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ABSTRACT 
 

 

OPTIMUM DESIGN OF GRILLAGE SYSTEMS BY USING HARMONY  
 SEARCH ALGORITHM 

 
 

 

 

Erdal, Ferhat 

M.S., Department of Engineering Sciences 

Supervisor: Prof. Dr. M. Polat Saka 

 

 
January 2007, 86 Pages 

 
 
Harmony search method based optimum design algorithm is presented for the grillage 

systems. This numerical optimization technique imitates the musical performance 

process that takes place when a musician searches for a better state of harmony. For 

instance, jazz improvisation seeks to find musically pleasing harmony similar to the 

optimum design process which seeks to find the optimum solution.  

The design algorithm considers the displacement and strength constraints which are 

implemented from LRFD-AISC (Load and Resistance Factor Design-American 

Institute of Steel Construction). It selects the appropriate W (Wide Flange)-sections for 

the transverse and longitudinal beams of the grillage system among 272 discrete W-

section designations given in LRFD-AISC so that the design limitations described in 

LRFD are satisfied and the weight of the system is confined to be minimal. Number of 

design examples is considered to demonstrate the efficiency of the algorithm presented.  

 

Keywords:  Optimum structural design, harmony search algorithm, minimum weight, 

search technique, combinatorial optimization, grillage systems. 
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ÖZ 
 

 

IZGARA S ĐSTEMLER ĐN HARMON Đ ARAMA YÖNTEM Đ KULLANILARAK 
OPTĐMUM BOYUTLANDIRILMASI  

 

 

 

Erdal, Ferhat 

Yüksek Lisans, Mühendislik Bilimleri Bölümü 

Tez Danışmanı: Prof. Dr. M. Polat Saka 

 

 
Ocak 2007, 86 Sayfa 

 
 
 

Optimum tasarım algoritmasına dayalı harmoni arama yöntemi ızgara sistemlerin 

boyutlandırılması için sunulmaktadır. Bu sayısal optimizasyon tekniği, bir müzisyenin 

daha iyi bir müzikal uyum arayışı içinde uygulamaya çalıştığı müzikal performans 

sürecine benzetilmektedir. Örneğin jazz doğaçlaması, optimum çözüme ulaşmaya 

çalışan optimum tasarım sürecine benzer şekilde, müzikal açıdan tatmin edici uyumu 

bulmayı amaçlar. Tasarım algoritması LRFD-AISC (Load and Resistance Factor 

Design-American Institute of Steel Construction) uygulaması sonucu oluşan yer 

değiştirme ve dayanım sınırlamalarını göz önüne almaktadır. Harmoni arama yöntemi 

LRFD-AISC’de verilen 272 farklı W-profili arasından ızgara sistemin enine ve boyuna 

kirişleri için uygun profili seçer böylece LRFD’de tanımlanan tasarım 

sınırlamalarısağlanır ve sistemin ağırlığı minimuma indirgenir. Tasarım örneklerinin 

sayısı sunulan algoritmanın etkinliğini göstermeyi amaçlamaktadır.  

 

Anahtar Kelimeler : Optimum yapısal tasarım, Harmoni arama yöntemi, minimum 

ağırlık, arama tekniği, kombinasyonal optimizasyon, ızgara sistemler 
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CHAPTERS 
CHAPTER 1 

 

 

1 OPTIMIZATION IN GENERAL 
 

 

 

1.1 Introduction to Optimization 
 

Optimization is concerned with achieving the best outcome of a given operation while 

satisfying certain restrictions. Human beings, guided and influenced by their natural 

surroundings, almost instinctively perform all functions in a manner that economizes 

energy or minimizes discomfort and pain. The motivation is to exploit the available 

limited resources in a manner that maximizes output or profit. 

 

Common problems faced in the optimization field are static and dynamic response, 

shape optimization structural systems, reliability-based design and optimum control of 

systems. Any optimization problem requires proper identification of objective 

function, design variables and constraints on problem formulation state. Depending on 

the class of problems and needs, several types of design variables and objective 

functions can be identified. Constraints usually involve physical limitations, material 

failure, buckling load and other response quantities.    

   

The main goal of the optimization process is to find the optimal solution from the 

variety of possible combination of variables defined in the mathematical problem. 

Structural optimization problems are characterized by various objectives and 

constraints which are generally non linear functions of the design variables. Each 
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objective and constraint choice defines a different optimization problem. Optimization 

problems can be expressed in standard mathematical terms as: 

 

                                                    Minimize )(xf                           .                      (1.1) 

Subject to: 

 

0)( ≤xgi         mi ,,1K=                                                                                       (1.2) 

0)( =xh j         lj ,,1K=                                                                                       (1.3) 

 

u
kk

l
k xxx ≤≤         dvnk ,,1K=                                                                               (1.4) 

 

in which, x  is design variable vector, )(xf  is the objective function. In general, the 

constraint functions are grouped into three classes: equality constraints jh , inequality 

constraints ig , and the geometric constraints, l
kx  and u

kx  represent the lower and the 

upper bounds of the design variable kx , m  is the number of design variables used [1-

2]. 

 

The structural optimization design is conditioned by the choice of the objective and 

constrained functions expressed in terms quantities. In most practical work weight of 

the structure is chosen as the objective function, while the maximum displacement 

or/and maximum stress are imposed as the constraints.    

 

1.2 Structural Optimization  
 

The field of structural optimization is a relatively new field undergoing rapid changes 

in methods and focus. Until recently there was a severe imbalance between enormous 

amount of literature on the subject and paucity of applications to practical design 

problems. This imbalance is gradually redressed. There is still no shortage of new 
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publications, but there are also exciting applications of the methods of structural 

optimizations in the civil engineering, machine design, aerospace and other 

engineering fields. As a result of the growing pace of applications, research into 

structural optimization methods is increasingly driven by real-life problems.  

Most engineers who design structures employ complex general-purpose software 

packages for structural analysis. Often engineers do not have any access to the source 

program, and even more frequently they have only scant knowledge of the details of 

the structural analysis algorithms used in this software packages. Another major 

challenge is the high computational cost associated with the analysis of many complex 

real-life problems. In many cases the engineer who has the task of designing a 

structure cannot afford to analyze it more than a handful of times. 

 

Structural optimization when first emerged has attracted a widespread attention among 

designers. It has provided a systematic solution to age-old structural design problems 

which were handled by using trial-error methods or engineering intuition or both. 

Application of mathematical programming methods to structural design problems has 

paved the way in obtaining a design procedure which was capable of producing 

structures with cross-sectional dimensions.  

 

In the structural optimization problems, usually more than one objective is required to 

be optimized, such as, minimum weight which is related to cost, maximum stiffness, 

minimum displacement at specific structural points and minimum structural strain 

energy while all the constraints are satisfied. The constraints provide bonds on 

member stress, deflection, frequency, local buckling, system buckling and dynamic 

response.  In the last four decades vast amount of research work has been conducted in 

structural optimization which covers the field from optimum design of individual 

elements to rigid frames and finite element structures. However, due to the fact that 

mathematical programming techniques deal with continuous design variables, the 

algorithms developed has provided to designer cross-sectional dimensions that were 

neither standart nor practical [3-5].  
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Consequently, the structural optimization has not enjoyed the same popularity among 

the practicing engineers as it has enjoyed among the researchers. As a result, effors 

have been concentrated on the area of rectifying the structural optimization algorithms 

to be able to work with discrete set of variables.    

 

1.2.1 Structural optimization problems 
 

The discrete size optimization of structural system involves arriving at optimum values 

for discrete member design vectors x  that minimizes the objective function )(xf , 

which is subjected to constraints related to the design and the behaviour of the 

structure. Some constraints may not be expressed explicit, but can be numerically 

evaluated using the structural element analysis. General optimization problems can be 

stated mathematically formulation as minimizing the structural weight as follows [6]: 

 

Find a design vector Txandxxxxx iNe
T ∈= ),,,(, 21 K     

 

To minimize )(xf , 

 

For weight optimization;  ∑
=

=
Ne

i
iii xLxf

1

)( γ                                                         (1.5) 

 

Subject to; 

 

L

e
a
iii

Nl

Nixg

,,1

,,10)( ''

K

K

=
=≤−= σσ

                                                            (1.6) 
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L

d
a
kkk

Nl

Nkuuxf

,,1

,,10)( ''

K

K

=
=≤−=

                                                           (1.7) 

UBxLB ≤≤                                                                                                           (1.8) 

 

Where; 

 

:)(xf  the objective function (usually the weight of the structure) 

:T  table of  available discrete size 

:eN  total number of design variables or elements 

:LN  total number of load condition 

:iγ  the specific weight of the i-th element 

:, ii xL the length and the cross sectional area of the i-th element respectively 

:,' a
ii σσ the absolute value of stress under the l-th load condition and allowable stress in 

the i-th element respectively. 

:,' a
kk uu the absolute value of displacement under the l-th load condition at the degree of 

freedom corresponding to the k-th displacement constraint and corresponding 

allowable value respectively. 

:LB the vector of lower bounds on design variables 

:UB the vector of upper bounds on designs variables 

 

1.2.2 Structural Optimization Methods 
 

Structural optimization methods can be divided into two categories called analytical 

methods and numerical methods. While analytical methods emphasize the conseptual 

aspect, numerical methods are concerned with the algorithmical aspect.  
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1.2.2.1 Analytical Methods:  
 

Analytical methods usually employ the mathematical theory of calculus and variational 

methods in studies optimal layouts or geometrical form of structural elements, such as 

columns, beams and plates. These analytical methods are most convenient for such 

fundamental studies of single structural components, but they are not intended to 

handle larger structural systems. The structural design is represented by a number of 

unknown functions and the goal is to find the form of these function. The optimal 

design is theoretically found exactly through the solution of a system of equations 

expressing the conditions for optimality [7]. 

 

Applications based on analytical methods though they sometimes lack the practical 

aspects of realistic structures, is nonetheless basic importance. Analytical solutions 

provide valuable insight and theoretical lower bound optimum against which more 

practical designs may be judged. Problems solved by analytical methods are called 

continuous problems or distributed parameter optimization problems.   

 

1.2.2.2 Numerical Methods: 
 

Numerical methods employ a branch in the field of numerical mathematics called 

mathematical programming. Closed form analytical solution techniques for practical 

optimization problems are difficult to obtain if the number of design variables is more 

than two or the constraint expressions are complex. Therefore numerical methods and 

computer programmings is preferred to solve most optimization problems. The recent 

developments of the numerical methods are closely related to the rapid growth in 

computing capacities. In numerical methods, an initial design for the system is selected 

which is iteratively improved until to further improvements are possible without 

violating any of the constraints. The search is terminated when certain convergence 

criteria are satisfied, indicating that current design is sufficiently close to the optimum. 
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Early numerical optimization algorithms are all in the class of mathematical 

programming methods. The common feature of these methods is that the design 

variables are considered to be continuous and the objective function as well as 

constraints are expressed as functions of these design variables. Most of the techniques 

make use of the gradient vectors of the objective function and constraint which requires 

first derivatives of these functions with respect to the design variables. 

