INTERACTIONS OF CHOLESTEROL REDUCING AGENT SIMVASTATIN WITH PHOSPHOLIPID MODEL MEMBRANES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA KOÇAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF SCIENCE IN
BIOCHEMISTRY

JANUARY 2007
Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Assoc. Prof. Nursen ÇORUH
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Feride SEVERCAN
Supervisor

Examsining Committee Members

Prof. Dr. Tülin GÜRAY (METU, BIOL)

Prof. Dr. Feride SEVERCAN (METU, BIOL)

Prof. Dr. Engin U. AKKAYA (METU, CHEM)

Prof. Dr. Faruk T. BOZOĞLU (METU, FDE)

Prof. Dr. Nadide KAZANCI (Ege Univ., PHYS)
I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Mustafa KOÇAK
ABSTRACT

INTERACTIONS OF CHOLESEROL REDUCING AGENT SIMVASTATIN WITH PHOSPHOLIPID MODEL MEMBRANES

Koçak, Mustafa
M. S., Department of Biochemistry
Supervisor: Prof. Dr. Feride SEVERCAN

January 2007, 140 pages

Interactions of simvastatin with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) multilamellar liposomes were investigated as a function of temperature and simvastatin concentration. And acyl chain length effect on the simvastatin-model membrane interactions was monitored with DPPC and dimyristoyl phosphatidylcholine (DMPC) lipids. All studies were carried out by two non-invasive techniques, namely Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC).

The results showed that as simvastatin concentration increased, the main phase transition temperature decreased, the main phase transition curve broadened, and the characteristic pretransition was disappeared for both DMPC and DPPC model membranes. All concentrations of simvastatin disordered and decreased the fluidity of phospholipid membranes.
Analysis of C=O stretching band showed that simvastatin either strengthen the existing hydrogen bonds of the glycerol skeleton closer to the head groups or caused the formation of new hydrogen bonds.

A dehydration effect caused by simvastatin around the PO\(_2^-\) functional groups in the polar part of the lipids was monitored. This dehydration effect in the gel phase was more profound than in the liquid crystalline phase for 1, 6, and 12 mol\% of simvastatin concentrations.

DSC peaks broadened and shifted to lower temperature values by increasing the simvastatin concentration. For both lipids, simvastatin-induced lateral phase separation was observed in the DSC thermograms.

Any change caused by the acyl chain length difference of DMPC and DPPC lipids was not observed on the simvastatin-membrane interactions. Also, for both of the lipids similar trends were observed in the FTIR and DSC results. More profound effects of simvastatin on the less stable DMPC membranes were observed.

Key words: Simvastatin, acyl chain length effect, DMPC, DPPC, FTIR, DSC.
ÖZ

KOLESTEROL DÜŞÜRÜRÜCÜ AJAN SİMVASTATİNİN FOSFOLİPİD
MODEL MEMBRANLARLA ETKİLEŞİMLERİ

Koçak, Mustafa
Yüksek Lisans, Biyokimya Bölümü
Tez Yöneticisi: Prof. Dr. Feride SEVERCAN

Ocak 2007, 140 sayfa

Bu tezde simvastatinin dipalmitol fosfatidilkolin'den (DPPC) oluşan çok katmanlı lipozomların termotropik faz davranışı ve fiziksel özelliklerine olan etkisi sıcaklığa ve simvastatin derişimine bağlı olarak araştırıldı. Ayrıca simvastatin-model membran etkileşimlerinde asıl zincir uzunluğunun etkisi DPPC ve dimirisitol fosfatidilkolin (DMPC) lipidleri kullanarak araştırıldı. Tüm çalışmalarda katman yapısına zarar vermeyen Fourier dönüşüm kızılötesi (FTIR) spektroskopisi ve diferansiyel tarama kalorimetresi (DSC) kullanıldı.

Sonuçlarımızda göre her iki lipidin model membranları için simvastatin derişimi yükseldikçe, ana faz geçiş sıcaklığı düşmüş, faz geçiş eğrisi genişlemiş ve ön faz geçiş sıcaklığı tamamen yok olmuştur. Bunlarla birlikte tüm simvastatin derişimlerinde membranların düzensizliği artmış akışkanlığı azalmıştır.

FTIR spektroskopisinde C=O gerilme bandlarının analizine göre simvastatin kafa gruplarına yakın gliserol iskeletinde varolan hidrojen bağlarını güçlendirmiş ya da yeni hidrojen bağlarının oluşmasını sağlamıştır.
Ayrıca lipidlerin polar kısımlarındaki \(\text{PO}_2^- \) fonksiyonel gruplarının etrafında simvastatin kaynaklı dehidrasyon görülmuştur. 1, 6 ve 12 mol% simvastatin derişimlerinde bu dehidrasyon etkisi jel fazda sıvı kristal faza göre daha derin olmuştur.

Simvastatin konsantrasyonu arttıkça DSC tepe eğrileri genişlemiştir ve daha düşük sıcaklık değerlerine kaymıştır. Yine her iki lipidin DSC termogramlarında simvastatin sebebi yanal faz ayırının olduğu görülmüştür.

Simvastatin-membran etkileşimlerinde DMPC ve DPPC lipidleri arasındaki asil zincir uzunluğu farkından dolayı herhangi bir değişiklik görülmemiştir. Bununla birlikte her iki lipidin FTIR ve DSC sonuçlarında benzer eğilimler gözlemlenmiştir. Ayrıca daha az kararlı olan DMPC membranlarında simvastatin etkilerinin daha derin olduğu görülmüştür.

Anahtar kelimeler: Simvastatin, asil zincir uzunluğu etkisi, DMPC, DPPC, FTIR, DSC.
To My Brother Engin KOÇAK
ACKNOWLEDGMENTS

I am grateful to Prof. Dr. Feride SEVERCAN for her advice, encouragement, and supervision throughout my study.

I would like to thank my parents Rabia-Yusuf KOÇAK for their continuous help, support and encouragement throughout this study.

My gratitudes also go to my brother Engin KOÇAK for his patience, support, assistance and valuable help during this study and preparation of the manuscript.

Finally, I would like to thank my aunt Saniye SAYIN and her husband Mutlu SAYIN for their support and encouragement throughout the study.
TABLE OF CONTENTS

PLAGIARISM..iii
ABSTRACT...iv
ÖZ..vi
ACKNOWLEDGMENTS...ix
TABLE OF CONTENTS...x
LIST OF TABLES ..xii
LIST OF FIGURES ...xiii

CHAPTER

1. INTRODUCTION...1

1.1 Scope and Aim of This Study...1
1.2 Biological Membranes...4
1.3 Molecular Motions in Lipid Bilayers.................................8
1.4 Liposomes as Model Membranes...10
1.5 Thermotropic Phase Transitions in Lipid Bilayers..............12
1.6 Statins and Simvastatin..16
 1.6.1 Simvastatin-Membrane Interactions..................27
1.7 Absorption Spectroscopy...29
 1.7.1 Infrared Spectroscopy..32
 1.7.2 Instrumentation of Fourier-Transform Infrared Spectrometer...34
 1.7.3 Infrared Spectroscopy in Membrane Research..............37
 1.7.4 Advantages of Fourier Transform Infrared Spectroscopy......38
1.8 Differential Scanning Calorimetry39
 1.8.1 Instrumentation of Differential Scanning Calorimetry.......40
 1.8.2 Differential Scanning Calorimetry in Membrane Research....42
2. MATERIALS AND METHODS...45
 2.1 Reagents..45
 2.2 Phosphate Buffer Preparation...45
 2.3 Simvastatin Stock Solution Preparation............................46
 2.4 Preparation of Model Membranes.....................................46
 2.5 Sample Preparation for the FTIR Experiments...............46
 2.5.1 Infrared Spectral Regions Used in This Study........47
 2.6 Sample Preparation for the DSC Experiments.................53
 2.6.1 Thermogram Analysis...53
3. RESULTS..57
 3.1 FTIR Studies...57
 3.1.1 Temperature Dependent FTIR Studies of DPPC Model
 Membranes...58
 3.1.2 FTIR Studies to Monitor the Acyl Chain Length Effect
 Between DMPC and DPPC Lipids..................................75
 3.2 DSC Studies...96
4. DISCUSSION...104
 4.1 Simvastatin-DPPC Model Membrane Interaction...............104
 4.2 Effect of Acyl Chain Length..108
CONCLUSION..113
REFERENCES...115
LIST OF TABLES

Table 1.7.1.1. Band assignments of some characteristic infrared absorbtion bands according to their wavenumbers in cm$^{-1}$ (Stuart, 2004)……35
Table 3.3.1 Width at half height (ΔT), transition temperatures (T_m) and enthalpy of the transitions (ΔH) for DMPC liposomes are given…103
Table 3.3.2 Width at half height (ΔT), transition temperatures (T_m) and enthalpy of the transitions (ΔH) for DPPC liposomes are given…..103
LIST OF FIGURES

Figure 1.2.1 Fluid-mosaic model of a cell membrane…………………………6
Figure 1.2.2 Chemical structure of a phospholipid………………………….7
Figure 1.3.1 Movements of a phospholipid molecule within membranes……8
Figure 1.4.1 a) The structure of a liposome, b) The types of liposomes……12
Figure 1.5.1 Schematic illustration of the lamellar bilayer phases…………15
Figure 1.6.1 The mammalian mevalonate pathway…………………………18
Figure 1.6.2 Inhibition of HMG CoA reductase by statins…………………19
Figure 1.6.3 The chemical structures of the hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors……………………………………20
Figure 1.7.1 Propagation of an electromagnetic wave through space……….30
Figure 1.7.2 Typical energy-level diagram showing the ground state and the first excited state. Vibrational levels are shown as horizontal lines and rotational levels are also shown in between the two vibrational levels in the ground state. A possible electronic transition between the first vibrational level of the ground state and the second vibrational level of the first excited state is indicated by the long arrow. A vibrational transition within the ground state is indicated by the short arrow……………………………………………………31
Figure 1.7.1.1 The part of the electromagnetic spectrum that is relevant to physical biochemistry………………………………………………………33
Figure 1.7.1.2 Types of normal vibrations for CO₂ molecule………………..33
Figure 1.7.2.1 Basic components of an FTIR spectrometer…………………..36
Figure 1.7.2.2 Schematic of a Michelson interferometer……………………..36
Figure 1.8.1.1 Schematic illustration of a DSC……………………………….36
Figure 2.5.1.1 FTIR spectrum of DMPC liposomes. Upper spectrum shows the liposomes before water bands were subtracted and the spectrum below shows the liposomes after subtraction……………………………………50
Figure 2.5.1.2 FTIR spectrum of DPPC liposomes. Upper spectrum shows the liposomes before water bands were subtracted and the spectrum below shows the liposomes after subtraction………………………………………………..51
Figure 2.5.1.3 Infrared spectrum of air…………………………………………52
Figure 2.6.1 Phase Transition Thermogram of DMPC. The little peak on the left is the pretransition curve and the following one is the main transition curve. Three parameters namely the width, the main phase transition temperature and the transition enthalpy change used in the DSC analysis were indicated on the main transition curve………………………………………………………….55
Figure 2.6.2 Phase Transition Thermogram of DPPC. The little peak on the left is the pretransition curve and the following one is the main transition curve. Three parameters namely the width, the main phase transition temperature and the transition enthalpy change used in the DSC analysis were indicated on the main transition curve………………………………………………………….56
Figure 3.1.1.1 FTIR spectra of pure DPPC multilamellar liposomes in the C-H stretching region at different temperatures. The spectra were normalized with respect to the CH\textsubscript{2} antisymmetric stretching band located at 2920 cm-1………….60
Figure 3.1.1.2 FTIR spectra of DPPC liposomes in the presence and absence of low and high simvastatin concentrations in the C-H stretching region at 41.4\degree C. The spectra were normalized with respect to the CH\textsubscript{2} antisymmetric stretching band located at 2920 cm-1……………………………………………………..61
Figure 3.1.1.3 FTIR spectra of DPPC liposomes in the presence and absence of low and high simvastatin concentrations in the 1800-1000 cm-1 region at 45.1\degree C. The spectra were normalized with respect to the C=O stretching band located at 1735 cm-1…………………………………………………………...62
Figure 3.1.1.4 FTIR spectra of pure DPPC liposomes and simvastatin at low and high concentrations corresponding to 1 and 24 mol\% in solution at room temperature……………………………………………………………………63
Figure 3.1.1.5 FTIR spectra of the pure DPPC and DMPC liposomes in their gel phases in the 3000-2800 cm$^{-1}$ region. The spectra were normalized with respect to the CH$_2$ antisymmetric stretching band located at 2920 cm$^{-1}$……..64

Figure 3.1.1.6 Temperature dependence of the frequency of the CH$_2$ symmetric stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes……………………………………..66

Figure 3.1.1.7 Temperature dependence of the frequency of the CH$_2$ antisymmetric stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes……………………………...67

Figure 3.1.1.8 Temperature dependence of the bandwidth of the CH$_2$ symmetric stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes……………………………………..69

Figure 3.1.1.9 Temperature dependence of the bandwidth of the CH$_2$ antisymmetric stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes……………………………...70

Figure 3.1.1.10 Temperature dependence of the frequency of the C=O stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes……………………………………..72

Figure 3.1.1.11 Temperature dependence of the frequency of the PO$_2^-$ antisymmetric double stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes……………………………...74

Figure 3.1.2.1 Simvastatin concentration dependence of the frequency of the CH$_2$ symmetric stretching mode for DMPC liposomes at 10$^\circ$C. (*) P < 0.05……………………………………………………………………..77

Figure 3.1.2.2 Simvastatin concentration dependence of the frequency of the CH$_2$ symmetric stretching mode for DPPC liposomes at 29.5$^\circ$C. (*) P < 0.05……………………………………………………………………..77

Figure 3.1.2.3 Simvastatin concentration dependence of the frequency of the CH$_2$ antisymmetric stretching mode for DMPC liposomes at 10$^\circ$C. (*) P < 0.05……………………………………………………………………..78
Figure 3.1.2.4 Simvastatin concentration dependence of the frequency of the CH$_2$ antisymmetric stretching mode for DPPC liposomes at 29.5°C. (*) P < 0.05

Figure 3.1.2.5 Simvastatin concentration dependence of the frequency of the CH$_2$ symmetric stretching mode for DMPC liposomes at 35°C. (*) P < 0.05

Figure 3.1.2.6 Simvastatin concentration dependence of the frequency of the CH$_2$ symmetric stretching mode for DPPC liposomes at 54°C. (*) P < 0.05

Figure 3.1.2.7 Simvastatin concentration dependence of the frequency of the CH$_2$ antisymmetric stretching mode for DMPC liposomes at 35°C. (*) P < 0.05

Figure 3.1.2.8 Simvastatin concentration dependence of the frequency of the CH$_2$ antisymmetric stretching mode for DPPC liposomes at 54°C. (*) P < 0.05

Figure 3.1.2.9 Simvastatin concentration dependence of the bandwidth of the CH$_2$ symmetric stretching mode for DMPC liposomes at 10°C. (*) P < 0.05

Figure 3.1.2.10 Simvastatin concentration dependence of the bandwidth of the CH$_2$ symmetric stretching mode for DPPC liposomes at 29.5°C. (*) P < 0.05

Figure 3.1.2.11 Simvastatin concentration dependence of the bandwidth of the CH$_2$ antisymmetric stretching mode for DMPC liposomes at 10°C. (*) P < 0.05

Figure 3.1.2.12 Simvastatin concentration dependence of the bandwidth of the CH$_2$ antisymmetric stretching mode for DPPC liposomes at 29.5°C. (*) P < 0.05

Figure 3.1.2.13 Simvastatin concentration dependence of the bandwidth of the CH$_2$ symmetric stretching mode for DMPC liposomes at 35°C. (*) P < 0.05
Figure 3.1.2.14 Simvastatin concentration dependence of the bandwidth of the CH$_2$ symmetric stretching mode for DPPC liposomes at 54°C. (*) P < 0.05……………………………………………………………………………86

Figure 3.1.2.15 Simvastatin concentration dependence of the bandwidth of the CH$_2$ antisymmetric stretching mode for DMPC liposomes at 35°C. (*) P < 0.05……………………………………………………………………………87

Figure 3.1.2.16 Simvastatin concentration dependence of the bandwidth of the CH$_2$ antisymmetric stretching mode for DPPC liposomes at 54°C. (*) P < 0.05…………………………………………………………………………....87

Figure 3.1.2.17 Simvastatin concentration dependence of the frequency of the C=O stretching mode for DMPC liposomes at 10°C. (*) P < 0.05…………...89

Figure 3.1.2.18 Simvastatin concentration dependence of the frequency of the C=O stretching mode for DPPC liposomes at 29.5°C. (*) P < 0.05………….89

Figure 3.1.2.19 Simvastatin concentration dependence of the frequency of the C=O stretching mode for DMPC liposomes at 35°C. (*) P < 0.05…………...91

Figure 3.1.2.20 Simvastatin concentration dependence of the frequency of the C=O stretching mode for DPPC liposomes at 54°C. (*) P < 0.05…………………………………………………………………………....91

Figure 3.1.2.21 Simvastatin concentration dependence of the frequency of the PO$_2^-$ antisymmetric double stretching mode for DMPC liposomes at 10°C. (*) P < 0.05………………………………………………………………………..93

Figure 3.1.2.22 Simvastatin concentration dependence of the frequency of the PO$_2^-$ antisymmetric double stretching mode for DPPC liposomes at 29.5°C. (*) P < 0.05……………………………………………………………………..93

Figure 3.1.2.23 Simvastatin concentration dependence of the frequency of the PO$_2^-$ antisymmetric double stretching mode for DMPC liposomes at 35°C. (*) P < 0.05………………………………………………………………………….95

Figure 3.1.2.24 Simvastatin concentration dependence of the frequency of the PO$_2^-$ antisymmetric double stretching mode for DPPC liposomes at 54°C. (*) P < 0.05………………………………………………………………………….95
Figure 3.2.1 DSC thermogram of DMPC liposomes (Kiselev et al., 2001)....97
Figure 3.2.2 DSC thermogram of DPPC liposomes (Mavramoustakos et al.,
1997)..98
Figure 3.2.3 DSC thermogram of DMPC liposomes in the presence and
absence of different simvastatin concentrations in terms of mol%............100
Figure 3.2.4 DSC thermogram of DPPC liposomes in the presence and absence
of different simvastatin concentrations in terms of mol%.........................101
CHAPTER 1

INTRODUCTION

1.1 Scope and Aim of This Study

Biological membranes have vital functions for the continuity of life. Plasma membrane or cell membrane completely surrounds the cell. And it separates the cell from the external world. Compartmentalization, providing a selectively permeable barrier, transporting solutes, responding to external signals, intercellular interaction, energy transduction and being a locus for biochemical activities are major functions of plasma membrane (Karp, 1999). Understanding the molecular organization of biological membranes is important to determine their structure and function.

