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ABSTRACT 

 

 

AN EFFICIENT AND FAST METHOD OF SNORE DETECTION 

FOR SLEEP DISORDER INVESTIGATION 
 

ÇAVUŞOĞLU, Mustafa 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Yeşim Serinağaoğlu 

 

January 2007, 70 pages 

 

Snores are breath sounds that most people produce during sleep and they are reported 

to be a risk factor for various sleep disorders, such as obstructive sleep apnea 

syndrome (OSAS). Diagnosis of sleep disorders relies on the expertise of the 

clinician that inspects whole night polysomnography recordings. This inspection is 

time consuming and uncomfortable for the patient. There are surgical and therapeutic 

treatments. However, evaluation of the success of these methods also relies on 

subjective criteria and the expertise of the clinician. Thus, there is a strong need for a 

tool to analyze the snore sounds automatically, and to produce objective criteria and 

to assess the success of the applied treatment by comparing these criteria obtained 

before and after the treatment. 

 

In this thesis, we proposed a new algorithm to detect snoring episodes from the sleep 

sound recordings of the individuals, and created a user friendly interface to process 

snore recordings and to produce simple objective criteria to evaluate the results. The 

algorithm classifies sleep sound segments as snores and nonsnores according to their 

subband energy distributions. It was observed that inter- and intra-individual spectral 

energy distributions of snore sounds show significant similarities. This observation 

motivated the representation of the feature vectors in a lower dimensional space 
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which was achieved using principal component analysis. Sleep sounds can be 

efficiently represented and classified as snore or nonsnore in a two dimensional 

space. The sound recordings were taken from patients that are suspected of OSAS 

pathology while they were connected to the polysomnography in Gülhane Military 

Medical Academy Sleep Studies Laboratory. The episodes taken from 30 subjects 

(18 simple snorers and 12 OSA patients) with different apnea/hypopnea indices were 

classified using the proposed algorithm. The system was tested by using the manual 

annotations of an ENT specialist as a reference.  The system produced high detection 

rates both in simple snorers and OSA patients.  

 

Keywords: Snoring, Apnea, OSAS, Classification, Spectrogram 
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ÖZ 

 

 

UYKU BOZUKLUKLARI ARAŞTIRMASI İÇİN  

ETKİN VE HIZLI BİR HORLAMA TESPİT YÖNTEMİ 

 

 
ÇAVUŞOĞLU, Mustafa 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Yrd. Doç. Dr. Yeşim Serinağaoğlu 

 

Ocak 2007, 70 Sayfa  

 

Horlama, çoğu insanın uyku sırasında çıkardığı nefes sesleridir ve obstrüktif uyku 

apnesi sendromu (OSAS) gibi pek çok uyku bozukluğu için bir risk faktörü olduğu 

belirtilmiştir. Uyku bozukluklarının teşhisi, polisomnografi kayıtlarının alınması ve 

hekim tarafından incelenmesi gibi zaman alıcı, klinik uzmalık gerektiren ve hastayı 

rahatsız eden bir süreci içerir. Cerrahi ve terapatik tedaviler geliştirilmesine rağmen, 

apnenin ve horlamanın tedavisi için hastaya yapılan müdahelelerde karşılaşılan en 

önemli sorunlardan birisi, uygulanan yöntemin hasta üzerinde ne kadar etkin 

olduğunun objektif kriterlere dayandırılarak belirlenememesidir. Bu kriterlerin 

belirlenmesini ve tedavi öncesi ve sonrası karşılaştırılarak başarı performansının 

belirlenmesini sağlayacak bir sisteme ihtiyaç vardır.  

 

Bu çalışmada, uzun süreli solunum seslerini analiz etmek amacıyla, bölütlenmiş 

horlama sesleri için bir sınıflandırma sistemi, ve sonuçları objektif olarak 

değerlendirmek amacıyla klinik personeli tarafından kolaylıkla kullanılabilen bir 

arayüz geliştirilmiştir. Algoritma uyku sesleri bölütlerini alt-bant enerji dağılımlarına 

göre ‘horlama’ ve ‘horlama değil’ şeklinde sınıflandırır. Hem aynı hastanın tüm 
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kaydı boyunca, hem de hastadan hastaya kayıtlar karşılaştırıldığında önemli 

benzerlikler gözlenmiştir. Bu gözlem, öznitelik vektörlerinin daha düşük bir boyutta 

temsil edilmesine motivasyon oluşturmuştur. Bu şekildeki bir temsil de ‘ana bileşen 

analizi’ yöntemiyle mümkün olmuştur. Uyku sesleri ‘horlama’ veya ‘horlama değil’ 

olarak iki boyutlu bir uzayda başarıyla temsil edilebilmişlerdir. Ses kayıtları, 

Gülhane Askeri Tıp Akademisi Uyku Çalışmaları Labaratuvarı’nda OSAS 

patolojisinden şüphelenilen hastalardan gece uykusu boyunca, hastalar  

polisomnografi cihazına bağlı iken  alınmıştır. Farklı apne/hipopne indeksine (AHI) 

sahip 30 hastadan (18 basit horlayan, 12 OSA hastası) alınan episodlar geliştirilen 

algoritma ile sınıflandırılmıştır. Sonuçlar bir KBB uzmanı tarafından yapılan 

değerlendirmelerle karşılaştırılmıştır. Sistem hem basit horlayanlarda hem de OSA 

hastalarında yüksek belirleme oranları göstermiştir. 

 

Anahtar kelimeler: Horlama, Apne, Sınıflandırma, Spektrogram 
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CHAPTER 1   

 

 

INTRODUCTION 

 

 
 

Snoring can be defined as a respiratory noise that is generated during sleep when 

breathing is obstructed by a collapse in the upper airway. It is a widely encountered 

condition that has a number of negative social effects and associated health 

problems.  Snoring can be treated by therapeutic and/or surgical methods; however, 

there is strong need for objective and non-invasive criteria to evaluate the success of 

these treatments. One way to assess the success of the applied medical treatment is 

by analyzing the snoring sounds.  These sounds are often recorded throughout the 

whole night and include not only the snoring sounds, but also other respiratory 

sounds. Manual processing of a whole night respiratory sound recording is a time-

consuming and operator dependent task. Therefore, automatic processing of these 

sound recordings is necessary. One can also extract snoring related parameters by 

automatic processing, which makes it possible to evaluate the severity of snoring, 

and to assess the success of the applied treatment. In order to extract snore related 

parameters from the signal, first each snoring episode must be detected 

automatically, while discarding undesired sounds such as cough, nasal congestion, 

speaking and other environmental noises. Once these snoring episodes are detected, 

it is possible to compute some useful statistics such as the ratio of the snoring time to 

the total sleeping time, mean and maximum time between two snoring episodes, 

intensity of the snoring episodes and regularity of the snoring. An objective 

assessment of the applied medical treatment can be obtained from the comparison of 

these statistics computed pre and post operatively. 

 

 1



In this thesis, we proposed a new and efficient method for detecting snoring episodes 

from long duration respiratory sound recordings based on the spectrogram of the 

acoustic snoring signals. Principle component analysis (PCA) was applied to reduce 

the dimensionality of the problem. We also developed a MATLAB based graphical 

user interface to run this algorithm and compute snoring related statistics.  

 

1.1 Definition and Significance of Snoring 
 

The American Sleep Disorders Association (ASDA) defines snoring as "Loud upper 

airways breathing, without apnea or hypoventilation, caused by vibrations of the 

pharyngeal tissues. It can be classified as mild, moderate and severe on the basis of 

frequency, body position, and disturbance for other people (spouse, bed partner)" [1]. 

Snoring is known to affect over 60% of adult men and 44% of women over the age 

of 40  in the world [1]. The noise of snoring can disrupt sleep for the snorer, the bed 

partner and other members of the household, and more importantly, it is the earliest 

and most consistent sign of upper airway (UA) dysfunction leading to sleep 

apnea/hypopnea syndrome.  

 

Hoffstein et al. [2] and Dalmasso et al. [3] have emphazised the necessity of an 

accurate definition of snoring in terms of objective measurement. Recent studies of 

snoring and asthma [4,5] have also reached the same conclusion. These studies raise 

the question of distinguishing between snoring and other nocturnal sounds, detected 

on the chest wall. Furthermore, simple monitoring of sound intensity on the sternal 

notch is not sufficient, and more complex techniques of acoustic analysis need to be 

employed to properly define and measure snoring. From the acoustical point of view, 

snoring has been analysed and measured on the frequency and time domain, and it 

must be defined with these parameters. Snoring has also been used, with a particular 

acoustic technique, as a means to evaluate the cross-sectional area (CSA) of the UA 

[6]. 

 

 

 2



1.2 Obstructive Sleep Apnea and Polysomnograhy  
 

Sleep apnea is defined as cessation of airflow to the lungs during sleep for 10 s or 

more. [7,8]. There are mainly two causes of sleep apnea, mechanical and 

neurological. Mechanical cause is the upper airway collapse, and the resulting apnea 

is called as obstructive sleep apnea (OSA). Neurological cause is the lack of neural 

input from the central nervous system to the diaphragm, and the resulting apnea is 

known as central sleep apnea [8]. OSA is the mostly encountered form of the sleep 

apnea. Common symptoms of OSA are fatigue, reduction in cognitive functions, 

daytime sleepiness, heart problems, and systemic hypertension [8,9]. It is usually 

associated with loud, heavy snoring [8]. In OSA, the upper airways are obstructed 

during sleep, resulting in the decrease of oxygen flow to the lungs. Patients suffering 

from OSA often wake up frequently. When there is a full closure of airways, the 

problem is termed “apnea” and when there is a partial closure, it is known as 

“hypopnea”. OSA is a serious public health concern throughout the world. An 

estimated 9% of the women and 24% of the men  of 30-60 years are reported to have 

more than five apnea or hypopnea per hour of sleep and daytime hypersomnolence 

(excessive sleepiness), which constitute the minimal diagnostic criteria for the sleep 

apnea syndrome [10]. 