 

Some of the mathematical programming methods, such as linear, quadratic, dynamic, 

and geometric programming algorithms, have been improved to deal with specific 

classes of optimization problems [8]. Although the history of mathematical 

programming is relatively short, there has been a large number of algorithms developed 

for the solution of numerical optimization problems [9]. 

 

Another approach for numerical optimization of structures is based on derivation of a 

set of essential conditions that must be satisfied at the optimum design and 

improvement of an iterative redesign procedure. These methods are called Optimality 

Criteria (OC) methods, which were presented in analytical form by Prager [10] and in 

numerical form by Venkayya [11]. Its principal attraction was that the method was 

easily programmed for the computer, was relatively independent of problem size, and 

usually provided a near-optimum design with a few structural analyses. This last 

feature represented a remarkable improvement over the number of analyses required in 

mathematical programming methods to reach a optimum solution. 

 

In recent years, the range of applicability of structural optimization has been widened 

and much progress has been made in various topics associated with this area. Efficient 

search methods, such as genetic algorithms, simulated annealing, ant colony 

optimization and harmony search, for derivative calculation have been developed, and 

problems with complex analysis model and various types of constraints and objective 

function have been investigated. The important progress in these advanced topics 
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emphasizes the need for a deeper insight and understanding of the fundamentals of 

structural optimization.  

 

1.2.2.2.1 Mathematical Programming 
 

Mathematical programming can be subdivided into linear programming and non-linear 

programming. The major characteristic of linear programming is that the objective 

functions and the associated constraints are expressed as a linear combination of the 

design variables. To apply linear programming techniques to structural optimization, 

the relationship between the objective function and the constraints are to be expressed 

as linear functions of design variables. On the other hand if they are nonlinear, they 

have to be linearized. However, when a linear relationship is used to model a non-

linear structural response, errors are inevitable. 

 

Non-linear mathematical programming is developed for non-linear unconstrained 

optimization problems. Mathematical non-linear programming algorithms require 

either differentiability or gradient information of both the objective function and 

constraints with respect to the design variables. Moreover, they are unsuited for 

problems where the design space is discontinuous, as the derivatives of the objective 

function and constraints become singular across the boundary of discontinuity. The 

product of optimisation with these methods is mostly contingent to the starting point of 

optimisation process due to the locating the relative optimum closest to the initial 

estimate of the optimum design. 

 

The well-known Kuhn-Tucker conditions provide the necessary conditions for 

optimum solutions. The calculation of gradients and the solution of the correlated non-

linear equations prohibit the direct application of the Kuhn-Tucker conditions for 

structural optimisation problems, so direct application of the Kuhn-Tucker conditions 

is extremely difficult for structure problems [12-13]. 
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1.2.2.2.2 Optimality Criteria 
 

The Optimality Criteria methods are developed from indirectly applied the  Kuhn-

Tucker conditions of non-linear mathematical programming combined with 

Lagrangian multipliers. The Kuhn-Tucker conditions provide the necessary 

requirements for an optimum solution and the Lagrangian multipliers are used to 

include the associated constraints. After deriving the necessary condition, a recursive 

relationship is developed iterative use of which convergence to the near optimum 

solution. 

 

Optimality Criteria methods are based on continuous design variable assumption. For 

the case where discrete variables are desired using Optimality Criteria methods a two-

step procedure is typically used. First, the optimisation problem is solved using 

continuous variables. Second, a set of discrete values is estimated by matching the 

values obtained from the continuous solution. Optimality Criteria methods use a single 

cross- sectional property of a structural member as the design variable. All other cross-

sectional properties are expressed as a function of the selected design variable [14-15].  

 

1.2.3 Stochastic search methods 
 

A class of optimization algorithms developed recently is known as stochastic search 

algorithms. These algorithms employ the generation of random numbers as they search 

for the optimum. Although they do not require the evaluation of gradients of the 

objective and constraint functions, they typically require many more function 

evaluations than do the gradient-based nonlinear programming algorithms. Unlike 

nonlinear algorithms, stochastic search algorithms may be applied to optimization 

problems involing discrete variables.  
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1.2.3.1 Genetic algoritms 
 

The genetic algorithm is a search procedure inspired by principles from natural 

selection and genetics. Genetic algorithm is used to improve the designs after stochastic 

generation of initial population of designs. Genetic algorithm uses techniques derived 

from biology, and rely on the principle of Darwin’s theory of survival of the fittest. 

Genetic algorithm basically consists of three parts [16]: 

 

(1) coding and decoding variables into strings; 

(2) evaluating the fitness of each solution string; 

(3) applying genetic operators to generate the next generation of solution strings.  

 

Genetic algorithms are implemented with population of individuals, coded as bit strings 

of finite lengths, each of which represents a search point in the space of potential 

solutions to a given optimization problem. Using transformations analogous to 

biological reproduction and evolution over generations creates chromosamal strings 

that favorably adapt to the changing environment. The chromosamal structures, are 

changed through reproduction, a crossover of genetic information exchange and 

occasional mutation. The individuals that judged most fit are given opportunities of 

producing larger number of offsprings and crossed with other fit members of the 

population. Combination of the most suitable characteristics of the mating members 

results in the spreading of good characteristics throughout the population and the next 

genaration population. If genetic algorithm is implemented properly, successive 

generation produces better values of design variables and the population will converge 

to optimal solution.   

 

Genetic algorithms are developed by applying the principal of survival of the fittest 

into a numerical search method. Genetic algorithms are used as a function optimizes 

particularly when the variables have discrete values. They, first select an initial 

population where each individual is constructed by bringing together the total number 
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of variables in a binary coded form. This code has the most importance of two, that 

means each character can take either the symbol of  ‘0’ or ‘1’. The binary code for each 

design dasign variable represents the sequence number of this variable in the discrete 

set. For example, consider the following simple mathematical maximization problem 

with 321, xandxx  being its design variables. 

 

0.25.0

0.20

0.20

;32),,(max

3

2

1

321321

≤≤
≤≤
≤≤

+−=

x

x

x

xxxxxxf

                                                                    (1.9) 

 

If we resolve that six bits are enough to provide a desired degree of accuracy in the 

representation of each design variable separately, encoded variables are decoded 

through normalization of the corresponding binary integer by .126 −  Our individuals 

would, therefore, contain three gens and consist of 18 binary digits, representing the 

arrangement of the codings for 321, xandxx . By that way, while substring ‘111111’ 

represents a value of 2.0 for all variables, substring ‘000000’ corresponds to a real 

value of 0 for the variables 21 xandx , 0.5 for the variable 3x . 

A genetic algorithm initiates the search for finding the optimum solution in a discrete 

space by first selecting the number of individuals randomly and collecting them 

together to constitute the generation of initial population. In each cycle of generation, 

simple genetic algorithm has the individuals passed through selection, mating, 

crossover and mutation operations to create next generation, which comprise more 

adapted individuals than the previous has. This process iterates over a fixed number of 

generation or until a stopping criterion. Genetic algorithm pseudo-code has shown in 

Figure 1.1 [17].    
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     L is choromosome length 

     N is population size 

     p[i] is probability vector 

     1. Initialize probability vector 

         For i := 1 to L do p[i] := 0.5; 

     2. Generate two individuals from the vector 

          a:= generate (p); 

          b:= generate (p); 

     3. Let them compete 

         Winner, Loser := evaluate (a,b); 

     4. Update the probability vector toward the better one 

         For i := 1 to L do 

         if  winner [i]  ! = loser [i] then 

         if  winner [i] = 1 then p[i] += 1/N 

         else p[i] -= 1/N 

     5. Check if the probability vector has converged  

         for i := 1 to L do 

         if p[i] > 0 and p[i] < 1 then go to step 2 

    6. P represents the final solution 

  

Figure 1.1 Pseudo code of Genetic Algorithm 

 

1.2.3.2 Simulated Annealing 
 

The simulated annealing algorithm is a random-search technique which exploits an 

analogy between the way in which a metal cools and freezes into a minimum energy 

crystalline structure (the annealing process) and the search for a minimum in a more 

general system. It forms the basis of an optimization technique for combinatorial and 

other problems.  
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Simulated annealing (SA) was developed in 1983 to deal with highly nonlinear 

problems [18]. The development of the simulated annealing method was motivated by 

studies in statistical mechanics which deal with the equilibrium of large number of 

atoms in solids and liquids at a given temperature. During solidification of metals or 

formation of crystals, for example, a number of solid states with different internal 

atomic or crystalline structure that correspond to different energy levels can be 

achieved depending on the rate of cooling. If the system is cooled too rapidly, it is 

likely that the resulting solid state would have a solid margin of stability because the 

atoms will assume relative positions in the lattice structure to reach an energy state 

which is only locally minimal. In order to reach a more stable, globally minimum 

energy state, the process of annealing is used in which the metal is reheated to a high 

temperature and cooled slowly, allowing the atoms enough time to find positions that 

minimize a steady state is reached. It is this characteristic of the annealing process 

which makes it possible to achieve near global minimum energy states. 

 

Simulated annealing algorithm’s major advantage is an ability to avoid becoming 

trapped in local minima. The algorithm modifies the serial random search algorithm so 

that designs with higher objective function f  (assuming a minimisation problem) are 

occasionally accepted.    

 

In order to generate annealing behaviour, the algorithm process is arranged. First, a 

starting temperature T  and a starting feasible design variable *x  are obtained. Then, a 

new candidate design variable x  close to *x  generate randomly and candidate variable 

is analyzed. If it is feasible and )( *xf > )(xf , let xx =* . If the candidate design 

variable is feasible but )(xf  >  )( *xf , then a random number r  is generated. If  r < 

P   

where; 

                             






 −=
T

xfxf
P

)()( *

                                                              (1.10) 
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If  *x  has not changed for several iterations, search is stopped; otherwise update 

TT α=   where α  is a number less than one, and a new candidate variable is 

generated. The procedure for SA algorithm is as follows in Figure 1.2 [19]. 

 

 
initialize temperature 
for  i := 1...ntemps do 
            temperature := factor * temperature 
for  j := 1...nlimit do 
            try swapping a random pair of points 
            delta := current_cost - trial_cost 
       if  delta > 0 then 
           make the swap permanent 
           increment good_swaps 
       else 
             p := random number in range [0...1] 
             m := exp( delta / temperature ) 
       if  p < m then                    // Metropolis criterion 
          make the swap permanent 
          increment good_swaps 
       end if 
       end if 
       exit when good_swaps > glimit 
       end for 
 

  

Figure 1.2 Pseudo code of Simulated Annealing Algorithm 

 

Where; 

factor     - annealing temperature reduction factor; 

ntemps  - number of temperature steps to try; 

nlimit    - number of trials at each temperature; 

glimit    - number of succesful trials.  