Biophysical studies dealing with biomembranes are mainly based on the organization, structure and dynamics of the lipid matrix. Order-disorder phase transition or thermotropic mesomorphism is the most frequently studied property of the biological membranes by physical techniques like spectroscopic methods which provide information about molecular motion and molecular moieties. In recent years, there has been a great development in the field of spectroscopic instrumentation. As a result, it becomes possible to apply spectroscopic techniques to the researches of membrane structure and function. Especially non-perturbing techniques, such as Fourier Transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC) provide significant and detailed information about changes in the phase transition behaviour, mobility and structure of individual molecular moieties (Lopez-Garcia et al., 1993; Daniels, 1973).
Investigating the phase transition behaviour of membrane lipids is important in understanding the membrane structure, stability and function in real biological systems. Moreover, it is often necessary to study the structure of artificial membranes before undertaking the study of natural membranes because of the huge complexities of real biological systems (Mantsch and Casal, 1984). Among the phospholipids, phosphatidylcholines (PCs), popularly called lecithins, are one of the most common constituents of biological membranes. Model membranes composed of phosphatidylcholines are the most widely studied (Tien and Ottova, 2000).

Cholesterol is a major precursor for the synthesis of many biologically important molecules like bile acids and steroid hormones in the body (Mathews et al., 2000). It is also one of the components of the cell membrane and determines the physico-chemical properties of the membrane (Lodish, 2004). Cholesterol synthesis occurs in all types of cells but mainly in liver cells (Evans and Rees, 2002). An early and rate-limiting step of the synthesis is catalyzed by HMG CoA reductase (Hamelin and Turgeon, 1998).

Another name of the statin drugs is HMG CoA reductase inhibitors and they stop the cholesterol synthesis at the rate-limiting step in the mevalonate pathway (Päivä, 2005). As a result of this inhibition the blood plasma levels of LDL-cholesterol and triglycerides decrease while the level of HDL-cholesterol increases (Schachter, 2004). Thus, cholesterol metabolism is regulated. Due to these properties statins are widely used in the treatment of hyperlipidemic patients (Wierzbicki et al., 2003).

Simvastatin is one of the members of the statin drugs. It is known that the long term use of simvastatin reduces the risks of mortality caused by coronary heart disease, atherosclerosis dependent myocardial infarction and ischemia attack (Lutgens and Daemen, 2004). Despite its vital effects, it is reported that
Simvastatin has pleitropic effects on many different tissues (Almuti et al., 2006). In the nervous system, it causes peripheral neuropathy and memory problems (Jeppesen et al., 1999; King et al., 2003). On the other hand, it can be used in the treatment of central nervous system diseases (e.g. Alzheimer, Parkinson) (Almuti et al., 2006). In addition, myalgia, rhabdomyolysis and myopathy are major adverse effects of simvastatin on the muscular system (Rosenson, 2004; Carvalho et al., 2004; Evans and Rees, 2002). Simvastatin is widely used because of its high efficacy.

In this study we report our findings on the effect of simvastatin on lipid organization and fluidity of model membranes which was accomplished by monitoring the thermotropic phase transition profiles of DMPC and DPPC with different physical techniques. To our knowledge this is the first study to report the interactions of simvastatin with phospholipid membranes. One of the most important findings of this study is that simvastatin decreases membrane fluidity and induces phase separation. The reason why we have chosen to study simvastatin-model membrane interactions is to understand the molecular mechanism of simvastatin interactions. In the literature, there are many researches about the simvastatin effects on the biological systems but these studies were performed at the organ or tissue level. Moreover, to understand all effects of simvastatin very well, molecular mechanisms of its interactions should be known. Biological membranes are very important because of their major functions and simvastatin has significant effects on the tissue membranes but how simvastatin acts on the biological membranes at the molecular level is unknown. At the molecular level the purpose of this study is to investigate the location of simvastatin in the model membrane; its effects on the main and pre-transition profiles, order and dynamics with respect to its interaction with membrane headgroup and acyl chain with different simvastatin to lipid ratios for a temperature range of 20-70°C by using different non-perturbing
biophysical techniques; namely, Fourier Transform Infrared (FTIR) spectroscopy, and Differential Scanning Calorimetry (DSC).

The last part of this study has been devoted to investigate the acyl chain length effect on the simvastatin-model membrane interactions by using the same techniques with DMPC and DPPC lipids. This part is also so important because in the literature it is known that effects of many drugs, enzymes, proteins like cyclosporin A (Söderlund et al., 1999), human plasma lecithin:cholesterol acyltransferase (Pownall et al., 1985), melittin (Ohki, 2005) on the biological systems depend on the acyl chain length of phospholipids.

Structurally biological membranes are very complex because they have various types of lipids in different ratios. Including proteins and presence of lipid asymmetry between the inner and outer leaflets of the bilayer are also other factors making the structure of biological membranes so complex. As a result, to understand the effects of simvastatin on the real biological membranes and systems at the molecular level clearly, we want to investigate the interactions of cholesterol reducing agent simvastatin with phospholipid model membranes having a simpler structure.

1.2 Biological Membranes

Plasma membrane or the cell membrane is the structure which separates the cell from the external world. Membranes have various functions. Their one major function is compartmentalization. Because of compartmentalization many chemical activities proceed without any disturbance from the outside and their regulation can be done independently. Also membranes provide a
selectively permeable barrier from one side to the other side of the cell. Moreover, membranes provide the communication between the compartments that they separate. Transportation is another major function of the cell membrane. They have the required mechanism in their structure for the physical transportation of substances from one side to the other side. Membranes have receptors in their structure. These receptors form a complementary structure with specific molecules known as ligands. Thus, membranes have an important role in signal transduction. Energy transduction, taking part in intercellular interaction and providing a suitable space for biochemical activities are some other main functions of the cell membrane. (Karp, 1999).

All biological membranes are lipid-protein assemblies and the components are held together by noncovalent bonds. Membranes also contain short chains of carbohydrates. In 1972, S. J. Singer and G. Nicolson proposed fluid-mosaic model to explain the chemical structure of biological membranes. Figure 1.2.1 shows fluid-mosaic model of a cell membrane. According to this model, lipid bilayer mainly serves as a structural framework for the membrane. The lipid molecules are present in a fluid state and they can move laterally within the plane of the membrane. The proteins occur as a mosaic of discontinuous particles that penetrate deeply into, and even completely through, the lipid sheet. The most important property of the fluid mosaic model is presenting cellular membranes as dynamic structures in which the components are mobile and capable of coming together to engage in various types of transient or semipermanent interactions. The proteins of the membrane perform some specific functions, however, lipid bilayer provides a barrier preventing the indiscriminate movements of water-soluble materials into and out of the cell. The ratio of lipid to protein varies considerably depending on the type of cellular membrane, the type of organism and the type of cell (Karp, 1999; Mathews et al., 2000).
Membranes contain various types of lipids, all of which are amphipathic which means that they contain both hydrophilic and hydrophobic regions. There are three main types of membrane lipids which are phosphoglycerides, sphingolipids, and cholesterol. Most membrane lipids have a phosphate group which makes them phospholipids. Most membrane phospholipids are built on a glycerol backbone so they are known as phosphoglycerides. Figure 1.2.2 shows the chemical structure of a phospholipid. Unlike triglycerides, which have three fatty acids, membrane glycerides are diglycerides. Only two of the hydroxyl groups of their glycerol are esterified to fatty acids, however, the third is esterified to a phosphate group. The molecule, which has the phosphate group and the two fatty acyl chains, is called phosphatidic acid. Nevertheless, phosphatidic acid is almost absent in most membranes. Instead, membrane phosphoglycerides have an additional group linked to the phosphate, most commonly either choline (forming phosphatidylcholine), ethanolamine (forming phosphatidylethanolamine), serine (forming phosphatidylserine), or inositol (forming phosphatidylinositol). Each of these groups is small and
hydrophilic and, together with the charged phosphate to which it is attached, forms a highly water-soluble domain at one end of the molecule, called the head group. In contrast the fatty acyl chains are long, unbranched, hydrophobic hydrocarbons. If a membrane fatty acid lack double bonds then it is fully saturated. If it has one double bond then it is monounsaturated. If it has more than one double bond then it is polyunsaturated. Phosphoglycerides generally contain one unsaturated and one saturated fatty acyl chain (Karp, 1999; Tien and Ottova, 2000).

Amphipathic phospholipids, like other amphiphilic molecules, are subject to two conflicting forces: the hydrophilic head is attracted to water, while the hydrophobic hydrocarbon moiety avoids water and seeks to aggregate with other hydrophobic molecules (like-dissolves-like). This dichotomy is elegantly resolved by the formation of a lipid bilayer in an aqueous environment (Tien and Ottova, 2000).

Figure 1.2.2 Chemical structure of a phospholipid.
1.3 Molecular Motions in Lipid Bilayers

There are various types of molecular motions in lipid bilayers. A phospholipid molecule has three kinds of movements in a membrane. Figure 1.3.1 shows movements of a phospholipid molecule within membranes. One of these movements is *flip-flop* motion or transverse diffusion. In this type of motion phospholipids move from one leaflet to another at a very slow rate. The half-life of a phospholipid molecule staying within one layer, as opposed to moving across to the other layer, is measured in hours to days. Such a slow rate is expected because for flip-flop to occur, the hydrophilic head group of the lipid must pass through the internal hydrophobic sheet of the membrane, which is thermodynamically unfavorable (Karp, 1999; Mathews *et al*., 2000). In other words, there is a large activation energy barrier for the movement of polar head group through hydrophobic interior (Smith *et al*., 1983).

![Figure 1.3.1 Movements of a phospholipid molecule within membranes.](image)

Rotation is another type of motion of phospholipid molecules. Axial rotation of lipids along their long axis perpendicular to the plane of the membrane occurs every 0.1-100 ns. In lateral diffusion, phospholipid molecules move rapidly in the plane of the membrane. A lipid molecule exchange places with
neighbouring molecules in the same monolayer. Segmental motion of acyl chains causes an increased disorder toward the center of the membrane (Becker et al., 1996). Due to the bond rotation potential carbon-carbon bonds can only occur in three rotational states which are trans (t), gauche minus (g\(^-\)) and gauche plus (g\(^+\)). Gauche conformers have a higher free energy than trans conformers due to steric hinderence. The average conformation for a free chain is determined by the energy difference between trans and gauche isomers and cooperative interactions between nearest neighbours. All-trans conformation of a poly methylene chain is the lowest potential energy conformation. In this conformation saturated acyl chains are longest, thinnest and most closely packed. However, a single gauche conformer in an acyl chain causes a big difference in the properties of the neighbouring acyl chains (Seelig and Seelig, 1974; Jain, 1988).

The lipid bilayer consists of two distinct leaflets, and there is no reason to assume that the lipid composition of the two halves should be identical. In fact, a large body of evidence indicates that the lipids of the plasma membrane are distributed in a highly asymmetric pattern. The lipid bilayer can be thought of as composed of two more-or-less stable, independent monolayers having different physical and chemical properties (Karp, 1999). Not only individual lipids distributed very asymmetrically, but the distribution also varies considerably among cell types. The consequences of such differences in phospholipid composition are numerous. Fluidity may be different on one side of the membrane or the other. The difference in charged groups on the two surfaces contributes to the membrane potential. Distribution of membrane proteins is also asymmetric. Presence of asymmetry in the distribution of lipids and proteins between the inner and outer leaflets of the bilayer makes the real biological membranes so complex (Mathews et al., 2000).
1.4 Liposomes as Model Membranes

If a small amount of phosphatidylcholine is suspended in an aqueous solution, which is then subjected to mechanical agitation, the phospholipid molecules become assembled spontaneously to form the walls of fluid-filled spherical vesicles, called liposomes. The walls of these liposomes consist of a single continuous lipid bilayer that is organized in the same manner as that of the lipid bilayer of a natural membrane. Liposomes have proven invaluable in membrane research (Karp, 1999). Many things can be learned about biomembranes by studying liposomes. In other words, we can have a better knowledge of structural-functional relationship of lipids, proteins, carbohydrates, pigments, and their complexes, mechanisms of transport, energy transduction, signal processing, and our common senses such as vision, olfaction, hearing, gustation, and touching sensations (Tien and Ottova, 2000). Membrane proteins can be inserted into liposomes and their functions studied in a much simpler environment than that of a natural membrane (Karp, 1999). A liposome may contain one or more lipid bilayer. Typically, several of these vesicles will form one inside the other in diminishing size, creating a multilamellar structure of concentric phospholipid shells separated by layers of water. Liposomes can be prepared from a wide range of natural and synthetic lipids among which phospholipids are most commonly used. These phospholipids can be neutral, or positively charged phospholipids (such as phosphatidylcholine, phosphatidylethanolamine, etc.). Cholesterol is frequently used in liposome formulations to increase the stability. Moreover, liposomes can be prepared in sizes varying from 20 nm to 100 µm or more in diameter, according to the desired purpose. Procedures and raw materials for formulating liposomes must be considered with care to avoid adverse effects on liposome stability (Tien and Ottova, 2000).
Liposomes having more than one bilayer are called multilamellar vesicles (MLV) or multivesicular vesicles (MVV). Figure 1.4.1 shows the structure of a liposome and the types of liposomes. There are also small unilamellar vesicles (SUV) which have diameters between 20-50 nm. The large unilamellar vesicles (LUV) are prepared from SUVs by applying different techniques like reverse-phase evaporation method and detergent dialysis (removal) method (Ostro, 1983; Rosoff, 1996; Tien and Ottova, 2000). Real biological membranes are in the form of unilamellar liposomes of approximately 900 nm in diameter. Liposomes can be used besides models of biomembranes, as drug carriers and be loaded with a great variety of molecules, such as proteins, nucleotides, small drug molecules, and even plasmids. Liposomes are extremely adaptable, and due to the diversity of their composition, they can be utilized for a large number of applications (Rosoff, 1996; Tien and Ottova, 2000).
1.5 Thermotropic Phase Transitions in Lipid Bilayers

The internal temperature of most organisms (other than birds and mammals) fluctuates with the temperature of the external environment. Since it is essential for many activities that the membranes of a cell remain in a fluid state. Fluidity allows for interactions to take place within the membrane. For example, membrane fluidity makes it possible for clusters of membrane proteins to assemble at particular sites within the membrane and form specialized structures, such as intercellular junctions, light-capturing complexes, and
synapses. Because of membrane fluidity, molecules that interact can come together, carry out the necessary reaction, and move apart. Fluidity also plays a role in membrane assembly. Many of the most basic cellular processes, including cell movement, cell growth, cell division, formation of intercellular junctions, secretion, and endocytosis, depend on the movement of membrane components and would probably not be possible if membranes were rigid, nonfluid structures (Karp, 1999).

