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ABSTRACT 
 
 

DEVELOPING A METHODOLOGY FOR THE DESIGN OF  
WATER DISTRIBUTION NETWORKS 

USING 
GENETIC ALGORITM 

 
 
 

GENÇOĞLU, Gençer 

M. S., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Nuri Merzi  

 

 

February 2007, 129 pages 

 

 

 

The realization of planning, design, construction, operation and maintenance of water 

supply systems pictures one of the largest infrastructure projects of municipalities; 

water distribution networks should be designed very meticulously. Genetic algorithm 

is an optimization method that is based on natural evolution and is used for the 

optimization of water distribution networks.  

 

Genetic algorithm is comprised of operators and the operators affect the performance 

of the algorithm. Although these operators are related with parameters, not much 

attention has been given for the determination of these parameters for this specific 

field of water distribution networks. 

 

This study represents a novel methodology, which investigates the parameters of the 

algorithm for different networks. The developed computer program is applied to 

three networks. Two of these networks are well known examples from the literature; 

the third network is a pressure zone of Ankara water distribution network.  
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It is found out that, the parameters of the algorithm are related with the network, the 

case to be optimized and the developed computer program. The pressure penalty 

constant value varied depending on the pipe costs and the network characteristics. 

The mutation rate is found to vary in a range of [0.0075 – 0.0675] for three networks. 

Elitism rate is determined as the minimum value for the corresponding population 

size. Crossover probability is found to vary in a range of [0.5 – 0.9]. The 

methodology should be applied to determine the appropriate parameter set of genetic 

algorithm for each optimization study. Using the method described, fairly well 

results are obtained.  

 

 

Keywords: Genetic algorithm, optimization, water distribution network, design, 

Ankara  
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ÖZ 
 
 

SU DAĞITIM ŞEBEKELERİNİN GENETİK ALGORİTMA 
KULLANILARAK OPTİMİZASYONUNA YÖNELİK  

BİR 
YÖNTEM GELİŞTİRİLMESİ 

 
 
 

GENÇOĞLU, Gençer 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Nuri Merzi 

 

 

Şubat 2007, 129 sayfa 

 

 

Su kaynakları sistemlerinin planlanması, tasarımı, inşası, işletmesi ve bakımı 

belediyelerin en büyük altyapı projelerini oluşturmaktadır. Bu nedenle, su dağıtım 

şebekeleri son derece titiz bir şekilde tasarlanmalıdır. Evrimsel tabanlı bir 

optimizasyon yöntemi olan genetik algoritma, su dağıtım şebekelerinin 

optimizasyonunda kullanılmaktadır.  

 

Birçok operatörden oluşan genetik algoritmanın performansı içindeki operatörlerden 

etkilenmektedir. Bu operatörler parametrelere bağlı olmalarına rağmen, su dağıtım 

şebekeleri ile ilgili çalışmalarda parametrelerin bulunmasına gereken önem 

verilmemiştir.  

 

Bu çalışma, farklı şebekeler üzerinde genetik algoritmanın parametrelerini inceleyen 

yeni bir yöntem sunmaktadır. Geliştirilmiş olan bilgisayar programı üç farklı şebeke 

üzerinde uygulanmıştır. Bu şebekelerin ikisi literatürdeki iyi bilinen örneklerden 

olup, üçüncüsü ise Ankara su dağıtım şebekesinin bir basınç bölgesidir.  
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Sonuç olarak; algoritma içindeki parametrelerin optimizasyon yapılmak istenen 

şebeke, optimizasyonun hedefi ve geliştirilen bilgisayar programı ile ilişkili olduğu 

bulunmuştur. Birim basınç cezası değeri şebekenin özelliklerine ve boruların 

maliyetlerine göre değişmektedir. Mutasyon oranının üç farklı şebeke için [0.0075 – 

0.0675] aralığında değiştiği bulunmuştur. Elitizm oranı, popülasyon büyüklüğüne 

karşılık gelen en düşük değer olarak belirlenmiştir. Çaprazlama olasılığının ise [0.5 – 

0.9] aralığında değiştiği bulunmuştur. Yöntem, genetik algoritmanın uygun 

parametrelerinin belirlenebilmesi için her optimizasyon çalışmasına uygulanmalıdır. 

Tarif edilen yöntem kullanılarak, iyi sonuçlar elde edilmiştir. 

 

 

Anahtar Kelimeler: Genetik algoritma, optimizasyon, su dağıtım şebekesi, tasarım, 

Ankara  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

1.1 General 
 

All living organisms need water. Water is the most important resource on this planet 

for the continuation of life. Since ancient times, people have tried to manage fresh 

water to be able to survive. Today, in modern cities people use water supply systems 

to have potable water.  

 

A water supply system is a collection of elements such as reservoir(s), pump(s), 

pipes, different kinds of valves, storage tank(s), having the purpose of providing 

required amount of potable water at sufficient pressure to the consumers. 

 

The realization of planning, design, construction, operation and maintenance of water 

supply systems pictures one of the largest infrastructure projects of municipalities; 

the cost of water supply projects may reach values at the order of million dollars for 

Greater Cities. Ankara municipality has reserved 55,000,000 YTL (42,000,000 US$) 

for construction and maintenance of total 641,000 meters of pipelines for 2006 

(Keleş, 2005). According to Environmental Protection Agency (EPA, USA) total 

infrastructure investment of United States for the next twenty years in order to supply 

potable water to consumers is about 150.9 billion US$ (EPA, 2001). Because of 

these high amounts of money, water supply system projects should be designed very 

meticulously.  

 

Traditionally, the design of water distribution networks (WDNs) has been based on 

the experience of the designer; the designer establishes the network design regarding 
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the street plan and the topography. In fact, there is no unique design for any 

distribution project; there may have been various solutions each satisfying the 

desired hydraulic conformity for the same street plan and the same demand pattern; 

but, the cost of each solution may be different. Thus, the problem becomes the 

determination of the least cost design satisfying the hydraulic conformity criteria. 

However, a network containing only about twenty-five pipes will require solutions of 

millions of different combinations in order to identify which one is the least cost 

design.  

 

There is a significant body of literature reserved for optimization of distribution 

networks. Linear programming, dynamic programming, nonlinear programming 

techniques were applied to the problems of network design. New techniques such as 

stochastic optimization including Genetic Algorithm (GA) have been started to be 

employed for designing water distribution networks. 

 

1.2 The aim of this study 
 

In this study, genetic algorithm is applied to the problem of optimal design of water 

distribution networks since GA is able to search complex solution spaces efficiently. 

A computer program using a modified GA will be developed. As an objective, the 

parameters of the modified GA will be discussed on two well known networks from 

the literature and a methodology for the use of the program will be proposed. 

Supplementary comments on the methodology will be made by examining another 

network, which is relatively larger. Two of the networks are well known examples in 

the literature and the third network, N8-1, is an existing pressure zone part of the 

water distribution system of Ankara. All these networks differentiate from each other 

by means of some characteristics, basically pipe sizes. Regarding the results of 

investigations, the appropriate parameter values for specific networks are 

determined. By evaluating the results, uniqueness of each optimization program 

concerning GA, each network and each case will be shown. To be more 

comprehensible, claiming that the parameters of GA such as mutation rate, crossover 
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probability, penalty constant etc. can not have ideal values for all cases; these 

parameters should be adjusted for each network and each case to be optimized. 

 

In Chapter 2, the past studies related with the optimization of the capital cost of the 

WDNs will be summarized. In Chapter 3, a detailed explanation of genetic algorithm 

will be made and the parameters of the algorithm will be explained. In Chapter 4, the 

structure of the developed computer program will be discussed. After giving the 

information about the algorithm and the developed program, utilization of the 

program for two well known networks will be presented in Chapter 5. Moreover, a 

methodology for applying GA on the WDN’s will be developed. Using this 

methodology, the parameters of GA will be found for these networks. In Chapter 6, 

the computer program will be applied on an existing WDN, N8-1. In the last chapter 

conclusions and suggested further studies will be presented.  
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CHAPTER 2 
 
 

LITERATURE REVIEW 
 
 
 

2.1 Earlier optimization studies 
 

As an essential part of modern cities, water distribution networks are one of the 

largest infrastructures. Due to high capital costs and difficult maintenance 

opportunities, researchers try to design the WDNs in an optimal way for four 

decades. Because of nonlinear relationships between the parameters of WDNs, 

optimization of sizing of pipes becomes quite hard. Until now significant amount of 

researchers studied on the optimization of WDNs by computerized techniques.  

 

Being the pioneers of this field, Alperovits and Shamir (1977) proposed to use linear 

programming gradient method to obtain the optimal design of water distribution 

networks. Earlier works has been made by Watanatada (1973), Hamberg (1974) and 

Rasmusen (1976) by using a network solver inside their methodology. In order to 

accomplish the same aim, Lai and Schaake (1969) and Kohlhaas and Mattern (1971) 

did not prefer to use a network solver but they treated the case in which head 

distribution in the network is fixed. Alperovits and Shamir’s principal approach that 

aims to reduce the complexity of the original nonlinear nature; which is a result of 

head loss formula, is followed and improved by many researchers in the following 

years (Quindry et al. 1981; Goulter and Morgan 1985; and Fujiwara and Khang 

1990).  

 

Since water distribution networks behave nonlinearly due to the Hazen-Williams or 

Darcy-Weisbach head loss formula, linear programming techniques become quite 

poor to reach the optimal solution. For this reason, researchers applied nonlinear 
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optimization techniques to pipe network problems (El-Bahrawy and Smith 1985, 

1987; Su et al. 1987; Lansey and Mays 1989a; Lansey et al. 1989; Duan et al. 1990). 

The problem of nonlinear techniques is that, the rounding of pipe diameters does not 

guarantee the solution found to be optimal or even feasible. The other approach, that 

should include a network solver inside is based on enumeration of a limited number 

of alternatives, with the name partial enumeration (Gessler 1985). However it was 

found that this approach may fail to find the optimum result even for a moderate 

sized network (Murphy and Simpson 1992).  

 

All the approaches discussed above, i.e., linear, nonlinear, and enumeration 

techniques require simplifications on the general problem; as a result, they do not 

guarantee to find the global optimal in the search space. Being unimodal functions 

their solutions are strictly dependent on the initial population and they are all prone 

to fall into the local optimums instead of finding the global optimum. To reach the 

global optimum, recently a new heuristic technique developed that is based on the 

evolution theory of Darwin, genetic algorithm (GA). GA does not need 

simplifications and it is capable to be applied on discrete optimization problems like 

sizing of pipes of a water distribution network. Being a multi-modal function, GA 

does not depend on the initial population in the complex solution space. Although 

GA is the most promising optimization method when compared to the traditional 

methods, it still does not guarantee to find the global optimum. 

 

2.2 Overview of Genetic Algorithms and their application to WDNs 
 

Genetic algorithm (GA) was first proposed by Holland (1975) and further developed 

by Goldberg (1989) and others. This algorithm is based on the population dynamics 

in nature such as, natural selection and natural genetics. Algorithm combines the 

survival of the fittest among string structures to form a search algorithm (Goldberg, 

1989). The idea behind the algorithm is to explain the adaptive processes of natural 

systems and adapt them to artificial systems using software. GA optimization, being 

a computerized algorithm, uses binary strings and using some operators tries to reach 
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the global optimum. Basically, the algorithm is based on the principle of the survival 

of the fittest from generation to generation. As generations continue, the fittest of the 

population approaches to either local or global optimum for the function.  

 

As GA demonstrated their capabilities to achieve better results in complicated cases, 

it was also used in WDNs by many researchers. Simpson et al. (1994) introduced GA 

to the optimization problem of WDNs. They investigated a three-operator GA 

comprising reproduction, crossover, and mutation. Throughout their study, they 

compared the performance of GA with other deterministic optimization techniques 

such as enumeration and nonlinear programming. After applying complete 

enumeration, nonlinear programming, and GA to pipe network optimization, they 

concluded that; GA technique is very effective in finding the near-optimal or optimal 

solutions for a case study network in relatively few evaluations. While applying GA, 

they used different parameter sets and by investigating the results on their networks, 

they interpreted that; the results were not highly sensitive to the parameters of GA 

for their case study. Dandy et al. (1996) developed an improved GA for pipe network 

optimization. They introduced a variable power scaling fitness function, adjacency 

mutation operator and using of Gray codes rather than binary coding. The power of 

fitness function increases as program proceeds. The value of power increases from 1 

to 4 to augment the performance of the algorithm. Adjacency mutation operator and 

Gray coding scheme are used to avoid from Hamming cliff. After comparing the 

result of simple GA and improved GA, they concluded that improved GA produces 

significantly lower cost solutions than the simple genetic algorithm. Savic and 

Walters (1997) applied their program (GANET) that uses standard GA to three pipe 

network optimization problems using the recommended values for parameters from 

the literature. They preferred to use Gray coding and elitist strategy throughout their 

runs. After the runs, they concluded that the comparison of solutions obtained by 

GANET and other optimization techniques shows that GA produced good designs 

even without unnecessary restrictions imposed by split-pipe or linearizing 

assumptions. Abebe and Solomatine (1998) introduced a global optimization tool 

that incorporates EPANET as the hydraulic network solver. They implemented GA, 
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Adaptive Cluster Covering with Local Search (ACCOL) and Controlled Random 

Search (CRS) to their global optimization tool. After testing these methods on two 

test networks, they compared the results of previous studies and the methods of their 

global optimization. Finally they concluded that, GA shows more efficient and 

effective performance compared to other methods. A modified GA was proposed by 

Montesinos et al. (1999). They made several changes in the selection and mutation 

processes of the simple GA in order to optimize the convergence of the algorithm. 

While selecting the chromosomes for crossover, the least fit strings are eliminated 

and they are replaced by the duplicates of the fittest individuals. The mutation 

operation is applied while not disturbing the fittest chromosome. These two 

modifications give elitist character to the algorithm. The effectiveness of modified 

GA is tested on a network and it is shown that, modified GA achieved the known 

optimal solution in fewer evaluations than previous GA formulations. Gupta et al. 

(1999) applied GA for optimization of water distribution systems and compared the 

results with the nonlinear optimization technique through the application to several 

case studies. They indicated that GA results in lower cost solution.  

 

Using one of the global search algorithms, Loganathan et al. (1995) and Cunha and 

Sousa (1999) used annealing algorithm for optimal design of WDNs. Eusuff and 

Lansey (2003) proposed shuffled frog leaping algorithm for water distribution 

optimization. Keedwell and Khu (2004) used hybrid genetic algorithm for the design 

of WDNs, by seeding local representative cellular automata approach into genetic 

algorithm to provide a good initial population. Similarly, Zyl et al. (2004) used 

hybrid genetic algorithm for operational optimization of WNDs. They combined two 

hillclimber strategies Hooke and Jeeves and Fibonacci methods with GA.  

 

Recently, Neelakantan and Suribabu (2005) proposed a modified genetic algorithm 

to improve the convergence of the algorithm. The modification is applied by dividing 

the algorithm into two. The first part comprised of simple GA and the second part 

starts with the results of simple GA and the program continues. With the new 

parameter, pre-mutation, they achieved faster convergence to optimum in their 
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modified GA. Güç (2006) applied genetic algorithm for the optimization of water 

distribution systems by using three basic operators and testes his algorithm on 

Ankara N8-3 network. Şen (2004) explained the operators of the GA in details. 

 

 8



CHAPTER 3 
 
 

GENETIC ALGORITHM 
 
 
 

3.1 Introduction to Genetic Algorithm 
 

Genetic algorithm is one of the global optimization and stochastic search techniques 

that is based on the mechanism of natural evolution. The idea behind genetic 

algorithm is the Darwin’s evolution theory and the survival of the fittest. Genetic 

algorithm has been developed by John Holland (1975), his colleagues and his 

students at the University of Michigan. The goals of their research were to explain 

the adaptive processes of natural systems and to design artificial systems software 

that retains the important mechanisms of natural systems (Goldberg 1989). 

 

When compared to traditional optimization techniques, GA differs from these 

techniques in four ways: 

• GA works with coding of the parameters set, not the parameters themselves. 

• GA searches from a population of points, not a single point. 

• GA uses objective function, not the derivatives. 

• GA uses probabilistic transition rules, not deterministic rules (Goldberg 

1989). 

 

Genetic algorithm is acting on the chromosomes of the population in order to 

accomplish basic genetic operations such as selection, crossover, mutation; genetic 

operators do not concern network hydraulics. Hydraulic conformities of the network 

are checked on the basis of a hydraulic network solver. Essential parameters 

describing hydraulic conformity of a water distribution network are nodal pressures 

and flow velocities. As each chromosome in the population is a candidate network, 
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the performance of that chromosome (candidate network) is measured by means of 

specific penalty functions; one is portraying basically the adequacy of the pressure 

field, the other one is picturing essentially sufficiency of the velocity field in order 

not to cause any settlement of minerals on the pipe walls.  

 

3.2 Structure of Genetic Algorithm 
 

Genetic algorithm initiates with randomly generated initial set of chromosomes. 

These chromosomes form a population. The size of the population, in other words, 

the number of chromosomes should be defined previously. The chromosomes are 

strings of binary bits and their size depends on the characteristics of the network. 

With predefined number of chromosomes, evolution begins with first iteration and it 

continues till the last iteration. Throughout iterations new chromosomes are obtained, 

called offspring. These iterations, which lead to obtain offspring, are called 

generations. In every generation the chromosomes evolve to reach the global 

optimum; then, the best chromosome is stored. This loop of generating offspring 

continues until reaching a predefined generation number. After that, the best solution 

found among all generations is displayed as the optimum or a good enough solution 

of the problem. The general structure of genetic algorithm is described in Figure 3.1. 
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Create initial population 

Create offspring in each 
generation 

Store the best result for 
each generation 

Is maximum number of 
generations reached? 

Display the best result 
of all generations 

YES 

NO 

Figure 3.1. General Structure of Genetic Algorithm 
 

 

During the evolution of the population, operators of genetic algorithm play 

significant role. These operators are selection, crossover, and mutation. These 

operators will be explained in details in the following sections. 

 

3.3 Chromosome Concept 
 

In the previous section, it is stated that all elements of genetic algorithm consist of 

binary elements. This means that, a conversion of water distribution network 

elements into binary code is necessary. The pipes are entitled as genes in the code. 