 

Untreated OSA is very expensive to society; OSA patients are known to utilize 

national health resources at twice the usual rate before treatment [1]. However, 

studies have shown that 93% of women and 82% of men with at least moderate sleep 

apnea did not receive diagnosis [1]. The most important  reason for this situation is 

that simple, low-cost instruments for mass screening of the population do not yet 

exist.  

 

PSG, performed over a full night sleep, is presently the standart method for diagnosis 

of sleep apnea [11,12,13]. It consists of recording the patient’s physiological signals 

such as electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram 

(ECG), electromyogram (EMG) of chin, EMG of legs, oral airflow using thermistors, 

intensity of snoring sound (or breathing sound) using an external pharyngeal 
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microphone, thoracic and abdominal movement using inductive plethysmography, 

and blood oxygen saturation (SpO2) measured by oximetry. By reviewing these 

signals, the sleep disorders specialist or technician can determine the type of sleep 

apnea and other sleep disorders [14,15]. However, since analysis using a PSG device 

requires spending the night at the hospital with many measurement electrodes 

connected to the body, it is time consuming and uncomfortable for the patient. There 

is an enormous need for a simplified diagnostic instrument capable of convenient and 

reliable diagnosis/screening of OSA at a home setting [10]. 

 

There has been a number of recent activities to develop portable technology to 

address this need [11]. The proposed systems varied from two channels (airflow and 

oximetry) to four channels (oximetry, airflow, effort and position) to full PSG with 

more channels. Their major disadvantage is that they require an experienced medical 

technologist at the site of the test for an acceptable sensitivity/specificity 

performance. Furthermore, all the devices evaluated in the comprehensive study, 

have at least one sensor connected to the body. This makes the devices difficult to 

use by untrained persons, and hard to use on children [11]. 

 

1.3 Anatomical and Pathophysiological Aspects of Snoring 
 

The UA extends from the lips and nostrils to the vocal chords. It can be modeled as a 

combination of numerous cylindrical segments that have different cross section areas  

and lengths; and therefore, from the physical point of view, the UA acts as "tubes" of 

Venturi [16]. The passage of an airflow through these airways should satisfy the 

equation of Bernoulli and the law of Poiseuille [16]. The airflow can be laminar or 

turbulent as a function of the value of the Reynolds number [16]. The UA only 

partially satisfies these formulae, because of its particular anatomical and  functional 

features; the UA behaviour, in a particular way, is based on different characteristics 

of its segments, which can be stiff (rigid) or collapsible, and on their compliance, 

which depends on morphology and trophicity. A median section of the pharynx is 

presented in Figure 1.1.  
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In general, it is sufficient to consider three segments:  

1. The first (proximal) segment is formed by the nasal cavities and 

rhinopharynx. It has an osseous-cartilaginous structure, is rigid, and not 

deformable or collapsible under the effect of the inspiratory pressure (suction 

pressure activated by inspiratory muscles). 

2. The second (medium) segment is the oropharynx, a typical collapsible 

structure which can decrease its CSA with the approach of the walls under 

sufficient inspiratory negative pressure. The collapsible part of this segment 

is formed anteriorly by the soft palate, the lymphoidamygdalic apparatus and 

the hyoid-lingual apparatus. 

3. The third (distal) segment is formed by the larynx, a cartilaginous and rigid 

structure which is neither deformable nor collapsible under inspiratory 

pressure.  

 

The flow of air through the UA is regulated by the activity of numerous muscles, 

which act as dilators or constrictors. In particular, the decrease of air flow in the 

oropharynx segment depends on the activity of three groups of muscles. The 

pharyngeal duct, which extends posteriorly from the nasal cavities and mouth to the 

larynx and oesophagus, has a muscular wall. There are five pharyngeal muscles, 

three of which are constrictors and two elevators. During contraction, the 

constrictors, acting as a sphincter, bring the posterior wall close to the anterior and 

lateral walls, and so reduce the CSA. The tongue plays an important role with its 

seventeen muscles, having four pairs of symmetric muscles plus a single median 

muscle to regulate its movement [17].  

 

In a very schematic way, three main groups of muscles are involved in the loss of air 

flow in the oropharynx:  

 

1. The muscles of the soft palate 

2. The muscles of the back tongue 

3. The pharyngeal uvular muscles.  
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In pathophysiological conditions, the different sites of anatomical or functional 

narrowing from nose to larynx are, therefore, represented in all three segments. The 

segment that is typically collapsible is the second one, i.e. the oropharynx. 

 

Some simultaneous factors have to be present to produce snoring such as sleep, flow 

limitation, vibrating structure, which is represented by the soft palate and other soft 

parts of the oropharynx behaving like a Starling resistor [16], reduction of CSA of 

the UA and thorax bellows, which act with suction inspiratory pressure. 

 

The causes which determine snoring are the same as those which can lead to upper 

airway resistance syndrome (UARS) and/or OSAS on the basis of their degree of 

severity. Possible causes are [17]: 

1. General causes (metabolic, in particular obesity which involves almost 100% 

of snores, hormonal, and ageing), 

2.  Local causes (congenital and acquired, correction of which  an eliminate the 

trouble), 

3. Non demonstrable causes (a high percentage of which induces oropharyngeal 

dysfunction). 
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Figure 1.1 A median section of the pharynx (atlas of Human 

                  Anatomy, by Frank H. Netter, M.D.) 
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1.4 Snoring Effects on the UA: Snoring and Sleep Relationship 
 

Several factors influence UA resistance. For example it decreases with the increase 

of lung volume and  breath rate [18,19] and increases with head flexion, mucous 

congestion [20] and, particularly, during sleep. The most important effect of sleep is 

the decrease of activity of all of the muscles of the UA and its variability, according 

to the muscular group and sleep phase. The contraction of dilator muscles of the UA, 

during inspiration, anticipates the closing trend of the collapsible segment of the UA 

[21,22]. During sleep, the decreasing activity of these muscles makes the two 

segments of UA less stable which can explain the increasing resistances. 

 

In healthy individuals, no direct correlation has been found between the increased 

resistance of the UA and variation in the activity of the genioglossus and 

geniohyoideus muscles during sleep [23,24]. This fact could demonstrate that the 

reduction in CSA, which determines the increase in resistance, is not located at the 

level of the back tongue. Recently, it was reported that the significant decrease in 

activity of the tensor palatini muscle during sleep, demonstrated a good correlation 

with increased resistance [25].  

 

In snoring subjects, there are some anatomical and functional abnormalities, and the 

intensity and frequency of snoring correlate with these [26]. A flow limitation such 

as constant or decreasing flow independent of the driving pressure, during sleep has 

been reported by several authors in healthy nonsnorers [27], in healthy snorers [28], 

and in OSA patients. In these situations, sleep seems to provoke a flow limitation 

[29], with a decrease in the tone of the muscles of the UA.  

 

Listro et al. [30], in heavy snorers without OSAS and in OSA patients, found that 

low limitation precedes the snoring action during sleep, in all cases. They recognize 

two main patterns of snoring, with cineradiographic technique, which can differ in 

heavy snorers and in OSA patients.  
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A study by Hoffstein et al. [2] showed that snoring did not influence the sleep 

"architecture" in general. Evaluating snoring distribution among the various stages of 

sleep, they found that light snorers snored evenly throughout all stages while heavy 

snorers tended to snore more during slow-wave and rapid eye movement (REM) 

sleep than in other sleep stages. The snoring frequency of light snorers was the same 

in all sleep stages, whereas it was significantly higher in slow-wave sleep in heavy 

snorers. These data agree with the recent observations of Skatrut and Dempsey [28], 

who showed that total pulmonary resistance depended on the sleep stage, and that 

snorers demonstrated an increase in resistance during the deeper stages of sleep [17]. 

 

Perez-Padilla et al [31] also found that snoring distribution was irregular throughout 

the sleep stages; in particular, it occurred only in stage II and in slow-wave sleep of 

normal young adults. They found, however, that heavy snorers snored longer in stage 

II, probably because this is the longest sleep stage.  

 

1.5 Acoustics of snoring  
 

1.5.1 Snoring Sound Generation 
 

Snoring sounds originate in the upper airway, which behaves as a collapsible tube 

tending to collapse predominantly in the inspiratory phase. Therefore, the production 

of snoring sounds has been compared to the production of wheezes in the bronchial 

tree, represented by a series of collapsible tubes, which tend to collapse 

predominantly in the expiratory phase. This inversion of phases of collapsibility of 

the upper vs central airway is due to the mechanism of inspiration-expiration. 

Mathematical and biochemical simulation models have been employed to explain 

sound generation during snoring [32,33]. 

 

Two main models for interpreting snoring sounds can be considered [17]. One model 

is that of "relaxation oscillations" of a collapsible tube described by Bertram [34]. 

The oscillations produce a partial or complete closure of the lumen with maximal 

constriction which moves upstream along the tube. The partial or total closure of the 
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lumen, opening with a sudden qualization of upstream-downstream pressure could 

generate an explosive sound. This model of the mechanism is similar to that which is 

applied for crackles generation in the peripheral airways. According to Perez-Padilla 

[35], this type of explosive feature of snoring, in frequency and time domain, is more 

common in the snoring of patients with OSA. The second model [33,36], based on 

the "flutter theory", employs a long corrugated channel, changing in CSA, with 

elastic walls and resistance which interacts with a gas flow. This model fits well with 

the shape and characteristics of the bronchial and pharyngeal wall. On the basis of 

this second model, the fluttering walls of the collapsed segment, where there is flow 

limitation, are the source of snoring. The flutter frequency tends to decrease as the 

CSA becomes smaller or the thickness increases. The two theoretical models for 

explaining snoring sound generation meet with the observations of fluoroscopic 

imaging of vibrating uvula, soft palate and pharyngeal wall [30,37]. 

