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ABSTRACT

OPTIMUM DESIGN OF GRILLAGE SYSTEMS BY USING HARMONY
SEARCH ALGORITHM

Erdal, Ferhat
M.S., Department of Engineering Sciences
Supervisor: Prof. Dr. M. Polat Saka

January 2007, 86 Pages

Harmony search method based optimum design algotighpresented for the grillage
systems. This numerical optimization technique ate$ the musical performance
process that takes place when a musician searohesdetter state of harmony. For
instance, jazz improvisation seeks to find musycaleasing harmony similar to the
optimum design process which seeks to find thexapta solution.

The design algorithm considers the displacement sarehgth constraints which are
implemented from LRFD-AISC (Load and Resistance tétadesign-American
Institute of Steel Construction). It selects therapriate W (Wide Flange)-sections for
the transverse and longitudinal beams of the gellaystem among 272 discrete W-
section designations given in LRFD-AISC so that design limitations described in
LRFD are satisfied and the weight of the systeroigfined to be minimal. Number of

design examples is considered to demonstrate ficeeaty of the algorithm presented.

Keywords: Optimum structural design, harmony search algorjtminimum weight,

search technique, combinatorial optimization, ggé systems.
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IZGARA SISTEMLER iN HARMON i ARAMA YONTEM i KULLANILARAK
OPTiMUM BOYUTLANDIRILMASI

Erdal, Ferhat
Yuksek Lisans, Mihendislik Bilimleri Bo6IGmuU

Tez Dangmani: Prof. Dr. M. Polat Saka

Ocak 2007, 86 Sayfa

Optimum tasarim algoritmasina dayali harmoni arardatemi izgara sistemlerin
boyutlandirilmasi icin sunulmaktadir. Bu sayisaiimgasyon teknii, bir mizisyenin
daha iyi bir mizikal uyum arayi icinde uygulamaya cahgl muizikal performans
slrecine benzetilmektedir. Ofie jazz dgaclamasi, optimum c¢ozime maaya
calisan optimum tasarim surecine bengekilde, muzikal acidan tatmin edici uyumu
bulmayr amaclar. Tasarim algoritmasi LRFD-AISC (@oand Resistance Factor
Design-American Institute of Steel Construction)gulamasi sonucu ojan yer
degistirme ve dayanim sinirlamalarini géz 6niine almaktatarmoni arama yontemi
LRFD-AISC’de verilen 272 farkli W-profili arasindamgara sistemin enine ve boyuna
kirisleri icin  uygun profili secer boylece LRFD'de tarlanan tasarim
sinirlamalarisglanir ve sistemin @rligi minimuma indirgenir. Tasarim 6rneklerinin

sayisi sunulan algoritmanin etkighi gostermeyi amaclamaktadir.

Anahtar Kelimeler: Optimum yapisal tasarim, Harmoni arama yodntemninmum

agirhk, arama tekrgi, kombinasyonal optimizasyon, 1zgara sistemler
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CHAPTER 1

OPTIMIZATION IN GENERAL

1.1 Introduction to Optimization

Optimization is concerned with achieving the bagtome of a given operation while
satisfying certain restrictions. Human beings, gdié&nd influenced by their natural
surroundings, almost instinctively perform all ftioas in a manner that economizes
energy or minimizes discomfort and pain. The mdibrais to exploit the available

limited resources in a manner that maximizes outpytrofit.

Common problems faced in the optimization field atatic and dynamic response,
shape optimization structural systems, reliabitised design and optimum control of
systems. Any optimization problem requires propdentification of objective
function, design variables and constraints on mwblormulation state. Depending on
the class of problems and needs, several typesesifjml variables and objective
functions can be identified. Constraints usuallyoire physical limitations, material

failure, buckling load and other response quastitie

The main goal of the optimization process is talfihe optimal solution from the
variety of possible combination of variables defin@ the mathematical problem.
Structural optimization problems are characterizeg various objectives and

constraints which are generally non linear funcimf the design variables. Each



objective and constraint choice defines a diffegstimization problem. Optimization
problems can be expressed in standard mathemtsiiosd as:

Minimize f(x) : AL
Subject to:
0,(x)<0 I=1...,m (1.2)
h,(X)=0 j=1...,1 (1.3)
X, < X, <Xt k=1...,n, (1.4)

in which, x is design variable vectorf (x i the objective function. In general, the

constraint functions are grouped into three classgsality constraintd, , inequality

constraintsg, , and the geometric constraintg, and x; represent the lower and the

upper bounds of the design variablg, m is the number of design variables used [1-

2].

The structural optimization design is conditionedtbe choice of the objective and
constrained functions expressed in terms quantitresnost practical work weight of
the structure is chosen as the objective functwlnije the maximum displacement

or/and maximum stress are imposed as the constraint

1.2 Structural Optimization

The field of structural optimization is a relatiyetew field undergoing rapid changes
in methods and focus. Until recently there was\eieimbalance between enormous
amount of literature on the subject and paucityapplications to practical design

problems. This imbalance is gradually redresseardhs still no shortage of new



publications, but there are also exciting applaagi of the methods of structural

optimizations in the civil engineering, machine igas aerospace and other

engineering fields. As a result of the growing padeapplications, research into

structural optimization methods is increasinglywdn by real-life problems.

Most engineers who design structures employ compgjereral-purpose software

packages for structural analysis. Often engineersaal have any access to the source
program, and even more frequently they have ordytsknowledge of the details of

the structural analysis algorithms used in thistveadfe packages. Another major

challenge is the high computational cost assocmttdthe analysis of many complex

real-life problems. In many cases the engineer Whe the task of designing a

structure cannot afford to analyze it more thamadful of times.

Structural optimization when first emerged hasaated a widespread attention among
designers. It has provided a systematic solutioag®-old structural design problems
which were handled by using trial-error methodseagineering intuition or both.
Application of mathematical programming methodstmctural design problems has
paved the way in obtaining a design procedure whigs capable of producing

structures with cross-sectional dimensions.

In the structural optimization problems, usuallyrenthan one objective is required to
be optimized, such as, minimum weight which isteslato cost, maximum stiffness,
minimum displacement at specific structural poiatel minimum structural strain
energy while all the constraints are satisfied. Tdumstraints provide bonds on
member stress, deflection, frequency, local bugklisystem buckling and dynamic
response. In the last four decades vast amoueisefirch work has been conducted in
structural optimization which covers the field frooptimum design of individual
elements to rigid frames and finite element stmegtuHowever, due to the fact that
mathematical programming techniques deal with oowtis design variables, the
algorithms developed has provided to designer eses8onal dimensions that were

neither standart nor practical [3-5].



Consequently, the structural optimization has mpdyed the same popularity among
the practicing engineers as it has enjoyed amoagedkearchers. As a result, effors
have been concentrated on the area of rectifyiagtiuctural optimization algorithms

to be able to work with discrete set of variables.

1.2.1 Structural optimization problems

The discrete size optimization of structural systewolves arriving at optimum values

for discrete member design vectoxs that minimizes the objective functiof(x , )

which is subjected to constraints related to theigte and the behaviour of the
structure. Some constraints may not be expresspticiexbut can be numerically
evaluated using the structural element analysisie€ optimization problems can be

stated mathematically formulation as minimizing siwictural weight as follows [6]:
Find a design vectox, X' = (X, X,, ..., Xy.) and x OT

To minimize f (x),

Ne
For weight optimization; f (x) = Zyi L X (1.5)

i=1
Subject to;

gi'(x) = Ji' -0 <0 I = (1.6)



I =1...,N, (1.7)
LB<x<UB (1.8)
Where;

f (X) : the objective function (usually the weight of 8teucture)
T : table of available discrete size

N, : total number of design variables or elements

N, : total number of load condition

. . the specific weight of the i-th element

L;,x :the length and the cross sectional area of thesleiment respectively

o,,0" :the absolute value of stress under the I-th loamtiiton and allowable stress in
the i-th element respectively.
u,,u; :the absolute value of displacement under the b#ld lcondition at the degree of

freedom corresponding to the k-th displacement ttaimé and corresponding
allowable value respectively.
LB :the vector of lower bounds on design variables

UB :the vector of upper bounds on designs variables

1.2.2 Structural Optimization Methods

Structural optimization methods can be divided i@ categories called analytical
methods and numerical methods. While analyticalhoas emphasize the conseptual

aspect, numerical methods are concerned with teitimical aspect.



1.2.2.1 Analytical Methods:

Analytical methods usually employ the mathematibabry of calculus and variational

methods in studies optimal layouts or geometrioaif of structural elements, such as
columns, beams and plates. These analytical metamgdsnost convenient for such
fundamental studies of single structural componebtg they are not intended to
handle larger structural systems. The structuralgtkeis represented by a number of
unknown functions and the goal is to find the foofnthese function. The optimal

design is theoretically found exactly through tlmuson of a system of equations

expressing the conditions for optimality [7].

Applications based on analytical methods thougly themetimes lack the practical
aspects of realistic structures, is nonetheless bagportance. Analytical solutions
provide valuable insight and theoretical lower bduwptimum against which more
practical designs may be judged. Problems solvearajytical methods are called

continuous problems or distributed parameter ogtition problems.

1.2.2.2 Numerical Methods:

Numerical methods employ a branch in the field afmerical mathematics called
mathematical programming. Closed form analyticdutsan techniques for practical
optimization problems are difficult to obtain ifdmumber of design variables is more
than two or the constraint expressions are comglaerefore numerical methods and
computer programmings is preferred to solve mosinopation problems. The recent
developments of the numerical methods are closelgted to the rapid growth in
computing capacities. In numerical methods, amainitesign for the system is selected
which is iteratively improved until to further imprements are possible without
violating any of the constraints. The search isnteated when certain convergence

criteria are satisfied, indicating that currentigaess sufficiently close to the optimum.



Early numerical optimization algorithms are all the class of mathematical
programming methods. The common feature of thesthade is that the design
variables are considered to be continuous and thjective function as well as
constraints are expressed as functions of thesgrdeariables. Most of the techniques
make use of the gradient vectors of the objectimetion and constraint which requires
first derivatives of these functions with respecthe design variables.

Some of the mathematical programming methods, asclnear, quadratic, dynamic,
and geometric programming algorithms, have beenrawgul to deal with specific
classes of optimization problems [8]. Although thestory of mathematical
programming is relatively short, there has beesrgel number of algorithms developed

for the solution of numerical optimization problei®

Another approach for numerical optimization of stuwes is based on derivation of a
set of essential conditions that must be satisfe@dthe optimum design and

improvement of an iterative redesign procedure.s€hmethods are called Optimality
Criteria (OC) methods, which were presented inwital form by Prager [10] and in

numerical form by Venkayya [11]. Its principal aittion was that the method was
easily programmed for the computer, was relatimetiependent of problem size, and
usually provided a near-optimum design with a fewuctural analyses. This last
feature represented a remarkable improvement deenamber of analyses required in

mathematical programming methods to reach a optirsaintion.

