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ABSTRACT 

TARGET TRACKING WITH CORRELATED MEASUREMENT NOISE 

 

 

 

OKŞAR, Yeşim 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Kerim DEMİRBAŞ 

 

 

January 2007, 234 pages 

 

 

A white Gaussian noise measurement model is widely used in target 

tracking problem formulation. In practice, the measurement noise may not be 

white. This phenomenon is due to the scintillation of the target. In many radar 

systems, the measurement frequency is high enough so that the correlation 

cannot be ignored without degrading tracking performance. 

In this thesis, target tracking problem with correlated measurement 

noise is considered. The correlated measurement noise is modeled by a first-

order Markov model. The effect of correlation is thought as interference, and 

Optimum Decoding Based Smoothing Algorithm is applied. For linear models, 

the estimation performances of Optimum Decoding Based Smoothing 

Algorithm are compared with the performances of Alpha-Beta Filter Algorithm. 

For nonlinear models, the estimation performances of Optimum Decoding 



 
 
v 

Based Smoothing Algorithm are compared with the performances of Extended 

Kalman Filter by performing various simulations.  

 

Keywords: Correlated Measurement Noise, Target Tracking, Estimation, 

Optimum Decoding Based Smoothing Algorithm, Alpha-Beta Filter, Extended 

Kalman Filter, Decorrelation Method. 
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ÖZ 

İLİNTİLİ ÖLÇÜM GÜRÜLTÜSÜ ETKİSİNDE HEDEF İZLEME  

 

 

 

OKŞAR, Yeşim 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Kerim DEMİRBAŞ 

 

 

Ocak 2007, 234 sayfa 

 

Beyaz Gaussian gürültü ölçüm modeli, hedef izleme problemleri 

formülasyonunda yaygın olarak kullanılmaktadır. Pratikte ölçüm gürültüsü 

beyaz gürültü olmayabilir. Bu olay hedefin titreşimden kaynaklanmaktadır. Pek 

çok radar sisteminde, ölçüm frekansı yeterince yüksektir. Bu nedenle ilinti 

durumu  kestirim  performansını azaltmaksızın ihmal edilemez.  

Bu tezde ilintili ölçüm gürültüsü etkisinde hedef izleme problemi 

incelenmiştir. İlintili ölçüm gürültüsü, birinci dereceden Markov modeli 

kullanılarak modellenmiştir. İlinti etkisi bozucu olarak düşünülmüş ve Optimum 

Kod Çözümüne Dayalı Düzeltme Algoritması uygulanmıştır. Çeşitli benzetimler 

yapılarak Optimum Kod Çözümüne Dayalı Düzeltme Algoritması’nın kestirim 

performansı, doğrusal olan modeller için Alpha-Beta Süzgeç Algoritması ile, 

doğrusal olmayan modeller için Genişletilmiş Kalman Süzgeci ile 

karşılaştırılmıştır.  
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Anahtar Kelimeler: İlintili Ölçüm Gürültüsü, Hedef izleme, Kestirim, 

Optimum Kod Çözümüne Dayalı Düzeltme Algoritması, Alfa-Beta Süzgeci, 

Genişletilmiş Kalman Süzgeci,  İlintisizleştirme Metodu. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 

 

 

The measurement errors in tracking systems are not independent in 

practice. For example, in radar tracking of extended targets, target scintillation (or 

glint) causes the range and angle measurement errors to have a finite bandwidth. 

The bandwidth is proportional to the size of the target, its turn rate with respect to 

the radar-target line-of-sight, and the transmitted frequency. For tactical 

applications, typical bandwidths are on the order of several Hz [3, 4]. 

When the measurement frequency is very much smaller than the error 

bandwidth, the errors on successive measurements are approximately 

uncorrelated, and can be treated as white noise. This is often the case in track-

while-scan applications, having measurement rates of, say, 0.2 Hz, or less. 

However, in continuous tracking radars, the measurement frequency is usually 

high enough that correlation cannot be ignored. It is useful than to have some 

idea of the impact of the correlation on tracking accuracies [3, 4]. 

There are various estimation methods proposed for target tracking 

problem. One of these estimation methods is “Optimum Decoding Based 

Smoothing Algorithm (ODSA)” that obtains a trellis diagram for the target motion 

and estimates the target track both in clear environment and in presence of 

interference [1, 2]. An important advantage of ODSA is that it can be used for 

both linear and nonlinear target models. 

In this thesis, target tracking problem with correlated measurement noise 

is investigated. The correlated measurement noise is modeled by a first-order 

Markov model [3, 4]. The effect of correlation is thought as interference, and 
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ODSA [1, 2] is applied. The algorithm and simulation of environment is 

implemented by MATLAB programming language. 

The estimation performances of ODSA are compared with the 

performance of “Alpha-Beta Filter Algorithm” for linear models, which was 

proposed by Rogers [3, 4].  

The estimation performances of ODSA are compared with the 

performance of  “Extended Kalman Filter (EKF)”  for nonlinear models.  

In Chapter 2, ODSA that uses the Viterbi decoding algorithm for 

estimation problems is explained. Parameters used in the ODSA algorithm are 

described.  

In Chapter 3, ODSA is modified so that it can be applied in the presence 

of correlated measurement noise. To handle the correlation effect, firstly ODSA 

is implemented by applying decorrelation process [3, 4] on correlated 

measurements and secondly, ODSA is implemented by a method proposed in this 

thesis, which treats correlated measurement noise as interference. The simulation 

results of decorrelation method and proposed method are compared. 

In Chapter 4, simulation results for ODSA with correlated measurement 

noise are presented. The effects of the parameters of ODSA parameters on the 

estimation performance are discussed.  

In Chapter 5, the target tracking model in the presence of correlated 

noise proposed by Rogers [3, 4] is discussed. Alpha-Beta Filter Algorithm is 

explained and implemented. 

In Chapter 6, simulation results for Alpha-Beta Filter Algorithm with 

correlated measurement noise are presented. The effects of the parameters of 

Alpha-Beta Filter Algorithm on the estimation performance are discussed.  

In Chapter 7, simulation results of ODSA with correlated measurement 

noise are compared with simulation results of Alpha-Beta Filter Algorithm with 

correlated measurement noise. 
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In Chapter 8, EKF is explained and it is modified so that it can be 

applied in the presence of correlated noise by using decorrelation method [3, 4]. 

In Chapter 9, simulation results of ODSA with correlated measurement 

noise are compared with simulation results of EKF with correlated measurement 

noise. 

In Chapter 10, the conclusions are given evaluating all simulation results 

obtained in this thesis. 

In Appendix A, possible values and corresponding probabilities of the 

discrete random variable approximating the Gaussian distributed continuous 

random variables up to 20 possible values are given. These values are used by the 

ODSA algorithm while obtaining the trellis diagram for the target motion model. 

In Appendix B, derivation of the solution of the Riccati Equations for 

the covariance matrix, P, of Alpha-Beta Filter Algorithm is given. 
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CHAPTER 2 
 
 
 
 

OPTIMUM DECODING BASED SMOOTHING ALGORITHM 

 

 

In this chapter, a state estimation algorithm for discrete models with or 

without interference is presented. This estimation algorithm is “Optimum 

Decoding Based Smoothing Algorithm (ODSA)”  which is based on “Viterbi 

Decoding Algorithm”. 

2.1 Models and Assumptions [1] 

“Optimum Decoding Based Smoothing Algorithm” is an estimation 

algorithm, which can be applied for both linear and nonlinear estimation 

problems modeled as below: 

 

Motion model, ))(),(),(,()1( kwkukxkfkx =+  (2.1) 

Measurement model, ))(),(,()( kvkxkgkz =  

 

in clear environment. In the presence of interference, the interference parameter 

is added to the measurement model as below: 

 

Motion model, ))(),(),(,()1( kwkukxkfkx =+         (2.2) 

Measurement model, ))(),(),(,()( kvkIkxkgkz =  

 

Parameters used in Equations (2.1) and (2.2) are defined as follows: 
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• x(0) is an nx1 initial state Gaussian distributed random vector (which 

determines the considered target location at time 0 ), 

• x(k) is an nx1 (target) state vector at time k (which determines the 

considered target location at time k ), 

• u(k) is a qx1 pilot-command vector at time k with known statistics, 

• w(k) is a px1 Gaussian distributed disturbance noise vector at time k with 

zero mean and known statistics, 

• v(k) is an lx1 Gaussian distributed measurement noise vector at time k 

with zero mean and known statistics, 

• I(k) is an mx1 interference vector with known statistics, 

• z(k) is an rx1 measurement vector at time k, 

• Time k is time t0 + kT0 where t0 and T0 are the initial time and the 

measurement interval respectively. 

Furthermore,  f(k, x(k), u(k), w(k)), g(k, x(k), v(k)) and g(k, x(k), I(k), 

v(k)) are linear or nonlinear vectors with appropriate dimensions. The random 

vectors x(0), w(j), w(k), v(l), v(m), I(n) and I(p) are assumed to be independent for 

all j, k, l, m, n, p. The goal is to estimate the state sequence {x(0), x(1),…, x(L)} 

by using the measurement sequence {z(1), z(2),…, z(L)} where L is a chosen 

integer. 

2.2 Quantization of States and Transition Probabilities [1] 

This section describes a type of quantization for target states and some 

difficulties in calculating transition probabilities between quantization levels. 

Let x(k) be a random vector whose range is in the space R
n (n 

dimensional Euclidian space). Let us divide Rn into nonoverlapping subspaces Ri
n 

and assign a unique value xqi to each subspace Ri
n, where the subscript q is 

quantization. 
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Definition 2.1: A function xq(.)  Q{x(.)} is a quantizer for the state x(.) 

if the following hold: 

1) A function xq(.)  Q{x(.)} = xqi whenever x(.) є Ri
n; and 

2) xqi is unique for each Ri
n 

 

Definition 2.2: The function xq(.) is the quantized state vector at time (.), 

and its possible values are called quantization levels of the state x(.). 

 

Definition 2.3: Subspace Ri
n is called gate Ri

n. 

 

Definition 2.4: The value xqi is called the quantization level for the gate 

Ri
n. 

 

Definition 2.5: The transition probability )(kjmπ  is the probability that 

the state x(k+1) will lie in the gate Rm
n when the state x(k) is in the gate Rj

n i.e.: 

 

 )(kjmπ { }n

j

n

m RkxRkxprob ∈∈+ )()1(  (2.3) 

 

In Figure 1, gate Ri
n , quantized state value xqi and the transition 

probability )(kjmπ can be seen schematically. 
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Figure-1: Quantization of states and transition probabilities 
 

 

The transition probability )(kjmπ is a conditional probability and can be 

rewritten as: 

 

 
})({

})(,)1({
)(

n

j

n

j

n

m

jm
Rkxprob

RkxRkxprob
k

∈

∈∈+
=π  (2.4) 
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  (2.5) 

where p(x(k+1), x(k)) is the joint probability density function of x(k+1) and x(k); 

p(x(k)) is the probability density function of x(k); and p(x(k+1)|x(k)) is the 

conditional probability density function of x(k+1) given x(k).  

Rm
n 

Rj
n Πjm(k) 

Gate Ri
n 

xqi 

Rn 
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It is not usually easy to evaluate the transition probability 

)(kjmπ analytically. The difficulties are due to the shapes of the gates Ri
n
 and Rm

n
 

and the statistics of the disturbance-noise vector w(.) and the initial state vector 

x(0).  

In order to see this, consider the following linear motion example: 

)()()1( kwkAxkx +=+ , where x(0) is an nx1 Gaussian initial state vector; x(k) is 

an n x 1 state vector at time k; w(k) is an nx1 Gaussian disturbance vector at time 

k; and A is a constant transition matrix with appropriate dimension. Moreover, the 

random vectors x(0), w(k), and w(l) are assumed to be statistically independent 

for all k and l. Hence x(k+1) and x(k) are linear transformations of the Gaussian 

random vectors x(0), w(1),…., and w(k). Thus, p(x(k)) and p(x(k+1)|x(k)) are 

normal density functions. Therefore, the evaluation of )(kjmπ is not analytically 

possible. The problem is more difficult if the motion model is nonlinear. If the 

transition probability )(kjmπ needs to be calculated, it should be performed 

numerically. Even this may be difficult. In other words, the evaluation of the 

exact transition probabilities between gates is not practical. Therefore, section 2.3 

discusses an approximate target motion model called “finite state model” which 

is obtained by approximating the disturbance noise vector w(k) and the initial 

state vector x(0) by discrete random vectors (see Appendix A), and by quantizing 

the state x(k) as previously described for all k=1,2, …. For this finite-state model, 

the transition probabilities can be easily calculated. 

2.3 A Finite-State Model for the Target Model [1] 

Gates are assumed to be generalized rectangles with origin nR0 . The 

quantization levels for gates are assumed to be the center of the gates. 

 

 (.)qx Q (.))(x = qix        if x(.)∈  Ri
n (2.6) 
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For each k, the disturbance noise vector w(k) is approximated by a 

discrete random vector wd(k). This random vector can have one of the possible 

values wd1(k), wd2(k), …,
kdmw (k)  with corresponding probabilities )(1 kpd , 

)(2 kpd , …, )(kp
kdm . Similarly, the initial state vector x(0) is approximated by a 

discrete random vector xd(0) whose possible values are xd1(0), xd2(0), …, 
0dnx (0) 

with corresponding probabilities )(1 kpd , )(2 kpd , …, )(
0

kpdn . The positive  

integers km  and 0n  are chosen such that the random vectors w(k) and x(0) are 

satisfactorily approximated by the discrete random vectors wd(k) and  xd(0)  for 

the considered estimation problem respectively.   

Furthermore, by replacing w(k) and x(0) with discrete random vectors 

wd(k) and xd(0) respectively, and then quantizing the states by Eq. (2.7), the 

target-motion model is reduced to a finite state model.  

 

 xq(k+1)=Q(f(k, xq(k), u(k), wd(k)) (2.7) 

 

where Q{.} is the quantizer. xq(k) is the quantized state vector at time k and its 

possible values are xq1(k), xq2(k),…,
kqnx (k) where nk is the number of possible 

quantization levels of the state vector x(k). In other words, the quantization levels 

of x(0) are assumed to be  equal the possible values of the discrete random vector 

x(0).  

The transition probability )(kjlπ , which is defined by the conditional 

probability that the quantized state vector xq(k+1) will be equal to the 

quantization level xql for gate Rl
n, given that the quantized state vector xq(k) is 

equal to the quantization level xqj for gate Rj
n is determined as follows: 

 

 )(kjlπ   { }qjqqlq xkxxkxprob ==+ )()1(   (2.8) 
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Assume that the xq(k) is equal to xqj for gate Rj
n. The transitions from this 

quantization level to others are determined by wd(k) and the function Q(f(k, 

xq(k)= xqj, u(k), wd(k)). If wd(k) has km discrete  values (wd1(k),wd2(k),…, 
kdmw , 

then xq(k+1) can take at most km various quantization levels. If the function f(k, 

xq(k)= xqj, u(k), wd(k)) maps xqj into another gate, say Ri
n for only one possible 

value, say wdi(k), of the discrete random vector wd(k), then the transition 

probability )(kjiπ  from gate Rj
n to gate Ri

n is the probability that the possible 

value wdi(k) of wd(k) occurs. Besides, if the function f(k, xq(k)= xqj, u(k), wd(k)) 

maps xqj into another gate, for more than one possible value, say  wd1(k) and 

wd2(k) of wd(k), the transition probability, )(kjlπ , is the probability that the 

discrete random vector wd(k) is equal to either of the possible values wd1(k) or  

wd2(k), i.e., )(kjlπ )()()( 21 kpkpkp dd

n

dn +==∑ , where the summation is over 

all n such that Q(f(k, xq(k)= xqj, u(k), wdn(k))= xql 

Using the finite state model, the target motion can be represented by a 

trellis diagram. 

2.4 A Trellis Diagram for the Target Motion [1] 

Assuming the quantized state vector xq(k) has nk possible values which 

are xq1(k), xq2(k),…, 
kdnx (0), the target motion can be represent by a graph. On 

this graph, there are some conventions, which are the followings: 

1) Each possible value of xq(k) is represented on the thk  column by a 

point (sometimes called node) with the corresponding quantization 

level so that the thk  column contains the possible quantization 

levels of x(k) (in other words, the possible gates in which the 

target can lie at time k) where k=0, 1, 2, … . 
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2) The transition from one quantization level to another is 

represented by a line having a direction indicating the direction of 

the target motion. 

Hence, the target motion from time zero to time L can be represented by 

a directed graph shown in Figure 2, which is called the “trellis diagram”  for the 

target motion from time zero to time L.  

Definition 2.6: A path in the trellis diagram is any sequence of directed 

lines where the final vertex of one is the initial vertex of the next. 
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Figure-2: The trellis diagram for the target motion 
 

 

2.5 Approximate Measurement Models [1] 

The target motion model has been reduced to a finite-state model which 

uses the quantized state vector xq(.) as described in the previous sections. 

However, the measurement model in Equations (2.1) and (2.2) uses the state 
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vector x(.) . Thus, in the measurement model in Equations (2.1) and (2.2), by 

replacing the state vector x(k) with the quantized state vector xq(.) , the following 

approximate measurement models are obtained: 

 

 




=
ceinterferenofpresencetheinkvkIkxkg

tsenvironmenclearinkvkxkg
kz

q

q

)),(),(),(,(

,))(),(,(
)(  (2.9) 

 

From now on, the models in the equation in (2.9) is used to refer to the 

measurement models. 

Considering the trellis diagram in Figure 2, the state estimation process 

will be performed from time zero up to and including time L. Therefore, the 

trellis diagram is drawn from time zero to time L. Time zero refers to the initial 

state. The following symbols, which are used throughout further analyses, are 

defined as: 

in : Number of quantization levels for the gates in which the target 

may lie at time i; in other words, the number of possible values of the quantized 

state vector xq(i) , where i = 0, 1, 2, …, L. 

 

)(~ ix : Set of all the quantization levels for the gates in which the 

target may lie at time i, namely,  )(~ ix   {xq1(i), xq2(i),…, )(ix
iqn } where i = 0, 1, 

2, …, L . 

 

M : Number of possible paths through the trellis diagram. This 

number is equal to or less than ∏
=

L

j

jn
0

 

 

mH : The thm path through the trellis diagram, indicated by a bold 

line in Figure 2. 
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)(ixm

q : Quantization level for the gate in which the target lies at time i 

when it follows path mH . In other words, the possible value of the quantized 

state vector xq(i) through which the thm  path passes. For example, in trellis 

diagram of Figure 2, 

 

 )0()0( 2q

m

q xx = ; );1()1( 2q

m

q xx =  )2()2( 2q

m

q xx = ,… 

 

m

0π  : Probability that the possible value of the initial state vector 

xd(0) from which the thm  path starts occurs, namely, m

0π =prob{ )0()0( m

q

m

d xx = }. 

For example, in trellis diagram of  Figure 2, m

0π = prob { )0()0( 2qq xx = }. 

 

m

iπ  : Transition probability from the thi )1( − gate for the thm  path. In 

other words, it is the transition probability that the target vector will be at the thi  

quantization level (node) of path mH  at time i when it is at the 

thi )1( − quantization level (node) of path at time 1−i , that is  

m

iπ  prob { )1()1()()( −=−= ixixixix
m

qq

m

qq } 

 

m

0π  : Maximum of the probabilities that the quantization levels at 

time zero occur. 

 

m

iπ  : Maximum of the transition probabilities from the quantization 

levels at time 1−i  to the quantization levels at time i (where i = 1, 2, …, L). 

 

min
0π  : Minimum of the probabilities that the quantization levels at 

time zero occur. 
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min
iπ  : Minimum of the transition probabilities from the quantization 

levels at time 1−i  to the quantization levels at time i (where i = 1, 2, …, L). 

 

m

Lx~  { )(...,),1(),0( Lxxx m

q

m

q

m

q }  Sequence of the quantization levels 

(nodes) which the thm  path passes through; obviously, )(ix
m

q )(~ ix∈ , where i =0, 

1, 2, …, L 

 

Lz  = {z(1), z(2), …,  z(L)} Measurement sequence from time 1 to time L.  

 

LI    {I(1), I(2), …,  I(L)} Interference sequence from time 1 to time L. 

 

Obviously, the target motion occurs along one of the possible paths 

through the trellis diagram. Hence, the aim is to decide upon a path through the 

trellis diagram which is most likely (probably) followed by the target by using the 

measurement sequence Lz . Because of randomness in the models, the approach 

must be statistical, i.e., a statistical optimization problem. Based on the 

measurements, the path, which was (most likely) followed by the target, will be 

guessed. Therefore, a criterion is needed. A suitable criterion may be the 

minimum error probability criterion, which is a special case of Bayes’ criterion 

in detection theory. Using this criterion reduces the problem of finding the path 

most likely followed by the real state variable to a multiple-hypothesis-testing 

problem. 

2.6 Minimum Error Probability Criterion [1] 

In the previous section, M possible paths through the trellis diagram 

MHHH ...,,, 21  were labeled. These paths are sometimes referred to as 

hypotheses. Hence, using the minimum error probability criterion and the 
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measurement sequence, true hypothesis will be decided. In other words, the path 

most likely followed by the target will be found.  A decision rule is developed 

which assigns each point in the measurement space D to one of the hypotheses. 