 

1.5.2 Acoustic Investigations 
 

Snoring is an acoustic signal and can be described in terms of quality and quantity by 

means of acoustic analysis techniques, which can give information on the 

mechanism, loudness, intensity, CSA and sites of obstruction of the UA. Snoring 

sounds can be easily and precisely detected by a microphone, hung in front of the 

patient's mouth at a distance of 15–20 cm, and/or by microphones directly applied 

above the suprasternal notch, or on the neck or chest wall. The signal can be recorded 

to a digital audio tape recorder, or sent through an analogue-digital converter directly 

to a computer system for subsequent analysis. The snoring signal can be detected 

alone or with other parameters, such as in polysomnographic and/or fluoroscopic 

investigations or in ambulatory, home monitoring devices. Snoring can be also 

picked up by a condenser microphone placed at 15–20 cm from the mouth [17]. 

 

Generally, the pathological importance of snoring has been related to its intensity 

(dB), maximum and mean snoring intensity (dBmax and dBmean, respectively), 

timing (continuous or interrupted), and the length of time during sleep (snoring 

index: numbers of snores per hour of sleep; snoring frequency: numbers of snores per 
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minute of snoring time). Acoustically, snoring is due to vibration of the walls of the 

oropharynx when the patency of the upper airway is altered by some of the numerous 

factors which regulate it [17]. 

 

1.5.3 Leq-Equivalent Continious Sound Level 
 

Equivalent sound level (Leq) is the A-weighted energy mean of the noise level 

averaged over the measurement period. It can be considered as the continuous steady 

noise level which would have the same total A-weighted acoustic energy as the real 

fluctuating noise measured over the same period of time, and is defined as: 

 

∫=
τ

0

2

0

))((1log10 dt
P

tP
t

Leq A                  (1.1) 

 

where t is the total measurement time;  is the A-weighted instantaneous 

acoustic pressure;  is the reference acoustic pressure (20 Pa); and A is an electrical 

filter  "A" of sound level meter internationally standardized [37].  

)(tPA

0P

 

The statistical analysis of the snoring signal during night by Leq technique reports 

the data on Leq, L5, L95. The quantities L5 and L95, expressed in dB (A), are the 

sounds levels which are exceeded in 5% and 95% of the test period and are 

representative of the highest levels (5%) and of background levels (95%), 

respectively. The duration of the evaluation takes place in about 8 hours and data are 

produced every 10 min, so that the evolution time can be well evaluated. The global 

value of Leq (7 h) is 55.7 dB (A). The lower values of L95 indirectly confirm the low 

level of the background noise in the test room. The complete Leq study has been 

reported previously [6,38]. 

 

The results of the analysis of snoring in terms of Leq confirm that snoring can be 

quantified in terms of the sound energy emitted during sleep, and can be correlated to 

other parameters measured with polysomnography (PSG). When a larger number of 

subjects and patients are studied, this technique could help to differentiate the 
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population of pathologic patients, guide the therapeutic approach, and follow the 

results of treatment. On the other hand, this technique provides only quantitative and 

objective data and not further information on the anatomy and pathophysiology of 

the upper airway. The technique measures noisiness, annoyance, and damage to the 

partner's hearing. In addition, it allows verification of possible damage to the snorer's 

hearing. For these reasons, Leq analysis can be useful in forensic medicine to judge 

cases of requested separation and damage claims [17]. 

 

1.6 Clinical Aspects of Snoring 
 

1.6.1 Snoring as a sign of abnormality  
 

In each patient's history, the presence or absence of snoring should always be 

considered, in particular if he complains about some disturbances. Obviously, this is 

not easy to obtain from the patient himself. If snoring is present, the history and 

related diagnostic tests help to determine whether:  

1. The patient is just a snorer without other disorders (nonhabitual, habitual, 

simple snorer) 

2. The patient presents not only snoring but also sleep disorders or breathing 

disturbances during sleep 

3. The patient or the partner report apneas during sleep and other daytime 

disturbances.  

When snoring is reported by the patient, the patient's history must be recorded 

accurately and, consequently, some investigations must be made by a specialized 

doctor. The patient’s history should indicate the functional nocturnal and daily 

disturbances, and the onset of these disturbences as far as possible. Falling asleep 

during the day can suddenly arouse suspicion. The reported characteristics of snoring 

are important, i.e. habitual or not, recent or longstanding, continuous or intermittent, 

in dorsal supine position or in other positions. Also the type of sleeping, i.e. quiet or 

not, with arousal, the presence of choking or the sensation of unrest, the presence of 

restless movements of the legs are fundamental to precisely define the respiratory 

disorders, together with snoring. In addition, reports of headache in the morning and 
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excessive daytime sleepiness, which is typically after noon but also may occur in the 

early morning or while driving the car, should be noted. It is important to record 

previous or unreported diseases from the patient, life-style and consumption of 

smoke, alcohol and sleeping pills. A complete, objective physical examination of 

signs must be performed, including weight (using Lorentz formula or body mass 

index (BMI), which equals ( )
( )2cminheight

kgin weight , and neck size [17]. 

 

1.6.2 Snoring and the Cardiovascular System 
 

Snoring leads to alterations that can reduce the life expectancy of the people afflicted 

by it. The most dangerous consequences appear to involve the cardiovascular system. 

The investigations that have been carried out involving large numbers often use 

questionnaires or techniques less complex than polysomnography. For this reason, it 

is not always easy to discriminate snoring alone from snoring with sleep apnea. 

Moreover, haemodynamic monitoring was much less frequently performed than 

polysomnography in snorers and in snorers with OSAS to investigate the direct effect 

of snoring on the cardiovascular system. In addition, other risk factors for systemic 

hypertension, such as age, obesity, smoke, diabetes, etc., overlap and cause 

confusion [39, 40]. Waller and Bhopal [41] have underlined the discrepancies that 

sometimes occur between various studies. 

 

Partinen and Palomaki [42] found a three times greater percentage of habitual snorers 

in 50 consecutive cases of male patients afflicted with cerebral infarct, when 

compared to a group of neurology in-patients with other pathologies. The studies of 

Lugareasi et al [43] on the whole population of San Marino, repeated on the 

inhabitants of a whole quarter of Bologna [43,44], were first to point out the 

prevalence of arterial hypertension among heavy snorers, in whom, unlike normal 

subjects, the systemic arterial pressure does not decrease during the night, but on the 

contrary slightly increases. The most accepted mechanism by which snoring directly 

determines cardiovascular effects is that during sleep, snoring develops a more 
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negative intrathoracic pressure, even if the upper airway obstruction is not complete 

[17]. 

 

Smirne et al. [45] showed that habitual snoring carries a significant risk factor for 

stroke and myocardial infarction, even after adjusting for other confounding 

variables, such as age, gender, body mass index, diabetes, dyslipidaemia, smoking, 

alcohol and hypertension. The association of habitual snoring and acute vascular 

disease is probably explained by the occurrence of OSAS in habitual snorers. 

 

Snoring is, obviously, not only a disturbance for the bed partner and a significant 

social problem, but also, definitely, a sign of pathology which can range from "of 

little importance", as in light and initial forms of snoring, to "extremely important" 

when it is continuous (every night) and heavy. Snoring assumes particular 

characteristics; besides being a sign of  pathology it can also be a trigger or a 

causative factor. There have been no systematic studies on its acoustic features to 

indicate what kind of snoring can become a trigger or cause of cardiovascular 

diseases [17]. 

 

1.6.3 Snoring and Nasal Obstruction 
 

Partial or total nasal obstruction can variously affect sleep, ventilation and snoring. 

Olsen [46] and Zwillich [47] demonstrated sleep and breathing disorders in normal 

subjects with nasal obstruction. Lavie [48] reported respiratory disorders in the sleep 

of patients with allergic rhinitis [17]. Bilateral nasal obstruction determines an 

increase in the number of apneas and of their duration in healthy subjects [47]. It has 

also been demonstrated [49,50] that nasal stimulation or obstruction determines an 

increase of the lung airways resistance. In normal subjects, nasal obstruction, partial 

or total, due to various causes (septal deviation, turbinate hypertrophy and other 

nasal abnormalities) provokes snoring in a high percentage of cases [46,50]. In 

particular, Fairbanks [51] found that 80% of nasal anomalies caused obstruction in 

healthy snorers.  
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The nasal obstruction itself does not make the nose the site of origin of the snoring 

and/or of sleep apnea. It typically determines an increase of the velocity of airflow 

with the effect of an increased pressure of aspiration and/or an oral breathing; these 

are factors which can favour pharyngeal collapse and, consequently, snoring up to 

apneea. Accurate examination of the nasal cavities is, therefore, mandatory. During 

direct endoscopic visualization, with instruction of the patient to speak, to simulate 

snoring, and to carry out the Müller manoeuvre, careful observation of the oral-

pharyngeallaryngeal cavity can provide useful information for the expert observer. 

The analysis of snoring with LPC technique, starting from acoustic and fluoroscopic 

studies of simulated snoring, makes it possible to distinguish prevalently nasal, 

oronasal and oral snoring. The shape of the acoustic airway and the spectral analysis 

become typical when the nasal obstruction is important or total [17]. 

 

1.6.4 Snoring : Sign to Screen Sleep Related Breathing Disorders 
 

Snoring is a central sign, around which various factors and disorders can be found as 

causes and effects. In particular, loud continuous (every night), intermittent (during 

the night) snoring is very common in sleep-related breathing disorders with 

obstruction of the upper airway (i.e. obstructive snoring with arousal and OSA). 