In recent years, the range of applicability of stmal optimization has been widened
and much progress has been made in various topsceiated with this area. Efficient
search methods, such as genetic algorithms, sietulannealing, ant colony
optimization and harmony search, for derivativecakdtion have been developed, and
problems with complex analysis model and varioysesyof constraints and objective

function have been investigated. The important @eg in these advanced topics



emphasizes the need for a deeper insight and udaddinsg of the fundamentals of

structural optimization.

1.2.2.2.1 Mathematical Programming

Mathematical programming can be subdivided intedmprogramming and non-linear
programming. The major characteristic of lineargoeanming is that the objective
functions and the associated constraints are esgaeas a linear combination of the
design variables. To apply linear programming tégqpises to structural optimization,
the relationship between the objective function #rmeconstraints are to be expressed
as linear functions of design variables. On theeotmand if they are nonlinear, they
have to be linearized. However, when a linear i@tahip is used to model a non-

linear structural response, errors are inevitable.

Non-linear mathematical programming is developed rion-linear unconstrained
optimization problems. Mathematical non-linear pesgming algorithms require
either differentiability or gradient information dfoth the objective function and
constraints with respect to the design variablesrddver, they are unsuited for
problems where the design space is discontinucautheaderivatives of the objective
function and constraints become singular acrossbthendary of discontinuity. The
product of optimisation with these methods is mpostintingent to the starting point of
optimisation process due to the locating the netathptimum closest to the initial

estimate of the optimum design.

The well-known Kuhn-Tucker conditions provide thecassary conditions for
optimum solutions. The calculation of gradients #melsolution of the correlated non-
linear equations prohibit the direct application tbé Kuhn-Tucker conditions for
structural optimisation problems, so direct appgiaa of the Kuhn-Tucker conditions

is extremely difficult for structure problems [13]1



1.2.2.2.2 Optimality Criteria

The Optimality Criteria methods are developed fromdirectly applied the Kuhn-
Tucker conditions of non-linear mathematical progming combined with
Lagrangian multipliers. The Kuhn-Tucker conditiongrovide the necessary
requirements for an optimum solution and the Lagi@m multipliers are used to
include the associated constraints. After derivimg necessary condition, a recursive
relationship is developed iterative use of whichnvargence to the near optimum

solution.

Optimality Criteria methods are based on continudesign variable assumption. For
the case where discrete variables are desired @tignality Criteria methods a two-

step procedure is typically used. First, the opgation problem is solved using
continuous variables. Second, a set of discretaegals estimated by matching the
values obtained from the continuous solution. Ogtity Criteria methods use a single
cross- sectional property of a structural membehasiesign variable. All other cross-

sectional properties are expressed as a functitimadelected design variable [14-15].

1.2.3 Stochastic search methods

A class of optimization algorithms developed retierg known as stochastic search
algorithms. These algorithms employ the generadforandom numbers as they search
for the optimum. Although they do not require thealeation of gradients of the
objective and constraint functions, they typicallgquire many more function
evaluations than do the gradient-based nonlineagramming algorithms. Unlike
nonlinear algorithms, stochastic search algorithmesy be applied to optimization

problems involing discrete variables.



1.2.3.1 Genetic algoritms

The genetic algorithm is a search procedure indplg principles from natural
selection and genetics. Genetic algorithm is ueathprove the designs after stochastic
generation of initial population of designs. Geaetigorithm uses techniques derived
from biology, and rely on the principle of Darwinteeory of survival of the fittest.

Genetic algorithm basically consists of three pHI€:

(1) coding and decoding variables into strings;
(2) evaluating the fitness of each solution string;
(3) applying genetic operators to generate the nextrgdion of solution strings.

Genetic algorithms are implemented with populabbimdividuals, coded as bit strings
of finite lengths, each of which represents a degmint in the space of potential
solutions to a given optimization problem. Using@nsformations analogous to
biological reproduction and evolution over genenasi creates chromosamal strings
that favorably adapt to the changing environmerite Thromosamal structures, are
changed through reproduction, a crossover of geniaflormation exchange and

occasional mutation. The individuals that judgedsimiit are given opportunities of

producing larger number of offsprings and crosseth wther fit members of the

population. Combination of the most suitable chemastics of the mating members
results in the spreading of good characteristicsuiifhout the population and the next
genaration population. If genetic algorithm is iewplented properly, successive
generation produces better values of design vasadhd the population will converge

to optimal solution.

Genetic algorithms are developed by applying thacgal of survival of the fittest
into a numerical search method. Genetic algoritlamesused as a function optimizes
particularly when the variables have discrete w&lu€hey, first select an initial

population where each individual is constructedbbinpging together the total number

10



of variables in a binary coded form. This code tfes most importance of two, that
means each character can take either the symb@® of ‘1’. The binary code for each
design dasign variable represents the sequenceerushibhis variable in the discrete

set. For example, consider the following simple hmeatatical maximization problem

with X, X, and X, being its design variables.

max f (X, X,,X%;) = 2% — X, +3X; ;
0<x <20

0<x,<20

05<x,<20

(1.9)

If we resolve that six bits are enough to providdesired degree of accuracy in the
representation of each design variable separatgigoded variables are decoded
through normalization of the corresponding binareger by2° - 1.Our individuals

would, therefore, contain three gens and consist8obinary digits, representing the

arrangement of the codings fog, x, and x,. By that way, while substring ‘111111’

represents a value of 2.0 for all variables, sufgptt000000’ corresponds to a real

value of O for the variableg, and x,, 0.5 for the variablex,.

A genetic algorithm initiates the search for fimglithe optimum solution in a discrete
space by first selecting the number of individuedsdomly and collecting them

together to constitute the generation of initiapplation. In each cycle of generation,
simple genetic algorithm has the individuals passkough selection, mating,

crossover and mutation operations to create nemergéon, which comprise more

adapted individuals than the previous has. Thisgsse iterates over a fixed number of
generation or until a stopping criterion. Geneligoathm pseudo-code has shown in
Figure 1.1 [17].
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L is choromosome length
N is population size
p[i] is probability vector
1. Initialize probability vector
Fori:=1to L dop[i] :=0.5;
2. Generate two individuals from the vector
a:= generate (p);
b:= generate (p);
3. Let them compete
Winner, Loser := evaluate (a,b);
4. Update the probability vector toward thétdreone
Fori:=1toLdo
if winner [i] ! = loser [i] then
if winner [i] = 1 then p[i] += 1/N
else p[i] -= 1/N
5. Check if the probability vector has conesig
fori:=1toLdo
if p[i] > 0 and pJ[i] < 1 then go to step 2
6. P represents the final solution

Figure 1.1Pseudo code of Genetic Algorithm

1.2.3.2 Simulated Annealing

The simulated annealing algorithm is a random-$eaechnique which exploits an
analogy between the way in which a metal cools fapelzes into a minimum energy
crystalline structure (the annealing process) d&edsearch for a minimum in a more
general system. It forms the basis of an optimiratechnique for combinatorial and

other problems.
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Simulated annealing (SA) was developed in 1983 @al dvith highly nonlinear
problems [18]. The development of the simulatedeating method was motivated by
studies in statistical mechanics which deal with #quilibrium of large number of
atoms in solids and liquids at a given temperatDuring solidification of metals or
formation of crystals, for example, a number ofiddtates with different internal
atomic or crystalline structure that correspond different energy levels can be
achieved depending on the rate of cooling. If thstesn is cooled too rapidly, it is
likely that the resulting solid state would havedid margin of stability because the
atoms will assume relative positions in the lattsteicture to reach an energy state
which is only locally minimal. In order to reachmaore stable, globally minimum
energy state, the process of annealing is usedhiohvthe metal is reheated to a high
temperature and cooled slowly, allowing the atomgugh time to find positions that
minimize a steady state is reached. It is this attaristic of the annealing process
which makes it possible to achieve near global mimh energy states.

Simulated annealing algorithm’s major advantageans ability to avoid becoming
trapped in local minima. The algorithm modifies #exial random search algorithm so

that designs with higher objective functidn (assuming a minimisation problem) are

occasionally accepted.

In order to generate annealing behaviour, the dhgorprocess is arranged. First, a
starting temperatur@ and a starting feasible design variableare obtained. Then, a
new candidate design variabkeclose tox generate randomly and candidate variable
is analyzed. If it is feasible and(x* > f(x), let X =x. If the candidate design
variable is feasible buf (x ¥ f(x ), then a random number is generated. Ifr <

P

where;

P =(—f (x) - f(X)J (1.10)
T
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If x has not changed for several iterations, searcétdpped; otherwise update

T=aT where a is a number less than one, and a new candidaiablaris

generated. The procedure for SA algorithm is dsvia in Figure 1.2 [19].

initialize temperature
for i := 1...ntempslo
temperature := factor * temperature
for j := 1...nlimitdo
try swapping a random pair of points
delta := current_cost - trial_cost
if delta > Othen
make the swap permanent
increment good_swaps
else
p := random number in range [0...1]
m := exp( delta / temperature )
if p <mthen /I Metropolis criterion
make the swap permanent
increment good_swaps
end if
end if
exit whengood_swaps > glimit
end for

Figure 1.2Pseudo code of Simulated Annealing Algorithm

Where;

factor - annealing temperature reduction factor
ntemps - number of temperature steps to try;
nlimit - number of trials at each temperature;

glimit - number of succesful trials.

Note that as the temperatuile decreases from iteration to iteration. Temperature

decreases the probabilify of accepting designs with highdr. This means that the
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algorithm is likely to accept designs with higherin the initial solutions, but it is less

likely to accept worse designs in the final solnsioas it converges to the global
minimum. This situation simulates the annealingnaftals as they cool from liquid to
solid states. If the cooling is performed very digwthe metal will solidify in a

crystalline state which is the global minimum oé timternal energy function. On the
other hand, if cooling is performed very rapidlge tmetal will solidfy in a glass state
which is a local minimum of the eergy function.thie temperature drops rapidly, the

acceptance probability for designs with highfegoes to zero.

1.2.3.3 Ant Colony Optimization

A new computational paradigm called ant colonymjation attempts to model some
of the fundamental capabilities observed in theab&ur of ants as a method of
stochastic combinatorial optimization. The fundatakrtheory in an ant colony

optimization algorithm is the simulation of the acatalytic, positive feedback process
exhibited by a colony of ants. This process is nledeby utilizing a virtual substance

called ‘trail’ that is analogous to pheromones usgdants [20]. Each ant colony

optimization move behind in the same direction @&idaomputational structure

outlined by the pseudo-code in Figure 1.3 [21]. &1t starts at a randomly selected
point and must decide which of the available padhsavel. The selection criterion is

based on the intensity of the paths leading tointensity of trail present upon each
path leading to the adjacent points. The path wite most trail has a higher

probability of being chosen.