The decision rule divides the whole measurement space D into M subspaces 

MDDD ...,,, 21 . If the measurements fall in the subspace iD , iH  is decided as the 

true path. Subspace iD  is called the decision region for hypothesis iH . Therefore, 

the decision regions must be chosen in such a way that the overall probability is 

minimized. 

The overall error probability, sometimes called the Bayes risk R, is 

defined by 

 

 R ∑∑ ∫
=

≠
= ∈ 









M

1j

M

ji
1i Dz

L

j

'

j

i
L

L dz)H|z(p)H(p    (2.10) 

where  







= ∫

LI

LLL

j

L

j

L

j

L'

ceinterferenofpresencethein,dI)I(p)I,H|z(p

tenvironmenclearin),H|z(p

)H|z(p

      (2.11) 

)( jHp : Probability that the hypothesis Hj (path Hj) is true. 

 

 )|( j

L Hzp : Conditional probability of the measurement sequence zL in 

clear environments given that hypothesis jH  is true. 

 

),|( L

j

L IHzp : Conditional probability of the measurement sequence zL 

in the presence of interference given hypothesis jH  and the interference 

sequence LI . 
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)( LIp : Joint density function of the interference sequence LI . 

 

In order to find the optimal decision rule, the decision regions 

MDDD ...,,, 21  are varied so that the risk R is minimized. The optimum decision 

rule is: 

 

 choose Hi if )(')()(')( j
L

ji
L

i HzpHpHzpHp >  for all j≠i, (2.12) 

 

2.7 Optimum Decision Rule for the Target Paths [1] 

Consider the motion model in equation (2.7) and the measurement 

model in equation (2.9). Since the disturbance noise vector w(k) is assumed to be 

independent of w(j) and x(0) for all j≠k, the a priori probability of hypothesis Hi 

can be rewritten as:  

 ∏
=

=
L

k

i

kiHp
0

)( π   (2.13) 

 

where i

kπ =prob ))1()1(|)()(( −=−= kxkxkxkx i

qq

i

qq , and xq
i
(k-1) and xq

i
(k) are 

the quantization levels for the gates in which the target lies at time k-1 and k 

respectively when it follows path Hi. 

Further, using the assumption that interference vector I(k) is independent 

of I(j) for all j≠k, the joint density function of the interference sequence LI as 

 

 ∏
=

=
L

k

L kIpIp
1

))(()(  (2.14) 

 

where p(I(k)) is the probability density function of the interference vector I(k).  
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The function )|(' i

L Hzp  in equation (2.12) can be rewritten as: 

 

 ∏
=

=
L

1k

i

q

'

i

L' ))k(x|)k(z(p)H|z(p  (2.15) 

 

where  

 

( )












×
=
∫ )(

,)())(()(),(|)(

))(|)((

))(|)(('

,

kI

i

q

i

q

i

q

ceinterferenof

presencein

tsenvironmenclearin

kdIkIpkIkxkzp

kxkzp

kxkzp  

(2.16) 

 

and ))k(x|)k(z(p i

q  is the conditional probability of the measurement z(k) in 

clear environments in Eq.(2.9) given that xq(k)=xq
i
(k) , and ))k(I),k(x|)k(z(p i

q  

is the conditional probability of the measurement z(k) in the presence of 

interference in Eq. (2.9) given that  xq(k)=xq
i
(k) and I(k). 

Throughout this chapter, the interference vector I(k) is approximated by 

a discrete random vector Id(k) whose possible values are Id1(k), Id2(k), …,
kdrI (k) 

with corresponding probabilities p(Id1(k)), p(Id2(k)), …,p(
kdrI ), then the integral in 

Eq. (2.17) is reduced to a summation: 

 

 ∫ ×
)(

)())(())(),(|)((
kI

i

q kdIkIpkIkxkzp    (2.17) 

 ))(())(),(|)((
1

kIpkIkxkzp dl

r

l

dl

i

q

k

×≈∑
=

  (2.18) 
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where rk is the number of possible values of the approximating discrete vector 

Id(k). Measurement model in the presence of interference in Eq. (2.9) becomes: 

 

 ))(),()(),(,()( kvkIkIkxkgkz dq ==  

                                       )(),(),(,( kvkIkxkg dq  (2.19) 

 

Substituting equation (2.13) and (2.15) into the optimum decision rule of 

equation (2.12), the following is obtained: 

 

Choose Hi if 

.))()(())()((
1

0
1

0 ijallforkxkzpkxkzp j

q

L

k

j

k

ji

q

L

k

i

k

i ≠′>′ ∏∏
==

ππππ    (2.20) 

 

Since it is more convenient to perform summations than multiplications, 

and the natural logarithm function is monotonically increasing, taking the natural 

logarithms of both sides of the inequality in equation (2.20), the following is 

obtained: 

 

Choose Hi if  

{ } { }∑∑
==

′++>′++
L

k

j

q

j

k

j
L

k

i

q

i

k

i kxkzpkxkzp
1

0
1

0 )))()((ln()ln()ln()))()((ln()ln()ln( ππππ

 

 

for all j≠i,           (2.21) 

where in clear environments. 

 

 ))()(( kxkzp i

q
′ = ))k(x)k(z(p i

q  (2.22a) 

 

in the presence of interference 
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  (2.22b) 

where 

 

))k(I)k(I),k(x)k(x|)k(z(p))k(I),k(x|)k(z(p dld

i

qqdl

i

q === , which is the 

conditional probability of  z(k) in Eq. (2.19) given  that )k(x)k(x i

qq =  and 

)k(I)k(I dld = . Either one of the expressions in Eqs. (2.20) and (2.21) with the 

convention in Section (2.6) is the “Optimum Decision Rule” for deciding the path 

most probably followed by the target. 

There are some definitions, which explain the metrics to be used in this 

Chapter. 

Definition 2.7: An initial node is a quantization level at time zero. The 

metric denoted by MN(xqi(0)), of the initial node xqi(0) is defined by 

 

 MN(xqi(0)) = ln [prob(xq(0) = xqi(0)]  (2.23) 

 

Consequently, MN(xq
m
(0)) = ln ( m

0π ). 

 

Definition 2.8: The metric, denoted by M(xqj(k-1)→xqi(k)), of the branch 

which connects the quantization level xqj(k-1) to the quantization level xqi(k) is 

defined by: 

 

M(xqj(k-1) →xqi(k)) ln[prob(xq(k)=xqi(k)|xq(k-1)=xqj(k-1))]+ln 'p (z(k)|xqi(k)) 

(2.24) 

 

( ) ( )

( )
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



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q
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EqusingkIpkIkxkzp
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Definition 2.9: The metric of a path from time zero to time i is the 

summation of the metric of the initial node from which the path starts and the 

metrics of the branches of which the path consists. For example, the metric, 

denoted by M(xq
m
(i)), of  the portion between the nodes xq

m
(0) and xq

m
(i) of the 

path(hypothesis) Hm is: 

 

 ( ) ( )( )[ ]∑
=

++=
i

m

q

m

k

mm

q

k

kxkzpInInInixM
1

)(|)()()()( '
0 ππ  (2.25) 

 

Consequently, the metric, sometimes denoted by M(Hm), of the path Hm 

(through the trellis) is: 

 

 )( mHM ( ) [ ])|()()( '
mLm

m

q HzpHpInLxM =  (2.26) 

 

where  xq
m
(L) is the end node of the path Hm , and p(Hm) and )|(' mL Hzp are 

given by Eqs. (2.13), (2.15), (2.22a) and (2.22b) respectively. 

 

Definition 2.10: The error probability of a path, say MH , through a 

trellis diagram T with M possible paths MHHH ...,,, 21  is the probability of 

deciding that a path which is different from MH is the one most probably 

followed the path MH .This error probability is denoted by either 

( )ME HHHP
m

...,,, 21  or ( )TP
mE where subscripts E and m are the error and the 

thm  path, respectively.  

 

Definition 2.11: The density function of the measurement sequence zL
 

when the state variable actually followed the path Hm is referred to as the 

likelihood function for the path (hypothesis) Hm . 
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The optimum decision rule is to choose the path with the largest metric 

through the trellis diagram as the decision. This can be handled by using the 

Viterbi decoding algorithm, which is the optimum decoding based smoothing 

algorithm. The algorithm which obtains a trellis diagram for the target motion 

model, and which finds the path most likely followed by the target by using the 

Viterbi decoding algorithm is referred as the “Optimum Decoding Based 

Smoothing Algorithm”. 

2.8 Optimum Decoding Based Smoothing Algorithm [1] 

This algorithm, as mentioned in the previous section, finds the most 

probable path by comparing the metric values of the quantization values of the 

states from time 0 to time L. The implementation steps for the optimum decoding 

based smoothing algorithm are as below: 

 

Preliminary Step: The target motion model is reduced to a finite state model 

and the trellis diagram is obtained from time 0 to time L until which the 

target will be tracked. The nodes of initial states are obtained from 

quantizing the initial state vector x(0) as explained in 2.3  and the metric of 

each initial node is assigned. Then, the quantized values of the disturbance 

noise w(k) are obtained in the same way as the initial state vector x(0). 

 

Step 1:  For each node at time 1, using the measurement z(1), the metrics of 

the branches connecting the initial nodes to the node at time 1 are evaluated. 

These metrics are added to the metrics of the initial nodes from which the 

branches start, and the metrics of the paths merging at the node at time 1 are 

found. The path with the largest metric (which is called the best path for the 

node at time 1) is labeled and the other paths are discarded. Finally, the 

largest metric to the node at time 1 (which is called the metric of the node at 
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time 1) is assigned. For each node, the largest metric is calculated and 

assigned its node. 

 

Step k: For each node at time k, using the measurement z(k), the metrics of 

the branches connecting the nodes at time k-1 to the node at time k are 

calculated. These metrics are added to the metrics of the nodes at time k-1 

from which the branches start and the metrics of the paths merging at the 

node at time k are found. The path with the largest metric (which is called the 

best path for the node at time k) is labeled, and then the other paths are 

discarded. Finally, the largest metric to the node at time k (which is called the 

metric of the node at time k) is assigned. 

At the end of time L, the node with the largest metric is chosen among the 

nodes at time L. The best path for this node is decided as the most probable 

path followed by the state transitions. 

2.8.1 Reducing the Computational Time of the ODSA 

In this thesis, a Matlab program is written for the ODSA algorithm, 

which estimates the best path with the largest metric value. The program gives 

opportunity to the user to modify the algorithm parameters such as the gate size, 

the number of quantization values of x(0) and w(k) and the maximum number of 

states at each time step. These parameters are directly related with the algorithm 

performance. However, these values also determine the computational time.  

For example, smaller gate size value means higher precision, but it also 

means longer computation time. Moreover, increasing the number of quantization 

values of the initial state x(0) or the distribution noise w(k) improves the 

performance, but results in a slower program. For high k values, the number of 

states at each time step augments dramatically which results in a more and more 

complex program. 
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By discarding the quantization steps with lower metrics at each time 

step, the computational burden can be reduced without degrading the 

performance algorithm. This can be achieved by limiting the maximum number 

of states and preserving only the most probable states, which have the highest 

metric values. 

 Simulation results are given in chapter 4. 

2.9 An Example of the ODSA Algorithm [1] 

Figure 3 shows a target motion from time zero to time 2. Using the 

ODSA, the path in the trellis diagram, which was most likely followed by the 

target from time zero to time 2, will be found. 

 

Figure-3: Trellis diagram for the target motion from time zero to 
time 2 
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Preliminary Step: To each initial node, assign its metric, i.e., 

MN(xqi(0))=Prob{xq(0 )= xqi(0)}, where i=1, 2, 3. From now on, the metric of the 

node xqi(k) is represented by MN(xqi(k)). 

 

Step 1: Consider the node xq1(1). The branches xq2(0)xq1(1) and xq3(0)xq1(1) are 

the only ones connecting the nodes at time zero to the node xq1(1). Hence 

calculate the metrics of these branches, then add these metrics to the metrics of 

the nodes xq2(0) and xq3(0) and obtain the following: 

 

 A11  M(xq2(0) → xq1(1)) + MN(xq2(0))  (2.27) 

 A12  M(xq3(0) → xq1(1)) + MN(xq3(0)). (2.28) 

Further, assuming that A11 ≥ A12, the path xq2(0)xq1(1) is chosen as the 

best path for the node xq1(1), and A11  is assigned to the node xq1(1) as its metric, 

i.e., MN(xq1(1)) = A11. The path xq3(0)xq1(1) is then discarded. Assuming that 

the following are similarly found for the node xq2(1), xq1(0)xq2(1) is the best 

path for xq2(1), and MN(xq2(1)) = M(xq1(0) → xq2(1)) + MN(xq1(0)). Hence, at 

the end of 0, Figure-4 is obtained. 
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Figure-4: Trellis diagram for the target motion from time zero to 
time 2 at the end of first step 
 

 

Step 2: Consider the node xq1(2). The branches xq1(1)xq1(2) and xq2(1)xq1(2) are 

those connecting the nodes at time 1 to the node xq1(2). Hence, calculating the 

metrics of these branches and adding these metrics to the metrics of the nodes 

xq1(1) and xq2(1), we obtain the following: 

 

 A21  M(xq1(1) → xq1(2)) + MN(xq1(1))  (2.29) 

 A22  M(xq2(1) → xq1(2)) + MN(xq2(1))  (2.30) 

 

Further, assuming that A22 ≥ A21, the path xq1(0)xq2(1)xq1(2) is chosen as 

the best path for the node xq1(2), and A22 is assigned to the node xq1(2) as its 

metric, i.e., MN(xq1(2)) = A22. The path xq2(0)xq1(1)xq1(2) is then discarded. The 
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following are similarly found for the node xq2(2), then  xq2(0)xq1(1)xq2(2) is the 

best path for xq2(2), and MN(xq2(2)) = M(xq1(1) → xq2(2)) + MN(xq1(1)). Hence, 

Figure 5 is obtained at the end of 0. In addition, assuming that MN(xq2(2)) ≥ 

MN(xq1(2)), the path xq2(0)xq1(1)xq2(2) is chosen as the path followed by the target 

from time zero to time 2. 

 

Figure-5: Trellis diagram for the target motion from time zero to 
time 2 at the end of second step 
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CHAPTER 3 
 
 
 
 

ODSA WITH CORRELATED MEASURMENT NOISE 

 

 

ODSA, explained in Chapter 2, can be implemented for target tracking 

systems which have independent Gaussian measurement noise models. In this 

chapter, ODSA measurement model is modified so that correlated measurement 

noise effect is handled. ODSA is implemented using two methods, namely 

“Method of Decorrelation [3, 4]” and “Treating Correlation Effect as 

Interference”, which is proposed in this thesis. They will be used to adapt ODSA 

in the presence of correlated measurement noise. 

3.1 Implementing ODSA Using Method of Decorrelation 

3.1.1 Models and Assumptions 

In Chapter 2, target motion and measurement models for ODSA (with 

u(k)=0)  were defined as below: 

 

Motion model, ))(),(,()1( kwkxkfkx =+  (3.1) 

Measurement model, ))(),(,()( kvkxkgkz =  

 

in clear environment.  
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The measurement noise v(k) given in the measurement modelof Eq. (3.1) 

was defined as independent Gaussian noise in section 2.1.  

In this section, the target tracking system with correlated measurement 

noise will be studied. The correlated measurement noise v(k) with zero-mean can 

be modelled by a first-order Markov process [3, 4]: 

 

 )()1()( krkavkv +−=  (3.2) 

 

where a is the correlation coefficient (0 1≤≤ a ), and  )(kr  is a zero-mean white 

Gaussian noise, with variance: 

 

 222 )1( vr a σσ −=  (3.3) 

    

where 2
vσ  is the variance  of the measurement  noise )(kv . 

It can be easily proved why a is the correlation coefficient of the random 

variables v(k)  and v(k-1) as below:   

 

Proof for Eq.(3.3): 

 

It is known that correlation coefficient, ρ,  of the random variables x and y is 

defined by the ratio: 

 

 
yx

xyC

σσ
ρ =  (3.4) 

  

where xyC =E{( )() yyxx −− } is the covariance of the random variables x and y, 

xσ  is the standart deviation of x,  and yσ is the standart deviation of  y  [12]. 
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From Eq.(3.5), the correlation coefficient of random variables v(k) and 

v(k-1) is defined by the ratio: 

 

 
)1()(

)1()(

−

−=
kvkv

kvkvC

σσ
ρ  (3.5)  

 

In order to find the correlation coefficient of random variables v(k) and 

v(k-1), ρ , let us find firstly variance of v(k) and variance of  v(k-1): 

 

 
( )[ ]22

)( )()( kvkvEkv −=σ
 (3.6) 

 

[ ] 0)()( == kvEkv  is given, then Eq.(3.7) yields: 

 

 
[ ])(22

)( kvEkv =σ
 (3.7) 

 

If v(k) given in Eq.(3.3) is inserted in Eq.(3.8):   

   

 [ ])()()1(2)1( 2222
)( krkrkavkvaEkv +−+−=σ  

                   [ ] [ ] [ ])()()1(2)1( 222 krEkrkvaEkvEa +−+−=    (3.8)        

 

Since r(k) and v(k-1) are uncorrelated and have zero-mean values 

)}()1({ krkvE − =0, then the following equation is obtained: 

 

 2
)(

2
)1(

22
)( krkvkv a σσσ += −  (3.9)  

 

Because v(k) is stationary 2
)1(

2
)( −= kvkv σσ  [12], then 2

)(kvσ  is found as: 
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2

2
)(2

)(
1 a

kr

kv −
=
σ

σ  (3.10) 

 

The covariance )1()( −kvkvC of random variables v(k) and v(k-1) is: 

 

 ( )( )[ ])1()1()()()1()( −−−−=− kvkvkvkvEC kvkv   

      [ ])1()( −= kvkvE  

                  = ( )[ ])1()()1( −+− kvkrkavE  

       [ ] [ ])1()()1(2 −+−= kvkrEkvaE    (3.11) 

   

Since r(k) and v(k-1) are uncorrelated and have zero-mean values 

[ ] 0)1()( =−kvkrE , 

 

 [ ] 2
)(

2
)1()( )1( kvkvkv akvEaC σ=−=−  (3.12) 

 
2

)(

2
)(

)1()(

)1()(

kv

kv

kvkv

kvkv aC

σ

σ

σσ
ρ ==

−

−  (3.13)  

 a=ρ  (3.14) 

 

Eq.(3.15)  proves that a is the correlation coefficient random variables v(k) and 

v(k-1). 

 

Proof of Eq.(3.4) is also given below to increase the comprehension:  

 

Proof of Eq.(3.4): 

 

 ( )[ ])()(2 krkrEr −=σ  (3.15) 
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[ ] 0)()( == krEkr  is given, then Eq.(3.15) yields:  

 

 [ ])(22 krEr =σ  (3.16) 

 

If r(k) given in Eq.(3.3) is inserted in Eq.(3.17):      

 

( )[ ]22 )1()( −−= kvakvErσ  

     [ ])1()1()(2)( 222 −+−−= kvakvkvakvE  

     [ ] [ ] [ ])1()1()(2)( 222 −+−−= kvEakvkvEakvE  

    [ ] ( )[ ] [ ])1()1()()1(2)( 222 −+−+−−= kvEakvkrkvaaEkvE  

    [ ] [ ] [ ] ( ))1()1()(2)1(2)( 22222 −+−−−−= kvEakvkraEkvEakvE  (3.17) 

 

Since r(k) and v(k-1) are uncorrelated and have zero-mean values, 

[ ] 0)1()( =−kvkrE , then Eq.(3.18) becomes: 

 

 [ ] [ ])1()( 2222 −−= kvEakvErσ  (3.18) 

  

Since v(k ) is a stationary process, [ ] [ ] 222 )1()( vkvEkvE σ=−=  [12]  with 2
vσ is 

the variance of the measurement noise v(k): 

 

 222 )1( vr a σσ −=  (3.19) 

 

and Eq.(3.4) results. 
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3.1.2 Decorrelation Process 

In this section, target motion and measurement models given in Eq. (3.1) 

will be taken as linear models as below: 

 

Motion model, )()()1( kwkxkx +=+  (3.20) 

Measurement model, )()()( kvkxkz +=  

 

 Deccorelation process [3, 4] will be described. To decorrelate the 

measurement noise, a new measurement )(ky , called “artificial measurement”, 

is generated by using the measurement given in Eq. (3.20)  as below: 

 

 [ ])1()1()()()1()()( −+−−+=−−= kvkxakvkxkzakzky  

 
44 344 21

)(

)1()()1()()(

kr

kvakvkxakxky −−+−−=  

 [ ] )()1()()( krkxakxky +−−=  (3.21)  

 

for which the measurement errors are uncorrelated. 

From the motion model given in Eq.(3.20), x(k-1) can be calculated as 

below: 

 )1()()1( −−=− kwkxkx  (3.22) 

 

If we insert x(k-1) given in Eq.(3.22) into Eq.(3.21), y(k) yields: 

 

 [ ] )()1()()()( krkwkxakxky +−−−=  (3.23) 

 
44 344 21

)(

)()1()()1(

k

krkwakxa

η

+−+−=  
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In practical applications, the first term of right-hand side in Eq.(3.23) is 

usually small and can be neglected without degrading much performance [7]. So 

we have )()( krk ≈η  

Then, Eq.(3.23) takes the form: 

 )()()1()( krkxaky +−=  (3.24) 

 

 

After decorrelation process, target motion and measurement models will 

become  as below: 

 

Motion model, )()()1( kwkxkx +=+  (3.25) 

Measurement model, )()()1()( kvkxaky +−=  

 

Having obtained the target motion and measurement models, ODSA 

explained in Chapter 2, can be applied easily.  