The length of genes depends on the number of candidate pipe diameters. For less 

than 5 pipes 2 bits binary elements are enough. If more than 4, less than 9 pipes are 

available, user need 3 bits binary elements. The length of gene should be the powers 

of 2 (22, 23, 24 etc.).  In Table 3.1 the relationship between the gene size and the 

available pipe diameters is tabulated. As an example, the binary elements for eight 

different pipe diameters are shown in Table 3.2. 
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Table 3.1. Available Pipe Diameters and the Gene Size 
 

Number of available 
pipe diameter (n) 

Gene size 
(#) 

1<n≤4 22 

4<n≤8 23 

8<n≤16 24 

16<n≤32 25 

32<n≤64 26 

 

 

Table 3.2. Chromosomes for Eight Different Pipes 
 

Binary elements Pipe diameters 
(mm) 

000 80 
001 100  
010 120 
011 200 
100 250 
101 300 
110 350 
111 400 

 

 

 

3.4 Parameters of Genetic Algorithm 

3.4.1 Selection 
 
During the evolutionary process, at the beginning of each generation all 

chromosomes should be evaluated. This evaluation is made by converting the binary 

chromosomes of the population, to real networks and solving all these networks by a 

network solver one by one. This network solver may be an internal program or 

external software that is integrated into the main algorithm. By solving each network, 

the associated nodal pressures and flow velocities can be found. To rank the 

chromosomes according to their total costs, the hydraulic conditions of the networks 
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should be converted to cost values using penalty functions. The detailed explanation 

of penalty functions will be given in Section 3.4.4. Beside the hydraulic conditions, 

the capital cost of the networks should be calculated. The capital cost of the network 

can be calculated by multiplying the unit prices of each pipe with corresponding pipe 

lengths. After evaluating the penalty costs and the capital costs, these values are 

summed up and the chromosomes are ranked according to their total cost values. 

After that, the fitness values of all chromosomes (candidate networks) are calculated.  

 
The fitness value (eqn. 3.1) is equal to one over the summation of the capital cost and 

the penalty cost for each chromosome. After computing the fitness values of all 

chromosomes, the probabilities of selection of each chromosome can be calculated. 

The probability of selection for each chromosome (eqn. 3.2) is the division of 

chromosome’s fitness value by the summation of all fitness values throughout the 

population. 

 

( )icc
i PCf += 1  (3.1) 

 
Cc: capital cost of ith chromosome 

Pc: penalty cost of ith chromosome 

 

∑
= n

i
i

i
i

f

fp  (3.2) 

 

pi : probability of selection of ith chromosome 

fi : fitness of ith chromosome 

n : number of chromosome in the population 

 
Table 3.3 shows an example of calculating the probability of selection for a 

population consisting of 4 chromosomes. The chromosomes are 15 bits long so that 

they are composed of 5 pipes each may have 8 different available diameters and the 

cost values are unreal numbers.  
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Table 3.3. Sample Calculation for a Population of Four Chromosomes 
 

No. Chromosomes Pipe 
cost 

Penalty cost Total 
cost 

Fitness Prob. of 
selection

1 010011001010101 140 70 210 0.00476 36% 
2 101001100101100 166 273 439 0.00228 17% 
3 110101100101001 181 250 431 0.00232 18% 
4 001010001001110 108 160 268 0.00373 29% 

Total  595 753 1,348 0.01309 100 
 
 
 
After computing the fitness values for each chromosome, the selection process 

begins. During this selection process the roulette wheel method is used. The mate 

chromosomes are selected according to their probability values on the roulette wheel. 

The chromosomes have their portions on the wheel equivalent to their fitness values 

(see Figure 3.2). Then a random number is generated (wheel is turned) and selection 

is made according to this number. So, more fit chromosomes are more willing to be 

selected with respect to its slot size on the wheel. The roulette wheel selection 

method is advised by Goldberg (1989). This method helps preferential selection of 

more fit parents with the expectation of producing more fit offspring for next 

generation. After mating the chromosomes according to their fitness values, the 

crossover process begins. 
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Figure 3.2. Chromosomes with Portions According to Their Fitness Values 
 
 
 

3.4.2 Crossover 
 

Crossover is the key parameter to reproduce new chromosomes. After the mating of 

selected chromosomes, the parents may crossover some of their bits with each other. 

The occurrence of crossover is controlled by a random number and a predefined 

crossover probability. Using the selection process, when the mating of chromosomes 

is completed, a random number is generated. If this number is less than the 

predefined crossover probability the crossover is applied to the selected mates, 

otherwise these parents are passed to next generation as offspring and the algorithm 

moves to the next couple. This looped process repeats for all mates throughout the 

population.  

 

Crossover can be explained basically as the exchange of bits (genetic information) 

between the parents. The occurrence of exchange creates offspring different than 

both parents. The exchange of bits among the parents can be made using one point, 

two points or multi point crossover. The points indicate the bits that will transfer to 

the other parent. For example; if two point crossover is made, two random numbers 
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(one greater than the other) are generated. The bits between these two numbers are 

exchanged. For more detailed explanation see Figure 3.3. 

 

 

Parents before 
crossover 

Parents after crossover points 
are determined Offspring 

010011001010101 010011001010101 101011001001100 
101001100101100 101001100101100 010001100110101 

Figure 3.3. Two Point Crossover 
 

 

Multi point crossover follows almost the same method as two point crossover. Again 

random numbers are generated that are not equal to each other; the bits between 

these numbers are exchanged among the parent chromosomes (see Figure 3.4). 

Among crossover types one point crossover is the most conservative one. One point 

crossover exchanges bits only from the end point of the chromosome. For this 

method only one random number is generated and the bits between this number and 

the last bit are exchanged. In the following chapters, the strategy behind the 

crossover type will be discussed on different networks. Also the effects of this 

parameter while searching for the optimum will be discussed.  

 
 
 
 Before crossover The selection of 

bits Bits exchanged 

XXXXXXXXX XXXXXXXXX XXXXXYYYY Single point 
crossover YYYYYYYYY YYYYYYYYY YYYYYXXXX 

XXXXXXXXX XXXXXXXXX XYYXXXYYY Three point 
crossover YYYYYYYYY YYYYYYYYY YXXYYYXXX 

XXXXXXXXX XXXXXXXXX XYYYXXYXX Four point   
crossover YYYYYYYYY YYYYYYYYY YXXXYYXYY 

Figure 3.4. Crossover for Multi Point Cases 
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During crossover, the exchange rules between parents sometimes may be confusing. 

One method of crossover deals with the genes and the other deals with the bits. Since 

there is no rule for this method, it is preferred to use bit by bit crossover in this study 

which is not utilizing the genes. Also in Figure 3.3 it can be seen that 7 bits are 

crossed over although this example population has 5 pipes and each pipe is 3 bits. If 

crossover is realized by the genes, multiples of 3 bits should be exchanged.  

 

3.4.3 Mutation 
 

Mutation is another operator of genetic algorithm and maybe the most effective one 

that affects the performance of the algorithm in searching the global optimum. 

Mutation is the exchange of bits from 1 to 0 or reverse (Figure 3.5). After crossing 

over of selected chromosomes is completed, mutation operator is applied to the 

population. During mutation operation, all the population is considered bit by bit. 

From the beginning of the population till the end, for each bit a random number is 

generated. If this number is less than the mutation probability that is predefined, 

mutation occurs on this bit. If the random number is greater or equal to the 

predefined mutation probability, mutation operator moves to the next bit and another 

random number is generated for that bit. This process continues till the end of the 

chromosome at the same manner.  

 

 

Before mutation 0100110010101010101101000110100101001001 

After mutation 

 
 

0100110110101010101101000110000101001001 

Figure 3.5. Mutation 
 

 

The chromosome can be exposed to mutation several times according to its length 

and the predefined mutation probability. Concerning this operator, mutation rate is 

one of the parameters that affect the algorithm. There is not a commonly accepted 
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value for this rate in the literature. In the following chapters, this rate and its effect 

on the algorithm will be discussed. 

 
The operators described above are the general steps that are all discussed and 

delineated in the literature. While the meta-heuristic is preserved, the solutions that 

are formed are still dependent on the values of parameters.  

 

3.4.4 Penalty function 
 
Before the selection of mates, the members of the population (chromosomes) are 

ranked according to their fitness values. The fitness values are calculated by equation 

3.1. To form this formulation there is a need for penalty costs. Penalty costs show the 

hydraulic performance of each candidate network (chromosome) in the search space. 

The hydraulic performance of each network is converted into costs using the penalty 

function. Penalty function both portrays the adequacy of pressure field and the 

sufficiency of the velocity field in order not to cause any settlement of minerals on 

the pipe walls. So; the penalty function is the most important parameter of the 

genetic algorithm.  

 

Throughout this study; for the optimization of WDNs, the objective is to minimize 

the capital cost of the network while providing the hydraulic conformities. In other 

words, the objective is to minimize the summation of the capital cost and the penalty 

cost for the network. The fundamentals of optimization imply that more complex 

objection function you have, more difficulty you will face to reach the optimum. So, 

the objective function’s simplicity is very important to find the global optimum. The 

simplicity of the objective function can be achieved by ignoring the effects of some 

hydraulic constraints. As low pressure problems may result in lack of water in those 

junctions, low pressure constraint is more important than any other constraints. Also 

high pressures in junctions may result in leakage problems and this is another 

important constraint. Similar to pressure heads, the flow velocities affect the 

networks. High flow velocities may damage the pipes while very low flow velocity 

may increase the aging of pipes. Also low flow velocities affect the quality of potable 
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water due to the some inorganic reactions. However, in some networks, especially in 

large ones, the velocity problems may sometimes be inevitable. Due to these 

characteristics of velocity problems, in the literature some researchers (Simpson et 

al., 1994; Savic and Walters, 1997; Vairavamoorthy and Ali, 2000) did not 

considered velocity constraints in the optimization of WDNs. Similarly, in this study 

it is preferred to consider only the pressure constraint during the optimization 

problem for the sake of simplicity. Another disadvantage of considering the velocity 

constraint is the increased evaluation time of the program.  

 

Penalty functions are not widely described in the literature research, studied. In this 

study, a penalty function considering only the pressure violation is used. The penalty 

function (eqn. 3.3) penalizes the network, both by investigating the degree of 

violation at the nodes and the generation number. This heuristic approach pushes the 

penalized networks to vanish as the generations reach to the limit generation number 

by using a power (k) in the penalty function. Another addition to penalty function is 

the degree of violation. As pressure value diverge from a pressure range, the penalty 

of the chromosome increases. Moreover, the penalty function penalizes the upper 

limit pressure violations and lower limit pressure violations in different manner. As 

lower pressure limit is more important than upper limit violation, the penalty of 

lower pressure limit violation is greater.  
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u: unit pressure penalty constant, predefined 

k: power for the penalty function 

n: number of nodes in the network 

pll: lower pressure limit, predefined 
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plu: upper pressure limit, predefined 

pi: pressure of each node, i=1,2, … ,n. 

Pj: pressure penalty of jth chromosome, j=1,2, … ,J. 

J: total number of chromosomes in the population 

 
The power, k is a value depending on the current generation number (Gc) and 

generation number limit (Gl). It is defined in equation 3.4. 

 

Penalty function is plotted for pressures -10 to 90 in Figure 3.5. For more detailed 

description, in Figure 3.6 the pressure interval is chosen as [21:90]. The lower 

pressure limit and upper pressure limit is chosen as 30 m and 80 m respectively for 

both figures. In both figures, it is obvious that as the degree of violation for the 

pressure limits increase, the pressure penalty increases. In addition, as generations go 

on, k value goes from 1 to 2 stepwise and penalty increases.  

 

 

 

Figure 3.6. Penalty Function for Pressures: [-10:90] 
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Figure 3.7. Penalty Function for Pressures: [21:90] 
 

 

As penalty function play an important role in the optimization problem in this study, 

the effect of this function is discussed. To investigate the penalty function’s role, the 

elements (i.e., n, pll, plu) of the equation (eqn. 3.3) stabilized but the unit pressure 

penalty constant (u) varied. In the following chapters, with this methodology the 

pressure penalty constant will be tried to be found for each network and additional 

comments will be made.  

 

3.4.5 Elitism concept 
 
Another modification that applied to the genetic algorithm is the elitism parameter. 

As the name implies, elitism means the protection of some promising chromosomes 

throughout the crossover and mutation operators. During crossover and mutation, the 

selected chromosomes are modified. Crossover and mutation are conducted to 

improve fitness. However, it may be possible that they can lead to less fit individuals. 
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Elitism is the protection against destructive changes in the population. It is first 

introduced by Kenneth De Jong (1975). Tolson et al. (2004) used this operator during 

their optimization study on the water distribution networks. Montesinos et al. (1999) 

applied some modifications that is similar to the elitism but did not clearly emphasize 

this parameter.  

 

When elitist method is used, before the selection of chromosomes for crossover and 

mutation, predefined number of the best chromosomes are selected and protected 

against crossover and mutation. They move directly as offspring for that generation 

too the next. There is not a certain rule to determine the number of selected 

chromosomes. The number of these chromosomes is defined by an elitism rate before 

initiating the program. In the following chapters, the effects of elitism rate on the 

algorithm will be discussed using different networks.  

 

3.4.6 Consequent runs 
 
As mentioned previously, GA is one of the stochastic optimization methods. The 

randomized operators inside the algorithm affect the performance throughout the 

generations. Although, having better performance compared to traditional 

optimization techniques (Simpson et al., 1994), GA may converge to local optimums 

in the search space of the network.  

 

In addition, as solution space is large – as in WDNs – many local optimums may 

exist instead of only one global optimum. If the search space of the algorithm is 

described as a terrain with many valleys inside, local optimums can be any valley. 

Among those valleys, the deepest one is the global optimum and sometimes, 

especially in large search spaces, genetic algorithm may not find the deepest one. 

Although modifications on the operators, functions etc. may increase the 

performance of genetic algorithm, the convergence to a local optimum is inevitable.  

When the convergence to local optimums is considered, GA is not to be blamed for 

not finding the global optimum in every trial. Although there is not a commonly 
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accepted approach to this characteristic of GA, in this study it is assumed that 

convergences to local optimums are inevitable and to reach to the global optimum 

consequent runs are necessary. The consequent runs mean that, running the program 

with the same parameter set for several times. At the end of each run, save the best 

result for that run and after the completion of all runs, present the best of best results 

as the global optimum. Making consequent runs for the network increases the 

evaluation time. There is not an accepted rule about the run time because it depends 

on the size of network, the processor of the computer, and the skill of the architect of 

the code.  

 

Savic and Walters (1997) mentioned that, twenty runs were necessary using different 

seed number for Hanoi network. Additionally, Neelakantan and Suribabu (2005) 

used hundreds of trials for Shamir’s network to compare their two different genetic 

algorithm optimization techniques. Simpson et al. (1994) employed ten runs for their 

optimization study. Dandy et al. (1996) accomplished five runs both for simple GA 

and improved GA in their study and compared only the best of these runs.  

 

Throughout this study, several runs were made while for each network and for each 

set of parameter. Although there is not an accepted number for consequent runs 

throughout this study; the numbers are varied according to the aim of the runs and 

the characteristics of the network. The runs were held on until the results are 

interpretable. 
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CHAPTER 4 
 
 

RUNNING THE PROGRAM – NOGA 
 
 
 

4.1 Overview  
 
The description of genetic algorithm was already made in the previous chapters; its 

role in the optimization history and water distribution networks was mentioned also. 

GA is preferably a computer based algorithm and it runs by means of a computer 

program. It is preferred to design a computer program that uses GA for the 

optimization of water distribution networks for this study. 

 

Throughout this chapter the structure of the created program, NOGA (Network 

Optimization using Genetic Algorithm) will be presented. After a brief explanation 

of NOGA, some details concerning the running process, the computer environment 

and its components will be presented.  

 

A general overview of NOGA can be displayed using a flowchart (Figure 4.1). 

NOGA needs the layout of the network before starting the computations. This layout 

can be drawn using EPANET (U.S. Environmental Protection Agency, 2007) or can 

be created using any text editor. NOGA is not capable of modifying the layout of the 

network. NOGA is only responsible for sizing the diameters of pipes and computes 

the parameters representing hydraulic conformity. Using the provided layout, NOGA 

runs the genetic algorithm and gives the results.  
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Draw the layout of the Network 
using EPANET

Save the network as an .inp file 
using EPANET

Complete the inputs and run 
NOGA

Visualize results 

Figure 4.1. General Flowchart of Optimization Process 
 

 

4.2 NOGA 
 

The name NOGA is comprised of the capital letters of network optimization using 

genetic algorithm. Although being constructed on the basis of genetic algorithm, 

structural design of NOGA is unique to its author.  

 

The code of NOGA is written using the MATLAB language which is similar to C, 

C++, and FORTRAN. MATLAB code can be written using MATLAB’s own editor 

and evaluated using MATLAB’s command window. The main code consists of many 

.m files and these files can be executed using commands from the MATLAB 

command window. These .m files work inside the kernel of MATLAB and they can 

be connected to each other. The main code can be divided into various .m files and 

this phenomenon gives many advantages to the developer while debugging. After 
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having divided the main code into .m files, the computer application performance of 

all .m files can be investigated individually. Although MATLAB applications take 

more computer time compared to other programming languages, there are other 

advantages of MATLAB in regard to its user interface. Complicated visualization 

options, user friendly warnings and convenience in debugging are the major 

advantages of MATLAB. For these reasons it is preferred to use MATLAB language 

to design NOGA.  

 

To run NOGA, MATLAB main software is necessary. For visualization support 

MATLAB 7.0 or higher versions will be helpful. Operating system may be Windows 

XP which is compatible with MATLAB 7.0.  The computer should be at least Intel 

Pentium Celeron 1.7 GHz or further and RAM should be at least 512 MB. The 

processor of the computer directly affects the run time of program. So with new 

technology processors, evaluation times can be reduced. Also the model of the 

processor affects the performance of the program under some other applications, for 

example visualizations.  

 

4.3 The structure of NOGA 
 

Genetic algorithm is acting on the chromosomes of the population in order to 

accomplish basic genetic operations such as selection, crossover, mutation; genetic 

operators do not deal with network hydraulics. Hydraulic conformities of the 

network are checked on the basis of a hydraulic network solver. Essential parameters 

describing hydraulic conformity of a water distribution network are nodal pressures 

and flow velocities. As each chromosome in the population is a candidate network, 

the performance of that chromosome (candidate network) is measured by means of a 

specific penalty function; portraying basically the adequacy of the pressure field. The 

penalty function converts the performance of the network considering only pressures 

into cost values using unit penalty costs. 
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4.3.1 Hydraulic Network Solver – EPANET 
 

Working with GA for design of WDNs, necessitates utilization of a hydraulic 

network solver - for example, EPANET - very frequently throughout the whole 

process. To compute the penalty costs, it is required to compute hydraulic conditions 

of each network for all of the generations. This means that, to find the optimal 

solution many evaluations need to be realized, i.e. solving the network many times. 

