phase image. Finally, ( ), ,J zB x y can be 

extracted, being equal to: 

 ( ) ( )
,

,
, JN

J z
C

x y
B x y

T
θ

γ
= , (2.50) 

where γ is the gyromagnetic ratio and CT  is the effective current application time 

per excitation. 

Therefore, using this procedure, only the component of the magnetic flux density 

parallel to the main magnet of the MR device can be measured at a time. 
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In order to obtain the three components of the magnetic flux density, 

consequently, the object needs to be rotated appropriately and the pulse sequence 

repeated for the three different orientations. This disadvantage may not be a 

problem with small objects, but it is not possible to rotate a human body in 

existing MRI systems. The placement of the object into the MRI scanner in order 

to measure the three components is shown in Figure 2.3. 

The coordinate system for the object is ( ), ,x y z , while ( )', ', 'x y z  is for the MR 

system. Since, the MR main magnet is in z’-direction, in order to image a cross-

section of the object in one desired axis, this must be aligned with the z’-

direction. 
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(a) (b) 

 
(c) 

 
Figure 2.3: Orientation of an object inside the MRI system for measuring all 
three components of the induced magnetic flux density. The electrodes and 
current injections are shown for each case. (a) Object placement for measuring 

zB , (b) for measuring xB , (c) for measuring yB . 
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2.4 The Inverse Problem of MR-EIT 

2.4.1 Definition 

The goal of MR-EIT is to reconstruct an unknown cross-sectional resistivity 

distribution inside a three dimensional object. The image reconstruction or the 

solution of the inverse problem includes the formulation and solution methods, in 

order to determine the unknown inner conductivity distribution using measured 

internal magnetic flux density, peripheral voltage measurements, and the object 

boundary information [1]. 

Equations which describe the Inverse Problem show inherently severe ill-posed 

characteristics. The analytical solutions can not be found, so numerical 

techniques are used, instead. 

2.4.2 Formulation 

Let Ω be the object described in the Forward Problem, Section 2.2.2, under the 

same conditions and assumptions [23]. Then, the electric field is: 

 0E∇× =
r

. (2.51) 

By using Ohm’s law E Jρ=
r r

in (2.51), it becomes: 

 0Jρ∇× =
r

. (2.52) 

By using the following vector identity [5]: 

 ( )A A Aψ ψ ψ∇× = ∇ × + ∇ ×
r r r

, (2.53) 

where ψ  is a scalar field and A
r

 a vector field, the equation (2.52) can be 

rewritten as: 

 0J Jρ ρ∇ × + ∇× =
r r

. (2.54) 

Dividing both sides by ρ and rearranging the terms, it yields to: 
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 J J
ρ

ρ
∇

× =−∇×
r r

. (2.55) 

For simplicity, calling ln ρℜ = , that is, the natural logarithm of the resistivity, it 

can be rewritten as: 

 J J∇ℜ× =−∇×
r r

. (2.56) 

If J
r

is known, this equation (2.56) contains all the information about the 

resistivity distribution in the gradient-of- ℜ  term. But, in practice, only the 

magnetic flux density can be directly measured by MRI. The needed J
r

 could be 

found by Ampere’s law: 

 0J B µ=∇×
r r

. (2.57) 

Instead of using this approach, if Ampere’s law is substituted in (2.56): 

 ( )0J B µ∇ℜ× = −∇× ∇×
r r

, (2.58) 

and using the vector identity [5]: 

 ( ) ( ) 2·A A A∇× ∇× = ∇ ∇ − ∇
r r r

, (2.59) 

where A
r

is a vector field, it gives: 

 ( ) 2
0 0·J B Bµ µ∇ℜ× = −∇ ∇ + ∇

r r r
. (2.60) 

Knowing that the divergence of the magnetic flux density is zero, since it is a 

solenoidal field, the final expression turns to be: 

 2
0J B µ∇ℜ× = ∇

r r
. (2.61) 

The Equation (2.61) can be expressed in terms of conductivity, instead. Then, 

similar derivation beginning from (2.51) can be carried out. Knowing that 

E J σ=
r r

, using the identity (2.53) and that ( ) 21 σ σ σ∇ =−∇ , it yields: 

 J J
σ

σ
∇

× =−∇×
r r

. (2.62) 
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Using now Ampere’s law, the identity (2.59) and that the divergence of B
r

 is 

zero, Equation (2.62) becomes: 

 2
0J B

σ
µ

σ
∇

× = −∇
r r

. (2.63) 

Finally, knowing that E φ=−∇
r

, where φ  is the potential distribution inside the 

object, results [27]: 

 2
0B µ φ σ∇ = −∇ × ∇

r
. (2.64) 

But, this equation still needs to know the current density distribution J
r

. 

Moreover, the Laplacian of the magnetic field density involves second order 

derivatives of B
r

, which will decrease the quality of the reconstructed resistivity 

and make it more vulnerable to noise, due to the blurring effect of this operator. 

But, if J
r

 is calculated by Ampere’s law and Equation (2.56) is used, the 

reconstruction has a better quality. 

In the computation of J
r

inside the object by Ampere’s law, solving the curl 

operation implies measuring the three components of the magnetic flux 

density ( ), ,B x y z
r

. But, as it was stated before, only the parallel component of the 

magnetic flux density to the main magnet of the MR system can be obtained, so 

the object must be rotated to obtain the three components. 

In order to overcome this difficulty, reconstruction algorithms which only use 

one component of B
r

and cancel the other two are needed. Then, this kind of 

algorithms, based on (2.61) or (2.64), would have practical advantages. 

2.4.3 Classification of the Reconstruction Algorithms 

A reconstruction algorithm is a systematic way to find the resistivity by solving 

the equations which define the inverse problem. Algorithms proposed for this 

purpose can be grouped into two.  
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The first group is called Current Density based algorithms, since they use the 

current density distribution, calculated from the magnetic flux density 

measurements. They try to solve the problems described in Equation (2.56).  

The second group is known as Magnetic Flux based algorithms, because they 

utilize magnetic flux density measurements directly. They try to solve Equation 

(2.61) or (2.64).  

Both types have iterative or non- iterative versions. 

The current density based algorithms studied in the thesis, except the J-

substitution algorithm, are non- iterative. The magnetic flux density based 

algorithm implemented in the thesis is also iterative. It requires only the z-

component of B
r

, that is, zB , but needs some iterations to obtain the true 

conductivity distribution. 
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CHAPTER 3 

CURRENT DENSITY BASED RECONSTRUCTION 

ALGORITHMS 

3.1 Derivation of Reconstruction Algorithms 

In Section 2.4, in the formulation of the inverse problem, Equation (2.56) related 

the resistivity distribution inside the object to the current density distribution as 

follows: 

 J J∇ℜ× =−∇×
r r

. (3.1) 

Performing the curl operator in both sides, and rearranging terms, Equation (3.1)

can be expressed as the following matrix equation: 

 

0

0

0

yz
z y

x z
z x

y x
y x

JJJ J
y zx
J J

J J
y z x

J J
J J x yz

∂     ∂∂ℜ− −     ∂ ∂∂     
     ∂ ∂∂ℜ

− = − −    ∂ ∂ ∂    
∂   ∂ ∂ℜ −−      ∂ ∂∂    

 (3.2) 

The following four reconstruction algorithms: reconstruction by integration along 

equipotential lines, reconstruction by integration along Cartesian grid lines, 

reconstruction by solution of a linear system of equations using finite differences, 

and reconstruction with equipotential-projection algorithm deal in different ways 

with the matrix equation (3.2), in order to solve the logarithmic resistivity ℜ , 

and from there, obtain the resistivity ρ  or conductivity σ  distribution. The J-
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substitution algorithm, however, trie s to solve the forward problem iteratively, 

updating the resistivity distribution in every iteration. 

3.2 Reconstruction by Integration along Equipotential 

Lines 

Ider et al [15] show that each row of the system in (3.2) is a first-order linear 

hyperbolic partial differential equation, and that the characteristic surfaces of the 

hyperbolic system (3.2) are, in fact, equipotential surfaces.  

This algorithm calculates ℜ  on a whole equipotential surface, provided that ℜ  

is known at a single point on it. The logarithmic resistivity ℜ  can be found at 

any point in the equipotential surface by integrating along any path in the 

surface, starting from the specified point [15]. 

This theory can be applied to the third row in the equation system (3.2): 

 y x
y x

J J
J J

x y x y

∂ ∂∂ℜ ∂ℜ
− = − − ∂ ∂ ∂ ∂ 

 (3.3) 

Since the third entry of the third row is zero, this Equation (3.3) has characteristic 

curves which stay in the same z k=  plane as their starting points, where k is a 

constant. 

Consider now a z k=  plane. Let k
xyΩ  be the intersection of this plane with Ω. In 

k
xyΩ , the 

T

x y
 ∂ℜ ∂ℜ
 ∂ ∂ 

term in (3.3) corresponds to the projection of R∇  onto 

k
xyΩ . Then, the left-hand side of Equation (3.3) can be interpreted as the 

projection of this two-dimensional gradient onto the 
T

y xJ J −  direction, which 

is perpendicular to the current density direction 
T

x yJ J   . Thus, the 

characteristic curves are perpendicular to the current streamlines and are, in fact, 

equipotential lines. Consequently, by integrating along the equipotential lines in 
k
xyΩ , the logarithmic resistivity ℜ  can be calculated, provided that ℜ  is known 

on at least one point in each equipotential line. 
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Assume now that two different current injection patterns are used and two 

internal current density distributions 1J  and 2J  are measured. Let  1
xyJ  and 2

xyJ  

be the projections of 1J and 2J  in c
xyΩ  onto c

xyΩ . If the condition 1 2 0xy xy× ≠J J  

holds for at least one point on each equipotential line of one injection pattern, 

then, ℜ  needs to be specified only at a single point in c
xyΩ  [15].  

Similarly, it is possible to obtain slice images for c
yzΩ  and c

xzΩ  using the first and 

second rows of Equation (3.2). 

3.2.1 Implementation 

3.2.1.1 Obtaining the Equipotential Lines 

In the simulations, the current density data for each injection pattern is given. 

Since the equipotential lines are always perpendicular to the direction of the 

currents, they can be calculated in each pixel. 

The procedure is the following. Starting from the four edges of the phantom, 

several equipotential lines per pixel are initiated. The direction perpendicular to 

the current density vector in each pixel is used to calculate the outgoing 

coordinates of the equipotential line from the incoming coordinates. 

In Figure 3.1, an example with four pixels and two equipotential lines per pixel,  

starting from the left edge is shown. 

An equipotential line can cross a pixel in twenty different ways, as shown in 

Figure 3.2. All these cases are considered in order to obtain the path that an 

equipotential line runs throughout the imaging region, from its starting point, at 

an edge, till it leaves the slice. 
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Figure 3.1: Two equipotential lines are started from each pixel at the left 
boundary. They are perpendicular to the current density vector in every pixel 
within the image. 

 

 

Figure 3.2: An equipotential line can pass through a pixel in twenty different 
ways. 

eq1 

eq2 

eq3 

eq4 

1J
r

 3J
r

 

2J
r

 
4J
r
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3.2.1.2 Integration Methods 

Once the equipotential lines have been obtained, the logarithmic resistivity on 

any point on an equipotential line can be calculated by integrating the gradient of 

ℜ  along these paths. This is possible if one ℜ  value is known on at least one 

point in each equipotential line. In the current implementation, ℜ  is known at 

the edge from where the equipotential lines begin. 

For example, it is possible to obtain approximately ℜ  at the point s  of the path l 

if the value of ℜ  at point 1s s=  is known, as shown in Figure 3.3. 

 

 

Figure 3.3: Integration path from s1 to s 

 

Then,   

 ( ) ( )
1

1

s
y x

s

J J
R s R s dl

x y

∂ ∂
= + − − ∂ ∂ ∫

r
, (3.4) 

where dl
r

is a differential line increment. In Cartesian coordinates, this is equal to: 

 ( ),dl dx dy=
r

. (3.5) 

s 

s1 

dl
r

 dl
r

 

dl
r
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In order to perform the integration described in Equation (3.4), two integration 

techniques are provided and compared: the Trapezoidal method and Taylor 

Expansion integration method. 

The Trapezoidal Rule is based on the Newton-Cotes Formula [34], which states 

that if the integrand can be approximated by an nth order polynomial 

 ( )
b

a

I f x dx= ∫ , (3.6) 

where ( ) ( )nf x f x≈ and 1
0 1 1( ) n n

n n nf x a a x a x a x−
−= + + + +K  then, the integral of 

that function is approximated by the integral of that nth order polynomial. 

 ( ) ( )
b b

n
a a

f x f x≈∫ ∫ . (3.7) 

The Trapezoidal Rule assumes that 1n = . Then, the integral can be approximated 

by the area under the linear polynomial, as indicated in Equation (3.8) 

 ( ) ( ) ( )
( )

2

b

a

f a f b
f x dx b a

+ ≈ −   ∫ . (3.8) 

The first-order Taylor Expansion around 0x x=  can be also used as another 

integration method. The expression is given in Equation (3.9): 

 
0

0 0

( )
( ) ( ) ( )

x

f x
f x f x x x

x
∂

= + −
∂

. (3.9) 

3.2.1.3 Integrating along the Equipotential Lines 

Once the integration paths, i.e., equipotential lines, have been calculated, 

knowing that ( ),dl dx dy=
r

, the Equation (3.4) can be rewritten as follows: 

 ( ) ( )
1 1

1

s s
y x

s s

J J
s s dx dy

x y

∂ ∂
ℜ = ℜ − +

∂ ∂∫ ∫ . (3.10) 

Applying the trapezoidal method of integration to it yields: 



 
30 

 

( ) ( ) ( )

( )

1 1
1

11

( ) ( )

2

( ) ( )
.

2

y y x x

y yx x

J s J s s s
s s

x x

s sJ s J s
y y

∂ ∂ − 
ℜ = ℜ − + ∂ ∂ 

− ∂ ∂
+ + ∂ ∂ 

 (3.11) 

Calling ( )1x xx s s∆ = −  and ( )1y yy s s∆ = − , the final equation is: 

 ( ) ( ) 1 1
1

( ) ( ) ( ) ( )
2 2

y y x x
J s J s J s J sx y

s s
x x y y

∂ ∂   ∂ ∂∆ ∆
ℜ = ℜ − + + +   ∂ ∂ ∂ ∂  

. (3.12) 

In case one single equipotential line crosses each pixel, as shown in Figure 3.4, 

the Equation (3.12) becomes Equation (3.13). 

 

 

Figure 3.4: Integration case if one single equipotential line passes through each 
pixel. 

 ( ) ( ) 2 2
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∂ ∂   ∂ ∂∆ ∆
ℜ = ℜ − + + +   ∂ ∂ ∂ ∂  

. (3.13) 
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If more than one equipotential line crosses each pixel, an averaging is needed. 