Decorrelation method can be applied for linear models. In section 3.2, 

we will propose the method of treating correlation effect as interference; this 

method can also be applied for nonlinear models. 

3.2 Implementing ODSA by Treating Correlation Effect as Interference 

3.2.1 Models and  Assumptions 

In Chapter 2, target motion and measurement models for ODSA (with 

u(k)=0)  were defined as below: 

 

Motion model, ))(),(,()1( kwkxkfkx =+  (3.1) 

Measurement model, ))(),(,()( kvkxkgkz =  
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in clear environment. In the presence of interference, the interference parameter 

is added to the measurement model as below: 

 

Motion model, ))(),(,()1( kwkxkfkx =+         (3.2) 

Measurement model, ))(),(),(,()( kvkIkxkgkz =  

 

The measurement noise v(k) given in the measurement models of Eqs. 

(3.1) and (3.2) was defined as independent Gaussian noise in section 2.1.  

In this section, the target tracking system with correlated measurement 

noise will be studied. The correlated measurement noise v(k) with zero-mean can 

be modelled by a first-order Markov process [3, 4]: 

 

 )()1()( krkavkv +−=  (3.3) 

 

where a is the correlation coefficient (0 1≤≤ a ), and  )(kr  is a zero-mean white 

Gaussian noise, with variance: 

 

 222 )1( vr a σσ −=  (3.4) 

    

where 2
vσ  is the variance  of the measurement  noise )(kv . 

If v(k) is inserted into the  measurement model in clear environments 

defined in Eq.(3.1), the following equation is obtained: 

 

measurement model, ( ))()1(),(,)( krkavkxkgkz +−=  (3.21) 

 

In this thesis, we propose to treat v(k-1) parameter as an interference 

parameter so that ODSA  can be applied in the presence of correlated 
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measurement noise. Then the measurement model given by Eq. (3.21) can be 

written as the form:  

 

 ))(),1(),(,()( krkvkxkgkz −=  (3.22) 

 

Eq. (3.22) resembles the measurement model  in the presence of 

interference, which is given in Eq. (3.2). The only modifications are the following 

replacements:    I(k) ⇒ v(k-1) and v(k) ⇒  r(k) .  

Note: It is known from Chapter 2 that interfence vectors should be independent 

from each other so that ODSA can be applied in presence of interference. We will 

assume, v(k-1) parameter can be treated as interference parameter for weakly 

correlated measurement noise models, so that ODSA can be applied. We will also 

investigate how the proposed method behaves for higly correlated measurement 

noise models in the simulations given in the following chapters. 

 

The values that z(k) take can be calculated for k=1,2,…,L as below: 

 

1k = ⇒ { ))1(r,)0(v),1(x,1(g)1(z

)0(I

=     

2k = ⇒ { ))2(r,)1(v),2(x,2(g)2(z

)1(I

=  

 M  M  

Lk = ⇒ ))L(r,)1L(v),L(x,L(g)L(z

)1L(I

43421
−

−=     (3.23) 

 

The system in the presence of correlated measurement noise will become 

as below: 
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Motion model, ( ))k(w),k(x,kf)1k(x =+  (3.24) 

Measurement model, ( ))k(r),1k(v),k(x,kg)k(z −=  

 

Parameters used in equation (3.24) are defined as follows: 

• x(0) is an nx1 initial state Gaussian distributed random vector (which 

determines the considered target location at time 0), 

• x(k) is an nx1 (target) state vector at time k, 

• w(k) is a px1 Gaussian distributed disturbance noise vector at time k with 

zero mean and known statistics, 

• z(k) is an rx1 measurement vector at time k,  

• v(0) is an mx1 initial measurement  noise vector (accepted as interference 

vector) with zero mean (which determines the considered measurement 

noise at time 0),  

• v(k) is an mx1 measurement noise vector (accepted as interference vector) 

at time k with zero mean and known statistics, 

• r(k) is a lx1 white Gaussian distributed measurement noise vector at time 

k with zero mean and known statistics 

Furthermore, time k is time t0 + kT0 where t0 and T0 are the initial time 

and the measurement interval respectively. The random vectors x(0), w(j), w(k), 

v(l), r(m) are assumed to be independent for all j, k, l, m. The goal is to estimate 

the state sequence {x(0), x(1),…, x(L)} by using the measurement sequence {z(1), 

z(2),…, z(L)}, where L is a chosen integer.  

x(0 ) is approximated by a discrete random vector xd(0) with nx  possible 

values, where  nx is the number of possible quantization levels of x(0 ) 
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w(k) is approximated by a discrete random vector wd(k) with nw  possible 

values, where  nw is the number of possible quantization levels of w(k ) 

v(0) is approximated by a discrete random vector vd(0)  with nv possible 

values, where nv is the number of possible quantization levels of v(0) 

r(k) is approximated by a discrete random vector rd(k)   with nr possible 

values, where nr is the number of possible quantization levels of r(k) 

The number of all values that vd(k) can take are calculated for 

k=1,2,…,L-1  as below: 

 

)()1()( krkvakv ddd +−=  

1k = ⇒  
{

rnvn

ddd rvav )1()0()1( +=
321

  

  ⇒ )1(dv  will have rv nn ×  values. 

 

2=k ⇒  
{ {

rnrnvn

ddd rvav )2()1()2( +=
×

  

 ⇒ )2(dv will have 2
rvrrv nnnnn ×=××   values. 

 

3=k ⇒ )3()2()3( ddd rvav +=  ⇒   

 ⇒ )3(dv will have 3
rvrrrv nnnnnn ×=××× values. 

              M  M  

1−= Lk ⇒ )1()2()1( −+−=− LrLvaLv ddd  
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        ⇒  )1( −Lvd  will have 1... −×=×××× L

rvrrrv nnnnnn values. 

(3.25) 

3.2.2 Calculation of a Metric of a Branch 

From Definition 2.9 in section 2.7, the metric of a path from time zero to 

time i is the summation of the metric of the initial node from which the path starts 

and the metrics of the branches of which the path consists. For example, the 

metric, denoted by M(xq
m
(i)), of  the portion between the nodes xq

m
(0) and xq

m
(i) 

of the path(hypothesis) Hm is: 

 

 ( ) ( )( )[ ]∑
=

++=
i

m

q

m

k

mm

q

k

kxkzpInInInixM
1

)(|)()()()( '
0 ππ  (3.25) 

 

In correlated measurement noise case, the calculation of ( ))(|)(' kxkzp m

q  

changes. The rest of the metric calculation is the same as the ODSA explained in  

Chapter 2. So in this section,  ( ))(|)(' kxkzp m

q  calculation will be discussed. 

From Eq.(2.18), it is known that: 

 

( ) ( ) ( ))()(),(|)()(|)(
1

' kIpkIkxkzpkxkzp dl

r

dl

i

q

m

q

k

l

×≈∑
=

 in the presence of 

interference, where kr  is the number of possible values of the approximating 

vector )(kI d . )(kI d  is the approximated form of the interference vector I(k) 

whose possible values are Id1(k), Id2(k), …,
kdrI  with corresponding probabilities 

p(Id1(k)), p(Id2(k)), …,p(
kdrI (k)). 

In correlated measurement noise case, measurement model was 

transformed into the model given in Eq.(3.24) and since in this equation v(k-1) 



 
 

40 

was accepted as interference vector, )(kI d , ( ))(|)(' kxkzp m

q can be calculated as 

below: 

 

 ( ))(|)(' kxkzp m

q =∑
=

−×















−
−

n

j

kvpkvkxkzp dj

kdjv

m

q

1
))1(()1(),(|)(

)1(
321

 (3.26) 

 

where n  is the number of possible values of the approximating vector )1( −kvd . 

v(k-1) is approximated by a discrete random vector )1( −kvd whose possible 

values are vd1(k-1),  vd2(k-1) …, dnv (k-1) with corresponding probabilities p(vd1(k-

1)), p(vd2(k-1)), …,p( dnv (k-1)). 

A measurement model given below will be used in the following 

sections in this thesis: 

 

   ( ) )()1()(,)( krkvakxkgkz dd

m

q +−+=  (3.27)  

 

Since z(k) is a Gaussian-distrubuted random process, [ )1(),(|)( −kvkxkz d

m

q ] is 

also a Gaussian-distrubuted random process with mean ( ) )1()(, −+ kavkxkg d

m

q  

and variance 2
rσ .So ( ))1(),(|)( −kvkxkzp d

m

q  given in Eq.(3.26) can be computed 

as below: 

 

( ) ( )( )










 −−−
−=−

2

2

2 2

)1()(,)(
exp*

2

1
)1(),(|)(

r

d

m

q

r

d

m

q

kavkxkgkz
kvkxkzp

σπσ
(3.28) 
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By inserting ( ))1(),(|)( −kvkxkzp d

m

q  given in Eq. (3.28) into Eq.(3.26), Eq.(3.26) 

takes the form: 

 

( ))1(),(|)( −kvkxkzp d

m

q = 

 

( )( )
∑
= 













−×













 −−−
−

n

j

kvp
kavkxkgkz

dj

r

dj

m

q

r1
))1((

2

)1()(,)(
exp*

2

1
2

2

2 σπσ
   (3.29) 

 

where n is the total number of values that )1( −kvd   can take, )1( −kvdj is the jth 

value of )1( −kvd  and ))1(( −kvp dj  is the jth probability value of ))1(( −kvp d  

For example, for  nv=nr=3, ( ))(|)(' kxkzp m

q  values are calculated at for k=1,2,…, 

L as below: 

 

k=1⇒  )1()0())1(,1()1( dd

m

q rvaxgz ++= , 

 

v(0) is approximated by a discrete random vector, )0(dv  whose possible 

values are vd1(0), vd2(0), )0(3dv  with corresponding probabilities p(vd1(0)), 

p(vd2(0)), p( )0(3dv ). Then ( ))1(|)1( m

qxzp  can be calculated as: 

 

( ) ( )( ) ))0(()0()0(,)1(|)1()1(|)1(
1

'
djdj

m

q

m

q vpvvxzpxzp
vn

j

×==∑
=
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( )=)1(|)1(' m

qxzp
( )( )

∑
= 


























 −−
−

3

1
))0((*

2

)0()1()1(
exp*

2

1
2

2

2
j

dj

r

dj

m

q

r

vp
avxgz

σπσ
 

 

k=2 ⇒ )2()1())2(,2()2( dd

m

q rvaxgz ++= ,  

{
rnvn

ddd rvav )1()0()1( +=
321

,  )1(dv  will have 933 =×=× rv nn  values 

 

v(0) is approximated by a discrete random vector, )0(dv  whose possible 

values are vd1(0), vd2(0), )0(3dv  with corresponding probabilities p(vd1(0)), 

p(vd2(0)) ,p( )0(3dv ).  

r(1) is approximated by a discrete random vector, )1(dr  whose possible 

values are rd1(1), rd2(1), )1(3dr  with corresponding probabilities p(rd1(1)), 

p(rd2(1)), p( )1(3dr ).  

)1(dv values and corresponding probability values are  calculated as  

below: 

 

))1(())0(())1(()1()0()1( 111111 dddddd rpvpvprvav ×=⇒+=  

))1(())0(())1(()1()0()1( 212212 dddddd rpvpvprvav ×=⇒+=  

))1(())0(())1(()1()0()1( 313313 dddddd rpvpvprvav ×=⇒+=  

))1(())0(())1(()1()0()1( 124124 dddddd rpvpvprvav ×=⇒+=  

))1(())0(())1(()1()0()1( 225225 dddddd rpvpvprvav ×=⇒+=  

))1(())0(())1(()1()0()1( 326326 dddddd rpvpvprvav ×=⇒+=  
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))1(())0(())1(()1()0()1( 137137 dddddd rpvpvprvav ×=⇒+=  

))1(())0(())1(()1()0()1( 238238 dddddd rpvpvprvav ×=⇒+=  

))1(())0(())1(()1()0()1( 339339 dddddd rpvpvprvav ×=⇒+=  

 

Then , ( ))2(|)2(' m

qxzp  can be calculated as: 

 

( ) ( )( )∑
×

=
×==

rnvn

j
djdj

m

q

m

q vpvvxzpxzp
1

))1(()1()1(),2(|)2()2(|)2('  
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 −−
−=

9

1
))1((

2

)1()2()2(
exp*

2

1
)2(|)2(

2

2

2

'

j
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qm

q vp
vaxgz

xzp
σπσ

 

k=3 ⇒ )3()2())3(,3()3( dd

m

q ravxgz ++= ,  

{ {
rnrnvn

ddd rvav )2()1()2( +=
×

  )2(dv  will have 27333 =××=×× rrv nnn  

values. Then: 

( ) ( )( )∑
=

×==
27

'

1
))2(()2()2(),3(|)3()3(|)3(

j
djdj

m

q

m

q vpvvxzpxzp  

 

M       M  

 

k=L ⇒ ( ) ( )LrLavLxLgLz dd

m

q +−+= 1))(,()( , )1( −Lvd  will have 

vn × 1−L

rn  = 133 −× L values, then: 
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( ) ( )( )∑
−

=
−×−=−=

)1(

'
33

1
))1(()1()1(),(|)()(|)(

L

djdj

m

q

m

q

x

j

LvpLvLvLxLzpLxLzp

 

It can be seen from the equations that at each time interval the number of 

vd(k) states increases by the number of quantization values, rn , so the number of 

states has to be  limited at each time interval to reduce the execution time of code. 

A state limit value for vd(k) states is determined. The program chooses the states 

that have better metrics when the number of the states exceeds the state limit 

value and cancels others.  

After calculating ( ))(|)(' kxkzp m

q , the natural logarithm of it is taken and 

it is inserted  into the Eq.(3.25)  to calculate the metric of a branch. 

3.3 Accuracy of the Proposed Method 

In Section 3.2.1 and 3.2.2, v(k-1) was  treated as an interference 

parameter and  ODSA  was applied in the presence of interference. We will check 

the accuracy of the proposed method by comparing the simulation results of the 

proposed method by the simulation results of method of decorrelation given in 

section 3.1. Since method of decorrelation can be applied for linear models, we 

will compare only linear models. If we get approximately close results for linear 

models, we will assume that the proposed algorithm can also be applied for 

nonlinear models. 

3.3.1 Comparision of the Method of Decorrelation and Proposed Method of 

Treating Correlation Effect as Interference 

For each method, simulations are obtained after 500 executionss. 

Linear models used in ODSA simulations for both methods are: 
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Motion model  : x (k+1) = x (k) + w (k) 

Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise ODSA simulations, v (k), is modelled as: 

 v(k)=a v(k-1)+r(k)  

The following parameters are used in the ODSA simulations for both 

methods: 

total sampling time, L = 50 

correlation coefficient ,a =0.1 

gate size = 0.1 

number of maximum states = 100 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

variances   : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values  : E[x(0)] = 0, E[w(k)] = 0 , E[r(k)] = 0 

The following added parameters are used in the ODSA simulations for 

“Proposed Method of Treating Correlation Effect as Interference” : 

number of maximum v(k) states = 50 

quantization numbers : Q # of v(0) = 3, Q # of r(k)=3 

expected values  : E[v(0)] = 0  

 

In Figure 6, two methods are compared as the correlation coefficient 

changes. 

In Figure 7, two methods are compared as the gate size changes. 

In Figure 8, two methods are compared as the quantization mumber of 

the initial state vector changes. 
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In Figure 9, two methods are compared as the quantization mumber of 

the disturbance noise vector changes. 

In Figure 10, two methods are compared as the initial state variance 

changes. 

In Figure 11, two methods are compared as the disturbance noise 

variance changes. 

In Figure 12, two methods are compared as the measurement noise 

variance changes. 
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Figure-6: RMS estimation error versus correlation coefficient  for 
ODSA using both methods  
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Figure-7: RMS estimation error versus gate size  for ODSA using 
both methods  
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Figure-8: RMS estimation error versus quantization number of initial 
state vector  for ODSA using both methods  
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Figure-9: RMS estimation error versus quantization number of 
disturbance noise vector  for ODSA using both methods  
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Figure-10: RMS estimation error versus initial state variance  for 
ODSA using both methods  
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Figure-11: RMS estimation error versus disturbance noise variance  
for ODSA using both methods  
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Figure-12: RMS estimation error versus measurement noise variance  
for ODSA using both methods  
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Comments: 

From Figures 6-12, it can be said that as the correlation coefficient, gate 

size, quantization number of initial state vector, quantization number of 

disturbance noise vector, initial state variance, disturbance noise variance and 

measurement noise variance parameters change, two methods show 

approximately same estimation performance. Since we checked that the method 

we proposed can be accepted as an accurate method for linear models so we  will 

assume that  the proposed method can also be applied for nonlinear models. 
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CHAPTER 4  
 
 
 
 

SIMULATION RESULTS OF ODSA WITH CORRELATED 
MEASUREMENT NOISE 

 

 

In this chapter, some simulations are carried out to demonstrate the 

effects of the parameters, which are used in the ODSA algorithm in the presence 

of correlated measurement noise. These parameters are: 

• correlation coefficient 

 (denoted by “a”  in the figures) 

• gate size  

(denoted by “gate size” in the figures) 

• quantization number of initial state vector  

(denoted by “Q  # of x(0)” in the figures) 

• quantization number of disturbance noise vector  

(denoted by “Q  # of w(k)” in the figures) 

• quantization number of initial measurement noise vector 

 (denoted by “Q  # of v(0)” in the figures) 

• quantization number of white gaussian noise vector component of  

measurement noise vector 

 (denoted by “Q  # of r(k)” in the figures) 

•  initial state variance 
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 (denoted by “var[x(0)]” in the figures) 

• disturbance noise variance  

(denoted by  “var[w(k)]” in the figures) 

• initial correlated measurement variance 

 (denoted by  “var[v(0)]” in the figures) 

• limit of the maximum state number  

(denoted by “state limit” in the figures) 

• limit of the maximum measurement noise state number 

 (denoted by “v(k) state limit” in the figures) 

In order to check the performance of the algorithm, the actual target path 

is needed. In other words, the target and the measurement vectors must be 

generated. Using the “randn(.)” command of Matlab, the Gaussian distributed 

random vectors x(0), w(k), v(0), and r(k)  are generated according to the 

corresponding mean and variances. These values are put into the motion and 

measurement models and the actual values of x(k) and z(k) values are obtained. 

Simulations are performed for one linear and one nonlinear model.The 

simulations are obtained after 500 executionss. For each execution, the state 

vector x(k) and the measurement vector z(k) are regenerated with the same motion 

and measurement equations. 

As a result of performed simulations, RMS Estimation Error versus 

Sampling Time graphs are given in figures to show the performance of the 

ODSA. RMS Estimation error for a given sampling time, k,  is calculated as 

below: 
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RMS Error( k)
N

XX
N

i

ikik∑
=

−

= 1

2)
~

(

   k=0,1,…, L      (4.1) 

    

where RMS Error(k) is the RMS Error for sampling time k, N is the total 

execution number, ikX  is the real target state at sampling time k for the ith 

execution, ikX
~

is the estimated target state at sampling time k for the ith execution 

and  L is the total sampling time. 

For each simulation, RMS Estimation Error versus Sampling Time graphs 

acquired from different parameter values are plotted on the same figure. To 

increase the comprehension, tables are given at the end of the figures. In these 

tables, for each parameter value, Average of all RMS Errors obtained from the 

graphs in the figures are given. Average of all RMS Errors is calculated as below: 

 

                  Average of all RMS Errors
L

kErrorRMS
L

k

∑
== 0

)(

      (4.2)            

 

4.1 Effect of the Correlation Coefficient 

In this section, effects of the correlation coefficient are investigated. 

There are two models, which are linear and nonlinear. For each model, 

simulations are obtained for five different values of correlation coefficient, which 

are [0.1  0.3  0.5  0.7  0.9], after 500 executionss. 

         The following parameters are used in the simulations for both linear and 

nonlinear models: 



 
 

54 

total sampling time, L = 50 

gate size = 0.1 

number of maximum states = 100 

number of maximum v(k) states = 50 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances   : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values  : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0,  E[r(k)] = 0 

 

Linear models used in this simulation are: 

Motion model  : x (k+1) = x (k) + w (k) 

Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise, v (k), is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-13: RMS estimation error versus sampling time for the linear 
model as the correlation coefficient  changes 
 

 

Table-1 : Average values of all RMS estimation errors from k=0 to 
k=L for the linear model as the correlation coefficient changes 

Correlation 

Coefficient(a) 
Average of all 
RMS Errors 

0.1 0.4558 

0.3 0.4960 

0.5 0.5737 

0.7 0.6902 

0.9 0.9116 
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Nonlinear models used in this simulation are: 

Motion model  : x (k+1) = exp (- x (k)) + w (k) 

Measurement model : z (k) = cos( x (k) ) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k) 
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Figure-14: RMS estimation error versus sampling time for the 
nonlinear model as the correlation coefficient  changes 
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Table-2 : Average values of all RMS estimation errors from k=0 to 
k=L for the nonlinear model as the correlation coefficient  changes 

Correlation 

Coefficient(a)  
Average of all 
RMS Errors 

0.1 0.6168 

0.3 0.6598 

0.5 0.7202 

0.7 0.8727 

0.9 1.0394 

 

 

Comment: 

 It can be observed from Figure 13 and Figure 14 that the correlation coefficient 

is directly proportional with algorithm performance for both linear and nonlinear 

models. Table 1 and Table 2 show that RMS estimation error increases as the 

correlation coefficient becomes larger.  