 

Note that as the temperature T  decreases from iteration to iteration. Temperature 

decreases the probability P  of accepting designs with higher f . This means that the 
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algorithm is likely to accept designs with higher f  in the initial solutions, but it is less 

likely to accept worse designs in the final solutions as it converges to the global 

minimum. This situation simulates the annealing of metals as they cool from liquid to 

solid states. If the cooling is performed very slowly, the metal will solidify in a 

crystalline state which is the global minimum of the internal energy function. On the 

other hand, if cooling is performed very rapidly, the metal will solidfy in a glass state 

which is a local minimum of the eergy function. If the temperature drops rapidly, the 

acceptance probability for designs with higher f  goes to zero. 

 

1.2.3.3 Ant Colony Optimization 
 

A new computational paradigm called ant colony optimization attempts to model some 

of the fundamental capabilities observed in the behaviour of ants as a method of 

stochastic combinatorial optimization. The fundamental theory in an ant colony 

optimization algorithm is the simulation of the autocatalytic, positive feedback process 

exhibited by a colony of ants. This process is modelled by utilizing a virtual substance 

called ‘trail’ that is analogous to pheromones used by ants [20]. Each ant colony 

optimization move behind in the same direction a basic computational structure 

outlined by the pseudo-code in Figure 1.3 [21]. An ant starts at a randomly selected 

point and must decide which of the available paths to travel. The selection criterion is 

based on the intensity of the paths leading to the intensity of trail present upon each 

path leading to the adjacent points. The path with the most trail has a higher 

probability of being chosen.  

 

After each ant selects a path using a decision mechanism and travels along it to 

another point, a local trail update rule may be applied to the path. The local update rule 

reduces the intensity of trail on the selected path by the ant. After subsequent ants 

arrive at this point, they will have a slightly smaller probablity of selecting the same 

path as other ants before them. This process is purposed to promote exploration of the 
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search space, which helps prevent early stagnation of the search and premature 

convergence of the solution. Each ant continues to select paths between points, until 

all points have been visited and it arrives back its starting point. When it turns to first 

point, the ant completed a tour.  

The combination paths an ant selects to complete a tour is a solution to the problem, 

and is analyzed to determined how to solve the problem better. The intensity of trail 

upon each path in the tour is then adjusted through a global update process. The 

magnitude of the global trail adjustment reflects how well a particular solution 

produced by an ant’s tour solves the problem. Tours that best solve the problem 

receive more trail than those tours that represent poor solutions. In this way, when the 

ants begin the next tour, there is a greater probability that an ant will select a path that 

was part of a tour that performed well in the past. When all of the tours have been 

analyzed and the trail levels on the paths have been updated, an ant colony 

optimization is completed. A new cycles now begins and entire process is repeated. 

Ultimately, all of the ants will choose same tour on every cycle, representing the 

convergence to a solution. Stopping criterions are typically based upon comparing to 

best solution from the last cycle to the best global solution found in all previous 

cycles. If the comparison shows that the algorithm is no longer improving the solution, 

then the criteria are reached.  

 

Initialize Trail 

Do While (Stopping Criteria Not Satisfied) – Cycle Loop 

      Do Until (Each Ant Completes a Tour) – Tour Loop 

            Ant Decision Mechanism 

            Local Trail Update 

      End Do 

      Global Trail Update 

End Do 

  

Figure 1.3 Ant colony optimization algorithm procedure 
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1.2.3.4 Harmony Search Algorithm 
 

The new optimization technique Harmony Search algorithm was conceptualized using 

the musical process of searching for a perfect state of harmony. Harmony search (HS) 

algorithm uses stochastic random search instead of gradient search to derive 

information. If HS algorithm is compared with other optimization techniques, It 

requires fewer mathematical expression for solving optimization problems. Figure 1.4 

shows the design procedure that was used to apply the HS algorithm to optimization 

problems [22].     

 

 

Step 1 Initialize Problem 

            The discrete optimization problem is defined 

Step 2 Initialize Harmony Memory 

            HM matrix is randomly filled as many solution vectors as HMS  

Step 3 Improvise New Harmony 

            A new harmony vector is improvised. For selecting one value for each 

variable: memory consideration, pitch adjustment and random selection                      

Step 4 Update Harmony Memory 

            If the new harmony is better than the worst harmony in the HM, the new 

harmony is added in the HM and the worst harmony is excluded from HM 

Step 5 Check Termination Criterion 

            The computation is terminated when the termination criterion is satisfied.  

  

Figure 1.4 Harmony Search Algorithm procedure 

 

Harmony Search algorithm has been succesfully applied to various optimization 

problems including function minimization problems, the layout of pipe networks, pipe 

cpacity design in water supply networks, the travelling salesman problem, and truss 

examples. 
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In this thesis, HS algorithm was modified for the function minimization and several 

grillage system examples from the literature are presented to show its effectiveness and 

robustness.  

 

1.3 Grillage systems 
 

Rigidly jointed frames, if loaded perpendicular to their plane, are called as grillage. 

The steel grillage systems as shown in Figure 1, are made out of thin walled members 

and they are subjected to out-of-plane loading. A horizontal grid frame consists of two 

sets of paralel beams, with one set perpendicular to the other. Each beam may be 

simply supported at the ends, a fixed in rotation about the transverse axis as well or 

sometimes also fixed against rotation about the longitudinal axis. If one set of beams 

sits directly above the other set then there are only vertical interaction between two 

sets at the points of intersection. On the other hand, if the two sets of beams are all the 

same elevation and if the intersecting joints are rigid (welded steel) then each of the 

elements is capable of resisting torsional and bending moments, by virtue of its end 

connections is called a combined beam and torsion element.  

 

 

Figure 1.5 Steel Grillage System 
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1.3.1 Using Areas of Grillage Systems 
 

Grillage systems are used in various design of structural buildings. Some of them are 

bridges, deck of the ships, deck and wings of the plane and etc. 

 

 

 

 

Figure 1.6 Bridge deck 

 

 

 

Figure 1.6 Internal structure and lower skin of the aircraft. 
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Figure 1.7 A detail model of the midship main deck 

 

1.4 Scope of Work 
 

This thesis is concerned with optimum design of grillage systems using harmony 

search method. This thesis is organized as follows. In the first chapter, a brief 

introduction is given to optimization, structural optimization, an overview on existing 

structural optimization methods, and grillage systems. Chapter 2 discusses the 

fundamentals of harmony search algorithm and some of the key aspects of its current 

theory. The last part of the chapter, current numerical test problems are solved by 

using harmony search algoritjm and compared with the results of other optimization 

techniques. Chapter 3 deals with laterally supported beams, design of laterally 

supported beams to LRFD, structural optimization of grillage systems including the 

definition and selections of design variables. Chapter 4 is devoted to optimum design 

of several grillage system examples with harmony search algorithm. In the fifth and 

last chapter, some brief discussions and conclusions are presented.   
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CHAPTER 2 
 

 

2 HARMONY SEARCH ALGORITHM 
 

 

 

2.1 General Information about Harmony Search Method 
 
The Harmony Search (HS) algorithm developed by Geem et al belongs to the group of 

stochastic search techniques [23-25]. It is comparatively simple method that imposes 

fewer mathematical requirements. Similar to the other stochastic search method, it 

randomly selects candidate solutions to the optimization problem from a discrete or 

continuous set. This selection is checked to find out whether it is feasible or not. If it is 

then it is inserted into what is called is a harmony search memory where each candidate 

solution is stored in a decending order. The method after filling the harmony search 

memory matrix continuous selection of the new solutions depending on two parameter 

either from the harmony memory considering rate and the pitch adjusting rate. 

Harmony Search algorithm is comparatively simple approach compared to 

mathematical programming techniques and it does not require neither initial starting 

values for the decision variables nor the derivative information of the objective 

function and consraints. Thus, the harmony search method provides easy programming 

among the combinatorial optimization algorithms. 

 

The basic idea behind the harmony search algorithm is similar to the ideas of all meta-

heuristic algorithms that are found in the paradigm of natural phenomena. Following 

the idea of meta-heuristic algorithms that all seek a stable state, the harmony search 

method drives its roots in the harmony of a musical performance which exists in the 

nature. Music harmony is a combination of sounds considered pleasing from an 

aesthetic point of view. Music harmony in nature is a kind of beat phenomenon made 
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by several sound waves that have different frequencies. Since the Greek philosopher 

and mathematician Pythagoras (BC 582-BC 497) many have researched this 

phenomenon. French composer Philippe Rameau (1683-1764) established the classic 

harmony theory.  

 

Harmony search algorithm is based on natural musical performance processes that 

occur when a musician searches for a better state of harmony, such as during jazz 

operation. Jazz improvation tries to reach musically pleasing a best state harmony as 

determined by an aesthetic standard, just as the optimization process seeks to find a 

best solution (global optimum-minimum cost or maximum benefit or efficiency) as 

determined by objective function. The pitch of each musical instrument determines the 

aesthetic quality, just as the objective function value is defined by the set of values 

assigned to each design variable. The sounds for better aesthetic quality can be 

improved through practice after practice, just as the values for better objective function 

evaluation can be improved iteration by iteration. Musical Performance and 

Optimization observation process are shown in Table 2.1. Harmony Search algorithm 

design procedure is shown in Figure 2.2 

 

 

Table 2.1 Comparison between Musical Performance and Optimization Process 

 

COMPARISON 

FACTOR 

PERFORMANCE 

PROCESS 

OPTIMIZATION 

PROCESS 

Best State Fantastic Harmony Global Optimum 

Estimated by Aesthetic Standard Objective Function 

Estimated with Pitches of Instruments Values of Variables 

Process Unit Each Practice Each Iteration 
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In harmony search algorithm first, initialize the optimization problem and algorithm 

parameters. The discrete size optimization problem is specified as objective function 

)(xf . The number of discrete design variables )( ix  and the set of available discrete 

values iD . 

 

{ })(,),2(),1( KxxxD iii K=  for discrete decision variables.                                 (2.1) 

 

Minimize )(xf                                                                                                      (2.2) 

 

Subject to NiDx ii ,,3,2,1, K=∈                                                                   (2.3) 

 

N  is the number of  variables; K  is the number of possible values for the variables. 

 

The harmony search algorithm uses some randomly generated parameters which are 

required to solve optimization problem. These parameters are the harmony memory 

size (number of solution vectors, HMS), harmony memory considering rate (HMCR), 

pitch adjusting rate (PAR), and termination criterion (maximum number of searches). 

HMCR and PAR parameters are used for improving the solution vector (HMS). 

 

After initializing the optimization problem and algorithm parameters harmony memory 

(HM) matrix is randomly filled with as many solution vectors as harmony memory size 

(HMS).  Harmony memory matrix has the following form 
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The feasible solutions in the harmony memory matrix are sorted in descending order 

according to their objective function value. Harmony search matrix is initialized by 

inserting zero value for each design variable. There are three rules to select a new value 

for a design variable. These rules are memory consideration, pitch adjustment and 

random selection. 