For example, in Figure 3.5, two equipotential lines pass through pixel (3), and 

Equation (3.12) becomes Equation (3.14). 

 

( ) ( )

( )

31 31

34 34

(1) (3) (1) (3)1
3 1

2 2 2

(4) (3) (4) (3)1
4 .

2 2 2

y y x x

y y x x

J J x J J y
x x y y

J J x J J y
x x y y

 ∂ ∂    ∆ ∂ ∂ ∆
ℜ = ℜ − + + + +    ∂ ∂ ∂ ∂   

 ∂ ∂    ∆ ∂ ∂ ∆
+ ℜ − + + +    ∂ ∂ ∂ ∂   

(3.14) 

In general, if in the pixel p0 there are neqLines equipotential lines, coming each one 

from a previous pixel pi, the Equation (3.12) could be written as: 

 
( ) ( ) 0 0

0

1

0 0

( ) ( )1
2

( ) ( )
.

2

eqLinesn

y i y i
i

eqLines
i

x i x i

J p J p x
p p

n x x

J p J p y
y y

=

 ∂ ∂  ∆
ℜ = ℜ − +  ∂ ∂ 

 ∂ ∂ ∆
+ +  ∂ ∂  

∑
 (15)^ 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.5: Integration case when more than one equipotential line passes per one 
pixel. 
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Notice that, in order to calculate the value of ℜ  in one pixel, it is necessary to 

know ℜ  in the previous pixel, from where the equipotential line is coming. For 

example, in Figure 3.5, in order to calculate ℜ  (3), ℜ  (1) and ℜ  (4) are needed. 

But to calculate ℜ  (4), ℜ  (2) is also needed. Therefore, a recursive algorithm is 

required. 

This recursive algorithm takes an equipotential line and begins from its very end 

pixel. For each equipotential line in that pixel, it checks if the pixel from where it 

comes is already processed or not. If so, the ℜ  in that previous pixel is currently 

known. If not, it processes it, recursively. When all involved ℜ ’s are known, the 

integration is then performed, and the ℜ  in the pixel can be calculated. 

The stopping criterion for this recursive algorithm is that the ℜ  values of all 

pixels at the edge from where the equipotential lines start are calculated. 

Finally, in order to compute the current density derivatives involved in the 

equations, the Sobel Operator has been applied, as described in [27]: 

 

1 0 1
1

2 0 2
8

1 0 1

y
y

J
J

x x

− 
∂  = − ∗∗ ∂ ∆

 − 

 (3.16) 

and 

 

1 2 1
1

0 0 0
8

1 2 1

x
x

J
J

y y

 
∂  = ∗∗ ∂ ∆

 − − − 

. (3.17) 
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3.3 Reconstruction by Integration along Cartesian Grid 

Lines 

In order to simplify the previous algorithm, the integration along a Cartesian grid 

may be preferred. 

Ider et al [15] claim that, if the gradient of the logarithmic resistivity ℜ  is 

known within the subject Ω , then ℜ  can be found by integrating its gradient 

along Cartesian grid lines, except for an additive constant. This is equivalent to 

specifying the potential function at a single point in Ω . 

The gradient of ℜ  cannot be found for a single injected current profile, since the 

determinant of the coefficient matrix in Equation (3.2) is zero. Let 1J
r

 and 2J
r

 be 

the current density measurements, corresponding to two different applied 

injection patterns. Then, within the imaging slice in xy plane, the third row of 

Equation (3.2) can be written twice to obtain: 

 

11

1 1

2 2 22

yx

y x

y x yx

JJ
J J y xx
J J JJ

y y x

 ∂∂∂ℜ  −   − ∂ ∂∂    =   ∂ℜ− ∂   ∂   − ∂  ∂ ∂  

. (3.18) 

From this new set of equations, it is possible to calculate the gradient of ℜ  

T

x y
 ∂ℜ ∂ℜ
 ∂ ∂ 

at any point, provided that for that point the determinant 

1 2 2 1
y x y xJ J J J− +  is not zero, or equivalently: 

 1 2 0xy xyJ J× ≠
r r

, (3.19) 

where 1
xyJ
r

 and 2
xyJ
r

 are the projections of 1J
r

 and 2J
r

, respectively, on the xy 

plane. 

After finding the gradient of ℜ , using the first or second row of Equation (3.2), 

it is possible to obtain z∂ℜ ∂ if at least one of the conditions ( 1 0yJ ≠ or 2 0yJ ≠ ) 
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or ( 1 0xJ ≠  or 2 0xJ ≠ ) is satisfied, respectively. Since the condition in Equation 

(3.19) is already required, one of those two conditions will hold anyway. 

Handling the rows of Equation (3.2) in different orders, it can be seen that to find 

the gradient of ℜ  at any point, it is also sufficient to have ( )1 2 0xz xzJ J× ≠ or 

( )1 2 0yz yzJ J× ≠ at that point. 

In general, if 

 1 2 1 2 1 2 1 2 0yz yz xz xz xy xyJ J J J J J J J× = × + × + × ≠  (3.20) 

at a certain point, then the gradient at that point can be calculated, because at 

least one of the terms in Equation (3.20) will not vanish [15]. In practice, it may 

be needed to employ more than two injection patterns, because the condition in 

(3.20) may not be satisfied at all points by a single pair of injection patterns. 

Note that by finding 
T

x y
 ∂ℜ ∂ℜ
 ∂ ∂ 

for only one xy plane, ℜ  can only be 

reconstructed at that plane, i.e. slice, apart from an additive constant, without 

being concerned about finding the gradient at other xy slices. Similarly, this 

occurs for xz and yz slices. 

3.3.1 Implementation 

In order to obtain the gradient of ℜ  from the Equation (3.18), it is necessary to 

calculate firstly: 

 
1 1

2 2
y x

y x

J J
J J

 −
 −  

 (3.21) 

and  

 

11

22

yx

yx

JJ
y x

JJ
y x

 ∂∂
− 

∂ ∂ 
 ∂∂ −

∂ ∂  

. (3.22) 
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The derivatives of Equation (3.22) have been found by applying the Sobel 

Operator [27] given in Equation (3.16) and Equation (3.17). 

After obtaining the gradient of ℜ , the actual distribution of ℜ  in every pixel can 

be obtained by integration, using the  methods explained previously in Section 

3.2.1.2. 

3.4 Reconstruction by Solution of a Linear Equation 

System using Finite Differences 

Ider et al [15] state that any row of Equation (3.2) can be discretized by using 

finite differences on a rectangular mesh. For example, for a slice placed on the xy 

plane, the third row of Equation (3.2) is chosen. This discretization is done for 

each node within the slice and for every current injection pattern. A matrix 

equation can be built by combining all the equations involved in the 

discretization. Then, the logarithmic resistivity ℜ  can be found with a matrix 

inversion. 

3.4.1 Algorithm 

Let the slice image be on the xy plane. Then, the third row of Equation (3.2), 

which was: 

 y x
y x

J J
J J

x y x y

∂ ∂∂ℜ ∂ℜ
− = − − ∂ ∂ ∂ ∂ 

 (3.23) 

can be discretized on a N N×  Cartesian grid, by using finite differences [33]. 

Each pixel in the image holds the logarithmic resistivity ℜ  at their center point. 

There are three types of subsqueres: interior pixels, boundary pixels and corner 

pixels, which correspond with nine different cases. In the next Section 3.4.2, 

expressions for all of them will be given. 

For example, for the inner points, central differences can be applied to Equation 

(3.23) in order to approximate the derivatives in x and y direction. The result is: 
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( ) ( )
( )

( ) ( )
( )

( ) ( ) ( ) ( )

1, 1, , 1 , 1
, ,

1, 1, , 1 , 1

2 2

,
2 2

i j i j i j i j
y i j x i j

y i j y i j x i j x i j

J J
x y

J J J J

x y

+ − + −

+ − + −

ℜ − ℜ ℜ − ℜ
−

∆ ∆

− − 
= − −  ∆ ∆ 

 (3.24) 

where x∆ and y∆ are the discretization steps in x and y directions, respectively, 

and i and j are the indices of the center of the pixels in x and y directions, 

respectively. For the rest of cases, backward, forward or central differences are 

applied. 

Once all the pixel elements are discretized, rearranging the set of finite difference 

equations, the following linear system is obtained: 

 CR = B , (3.25) 

where C is a 2 2N N×  matrix containing the coefficient of ℜ  in the left-hand 

side part of Equation (3.24), 20 2 1

T

N −
 = ℜ ℜ ℜ R L is the logarithmic 

resistivity distribution of the slice in vector form, and B are the current density 

terms on the right-hand side of Equation (3.24). 

If M different injected current patterns are carried out, the coefficient matrix C 

and the right-hand side vectors B can be concatenated in order to obtain the 

following set of equations: 

 

1 1

22

MM

   
   
   =   
   
     

C B

BC
R

BC

uux

MM
. (3.26) 

At least two injection patterns must be performed in order to satisfy the condition 

given previously in Equation (3.20). 

3.4.2 Implementation 

Let the square target imaging region ( ) ( ): , ,S L L L LΩ − × −  be uniformly divided 

into N N×  axis-parallel sub squares i jN+Ω , containing the logarithmic resistivity 
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ℜ  values of the image at their center point ( ),i jx y , where 0, , 1i N= −K  and 

0, , 1j N= −K . The logarithmic resistivity ℜ  is assumed to be constant on each 

subsquare kΩ , denoted by kℜ , where 21, ,k N= K . As it was stated before, there 

are three types of subsquares: in the interior, on the boundaries, and the corners. 

The nine different cases can be shown in Figure 5.12(b). Expressions for each of 

these cases are given below. 

  
(a) (b) 

Figure 3.6: Reconstruction by solution of a linear equation system. (a) kℜ , 

,x kJ and ,y kJ  at every element kΩ  and surrounding elements. (b) In the 
implementation, nine different types of elements are considered. 

Firstly, considering an inner element kΩ . 

 1 for 1 , 2k i jN i j N= + + ≤ ≤ − , 

Equation (3.23) can be discretized using central differences in x and y direction. 

It becomes: 

 

, ,, ,
1 1

, 1 , 1, ,

2 2 2 2

,
2 2

y k y kx k x k
k N k N k k

y k y kx k N x k N

J JJ J

y y x x
J JJ J

y x

+ − + −

− +− +

ℜ − ℜ + ℜ − ℜ
∆ ∆ ∆ ∆

−−
= +

∆ ∆

 (3.27) 
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where ,x kJ  represents the conductivity density in x direction in the pixel k, and 

x∆  and y∆  are the element length in x and y direction, respectively. In this case, 

2 /x y L N∆ = ∆ = .  

In order to obtain the expression for the upper boundary, i.e.: 

1 for 1 2 and 0k i jN i N j= + + ≤ ≤ − = , 

central differences are taken for x direction, while only forward differences in y 

direction. Then, the Equation (3.23) is approximated by: 

 

, ,, ,
1 1

, 1 , 1, ,

2 2

.
2

y k y kx k x k
k N k k k

y k y kx k x k N

J JJ J

y y x x
J JJ J

y x

+ + −

− ++

ℜ − ℜ + ℜ − ℜ
∆ ∆ ∆ ∆

−−
= +

∆ ∆

 (3.28) 

Similarly, for the lower boundary of the image, i.e.: 

1 for 1 2 and 1k i jN i N j N= + + ≤ ≤ − = − , 

central differences are taken for x direction, and backward differences in y 

direction. Then, the Equation (3.23) is approximated by: 

 

, ,, ,
1 1

, 1 , 1, ,

2 2

.
2

y k y kx k x k
k k N k k

y k y kx k N x k

J JJ J

y y x x
J JJ J

y x

− + −

− +−

ℜ − ℜ + ℜ − ℜ
∆ ∆ ∆ ∆

−−
= +

∆ ∆

 (3.29) 

Equivalent procedure can be used to obtain the left-hand side boundary: 

1 for 0 and 1 2k i jN i j N= + + = ≤ ≤ − , 

by using central differences in y direction and forward in x direction. Equation 

(3.23) becomes: 

 

, ,, ,
1

, , 1, ,

2 2

.
2

y k y kx k x k
k N k N k k

y k y kx k N x k N

J JJ J

y y x x
J JJ J

y x

+ − +

+− +

ℜ − ℜ + ℜ − ℜ
∆ ∆ ∆ ∆

−−
= +

∆ ∆

 (3.30) 
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For the right-hand side boundary elements, such that, 

1 for 1 and 1 2k i jN i N j N= + + = − ≤ ≤ − , 

Equation (3.23) is approximated by backward differences in x direction and 

central differences in y direction, resulting: 

 

, ,, ,
1

, 1 ,, ,

2 2

.
2

y k y kx k x k
k N k N k k

y k y kx k N x k N

J JJ J

y y x x
J JJ J

y x

+ − −

−− +

ℜ − ℜ + ℜ − ℜ
∆ ∆ ∆ ∆

−−
= +

∆ ∆

 (3.31) 

Finally, for the four corner elements, such that 

1 for , 0 or 1k i jN i j N= + + = −  

forward or backward differences are used. The expression for the upper-left one, 

where 1k = , becomes: 

 

, ,, ,
1

, , 1, , .

y k y kx k x k
k N k k

y k y kx k x k N

J JJ J
y y x x

J JJ J
y x

+ +

++

 
ℜ − + ℜ + ℜ ∆ ∆ ∆ ∆ 

−−
= +

∆ ∆

 (3.32) 

In case of the upper-right corner, with k N= , it results: 

 

, ,, ,
1

, 1 ,, , .

y k y kx k x k
k N k k

y k y kx k x k N

J JJ J
y x y x

J JJ J
y x

+ −

−+

 
ℜ + − ℜ − ℜ ∆ ∆ ∆ ∆ 

−−
= +

∆ ∆

 (3.33) 

For the lower- left corner, where ( 1) 1k N N= − + , it yields: 

 

, ,, ,
1

, , 1, , .

y k y kx k x k
k N k k

y k y kx k N x k

J JJ J
y y x x

J JJ J
y x

− +

+−

 
− ℜ + − ℜ + ℜ ∆ ∆ ∆ ∆ 

−−
= +

∆ ∆

 (3.34) 
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And, finally, the expression for the lower-right corner, where 2k N= , the 

Equation (3.23) is approximated by: 

 

, ,, ,
1

, 1 ,, , .

y k y kx k x k
k N k k

y k y kx k N x k

J JJ J
y x y x

J JJ J
y x

− −

−−

 
− ℜ + + ℜ − ℜ ∆ ∆ ∆ ∆ 

−−
= +

∆ ∆

 (3.35) 

As previous ly stated, rearranging the terms in Equations (3.27) to (3.35) and 

combining them, the matrix equation (3.25) can be formed. In the current 

implementation of this algorithm, two orthogonal injection patterns have been 

used. Therefore, this procedure has been repeated twice. Concatenating the C and 

B matrices for each injection profile, the following matrix equation results: 

 
   
   
   

1 1

2 2

C B
R =

C B
 (3.36) 

The rank of the combined C matrix is 2 1N − , as expected, since a function can be 

reconstructed from its gradient, except for an additional constant [15]. It is 

necessary to set one of the ℜ ’s to its real value and then solve the equation 

system with full rank, in order to obtain the logarithmic resistivity ℜ  in the slice. 