4.2 Effect of the Gate Size 

In this section, effects of the gate size are investigated. There are two 

models, which are linear and nonlinear. For each model, simulations are obtained 

for four different values of gate size, which are [0.1  1  2   5], after 500 

executions. 

The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time, L = 50 

correlation coefficient, a= 0.1 
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number of maximum states = 100 

number of maximum v (k) states = 50 

quantization numbers         : Q # of x(0) = 5, Q # of w(k) = 3,  

          Q # of v(0) = 3, Q # of r(k) = 3 

variances          : var[x(0)] = 1, var[v(0)]=1, var[w(k)] =0.1 

expected values         : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0, E[r(k)] = 0  

 

Linear models used in this simulation are: 

Motion model  : x (k+1) = x (k) + w (k) 

Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k) 
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Figure-15: RMS estimation error versus sampling time for the linear 
model as the gate size changes 
 

 

Table-3 : Average values of all RMS estimation errors from k=0 to 
k=L for the linear model as the gate size changes 

Gate Size 
Average of all 

RMS Errors 

0.1 1.0223 

1 1.0037 

2 1.3495 

5 1.4436 

 

 

Nonlinear models used in this simulation are: 

Motion model  : x (k+1) = exp (- x (k)) + w (k) 

Measurement model : z (k) = cos( x (k) ) + v (k)  
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where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-16: RMS estimation error versus sampling time for the 
nonlinear model as the gate size changes 
 

 

Table-4 : Average values of all RMS estimation errors from k=0 to 
k=L for the nonlinear model as the gate size changes 

Gate Size 
Average of all  

RMS Errors 

0.1 0.9774 

1 1.0217 

2 0.8142 

5 0.7545 

 

 



 
 

61 

Comment:  

The effect of the gate size is observed more clearly in the linear model. Figure 15 

shows that the gate size is directly proportional with the estimation error. Increase 

on the gate size causes estimation error to become larger. Figure 16 shows that 

increase on gate size does not affect estimation error too much in nonlinear 

model. 

4.3 Effect of the Quantization Number of the Initial State Vector 

In this section, effects of the quantization number of the initial state vector 

are investigated. There are two models, which are linear and nonlinear. For each 

model, simulations are obtained for four different values of the quantization 

number of initial state vector, which are [3  5  7  9], after 500 executions. 

The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time, L = 50 

gate size =  0.1 

correlation coefficient, a = 0.1 

number of maximum states = 100 

number of maximum v(k) states = 50 

quantization numbers         : Q # of w(k) = 3, Q # of v(0) = 3, Q # of r(k)=3 

variances          : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values         : E[x(0)] = 0, E[w(k) ]= 0, E[v(0)] = 0 , E[r(k)] = 0 

 

Linear models used in this simulation are: 

Motion model  : x (k+1) = x (k) + w (k) 
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Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-17: RMS estimation error versus sampling time for the linear 
model as the quantization number of x(0) changes 
 

 

Table-5 :  Average values of all RMS estimation errors from k=0 to 
k=L for the linear model as the quantization number of x(0) changes 

Quantization 

 # of x(0) 

Average of all  

RMS Errors 

3 0.4681 

5 0.4560 

7 0.4525 

9 0.4541 
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Nonlinear models used in this simulation are: 

Motion model  : x (k+1) = exp (- x (k)) + w (k) 

Measurement model : z (k) = cos( x (k) ) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-18: RMS estimation error versus sampling time for the linear 
model as the quantization number of  x(0) changes 
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Table-6 :  Average values of all RMS estimation errors from k=0 to 
k=L for the nonlinear model as the quantization number of x(0) changes 

Quantization 

 # of x(0) 

Average of all  

RMS Errors 

3 0.6295 

5 0.6323 

7 0.6282 

9 0.6106 

 

 

Comment:  

From Figure 17 and Figure 18, it can be observed that the number of the 

quantization levels of the initial state vector x(0) slightly affects the performance 

of the algorithm for both linear and nonlinear models. 

4.4 Effect of the Quantization Number of the Disturbance Noise Vector 

In this section, effects of the quantization number of the disturbance noise 

vector are investigated. There are two models, which are linear and nonlinear. For 

each model, simulations are obtained for four different values of quantization 

number of the disturbance noise, which are [3  5  7  9] after 500 executions. 

The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time, L = 50 

gate size =  0.1 

correlation coefficient, a  = 0.1 

number of maximum states = 100 
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number of maximum v(k) states = 50 

quantization numbers         : Q # of x(0) = 5, Q # of v(0) = 3, Q # of r(k)=3 

variances          : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values         : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0 , E[r(k)] = 0 

 

Linear models used in this simulation are: 

Motion model  : x (k+1) = x (k) + w (k) 

Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-19: RMS estimation error versus sampling time for the linear 
model as the quantization number of  w(k) changes 
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Table-7 :  Average values of all RMS estimation errors from k=0 to 
k=L for the linear model as the quantization number of w(k) changes 

Quantization 

 # of w(k) 

Average of all  

RMS Errors 

3 0.4639 

5 0.4453 

7 0.4757 

9 0.4835 

 

 

Nonlinear models used in this simulation are: 

Motion model  : x (k+1) = exp (- x (k)) + w (k) 

Measurement model : z (k) = cos( x (k) ) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-20: RMS estimation error versus sampling time for the 
nonlinear model as the quantization number of  w(k) change 
 

 

Table-8 :  Average values of all RMS estimation errors from k=0 to 
k=L for the nonlinear model as the quantization number of w(k) 
changes 

Quantization 

 # of w(k) 

Average of all  

RMS Errors 

3 0.6064 

5 0.6241 

7 0.6345 

9 0.6252 
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Comment: 

From Figure 19 and Figure 20, it can be observed that increasing the number of 

the quantization levels of the disturbance noise w(k) slightly affects the state 

estimation error for both linear and nonlinear models. 

4.5 Effect of Quantization Number of Initial Measurement Noise 

In this section, effects of the quantization number of the initial 

measurement noise vector are investigated. There are two models, which are 

linear and nonlinear. For each model, simulations are obtained for four different 

values of the quantization number of initial measurement noise, which are [3  5  7  

9] after 500 executions. 

The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time, L = 50 

gate size = 0.1 

correlation coefficient, a= 0.1 

number of maximum states = 100 

number of maximum v(k) states = 50 

quantization numbers         : Q # of x(0) = 5, Q # of w(k)=3 , Q # of r(k)=3 

variances          : var[x(0) ]= 1, var[v(0)]=1, var[w(k)]= 0.1 

expected values         : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0, E[r(k)] = 0  

 

Linear models used in this simulation are: 

Motion model  : x (k+1) = x (k) + w (k) 
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Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-21: RMS estimation error versus sampling time for the linear 
model as the quantization number  of  v(0)  changes 
 

 

Table-9 :  Average values of all RMS estimation errors from k=0 to 
k=L for the linear model as quantization number  of  v(0)  changes 

Quantization 

 # of v(0) 

Average of all  

RMS Errors 

3 0.4593 

5 0.4603 

7 0.4581 

9 0.4603 
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Nonlinear models used in this simulation are: 

Motion model  : x (k+1) = exp (- x (k)) + w (k) 

Measurement model : z (k) = cos( x (k) ) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-22: RMS estimation error versus sampling time for the 
nonlinear model as the quantization number  of  v(0)  changes 
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Table-10 :  Average values of all RMS estimation errors from k=0 to 
k=L for the nonlinear model as quantization number  of  v(0)  changes 

Quantization 

 # of v(0) 

Average of all  

RMS Errors 

3 0.6096 

5 0.6147 

7 0.6140 

9 0.6140 

 

 

Comment: 

From Figure 21 and Figure 23, it can be observed that the number of the 

quantization levels of the initial measurement noise vector v(0) slightly affects 

the performance of the algorithm for both linear and nonlinear models. 

4.6 Effect of Quantization Number of White Gaussian Noise Vector 

Component of Measurement Noise Vector 

In this section, effects of the quantization number of the white Gaussian 

noise component of measurement noise vector are investigated. There are two 

models, which are linear and nonlinear. For each model, simulations are obtained 

for four different values of the quantization number of the white Gaussian noise 

component of measurement noise vector, which are [3  5  7  9] after 500 

executions. 

The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time, L =  50 
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gate size = 0.1 

correlation coefficient,  a = 0.1 

number of maximum states = 100 

number of maximum v(k) states = 50 

quantization numbers         : Q # of x(0) = 5, Q # of v(0)=3, Q # of w(k)=3  

variances          : var[x(0) ]= 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values         : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0 , E[r(k)] = 0 

 

Linear models used in this simulation are: 

Motion model  : x (k+1) = x (k) + w (k) 

Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-23: RMS estimation error versus sampling time for the linear 
model as the quantization number  of  r(k) changes 
 

 

Table-11 :  Average values of all RMS estimation errors from k=0 to 
k=L for the linear model as quantization number  of  r(k)  changes 

Quantization 

 # of r(k) 

Average of all  

RMS Errors 

3 0.4607 

5 0.4591 

7 0.4626 

9 0.4567 

 

 

Nonlinear models used in this simulation are: 

Motion model  : x (k+1) = exp (- x (k)) + w (k) 

Measurement model : z (k) = cos( x (k) ) + v (k)  
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where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-24: RMS estimation error versus sampling time for the 
nonlinear model as the quantization number  of  r(k)  changes 
 

 

Table-12 :  Average values of all RMS estimation errors from k=0 to 
k=L for the nonlinear model as quantization number  of  r(k)  changes 

Quantization 

 # of r(k) 

Average of all  

RMS Errors 

3 0.6288 

5 0.6418 

7 0.6443 

9 0.6598 
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Comment: 

From Figure 23 and Figure 24, it can be observed that the number of the 

quantization levels of r(k),  slightly affects the performance of the algorithm for 

both linear and nonlinear models. 

4.7 Effect of the Initial State Variance 

In this section, effects of the initial state variance are investigated. There 

are two models, which are linear and nonlinear. For each model, simulations are 

obtained for four different values of initial state variance, which are [0.01  0.1  1  

3],  after 500 executions. 

The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time,  L = 50 

gate size = 0.1 

correlation coefficient , a = 0.1 

number of maximum states = 100 

number of maximum v(k) states = 50 

quantization numbers         : Q # of x(0) = 5, Q # of w(k)=3,  

          Q # of v(0) = 3, Q # of r(k)=3 

variances          : var[v(0)]=1, var[w(k)] = 0.1 

expected values         : E[x(0)] = 0, E[w(k)] = 0 ,E[v(0)] = 0, E[r(k)] = 0  

 

Linear models used in this simulation are: 

Motion model  : x (k+1) = x (k) + w (k) 
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Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v(k)=a v(k-1)+r(k)  
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Figure-25: RMS estimation error versus sampling time for the linear 
model as the variance of  x(0) changes 
 

 

Table-13 :  Average values of all RMS estimation errors from k=0 to 
k=L for the linear model as the variance of x(0) changes 

Variance 

of x(0) 

Average of all  

RMS Errors 

0.01 0.4364 

0.1 0.4512 

1 0.4566 

3 0.4725 
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Nonlinear models used in this simulation are: 

Motion model  : x (k+1) = exp (- x (k)) + w (k) 

Measurement model : z (k) = cos( x (k) ) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-26: RMS estimation error versus sampling time for the 
nonlinear model as the variance of  x(0) changes 
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Table-14 :  Average values of all RMS estimation errors from k=0 to 
k=L for the nonlinear model as the variance of x(0) changes 

Variance 

of x(0) 

Average of all  

RMS Errors 

0.01 0.5535 

0.1 0.5666 

1 0.6110 

3 0.9679 

 

 

Comment:  

When Figure 25 and Figure 26 are studied, it can be observed that increase on the 

variance of the initial state vector slightly affects the performance of the state 

error estimation. As shown by figures, the variance of the initial state vector has 

important effects on only first samples. The state estimation error begins with 

large error values due to the large initial state variance values, and then settles to 

lower values as sampling time, k, increases.      

4.8 Effect of the Disturbance Noise Variance 

In this section, effects of the disturbance noise vector are investigated. 

There are two models, which are linear and nonlinear. For each model, 

simulations are obtained for four different values of disturbance noise variance, 

which are [0.01  0.1  1  3], after 500 executions. 

The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time, L = 50 
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gate size = 0.1 

correlation coefficient, a  = 0.1 

number of maximum states = 100 

number of maximum v(k) states = 50 

quantization numbers         : Q # of x(0) = 5, Q # of w(k)=3,  

                               Q # of v(0) = 3, Q # of  r(k)=3 

variances          : var[x(0)] = 1, var[v(0)]=1 

expected values         : E[x(0) ]= 0, E[w(k)] = 0, E[v(0)]= 0, E[r(k)] = 0  

 

Linear models used in this simulation are: 

Motion model  : x (k+1) = x (k) + w (k) 

Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v(k)=a v(k-1)+r(k)  
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Figure-27: RMS estimation error versus sampling time for the linear 
model as the variance of  w(k) changes 
 

 

Table-15 :  Average values of all RMS estimation errors from k=0 to 
k=L for the linear model as the variance of w(k) changes 

Variance 

of w(k) 

Average of all  

RMS Errors 

0.01 0.2936 

0.1 0.4655 

1 0.7782 

3 1.0463 

 

 

Nonlinear models used in this simulation are: 

Motion model  : x (k+1) = exp (- x (k)) + w (k) 

Measurement model : z (k) = cos( x (k) ) + v (k) 
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where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-28: RMS estimation error versus sampling time for the 
nonlinear model as the variance of  w(k) changes 
 

 

Table-16 :  Average values of all RMS estimation errors from k=0 to 
k=L for the nonlinear model as the variance of w(k) changes 

Variance 

of w(k) 

Average of all  

RMS Errors 

0.01 0.4227 

0.1 0.6160 

1 2.0786 

3 8.8283 
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Comment:  

It can be observed from Figure 27 and Figure 28 that little change on the 

disturbance noise variance directly affects performances of the state estimation 

error for both linear and nonlinear models. Table 15 and Table 16 show that 

increase on the disturbance noise variance causes the performance of the 

estimation to get worse.     

4.9 Effect of the Initial Measurement Noise Variance 

In this section, effects of the initial measurement noise variance are 

investigated. There are two models, which are linear and nonlinear. For each 

model, simulations are obtained for four different values of initial measurement 

noise variance, which are [0.01  0.1  1  10] , after 500 executions. 

The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time, L = 50 

gate size = 0.1 

correlation coefficient, a = 0.1 

number of maximum states = 100 

number of maximum v(k) states = 50 

quantization numbers         : Q # of x(0) = 5, Q # of w(k)=3,  

          Q # of v(0) = 3, Q # of r(k)=3 

variances          : var[x(0)] = 1, var[w(k)] = 0.1, var[r(k)]= 0.1 

expected values         : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0, E[r(k)] = 0  

 

Linear models used in this simulation are: 
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Motion model  : x (k+1) = x (k) + w (k) 

Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-29: RMS estimation error versus sampling time for the linear 
model as the variance of  v(0) changes 
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Table-17 :  Average values of all RMS estimation errors from k=0 to 
k=L for the linear model as the variance of v(0) changes 

Variance 

of v(0) 

Average of all  

RMS Errors 

0.01 0.9982 

0.1 0.9977 

1 1.0258 

3 1.0653 

 

 

Nonlinear models used in this simulation are: 

Motion model  : x (k+1) = exp (- x (k)) + w (k) 

Measurement model : z (k) = cos( x (k) ) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-30: RMS estimation error versus sampling time for the 
nonlinear model as the variance of  v(0) changes 
 

 

Table-18 :  Average values of all RMS estimation errors from k=0 to 
k=L for the nonlinear model as the variance of v(0) changes 

Variance 

of v(0) 

Average of all  

RMS Errors 

0.01 1.0230 

0.1 0.9971 

1 0.9683 

3 0.9689 

 

 

Comment: 

The effect of the measurement noise variance is observed more clearly in the 

linear model. Figure 29 shows that the measurement noise variance does not 
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affect the performance of the algorithm very much for initial sampling time 

values, after a sampling time about 15, it is observed that increase on the the 

measurement noise variance causes estimation error to become larger. Figure 30 

shows that increase on the initial measurement noise variance does not affect 

estimation error too much in nonlinear model. 

4.10 Effect of the Limit of the Maksimum State Number  

In this section, effects of the limit of the maksimum state number are 

investigated. There are two models, which are linear and nonlinear. For each 

model, simulations are obtained for four different values of limit of the 

maksimum state number, which are [10000 1000  100  50] , after 500 executions. 

The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time, L = 50 

gate size  = 0.1 

correlation coefficient, a  = 0.1 

number of maximum states = 100 

number of maximum v(k) states = 50 

quantization numbers         : Q # of x(0) = 5, Q # of v(0) =3,  

                               Q # of w(k) =3 , Q # of r(k) =3 

variances          : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values         : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0, E[r(k)] = 0 

Linear models used in this simulation are: 

Motion model  : x (k+1) = x (k) + w (k) 
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Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v(k)=a v(k-1)+r(k)  
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Figure-31: RMS estimation error versus sampling time for the linear 
model as the value of the state limit  changes 
 

 

Table-19 :  Average values of all RMS estimation errors from k=0 to 
k=L for the linear model as the value of the state limit changes 

State Limit 
Average of all  

RMS Errors 

no limit 0.4577 

10000 0.4569 

1000 0.4601 

100 0.4595 
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Nonlinear models used in this simulation are: 

Motion model  : x (k+1) = exp (- x (k)) + w (k) 

Measurement model : z (k) = cos( x (k) ) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-32: RMS estimation error versus sampling time for the 
nonlinear model as the value of the state limit changes 
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Table-20 :  Average values of all RMS estimation errors from k=0 to 
k=L for the nonlinear model as the value of the state limit changes 

State Limit 
Average of all  

RMS Errors 

no limit 0.6216 

10000 0.6222 

1000 0.6175 

100 0.6184 

 

 

Comment:  

It can be observed from the figures that limiting the number of states does not 

affect the algorithm performance in linear (Figure 31) and nonlinear (Figure 32) 

models too much. In the simulations, the program chooses the paths that have 

better metrics when the number of the states exceeds the state limit and cancels 

others. Since the program computation time is directly related with the maximum 

state number, the computation time can be reduced significantly by decreasing 

the state number without any loss in the performance.  

4.11 Effect of the Limit of the Maximum Measurement Noise State Number 

In this section, effects of the limit the of maximum measurement noise state 

number are investigated. There are two models, which are linear and nonlinear. 

For each model, simulations are obtained for four different values of the limit of 

maximum measurement noise state number, which are [1000 500  100  50] after 

500 executions. 
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The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time,  L = 50 

gate size  =  0.1 

correlation coefficient, a  = 0.1 

number of maximum states = 100 

quantization numbers         : Q # of x(0) = 5, Q # of v(0) =3,  

         Q # of w(k) =3,  Q # of  r(k) =3 

variances          : var[x(0) ]= 1, var[v(0)]=1, var[w(k)] = 1 

expected values         : E[x(0) ]= 0, E[w(k)] = 0, E[v(0)] = 0, E[r(k)] = 0  

 

Linear models used in this simulation are: 

Motion model  : x (k+1) = x (k) + w (k) 

Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v(k)=a v(k-1)+r(k)  
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Figure-33: RMS estimation error versus sampling time for the linear 
model as the value of the state limit of v(k)  changes 
 

 

Table-21 :  Average values of all RMS estimation errors from k=0 to 
k=L for the linear model as the value of the state limit of v(k)  changes 

v(k) State Limit 
Average of all  

RMS Errors 

500 0.4557 

250 0.4445 

100 0.4476 

50 0.4575 

 

 

Nonlinear models used in this simulation are: 

Motion model  : x (k+1) = exp (- x (k)) + w (k) 

Measurement model : z (k) = cos( x (k) ) + v (k)  
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where correlated measurement noise, v (k),   is modelled as: 

 v (k)=a v (k-1)+r (k)  
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Figure-34: RMS estimation error versus sampling time for the 
nonlinear model as the value of the state limit of v(k)  changes 
 

 

Table-22 :  Average values of all RMS estimation errors from k=0 to 
k=L for the nonlinear model as the value of the value of the state limit 
of v(0)  changes 

v(k) State Limit 
Average of all  

RMS Errors 

500 0.5937 

250 0.5887 

100 0.6177 

50 0.6176 
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Comment:  

It can be observed from the figures that limiting the number of states of v(k) does 

not affect the algorithm performance in linear (Figure 33) and nonlinear (Figure 

34) models too much. In the simulations, the program chooses the v(k) states that 

have better metrics when the number of the states exceeds the v(k) state limit and 

cancels others. Since the program computation time is directly related with the 

maximum v(k) state number, the computation time can be reduced significantly 

by decreasing the maximum state number of v(k) without any loss in the 

performance.  
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CHAPTER 5 
 
 
 
 

ALPHA-BETA FILTER WITH CORRELATED MEASUREMENT 
NOISE 

 

 

In this chapter, target tracking system in the presence of correlated 

measurement noise by using Alpha-Beta Filter will be studied. Rogers [3, 4] 

described the correlated noise as a first-order Markov process in non-

maneuvering case. 