To achieve this, a hydraulic network solver inside the algorithm is needed. This 

solver can be a code written by the researcher or an external program that can be 

compatible with the genetic algorithm environment. Many researchers (Liong and 

Atiquzzaman, 2004; Abebe and Solomatine, 1998; Keedwell and Khu, 2004; 

Neelakantan and Suribabu, 2005) in the literature used EPANET as the hydraulic 

network solver inside their optimization algorithms. In this study, similar to those 

researchers, it is preferred to use EPANET as the network solver inside the computer 

program code.  

 

EPANET is a hydraulic network solver program that performs extended period 

simulation (EPS) of hydraulic and water-quality behavior within pressurized pipe 

networks. EPANET tracks the flow of water in each pipe, the pressure at each node, 

the height of water in each tank and the concentration of chemical species throughout 

the network during a simulation period which is comprised of multiple time steps. In 

addition to chemical species, water age and source tracing can also be simulated.  

 

EPANET was developed by the Water Supply and Water Resources Division 

(formerly the Drinking Water Research Division) of the U.S. Environmental 

Protection Agency's National Risk Management Research Laboratory. It is public 

domain software that may be freely copied and distributed (U.S. Environmental 

Protection Agency, 2007). 

 

For NOGA to operate appropriately, a solvable WDN under static loading condition 

is required. EPANET is a user friendly program with a user interface (Figure 4.2) It 
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also has a toolkit. The EPANET Programmer's Toolkit is a dynamic link library 

(DLL) of functions that are allowed to be modified to customize EPANET's 

computational engine for specific needs. The functions can be incorporated into 32-

bit Windows applications written in C/C++, Delphi Pascal, Visual Basic, or any 

other language that can call functions within a Windows DLL (U.S. Environmental 

Protection Agency, 2007). It is preferred to use EPANET Programmer’s toolkit that 

employed as the hydraulic network solver for convenience. 

 

 

 

 

Figure 4.2. EPANET’s User Interface 
 

 
 
 
 

 28



4.3.2 Mechanism of NOGA  
 
In the previous section, the computer environment and the components of the NOGA 

tried to be explained. In this section, the interaction of EPANET and MATLAB 

computer environments will be presented. 

As already mentioned, the layout of the network should be drawn by EPANET 

before running NOGA. This layout should contain the lengths of all pipes, elevation 

and demands of all nodes and all the necessary information of pumps, tanks and 

reservoirs if they exist. All the pipes should have a diameter. These diameters could 

be unreal numbers but the network should be executable. If not, the EPANET toolkit 

can not solve the network and nothing can be done to the network. After completing 

the layout, the network should be saved as an .inp file. 

 

This can be done as follows by clicking in the menu bar: file >> export >> network. 

Using the popup window, the .inp file can be saved by giving a name into the root 

directory of NOGA on the hard disk (Figure 4.3). This .inp file is the input file that is 

compatible to NOGA. The .inp file should contain all the information that the 

network contains. Another way to create the .inp file is to write it using any text 

editor - for example, Microsoft Notepad - and changing the extension of saved file to 

inp. The difficulty of this way is that, all the network elements should be written in 

the accurate format. In Figure 4.4 an example format of an .inp file is given.  

 

Before running NOGA, the gene size and chromosome length should be defined by 

looking at the pipe numbers and diameter diversity and these numbers should be 

entered to the program as input. The detailed information related with the 

chromosome concept was given in Section 3.3. For example, if the network consists 

of 10 pipes each may have 12 different diameters, gene size must be 4 bits and 

chromosome length must be 40 bits. Unit prices of pipes per 1 meter length for each 

diameter should be given as input as well; these unit prices will be used to calculate 

the capital cost of the network while computing the costs throughout the process. 
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Figure 4.3. Steps to Save a Network as .inp File 
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Figure 4.4. An Example .inp File 
 

 

After having declared the input information, NOGA can be run in MATLAB 

environment. NOGA starts with initial random population consisting of predefined 

number of chromosomes. These chromosomes denote candidate network 

configurations. Since all networks are composed of pipes, all chromosomes are 

composed of genes. Genes are a group of binary bits each corresponding to one pipe 

diameter only. After having formed the initial population randomly, all the genes are 

converted to corresponding diameters. This process can be mentioned as converting 

the binary bits into real network elements. Afterwards, the network with real pipes is 

obtained. By multiplying the unit prices of pipes with corresponding pipe lengths, the 

network’s capital costs can be found. In this step the lengths of all pipes should be 

known and this information is handled using EPANET toolkit. To find the penalty 

cost for each chromosome, - all the networks (chromosomes) - are solved 

individually using EPANET toolkit in each generation. After solving all the networks 

of this generation, the nodal pressures are stored and all the networks are penalized 

according to the penalty function which was defined in the previous chapter. Total 
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cost of each chromosome is the summation of corresponding capital cost and the 

penalty cost. After sorting the total costs of the networks, NOGA saves the capital 

cost of the chromosome with the lowest total cost for the first generation. To clarify 

the last step; for the best chromosome, the capital cost is not the least among the 

population; the total cost (capital cost + penalty cost) is minimum cost among all 

chromosomes. 

 

Then NOGA calculates the fitness values of the networks and all these chromosomes 

are moved to the selection operator. The chromosomes are sorted according to their 

fitness values; then predefined number of chromosomes are selected for crossover 

and mutation by the selection operator. As explained in the previous chapter, before 

crossover and mutation some of the best chromosomes are chosen as elite and they 

move directly to next generation without any crossover or mutation. Crossover and 

mutation process is realized as defined in the previous chapter and the new 

generation is born. Then, children of previous generation become parents of the next 

generation. Again the chromosomes are converted into networks and all the 

population is solved using EPANET toolkit. With the same process, the best 

chromosome for the second generation is saved and the loop continues till the 

limiting generation number is reached.  

 

As NOGA reaches to the limiting generation number, it finds the lowest total cost 

among the generations and displays the lowest capital cost and corresponding 

diameters for the network. The mechanism of NOGA is shown with a flowchart 

below (Figure 4.5). 
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Define unit costs of diameters, gene size, chromosome length and enter 
MATLAB editor

Define unit penalty constant, mutation rate, crossover probability, elitism rate, 
limiting generation number and population size using MATLAB  

Start NOGA 

Create initial population 

Convert bits to corresponding diameters 

Evaluate the population using EPANET Toolkit 

Compute the total cost’s of chromosomes 

Sort the population according to cost’s and select some of them as elite. 

Select chromosomes for crossover and mutation from the population 

Apply crossover to the selected chromosomes 

Apply mutation to the selected chromosomes 

Store the best network’s total cost in the population 

Store the best network in the population 

Combine elit chromosomes and the offspring 

Does generation number reach the limit?

Choose the optimum network among all the total costs, display it as the best solution, 
evaluate it using EPANET and display the capital cost, node pressures and flow 

velocities of the network 

YES NO Generation= 
Generation+1 

Create the .inp file and save it to the root directory of MATLAB 

Figure 4.5. Detailed Flowchart of Optimization Process 
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4.3.3 Displaying the results of NOGA  
 

When the allowed number of generations is reached, the program displays the 

optimum network configuration (chromosome) among all generations as the result 

and terminates. The diameters of the pipes of the final network can be seen in the 

MATLAB command window or it is also possible to visualize the diameters in 

Microsoft Excel program if it is loaded in the computer. Or the results can be 

exported in Microsoft Notepad format and can be opened using that program. Also 

the optimum network can be analyzed and the pressure heads at the nodes and 

velocities in the pipes can be visualized in the MATLAB command window. This 

information also can be exported to Microsoft Notepad or Microsoft Excel as well. 

Additionally, if EPANET is loaded to the computer the final network can be opened, 

visualized and analyzed using EPANET with typing related commands to the NOGA 

environment.  

 

Beside NOGA’s strong analytic capabilities, its visualization methods are very 

powerful. By saving the appropriate results of each generation, the variation in the 

system capital costs, penalty costs or total costs can be visualized using related 

commands. Using MATLAB environment many types of plots can be realized. These 

plots can be saved in .jpg file format and can be visualized using any picture viewing 

program such as Windows’ default Photo Viewer program. After saving these plots 

with .jpg file format, these plots will also be compatible with Microsoft Office 

programs such as Word, PowerPoint etc.  

 

By saving the appropriate data for each generation, any type of information is ready 

to be visualized after NOGA has terminated. Also these information and results can 

be exported to well known file formats and can be visualized in other computers. In 

addition, using related MATLAB functions, many types of plots can be drawn and 

exported to common file formats.  
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CHAPTER 5 
 
 

THE METHODOLOGY 
 
 
 
As previously described, Genetic Algorithm is composed of many operations. 

Throughout these operations - mutation, selection - randomized operators take role. 

These operators, depending on the parameters of the algorithm - mutation rate, 

elitism rate - may affect the performance of the algorithm. The effects of these 

parameters may vary depending on the gene size, chromosome length that is 

characteristic of the network or may vary depending on the structure of the computer 

program.  

 

As described in the fourth chapter, the objective function to be minimized is the total 

cost of the network. Pressure penalty constant is a parameter that is involved while 

calculating the total cost of the network. With varying cost values for each specific 

network, the pressure penalty constant values should also differ. The pressure penalty 

constant may also differ depending on the penalty function that is specific to the 

computer program.  

 

So, these parameters which are specific to the network, specific to the computer 

program and the case to be optimized, affect the main algorithm. Beside the critical 

role these parameters have taken, not much attention has been given for 

determination of them in the field of water distribution network optimization studies. 

Since, GA has a wide usage for the optimization of WDNs, these parameters should 

be determined in a case specific manner for the networks to be optimized.  

 

In this study, a heuristic methodology is developed to determine the important 

parameters for specific cases. This novel methodology basically investigates some of 

the parameters and offers an approach how to reach a final parameter set for each 
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network. While developing the methodology, NOGA was run for two well known 

networks. These networks are Shamir’s (Alperovits and Shamir, 1977) and Hanoi 

(Fujiwara and Khang, 1990) networks. These two networks are well known examples 

from the literature and many researchers tried to obtain the optimal designs of them. 

The network characteristics are different in that; it allows making interpretations 

relating the characteristic of the network and the parameter set. 

 

5.1 Searching the global optimum 
 

As mentioned, it is a common view that genetic algorithm is one of the advisable 

methods of searching the global optimum in a search space. Since water distribution 

networks have a big space of solutions, genetic algorithm is one of the most effective 

optimization methods (Simpson et al., 1994). Although genetic algorithm is 

described more or less the same, the parameters of the algorithm may strictly affect 

the way of searching the global optimum. Since these parameters are specified by the 

developer and no commonly accepted rules or formulas exist, all programs are 

unique and structural details depend on the author, although the main algorithm is 

more or less the same.  

 

It is obvious that, the parameters such as mutation rate, crossover probability etc. are 

strictly related with the characteristic of the network. Mutation rate is directly 

affected by the number of bits; that is related with the chromosome length, which is 

depending on the size of the network. Savic and Walters (1997) proposed a 

relationship between the mutation rate and the chromosome length.  

 

Elitism rate and crossover probability are affected by the size of the search space 

which is depending on the size of the network. Pressure penalty constant depends on 

the pressure constraints for each network to be optimized and the cost of the 

members of the network. Pressure penalty constant value also depends on the penalty 

function. So, as the network differs, the parameters of the algorithm should also 

differ.  

 36



To be more comprehensible, it is claimed that, the parameters of genetic algorithms 

such as, mutation rate, crossover probability, penalty constant etc. can not have ideal 

values. The values of these parameters should be defined for the each case to be 

optimized. To select these parameters, water distribution networks should be run 

with varying parameters. Next, these parameters and the system’s optimum costs 

should be analyzed together. Since these parameters are all related with each other, 

for each set of runs, only one parameter should be varied while the others are kept 

constant. A novel methodology is developed to explore this character of the 

algorithm.  

 

The steps of this methodology are given below. These steps will be described and 

discussed in details while investigating the related networks. 

 
1) First, decide on the initial mutation rate, elitism rate, crossover probability, 

crossover type, population size and allowed number of generations using own 

experience or searching literature. 

 

2) With the decided values, NOGA is run several times with varying pressure 

penalty constant. The appropriate pressure penalty constant value varies in a 

predefined interval. While varying the pressure penalty constant value, 

NOGA should be run for several times for each pressure penalty constant 

value. This is a set of runs for investigating the pressure penalty constant 

value investigation. Note that NOGA considers only pressure constraint while 

penalizing the networks.  

 

3) After having completed the set of run for determining the pressure penalty 

constant value, decide on the final pressure penalty constant for that network 

by examining the results. While examining the results, the capital cost of the 

network and its hydraulic conformity should be taken into account.  

 

4) After determining the appropriate value of pressure penalty constant, similar 

procedure is applied to determine the mutation rate. Again an appropriate 
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interval is chosen for varying mutation rate and NOGA is run several times 

for each mutation rate. 

 

5) Similar to the third step, decide on a value of mutation rate by examining the 

results. 

 

6) Apply similar processes for elitism rate, crossover probability and crossover 

type sequentially. 

 

This sequence is preferred with respect to the importance of parameters for the route 

to the global optimum. Pressure penalty function is the most important criterion since 

it is a parameter of the objective function. The second and the third important 

parameters are decided as the mutation and elitism rates. The other parameters are 

thought to be relatively less important compared to the first three; they are 

investigated after deciding the first three parameters. Different sequences may also 

be investigated. Although different orders concerning GA parameters may give 

different results, this sequence of parameters is preferred within this study. After sets 

of successful runs, the values of these parameters are determined and these values 

reflect the final set of parameters for that network for NOGA.  

 

The described methodology will be applied to two well known networks that are 

Shamir’s network and Fujiwara’s Hanoi network throughout this chapter. 

 

5.2 Shamir’s Network 

5.2.1 Overview of Shamir’s network 
 

Alperovits and Shamir (1977) introduced a network into literature to test their 

method called linear programming gradient. They presented a network operating 

under gravity for one loading. After Alperovits and Shamir, their simple network was 

studied by many researchers (Savic and Walters, 1997; Neelakantan and Suribabu, 

2005; Gupta et al. 1998; Keedwell and Khu, 2004).  
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This network consists of 8 pipes each may have 14 different diameters, 6 nodes, 1 

reservoir and 2 loops. The pipe lengths are all 1000 m, and assumed Hazen-Williams 

coefficients are all 130. Solution space contains 148 = 1.48*109 different 

possibilities. The layout of Shamir’s network is given in Figure 5.1. The node 

demands and elevations are given in Table 5.1. The unit prices for each pipe 

diameter for one meter length are given in Table 5.2.  

 

Since there are 14 available pipe sizes, each pipe diameter is defined in 4-bits genes. 

One chromosome consists of 32 bits. 4-bits gene composition allows 16 available 

pipe sizes but in this network only 14 pipes exist. For 15th and 16th genes unreal 

diameters and unreal cost values are used (Table 5.2). The minimum pressure 

requirement for all nodes is 30 m. No velocity constraint is taken into account for 

this network.  

 

 

Table 5.1. Nodal Demands for Shamir’s Network 
 

Node Nodal Demands 
(m3/hr) 

Node Elevations 
(m) 

1 (reservoir) -1120 210 
2 100 150 
3 100 160 
4 120 155 
5 270 150 
6 330 165 
7 200 160 
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Table 5.2. Unit Prices and Binary Codes for Each Pipe Diameter 
 

Diameter 
 (inch) 

Diameter  
(mm) 

Binary 
Code 

Unit Price 
($/m) 

1 25,4 [0000] 2 
2 50,8 [0001] 5 
3 76,2 [0010] 8 
4 101,6 [0011] 11 
6 152,4 [0100] 16 
8 203,2 [0101] 23 
10 254,0 [0110] 32 
12 304,8 [0111] 50 
14 355,6 [1000] 60 
16 406,4 [1001] 90 
18 457,2 [1010] 130 
20 508,0 [1011] 170 
22 558,8 [1100] 300 
24 609,6 [1101] 550 

39.4 1000 [1110] 1000 
39.4 1000 [1111] 1000 
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Figure 5.1. Layout of Shamir’s Network with Pipe Lengths 
 

 

5.2.2 Applying the methodology on Shamir’s network 
 
To find the optimum parameters for Shamir’s network, the sequential methodology is 

applied exactly as outlined in Section 5.2. After deciding on an initial set of 

parameters, firstly, pressure penalty constant is investigated. After fixing the pressure 

penalty constant, mutation rate is found. After fixing two of them, elitism rate is 

found. After these three main parameters, crossover probability and crossover type 

are also investigated.  
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5.2.2.1 Investigating the pressure penalty constant 
 
To find the suitable pressure penalty constant value, all other parameters are initially 

set to constant values using own experience. The set of all parameters are given in 

Table 5.3. The values of the parameters are chosen from the literature and by own 

experience. The pressure penalty constant (PPC) takes the value from the interval of 

[500, 10000]$ with steps of 500$. That means PPC = {500, 1000, 1500, 2000, … , 

9500, 10000}$. NOGA was run 5 times for each pressure penalty constant and the 

system pipe costs and system pressure penalties are calculated for each pressure 

penalty constant value (see Figure 5.2). As can be seen from the figure after pressure 

penalty constant is equal to 5500$, system is not penalized. There is an exception at 

pressure penalty constant is equal to 7500$ but it is negligible in the whole domain. 

After this founding, all runs will be made with pressure penalty constant equal to 

6000$. 

 

Choosing low pressure penalty constant means not penalizing the promising 

individuals destructively. If individuals were strictly penalized because of the 

pressure violation, they may be destroyed and some useful genes may be lost just 

from the beginning. This may lead gene pool, to get narrower. On the other hand, 

using low pressure penalty constant value, the individuals are penalized but never 

destroyed. This is the reason why 6000$ is chosen as pressure penalty constant 

instead of any greater value. However 5500$ pressure penalty constant value can be 

chosen instead of 6000$ but 6000$ is preferred to be on the safe side since only 500$ 

units is not though to change many in the search space for this specific example. 
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Table 5.3. Parameter Set for Pressure Penalty Constant Investigation 
 

Parameter Value 
Pressure penalty constant  [500, 10000]$ 
Mutation rate 3 % 
Elitism rate  4 % 
Crossover probability  90 % 
Crossover type 2 points 
Population size 50 chromosomes 
Number of allowed generations 5000 
NOGA trial number 5  
Tolerable pressure interval [30, 80] m 

 

 

 

 

 

Figure 5.2. Pressure Penalty Constant vs. System Costs 
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5.2.2.2 Investigating the mutation rate 
 

Similar to the investigation of pressure penalty constant, to find the optimum 

mutation rate all other parameters are fixed and only mutation rate is varied. The 

mutation rate takes the value from an interval of [0.0025, 0.1000] with steps of 

0.0025. That means mutation rate = {0.0025, 0.0050, 0.0075, … , 0.0975, 0.1000}. 

The set of all parameters are given below in Table 5.4. NOGA was run 5 times for 

each mutation rate and the system pipe costs and system pressure penalties are 

calculated (see Figure 5.3).  