The phase transition in lipid bilayers can be described as a cooperative melting of the acyl chains. Shorter chains melt at lower temperatures and longer chains melt at higher temperatures (Phillips et al., 1970). The physical state of the lipid of a membrane is described by its fluidity (or viscosity). As with many other substances, lipids can exist in a crystalline solid phase or a liquid phase of varying viscosity depending on the temperature. For example, a simple artificial bilayer made of phosphatidylcholine and phosphatidylethanolamine, whose fatty acids are largely unsaturated. If the temperature of the bilayer is kept relatively warm (e.g., 37°C), the lipid exists in a relatively fluid state. At this temperature, the lipid bilayer is best described as a two-dimensional liquid crystal. As in a crystal, the molecules still retain a specified orientation; in this case, the long axes of the molecules remain essentially parallel, yet individual phospholipids can rotate around their axes or move laterally within the plane of the bilayer. If the temperature is slowly lowered, a point is reached where the bilayer distinctly changes. The lipid is converted from its normal liquidlike state to a frozen crystalline gel in which the movement of the phospholipids is greatly restricted. The temperature at which this change occurs is called the transition temperature (Karp, 1999).

The molecular organization of phospholipids in the bilayer are found in four different states which are; crystalline gel, gel, rippled gel and liquid crystalline. Thus, there are three phase transitions, namely, solid (gel) phase transition,
rippled gel phase transition and liquid crystalline phase transition between these four states as the temperature increases. The transition from gel phase to liquid crystalline phase in a phospholipid bilayer is a highly cooperative transition from order to disorder, involving a lateral expansion and a decrease in thickness and density. Within the transition range, two-dimensional domains of liquid and gel phase exist. Below and above this range, the membrane exists in gel and liquid phases, respectively (Jain et al., 1975).

The transition temperature of a membrane or lipid bilayer can be measured calorimetrically. The membrane suspension is placed in a calorimeter, an instrument that measures the energy required to raise the temperature of the specimen. As in the case of any substance undergoing a transition from a solid to a liquid state, energy is absorbed by the system in order to break the intermolecular restraints without causing a corresponding increase in the temperature of the substance. The transition in phase is seen as a sharp peak in the thermogram (Karp, 1999).

Temperatures, at which the phase transitions of phospholipids occur, are the following: i) The main phase transition temperature (T_m): Transition from rippled gel phase to liquid crystalline phase, ii) The pretransition temperature (T_p): Transition from gel phase to rippled gel phase which occurs 5-10°C below T_m, iii) The sub-transition temperature (T_s): Transition from crystalline gel phase to gel phase (Silver, 1985; Datta, 1987). It is known that the DMPC and DPPC liposomes undergo three following phase transitions (Fuldner, 1981; Ruocco and Shipley, 1982; Janiak et al., 1979; Silver, 1985)

$$L_c \xrightarrow{T_{sub}(18-20^\circ C)} L_\beta \xrightarrow{T_{pre}(35^\circ C)} P_\beta \xrightarrow{T_m(41^\circ C)} L_\alpha$$

where L_c, L_β, P_β, and L_α corresponds to crystalline gel, gel, rippled gel and liquid crystalline bilayer structures, respectively (Jain, 1988). Figure 1.5.1
shows the lamellar bilayer phases. Above the main phase transition temperature, the lipids are in liquid-crystalline state. The alkane chains become highly flexible near the middle of the bilayer due to the rotational motions about C-C bonds. If the rotation is 120°, it leads to transient gauche isomer (or kink) formation. The possibility of kink formation increases toward the methyl end of the alkane chains (Heller, 1993).

![Figure 1.5.1 Schematic illustration of the lamellar bilayer phases.](image)

In the bilayer, at sufficiently low temperatures, there is a little translational motion of lipid molecules. And their properties resemble those of hydrocarbon crystals in many ways. As the temperature increases, the properties of bilayers demonstrate abrupt changes at one or more temperatures. A small sudden increase in the phase transition curve corresponds to the pretransition peak associated with the tilting of the hydrocarbon chains. And a sudden larger increase corresponds to the main transition peak of the hydrated phospholipids.
from gel phase to the liquid crystalline phase, which is associated with complete melting of hydrocarbon chains (Severcan and Cannistraro, 1988).

The transition temperature of a particular bilayer depends on the particular lipids of which it is constructed. The most important determinant is the degree to which the fatty acyl chains of the phospholipids are unsaturated, that is, contain double bonds (specifically cis double bonds). The ability of the molecules to be packed together determines transition temperature and fluidity. Another factor that influences bilayer fluidity is fatty acid chain length (Karp, 1999).

1.6 Statins and Simvastatin

Cholesterol is essential to life in many ways like being a regulator of homeostasis, a precursor to the corticosteroids (e.g., cortisol, aldosterone) and sex hormones (e.g., progesterone, testosterone), and a critical factor in the maintenance of cell membrane integrity. However, high levels of this lipophilic substance lead to atherosclerosis, a predisposing factor to the development of coronary artery disease. Atherosclerosis involves an accumulation of cholesterol esters and other blood lipids and lipoproteins in macrophage cells found in the intima of arteries. Lipid-engorged macrophage cells become foam cells, and foam cell infiltration progresses to fatty streaks in the arterial wall. Plaque formation, thrombosis, and vessel occlusion can follow, leading to coronary artery diseases. This type of diseases involves one or more specific cardiovascular pathologies, including myocardial infarction, ischemia, and angina (Roche, 2005).

In addition to free cholesterol and its esters, triglycerides (long-chain fatty acid esters of the polyalcohol glycerol) and lipoproteins (macromolecular substances that solubilize blood lipids) are found in the bloodstream. High
levels of triglycerides and the lipid-rich lipoproteins that promote the formation of atherosclerotic plaques (low density lipoproteins [LDL] and very low density lipoprotein [VLDL]) are also a significant health risk. Patients with elevated levels of triglycerides and “bad cholesterol” are at risk for myocardial infarction and/or cerebral vascular accident (stroke) (Roche, 2005).

The hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the conversion of hydroxymethylglutaryl (HMG) to mevalonate, an early and rate limiting step in cholesterol synthesis (Brown and Goldstein, 1980). Figure 1.6.1 shows the mammalian mevalonate pathway. Pharmacological inhibition of the HMG-CoA reductase causes a decrease in cholesterol synthesis which leads to upregulation of low-density lipoprotein (LDL) receptors, thus increasing the rate of removal of LDL from plasma. HMG-CoA reductase is the target for a new class of highly effective inhibitors of cholesterol synthesis, namely lovastatin, simvastatin, pravastatin, fluvastatin and atorvastatin (Todd and Goa, 1990; Tsujita and Watanabe, 1989; Henwood and Heel, 1988; Connolly et al., 1993; Plosker and Wagstaff, 1996; Davignon, 1997). Figure 1.6.2 shows inhibition of HMG CoA reductase by statins. The chemical structures of lovastatin, simvastatin and pravastatin are closely related but the physico-chemical properties of lovastatin and simvastatin differ from those of pravastatin (Roth et al., 1991). Figure 1.6.3 shows the chemical structures of the hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors. Fluvastatin represents the first entirely synthetic HMG-CoA reductase inhibitor and shares physico-chemical characteristics with pravastatin as well as with lovastatin and simvastatin (Plosker and Wagstaff, 1996). On the other hand, the chiral Ca^{2+} salt of a pentasubstituted pyrrole, atorvastatin, presents a distinct chemical structure (Davignon, 1997). Lovastatin, simvastatin and pravastatin are structurally very similar. In fact, lovastatin is derived from a fungal source and simvastatin and pravastatin are chemical modifications of lovastatin (Todd

![Diagram of the mammalian mevalonate pathway.](image)

Figure 1.6.1 The mammalian mevalonate pathway.

When the open hydroxy forms of these drugs are compared, lovastatin and simvastatin differ from pravastatin in that they possess a methyl instead of a hydroxyl moiety at position 6. Furthermore, simvastatin differs from the other two as it possesses an additional methyl group at position 2 on the butanoate
lateral chain. While pravastatin is administered as the readily active open hydroxy-acid form, lovastatin and simvastatin are administered as inactive lactones, which must be metabolized to their corresponding open hydroxy-acid forms in order to inhibit HMG-CoA reductase (Todd and Goa, 1990; Tsujita and Watanabe, 1989; Henwood and Heel, 1988; Hamelin and Turgeon, 1998).

On the other hand, fluvastatin is the product of synthetic drug design and its structure is distinct from the described molecules. However, it shares the dihydroxy heptanoic acid function with pravastatin and is, just like this latter agent, administered as an active β-hydroxy acid form (Plosker and Wagstaff, 1996). Whether lactone prodrugs or active open hydroxy acids, all four HMG-CoA reductase inhibitors are provided with a bicyclic ring system which is together with the side-chain mandatory for anchoring into the active site of the HMG-CoA reductase. The described structural characteristics are closely related to the physico-chemical properties of HMG-CoA reductase inhibitors. Thus, the lactone prodrugs, lovastatin and simvastatin, are almost three orders of magnitude more lipophilic than their corresponding active open hydroxy-acid forms which in turn, are approximately 100 times more lipophilic than pravastatin (Serajuddin et al., 1991). Fluvastatin appears to have intermediate

![Figure 1.6.2 Inhibition of HMG CoA reductase by statins.](image-url)
physico-chemical characteristics because it is approximately twice as hydrophilic as lovastatin but 40 times more lipophilic than pravastatin (Lindahl et al., 1996; Appel and Dingemanse, 1996). The differences in lipophilicity are reflected in the potential of these various substances to cross cellular membranes nonselectively by passive diffusion, and explain why pravastatin does not easily cross cellular membranes whereas lovastatin and simvastatin do (Serajuddin et al., 1991; Hamelin and Turgeon, 1998).

![Chemical structures](image)

Figure 1.6.3 The chemical structures of the hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors.

Fluvastatin was characterized as a high permeability drug despite its relatively high hydrogen bond number. It was therefore suggested that this molecule, due
to its amphiphilic character, might form intra-molecular hydrogen bonds, thereby increasing its apparent lipophilicity and cell membrane permeability (Lindahl et al., 1996). However, fluvastatin, like pravastatin, does not cross the blood–brain barrier to any significant extent in contrast to the more lipophilic lactone compounds, lovastatin and simvastatin (Guillot et al., 1993; Hamelin and Turgeon, 1998).

Competitive inhibition of HMG-CoA reductase by the statins decreases hepatocyte cholesterol synthesis. The associated reduction in intracellular cholesterol concentration induces LDL-receptor expression on the hepatocyte cell surface, which results in increased extraction of LDL-C from the blood and decreased circulating LDL-C concentrations (Hobbs et al., 1992). Statins also have beneficial effects on other lipid parameters, including increases in high-density lipoprotein cholesterol (HDL-C) concentration and decreases in triglyceride concentration (Maron et al., 2000). Secondary mechanisms by which statins may reduce levels of atherogenic lipoproteins include inhibition of hepatic synthesis of apolipoprotein B100 and a reduction in the synthesis and secretion of triglyceride-rich lipoproteins (Ginsberg et al., 1987; Grundy, 1998). In addition, statins may exert beneficial cardiovascular effects independent of their lipid-modifying properties (Liao, 2002). These pleiotropic properties may be explained by inhibition of synthesis of nonsteroidal isoprenoid compounds, which are also produced from mevalonic acid, and include improvement of endothelial cell function, modification of inflammatory responses, and reduction of smooth muscle cell proliferation and cholesterol accumulation (Liao, 2002; Corsini et al., 1999). Large-scale clinical trials have demonstrated that the statins substantially reduce cardiovascular-related morbidity and mortality in patients with and without existing coronary heart disease (Scandinavian Simvastatin Survival Study Group, 1994; Shepherd et al., 1995; Sacks et al., 1996; Downs et al., 1998; The Long-term Intervention with Pravastatin in Ischemic Disease (LIPID) Study Group, 1998;
Heart Protection Study Collaborative Group, 2002; Shepherd et al., 2002; Sever, 2003). Statins have also been shown to slow the progression or even promote regression of coronary atherosclerosis, resulting in fewer new lesions and total occlusions compared with untreated hypercholesterolaemic patients (Christians et al., 1998; Vaughan et al., 1999; Smilde et al., 2001). This has been suggested to be a consequence of the shrinkage of the lipid core of the atherosclerotic plaque, avoiding plaque rupture that would otherwise trigger intramural haemorrhage and intraluminal thrombosis (Christians et al., 1998; Schachter, 2004).

The pleiotropic effects of a pharmacologic agent are actions other than those for which the agent was specifically developed. These effects may be undesirable, neutral or beneficial. The pleiotropic effects are either related or unrelated to the primary mechanism of action of the drug, and they are usually unanticipated. Many recent studies reported that the effects of statins extend beyond their cholesterol-lowering capacity (Takemoto et al., 2001; Werner et al., 2002) and most of their multiple activities are mediated by the ability to block the synthesis of isoprenoid products. Understanding the pleiotropic effects of statins is important to optimize their use in treatment and prevention of cardiovascular disease (Tchapda, 2005).

Statins affect many metabolic pathways and organ systems and they may positively impact multiple disease states independent of LDL-C reduction (Almuti et al., 2006). In recent years, understanding of the pathophysiology of atherosclerosis has evolved tremendously. It is no longer sufficient to consider it simply a lipid deposition disease. Inflammation (Ross, 1999; Ridker et al., 1999; Albert et al., 2001), endothelial dysfunction (Ross, 1999; Laufs et al., 1998), plaque instability (Van der Wal et al., 1994; Davies et al., 1993), thrombosis and smooth muscle proliferation may also impact the development and progression of atherosclerosis. And statins may ameliorate these processes.
Clinical trials have suggested an anti-inflammatory role for statins (Kleemann et al., 2003; Ridker et al., 1999; Albert et al., 2001; Ridker et al., 2005; Nissen et al., 2005; Ridker and JUPITER study group., 2004). Endothelial dysfunction is considered an early marker of atherosclerosis (Laufs et al., 1998). Several factors including diabetes mellitus, hypertension, cigarette smoking contribute to endothelial dysfunction (Ross, 1999; Harker et al., 1976). As a result of this dysfunction, many properties of the endothelium including its adhesiveness and permeability are altered. An appropriate balance between nitric oxide (NO), a vasodilator, and endothelin-1 (ET-1), a vasoconstrictor, is struck when the endothelium is functioning normally (von Haehling et al., 2003). Endothelial dysfunction may manifest as an imbalance between these two mediators. Statins may help correct this imbalance by enhancing the activity of endothelial NO synthase (eNOS) and thus increasing the production of NO (Laufs et al., 1998). They may also reduce the synthesis of ET-1 (Puddu et al., 2001; Hernandez-Perera et al., 1998). Furthermore, O'Driscoll et al. observed an augmentation in the NO-mediated vasodilator effects of the endothelium after only 4 weeks of therapy with simvastatin. This effect appeared to be independent of simvastatin’s lipid-lowering effects (O’Driscoll et al., 1997).

Atherosclerotic plaques are considered to be unstable when certain conditions are present. These include the presence of large numbers of macrophages and increased neo-vascularization of the intima in the area of the plaque (Van der Wal et al., 1994; Davies et al., 1993; Moreno et al., 1994; Willerson et al., 1986). Statins interfere with several functions of macrophages including their adhesion to the endothelium, trans-migration into tissue, the secretion of pro-inflammatory cytokines and the production of free radicals (Ross, 1999). Patients with atherosclerosis have an increased thrombotic potential due, in part, to increases in the production of thromboxane A2 (TXA2), which promotes platelet aggregation and vascular contraction, and due to alterations in the makeup of the platelet membrane (Notarbartolo et al., 1995; Mazeaud et al., 1992; Lacoste et al., 1995). Statins exert anti-thrombotic effects by
inhibiting the production of TXA2 (Notarbartolo et al., 1995; Almuti et al., 2006).

The pathogenesis of atherosclerosis involves, in part, the proliferation of smooth muscle cells in the intimal layer of blood vessels (Ross, 1993). Certain growth factors such as basic fibroblast growth factor (Negre-Aminou et al., 1997; Xu et al., 2002) and platelet-derived growth factor (Negre-Aminou et al., 1997) promote smooth muscle cell proliferation. Conversely, endothelial-derived NO has inhibitory effects on smooth muscle cell proliferation. Statins interfere with these processes by blocking the effects of the growth factors (Xu et al., 2002) while at the same time promoting NO production (Laufs et al., 1998). Oxidation of low-density lipoprotein (LDL) is considered an important step in the pathogenesis of atherosclerotic lesions. Oxidized LDL (Ox-LDL) is thought to attract monocytes into the vessel wall where they contribute to fatty streak formation and lesion expansion (Berliner et al., 1990). Rikitake et al. studied the anti-oxidant effects of fluvastatin both in vitro and in an animal model (Rikitake et al., 2001). Fluvastatin decreased the susceptibility of LDL-C to oxidation, and it prevented increases in the production of superoxide, a free radical partly responsible for the impaired endothelium-derived relaxation in hypercholesterolemic patients (Ohara et al., 1993; Ohara et al., 1995). Congestive heart failure is a syndrome that involves endothelial dysfunction, inflammation and neuro-hormonal imbalance in addition to impairment of cardiac function (Torre-Amione, 1999; Schrier and Abraham, 1999). Given their reported anti-inflammatory effects and their salutary effects on the endothelium, many investigators have studied the possible benefits of statins in congestive heart failure (Node et al., 2003; Horwich et al., 2004; Nakagami et al., 2003; Fuller et al., 1998; Almuti et al., 2006).