After each ant selects a path using a decision aresim and travels along it to
another point, a local trail update rule may beliapggo the path. The local update rule
reduces the intensity of trail on the selected fmaththe ant. After subsequent ants
arrive at this point, they will have a slightly sliea probablity of selecting the same

path as other ants before them. This process @opad to promote exploration of the
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search space, which helps prevent early stagnaifothe search and premature
convergence of the solution. Each ant continuesetect paths between points, until
all points have been visited and it arrives baskstarting point. When it turns to first
point, the ant completed a tour.

The combination paths an ant selects to complétairais a solution to the problem,
and is analyzed to determined how to solve thelpmlbetter. The intensity of trail
upon each path in the tour is then adjusted throagiiobal update process. The
magnitude of the global trail adjustment refleciswhwell a particular solution
produced by an ant’s tour solves the problem. Tdhet best solve the problem
receive more trail than those tours that repregeat solutions. In this way, when the
ants begin the next tour, there is a greater piibtyathat an ant will select a path that
was part of a tour that performed well in the p&8hen all of the tours have been
analyzed and the trail levels on the paths haven bgedated, an ant colony
optimization is completed. A new cycles now begamsl entire process is repeated.
Ultimately, all of the ants will choose same tour every cycle, representing the
convergence to a solution. Stopping criterionstgpécally based upon comparing to
best solution from the last cycle to the best dladution found in all previous
cycles. If the comparison shows that the algorithmo longer improving the solution,
then the criteria are reached.

Initialize Trail
Do While (Stopping Criteria Not Satisfied) — Cytleop
Do Until (Each Ant Completes a Tour) — Towolp
Ant Decision Mechanism
Local Trail Update
End Do
Global Trail Update
End Do

Figure 1.3Ant colony optimization algorithm procedure
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1.2.3.4 Harmony Search Algorithm

The new optimization technique Harmony Search #lgorwas conceptualized using
the musical process of searching for a perfece sthharmony. Harmony search (HS)
algorithm uses stochastic random search insteadgraflient search to derive
information. If HS algorithm is compared with otheptimization techniques, It
requires fewer mathematical expression for solapgmization problems. Figure 1.4
shows the design procedure that was used to appl\HE algorithm to optimization

problems [22].

Step 1linitialize Problem

The discrete optimization problem is defined
Step 2Initialize Harmony Memory

HM matrix is randomly filled as many solution vexd@as HMS
Step 3Improvise New Harmony

A new harmony vector is improvised. For selecting walue for each
variable: memory consideration, pitch adjustmermt mdom selection
Step 4Update Harmony Memory

If the new harmony is better than therst harmony in the HM, the new
harmony is added in the HM and the worst harmomex@uded from HM
Step 5Check Termination Criterion

The computation is terminated whentérmination criterion is satisfied.

Figure 1.4Harmony Search Algorithm procedure

Harmony Search algorithm has been succesfully egpto various optimization
problems including function minimization problentise layout of pipe networks, pipe
cpacity design in water supply networks, the triavglsalesman problem, and truss

examples.
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In this thesis, HS algorithm was modified for thendétion minimization and several
grillage system examples from the literature aesented to show its effectiveness and

robustness.

1.3 Grillage systems

Rigidly jointed frames, if loaded perpendiculartteir plane, are called as grillage.
The steel grillage systems as shown in Figured paade out of thin walled members
and they are subjected to out-of-plane loadingoAZontal grid frame consists of two

sets of paralel beams, with one set perpendicolahé other. Each beam may be
simply supported at the ends, a fixed in rotatibow the transverse axis as well or
sometimes also fixed against rotation about thegitadinal axis. If one set of beams
sits directly above the other set then there atg wertical interaction between two

sets at the points of intersection. On the othedhd the two sets of beams are all the
same elevation and if the intersecting joints agel r(welded steel) then each of the
elements is capable of resisting torsional and ingnthoments, by virtue of its end

connections is called a combined beam and tordememnt.

z

Figure 1.5Steel Grillage System
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1.3.1 Using Areas of Grillage Systems

Grillage systems are used in various design otsiral buildings. Some of them are

bridges, deck of the ships, deck and wings of taagand etc.

Figure 1.6Bridge deck

Figure 1.6 Internal structure and lower skin of the aircraft.
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Figure 1.7 A detail model of the midship main deck

1.4 Scope of Work

This thesis is concerned with optimum design oflage systems using harmony
search method. This thesis is organized as followsthe first chapter, a brief
introduction is given to optimization, structurgltonization, an overview on existing
structural optimization methods, and grillage syste Chapter 2 discusses the
fundamentals of harmony search algorithm and sointbeokey aspects of its current
theory. The last part of the chapter, current nuraktest problems are solved by
using harmony search algoritjm and compared withrésults of other optimization
techniques. Chapter 3 deals with laterally suppofeams, design of laterally
supported beams to LRFD, structural optimizatiorgoflage systems including the
definition and selections of design variables. Geag is devoted to optimum design
of several grillage system examples with harmorarade algorithm. In the fifth and

last chapter, some brief discussions and conclasaoa presented.
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CHAPTER 2

HARMONY SEARCH ALGORITHM

2.1 General Information about Harmony Search Method

The Harmony Search (HS) algorithm developed by Getal belongs to the group of
stochastic search techniques [23-25]. It is contpesly simple method that imposes
fewer mathematical requirements. Similar to theepthtochastic search method, it
randomly selects candidate solutions to the opatron problem from a discrete or
continuous set. This selection is checked to findwhether it is feasible or not. If it is
then it is inserted into what is called is a harneearch memory where each candidate
solution is stored in a decending order. The methiber filling the harmony search
memory matrix continuous selection of the new sohg depending on two parameter
either from the harmony memory considering rate a&me pitch adjusting rate.
Harmony Search algorithm is comparatively simpleprapch compared to
mathematical programming techniques and it doesreguire neither initial starting
values for the decision variables nor the derivatinformation of the objective
function and consraints. Thus, the harmony searetihod provides easy programming

among the combinatorial optimization algorithms.

The basic idea behind the harmony search algorighsimilar to the ideas of all meta-
heuristic algorithms that are found in the paradigimatural phenomena. Following
the idea of meta-heuristic algorithms that all seegtable state, the harmony search
method drives its roots in the harmony of a muspmformance which exists in the
nature. Music harmony is a combination of soundssiered pleasing from an

aesthetic point of view. Music harmony in natureikind of beat phenomenon made
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by several sound waves that have different fregeenSince the Greek philosopher
and mathematician Pythagoras (BC 582-BC 497) maaye hresearched this
phenomenon. French composer Philippe Rameau (1688)lestablished the classic

harmony theory.

Harmony search algorithm is based on natural mugiesformance processes that
occur when a musician searches for a better sttatearonony, such as during jazz
operation. Jazz improvation tries to reach musicpléasing a best state harmony as
determined by an aesthetic standard, just as thieniaption process seeks to find a
best solution (global optimum-minimum cost or maxim benefit or efficiency) as
determined by objective function. The pitch of eanlisical instrument determines the
aesthetic quality, just as the objective functiaiue is defined by the set of values
assigned to each design variable. The sounds ftierbaesthetic quality can be
improved through practice after practice, justhesualues for better objective function
evaluation can be improved iteration by iteratioMusical Performance and
Optimization observation process are shown in T&kle Harmony Search algorithm

design procedure is shown in Figure 2.2

Table 2.1Comparison between Musical Performance and Optiiiz#@rocess

COMPARISON PERFORMANCE OPTIMIZATION
FACTOR PROCESS PROCESS
Best State Fantastic Harmony Global Optimum

Estimated by

Aesthetic Standard

Objective Function

Estimated with

Pitches of Instruments

Values ofisaes

Process Unit

Each Practice

Each Iteration
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In harmony search algorithm first, initialize thetionization problem and algorithm
parameters. The discrete size optimization prohikerspecified as objective function

f(x). The number of discrete design variables and the set of available discrete

valuesD, .

D, ={x (), % (2)....,x(K)} for discrete decision variables. (2.1)
Minimize f (x) 2.2)
Subjectto x, OD,, i=123...,N (2.3)

N is the number of variable& is the number of possible values for the variables

The harmony search algorithm uses some randomlgrgesd parameters which are
required to solve optimization problem. These patams are the harmony memory
size (number of solution vectors, HMS), harmony rmagnconsidering rate (HMCR),

pitch adjusting rate (PAR), and termination crid@rimaximum number of searches).

HMCR and PAR parameters are used for improvingtietion vector (HMS).

After initializing the optimization problem and algthm parameters harmony memory
(HM) matrix is randomly filled with as many solutiovectors as harmony memory size

(HMS). Harmony memory matrix has the followingrfor

XX e Xa Xe | = f0d)
X % Xa X | = f00)
H= N
XlHMS-l XZHMsrl Xm/llsrl XIJMS—l s (xS
M M x| = (M)
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The feasible solutions in the harmony memory madre sorted in descending order
according to their objective function value. Harmasearch matrix is initialized by
inserting zero value for each design variable. &lage three rules to select a new value
for a design variable. These rules are memory denaiion, pitch adjustment and

random selection.

Entire Possible Range of Values

—— HM Range
Memory Considerations (E1) - HMCR

Fitch
Adjustments

(E2): PAR

Randomization {(Ez2) - 1-HMCR

Figure 2.1 HM improvisation process

The new harmony improvisation process has shoviigare 2.1 This process is based

on memory considerations 1 pitch adjustments @t and randomization @ In the
memory consideration process, the new value ofiteedesign variablg(x,) for the
HMS}

new vector is selected any discrete value in tleei§ipd HM range{xll, X2, X

The same manner is applied to all other desigralbes. Here, there is a possibility
that the new value can be selected using the HMGRhwaries between 0 and 1.

x. O {x,l X2 i x.HMS} with probability HMCR
Xinew - (24)
with probability (1- HMCR)
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Initialize the optimization problem and algorithrarpmeters
To minimize the objective function ;f(x)

Specification of each decision variable, possilaig range for each desig
variable, harmony memory size (HMS ), harmony mgnuonsidering rate
(HMCR), pitch adjusting rate (PAR), and terminatiterion (maximum
number of searches)

=)

{ Uniform random number]

A 4

Initialize the harmony memory (HM) Sort by values of the
Generate initial harmony (solution vector objective function f(x)
(

L HMCR,PAR ]

\ 4

Improvise a new harmony from Harmony Memory
Based on memory considerations, pitch adjustmerdsandomization

Is the new harmony
better than the harmony
stored it HM?