For example, in order to set 0ℜ  to its true value 0
realℜ , then the first row of C1 

must be changed, such that its element 0,0 1c = , while the rest 0, 0kc =  for all 

21, , 1k N= −K . Also, the element 0b  of B1 must be set to 0 0
realb = ℜ . Now, the 

matrix is full rank and the system can be solved in order to get the true ℜ . 

The linear system (3.36) has been solved by using the preconjugate gradient 

method. This requires that the coefficient matrix C must be symmetric and 

positive definite. In order to do that, C is multiplied by its transpose. Hence, the 

actual linear system to be solved becomes: 

 T T T T   
         

   

1 1

1 2 1 2
2 2

C B
C C R = C C

C B
, (3.37) 

where T
1C and T

2C  are the transposes of 1C and 2C , respectively. 
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This method has been preferred to an SVD decomposition of C, due to the 

dimension of C matrix, and its faster convergence and less demand of memory. 

3.5 Reconstruction with Equipotential – Projection 

Algorithm 

In this section, the algorithm proposed in 1999 by Eyüboglu US patent [8] and 

applied to real data by Özdemir [25], is extended. In this case, it can reconstruct a 

relative conductivity distribution in a two dimensional slice without any potential 

measurement. In order to obtain the true distribution, the potential at one element 

on the boundary must be known. 

3.5.1 Algorithm 

The current density distribution J
r

 is obtained using MRI from the magnetic flux 

density distribution, as described in Section 2.4, while current is injected to the 

subject through electrodes attached to its boundary. Equipotential lines inside the 

subject can be determined by calculating the orthogonal lines to the current 

density J
r

 paths. 

At this point, assuming that the conductivity is uniform and known for a column 

of the FOV, it is possible to calculate by Ohm’s law the gradient of the potential 

for every element in that column. 

 
J

φ
σ

∇ = −
r

 (3.38) 

The potential distribution φ  in the column is obtained by integration of this 

gradient φ∇ . If a voltage measurement is performed on this boundary column, 

the potential values will be true and, therefore, the final conductivity distribution 

will be absolute. If no voltage is measured, on the contrary, a relative 

conductivity distribution will result. 

Once the potential is calculated in the column, it is projected throughout the FOV 

by using the equipotential lines. Then, the gradient of the potential distribution 
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φ∇  in the whole FOV is calculated. Finally, using again Ohm’s law, Equation 

(3.38), the conductivity distribution is found. 

Note that if the conductivity of the column is known, the reconstructed 

conductivity values will be true conductivities. 

3.5.2 Implementation 

In this section, some aspects about the implementation of the algorithm are 

explained. 

The gradients are calculated by the Sobel operators, given in Equation (3.16) and 

Equation (3.17). 

The equipotential lines are found by using the procedure described previously in 

Section 3.2.1.1. Once they are obtained, the potential values at the boundary are 

projected inside of the domain following these paths. Thus, the potential assigned 

to each pixel is a weighted average of all the potential values that the crossing 

equipotential lines carry and their length within the pixel. In a more formal 

manner, the potential for the ith pixel, iφ , crossed by eqLN equipotential lines is 

calculated as: 

 1

1

eqL

j

eqL

N

j eqL
j

i N

j
j

l

l

φ
φ =

=

=
∑

∑
, (3.39) 

where 
jeqLφ  is the potential which the jth equipotential line inside the pixel 

carries, and jl  is its length within the pixel. 
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3.6 Reconstruction with J-substitution Algorithm 

Kwon et al [20] proposed a new static resistivity image reconstruction algorithm, 

called J-substitution, and presented simulation results in 2002. They declared the 

image reconstruction as a constructive map { }, ,I J V ρ→  inside a region Ω  

within the subject, where I is the injected current, J is the magnitude of the 

current density and V is the peripheral voltage measurements. They assumed that 

the magnitude of the internal current density distribution is available from an 

MRI system, including the supplementary current injections added to the subject. 

3.6.1 Problem Definition 

Let Ω  denote a two-dimensional cross section of an electrically conducting 

body, with resistivity distribution, denoted by *ρ . The resistivity distribution *ρ  

in the region Ω  and the voltage *V
ρ

 are unknown, but the magnitude of the 

current density, *J
r

, is known by using MRI. Injection currents I through 

electrodes attached on the boundary ∂Ω  are also included in the given current 

density image. These injected currents I generate current densities on the 

boundary ∂Ω , whose inward pointing normal components, denoted by Ij , 

satisfy the compatibility condition: 

 0Ij ds
∂Ω

=∫ . 

The inverse problem, then, is to reconstruct the resistivity distribution *ρ  from 

the known ( )*,I J  pair data, using the physical laws of electromagnetics. 

The nonlinear relation between the resistivity distribution ρ , and the 

corresponding potential field Vρ  is given by the boundary value problem (BVP) 

defined by the following Poisson’s relation, together with Neumann boundary 

conditions: 
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1
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1
on ,I

V

V
j

n

ρ

ρ

ρ

ρ

  
∇ ∇ = Ω  

  


∂ = ∂Ω ∂

 (3.40) 

where Ij is the current density at the boundary ∂Ω  and n denotes the unit 

outward normal vector at the boundary ∂Ω . The term Vρ∇ can be uniquely 

determined by the resistivity ρ and the boundary current density Ij , induced by I 

[13]. Here, I  is identical to the injection current used for measuring *J . 

When the resistivity distribution is equal to the reconstructed one, i.e. *ρ ρ= , the 

inverse problem can be reduced to the nonlinear Neumann boundary value 

problem shown in (3.41). 
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j
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ρ

ρ

ρ

δ

δ

  
  ∇ ∇ = Ω  

∇   

 = ∂Ω
 ∇

 (3.41) 

where the term *1/ ρ  in (3.40) has been substituted by *
* /J V

ρ
∇

r
, since 

 *
*

*
1

J V
ρρ

= − ∇
r

. (3.42) 

Obtaining an image of *ρ  implies to find a constructive map { }* *,I J ρ→ from 

the nonlinear equation (3.41). In order to solve this problem and find a correct 

solution for *ρ , Kwon et al developed the following iterative scheme. 
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3.6.2 Algorithm 

In their iterative algorithm, they minimize the cost function ( )ρΦ , such that: 

 ( ) ( ) ( ) ( )
2

* 1
: J r E r dr

r ρρ
ρ

Ω

Φ = −∫ r r r
r , (3.43) 

where ( )*J r
r

 is the magnitude of the observed interior current density and 

( ) ( ):E r V rρ ρ= ∇r r  is the magnitude of the calculated electric field intensity 

obtained by solving (3.41) for a given ρ . 

They also established that if at least two currents, 1I  and 2I  satisfying the 

following condition: 

 1 2 0J J× ≠  (3.44) 

are applied, together with a single voltage measurement, the true conductivity 

image can be reconstructed.  

In this thesis, two opposite orthogonal pairs of electrodes are used. Hence, two 

current patterns are applied. 

Let 1I  and 2I be the two currents injected via two pairs of electrodes. Then, two 

sets of current density data, 1 1J J=
r

 and 2 2J J=
r

, induced by 1I  and 2I , 

respectively, are used to image the resistivity distribution. The position of the 

electrodes makes 1J  and 2J satisfy the condition (3.44). 

The J-substitution reconstruction algorithm solves the nonlinear problem 

described in (3.41), determining *ρ  from two pairs of data ( ),q qI J , where 

1,2q =  is the injection pattern number. The steps of this iterative algorithm are 

the following: 
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• Initial guess: For the initial guess, a homogeneous resistivity 0ρ  is 

chosen. For example, 0 1ρ = . 

• Forward solver: For a given resistivity 2 p qρ + , where 1,2q =  indicates the 

injection pattern and 0,1,2,p = K  the iteration number, the forward 

problem is given by 

 
2

2

1
· 0 in

1
on  and 0.q

q
pp q

q
p q

pp q I

V

V
j V ds

n

ρ

δ

ρ δ

+

+
∂Ω

  
∇ ∇ = Ω  

 

 = ∂Ω =


∫
 (3.45) 

In this implementation, the Cell-Centered Finite Difference Method [19] 

has been used, similarly as [20]. Implementation of this method was 

described in the Section 2.2.3. 

• Update 2 1p qρ + + . Since ρ and αρ , where α is a positive constant, will 

induce the same current density distribution J , but the corresponding 

voltages are actually scaled by α , the absolute resistivity value needs to 

be calculated by updating the resistivity using a voltage measurement, as 

follows: 

 
2

2 1 *
:

p q

qq
pp q

q q

fV

J f
ρ

ρ

ρ
+

+ +
∇

= , (3.46) 

where *
qf

ρ
 is the measured voltage difference between two current 

injection electrodes for the injection current qI , and 2 p q
qf

ρ + is the 

calculated voltage difference when the resistivity distribution is given by 

computed 2 p qρ + . 

• If 2 1 2p q p qρ ρ ε+ + +− < , for a precision error ε , stop. Otherwise, go back 

to Step 2) with 1q q= +  when 1q = , or with 1p p= +  and 1q =  if 

2q = , where q is the injection pattern and p is the iteration number. 
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Figure 3.7: Flowchart for J-substitution algorithm 
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CHAPTER 4 

MAGNETIC FLUX DENSITY BASED 

RECONSTRUCTION ALGORITHM 

4.1 Introduction 

The harmonic zB reconstruction algorithm studied next belongs to the second 

family of algorithms described in the Section 2.4.3.  

Seo et al [30] in 2003 proposed a new algorithm, where one single component of 

the induced magnetic flux density, zB , is measured using an MRI scanner 

without rotating the object. It is based on the computation of 2
zB∇  as shown 

previously in (2.64), so the noisy zB is differentiated twice.  

Oh et al [22], also in 2003, improves this technique with the harmonic 

zB algorithm. Here, they use a layer potential technique [16] in two dimensions 

to recover σ  from σ∇ , instead of line integrals, as Seo et al [30] suggested 

firstly, since they tend to accumulate errors. 

4.2 Problem Definition 

Oh et al [22] places a subject Ω  into an MRI scanner, while ζ  surface 

electrodes are attached on its boundary in order to inject current. Each current 

injection pattern can be performed by using two of those electrodes. Therefore, 

the possible number of different injection patterns using ζ  electrodes is 

( 1 ) /2N ζ ζ= − , [22]. Let the injection current between the jth pair of electrodes 
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be jI for 1, ,j N= K . This current produces a current density ( ), ,j j j j
x y zJ J J J=

r
 

inside the subject. The presence of the internal current density jJ
r

 and the current 
jI  in the lead wires generate a magnetic flux density ( ), ,j j j j

x y zB B B B=
r

, so that 

0
j jB Jµ∇× =

r r
holds inside the electrically conducting subject. This induced 

magnetic flux density causes an increment in the MR phase image, proportional 

to the B component in the direction parallel to the main magnetic field. If this is 

placed in z-direction, the j
zB components, from 1, ,j N= K , are assumed to have 

been obtained from the corresponding MR phase images of the subject. 

The subject has an isotropic conductivity distribution σ , such that 0 σ< < ∞ . 

Let ju be the voltage due to the injection current jI for 1, ,j N= K . Since σ is 

approximately independent of injection currents, each ju is a solution of the 

following Neumann boundary problem: 

 
( )· 0 in 

ˆ· on ,

j

j j

u

u n g

σ

σ

 ∇ ∇ = Ω


− ∇ = ∂Ω
 (4.1) 

where n̂ is the outward unit normal vector and jg is the normal component of 

current density on the boundary ∂Ω for the injection current jI . Across a current 

injection electrode ζ ,  

 j jg ds I
ζ

= ±∫ , 

where the sign depends on the direction of current, and jg is zero on the regions 

of the boundary which are not in contact with the current injection electrodes 

used for the jth injection pattern. 

If the conductivity distribution σ , applied current jI and electrode configuration 

are given, the boundary problem (4.1) can be solved for ju by using numerical 

methods, such as the finite element method (FEM). But, for this algorithm, the 

cell-centered finite difference method, explained in the Section 2.2.3, is used. 
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From the z-component of the relation of 2
0B uµ σ∇ = − ∇ ×∇

r
observed by [27], 

and previously introduced in (2.64), the expression (4.2) can be obtained for each 

position inside the subject and each injection pattern 1, ,j N= K . 

 2

0

1
, · , 1, ,

j j
j

z

u u
B j N

x y y x
σ σ

µ
  ∂ ∂ ∂ ∂

∇ = − =  ∂ ∂ ∂ ∂   
K . (4.2) 

Using a matrix notation, (4.2) can be written as: 

 U s = b , (4.3) 

where 

 

1 1

2 1

0 2

1
and

z

NN N
z

u u
By x

x

Bu u y
y x

σ

σ µ

 ∂ ∂
− ∂     ∇∂ ∂   ∂     = = =  ∂     ∇∂ ∂     ∂−   ∂ ∂ 

U s bM M M . (4.4) 

In this implementation, two injection currents are used ( 2N = ).  

In order to solve (4.3), U must be invertible, that is, the determinant of U must be 

non-zero. The two current densities 1J
r

and 2J
r

must be chosen so that 1I and 
2I satisfy: 

 1 2 1 2 0x y y xJ J J J− = . (4.5) 

This implies that the two current densities are not collinear inside the subject 

[17], [15]. 

Using the weighted regularized least square method, s vector can be obtained as: 

 ( )T Tλ
-1

s = U U + I U b% % % % , (4.6) 

where: 

• =U WU% , 

• TU% is the transpose of U% , 



 
51 

• λ  is a positive regularization parameter. It is set to 
( )
1

det T
λ =

U U% %
, 

• I is the 2 2× identity matrix, 

• b = W b% , 

• 1diag( , , )Nw w=W K is a N N× diagonal weight matrix. The weighting 

factor jw are set to  

 

1

j
j N

j
j

SNR
w

SNR
=

=

∑
, (4.7) 

where jSNR is the signal-to-noise-ratio (SNR) of the measured j
zB . This 

jSNR should be determined for each position of pixel, although it is 

difficult in practice to know it. The way to estimate this jSNR is 

explained in Section 4.4. 