The potential to ameliorate the impact of diabetes on renal function (Usui et al., 2003) and to slow the progression to end stage renal disease among the
most promising roles for statins in the field of nephrology. Statins may also benefit patients with chronic glomerulonephritis such as IgA nephropathy (Nakamura et al., 2002). Statins have also been reported to attenuate renal injury after an ischemic event (Yokota et al., 2003; Joyce et al., 2001). Furthermore, pre-medication with statins prior to the use of radiographic contrast agents may have protective effects on renal function (Attallah et al., 2004; Almuti et al., 2006).

Statins have shown promise in the prevention of ischemic stroke in patients with coronary artery disease (White et al., 2000; Schwartz et al., 2001). Furthermore, some of the beneficial central nervous system effects of statins may be due to their augmentation of NO production as NO may improve central nervous system collateral blood flow, enhance cerebral vasodilator responses and prevent apoptosis (Laufs et al., 2000; Kureishi et al., 2000; Dimmeler et al., 1999). In Alzheimer’s disease, elevated central nervous system cholesterol levels are thought to accelerate the cleavage of amyloid precursor protein to beta-amyloid (Fassbender et al., 2002; Locatelli et al., 2002), a compound considered cytotoxic to oligodendrocytes and neurons. In a double-blinded, placebo-controlled study, the administration of simvastatin for a 6-month period to normo-cholesterolemic patients with mild Alzheimer’s disease was found to decrease central nervous system beta-amyloid levels (Simons et al., 2002). In addition, a recently completed study of 63 patients with mild-to-moderate Alzheimer’s disease suggested that statin use slowed cognitive decline and improved some of the depressive symptoms associated with the disease (Sparks et al., 2004). Overall, statin use in individuals ≥50 years old has been associated with about a 70% decrease in clinically diagnosed dementia (Jick et al., 2000; Almuti et al., 2006).
Statins may have beneficial effects on autoimmune diseases such as rheumatoid arthritis, diabetes mellitus, psoriasis and inflammatory bowel disease (Leung et al., 2003). Modulation of T lymphocyte proliferation, differentiation and activation appears to be the primary mechanism. In a murine model of inflammatory arthritis, simvastatin suppressed both developing and clinically evident cases of the disease (Leung et al., 2003). The immunomodulatory effects of statins may also be beneficial for recipients of solid organ transplants (Kobashigawa et al., 1995; Mehra et al., 2002). Statin use may decrease mortality in patients with bacterial-induced sepsis (Pruefer et al., 2002). Statins also exert activity against the α toxin released by *Staphylococcus aureus* in septic patients (Adamo et al., 1989; Buerke et al., 2002; Sibelius et al., 2000). There is some evidence that statins may decrease the incidence of colon cancer (Sacks et al., 1996; Pedersen et al., 1996) and potentially ameliorate some of the effects of inflammatory bowel disease (Sasaki et al., 2003). The evidence supporting a beneficial effect of statins in osteoporosis is equivocal (Bauer et al., 2004). Many in vivo and in vitro animal studies have suggested such benefits (Song et al., 2003; Mundy et al., 1999) and human observational studies have also indicated as such (Chan et al., 2000; Meier et al., 2000). Statin use decreases the incidence of choroidal neovascularization, which has been associated with a large proportion of severe vision loss among patients with age-related macular degeneration (Wilson et al., 2004). Emerging evidence suggests a benefit for short-term statin administration peri-operatively in patients undergoing non-cardiac vascular surgery (Durazzo et al., 2004; Almuti et al., 2006).

On the other hand, muscle problems are the most common reported adverse effects of statins. Perhaps the most feared adverse effects of statins is rhabdomyolysis, a condition in which there is severe breakdown of muscle tissue that may be toxic to the kidneys and result in kidney failure or death (Golomb, 2004). Cognitive problems also occur with statins and may also have
more impact in elderly patients. Two randomized trials that were designed to assess cognitive effects of statins have shown worsening in cognitive function (Muldoon et al., 2002, 2000). In addition, several case reports (King et al., 2003, 2001; Orsi et al., 2001) and one large case series (involving 60 patients) (Wagstaff et al., 2003) have reported deleterious cognitive effects of statins on memory and cognitive function. A large variety of other adverse effects have been reported with statins, including (but not limited to) gastrointestinal and neurological effects, psychiatric problems, immune effects (e.g., lupus-like syndrome), erectile dysfunction and gynecomastia (breast enlargement in men), rash and skin problems, and sleep problems (Golomb, 2004). Moreover, animal studies and pre-marketing clinical trials of statins have given signals of hepatotoxicity, primarily minor elevations in serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzymes (Tolman, 2002; Vasudevan et al., 2005).

1.6.1 Simvastatin-Membrane Interactions

Çalışkan et al. in 2000 reported a reduction in the cholesterol to phospholipid ratio in erythrocyte membranes after four weeks of simvastatin therapy, but their dose was suprapharmacologic and similar alterations may require a long time in humans (Çalışkan et al., 2000). In addition, Kirsch et al. in 2003 showed that simvastatin directly and/or indirectly exert various effects on membrane cholesterol homeostasis in the central nervous system. Kirsch also stated that lovastatin and pravastatin but not simvastatin significantly reduced cholesterol levels in the exofacial plasma membrane leaflet of synaptosomal cells. Such a result is interesting because both lovastatin and simvastatin are lipophilic and their chemical structures are similar. And these changes were accompanied by modified membrane bulk fluidity (Kirsch et al., 2003).
Moreover, Djaldetti et al. in 2006 explained an increase in the phagocytic capacity of the macrophages due to the simvastatin-induced increase in the membrane fluidity. Djaldetti also stated that alterations in membrane bilayer lipid composition and particularly its cholesterol content may affect phagocytic cell function either by changes in membrane rigidity, or by redistribution of the cholesterol in the cell membrane (Djaldetti et al., 2006). Furthermore, related about the membrane fluidity and neutrophil functions Spika et al. in 1996 stated that diminished membrane fluidity due to increased membrane stability decreased neutrophil functions, such as phagocytosis and chemotaxis (Spika et al., 1996).

Vevera et al. in 2005 demonstrated that a significant decrease in serum cholesterol and a nonsignificant decrease in membrane cholesterol concentration after 2 months of simvastatin therapy. Membrane fluidity is directly related with membrane cholesterol level. If the cholesterol level is decreased in the membrane then membrane fluidity is increased (Vevera et al., 2005).

In addition, Rabini et al. in 1993 reported an initial decrease and an elevation after 4 months in the membrane dynamics caused by simvastatin. In the same study Rabini et al. also demonstrated an initial increase in cholesterol concentration and in cholesterol/phospholipid molar ratio, with a significant decrease only after 4 months (Rabini et al., 1993). Furthermore, Koter et al. in 2002 reported a decrease in the fluidity of erythrocyte membranes at the depth of the fifth carbon atom in the fatty acid chains of phospholipids in hypercholesterolemic patients relative to the control group. And there are no statistically significant differences between the healthy donors and patients with hypercholesterolemia with respect to fluidity in the hydrophobic region of the erythrocyte membrane. In this study, Koter studied with atorvastatin which is one type of statin drugs and fluidity of plasma membranes was determined.
by a spin label study (Koter et al., 2002). However, Koter et al. in 2003, using electron paramagnetic resonance (EPR) spectroscopy, reported that simvastatin increases lipid fluidity in erythrocyte plasma membranes (Koter et al., 2003).

1.7 Absorption Spectroscopy

Molecules absorb light. The wavelengths that are absorbed and the efficiency of absorption depend on both the structure and the environment of the molecule, making absorption spectroscopy a useful tool for characterizing both small and large macromolecules (Freifelder, 1982). The total energy of a molecule is given by the sum of energies of every different motion that the molecule has. Then, the formula of total energy:

$$E_{\text{total}} = E_{\text{transition}} + E_{\text{rotation}} + E_{\text{vibration}} + E_{\text{electronic}} + E_{\text{electron spin orientation}} + E_{\text{nuclear spin orientation}}$$

(1.7.1)

In a solution, a molecule can translate, rotate and vibrate. The energies associated with each of these motions are quantized (Campbell, 1984).

Light, in its wave aspect, consists of mutually perpendicular electric and magnetic fields, which oscillate sinusoidally as they are propagated through space (Figure 1.7.1). The energy of the wave is:

$$E = h \cdot \frac{c}{\lambda} = h \cdot \nu$$

(1.7.2)

in which “h” is Planck’s constant, “c” is the velocity of light, “\(\lambda\)” is the wavelength, and “\(\nu\)” is the frequency. When such a wave encounters a molecule, it can be either scattered (i.e., its direction of propagation changes) or absorbed (i.e., its energy is transferred to the molecule) (Freifelder, 1982).
The relative probability of the occurrence of each process is a property of the particular molecule encountered. If the electromagnetic energy of the light is absorbed, the molecule is said to be excited or in an excited state. A molecule or part of a molecule that can be excited by absorption is called a chromophore. This excitation energy is usually converted into heat (kinetic energy) by the collision of the excited molecule with another molecule (e.g., a solvent molecule). With some molecules it is reemitted as fluorescence. In both cases, the intensity of the light transmitted by a collection of chromophores is less than the intensity of the incident light (Freifelder, 1982).

An excited molecule can possess any one of a set of discrete amounts (quanta) of energy described by the laws of quantum mechanics. These amounts are called the energy levels of the molecule. The major energy levels are determined by the possible spatial distributions of the electrons and are called electronic energy levels; on these are superimposed vibrational levels, which indicate the various modes of vibration of the molecule (e.g., the stretching and bending of various covalent bonds). There are even smaller subdivisions called rotational levels, but they are of little importance in absorption spectroscopy. All these energy levels are usually described by an energy-level diagram.
The lowest electronic level is called the ground state and all others are excited states (Freifelder, 1982).

![Energy-level diagram](image)

Figure 1.7.2 Typical energy-level diagram showing the ground state and the first excited state. Vibrational levels are shown as horizontal lines and rotational levels are also shown in between the two vibrational levels in the ground state. A possible electronic transition between the first vibrational level of the ground state and the second vibrational level of the first excited state is indicated by the long arrow. A vibrational transition within the ground state is indicated by the short arrow.

The absorption of energy is most probable only if the amount absorbed corresponds to the difference between energy levels. This can be expressed by stating that light of wavelength can be absorbed only if

$$\lambda = \frac{hc}{E_2 - E_1}$$ \hspace{1cm} (1.7.3)

in which E_1 is the energy level of the molecule before absorption and E_2 is an energy level reached by absorption. A change between energy levels is called a
transition. Mechanically, a transition between electronic energy levels represents the energy required to move an electron from one orbit to another. Transitions are represented by vertical arrows in the energy-level diagram. A plot of the probability of absorption versus wavelength is called an absorption spectrum and absorption spectroscopy refers to the gathering and analysis of absorption data (Freifelder, 1982).

1.7.1 Infrared Spectroscopy

Infrared spectroscopy is certainly one of the most important analytical techniques available to today’s scientists. One of the great advantages of infrared spectroscopy is that virtually any sample in virtually any state may be studied. Liquids, solutions, pastes, powders, films, fibres, gases and surfaces can all be examined with a judicious choice of sampling technique. As a consequence of the improved instrumentation, a variety of new sensitive techniques have now been developed in order to examine formerly intractable samples (Stuart, 2004). Transitions between vibrational levels of the ground state of a molecule result from the absorption of light in the infrared (IR) region: from 10^3 nm to 10^5 nm (Figure 1.7.1.1). These vibrational levels and, hence, infrared spectra are generated by the characteristic motions (bond stretching, bond bending, and more complex motions) of various functional groups (e.g., methyl, carbonyl, amide, etc.). Figure 1.7.1.2 shows types of normal vibrations for CO$_2$ molecule. The value of infrared spectral analysis comes from the fact that the modes of vibration of each group are very sensitive to changes in chemical structure, conformation, and environment. Infrared spectroscopy is thought of as being different principally from visible and ultraviolet spectroscopy because it has a somewhat different technology and because it is used to examine chemical groups not accessible to ultraviolet and visible-light absorption spectroscopy (Freifelder, 1982).
Figure 1.7.1.1 The part of the electromagnetic spectrum that is relevant to physical biochemistry.

![Emagnetic Spectrum](image)

Molecular structure of Carbon Dioxide

- **The asymmetric stretching mode**
- **The bending mode**
- **The symmetric stretching mode**

Figure 1.7.1.2 Types of normal vibrations for CO$_2$ molecule.
Infrared spectroscopy is a technique based on the vibrations of the atoms of a molecule. An infrared spectrum is commonly obtained by passing infrared radiation through a sample and determining what fraction of the incident radiation is absorbed at a particular energy. For a molecule to show infrared absorptions it must possess a specific feature, i.e. an electric dipole moment of the molecule must change during the vibration. This is the selection rule for infrared spectroscopy. Because of the difference in electronegativity between carbon and oxygen, the carbonyl group is permanently polarized. Stretching this bond will increase the dipole moment and, hence, C=O stretching is an intense absorption. Wavenumbers of some characteristic infrared absorption bands are given in Table 1.7.1.1. A molecule can only absorb radiation when the incoming infrared radiation is of the same frequency as one of the fundamental modes of vibration of the molecule. This means that the vibrational motion of a small part of the molecule is increased while the rest of the molecule is left unaffected (Stuart, 2004).

1.7.2 Instrumentation of Fourier-Transform Infrared Spectrometer

Fourier-transform infrared (FTIR) spectroscopy is based on the idea of the interference of radiation between two beams to yield an interferogram (Griffiths and de Haseth, 1986). The latter is a signal produced as a function of the change of pathlength between the two beams. The two domains of distance and frequency are interconvertible by the mathematical method of Fourier-transformation. The basic components of an FTIR spectrometer are shown schematically in Figure 1.7.2.1. The radiation emerging from the source is passed through an interferometer to the sample before reaching a detector. Upon amplification of the signal, in which high-frequency contributions have been eliminated by a filter, the data are converted to digital form by an analog-to-digital converter and transferred to the computer for Fourier-transformation (Stuart, 2004).
Table 1.7.1.1. Band assignments of some characteristic infrared absorption bands according to their wavenumbers in cm$^{-1}$ (Stuart, 2004).

<table>
<thead>
<tr>
<th>Wavenumber (cm$^{-1}$)</th>
<th>Assignment</th>
<th>Wavenumber (cm$^{-1}$)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3010</td>
<td>=C-H stretching</td>
<td>1085</td>
<td>PO$_2^-$ symmetric stretching</td>
</tr>
<tr>
<td>2956</td>
<td>CH$_3^-$ asymmetric stretching</td>
<td>1070</td>
<td>CO$_2$-O-C symmetric stretching</td>
</tr>
<tr>
<td>2920</td>
<td>CH$_2^-$ antisymmetric stretching</td>
<td>1047</td>
<td>C-O-P stretching</td>
</tr>
<tr>
<td>2870</td>
<td>CH$_3^-$ symmetric stretching</td>
<td>972</td>
<td>(CH$_3$)$_3$N$^+$ asymmetric stretching</td>
</tr>
<tr>
<td>2850</td>
<td>CH$_2^-$ symmetric stretching</td>
<td>820</td>
<td>P-O asymmetric stretching</td>
</tr>
<tr>
<td>1730</td>
<td>C=O stretching</td>
<td>730,720,718</td>
<td>CH$_3$ rocking</td>
</tr>
<tr>
<td>1485</td>
<td>(CH$_3$)$_3$N$^+$ asymmetric bending</td>
<td>1350-1250</td>
<td>O-H bending</td>
</tr>
<tr>
<td>1473,1472, 1468,1463</td>
<td>CH$_3^-$ scissoring</td>
<td>1560</td>
<td>CO$_2^-$ asymmetric stretching</td>
</tr>
<tr>
<td>1460</td>
<td>CH$_3^-$ asymmetric bending</td>
<td>1415</td>
<td>CO$_2^-$ symmetric stretching</td>
</tr>
<tr>
<td>1405</td>
<td>(CH$_3$)$_3$N$^+$ symmetric bending</td>
<td>1615</td>
<td>NH$_2$ bending</td>
</tr>
<tr>
<td>1378</td>
<td>CH$_3^-$ symmetric bending</td>
<td>1640-1610, 1550-1485</td>
<td>NH$_3^+$ bending</td>
</tr>
<tr>
<td>1400-1200</td>
<td>CH$_2^-$ wagging band progression</td>
<td>1160,1100</td>
<td>NH$_3^+$ rocking</td>
</tr>
<tr>
<td>1228</td>
<td>PO$_2^-$ antisymmetric stretching</td>
<td>1602,1450,760,700</td>
<td>Benzene ring vibrations</td>
</tr>
<tr>
<td>1170</td>
<td>CO-O-C asymmetric stretching</td>
<td>1600,1450</td>
<td>Benzene ring vibrations</td>
</tr>
</tbody>
</table>
Figure 1.7.2.1 Basic components of an FTIR spectrometer.