 

As can be seen from Figure 5.3, system average pipe cost has three bottom points 

among non-penalized solutions. These minimum points are indicated with star signs. 

On these points 4 of 5 trials found the result with lowest cost among the feasible 

solutions that is incredible. Also the thicker line that indicates the system penalty 

cost shows that in many mutation rates, system has penalized. But in the interval of 

0.0550 to 0.0675 system is not penalized and two of three stars fall into that interval.  

 

It can be said that, as mutation rate increases, genetic search becomes a random walk. 

With high mutation rates, the mutation operator destroys the population although 

some individuals are protected by the elitism operator. This obstruct the algorithm to 

converge to the optimum result. Due to these reasons it is preferred to use 0.0675 as 

mutation rate for next investigations.  
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Table 5.4. Parameter Set for Mutation Rate Investigation 
 

Parameter Value 
Pressure penalty constant  6000$ 
Mutation rate [0.0025, 0.1000] 
Elitism rate  4 % 
Crossover probability  90 % 
Crossover type 2 points 
Population size 50 chromosomes 
Number of allowed generations 5000 
NOGA trial number 5  
Tolerable pressure interval [30, 80] m 

 

 

 

 

Figure 5.3. Mutation Rates vs. System Costs 
 

 

Mutation also affects the convergence speed of the optimization process. In the 

search space, the optimization algorithm converges to a solution, which means the 

optimum solution. Since mutation directly affects the optimization process, it also 
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affects the convergence speed. In Figure 5.4 the result generation numbers are 

plotted with respect to the mutation rates. Result generation number means the 

number of generation in which the best result is found. As can be seen from Figure 

5.4, as mutation rate increases, algorithm faces with difficulties to find the optimum 

solution. But if referred to Figure 5.3 with small mutation rates, algorithm may find 

solutions far away from optimum. If two figures are compared (Figure 5.3 and 5.4) it 

can be concluded that as mutation rate increases, algorithm finds a better result in 

higher generations. Moreover with high mutation rates the final networks found, are 

hydraulically well conditioned; in other words, system is not penalized (Figure 5.3). 

Again, when referred to Figure 5.3 and 5.4 if number of allowed generations is large 

enough, high mutation rate does not destroy the result. Additionally, increasing the 

allowed number of generations helps the program to find better results by enlarging 

the search space. Note that, while investigating the Shamir’s network the number of 

allowed generation is chosen moderately high (5000). As a conclusion; it can be 

clarified that, while using high mutation rates, algorithm needs moderately high 

generation numbers to converge since high mutation rate slow down the 

convergence. On the other hand, using low mutation rates increase the convergence 

but can not guarantee the solution found to be global optimum.  
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Figure 5.4. Mutation Rates vs. Result Generations 
 

 

Another way to investigate the results is, looking at the minimum values over five 

trials. Figure 5.5 indicates the minimum values for each run. The star signs show the 

best result for the Shamir’s network which is 419000$. The values lower than the 

419000$ refers to hydraulically bad conditioned networks. As can be seen from the 

figure, with high mutation rates, algorithm’s optimal solution possibly becomes 

global optimum for that system. With low mutation rates, system may converge to a 

cheaper solution but it may possibly be hydraulically bad conditioned. This fact 

indicates the advantage of high mutation rates for Shamir’s network.  
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Figure 5.5. Mutation Rates vs. Minimum Results 
 

 

5.2.2.3 Investigating the elitism rate 
 
Similar to the investigation of previous two parameters, to find optimum elitism rate 

all other parameters are fixed and only elitism rate varied. The elitism rate takes its 

value from an interval of [0, 0.32] with steps of 0.04. Since elite members should be 

even numbers, and the population size is 50; minimum step size for elitism rate 

becomes 0.04. Tested elitism rates are: {0, 0.04, 0.08, ... , 0.28, 0.32}. The set of all 

parameters are given in Table 5.5. To investigate the elitism rate NOGA was run 10 

times for each elitism rate, and the system pipe costs and system pressure penalties 

are calculated (see Figure 5.6). 
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Table 5.5. Parameter Set for Elitism Rate Investigation 
 

Parameter Value 
Pressure penalty constant  6000$ 
Mutation rate 0.0675 
Elitism rate  [0, 0.32] 
Crossover probability  90 % 
Crossover type 2 points 
Population size 50 chromosomes 
Number of allowed generations 5000 
NOGA trial number 10  
Tolerable pressure interval [30, 80] m 

 

 

 

 

Figure 5.6. Elitism Rates vs. System Costs 
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As indicated in Figure 5.6, system is not penalized only with three elitism rate values 

among 10 trials. They are 4%, 8% and 16%. Among these three, the lowest average 

cost corresponds to 4% elitism rate. Considering minimum values versus elitism 

rates among 10 trials (Figure 5.7), with three elitism rates NOGA found the lowest 

cost solution. These elitism rates are again 4%, 8% and 16%. Evaluating these two 

figures (Figure 5.6 and Figure 5.7), the most suitable value or elitism rate is selected 

as 4%. 

 

In addition to the proper elitism value for Shamir’s network, the role of elitism 

operator can be discussed by looking at Figure 5.6 and 5.7. In both figures, the 

necessity of elitism operator is obvious. The worst results are handled with 0% 

elitism rate in terms of both system cost and penalty cost. This means that, choosing 

some individuals as elite members, helps the optimization program to converge and it 

is a necessity. However, choosing many members as elite may force the program 

converge to local optimums instead of global optimum. So, choosing the lowest 

elitism rate (4% for this case) will help the program converge to the best result. 
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Figure 5.7. Elitism Rates vs. Minimum Results 
 

 

5.2.2.4 Investigating the crossover probability 
 

To find the optimum crossover probability value, a similar process to the 

determination of previous parameters has taken. While keeping all other parameters 

constant, the crossover probability parameter varied in a range and NOGA was run 

20 times for each set. The crossover probability takes its value from an interval of 

[0.3, 1.0] with steps of 0.05 that means crossover probability = {0.30, 0.35, ... , 0.95, 

1.0}. The set of all parameters are given below in Table 5.6. After the sets of trials 

the mean system costs and system penalty costs are plotted (see Figure 5.8).  

 

 

 

 51



Table 5.6. Parameter Set for Crossover Probability Investigation 
 

Parameter Value 
Pressure penalty constant  6000$ 
Mutation rate 0.0675 
Elitism rate  0.04 
Crossover probability  [0.3, 1.0]  
Crossover type 2 points 
Population size 50 chromosomes 
Number of allowed generations 5000 
NOGA trial number 20  
Tolerable pressure interval [30, 80] m 

 

 

 

 

Figure 5.8. Crossover Probabilities vs. System Costs 
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In Figure 5.8, it is obvious that in many crossover probabilities the system is 

penalized. There is not an obvious interval of non-penalized result except the [0.9, 

1.0] interval. Among 20 trials, the solutions corresponding to 0.9, 0.95 and 1.0 

crossover probabilities are non-penalized ones. Similarly, in Figure 5.9, after 

crossover probability is equal to 0.90, the results have lowest costs. Since there is no 

strict violation between the results of 0.90 ~ 1.0 making the decision is difficult.  

 

It is preferred to choose 0.90 crossover probability to protect some of the parents 

from breeding compared to 1.0 crossover probability. When 1.0 crossover probability 

is chosen, all the parents will be crossed over and their genotype will be changed. On 

the other hand, by choosing the crossover probability lower than 1.0, some of the 

parents become the offspring of the next generation. Similar to elitism concept, they 

are protected for one generation only and randomly it increases the search space. In 

addition Goldberg (1989) offers the crossover probability in the interval of [0.6, 1.0].  
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Figure 5.9. Crossover Probabilities vs. Minimum Results 
 

 

5.2.2.5 Investigating the crossover type 
 

To find the optimum crossover type value, a similar process to the determination of 

previous parameters has taken. While keeping all other parameters constant, the 

crossover type varied in a range and NOGA was run 20 times for each set. The 

crossover type means the crossover process that is defined in previous chapters. The 

crossover type value changes from 1 to 4 with steps of 1. If second type of crossover 

is chosen; it means that the parents will exchange their genes from two points on the 

chromosome. The set of all parameters are given below in Table 5.7. After the sets of 

trials; the system costs, system penalty costs and minimum costs are plotted (see 

Figure 5.10).  
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Table 5.7. Parameter Set for Crossover Type Investigation 
 

Parameter Value 
Pressure penalty constant  6000$ 
Mutation rate 0.0675 
Elitism rate  0.04 
Crossover probability  0.90  
Crossover type [1, 4] points 
Population size 50 chromosomes 
Number of allowed generations 5000 
NOGA trial number 20  
Tolerable pressure interval [30, 80] m 

 
 
 
 
 

 

Figure 5.10. Crossover Types vs. System Costs and Minimum Results 
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As mentioned before, crossover type only affects the gene exchange between the 

mates. Since there is not a significant variation between the processes of different 

crossover types, the results are close to each other.  By looking at Figure 5.10, it can 

be mentioned that, the mean system pipe costs are very close to each other in first 

three crossover types. Similarly through these types no system is penalized. Among 

these close results, it is hard to choose a crossover type but it is preferred to choose 

one point type crossover that corresponds the minimum mean system pipe cost. Also 

in the above figure, it can be seen that in the first three crossover types, the algorithm 

found the best result.  

 

5.2.3 Final set of parameters for Shamir’s network 
 

In Section 5.2.2, the parameters for Shamir’s network for NOGA tried to be found. 

By fixing all the parameters except one and varying that last parameter, a 

methodology is tried to be developed. As parameter values are decided throughout 

the methodology the performance of the algorithm improved. The major sign of this 

alteration is emphasized in Figure 5.10. In that figure, the results of first three 

crossover type consist of 60 trials. Among 60 trials any solution is not penalized. 

This shows the strength of the parameters chosen with the methodology and also 

shows the strength of the methodology. As a result of this solid methodology the 

final parameter set is given below in Table 5.8. 

 

 

Table 5.8. Final Parameter Set for Shamir’s Network for NOGA 
 

Parameter Value 
Pressure penalty constant  6000$ 
Mutation rate 0.0675 
Elitism rate  0.04 
Crossover probability  0.90  
Crossover type 1 point 
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After gathering this parameter set, the effects of allowed generation number on the 

results of algorithm can be tested. Although Shamir’s network seem to be easily 

solved it is almost inevitable to abandon pressure penalties due to the character of the 

network. In the network’s solution space there are some local optimum valleys that 

are so close to best result obtained in term of the capital cost. While searching for the 

global optimum, NOGA can fall into one of these valleys and the program will give 

this solution as the optimum. Moreover, some of these valleys may result in pressure 

penalties. Since this event is inevitable, the necessity of conducting several runs 

emerges.  

 

Although there are local optimums (i.e., valleys) in the search space, to avoid the 

program get stuck in one of these local optimums, allowed generation number can be 

increased. To investigate the effects of the number of allowed generations on 

solutions, one last investigation is completed on the Shamir’s network. Using the 

final parameter set, NOGA was run 100 times for 3000, 5000 and 8000 generations. 

The results of these investigations are tabulated below (Table 5.9).  

 

 

Table 5.9. Number of Allowed Generations vs. Performance of NOGA 
 

Number of 
allowed 

generations

Number  
of 

penalized 
solutions 

Cap. Cost 
= 

419000$ 

Cap. Cost 
= 

420000$ 

Cap. Cost 
> 

420000$ 

Total Average 
Result 

Generation
Number 

3000 7 45 34 14 100 896 
5000 0 43 46 11 100 1295 
8000 2 46 47 5 100 1544 

 

 

In the above table, number of penalized solutions, number of solutions with 419000$ 

capital cost (best result), number of solutions with 420000$ capital cost and number 

of solutions greater than 420000$ are summarized. In the solution space of Shamir’s 

network there are three solutions with lower capital costs than other solutions. These 
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three solutions also supply the pressure requirements for [30, 80] interval. Two of 

them are local optimum results with 420000$ capital cost and the other is the best 

result with 419000$ capital cost. These solutions are very close – or same – with 

respect to the capital cost. On the other hand, they are different from one another 

with respect to the diameter sequence. The pipe diameters of these solutions are 

listed in Table 5.10. This table also shows how difficult to step out to global 

optimum when the program faces with the local optimum among the generations. So, 

while measuring the performance of the algorithm, the solutions with 420000$ 

capital cost should be considered. In Table 5.9 the performance of allowed 

generation number is tried to be measured. Comparing the first and the second 

column, for 3000 generations, NOGA resulted with 7 penalized solutions out of 100 

trials. On the contrary, with greater generation numbers, pressure penalties are 

almost abandoned. Number of results with 419000$ and 420000$ are very close to 

each other for all allowed generation numbers but a small increase at the 

performance is visible if 420000$ results are considered. Additionally, number of 

results with greater than 420000$ capital costs behave like the penalized solutions. 

When the number of allowed generations increases, NOGA finds cheaper results. 

The last column indicates that, when the allowed generation number increases, the 

results may be found in further generations. This also means that the program does 

not converge fast. One disadvantage of increasing the allowed generation number is 

the run time of the program. As generation numbers increases, the time spent for 

computation also increases. 
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Table 5.10. Pipe Diameters of Some Optimal Results for Shamir’s Network 
 

Pipe No. Pipe Diameters (mm) 
1 508.0 457.2 457.2 
2 254.0 355.6 254.0 
3 406.4 355.6 406.4 
4 25.4 25.4 101.6 
5 355.6 355.6 406.4 
6 254.0 152.4 254.0 
7 254.0 355.6 254.0 
8 25.4 254.0 254.0 

Total Cost 420000$ 420000$ 419000$ 
Best Result 

 

 

5.3 Fujiwara and Khang’s Hanoi Network 

5.3.1 Overview of Hanoi network 
 

Fujiwara and Khang (1990) applied two-phase decomposition method on the planned 

water distribution trunk network in Hanoi, Vietnam. Hanoi network consists of 32 

nodes, 34 pipes each may have 6 different diameters and 1 reservoir. The network is 

composed of 3 loops; assumed Hazen-Williams coefficients are all 130. The layout 

of Hanoi network is given in Figure 5.11. The elevation of all nodes is 0 m except 

that the reservoir elevation which is 100m. The nodal demands and pipe lengths are 

given in Table 5.11. The unit prices for each pipe diameter for one meter length are 

listed in Table 5.12. Unit cost of a pipe (C) can be found by the formula; C = 1.1 * L 

* D1.5 where L (m.) and D (in.) are pipe length and diameter, respectively. Please 

note that, for NOGA that kind of pipe diameter - cost function is not necessary. 

Similar to Shamir’s network, Hanoi network does not contain any pumping facility.  

 

With its relatively large solution space (634 = 2.87*1026), many researchers (Fujiwara 

and Khang, (1990); Savic and Walters, (1997); Vairavamoorthy and Ali, (2000); 

Neelakantan and Suribabu, (2005); Cunha and Sousa, (1999); Abebe and Solomatine, 

(1998); Liong and Atiquzzaman, (2004)) tried their methods and algorithms on 
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Hanoi network. The comparison of some of these researchers’ and the author’s 

results will be provided in Section 5.3.4.  

 

Since there are 6 available pipe sizes, each pipe diameter is defined in 3-bits genes. 

One chromosome consists of 102 bits. 3-bits gene composition allows 8 available 

pipe sizes but in this network only 6 pipes exist. It is preferred to use middle sized 

pipe diameters for 5th and 6th genes instead of using unreal numbers (Table 5.12). 

Using middle sized diameters saves time during computation since all individuals 

among the population have real pipe diameters. If unreal pipe diameters are replaced 

instead; the program would have spent more time to converge and this will decrease 

the performance of the algorithm. The minimum pressure requirement for all nodes is 

30 m. No velocity constraint is taken into account for this network. 
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Table 5.11. Nodal Demands and Pipe Lengths for Hanoi Network 
 

Node Nodal Demands
(m3/hr) Pipe Length 

(m) 
1 (reservoir) -19940 1 100.00 

2 890 2 1,350.00 
3 850 3 900.00 
4 130 4 1,150.00 
5 725 5 1,450.00 
6 1005 6 450.00 
7 1350 7 850.00 
8 550 8 850.00 
9 525 9 800.00 
10 525 10 950.00 
11 500 11 1,200.00 
12 560 12 3,500.00 
13 940 13 800.00 
14 615 14 500.00 
15 280 15 550.00 
16 310 16 2,730.00 
17 865 17 1,750.00 
18 1345 18 800.00 
19 60 19 400.00 
20 1275 20 2,200.00 
21 930 21 1,500.00 
22 485 22 500.00 
23 1045 23 2,650.00 
24 820 24 1,230.00 
25 170 25 1,300.00 
26 900 26 850.00 
27 370 27 300.00 
28 290 28 750.00 
29 360 29 1,500.00 
30 360 30 2,000.00 
31 105 31 1,600.00 
32 805 32 150.00 
  33 860.00 
  34 950.00 
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Table 5.12. Unit Prices and Binary Codes for Each Pipe Diameter 
 

Diameter 
(inch) 

Diameter 
(mm) 

Binary 
Code 

Unit Price 
($/m) 

12 304,80 [000] 45,73 
16 406,40 [001] 70,40 
20 508,00 [010] 98,38 
24 609,60 [011] 129,33 
30 762,00 [100] 180,75 
40 1016,00 [101] 278,28 
20 508,00 [110] 98,38 
24 609,60 [111] 129,33 

 

 

 

 

 

Figure 5.11. Hanoi Network Layout 
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5.3.2 Developing the methodology on Hanoi network 
 

To find the optimum parameters for Hanoi network almost the same steps of 

previous work are followed. Firstly, pressure penalty constant is investigated, after 

deciding the pressure penalty constant; mutation rate, elitism rate, crossover 

probability and crossover type are investigated sequentially. 

 

Compared to Shamir’s network, Hanoi has a greater solution space. This means that, 

for all of the analysis, more trials were necessary. Although no previously defined 

trial number is given, the runs were held until the results are interpretable.  

 

 

5.3.2.1 Investigating the pressure penalty constant 
 

To find the suitable pressure penalty constant, all other parameters are fixed. The set 

of all parameters are given in Table 5.13. The values of the parameters are chosen 

from the literature and by own experience. 