Update HM

Is the termination
criterian satisfied?

A

(oo ]

Figure 2.2Harmony Search Algorithm Procedure
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If a randomly generated value between 0 to 1 octhescurrent value of the HMCR,
then HS finds notes randomly within the possiblaypble range without considering
harmony memory (HM). For example, a HMCR of 0,80amsethat at the next step, HS
algorithm chooses a variable value from HM with G2@8 probability and undivided
possible range with a 20% probability. A HMCR vahbfel.0 is not adviced, as there is
a chance that the solution will be developed byesinot stored in the HM. A new
value of the design variable is chosen among tlsgydevariables in the discrete set of
harmony memory matrix. This value is then checkedlé¢fine whether it should be
pitch-adjusted. This operation uses pitch adjugptagmeter (PAR) that sets the rate of
pitch-adjustment decision as follows:

Y ith bability of PAR
Is x""to be pitch—adjusted?{ es  with probability 0 } (2.5)

No with probability of (1- PAR)

For computation, the pitch adjustment mechanisdeigsed as shifting to neighboring
values within a range of possible values. If thare six possible values such as
(l2,4,5,6,8), (5) can be moved to neighboring {4} or {6} in the pitcadjusting
process. A PAR of 0.20 means that the HS algoritvithselect a neighboring value
with 20% x HMCR probability. Assuming that the n@wch-adjustment decision for

x"" came out to bees from the test and if the value selected fgF"from the

1
harmony memory is the'kelement in the general discrete set, then thehbeiing

value k+1 or k-1 is taken for new". This process improves the harmony memory for

diversity with a greater change of reaching thégl@ptimum.

After selecting the new values for each designalde the objective function value is
calculated for the newest harmony vector. If tratue is better than the worst harmony
vector in the harmony matrix, it is then includedtihe matrix while the worst one is
taken out of the matrix. The harmony memory masithen sorted in descending order
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by the objective function value. The above steps speated until no further

improvement is possible in the objective function.

2.2 Numerical Applications
The Harmony Search method explained in the prevsmasions is used to determine

the optimum solutions of number of optimization lgems. The results obtained are

compared with other heuristic algorithms.

2.2.1 Example 1.

X
In this example, we refer to following optimizatiproblem. Find; x = {xl}
2

The values ofx, and x, are restricted to the sgt 05,1.0,15,20,25,30, ...,10.0}
It minimizes f(x)=5x2 - 9x,x, +5x2 which is (2.6)
Subjected to g(x) =25-16x,x,< 0 (2.7)

The objective function isf(x ,) which is one of the standard test functions in
optimizations problems [26]. The discrete optimum the example problem is

{15 18", which was verified from the Kuhn-Tucker cormatis.

When applying the HS algorithm to the function, gibke value bounds between 0.5

and 10.0 were used for the design variablesand x, shown in objective function.

The total number of the solution vectors, i.e.,(HMS), is taken as 10. Harmony
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memory considering ratéHMCR) is selected as 0.9 while pitch- adjusting rate is

considered as 0.2 as suggested in [24]. After afckes the initial harmony matrix is

obtained as given in Table 2.2.

Table 2.2Initial harmony search matrix after 10 searches

Row Numberl % X, f(x)
1 3.0 4.5 24.75
2 2.0 4.0 28.00
3 7.5 6.0 56.25
4 4.5 7.0 62.75
5 55 8.0 75.25
6 8.5 55 91.75
7 10.0 9.0 95.00
8 10.0 10.0 100.00
9 55 1.0 106.75
10 1.0 9.0 329.00

As shown in Table 2.2, the HM was initially strued with randomly generated
solution vectors within the bounds. The solutiorctees are sorted according to the
values of the objective function. 112" and 18' search can not find a better solution

than the ones shown in Table 2.2. Howevel! 4darch gives a better harmony search
matrix as shown in Table 2.3. A new harmony veot,()rz (6.0,9.0) was improvised

based on three rules: memory considerations with 720% probability
(09x 08= 072, pitch adjustments with a 0.18% probabili{@.9x 0.2= 018 , gnd

randomization with a 10% probabilit— 09 = 0.1As the objective function value
of the new harmony (6.0,9.0) is 99.00, the new loaaynis included in the HM and
the worst harmony (1.0,90) is excluded from the ,HA& shown in Table 2.3
(Subsequent HM).
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Table 2.3Harmony search matrix after 14 searches

Row Number| X X, f (%)
1 3.0 45 24.75
2 2.0 4.0 28.00
3 7.5 6.0 56.25
4 4.5 7.0 62.75
5 55 8.0 75.25
6 8.5 55 91.75
7 10.0 9.0 95.00
8 6.0 9.0 99.00
9 10.0 10.0 100.00
10 55 1.0 106.75

The new combination does not affect the first roisthee harmony memory matrix.
However, when the harmony search algorithm contnigeseek better combination,
newly found combination changes the harmony makot.instance after 100 searches,

the combinations shown in Table 2.4.

Table 2.4Harmony search matrix after 100 searches

Row Number| X X, f(x)
1 3.0 3.5 11.75
2 3.0 4.0 17.00
3 45 4.0 19.25
4 4.5 4.5 20.25
5 45 3.5 20.75
6 3.0 4.5 24.75
7 2.0 4.0 28.00
8 55 4.5 29.75
9 55 55 30.25
10 55 4.0 33.25

The probability of finding the minimum vectorx’ = (L5, 1.5ncreased with the

number of searches. The results obtained aftesBafches are given in Table 2.5
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Table 2.5Harmony search matrix after 500 searches

Row Number % X, f(x)
1 2.0 1.5 4.25
2 2.5 2.5 6.25
3 3.0 2.5 8.75
4 3.0 3.0 9.00
5 3.0 3.5 11.75
6 35 3.5 12.25
7 2.5 3.5 13.75
8 35 4.0 15.25
9 3.0 1.5 15.75
10 3.0 4.0 17.00

Finally, the combinations given in the first rowtbe harmony search matrix which is
improvised the optimal harmony,= (1.5 15)after 1000 searches, which has a

minimum function. The final results obtained aft®00 searches are given in Table 2.6

Table 2.6Harmony search matrix after 1000 searches

Row Number| X X, f(x)
1 1.5 1.5 2.25
2 2.0 1.5 4.25
3 25 2.5 6.25
4 3.0 2.5 8.75
5 3.0 3.0 9.00
6 2.0 3.0 11.00
7 3.0 3.5 11.75
8 35 3.5 12.25
9 2.5 3.5 13.75
10 3.5 4.0 15.25
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It is interesting to see the functioﬁ"(x) =5x2 —9x,X, +5x> we have optimised and we

give both a contour plot in Figure 2.3 and thremehsional plot in Figure 2.4.

Minimum Point of f(1,1)=2.25

3.5¢ st

100 - -~

Figure 2.4Three Dimensional plot of the functioh(x)= 5xZ —9x,X, +5%5
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2.2.2 Example 2.

The second example selected for application of lagrSearch method is a common
benchmark problem which has nonlinear constraimd abjective function. The
problem is called Himmelblau's function [27]. Th@oblem was adopted to test
Harmony search (HM) algorithm which has an improwedhstraint capability. The

optimization problem, which has five design vareaband fifteen nonlinear constraints,
is as shown in the following.

Minimize 2.8)
f(x) =5.357854 % +0.835689%, X, +37.29323%, — 40792141 '
subjecto:

0<9,(x)<92

(2.9)

90<9,(x)<110

20<0,(x) <25
where

0,(x) =85.334407 0.005685%, x; + 0.000626%, X, —0.002205%;, X,
(2.10)

g,(x) =8051249+ 0.007131%, X, + 0.002995%, X, + 0.002181%>

g,(X) = 9.30096 3+ 0.004702&, X, + 0.001254%, X, + 0.0019085, X,
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and side constrzint s

2.11
78<x, <102 33<x, <45, 27<X, <45 27<x, <45 27<x, <45 (2.11)

Himmelblau [27] used the generalized reduced gradi@RG) method to solve this
problem. The same problem was also tackled by GenGheng [28] using genetic
algorithm (GM) based on both local and global refiees. Prempain and Wu [29] used

an Particle Swarm Optimization (PSO) with stocltastnking to solve this problem.

To apply HS algorithm to the Himmelblau's functiothe five design variables
X, X,, X5, X, @nd X, were assumed to be discrete variables, and tlssilpe values
were taken from the seb 0 {2500,2501,2502, ...,8998,89.99,9000}, which has

6501 discrete values. The ten cases shown in Bableach case with a different set of
HS algorithm parameters (i.e. HMS, HMCR, and PARgre tested for this example.
These parameter values were arbitrarily selectetherpasis of the empirical findings
by Geem.

Table 2.7HS algorithm parameters used for Himmelblau’s Fonc

Cases HMS HMCR PAR f(x)
1 40 0,9 0,45 -30141,52
2 40 0,8 0,40 -30473,91
3 50 0,9 0,30 -30477,98
4 30 0,7 0,40 -30499,07
5 50 0,8 0,35 -30561,30
6 40 0,8 0,30 -30567,34
7 50 0,9 0,40 -30607,43
8 30 0,7 0,35 -30610,69
9 40 0,9 0,30 -30615,84
10 40 0,8 0,45 -30622,36
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For Himmelblau’s function, all the results obtainBdm these methods mentioned
below are listed in Table 2.8. All the results eoenpared against those obtained from
HS algorithm. The total number of solution vectases, the HMS, is 40, and the HMCR

and PAR are 0.8 and 0.45, respectively.

Table 2.80ptimum solution of Himmelblau’s function

Optimum solutions obtained by different methods
Design variables  HS Runarsson[30] GRGJ[27] Gen|[28]
X 77.9500 78.0000 78.6200 81.490(
X, 33.1200 33.0000 33.4400 34.0900
X3 30.3300 29.9953 31.0700 31.2400
X, 44.9600 45.0000 44.1800 42.2000
Xs 35.8300 36.7758 35.2200 34.3700
9,(x) 91.8801 92.0000 91.7927 91.7819
9,(Xx) 98.7220 98.8405 98.8929 99.3184
9;(X) 19.9811 20.0000 20.1316 20.0604
f(X) -30622.36 -30665.539 -30373.949 -30183.576

The range of each design variable has been narrbacthe lover bound value to the

upper bound value which has been stored in HM wittmber of searches. Finally, the

HS heuristic algorithm improvised the optimal harmg f (x) = -30622.36) after

120,000 searches. HS algorithm proves to outpertbemother methods in this

continuous-variable problem.
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2.2.3 Example 3.