Then, calculating (4.6) for each pixel, the distribution of 
T

x y
σ σ ∂ ∂

=  ∂ ∂ 
s inside 

the subject is obtained. The next step must be to recover the σ distribution. 

Now, the imaging slice S is assumed to be lying in the plane { }0z =  and the 

conductivity value is 1 at a fixed position 0 0 0( , ,0)r x y=
r

 on its boundary S∂ . In 

order to simplify the following expressions, ( , )r x y=r , ' ( ', ')r x y=r  and 

( , ,0) ( )x y rσ σ= r . Oh et al [22] use a layer potential technique in two dimensions 

in order to compute the σ  distribution from ,
x y
σ σ

σ
 ∂ ∂

∇ =  ∂ ∂ 
, instead of using 

line integral, as Seo et al [30] suggested, since this latter technique accumulates 

errors. Then, 

 
2

' ' ' '

( ) ( ') ( ') '

ˆ( ')· ( ') ' · ( ') ( ') ,
S

r r r rS S

r r r r dr

r r r dr n r r r dl

σ σ

σ σ
∂

= ∇ Φ − =

= − ∇ Φ − ∇ + ∇ Φ −

∫
∫ ∫r r r r

r r r r r

r r r r r r r  (4.8) 
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where 

 ' 2

1 1 '
( ') log ' and ( ')

2 2 '
r

r r
r r r r r r

r rπ π
−

Φ − = − ∇ Φ − = −
−

r

r r
r r r r r r

r r . 

The second integral in (4.8) can be approximated by [1] for points such that 

r S∈ ∂
r

 

 ' ' ' ' ' '
0

( )ˆ ˆ ˆlim · ( ') ( ') · ( ') ( ')
2r r r r r r rS St

r
n r tn r r dl n r r r dl

σ
σ σ

+ ∂ ∂→
∇ Φ − − = + ∇ Φ −∫ ∫r r r r r r r

r
r r r r r r

. 

Therefore, as r S∈
r

approaches the boundary S∂ , the equation (4.8) becomes: 

 
( ) ( )'

'2 2

ˆ' · ' · ( ')( ) 1 1
( ') '

2 2 2' '
r SS

S r
S S

r r n r r rr
r dl dr

r r r r

σσ
σ

π π
∂∂

∂
∂

− − ∇
+ =

− −∫ ∫r
r

r r r r rr
r r

r r r r , (4.9) 

where Sσ∂ denotes the conductivity restricted to the boundary S∂ . Since σ∇ is 

known in S, the right-hand side of (4.9) is known. Then, by [1], the equation 

(4.9) is guaranteed to be solved and the Sσ∂  can be found. Now, this Sσ∂  can be 

substituted in (4.8), in order to obtain σ  in S as follows: 

 
' ' ' '

' '2 2

ˆ( ) ( ')· ( ') ' · ( ') ( ')

1 ( ') 1 ( ')ˆ( ') ' · ( ') .
2 2' '

r r r S rS S

r S r
S S

r r r r dr n r r r dl

r r r r
r dr n r dl

r r r r

σ σ σ

σ σ
π π

∂∂

∂
∂

= − ∇ Φ − ∇ + ∇ Φ − =

− −
= ∇ −

− −

∫ ∫

∫ ∫
r r r r

r r

r r r r r r r r

r r r r
r r r

r r r r
 (4.10) 

This process of solving (4.6) for each pixel, and (4.9) and (4.10) for each 

imaging slice can be repeated for all imaging slices of interest within the subject, 

as long as the measured data zB are available for the slices. 

4.3 Algorithm 

Since, in order to solve (4.1) the true conductivity distribution σ  is unknown and 

in order to obtain this σ , the matrix U with u∇  in (4.3) is needed, as well. 

Therefore, an iterative algorithm is required. 

The injection currents jI are applied through a given pair of electrodes and the z-

component of the induced magnetic flux density j
zB is measured for each 
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imaging slice. Also, the boundary voltages j

S
u

∂
on the electrodes which are not 

injecting the current jI are measured. 

Then, the 2
zB∇  iterative algorithm has the following steps: 

Step 1. Let 0m =  and assume an initial conductivity distribution 0σ . 

Step 2. Calculate 1
j

mu + by solving the following Neumann boundary 

problem for each 1, ,j N= K : 

 
( )1

1

· 0 in 

ˆ· on .

j
m m

j j
m m

u

u n g

σ

σ
+

+

 ∇ ∇ = Ω


− ∇ = ∂Ω
 (4.11) 

Step 3. Calculate 1mσ +  using (4.6), (4.9) and (4.10). Scale 1mσ +  using the 

measured boundary voltages j

S
u

∂
and the calculated ones 1

j
m S

u + ∂
. 

Step 4. If 1

1

m m

m

σ σ
ε

σ
+

+

−
<  for a given tolerance ε , continue with Step 5). 

Otherwise, set ( 1)m m= + and go back to Step 2). 

Step 5. Calculate the current density image  as 1
j j

m MJ uσ += − ∇
r

, where 

j
Mu is a solution of the boundary value problem in (4.1), with σ  replaced 

by 1mσ + . 

4.4 Implementation 

In order to compute the b matrix, in (4.4) the term 2
zB∇ is needed for every pixel. 

The 2
zB∇  at the ith pixel can be calculated with the following three-point 

difference scheme: 



 
54 

 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

1 12
2

1 1
2

1 1
2

, , 2 , , , ,
, ,

, , 2 , , , ,

, , 2 , , , ,
,

z i i i z i i i z i i i
z i i i

z i i i z i i i z i i i

z i i i z i i i z i i i

B x y z B x y z B x y z
B x y z

x

B x y z B x y z B x y z

y

B x y z B x y z B x y z

z

+ −

+ −

+ −

− +
∇ = +

∆

− +
+ +

∆

− +
+

∆

 (4.12) 

where x∆ , y∆  and z∆  are the distances between adjacent pixels in the x-, y- and 

z-directions, respectively. 

Consequently, the induced zB field is needed for every pixel within the slice to be 

imaged, and in an upper and lower imaginary planes, out of the slice. In the 

implementation of the algorithm, these two outer planes are placed at 0.83 mm 

from the real slice.  

In this thesis, the forward solver actually provides current density as simulation 

data. Therefore, for each injection current jI , the z-component of the induced 

magnetic flux density j
zB  for 1, ,j N= K  can be approximated as a matrix 

equation, by discretizing the Biot-Savart law. This procedure was explained in 

the Section 2.2.4. 

Hence, by using the equation (2.45), zB can be calculated as: 

 z x yB J J= −y xD D . (4.13) 

Now, using (4.12), 2
zB∇ is obtained for every element in the slice, so the b 

matrix can be calculated and (4.3) can be finally solved.  
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Figure 4.1: Flowchart for Harmonic Bz algorithm 
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CHAPTER 5 

SIMULATION AND COMPARISON 

5.1 Introduction 

This chapter is reserved for the  simulation results and comparison of the 

reconstruction algorithms described previously. This analysis covers different 

cases, with and without noise, different techniques for the same algorithm, or 

different stopping criteria for iterative algorithms. 

5.2 Conductivity models 

Two different two-dimensional conductivity models have been used to illustrate 

the performance of the reconstruction methods described in previous chapters. 

One of them was previously used to collect experimental data, while the other 

has been defined to provide simulated data to the reconstruction algorithms 

studied in this thesis. 

In order to decide the dimensions of the simulated conductivity model and 

amount of injected current, several previous studies have been considered. It has 

been observed that reconstruction algorithms in noise-free cases are not affected 

by the amount of current applied. The absolute values of the simulated data 

change but, since the proportions between conductivity, current density and 

potential are kept, the reconstructed image remains the same. Ider et al [15] 

considered 100 mA for noisy cases and a phantom of 20 20× cm. Oh et al [22] 

used 26 mA for an object of 50 50× mm. Özbek [24] and Birgül [2] collected 

measured data in the 0.15 Tesla METU-EE MRI system, using 20 mA for an 
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experimental phantom of 6 6 cm× . In order to compare all the reconstruction 

algorithms under the same conditions and be consistent with the experimental 

data of [24] and [2], which has been also used as the experimental phantom, the 

size of the imaging slice has been finally chosen as 6 6 cm× , and the total 

injected current has been established in 20 mA for each injection pattern. 

5.2.1 Simulated phantom 

Figure 5.1(a) shows the geometry of an electrically conducting phantom with an 

isotropic and piecewise constant conductivity distribution σ . The dimensions of 

this numerical phantom is 6 6 cm× , discretized into 50 50×  square elements. 

Assigned conductivity values for the regions of the phantom are listed in Table  

5.1. The background conductivity (3) has been chosen to be 2 S/m, which is 

close to the average body conductivity. There are two different conductivity 

perturbations in it: a rectangle (1) and a circle (2). The rectangle is more 

conductive than the background, with conductivity equal to 4 S/m, while the 

circle is more resistive, with conductivity set to 1 S/m. 

The currents are injected using four constant-current electrodes, covering the 

whole sides, as shown in Figure 5.1(b). Therefore, two different and orthogonal 

injection patterns are possible for the two pairs of electrodes. A total injected 

current of 20 mA has been used for each injection pattern. 

Table 5.1: Simulated conductivity model values 

Region Object Conductivity value 
(S/m) 

1 Rectangle 4 
2 Circle 1 
3 Background 2 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 5.1: Definition for the simulated conductivity model. (a) Regions  of 
different conductivity. The conductivity values are given in Table 5.1. Position of 
current electrodes for orthogonal injection patterns 1 (b) and 2 (d). Total current 
density distribution for injection pattern 1 (c) and 2 (e). 
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5.2.2 Experimental phantom 

The geometry of the experimental phantom can be seen in Figure 5.2. This test 

phantom is 6 6 2 cm× × , discretized into 30 30× square elements. It is filled with 

Agar gel, with conductivity 2 S/m. Since the third dimension is small enough 

compared with the other two dimensions, the applied current is assumed to flow 

only in the x-y plane and the problem can be simplified to a two-dimensional 

one. A conductor object of 2.5 2.5 2 cm× × , with conductivity 9 S/m is placed in 

the center. The currents are injected using four small electrodes, opposite to each 

other. Thus, two orthogonal injection patters can be performed, with a total 

injected current of 20 mA for each case. 

Table 5.2: Experimental conductivity model values 

Region Object Conductivity value 
(S/m) 

1 Square 9 
2 Background 2 

 

 

 

 

 

 

 

 

 

Figure 5.2: Definition for the experimental conductivity model. The regions of 
different conductivity and electrode positions are shown  [24]. The conductivity 
values are given in Table 5.2. 
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5.3 Simulation of measurement noise 

In order to compare the performance of the algorithms in presence of noise, the 

random Gaussian noise model explained by Scott et al [28], and reviewed in 

APPENDIX A is used. In their model, the noise is induced as a MR phase error, 

independent of the magnetic flux density and, therefore, of the injected current. 

Thus, if the amount of injected current is increased, the induced magnetic flux is 

increased, so the proportional noise in magnetic flux density is reduced. 

However, in [15], 10% of the magnitude of each current density component and 

injection is multiplied by a random number in the range of 1±  and added to the 

corresponding noise-free current density. But, the model of Scott et al [28] is 

more realistic; since the noise is independent of the direction of the current 

injection and independent of its magnitude. It only depends on the MRI system 

where the experiments are carried out. The reconstructed algorithms are tested 

using different noise levels, corresponding to SNR equal to 60, 30 and 20. For 

each level, the maximum noise included in the current density data with respect 

to the maximum value of the noise-free case, is given in Table 5.3. 

Table 5.3: Maximum noise level in xJ  and yJ  with respect to the maximum 
currents densities for the different noise levels 

 Injection pattern 1 Injection pattern 2 
 xJ  yJ  xJ  yJ  

SNR 60 14.8% 5.2% 5.1% 19.7% 
SNR 30 33.5% 11.5% 11.6% 43.1% 
SNR 20 43.6% 16.5% 15.1% 61.9% 

 

One noise experiment is performed for each SNR and the resulting noisy current 

densities are fed to the algorithms. This ensures that all algorithms run under the 

same conditions, since different experiments can affect different pixels and 

provoke different behaviors. 
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5.4 Error calculation and stopping criteria 

In order to evaluate performance of the studied algorithms, error in the 

reconstructed conductivity is calculated. In practice, the real conductivity is not 

known a priori, but in this thesis, since the algorithms are fed with simulated 

data, the true conductivity distribution is actually known. 

The total error committed at reconstructing the whole image Tσε  is calculated as: 

 100%t r
T

t
σ

σ σ
ε

σ
−

= × , (4.14) 

where tσ  and rσ  are the true and reconstructed conductivity distributions, 

respectively, and ·  is the 2L  norm, defined as: 
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where ia  is the ith element of a
r

. 

The conductivity error of a reconstructed region in the image is calculated with 

Equation (4.14), but restricted to the desired zone, resulting: 

 , ,
,

,

100%t region rregion
region

t region
σ

σ σ
ε

σ

−
= × , (4.16) 

where, ,tregionσ  and ,rregionσ  are the true and reconstructed conductivity 

distributions for that conductivity region, respectively. 

In order to end the iterative algorithms, different types of stopping criteria are 

defined. In real cases, the true conductivity distribution is unknown. Therefore, a 

stopping criterion based on the difference ,mσε  between the reconstructed 

conductivity of two successive iterations is used: 

 1
,

m m
m

m
σ

σ σ
ε

σ
−−

= , (4.17) 
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where m is the iteration number and ·  is the 2L  norm previously defined in 

(4.15). As the iterations run, ,mσε decreases monotonically for noise-free cases. 

Thus, if ,mσε ε< , for a given tolerance ε , the algorithm is said to have 

converged to the actual values of conductivity distribution. 

In noisy cases, the convergence function can reach a minimum, but greater than 

the tolerance ε , and increase again. Then, a maximum number of iterations is 

needed as stopping criteria. Then, the reconstructed conductivity distribution is 

chosen as the one where the difference between iterations ,mσε  is minimum. 

In case of simulated data, the true distribution is known. Then, running a fixed 

number of iterations, the convergence function can be studied and the 

conductivity distribution with minimum total error Tσε  with respect to the true 

distribution is chosen. 

5.5 Spatial Resolution 

Spatial resolution describes the minimum size an object must be to be seen in an 

image [31]. It also describes the degree of deblurring present in an image. It is 

often represented by: Point Spread Function (PSF), Line Spread Function (LSF) 

and edge response, Modulation Transfer Function (MTF) or System Transfer 

Function (STF). 

The PSF contains complete information about the spatial resolution. To express 

the spatial resolution by a single number, it is possible to ignore the shape of the 

PSF and simply measure its width. The most common way to specify this is by 

the Full-Width-at-Half-Maximum (FWHM) value. Unfortunately, this method 

has two significant drawbacks. First, it does not match other measures of spatial 

resolution, including the subjective judgment of observers viewing the images. 