 

The pressure penalty constant (PPC) takes the value from the interval of [5000, 

100000]$ with steps of 5000$. That means PPC = {5000, 10000, 15000, … , 95000, 

100000}$. NOGA was run 10 times for each pressure penalty constant and the 

system pipe costs and system pressure penalties are calculated. These calculations 

are shown in Figure 5.12. 
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Table 5.13. Parameter Set for Pressure Penalty Constant Investigation 
 

Parameter Value 
Pressure penalty constant  [5000, 100000]$ 
Mutation rate 1 % 
Elitism rate  4 % 
Crossover probability  90 % 
Crossover type 2 points 
Population size 50 chromosomes 
Number of allowed generations 5000 
NOGA trial number 10 
Tolerable pressure interval [30, 80] m 

 

 

 

 

 

Figure 5.12. Pressure Penalty Constants vs. Mean System Costs 
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As can be seen from the figure above (Figure 5.12), after pressure penalty constant is 

equal to 30000$, system is not penalized. This shows the effectiveness of the penalty 

function of NOGA on Hanoi network. Additionally when the whole figure is 

considered, minimum mean system cost is found where pressure penalty constant is 

equal to 45000$. After 45000$, as pressure penalty constant increases, mean system 

cost also increases. 

 

 

 

Figure 5.13. Pressure Penalty Constants vs. Minimum System Costs 
 

 

In Figure 5.13 there are three additional signs that are the first three best results 

among the minimum results. The “O” sign shows the cheaper cost but this result is in 

the penalized region; it corresponds the 15000$ pressure penalty constant value. 

While running NOGA using pressure penalty constant is equal to 15000$, among 10 
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trials, 5 of them are penalized. One of the non-penalized populations is the least cost 

solution for the whole set. This interesting event supports the idea that is not to 

penalize individuals severely since there may be disturbance of promising ones.  

 

The “*” signs indicate the second and the third best result among the trials. One 

corresponds to 40000$, the other one 65000$. Also the corresponding cost for 

45000$ pressure penalty constant is the fourth among the minimums.  

 

By looking at these two figures, it is preferred to use 45000$ as pressure penalty 

constant for the next investigations. Although 40000$ ~ 65000$ interval is also 

acceptable, it is preferred to choose the lower boundary side of the interval. Instead 

of choosing 40000$, 45000$ is preferred to be on the safe side due to the stochastic 

characteristic of the GA. It should be remembered that the mean system cost 

corresponding the 45000$ is least of the whole set. Although the best result of these 

81 runs corresponds to 15000$ pressure penalty constant, this pressure penalty 

constant value can not be acceptable since it is in the penalized region. 

 

5.3.2.2 Investigating the mutation rate 
 

Similar to the investigation of pressure penalty constant, to find the optimum 

mutation rate, all other parameters are fixed and only mutation rates are varied. The 

mutation rate takes the value from an interval of [0.0025, 0.0500] with steps of 

0.0025. That means mutation rate = {0.0025, 0.0050, 0.0075, … , 0.0475, 0.0500}. 

The set of all parameters are given below in Table 5.14. NOGA was run 11 times for 

each mutation rate and the system costs and penalty costs are calculated. The results 

of the runs are shown in two figures of which indicates the penalty costs, mean 

system costs and minimum costs. These two figures are shown below (Figure 5.14 

and Figure 5.15). 
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Table 5.14. Parameter Set for Mutation Rate Investigation 
 

Parameter Value 
Pressure penalty constant  45000$ 
Mutation rate [0.0025, 0.0500] 
Elitism rate  4 % 
Crossover probability  90 % 
Crossover type 2 points 
Population size 50 chromosomes 
Number of allowed generations 5000 
NOGA trial number 11 
Tolerable pressure interval [30, 80] m 

 

 

 

 

Figure 5.14. Mutation Rates vs. System Costs 
 

 

 67



In Figure 5.14 the system penalty costs and system pipe costs are shown. Different 

from Shamir’s network, system is not penalized in any occasion. This shows the 

strength of pressure penalty constant and pressure penalty function in greater search 

spaces. Additionally, in Figure 5.15, the minimum results and the best three results 

are shown.  

 

When the upper drawing at Figure 5.15 is considered, after 0.02; as mutation rate 

increases there is a trend of increase at the minimum values among several trials. 

Where mutation rate is about 0.0175 and 0.0200 the results are better than the others. 

When the lower plot at Figure 5.15 is considered, 0.0175 mutation rate gives lower 

value than 0.0200 among the best three results of 11 trials. Similarly, in Figure 5.14, 

the mean system pipe cost corresponding to 0.0175 mutation rate is lower than the 

value corresponding to 0.0200 mutation rate. Although these values are very close to 

each other and results are not sharply differentiated, it is preferred to use 0.0175 

mutation rate for the next investigations.  
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Figure 5.15. Mutation Rates vs. Minimum System Costs 
 

 

In Section 5.2.2.2, the result generations versus minimum results were analyzed on 

Shamir’s network. When Figure 5.16 is considered, the result generation number 

starts to increase after about, 0.035. Before that value any differentiation is not 

obvious. After 0.035, similar to Shamir’s network, NOGA faces with difficulties to 

find the optimum since increasing mutation rate decreases the convergence 

performance of the program.  
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Figure 5.16. Mutation Rates vs. Result Generations 
 

 

5.3.2.3 Investigating the elitism rate 
 

Similar to the investigation of previous two parameters, to find the optimum elitism 

rate all other parameters are fixed and only elitism rates are varied. Similar to the 

investigation in Shamir’s network, the elitism rate takes its value from an interval of 

[0, 0.32] with steps of 0.04. Since elite members should be even numbers, and the 

population size is 50; minimum step size and also the minimum value for elitism rate 

becomes 0.04. Tested elitism rates are: {0, 0.04, 0.08, ... , 0.28, 0.32}. The set of all 

parameters are given below in Table 5.15. For the investigation NOGA was run 20 

times for each elitism rate and the results are examined.  

 

 70



Table 5.15. Parameter Set for Elitism Rate Investigation 
 

Parameter Value 
Pressure penalty constant  45000$ 
Mutation rate 0.0175 
Elitism rate  [0, 0.32] 
Crossover probability  90 % 
Crossover type 2 points 
Population size 50 chromosomes 
Number of allowed generations 5000 
NOGA trial number 20  
Tolerable pressure interval [30, 80] m 

 

 

 

 

Figure 5.17. Elitism Rates vs. Mean System Costs 
 

 

 71



Figure 5.17 reflects the mean system pipe costs and the mean system penalty costs 

for each elitism rate. By looking at the figure it can be said that; similar to the trials 

of Shamir’s network; while using 0% elitism rate system pipe costs and penalty costs 

are very high. This implies the necessity of the elitism operator in genetic algorithm 

for Hanoi network also. Other than 0% elitism rate, NOGA found good results 

especially with low elitism rates. The star sign reflects the minimum mean system 

cost among 9 elitism rates. Although the star sign corresponds to 0.08 elitism rate, 

0.04 elitism rate also gave good results. After 0.08, the mean system cost increased 

and never drew back. As the mean results corresponding the 0.08 and 0.04 elitism 

rates are close to each other, investigating the minimum results for each 20 trials 

become necessary (see Figure 5.18).  

 

Considering Figure 5.18, it is obvious that there is a trend of increase at the minimum 

costs after elitism rate is equal to 0.04. As elitism rate increased, the minimum costs 

for each 20 trials were also increased. By looking at these two figures (Figures 5.17 

and 5.18) it is preferred to choose 0.04 elitism rate for Hanoi network.  

 

Similar to the investigation of Shamir’s network, again the elitism rate is chosen as 

4% that means the minimum elitism rate for the defined population size. Both 

network investigations indicate the necessity of elitism operator but at the minimum 

level.  
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Figure 5.18. Elitism Rates vs. Minimum System Costs 
 

 

In addition to the previous figures; Figure 5.19 clearly reflects the effect of elitism 

rate on the convergence of the algorithm. In Figure 5.19, result generation numbers 

are drawn with respect to the elitism rates. As the elitism rate increases, the result 

generation number decreases that means the algorithm converges to the optimum 

fast, which have higher system costs compared to lower elitism rates. In other words; 

as elitism rate increases, the tendency of converging to a local optimum also 

increases. On the contrary, with lower elitism rates NOGA finds the results in higher 

generations but the system costs are lower (Figure 5.17). The reason behind this 

event is basically the relationship between the search space and the searching action. 

When the algorithm searches smaller space, it finds the optimum in lower 

generations (converges fast) however; when it searches larger space, it finds the 

optimum in higher generations and the results are tend to be cheaper. Finally it can 
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be emphasized that, lower elitism rates helps the program to find the global optimum. 

This fact is a plus sign to choose the lowest elitism rate for Hanoi network. 

 

 

 

Figure 5.19. Elitism Rates vs. Result Generations 
 

 

5.3.2.4 Investigating the crossover probability 
 

Similar to the investigation of previous parameters, to find the optimum crossover 

probability all other parameters are fixed and only crossover probability values are 

varied. The crossover probability takes its value from an interval of [0.3, 1.0] with 

steps of 0.05 that means crossover probability = {0.30, 0.35, ... , 0.95, 1.0}. NOGA 

was run 21 times for each set. The set of all parameters are given below in Table 
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5.16. After the completion of the sets of trials, the mean system costs and system 

penalty costs are plotted with respect to crossover probabilities (see Figure 5.20). 

 

 

Table 5.16. Parameter Set for Crossover Probability Investigation 
 

Parameter Value 
Pressure penalty constant  45000$ 
Mutation rate 0.0175 
Elitism rate  0.04 
Crossover probability  [0.3, 1.0] 
Crossover type 2 points 
Population size 50 chromosomes 
Number of allowed generations 5000 
NOGA trial number 21  
Tolerable pressure interval [30, 80] m 
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Figure 5.20. Crossover Probabilities vs. Mean System Costs 
 

 

Figure 5.20 reflects the results of each set of trial that corresponding to a crossover 

probability value. Similar to the previous investigations in Hanoi network, again 

none of the individuals are penalized. Considering the mean system costs, at the 

values 0.5 and 0.6 the values are smaller. Before and after those values, there may be 

a trend of increase at the mean capital costs. When the minimum costs are considered 

among these trials (see Figure 5.21), it can be seen that, at 0.5 and 0.6 crossover 

probability values the NOGA reached the lowest costs. Goldberg, (1989) defined the 

recommended range for probability of crossover is [0.6, 1.0]. Both considering the 

mean costs and minimum costs, it is preferred to choose 0.6 crossover probability 

value. This means that some of the mates are protected from crossing over other than 

elite members. Changing the genes between the parents with 60 % means about half 

of the parents are not breeding. This is a type of protection and means that the search 
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space is reduced. However, results show that NOGA reaches the best results using 

low crossover probability values. This may be a result of large search space of the 

problem and moderately long chromosome length. To conclude, it can be said that, 

for the networks with large spaces, not choosing a high crossover probability value 

increases the performance of the program.  

 

 

 

Figure 5.21. Crossover Probabilities vs. Minimum System Costs 
 

 

5.3.2.5 Investigating the crossover type 
 

To find the optimum crossover type, a similar process to the determination of 

previous parameters has been applied. While keeping other parameters constant, the 

crossover type values are varied and NOGA was run 25 times for each set. The 
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crossover type means the crossover process that is defined in the third chapter. The 

crossover type value changes from 1 to 4 with steps of 1. If type 2 crossover is 

chosen it means that the parents will exchange their genes from two points on the 

chromosome. The set of all parameters are given below in Table 5.17. After the sets 

of trials are completed; the system costs, system penalty costs and minimum costs 

are plotted (see Figures 5.22 and 5.23).  

 

 

Table 5.17. Parameter Set for Crossover Type Investigation 
 

Parameter Value 
Pressure penalty constant  45000$ 
Mutation rate 0.0175 
Elitism rate  0.04 
Crossover probability  0.60  
Crossover type [1, 4] points 
Population size 50 chromosomes 
Number of allowed generations 5000 
NOGA trial number 25  
Tolerable pressure interval [30, 80] m 

 

 

Similar to the previous investigations, system is not penalized in any of the runs. 

When the mean system costs are considered (Figure 5.22), there can be seen a trend 

of increase as the crossover type value increases. The lowest mean cost is achieved 

with the first crossover type. Similarly, in Figure 5.23, the lowest minimum again 

achieved with the first crossover type. In Figure 5.23, the trend of increase is more 

obvious as the crossover type value increases. By considering both figures, it is 

preferred to choose 1 point crossover type.  
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Figure 5.22. Crossover Types vs. Mean System Costs 
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Figure 5.23. Crossover Types vs. Minimum System Costs 
 
 
 

5.3.3 Final set of parameters for Hanoi network 
 

In Section 5.3.2, the parameters for Hanoi network for NOGA tried to be found. By 

fixing all the parameters except one and releasing that exception parameter, a 

methodology is applied. After these investigations for each parameter, a final set of 

parameters is reached (Table 5.18).  
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Table 5.18. Final Parameter Set for Hanoi Network for NOGA 
 

Parameter Value 
Pressure penalty constant  45000$ 
Mutation rate 0.0175 
Elitism rate  0.04 
Crossover probability  0.60  
Crossover type 1 point 

 

 

Different from Shamir’s network, in Hanoi network pressure penalties are abandoned 

more successfully. This is basically depending on the character of the network and 

the performance of the parameters on the network. Among these sets of trials NOGA 

hit 6,081,127$ and 6,096,099$ capital costs. These values are under 6,100,000$ limit 

and good results compared with the past studies. 

 

 

5.3.4 Comparison of NOGA with other researchers’ programs 
 

As mentioned earlier, Hanoi network is studied by many researchers. Its relatively 

large search space attracted so many researchers and also they used this network to 

test their algorithm since there are many studies to compare. Other than traditional 

methods, Savic and Walters, (1997); Abebe and Solomatine, (1998); Cunha and 

Sousa, (1999); Liong and Atiquzzaman, (2004); Neelakantan and Suribabu, (2005); 

Güç (2006) tested their genetic algorithm based programs on this network. The 

optimum pipe diameters of these researchers’ studies are listed below with 

corresponding capital costs.  
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Table 5.19. Final Results of Researchers on Hanoi Network 
 

 Pipe diameters (inch) 

Pipe No Savic & 
Walters 

Cunha & 
Sousa 

Abebe & 
Solomatine

Liong &  
Atiquzzaman

Neelakantan 
& Suribabu Güç  This 

Study 
1 40 40 40 40 40 40 40 
2 40 40 40 40 40 40 40 
3 40 40 40 40 40 40 40 
4 40 40 40 40 40 40 40 
5 40 40 30 40 40 40 40 
6 40 40 40 40 40 40 40 
7 40 40 40 40 40 40 40 
8 40 40 30 30 40 40 40 
9 40 40 30 30 40 40 40 

10 30 30 30 30 30 24 30 
11 24 24 30 30 24 24 24 
12 24 24 30 24 24 24 24 
13 20 20 16 16 20 12 20 
14 16 16 24 12 16 12 16 
15 12 12 30 12 12 16 12 
16 12 12 30 24 12 12 12 
17 16 16 30 30 16 20 16 
18 20 20 40 30 24 30 24 
19 20 20 40 30 20 20 20 
20 40 40 40 40 40 40 40 
21 20 20 20 20 20 20 20 
22 12 12 20 12 12 12 12 
23 40 40 30 30 40 40 40 
24 30 30 16 30 30 30 30 
25 30 30 20 24 30 30 30 
26 20 20 12 12 20 30 20 
27 12 12 24 20 12 20 12 
28 12 12 20 24 12 16 12 
29 16 16 24 16 16 16 16 
30 16 12 30 16 12 20 12 
31 12 12 30 12 12 16 12 
32 12 16 30 16 16 20 16 
33 16 16 30 20 16 16 16 
34 20 24 12 24 24 24 24 

       Total 
Cost 

(Million 
$) 

6,07 6,05 7,00 6,22 6,08 6,33 6,08 

 

 

In Table 5.19, when the capital costs are considered, results of Cunha and Sousa 

(1999) and Savic and Walters (1997) are below the other researchers. However, their 
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hydraulic network solver is not EPANET. When their systems are hydraulically 

solved by EPANET, some pressure violations emerge. The nodal pressures 

corresponding to the researchers’ system’s pipe diameters are listed below (see Table 

5.20).  

 

 

Table 5.20. Nodal Pressures of Hanoi Network 
 

 Node Pressures (m) 

Node Savic & 
Walters 

Cunha &  
Sousa 

Abebe & 
Solomatine

Liong &  
Atiquzzaman

Neelakantan 
& Suribabu Güç This 

Study 
1 100,00 100,00 100,00 100,00 100,00 100,00 100,00 
2 97,14 97,14 97,14 97,14 97,14 97,14 97.14 
3 61,67 61,67 61,67 61,67 61,67 61,67 61.67 
4 56,88 56,87 58,61 57,54 56,92 57,54 56.92 
5 50,94 50,92 54,84 52,43 51,02 52,44 51.02 
6 44,68 44,64 39,51 47,13 44,81 47,14 44.81 
7 43,21 43,16 38,71 45,92 43,35 45,93 43.35 
8 41,45 41,39 37,93 44,55 41,61 44,57 41.61 
9 40,04 39,98 35,73 40,27 40,23 43,51 40.23 

10 39,00 38,93 34,37 37,24 39,20 42,77 39.2 
11 37,44 37,37 32,81 35,68 37,64 38,15 37.64 
12 34,01 33,94 31,65 34,52 34,21 34,72 34.21 
13 29,80 29,74 30,23 30,32 30,01 30,51 30.01 
14 35,13 35,01 36,43 34,08 35,52 30,08 35.52 
15 33,14 32,95 37,24 34,08 33,72 30,08 33.72 
16 30,23 29,87 37,70 36,13 31,30 30,59 31.3 
17 30,33 30,03 48,14 48,64 33,41 44,05 33.41 
18 43,97 43,87 58,63 54,00 49,93 51,97 49.93 
19 55,58 55,54 60,64 59,07 55,09 54,00 55.09 
20 50,44 50,49 53,89 53,62 50,61 49,58 50.61 
21 41,09 41,14 44,54 44,28 41,26 40,23 41.26 
22 35,93 35,97 44,11 39,11 36,10 35,07 36.1 
23 44,21 44,30 39,89 38,79 44,53 42,62 44.52 
24 38,90 38,57 30,62 36,37 38,93 36,53 38.93 
25 35,55 34,86 30,61 33,16 35,34 32,52 35.34 
26 31,53 30,95 32,23 33,44 31,70 31,66 31.7 
27 30,11 29,66 32,71 34,38 30,76 31,23 30.76 
28 35,50 38,66 33,61 32,64 38,94 32,62 38.94 
29 30,75 29,72 31,56 30,05 30,13 30,62 30.13 
30 29,73 29,98 30,55 30,10 30,42 30,06 30.42 
31 30,19 30,26 30,50 30,35 30,70 30,09 30.7 
32 31,44 32,72 30,28 31,10 33,18 30,98 33.18 

     The pressures lower than 30m are shaded 
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While considering Table 5.19 and 5.20, the results of Neelakantan and Suribabu 

(2005) and this study are the lowest among the researchers’ results. 