The design of welded connection shown in Figureig.faken as third example. A
rectangular beam is designed as a cantilever beaarty a certain load with minimum
overall cost of fabrication. The problem involvesif design variables: the thickness of
the weldh = x,, the length of the welded joimt= x, , the width of the bearh= x, and
the thickness of the beamm=x,. The values ofx, and x, are coded with integer
multiplies of 0.0065 There are fifteen constrains, which involve ashstress(r )
bending stress in the beafu , buckling load on the ba(P, , deflection of the beam

() and side constraints[31].

Figure 2.5Welded beam design

Minimize

f(x) =1.10471x,” x, + 0.04811x, X, (140 + X,) (2)12

35



Subject to:

9,(X)=7(x)-7,,<0 — shear stress (2.13)
9,(X)=0(X) —0,.,<0 — Dbending stress in the beam (2.14)
0;(X)=x —-%,<0 —  side constraint (2.15)

g,(x) =0.10471x,” +0.04811x, x, 140 +Xx,)-5 <0 — side constraint (2.16)

0:(x) =0.125-x, <0 —  side constraint (2.17)
gs(X)=0(x) -9, <0 — end deflection of the beam (2.18)
9,(X)=P-P(x)<0 —  buckling load on the bar (2.19)
Where
. o X "

r(X)=[(r)*+2117 =% +(1)?

(%) J( ) St () (2.20)

. P . MR
T = T =—— 2.21

N 5 (2.21)
M = P(L+22) R—\/X22+(X1+X3)2 (2.22)
2 4 2 '
2 3

_o) XX | X Xt Xy _ 4PL

J=2 +( ) }} o(x) =
{ J2 {12 2 Ex,’x, (2.23)
4013 (EGXXD)
6PL ’ 36 X; | E

g(x) = P.(xX)= 1-— |— 2.24

(x) " e (X) E ( 2L‘/4G) (2.24)
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P=6000lb, L=14in., E=30x10° psi G=12x10° psi

T, —13600psi, o, =30000psi

The ranges for the design variables are given |asns:

01<x,=<20, 0l1<x,<10
01<x,<10, 0l1l<x,<20

o,

m

.= 025in.

(2.25)

(2.26)

To apply HS algorithm to the welded beam, the fiesign variables, x,, X, and x,

were assumed to be discrete variables, and thssile values have shown above. The
ten cases shown in Table 2.9, each case with ereliff set of HS algorithm parameters
(i.,e. HMS, HMCR, and PAR), were tested for this rapée. These parameter values

were arbitrarily selected on the basis of the ergiifindings by Geem and Lee [32].

Table 2.9HS algorithm parameters used for Welded Beam

Cases HMS HMCR PAR f(x)
1 30 0,70 0,40 3.0122
2 35 0,75 0,40 3.0008
3 30 0,70 0,35 2.9749
4 40 0,80 0,40 2.7775
5 50 0,90 0,30 2.7210
6 40 0,80 0,30 2.6977
7 50 0,85 0,40 2.5821
8 40 0,90 0,45 2.4955
9 50 0,9 0,50 2.3710
10 50 0,9 0,40 2.2290

The size of HM matrix (HMS) is taken as (50x5). Th&al number of solution vectors,
i.e. the HMCR and PAR are 0.8 and 0.40, respegtivEhe minimum fuction is

obtained after 1000 searchs.
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The same problem was also solved by Ragsdell anigh$Pi33] using geometric

programming. Deb [34] used a simple Genetic Algonit( GA) with traditional penalty

function to solve the same problem.

Table 2.100ptimum Solution of welded beam design

Optimum solutions obtained by different methods
Design variables HS PSO[29] Ragsdell[33] Deb[34]
X 0.22200 244369 0.245500 0.248900
X, 3.05100 ¥ 319 6.196000 6.173000
X5 9.54500 8291 8.273000 8.178900
X, 0.26300 (1289 0.245500 0.253300
9,(x) -3240.0106 -5741.176933 -5743.82652 -5758.6038
9,(X) -8965.949 -0.0000007 -4.715097 -25%97
05(x) -0.04100 0.000000 0.000000 @ano
9.(x) -2.935552 -3.022954 -3.020288 -2.960
0s(X) -0.097000 -0.119369 -0.120500 -0.92006
s (X) -0.158385 -0.234241 -0.234208 -0.260
9, (x) -2212.05268 -0.000309 -74.276856 -618.818492
f(X) 2.229000 2.380956 2.385937 3436

All the results are compared against those obtafrma HS algorithm. Table 2.10

shows the comparison of the optimum solutions abkthi by Harmony Search

algorithm and other optimization methods as showthe last row of the Table 2.9,

Harmony Search algorithm determined the lowest evdlwr the objective function
compare to other methods. It took 1000 iteratiengach tof (x )= 2.229000.
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CHAPTER 3

OPTIMUM DESIGN OF GRILLAGE SYSTEMS

3.1 Design of Grillage Systems

The design of grillage systems is one of the compralems of steel structures that
practicing engineer has to deal with. Optimum desif grillage systems aims at
finding the cross sectional properties of transwensd longitudinal beams such that the
response of the system under the external loadimgthin the allowable limits defined
in code of practice while the weight or the costhef system is the minimum.

In one of the early studies, the optimum desigrblem is formulated by treating the
moment of inertias of the beams and joint displaa@s as design variables [35].
Stiffness, stress, displacement and size congraame included in the design
formulation. The effect of warping is taken intocaant in the computation of the
stresses in the members. The nonlinear programprigem obtained is solved by the
approximating programming method. The formulatidrthee same design problem is
carried out only treating the cross-sectional & thembers in the grillage system in
[36] where the warping and shear effects are atssidered in the computation of the
response of the system under the external loaddigplacements, stress and size
limitations are included in the design formulatiaccording to ASD-AISC code. The
solution of the optimum design problems achievadguisptimality criteria approach.
In [37], genetic algorithm is used to determine dmimum universal beam sections
(UB) for the members of grillage system from seBatish Standards Universal Beam

sections. The deflection limitations and the allbleastress constraints are considered
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in the formulation of the design problem. The aidwn developed is utilized to
investigate the effect of warping in the optimunsida of grillage systems. Previous
study is extended to cover the determination of dpgmum spacing between both
transverse and longitudinal beams in addition tiinoyom sectional designations in the
grillage system in [38]. The optimum spacing betwéeansverse beams as well as
longitudinal beams is determined both considerind aot taking into account the

effect of warping in the optimum design.

3.2 General formulation of optimum design problem

Structural optimization seeks the selection of giesiariables to achieve, within the
constraints placed on the structural behaviourngoy, or other factors, its goal of
optimality defined by the objective function foregjfied loading or environmental

conditions.

3.2.1 Design variables

The design variables of an optimum structural degpgoblem may consist of the
member sizes, parameters that describe the stalictanfiguration and quantifiable
aspects of the design. The design variables whiehvaried by the optimization

procedure may represent the following propertiethefstructure:

a. the mechanical or physical properties of the maleri
b. the topology of the structure;
c. the geometry or configuration of the structure;

d. the cross-sectional dimensions or the member sizes.
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3.2.2 Constraints

A constraint is a restriction to be satisfied inler for the design to be acceptable. It
may take the form of a limitation imposed direatly variables, or may represent a
limitation on quantities whose dependence on thg&gdevariables cannot be stated

directly.

From mathematical point of view, both design anbaweour constraints may usually

be expressed as a set of inequalities.

9,0 <0 . =120, (3.1)

Where n, is the number of inequality constraints amdis the vector of design

variables.

An equality constraint, which may be either explari implicit, is designated as

h,(x)=0 S j=12mn, (3.2)

where n, is the number of equalities. The constraints maylibear or nonlinear

functions of the design variables. These functimay be explicit or implicit inx and
may be evaluated by analytical or numerical teahesq
3.2.3 Objective function

The objective function is the function whose leastlue tries to reach in an
optimization procedure, and constitutes a basistlier selection of one of several
alternative acceptable designs. Objective funcisogenerally a nonlinear function of
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the variablesx, and it may represent the weight, the cost otcstine, or other criterion
by which some possible designs are preferred tersth

Assuming that all equality can be eliminated, th®imnal design problem can be
formulated mathematically as one of choosing thetoreof design variables such
that

Z=1f(x) - min (3.3)

9,0 <0 . =12, (3.4)

3.3 Optimum Design Problem to LRFD-AISC

The optimum design problem of a typical grillagsteyn shown in Figure 1 where the
behavioral and performance limitations are impleteérfrom LRFD-AISC [39] can be

formulated as follows.

ng re
min W= m> |, (3.5)
k=1 =1
Subject to
J,£9, : j=12,........ P (3.6)
M. =M, : r=>12,....... nm (3.7)
aV, =V, : r=212,........ nm (3.8)
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where M, in Eg. 3.5 is the unit weight of grillage elemdyglonging to group k

selected from W-sections list of LRFD-AISG, is the total number of members in

group k, andng is the total number of groups in the grillage eystl, is the length of

memberi . §; in Eq. 3.6 is the displacement of joint j aijgis its upper bound.

The joint displacements are computed using the ixnalisplacement method for
grillage systems. Eq. 3.7 represents the strerggirement for laterally supported
beam in load and resistance factor design accotdindgRFD-F2. In this inequality g
is the resistance factor for flexure given as B§,is the nominal moment strength and

M is the factored service load moment for member r.

Eq. 3.8 represents the shear strength requiremeloiad and resistance factor design
according to LRFD-F2. In this inequality, @epresents the resistance factor for shear
given as 0.9, \ is the nominal strength in shear ang M the factored service load

shear for member r.

3.4 Matrix Stiffness Method

Matrix analysis of structures is an important sabj® every structural analyst, if
working in civil or mechanical engineering. Matiaxalysis provides a comprehensive
approach to the analysis of a wide variety of $tmat types, and therefore proposes a
major advantage over traditional methods whichrottgfer for each type of structure.
It also provides an efficient means of describirgious steps in the analysis and is
easily programmed for digital computers. As magigut up with large groups of
numbers to be manipulated in a simple manner, dseairices is natural when

performing calculations with a computer.
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Matrix stiffness method is a numerical techniquat thses matrix algebra to analyze
structural systems. It idealizes the system as ssembly of discrete elements

connected to one another at points called nodes.

3.4.1 Global Coordinate System

The specification of the structure geometry is dasmg the Conventional Cartesian
Coordinate System. This coordinate system (Figul® 3 a rectangular coordinate
system (X, Y, Z) which follows the orthogonal righand rule. This coordinate system
may be used to define the joint locations and logdiirections. The translational
degrees of freedom are denoted bydd, d; and the rotational degrees of freedom are
denoted by 4 05 & ds.