 

5.1 Correlated Measurement Noise Model 

The tracking system produces a measurement of target position of the 

form: 

 

 )()()( kvkxkz +=  (5.1)   

where )(kx is the true target position, and  )(kv  is the correlated measurement 

error at time  kTtk = . The measurement interval T is presumed constant. The 

variable )(kv  is modeled by the first-order Markov process: 

 

 )()1()( krkavkv +−=  (5.2) 

 

where a is the correlation coefficient (0≤ a ≤1), and )(kr  is zero-mean white 

noise, with variance: 
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 222 )1( vr aR σσ −==  (5.3) 

 

where  2
vσ  is variance  of the measurement  noise )(kv . 

At high measurement frequencies, the discrete measurement sequence 

can be approximated by a continuous time  measurement process of equal 

spectral density [3,4,5]. So the sequence )(kv can be viewed as a discrete 

sampling of the continuous Markov process )(tv  satisfying: 

 

 )(
)(

tr
tv

dtdv +−=
τ

 

 )exp(
τ
T

a −=  

 







=+′′= )(

2
)()()(

2

tttrtrEtR δ
τ
σ

 (5.4) 

 

where τ  is the correlation time. 

5.2 Decorrelation Process 

In this section, the deccorelation process [3] will be described. To 

decorrelate the measurement noise, a new measurement )(ky , called “artificial 

measurement”, is generated by using the measurement given in Eq. (5.1)  as 

below: 

 

 [ ])1()1()()()1()()( −+−−+=−−= kvkxakvkxkzakzky  

 
44 344 21

)(

)1()()1()()(

kr

kvakvkxakxky −−+−−=  
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 [ ] )()1()()( krkxakxky +−−=  (5.5)  

 

for which the measurement errors are uncorrelated. 

5.3 Alpha-Beta Filter 

The general form of the Kalman Filter is described by the following 

equations: 

 

Motion model,   )()()1( kwksAks Γ+=+   (5.6) 

Measurement model,   )()()( kvksMkz +=  

where  

• s(k) is the state vector of the target in track, at the kth  instant 

• w(k) is the disturbance noise vector with zero-mean 

• A  is the state transition matrix  

• Γ  is the excitation or maneuver matrix  

• z(k) is the measurement vector of target in track. 

• M is the measurement or selection matrix  

 

Alpha-Beta Filter is derived from Kalman Filter. It is a sub-optimum 

algorithm which has constant gain, good track-following ability, ease of 

adaptation to changes in the tracking conditions,  and low computational cost [9]. 

The standart equations for the Alpha-Beta Filter are obtained by 

substituting: 
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in motion and measurment models of Kalman Filter given in Eq. (5.6). This is a 

constant-velocity model for target motion, with only position measurements 

available. It is assumed that each position coordinate x in the target state vector is 

decoupled from others and can be treated separately. 

In this section, Alpha-Beta Filter will be implemented to track the target 

in correlated measurement noise case.  

 Let the target state vector be denoted by 

[ ]tkxkxks )()()( &= , where “ t” denoes the matrix taransposition, 

  )(kx and )(kx&  represent the true target position and velocity at time kT . 

The target motion model is:  

 

 )()1()( kwkAsks Γ+−=   

 

where 







=

10

1 T
A , Γ = [ ]tT 1 , )(kw  is a Gaussian distributed disturbance noise 

vector at time k  with zero mean and with variance  (qT). The units of (q) are 

[meter/sec2]2  per Hz. 

The measurement model equation may be written as: 

                                       [ ] )()(01)( kvkskz +=  

 

or, in terms of artificial measurement model defined in section 5.2, )(ky , as: 

 

 )()()( kvksHky +=   (5.7) 

 

where [ ]aTaH )1( −= . 
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Proof of Eq.(5.7): 

 

=−−= )1()()( kzakzky [ ] [ ]( ))1()1(01)()(01 −+−−+ kvksakvks  

[ ] [ ]
44 344 21

)(

)1()()1(01)(01)(

kr

kvakvksaksky −−+−−=  (5.9) 

 

From Eq.(5.6),  )()()1( 11 kwAksAks Γ−=− −− , with disturbance noise, if 

)1( −ks is inserted in Eq.(5.9), the equation below is obtained 

 

=)(ky [ ] [ ] [ ]
4444 34444 21

)(

11 )()(01)(01)(01
k

krkwAaksAaks

η

+Γ+− −−  

 [ ] )()(01)( 1 krkwAak +Γ= −η  (5.10) 

 

In practical applications, the first term of right-hand side in Eq.(5.10) is usually 

small and can be neglected without degrading much performance [7]. So we have  

)()( krk ≈η . 

  

[ ] [ ]( ) )()(0101)( 1 krksAaky

H

+−= −

444 3444 21
                                             (5.11) 

)()()( krkHsky +=  

[ ] )1(01 1−−= aAH  
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[ ]aTaH )1( −= , and results Eq.(5.7) 
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The use of )(ky brings the model into the standard form of Kalman filter 

theory, in which the measurement noise presumed white. 

The optimal steady-state filter has the form: 

 

 [ ])1(ˆ)()1(ˆ)(ˆ −−+−= ksAHkyGksAks  (5.12) 

 

where the gain, G is: 

 

  1−= RPHG t  (5.13)  

 

and P, the steady-state covariance matrix of the smoothed state estimate obeys 

the algebraic Riccati equation: 

 

 )()( 1 ttt qTAPAHRPHIP ΓΓ+−= −  (5.14) 

                            

 An explicit solution for P, which is derived in  the Appendix B, is as 

follows: 
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Note that the parameter λ  plays the role of the dimensionless “target 

maneuvering index”.   
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CHAPTER 6 
 
 
 
 

SIMULATION RESULTS OF ALPHA_BETA FILTER 

 

 

In this chapter, some simulations are carried out to demonstrate the effects 

of the parameters, which are used in the Alpha-Beta Filter algorithm in the 

presence of correlated measurement noise. These parameters are: 

• correlation coefficient 

(denoted by “a”  in the figures) 

• measurement interval 

(denoted by “T”  in the figures) 

• disturbance noise nariance 

(denoted by “var[w(k)]”  in the figures) 

• measurement noise variance 

(denoted by “var[v(k)]”  in the figures) 

• initial state variance 

(denoted by “var[s(0)]”  in the figures) 

Simulations are performed for only linear model because Alpha-Beta 

Filter Algorithm can be applied only for linear models. The simulations are 

obtained after 500 Monte-Carlo runs. For each run, the state vector s(k) and the 

measurement vector z(k) are regenerated with the same motion and measurement 

equations. 
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As a result of performed simulations, RMS Estimation Error versus 

Sampling Time graphs are given in figures to show the performance of the 

Alpha-Beta Filter Algorithm. RMS Estimation error for a given sampling time, k, 

is calculated as below: 

 

RMS Error( k)
N

XX
N

i

ikik∑
=

−

= 1

2)
~

(

   k=0,1,…, L      (6.1)  

  

where RMS Error(k) is the RMS Error for sampling time k, N is the total 

execution number, ikX  is the real target state at sampling time k for the ith 

execution, ikX
~

is the estimated target state at sampling time k for the ith execution 

and  L is the total sampling time. 

For each simulation, RMS Estimation Error versus Sampling Time graphs 

acquired from different parameter values are plotted on the same figure. To 

increase the comprehension, tables are given at the end of the figures. In these 

tables, for each parameter value, Average of all RMS Errors obtained from the 

graphs in the figures are given. Average of all RMS Errors is calculated as below: 

 

                  Average of all RMS Errors
L

kErrorRMS
L

k

∑
== 0

)(

      (6.2)            
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6.1 Effect of the Correlation Coefficient 

6.1.1 Simulation 1 

In this section, effects of the correlation coefficient are investigated. 

Simulations are obtained for five different values of correlation coefficient, which 

are [0.1  0.3  0.5  0.7  0.9 ] , after 500 executions. 

 Linear models used in this simulation are: 

Motion model  : s(k+1) = s (k) + Гw (k) 

Measurement model : z (k) = Ms(k) + v (k)  

where correlated measurement noise, v (k), is modelled as: v(k)=a v(k-1)+r(k) , 

Г=[T 1]
t
, M=[1 0]           

The following parameters are used in the simulations: 

total sampling time = 50 

measurement interval, T = 0.1 

variances   : var[s(0)] = 1, var[v(k)]=1, var[w(k)]= 0.1 

expected values  : E[s(0)] = 0, E[w(k)] = 0, E[v(k)] = 0 , E[r(k)] = 0 
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Figure-35: RMS estimation error versus sampling time as the 
correlation coefficient changes 
 

 

Table-23 : Average values of all RMS estimation errors from k=0 to 
k=L as the correlation coefficient changes 

Correlation 

Coefficient (a) 

Average of all  

RMS Errors 

0.1 0.4832 

0.3 0.4752 

0.5 0.5618 

0.7 0.7266 

0.9 0.7963 
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Comment:  

It can be observed from the Figure 35 that the correlation coefficient is directly 

proportional with algorithm performance. Table 23 shows that RMS estimation 

error increases as the correlation coefficient becomes larger.  

6.1.2 Simulation 2 

Parameter values used in this simulation are same as the parameter 

values used in simulation 1, except measurment interval, T=1 is taken. 
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Figure-36: RMS estimation error versus sampling time as the 
correlation coefficient changes 
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Table-24 : Average values of all RMS estimation errors from k=0 to 
k=L as the correlation coefficient changes 

Correlation 

Coefficient (a) 

Average of all  

RMS Errors 

0.1 0.7898 

0.3 0.8676 

0.5 0.8818 

0.7 1.0076 

0.9 1.1805 

 

 

Comment:  

It can be observed from the Figure 36 that the correlation coefficient is directly 

proportional with algorithm performance. Table 24 shows that RMS estimation 

error increases as the correlation coefficient becomes larger.When compared with 

simulation 1 given in section 6.1.1, average of all RMS errors are larger since the 

measurement interval, T, is increased from 0.1 to 1. 

6.2 Effect of the Measurement Interval (T) 

In this section, effects of the measurement interval are investigated. 

Simulations are obtained for four different values of measurement interval, which 

are [0.1  0.5  1  2 ] after 500 executions. 

The following parameters are used in the simulations: 

total sampling time = 50 

correlation coefficient, a= 0.1 
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variances   : var[s(0)]= 1, var[v(k)]=1, var[w(k)] = 0.1 

expected values  : E[s(0)] = 0, E[w(k)]= 0, E[v(k)] = 0, E[r(k)] = 0 

 Linear models used in this simulation are: 

Motion model  : s(k+1) = s (k) + Гw (k) 

Measurement model : z (k) = Ms(k) + v (k)  

where correlated measurement noise, v (k), is modelled as: v(k)=a v(k-1)+r(k),  

Г=[T 1]
t
, M=[1 0]           
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Figure-37: RMS estimation error versus sampling time as the 
measurement interval  changes 
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Table-25 : Average values of all RMS estimation errors from k=0 to 
k=L as the measurement interval  changes 

Measurement 

Interval,T 

Average of all  

RMS Errors 

0.1 0.4423 

0.5 0.6698 

1 0.8192 

2 0.8868 

 

 

Comment:  

It can be observed from the Figure 37 that the measurement interval is directly 

proportional with algorithm performance. Table 25 shows that RMS estimation 

error increases as the measurement interval becomes larger.  

6.3 Effect of the Disturbance Noise Variance 

In this section, effects of the disturbance variance are investigated. 

Simulations are obtained for four different values of the disturbance variance, 

which are [0.01  0.1  1  3 ] after 500 executions. 

 Linear models used in this simulation are: 

Motion model  : s(k+1) = s (k) + Гw (k) 

Measurement model : z (k) = Ms(k) + v (k)  

where correlated measurement noise, v (k), is modelled as: v(k)=a v(k-1)+r(k),  

Г=[T 1]
t
, M=[1 0]           
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The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time = 50 

measurement interval, T =0.1 

correlation coefficient, a = 0.1 

variances   : var[s(0)] = 1, var[v(k)]=1 

expected values  : E[s(0)] = 0, E[w(k)] = 0, E[v(k)] = 0, E[r(k)] = 0 
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Figure-38: RMS estimation error versus sampling time as the 
disturbance noise variance  changes 
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Table-26 : Average values of all RMS estimation errors from k=0 to 
k=L as the disturbance noise variance  changes 

Variance of 

w(k) 

Average of all  

RMS Errors 

0.01 0.6924 

0.1 0.8165 

1 0.9184 

3 0.9713 

 

 

Comment:  

It can be observed from the Figure 38 that disturbance noise variance is directly 

proportional with algorithm performance. Table 26 shows that RMS estimation 

error increases as the disturbance noise variance becomes larger.  

6.4 Effect of the Measurement Noise Variance 

In this section, effects of the measurement noise variance are investigated. 

Simulations are obtained for four different values of measurement noise variance, 

which are [0.01  0.1  1  3 ] after 500 executions. 

 Linear models used in this simulation are: 

Motion model  : s(k+1) = s (k) + Гw (k) 

Measurement model : z (k) = Ms(k) + v (k)  

where correlated measurement noise, v (k), is modelled as: v(k)=a v(k-1)+r(k),  

Г=[T 1]
t
, M=[1 0]           
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         The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time = 50 

measurement interval, T = 0.1 

correlation coefficient, a = 0.1 

variances   : var[s(0)] = 1, var[w(k)]=0 

expected values  : E[s(0)] = 0, E[w(k)] = 0, E[v(k)]= 0 , E[r(k)] = 0 
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Figure-39: RMS estimation error versus sampling time for the linear 
model as the measurement noise variance  changes 
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Table-27 : Average values of all RMS estimation errors from k=0 to 
k=L for the linear model as the measurement noise variance  changes 

Variance of 

v(k) 

Average of all  

RMS Errors 

0.01 0.1018 

0.1 0.3024 

1 0.7880 

3 1.3167 

 

 

Comment:  

It can be observed from the Figure 39 that measurement noise variance is directly 

proportional with algorithm performance. Table 27 shows that RMS estimation 

error increases as the measurement noise variance becomes larger.  

6.5 Effect of the Initial State Variance 

In this section, effects of the initial state variance are investigated. 

Simulations are obtained for four different values of initial state variance, which 

are [0.01  0.1  1  1.2 ] after 500 executions. 

 Linear models used in this simulation are: 

Motion model  : s(k+1) = s (k) + Гw (k) 

Measurement model : z (k) = Ms(k) + v (k)  

where correlated measurement noise, v (k), is modelled as: v(k)=a v(k-1)+r(k),  

Г=[T 1]
t
, M=[1 0]           
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         The following parameters are used in the simulations for both linear and 

nonlinear models: 

total sampling time = 50 

measurement interval, T = 0.1 

correlation coefficient, a = 0.1 

variances   : var[w(k])=0, var[v(k)]=1 

expected values  : E[s(0)] = 0, E[w(k)] = 0, E[v(k)] = 0, E[r(k)] = 0 
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Figure-40: RMS estimation error versus sampling time as the initial 
state variance  changes 
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Table-28 : Average values of all RMS estimation errors from k=0 to 
k=L as the initial state variance  changes 

Variance of 

s(0) 

Average of all  

RMS Errors 

0.01 0.7876 

0.1 0.7833 

1 0.7847 

3 0.8074 

 

 

Comment:  

It can be observed from the Figure 40 that initial state variance slightly affects the 

performance of the algorithm. 
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CHAPTER 7 
 
 
 
 

COMPARISION OF ODSA WITH ALPHA-BETA FILTER 
ALGORITHM 

 

 

We proposed a method to handle the correlated noise problem in target 

tracking by using ODSA in Chapter 3. Rogers proposed  decorrelation method to 

handle the the correlated noise problem in target tracking by using Alpha-Beta 

Filter algorithm [3,4], which was explained in Chapter 5.  In this chapter, ODSA 

with correlated measurement noise and Alpha-Beta Filter Algorithm with 

correlated measurement noise will be compared.  

ODSA as described in Chapter 3 supports both linear and nonlinear 

motion and measurement equations, whereas the Alpha-Beta Filter Algorithm 

described in Chapter 5 supports only linear equations. In order to compare these 

algorithms, linear motion and measurement equations will be used for both 

algorithms. 

 

Linear models used in ODSA simulations are: 

Motion model  : x (k+1) = x (k) + w (k) 

Measurement model : z (k) = x (k) + v (k)  

where correlated measurement noise, v (k),   is modelled as: 

 v(k)=a v(k-1)+r(k)  

Linear models used in Alpha-Beta Filter simulations are: 

Motion model  : s(k+1) = s (k) + Гw (k) 
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Measurement model : z (k) = Ms(k) + v (k)  

where correlated measurement noise, v (k), is modelled as: v(k)=a v(k-1)+r(k) , 

Г=[T 1]
t
, M=[1 0]. 

As a result of performed simulations, RMS Estimation Error versus 

Sampling Time graphs are given in figures to compare the performance of both 

ODSA and Alpha-Beta Filter Algorithm for the same parameter values. RMS 

Estimation error for a given sampling time, k, is calculated as below: 

 

RMS Error( k)
N

XX
N

i

ikik∑
=

−

= 1

2)
~

(

   k=0,1,…, L      (7.1)  

  

 

where RMS Error(k) is the RMS Error for sampling time k, N is the total 

execution number, ikX  is the real target state at sampling time k for the ith 

execution, ikX
~

is the estimated target state at sampling time k for the ith execution 

and  L is the total sampling time. 

For each simulation, RMS Estimation Error versus Sampling Time graphs 

acquired from ODSA and Alpha-Beta Filter Algorithm are plotted on the same 

figure. To increase the comprehension, tables are given at the end of the figures. 

In these tables, for each parameter value, Average of all RMS Errors obtained 

from the graphs in the figures are given. Average of all RMS Errors is calculated 

as below: 

                  Average of all RMS Errors
L

kErrorRMS
L

k

∑
== 0

)(

      (7.2)        
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7.1 Comparision as the Correlation Coefficient Changes 

In this section, effects of the correlation coefficient on both ODSA and 

Alpha-Beta Filter Algorithm are investigated.  

         Parameters used in ODSA are: 

total sampling time, L = 50 

gate size = 0.1  

number of maximum states = 100 

number of maximum v(k) states =50; 

quantization numbers : Q # of  x(0) = 5, Q # of  w(k)=3,  

   Q # of  v(0) = 3, Q # of  r(k)=3 

variances   : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values  : E[x(0) ]= 0, E[w(k)] = 0, E[v(0)] = 0 , E[r(k)] = 0 

 

         Parameters used in Alpha-Beta Filter Algorithm are: 

total sampling time, L = 50 

measurement interval  = 0.1 

variances   : var[s(0)] = 1, var[v(k)]=1, var[w(k)]= 0.1 

expected values  : E[s(0)] = 0, E[w(k)] = 0, E [v(k) ]= 0 , E[r(k)] = 0, 
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7.1.1 Simulation 1 

In this simulation, results are obtained for five different values of 

correlation coefficient, which are [0.01  0.03  0.05  0.07  0.09], after 500 

executions for each algorithm. 
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Figure-41: RMS estimation error versus sampling time for both  
ODSA and Alpha-Beta Filter Algorithm when the correlation 
coefficient equals 0.01 
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Figure-42: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the correlation 
coefficient equals 0.03 
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Figure-43: RMS estimation error versus sampling time for both  
ODSA and Alpha-Beta Filter Algorithm when the correlation 
coefficient equals 0.05 
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Figure-44: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the correlation 
coefficient equals 0.07 
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Figure-45: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm as when the  correlation 
coefficient equals 0.09 
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Table-29 : Average values of all RMS estimation errors from k=0 to 
k=L for both ODSA and Alpha-Beta Filter Algorithm as the correlation 
coefficient changes 

Correlation 
Coefficient, a 

0.01 0.03 0.05 0.07 0.09 

ODSA Average of 
all RMS Errors 

0.6051 0.6168 0.6206 0.6197 0.6344 

Alpha-Beta Average of  
All RMS Errors 

0.7561 0.8194 0.7927 0.7842 0.7964 
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Figure-46: Estimation performance comparison of ODSA and Alpha-
Beta Filter Algorithm as the correlation coefficient changes 
 

 

Comment:  

Figure 46 and Table 29 show that small correlation coefficient variations do not 

affect very much the performance of the both algorithms. It can be observed from 
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Figures 41, 42, 43, 44 and 45 that ODSA shows a better estimation performance 

than Alpha-Beta Filter Algorithm. 