 

5.4 Comparison of NOGA in terms of parameter performance 
 
As mentioned in the previous section, Hanoi is one of the well known networks in 

the literature. Many researchers tried their algorithm on this network. Savic and 

Walters (1997) also tried their algorithm on this network. They have clarified most of 

their parameters and the method used by their program.  

 

They used standard genetic algorithm for the optimization. They used fitness, 

crossover and mutation operators. Additionally, the pipe diameters and the pipe costs 

are all same. On the contrary, they did not prefer to use EPANET and they used their 

own hydraulic network solver. They preferred to use population size as 100 and the 

number of allowed generations is 10000. Moreover they used Gray coding 

(Goldberg, 1989) instead of binary coding that is supposed to be performing better 

than binary coding. More important than any other distinctions Savic and Walters did 

not preferred to use elitism operator in their runs.  

 

They did not prefer to use roulette wheel selection; they used linear ranking selection 

instead. Although, the penalty function is well described, the pressure penalty 

constant value is not clarified in their publication (Savic and Walters, 1997). Their 

reproduction algorithm is not available in NOGA so that, best reproduction type that 

is found in this chapter (one point crossover type) is applied. Although some of the 

parameters are not described - or do not exist - to compare the performance of 

NOGA with the parameters of Savic and Walters’ the optimum parameters found in 

this study are used. In other words, some of the parameters are completed in order to 

perform in the NOGA kernel. The final parameter set of Savic and Walters for Hanoi 

network is given in Table 5.21.  
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It can be declared that, the main difference between the operators of the researchers’ 

is the existence of elitism operator. The other parameters are less effective compared 

to the elitism operator. 

 

 

Table 5.21. Final Parameter Set of Savic and Walters for Hanoi Network 
 

Parameter Value 
Pressure penalty constant  45000$ 
Mutation rate 1/102 
Elitism rate  Not exist 
Crossover probability  1.00 
Crossover type 1 point 
Population size 100 chromosomes 
Number of allowed generations 10000 

 

 

After the completion of the parameter set of Savic and Walters for NOGA, NOGA 

was run 20 times on Hanoi. To compare the performance of the parameters of 

researchers, NOGA was run additionally 20 times with the parameter set of this 

study. The results are compared in terms of mean system costs and mean penalty 

costs (figures 5.24, 5.25 and 5.26). In all figures the X axis only indicates the trial 

number. 
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Figure 5.24. System Pipe Costs and Penalty Costs for Savic and Walters’ 
Parameters 

 

 

Figure 5.24 shows the results of NOGA with Savic and Walters’ parameters. As can 

be seen, system is penalized in 6 of 20 runs. Among 20 runs the minimum result is 

about 6.4 million $. Different than this result, the first 5 best results are all penalized. 

Figure 5.25 shows the results of NOGA with the parameter set found in the previous 

section. System is not penalized in any of the runs and among 20 trials, the minimum 

result is about 6.1 million $. Additionally, the difference of the results of these 

parameter sets is more obvious in Figure 5.26. In this figure the system pipe costs of 

the researchers are plotted on the same area in an ascending order. For the minimum 

results, the difference is about 0.3 million $. While considering the 4 of 5 best results 

are penalized with Savic and Walters’ parameters, the difference between the results 

of each parameter set is obvious.  
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Figure 5.25. System Pipe Costs and Penalty Costs for NOGA’s Parameters 
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Figure 5.26. Results of Different Parameter Sets in an Ascending Order 
 

 

The differences between the results of each parameter set may be related with many 

parameters. Most probably, the main source of that much difference is the elitism 

operator. This comparison is a solid fact that the elitism operator helps the program 

to find the global optimum. Another solid fact is that, any program is unique and 

characteristic to its author. The small differences in the structure of operators may 

affect the results of the main program. This means that no ideal parameter set can be 

proposed for any network and for any computer program.  

 

When the paper of Savic and Walters (1997) is examined, their computer program is 

performing well while compared the result found by them. This means that, the main 

parameters used in their program is unique to that program only. When their 

parameter set is applied to NOGA the results are worse. Also, the parameter set of 
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NOGA for Hanoi network is unique for NOGA only. Any other program of another 

author may result in different optimal results with the parameter set of NOGA.  
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CHAPTER 6 
 
 

CASE STUDY 
 
 
 
Throughout this chapter the proposed methodology will be applied on a large 

network (N8-1 of Ankara water distribution network) as a case study; then, the 

results of NOGA concerning N8-1 will be compared with the dimensions of this 

existing network.  

 

6.1 Case Study: Ankara Network, N8-1 

6.1.1 Characteristics of N8-1 network 
 

The network to be studied is a skeletonized form of N8-1 pressure zone of the 

Northern Supply zone of Ankara Water Distribution network. N8-1 pressure zone 

serves about 30,000 people living in Keçiören county. For the effectiveness of 

NOGA, N8-1 network is needed to be skeletonized; the skeletonized form of N8-1 

network has been taken from Akkaş (2006). The network contains 2 tanks, 181 pipes 

and 141 nodes. Throughout this chapter this network will be named according to its 

zone number (N8-1).  

 

The layout of N8-1 network is given with node numbers in Figure 6.1 and the pipe 

numbers in Figure 6.2. Hazen – Williams coefficient is assumed to be as 130 for all 

pipes. There are 11 commercially available pipe sizes for N8-1 network. The pipe 

unit prices are taken from Keleş (2005). The available pipe diameters and 

corresponding unit prices are given in Table 6.1. The pipe lengths are given in Table 

1 and nodal demands and node elevations are given in Table 2 in Appendix A.  
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Figure 6.1. Layout of N8-1 Network with Node IDs 
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Figure 6.2. Layout of N8-1 Network with Pipe IDs 
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Table 6.1. Available Pipe Diameters and Corresponding Unit Prices 
 

Diameter (mm) Unit Price ($/m) 
100 16.19 
125 17.51 
150 19.04 
200 24.98 
250 31.43 
300 37.86 
350 45.96 
400 51.78 
450 65.88 
500 71.27 
600 93.57 

 
 
 

6.1.2 Application of the methodology 
 
As mentioned earlier, N8-1 has 181 pipes. Since there are 12 different available pipe 

diameters, each pipe diameter is defined in 4-bits genes. One chromosome consists 

of 724 (181*4) binary bits. 4-bits gene composition requires 16 different pipe 

diameters. However, 12 different available pipe sizes exist. It is preferred to use 

middle sized pipe diameters instead of unreal diameters for extra genes (from 13th to 

16th) as performed for Hanoi network. Using middle sized diameters saves time 

during computation since all individuals among the population have real pipe 

diameters. If unreal pipe diameters are replaced instead; the program would have 

spent more time to converge and this will decrease the performance of the algorithm. 

 

For N8-1 network both low and high pressures tried to be abandoned. To achieve 

this, upper and lower pressure limits are required. These limitations are chosen as 90 

and 30 meters respectively. Since N8-1 network has high pressure limitation, the 

penalty function should have been changed for N8-1 network. Note that, for 

Shamir’s and Hanoi networks no upper pressure requirement exists. For N8-1 

network, the pressure penalty function is modified from equation 3.3 to equation 6.1. 
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Note that, accustomed terms in equation 6.1 were defined in Section 3.4.4. In order 

to illustrate better, the penalty function is plotted for pressures varying from 20 to 

100 in Figure 6.3. Similar to earlier studies, no velocity constraint is taken into 

account for this network. 

 

 

 

Figure 6.3. Penalty Function for Pressures: [20:100] for N8-1 Network 
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As introduced in the previous section, N8-1 has more pipes than the tested networks 

in chapter 5. When the search spaces Shamir’s and Hanoi networks are compared 

with N8-1’s search space the distinction becomes appreciable. Hanoi network has a 

search space of 634 (2.87* 1026) solutions. On the other hand N8-1 network has a 

search space of 12181 (2.15 * 10195) solution. N8-1 has a search space almost 7.50* 

10168 times bigger than Hanoi. This phenomenon brings the necessity of allowing 

high generation numbers compared to earlier studies. Since there is no restriction on 

the allowed number of generations, it is preferred to use 50,000. 

 

6.2 Developing the methodology on N8-1 network 
 

In the previous chapter, a methodology has been developed to find the optimal 

parameter set for NOGA for any water distribution network. It should be emphasized 

that, all of the steps of the methodology may take long time; sometimes, it may be 

ineffective to run every step. Especially while working with large networks, 

computation times may be tiresome to go over all the steps of the proposed 

methodology. As a result, while applying the methodology to N8-1 network, some 

steps of the main methodology are eliminated. Pressure penalty constant, mutation 

rate and the crossover rate investigations are accomplished however; elitism rate and 

crossover type investigations are not applied.  

 

Similar to the main methodology, after deciding on an initial set of parameters, 

firstly, pressure penalty constant is investigated; then, by fixing the pressure penalty 

constant, mutation rate is determined. After determining these two parameters, 

crossover probability investigation is accomplished. No more iteration has been done 

further, and the other parameters (elitism rate and crossover probability) are tried to 

be estimated. 
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6.2.1 Investigating the pressure penalty constant 
 

To find the suitable pressure penalty constant, all other parameters are fixed to 

initially estimated values. The first set of all parameters are given in Table 6.2. All 

these values are formed according to the experience on the Shamir’s and Hanoi 

networks.  

 

The pressure penalty constant (PPC) takes the value from the interval of [5000, 

50000] with steps of 5000$. That means PPC = {5000, 10000, 15000, … , 45000, 

50000}$. NOGA was run only 1 time for each pressure penalty constant and the 

system pipe costs and system pressure penalties are calculated. The results of these 

runs are sketched (Figure 6.4 and 6.5). 

 

For N8-1 network, while drawing the pressure penalties the violations below the 

lower pressure limit (30 m) and the violations above the upper pressure limit (90 m) 

are considered. Note that, for Shamir’s and Hanoi networks, only the pressures below 

lower pressure limit (30 m) are considered while plotting the pressure violations. 

Although, higher pressure violations are considered while running the program, due 

to the characteristics of the network, upper pressure requirement (90 m) can not be 

satisfied everywhere.  

 

 

Table 6.2. Parameter Set for Pressure Penalty Constant Investigation 
 

Parameter Value 
Pressure penalty constant  [5000, 50000]$ 
Mutation rate 1 % 
Elitism rate  4 % 
Crossover probability  60 % 
Crossover type 1 point 
Population size 50 chromosomes 
Number of allowed generations 50000 
NOGA trial number 1 
Tolerable pressure interval [30, 90]m 

 96



 

Figure 6.4. Pressure Penalty Constants vs. System Costs 
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Figure 6.5. Pressure Penalty Constants vs. System Costs 
 

 

When Figure 6.4 is investigated, it can be seen that for 6 pressure penalty constant 

values (20,000; 25,000; 30,000; 40,000; 45,000; 50000)$ the system is not penalized 

when only low pressure violations are considered. With another look, it is also clear 

that, after 20,000$ pressure penalty constant value, system is penalized only one time 

at 35,000$. In addition, after 20,000$ pressure penalty constant value, there is a trend 

of increase at the system pipe costs. Actually, there is a general trend of increase at 

the system pipe costs as pressure penalty constant values increase.  

 

On the other hand, when Figure 6.5 is investigated, it is obvious that all the networks 

are penalized when high pressure violations are considered. Although there is a 

decrease at the penalty values after pressure penalty constant is equal to 20,000$, the 

penalty values are very greater (about 1000 times) that the values in Figure 6.4. 
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Since, high pressure violations can not be avoided; it is not preferred to consider 

these penalties while giving the decision to the appropriate pressure penalty constant 

value. So, while considering Figure 6.4, it is preferred to use 20,000$ pressure 

penalty constant for the next investigations. 

 
Despite choosing 20,000$ any other value that is greater than 20,000$ can be chosen 

but this may result in penalizing the promising individuals just at the beginning of 

the program. So, choosing the lowest value, among non-penalized solutions is the 

best for the network.  

 

To avoid from the high pressure problem at the nodes, pressure reducing valves 

(PRV) can be placed on appropriate pipes.  

 

6.2.2 Investigating the mutation rate 
 

Similar to the investigation of pressure penalty constant, to find the optimum 

mutation rate, all other parameters are fixed and only mutation rates are varied. The 

mutation rate takes the value from an interval of [0.0025, 0.0200] with steps of 

0.0025, which means mutation rate = {0.0025, 0.0050, 0.0075, … , 0.0175, 0.0200}. 

The set of all parameters are given below in Table 6.3. NOGA was run only one time 

for each mutation rate and the system costs and penalty costs are calculated. Similar 

to the pressure penalty constant investigation, both low pressure and high pressure 

violations are drawn with respect to the mutation rates in Figures 6.6 and 6.7 

respectively.  
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Table 6.3. Parameter Set for Mutation Rate Investigation 
 

Parameter Value 
Pressure penalty constant  20000$ 
Mutation rate [0.0025, 0.0200] 
Elitism rate  4 % 
Crossover probability  60 % 
Crossover type 1 point 
Population size 50 chromosomes 
Number of allowed generations 50000 
NOGA trial number 1 
Tolerable pressure interval [30, 90]m 

 

 

 

 

Figure 6.6. Mutation Rates vs. System Costs 
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Figure 6.7. Mutation Rates vs. System Costs 
 

 

When Figure 6.6 is investigated, it can be seen that for 4 mutation rates system is not 

penalized while considering the low pressure violations. If divided into two, there are 

two regions of non-penalized solutions. These intervals are; [0.0050, 0.0075] and 

[0.0175, 0.0200]. When system pipe costs of these two intervals are compared, the 

first group significantly differs from the other one. When the corresponding system 

pipe costs of 0.0050 and 0.0075 are compared, corresponding system pipe cost for 

0.0075 is lower. It is also obvious that, after 0.0075, there is a trend of increase at the 

system pipe costs. Moreover, when referred to Sections 5.2.2.2. and 5.3.2.2 and the 

preferred mutation rates for Shamir’s and Hanoi networks are compared, it can be 

interpreted that, as network size increases there can be a trend of decrease at the 

mutation rate. Remember that, for Shamir’s network 0.0675 mutation rate was 

chosen while this value is 0.0175 for Hanoi. When looked at the previous studies, 

 101



researchers (Savic and Walters, 1997; Goldberg, 1989) have a tendency to decrease 

the mutation rate as the network size increases.  

 

When Figure 6.7 is investigated, all networks are penalized while considering the 

high pressure violations. Although high pressures can not be avoided, there is a 

tendency of increase at the system pipe costs and penalty costs after mutation rate is 

equal to 0.0075.  

 

Both considering the previous studies in the literature and the investigations done for 

N8-1 network, it is  preferred to choose 0.0075 mutation rate for N8-1 network for 

NOGA while considering low pressure violations only. However, when high 

pressure violations are considered, again 0.0075 mutation rate seems the appropriate 

value. For the next investigation, 0.0075 mutation rate will be used.  

 

6.2.3 Investigating the crossover probability 
 

To find the optimum crossover probability value, a similar process to the 

determination of previous parameters has taken. While keeping all other parameters 

constant, the crossover probability parameter varied in a range and NOGA was run 

one time for each set. The crossover probability takes its value from an interval of 

[0.3, 1.0] with steps of 0.05 that means crossover probability = {0.30, 0.35, ... , 0.95, 

1.0}. The set of all parameters are given below in Table 6.4. Similar to the mutation 

rate investigation, both low pressure and high pressure violations are drawn with 

respect to the crossover probabilities in Figures 6.8 and 6.9 respectively.  
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Table 6.4. Parameter Set for Crossover Probability Investigation 
 

Parameter Value 
Pressure penalty constant  20000$ 
Mutation rate 0.0075 
Elitism rate  0.04 
Crossover probability  [0.3, 1.0]  
Crossover type 1 point 
Population size 50 chromosomes 
Number of allowed generations 50000 
NOGA trial number 1  
Tolerable pressure interval [30, 90]m 

 

 

 

 

Figure 6.8. Crossover Probabilities vs. System Costs 
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Figure 6.9. Crossover Probabilities vs. System Costs 
 

 

When Figure 6.8 is investigated, it can be seen that for [0.5 – 0.65] interval system is 

not penalized when low pressure violations are considered only. When the system 

pipe costs of this interval are compared, 0.5 crossover probability seems to be 

appropriate. Also it is obvious that, before and after 0.5 crossover probability, there 

is a trend of increase at the system pipe costs.  

 

When Figure 6.9 is investigated, individuals are penalized when high pressure 

violation is considered. Although the corresponding penalties of [0.45, 0.55] interval 

is higher, there is not a tendency of increase or decrease at any point. The penalties 

show a variation among the crossover probabilities and this variation is not possible 

to be interpreted.  
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By considering the low pressure violation, it is preferred choose 0.5 crossover 

probability for N8-1 network for NOGA. 

 

Crossover probability investigation for Shamir’s and Hanoi networks were done in 

Sections 5.2.2.4 and 5.3.2.4 respectively. For Shamir’s network, it was preferred to 

use 90% crossover probability. When the network is enlarged as in Hanoi case, the 

preferred crossover probability value dropped to 60%. Moreover, for N8-1 network 

50% crossover probability is appropriate. While considering this variation within 

network expansion, it can be interpreted that; as network size increases the crossover 

probability decreases. Since N8-1 is a very large network, the change of crossover 

probability can be defined in a range of [0.5, 0.9]. 

 

6.2.4 Comments for the rest of the methodology  
 

As mentioned at the beginning of this section, for N8-1 network the proposed 

methodology is applied. This part includes the pressure penalty constant 

investigation, the mutation rate investigation and the crossover probability 

investigation. The other investigations which are elitism rate and crossover type 

investigations are not made. There are some reasons behind this phenomenon. When 

referred to Sections 5.2.2.3 and 5.3.2.3, the chosen elitism rates are the minimum 

rates for both Shamir’s and Hanoi networks. Remember that, as elite members 

should be even numbers, the minimum elitism rate is 4 percent for the population 

with 50 chromosomes. When Figures 5.6 and 5.18 are investigated again, for both 

networks 0.04 elitism rate is the desirable value which represents the minimum 

required elitism rate for also N8-1 network. So, it is estimated that the elitism rate 

will be 0.04 for N8-1 network since 50 chromosomes are used for the optimization.  