The most common interferometer used in FTIR spectrometry is a Michelson interferometer (Figure 1.7.2.2), which consists of two perpendicularly plane mirrors, one of which can travel in a direction perpendicular to the plane. A semi-reflecting film, the beamsplitter, bisects the planes of these two mirrors. The beamsplitter material has to be chosen according to the region to be examined. FTIR spectrometers use a Globar or Nernst source for the mid-infrared region. If the far-infrared region is to be examined, then a high-
pressure mercury lamp can be used. For the near-infrared, tungsten-halogen lamps are used as sources. The moving mirror is a crucial component of the interferometer. It has to be accurately aligned and must be capable of scanning two distances so that the path difference corresponds to a known value. A number of factors associated with the moving mirror need to be considered when evaluating an infrared spectrum. The interferogram is an analogue signal at the detector that has to be digitized in order that the Fourier-transformation into a conventional spectrum can be carried out (Stuart, 2004).

1.7.3 Infrared Spectroscopy in Membrane Research

Infrared spectroscopy can provide valuable structural information about lipids, which are important molecular components of membranes. The infrared spectra of phospholipids can be divided into the spectral regions that originate from the molecular vibrations of the hydrocarbon tail, the interface region and the head group (Watts and De Pont, 1986; Lewis and McElhaney, 2002). The hydrocarbon tail gives rise to acyl chain modes. The most intense vibrations in the infrared spectra of lipid systems are the CH$_2$ stretching vibrations and these give rise to bands in the 3100 to 2800 cm$^{-1}$ region. In certain phospholipid membranes that contain unsaturated acyl chains, the typical lamellar liquid crystalline phase converts to a micellar non-lamellar phase upon heating (Jackson and Mantsch, 1993). Such a thermally induced transition involves a major structural rearrangement. Temperature studies of the infrared spectra of phospholipids provide a sensitive means of studying such transitions in lipids. Spectral modes arising from the head group and interfacial region also provide valuable information (Mushayakarara and Levin, 1982). Useful infrared bands for studying the interfacial region of lipid assemblies are the ester group vibrations, particularly the C=O stretching bands in the 1750-1700 cm$^{-1}$ region. Quantitative infrared analysis can be carried out on blood serum to determine the relative amounts of lipid present (Bhandara et al., 1994). Triglycerides,
phospholipids and cholesterelesters are the classes of lipid that occur in blood serum and such compounds occur naturally in concentrations that make infrared analysis attractive (Stuart, 2004).

1.7.4 Advantages of Fourier Transform Infrared Spectroscopy

1) FTIR spectroscopy is a rapid and sensitive analytical method with an easy use of sampling techniques (Stuart, 2004).

2) The main advantage of FTIR spectrometer, a rapid-scanning instrument, is the ability to increase the signal-to-noise ratio (SNR) by signal-averaging, leading to an increase of signal-to-noise proportional to the square root of the time (Stuart, 2004).

3) Due to being a non-perturbing technique it is possible to apply FTIR spectroscopy directly to biological samples. In other words, it does not involve introduction of exogenous probes or potentially harmful preparative procedures (Mantsch, 1984).

4) Infrared spectroscopy, in principle, operates on a time-scale that has the potential to sample directly the fastest conformational alterations that occur in biological membranes, namely acyl chain trans-gauche isomerizations (Mendelsohn et al., 1989).

5) Now it is possible to determine frequency and bandwidth values with uncertainties of better than ±0.05 cm$^{-1}$ (Mantsch, 1984).

6) Digital subtraction, which is point-by-point subtraction of two different spectra by a software programme, is also produce good difference spectra. It is very useful in obtaining infrared spectra in aqueous solutions (Campbell and Dwek, 1984).
1.8 Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) is a technique commonly used for determining the thermal properties of a variety of materials including biologically relevant systems. The main applications of DSC include determination of the effect of composition, hydration, pH, and solvent, on the phase-transition temperatures and enthalpies of biological membranes and pharmaceuticals; thermal characterization of complex processes, such as the denaturation of proteins; and specific heat measurements in the glass-transition of polymers (Ceckler and Cunningham, 1997).

The DSC contains a sample cell and a reference cell that are maintained at the same temperature. As an experiment proceeds, the sample and reference cells are raised in temperature in a controlled manner such that the two cells always are maintained at the same temperature. The power supplied to heat each cell is monitored during this process. When a phase transition occurs in the sample cell, there is a difference in the power needed to heat the two cells. The power required to maintain both cells at the same temperature is measured and converted to give an output of heat capacity versus temperature. The heat capacity versus temperature curve is analyzed to determine the transition temperature, \(T_m \), and the calorimetric enthalpy of transition, \(\Delta H_{\text{cal}} \) (Ohline et al., 2001).

For first order phase transitions such as the bilayer gel to liquid-crystalline transition, the transition temperature, \(T_m \), is where the heat capacity, \(C_p \), reaches its maximum value. The value of the calorimetric enthalpy (\(\Delta H_{\text{cal}} \)) for the phase transition is determined by integrating the area under the peak.

\[
\Delta H_{\text{cal}} = \int C_p \, dT \quad (1.8.1)
\]
From these values, the entropy of the phase transition is determined:

\[
\Delta S = \frac{\Delta H_{\text{cal}}}{T_m}
\]
(1.8.2)

Comparison of \(\Delta H_{\text{cal}} \), \(\Delta S \) and \(T_m \) shows the effect of a structural modification (e.g. chain length) on the thermodynamics of the phase transition. However, unlike a simple organic compound’s crystal to liquid melting transition, the phase transition in bilayers involves more than just the initial and final states. In fact, intermediate “states” are formed during the transition, and a “non-two-state” model is necessary for phospholipids in liposomes (Mason, 1998; Microcal, Inc., 2002; Sturtevant et al., 1987). These intermediate states result from the formation of domains (e.g. disordered, mobile areas within the gel phase) before the phase transition temperature, and are due to lateral movement of the phospholipids within the bilayer. The asymmetric shape of the DSC peak reflects the fact that a non-two-state transition is occurring (Ohline et al., 2001).

1.8.1 Instrumentation of Differential Scanning Calorimetry

A typical differential scanning calorimeter consists of two sealed pans: a sample pan and a reference pan (which is generally an empty sample pan). These pans are often covered by or composed of aluminum, which acts as a radiation shield (Dean, 1995). The two pans are heated, or cooled, uniformly while the heat flow difference between the two is monitored. This can be done at a constant temperature (isothermally), but is more commonly done by changing the temperature at a constant rate, a mode of operation also called temperature scanning (Dean, 1995).
During the determination, the instrument detects differences in the heat flow between the sample and reference. This information is sent to an output device, most often a computer, resulting in a plot of the differential heat flow between the reference and sample cell as a function of temperature. When there are no thermodynamic physical or chemical processes occurring, the heat flow difference between the sample and reference varies only slightly with temperature, and shows up as a flat, or very shallow base line on the plot. However, an exothermic or endothermic process within the sample results in a significant deviation in the difference between the two heat flows. The result is a peak in the DSC curve. Generally, the differential heat flow is calculated by subtracting the sample heat flow from the reference heat flow. When following this convention, exothermic processes will show up as positive peaks (above the baseline) while peaks resulting from endothermic processes are negative (below the baseline) (Dean, 1995). Figure 1.8.1.1 shows instrumentation of a DSC.

![Diagram of DSC Instrumentation](image)

Figure 1.8.1.1 Schematic illustration of a DSC.
The sample (in a condensed form such as powder, liquid, or crystal) is generally placed in an aluminum sample pan, which is then placed in the sample cell. The reference consists of a matched empty aluminum sample pan that is placed in the reference cell of the instrument. The sample pans are designed to have a very high thermal conductivity. Sample sizes generally range from 0.1 to 100 mg. The instrument cells are often airtight to shield the sample and reference from external thermal perturbations. This also allows experiments to be performed under variable pressures and atmospheres (Dean, 1995).

1.8.2 Differential Scanning Calorimetry in Membrane Research

Differential scanning calorimetry is a sensitive and non-invasive technique (Kazanci et al., 2001). It is used to characterize phase transitions with respect to such thermodynamic parameters as transition temperature, enthalpy of transition, entropy of transition, and glass transition temperature (Koyama et al., 1999). DSC has a wide usage in drug industry like investigating the stability, physical and chemical properties of drugs (Schneider et al., 1999). Protein-protein, protein-ligand interactions and protein domain organization studies also involve usage of DSC technique (Weber and Salemme, 2003). Determination of thermal stability and reversibility (Anton et al., 2000), measurement of heat capacity (C_p) for the calculation of reaction enthalpies, purity determination of chemicals, and chemical half-life determinations (Mayor et al., 2000) are some other applications of DSC. Differential scanning calorimetry is a classic method, but application to biological systems is a recent event. The DSC should be ideally suited to investigate protein denaturation in membranes and intact cells. DSC has been used to study phase transitions in lipid bilayers and membranes corroborating the results obtained with low-angle X-ray diffraction studies. The phase transitions observed in the DSC can be correlated with changes in biological properties (Tien and Ottova, 2000).
The gel to liquid-crystalline phase transition is highly "cooperative." In cooperative transitions, well before the transition temperature is reached from below, the molecules begin to reorganize and to move in consort with each other. In other words, the molecules cooperate with each other in gaining new motional freedom; when one molecule picks up motional energy then other nearby molecules find it easier to add motional energy. As the temperature approaches the transition temperature, T_m, the distance range of this cooperation increases. Near the phase transition temperature, you can picture islands of lipids in a more mobile phase intermixed with the less mobile gel phase. The number of molecules on average in these disordered "islands" is called the cooperative unit. In these islands the motions of the molecules are highly correlated. These correlated interactions aid in the sudden change of order at the phase transition temperature. The larger the cooperative unit, the narrower the phase transition temperature range. The gel to liquid-crystalline phase transition is first-order with some of the characteristics of second-order transitions. First-order phase transitions have a change in enthalpy and volume at the phase transition temperature. In other words, in first-order transitions there is an abrupt change in the properties of the system at the phase transition temperature. In this respect, a first order phase transition is "completely correlated," that is completely cooperative. In a first order phase transition all the molecules undergo the phase transition together, subject only to the availability of thermal energy. A pure first-order transition has an infinitely sharp transition. Second-order transitions do not have enthalpy and volume changes at the transition temperature. For second order phase transitions, the formation of cooperative, correlated motions with limited range broadens the transition by pre-transition effects (i.e. the domains anticipate the transition or "start the transition" early). In the DSC of synthetic phospholipids the limited cooperativity of the transition results in a small peak at a lower temperature than the main melting peak, called the pre-transition, as well as a broadening of
the main melting transition (Chapman, 1975; Szoka and Papahadjopoulos, 1980; Koyama et al., 1999; Ohline et al., 2001).
CHAPTER 2

MATERIALS AND METHODS

2.1 Reagents

Simvastatin (2,2-dimethyl-,1,2,3,7,8,8a-hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)-ethyl]-1-naphthalenyl ester, [1S-[1α,3α,7β,8β(2S*,4S*)-8αβ]]) was purchased from Calbiochem (Merck), Darmstadt, Germany. 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were purchased from Sigma, St. Louis, MO, USA. All reagents were used without further purification.

2.2 Phosphate Buffer Preparation

A concentration of 10 mM phosphate buffer with pH 7.4 was prepared by using Na$_2$HPO$_4$ powder with a molecular weight of 141.96 g. First, 0.2839 g of Na$_2$HPO$_4$ powder was added to 150 ml double distilled water. Second, obtained solution was stirred up until the powder was completely dissolved. Third, pH value was adjusted to 7.4 at 25 °C either by adding hydrogen chloride HCl or sodium hydroxide NaOH. During the pH adjustment solution was stirred up. Finally, sufficient double distilled water was added to bring the volume up to 200 ml.
2.3 Simvastatin Stock Solution Preparation

Simvastatin stock solution was prepared by dissolving 5 mg simvastatin powder with a molecular weight of 418.6 g in 1 mL pure ethanol and treating with 0.813 mL of 1 N NaOH in a glass tube. Later, the pH of the solution was adjusted to 7.2 by adding small quantities of 1 N HCl. Thus, the inactive form of simvastatin was converted to the active open ring structure form by a reaction with NaOH.

2.4 Preparation of Model Membranes

DMPC and DPPC multilamellar liposomes were prepared according to the procedure reported by Toyran and Severcan (2003). To prepare simvastatin containing liposomes desired amount of simvastatin was taken from the stock solution and put in an eppendorf tube. The excess ethanol was evaporated by nitrogen stream and then desired amount of DMPC or DPPC was added and dissolved with chloroform in the same eppendorf tube. Again the excess chloroform was evaporated by nitrogen stream and the remaining solvent in the eppendorf tube was removed by spin vacuum drying for 2 hours. The dry thin films were then hydrated by adding phosphate buffer, pH 7.4 with the desired amount of hydration. Multilamellar liposomes were formed by vortexing the mixture for 20 minutes at 20°C above the T_m of DMPC (~43°C) and the T_m of DPPC (~62°C). Pure DMPC or DPPC multilamellar liposomes were prepared by following the same procedure only without using the simvastatin stock solution.

2.5 Sample Preparation for the FTIR Experiments

5 mg of DMPC or DPPC was used to prepare thin films. Obtained dry thin films were hydrated by adding 25 μL of 10 mM phosphate buffer, pH 7.4.
Infrared spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer. 20 µL of liposome samples were placed between water insoluble CaF$_2$ windows with 12 µm sample thickness. Interferograms were averaged for 20 scans at 2 cm$^{-1}$ resolution. Temperature of samples was regulated by Graseby Specac temperature controller unit. Samples were scanned between 24-70°C with 2°C intervals but above the 60°C interval was increased to 5°C. Samples were incubated for 5 minutes at each temperature before the spectrum acquisition.

2.5.1 Infrared Spectral Regions Used in This Study

In model membrane studies the structural changes caused by a drug can be easily detected and understood by analysing infrared absorption bands because any change occurred in the molecular structure directly affects the vibrational modes of the molecule. Hence, by examining some parameters which belong to the infrared absorption bands like frequency and bandwidth, it is possible to monitor many changes in the structure of the lipid assemblies.

In this study, there are mainly four absorption bands taken into consideration. Two of them are caused by carbon-hydrogen stretching vibrations and known as antisymmetric and symmetric CH$_2$ stretching modes in the spectral region of 3100-2800 cm$^{-1}$. The CH$_2$ antisymmetric stretching located at 2920 cm$^{-1}$ and CH$_2$ symmetric stretching located at 2851 cm$^{-1}$ are strong lipid bands which are sensitive to conformational changes. And they respond to any difference occurred in the trans/gauche ratio in acyl chains (Lee and Chapman, 1986). Moreover, conformational changes can also be detected by examining asymmetric CH$_3$ at 2956 cm$^{-1}$ and symmetric CH$_3$ at 2872 cm$^{-1}$ bands which are stretching modes of the terminal methyl group. Frequencies of the CH$_2$ stretching modes reflect conformational disorder and they increase when
gauche bonds in the fatty acyl chains start to increase (Lopez-Garcia et al., 1993; Dluhy et al., 1983; Severcan, 1997).

Also one absorption band is C=O stretching in 1750-1700 cm\(^{-1}\) region which reflects the ester group vibrations. This band is very useful for probing the interfacial region because in the structure of DMPC and DPPC ester groups are located between polar and nonpolar interfaces. And any change in the structure of lipid molecule can be monitored by analysing this sensitive interfacial region. Examining C=O stretching band gives information about the strength of hydrogen bonding. In diacyl lipids there are two bands because of two ester carbonyl groups in the molecule. One band around 1742 cm\(^{-1}\) with a trans conformation in the C-C bond and the other one around 1728 cm\(^{-1}\) (Mendelsohn and Mantsch, 1986). However, only a broad band contour is found in hydrated samples and its mid-point is around 1735 cm\(^{-1}\).