Early diagnosis of sleep selated breathing disorders (SRBD) is not easy, but 

important for therapeutic intervention [17]. For an accurate diagnosis, 

polysomnography obviously represents a gold standard. This technique is, however, 

hard to apply, time-consuming and expensive. In Europe, only a small number of 

sleep laboratories are present, and they cannot admit all suspected patients. The 

recording of tracheal sounds on the sternal notch allows monitoring of the snoring 

and breath sounds, and also of sleep apnea. For these and other reasons, snoring is 

the constant parameter to be recorded [17]. 

 

Some portable devices were developed and applied for ambulatory and home 

monitoring of sleep, to screen and/or select patients for more complex investigations 

(such as  polysomnography). Recently, Penzel and Peter [52] have worked out a 

concept of stepwise diagnosis of sleep disorders and sleep-related breathing disorders 
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to manage this health risk factor using the “Non-Laboratory Monitoring System 

(NLMS)”. Evaluation of a questionnaire, clinical investigation and functional tests 

are accompanied by ambulatory measurements with NLMS. These measurements are 

heart rate, snoring, O2-saturation, and body position. If the patient’s history and 

ambulatory recordings with NLMS show that the patient is high risk, long-term 

recordings for diagnosis and treatment are obtained immediately in the sleep 

laboratory. If the patient is medium or low risk, further investigation and treatment is 

performed later in the sleep laboratory or using NLMS. Ambulatory systems are also 

very useful for long-term observation [17]. 

 

In 1987, Hida et al. [53] developed a device to record and play back nasal flow, 

tracheal sound and electrocardiogram during sleep at home. In an epidemiological 

study of 168 workers, they found that the percentage of patients with OSAS in the 

general population was 17%. This value was unexpectedly higher than the values 

presented in a previous study [44] that surveyed middle-aged men. The present 

results indicate that there are many undetected patients with sleep apnea syndrome, 

and that the portable home sleep monitoring test is helpful in order to find patients 

with sleep-disordered breathing in a mass survey.  

 

Penzel et al [52] developed a device, MESAM II, based on snoring and heart rate 

analysis to monitor sleep apnea. Stoohs and Guilleminault [54] used the same device 

to screen subjects for OSAS and compared their findings with simultaneous 

polysomnography. Researchers who have used the MESAM devices have compared 

the discriminant power of the variables digitally analysed, with the objective data  of 

the polysomnography [55].  

 

The variable snoring, calculated on its energy variation and heart rate have 

demonstrated a poor correlation with apnea hypopnoea index (AHI) derived from 

polysomnography. The sensitivity of these variables is good (96 and 58%) but the 

specificity is bad (27 and 39%). Using MESAM II, Stoohs and Guilleminault [56] 

with "hand scoring" found a specificity of 72% and a sensitivity of 92%. The 

variable with the highest performance was SpO2.  DSA model I and II portable 

 16



systems were further devices for recording tracheal sounds, such as snoring, 

wheezing and cough. These devices have been used by Lens and Postiaux [57,58] 

since 1987. With Sleepsound II, a recently developed portable device, the authors 

found 16 snorers with OSAS by sonogram vs 5 diagnosed clinically, and 4 vs 3 by 

SpO2. Another portable device, CID 102, applies the detection of tracheal sounds by 

two electret sensors and evaluates the sound signal as a function of its frequency 

range and intensity (dBA). A good correlation was found using this device between 

the automatic detection of apnea, and hypopnoea by CID 102 and those evaluated by 

flow tachograph [59,60]. Also, Issa et al. [61] developed a new portable digital 

device (Snoresat), which uses the sound of snoring and SpO2 to monitor respiratory 

disturbance (RD). Data were played back and analysed by a PC program. Using the 

RD index, they found a sensitivity and specificity of the device in detecting OSAS of 

between 79–90% and 90–100%, respectively, depending on the RD index value used 

to define OSA. . 

 

The availability of this portable small compact system offers great advantages for the 

general and specialized physician and patients. These devices fill the big gap in the 

screening of SRBD. They are, in particular, developed for out-patient use, and enable 

the physician to make a prompt screening of SRBD, to obtain a diagnosis of sleep 

apnea syndrome, and to screen children or  infants with snoring, daytime sleepiness, 

fatigue and poor school performance, in order to ascertain the UARS [62,63]. All 

these five mentioned devices are based on monitoring of snoring and recording of the 

snoring signal as present or absent, without additional analysis or measurement. Only 

when these devices can analyse and measure snoring, will they improve knowledge 

of it. The systems described make it possible to avoid time-consuming and expensive 

polysomnography, which can be reserved for problematic cases. Their versatility, in 

addition to diagnostic use, can be helpful in monitoring drug and continuous positive 

airway pressure (CPAP) treatments. Long-term surveillance of patients, who are not 

at acute risk, can be accomplished at home. Another important point is the 

application of snoring monitors to epidemiological studies. These systems can 

provide an earlier diagnosis of SRBD and facilitate accurate estimation of percentage 
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of occurance of OSAS [53], substantially modifying the epidemiological data so far 

reported in the literature, as already indicated by Hida et al. [53].  

 

1.7 Review of the Snoring Signal Processing 
 

Detection of snoring episodes in a full-night recording of sleep sounds is a 

fundamental step in all these tasks. Until recently, related studies were based on 

manual segmentation of snoring episodes. There is a very limited amount of work on 

automatic detection of snoring episodes. Abeyratne et al. [64], in 2005, used the 

energy and the zero crossing rate as the features in a minimum-probability-of-error 

approach to identify snoring episodes. Energy and zero-crossing rate are commonly 

used for audio signal activity detection, however they are not known as having strong 

discriminative capabilities in classification. Duckitt et al. [65] adopted speech 

processing techniques for snore detection. Mel-Frequency-Cepstral Coefficients 

(MFCC) were used as the features in a Hidden Markov Model (HMM) based 

classification framework. Speech is a sequence of phonemes with evolutionary 

transitions (loose boundaries) from one to another. The characteristics of a speech 

waveform in a transition segment between two phonemes may deviate considerably 

than those observed over the core segments of the neighboring phonemes.  Phonemes 

are commonly modeled by three state HMMs in order to represent initial, core and 

final segments distinctively. However, sleep sounds are of dominant discrete nature. 

Furthermore, snoring sounds remain quite stationary over their intervals of existence. 

These observations suggest the possibility of using computationally less intensive 

classification approaches. Mel frequency cepstral coefficients (MFCC) are low level 

acoustic descriptors of speech. They extract the acoustic filter characteristics of the 

human vocal tract by homomorphic deconvolution of the vocal tract response and the 

source signal produced by the vocal folds. However, sleep sound recordings contain 

not only sounds produced by humans but also sounds from other sources having 

different mechanisms in the environment. Furthermore, the production mechanisms 

of snoring sounds, which have not been investigated as widely as speech sounds, are 

not completely similar to speech sounds. In case of snoring, the location of the 

source along the vocal tract and its dynamics are different than that of speech. 
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Therefore, sound feature definition and classification methods in automatic snoring 

episode detection still appear as a ground of exploration. 

 

1.8 Scope of the Study 
 

The scope of the study and the objectives are listed below: 

 

 Recording the patients sounds during their whole night sleep accurately with 

a proper recording setup 

 Creating a snore data base 

 Determining the time and frequency domain charachteristics of the snoring 

signal 

 Developing a segmentation system to find the boundaries of the episodes 

 Spectogram based feature extraction  

 Application of pricipal component analyses (PCA) to the feature set 

 Defining a subspace by using principal components 

 Seperating snore episodes from other sounds by using robust fitting with 

bisquare weights based on iteratively reweighted least squares algorithm. 

 Developing snore related statistics calculation algorithms  

 Design and implementation of a user interface for clinical application 

 

1.9 Contributions of the Thesis 
 

The contributions of this thesis are listed below which were not available in the 

literature: 

1) Spectogram based classification of snoring sounds  

o Feature extraction for segmentation of snoring signal, 

o Representation of the snore signals in a two dimensional space using PCA, 

o Determining a decision boundary by using robust regression with iteratively 

least squares method. 

 

2) A user interface for clinical applications 
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o Developing a fast an efficient algorithm for clinical applications including 

patient file and registration operations, 

o Computing snore related statistics with high accuracy, 

o Comparison of the results pre and post operatively, 

o Supporting the software with visual graphics for easy understanding of the 

medical staff, 

o Output page for storing the results both as a hard or a soft copy.  

 

3) Simple snorer - OSAS decision parameters  

o Determining the regularity of the snoring with a high accurate and fast 

method, 

o Intensity, time and episode parameters block for pre and post operative 

comparison. 

 

4) Integration with polysomnography 

o The system is integrated with polysomnography in order to determine the 

efficient sleeping time and to provide the system with Apnea/hypopnea index. 

 

5) Including OSA patients in the study 

o Determining snoring episodes for OSA patient is a difficult task for a number 

of reasons that will be explained in the following chapters. In this thesis we 

determine the snoring sounds and do all the analysis for OSA patients with a 

high accuracy. 

 

1.10 Outline of the Thesis 
 

As described above, there are two main works in this study. First one is developing 

an algorithm to detect the snoring episode and the second work is design and 

implementation of a user interface for clinical application. 

 

In Chapter 1, the definition of the snoring is given. The clinical side and the 

anatomical and physiological aspects of snoring are expressed in detail. The 
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acoustics of the snoring and origin of the snoring sound are introduced. A review of 

the signal processing of snore signals is also presented. 

 

In Chapter 2, snore detection algorithm development procedure is described. In its 

subsections, the properties of the sound recording system and the patient profile are 

given. After expressing the types of testing and training datasets, the frequency 

domain characteristics of the snoring are given. The feature extraction methods are 

introduced. The application of principal component analyses and robust fitting with 

bisquare weights based on iteratively reweighted least squares algorithms are also 

given in chapter 2. 

 

In Chapter 3, the stages and the flow chart of the algorithm are illustrated. The results 

of the system and the performance measurements are the subsections of this chapter. 