 

 

 

Figure 2.1 HM improvisation process 

 

The new harmony improvisation process has shown in Figure 2.1 This process is based 

on memory considerations (E1), pitch adjustments (E2) and randomization (E3). In the 

memory consideration process, the new value of the first design variable )( '
1x  for the 

new vector is selected any discrete value in the specified HM range { }HMSxxx 1
2
1

1
1 ,,, K . 

The same manner is applied to all other design variables. Here, there is a possibility 

that the new value can be selected using the HMCR,which varies between 0 and 1. 

 

{ }

( )














−∈

∈
=

HMCRyprobabilitwithDx

HMCRyprobabilitwithxxxx
x

ii

HMS
iiii

new
i

1

..,.........,

'

21'

                   (2.4) 
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Figure 2.2 Harmony Search Algorithm Procedure  

Initialize the optimization problem and algorithm parameters 
To minimize the objective function ;f(x) 

Specification of each decision variable, possible value range for each design 
variable, harmony memory size (HMS ), harmony memory considering rate 
(HMCR), pitch adjusting rate (PAR), and termination criterion (maximum 

number of searches) 

Initialize the harmony memory (HM) 
Generate initial harmony (solution vector) 

Sort by values of the 
objective function f(x) 

Improvise a new harmony from Harmony Memory 
Based on memory considerations, pitch adjustments and randomization 

Update HM 

Stop 

Uniform random number 

HMCR,PAR 

Is the new harmony 
better than the harmony 

stored in HM? 

Is the termination 
criterian satisfied? 
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If a randomly generated value between 0 to 1 occurs the current value of the HMCR, 

then HS finds notes randomly within the possible playable range without considering 

harmony memory (HM). For example, a HMCR of 0,80 means that at the next step, HS 

algorithm chooses a variable value from HM with a 80% probability and undivided 

possible range with a 20% probability. A HMCR value of 1.0 is not adviced, as there is 

a chance that the solution will be developed by values not stored in the HM. A new 

value of the design variable is chosen among the design variables in the discrete set of 

harmony memory matrix. This value is then checked to define whether it should be 

pitch-adjusted. This operation uses pitch adjusting parameter (PAR) that sets the rate of 

pitch-adjustment decision as follows:  

 

( )






−
−

PARofyprobabilitwithNo

PARofyprobabilitwithYes
adjustedpitchbetoxIs new

i 1
?        (2.5) 

 

For computation, the pitch adjustment mechanism is devised as shifting to neighboring 

values within a range of possible values. If there are six possible values such as 

( ) ( )5,8,6,5,4,2,1  can be moved to neighboring {4} or {6} in the pitch adjusting 

process. A PAR of 0.20 means that the HS algorithm will select a neighboring value 

with 20%  x HMCR probability. Assuming that the new pitch-adjustment decision for 

new
ix  came out to be yes from the test and if the value selected for new

ix from the 

harmony memory is the kth element in the general discrete set, then the neighboring 

value k+1 or k-1 is taken for new new
ix . This process improves the harmony memory for 

diversity with a greater change of reaching the global optimum. 

 

After selecting the new values for each design variable the objective function value is 

calculated for the newest harmony vector. If this value is better than the worst harmony 

vector in the harmony matrix, it is then included in the matrix while the worst one is 

taken out of the matrix. The harmony memory matrix is then sorted in descending order 
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by the objective function value. The above steps are repeated until no further 

improvement is possible in the objective function. 

 

2.2 Numerical Applications 

 

The Harmony Search method explained in the previous sections is used to determine 

the optimum solutions of number of optimization problems. The results obtained are 

compared with other heuristic algorithms. 

 

2.2.1 Example 1.    
 

In this example, we refer to following optimization problem. Find;  








=
2

1

x

x
x  

The values of  1x  and 2x  are restricted to the set { }0.10,,0.3,5.2,0.2,5.1,0.1,5.0 K   

 

It minimizes  ( ) 2
221

2
1 595 xxxxxf +−=  which is                                                 (2.6) 

 

Subjected to   ( ) 01625 21 ≤−= xxxg                                                                    (2.7) 

 

The objective function is )(xf , which is one of the standard test functions in 

optimizations problems [26]. The discrete optimum to the example problem is 

{ }T5.15.1 , which was verified from the Kuhn-Tucker conditions.  

 

When applying the HS algorithm to the function, possible value bounds between 0.5 

and 10.0 were used for the design variables, 1x  and 2x  shown in objective function. 

The total number of the solution vectors, i.e., the( )HMS , is taken as 10. Harmony 
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memory considering rate ( )HMCR  is selected as 0.9 while pitch- adjusting rate is 

considered as 0.2 as suggested in [24]. After 10 searches the initial harmony matrix is 

obtained as given in Table 2.2.  

 

Table 2.2 Initial harmony search matrix after 10 searches 

 
Row Number 1x  2x  )(xf  

1 3.0 4.5 24.75 
2 2.0 4.0 28.00 
3 7.5 6.0 56.25 
4 4.5 7.0 62.75 
5 5.5 8.0 75.25 
6 8.5 5.5 91.75 
7 10.0 9.0 95.00 
8 10.0 10.0 100.00 
9 5.5 1.0 106.75 
10 1.0 9.0 329.00 

 

As shown in Table 2.2, the HM was initially structured with randomly generated 

solution vectors within the bounds. The solution vectors are sorted according to the 

values of the objective function. 11th, 12th and 13th search can not find a better solution 

than the ones shown in Table 2.2. However, 14th search gives a better harmony search 

matrix as shown in Table 2.3. A new harmony vector )0.9,0.6(' =ix  was improvised 

based on three rules: memory considerations with a 72.0% probability 

)72.08.09.0( =× , pitch adjustments with a 0.18% probability )18.02.09.0( =× , and 

randomization with a 10% probability )1.09.01( =− . As the objective function value 

of the new harmony )0.9,0.6(  is 99.00, the new harmony is included in the HM and 

the worst harmony )0.9,0.1(  is excluded from the HM, as shown in Table 2.3 

(Subsequent HM). 
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Table 2.3 Harmony search matrix after 14 searches 
 
 

 

 

 

The new combination does not affect the first row of the harmony memory matrix. 

However, when the harmony search algorithm continued to seek better combination, 

newly found combination changes the harmony matrix. For instance after 100 searches, 

the combinations shown in Table 2.4.  

 
Table 2.4 Harmony search matrix after 100 searches 

 

 

 

The probability of finding the minimum vector, )5.1,5.1(* =x  increased with the 

number of searches. The results obtained after 500 searches are given in Table 2.5  

 

 

Row Number 1x  2x  )(xf  
1 3.0 4.5 24.75 
2 2.0 4.0 28.00 
3 7.5 6.0 56.25 
4 4.5 7.0 62.75 
5 5.5 8.0 75.25 
6 8.5 5.5 91.75 
7 10.0 9.0 95.00 
8 6.0 9.0 99.00 
9 10.0 10.0 100.00 
10 5.5 1.0 106.75 

Row Number 1x  2x  )(xf  
1 3.0 3.5 11.75 
2 3.0 4.0 17.00 
3 4.5 4.0 19.25 
4 4.5 4.5 20.25 
5 4.5 3.5 20.75 
6 3.0 4.5 24.75 
7 2.0 4.0 28.00 
8 5.5 4.5 29.75 
9 5.5 5.5 30.25 
10 5.5 4.0 33.25 
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Table 2.5 Harmony search matrix after 500 searches 

 

 

 

Finally, the combinations given in the first row of the harmony search matrix which is 

improvised the optimal harmony, )5.1,5.1(* =x , after 1000 searches, which has a 

minimum function. The final results obtained after 1000 searches are given in Table 2.6 

 

Table 2.6 Harmony search matrix after 1000 searches 

 

 

 

 

 

Row Number 1x  2x  )(xf  
1 2.0 1.5 4.25 
2 2.5 2.5 6.25 
3 3.0 2.5 8.75 
4 3.0 3.0 9.00 
5 3.0 3.5 11.75 
6 3.5 3.5 12.25 
7 2.5 3.5 13.75 
8 3.5 4.0 15.25 
9 3.0 1.5 15.75 
10 3.0 4.0 17.00 

Row Number 1x  2x  )(xf  
1 1.5 1.5 2.25 
2 2.0 1.5 4.25 
3 2.5 2.5 6.25 
4 3.0 2.5 8.75 
5 3.0 3.0 9.00 
6 2.0 3.0 11.00 
7 3.0 3.5 11.75 
8 3.5 3.5 12.25 
9 2.5 3.5 13.75 
10 3.5 4.0 15.25 
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It is interesting to see the function ( ) 2
221

2
1 595 xxxxxf +−=  we have optimised and we 

give both a contour plot in Figure 2.3 and three-dimensional plot in Figure 2.4. 
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Figure 2.3 Contour plot of the function ( ) 2
221

2
1 595 xxxxxf +−=   
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Figure 2.4 Three Dimensional plot of the function ( ) 2
221

2
1 595 xxxxxf +−=  
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2.2.2 Example 2. 
 

The second example selected for application of Harmony Search method is a common 

benchmark problem which has nonlinear constraints and objective function. The 

problem is called Himmelblau’s function [27]. This problem was adopted to test 

Harmony search (HM) algorithm which has an improved constraint capability. The 

optimization problem, which has five design variables and fifteen nonlinear constraints, 

is as shown in the following.   

 

141.40792293239.378356891.03578547.5)( 151
2
3 −++= xxxxxf

Minimize        (2.8) 

 

25)(20

110)(90

92)(0

:

3

2

1

≤≤

≤≤

≤≤

xg

xg

xg

tosubject

                                                                                  (2.9) 

 

4331533

2
321522

5341521

0019085.00012547.00047026.0300961.9)(

0021813.00029955.00071317.051249.80)(

0022053.00006262.00056858.0334407.85)(

xxxxxxxg

xxxxxxg

xxxxxxxg

where

+++=

+++=

−++=

  (2.10) 
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4527,4527,4527,4533,10278

int

54321 ≤≤≤≤≤≤≤≤≤≤ xxxxx

sconstrasideand

        (2.11) 

Himmelblau [27] used the generalized reduced gradient (GRG) method to solve this 

problem. The same problem was also tackled by Gen and Cheng [28] using genetic 

algorithm (GM) based on both local and global references. Prempain and Wu [29] used 

an Particle Swarm Optimization (PSO) with stochastic ranking to solve this problem.  

 

To apply HS algorithm to the Himmelblau’s function, the five design variables 

54321 ,,, xandxxxx  were assumed to be discrete variables, and their possible values 

were taken from the set { }00.90,99.89,98.89,,02.25,01.25,00.25 K∈D , which has 

6501 discrete values. The ten cases shown in Table 2.7, each case with a different set of 

HS algorithm parameters (i.e. HMS, HMCR, and PAR), were tested for this example. 