The other absorption band is PO\(_2^-\) antisymmetric double stretching in the 1260-1200 cm\(^{-1}\) region. Moreover, in the 1380-1180 cm\(^{-1}\) region there are series of bands which belong to the polymethylene chains. Nonetheless, it is difficult to observe this CH\(_2\) wagging band progression in the spectra of phospholipids because of overlapping with the strong PO\(_2^-\) antisymmetric double stretching band. Furthermore, there is a weak CH\(_2\) rocking-twisting band in the 1150-700 cm\(^{-1}\) region. However, it is not possible to monitor this band because CaF\(_2\) windows used in this study are not transparent to the region lower than 1000 cm\(^{-1}\).

The O-H stretching bands due to buffer appear in the regions of 3400-3200 cm\(^{-1}\) and 1800-1500 cm\(^{-1}\). However, the region of 3400-3200 cm\(^{-1}\) overlaps with the region of C-H stretching band and the region of 1800-1500 cm\(^{-1}\) overlaps with the region of C=O stretching band. Therefore, spectrum of the buffer without simvastatin and lipids was taken at different temperatures and it
was subtracted from the spectra of liposomes at corresponding temperatures. Subtraction process was done manually by using Perkin Elmer software programme. Figures 2.5.1.1 and 2.5.1.2 show the infrared spectra of DMPC and DPPC liposomes respectively before and after water subtraction. Moreover, molecules in the air interfere with the spectra of samples. To prevent this interfering, spectrum of the air was recorded as a background spectrum and subtracted automatically from the spectra of samples by using the same software programme of FTIR spectroscopy. Figure 2.5.1.3 shows the infrared spectrum of air.
Figure 2.5.1.1 FTIR spectrum of DMPC liposomes. Upper spectrum shows the liposomes before water bands were subtracted and the spectrum below shows the liposomes after subtraction.
Figure 2.5.1.2 FTIR spectrum of DPPC liposomes. Upper spectrum shows the liposomes before water bands were subtracted and the spectrum below shows the liposomes after subtraction.
Figure 2.5.1.3 Infrared spectrum of air.
2.6 Sample Preparation for the DSC Experiments

2 mg of DMPC or DPPC was used to prepare thin films. Obtained dry thin films were hydrated by adding 50 µL of 10 mM phosphate buffer, pH 7.4. Liposome preparation was done as described before. 50 µL of liposome samples were placed in high volume pans and these pans were sealed by a special sample encapsulating press. An empty pan was used as a reference pan during the experiment. Heating rate was chosen as 1°C/min. DMPC liposome samples were heated between 0-50°C and DPPC liposome samples were heated between 20-70°C. Experiments were carried out with TA DSC Q100.

2.6.1 Thermogram Analysis

Differential Scanning Calorimetry is generally used to determine the main phase transition temperature and transition enthalpy change in model membrane studies (Bach et al., 2001; Tahir et al., 1999; Momo et al., 2002; Severcan et al., 2005; Korkmaz and Severcan, 2005). If there is an interaction between the drug and model membrane it is reflected to the phase transition profile of the liposome. Therefore, it becomes possible to monitor such an interaction on the thermogram analysis directly. Moreover, DSC is used for estimation of purity and identification of materials (Daniels, 1973).

In this study, liposomes which are made from DMPC or DPPC lipids were used. Each lipid has its own characteristic main phase transition temperature and transition enthalpy change. For DMPC, the main phase transition temperature is 22.80°C with an enthalpy change of 7.90 cal/g and the pretransition temperature is 14.60°C (Kiselev et al., 2001). For DPPC, the main phase transition temperature is 41.20°C with an enthalpy change of 12.50 cal/g and the pretransition temperature is 35.20°C with an enthalpy change of 1.60 cal/g (Mavramoustakos et al., 1997). Calibration of the instrument, different
heating rates applied to samples and the usage of different pan types during the experiment may cause some slight variations from the data given above (Koyama et al., 2000). On the DSC thermogram, the main phase transition of a lipid appears as a sharp peak and occur within a very narrow temperature interval. Therefore, thermally induced phase transition occurs abruptly. Figures 2.6.1 and 2.6.2 show the phase transitions of DMPC and DPPC, respectively. The maximum point of the peak is taken as the main phase transition temperature of the lipid. Moreover, integrating the area under the peak gives the enthalpy of transition by an equation of:

\[
\left(\frac{dq}{dt} \right)_p = \left(\frac{dH}{dt} \right) \\
(2.6.1.1)
\]

The width of the peak measured from the half height in terms of temperature is also another useful parameter. The value of the width and the main phase transition temperature give information about the size and packing of cooperative units undergoing the transition. If the width is increased by the drug incorporated into the bilayer, then the cooperativity of the transition is reduced (Tahir et al., 1999). Variations in enthalpy values show the interstitial and substitutional impurities. Any change in the main phase transition temperature provides information about the fluidity of the system (Castelli et al., 2001). By analysing the mentioned parameters it is possible to understand if there is an interaction between DMPC or DPPC liposomes and simvastatin.
Figure 2.6.1 Phase Transition Thermogram of DMPC. The little peak on the left is the pretransition curve and the following one is the main transition curve. Three parameters namely the width, the main phase transition temperature and the transition enthalpy change used in the DSC analysis were indicated on the main transition curve.
Figure 2.6.2 Phase Transition Thermogram of DPPC. The little peak on the left is the pretransition curve and the following one is the main transition curve. Three parameters namely the width, the main phase transition temperature and the transition enthalpy change used in the DSC analysis were indicated on the main transition curve.
CHAPTER 3

RESULTS

In this part of the study, interactions of DMPC or DPPC multilamellar bilayers with different simvastatin concentrations were discussed. Simvastatin concentrations used in the experiments were 1mol%, 6mol%, 12mol%, 18mol%, and 24mol%. Fourier Transform Infrared (FTIR) Spectroscopy and Differential Scanning Calorimetry (DSC) were used in this study to monitor and understand the interactions between model membranes and simvastatin.

3.1 FTIR Studies

FTIR studies can be separated into two parts. In the first part, temperature dependent FTIR studies for DPPC model membranes were carried out. The experiments were repeated twice and similar results were obtained. FTIR spectra of DPPC liposomes were analysed with respect to the CH_2 symmetric and antisymmetric, C=O stretching and PO_2^- antisymmetric bands. During the analyses of these infrared absorption bands, their wavenumber and bandwidth values were investigated. The variations on these parameters were measured and plotted on a graph as a function of temperature to interpret the results. Therefore, we can understand the simvastatin-induced structural changes on DPPC model membranes at the molecular level.

In the second part, FTIR studies were carried out to understand the effect of acyl chain length comparing the FTIR spectra of DMPC and DPPC lipids which have 12 and 14 methylene groups in their fatty acyl chains, respectively. Again the same absorption bands and parameters were used for the analyses of
FTIR spectra of DMPC or DPPC liposomes. The measured parameters were plotted on column graphs as a function of simvastatin concentrations. And these graphs were given for only two temperatures corresponding to the gel and liquid crystalline phase of the lipids. For DMPC liposomes the selected temperatures were 10°C and 35°C. For DPPC liposomes the selected temperatures were 29.5°C and 54°C. Every experiment at each temperature was repeated 5 times and the results were averaged. Later, Mann-Whitney U test was applied. Final results which were statistically significant were shown by an asterisk on the graphs.

3.1.1 Temperature Dependent FTIR Studies of DPPC Model Membranes

As mentioned in the previous section four infrared absorption bands were used for the analysis of FTIR results. These are CH\(_2\) symmetric and antisymmetric, C=O stretching and PO\(_2^-\) antisymmetric bands. Figure 3.1.1.1 shows the infrared absorption spectra of pure DPPC multilamellar liposomes in the C-H stretching region at different temperatures. As it can be seen from the figure, peak height, wavenumber and bandwidth values changed as temperature increased.

Figure 3.1.1.2 shows the FTIR spectra of DPPC liposomes in the presence and absence of low and high simvastatin concentrations in the C-H stretching region at 41.4°C. As it can be seen in the figure, for pure DPPC liposomes the CH\(_2\) symmetric stretching mode has a peak at 2850 cm\(^{-1}\) and CH\(_2\) antisymmetric stretching mode has a peak at 2920 cm\(^{-1}\). Moreover, CH\(_3\) asymmetric and symmetric stretching bands located at 2956 cm\(^{-1}\) and 2872 cm\(^{-1}\), respectively.

Figure 3.1.1.3 shows the FTIR spectra of DPPC liposomes in the presence and absence of low and high simvastatin concentrations in the 1800-1000 cm\(^{-1}\)
region at 45.1°C. As it can be seen in the figure, for pure DPPC liposomes the C=O ester carbonyl stretching band located at 1735 cm⁻¹ and the PO₂⁻ antisymmetric double stretching band located at 1230 cm⁻¹. The figures 3.1.1.2 and 3.1.1.3 showed that simvastatin changed the bandwidth, band frequency and band intensity values.

Moreover, we run FTIR spectra for DMPC or DPPC lipids and simvastatin in solution at the concentrations used in this study because simvastatin molecule also contain C-H and C=O stretching groups. As it can be seen from the figure 3.1.1.4, the contribution of simvastatin to the C-H and C=O stretching bands are negligible. Therefore, the C-H and C=O stretching bands in the spectra of simvastatin containing DMPC or DPPC liposomes mainly monitors the lipid functional groups.

Figure 3.1.1.5 shows the FTIR spectra of the pure DMPC and DPPC liposomes in their gel phases. As it can be seen in the figure, the bandwidth of the DMPC lipids is longer than that of the DPPC lipids at the CH₂ antisymmetric stretching mode. The bandwidth of the CH₂ symmetric and the CH₂ antisymmetric stretching modes gives information about the membrane fluidity or membrane stability. An increase in the bandwidth means an increase in the membrane fluidity or a decrease in the membrane stability. Thus, DPPC membranes are more stable than DMPC membranes with respect to their structures.
Figure 3.1.1.1 FTIR spectra of pure DPPC multilamellar liposomes in the C-H stretching region at different temperatures. The spectra were normalized with respect to the \(\text{CH}_2 \) antisymmetric stretching band located at 2920 cm\(^{-1}\).
Figure 3.1.1.2 FTIR spectra of DPPC liposomes in the presence and absence of low and high simvastatin concentrations in the C-H stretching region at 41.4°C. The spectra were normalized with respect to the CH$_2$ antisymmetric stretching band located at 2920 cm$^{-1}$.
Figure 3.1.1.3 FTIR spectra of DPPC liposomes in the presence and absence of low and high simvastatin concentrations in the 1800-1000 cm\(^{-1}\) region at 45.1\(^\circ\)C. The spectra were normalized with respect to the C=O stretching band located at 1735 cm\(^{-1}\).
Figure 3.1.1.4 FTIR spectra of pure DPPC liposomes and simvastatin at low and high concentrations corresponding to 1 and 24 mol% in solution at room temperature.
Figure 3.1.1.5 FTIR spectra of the pure DPPC and DMPC liposomes in their gel phases in the 3000-2800 cm\(^{-1}\) region. The spectra were normalized with respect to the CH\(_2\) antisymmetric stretching band located at 2920 cm\(^{-1}\).
Order-disorder state of the system and phase transition behaviour were studied by the analysis of C-H stretching mode as reported by Severcan (1997) and Toyran and Severcan (2003). Ordering state of the system is reflected in the spectrum as a decrease in the frequency of the C-H stretching mode. Figure 3.1.1.6 shows temperature dependence of the frequency of the CH$_2$ symmetric stretching mode of DPPC multilamellar liposomes in the presence and absence of different simvastatin concentrations. The frequency values were measured at centre of 80% of the height of the bandwidth of the peaks. As it can be seen in the figure, as simvastatin concentration increased the phase transition curve was broaden. The main phase transition temperature (T_m) of pure DPPC liposomes was around 41°C and the pretransition temperature was around 35°C. T_m value was shifted to lower values as simvastatin concentration increased. On the other hand, the pretransition temperature was completely eliminated by the addition of simvastatin. The same results were obtained for the CH$_2$ antisymmetric stretching mode which is shown in Figure 3.1.1.7. Furthermore, in both figures it was observed that simvastatin increased the frequency of oscillation, implying a decrease in the order of the system both in the gel and liquid crystalline phases. The degree of disordering effect increased by increasing the simvastatin concentration. Disordering effect of simvastatin in the gel phase was more profound than in the liquid crystalline phase.
Figure 3.1.1.6 Temperature dependence of the frequency of the CH$_2$ symmetric stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes.
Figure 3.1.1.7 Temperature dependence of the frequency of the CH$_2$ antisymmetric stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes.
Temperature dependence of the bandwidth of the CH$_2$ symmetric and antisymmetric stretching modes in the presence and absence of different simvastatin concentrations for DPPC liposomes were shown in Fig. 3.1.1.8 and Fig. 3.1.1.9, respectively. The widths were measured at 75% of height of the peaks. Bandwidth analysis gives information about the dynamics of the system. Bilayer permeability properties are related to the fluidity. And fluidity at a certain degree is required for normal and optimal activity of membrane associated proteins. The increment in bandwidth value is the indication of an increment in lipid dynamics (Yi and MacDonald, 1973; Toyran and Severcan, 2003). As it can be seen in both figures, dynamics of the system decreased as the simvastatin concentration increased. In other words, as the simvastatin concentration increased lipid fluidity decreased. Moreover, the degree of stabilizing effect directly proportional to the degree of simvastatin concentration. Furthermore, the broadening of the main phase transition profile were observed from the figures.
Figure 3.1.1.8 Temperature dependence of the bandwidth of the CH$_2$ symmetric stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes.
Figure 3.1.1.9 Temperature dependence of the bandwidth of the CH$_2$ antisymmetric stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes.
In order to examine the interaction of simvastatin with glycerol backbone near the head group of phospholipids in interfacial region, the C=O stretching band frequency was analysed. Temperature dependence of the frequency of the C=O stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes was shown in Figure 3.1.1.10. A decrease in the frequency of oscillation indicates strengthening of the existing hydrogen bonds of the glycerol skeleton closer to the head groups or the formation of new hydrogen bonds (Frengeli and Günthard, 1976). As it can be seen in the figure, the frequency of oscillation shifted to lower values as simvastatin concentration increased implying that either simvastatin strengthens the existing hydrogen bonds of the glycerol skeleton closer to the head groups or new hydrogen bonds were formed. Formation of new hydrogen bonds occurred between hydroxyl groups of simvastatin and either carbonyl groups of lipids or water molecules around.
Figure 3.1.1.10 Temperature dependence of the frequency of the C=O stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes.
The interaction between simvastatin and head group of DPPC multilamellar liposomes was monitored by analysing the PO_2^- antisymmetric double stretching band. Figure 3.1.1.11 shows the temperature dependence of the frequency of the PO_2^- antisymmetric stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes. As it can be seen in the figure, the frequency of oscillation shifted to higher values as simvastatin concentration increased. In the figure it is clear that increasing simvastatin concentration caused an increase in the wavenumber of the PO_2^- antisymmetric double stretching band implying a dehydration around these functional groups in the polar part of the lipids (Toyran and Severcan, 2003). This dehydration effect in the gel phase was more profound than in the liquid crystalline phase for 1mol%, 6mol%, and 12mol% of simvastatin concentrations.
Figure 3.1.1.11 Temperature dependence of the frequency of the PO$_2^-$ antisymmetric double stretching mode in the presence and absence of different simvastatin concentrations for DPPC liposomes.
3.1.2 FTIR Studies to Monitor the Acyl Chain Length Effect Between DMPC and DPPC Lipids

In this part, FTIR studies were carried out to monitor the effect of acyl chain length on the simvastatin-membrane interactions by using two different lipids with different chain length. These lipids are DMPC and DPPC which have molecular formulas of $C_{36}H_{72}NO_8P$ and $C_{40}H_{80}NO_8P$, respectively. There are two CH$_2$ difference between them. Again the same absorption bands and parameters were used for the analyses of FTIR spectra of DMPC or DPPC liposomes. For each lipid FTIR spectroscopy were performed at two different temperatures which monitors the gel and the liquid crystalline phase of the lipid membranes. For DMPC liposomes these temperatures are 10$^\circ$C and 35$^\circ$C, and for DPPC liposomes they are 29.5$^\circ$C and 54$^\circ$C, respectively. Every experiment at each temperature was repeated 5 times and results were averaged. Later, Mann-Whitney U test was applied to measured frequency and bandwidth values. Final results which are statistically significant were shown by an asterisk on the graphs.