 

In Chapter 4, the implementation details of the user interface are given. Each part of 

the interface is expressed as the subsections of chapter 4. 

 

Finally, Chapter 5 is the Conclusion chapter. 

 21



 

 

CHAPTER 2 

 

 

DETECTION OF SNORING EPISODES 

 

 

 
Several methods are available for the treatment of snoring, depending on the location 

of pathology such as uvulopalatopharyngoplasty (UPPP) for uvuloal snoring and 

radiofrequency tissue volume reduction of the tongue for tongue based snoring.  

Despite the existence of different treatment methods, determination of the treatment 

success is a common problem for both snoring and apnea patients. It is possible to 

assess the medical treatment by analyzing the snoring sounds.  However, manual 

inspection of a whole night respiratory sound recording is a time-consuming and 

operator-dependent task. It is possible to process these recordings automatically, and 

compute related statistics. In order to extract snore related parameters from the 

signal, we developed an algorithm that detects each snoring episode automatically, 

while discarding undesired sounds such as cough, nasal congestion, speaking and 

other environmental noises, and that computes some useful statistics. These statistics 

can include the ratio of the snoring time to the total sleeping time, the mean and 

maximum time between two snoring episodes, the intensity and distribution of the 

snoring episodes with respect to sleep stages. These statistics can be computed pre 

and post operatively, and an objective assessment of the medical treatment can be 

obtained from their comparison. 

 

In this chapter, we present the recording setup for snore sound recordings, created 

snoring database and snore signal characteristics are presented. Then, the content of 

training and testing datasets are given. Finally the feature extraction methods for 
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segmentation, the basics of PCA and application of PCA, and robust regression with 

iteratively reweigted least squares method to our problem is presented. 

 

2.1 Recording Setup 
 

A Sennhiser ME 64 condenser microphone with a 40–20000 Hz ± 2.5 dB frequency 

response was used for recording sounds. This microphone has a cardioid pattern 

which helps to suppress some of the echoes from the environment. It was placed 15 

cm over the patient’s head during sleep. The signal was fed via a BNC cable to the 

Edirol UA-1000 model multi-channel data acquisition system connected to a 

personal computer via universal serial bus. The computer was placed outside the 

sleeping room to avoid its noise in the recording. The acquired signal was digitized at 

a sampling frequency of 16 KHz with 16 bit resolution. The data were stored in the 

computer together with the patient information. Figure 2.1 shows a 25 second long 

snoring signal. 
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Figure 2.1  25 second long snoring signal from an OSA patient. 

 

 23



2.2 Snoring Database 
 

A database has been created from the sound recordings taken from patients who were 

suspected of OSAS pathology. These patients were connected to the 

polysomnography in Gülhane Military Medical Academy (GMMA) Sleep Studies 

Laboratory during their whole night sleep. The position of the microphone is shown 

in Figure 2.2.a and an OSA patient that is connected to the polysomnography is 

shown in Figure 2.2.b. 

 

 

 

 
(a) 
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(b) 

 

                           Figure 2.2  (a) The position of the microphone with respect  

                                 to the patient’s bed in sleep studies laboratory  

                                     (b)  OSA patient under polysomnography 

 

 

 

The sound recordings were taken synchronously with polisomnography in order to 

determine the Apnea/Hypopnea index of the patient and to be able to study the 

relationship between the physiological signals and snoring. The database is 

composed of whole night respiratory sounds recorded from 30 individuals. Each of 

the recordings has approximately 6 hours duration. There are 12 patients with OSAS 

and 18 simple snorers, with different AHI and body mass index. Table 2.1 indicates 

the number of patients and the mean of their age, AHI and BMI. 
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Table 2.1 Number of patients and the mean of their age,  

AHI and BMI in OSA patients and simple snorers 

 

Patient Info OSAS Simple snorers 

# patients 12 18 

Age 53.26 46.92 

Sex Male 16 male 

AHI 39.21 4.29 

BMI 32.76 27.66 

 

 

 

2.3 Characteristics of the Snoring  
 

In order to develop a snore recognition algorithm, it is crucial to investigate the 

power spectrum of the snoring signal and determine the frequency domain 

characteristics. In literature, Dalmasso [17] had firstly investigated  the power 

spectrum of the snoring signal. The frequency domain characteristics of the snoring 

signal will be examined in this section. 

 

Figure 2.3.a shows the snoring signal in one snorer over a period of 10 s, where four 

respiratory cycles are present. Figure 2.3.b shows the "power spectrum" of the 

snoring signal corresponding to section 1 and  Figure 2.3.c shows the "frequency 

spectrum" of the snoring signal corresponding to section 2.  

 

The greater part of the energy content is below 5,000 Hz and the main components 

lie in the low frequency range, at about 130 Hz, and in the mean frequency range, at 

about 1060, 2200 and 3500 Hz. 
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      Figure 2.3  a) A graphic representation of waveforms of snoring events, 

                       b) the avaraged spectrum shaped of event 1 in Figure  2.3.a  

                       c) the avaraged  spectrum shaped of event 1 in Figure 2.3.a  
(Adapted from Dalmasso et al.: Snoring: analysis, measurement, clinical implications and 

applications Eur. Respir. J.9 146–59 ) 
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Since the distribution of energy of the frequency spectrum changes within a single 

event or during a respiratory cycle, a three-dimensional representation of snoring was 

performed. This allowed visualization of the time evolution of the spectrum. [17] 

 

 

 
Figure 2.4   a) Time variation of the snoring sound pressure 

                                   b) Time variation of the frequency spectrum of the event  

                                             marked in (a) 
  (Adapted from Dalmasso et al.: Snoring: analysis, measurement, clinical implications and 

applications Eur. Respir. J.9 146–59 ) 

 

 

 

As it is seen from Figure 2.4, energy was mainly concentrated in the low frequency 

range at the beginning of snoring, and at middle and high frequencies (up to 7 kHz) 

at the end. In Figure 2.5 the spectogram of the snoring signal including four snoring 

episodes is shown.   
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The structure of the spectrum results being of formantic type, practically identical in 

every cycle of the sequence examined [17]. The spectrum shows a fundamental 

frequency and a "formants type" structure [17]. In experimental phonetics, the 

formants are the acoustic analogue of the shape and size of the vocal duct. Each 

"formant" is characterized by frequency, bandwidth and amplitude level, and its 

range depends on the shape of the resonant cavities. The different conditions in 

which the subjects and the patients who snore can affect the formants range in the 

frequency spectrum. 

 

 

 

 
 

Figure 2.5 Spectogram of the snorign signal including four snoring episodes 

 

 

 

Meslier et al. [43], monitoring tracheal breath sound in snoring patients with OSAS, 

found no significant change in frequency spectrum with sleep stages. They found 
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evolution of fundamental frequency during a snore (stability, increase of fundamental 

frequency,sudden variations of frequency). Perez-Padilla and Remmers [39] found, 

in spontaneous snorers, three main patterns of snoring (nasal, oral and oronasal) 

which present characteristic spectra. They may make it possible to recognize the type 

of respiration [17]. 

 

The same author [46], found the most different spectra in OSA patients; in particular, 

the first post-apnea snore constituted by white noise with more power at higher 

frequency. Therefore, he proposed that the ratio of power above 800 Hz to power 

below 800 Hz could distinguish simple snorers from those with OSAS. Spencee et al. 

[47], in patients who underwent standard polysomnography, recorded snoring on the 

sternal notch and examined snores during Stage II sleep using the FFT technique. 

They found a significant correlation between median frequency of snore and apnea-

hypopnoea index. This fact may be related to intrathoracic pressure changes or 

differing sites of UA obstruction. Thus, the spectral analysis values, the "formants 

type" structure and the shape of spectrum help to distinguish simple snoring from 

loud snoring with OSAS, even though with a certain overlap of data [17]. 

 

2.4 Testing and Training Datasets 
 

To create the testing and training datasets for the classification problem, the snoring 

episodes were first manually labeled by a medical doctor. Then, three different 

experiments were performed: 

 

Snore detection tests for only simple snorers (Exp-1): The individuals in the training 

and testing datasets are different. The training dataset contains randomly selected 

300 snoring episodes from each of 12 simple snorers (a total of 3600 snoring 

episodes). The testing dataset was composed of 6 simple snorers. For each of these 

subjects a randomly selected recording interval containing 300 snoring episodes was 

included into the testing dataset. 
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Snore detection tests for both simple snorers and OSA patients (Exp-2A): The 

individuals in the training and testing datasets are the same, however the recording 

intervals in each of these datasets are different. The first half of the recordings (first 

three hours) was used to compose the training dataset and the second half (the last 

three hours) to compose the testing dataset. The training dataset contains randomly 

selected 150 snoring episodes from each of the 30 subjects. The testing dataset 

contains a randomly selected recording interval that includes 150 snoring episodes 

from each the 30 subjects. 

 

Snore detection tests for both simple snorers and OSA patients (Exp-2B): The 

individuals in the training and testing datasets are different. Each dataset involves 9 

simple snorers and 6 OSA patients (two disjoint datasets of 15 subjects). The training 

dataset contains randomly selected 300 snoring episodes from each of 15 training 

subjects (a total of 4500 snoring episodes). For each of the 15 subjects in the testing 

dataset, a randomly selected recording interval containing 300 snoring episodes was 

included into the testing dataset. 

 

Table 2.2 summarizes the compositions of the testing and training datasets in these 

experiments. 

 

 

Table 2.2 Compositions of testing and training datasets in the experiments. 