 

When crossover type is considered, a similar view like the elitism rate occurs. When 

referred to Sections 5.2.2.5 and 5.3.2.5, the chosen crossover types are the same and 

the minimum. When Figures 5.10, 5.22 and 5.23 are investigated again, for both 

networks, one point crossover is preferable. When Figures 5.10 and 5.22 are 
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compared, there can be seen a difference at the trends of increase. In Figure 5.10, the 

difference at the results of different crossover types is slight. On the contrary, in 

Figure 5.22 the trend of increase at the mean system costs is obvious. This difference 

can be interpreted as; when size of the network increases, one point crossover is 

more preferable. If this approach is correct, choosing one point crossover for N8-1 is 

also advisable. Due to these figures and the interpretations, it is preferred to choose 

one point crossover for N8-1 network.  

 

With the investigations of parameters and some additional assumptions based on the 

previous studies for Shamir’s and Hanoi networks, the parameter set for N8-1 for 

NOGA is completed. The final set of parameters is tabulated below in Table 6.5. 

 
 
 

Table 6.5. Final Parameter Set for N8-1 for NOGA 
 

Parameter Value 
Pressure penalty constant  20000$ 
Mutation rate 0.0075 
Elitism rate  4 % 
Crossover probability  50 % 
Crossover type 1 point 

 
 
 
 

6.3 Comparing the results with existing network 
 
After completing the set of parameters for N8-1 network for NOGA; the program 

was run 10 times with the parameter set given in Table 6.5. To compare the results of 

NOGA and the existing network, the existing network is solved by EPANET. The 

existing network’s pipe diameters are given in Table 3 in Appendix A. After solving 

the network with these diameters, the nodal pressures for each node are listed in 

Table 4 in Appendix A.  
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In Table 4, the highlighted cells indicate the nodes which violate the pressure 

requirements. Existing system violates the minimum pressure requirement at 29 

nodes and maximum pressure requirement at 8 nodes. The minimum and maximum 

pressures calculated are 21.26 m and 113.84 m respectively. To prevent the high 

pressures at the nodes, PRVs can be placed on appropriate pipes. The capital cost of 

the existing network can be calculated using the given diameters as 972,870 $.  

 
To summarize the results of the runs of NOGA, system pipe costs are visualized in 

Figure 6.10.  

 

 

 

Figure 6.10. System pipe costs for N8-1 
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In the above figure (Figure 6.10), the pipe costs for each trial are plotted. There is a 

variation within a range of minimum 959,345$ and maximum 1,030,654$. The 

standard deviation is 24,280$. In the figure, the circle signs indicate the networks 

which violate the low pressure requirement. There are three penalized networks 

among 14 trials when low pressure violation is considered only.  

 

When the results of NOGA and the existing system are compared, NOGA’s optimal 

network (trial number 2) is about 2.5% cheaper than the existing one. Moreover there 

is no lower pressure limit violation at the node pressures. Upper pressure violation 

exists at 9 nodes. The optimal pipe diameters of the result of NOGA and the nodal 

pressures are tabulated in Tables 5 and 6 respectively in Appendix A.  
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CHAPTER 7 
 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 
 

7.1 Conclusions 
 

The realization of planning, design, construction, operation and maintenance of water 

supply systems pictures one of the largest infrastructure projects of municipalities; 

the cost of water supply projects may reach values at the order of million dollars for 

greater cities. As a result, water supply system projects should be designed very 

meticulously.  

 

For four decades, researchers try to design water distribution networks in the optimal 

way. Genetic algorithm (GA), being one of the global optimization tools, is a well 

conditioned method for the optimization. GA consists of standard operators; these 

operators are related with the main parameters of the algorithm. It is proposed that 

the values of the parameters of genetic algorithm directly affect the performance of 

the program concerning each operator. Since, the characteristics or the cases to be 

optimized are different for each network, the parameters of GA for each network can 

not have ideal values. Although the meta-heuristic is preserved, the solutions formed 

still depend on the values of parameters. So, the values of the parameters such as 

pressure penalty constant, mutation rate, elitism rate etc. should be determined for 

each network, each case to be optimized and each computer program specifically. 

Although many researchers used GA for the optimization of water distribution 

networks, not much attention has been given for determination of these parameters in 

the field of water distribution network optimization studies. 
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This work represents one of the rare studies in this field in which parameter selection 

is investigated and presented very meticulously. Throughout this study, a novel 

methodology is developed to determine the appropriate set of parameters which is 

specific to network, the case to be optimized and the computer program. To apply the 

methodology, a computer program (NOGA) is developed. NOGA is a MATLAB 

based computer program that includes EPANET Programmer’s Toolkit as the 

hydraulic network solver. To acquire the appropriate set of parameters for each 

network, the methodology is applied as described below; 

• After deciding on the initial values of parameters using own experience and 

searching the literature; NOGA was run several times with varying target 

parameter while the other parameters are kept constant. Target parameter is 

varied in a predefined range and the results of all runs are saved.  

• Then, both considering the hydraulic conformities and system’s capital costs, 

the appropriate value of target parameter is determined and passed to the next 

parameter investigation. 

 

For this study, the sequence of the investigations of parameters are chosen as; 

pressure penalty constant, mutation rate, elitism rate, crossover probability, and 

crossover type investigations.  

 

By applying the proposed methodology on two well known networks that are 

Shamir’s network and Fujiwara’s Hanoi network, the appropriate parameter set for 

the related network is tried to be found. Then, the methodology is applied to the third 

network (N8-1 of Ankara).  

 

Evaluation of the results has shown that, the parameters of the algorithm are related 

with the network, the case to be optimized and the developed computer program. 

Since, the characteristics of each network are different; the parameters of GA for 

each network can not have ideal values.  The results have shown that, the pressure 

penalty constant value varied depending on the pipe costs and the network 

characteristics. The mutation rate is found to vary in a range of [0.0075 – 0.0675] for 
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three networks. Elitism rate is determined as the minimum value for the 

corresponding population size. Crossover probability is found to vary in a range of 

[0.5 – 0.9]. Roulette wheel method is applied for the selection process. Variable 

power scaling is used for the penalty function. The exponent introduced into the 

penalty function is increased in magnitude as the GA computer program run 

proceeds.  

 

When the parameters are related with the networks individually, it can be concluded 

that; 

• Pressure penalty constant is increased with increasing capital cost of network. 

• Mutation rate is decreased with increasing chromosome length (network 

size). 

• Elitism rate is kept constant (the minimum value for corresponding 

population size). 

• Crossover probability is decreased with increasing chromosome length 

(network size). 

• Crossover type is kept constant. 

 

The methodology should be applied to determine the appropriate parameter set of 

genetic algorithm for each optimization study. Using the method described, fairly 

well results are obtained when compared with the literature and the existing system.  

 

7.2 Further studies 
 

The developed methodology yields the appropriate set of parameters for any 

network; however, depending on the size of the network, the computation time for a 

single run may be longer than one day. With the developing technology, computation 

time may decrease; additionally, various smart modifications on the optimization 

steps can result in shorter computing times. Designing the computer program in a 

well structured manner and improving using algorithmic analysis can decrease the 

computational time as well. Most of the computation time for NOGA is spent for 
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solving the network with the hydraulic network solver. Thus, developing a hydraulic 

network solver algorithm that is integrated to NOGA may reduce the computation 

time.  

 

The objective function of the algorithm is to minimize the capital cost of the 

network. During the optimization, the program determines the pipe diameters only 

considering the availability of the pipe and the hydraulic conformity of the network. 

However while constructing the actual network, placing different sized diameters 

side by side in an undesirable occasion; it increases the construction cost. Also, some 

components of networks, i.e. main transmission line is designed exterior to network 

and the pipe diameters can not be different throughout. When these kinds of 

limitations are not added to the optimization algorithm, the optimal networks can be 

unserviceable and inefficient in terms of construction. This problem can be 

eliminated by grouping the pipes of the networks according to their priorities. When 

the pipes are grouped, each group will have its own set of candidate pipe sizes. By 

reducing the available pipe sizes, the search space of the algorithm decreases 

significantly. So, grouping the pipes with a smart method can help the algorithm to 

find optimal and serviceable networks within relatively short computing time. 

Another way of avoiding unserviceable solutions may be modifying the crossover 

operator.  

 

The developed methodology is applied on the standard operators of the algorithm; 

however, GA contains more parameters than the investigated ones that are related 

with the operators. These parameters can be any of the variables in the algorithm. For 

example, the pressure penalty function (eqn. 3.3) contains more than one parameter 

itself. The methodology can be modified for these parameters as well. First of all, the 

penalty function and its components should be determined since penalty function is 

the most important operator that affects the algorithm. Throughout this study, the 

structure of the algorithm is not discussed. The applications of operators such as 

mutation, selection and crossover should be discussed using various techniques. Next 
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to GA, other adaptive search methods such as ant colony, tabu search, and simulated 

annealing methods can be applied.  

 

NOGA runs under static loading only; however making extended period simulation 

(EPS) analysis for the network, may result in better designs. By adding certain 

extensions to the EPANET Programmer’s Toolkit in the NOGA, the program can be 

used to find the optimum case under EPS conditions.  

 

While applying the proposed methodology, the variations among the parameters 

were studied in relation to the characteristics of the networks. These variations can 

be classified by investigating more networks meanwhile; the interpretations can be 

stored in a digital library for NOGA. If the parameters of the algorithm can be related 

to the characteristics of the network, the appropriate parameter set of any new 

network can be estimated for the optimization process.  

 

The proposed methodology is applied on a predefined sequence for the parameters. 

By changing the order of parameters, the same methodology should be applied. This 

may result in different appropriate set of parameters for each network. While 

applying the methodology only one loop for the investigation of parameters is 

completed as a result of limited computational time. Although applying the 

methodology for one loop only, the lowest results are found when compared with the 

literature.  

 

User interface of NOGA can be developed and it can be a stand alone application and 

can be executable in all computers. Various modifications related with the 

integration of NOGA and EPANET can be added. To improve the performance in 

terms of convergence and computation time; Gray coding, Lamarck’s evolution 

theory can be applied. Making some additional modifications on the main GA 

operations or adding some operators such as migration may also increase the 

performance of NOGA. Using another optimization algorithm with GA, NOGA can 
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become a hybrid optimization program. Different than known operators, heuristic 

operators that rests on the natural evolution can be found and integrated.  

 

To conclude, this study represents a methodology for the application of genetic 

algorithm optimization for designing water distribution networks. Inspired from the 

natural evolution, a computer program is developed and applied to three networks. 

Although the methodology and NOGA have strong analytical capabilities, they 

should be improved to use for the network designs of modern cities.   
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APPENDIX A 
 
 

DETAILS OF N8-1 NETWORK 
 
 
 

Table 1. Pipe Numbers and Lengths of N8-1 Network 
 

Pipe ID Length 
(m) Pipe ID Length 

(m) Pipe ID Length 
(m) 

Pipe 1 30 Pipe 81 225 Pipe 161 135 
Pipe 2 202 Pipe 82 32 Pipe 162 341 
Pipe 3 2202 Pipe 83 137 Pipe 163 383 
Pipe 4 357 Pipe 84 359 Pipe 164 248 
Pipe 5 418 Pipe 85 309 Pipe 165 114 
Pipe 6 796 Pipe 86 433 Pipe 166 526 
Pipe 7 266 Pipe 87 11 Pipe 167 189 
Pipe 8 668 Pipe 88 123 Pipe 168 156 
Pipe 10 737 Pipe 89 112 Pipe 169 73 
Pipe 11 1218 Pipe 90 101 Pipe 170 45 
Pipe 12 39 Pipe 92 84 Pipe 173 46 
Pipe 13 141 Pipe 95 76 Pipe 174 172 
Pipe 14 48 Pipe 96 66 Pipe 175 232 
Pipe 15 50 Pipe 97 67 Pipe 176 160 
Pipe 16 56 Pipe 98 110 Pipe 177 149 
Pipe 17 422 Pipe 99 128 Pipe 178 251 
Pipe 19 386 Pipe 100 124 Pipe 179 253 
Pipe 20 16 Pipe 101 238 Pipe 180 169 
Pipe 25 674 Pipe 102 246 Pipe 182 61 
Pipe 26 16 Pipe 103 52 Pipe 183 204 
Pipe 27 164 Pipe 104 19 Pipe 184 118 
Pipe 29 21 Pipe 105 198 Pipe 186 11 
Pipe 30 131 Pipe 106 343 Pipe 187 579 
Pipe 31 430 Pipe 107 114 Pipe 188 519 
Pipe 33 55 Pipe 108 70 Pipe 189 7 
Pipe 35 12 Pipe 110 20 Pipe 190 49 
Pipe 36 144 Pipe 117 163 Pipe 191 49 
Pipe 39 124 Pipe 118 70 Pipe 192 63 
Pipe 40 472 Pipe 119 104 Pipe 193 52 
Pipe 41 137 Pipe 121 220 Pipe 194 119 
Pipe 42 48 Pipe 122 113 Pipe 195 118 
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Table 1. (continued) 
 

Pipe ID Length 
(m) Pipe ID Length 

(m) Pipe ID Length 
(m) 

Pipe 43 58 Pipe 124 58 Pipe 196 29 
Pipe 45 58 Pipe 125 168 Pipe 197 115 
Pipe 46 313 Pipe 126 84 Pipe 198 185 
Pipe 47 111 Pipe 128 116 Pipe 199 132 
Pipe 49 177 Pipe 130 124 Pipe 200 201 
Pipe 50 60 Pipe 131 110 Pipe 201 113 
Pipe 51 87 Pipe 132 189 Pipe 202 21 
Pipe 53 161 Pipe 136 256 Pipe 204 137 
Pipe 54 114 Pipe 137 142 Pipe 206 99 
Pipe 55 312 Pipe 138 14 Pipe 207 396 
Pipe 56 123 Pipe 139 86 Pipe 208 86 
Pipe 57 653 Pipe 140 113 Pipe 209 45 
Pipe 58 148 Pipe 141 9 Pipe 210 99 
Pipe 59 467 Pipe 142 139 Pipe 211 58 
Pipe 60 189 Pipe 144 96 Pipe 212 134 
Pipe 64 250 Pipe 145 245 Pipe 213 194 
Pipe 65 184 Pipe 146 148 Pipe 214 88 
Pipe 67 28 Pipe 147 58 Pipe 215 38 
Pipe 69 133 Pipe 149 62 Pipe 216 201 
Pipe 70 330 Pipe 151 112 Pipe 218 117 
Pipe 71 203 Pipe 152 171 Pipe 219 68 
Pipe 72 17 Pipe 153 236 Pipe 221 192 
Pipe 73 87 Pipe 154 357 Pipe 222 116 
Pipe 74 48 Pipe 155 276 Pipe 223 184 
Pipe 75 1031 Pipe 156 297 Pipe 224 602 
Pipe 76 214 Pipe 157 106 Pipe 225 239 
Pipe 77 24 Pipe 158 158 Pipe 226 358 
Pipe 78 430 Pipe 159 113 Pipe 229 166 
Pipe 80 53 Pipe 160 311 Pipe 230 777 

    Pipe 232 10 
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Table 2. Nodal Demands and Node Elevations of N8-1 Network 
 

Node 
ID 

Elevation 
(m) 

Demand 
(lt/s) 

 Node 
ID 

Elevation  
(m) 

Demand 
(lt/s) 

Junc 1 1037.48 0.00  Junc 73 1105.21 1.69 
Junc 2 1065.89 0.61  Junc 74 1092.36 0.86 
Junc 3 1089.00 0.03  Junc 75 1066.11 1.03 
Junc 4 1105.60 0.00  Junc 76 1087.62 0.47 
Junc 5 1119.27 0.02  Junc 77 1091.04 0.87 
Junc 6 1118.54 0.22  Junc 78 1108.38 0.73 
Junc 7 1116.29 0.38  Junc 79 1054.80 1.11 
Junc 8 1115.63 0.18  Junc 80 1030.83 0.97 
Junc 9 1115.95 0.16  Junc 81 1116.17 0.82 
Junc 10 1116.10 0.02  Junc 82 1113.56 0.53 
Junc 11 1092.90 0.36  Junc 83 1112.77 0.42 
Junc 12 1109.56 0.00  Junc 84 1101.13 0.35 
Junc 13 1105.12 36.12  Junc 85 1103.75 0.53 
Junc 14 1044.58 0.00  Junc 86 1092.53 0.21 
Junc 15 1103.85 0.61  Junc 87 1086.65 0.53 
Junc 16 1093.71 0.34  Junc 89 1109.18 0.70 
Junc 17 1098.08 0.80  Junc 90 1105.42 0.55 
Junc 18 1096.12 0.40  Junc 91 1109.26 0.44 
Junc 19 1056.11 1.05  Junc 92 1090.35 0.78 
Junc 20 1091.68 1.23  Junc 93 1085.38 0.50 
Junc 21 1105.41 0.43  Junc 94 1084.30 0.48 
Junc 22 1112.71 0.80  Junc 95 1058.89 1.61 
Junc 23 1101.69 4.28  Junc 98 1075.14 0.67 
Junc 24 1092.02 1.60  Junc 99 1057.95 0.69 
Junc 25 1099.32 0.43  Junc 100 1059.87 0.25 
Junc 26 1099.07 1.02  Junc 101 1069.93 0.54 
Junc 27 1107.69 0.33  Junc 102 1101.39 0.48 
Junc 28 1109.54 0.71  Junc 103 1102.58 0.93 
Junc 29 1114.47 0.35  Junc 104 1109.69 0.76 
Junc 31 1085.43 1.77  Junc 105 1111.44 0.58 
Junc 32 1079.94 0.61  Junc 106 1114.95 0.40 
Junc 33 1059.96 1.21  Junc 107 1119.17 0.54 
Junc 34 1100.97 1.70  Junc 108 1100.78 0.49 
Junc 35 1112.96 0.66  Junc 109 1089.28 0.76 
Junc 36 1109.91 0.60  Junc 111 1118.17 1.03 
Junc 37 1085.72 0.38  Junc 112 1119.27 0.35 
Junc 38 1084.95 3.89  Junc 113 1077.41 0.38 
Junc 39 1094.95 1.58  Junc 114 1078.57 0.36 
Junc 40 1107.67 2.00  Junc 115 1114.38 0.73 
Junc 41 1061.82 0.67  Junc 116 1119.35 0.87 
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Table 2. (continued) 
  

Node 
ID 

Elevation 
(m) 

Demand 
(lt/s) 

 Node 
ID 

Elevation  
(m) 

Demand 
(lt/s) 