These parameter values were arbitrarily selected on the basis of the empirical findings 

by Geem. 

 

Table 2.7 HS algorithm parameters used for Himmelblau’s Function 

 

Cases HMS HMCR PAR f(x) 

1 40 0,9 0,45 -30141,52 

2 40 0,8 0,40 -30473,91 

3 50 0,9 0,30 -30477,98 

4 30 0,7 0,40 -30499,07 

5 50 0,8 0,35 -30561,30 

6 40 0,8 0,30 -30567,34 

7 50 0,9 0,40 -30607,43 

8 30 0,7 0,35 -30610,69 

9 40 0,9 0,30 -30615,84 

10 40 0,8 0,45 -30622,36 
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For Himmelblau’s function, all the results obtained from these methods mentioned 

below are listed in Table 2.8. All the results are compared against those obtained from 

HS algorithm. The total number of solution vectors, i.e. the HMS, is 40, and the HMCR 

and PAR are 0.8 and 0.45, respectively.   

 
Table 2.8 Optimum solution of Himmelblau’s function 

 
Optimum solutions obtained by different methods 

Design variables      HS            Runarsson[30]           GRG[27]                 Gen[28] 
 

1x                        77.9500             78.0000                   78.6200                  81.4900 

2x                       33.1200             33.0000                   33.4400                  34.0900 

3x                        30.3300             29.9953                  31.0700                   31.2400 

4x                       44.9600             45.0000                  44.1800                    42.2000 

5x                       35.8300             36.7758                  35.2200                    34.3700 

)(1 xg                  91.8801            92.0000                  91.7927                    91.7819 

)(2 xg                  98.7220            98.8405                  98.8929                    99.3188 

)(3 xg                 19.9811             20.0000                  20.1316                    20.0604 

)(xf                 -30622.36        -30665.539             -30373.949              -30183.576 

 
 

The range of each design variable has been narrowed from the lover bound value to the 

upper bound value which has been stored in HM with number of searches. Finally, the 

HS heuristic algorithm improvised the optimal harmony ( )(xf = -30622.36) after 

120,000 searches. HS algorithm proves to outperform the other methods in this 

continuous-variable problem. 
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2.2.3 Example 3.   

 

The design of welded connection shown in Figure 2.5 is taken as third example. A 

rectangular beam is designed as a cantilever beam to carry a certain load with minimum 

overall cost of fabrication. The problem involves four design variables: the thickness of 

the weld 1xh = , the length of the welded joint 2xl = , the width of the beam 3xt =  and 

the thickness of the beam 4xb = . The values of 1x  and 2x  are coded with integer 

multiplies of 0065.0 . There are fifteen constrains, which involve shear stress )(τ , 

bending stress in the beam )(σ , buckling load on the bar )( cP , deflection of the beam 

)(δ  and side constraints[31]. 

I

t

P

L

h

b

t

Figure 2.5 Welded beam design 

 

Minimize 

)0.14(04811.010471.1)( 2432
2

1 xxxxxxf ++=                                               (2.12) 

 



 36 

Subject to: 

 

0)()( max1 ≤−= ττ xxg       →    shear stress                                                       (2.13) 

0)()( max2 ≤−= σσ xxg     →    bending stress in the beam                               (2.14) 

0)( 413 ≤−= xxxg              →     side constraint                                                  (2.15) 

05)0.14(04811.010471.0)( 243
2

14 ≤−++= xxxxxg     →   side constraint    (2.16) 

0125.0)( 15 ≤−= xxg        →    side constraint                                                  (2.17) 

0)()( max6 ≤−= δδ xxg      →    end deflection of the beam                              (2.18) 

0)()(7 ≤−= xPPxg c          →    buckling load on the bar                                  (2.19) 

 

Where 

2''2'''2' )(
2

2)()( τττττ ++=
R

x
x

                                                                      (2.20) 
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.25.0,000,30,600,13

1012,1030.,14,6000

maxmaxmax
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δστ
                       (2.25) 

The ranges for the design variables are given as follows: 

 

0.21.0,101.0

101.0,0.21.0

43

21

≤≤≤≤
≤≤≤≤

xx

xx
                                                                            (2.26) 

 

To apply HS algorithm to the welded beam, the five design variables 4321 ,, xandxxx  

were assumed to be discrete variables, and their possible values have shown above. The 

ten cases shown in Table 2.9, each case with a different set of HS algorithm parameters 

(i.e. HMS, HMCR, and PAR), were tested for this example. These parameter values 

were arbitrarily selected on the basis of the empirical findings by Geem and Lee [32]. 

 

Table 2.9 HS algorithm parameters used for Welded Beam 

 

Cases HMS HMCR PAR f(x) 

1 30 0,70 0,40 3.0122 

2 35 0,75 0,40 3.0008 

3 30 0,70 0,35 2.9749 

4 40 0,80 0,40 2.7775 

5 50 0,90 0,30 2.7210 

6 40 0,80 0,30 2.6977 

7 50 0,85 0,40 2.5821 

8 40 0,90 0,45 2.4955 

9 50 0,9 0,50 2.3710 

10 50 0,9 0,40 2.2290 

 

The size of HM matrix (HMS) is taken as (50x5). The total number of solution vectors, 

i.e. the HMCR and PAR are 0.8 and 0.40, respectively. The minimum fuction is 

obtained after 1000 searchs. 
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The same problem was also solved by Ragsdell and Philips [33] using geometric 

programming. Deb [34] used a simple Genetic Algorithm (GA) with traditional penalty 

function to solve the same problem.  

 

Table 2.10 Optimum Solution of welded beam design 

 

Optimum solutions obtained by different methods 

Design variables    HS               PSO[29]                     Ragsdell[33]              Deb[34] 

1x                    0.22200                       0.244369                       0.245500                  0.248900 

2x                   3.05100                       6.217519                        6.196000                  6.173000 

3x                   9.54500                      8.291471                        8.273000                   8.178900 

4x                   0.26300                      0.244369                        0.245500                   0.253300 

)(1 xg          -3240.0106               -5741.176933                  -5743.82652              -5758.6038 

)(2 xg          -8965.949                  -0.0000007                       -4.715097                 -255.5769 

)(3 xg          -0.04100                       0.000000                         0.000000                 -0.004400 

)(4 xg          -2.935552                   -3.022954                        -3.020288                 -2.982900 

)(5 xg         -0.097000                   -0.119369                        -0.120500                  -0.123900 

)(6 xg         -0.158385                   -0.234241                        -0.234208                  -0.234160 

)(7 xg       -2212.05268                -0.000309                        -74.276856              -618.818492 

)(xf           2.229000                    2.380956                          2.385937                  2.433116 

 

All the results are compared against those obtained from HS algorithm. Table 2.10 

shows the comparison of the optimum solutions obtained by Harmony Search 

algorithm and other optimization methods as shown in the last row of the Table 2.9, 

Harmony Search algorithm determined the lowest value for the objective function 

compare to other methods. It took 1000 iterations to reach to )(xf  = 2.229000.   
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CHAPTER 3 
 

 

3 OPTIMUM DESIGN OF GRILLAGE SYSTEMS 
 

 

 

3.1 Design of Grillage Systems 
 

The design of grillage systems is one of the common problems of steel structures that 

practicing engineer has to deal with. Optimum design of grillage systems aims at 

finding the cross sectional properties of transverse and longitudinal beams such that the 

response of the system under the external loading is within the allowable limits defined 

in code of practice while the weight or the cost of the system is the minimum. 

 

In one of the early studies, the optimum design problem is formulated by treating the 

moment of inertias of the beams and joint displacements as design variables [35]. 

Stiffness, stress, displacement and size constraints are included in the design 

formulation. The effect of warping is taken into account in the computation of the 

stresses in the members. The nonlinear programming problem obtained is solved by the 

approximating programming method. The formulation of the same design problem is 

carried out only treating the cross-sectional of the members in the grillage system in 

[36] where the warping and shear effects are also considered in the computation of the 

response of the system under the external loading. Displacements, stress and size 

limitations are included in the design formulation according to ASD-AISC code. The 

solution of the optimum design problems achieved using optimality criteria approach. 

In [37], genetic algorithm is used to determine the optimum universal beam sections 

(UB) for the members of grillage system from set of British Standards Universal Beam 

sections. The deflection limitations and the allowable stress constraints are considered 
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in the formulation of the design problem. The algorithm developed is utilized to 

investigate the effect of warping in the optimum design of grillage systems. Previous 

study is extended to cover the determination of the optimum spacing between both 

transverse and longitudinal beams in addition to optimum sectional designations in the 

grillage system in [38]. The optimum spacing between transverse beams as well as 

longitudinal beams is determined both considering and not taking into account the 

effect of warping in the optimum design.  

  

3.2 General formulation of optimum design problem 
 

Structural optimization seeks the selection of design variables to achieve, within the 

constraints placed on the structural behaviour, geometry, or other factors, its goal of 

optimality defined by the objective function for specified loading or environmental 

conditions. 

 

3.2.1 Design variables 
 

The design variables of an optimum structural design problem may consist of the 

member sizes, parameters that describe the structural configuration and quantifiable 

aspects of the design. The design variables which are varied by the optimization 

procedure may represent the following properties of the structure: 

 

a. the mechanical or physical properties of the material; 

b. the topology of the structure; 

c. the geometry or configuration of the structure; 

d. the cross-sectional dimensions or the member sizes. 
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3.2.2 Constraints 
 

A constraint is a restriction to be satisfied in order for the design to be acceptable. It 

may take the form of a limitation imposed directly on variables, or may represent a 

limitation on quantities whose dependence on the design variables cannot be stated 

directly. 

 

From mathematical point of view, both design and behaviour constraints may usually 

be expressed as a set of inequalities. 

 

gj njxg ,........,2,1,0)( =≤                                                             (3.1) 

 

Where gn  is the number of inequality constraints and x  is the vector of design 

variables. 

 

An equality constraint, which may be either explicit or implicit, is designated as 

 

hj njxh ,........,2,1,0)( ==                                                              (3.2) 

 

where hn  is the number of equalities. The constraints may be linear or nonlinear 

functions of the design variables. These functions may be explicit or implicit in x  and 

may be evaluated by analytical or numerical techniques. 

 

3.2.3 Objective function 
 

The objective function is the function whose least value tries to reach in an 

optimization procedure, and constitutes a basis for the selection of one of several 

alternative acceptable designs. Objective function is generally a nonlinear function of 
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the variables x , and it may represent the weight, the cost of structure, or other criterion 

by which some possible designs are preferred to others.  

Assuming that all equality can be eliminated, the optimal design problem can be 

formulated mathematically as one of choosing the vector of design variables x  such 

that 

 

→= )(xfZ  min                                                                                                   (3.3) 

 

gj njxg ,........,2,1,0)( =≤                                                             (3.4) 

 

3.3 Optimum Design Problem to LRFD-AISC 
 

The optimum design problem of a typical grillage system shown in Figure 1 where the 

behavioral and performance limitations are implemented from LRFD-AISC [39] can be 

formulated as follows. 