 
EXP-1 EXP-2A EXP-2B  

Training Testing Training Testing Training Testing 

Simple 

Snorers 

12 subjects 

3600 

snoring 

episodes  

6 subjects 

1800 

snoring 

episodes 

18 subjects 

2700 

snoring 

episodes 

18 subjects 

2700 

snoring 

episodes 

9 subjects 

2700 

snoring 

episodes 

9 subjects 

2700 

snoring 

episodes 

OSA 

Patients 

 

- 

 

- 

12 subjects 

1800 

snoring 

episodes 

12 subjects 

1800 

snoring 

episodes 

6 subjects 

1800 

snoring 

episodes 

6 subjects 

1800 

snoring 

episodes 
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2.5 Segmentation Subsystem 
 

The first step in snoring detection is to identify the intervals of sound activity. 

Energy and zero crossing rate (ZCR), conventional measures for determining 

boundaries of sound activity, were used to determine the boundaries of sound 

segments. Energies and ZCRs of signal frames of length 100 ms, with 50 ms 

overlaps, are calculated. The energy, , in the frame of the signal is computed 

as 

kE thk

[ ]
1

2

0

N

k k
i

E s
−

=

= ∑ i                                                           (1) 

 

where [ ]ks i  is the signal in the frame of length N samples. Figure 2.6 shows a 

sample recording and the corresponding energy and ZCR patterns. 

thk

 

 

 
 

Figure 2.6  A signal sample (top), its energy pattern (middle) and its ZCR pattern. 
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Sound activity episodes were determined in three steps. First, those frames for which 

the energy and the ZCR values are above certain thresholds simultaneously were 

marked as activity frames. Then, the starting and ending points of episodes were 

found by searching for continuities of activity frames. Finally, those episodes 

separated by less than a certain duration were merged. 

 

The energy threshold, , was determined as,  ET

ET = min( )                                                           (2) 21 , II

where 

[ ]1 max( ) min( ) min( )k k kI a E E= × − + E  

2 min( )kI b E= × . 

ZCR threshold, , was determined as  ZT

                                 = ZT c ZC×                                                             (3) 

where ZC  is the average ZCR of snoring episodes in the training dataset. The values 

of constants a, b and c were set experimentally. 

 

2.6 Classification of the Episodes 
 

Classification of the episodes, as snore or nonsnore, was carried out in two steps. In 

the first step, spectral features are computed and the feature space is reduced. In the 

second step, episodes are classified by finding a linear boundary between the two 

classes. The developments of these steps are described in the following two 

subsections. 

 

2.6.1 Feature Extraction 
 

When the spectograms of snoring sound waveforms and those of other sound 

waveforms (cough, breath, sounds of vehicles/doors/animals, sounds due to the 

motion of the subject) are examined, it is observed that the energy distributions differ 

over the frequency spectrum. In particular, snoring sounds’ spectra have been 

observed to exhibit a significant coherence while displaying discriminative 
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characteristics relative to other sounds’ spectral patterns. The spectrogram of a 

sequence of snoring and some other sound episodes is shown in Figure 2.7. The 

regularity of snoring episodes and their distinction from some other sound patterns 

can be observed in this figure. The disparity of spectral energy distributions among 

snoring and other   sounds suggests the use of spectral features in order to distinguish 

among snoring sounds and other waveforms. 

 

The spectral features in this study have been obtained by dividing the 0-7500 Hz 

frequency range into 500 Hz subbands and calculating the average normalized 

energy in each subband for each episode. To cope with inter- and intra-patient 

variation of sound intensity the energy of each 500 Hz subband was normalized by 

the total energy of the episode. 
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Figure 2.7 
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For the kth  episode consisting of Nk subframes, the ith element, k
iξ , of its feature 

vector, kξ , is computed as, 

 

( )

( )

500 2

1 500( 1)
7500 2

1 0

,

,

k

k

N i

j f ik
i N

j f

y j f

y j f
ξ = = −

= =

=
∑ ∑

∑∑
                        (4) 15,...,2,1=i

 

where is the short time Fourier transform of ( , )y j f thj  frame of the episode. 

 

2.6.1.1 Principal Component Analyses 

 

Principal component analysis involves a mathematical procedure that transforms a 

number of (possibly) correlated variables into a smaller number of uncorrelated 

variables called principal components [int]. The first principal component accounts 

for as much of the variability in the data as possible, and each succeeding component 

accounts for as much of the remaining variability as possible.The objectives of 

principal component analysis can be listed as follows: 

 

• To discover or to reduce the dimensionality of the data set.  

• To identify new meaningful underlying variables.  

 

We assume that the multi-dimensional data have been collected in a “Table Of Real 

data matrix”, in which the rows are associated with the cases and the columns with 

the variables. 

 

Traditionally, principal component analysis is performed on the symmetric 

covariance matrix or on the symmetric correlation matrix. These matrices can be 

calculated from the data matrix. The covariance matrix contains scaled sums of 

squares and cross products.  
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The eigenvectors with the largest eigenvalues of this covariance matrix correspond to 

the dimensions that have the strongest correlation in the dataset. Principal 

components are obtained by projecting the multivariate data vectors on the space 

spanned by these eigenvectors. 

 

 PCA is a linear transformation that transforms the data to a new coordinate system 

such that the greatest variance by any projection of the data comes to lie on the first 

coordinate (called the first principal component), the second greatest variance on the 

second coordinate, and so on. In other words,  PCA can be used for dimensionality 

reduction in a dataset while retaining those characteristics of the dataset that 

contribute most to its variance, by keeping lower-order principal components and 

ignoring higher-order ones. Such low-order components often contain the "most 

important" aspects of the data.  

 

The steps of PCA can be summerized as follows: 

• Find the eigenvalues and eigenvectors of a square symmetric matrix with 

sums of squares and cross products. (Covariance matrix) 

•  The eigenvector associated with the largest eigenvalue has the same direction 

as the first principal component.  

• The eigenvector associated with the second largest eigenvalue determines the 

direction of the second principal component. 

•  The sum of the eigenvalues equals the trace of the square matrix and the 

maximum number of eigenvectors equals the number of rows (or columns) of 

this matrix. 

 

2.6.1.2. Application of PCA to the Classification Problem 

 

The dimensionality of snoring sound feature vectors was studied via principal 

component analysis. The principal components are found by first computing the 

covariance matrix, C,  of all snoring sound feature vectors, kξ , in the training 

database 
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( )(1 Tk k

kK
= − −∑C )ξ ξ ξ ξ .                                                  (5) 

 

where ξ is the mean of snoring feature vectors obtained from the training data set 

and K is the total number of snoring feature vectors. The principal components of 

this covariance matrix are computed as follows. 

 

)det(maxarg CWWW T

W
opt =                                     (6) 

 

The eigenvectors corresponding to the largest eigenvalues of the covariance matrix 

are the basis vectors of the subspace. These eigenvectors span the new classification 

space. By examining the eigenvalues of the covariance matrix (See Figure 2.8), it is 

seen that the largest two eigenvalues are much higher than the others. This implies 

that two dimensional classification subspace is sufficient for this problem. 
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Figure 2.8 The eigenvalues of the covariance matrix sorted in descending order. 
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New features can be computed by projecting the feature vectors onto this subspace. 

These projection vectors are computed as 

  

ˆ k = opt
kξ W ξ                                                            (7) 

 

Figure 2.9 shows a typical distribution of two dimensional projection vectors of 

simple snorers. Two useful observations can be made. First, the projection vectors 

obtained from snoring and other sound episodes are distributed almost in a 

completely separable manner. Second, the projection vectors of snoring episodes are 

confined into an almost linear strip. 

 

 

 

 

strip of snore vectors  

 

Figure 2.9 Typical distribution of two dimensional projection vectors of simple 

snorers. 
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2.6.2 Finding the Classification Boundary by Robust Linear Regression 
 

The idea behind the classification method is to identify the boundary separating the 

strip where snore vectors are mainly clustered from the region where nonsnore 

vectors are distributed. The simplest way would be to fit a straight line aligned with 

the strip and to define a range around this line. However, the existence of outliers 

(sparsely distributed red crosses among green circles) complicates the identification 

of this straight line. To overcome this difficulty robust linear regression (RLR) was 

used [66]. RLR attempts to minimize the effects of outliers by a weighted least 

square formulation in which those samples yielding large errors are weighted less. 

 

Let [ ]ˆ , 1, 2, ,Tk
k k ,x y k= =ξ K K

b

 be the projection vectors obtained from the training 

set. The problem is to find the coefficients a and b in the equation  such 

that  

k ky a x= +

 

[ ] [ ] [ ]22
222

2
111 )(...)()( baxywbaxywbaxyw NNN +−+++−++−                (8) 

 

is minimized. In this problem, the weight, wp, values depend on the coefficients a 

and b so they are not known in advance. They have to be found together with the 

coefficients iteratively. In general, to suppress the effect of outliers, a weight value 

wp decreases as ( )p py ax b− +  increases. There are a number of weighting functions 

proposed for iterative solution in the literature [67]. In this study, we used “bisquare 

function” [67] according to which wp at the kth iteration is defined as: 

 
2

, , 1 , 1(1 )p k p k p kw r r−= − 2
−                                                         (9) 
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where tune is the tuning constant,  is the leverage value from the least squares fit 

for the p

,p kh
th weight, and s is an estimate of the standard deviation of the error term. 

[66,67]. 

 

 

 

 
 

Figure 2.10 Two fitted lines. One line is the fit from an ordinary 

 least squares regression and the other is from a robust regression. 

 

 

 

Figure 2.10 shows two lines fit to the same data, one obtained by ordinary least 

squares and the other by robust linear regression. The influence of outliers is 

diminished in robust regression. 

 

After fitting a line to the snore train data, a parallel line at some distance below is 

determined empirically and is used as the classification boundary between snore and 

nonsnore episodes. Figure 2.11 shows the distribution of snore and nonsnore data, 

the line fit according to robust linear regression and the classification boundary line.  
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Figure 2.11  The distribution of snore and nonsnore data, the illustration showing 

line fit according to robust linear regression and the classification boundary line. 