7.1.2 Simulation 2 

Parameter values used in this simulation are same as the parameter 

values used in simulation 1 given in section 7.1.1, except correlation coefficient, 

a, varies as [0.1 0.3 0.5 0.7 0.9]. 
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Figure-47: RMS estimation error versus sampling time for both  
ODSA and Alpha-Beta Filter Algorithm when the correlation 
coefficient equals 0.1 
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Figure-48: RMS estimation error versus sampling time for both  
ODSA and Alpha-Beta Filter Algorithm when the correlation 
coefficient equals 0.3 
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Figure-49: RMS estimation error versus sampling time for both  
ODSA and Alpha-Beta Filter Algorithm when the correlation 
coefficient equals 0.5 
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Figure-50: RMS estimation error versus sampling time for both  
ODSA and Alpha-Beta Filter Algorithm when the correlation 
coefficient equals 0.7 
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Figure-51: RMS estimation error versus sampling time for both  
ODSA and Alpha-Beta Filter Algorithm when the correlation 
coefficient equals 0.9 
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Table-30 : Average values of all RMS estimation errors from k=0 to 
k=L for both ODSA and Alpha-Beta Filter Algorithm as the correlation 
coefficient changes 

Correlation  
Coefficient, a 

0.1 0.3 0.5 0.7 0.9 

ODSA Average of 
all RMS Errors 

0.6114 0.6743 0.7257 0.8552 1.0642 

Alpha-Beta Average of  
All RMS Errors 

0.8778 0.8504 0.9309 0.9798 1.0023 
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Figure-52: Estimation performance comparison of ODSA and Alpha-
Beta Filter Algorithm as the correlation coefficient changes 
 

 

Comment:  

Figure 52 and Table 30 show that increasing the correlation coefficient causes the 

performances of the both algorithms to decrease. It can be observed from Figures 

47, 48, 49, 50 and 51 that ODSA shows a better estimation performance than 
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Alpha-Beta Filter Algorithm. For only Figure 44, Alpha-Beta Filter Algorithm 

shows a better estimation performance than ODSA.  

7.2 Comparision as the Disturbance Noise Variance Changes 

In this section, effects of the disturbance noise variance on both ODSA and 

Alpha-Beta Filter Algorithm are investigated.  

         Parameters used in ODSA are: 

total sampling time, L = 50 

correlation coefficient, a = 0.1 

gate size = 0.1 

number of maximum states = 100 

number of maximum v(k) states=50; 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0, E[r(k)] = 0  

 

         Parameters used in Alpha-Beta Filter Algorithm are: 

total sampling time, L = 50 

measurement interval  = 1 

variances : var[x(0)]= 1, var[v(k)]=1, var[w(k)]= 0.1 

expected values : E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0, E[r(k)] = 0   
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In this simulation, results are obtained for four different values of 

disturbance noise variance, which are [0.01  0.1  0.5  1] after 500 executions for 

each algorithm. 
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Figure-53: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the variance of w(k) 
equals 0.01 
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Figure-54: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the variance of w(k) 
equals 0.1 
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Figure-55: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the variance of w(k) 
equals 0.5 
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Figure-56: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the variance of w(k) 
equals 1 
 

 

Table-31 : Average values of all RMS estimation errors from k=0 to 
k=L for both ODSA and Alpha-Beta Filter Algorithm as the variance of 
w(k)  changes 

Variance of w(k) 0.01 0.1 0.5 1 

ODSA Average of 
all RMS Errors 

0.4257 0.6134 1.2293 1.9821 

Alpha-Beta Average of  
All RMS Errors 

0.8476 0.7957 0.8680 0.9101 
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Figure-57: Estimation performance comparison of ODSA and Alpha-
Beta Filter Algorithm as the variance of w(k) changes 
 

 

Comment:  

As seen from Figure 57, Alpha-Beta Filter RMS estimation error is not affected 

very much by increasing disturbance noise variance, whereas ODSA shows a 

linear increase in RMS estimation error. It can be observed from Figures 53 and 

54 that ODSA shows a better estimation performance than Alpha-Beta Filter 

Algorithm. From Figures 55 and 56, after the disturbance noise variance value of 

0.1, Alpha-Beta Filter Algorithm begins to show a better estimation performance 

than ODSA.  

7.3 Comparision as the Measurement Noise Variance Changes 

In this section, effects of the measurement noise variance on both ODSA 

and Alpha-Beta Filter Algorithm are investigated. 
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         Parameters used in ODSA are: 

total number of samples, L = 50 

correlation coefficient, a = 0.1 

gate size = 0.1 

number of maximum states = 100 

number of maximum v(k) states=50; 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values : E[x(0)] = 0, E[w(k)] = 0 ,E[v(0)] = 0 , E[r(k)] = 0 

 

         Parameters used in Alpha-Beta Filter Algorithm are: 

total number of samples, L = 50 

measurement interval  = 1 

variances :var[x(0)] = 1, var[v(k)]=1, var[w(k)] = 0.1 

expected values : E[x(0)] = 0, E[w(k)] = 0, E[v(k)] = 0 , E[r(k)] = 0 

In this simulation, results are obtained for four different values of correlated 

measurement noise variance, which are [0.01  0.1 1  3] after 500 executions for 

each algorithm. 
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Figure-58: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the variance of v(k) 
equals 0.01 
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Figure-59: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the variance of v(k) 
equals 0.1 
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Figure-60: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the variance of v(k) 
equals 1 
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Figure-61: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the variance of vk) 
equals 3 
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Table-32 : Average values of all RMS estimation errors from k=0 to 
k=L for both ODSA and Alpha-Beta Filter Algorithm as the variance of 
v(k) changes 

Variance of v(k) 0.01 0.1 1 3 

ODSA Average of 
all RMS Errors 

0.5990 0.5709 0.6319 0.6768 

Alpha-Beta Average of  
All RMS Errors 

0.1020 0.2995 0.7988 1.2436 
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Figure-62: Estimation performance comparison of ODSA and Alpha-
Beta Filter Algorithm as the variance of v(k) changes 
 

 

Comment:  

From Figure 62 and Table 32, it can be said that increasing the variance of v(k) 

causes the performance of both algorithms to get worse, but Figure 55 shows that 

ODSA shows smaller error increase whereas Alpha-Beta Filter Algorithm shows 

a dramatic increase on the estimation error. It can be observed from Figures 58 

and 59 that Alpha-Beta Filter Algorithm shows a better estimation performance 
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than ODSA. From Figures 60 and 61, after the disturbance noise variance value 

of 1, ODSA begins to show a better estimation performance than Alpha-Beta 

Filter Algorithm.  

7.4 Comparision as the Initial State Variance Changes 

In this section, effects of the initial state variance on both ODSA and 

Alpha-Beta Filter Algorithm are investigated.  

         Parameters used in ODSA are: 

total number of samples, L = 50 

correlation coefficient, a = 0.1 

gate size = 0.1 

number of max states = 100 

number of max v(0) states=50; 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values : E[x(0)]= 0, E[w(k)]= 0, ,E[v(0)] = 0, E[r(k)] = 0   

 

         Parameters used in Alpha-Beta Filter Algorithm are: 

total number of samples, L = 50 

measurement interval  = 1 

variances : var[x(0)] = 1, var[v(k)]=1, var[w(k)] = 0.1 

expected values : E[x(0)] = 0, E[w(k) ]= 0, E[v(k)] = 0, E[r(k)] = 0   
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In this simulation, results are obtained for four different values of initial 

state variance, which are [0.01  0.1  1  3] , after 500 executions for each 

algorithm. 
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Figure-63: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the variance of x(0)/s(0) 
equals 0.01 
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Figure-64: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the variance of x(0)/s(0) 
equals 0.1 
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Figure-65: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the variance of x(0)/s(0) 
equals 1 
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Figure-66: RMS estimation error versus sampling time for both 
ODSA and Alpha-Beta Filter Algorithm when the variance of x(0)/s(0) 
equals 0.5 
 

 

Table-33 : Average values of all RMS estimation errors from k=0 to 
k=L for both ODSA and Alpha-Beta Filter Algorithm as variance of 
x(0)/s(0)  changes 

Variance of x(0)/s(0) 0.01 0.1 1 3 

ODSA Average of 
all RMS Errors 

0.5931 0.5440 0.5163 0.6700 

Alpha-Beta Average of  
All RMS Errors 

0.7841 0.7826 0.8005 0.8163 
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Figure-67: Estimation performance comparison of ODSA and Alpha-
Beta Filter Algorithm as the variance of x(0)/s(0)  changes 
 

 

Comment:  

From Table 33, it can be said that increasing the variance of x(0)/s(0) does not 

affect  the performance of both algorithms very much but Figure 67 shows that 

ODSA estimation errors are smaller than the Alpha-Beta Filter Algorithm 

estimation errors. It can be observed from Figures 63, 64, 65 and 66 that ODSA 

shows a better estimation performance than Alpha-Beta Filter Algorithm.  

7.5 Comparision as the Sampling Number Changes 

In this section, effects of the sampling number on both ODSA and 

Alpha-Beta Filter Algorithm are investigated.  

         Parameters used in ODSA are: 

total sampling time, L = 50 
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correlation coefficient, a= 0.1 

gate size = 0.1 

number of maximum states = 100 

number of maximum v(k) states =50; 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0, E[r(k)] = 0 

 

         Parameters used in Alpha-Beta Filter Algorithm are: 

total sampling time, L = 50 

measurement interval  = 1 

variances :var[x(0)] = 1, var[v(k)]=1, var[w(k)] = 0.1 

expected values : E[x(0)] = 0, E[w(k)]= 0, E[v(k)] = 0  

In this simulation, results are obtained for five different values of sampling 

time, which are [10  20 30  40 50] after 500 executions for each algorithm. 

 

 

Table-34 : Average values of all RMS estimation errors from k=0 to 
k=L for the linear model of both ODSA and Alpha-Beta Filter 
Algorithm as the sampling number changes 

Sampling Time 10 20 30 40 50 

ODSA Average of 
all RMS Errors 

0.7907 0.7092 0.6625 0.6343 0.6100 

Alpha-Beta Average of  
All RMS Errors 

1.0403 1.2935 0.6490 0.6577 0.9639 
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Figure-68: Estimation performance comparison of ODSA and Alpha-
Beta Filter Algorithm as the sampling number changes 
 

 

Comment:  

Table 34 and Figure 68 show that increase on sampling time causes the 

performance of ODSA to increase. On the other hand, Alpha-Beta Filter 

Algorithm shows an unstable behaviour, firstly its performance begins to 

decrease, then to increase and after a sampling time value of 40, its performance 

begins to decrease again. It can be said that ODSA shows a better estimation 

performance than Alpha-Beta Filter Algorithm in this simulation. 

7.6 Run-Time Comparision of ODSA And Alpha-Beta Filter Algorithm 

In this section, run time comparision of ODSA and Alpha-Beta Filter 

Algorithm will be done as the sampling number changes. To get approximately 

the same estimation error performance for both algorithms, the parameters below 

are used: 
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         Parameters used in ODSA are: 

total sampling time, L = 50 

correlation coefficient, a= 0.1 

gate size = 1 

number of maximum states = 50 

number of maximum v(k) states =50; 

quantization numbers : Q # of x(0) = 3, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0 , E[r(k)] = 0 

 

         Parameters used in Alpha-Beta Filter Algorithm are: 

total sampling time, L = 50 

measurement interval  = 1 

variances :var[x(0)] = 1, var[v(k)]=1, var[w(k)] = 0.1 

expected values : E[x(0)] = 0, E[w(k)]= 0, E[v(k)] = 0, E[r(k)] = 0   

In this simulation, results are obtained for five different values of sampling 

time, which are [10  20 30  40 50]. 
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Figure-69: Run time comparison of ODSA and Alpha-Beta Filter 
Algorithm filter Algorithm as the sampling number changes 
 

 

Table-35 : Run Time of both ODSA and Alpha-Beta Filter Algorithm 
as the sampling number changes 

Sampling Time 10 20 30 40 50 

ODSA Run Time(s) 0.5460    1.0470    1.4690    1.7320    1.9910 

Alpha-Beta Run Time(s) 0.2700    0.3500    0.3900 0.4500    0.5600 

 

 

Comment: From Figure 69 and Table 35, it can be observed that Alpha-Beta 

Filter Algorithm is faster than ODSA. For both algorithms, run time consumption 

increases as the sampling time increases, but Alpha-Beta Filter Algorithm shows 

smaller linear increase, whereas ODSA shows a larger linear increase. This is not 

surprising, since Alpha-Beta Filter has far less computational work than ODSA. 
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CHAPTER 8 
 
 
 
 

EXTENDED KALMAN FILTER (EKF) WITH CORRELATED 
MEASUREMENT NOISE 

 

 

The Kalman filter addresses the general problem of estimating the state 

of a discrete-time controlled process that is governed by a linear stochastic 

difference equation. For nonlinear stochastic motion and/or measurement 

equations, extended Kalman filter (EKF) is developed which linearizes the 

equations about the current mean and covariance [20]. 

8.1 Models and Assumptions [20] 

The non-linear stochastic motion equation with a state vector x∈R
n
 is 

 

x(k) = f(x(k – 1),u(k),w(k – 1))   (8.1) 

 

with a measurement  z∈R
m 

 

    z(k) = h(x(k), v(k))               (8.2)     

 

where the random variables w(k) and v(k) represent the disturbance and 

measurement noise respectively. The non-linear function f in the motion equation 

relates the state at the previous time step k-1 to the state at the current time step k. 

It includes parameters of any driving function u(k) and the zero-mean process 
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noise w(k). The non-linear function h in the measurement equation relates the 

state x(k) to the measurement z(k). 

 

The set of EKF equations is shown below: 

 

EKF time update equations: 

 

 )0),(),1(ˆ()1(ˆ kukxfkkx −=−  (8.3) 

 )()1()()1()()1( kWkQkWAkPkAkkP TT

k −+−=−  (8.4) 

 

 

EKF measurement update equations: 

 

 ( ) 1
)()()()()1()()()1()(
−

+−−= kVkRkVkHkkPkHkHkkPkK TTT  (8.5) 

 ( ))0),1(ˆ()()()1(ˆ)(ˆ −−+−= kkxhkzkKkkxkx  (8.6) 

 ( ) )1()()()( −−= kkPkHkKIkP  (8.7) 

 

where  

• Q(k) is the covariance matrix of the disturbance  noise w(k) 

 

 [ ][ ]{ }TkwEkwkwEkwEkQ ))(()())(()()( −−=  (8.8) 

 

• R(k) is the covariance matrix of the measurement noise v(k) 

 

 [ ][ ]{ }T
kvEkvkvEkvEkR ))(()())(()()( −−=  (8.9) 

 

• P(k) is the state estimation error covariance 
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 [ ][ ]{ }T
kxkxkxkxEkP )()(ˆ)()(ˆ)( −−=  (8.10) 

 

• A is the Jacobian matrix of partial derivatives of f with respect to x:  

 

 ( )0),(),1(ˆ kukx
x

f
A

j

i
ij −

∂
∂

=  (8.11) 

 

• W is the Jacobian matrix of partial derivatives of f with respect to w:  

 

 ( )0),(),1(ˆ kukx
w

f
W

j

i
ij −

∂

∂
=  (8.12) 

 

• H is the Jacobian matrix of partial derivatives of h with respect to x:  

 

 ( )0),1(ˆ −
∂

∂
= kkx

x

h
H

j

i
ij  (8.13) 

 

• V is the Jacobian matrix of partial derivatives of h with respect to v:  

 

 ( )0),1(ˆ −
∂

∂
= kkx

v

h
V

j

i

ij  (8.14) 

 

Figure 70 shows the complete operation of EKF. 
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Figure-70: A complete picture of the operation of the EKF 
 

 

Note that in Figure 70, )1(ˆˆ −=− kkxxk  and )1( −=− kkPPk . 

8.2 Application of EKF for Correlated Measurement Noise Model 

Let us take nonlinear target motion and measurement models as below: 

 

Motion model  : x (k+1) = f( x (k)) + w (k)  (8.15) 

Measurement model : z (k) =h(x (k)) + v (k) 

 

where f  and h are nonlinear functions of x(k) . In measurement model, correlated 

measurement noise, v(k),  is modelled as: 

 

v (k)=a v (k-1)+r (k)                                                    (8.16) 
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where a is the correlation coefficient (0 1≤≤ a ), and  )(kr  is a zero-mean white 

Gaussian noise, with variance: 222 )1( vr a σσ −= , where 2
vσ  is the variance  of the 

measurement  noise )(kv . 

As mentioned in previous sections, EKF linearizes the equations about 

the current mean and covariance. If we think the linearized equations at each 

sampling time as below: 

 

Motion model  : x (k+1) = A x (k) + w (k)                     (8.17) 

Measurement model : z (k) = H x (k) + v (k) 

 

We can easily apply decorrelation method [3] to handle the correlated 

measurement noise effect at each sampling time. 

To decorrelate the measurement noise, a new measurement )(ky , called 

“artificial measurement”, is generated by using the measurement given in the 

measurement model of Eq. (8.17) as below: 

 

=−−= )1()()( kzakzky ( ))1()1()()( −+−−+ kvkxHakvkxH  

44 344 21
)(

)1()()1()()(

kr

kvakvkxaHkxHky −−+−−=  (8.18) 

 

From the motion model of Eq.(8.17), )1()()1( 11 −−=− −− kwAkxAkx , if 

)1( −kx is inserted in Eq.(8.18), the equation below is obtained: 

 

=)(ky
4444 34444 21

)(

11 )()1()()(
k

krkwAHakxHAakxH

η

+−+− −−  

 )()1()( 1 krkwHAak +−= −η  (8.19) 
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In practical applications, the first term of right-hand side in Eq.(8.19) is 

usually small and can be neglected without degrading much performance [7]. So 

we have: 

 

              )()( krk ≈η   

( ) )()()( 1 krkxAHaHky +−= −                                                       (8.20) 

)()()1()( 1 krkxHAaky +−= −  

 

Motion and measurement models at each sampling time after 

decorrelation will be: 

 

Motion model  : x (k+1) = A x (k) + w (k)                    (8.21) 

Measurement model : z (k) = (1-a A 
-1   

)H x (k) + v (k) 

 

We obtained the motion and measurement models given in Eq.(8.21),  so 

we can apply EKF. Simulation results of comparision of ODSA and EKF are 

given in Chapter 9. 
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CHAPTER 9 
 
 
 
 

COMPARISION OF ODSA WITH EKF 

 

 

In this chapter, ODSA with correlated measurement noise (by using the 

proposed method of treating correlation effect as interference explained in section 

3.2) and EKF with correlated measurement noise (by using the decorrelation 

method explained in section 8.2)  will be compared.  

 In order to compare these algorithms, two nonlinear system models will 

be used for both algorithms. 

As a result of performed simulations, RMS Estimation Error versus 

Sampling Time graphs are given in figures to compare the performance of both 

ODSA and EKF for the same parameter values. RMS Estimation error for a given 

sampling time, k, is calculated as below: 

 

RMS Error( k)
N

XX
N

i

ikik∑
=

−

= 1

2)
~

(

   k=0,1,…, L      (9.1)  

  

where RMS Error(k) is the RMS Error for sampling time k, N is the total 

execution number, ikX  is the real target state at sampling time k for the ith 

execution, ikX
~

is the estimated target state at sampling time k for the ith execution 

and  L is the total sampling time. 
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For each simulation, RMS Estimation Error versus Sampling Time graphs 

acquired from ODSA and EKF Algorithm are plotted on the same figure. To 

increase the comprehension, tables are given at the end of the figures. In these 

tables, for each parameter value, Average of all RMS Errors obtained from the 

graphs in the figures are given. Average of all RMS Errors is calculated as below: 

 

                  Average of all RMS Errors
L

kErrorRMS
L

k

∑
== 0

)(

      (9.2)        

 

9.1 Simulations for Nonlinear System Model 1 

In this section, nonlinear models given below will be used in the 

simulations for both ODSA and EKF: 

 

Motion model  : x (k+1) = exp (- x (k)) + w (k)  (9.3)        

Measurement model : z (k) = cos( x (k) ) + v (k)  

 

where correlated measurement noise, v (k),   is modelled as: 

v(k)=a v (k-1)+r (k). 

To use the EKF for the nonlinear models given in Eq. (9.3),  Jacobian 

matrices: A, W, H and V are calculated as below: 

 

• A , Jacobian matrix of partial derivatives of f with respect to x:  
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 ( ) ))(exp(0),(),1(ˆ kxkukx
x

f
A

j

i

ij −−=−
∂

∂
=  (9.4) 

 

• W is the Jacobian matrix of partial derivatives of f with respect to w:  

 

 ( ) 10),(),1(ˆ =−
∂

∂
= kukx

w

f
W

j

i

ij  (9.5) 

 

• H is the Jacobian matrix of partial derivatives of h with respect to x:  

 

 ( ) ))(sin(0),1(ˆ kxkkx
x

h
H

j

i

ij −=−
∂

∂
=  (9.6) 

 

• V is the Jacobian matrix of partial derivatives of h with respect to v:  

 

 ( ) 10),1(ˆ =−
∂

∂
= kkx

v

h
V

j

i

ij  (9.7) 

 

9.1.1 Comparision as the Correlation Coefficient Changes 

In this section, effects of the correlation coefficient on both ODSA and 

EKF are investigated.  