The joint displacement vector for joint i in glolzadordinates is;
{D}I :{Hxi Hyi a—zi}
The external load vector for joint i in global cdorates is;

{P}i :{Pxi Py Pzi}
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Figure 3.1Cartesian (Rectangular) Coordinate System

3.4.2 Local Coordinate System

A local coordinate system is associated with eagmber. Each axis of the local
orthogonal coordinate system is also based onigie hand rule. Figure 3.2 shows a
beam member with start joint 'i' and end jointThe positive direction of the local x-
axis is determined by joining 'I' to 'j' and prdjeqg it in the same direction. The right
hand rule may be applied to obtain the positiveaions of the local y and z axes. The
local y and z-axes coincide with the axes of the prnncipal moments of inertia. Note
that the local coordinate system is always rectmgi wide range of cross-sectional
shapes may be specified for analysis. Figure 3@vshhe local axis system(s) for

these shapes.
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Figure 3.3Local axis for different cross-sections
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3.4.3 Relationship Between Global & Local Coordinates

Since the input for member loads can be providethénlocal and global coordinate
system and the output for member end forces igqatim the local coordinate system,
it is important to know the relationship betweere tltocal and global coordinate
systems. This relationship is defined by an angéasuared in the following specified

way. This angle will be defined as the bgig angle.

When the local x-axis is parallel to the global ¥sa as in the case of a column in a
structure, the beta angle is the angle through hwthe local z-axis has been rotated
about the local x-axis from a position of being gil@ and in the same positive

direction of the global Z-axis.

When the local x-axis is not parallel to the glolahaxis, the beta angle is the angle
through which the local coordinate system has betted about the local x-axis from
a position of having the local z-axis paralleltie gglobal X-Z plane and the local y-axis
in the same positive direction as the global Y-akigure 3.4 details the positions for
beta equals O degrees or 90 degrees. When providember loads in the local
member axis, it is helpful to refer to this figum a quick determination of the local

axis system.
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Figure 3.4 Relationship between Global and Local axes

3.4.4 Relationship between member end forces and membena deformations

To form the structure stiffness matrix of individldements must first be constructed.

Consider element r of the grillage system shownwel

&I"

YZ

Figure 3.5End forces of a grillage member
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We drive the local stiffness matrix for a typicadm element with three degree of
freedoms at each end, considering the combinatiditexural and torsional effects.
Subsequently, the global stiffness matrix for thidage system is obtained from an

assemblage of local stiffness matrices.

The relationship between end forces and deformatia@s the following form

M Xi k11 k12 k13 k14 k15 le Usi

M yi Koo Koo Kys Koy Kps Ky | |U yi

I\(/l?z. - Esl :zsz Eas :z34 Eas E% t:m or { F} = [k] {u} r (3.9)
Xj 41 Ra2 43 Rag 45 46 Xj

M vi k51 k52 k53 k54 k55 k56 Uy

sz L Ksi Koo Kes Kes Kes Keg 1Yz

where {F}, is vector of end forces{u}, is vector of end deformations arf] is

member stiffness matrix in local coordinates. Thiatrix can be formed by using
physical definition of the concept of stiffness &gplying a unit deformation in the
direction of the one of the end deformation whikejking the rest equal to zero and
computing the forces develope at the ends of thalmee.

Vector of member end forces in local coordinates ;

{F}, :{'V'xi My Qa My My, sz}T (3.10)

Vector of member end defornations in local coortina

{U}:{Uxi Uyi Uz Uy Uy uzi}T (3.11)

Vector of joint displacements for member r in glbbaordinates;
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{o}, ={6. 6, 4, 6, 6, o, (3.12)

3.4.5 Stiffness Matrix of a both end rigidly connected gillage member

Figure 3.6 Rigidly connected member

X1

M, and M, are the torsional moments acting at the beginrind end of the

member. The relationship between the twisting @f ¢éimds and torsional moment is

shown below.

(—__\__» \\—’\\‘
U M::i. r

lxj

Figure 3.7 Relationship between twisting of the ends and ¢ovai moment

The axial stiffness of the member is given as;

GJ
M, :T(uxi _uxj) ij = _G_LJ(uxi —ij) (3.13)

where G is shear modulus, J is torsional constantigure 3.7 and Figure 3.8 a

member of a rigidly jointed plane frame is showhjeat to member forces.
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Qa r

Figure 3.8 Shear forces and bending moments

The general slope-deflection equations between et moments, shear and end

deformations where obtained as;

4E| 6El 2El 6El
i L yi t E u, + L Uy — E Uy

2El 6El 4E]| 6El
i L yi t E u, + L Uy — E Uy

_ G6EI 12EI 6El 12EI
in —?in+ L3 uzi+ L2 uyj - L3 uZi

6El 12EI 6El 12EI
LZ uyi - L3 uZi - L2 uYJ + L3 uZJ

sz -

Collecting these equations in a matrix form;
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(3.15)

(3.16)

(3.17)



Gl o -8 0
L L
0 4E| 6Ez| 0 2El _6Ez|
L L L L
6El 12ElI 6El 12EI
0 2 3 0 2 T3
K], = L L L L (3.18)
r GJ GJ
-—— 0 0 —_— 0 0
L L
0 2El 6Ez| 0 4E| _GEZI
L L L L
6El 12EI 6El 12E]|
O T T BNERNE

3.4.6 Relationship between the joint displacements and maber end
deformations

If joint forces and displacements are also defimea manner in the global coordinates

system, then the displacement transformation matnxbe obtained.

X

Figure 3.9 Displacements of a grillage member
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At joint i;

U, =6, cosa +6, sina

u, =-6, cosa + 6, sina

uzi = 5zi

Collecting these into matrix form;

3.4.7 Relationship between external loads and member foes

u,| [cosa sina 0O
uy, —-sinag cosa O
u, | | o 0 1
ug| | O 0 0
u, 0 0 O
Uz | | O 0 O

Uy =0y
0 0O O
0 0O O
0 0O O
cosa sina O
-sing cosa O
0 0 1

At joint j;

u, =6,;cosa +6, sina
u, =-6, sina + 6, cosa

{u}, =[8].{D},

1 DD

SRS

=

N

(3.19)

(3.20)

(3.21)

When an elastic structure is subjected to extetnats, it deforms and joint

displacements and member end displacements occthisicase, the work done by the

external loads is equal to the work done by therirdl forces due to the principal of

conservation of the energy. Hence,;
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Where {F}. is the vector of member forcefy}, is the vector of member end

deformations{P}, is vector of external loads af®}, is the joint displacement vector

in the structure.

Remembering thafu}, =[B]r{D}r
17 1 a7
(P o), = S{FY' 81,00}, S
{P}" ={F}'[B], (3.24)
Taking transpose of both sides

{P}=[B]'{F} (3.25)

Overall stiffness matrix is obtained by collectithg equations (3.9), (3.21), and (3.25),
together.

{F}, =[k]{u}, (3.9)
{u}, =[8].{D}, (3.21)

{P}=[B]{F} (3.25)

Substituting (3.21) into (3.9)

{F}, =[] [B].{D}, (3.26)
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Substituting (3.26) into (3.25)

{P}=[8]' [k] [8].{D}, (3.27)
(K]

Where[K] = [B]T [k] [B]r is called overall stiffness of the structure.

First end Second en
. -c|
f g . e h -g¢
g p . C g —-p
Kl=| . . . . . . (3.28)

QO
O
O
(¢}

-c -g -p . -¢c -g P

GJ 4El ., GJ A4El )
a=—coda+—sin‘a b= T cosa sina
c=—6EzI sina d= —Eco§a+£sinza

L L L
( GJ 2El . _GJ .,  4El
=| -—=-"="|cosasina f =—sina+—cosa
L L L
g= GEZI cosa h=—gsin2a+£co§a
L L L
_12E
=5
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3.4.8 Stiffness Matrix of a grillage member with a hingeat the first end in local
coordinate system

Figure 3.10Hinge at the first end

GJ
M, :T(uxi _uxj) M, = _T(uxi _uxj) (3.29)

Since in such members, there will be no transmisefonoments from the first end to

the joint, it is apparent thaM , = Or'he end deformatioru,; represents the end

rotation at hinge. Since this has no relation \ihig joint rotation.

3 3 1 3
M,;=0 - u;= _Zuzi _Euyj +Zuzj (3.30)

_ 3El 3El 3El
Myj - Uy + L Uy; ~ E U, (3.31)

3El 3El 3El
+ J—

Q. :Fuzi | 2 Uy E U, (3.32)
_3El 3Bl  3El
sz _?uzi +Tuyj - Lz uzj (3.33)

Collecting these equations in a matrix form togethigh axial stiffness.
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[ =

The compability matrix for the member becomes

Xi

zi

Vi

Zj

Cc C Cc o Cc
I

mor‘@

o
@

o O O O

‘cosa 0O

o O O B

0 __
3El -
T

o &
3EI -

L2 0

3ElI

= 0

0

3El
2
0

3

L
_sEl

L2

0
_3El

L3

0
_3El

L2
3l

L3

0 0 0]|6,

0 0 0]|9,

cosa sina 0} &,

-sina cosa 0} 6,

0 0 1]|9,
{u}, =[8]{p},

38)

(3.35)

After obtaining member stiffness matrix and membempability matrix, stiffness

method can be applied either by following directratirect way. The contribution of a

member with a hinge at its first end will be obtnby carrying out triple matrix

multiplication.

[]

a 0 -a

0O ¢ -d
=l-a -d f
-b e g

| 0 -c d
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a:G—L‘]cosza b:G—L‘]cosasina

3El 3El
c=" d ==—-sina
L L2
3El GJ 3El
=—-cosa =—“cosa+—sin‘a
L2 L L
GJ 3E| GJ 3E
cosa sina h=—""sin? a+—cosza
L L L L

3.4.9 Stiffness Matrix of a grillage member with a hingeat second end

Figure 3.11Hinge at the second end

83, ) =% -u) @9

M. =
In this caseM ; will be equal to zero. The end deformatiap) represents the hinge

rotation at the second end. Since it is not relevarthe formulation, it is eliminated

from the below equations.

1 3 3

M,=0 - u,= _Euyi —ZuZi +ZUZJ (3.38)
3Bl 3El  3El

My =——u, +—5U,; ——5Uu, (3.39)
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Q;=—7Uu,+ u, — U, (3.40)

sz == uyi - uzi + uzj (3-41)

Collecting these equations in a matrix form togetki¢h axial stiffness;

L L
3EI 3EI 3El
- =z 9 —
3L 3L 3L
_ El El El
- 3El 3El - 3EI
I N
The compability matrix;
‘uy] [cosc sina 0 0 0]6,]
Uy —-sing cosa 0 0 0Of 9
u,|=| O 0O 1 0 0|96, (3.43)
Uy 0 0 O cosa 0} 6,
lu; | | O 0 0 0 1)9,]

Similar to the previous case, after obtaining memdtéfness matrix and member
compability matrix, stiffness method can be applather by following direct or
indirect way. The contribution of the member withhiage at its second end to the
overall stiffness matrix is obtained by carrying the triple matrix multiplication.
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GJ GJ ) 3El
=—"cosa =~ cosasina c="—
L L
d :3—Ezlsina e:S—Ezlcosa f :ﬂcoschEsinza
L L
_(GJ 3EI . _GJ .,  3El
=| —-==""|cosasing h=—"sinag+—cos a
L L L L

3.5 Beams: Laterally Supported

A beam is generally considered to be any membeesidu principally to transverse
gravity loading. A simple beam [Figure 3.12] is paped vertically at each end with
little or no rotational restraint, and downward deacause positive bending moment

throughout the span.