 

∑ ∑
= =

=
ng

k

r

i
ik

k

lmW
1 1

min                                                                                   (3.5) 

 

Subject to   

pjjuj ,........,2,1, =≤ δδ                                                              (3.6) 

 

nmrMM urnrb ,.......,2,1, =≥φ                                                       (3.7) 

 

nmrVV urnrb ,........,2,1, =≥φ                                                          (3.8) 
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where km  in Eq. 3.5 is the unit weight of grillage element belonging to group k 

selected from W-sections list of LRFD-AISC, rk is the total number of members in 

group k, and ng  is the total number of groups in the grillage system. il  is the length of 

member i  . δj in Eq. 3.6 is the displacement of joint j and δju is its upper bound. 

 

The joint displacements are computed using the matrix displacement method for 

grillage systems. Eq. 3.7 represents the strength requirement for laterally supported 

beam in load and resistance factor design according to LRFD-F2. In this inequality Øb 

is the resistance factor for flexure given as 0.9, Mnr is the nominal moment strength and 

Mur is the factored service load moment for member r. 

 

Eq. 3.8 represents the shear strength requirement in load and resistance factor design 

according to LRFD-F2. In this inequality Øv represents the resistance factor for shear 

given as 0.9, Vnr is the nominal strength in shear and Vur is the factored service load 

shear for member r. 

 

3.4 Matrix Stiffness Method 
 

Matrix analysis of structures is an important subject to every structural analyst, if 

working in civil or mechanical engineering. Matrix analysis provides a comprehensive 

approach to the analysis of a wide variety of structural types, and therefore proposes a 

major advantage over traditional methods which often differ for each type of structure. 

It also provides an efficient means of describing various steps in the analysis and is 

easily programmed for digital computers. As matrices put up with large groups of 

numbers to be manipulated in a simple manner, use of matrices is natural when 

performing calculations with a computer.   
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Matrix stiffness method is a numerical technique that uses matrix algebra to analyze 

structural systems. It idealizes the system as an assembly of discrete elements 

connected to one another at points called nodes.  

 

3.4.1 Global Coordinate System 

 

The specification of the structure geometry is done using the Conventional Cartesian 

Coordinate System. This coordinate system (Figure 3.1) is a rectangular coordinate 

system (X, Y, Z) which follows the orthogonal right hand rule. This coordinate system 

may be used to define the joint locations and loading directions. The translational 

degrees of freedom are denoted by d1, d2, d3 and the rotational degrees of freedom are 

denoted by d4, d5 & d6. 

 

The joint displacement vector for joint i in global coordinates is; 

{ } { }ziyixiiD δθθ=  

The external load vector for joint i in global coordinates is; 

{ } { }ziyixii PPPP =  
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  Figure 3.1 Cartesian (Rectangular) Coordinate System 

 

3.4.2 Local Coordinate System 

 

A local coordinate system is associated with each member. Each axis of the local 

orthogonal coordinate system is also based on the right hand rule. Figure 3.2 shows a 

beam member with start joint 'i' and end joint 'j'. The positive direction of the local x-

axis is determined by joining 'i' to 'j' and projecting it in the same direction. The right 

hand rule may be applied to obtain the positive directions of the local y and z axes. The 

local y and z-axes coincide with the axes of the two principal moments of inertia. Note 

that the local coordinate system is always rectangular. A wide range of cross-sectional 

shapes may be specified for analysis. Figure 3.3 shows the local axis system(s) for 

these shapes. 
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Figure 3.2. A beam member  

 

  Figure 3.3 Local axis for different cross-sections 
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3.4.3 Relationship Between Global & Local Coordinates 

 

Since the input for member loads can be provided in the local and global coordinate 

system and the output for member end forces is printed in the local coordinate system, 

it is important to know the relationship between the local and global coordinate 

systems. This relationship is defined by an angle measured in the following specified 

way. This angle will be defined as the beta (β ) angle. 

When the local x-axis is parallel to the global Y-axis, as in the case of a column in a 

structure, the beta angle is the angle through which the local z-axis has been rotated 

about the local x-axis from a position of being parallel and in the same positive 

direction of the global Z-axis. 

When the local x-axis is not parallel to the global Y-axis, the beta angle is the angle 

through which the local coordinate system has been rotated about the local x-axis from 

a position of having the local z-axis parallel to the global X-Z plane and the local y-axis 

in the same positive direction as the global Y-axis. Figure 3.4 details the positions for 

beta equals 0 degrees or 90 degrees. When providing member loads in the local 

member axis, it is helpful to refer to this figure for a quick determination of the local 

axis system. 
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Figure 3.4 Relationship between Global and Local axes 

 

3.4.4 Relationship between member end forces and member end deformations 
 

To form the structure stiffness matrix of individual elements must first be constructed. 

Consider element r of the grillage system shown below.  

 

 

Figure 3.5 End forces of a grillage member 
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We drive the local stiffness matrix for a typical beam element with three degree of 

freedoms at each end, considering the combination of flexural and torsional effects. 

Subsequently, the global stiffness matrix for the grillage system is obtained from an 

assemblage of local stiffness matrices. 

 

The relationship between end forces and deformations has the following form 
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            (3.9) 

 

where { }rF  is vector of end forces, { }ru  is vector of end deformations and [ ]k  is 

member stiffness matrix in local coordinates. This matrix can be formed by using 

physical definition of the concept of stiffness by applying a unit deformation in the 

direction of the one of the end deformation while keeping the rest equal to zero and 

computing the forces develope at the ends of the member. 

 

Vector of member end forces in local coordinates ; 

 

{ } { }T
zjyjxjziyixir QMMQMMF =

                                                       (3.10) 

Vector of member end defornations in local coordinates ; 

 

{ } { }T
zjyjxjziyixi uuuuuuu =

                                                                  (3.11) 

Vector of joint displacements for member r in global coordinates; 



 50 

{ } { }T
zjyjxjziyixirD δθθδθθ=

                                                               (3.12) 

 

3.4.5 Stiffness Matrix of a both end rigidly connected grillage member 
 

 

Figure 3.6 Rigidly connected member 

 

xiM  and xjM  are the torsional moments acting at the beginning and end of the 

member. The relationship between the twisting of the ends and torsional moment is 

shown below. 

 

 

Figure 3.7 Relationship between twisting of the ends and torsional moment 

 

The axial stiffness of the member is given as; 

 

( )xjxixi uu
L

JG
M −=               ( )xjxixj uu

L

JG
M −−=                         (3.13) 

 

where G is shear modulus, J is torsional constant. In Figure 3.7 and Figure 3.8 a 

member of a rigidly jointed plane frame is shown subject to member forces.  
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Figure 3.8 Shear forces and bending moments 

 

The general slope-deflection equations between the end moments, shear and end 

deformations where obtained as; 
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Collecting these equations in a matrix form; 
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3.4.6 Relationship between the joint displacements and member end 
deformations 

 

If joint forces and displacements are also defined in a manner in the global coordinates 

system, then the displacement transformation matrix can be obtained. 

 

 

Figure 3.9 Displacements of a grillage member 
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At joint i;                                                   At joint j; 
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Collecting these into matrix form; 
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                                                         { } [ ] { }rrr DBu =                                       (3.21) 

 

3.4.7 Relationship between external loads and member forces 
 

When an elastic structure is subjected to external loads, it deforms and joint 

displacements and member end displacements occur. In this case, the work done by the 

external loads is equal to the work done by the internal forces due to the principal of 

conservation of the energy. Hence; 

 

{ } { } { } { }r
T

rr
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r uFDP
2

1

2

1 =                                                                                   (3.22) 
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Where { }rF  is the vector of member forces, { }ru  is the vector of member end 

deformations, { }rP  is vector of external loads and { }rD  is the joint displacement vector 

in the structure. 

 

Remembering that { } [ ] { }rrr DBu =  

 

                            { } { } { } [ ] { }rr
T

r
T DBFDP

2

1

2

1 =                                                  (3.23) 

 

                            { } { } [ ]r
TT BFP =                                                                       (3.24) 

 

Taking transpose of both sides 

 

                            { } [ ] { }FBP T
r=                                                                           (3.25) 

 

Overall stiffness matrix is obtained by collecting the equations (3.9), (3.21), and (3.25), 

together. 

 

{ } [ ] { }rr ukF =             (3.9) 

 

{ } [ ] { }rrr DBu =             (3.21) 

 

{ } [ ] { }FBP T
r=               (3.25) 

 

Substituting (3.21) into (3.9) 

 

{ } [ ] [ ] { }rrr DBkF =                                                                                              (3.26) 
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Substituting (3.26) into (3.25) 

 

{ } [ ] [ ] [ ]
[ ]

{ }r

K

r
T
r DBkBP

43421
=                                                                                         (3.27) 

 

Where [ ] [ ] [ ] [ ]r
T
r BkBK =  is called overall stiffness of the structure. 
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3.4.8 Stiffness Matrix of a grillage member with a hinge at the first end in   local 
coordinate system 

 

Figure 3.10 Hinge at the first end 

 

( )xjxixi uu
L

JG
M −=               ( )xjxixj uu

L

JG
M −−=                         (3.29) 

 

Since in such members, there will be no transmission of moments from the first end to 

the joint, it is apparent that .0=yiM  The end deformation yiu  represents the end 

rotation at hinge. Since this has no relation with the joint rotation.  
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Collecting these equations in a matrix form together with axial stiffness. 
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The compability matrix for the member becomes 
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After obtaining member stiffness matrix and member compability matrix, stiffness 

method can be applied either by following direct or indirect way. The contribution of a 

member with a hinge at its first end will be obtained by carrying out triple matrix 

multiplication. 
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3.4.9 Stiffness Matrix of a grillage member with a hinge at second end 

 

Figure 3.11 Hinge at the second end 

 

( )xjxixi uu
L

JG
M −=               ( )xjxixj uu

L

JG
M −−=                              (3.37) 

 

In this case yjM  will be equal to zero. The end deformation yju  represents the hinge 

rotation at the second end. Since it is not relevant to the formulation, it is eliminated 

from the below equations. 
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Collecting these equations in a matrix form together with axial stiffness;  
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The compability matrix; 
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Similar to the previous case, after obtaining member stiffness matrix and member 

compability matrix, stiffness method can be applied either by following direct or 

indirect way. The contribution of the member with a hinge at its second end to the 

overall stiffness matrix is obtained by carrying out the triple matrix multiplication. 
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3.5 Beams: Laterally Supported 
 

A beam is generally considered to be any member subjected principally to transverse 

gravity loading. A simple beam [Figure 3.12] is supported vertically at each end with 

little or no rotational restraint, and downward loads cause positive bending moment 

throughout the span. 