Junc 42 1108.38 1.13  Junc 117 1105.76 0.72 
Junc 43 1091.19 0.92  Junc 118 1107.05 1.11 
Junc 44 1026.55 1.72  Junc 119 1110.03 0.83 
Junc 45 1106.77 0.86  Junc 120 1109.47 0.52 
Junc 46 1101.54 1.60  Junc 121 1077.93 1.17 
Junc 47 1105.45 0.87  Junc 122 1089.08 1.22 
Junc 48 1047.82 2.04  Junc 123 1091.53 1.00 
Junc 49 1049.58 3.76  Junc 124 1058.35 1.04 
Junc 50 1059.68 1.24  Junc 125 1068.67 1.19 
Junc 51 1040.73 1.07  Junc 126 1094.10 0.57 
Junc 52 1038.45 0.85  Junc 127 1097.84 0.61 
Junc 53 1027.74 0.22  Junc 128 1084.11 0.66 
Junc 54 1073.64 1.55  Junc 129 1077.79 0.81 
Junc 55 1077.24 0.97  Junc 130 1080.63 0.91 
Junc 56 1078.26 0.41  Junc 131 1108.94 0.60 
Junc 57 1073.43 1.31  Junc 132 1089.28 0.53 
Junc 58 1093.79 0.99  Junc 133 1084.39 0.43 
Junc 59 1086.05 1.05  Junc 134 1100.95 0.61 
Junc 60 1095.45 0.72  Junc 135 1099.92 0.33 
Junc 61 1079.02 0.65  Junc 136 1086.40 0.36 
Junc 62 1101.83 1.02  Junc 137 1105.59 0.15 
Junc 63 1092.90 0.87  Junc 138 1046.33 0.94 
Junc 64 1082.14 1.42  Junc 139 1060.41 0.63 
Junc 65 1080.18 0.96  Junc 140 1106.02 1.01 
Junc 66 1106.83 0.85  Junc 141 1077.46 0.60 
Junc 67 1082.61 3.50  Junc 142 1104.26 0.90 
Junc 68 1109.23 1.03  Junc 143 1095.95 0.81 
Junc 69 1101.21 1.15  Junc 144 1088.30 0.84 
Junc 70 1112.62 0.52  Junc 145 1104.70 0.44 
Junc 71 1106.78 0.65  Junc 146 1093.56 0.30 
Junc 72 1094.38 0.52  Tank 147 1021.49 N/A 

    Tank 148 1134.27 N/A 
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Table 3. Existing Pipe Diameters 
 

Pipe ID Diameter 
(mm) Pipe ID Diameter 

(mm) Pipe ID Diameter 
(mm) 

Pipe 1 500 Pipe 81 125 Pipe 161 125 
Pipe 2 500 Pipe 82 125 Pipe 162 125 
Pipe 3 500 Pipe 83 125 Pipe 163 125 
Pipe 4 500 Pipe 84 125 Pipe 164 125 
Pipe 5 500 Pipe 85 125 Pipe 165 125 
Pipe 6 500 Pipe 86 125 Pipe 166 125 
Pipe 7 500 Pipe 87 125 Pipe 167 125 
Pipe 8 500 Pipe 88 125 Pipe 168 125 
Pipe 10 250 Pipe 89 125 Pipe 169 125 
Pipe 11 250 Pipe 90 125 Pipe 170 125 
Pipe 12 250 Pipe 92 125 Pipe 173 125 
Pipe 13 250 Pipe 95 125 Pipe 174 125 
Pipe 14 250 Pipe 96 125 Pipe 175 125 
Pipe 15 250 Pipe 97 125 Pipe 176 125 
Pipe 16 250 Pipe 98 125 Pipe 177 125 
Pipe 17 250 Pipe 99 125 Pipe 178 125 
Pipe 19 125 Pipe 100 125 Pipe 179 125 
Pipe 20 125 Pipe 101 150 Pipe 180 125 
Pipe 25 125 Pipe 102 125 Pipe 182 125 
Pipe 26 125 Pipe 103 125 Pipe 183 125 
Pipe 27 125 Pipe 104 125 Pipe 184 125 
Pipe 29 125 Pipe 105 125 Pipe 186 150 
Pipe 30 125 Pipe 106 125 Pipe 187 150 
Pipe 31 125 Pipe 107 125 Pipe 188 150 
Pipe 33 125 Pipe 108 125 Pipe 189 150 
Pipe 35 125 Pipe 110 125 Pipe 190 150 
Pipe 36 125 Pipe 117 125 Pipe 191 150 
Pipe 39 125 Pipe 118 125 Pipe 192 150 
Pipe 40 125 Pipe 119 125 Pipe 193 150 
Pipe 41 125 Pipe 121 125 Pipe 194 150 
Pipe 42 125 Pipe 122 125 Pipe 195 150 
Pipe 43 125 Pipe 124 125 Pipe 196 150 
Pipe 45 125 Pipe 125 125 Pipe 197 150 
Pipe 46 125 Pipe 126 125 Pipe 198 150 
Pipe 47 125 Pipe 128 125 Pipe 199 150 
Pipe 49 125 Pipe 130 125 Pipe 200 150 
Pipe 50 125 Pipe 131 125 Pipe 201 150 
Pipe 51 125 Pipe 132 100 Pipe 202 150 
Pipe 53 125 Pipe 136 125 Pipe 204 200 
Pipe 54 125 Pipe 137 125 Pipe 206 200 
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Table 3. (continued) 
 

Pipe ID Diameter 
(mm) Pipe ID Diameter 

(mm) Pipe ID Diameter 
(mm) 

Pipe 55 125 Pipe 138 125 Pipe 207 200 
Pipe 56 125 Pipe 139 125 Pipe 208 200 
Pipe 57 125 Pipe 140 125 Pipe 209 200 
Pipe 58 125 Pipe 141 125 Pipe 210 200 
Pipe 59 125 Pipe 142 125 Pipe 211 200 
Pipe 60 125 Pipe 144 125 Pipe 212 200 
Pipe 64 125 Pipe 145 125 Pipe 213 200 
Pipe 65 125 Pipe 146 125 Pipe 214 200 
Pipe 67 125 Pipe 147 125 Pipe 215 200 
Pipe 69 125 Pipe 149 125 Pipe 216 200 
Pipe 70 125 Pipe 151 125 Pipe 218 200 
Pipe 71 125 Pipe 152 125 Pipe 219 200 
Pipe 72 125 Pipe 153 125 Pipe 221 200 
Pipe 73 125 Pipe 154 125 Pipe 222 200 
Pipe 74 125 Pipe 155 125 Pipe 223 200 
Pipe 75 125 Pipe 156 125 Pipe 224 200 
Pipe 76 125 Pipe 157 125 Pipe 225 200 
Pipe 77 125 Pipe 158 125 Pipe 226 200 
Pipe 78 125 Pipe 159 125 Pipe 229 200 
Pipe 80 125 Pipe 160 125 Pipe 230 200 

    Pipe 232 100 
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Table 4. Nodal Pressure Heads of Existing System 
 

Node 
ID 

Pressure 
Head 
(m) 

Node ID 
Pressure 

Head 
(m) 

Node ID 
Pressure 

Head 
(m) 

Junc 1 113.84 Junc 49 84.5 Junc 99 80.97 
Junc 2 76.8 Junc 50 74.89 Junc 100 78.92 
Junc 3 52.58 Junc 51 93.82 Junc 101 69.37 
Junc 4 34.74 Junc 52 96.1 Junc 102 38.72 
Junc 5 21.16 Junc 53 106.6 Junc 103 37.61 
Junc 6 21.9 Junc 54 61.74 Junc 104 30.6 
Junc 7 24.17 Junc 55 58.32 Junc 105 28.84 
Junc 8 24.84 Junc 56 57.41 Junc 106 25.51 
Junc 9 24.65 Junc 57 62.85 Junc 107 21.35 
Junc 10 24.58 Junc 58 44.12 Junc 108 40.07 
Junc 11 52.92 Junc 59 52.87 Junc 109 52.3 
Junc 12 28.26 Junc 60 42.46 Junc 111 22.23 
Junc 13 32.58 Junc 61 56.45 Junc 112 21.17 
Junc 14 106.69 Junc 62 34.16 Junc 113 64.42 
Junc 15 33.66 Junc 63 42.39 Junc 114 63.17 
Junc 16 43.76 Junc 64 52.7 Junc 115 26.08 
Junc 17 39.22 Junc 65 55.22 Junc 116 21.17 
Junc 18 41 Junc 66 29.4 Junc 117 34.94 
Junc 19 81.2 Junc 67 53.48 Junc 118 33.48 
Junc 20 45.54 Junc 68 27.18 Junc 119 27.72 
Junc 21 30.76 Junc 69 40.3 Junc 120 27.52 
Junc 22 27.95 Junc 70 26.91 Junc 121 59.75 
Junc 23 39.65 Junc 71 33.62 Junc 122 48.05 
Junc 24 48.03 Junc 72 45.62 Junc 123 45.58 
Junc 25 40.54 Junc 73 34.38 Junc 124 78.74 
Junc 26 40.75 Junc 74 47.69 Junc 125 68.42 
Junc 27 32.61 Junc 75 73.62 Junc 126 43.02 
Junc 28 30.23 Junc 76 53.7 Junc 127 39.31 
Junc 29 25 Junc 77 50.07 Junc 128 53.26 
Junc 31 52.92 Junc 78 32.01 Junc 129 59.57 
Junc 32 59.4 Junc 79 84.93 Junc 130 56.82 
Junc 33 79.33 Junc 80 108.89 Junc 131 28.64 
Junc 34 38.54 Junc 81 24.33 Junc 132 48.18 
Junc 35 26.57 Junc 82 25.95 Junc 133 53.04 
Junc 36 30.91 Junc 83 26.68 Junc 134 36.52 
Junc 37 53.78 Junc 84 38.23 Junc 135 37.6 
Junc 38 54.54 Junc 85 35.63 Junc 136 51.04 
Junc 39 44.55 Junc 86 46.77 Junc 137 32 
Junc 40 28.46 Junc 87 52.65 Junc 138 93 
Junc 41 72.79 Junc 89 30.29 Junc 139 78.92 
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Table 4. (continued) 
 

Node 
ID 

Pressure 
Head 
(m) 

Node ID 
Pressure 

Head 
(m) 

Node ID 
Pressure 

Head 
(m) 

Junc 42 27.98 Junc 90 34.09 Junc 140 33.4 
Junc 43 44.68 Junc 91 30.55 Junc 141 61.9 
Junc 44 107.75 Junc 92 48.73 Junc 142 35.26 
Junc 45 29.39 Junc 93 53.02 Junc 143 43.57 
Junc 46 35.3 Junc 94 54.01 Junc 144 51.21 
Junc 47 32.16 Junc 95 79.73 Junc 145 34.8 
Junc 48 86.26 Junc 98 64.16 Junc 146 47.96 
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Table 5. Optimal Pipe Diameters 
 

Pipe ID Diameter 
(mm)  Pipe ID Diameter 

(mm) Pipe ID Diameter 
(mm) 

Pipe 1 350  Pipe 81 200 Pipe 161 300 
Pipe 2 100  Pipe 82 150 Pipe 162 125 
Pipe 3 600  Pipe 83 250 Pipe 163 125 
Pipe 4 600  Pipe 84 100 Pipe 164 100 
Pipe 5 400  Pipe 85 100 Pipe 165 450 
Pipe 6 150  Pipe 86 350 Pipe 166 100 
Pipe 7 150  Pipe 87 250 Pipe 167 100 
Pipe 8 100  Pipe 88 250 Pipe 168 100 
Pipe 10 200  Pipe 89 200 Pipe 169 300 
Pipe 11 150  Pipe 90 100 Pipe 170 500 
Pipe 12 150  Pipe 92 125 Pipe 173 350 
Pipe 13 350  Pipe 95 100 Pipe 174 250 
Pipe 14 300  Pipe 96 100 Pipe 175 200 
Pipe 15 150  Pipe 97 200 Pipe 176 300 
Pipe 16 350  Pipe 98 100 Pipe 177 250 
Pipe 17 300  Pipe 99 150 Pipe 178 125 
Pipe 19 250  Pipe 100 200 Pipe 179 125 
Pipe 20 125  Pipe 101 200 Pipe 180 125 
Pipe 25 100  Pipe 102 350 Pipe 182 200 
Pipe 26 100  Pipe 103 200 Pipe 183 300 
Pipe 27 100  Pipe 104 150 Pipe 184 250 
Pipe 29 125  Pipe 105 250 Pipe 186 100 
Pipe 30 100  Pipe 106 250 Pipe 187 200 
Pipe 31 100  Pipe 107 450 Pipe 188 200 
Pipe 33 100  Pipe 108 100 Pipe 189 300 
Pipe 35 100  Pipe 110 350 Pipe 190 125 
Pipe 36 100  Pipe 117 250 Pipe 191 300 
Pipe 39 100  Pipe 118 250 Pipe 192 250 
Pipe 40 100  Pipe 119 250 Pipe 193 100 
Pipe 41 100  Pipe 121 125 Pipe 194 100 
Pipe 42 100  Pipe 122 125 Pipe 195 250 
Pipe 43 100  Pipe 124 100 Pipe 196 200 
Pipe 45 100  Pipe 125 200 Pipe 197 100 
Pipe 46 100  Pipe 126 250 Pipe 198 125 
Pipe 47 100  Pipe 128 125 Pipe 199 125 
Pipe 49 100  Pipe 130 400 Pipe 200 100 
Pipe 50 100  Pipe 131 300 Pipe 201 100 
Pipe 51 100  Pipe 132 250 Pipe 202 150 
Pipe 53 100  Pipe 136 100 Pipe 204 100 
Pipe 54 100  Pipe 137 250 Pipe 206 100 
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Table 5. (continued) 
 

Pipe ID Diameter 
(mm)  Pipe ID Diameter 

(mm) Pipe ID Diameter 
(mm) 

Pipe 55 125  Pipe 138 300 Pipe 207 150 
Pipe 56 100  Pipe 139 350 Pipe 208 100 
Pipe 57 250  Pipe 140 100 Pipe 209 100 
Pipe 58 100  Pipe 141 125 Pipe 210 100 
Pipe 59 100  Pipe 142 150 Pipe 211 250 
Pipe 60 100  Pipe 144 250 Pipe 212 100 
Pipe 64 200  Pipe 145 100 Pipe 213 100 
Pipe 65 150  Pipe 146 200 Pipe 214 100 
Pipe 67 100  Pipe 147 200 Pipe 215 150 
Pipe 69 150  Pipe 149 100 Pipe 216 100 
Pipe 70 250  Pipe 151 200 Pipe 218 100 
Pipe 71 125  Pipe 152 250 Pipe 219 100 
Pipe 72 100  Pipe 153 125 Pipe 221 100 
Pipe 73 300  Pipe 154 250 Pipe 222 100 
Pipe 74 300  Pipe 155 400 Pipe 223 100 
Pipe 75 100  Pipe 156 400 Pipe 224 100 
Pipe 76 100  Pipe 157 200 Pipe 225 100 
Pipe 77 300  Pipe 158 100 Pipe 226 125 
Pipe 78 100  Pipe 159 250 Pipe 229 100 
Pipe 80 250  Pipe 160 100 Pipe 230 100 

     Pipe 232 100 
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Table 6. Nodal Pressure Heads of Optimum System 
 

Node 
ID 

Pressure 
Head 
(m) 

Node ID 
Pressure 

Head 
(m) 

Node ID 
Pressure 

Head 
(m) 

Junc 1   113.76  Junc 49    80.80  Junc 99    84.43 
Junc 2   84.17  Junc 50    71.69  Junc 100   82.50 
Junc 3   60.90  Junc 51    90.47  Junc 101   72.92 
Junc 4   44.07  Junc 52    92.75  Junc 102   46.40 
Junc 5   30.07  Junc 53    102.71  Junc 103   46.04 
Junc 6   30.69  Junc 54    59.96  Junc 104   38.74 
Junc 7   30.18  Junc 55    56.86  Junc 105   37.20 
Junc 8   30.68  Junc 56    56.13  Junc 106   33.98 
Junc 9   30.33  Junc 57    62.02  Junc 107   30.28 
Junc 10  30.09  Junc 58    44.29  Junc 108   49.00 
Junc 11  53.58  Junc 59    54.38  Junc 109   58.02 
Junc 12  30.15  Junc 60    42.64  Junc 111   31.17 
Junc 13  32.72  Junc 61    54.89  Junc 112   30.09 
Junc 14  102.43  Junc 62    34.38  Junc 113   69.24 
Junc 15  35.94  Junc 63    40.65  Junc 114   68.10 
Junc 16  46.10  Junc 64    50.06  Junc 115   34.68 
Junc 17  42.73  Junc 65    53.59  Junc 116   30.03 
Junc 18  45.41  Junc 66    30.02  Junc 117   43.73 
Junc 19  85.78  Junc 67    55.66  Junc 118   42.30 
Junc 20  50.26  Junc 68    30.14  Junc 119   32.10 
Junc 21  31.44  Junc 69    45.18  Junc 120   32.36 
Junc 22  36.81  Junc 70    31.08  Junc 121   64.36 
Junc 23  44.39  Junc 71    39.53  Junc 122   52.62 
Junc 24  54.31  Junc 72    51.93  Junc 123   50.14 
Junc 25  46.95  Junc 73    39.00  Junc 124   83.13 
Junc 26  47.19  Junc 74    53.98  Junc 125   72.81 
Junc 27  38.81  Junc 75    79.28  Junc 126   47.56 
Junc 28  35.19  Junc 76    59.04  Junc 127   43.66 
Junc 29  30.90  Junc 77    55.62  Junc 128   56.35 
Junc 31  56.89  Junc 78    38.24  Junc 129   62.75 
Junc 32  62.68  Junc 79    90.49  Junc 130   59.32 
Junc 33  82.45  Junc 80    114.44  Junc 131   30.79 
Junc 34  42.68  Junc 81    30.02  Junc 132   50.56 
Junc 35  30.69  Junc 82    32.40  Junc 133   55.56 
Junc 36  36.43  Junc 83    32.44  Junc 134   38.92 
Junc 37  57.62  Junc 84    43.03  Junc 135   39.85 
Junc 38  58.38  Junc 85    39.53  Junc 136   53.49 
Junc 39  49.07  Junc 86    51.36  Junc 137   34.12 
Junc 40  30.71  Junc 87    57.23  Junc 138   96.18 
Junc 41  69.65  Junc 89    35.05  Junc 139   82.10 

 128



Table 6. (continued) 
 

Node 
ID 

Pressure 
Head 
(m) 

Node ID 
Pressure 

Head 
(m) 

Node ID 
Pressure 

Head 
(m) 

Junc 42  30.01  Junc 90    38.10  Junc 140   37.73 
Junc 43  44.12  Junc 91    34.54  Junc 141   65.48 
Junc 44  103.84  Junc 92    53.06  Junc 142   40.44 
Junc 45  31.72  Junc 93    56.93  Junc 143   48.22 
Junc 46  37.95  Junc 94    58.01  Junc 144   55.80 
Junc 47  34.26  Junc 95    83.46  Junc 145   39.46 
Junc 48  82.56  Junc 98    67.99  Junc 146   56.28 
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