         Parameters used in ODSA are: 

total sampling time, L = 50 

gate size = 0.1  

number of maximum states = 100 
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number of maximum v(k) states =50; 

quantization numbers : Q # of  x(0) = 5, Q # of  w(k)=3,  

   Q # of  v(0) = 3, Q # of  r(k)=3 

variances   : var[x(0)] = 1, var[v(0)]=1 

expected values  : E[x(0) ]= 0, E[w(k)] = 0, E[v(0)] = 0, E[r(k) ]= 0  

 

         Parameters used in EKF are: 

total sampling time, L = 50 

variances   : var[x(0)] = 1, var[v(k)]=1 

expected values  : E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0 , E[r(k) ]= 0 

9.1.1.1 Simulation 1  

In this simulation, results are obtained for five different values of 

correlation coefficient, which are [0.01  0.03  0.05  0.07  0.09], after 500 

executionss for each algorithm. Disturbance noise variance, var[w(k)], is taken 

as 0.1 
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Figure-71: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.01 and disturbance 
noise variance equals 0.1 
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Figure-72: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.03 and disturbance 
noise variance equals 0.1 
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Figure-73: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.05 and disturbance 
noise variance equals 0.1 
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Figure-74: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.07 and disturbance 
noise variance equals 0.1 
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Figure-75: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.09 and disturbance 
noise variance equals 0.1 
 

 

Table-36 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as the correlalation coefficient changes 
and when the disturbance noise variance equals 0.1 

Correlation 
Coefficient, a 

0.01 0.03 0.05 0.07 0.09 

EKF Average of 
all RMS Errors 

0.3946    0.4143 0.4514    0.4410 0.4653 

ODSA Average of  
All RMS Errors 

0.6214 0.5793 0.6153 0.6224 0.6346 
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Figure-76: Estimation performance comparison of ODSA and EKF as 
the correlation coefficient changes and when the disturbance noise 
variance equals 0.1 
 

 

Comment:  

From Figures 71-75, Figure 76 and Table 36, it can observed that EKF shows a 

better estimation performance than ODSA in these simulations. 

9.1.1.2 Simulation 2  

Parameter values used in this simulation are same as the parameter 

values used in Simulation 1 given in section 9.1.1.1, except disturbance noise 

variance, var[w(k)] is taken as 5 
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Figure-77: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.01 and disturbance 
noise variance equals 5 
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Figure-78: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.03 and disturbance 
noise variance equals 5 



 
 

159 

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

Sampling Time

R
M
S
 E
s
ti
m
a
ti
o
n
 E
rr
o
r

correlation coefficient= 0.05

EKF

ODSA

 

Figure-79: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.05 and disturbance 
noise variance equals 5 
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Figure-80: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.07 and disturbance 
noise variance equals 5 
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Figure-81: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.09 and disturbance 
noise variance equals 5 
 

 

Table-37 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as the correlation coefficient changes and 
when the disturbance noise variance equals 5 

Correlation 
Coefficient, a 

0.01 0.03 0.05 0.07 0.09 

EKF Average of 
all RMS Errors 

27.0235    47.8931 36.4352    26.3299 36.7627 

ODSA Average of  
All RMS Errors 

27.8222 28.5176 28.4242 27.2222 33.2657 
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Figure-82: Estimation performance comparison of EKF and ODSA as 
the correlation coefficient changes and when the disturbance noise 
variance equals 5 
 

 

Comment:  

Figures 77-81, Figure 82 and Table 37 show that ODSA has a better estimation 

performance than EKF when the disturbance noise variance is increased to 5. 

This is because decorrelation method can be applied for small disturbance noise 

variance values for EKF. In fact, both algorithms are not applicable in this case 

since RMS estimation errors of the both algorithms are very large. 

9.1.1.3 Simulation 3  

Parameter values used in this simulation are same as the parameter values 

used in simulation 1 given in section 9.1.1.1, except correlation coefficient, a, 

varies as [0.1 0.3 0.5 0.7 0.9] and disturbance noise variance, var[w(k)], is again 

taken as 0.1 
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Figure-83: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.1 and disturbance 
noise variance equals 0.1 
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Figure-84: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.3 and disturbance 
noise variance equals 0.1 
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Figure-85: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.5 and disturbance 
noise variance equals 0.1 
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Figure-86: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.7 and disturbance 
noise variance equals 0.1 
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Figure-87: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.9 and disturbance 
noise variance equals 0.1 
 

 

Table-38 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as the correlation coefficient changes and 
when the disturbance noise variance equals 0.1 

Correlation 
Coefficient, a 

0.1 0.3 0.5 0.7 0.9 

EKF Average of 
all RMS Errors 

0.4269    0.5429 0.4292    0.4147 1.5721 

ODSA Average of  
All RMS Errors 

0.6265 0.6583 0.7331 0.8364 0.9650 
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Figure-88: Estimation performance comparison of EKF and ODSA as 
the correlation coefficient changes and when the disturbance noise 
variance equals 0.1 
 

 

Comment:  

Figure 88 shows that EKF shows a better estimation performance than ODSA for 

the  correlation coefficient values of 0.1, 0.3, 0.5 and 0.7 while ODSA shows a 

better performance than EKF when the  correlation coefficient equals 0.9. 

9.1.1.4 Simulation 4  

Parameter values used in this simulation are same as the parameter values 

used in Simulation 1 given in section 9.1.1.1, except correlation coefficient, a, 

varies as [0.1 0.3 0.5 0.7 0.9] and disturbance noise variance, var[w(k)], is taken 

as 1 
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Figure-89: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.1 and disturbance 
noise variance equals 1 
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Figure-90: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.3 and disturbance 
noise variance equals 1 
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Figure-91: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.5 and disturbance 
noise variance equals 1 
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Figure-92: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.7 and disturbance 
noise variance equals 1 
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Figure-93: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.9 and disturbance 
noise variance equals 1 
 

 

Table-39 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as the correlation coefficient changes and 
disturbance variance value equals 1 

Correlation 
Coefficient, a 

0.1 0.3 0.5 0.7 0.9 

EKF Average of 
all RMS Errors 

1.6807    1.7685 1.6757  2.2559 44.3652 

ODSA Average of  
All RMS Errors 

1.9930 2.1129 2.0513 2.0901 2.2063 

 

 

 

 



 
 

169 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

40

45

Correlation Coefficient

A
v
e
ra
g
e
 R
M
S
 E
s
ti
m
a
ti
o
n
 E
rr
o
r

EKF

ODSA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

40

45

Correlation Coefficient

A
v
e
ra
g
e
 R
M
S
 E
s
ti
m
a
ti
o
n
 E
rr
o
r

EKF

ODSA

 

Figure-94: Estimation performance comparision of ODSA and EKF as 
the correlation coefficient changes and disturbance noise variance 
equals 1 
 

 

Comment:  

Figure 94 and Table 39 show that ODSA shows a better estimation performance 

than EKF. For correlation coefficient values of 0.1, 0.3, 0.5 and 0.7 the 

performance difference is not very much but after the correlation coefficient 

value of 0.9, EKF estimation error increases dramatically. 

9.1.2 Comparision as the Disturbance Noise Variance Changes 

In this section, effects of the disturbance noise variance on both ODSA and 

EKF are investigated.  

         Parameters used in ODSA are: 

total sampling time, L = 50 
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correlation coefficient, a = 0.1 

gate size = 0.1 

number of maximum states = 100 

number of maximum v(k) states=50; 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[v(0)]=1 

expected values : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0, E[r(k) ]=0 

 

         Parameters used in EKF are: 

total sampling time, L = 50 

correlation coefficient=0.1 

variances : var[x(0)] = 1, var[v(k)]=1 

expected values: E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0 , E[r(k) ]=0 

 

 In this simulation, results are obtained for five different values of 

disturbance noise variance, which are [0.1  1  3  5  7] after 500 executions for 

each algorithm. 
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Figure-95: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of w(k) equals 0.1 
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Figure-96: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of w(k) equals 1 
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Figure-97: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of w(k) equals 3 
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Figure-98: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of w(k) equals 5 
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Figure-99: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of w(k) equals 7 
 

 

Table-40 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as the variance of w(k)  changes 

Variance of w(k) 0.1 1 3 5 7 

EKF Average of 
all RMS Errors 

0.4272 1.6141 9.9372 39.6615 199.6869 

ODSA Average of  
All RMS Errors 

0.6909    1.9561    9.3778 37.7450 103.9703 
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Figure-100: Estimation performance comparision of EKF and ODSA as 
the variance of w(k) changes 
 

 

Comment:  

It can be seen from Figure 100 and Table 40 that ODSA and EKF shows nearly 

close performance for disturbance variance values of 0.1, 1, 3 and 5, but for 

disturbance noise variance value of 7, EKF estimation error increases 

dramatically. This is because decorrelation method can be applied for small 

disturbance noise variance values for EKF. In fact, both algorithms are not 

applicable for high disturbance values of  5 and 7, since RMS estimation errors of 

the both algorithms are very large for these variance values. 

9.1.3 Comparision as the Measurement Noise Variance Changes 

In this section, effects of the measurement noise variance on both EKF and 

ODSA are investigated. 
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         Parameters used in ODSA are: 

total number of samples, L = 50 

correlation coefficient, a = 0.1 

gate size = 0.1 

number of maximum states = 100 

number of maximum v(k) states=50; 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1 

expected values : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0, E[r(k)] = 0 

 

         Parameters used in EKF are: 

total sampling time, L = 50 

correlation coefficient=0.1 

variances : var[x(0)] = 1 

expected values: E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0 , E[r(k) ]=0 

9.1.3.1 Simulation 1 

In this simulation, results are obtained for four different values of correlated 

measurement noise variance, which are [0.1  1 3  5] after 500 executions for each 

algorithm. Disturbance noise variance, var[w(k)], is taken as 0.1 
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Figure-101: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of v(k) equals 0.1 and disturbance noise 
variance equals 0.1 
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Figure-102: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of v(k) equals 1 and disturbance noise 
variance equals 0.1 
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Figure-103: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of v(k) equals 3 and disturbance noise 
variance equals 0.1 
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Figure-104: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of v(k) equals 5 and disturbance noise 
variance equals 0.1 
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Table-41 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as the variance of v(k) changes  and when 
the disturbance noise variance equals 0.1 

Variance of v(k) 0.1 1 3 5 

EKF Average of 
all RMS Errors 

0.4105 0.5741 0.8537 0.4196 

ODSA Average of  
All RMS Errors 

0.5875 0.5684 0.5832 0.5972 
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Figure-105: Estimation performance comparison of EKF and ODSA as 
the variance of v(k) changes and when the disturbance noise variance 
equals 0.1 
 

 

Comment:  

It can be observed form Figure 105 and Table 41 that EKF shows a better 

estimation performance than ODSA for small measurement noise variance values 

of 0.1 and 1 while ODSA shows a better estimation performance than EKF for 

high measurement noise variance values. It can also be observed that ODSA 
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estimation performance do not change very much with increasing measurement 

noise variance while EKF has a dramatic increase in estimation error with 

increasing measurement noise variance. 

9.1.3.2 Simulation 2 

Parameter values used in this simulation are same as the parameter 

values used in Simulation 1 given in section 9.1.3.1, except correlation 

coefficient, var[w(k)] is taken as 1 
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Figure-106: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of v(k) equals 0.1 and disturbance noise 
variance equals 1 
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Figure-107: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of v(k) equals 1 and disturbance noise 
variance equals 1 
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Figure-108: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of v(k) equals 3 and disturbance noise 
variance equals 1 
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Figure-109: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of v(k) equals 5 and disturbance noise 
variance equals 1 
 

 

Table-42 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as the variance of v(k) changes and when 
the disturbance noise variance equals 1 

Variance of v(k) 0.1 1 3 5 

EKF Average of 
all RMS Errors 

1.4190    1.4975 1.7826 2.6814 

ODSA Average of  
All RMS Errors 

0.5872 0.5638 0.5906 0.6155 
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Figure-110: Estimation performance comparision of EKF and ODSA as 
the variance of v(k) changes and when the disturbance noise variance 
equals 1 
 

 

Comment:  

When Figure 110 and Table 42 are studied, it can be said that ODSA shows a 

better and more stable estimation performance than EKF. 

9.1.4 Comparision as the Initial State Variance Changes 

In this section, effects of the initial state variance on both EKF and ODSA 

are investigated.  

         Parameters used in ODSA are: 

total number of samples, L = 50 

correlation coefficient, a = 0.1 

gate size = 0.1 
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number of max states = 100 

number of max v(0) states=50; 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values : E[x(0)]= 0, E[w(k)]= 0, ,E[v(0)] = 0  

 

         Parameters used in EKF are: 

total sampling time, L = 50 

correlation coefficient=0.1 

variances : var[w(k)] = 0.1, var[v(k)]= 1 

expected values: E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0 , E[r(k) ]=0 

 

In this simulation, results are obtained for four different values of initial 

state variance, which are [0.01  0.1  1  3] , after 500 executions for each 

algorithm. 
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Figure-111: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of x(0) equals 0.01 
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Figure-112: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of x(0) equals 0.1 



 
 

185 

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

Sampling Time

R
M
S
 E
s
ti
m
a
ti
o
n
 E
rr
o
r

var[x(0)]= 1

EKF

ODSA

 

Figure-113: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of x(0) equals 1 
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Figure-114: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of x(0) equals 3 
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Table-43 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as the variance of x(0) changes 

Variance of x(0) 0.01 0.1 1 3 

EKF Average of 
all RMS Errors 

0.3752 0.3973 0.4140 0.6990 

ODSA Average of  
All RMS Errors 

0.5570 0.5743 0.6119 0.8574 
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Figure-115: Estimation performance comparison of EKF and ODSA as 
the variance of x(0) changes 
 

 

Comment:  

Figure 115 and Table 43 show that EKF shows a better estimation performance 

than ODSA. 
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9.1.5 Comparision as the Sampling Number Changes 

In this section, effects of the sampling number on both EKF and ODSA 

are investigated.  

         Parameters used in ODSA are: 

total sampling time, L = 50 

correlation coefficient, a= 0.1 

gate size = 0.1 

number of maximum states = 100 

number of maximum v(k) states =50; 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[v(0)]=1 

expected values : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0 , E[r(k) ]=0 

 

         Parameters used in EKF are: 

correlation coefficient=0.1 

variances : var[x(0)] = 1, var[v(k)]= 1 

expected values: E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0 , E[r(k) ]=0 

9.1.5.1 Simulation 1  

In this simulation, results are obtained for ten different values of sampling 

time, which are [10  20 30  40 50 60 70 80 90 100] after 500 executions for each 

algorithm. Disturbance noise variance, var[w(k)], is taken as 0.1 
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Table-44 : Average values of all RMS estimation errors from k=0 to 
k=L for the linear model of both EKF and ODSA as the sampling 
number changes 

Sampling Time 10 20 30 40 50 

EKF Average of 
all RMS Errors 

0.8947    0.6476    0.5362    0.4866    0.4539    

ODSA Average of  
All RMS Errors 

0.7097 0.7126 0.6479 0.6361 0.6143 

Sampling Time 60 70 80 90 100 

EKF Average of 
all RMS Errors 

0.4949    0.4058    0.4446    0.4282    0.4445 

ODSA Average of  
All RMS Errors 

0.6083 0.6133 0.6049    0.6014    0.5783    
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Figure-116: Estimation performance comparison of EKF and ODSA as 
the sampling number changes 
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Comment:  

Figure 116 shows that EKF shows a better estimation performance than ODSA. 

9.1.5.2 Simulation 2 

Parameter values used in this simulation are same as the parameter 

values used in Simulation 1 given in section 9.1.5.1, except correlation 

coefficient, var[w(k)] is taken as 2 

 

 

Table-45 : Average values of all RMS estimation errors from k=0 to 
k=L for the linear model of both EKF and ODSA as the sampling 
number changes 

Sampling Time 10 20 30 40 50 

EKF Average of 
all RMS Errors 

4.1977    2.8047   5.7412    3.4738    4.0088    

ODSA Average of  
All RMS Errors 

4.0700 3.1142 3.9195 4.0860 4.7830 

Sampling Time 60 70 80 90 100 

EKF Average of 
all RMS Errors 

4.3253    3.6128    4.3689    3.9229    3.7966 

ODSA Average of  
All RMS Errors 

4.3757 3.9557 3.8071    4.2917    4.2682    
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Figure-117: Estimation performance comparison of EKF and ODSA as 
the sampling number changes 
 

 

Comment:  

From Figure 117, it can be said that ODSA and EKF show nearly close 

estimation performances as the sampling number changes when the disturbance 

noise variance is increased to the value of 2. 

9.1.6 Run-Time Comparision of ODSA And EKF 

In this section, run time comparision of EKF and ODSA will be done as 

the sampling number changes. To get approximately the same estimation error 

performance for both algorithms, the parameters below are used: 

         Parameters used in ODSA are: 

total sampling time, L = 50 

correlation coefficient, a= 0.1 
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gate size = 1 

number of maximum states = 50 

number of maximum v(k) states =50; 

quantization numbers : Q # of x(0) = 3, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0 , E[r(k) ]=0 

 

         Parameters used in EKF are: 

total sampling time, L = 50 

correlation coefficient=0.1 

variances : var[x(0)] = 1 var[w(k)] = 0.1, var[v(k)]= 1 

expected values: E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0 , E[r(k) ]=0 

 

In this simulation, results are obtained for ten different values of sampling 

time, which are [10  20 30  40 50 60 70 80 90 100]. 
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Figure-118: Run time comparison of EKF and ODSA as the sampling 
number changes 

 

 

Table-46 : Run Time of both EKF and ODSA as the sampling number 
changes 

Sampling Time 10 20 30 40 50 

EKF Run Time(s) 0.0630    0.0940    0.1410    0.1870    0.2500 

ODSA Run Time(s) 0.2968    0.6125    0.9531 1.2960    1.6344 

Sampling Time 60 70 80 90 100 

EKF Run Time(s) 0.2820    0.3434    0.3910    0.4370    0.4850 

ODSA Run Time(s) 1.9797    2.3156    2.6594    3.0047 3.3734 

 

 

Comment:  

From Figure 94 and Table 42, it can be observed that EKF is faster than ODSA. 

For both algorithms, run time consumption increases as the sampling time 

increases, but EKF shows smaller linear increase, whereas ODSA shows a larger 
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linear increase. This is not surprising, since EKF has far less computational work 

than ODSA. 

9.2 Simulations for Nonlinear System Model 2 

In this section, nonlinear models given below will be used in the 

simulations for both ODSA and EKF: 

 

Motion model  : x (k+1) = sin(-x(k)+exp (- x (k)) + w (k)    (9.8) 

Measurement model : z (k) = cos( x (k) ) + v (k)  

 

where correlated measurement noise, v (k),   is modelled as: 

 

v (k)=a v (k-1)+r (k). 

 

To use the EKF for the nonlinear models given in Eq. (8.15),  Jacobian 

matrices: A, W, H and V are calculated as below: 

 

• A , Jacobian matrix of partial derivatives of f with respect to x:  

 

 ( ) ))(exp())(cos(0),(),1(ˆ kxkxkukx
x

f
A

j

i

ij −−−=−
∂

∂
=  (9.9) 

 

• W is the Jacobian matrix of partial derivatives of f with respect to w:  
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 ( ) 10),(),1(ˆ =−
∂

∂
= kukx

w

f
W

j

i

ij  (9.10) 

 

• H is the Jacobian matrix of partial derivatives of h with respect to x:  

 

 ( ) ))(sin(0),1(ˆ kxkkx
x

h
H

j

i

ij −=−
∂

∂
=  (9.11) 

 

• V is the Jacobian matrix of partial derivatives of h with respect to v:  

 

 ( ) 10),1(ˆ =−
∂

∂
= kkx

v

h
V

j

i

ij  (9.12) 

 

9.2.1 Comparision as the Correlation Coefficient Changes 

In this section, effects of the correlation coefficient on both ODSA and 

EKF are investigated.  

         Parameters used in ODSA are: 

total sampling time, L = 50 

gate size = 0.1  

number of maximum states = 100 

number of maximum v(k) states =50; 

quantization numbers : Q # of  x(0) = 5, Q # of  w(k)=3,  

   Q # of  v(0) = 3, Q # of  r(k)=3 

variances   : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 
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expected values  : E[x(0) ]= 0, E[w(k)] = 0, E[v(0)] = 0, E[r(k) ]= 0  

 

         Parameters used in EKF are: 

total sampling time, L = 50 

variances   : var[x(0)] = 1, var[v(k)]=1, var[w(k)]= 0.1 

expected values  : E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0 , E[r(k) ]= 0 

9.2.1.1 Simulation 1 

In this simulation, results are obtained for five different values of 

correlation coefficient, which are [0.01  0.03  0.05  0.07  0.09], after 500 

executions for each algorithm.  
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Figure-119: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.01 
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Figure-120: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.03 
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Figure-121: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.05 
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Figure-122: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.07 
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Figure-123: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.09 
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Table-47 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as the correlalation coefficient  changes 

Correlation 
Coefficient, a 

0.01 0.03 0.05 0.07 0.09 

EKF Average of 
all RMS Errors 

2.8102    1.6968    1.9657    1.6635    1.6432 

ODSA Average of  
All RMS Errors 

1.5166    1.5170    1.5153    1.5597    1.5088 
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Figure-124: Estimation performance comparison of EKF and ODSA as 
the correlation coefficient changes 
 

 

Comment:  

Figure 124 and Table 47 show that ODSA shows a better estimation performance 

than EKF.  
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9.2.1.2 Simulation 2  

Parameter values used in this simulation are same as the parameter 

values used in Simulation 1 given in section 9.2.1.1, except correlation 

coefficient, a, varies as [0.1 0.3 0.5 0.7]. 
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Figure-125: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.1 
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Figure-126: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.3 
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Figure-127: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.5 
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Figure-128: RMS estimation error versus sampling time for both EKF 
and ODSA when the correlation coefficient equals 0.7 
 

 

Table-48 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as the correlation coefficient changes 

Correlation 
Coefficient, a 

0.1 0.3 0.5 0.7 

EKF Average of 
all RMS Errors 

2.0764    1.9348    1.7174    2.1698 

ODSA Average of  
All RMS Errors 

1.5520    1.5341    1.5572    1.6067 
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Figure-129: Estimation performance comparison of EKF and ODSA as 
the correlation coefficient changes 
 

 

Comment:  

Figure 129 and Table 48 show that ODSA shows a better estimation performance 

than EKF. 