Order-disorder state of the membranes was monitored by analysing the frequency values of the CH$_2$ symmetric and antisymmetric stretching bands in the presence and absence of different simvastatin concentrations (Severcan, 1997; Toyran and Severcan, 2003). Figures 3.1.2.1 and 3.1.2.2 show simvastatin dependence of the frequency of the CH$_2$ symmetric stretching modes of DMPC and DPPC liposomes respectively in their gel phase. As it can be seen in both figures, the frequency values of the samples increased as the simvastatin concentration increased, implying a decrease in the orders of DMPC and DPPC lipids in the gel phase. The same results were also observed for the CH$_2$ antisymmetric stretching bands. Figures 3.1.2.3 and 3.1.2.4 show simvastatin dependence of the frequency of the CH$_2$ antisymmetric stretching modes of DMPC and DPPC liposomes respectively in their gel phase which
have similar trend. As these results revealed that acyl chain length difference between DMPC and DPPC lipids has no effect on the order-disorder state of the model membranes in this study.
Figure 3.1.2.1 Simvastatin concentration dependence of the frequency of the CH$_2$ symmetric stretching mode for DMPC liposomes at 10°C. (*) P < 0.05.

Figure 3.1.2.2 Simvastatin concentration dependence of the frequency of the CH$_2$ symmetric stretching mode for DPPC liposomes at 29.5°C. (*) P < 0.05.
Figure 3.1.2.3 Simvastatin concentration dependence of the frequency of the CH$_2$ antisymmetric stretching mode for DMPC liposomes at 10°C. (*) $P < 0.05$.

Figure 3.1.2.4 Simvastatin concentration dependence of the frequency of the CH$_2$ antisymmetric stretching mode for DPPC liposomes at 29.5°C. (*) $P < 0.05$.
Figures 3.1.2.5 and 3.1.2.6 show simvastatin dependence of the frequency of the CH\textsubscript{2} symmetric stretching modes of DMPC and DPPC liposomes respectively in their liquid crystalline phase. As it can be seen in both figures, the frequency values of the samples increased implying that orders of DMPC and DPPC lipids in the liquid crystalline phase decreased as the simvastatin concentration in the liposomes increased. The same results were also observed for the CH\textsubscript{2} antisymmetric stretching bands. Figures 3.1.2.7 and 3.1.2.8 show simvastatin dependence of the frequency of the CH\textsubscript{2} antisymmetric stretching modes of DMPC and DPPC liposomes respectively in their liquid crystalline phase. These figures were in the same trend for both DMPC and DPPC liposomes implying that acyl chain length difference between DMPC and DPPC lipids has no effect on the order-disorder state of the model membranes in this study.
Figure 3.1.2.5 Simvastatin concentration dependence of the frequency of the CH$_2$ symmetric stretching mode for DMPC liposomes at 35°C. (*) P < 0.05.

Figure 3.1.2.6 Simvastatin concentration dependence of the frequency of the CH$_2$ symmetric stretching mode for DPPC liposomes at 54°C. (*) P < 0.05.
Figure 3.1.2.7 Simvastatin concentration dependence of the frequency of the CH$_2$ antisymmetric stretching mode for DMPC liposomes at 35°C. (*) P < 0.05.

Figure 3.1.2.8 Simvastatin concentration dependence of the frequency of the CH$_2$ antisymmetric stretching mode for DPPC liposomes at 54°C. (*) P < 0.05.
Lipid dynamics or membrane fluidity of the DMPC or DPPC liposomes was monitored by analysing the bandwidth values of the CH$_2$ symmetric and antisymmetric stretching bands in the presence and absence of different simvastatin concentrations (Yi and MacDonald, 1973; Toyran and Severcan, 2003). Figures 3.1.2.9 and 3.1.2.10 show simvastatin dependence of the bandwidth of the CH$_2$ symmetric stretching modes of DMPC and DPPC liposomes respectively in their gel phase. As it can be seen in both figures, the bandwidth values of the samples decreased as the simvastatin concentration increased. The results imply that the dynamics of DMPC and DPPC liposomes decreased as the simvastatin concentration in the liposomes increased. The same results were also observed for the CH$_2$ antisymmetric stretching bands as seen from the figures 3.1.2.11 and 3.1.2.12 which show simvastatin dependence of the bandwidth of the CH$_2$ antisymmetric stretching modes of DMPC and DPPC liposomes respectively in their gel phase. As it can be seen from these figures, acyl chain length difference between DMPC and DPPC lipids has no effect on the lipid dynamics of the model membranes in this study.
Figure 3.1.2.9 Simvastatin concentration dependence of the bandwidth of the CH$_2$ symmetric stretching mode for DMPC liposomes at 10$^\circ$C. (*) $P < 0.05$.

Figure 3.1.2.10 Simvastatin concentration dependence of the bandwidth of the CH$_2$ symmetric stretching mode for DPPC liposomes at 29.5$^\circ$C. (*) $P < 0.05$.

83
Figure 3.1.2.11 Simvastatin concentration dependence of the bandwidth of the CH$_2$ antisymmetric stretching mode for DMPC liposomes at 10°C. (*) $P < 0.05$.

Figure 3.1.2.12 Simvastatin concentration dependence of the bandwidth of the CH$_2$ antisymmetric stretching mode for DPPC liposomes at 29.5°C. (*) $P < 0.05$.
Lipid dynamics or membrane fluidity of the DMPC or DPPC liposomes in the liquid crystalline phase was again monitored by analysing the bandwidth values of the CH$_2$ symmetric and antisymmetric stretching bands in the presence and absence of different simvastatin concentrations. Figures 3.1.2.13 and 3.1.2.14 show simvastatin dependence of the bandwidth of the CH$_2$ symmetric stretching modes of DMPC and DPPC liposomes respectively in their liquid crystalline phase. As it can be seen in both figures, the bandwidth values of the samples decreased as the simvastatin concentration increased. Therefore, dynamics of DMPC and DPPC lipids in the liquid crystalline phase decreased as the simvastatin concentration in the liposomes increased. The same results were also observed for the CH$_2$ antisymmetric stretching bands as depicted in the figures 3.1.2.15 and 3.1.2.16 which show simvastatin dependence of the bandwidth of the CH$_2$ antisymmetric stretching modes of DMPC and DPPC liposomes respectively in their liquid crystalline phase. The results revealed that acyl chain length difference between DMPC and DPPC lipids has no effect on the lipid dynamics of the model membranes in this study.
Figure 3.1.2.13 Simvastatin concentration dependence of the bandwidth of the CH$_2$ symmetric stretching mode for DMPC liposomes at 35°C. (*) P < 0.05.

Figure 3.1.2.14 Simvastatin concentration dependence of the bandwidth of the CH$_2$ symmetric stretching mode for DPPC liposomes at 54°C. (*) P < 0.05.
Figure 3.1.2.15 Simvastatin concentration dependence of the bandwidth of the CH$_2$ antisymmetric stretching mode for DMPC liposomes at 35°C. (*) P < 0.05.

Figure 3.1.2.16 Simvastatin concentration dependence of the bandwidth of the CH$_2$ antisymmetric stretching mode for DPPC liposomes at 54°C. (*) P < 0.05.
The C=O stretching band frequency was analysed to examine the interaction of simvastatin with glycerol backbone near the head group of phospholipids in interfacial region in the presence and absence of different simvastatin concentrations. Figures 3.1.2.17 and 3.1.2.18 show simvastatin dependence of the frequency of the C=O stretching modes of DMPC and DPPC liposomes respectively in their gel phase. As it can be seen in both figures, the frequency values of the samples decreased as the simvastatin concentration increased. A decrease in the frequency of oscillation indicates strengthening of the existing hydrogen bonds of the glycerol skeleton closer to the head groups or the formation of new hydrogen bonds (Frengeli and Günthard, 1976). Therefore, simvastatin either strengthens the existing hydrogen bonds of the glycerol skeleton closer to the head groups or causes new hydrogen bonding. Formation of new hydrogen bonds occur between hydroxyl groups of simvastatin and either carbonyl groups of lipids or water molecules around. Similar trend was obtained for DMPC and DPPC. Therefore, we can say that acyl chain length difference between DMPC and DPPC lipids has no effect on the hydrogen bonding at glycerol backbone near the head group of phospholipids in interfacial region in the gel phase in this study.
Figure 3.1.2.17 Simvastatin concentration dependence of the frequency of the C=O stretching mode for DMPC liposomes at 10°C. (*) P < 0.05.

Figure 3.1.2.18 Simvastatin concentration dependence of the frequency of the C=O stretching mode for DPPC liposomes at 29.5°C. (*) P < 0.05.
Figures 3.1.2.19 and 3.1.2.20 show simvastatin dependence of the frequency of the C=O stretching modes of DMPC and DPPC liposomes respectively in their liquid crystalline phase. As it can be seen in both figures, the frequency values of the samples decreased as the simvastatin concentration increased, indicating the strengthening of the existing hydrogen bonds of the glycerol skeleton closer to the head groups or the formation of new hydrogen bonds. Therefore, simvastatin either strengthens the existing hydrogen bonds of the glycerol skeleton closer to the head groups or causes new hydrogen bonding. Formation of new hydrogen bonds occur between hydroxyl groups of simvastatin and either carbonyl groups of lipids or water molecules around. The results imply that acyl chain length difference between DMPC and DPPC lipids has no effect on the hydrogen bonding at glycerol backbone near the head group of phospholipids in interfacial region in the liquid crystalline phase in this study.
Figure 3.1.2.19 Simvastatin concentration dependence of the frequency of the C=O stretching mode for DMPC liposomes at 35°C. (*) P < 0.05.

Figure 3.1.2.20 Simvastatin concentration dependence of the frequency of the C=O stretching mode for DPPC liposomes at 54°C. (*) P < 0.05.
The interaction between simvastatin and head group of DMPC or DPPC multilamellar liposomes was monitored by analysing the PO$_2^-$ antisymmetric double stretching band. Figures 3.1.2.21 and 3.1.2.22 show simvastatin dependence of the frequency of the PO$_2^-$ antisymmetric double stretching modes of DMPC and DPPC liposomes respectively in their gel phase. As it can be seen in both figures, the frequency of oscillation shifted to higher values as simvastatin concentration increased. The results imply that increasing simvastatin concentration caused a dehydration around these functional groups in the polar part of the lipids (Toyran and Severcan, 2003). Observing a similar trend in the figures means that the acyl chain length difference between DMPC and DPPC lipids has no effect on the interaction between simvastatin and head group of DMPC or DPPC multilamellar liposomes in the gel phase in this study.
Figure 3.1.2.21 Simvastatin concentration dependence of the frequency of the \(\text{PO}_2^- \) antisymmetric double stretching mode for DMPC liposomes at 10\(^\circ\)C. (*) \(P < 0.05 \).

Figure 3.1.2.22 Simvastatin concentration dependence of the frequency of the \(\text{PO}_2^- \) antisymmetric double stretching mode for DPPC liposomes at 29.5\(^\circ\)C. (*) \(P < 0.05 \).
Figures 3.1.2.23 and 3.1.2.24 show simvastatin dependence of the frequency of the \(\text{PO}_2^- \) antisymmetric double stretching modes of DMPC and DPPC liposomes respectively in their liquid crystalline phase. As it can be seen in both figures, the frequency of oscillation shifted to higher values as simvastatin concentration increased. These results imply that increasing simvastatin concentration caused a dehydration around these functional groups in the polar part of the lipids. The comparison of the figures revealed that acyl chain length difference between DMPC and DPPC lipids has no effect on the interaction between simvastatin and head group of DMPC or DPPC multilamellar liposomes in the liquid crystalline phase in this study.
Figure 3.1.2.23 Simvastatin concentration dependence of the frequency of the PO\textsubscript{2}− antisymmetric double stretching mode for DMPC liposomes at 35°C. (*) P < 0.05.

Figure 3.1.2.24 Simvastatin concentration dependence of the frequency of the PO\textsubscript{2}− antisymmetric double stretching mode for DPPC liposomes at 54°C. (*) P < 0.05.
3.2 DSC Studies

Calorimetric investigations of DMPC or DPPC multilamellar liposomes in the presence and absence of simvastatin were carried out for a temperature range of 0-50°C and 20-70°C, respectively. The corresponding heating flow as a function of temperature for DMPC and DPPC liposomes were shown in Figures 3.2.1 and 3.2.2, respectively. As shown in Figure 3.2.1, DMPC liposomes showed the characteristic pretransition with a low-enthalpy change and a sharp main transition at 14.60°C and 22.80°C, respectively (Kiselev et al., 2001). In the current study the pretransition and main transition temperature were determined as 14.20°C and 23.24°C, respectively. The thermotropic properties of hydrated DPPC liposomes have extensively been studied by DSC method (Melchior and Stein, 1976; Huang and Li, 1999). The characteristic parameters used for obtaining information in lipid studies are the transition enthalpy changes, the width of the transition peak at half height and the main phase transition temperature. As shown in Figure 3.2.2, DPPC liposomes showed the characteristic pretransition with a low-enthalpy change and a sharp main transition at 35.20°C and 41.20°C, respectively (Mavramoustakos et al., 1997). In our study the pretransition and main transition temperature were determined as 35.47°C and 41.02°C, respectively.
Figure 3.2.1 DSC thermogram of DMPC liposomes (Kiselev et al., 2001).
Figure 3.2.2 DSC thermogram of DPPC liposomes (Mavramoustakos et al., 1997).
Figures 3.2.3 and 3.2.4 show DSC thermograms of DMPC and DPPC liposomes respectively, in the presence and absence of different simvastatin concentrations. As it can be seen from the figures, the main phase transition temperature of DMPC and DPPC lipids decreased and their pretransition temperature disappeared as simvastatin concentration in the liposomes increased. Moreover, a broadening in the main phase transition peak was observed for both lipids as simvastatin concentration in the liposomes increased. Also more than one peak were observed at 6 mol% simvastatin concentration of DMPC liposomes and 12,18 mol% simvastatin concentrations of DPPC liposomes.
Figure 3.2.3 DSC thermogram of DMPC liposomes in the presence and absence of different simvastatin concentrations in terms of mol%.
Figure 3.2.4 DSC thermogram of DPPC liposomes in the presence and absence of different simvastatin concentrations in terms of mol %.

Endothermic Heat Flow (in arbitrary units)

Temperature (°C)

- pure dppc
- 1 mol% sim + dppc
- 6 mol% sim + dppc
- 12 mol% sim + dppc
- 18 mol% sim + dppc
- 24 mol% sim + dppc

Note the peaks at different temperatures indicating the melting points in the presence of varying simvastatin concentrations.
The width of the transition peak at half height, the main phase transition temperature values and enthalpy changes at the main transition of DMPC and DPPC samples were given in Tables 3.3.1 and 3.3.2, respectively. The broadening of the main phase transition peak was observed because the width of the transition peak increased as simvastatin concentration in the liposomes increased. When the transition enthalpy changes of DPPC samples were compared, it was found that the enthalpy change of transition was decreased in all simvastatin containing liposomes. Since it was not possible to measure the width of the transition peaks at half height, the main phase transition temperature values and enthalpy changes at the main transition of 18 and 24 mol% simvastatin concentrations of DMPC liposomes, their values were showed by a hyphen in the table 3.3.1.
Table 3.3.1 Width at half height (ΔT), transition temperatures (T_m) and enthalpy of the transitions (ΔH) for DMPC liposomes are given.

<table>
<thead>
<tr>
<th>Samples</th>
<th>ΔT ($^\circ$C)</th>
<th>T_m ($^\circ$C)</th>
<th>ΔH (cal/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMPC</td>
<td>0.36</td>
<td>23.24</td>
<td>7.72</td>
</tr>
<tr>
<td>1mol% sim+DMPC</td>
<td>0.54</td>
<td>23.00</td>
<td>7.02</td>
</tr>
<tr>
<td>6mol% sim+DMPC</td>
<td>1.62</td>
<td>21.71</td>
<td>6.18</td>
</tr>
<tr>
<td>12mol% sim+DMPC</td>
<td>6.51</td>
<td>19.27</td>
<td>6.23</td>
</tr>
<tr>
<td>18mol% sim+DMPC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24mol% sim+DMPC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3.3.2 Width at half height (ΔT), transition temperatures (T_m) and enthalpy of the transitions (ΔH) for DPPC liposomes are given.