A Ik

Figure 3.12A simple beam

A beam is combination of a tension element andrapcession element. Probably the
large majority of steel beams are used in such @narathat their compression flanges
are restrained against lateral buckling. Should dbmpression flange of a beam be
without lateral support for some distance it wilvie a stress situation similar to that
existing in columns. The longer and slenderer collbacomes the greater the danger
of its buckling for the same loading condition. Wiltee compression flange of a beam
is long and slender enough it may quite possiblgkl®i unless lateral support is
provided [40].
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The most common rolled steel beam cross secti@wrshin Figure 3.13, is called the
W (wide-flange) shape, with much of the materiathe top and bottom flange, where
it is most effective in resisting bending momertteTconcepts of tension membargd
compression members are combined in the treatnera Beam. The compression
element (a flange) that is integrally braced pedpmrar to its plane through its
attachment to the stable tension flange by meanbfefweb, is assumed also to be
braced laterally in the direction to the planela web.

'-I.,'

Figure 3.13W (wide-flange) shape steel beam

b, = the width of flange
t, = the thickness of flange

t,, = the thickness of web

d = overall depth of steel section
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3.5.1 Load and Resistance Factor Design for Laterally Syported
Rolled Beams

The strength requirement for beams in load andstaste factor design according to
LRFD-F2 may be stated;

@M, zM (3.44)

u

Where; ¢, = resistance (i.e., strength reduction) factor fexdre = 0.90

M

n

nominal moment strength

M

u

factored service load moment

For the computation of the nominal moment stren@dh) of a laterally supported
beam, it is necessary first to determine whetherbilam is compact, non-compact or
slender.

3.5.1.1 Compact Sections

In compact sections, local buckling of the compmsdlange and the web does not
occur before the plastic hinge develops in the <meaction. On the other hand in
practically compact sections, the local bucklingcoimpression flange or web may

occur after the first yield is reacted at the ofitare of the flanges.

If A< A, for both the compression flange and the web, gpacity is equal tavl

and shape is compact and nominal moment streMythfor laterally stable compact

sections according to LRFD-F1 may be stated;
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M, =M (3.45)
where;
M, = plastic moment strength =F (3.46)

Z = plastic modulus

F, = yield stress

3.5.1.2 Noncompact Sections

The nominal strengthM  for laterally stable noncompact sections whose
width/thickness ratiosd exactly equal the limitsd, of LRFD-B5.1 is the moment
stregth available when the extreme fiber is atdyitressF,. Because of the residual

stress the strength is expressed as

M,=M, =S(F, -F,) (3.47)

Where; M, is the residual moment that will cuse the extrdiier stress to rise from
its residual stres§, value when there is no applied load acting toyiletd stressF, .

The elastic section modulus equals the moment of inertia divided by the distance

from the neutral axis to the extreme fiber.

3.5.1.3 Partially Compact Sections

The nominal strengtiM, for laterally stable noncompact sections whosettwior
thickness ratiosi are less thanl, but not as low agl, must be linearly interpolated

betweenM, andM ;, as follows according to LRFD-F1.7
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A=A
A=)

r p

M, =M, -(M,-M,)

(3.48)

3.5.1.4 Slender Sections

When the width or thickness ratiok exceed the limitsi, of LRFD-B5.3, the sections

are referred to as slender. In this situation, mamioment strength is expressed as

cr X" cr (3'49)

where A = Db, /(2t,) for I-shaped member flanges and the thicknesghich b andt;

are the width and the thickness of the flange, ahd h/t, for beam web, in which

h=d -2k plus allowance for undersize inside fillet at coegsion flange for rolled I-
shaped sectiond is the depth of the section akdis the distance from outer face of

flange to web toe of fillett,, is the web thicknesdi/t,, values are readily available in

W-section properties tablel, and A, are given in table LRFD-B5.1 of the code as

for compressio flange @)5
A, =083 E
F,-F
A, =376 /E
Fy
for theweb (3.51)
A, =570 E
Fy
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in which E is the modulus of elasticity anEy is the yield stress of steeFr is the

compressive residual stress in flange which isrga® 69MPa for rolled shapes in the

code. It is apparent tha¥l , is computed for the flange and for the web sepbréty

using corresponding values. The smallest among all is taken as thamamMmoment

strength of thaV section under consideration.

3.5.2 Load and Resistance Factor Design for Shear in Reldl Beams

Beams are usually selected on the basis of theilibg capacity and then checked for

the shear capacity.

The shear strength requirement in load and resistiattor design according to LRFD-
F2 may be stated;

@V, =V, (3.52)

Where;

@, = Resistance factor for = 0.90

\Y/

n

Nominal strength in shear

\Y/

u

Required shear strength

Nominal shear strength of a rolled compact and campactW section is computed
as follows as given in LRFD-AISC-F2.2
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h [E
a) Whent— < 245 o shear yielding of the web is the mode of f&)wand the
yw

w

nominal shear strength definition is expressed as;

V, = 06F A, 53)

h E
b) When 245 E = <307 |—, inelastic shear buckling of the web is the mode
Foo T Fow

of failure, and the nominal shear strength defnitis

245 | =
45
V, = 06F,, A, ——— (3.54)

w

E h
c) When 307 /F— <t = 260, elastic shear buckling of the web is the moide
yw

failure, and the nominal shear strength definitgn

452Et 2

Where E is the modulus of elasticity a@w is the yield stress of web stedf,, is

computed from one of the expressions of (3.53)5Bdepending upon the value of

h/t, of theW section under consideration.
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CHAPTER 4

DESIGN EXAMPLES

4.1 Introduction

Harmony search based optimum design algorithm pteden the previous sections is
used to design three grillage systems. The dissedtéiom which the design algorithm
selects the sectional designations for grillage bemis considered to be the complete
set of 272 W-sections starting from W100x19.3 to\1x499mm as given in LRFD-
AISC [39]. The sequence number of each sectiorhe det is used as the design
variable. Hence the terms of the harmony memoryrimmaépresents the sequence

number of W-sections in the discrete set.

4.1.1 3-member Simple Grillage System

50 kM /m

O T 1 I T I°
50 kM
50 kM jm
¥ 50 kM/m
@%Z!,L v. v 4
b eroupl 1 @
+Z 50 kN
" Im "

Figure 4.1Simple Grillage System
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The simple grillage system shown in Figure 4.1eleced as first design example to
demonstrate the steps of harmony search baseduwptiesign algorithm developed.
The dimensions and the loading of the system ayevistin the figure. A36 mild steel is

selected for the design which has the yield stoé&50MPa. The modulus of elasticity
and the shear modulus are selected as 205kRi/amuh 81kN/mrh respectively. The

deflections of joints 1 and 2 are restricted tonid while the other design constraints
are implemented from LRFD-AISC as explained in pras chapter. The members 1
and 3 are considered to be made out of the samectois while the member 2 can be

made from another. Hence there are two variablésamesign problem.

Harmony memory matrix size is taken as 10. Harmamgmory considering rate
(HMCR) is selected as 0.9 while pitch-adjusting rateoissidered as 0.45 as suggested
in [24]. After 11 searches the initial harmony meynmatrix is obtained as given in
Table 4.1. The first row of this matrix has the skeaveight and corresponds to
W530x66 and W410x85 within the W-sections list. Mihese sections, the strength
ratio is 0.83 for group 1 and 0.06 for group 2 wtihe vertical displacements of joints
1 and 2 are 5.1mm which are smaller than their uppands. 1% and 1% searches
can not find better sections than the ones showhaisle 4.1. However 4search
gives a better harmony search matrix as shown loheT@2. Comparing to Table 4.1, it
is apparent that harmony search has found a bitabination of 52 and 218 W-
sections in the list which gives 729.71 kg of weidgrhis combination yields a lighter
grillage system than the last combination of2&ad 264 W-sections in the list.
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Table 4.1Initial harmony search matrix after 11 searches

Nsr(r)}\,t\)/er Group 1| Group 2 V\zﬁght
1 141 113 433.98
2 52 109 450.29
3 80 113 610.61
4 141 215 649.36
5 149 26 656.49
6 116 78 777.02
7 203 153 1694.77
8 221 140 2367.71
9 262 234 2667.59
10 271 263 2840.94

Naturally the last combination is discarded frone tharmony search matrix and the
new combination is included in th& 8ow of the harmony search matrix as shown in
Table 4.2. It should be noticed that newly founchbmation does not affect the first

Table 4.2Harmony search matrix after 14 searches

Eﬁvr;/]ber Group 1| Group 2 V\zﬁght

1 141 113 433.98

2 52 109 450.29

3 80 113 610.61

4 141 215 649.36

5 149 26 656.49

6 52 215 729.71

7 116 178 777.02

8 203 153 1694.77
9 221 140 2367.71
10 262 234 2667.59

row of the harmony matrix. When the harmony seailgorithm is continued a better
combination than the one in the first row of thenthany memory matrix of Table 4.2 is
found. For example, after 1000 searches, the catibms shown in Table 4.3 are

obtained. The sectional designations correspomitetsequence numbers
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Table 4.3Harmony search matrix after 1000 searches

Nljr(r)}vt\)/er Group 1| Group 2 V\zﬁght
1 141 13 317.15
2 141 26 320.19
3 141 8 323.46
4 141 27 329.37
5 141 70 329.78
6 142 13 349.36
7 142 26 353.02
8 142 8 355.67
9 141 17 356.09
10 142 27 361.59

given in the first row are W530x66 for group 1 a"w200x26.6 for group 2 which

yield to a grillage system with a weight of 317Kd The analysis of the system with
these sections result in 5.1 mm vertical displacegmat joints 1 and 2. The strength
ratios computed for these sections are 0.83 fontambers in group 1 and 0.40 for the

member in group 2. These values clearly indicatd trarmony search should be

continued to determine even a better combination.