 

 

 

The robust linear regression with iteratively reweighted least squares algorithm is 

summarized step by step as follows: 

• Solve the regression problem by using least squares method, so define the 

initial weighting coefficients as a unit vector 

• Fit the corresponding line that is acquired from the least squares solution 

• Find the residual of each data to the fitted line 

• Define the weighting function for the solution based on how you want to 

smooth the least square solution (in this thesis we used bisquare  function) 

• Define the weighting coefficients for each term according to its residual value 

• Solve the new regression problem defined by new weighting coefficients 

(New Iteration) 

• Iterate the solution until the leverage value is below a certain threshold 
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CHAPTER 3 

 

 

RESULTS 
 

 

 

3.1 Flow of the Algorithm 
 

After we calculate the principle components from the training data, and define the 

region corresponding to snoring episodes, we apply the following algorithm to a new 

snoring sound recording. The steps of the algorithm are charted in Figure 3.1. 

 

 

 

 
 

Figure 3.1 The steps of the developed algorithm. 

 

 

 

• read the patient’s sound 

• segment these sound recordings 

o window length = 100 ms 

o overlap length  = 50 ms 
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o slide the 100 ms window with 50 ms overlaps on the signal 

o compute two feature values in each window: 

 energy 

 number of Zero-Crossings  

o define certain threshold values for energy (TE) and zero-crossings (Tz) 

o if energy of the kth frame > TE & zero-crossing of the kth frame > Tz, 

then determine the frame as a segment 

o determine the starting points and ending points of all the segments 

(episodes) 

• classify the episodes 

o calculate the value of the spectrogram for an episode 

 define the frequency range 0-7500 Hz 

 define the fft size as 256 point 

o divide the 0-7500 Hz frequency range into 500Hz subbands 

o compute the value of the spectrogram in each subband 

o normalize the each subbands energy with the total energy of the 

episode 

o get the 15-D feature vector for the kth episode  [ ]Tkkkk
1521 ...ξξξξ =

o multiply the feature vector with Wopt  matrix which is defined from 

PCA 

o get a 2-D vector corresponding to the coordinates of  the projection on 

to defined subspace 

• determine whether the projection is in the snoring range or out of the snoring 

range and make a binary decision for the episode as snore or not 

 

3.2 Performance Measurement of the System 
 

The detection method described in the previous section has been tested using the 

snoring signal database. The system produced high detection rate both in simple 

snorers and OSA patients. 

Figures 3.2 and 3.3 depict the detection of snoring episodes of two simple snorers. 

Figure 3.4 shows the detection of snoring episodes of an OSA patient. Sound activity 

 43



segments identified by the system are shown in rectangular pulses. Then, those 

which are classified as snore episodes are marked by a second rectangular pulse 

above the first one. In these figures, we show parts of recordings where there are no 

false negatives (i.e., missed snore episodes) and no false positives (i.e., nonsnore 

episodes marked as snore). 

 

 

 

 
Figure 3.2 Detection of snoring episodes that belong to a simple snorer 

 

cough

breath breath breath breath 

 

Figure 3.3  Output of the detection system to a cough episode 

 

 

 

Figure 3.4 Detection of snoring episodes taken from an OSA patient.  
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In Section 2, we stated that three different experiments were performed. In this 

section, the performance of the system will be given for each of the datasets 

separately. 

 

The results of Exp-1, Exp-2A and Exp-2B are shown in Tables 3.1, 3.2 and 3.3, 

respectively. Numbers of true positive (TP), false positive (FP) and false negative 

(FN) detections are given in these tables. Detection performance was evaluated in 

terms of accuracy, which is defined as ( )100 TP TP+FN× , and the positive 

predictive value (PPV), which is defined as ( )100 TP TP+FP× . 

Following observations can be made in the detection of snores of simple snorers: The 

best detection performance was achieved in Exp-1 where both the training and the 

testing datasets contain only simple snorers. Accuracy dropped by 4.6% (from 97.3% 

to 92.8%) in Exp-2A where snores of OSA patients were included in the training 

dataset, even though the testing and training datasets are obtained from the same 

individuals.  Accuracy dropped by 7.3% in Exp-2B (from 97.3% to 90.2%). On the 

other hand, PPV values are in general higher than, and do not decrease as much as 

the accuracy values in this sequence of experiments. 

 

In the detection of snores of OSA patients, accuracy and PPV values are less than 

those of the simple snorers.  However, the accuracy values in Exp-2A and Exp-2B 

are still high enough (89.2% and 86.8%, respectively) to be considered for clinical 

applications. 

 

 

 

Table 3.1 Results of Exp-1. 

 

 TP FP FN Accuracy PPV 

Simple snorers 1752 6 48 97.3 % 99.6 % 
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Table 3.2 Results of Exp-2A. 

 

 TP FP FN Accuracy PPV 

Simple snorers  2505 19 195 92.8 % 99.2 % 

OSA patients 1607 87 24 89.2   % 94.8 % 

 

 

 

Table 3.3 Results of Exp-2B. 

 

 TP FP FN Accuracy PPV 

Simple snorers  2438 32 262 90.2 % 98.7 % 

OSA patients 1564 103 236 86.8   % 93.8 % 
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CHAPTER 4   

 

 

A USER INTERFACE FOR SLEEP AND SNORE ANALYSES 

 

 

 
In Chapter 2, we introduced a fast and efficient algorithm for analyzing the whole 

night respiratory sound recordings automatically. In this chapter, we present a user 

interface that is designed for the clinical applications. Designing a user interface for 

the clinic is a difficult task for a number of important necessities: 

• The system must be fast enough for clinical applications. The sampling 

frequency of the signal is 16 KHz. This means, there are 16000 samples in a 

one second interval of the signal. If we code each sample with 2 bytes, the 

size of a one second signal will be equal to 32 KB. The system must analyze 

the whole night sleep of the patient which is approximately 6 hours long (700 

MB). Furthermore, during the analysis, the system performs several time 

consuming complex calculations such as taking Fourier Transforms, and 

extracting snore related statistics.  

• The system must compute the snore related statistics with a high accuracy. 

Sensitivity is crucial if we consider the effect of the system on the diagnostic 

and treatment process of the patient. 

• The system must give the outputs that can easily be understood by the 

medical doctors and that can be comparable pre and post operatively. 

• The system must easily be used by the medical doctors and clinical staff.
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Hence we updated our previously developed algorithms and we increased the 

implementation speed of the developed algorithms for clinical applications. We also 

designed and implement our system by taking feedback from the ENT clinic. 

 

4.1 System Outline 
 

The system consists of six blocks:  

1. patient information,  

2. analyzing selection,  

3. time parameters,  

4. episode parameters,  

5. regularity block, 

6. intensity block. 

 

In addition to these blocks, a screen with a slider is available for monitoring the 

snoring signal. There are also “play” and “print” buttons exist. The user interface of 

the system is shown in Figure 4.1. The following sections introduce each of the 

blocks and their functions. 
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Figure 4.1 The user interface of the system 

 

 

 

4.2 Patient Information Block 
 

This block was designed for file operations. When a patient applies to the clinic, the 

system allows the doctor to create a specific file for that patient.  When you click on 

the “New” button to create a file for a patient, the system allows you to enter the 

patient information. This includes patient identification number, name, surname, sex, 

age, AHI and sleep efficiency of the patient and the date of the recording. AHI and 

the sleep efficiency parameters are obtained from the PSG recordings. The sound file 

of the patient can be loaded from the computer. The aim of the “Poly File” will be 

explained in Section 4.4. When the “save” button is clicked on, the system creates a 

text file with the extension .hst that includes this patient information. The system 

allows to make edit, save or clear operations on any file. Figure 4.2 shows the patient 

information interface and a sample file with the .hst extension. 
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Figure 4.2 Top: Patient information interface. Below: a sample text file with .hst 

extension. 

 

 

 

4.3 Analysing Selection Block 
 

This block was designed in order to initiate the analysis. When you clicked the 

“Patient selection” button, a dialog box is opened in order to select a pre-created file 

to initiate the analyze. The “Analyzing Selection” block and the pation selection 

dialog box is shown in Figure 4.3. 

 

When you select the patient whom you want to analyse, all the information of the 

patient is shown on the main interface and the snoring signal of the patient is loaded 

and monitored on the screen. If you click the “Analyse” button after selecting the 
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“Analayse all”, the system analyses all the data and extracts the parameters from the 

whole night sleep. 

 

 

 

 

 

 Xxxxx

 

 

 

 Xxxxx

 

 

Figure 4.3  The “Analyzing Selection” block and the patient selection dialog box 

 

 

 

In some cases the doctor wants to see the statistics that are extracted from only a part 

of the signal such as the sleep stage 2 data.  It is possible to analyse the selected 

signal by clicking “Analyse” button after selecting the “Analyse selection” button. 

Figure 4.4 shows a 20 second long snoring signal on the screen of the interface. It is 

possible to examine all the signal by using the slider. 

 

 

 

 
 

Figure 4.4  20 second long snoring signal on the screen of the interface 
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4.4 Time Parameters Block 
 

This block was designed for monitoring the time parameters such as total snoring 

time, total sleeping time and snore to sleep ratio. Total sleep time gives the doctor the 

how many minutes does the patient sleeps. In this point, it is important to determine 

the efficient sleep time of the patient accurately. Because the lenght of the signal that 

corresponds to the time in bed may not be equal to the patient’s total sleep time. In 

order to get rid of this problem, we integrate the system with polysomnography and 

we take the recordings simultaneously. Current polysomnography systems gives the 

sleep stage information in every 30 second length epoch as a text file  and it is 

possibile to determine the wake time of the patient from there. Hence, we designed 

the system that allows to load the “Poly File”. Computing the wake time from this 

file lets us  to determine the total sleep time accurately. In order to extract this kind 

of parameters from the sound recordings, an automatic detection system for real 

acoustic snoring signals has been designed. The proposed algorithm is based on the 

spectrogram of the acoustic snoring signals. The objective is to determine whether 

the episode is snoring or not in order to reject undesired waveforms. After detecting 

each snoring episode, we compute the total snoring time and snoring  to sleep ratio. 