Second, it is usually very difficult to directly measure the PSF. 
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Figure 5.3: Line spread function (LSF) and edge response [31]. 

As it is shown in Figure 5.3, the LSF is the response of the system to a thin line 

across the image. Similarly, the edge response is how the system responds to a 

sharp straight discontinuity, an edge. Since a line is the derivative of an edge, the 

LSF is the derivative of the edge response. The width of the LSF is usually 

spread as the FWHM, while the width of the edge response is normally quoted 

by the 10% to 90% distance.  

In this thesis, the Line Spread Function is used in order to quantify the blurring 

effect of the reconstruction algorithms and different methods of integration. The 

LSF is measured as the FWHM of the derivative of the edge response at the 

edges of the rectangle in the phantom. 

5.6 Simulation Results for Current Density Based 

Algorithms 

In the following sections, the results for the Type-I reconstruction algorithms, 

explained in chapter 3, and based on current density, are given and discussed. 
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5.6.1 Reconstruction by Integration along Equipotential Lines 

In this section, the resulting conductivity images using the reconstruction method 

described in Section 3.2 are shown. The effects of the different integration 

methods described in Section 3.2.1.2 and different noise levels are also 

considered.  

Firstly, the equipotential lines are calculated starting from the left edge of the 

phantom, using the algorithm explained previously in Section 3.2.1.1. For this 

purpose, the simulated current density, corresponding to the vertical injection 

pattern, labeled as (1) in Figure 5.1(d) is used. Figure 5.4(b), shows the 

calculated equipotential lines, when two of them begin from every pixel at the 

left boundary. It can be seen that the equipotential lines get closer to each other 

around the contours of the objects, while the upper and lower parts of the image 

result uncovered. At an interface between two regions of different conductivity, 

the currents tend to enter the more conductive one, but avoid the more isolator 

one. Then, since the equipotential lines are orthogonal to the current streamlines 

at every point, the equipotential lines bend, coming very close to each other, 

accumulating around the circle contour and at the upper and lower edge of the 

rectangle. Another side effect appears due to this reason. The current density is 

assumed to be constant within a pixel. But, the pixel size may be too large in 

those accumulation areas and contain, however, more than one current 

streamline. This provokes that, during the calculation of the equipotential lines, 

some paths cross others. This behavior is not valid, so the equipotential lines 

involved are detected and removed. In the noise-free simulations carried out with 

this phantom, around 2% of the total equipotential lines are invalid for this 

reason. They are not taken into consideration for the integration in the 

reconstruction, but provoke small errors, due to the information loss. 

After the equipotential lines are found, current density derivatives are integrated 

along these paths. If more than one equipotential line crosses a pixel, the ℜ  

value assigned to the pixel is an average between the values calculated for each 

equipotential line. The resistivity of the left column is assumed to be known. 
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The reconstructed images for the noise-free case can be seen in Figure 5.4, while 

the errors committed at reconstructing each conductivity region and the total 

image can be seen in Table 5.4. 

Table 5.4: Errors in reconstruction along equipotential lines 

Reconstructed 
Conductivity 

Circle 
( Circσε ) (%) 

Rectangle 
( Rectσε ) (%) 

Background 
( Bkcgσε ) (%) 

Total 
error 
(%) 

Trapezoidal integration method 
Noise free     
    3 equipot. lines 17.90 12.97 9.91 11.75 
  10 equipot. lines 17.69 12.15 9.74 11.36 
Noisy cases. 10 equipot. lines 
    SNR 60 18.38 14.92 10.14 12.59 
    SNR 30 28.50 17.36 19.09 20.18 
    SNR 20 25.23 25.65 20.12 23.30 

Taylor Expansion method 
Noise free     
    3 equipot. lines 20.90 13.25 10.38 12.28 
  10 equipot. lines 20.61 12.54 10.23 11.94 
Noisy cases. 10 equipot. lines 
    SNR 60 20.74 15.26 10.47 13.02 
    SNR 30 28.67 17.53 19.31 20.40 
    SNR 20 25.84 25.44 20.37 23.43 

 

The blurring effect of the different integration methods is studied next. As it was 

explained previously in Section 5.5, the measurement of the spatial resolution by 

calculating the width of the LSF at FWHM at one edge inside the image can 

provide an idea of the degree of blurring of the reconstructed images. Figure 5.5 

shows the horizontal profile and LSF images for a line crossing an edge of the 

rectangle. The LSF widths for both trapezoidal integration method and Taylor 

expansion method are given in Table 5.5. 

Table 5.5: FWHM of LSF for reconstruction along equipotential lines 

Reconstructed 
Conductivity 

Trapezoidal integration 
FWHM (cm) 

Taylor Expansion 
FWHM (cm) 

Noise free 
  10 equipot. Lines 0.297 0.254 

Noisy case. SNR 20 
  10 equipot. lines 0.200 0.230 
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Figure 5.4: Reconstruction by integration along equipotential lines. Noise-free 
cases. All the figures have the same gray scale. (a) True conductivity 
distribution. (b) Equipotential lines. 2 equipotential lines start for each pixel at 
the left edge. Reconstructed conductivity images, where 3 equipotential lines per 
pixel start from left boundary, using (c) Trapezoidal integration or (d) Taylor 
Expansion. Reconstructed conductivity images with 10 equipotential lines per 
pixel, using (e) Trapezoidal integration method or (f) Taylor Expansion. 
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As expected, the trapezoidal integration method produces wider LSF and, 

therefore, more blurred contours. This is because it takes into consideration the 

current density derivatives of the previous and current pixel. The Taylor 

expansion method produces sharper objects, since it only integrates the current 

density derivatives of the current pixel. As a disadvantage, the committed error in 

the latter case is slightly larger. 

In the reconstructed images, some horizontal artifacts in the direction of 

integration, mainly horizontally, along the equipotential paths are due to the 

accumulation of errors, typical of the integration techniques. This effect is more 

important when less equipotential lines per pixel are started from the left 

boundary. The pixels which are not crossed by any equipotential lines are 

assigned to have zero conductivity and appear as the darkest regions. They are 

not considered for the error calculation. This effect could be minimized tracing 

equipotential lines from the right boundary, as well. But, even in those 

conditions, the circle is too far from the lower electrode, and a big area under it, 

with very little current, still remains. It would be necessary to include more 

injection patterns to fill with information those areas, like horizontal or diagonal 

ones. 

Afterwards, different noise levels have been tested, equivalent to SNR equal to 

60, 30 and 20. For the same noisy experiment, the image has been reconstructed 

by both integration methods and compared. The conductivity errors are given in 

Table 5.4, while the reconstructed images for trapezoidal integration method can 

be seen in Figure 5.7. In all cases, ten equipotential lines are started from the left 

column of the image. The blurring effects of the different integration methods are 

studied in Figure 5.6, where the horizontal profile and LSF images for a line 

crossing an edge of the rectangle are given, for case of SNR equal to 20. 
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(d) (e) 

Figure 5.5: Profile and LSF images for reconstruction by integration along 
equipotential lines. Noise-free cases. 10 equipotentia l lines per pixel. (a) True 
distribution. The dashed line gives the definition of the profile images. (b) Profile 
image for trapezoidal integration. (c) Profile image for Taylor expansion method. 
(d) LSF for trapezoidal integration. (e) LSF for Taylor expansion. 



 
69 

 

 

 

 

-3 -2 -1 0 1 2 3
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Position along x direction (cm)

C
on

du
ct

iv
ity

 (
S

·m
-1

)

-3 -2 -1 0 1 2 3
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Position along x direction (cm)

C
on

du
ct

iv
ity

 (
S

·m
-1

)

 
(a) (b) 

-2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8

0

0.5

1

Position along x direction (cm)

LS
F

FWHM

-2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8

0

0.5

1

Position along x direction (cm)

LS
F

FWHM

 
(c) (d) 

Figure 5.6: Profile and LSF images for reconstruction by integration along 
equipotential lines. SNR 20. 10 equipotential lines per pixel. The definition of 
the profile images is the same as in Figure 5.3(a). (a) Profile image for 
trapezoidal integration. (b) Profile image for Taylor expansion method. (c) LSF 
for trapezoidal integration. (e) LSF for Taylor expansion. 
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Figure 5.7: Reconstruction by integration along equipotential lines. Comparison 
between noise-free and noisy cases. 10 equipotential lines start from each pixel at 
left edge. All the figures have the same gray scale. (a) True conductivity 
distribution. Reconstructed conductivity images using trapezoidal integration for 
the (b) noise-free case. Same conditions and integration method for noisy cases, 
with (c) SNR 60 (d) SNR 30 and (e) SNR 20. 
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It is observed that at the lowest SNR, the reconstructed image becomes very 

affected by the noise, but still can be reconstructed. When the SNR is so low, an 

important number of equipotential lines become invalid, because of the reasons 

explained above. This lack of information can be seen as the darkest pixels, with 

conductivity set to zero. In some experiments, since the error is random, the 

blank areas may be very close to each other, making the reconstruction around 

quite inaccurate. And, since these inexact values are integrated along the 

equipotential paths, this inaccuracy is spread along the pixels which the 

equipotential line crosses. Since the procedure to trace the equipotential paths is 

so sensitive to noise, it has been necessary to repeat several times the noise 

experiment for the case of SNR equal to 20, until enough equipotential lines 

could cover the field of view (FOV) and produce an image. Then, this noisy 

current density is fed to the rest of algorithms to keep the same noisy conditions 

for SNR 20. 

Note that the main reason for the small error values at low SNR is that the pixels 

which are not covered by the equipotential lines are actually not taken into 

consideration for this calculation. But, these dark pixels in the image distort its 

appearance and reduce its practical usage. 

Summarizing, this reconstruction method can reconstruct the absolute values of 

conductivity if ℜ  is known for at least one point on each equipotential line. The 

conductivity error is smaller if more equipotential lines are initiated from the 

edges. The Taylor expansion integration method reconstructs sharper objects, but 

with slightly larger error. Finally, this method can reconstruct images with a 

minimum SNR of 20. 
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5.6.2 Reconstruction by Integration along Cartesian Grid Lines 

In this section, the algorithm explained in Section 3.3 is studied. The effect of the 

different integration methods described in Section 3.2.1.2 is considered, as well 

as the direction in which this integration is performed. In [15], only results for 

the integration along horizontal lines using the trapezoidal method are given. 

First of all, the gradient of the logarithmic resistivity ℜ , [ ]T
x y∂ℜ ∂ ∂ℜ ∂ , is 

calculated using Equation (3.18). Then, assuming that the value of R is known at 

the lower- left corner, the gradient y∂ℜ ∂  is integrated upwards in order to obtain 

ℜ  along the left boundary. Once this is known, from those pixels, integrating 

horizontally x∂ℜ ∂  from left to right, the rest of the pixels of the image are 

calculated. The result can be seen in Figure 5.8(a), where the integration is done 

by the trapezoidal method, or (b) if it is performed by Taylor expansion. As it 

was stated previously, it is seen that, in the latter case, the edges of the objects 

look sharper, particularly the ones in the direction of integration. This is because 

by using Taylor, only the gradient of ℜ  of the current pixel is involved. 

However, in the trapezoidal method, the average of the derivatives of ℜ  of the 

current and former pixel is used. Moreover, some horizontal lines are noticeable 

in the direction of integration. This is because the integration technique 

accumulates errors, especially when an abrupt change in gradient occurs, for 

example at the object edges. 

Similarly, in Figure 5.8(c) and (d), the integration of y∂ℜ ∂  is done vertically, 

from up to down, while the whole first row is assumed to be known. Again, it is 

noticeable the blurred and smoother transitions at the object edges for the 

Trapezoidal method, and the vertical integration bias effect in both integration 

methods. 

In order to try to minimize all these effects, an average between the horizontal 

and vertically integrated images has been done. The resulting images are 

displayed in Figure 5.8(e) and (f). As expected, many of the effects have been 

counteracted. 
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Figure 5.8: Reconstruction along cartesian grid lines. Noise-free cases. 
Comparison of different integration methods. All the figures have the same gray 
scale. Reconstructed conductivity images using (a) trapezoidal integration 
method along horizontal lines; (b) Taylor expansion along horizontal lines; (c) 
trapezoidal integration along vertical lines; (d) Taylor expansion along vertical 
lines; (e) average of (a) and (c) cases; (f) average of (b) and (d) cases. 
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Table 5.6: Errors in reconstruction along cartesian grid lines 

Reconstructed 
Conductivity 

Circle 
( Circσε ) (%) 

Rectangle 
( Rectσε ) (%) 

Background 
( Bkcgσε ) (%) 

Total 
error 
(%) 

Trapezoidal integration method 
Noise free     
    Horizontal 14.46 10.77 3.94 7.23 
    Vertical 15.01 6.50 5.60 6.60 
    Average 13.37 8.54 4.35 6.44 
Noisy cases     
    SNR 60 Average 13.67 8.83 5.48 7.23 
    SNR 30 Average 15.21 9.32 6.64 8.21 
    SNR 20 Average 15.61 11.95 7.53 9.74 
    SNR 10 Average 30.90 28.83 24.54 27.64 

Taylor Expansion method 
Noise free     
    Horizontal 17.88 11.58 5.70 8.61 
    Vertical  17.45 7.41 6.54 7.65 
    Average 14.52 8.96 4.89 6.96 
Noisy cases     
    SNR 60 Average 14.55 9.39 5.80 7.67 
    SNR 30 Average 15.12 10.10 7.11 8.89 
    SNR 20 Average 17.14 12.81 7.87 10.33 
    SNR 10 Average 31.79 30.49 24.04 27.83 

 

In Table 5.6 the error values for each case are shown. In Table 5.7, the widths 

corresponding to the LSF for noise-free and SNR equal to 20 are given. It is seen 

that the circle is reconstructed slightly better using the trapezoidal integration, 

due to the blurring effect of this method on its complex boundary. The rectangle 

is reconstructed better integrating along vertical lines, since for the horizontal 

case the starting point is the lowest left pixel, which is known. Then, at 

calculating the left column from that point, the integration accumulates errors, 

which are later propagated when the values of that column are integrated 

horizontally. The background minimizes its error using the trapezoidal 

integration. The larger blurring effect of this method approximates the object 

contours better, introducing fewer errors in the background pixels. The overall 

error is lower by averaging between the horizontally and vertically integrated 

images. As stated in the previous section, the trapezoidal integration method 

provides lower spatial resolution, since the LSF is wider. 
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Table 5.7: FWHM of LSF for reconstruction along cartesian grid lines 

Reconstructed 
Conductivity 

Trapezoidal integration 
FWHM (cm) 

Taylor Expansion 
FWHM (cm) 

Noise free. Average 0.309 0.273 
SNR 20. Average 0.287 0.254 

 

This algorithm has been tested with the three conventional noise levels: SNR 

equal to 60, 30, 20, plus an additional 10. For each one, the image has been 

reconstructed by both integration methods. The conductivity errors were also 

given in Table 5.6, while the reconstructed images, using trapezoidal integration 

method and averaging the horizontal and vertical integration cases are displayed 

in Figure 5.9. 