The harmony search matrix shown in Table 4.4 wiscbbtained after 2000 searches
verifies this fact. The sections correspondinghte least weight of 305.91 kg in this
matrix are W530x66 and W310x21. With these sectitins strength limitation for

group 1 searches to their upper bound of 1 andstiength constraint ratio has the
value of 0.39 in member 2. The vertical displacetman joints 1 and 2 have the values

of 7mm which is less than the upper bound of 10mhis.clear that strength constraints

are dominant in the design problem.
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Table 4.4Harmony search matrix after 2000 searches

NSr%Vt\)/er Group 1| Group 2 V\éi'gg)ht
1 141 41 305.91
2 141 24 308.56
3 141 2 311.42
4 141 13 317.13
5 141 43 320.60
6 141 26 320.80
7 141 8 323.45
8 141 27 329.36
9 141 70 329.77
10 142 41 338.13

The harmony search algorithm is continued to datesraven better combinations. The
results obtained after 7000 and 8000 searches\ae i Tables 4.6 and 4.7.

Table 4.5Harmony search matrix after 7000 searches

Nsr?wvl\)ler Group 1| Group 2 V\Ez}g)ht
1 141 23 299.79
2 141 5 300.01
3 141 11 302.44
4 111 23 303.87
5 111 5 304.08
6 141 41 305.91
7 111 11 306.52
8 141 24 308.56
9 111 41 309.99
10 141 2 311.42
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Table 4.6Harmony search matrix after 8000 searches

Nsr(r)}\,t\)/er Group 1| Group 2 V\zﬁght
1 141 10 293.88
2 111 10 297.96
3 141 23 299.79
4 141 5 300.01
5 120 10 302.04
6 141 11 302.44
7 111 23 303.87
8 111 5 304.08
9 141 41 305.91
10 111 11 306.52

The optimum sectional designations obtained by Hi$% based method for external

loading is shown in Table 4.7.

Table 4.70ptimum Design for 3-member grillage system witlo tgvoups

Maximum| Minimum
Strength| Weight
Group 1 Group 2 (mm) Rato | (kg)

Optimum Sectional Designations | J,.,

W530x60 W250x17.9 7.0 0.54 293.88

It can be noticed in Table 4.7 that sections W580x6d W250x17.9 produces a lighter
grillage with a weight of 299.79 kg obtained af#00 searches. The combinations
given in the first row of the harmony search matwkich is obtained after 8000
searches even gives a lighter system. The sectd@sgjnations for this combination
are W530x60 and W200x15. With these sections tinicaedisplacements of joints 1
and 2 are 7 mm and strength limitation ratios aend 0.54 for members in groups 1
and 2. Further use of harmony search method wittertian 8000 search produces the

same combination. Consequently the solution foumdTable 4.5 represents the
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optimum solution which corresponds to the grillagystem with sections W530x60
selected for members 1 and 3 and W200x15 adoptetbere?.

4.1.2 23-member Grillage System

The grillage system shown in Figure 4.2 has 23 nemivhich are collected in three
groups. It is subjected to unsymmetrical loadingclvhs also shown in the figure. The
vertical displacements of joints 4, 5, 6 and 8 ra®ricted to 25 mm while the yield

stress is taken as 250MPa which is the value fd i8d steel.

A

e e e

Figure 4.223-member grillage system

For this grillage, the ten cases shown in table d&h with a different set of HS
algorithm parameters were tested. These parametnes arbitrarily selected on the
basis of the emprical findings by Geem and Lee .[32je maximum number of

searches was set to 2000 for this example.
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Table 4.8HS algorithm parameters used for 23-member galkgstem

Cases HMS| HMCR PAR| Weight(kg)
1 35 0.85 0.40 5184.3
2 25 0.85 0.35 5121.0
3 35 0.9 0.45 5091.5
4 40 0.95 0.30 5081.7
5 50 0.95 0.25 5065.4
6 40 0.70 0.50 4984.4
7 30 0.8 0.45 4974.6
8 45 0.75 0.20 4892.2
9 30 0.80 0.40 4862.6
10 50 0.9 0.45 4718.4

The size of HM matrix (HMS) is taken as (50x5). Th&al number of solution vectors,
i.e. the HMCR and PAR are 0.9 and 0.45, respegtividie optimum result presented

in Table 4.8 is obtained after 1500 searches oh#tmony search method. However, it

was noticed that the optimum sectional designati@msained the same after 2000

searches. Variation of the minimum weight from 1€rations to 2000 iterations is

shown in Figure 4.3.

10000

9000 A

8000 +

7000 ~

6000 N

5000 e

Weight (kg)

4000 +

3000

2000

1000 ~

0

Number of Generations

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 4.3Variation of mimimum weights during the generatidois23-member
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The discrete set considered in the design is egtemol the complete list of universal
beam sections which has 272 W-sections. After 2@0ations HS algorithm has found
the optimum design as W530x66 for the first grow840x176 for the second and
W150x13.5 for the third group. This combination hesulted in the minimum weight
of 4718.4 kg. Variation of the minimum weight fralf iterations to 2000 iterations is
shown in Figure 4.3.

Table 4.90ptimum Design for 23-member grillage system wittee groups

Optimum Sectional Designations 5 Maximum| Minimum
max | Strength | Weight
(MM |Ratio (kg)

Group 1 Group 2 Group 3

W530x66 W840x176| W150x13.5 24.p 0.79 4718(4

The optimum sectional designations obtained byhdrenony search based method for
the external loading shown in Figure 4.2 is givermable 4.7. It is apparent from the

table that displacement constraints are dominatitardesign problem.
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4.1.3 40-member Grillage System

The grillage system shown in Figure 4.4 has 40 neemlwvhich are collected in two
groups. The external loading is also shown in iyeré. The vertical displacements of
joints 6, 7, 10 and 11 are restricted to 25 mm evthke yield stress is taken as the yield
stress of mild steel which is 250Mpa [40].

200k ., 200N 200k 200kN
y 2 ) 3
1 1 (1)
4 200N 200kN 200k 200k A
2 2 ) (3) 7
1 1 @

Figure 4.440-member grillage system

While the maximum vertical displacement was lessthis upper bound, the strength
ratio for members in the middle portion of the systwas equal to its upper bound of
1. It is interesting to notice that harmony sear#thod came up with the same section
for the both groups due to the symmetry of theesysand its loading.

40-member grillage system were tested to demoedtnatdiscrete search efficiency of
the HS algorithm. The ten cases shown in table,446h with a different set of HS

algorithm parameters were tested. These parametnes arbitrarily selected on the
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basis of the emprical findings by Geem and Lee .[32]Je maximum number of
searches was set to 2000 for this example.

Table 4.10HS algorithm parameters used for 40-member gelsgtem

Cases HMS| HMCR PAR| Weight(kg)
1 30 0.80 0.40 8759.4
2 45 0.75 0.20 8458.6
3 25 0.85 0.35 8382.1
4 35 0.90 0.45 8317.4
5 35 0.85 0.40 8244.1
6 40 0.95 0.30 8020.0
7 30 0.8 0.45 7806.0
8 50 0.95 0.25 7795.9
9 50 0.90 0.45 7738.3
10 40 0.70 0.50 7729.5

The size of HM matrix (HMS) is taken as (40x5). Th&al number of solution vectors,
i.e. the HMCR and PAR are 0.7 and 0.50, respegtiviehie optimum result presented
in Table 4.10 is obtained after 1650 searchesehtdrmony search method. However,
it was noticed that the optimum sectional desigmatiremained the same after 2000
searches. Variation of the minimum weight from 1€rations to 2000 iterations is

shown in Figure 4.5.
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table that displacement constraints are dominatitardesign problem.

Figure 4.5 Variation of minimum weights during the generatidar 40-member

The optimum sectional designations obtained byhdrenony search based method for

the external loading shown in Figure 4.4 is givermable 4.9. It is apparent from the

Table 4.110ptimum Design for 40-member grillage system witio ggroups

Optimum Sectional Designations | ;. Maximum| Minimum
Strength| Weight
Group 1 Group 2 (mm) Ratio (kg)
W150x13.5 W840x176 24.2 0.79 7729.5
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The same system was designed once more by colletttnmembers of the system in
four different groups. The outer and inner longihadl beams are considered to be
group 1 and 2 respectively while the outer and rirtrensverse beams are taken as

group 3 and 4. The optimum solution obtained fos tase is given in Table 4.11. This




system is slightly lighter than the one with twagps. It is apparent from the table that
strength constraints are dominant in the desigrblpm. In this case the harmony

search method selects different W-sections for ggduand 4.

Table 4.120ptimum Design for 40-member grillage system iathr groups

Optimum Sectional Designations Omax Maximum| Minimum
Strength | Weight
Group 1 Group 2| Group 3 Group 4 (mm) Ratio (kg)

W410x46.1 W410x53 W200x15 W1000x2274 22.3 0.99 71223.7
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CHAPTER 5

CONCLUSION

The structural optization field has been continuimgain wide acceptance amongst the
design community because of its applicability itaege range of practical numerical
and structural design problems. Recently, somesdgarchers have been concentrating
on optimization area, realizing the important adage of an optimized structure over a

non-optimized structure in regard of cost- saviaggd with a cost-optimal design.

In the present study the harmony seach algorithsedbaptimization method have
been researched for engineering optization problémshapter 2, several standart test
examples, including two constrained function mimation problems, and one
constrained structural optimization problem (weldesshm design) have been solved
with HS algorithm method. These examples showed It algorithm can easily
obtain minimum value of function with fewer itei@tis at simple numerical problems.
If number of design variables and constraints iases, Harmony search method
requires more iterations for finding the minimumueof function. HS parameters,
HMS, HMCR, and PAR, affect the value of objectivendtion. For the Harmony
search algorithm, high HMCR, especially from 0.7 G®5, contributes excellent
Fortran programming outputs, while PAR and HMS destiate little correlation with
improvement in performance. Geem’s sensitivity gsial of HMCR and PAR is
confirmed in this study.

When numerical results compared with other studespecially Genetic Algorithm
based methods, to show accuracy and performand& ahethod. The results obtained
using the harmony search algorithm may yield bestdutions than those obtained

using current algorithms, such as generalized eiugradient method or genetic

80



algorithm based approaches. The results also shdlsdharmony search method
needs less number of numerical analysis compadtetsimple genetic algorithm based

methods.

The recently developed harmony search method idiegppo the optimum design
problem of grillage systems where the design caimgt are implemented from LRFD-
AISC. The harmony search method is a new stochestidom search based numerical
technique which simulates the musical process afcking for a perfect state of
harmony. This mathematically simple algorithm sgtsharmony search matrix each
row of which consists of randomly selected feasgakitions to the design problem. In
every search step, it searches the entire setr rthidne a local neighborhood of a current
solution vector. It neither needs initial startimglues for the design variables nor a
population of candidate solutions to the desigrbjemm. The results obtained showed
that the harmony search method is powerful anctiefit in finding the optimum
solution of combinatorial structural optimizatioroplems. Harmony Search algorithm

have appeared to be a promising method for optiiizg@roblems.
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