<table>
<thead>
<tr>
<th>Samples</th>
<th>ΔT ($^\circ$C)</th>
<th>T_m ($^\circ$C)</th>
<th>ΔH (cal/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPPC</td>
<td>0.56</td>
<td>41.02</td>
<td>11.57</td>
</tr>
<tr>
<td>1mol% sim+DPPC</td>
<td>0.75</td>
<td>40.70</td>
<td>9.90</td>
</tr>
<tr>
<td>6mol% sim+DPPC</td>
<td>1.15</td>
<td>39.88</td>
<td>9.71</td>
</tr>
<tr>
<td>12mol% sim+DPPC</td>
<td>3.21</td>
<td>38.45</td>
<td>10.06</td>
</tr>
<tr>
<td>18mol% sim+DPPC</td>
<td>8.98</td>
<td>38.36</td>
<td>9.25</td>
</tr>
<tr>
<td>24mol% sim+DPPC</td>
<td>12.68</td>
<td>37.39</td>
<td>9.64</td>
</tr>
</tbody>
</table>
CHAPTER 4

DISCUSSION

This study can be divided into two parts. In the first part, the effect of simvastatin on the phase transition profile, order, dynamics and hydration states of the head and the region near the aqueous region of zwitterionic DPPC multilamellar vesicles was monitored as a function of temperature and simvastatin concentration. In the second part, studies were carried out to monitor the effect of acyl chain length on the simvastatin-membrane interactions by using two different lipids with different chain length. These lipids are DMPC and DPPC which have molecular formulas of \(C_{36}H_{72}NO_8P \) and \(C_{40}H_{80}NO_8P \), respectively. For both parts of the study, two non-perturbing techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry were used.

We were particularly careful in distinguishing between structural parameters describing molecular order and motion parameters such as bandwidth describing molecular dynamics as suggested by others (Toyran and Severcan, 2003; Severcan et al., 2005; Korkmaz and Severcan, 2005; Van Ginkel et al., 1989).

4.1 Simvastatin-DPPC Model Membrane Interaction

In the present study, we for the first time investigated the effect of simvastatin on lipid phase transition profile, lipid order, lipid dynamics and hydration states of the head and the region near the aqueous region of zwitterionic DPPC multilamellar vesicles as a function of temperature and simvastatin
concentration varying from 1 to 24 mol%. Furthermore, we for the first time showed that the existence of lateral phase separation in binary mixture of simvastatin and DPPC in this study.

For FTIR spectral analysis, the C-H stretching modes at 3000-2800 cm$^{-1}$, the C=O stretching band located at 1735 cm$^{-1}$ and PO$_2^-$ antisymmetric double stretching band located at 1240-1220 cm$^{-1}$ were considered. Simvastatin induced shifts in the peak position of the FTIR bands and changes in the bandwidths of several bands in comparison to those of DPPC liposomes. The shifts to higher wavenumbers correspond to an increase in the number of gauche conformers (Toyran and Severcan, 2003; Casal and Mantsch, 1984; Severcan, 1997; Villalain et al., 1986). Moreover, the bandwidth of the CH$_2$ stretching bands give dynamic information about the membrane (Toyran and Severcan, 2003; Villalain et al., 1986; Casal et al., 1980; Lopez-Garcia et al., 1993; Kazanci et al., 2001).

FTIR and DSC results revealed that simvastatin eliminates the pre-transition and shifts the main transition to lower temperatures as drug concentration is increased. By monitoring the CH$_2$ stretching vibrations in FTIR spectra, we showed that simvastatin increases acyl chain flexibility, i.e., increases disorder of DPPC membrane both in the gel and liquid crystalline phase. There is a limited number of studies in the literature about the effects of simvastatin on membrane dynamics. The results of these studies are not in agreement with each other. Koter et al. in 2003, using electron paramagnetic resonance (EPR) spectroscopy, reported that simvastatin increases lipid fluidity in erythrocyte plasma membranes (Koter et al., 2003). Djaldetti et al. also observed an increase in the membrane dynamics of macrophages (Djaldetti et al., 2006). In contrast to these studies, Rabini et al. reported an initial decrease in the membrane fluidity of erythrocytes (Rabini et al., 1993). Moreover, Koter et al. in 2002, using spin label technique reported that atorvastatin, one type of statin
drugs, decreases membrane fluidity of erythrocytes (Koter et al., 2002). Our results clearly show that the effects of simvastatin on membrane dynamics are dependent on simvastatin concentration. A dramatic decrease in the dynamics of DPPC membranes is observed in the presence of simvastatin both in the gel and liquid crystalline phase. Our results are in agreement with initial results of Rabini et al. and atorvastatin results of Koter et al. in 2002.

The changes in the frequency and in the bandwidth with respect to temperature are not concerted since simvastatin induces a decrease in the order and at the same time a decrease in the dynamics of the membrane. This type of behaviour has been previously reported for cholesterol (Van Ginkel et al., 1989), α-tocopherol (Villalain et al., 1986), melatonin (Severcan et al., 2005) and progesterone (Korkmaz and Severcan, 2005) containing phospholipid membranes. This controversial effect in between order and dynamics may be an indication of simvastatin-induced lateral phase separation in the binary system. Phase separation can be understood by a shoulder appearing on the main transition peak or by an extra peak around it (Shaikh et al., 2001; Bach et al., 2001). Our DSC studies revealed that with the addition of simvastatin, the main DSC curve (at around 41°C) decreases in intensity and broadens. This may suggest the co-existence of more than one domain. As simvastatin concentration is increased to 12 mol%, more than one peak appears in the calorimetric profile indicating that lateral phase separation of lipids are indeed occurring probably producing phases with different ratios of simvastatin and phospholipid. In the presence of 18 mol% simvastatin, the main peak is clearly resolved into two components with phase-transition temperatures of 35.47°C and 38.36°C. For higher simvastatin concentration (24mol%), no splitting but a broad signal was obtained. This may also suggest the co-existence of more than one domain. If these domains or one of these domains are sufficiently large, the exchange of lipids between the domains cannot be resolved and the DSC curve will be a superposition of more than one component. We suggest that the peak
observed at a lower temperature most likely represents the transition of the simvastatin rich domain, while the peak located at a higher temperature may arise from simvastatin poor domains similar to previously suggested rich and poor domains in other binary mixtures of DPPC with melatonin (Severcan et al., 2005), Vitamin E (Severcan and Cannistraro, 1988), Vitamin D₃ (Bondar and Rose, 1995), Vitamin D₂ (Kazancı et al., 2001), and progesterone (Korkmaz and Severcan, 2005).

Moreover, FTIR enables us to monitor the hydrophilic part of the bilayer, i.e., the head group and the region closer to the polar head group of the phospholipids (Severcan et al., 2000). We found a significant increase in the hydrogen bonding of the C=O group both in the gel and liquid crystalline phase. In other words, simvastatin increased hydrogen bonding in the interfacial region of the bilayer. In our case, the electronegative atom is the oxygen of the hydroxyl group of the simvastatin, which has a partial negative charge. The hydrogen in the O-H group has a partial positive charge. This hydrogen can make hydrogen bonding with the oxygen atoms in the C=O functional groups of the lipids. We should also point out the possibility of simvastatin-induced hydrogen bonding in between the oxygen molecules of both carbonyl and phosphate groups of DPPC and water molecules around these functional groups and/or in between the carbonyl group of simvastatin and nearby water molecules. PO₄⁻ molecules are highly sensitive to changes in hydration (Severcan et al., 2005; Casal and Mantsch, 1987). In the analysis of head group vibrations, simvastatin increases the head group vibration frequency of the membrane both in the gel and liquid crystalline phase, implying a dehydration around the PO₄⁻ functional groups of the lipids.

A change in the transition temperature of membrane is related with the cooperativity of the lipid molecules of membrane (Güldütuna et al., 1997). Loss of cooperativity between the lipid chains means the break down of van
nder Waals forces between the lipid molecules. Simvastatin molecules interact with lipids in liposomes by inserting themselves into the bilayer of membrane, disturbing the strong hydrophobic interactions between the lipid molecules, and such an interaction causes simultaneous variation in T_m and transition ΔH values of DSC curves (Lee, 1977; Cater et al., 1974). This interaction also causes a broadening in the phase transition profile in FTIR studies (Figures 3.1.1.6 and 3.1.1.7). The broadening of peak profile and lowering of transition temperature demonstrate that both the size and packing of bilayers are modified, and the system is disordered (Jain and Min Wu, 1977; Momo et al., 2002). The loss of cooperativity between the lipid chains of DPPC together with the broadening of transition curve in FTIR spectra revealed by the frequency analysis of CH_2 symmetric and antisymmetric stretching modes, imply the penetration of simvastatin into the cooperativity region (C$_2$-C$_8$) of the fatty acyl chains (Jain and Min Wu, 1977).

4.2 Effect of Acyl Chain Length

The ideal liposome formulation with optimum stability is important for drug delivery. The physical stability of liposomes has been found to be a function of lipid acyl chain length (Anderson and Omri, 2004). It was also found that the anticellular effects of liposomal amphotericin B (AmB) formed from AmB and small unilamellar vesicles were dependent on saturated acyl chain length difference in phospholipids (Jullien et al., 1989). Moreover, it was reported that the rates of ester formation by human plasma lecithin:cholesterol acyltransferase increased or decreased according to acyl chain length of phospholipid classes (Pownall et al., 1985). In the present study, we for the first time tested the chain length specificity of simvastatin with DMPC and DPPC lipids. In addition, we for the first time investigated the effect of acyl chain length on simvastatin-membrane interactions by monitoring the membrane properties like membrane fluidity, disorder of the hydrocarbon
chains, and hydrogen bonding around the C=O and PO$_2^-$ functional groups. DMPC and DPPC have molecular formulas of C$_{36}$H$_{72}$NO$_8$P and C$_{40}$H$_{80}$NO$_8$P, respectively. These two lipids have the same characteristics in many respects like having two identical saturated acyl chains with an even number of carbons, having a choline head group, and being neutral (Jullien et al., 1989). Moreover, their order parameter profiles are essentially similar to each other except for the shorter chains (Kupiainen et al., 2005). The molecular structure of DMPC is different from that of DPPC only by a 2-methylene moiety in the acyl chains (Ohki, 2005).

The lateral diffusion rates of lipid molecules depend on the amount of free volume in the bilayer. The possibility of redistributing the free volume is important for diffusion. Thus, increased free volume fluctuations imply faster diffusion. The free area (or volume) fluctuations in the different regions of the bilayer can be quantified by the area compressibility modulus. A high compressibility modulus indicates small free area fluctuations and a low compressibility modulus large fluctuations. The area compressibility moduli for DMPC is slightly lower than that of DPPC so the lateral diffusion rates of DMPC lipids are slightly higher than that of DPPC (Kupiainen et al., 2005). In other words, membrane fluidity increases by an increase in the rates of lateral diffusion of lipid molecules. Consequently, DPPC membranes are structurally more stable than DMPC membranes. This result also showed by FTIR studies (Figure 3.1.1.5). Also, acyl chain length of DMPC lipids are shorter than that of DPPC lipids, implying DMPC membranes are more fluid or less stable than DPPC membranes (Karp, 1999). Such a stability difference may explain why simvastatin has more profound effects on the DMPC membranes than DPPC membranes showed by DSC studies (Figures 3.2.3 and 3.2.4). Due to the acyl chain length difference between DMPC and DPPC lipids, liposomes which are formed from these lipids have different stabilities (Betageri, 1993). Transition temperature is an important consideration with liposome stability (Anderson
and Omri, 2004). Gel-like structures of phospholipids with high T_m values and long hydrocarbon chains are more stable than those with low T_m values and short hydrocarbon chains (Gregoriadis, 1991; Crommelin and Schreier, 1994).

Another study comparing the stability of different phospholipids showed that DPPC, which has a large head-group, undergoes hydrolysis more slowly than DMPC with a smaller head-group, making DPPC more stable (Grit and Crommelin, 1993). Also, hydrolysis, one of the mechanisms of liposome destabilization, is increased with short acyl groups which further explains why DMPC liposomes are less stable than DPPC liposomes (Grit and Crommelin, 1993). Moreover, the thickness of the membranes related to the length and average ordering of hydrocarbon chains (Kupiainen et al., 2005). Thus, DPPC membranes are thicker than DMPC membranes.

Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order was investigated by using a microscopic interaction model for a fully hydrated DPPC lipid bilayer membrane containing cholesterol. Same effects like broadening of the transition curve, shifting of the transition curve towards slightly lower temperatures in the presence of cholesterol were observed on these three parameters (Ipsen et al., 1990). Similar trends were also observed in our results.

Furthermore, the transport characteristics on the DLPC, DMPC, and DPPC bilayers were analyzed by using the molecular dynamics method. And the results demonstrated that free energy profiles of small molecules like O_2 and H_2O changed during the permeation process through a lipid bilayer as the acyl chain length of phospholipids changed (Sugii et al., 2004).

When we compare the FTIR spectra and DSC thermograms of DMPC and DPPC lipids we observed similar trends on membrane properties, implying
simvastatin, which is a hydrophobic cholesterol reducing agent, did not show chain length specificity between DMPC and DPPC lipids (Söderlund et al., 1999). Moreover, effects of simvastatin on the DMPC membranes were more profound than on the DPPC membranes in the DSC thermograms since the main transition peak was so much broadened and nearly it disappeared at higher simvastatin concentrations (18 and 24 mol%) of DMPC liposomes. Thus, it was not possible to measure an apparent T_m temperature and enthalpy change at the main transition. One possible reason of such a result is less stability of DMPC liposomes than DPPC liposomes. Consequently, localization of simvastatin in the cooperativity region of the DMPC bilayer may have a profound effect on disturbing the hydrophobic interactions between the lipid molecules. In addition, simvastatin is a hydrophobic molecule. Thus, penetration of simvastatin into the phospholipid membranes is possible (Higashino et al., 2001; Sandaram and Thompson, 1990).

It was previously indicated that a model peptide melittin obtained from bee venom interacts preferentially with DMPC molecules instead of DPPC molecules in mixed phospholipids bilayers. The hydrophobic region of the DMPC bilayer membrane is 3.32 nm in all-trans configuration (Sandaram and Thompson, 1990). On the other hand, it has been reported that hydrophobic thickness of DPPC-cholesterol membrane surrounded by melittin is nearly 2.9 nm (Pott and Dufourc, 1995). And the head-to-tail distance of 20 amino acids of melittin except six hydrophilic amino acids is approximately 3.0 nm (Inagaki et al., 1989). In the process of the interaction of melittin with DMPC membranes, it is most important that the thickness of the hydrophobic core of the lipid bilayer fits the length of the hydrophobic region of the melittin molecules (Ohki, 2005). Such a case was not observed for simvastatin since similar trends were observed for both lipids in our FTIR and DSC studies.
Furthermore, it was showed that membrane permeability increases with decreasing chain length at a given cholesterol content (testing DPPC, DMPC and DSPC specificity) (Corvera et al., 1992). An increase in the membrane permeability means an increase in the membrane fluidity. Different than found in the case of cholesterol where an increase in the permeability was observed as the chain length decreased, in the current study no significant variations were observed due to the acyl chain length difference in the fluidity or permeability of the membranes.

Finally, similar trends were observed in the FTIR results of DMPC and DPPC membranes both in the gel and liquid crystalline phase for the interaction of simvastatin with the C=\text{O} and \text{PO}_2^- functional groups of the lipids. Then, it is possible to say that acyl chain length difference between DMPC and DPPC lipids has no effect on the interaction between simvastatin and the hydrogen bonding at glycerol backbone near the head group of phospholipids in interfacial region and head group of DMPC, DPPC lipids.
CONCLUSION

The present work firstly investigated the effect of cholesterol reducing agent, simvastatin, on the physical properties such as phase transition, membrane order and dynamics, of pure neutral DPPC model membranes as a function of simvastatin concentration and temperature. Also this study firstly investigated the effect of acyl chain length on the simvastatin-model membrane interactions by using DMPC and DPPC lipids.

In this study two non-invasive techniques, namely FTIR spectroscopy and DSC were used. By using FTIR we were able to monitor different parts of the membrane such as the head group, acyl chain and the interfacial region. We were able to obtain information about these regions of the membrane in terms of interactions. And DSC enabled us to monitor the main phase transition of the membranes.

Results obtained in this study revealed that there is a strong interaction between simvastatin and the lipid membranes. In the present study, it has been for the first time showed that membrane fluidity decreases as simvastatin concentration increases. Simvastatin also disorders the system in both gel and liquid crystalline phase. Furthermore, we demonstrated for the first time simvastatin induces phase separation in both DMPC and DPPC liposomes. Evidently, these interactions are dependent on simvastatin concentration and temperature. In addition, cooperativity of the lipid molecules is modified by affecting the van der Waals forces among the lipid molecules, thus pretransition of the DMPC and DPPC membranes is completely diminished, and their main phase transition temperature, enthalpy and profile considerably changed. Moreover, simvastatin increased hydrogen bonding in the interfacial
region of the bilayers. Also, a dehydration effect caused by simvastatin around the \(\text{PO}_2^- \) functional groups in the polar part of the lipids was observed.

Furthermore, the present study firstly monitored the effects of acyl chain length on the simvastatin-model membrane interactions. Any change caused by the difference between the acyl chain length of DMPC and DPPC lipids was not observed. In addition, for both of the lipids similar trends were observed in the FTIR and DSC results. The less stability of DMPC membranes than DPPC membranes is also showed by more profound effects of simvastatin on the DMPC membranes in the DSC thermograms.
REFERENCES