This algorithm is more robust against noise than the previous one, since there are 

no equipotential lines to be obtained. The integration is simply along horizontal 

and vertical lines. The error is, in all cases, slightly lower for the trapezoidal 

integration method, due to its averaging effect. When the noise level is so high, 

as in the previous algorithm, the total error for the reconstruction depends 

significantly on the experiment. 

Summarizing, only at one single point the logarithmic resistivity needs to be 

known in order to reconstruct absolute conductivity values. The conductivity 

error is smaller for trapezoidal integration method, although the contours of the 

structures look more blurred than with Taylor expansion method. Finally, this 

algorithm can reconstruct images with SNR equal to 10. 
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Figure 5.9: Reconstruction by integration along cartesian grid lines. All the 
figures have the same gray scale. (a) True conductivity distribution. 
Reconstructed conductivity images using trapezoidal integration and averaging  
between vertical and horizontal integration for (b) SNR 60, (c) SNR 30, (d) SNR 
20, and (e) SNR 10. 
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Figure 5.10: Profile and LSF images for reconstruction by integration along 
Cartesian grid lines. Noise-free case. Average between vertical and horizontal 
integrations. (a) True distribution. The dashed line gives the definition of the 
profile images. (b) Profile image for trapezoidal integration. (c) Profile image for 
Taylor expansion method. (d) LSF for trapezoidal integration. (e) LSF for Taylor 
expansion. 
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Figure 5.11: Profile and LSF images for reconstruction by integration along 
Cartesian grid lines. SNR 20. Average between vertical and horizontal 
integrations. (a) Profile image for trapezoidal integration. (b) Profile image for 
Taylor expansion method. (c) LSF for trapezoidal integration. (d) LSF for Taylor 
expansion. 
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5.6.3 Reconstruction by Solution of a Linear Equation System 

In this section, the reconstructed images of the conductivity models using the 

finite difference set of equations algorithm, described in Section 3.4 are given.  

The effects of different noise levels are considered. 

By setting one single point with the true resistivity (e.g. the left-upper corner), as 

explained previously, the absolute conductivity image can be obtained. The 

reconstructed conductivity image for the noise-free case can be seen in Figure 

5.12(a). The finite difference method provokes artifacts in grid shape, since one 

pixel is related with the four around. Besides, the contours of the objects are very 

well defined. 

For the noise cases, the performance of the algorithm have been tested with SNR 

equal to 60, 30, 20, 10 and 5. In Figure 5.12, the resulting conductivity images 

can be seen, from (b) to (f), respectively. The Table 5.8 shows the errors in the 

reconstruction. It can be seen that the algorithm is very robust against noise. 

Even in the case of SNR equal to 5, the objects can be inferred, although the 

committed errors are important. 

Table 5.8: Errors in reconstruction by solution of a linear equation system 

Reconstructed 
Conductivity 

Circle 
( Circσε ) (%) 

Rectangle 
( Rectσε ) (%) 

Background 
( Bkcgσε ) (%) 

Total 
error 
(%) 

Noise-free 10.69 13.84 4.32 8.67 
SNR 60 11.12 13.85 5.20 9.07 
SNR 30 13.68 13.57 7.11 10.38 
SNR 20 13.25 13.41 8.15 10.61 
SNR 10 26.73 20.74 20.14 21.85 
SNR 5 69.45 37.65 52.88 53.15 

 

Therefore, this algorithm needs to specify the resistivity at a single point in order 

to reconstruct true conductivity distribution. Moreover, it is very robust against 

noise, being able to reconstruct with SNR equal to 5. 
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Figure 5.12: Reconstruction by solution of a linear equation system. All the 
figures use the same gray scale. (a) Reconstructed conductivity image for the 
noise-free case. Reconstructed conductivity images for (b) SNR 60, (c) SNR 30, 
(d) SNR 20, (e) SNR 10, (f) SNR 5. 
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5.6.4 Reconstruction with Equipotential – Projection Algorithm 

This section contains the results and discussion of the reconstructed conductivity 

images, using the method described in Section 3.5. The effects of different noise 

levels are studied. The true conductivity distribution can be reconstructed if at 

least at one point it is known. The result can be seen in Figure 5.13(a).  

The equipotential paths are calculated by starting ten equipotential lines per pixel 

from the left edge of the phantom, in the same way as previously explained in 

Section 5.6.1. Similar problems to the reconstruction by integration along 

equipotential lines method have been observed. 

In the noise-free reconstructed conductivity image, Figure 5.13 (b), the darkest 

pixels in the upper and lower regions are set to zero conductivity, due to the lack 

of equipotential lines crossing those pixels. In these regions, the potential cannot 

be set, but a zero value is assigned, instead. By imposing this, the calculated 

gradient of potential at the boundaries of these regions shows a big discontinuity 

and, therefore, the reconstructed conductivity values have large errors. These 

unset regions are not taken into consideration for error calculations, given in 

Table 5.9. However, as said before, the pixels just in the border with those 

regions make the error values increase very significantly. For example, just under 

the circle, these transition effects can be seen. As a result, the background error 

becomes more important than in previous reconstruction algorithms. 

As the simulated noise level in the current density increases, the calculated 

equipotential lines are heavily affected and many must be discarded. Therefore, 

many pixels will not be crossed by any equipotential line and their values will 

remain unknown. Another consequence is that some pixels can be isolated 

between regions of unknown value and the integration can produce huge 

numbers, provoking very large errors. This effect is very noticeable for the case 

of SNR equal to 20.  
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Figure 5.13: Reconstruction with equipotential – projection algorithm. 
Comparison between noise-free and noisy cases. 10 equipotential lines start from 
each pixel at left edge. All figures have the same gray scale. (a) True 
conductivity distribution. (b) Reconstructed conductivity distribution for noise-
free case. Reconstructed conductivity images for (c) SNR 60, (d) SNR 30 and (e) 
SNR 20. 
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Table 5.9: Errors in reconstruction with equipotential – projection algorithm 

Reconstructed 
Conductivity 

Circle 
( Circσε ) (%) 

Rectangle 
( Rectσε ) (%) 

Background 
( Bkcgσε ) (%) 

Total 
error 
(%) 

Noise-free 9.13 7.16 18.83 16.05 
SNR 60 13.94 14.39 19.95 18.34 
SNR 30 23.37 17.73 23.49 21.92 
SNR 20 18.20 31.92 2 x 1015 2 x 1015 

 

Therefore, this algorithm is also very sensitive to noise. The absence of 

equipotential lines provokes very important errors in the pixels nearby. As 

before, this method needs to know the resistivity for at least one point in order to 

reconstruct true conductivity images. 

5.6.5 Reconstruction using J-substitution Algorithm 

In this section, the conductivity images produced by this last current density 

based algorithm, described in Section 3.6, are given. The effects of different  

noise levels and electrode sizes are studied. The corresponding errors are given 

in Table 5.10. 

This iterative reconstruction algorithm begins setting an initial uniform resistivity 

distribution 0 1ρ =  to the whole image. Two orthogonal current profiles have 

been used, as defined previously in Figure 5.1. In each iteration, the forward 

problem defined in (3.45) is solved for one injection profile by cell-centered 

finite difference method. Thus, the solution of the linear system (2.39) yields a 

conductivity distribution, which is used as initial guess for the next iteration, 

where the other injection profile is utilized. 

As it was stated previously in Section 5.4, two different stopping criteria can be 

used to terminate the iterations: if the difference in resistivity between two 

successive iterations is below a given threshold, or the error with respect to the 

true distribution, which is known in these simulation cases, is minimum. 
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Table 5.10: Errors in reconstruction using J-substitution algorithm 

Reconstructed 
Conductivity 

Circle 
( Circσε ) (%) 

Rectangle 
( Rectσε ) (%) 

Background 
( Bkcgσε ) (%) 

Total 
error 
(%) 

,mσε  

Large electrodes 
Noise-free      
    Iteration 5 6.14 11.30 3.39 6.96 0.0573 
    Iteration 26 4.47 7.79 2.90 5.05 0.0584 
SNR 60      
    Iteration 20 5.24 8.11 3.46 5.49 0.0647 
    Iteration 5 6.93 11.47 3.92 7.28 0.0638 
SNR 30      
    Iteration 20 7.26 8.45 5.05 6.59 0.0822 
    Iteration 5 9.02 11.59 5.17 8.00 0.0820 
SNR 20      
    Iteration 20 10.36 9.31 6.65 8.04 0.1012 
    Iteration 15 10.32 10.00 6.41 8.12 0.1012 

Small electrodes 
Noise-free      
    Iteration 30 7.13 7.90 6.06 6.82 0.0538 
    Iteration 29 5.77 7.25 5.35 6.10 0.0544 
SNR 60      
    Iteration 11 12.71 9.03 12.50 12.14 0.1461 
    Iteration 20 14.92 9.66 13.87 13.41 0.1432 
SNR 30      
    Iteration 1 47.78 31.59 25.38 28.66 0.2937 
    Iteration 3 26.29 15.95 40.57 36.95 0.2491 
    Iteration 20 25.93 13.21 127.96 113.17 0.3071 
SNR 20      
    Iteration 1 59.16 32.73 33.65 35.33 0.3760 
    Iteration 5 34.90 19.98 64.25 57.87 0.3324 
    Iteration 20 37.07 18.37 178.67 158.02 0.2592 

 

In order to determine which criteria is optimum, a total of thirty iterations have 

been carried out for the noise-free case. Figure 5.14(a) shows the percentage of 

error for the different conductivity regions, the background and the error for the 

whole image in each iteration. The fast convergence behavior of this algorithm is 

noticeable. The oscillations appear because, in each iteration, a different injection 

profile is used. The one which provides lowest errors is the vertical profile, 

labeled as “1” in Figure 5.1(b). In Figure 5.14(b) it is seen how the total error for 

noise-free cases decreases monotonically, but starts to increase again after the  

26th iteration, so this one is chosen for obtaining the minimum total error.  
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Figure 5.14: Convergence characteristic and conductivity errors for J-substitution 
algorithm for the noise-free case. (a) Convergence characteristics from first to 
thirtieth iteration. (b) Total error function for the whole image. (c) Difference in 
resistivity between two consecutive iterations. 
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Besides, the difference in conductivity between two consecutive iterations is 

shown in Figure 5.14(c), There is a minimum for the 5th iteration, so this 

threshold is taken to satisfy the first criterion. Only the conductivity image for 

the 26th iteration in noise-free case is shown in Figure 5.15(b), because the 

difference is practically imperceptible. 

Moreover, different levels of noise in the simulated current density data are 

added, and their effects are studied. The resulting images are also displayed in 

Figure 5.15. The convergence curve, defined as the total error of the 

reconstructed image in each iteration, for all noise levels is shown in Figure 

5.19(a). It is noticeable that the algorithm always converges, and reconstructs 

with only 8% of error when SNR is 20. 

Since Kwon et al [20] use small electrodes in their study, this case is now 

considered. The electrode sizes are chosen as one third of the phantom edge 

width. The total conductivity distribution is shown in Figure 5.16, while the 

reconstructed images are given in Figure 5.18.  The noise-free case presents a 

similar figure, but, when the no ise increases and becomes considerable, the 

algorithm diverges, as shown in the convergence curve in Figure 5.19(b). In 

order to find the best result, there is a compromise between the total error, mainly 

due to the divergence of the background, and the errors corresponding to the 

objects which are wanted to be reconstructed. This can be seen in Figure 5.17. 

The reconstruction errors are given in Table 5.10. As it can be seen, in some 

cases, the minimum total error may be preferred, while in other cases, a 

minimum error in reconstructing a particular conductivity region may be a 

priority. The main contributor to this large error in the background seems to be 

the corners, which become reconstructed badly and with higher values as the 

number of iterations increases. This is because the electrodes are small and 

centered. The current is not spread uniformly, and very low amount of current 

reaches the corners. 
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Figure 5.15: Reconstruction for J-substitution algorithm. Large electrodes. All 
figures have the same gray scale. (a) True distribution. (b) Noise-free case. 
Iteration 26. (c) SNR 60. Iteration 20. (d) SNR 30. Iteration 20. (f) SNR 20. 
Iteration 20. 
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Figure 5.16: Total current density distribution for small electrodes, for injection 
patterns 1 (a) and 2 (b) 

 

 

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

Iteration number

C
on

du
ct

iv
ity

 E
rr

or
 (

%
)

 

 

εpCircle

εpRectang le

εpBckg

εTo tal

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

Iteration number

C
on

du
ct

iv
ity

 E
rr

or
 (

%
)

 

 

εpCir cle

εpRectangle

εpBc kg

εTota l

 
(a) (b) 

Figure 5.17: Convergence characteristic of J-substitution algorithm for small 
electrodes. (a) SNR equal to 30. (b) SNR equal to 20. 
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Figure 5.18: Reconstruction for J-substitution algorithm. Small electrodes. All 
figures have the same gray scale. (a) True distribution. (b) Noise-free case. 
Iteration 29. (c) SNR 60. Iteration 20. (d) SNR 30. Iteration 3.  (f) SNR 20. 
Iteration 5. 



 
90 

 

0 2 4 6 8 10 12 14 16 18 20
4

6

8

10

12

14

16

18

20

22

24

Iteration number

C
on

du
ct

iv
ity

 E
rr

or
 (

%
)

 

 

Noise-free
SNR60

SNR30

SNR20

 

(a) 

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

Iteration number

C
on

du
ct

iv
ity

 E
rr

or
 (

%
)

 

 

Noise-free
SNR60

SNR30

SNR20

 

(b) 

Figure 5.19: Convergence characteristic of J-substitution algorithm with different 
noise levels, with (a) large electrodes; (b) small electrodes. 
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Therefore, this iterative algorithm yields very low errors when the electrodes 

cover the whole sides, as the previous algorithms. An initial resistivity 

distribution is needed, but a reasonable guess is enough to make it converge. 

Another requirement is the measurement of the voltage between the electrodes in 

order to get a true conductivity image. One disadvantage is that, since it is 

iterative, it needs a lot of computation time and resources in order to solve the 

forward problem for each iteration. This  depends on the level of noise and size of 

the image. For example, in an AMD64 3000+, 2 GB of RAM, Matlab R2006b on 

Windows XP x64 SP1, the 20 iterations for the noise-free case and large 

electrodes could take around three hours. 

5.7 Simulation Results for Magnetic Flux Density Based 

Algorithms 

In this section, the reconstructed conductivity images produced by the Harmonic 

Bz algorithm, described in chapter 4, are given and discussed. This algorithm has 

been tested for the simulated phantom described in 5.2.1, under different noise 

levels. 