Actually the most useful blocks of the system are the “Time Parameters” block and 

the “Intensity” block. The comparision of the snoring to sleep ratio pre and post 

operatively is the fundamental parameter for the clinician in determining the 

treatment success. Figure 4.5 shows the “Time Parameters” block and a sample 

“Poly File”.  The first column of the “Poly File” depicts each 30 second length epoch 

and the second coloumn is the corresponding sleep stage of that epoch. The letters 

“W” indicates that the patient is wake  in that epoch. 
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Figure 4.5 “Time Parameters” block and a sample “Poly File”. 

 

 

 

4.5 Intensity Block 
 

Observing the changes in the intensity of the snoring signals pre and post operatively 

is essential in determining the treatment success. The intensity of the snoring signal 

can be varied either from patient to patient or at different episodes of a single patient. 

Hence, the system computes the intensity of  each snoring episode and gives the 

histogram of it.  It is possible for doctor to see the maximum snoring intensity of a 

patient for comparision. The distribution of the intensity values of a patient also 

gives information about the regularity of his/her snoring. The importance of this 

concept will be explained in detail in the “Regularity Block” section. In Figure 4.6. a 

sample snoring intensity histogram is displayed. 

 

 

 
Figure 4.6  A sample snoring intensity histogram. 
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4.6 Regularity Block 
 

The regularity of the snoring can be used to identify whether the patient is a simple 

snorer or an OSA patient. If we compare  the snoring signals of simple snorers and 

OSA patients, we see that the snoring episodes of simple snorers are more similar to 

each other than, those of OSA patients. In other words, while simple snorers are 

regular snorers, OSA patients are non-regular snorers in general. This situation is 

illustrated in Figure 4.7.a and Figure 4.7.b. As it is seen, while the episodes of simple 

snorers are highly correlated, there is no such kind of correlation exits between the 

episodes of an OSA patient. 

 

 

 
 

Figure 4.7.a  Snoring episodes taken from a simple snorer. 

 

 

 

In order to extract the information about the regularity of the snorings of a patient we 

designed the “Regularity” block. It is possible to determine the regularity of the 

snoring by computing the correlation between the episodes of a patient. But this 

method is time consuming and computationally inefficient. 
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Figure 4.7.b Snoring episodes taken from an OSA patient. 

 

 

 

If we plot the graph of absolute energy versus number of episodes, the flatness of the 

mid-points of each energy value gives us information about the similarity of the 

episodes. This situation is depicted in Figure 4.8. The flatness of the red curve is a 

measure of regular snoring.  Figure 4.8.a shows the regularity plot of a snoring signal 

taken from a simple snorer and Figure 4.8.b is the regularity plot of a snoring signal 

taken from an OSA patient. It is clearly seen that the regularity curve is flatter in 

simple snorers. This phenomenon is important in the diagnostic process of a patient. 

An other regularity parameter is the intensity histogram. The distribution of the 

intensity values over a wide range implies a non-regular snoring. 
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Figure 4.8.a Regularity plot of a snoring signal taken from a simple snorer. 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.8.b Regularity plot of a snoring signal taken from an OSA patient. 

 

 

 

4.7 Episode Parameters Block 
 

This block was designed to extract the parameters related to the episodes such as 

number of snoring episodes, maximum snoring duration, maximum duration between 

two snoring episodes, average snoring episode time and average duration between 

two snoring episodes. These parameters are also useful in deteremining the treatment 

success by making pre and post-operative comparision. Figure 4.9 shows the 

“Episode Parameters” block. These values are also differ in simple snorers and OSA 

patients. 
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Figure 4. 9  “Episode Parameters” block. 

 

 

 

4.8 Output of the System 
 

By analaysing the whole night respiratory sound recordings and computing related 

statistics, it is possible to assess the medical treatment. Figure 4.10 shows the 

analysis result of an OSA patient.  In the screen of the program, the snoring episodes 

are selected with the upper red lines. It is also possible to play or listen the selected 

signal.  

After analysing the sound recording of a patient, the system allows to save the results 

or take print out for comparision pre and post-operatively. The print out page of the 

computed statictics is given in appendix A 
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Figure 4.10 The analyze result of an OSA patient 
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CHAPTER 5 

 

 

 CONCLUSION 

 

 

 
Snoring is a respiratory sound that originates during sleep, and can be nocturnal or 

diurnal. It is a typical inspiratory sound, even though a small expiratory component 

can be heard or recorded (especially in OSA patients) with different spectral features. 

It must be distinguished from all the other sounds that can be heard, recorded and 

analysed during sleep. In this thesis, we proposed a new algorithm to detect snoring 

episodes from the sleep sound recordings of the individuals. The algorithm classifies 

sleep sound segments as snores and nonsnores according to their subband energy 

distributions. It was observed that inter- and intra-individual spectral energy 

distributions of snore sounds show significant similarities. This observation 

motivated the representation of the feature vectors in a lower dimensional space 

which was achieved using principal component analysis. Sleep sounds can be 

efficiently represented and classified as snore or nonsnore in a two dimensional 

space. The proposed system was tested by using the manual annotations of an ENT 

specialist as a reference. In addition, a user interface was developed and certain sleep 

statistics are calculated to make the system available for clinical purposes.  

 

The sound recordings were taken synchronously with polisomnography during their 

whole night sleep in order to determine the Apnea/Hypopnea index of the patient and 

to be able to study the relationship between the physiological signals and snoring. 

The recording system was set up to acquire high SNR so that there is no need for 

extra processing to increase the SNR. The tests were carried out on a dataset formed 

by the 6 hour recordings of 30 individuals (18 simple snorers and 12 OSA patients 
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with different apnea-hypopnea indices and body mass indices). The size of this 

dataset can be assumed to be sufficient for the reliability of the results of the 

particular binary classification problem.   

 

We have composed the testing and training datasets in three different ways. In the 

first experiment (Exp-1), both the testing and the training datasets come from simple 

snorers, but individuals in each set differ. In the second experiment (Exp-2A), both 

simple snorers and OSA patients are included in the testing and training datasets; the 

same individuals are included in both sets, however testing and training sets are 

obtained from different intervals of the 6-hour recordings. Finally in the third 

experiment (Exp-2B), again there is a mixture of simple snorers’ and OSA patients’ 

recordings, however, this time testing and training datasets are formed from 

recordings of different individuals. 

 

The accuracy for simple snorers was found to be 97.3 % when the system was 

trained using only simple snorers’ data. It drops to 90.2 % when the training data 

contain both simple snorers’ and OSA patients’ data. (Both of these results were 

obtained by using training and testing sets of different individuals.) This suggests 

that, in a practical setting, the individual can first be roughly identified as a simple 

snorer or OSA patient using a composite training dataset and then the results can be 

refined by using a system trained with the specific type of data. In the case of snore 

episode detection with OSA patients the accuracy is 86.8 %. Some of the missed 

snores were post-apneic type with complex content that include several types of 

sounds.  Some other missed snoring episodes have very low energy that can not be 

distinguishable from the background noise. All these results can be considered as 

highly acceptable values to use the system for clinical purposes including the 

diagnosis and treatment of OSAS.  

 

The information such as total snoring time, snore-to-sleep ratio, variation of snoring 

rate and regularity of snoring episodes in time and in amplitude may be useful for 

diagnosis of sleep disorders. These kinds of information can be obtained by detecting 
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snore episodes. This fact and the need for reasonable processing time of night-long 

recordings justify a binary classification scheme as snore or nonsnore.  

The classification boundary in this work was found heuristically. It may be possible 

to improve the performance by using boundaries generated in a more systematic and 

optimal manner via large margin classification methods like support vector 

machines. 

 

The user interface was composed of various blocks. These blocks are: patient 

information, analyzing selection, time parameters, episode parameters, and regularity 

and intensity blocks. The most useful block of the system is the “time parameters” 

block. The comparison of snoring to sleep ratio values pre and post-operatively is the 

fundamental parameter in determining the treatment success. Observing the intensity 

changes in the snoring signal is also meaningful. We see that while the snoring 

intensity of the simple snorers is in the range of 40-60 (db), this range becomes wider 

such as 50-100 (db) in OSA patients. Another difference between simple snorers and 

OSA patients appears in the similarity of the snoring episodes. Contrary to highly 

correlated form of the snoring episodes in simple snorers, it is impossible to observe 

such kind of correlation in OSA patients. Hence, examining the regularity of the 

snoring episodes is a useful method of estimating whether the patient is a simple 

snorer or an OSA patient before the polysomnography.  The system also extracts a 

number of useful statistics about the episode parameters. The numbers of snoring 

episodes are also different between simple snorers and OSA patients.  While it is 

approximately 600 in simple snorers it is almost over 1000 in OSA patients. The 

episode parameters are also important for the comparison of pre-operative and post-

operative situation. The system enables the user to perform all kind of file operations 

and gives a print out if it is desired.  Integrating the system with polysomnography 

allows us to determine the sleep time accurately and to make advanced researches on 

sleep studies. It takes only six minutes to analyze six hours of data (whole night sleep 

recordings) that were sampled at 16 KHz (each sample is coded with 2 bytes). This 

can be considered as a reasonable processing time of night-long recordings. 
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The proposed system can be applied to the following problems as future work: 

• Testing the treatment effectiveness of sleep disorders by comparison of snore 

statistics obtained before and after treatment. 

• Studying the relationship between the nightlong recordings of physiological 

signals (polysomnography) and corresponding snoring profiles, e.g., the 

relationship between sleep stages and snore characteristics. 

• Identifying the physiological sources, such as palatal/nonpalatal, of snoring to 

guide the treatment strategy. 
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