 

 

Figure 3.12 A simple beam 

 

A beam is combination of a tension element and a compression element. Probably the 

large majority of steel beams are used in such a manner that their compression flanges 

are restrained against lateral buckling. Should the compression flange of a beam be 

without lateral support for some distance it will have a stress situation similar to that 

existing in columns. The longer and slenderer column becomes the greater the danger 

of its buckling for the same loading condition. When the compression flange of a beam 

is long and slender enough it may quite possibly buckle unless lateral support is 

provided [40]. 
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The most common rolled steel beam cross section, shown in Figure 3.13, is called the 

W (wide-flange) shape, with much of the material in the top and bottom flange, where 

it is most effective in resisting bending moment. The concepts of tension members and 

compression members are combined in the treatment as a beam. The compression 

element (a flange) that is integrally braced perpendicular to its plane through its 

attachment to the stable tension flange by means of the web, is assumed also to be 

braced laterally in the direction to the plane of the web.         

 

Figure 3.13 W (wide-flange) shape steel beam 

 

=fb  the width of flange 

=ft  the thickness of flange 

=wt  the thickness of web 

=d  overall depth of steel section 
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3.5.1 Load and Resistance Factor Design for Laterally Supported     
         Rolled Beams 

 

The strength requirement for beams in load and resistance factor design according to 

LRFD-F2 may be stated; 

 

unb MM ≥φ                                                                                                         (3.44) 

 

Where;    =bφ  resistance (i.e., strength reduction) factor for flexure = 0.90 

               =nM  nominal moment strength 

               =uM  factored service load moment 

 

For the computation of the nominal moment strength (Mn) of a laterally supported 

beam, it is necessary first to determine whether the beam is compact, non-compact or 

slender. 

 

3.5.1.1 Compact Sections 
 

In compact sections, local buckling of the compression flange and the web does not 

occur before the plastic hinge develops in the cross section. On the other hand in 

practically compact sections, the local buckling of compression flange or web may 

occur after the first yield is reacted at the outer fibre of the flanges. 

 

 If  pλλ ≤  for both the compression flange and the web, the capacity is equal to pM  

and shape is compact and nominal moment strength nM  for laterally stable compact 

sections according to LRFD-F1 may be stated; 
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pn MM =                                                                                                             (3.45) 

where; 

=pM  plastic moment strength = ZyF                                                                (3.46) 

=Z  plastic modulus 

=yF  yield stress 

 

3.5.1.2 Noncompact Sections 
 

The nominal strength nM  for laterally stable noncompact sections whose 

width/thickness ratios λ  exactly equal the limits rλ  of LRFD-B5.1 is the moment 

stregth available when the extreme fiber is at yield stress yF . Because of the residual 

stress the strength is expressed as 

 

)( ryrn FFSMM −==                                                                                       (3.47) 

 

Where; rM  is the residual moment that will cuse the extreme fiber stress to rise from 

its residual stress rF  value when there is no applied load acting to the yield stress yF . 

The elastic section modulus S  equals the moment of inertia I  divided by the distance 

from the neutral axis to the extreme fiber. 

 

3.5.1.3 Partially Compact Sections 
 

The nominal strength nM  for laterally stable noncompact sections whose width or 

thickness ratios λ  are less than rλ   but not as low as pλ  must be linearly interpolated 

between rM  and pM , as follows according to LRFD-F1.7 
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3.5.1.4 Slender Sections 
 

When the width or thickness ratios λ  exceed the limits rλ  of LRFD-B5.3, the sections 

are referred to as slender. In this situation, nominal moment strength is expressed as 

 

crxcrn FSMM ==                                                                                               (3.49) 

 

where  =λ fb /( ft2 ) for I-shaped member flanges and the thickness in which bf and ft  

are the width and the thickness of the flange, and  h=λ / wt  for beam web, in which 

kdh 2−=  plus allowance for undersize inside fillet at compression flange for rolled I-

shaped sections. d  is the depth of the section and k  is the distance from outer face of 

flange to web toe of fillet. wt  is the web thickness. wth /  values are readily available in 

W-section properties table. pλ  and  rλ  are given in table LRFD-B5.1 of the code as
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in which E  is the modulus of elasticity and yF  is the yield stress of steel. rF  is the 

compressive residual stress in flange which is given as 69 MPa  for rolled shapes in the 

code. It is apparent that nM  is computed for the flange and for the web separately by 

using corresponding λ  values. The smallest among all is taken as the nominal moment 

strength of the W  section under consideration. 

 

3.5.2 Load and Resistance Factor Design for Shear in Rolled Beams 
 
Beams are usually selected on the basis of their bending capacity and then checked for 

the shear capacity. 

 

The shear strength requirement in load and resistance factor design according to LRFD-

F2 may be stated; 

 

unv VV =φ                                                                                                             (3.52) 

 

Where; 

=bφ  Resistance factor for = 0.90 

=nV  Nominal strength in shear 

=uV  Required shear strength 

 

Nominal shear strength of a rolled compact and non-compact W  section is computed 

as follows as given in LRFD-AISC-F2.2 
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a)  When 
wt

h
 ≤ 

ywF

E
45.2    , shear yielding of the web is the mode of failure, and the 

nominal shear strength definition is expressed as; 

 

wywn AFV 6.0=                                                                                                    (3.53) 

 

b) When 
ywF

E
45.2 <

wt

h
≤

ywF

E
07.3 , inelastic shear buckling of the web is the mode 

of failure, and the nominal shear strength definition is 
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c) When 
ywF

E
07.3  < 

wt

h
 ≤ 260 , elastic shear buckling of the web is the mode of 

failure, and the nominal shear strength definition is 

 

2

252.4

h

Et
AV

w

wn =                                                                                           (3.55) 

 

Where E is the modulus of elasticity and ywF  is the yield stress of web steel. nV  is 

computed from one of the expressions of (3.53)-(3.55) depending upon the value of  

h / wt  of the W  section under consideration. 
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CHAPTER 4 
 
 

4 DESIGN EXAMPLES 
 
 
 

4.1 Introduction 
 
Harmony search based optimum design algorithm presented in the previous sections is 

used to design three grillage systems. The discrete set from which the design algorithm 

selects the sectional designations for grillage members is considered to be the complete 

set of 272 W-sections starting from W100x19.3 to W1100x499mm as given in LRFD-

AISC [39]. The sequence number of each section in the set is used as the design 

variable. Hence the terms of the harmony memory matrix represents the sequence 

number of W-sections in the discrete set. 

 

4.1.1 3-member Simple Grillage System 
 

 
 
Figure 4.1 Simple Grillage System 
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The simple grillage system shown in Figure 4.1 is selected as first design example to 

demonstrate the steps of harmony search based optimum design algorithm developed. 

The dimensions and the loading of the system are shown in the figure. A36 mild steel is 

selected for the design which has the yield stress of 250MPa. The modulus of elasticity 

and the shear modulus are selected as 205kN/mm2 and 81kN/mm2 respectively. The 

deflections of joints 1 and 2 are restricted to 10 mm while the other design constraints 

are implemented from LRFD-AISC as explained in previous chapter. The members 1 

and 3 are considered to be made out of the same W section while the member 2 can be 

made from another. Hence there are two variables in the design problem. 

 

Harmony memory matrix size is taken as 10. Harmony memory considering rate 

( )HMCR  is selected as 0.9 while pitch-adjusting rate is considered as 0.45 as suggested 

in [24]. After 11 searches the initial harmony memory matrix is obtained as given in 

Table 4.1. The first row of this matrix has the least weight and corresponds to 

W530x66 and W410x85 within the W-sections list. With these sections, the strength 

ratio is 0.83 for group 1 and 0.06 for group 2 while the vertical displacements of joints 

1 and 2 are 5.1mm which are smaller than their upper bounds.  12th and 13th searches 

can not find better sections than the ones shown in Table 4.1. However 14th search 

gives a better harmony search matrix as shown in Table 4.2. Comparing to Table 4.1, it 

is apparent that harmony search has found a better combination of 52th and 215th W-

sections in the list which gives 729.71 kg of weight. This combination yields a lighter 

grillage system than the last combination of 271st and 263th W-sections in the list. 
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Table 4.1 Initial harmony search matrix after 11 searches 

 

Row 
Number 

Group 1 Group 2 
Weight 

(kg) 
1 141 113 433.98 
2 52 109 450.29 
3 80 113 610.61 
4 141 215 649.36 
5 149 26 656.49 
6 116 78 777.02 
7 203 153 1694.77 
8 221 140 2367.71 
9 262 234 2667.59 
10 271 263 2840.94 

 
Naturally the last combination is discarded from the harmony search matrix and the 

new combination is included in the 6th row of the harmony search matrix as shown in 

Table 4.2. It should be noticed that newly found combination does not affect the first 

 

Table 4.2 Harmony search matrix after 14 searches 

 
Row 
Number 

Group 1 Group 2 
Weight 

(kg) 
1 141 113 433.98 
2 52 109 450.29 
3 80 113 610.61 
4 141 215 649.36 
5 149 26 656.49 
6 52 215 729.71 
7 116 178 777.02 
8 203 153 1694.77 
9 221 140 2367.71 
10 262 234 2667.59 

 
row of the harmony matrix. When the harmony search algorithm is continued a better 

combination than the one in the first row of the harmony memory matrix of Table 4.2 is 

found. For example, after 1000 searches, the combinations shown in Table 4.3 are 

obtained. The sectional designations correspond to the sequence numbers  
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Table 4.3 Harmony search matrix after 1000 searches 

 

Row 
Number 

Group 1 Group 2 
Weight 

(kg) 
1 141 13 317.15 
2 141 26 320.19 
3 141 8 323.46 
4 141 27 329.37 
5 141 70 329.78 
6 142 13 349.36 
7 142 26 353.02 
8 142 8 355.67 
9 141 17 356.09 
10 142 27 361.59 

 
given in the first  row are W530x66 for group 1 and W200x26.6 for group 2 which 

yield to a grillage system with a weight of 317.15 kg. The analysis of the system with 

these sections result in 5.1 mm vertical displacements at joints 1 and 2. The strength 

ratios computed for these sections are 0.83 for the members in group 1 and 0.40 for the 

member in group 2. These values clearly indicate that harmony search should be 

continued to determine even a better combination. 

 

 The harmony search matrix shown in Table 4.4 which is obtained after 2000 searches 

verifies this fact. The sections corresponding to the least weight of 305.91 kg in this 

matrix are W530x66 and W310x21. With these sections, the strength limitation for 

group 1 searches to their upper bound of 1 and the strength constraint ratio has the 

value of 0.39 in member 2. The vertical displacements at joints 1 and 2 have the values 

of 7mm which is less than the upper bound of 10mm. It is clear that strength constraints 

are dominant in the design problem. 
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Table 4.4 Harmony search matrix after 2000 searches 

 

Row 
Number 

Group 1 Group 2 
Weight 

(kg) 
1 141 41 305.91 
2 141 24 308.56 
3 141 2 311.42 
4 141 13 317.13 
5 141 43 320.60 
6 141 26 320.80 
7 141 8 323.45 
8 141 27 329.36 
9 141 70 329.77 
10 142 41 338.13 

 

The harmony search algorithm is continued to determine even better combinations. The 

results obtained after 7000 and 8000 searches are given in Tables 4.6 and 4.7.   