This iterative reconstruction algorithm begins assuming an initial uniform 

conductivity distribution 0 1σ =  for the whole image. Two orthogonal current 

profiles have been used, as defined previously in Figure 5.1. In each iteration, the 

forward problem defined in (4.11) is solved for each injection profile by cell-

centered finite difference method. Then, a new conductivity distribution is 

calculated using (4.6), (4.9) and (4.10), and fed into the next iteration.  

Figure 5.20 shows the reconstructed images for different noise levels after six 

iterations, where the tolerance 0.05ε =  has been used as stopping criterion.  In 

Table 5.11, the corresponding errors for each case are given. It is observed that 

the algorithm converges quickly and the errors remain low, due to the iterative 

characteristic of this method. Another observation is that even when the error 

grows as the SNR decreases, the appearance of the images remains quite 

acceptable. The main drawback of this method is the large computation time for 
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each iteration.  For example, for the same equipment as described above, each 

iteration could cost around 40 minutes. 

 

Table 5.11: Errors in reconstruction using Harmonic Bz algorithm 

Reconstructed 
Conductivity 

Circle 
( Circσε ) (%) 

Rectangle 
( Rectσε ) (%) 

Background 
( Bkcgσε ) (%) 

Total 
error 
(%) 

,mσε  

Large electrodes 
Noise-free      
    Iteration 6 8.51 4.50 5.08 5.37 0.049 
SNR 60      
    Iteration 6 8.72 12.41 10.96 12.09 0.049 
SNR 30      
    Iteration 6 12.84 13.61 12.97 14.03 0.050 
SNR 20      
    Iteration 6 16.62 17.23 16.27 17.11 0.050 
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Figure 5.20: Reconstruction for Harmonic Bz algorithm. Large electrodes. All 
figures have the same gray scale. (a) True distribution. Reconstructed images are 
given at 6th iteration. (b) Convergence characteristic for the noise-free case. (c) 
Noise-free case. (d) SNR 60. (e) SNR 30. (f) SNR 20. 
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5.8 Partial FOV/ROI reconstruction 

These algorithms can also reconstruct a region of interest (ROI) within the 

image, instead of obtaining the full field of view (FOV). This feature can be 

applied in some practical applications, where optimum injection patterns for 

specific conductivity regions are used. Thus, a full FOV can be better 

reconstructed by combining different optimized ROI. 

As an example, two different ROI’s, defined in Figure 5.21(a), have been 

reconstructed using the equipotential-projection algorithm, with a single 

measurement point, for the noise-free case.  As in the previous Section 5.6.4, the 

lack of equipotential lines provides unknown conductivity values, which are 

shown as the darkest areas in the reconstructed images in Figure 5.21. The 

borders of these areas, due to the gradient operator intrinsic to this algorithm, 

produce conductivity values with high error, which, consequently, raise heavily 

the error of the conductivity region at which they belong to. 

Table 5.12: Errors in reconstructing different ROI 

Reconstructed 
ROI 

Circle 
( Circσε ) (%) 

Rectangle 
( Rectσε ) (%) 

Background 
( Bkcgσε ) (%) 

Total 
error 
(%) 

ROI 1 N. A. 8.44 11.85 9.42 
ROI 2 17.55 N. A. 23.15 24.56 
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Figure 5.21: Reconstruction of two different ROI’s with equipotential-projection 
algorithm. All figures have the same gray scale. (a) True distribution with the 
definition of ROI1 and ROI2. Reconstructed images for (b) ROI1 and (c) ROI2, 
with 10 equipotential lines starting from each pixel at left edge. Equipotential 
lines for (d) ROI1 and (e) ROI2. In order to distinguish them easily, in (d), only 4 
equipotential lines have been started per each left-side pixel, while 3 
equipotential lines have been used in (e). 
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5.9 Comparison between reconstruction algorithms 

In this section, the previous reconstruction algorithms are compared under the 

same conditions for simulated and experimental data. The resulting images are 

taken as the direct output of the reconstruction algorithms, without applying any 

image processing. 

5.9.1 Simulated data 

The simulated data corresponds to the numerical phantom previously defined in 

Section 5.2.1 and shown in Figure 5.22. The reconstructed algorithms are 

compared for the noise-free case and different noise levels. Errors committed in 

the reconstruction and blurring effects are studied and quantified. 

 

 

 

Figure 5.22: True conductivity distribution. Exact locations of the different 
conductivity regions are shown. The dashed line gives the definition for the 
profile image. 

5.9.1.1 Noise-free case 

For noise-free simulated data, the reconstruction algorithms are evaluated under 

the following set of conditions : large electrodes, ten equipotential lines per pixel, 

trapezoidal integration method and averaging between vertical and horizontal 

integration, if applicable. The reconstructed conductivity images for each 

algorithm are presented in Figure 5.23. The committed errors are given in Table 

5.13. In Figure 5.24, the horizontal profiles for a line crossing an edge of the 
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rectangle, as defined in Figure 5.22, are shown. Besides, in Figure 5.25, the Line 

Spread Functions for the conductivity profiles can be observed. Finally, the 

calculated LSF widths at FWHM are given in Table 5.14. 

Considering only the committed errors, it can be seen that the methods which 

give the lowest overall one are the iterative algorithms: J-substitution and 

Harmonic Bz algorithms. This kind of methods corrects themselves iteration by 

iteration, and if they converge, as in these cases, the provided images are quite 

accurate. Moreover, the error committed at reconstructing the different 

conductivity regions is generally lower than in the non- iterative ones. Notice that 

the condition of large electrodes, in the J-substitution algorithm, provides lower 

error than small electrodes, due to the decrease of current, and therefore 

information, near the phantom edges. The main disadvantage of the iterative 

methods is their large computation time, usually some hours. The direct methods, 

however, are practically instantaneous. This correction effect could be used to 

improve the quality of the reconstruction by feeding one of these iterative 

methods with the solution of a direct one, as initial conductivity distribution. 

Table 5.13: Comparison for the noise-free case 

Reconstruction 
Algorithms 

Circle 
( Circσε ) (%) 

Rectangle 
( Rectσε ) (%) 

Background 
( Bkcgσε ) (%) 

Total 
error 
(%) 

Solution of Linear 
Equation System 

10.69 13.84 4.32 8.67 

Integration Along 
Cartesian Grid 
Lines 

13.37 8.54 4.35 6.44 

Integration Along 
Equipotential 
Lines 

17.69 12.15 9.74 11.36 

Equipotential – 
Projection 

9.13 7.16 18.83 16.05 

J-substitution 
(large electrodes) 

4.47 7.79 2.90 5.05 

J-substitution 
(small electrodes) 5.77 7.25 5.35 6.10 

Harmonic Bz 8.51 4.50 5.08 5.37 
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Figure 5.23: Comparison for the noise-free case. All figures have the same gray 
scale. (a) Reconstruction by solution of linear equation system by finite 
differences. (b) Trapezoidal integration along cartesian grid lines. Average of 
vertical and horizontal integration. (c) Trapezoidal integration along 
equipotential lines. 10 equipotential lines per pixel. (d) Reconstruction with 
equipotential – projection algorithm. 10 equipotential lines per pixel. (e) J-
substitution algorithm with large electrodes. Iteration 26. (f) Bz algorithm. 
Iteration 6. 
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(e) (f) 

Figure 5.24: Profile images for the noise-free case. (a) Reconstruction by 
solution of linear equation system by finite differences. (b) Trapezoidal 
integration along cartesian grid lines. Average of vertical and horizontal 
integration. (c) Trapezoidal integration along equipotential lines. 10 equipotential 
lines per pixel. (d) Reconstruction with equipotential – projection algorithm. 10 
equipotential lines per pixel. (e) J-substitution algorithm with large electrodes. 
Iteration 26. (f) Bz algorithm. Iteration 6. 
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Figure 5.25: LSF images for the noise-free case. (a) Reconstruction by solution 
of linear equation system by finite differences. (b) Trapezoidal integration along 
cartesian grid lines. Average of vertical and horizontal integration. (c) 
Trapezoidal integration along equipotential lines. 10 equipotential lines per pixel. 
(d) Reconstruction with equipotential – projection algorithm. 10 equipotential 
lines per pixel. (e) J-substitution algorithm with large electrodes. Iteration 26. (f) 
Bz algorithm. Iteration 6. 
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On the other hand, if the lowest blurring effect is considered, the reconstruction 

by solving a linear equation system provides the lowest LSF width and therefore, 

the sharpest image. The reconstruction with equipotential – projection algorithm 

gives the following sharpest conductivity image. The iterative algorithms, 

however, provide intermediate LSF widths. Finally, the two integration 

algorithms present the highest blurring effects. The main reason for this is the 

error accumulation that this technique suffers from, besides the integration 

method used: trapezoidal, instead of Taylor expansion. 

Table 5.14: FWHM of LSF. Comparison for the noise-free case 

Reconstruction Algorithms  FWHM (cm) 
Solution of Linear Equation System 0.213 

Integration Along Cartesian Grid Lines 0.309 

Integration Along Equipotential Lines 0.297 

Equipotential – Projection 0.246 

J-substitution (large electrodes) 0.282 

Harmonic Bz 0.278 

 

Comparing now the method of integration along equipotential lines and along 

cartesian grid lines, it is seen how the latter gives less error. In part, it is due to 

the average performed between vertical and horizontal integration, but also since 

the calculated equipotential paths are an approximation to the real ones. The 

current vectors are assumed to be constant within a pixel, but if it is too big, this 

assumption cannot be valid. This may happen where the current lines 

accumulate, for example, at the interface between two regions with different 

conductivity. It also occurs where the current flow is very little, like at the 

corners, especially in the case where the electrodes are small compared with the 

size of the phantom. In the images, the bias effect of the integration along the 

equipotential paths can be seen in Figure 5.23(c), while in (b) this effect is 

counteracted, due to averaging.  
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The reconstruction by solving a linear equation system provides an intermediate 

solution. The error is not the largest, or the smallest, and the reconstructed image 

is the least blurred one. One disadvantage is that the image suffers from a grid 

effect due to the discretization of the finite difference method. This especially 

makes the rectangle be slightly more erroneous than in the rest of cases and a 

worse appearance. 

The method which provides the largest overall error is the equipotential – 

projection algorithm, although it is one of the algorithms with sharpest and best 

defined object contours, especially in the circular object. The reason for the large 

error is that the regions which are not passed by any equipotential lines remain 

with unknown values, representing a big discontinuity. When the gradient of the 

potential is calculated during an intermediate step of the algorithm, these 

discontinuities provoke important errors in the pixels surrounding these unknown 

areas. In this case, they are located in the background, so the error at 

reconstructing the background becomes quite important, even considering that 

the dark pixels are actually not considered in the error calculation. 

5.9.1.2 Noisy cases 

In this section, the reconstruction algorithms are compared for a noise level of 

SNR equal 20. At this noise level, all algorithms can reconstruct images with 

tolerable errors. The same conditions as in the previous section hold for all the 

algorithms in order to evaluate them: large electrodes, ten equipotential lines per 

pixel, trapezoidal integration method and averaging between vertical and 

horizontal integration, if applicable. The reconstructed conductivity images for 

each algorithm are presented in Figure 5.26. The committed errors are given in 

Table 5.15. In Figure 5.27, the horizontal profiles for a line crossing an edge of 

the rectangle, as previously defined in Figure 5.22, are shown. Moreover, in 

Figure 5.28, the Line Spread Functions for the conductivity profiles can be 

observed. Finally, the calculated LSF widths at FWHM are given in Table 5.16. 
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Table 5.15: Comparison for noisy cases. SNR equal to 20 

Reconstruction 
Algorithms 

Circle 
( Circσε ) (%) 

Rectangle 
( Rectσε ) (%) 

Background 
( Bkcgσε ) (%) 

Total 
error 
(%) 

Solution of Linear 
Equation System 13.25 13.41 8.15 10.61 

Integration Along 
Cartesian Grid 
Lines 

15.61 11.95 7.53 9.74 

Integration Along 
Equipotential 
Lines 

25.23 25.65 20.12 23.30 

Equipotential – 
Projection 18.20 31.92 2 x 1015 2 x 1015 

J-substitution 
(large electrodes) 10.36 9.31 6.65 8.04 

Harmonic Bz 16.62 17.23 16.27 17.11 

 

Considering only the overall error, the reconstruction algorithm which gives the 

lowest error is the J-substitution algorithm at its 20th iteration, as in the noise-free 

case. Moreover, the error committed at reconstructing the  different conductivity 

regions are lower than in the rest of algorithms. The resulting image has very 

good quality, apart from an important salt-and-pepper noise, and being the one 

with most blurred edges. However, it is necessary to notice that this method can 

diverge when the noise is too high. Therefore, a careful study of its convergence 

must be carried out, in order to decide which iteration provides the minimum 

desired error: in total, in a particular area, a balance, etc. If the size of the 

electrodes is reduced, this algorithm becomes more sensitive to noise and can 

diverge easier (see Section 5.6.5), since the current flow is not spread uniformly 

throughout the whole field of view. The other iterative method, the Harmonic Bz 

algorithm, suffers from larger error, even though the image could be considered 

as the one with the best appearance. 

If the blurring effect is considered as a criterion, the reconstruction by solving a 

linear equation system provides the lowest LSF width at FWHM, and the 

reconstruction by integration along Cartesian grid lines provides the largest, as in 
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the noise-free case. The iterative algorithms produce intermediate blurred 

images. Although the image reconstructed by reconstruction along equipotential 

lines is quite blurred, the LSF width calculated at the defined profile row gives, 

by chance, a very good figure. 

Table 5.16: FWHM of LSF. Comparison for noisy cases. SNR equal to 20 

Reconstruction Algorithms FWHM (cm) 
Solution of Linear Equation System 0.192 

Integration Along Cartesian Grid Lines 0.287 

Integration Along Equipotential Lines 0.200 

Equipotential – Projection 0.267 

J-substitution (large electrodes) 0.319 

Harmonic Bz 0.283 

 

The integration along Cartesian grid lines and solution of linear system come to 

similar overall errors, although the reconstructed image of the latter has a better 

looking, since, in the former one, the integration technique spreads the errors 

along the direction of integration. 