 

Table 4.5 Harmony search matrix after 7000 searches 

 

Row 
Number 

Group 1 Group 2 
Weight 

(kg) 
1 141 23 299.79 
2 141 5 300.01 
3 141 11 302.44 
4 111 23 303.87 
5 111 5 304.08 
6 141 41 305.91 
7 111 11 306.52 
8 141 24 308.56 
9 111 41 309.99 
10 141 2 311.42 
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Table 4.6 Harmony search matrix after 8000 searches 

 

Row 
Number 

Group 1 Group 2 
Weight 

(kg) 
1 141 10 293.88 
2 111 10 297.96 
3 141 23 299.79 
4 141 5 300.01 
5 120 10 302.04 
6 141 11 302.44 
7 111 23 303.87 
8 111 5 304.08 
9 141 41 305.91 
10 111 11 306.52 

 

The optimum sectional designations obtained by the HS based method for external 

loading is shown in Table 4.7. 

 
Table 4.7 Optimum Design for 3-member grillage system with two groups 

 

          Optimum Sectional Designations 

Group 1 Group 2 
  

)(
max

mm

δ
 

Maximum 
Strength 

Ratio 

Minimum 
Weight 

(kg) 

 
W530x60 

 

 
W250x17.9 

 
7.0 0.54 293.88 

 

It can be noticed in Table 4.7 that sections W530x60 and W250x17.9 produces a lighter 

grillage with a weight of 299.79 kg obtained after 7000 searches. The combinations 

given in the first row of the harmony search matrix which is obtained after 8000 

searches even gives a lighter system. The sectional designations for this combination 

are W530x60 and W200x15. With these sections the vertical displacements of joints 1 

and 2 are 7 mm and strength limitation ratios are 1 and 0.54 for members in groups 1 

and 2. Further use of harmony search method with more than 8000 search produces the 

same combination. Consequently the solution found in Table 4.5 represents the 
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optimum solution which corresponds to the grillage system with sections W530x60 

selected for members 1 and 3 and W200x15 adopted member 2. 

 

4.1.2 23-member Grillage System 
 
The grillage system shown in Figure 4.2 has 23 members which are collected in three 

groups. It is subjected to unsymmetrical loading which is also shown in the figure. The 

vertical displacements of joints 4, 5, 6 and 8 are restricted to 25 mm while the yield 

stress is taken as 250MPa which is the value for A36 mild steel. 

 
 

 
Figure 4.2 23-member grillage system 

 
For this grillage, the ten cases shown in table 4.8, each with a different set of HS 

algorithm parameters were tested. These parameters were arbitrarily selected on the 

basis of the emprical findings by Geem and Lee [32]. The maximum number of 

searches was set to 2000 for this example. 
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Table 4.8 HS algorithm parameters used for 23-member grillage system 

 

Cases HMS HMCR PAR Weight(kg) 

1 35 0.85 0.40 5184.3 

2 25 0.85 0.35 5121.0 

3 35 0.9 0.45 5091.5 

4 40 0.95 0.30 5081.7 

5 50 0.95 0.25 5065.4 

6 40 0.70 0.50 4984.4 

7 30 0.8 0.45 4974.6 
8 45 0.75 0.20 4892.2 
9 30 0.80 0.40 4862.6 

10 50 0.9 0.45 4718.4 
 

The size of HM matrix (HMS) is taken as (50x5). The total number of solution vectors, 

i.e. the HMCR and PAR are 0.9 and 0.45, respectively. The optimum result presented 

in Table 4.8 is obtained after 1500 searches of the harmony search method. However, it 

was noticed that the optimum sectional designations remained the same after 2000 

searches. Variation of the minimum weight from 10 iterations to 2000 iterations is 

shown in Figure 4.3.  
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Figure 4.3 Variation of mimimum weights during the generations for 23-member 
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The discrete set considered in the design is extended to the complete list of universal 

beam sections which has 272 W-sections. After 2000 iterations HS algorithm has found 

the optimum design as W530x66 for the first group, W840x176 for the second and 

W150x13.5 for the third group. This combination has resulted in the minimum weight 

of 4718.4 kg. Variation of the minimum weight from 10 iterations to 2000 iterations is 

shown in Figure 4.3.   

 
Table 4.9 Optimum Design for 23-member grillage system with three groups 

 

Optimum Sectional Designations 

Group 1 Group 2 Group 3 

)(
max

mm

δ
 

Maximum 
Strength 
Ratio  

Minimum 
Weight    
(kg)  

W530x66 W840x176 W150x13.5 24.5 0.79 4718.4 

 
 
The optimum sectional designations obtained by the harmony search based method for 

the external loading shown in Figure 4.2 is given in Table 4.7. It is apparent from the 

table that displacement constraints are dominant in the design problem. 
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4.1.3 40-member Grillage System 
 

The grillage system shown in Figure 4.4 has 40 members which are collected in two 

groups. The external loading is also shown in the figure. The vertical displacements of 

joints 6, 7, 10 and 11 are restricted to 25 mm while the yield stress is taken as the yield 

stress of mild steel which is 250Mpa [40]. 

 

 
 

Figure 4.4 40-member grillage system 

 

While the maximum vertical displacement was less than its upper bound, the strength 

ratio for members in the middle portion of the system was equal to its upper bound of 

1. It is interesting to notice that harmony search method came up with the same section 

for the both groups due to the symmetry of the system and its loading. 

 

40-member grillage system were tested to demonstrate the discrete search efficiency of 

the HS algorithm. The ten cases shown in table 4.10, each with a different set of HS 

algorithm parameters were tested. These parameters were arbitrarily selected on the 
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basis of the emprical findings by Geem and Lee [32]. The maximum number of 

searches was set to 2000 for this example. 

 
Table 4.10 HS algorithm parameters used for 40-member grillage system 

 

Cases HMS HMCR PAR Weight(kg) 

1 30 0.80 0.40 8759.4 

2 45 0.75 0.20 8458.6 

3 25 0.85 0.35 8382.1 

4 35 0.90 0.45 8317.4 

5 35 0.85 0.40 8244.1 

6 40 0.95 0.30 8020.0 

7 30 0.8 0.45 7806.0 
8 50 0.95 0.25 7795.9 
9 50 0.90 0.45 7738.3 

10 40 0.70 0.50 7729.5 

 
 

The size of HM matrix (HMS) is taken as (40x5). The total number of solution vectors, 

i.e. the HMCR and PAR are 0.7 and 0.50, respectively. The optimum result presented 

in Table 4.10 is obtained after 1650 searches of the harmony search method. However, 

it was noticed that the optimum sectional designations remained the same after 2000 

searches. Variation of the minimum weight from 10 iterations to 2000 iterations is 

shown in Figure 4.5.  
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Figure 4.5 Variation of minimum weights during the generations for 40-member 

 
The optimum sectional designations obtained by the harmony search based method for 

the external loading shown in Figure 4.4 is given in Table 4.9. It is apparent from the 

table that displacement constraints are dominant in the design problem. 

 
Table 4.11 Optimum Design for 40-member grillage system with two groups 

 

          Optimum Sectional Designations 

Group 1 Group 2 
  

)(
max

mm

δ
 

Maximum 
Strength 

Ratio 

Minimum 
Weight 

(kg) 

 
W150x13.5 

 

 
W840x176 

 
24.2 0.79 7729.5 

 
 
The same system was designed once more by collecting the members of the system in 

four different groups. The outer and inner longitudinal beams are considered to be 

group 1 and 2 respectively while the outer and inner transverse beams are taken as 

group 3 and 4. The optimum solution obtained for this case is given in Table 4.11. This 
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system is slightly lighter than the one with two groups. It is apparent from the table that 

strength constraints are dominant in the design problem. In this case the harmony 

search method selects different W-sections for groups 3 and 4. 

 
Table 4.12 Optimum Design for 40-member grillage system with four groups 

 

 

Optimum Sectional Designations 

Group 1 Group 2 Group 3 Group 4 
  

)(
max

mm

δ
  

Maximum 
Strength 
Ratio   

Minimum 
Weight 
(kg) 

W410x46.1 W410x53 W200x15 W1000x222 22.3 0.99 7223.7 
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CHAPTER 5 

 

 

5 CONCLUSION 
 

The structural optization field has been continuing to gain wide acceptance amongst the 

design community because of its applicability in a large range of practical numerical 

and structural design problems. Recently, some of researchers have been concentrating 

on optimization area, realizing the important advantage of an optimized structure over a 

non-optimized structure in regard of cost- saving gained with a cost-optimal design. 

 

In the present study the harmony seach algorithm-based optimization method have 

been researched for engineering optization problems. In chapter 2, several standart test 

examples, including two constrained function minimization problems, and one 

constrained structural optimization problem (welded beam design) have been solved 

with HS algorithm method. These examples showed that HS algorithm can easily 

obtain minimum value of function with fewer iterations at simple numerical problems. 

If number of design variables and constraints increases, Harmony search method 

requires more iterations for finding the minimum value of function. HS parameters, 

HMS, HMCR, and PAR, affect the value of objective function. For the Harmony 

search algorithm, high HMCR, especially from 0.7 to 0.95, contributes excellent 

Fortran programming outputs, while PAR and HMS demonstrate little correlation with 

improvement in performance. Geem’s sensitivity analysis of HMCR and PAR is 

confirmed in this study.  

 

When numerical results compared with other studies, especially Genetic Algorithm 

based methods, to show accuracy and performance of HS method. The results obtained 

using the harmony search algorithm may yield better solutions than those obtained 

using current algorithms, such as generalized reduced gradient method or genetic 



 81 

algorithm based approaches. The results also showed that harmony search method 

needs less number of numerical analysis compare to the simple genetic algorithm based 

methods.   

 

The recently developed harmony search method is applied to the optimum design 

problem of grillage systems where the design constraints are implemented from LRFD-

AISC. The harmony search method is a new stochastic random search based numerical 

technique which simulates the musical process of searching for a perfect state of 

harmony. This mathematically simple algorithm sets up harmony search matrix each 

row of which consists of randomly selected feasible solutions to the design problem. In 

every search step, it searches the entire set rather than a local neighborhood of a current 

solution vector. It neither needs initial starting values for the design variables nor a 

population of candidate solutions to the design problem. The results obtained showed 

that the harmony search method is powerful and efficient in finding the optimum 

solution of combinatorial structural optimization problems. Harmony Search algorithm 

have appeared to be a promising method for optimization problems. 
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