The method which provides largest error is the equipotential – projection 

algorithm. As the noise increases, less equipotential lines are valid, since the 

directions of current vectors become more random, and the calculated 

equipotential lines, orthogonal to these vectors, tend to cross each other. Those 

invalid equipotential paths are removed, as explained before. Thus, more 

unknown areas appear and, due to the gradient operator involved in the 

algorithm, the calculation of the conductivity at the surrounding pixels provide 

erroneous values, sometimes very huge, as shown in Table 5.15. 
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(a) (b) 

 

 

 
(c) (d) 

 

 

 
(e) (f) 

Figure 5.26: Comparison for SNR equal to 20. All figures have the same gray 
scale. (a) Reconstruction by solution of linear equation system. (b) Trapezoidal 
integration along cartesian grid lines. Average of vertical and horizontal 
integration. (c) Trapezoidal integration along equipotential lines. 10 equipotential 
lines per pixel. (d) Reconstruction with equipotential – projection algorithm. 10 
equipotential lines per pixel. (e) J-substitution algorithm with large electrodes. 
Iteration 20. (f) Bz algorithm. Iteration 6. 
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(e) (f) 

Figure 5.27: Profile images for SNR equal to 20. (a) Reconstruction by solution 
of linear equation system. (b) Trapezoidal integration along cartesian grid lines. 
Average of vertical and horizontal integration. (c) Trapezoidal integration along 
equipotential lines. 10 equipotential lines per pixel. (d) Reconstruction with 
equipotential – projection algorithm. 10 equipotential lines per pixel. (e) J-
substitution algorithm with large electrodes. Iteration 20. (f) Bz algorithm. 
Iteration 6. 
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(e) (f) 

Figure 5.28: LSF images for SNR equal to 20. (a) Reconstruction by solution of 
linear equation system. (b) Trapezoidal integration along cartesian grid lines. 
Average of vertical and horizontal integration. (c) Trapezoidal integration along 
equipotential lines. 10 equipotential lines per pixel. (d) Reconstruction with 
equipotential – projection algorithm. 10 equipotentia l lines per pixel. (e) J-
substitution algorithm with large electrodes. Iteration 20. (f) Bz algorithm. 
Iteration 6. 
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5.9.2 Experimental data 

In this section, the reconstruction algorithms are fed with the real data measured 

by [24] and [2], using the experimental phantom defined in 5.2.2 into the 0.15 

Tesla METU-EE MRI system. The reconstructed images can be seen in Figure 

5.30. The errors committed in the reconstruction are given in Table 5.17. 

Only measured current density distribution corresponding to the horizontal 

injection pattern is available [24]. This is shown in Figure 5.29(a) and (b). A 

great amount of noise present in the data is noticeable. Since the object is 

symmetric, the current density distribution for the vertical injection pattern is 

obtained by transposition of the measured data corresponding to the horizontal 

injection case. 

The calculation of the equipotential lines using the procedure described in 3.2.1.1 

provides extremely few valid equipotential lines. For example, for the vertical 

injection case, the equipotential lines are started from the left edge, and they 

travel orthogonal to the current streams at every pixel, until they reach the right 

edge. But, the amount of current decreases dramatically at the right and left sides, 

since the electrodes are very small and the conductor has a large conductivity. 

Due to this reason, these regions are very sensitive to noise. Consequently, the 

current vectors at the sides are very random and very few equipotential lines can 

arrive to the conductor at the center and reach the right edge of the image. This 

situation can be observed in Figure 5.31. As a result, under such noisy 

conditions, conductivity images can not be reconstructed well by equipotential 

line based algorithms. 
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Figure 5.29: Measured current density distributions for the experimental data. (a) 
True conductivity distribution. (b) yJ for the horizontal injection case. (c) xJ for 
the horizontal injection case. (d) Current density distribution for the horizontal 
injection pattern. (e) Current density distribution for the vertical injection pattern. 
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(e) (f) 

Figure 5.30: Comparison for experimental data. All figures have the same gray 
scale. (a) Reconstruction by solution of linear equation system. (b) 
Reconstruction by integration along Cartesian grid lines, averaging between 
vertical and horizontal integration. Reconstruction conductivity with J-
substitution algorithm at iteration 1 (c) and iteration 20 (d). (e) Convergence 
characteristic of J-substitution algorithm. (f) Bz algorithm. Iteration 6. 
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Table 5.17: Comparison for experimental data 

Reconstruction 
Algorithms 

Rectangle 
( Rectσε ) (%) 

Background 
( Bkcgσε ) (%) 

Total error 
(%) 

Solution of Linear Equation 
System 

32.53 209.24 93.94 

Integration Along Cartesian 
Grid Lines 107.07 2432 1059.2 

J-substitution. Iteration 1 21.52 236.42 102.53 

J-substitution. Iteration 20 39.56 468.57 202.68 

Harmonic Bz. Iteration 6 47.06 310.84 121.24 

 

-3 3
-3

3

 

Figure 5.31: Equipotential lines for experimental data. 10 equipotential lines start 
from each pixel at the left side. 

The rest of reconstruction algorithms can deal with this experimental data, 

although the resulting images have very important errors, especially in the 

background, due to the noise and small amount of current outside the conductor. 

The J-substitution algorithm provides the smallest error for the rectangle, while 

the reconstruction by solution of linear equation system gives the smallest total 

error and best appearance. The rectangle, in this case, can be more clearly 

inferred. The Harmonic Bz yields an intermediate solution. The reconstruction by 

integration along Cartesian grid lines suffers from accumulation of error due to 

the usage of integration, resulting in huge errors. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this study, a set of different reconstruction algorithms for MR-EIT, proposed 

by several research groups have been implemented and their reconstruction 

accuracies have been compared.  

The MR-EIT reconstruction algorithms are classified into two groups: Type-I and 

Type-II, depending on the input data they require to reconstruct conductivity 

images. Type-I algorithms use current density distribution, calculated from 

magnetic flux density data. Type-II algorithms, on the other hand, use directly the 

magnetic flux density data. Both types use peripheral voltage measurements for 

the reconstruction of the true conductivity values. 

Five Type-I algorithms, previously proposed, are studied in this thesis. They are 

the followings : reconstruction by integration along equipotential lines, 

reconstruction by integration along Cartesian grid lines, reconstruction by 

solution of a linear equation system by finite differences discretization, 

reconstruction with equipotential – projection algorithm without potential 

measurement, and J-substitution algorithm.. 

Currently, each study uses a different conductivity and noise model, injection 

profiles, injected current, noise levels, etc. Therefore, in order to compare them 

objectively, a set of conditions have been defined, so that all of them have been 

implemented and tested under the same circumstances. Moreover, the output 
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images have been compared directly, without performing any image processing.  

Reconstruction errors and spatial resolution have been quantified and compared. 

In the noise-free case, the iterative algorithms: J-substitut ion and harmonic Bz 

algorithm provide the lowest total error, 5.05% and 5.37%, respectively. For the 

reconstruction along equipotential lines and equipotential – projection algorithm, 

by using a single injection pattern, the equipotential lines can be traced 

throughout the image, being orthogonal at every pixel to the current vector. But, 

these equipotential lines may not cover the whole image, due to conductivity 

changes inside the phantom. Those non-covered areas remain with unknown 

conductivity, generating discontinuities and, indirectly, errors in the 

reconstruction. Thus, the equipotential – projection algorithm gives the highest 

total error, 16.05%, while the reconstruction along equipotential lines yields 

11.36%. These figures may be reduced by obtaining the equipotential lines for 

two orthogonal injection patterns and combining adequately the resulting images. 

The integration along Cartesian grid lines and solution of a linear equation 

system algorithms yield to similar intermediate errors: 6.44% and 8.67%, 

respectively, although the latter one provides sharper contours. The methods 

which provide less blur images are the solution of a linear equation system and 

equipotential – projection algorithm. The methods which involve integrations 

give the most blurred images. Finally, both iterative algorithms produce 

intermediate blurring results. 

In order to study the performance of the reconstruction algorithms in presence of 

noise, different noisy current densities, corresponding to SNR noise levels equal 

to 60, 30 and 20 are generated. When the SNR is smaller than 20, equipotential 

lines cannot be traced, so the integration along equipotential lines and 

equipotential – projection algorithms are very affected. In the latter one, few 

pixels accumulate exaggerated values in the background, although the rest of 

conductivity regions in the image have similar error values to the rest of 

algorithms. As it was previously said, this effect may be reduced by using two 

orthogonal injection patterns. The J-substitution algorithm, as in the noise-free 

case, gives the lowest overall error, although it may diverge if the noise level is 

below SNR equal 20, or if the electrode sizes become  too small. The linear 
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equation system algorithm, however, is very robust against noise. It can 

reconstruct with a noise level of SNR equal to 5 with a total error of 50%. 

Moreover, it presents the sharpest reconstructed images, as in the noise-free case. 

In the case of integration along Cartesian grid lines, although the overall errors 

are not especially high, the resulting images become very blurred, since the 

integration techniques tend to spread the errors along the direction of integration. 

Finally, the harmonic Bz algorithm provides acceptable images, but with 

intermediate reconstruction errors. 

6.2 Future work  

In this thesis, a set of different reconstruction algorithms have been implemented 

and compared. Some of the possible further work can be:  

• Validate the simulated results with more measured data. 

• Define and set up a complete test bed, in order to be able to compare 

rapidly and in an automatic way very different aspects of the incoming 

and previously proposed algorithms: spatial resolution, different injection 

profiles, size of electrodes, object placements, noise levels, etc. 

• Apart from comparing the reconstructed images objectively, other 

perceptual methods could be used, additionally. 
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APPENDIX A 

SIMULATION OF MEASUREMENT NOISE 

In order to understand the behavior of the algorithms in presence of measurement 

noise, simulated measurement noise is added to the current density data. 

In real experiments, the current density data, MRJ
r

 is, in fact, calculated from the 

magnetic flux density measurements MRB
r

. Therefore, the simulated additive 

noise should be firstly included into the MRB
r

 terms and, from there, the noisy 

current density obtained. 

Scott et al [28] in 1992 performed a very detailed experimental study regarding 

the noise in MRI phase images, provid ing means of achieving a desired 

sensitivity. 

Scott et al state that the resistance of the RF receiver coil and magnetic losses 

caused by the sample conductivity are the dominant sources of noise in a well-

tuned MRI system. They create a wide-band additive Gaussian white noise at the 

receiver that generates a zero-mean- independent- identically-distributed Gaussian 

noise, c sn jn+  in each image pixel. The complex standard deviation is defined as 

2 2
c sn nσ = + . It is measured as the rms noise in the magnitude image 

background. In their work, the signal to noise ratio (SNRMR) is defined as: 

 ( )· ,MR s S

A
SNR x y z N T M x y

σ
= = Ψ ∆ ∆ ∆ , (A.1) 
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where A is the magnitude of the noise-free pixel value of the corresponding MR 

image, sΨ is a system SNR, x y z∆ ∆ ∆ is the voxel volume, N is the total number 

of excitations (averages times phase encodes), ST is the readout sampling time for 

one echo, and ( ),M x y is the magnetization. 

The phase error probability density function is given by: 

 ( ) ( ) ( ) ( )2 22 cos sin cos1
exp exp

2 2 22 2 2

a a aa
f erfc

φ φ φ
φ

πΦ

 − −  −
= +     

    
, (A.2) 

where 2a SNR= , and Φ  represents the phase error. 

Now, the random noise must be generated with this probability density function. 

Afterwards, the noise magnetic flux density is obtained from the noisy phase and, 

finally, the noisy current density can be calculated from the corresponding noisy 

magnetic flux density. 

A.1. Generation of random noise with a given Probability 

Density Function 

In order to generate numerically the random noise with the probability density 

function ( )f φΦ described in Equation (A.2), the range of possible values for MR 

phases φ  is divided into N bins  [1]. In the implementation of this algorithm, φ  

goes from π−  to π , while the number of bins is 720. Firstly, a very large 

sequence of L samples (e.g. from 1 to 106 in this study) is uniformly placed into 

the bins. The number of samples contained in each bin is proportional to the 

probability density function at the center point of the corresponding bin interval. 

Then, if M noise values are needed, for each of them the following independent 

experiment is done. Firstly, a random number between 1 and L is generated. 

Then, the bin where this number is contained is searched. Finally, the noisy φ  

value is assigned as the phase value of that bin. 
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A.2. Obtaining the noisy magnetic flux density distribution 

The noise to be added to the magnetic flux density distribution can be extracted 

from the phase noises φ  calculated above, remembering the Equation (2.50):  

 ( ) ( )
,

,
,n z

C

x y
B x y

T
φ

γ
= . (A.3) 

Repeating three times the experiment described in the previous section 

independently, noise for the three components of MRB
r

 can be obtained. This 

noise is denoted by nB
r

. Then, the noisy ,n M RB
r

 can be calculated by adding the 

noise nB
r

 to the noise-free values of MRB
r

 distribution.  

But, in this thesis, the FEM solver provides directly current density data and not 

magnetic flux density. Therefore, the noise-free MRB
r

 must be calculated from the 

noise-free current density data MRJ
r

. As explained in Section 2.2.4, the relation 

between both of them is given by Biot-Savart law. This can be numerically 

discretized as: 

 
x

x

y
y

z

   
    

−     
      −      

z

z

y x

b 0 D
j

b = D 0
j

D Db

, (A.4) 

where xj and yj are the column vectors of xJ , yJ values for the elements in the 

subject, respectively, and xb , yb and zb are the column vectors of xB , yB  and 

zB at the field points, respectively. The Equation (A.4) can be expressed in close 

form as: 

 B = D·J  (A.5) 

Let an additional plane be placed at 5 mmz =  above the slice to be imaged. 

Using the Biot-Savart law, each element of MRJ
r

 is generating a magnetic flux 

density MRB
r

 at 5 mmz = . Then, the matrices xD , yD  and zD  in (A.4) only 
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depend on the distance between the elements on the slice and the ones on the 

additional plane, and the direction of the vector which connects them. 

Consequently, the noise-free MRB
r

 values can be obtained from the noise-free 

MRJ
r

 solving the Equation (A.5). 

Now, the noisy magnetic flux density ,n M RB
r

 can be calculated by adding the  

noise nB
r

 values to the noise-free MRB
r

 distribution as follows: 

 ,n M R MR nB B B= +
r r r

 (A.6) 

A.3. Obtaining the noisy current density distribution 

Finally, once the noisy ,n M RB
r

 has been calculated, the noise current 

density, ,n MRJ
r

, can be obtained using the inverse of D  matrix, as follows: 

 
1−

n,MRn,MRJ = D ·B  (A.7) 

It is noticeable that, in the noise model of Scott et al, the phase error and the 

noise in ,n M RB
r

 is independent of the noise-free MRB
r

 values. This means that, for 

an increased amount of current density, since MRB
r

 is also increased, the 

proportional noise in the ,n M RB
r

 values is reduced. Similarly, in such a case, the 

proportional noise in ,n MRJ
r

is also reduced.  

Consequently, this model permits the comparison of different current injection 

strategies under the same noise conditions. This provides a more realistic and 

experimentally verified noise probability density function into the simulations, as 

opposed to, for example, making the noise just proportional to the current 

magnitude of MRJ
r

. 