9.2.2 Comparision as the Disturbance Noise Variance Changes 

In this section, effects of the disturbance noise variance on both ODSA and 

EKF are investigated.  

         Parameters used in ODSA are: 

total sampling time, L = 50 

correlation coefficient, a = 0.1 

gate size = 0.1 
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number of maximum states = 100 

number of maximum v(k) states=50; 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[v(0)]=1 

expected values : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0  

 

         Parameters used in EKF are: 

total sampling time, L = 50 

correlation coefficient=0.1 

variances : var[x(0)] = 1, var[v(k)]= 1 

expected values: E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0 , E[r(k) ]=0 

In this simulation, results are obtained for four different values of 

disturbance noise variance, which are [0.01  0.05  0.1  0.5] after 500 executions 

for each algorithm. 
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Figure-130: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of w(k) equals 0.01 
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Figure-131: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of w(k) equals 0.05 
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Figure-132: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of w(k) equals 0.1 
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Figure-133: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of w(k) equals 0.5 
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Table-49 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as the variance of w(k)  changes 

Variance of w(k) 0.01 1 3 5 

EKF Average of 
all RMS Errors 

1.7745 1.9501 2.4374 3.3209 

ODSA Average of  
All RMS Errors 

1.5260    1.5238    1.6433 2.3380 
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Figure-134: Estimation performance comparison of EKF and ODSA as 
the correlation coefficient changes 
 

 

Comment:  

Figure 134 and Table 49 show that ODSA shows a better estimation performance 

than EKF. 
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9.2.3 Comparision as the Measurement Noise Variance Changes 

In this section, effects of the measurement noise variance on both EKF and 

ODSA are investigated. 

         Parameters used in ODSA are: 

total number of samples, L = 50 

correlation coefficient, a = 0.1 

gate size = 0.1 

number of maximum states = 100 

number of maximum v(k) states=50; 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[w(k)] = 0.1 

expected values : E[x(0)] = 0, E[w(k)] = 0 ,E[v(0)] = 0  

 

         Parameters used in EKF are: 

total sampling time, L = 50 

correlation coefficient=0.1 

variances : var[x(0)] = 1, var[w(k)]= 0.1 

expected values: E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0 , E[r(k) ]=0 

 

In this simulation, results are obtained for four different values of correlated 

measurement noise variance, which are [0.01  0.1 1  3] after 500 executions for 

each algorithm. 
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Figure-135: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of v(k) equals 0.1 
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Figure-136: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of v(k) equals 0.3 
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Figure-137: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of v(k) equals 0.5 
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Figure-138: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of v(k) equals 1 
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Table-50 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as the variance of v(k) changes 

Variance of v(k) 0.1 0.3 0.5 1 

EKF Average of 
all RMS Errors 

2.6233 2.0426 4.3570 2.5384 

ODSA Average of  
All RMS Errors 

1.7195 1.6411 1.6151 1.6094 
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Figure-139: Estimation performance comparison of EKF and ODSA as 
the variance of v(k) changes 
 

 

Comment:  

Figure 139 and Table 50 show that ODSA shows a better estimation performance 

than EKF. 
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9.2.4 Comparision as the Initial State Variance Changes 

In this section, effects of the initial state variance on both EKF and ODSA 

are investigated.  

         Parameters used in ODSA are: 

total number of samples, L = 50 

correlation coefficient, a = 0.1 

gate size = 0.1 

number of max states = 100 

number of max v(0) states=50; 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[v(0)]=1, var[w(k)] = 0.1 

expected values : E[x(0)]= 0, E[w(k)]= 0, ,E[v(0)] = 0  

 

         Parameters used in EKF are: 

total sampling time, L = 50 

correlation coefficient=0.1 

variances : var[w(k)] = 0.1, var[v(k)]= 1 

expected values: E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0 , E[r(k) ]=0 

 

In this simulation, results are obtained for four different values of initial 

state variance, which are [0.01 0.1 0.3  0.5], after 500 executions for each 

algorithm. 
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Figure-140: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of x(0) equals 0.01 
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Figure-141: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of x(0) equals 0.1 
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Figure-142: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of x(0) equals 0.3 
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Figure-143: RMS estimation error versus sampling time for both EKF 
and ODSA when the variance of x(0) equals 0.5 
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Table-51 : Average values of all RMS estimation errors from k=0 to 
k=L for both EKF and ODSA as variance of x(0) changes 

Variance of x(0) 0.01 0.1 0.3 0.5 

EKF Average of 
all RMS Errors 

1.7054 3.0473 1.6029 3.1083 

ODSA Average of  
All RMS Errors 

1.3622 1.4272 1.4820 1.4895 
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Figure-144: Estimation performance comparison of EKF and ODSA as 
the variance of x(0) changes 
 

 

Comment:  

Figure 144 and Table 51 show that ODSA shows a better estimation performance 

than EKF. 
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9.2.5 Comparision as the Sampling Number Changes 

In this section, effects of the sampling number on both EKF and ODSA 

are investigated.  

         Parameters used in ODSA are: 

total sampling time, L = 50 

correlation coefficient, a= 0.1 

gate size = 0.1 

number of maximum states = 100 

number of maximum v(k) states =50; 

quantization numbers : Q # of x(0) = 5, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[v(0)]=1, var[w(k)] = 0.1 

expected values : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0 , E[r(k) ]=0 

 

         Parameters used in EKF are: 

correlation coefficient=0.1 

variances : var[x(0)] = 1, var[w(k)] = 0.1 var[v(k)]= 1 

expected values: E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0 , E[r(k) ]=0 

 

In this simulation, results are obtained for five different values of sampling 

time, which are [10  20 30  40 50] after 500 executions for each algorithm. 
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Table-52 : Average values of all RMS estimation errors from k=0 to 
k=L for the linear model of both EKF and ODSA as the sampling 
number changes 

Sampling Time 10 20 30 40 50 

EKF Average of 
all RMS Errors 

11.1363  7.2940    4.3605    2.6872    2.5554 

ODSA Average of  
All RMS Errors 

1.7487    1.6685    1.6562    1.7214    1.6570 
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Figure-145: Estimation performance comparison of EKF and ODSA as 
the sampling number changes 
 

 

Comment:  

Figure 145 and Table 52 show that ODSA shows a better estimation performance 

than EKF. 
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9.2.6 Run-Time Comparision of ODSA And EKF 

In this section, run time comparision of EKF and ODSA will be done as 

the sampling number changes. To get approximately the same estimation error 

performance for both algorithms, the parameters below are used: 

         Parameters used in ODSA are: 

total sampling time, L = 50 

correlation coefficient, a= 0.1 

gate size = 1 

number of maximum states = 50 

number of maximum v(k) states =50; 

quantization numbers : Q # of x(0) = 3, Q # of w(k)=3,  

   Q # of v(0) = 3, Q # of r(k)=3 

variances : var[x(0)] = 1, var[w(k)] = 0.1, var[v(0)]=1 

expected values : E[x(0)] = 0, E[w(k)] = 0, E[v(0)] = 0 , E[r(k) ]=0 

 

         Parameters used in EKF are: 

total sampling time, L = 50 

correlation coefficient=0.1 

variances : var[x(0)] = 1 var[w(k)] = 0.1, var[v(k)]= 1 

expected values: E[x(0)] = 0, E[w(k)] = 0, E[v(k) ]= 0 , E[r(k) ]=0 

 

In this simulation, results are obtained for five different values of sampling 

time, which are [10  20 30  40 50]. 
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Figure-146: Run time comparison of EKF and ODSA as the sampling 
number changes 

 

 

Table-53 : Run Time of both EKF and ODSA as the sampling number 
changes 

Sampling Time 10 20 30 40 50 

EKF Run Time(s) 0.0780    0.0930    0.1560    0.2030    0.2340 

ODSA Run Time(s) 0.3031    0.6266    0.9735    1.3235    1.6735 

 

 

Comment:  

From Figure 146 and Table 53, it can be observed that EKF is faster than ODSA. 

For both algorithms, run time consumption increases as the sampling time 

increases, but EKF shows smaller linear increase, whereas ODSA shows a larger 

linear increase. This is not surprising, since EKF has less computational work 

than ODSA. 
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CHAPTER 10 
 
 
 
 

CONCLUSION 

 

 

In this study, the Optimum Decoding Based Smoothing Algorithm [1, 2] 

and the Optimum Decoding Based Smoothing Algorithm with correlated 

measurement noise are investigated. 

The ODSA algorithm is based on Viterbi decoding algorithm. By 

reducing the target motion to a finite state model which uses the quantized state 

vector, a trellis diagram is obtained, and then, the state vector is estimated by 

finding the most probable path in the trellis diagram.   

In order to use ODSA in the presence of correlated measurement noise, 

some modifications are done. To handle the correlation effect, firstly ODSA is 

implemented by applying decorrelation method [3, 4] on correlated 

measurements and secondly, ODSA is implemented by a method proposed in this 

thesis, which treats correlated measurement noise as interference. According to 

the the proposed method, correlated measurement noise is modeled by a first-

order Markov model [3, 4]. The effect of correlation is thought as interference, 

and ODSA in the presence of interference [1, 2] is applied. The simulation results 

show that decorrelation method and proposed method show approximately close 

performances for linear models. Proposed method can be applied for both linear 

and nonlinear models while decorrelation method can only be applied for linear 

models. 

For the proposed method, simulations are performed and the effects of 

parameters on the estimation performance of ODSA with correlated measurement 

noise are observed. The results can be summarized as below: 
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• Correlation coefficient affects the estimation performance 

significantly. As the correlation coefficient becomes smaller, the state 

estimation performance increases, 

• Gate size affects the estimation performance significantly. As the gate 

size becomes smaller, the state estimation performance increases, 

• Quantization number of the initial state vector affects the estimation 

performance slightly,  

• Quantization number of the disturbance noise vector affects the 

estimation performance slightly,  

• Quantization number of the initial correlated measurement noise 

vector affects the estimation performance slightly,  

• Quantization number of the white measurement noise vector affects 

the estimation performance slightly,  

• Initial state variance affects only the performance for only initial 

sampling times, 

• Increasing the disturbance noise variance degrades the performance 

significantly, 

• Initial measurement noise variance affects the estimation performance 

slightly,  

• The maximum number of states can be limited without degrading the 

estimation performance, 

• The maximum number of measurement noise states can be limited 

without degrading the estimation performance. 

Gate size, quantization numbers, maximum state number and maximum 

initial measurement noise states are important factors for determining the 

computation time of the algorithm. Choosing these values properly, the 

computation time can be decreased while getting a good estimation performance. 

There is a trade-off between the precision and the computational time.  
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Alpha-Beta Filter Algorithm with correlated measurement noise is also 

implemented which was proposed by Rogers [3, 4, 5]. Some simulations are 

carried out to demonstrate the effects of the parameters on the performance of the 

algorithm. The results can be summarized as below: 

• Correlation coefficient affects the estimation performance 

significantly. As the correlation coefficient becomes smaller, the state 

estimation performance increases, 

• Measurement interval affects the estimation performance 

significantly. As the measurement interval becomes smaller, the state 

estimation performance increases, 

• Increasing the disturbance noise variance degrades the performance 

significantly, 

• Increasing the measurement noise variance degrades the performance 

significantly, 

• Initial state variance does not affect the estimation performance very 

much. 

Estimation performances of ODSA with correlated measurement noise 

proposed in this thesis are compared with Alpha-Beta Filter Algorithm with 

correlated measurement noise proposed by Rogers [3, 4, 5] for linear models. The 

advantages and the disadvantages of these algorithms can be summarized below: 

• The most important advantage of ODSA is that it can be applied for 

both linear and nonlinear target tracking systems while Alpha-Beta 

Filter Algorithm can only be applied for linear target tracking 

systems.  

• The estimation performance of ODSA is better than the Alpha-Beta 

Filter Algorithm as the correlation coefficient, initial state variance 

and sampling number parameters change. 



 
 

222 

• As the disturbance noise variance changes, for small values of 

disturbance noise variance: ODSA shows a better estimation 

performance, whereas for high disturbance noise variance values: 

Alpha-Beta Filter Algorithm shows a better estimation performance. 

• As the measurement noise variance changes, for small values of 

measurement noise variance: Alpha-Beta Filter Algorithm shows a 

better estimation performance, whereas for high measurement noise 

variance values: ODSA shows a better estimation performance. 

• Alpha-Beta Filter Algorithm is much faster than the ODSA algorithm, 

since the computational work of the Alpha-Beta Filter Algorithm 

algorithm is far less than that of the ODSA algorithm. 

Additionaly estimation performances of ODSA with correlated 

measurement noise proposed in this thesis are compared with EKF with 

correlated measurement noise for two nonlinear models. The estimation 

performance of ODSA and EKF Algorithm change depending on the chosen 

nonlinear models. In this thesis comparision of two algorithms were done on two 

nonlinear models. The advantages and the disadvantages of these algorithms can 

be summarized below: 

For the first nonlinear system model given in section 9.1: 

• For small correlation coefficient, disturbance noise variance and 

measurement noise variance values, it can be said that generally EKF 

shows better performance than ODSA, 

• For high correlation coefficient, disturbance noise and measurement 

noise  values, it can be said that ODSA shows better performance 

than EKF, 

• EKF is much faster than the ODSA algorithm, since the 

computational work of EKF is far less than that of the ODSA 

algorithm. 
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For the second nonlinear system model given in section 9.2: 

• ODSA generally shows better performance than EKF as the 

correlation coefficient, disturbance noise variance, measurement 

noise variance, initial state variance and sampling time  simulation 

parameters  are changed, 

• EKF is much faster than the ODSA algorithm, since the 

computational work of EKF is far less than that of the ODSA 

algorithm. 

Finally, it can be said that ODSA can be implemented for correlated 

measurement noise models by applying proper modifications to the algorithm, 

with the advantage of being applicable to both linear and non-linear systems. 

Compared with the Alpha-Beta Filter Algorithm for the linear case, the 

computational work of ODSA is higher, but ODSA is generally more robust 

when estimation error performances are considered. Compared with the EKF for 

the nonlinear case, the computational work of ODSA is higher, but ODSA is 

generally more robust when estimation error performances are considered. 
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APPENDIX A 
 
 
 
 

APPROXIMATION OF A CONTINUOUS RANDOM VARIABLE WITH 
A DISCRETE RANDOM VARIABLE 

 

 

 

In order to find the optimum discrete random variable with n possible 

values that approximates an absolutely continuous random variable x with 

distribution function Fx(.), we must find a distribution function (.)
0yF  which 

minimizes the objective function J(.): 

 

 (.))(min(.))( (.)0 yFy FJFJ
y

=  (A.1) 

                      (.))(min (.) gJg=  

where  

 [ ]∫
∞

∞−

−= daaFaFFJ yxy

2)()((.))(  (A.2) 

 

The aim is to find a step function g0(.) which minimizes the objective 

function J(.): 

 

[ ] [ ]

[ ] [ ] daaFdaPaF

daPaFdaPaFdaaFgJ

n

n

n y

x

y

y

nx

y

y

x

y

y

x

y

x

∫∫

∫∫∫
∞

−

∞−

−+−+

+−+−+=

−

22
1

2
2

2
1

2

1)()(

...)()()((.))(

1

3

2

2

1

1

 (A.3) 



 
 

228 

 








=

,1

,

,0

)( 0,0 iPxg             

,

1,...,2,1,

,

0,

0,10,

0,1

n

ii

yx

niyxy

yx

≥

−=<≤

<

+  (A.4) 

If g0(x) is a step function that minimizes (A.3), it must satisfy the 

following set of equations: 
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 (A.5) 

 

The discrete random variables which approximate the normal random 

variable with zero mean and unity variance (with up to 8 possible values) are 

given by Demirbaş [1]. In order to increase the possible values of the discrete 

random variables, a Matlab function called “discretegaussian” is written which 

evaluates the values according to the equations given in (A.4) and (A.5)  [13]. 

The program runs in a recursive manner and finds the discrete values (y values) 

and the corresponding probabilities (p values) of the continuous Gaussian 

distributed random variable with zero mean and unity variance. Finally, if the 

mean (µ) and the variance (σ) of the random variable are different from 0 and 1 

respectively, it maps the new discrete values according to the mean and variance 

of the random variable by using the formula given in (A.6).  

 

 niPPyy iii ,...,2,1, 0,0,0, ==′+=′ µσ  (A.6) 

 

The y and p values of approximated x are given at Table 54. 
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Table-54 : y and p values of discrete random variables with 8 possible 
values 

 1 2 3 4 5 6 7 8 
y -1.6990 -1.0250 -0.5700 -0.1840 0.1840 0.5700 1.0250 1.6990 

p 0.0922 0.1240 0.1394 0.1460 0.1460 0.1394 0.1240 0.0922 

 

 

Possible values of the discrete random variable approximating the Gaussian 

random variable with zero mean and unity variance (y values): 

N y value 

 

1 0 

 

2 -0.675 0.675       

   

 

3 -1.0052 0 1.0052      

   

 

4 -1.2177 -0.3546 0.3546 1.2177     

   

 

5 -1.3767 -0.592 0 0.592 1.3767    

   

 

6 -1.4992 -0.7678 -0.2419 0.2419 0.7678 1.4992   

   

 

7 -1.6027 -0.9077 -0.4242 0 0.4242 0.9077 1.6027  

   

 

8 -1.6897 -1.0226 -0.5694 -0.1839 0.1839 0.5694 1.0226 1.6897 
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9 -1.7644 -1.1198 -0.6896 -0.3315 0 0.3315 0.6896 1.1198 1.7644

   

 

10 -1.8178 -1.1985 -0.7888 -0.4527 -0.1479 0.1479 0.4527 0.7888 1.1985

  1.8178  

 

11 -1.8799 -1.2737 -0.8779 -0.5575 -0.2716 0 0.2716 0.5575 0.8779

  1.2737 1.8799 

 

12 -1.9282 -1.3373 -0.9545 -0.6476 -0.377 -0.1239 0.1239 0.377 0.6476

  0.9545 1.3373 1.9282      

    

 

13 -1.9714 -1.3942 -1.0226 -0.727 -0.4688 -0.2301 0 0.2301 0.4688

  0.727 1.0226 1.3942 1.9714     

    

 

14 -2.0218 -1.4507 -1.0868 -0.7997 -0.5511 -0.3235 -0.1067 0.1067 0.3235

  0.5511 0.7997 1.0868 1.4507 2.0218    

    

 

15 -2.0449 -1.4918 -1.1387 -0.8611 -0.622 -0.4047 -0.1996 0 0.1996

  0.4047 0.622 0.8611 1.1387 1.4918 2.0449   

    

 

16 -2.0966 -1.5435 -1.1948 -0.9227 -0.6899 -0.4798 -0.2831 -0.0936 0.0936

  0.2831 0.4798 0.6899 0.9227 1.1948 1.5435 2.0966  

    

 

17 -2.1372 -1.5879 -1.2443 -0.9777 -0.7509 -0.5474 -0.3581 -0.1771 0

  0.1771 0.3581 0.5474 0.7509 0.9777 1.2443 1.5879 2.1372 
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18 -2.1569 -1.6206 -1.2846 -1.0245 -0.804 -0.607 -0.4247 -0.2515 -0.0833

  0.0833 0.2515 0.4247 0.607 0.804 1.0245 1.2846 1.6206 2.1569

    

 

19 -2.196 -1.6609 -1.3285 -1.0725 -0.8564 -0.6642 -0.4872 -0.3199 -0.1585

  0 0.1585 0.3199 0.4872 0.6642 0.8564 1.0725 1.3285 1.6609

  2.196   

 

20 -2.2125 -1.6894 -1.3636 -1.113 -0.902 -0.7149 -0.5432 -0.3816 -0.2265

  -0.0751 0.0751 0.2265 0.3816 0.5432 0.7149 0.902 1.113 1.3636

  1.6894 2.2125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

232 

APPENDIX B 
 
 
 
 

SOLUTION OF THE RICCATI EQUATIONS FOR THE COVARIANCE 
MATRIX, P, OF ALPHA-BETA FILTER ALGORITHM 

The Riccati equation for P can be solved explicitly, as follows: 

Define a new state vector, sLs =" , where  
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 (B.1) 

 

where 
a

a

−
=

1
γ . 

The equation for '" LPLP =  is identical to Eq.(5.14), with H, Γ and A 

replaced by: 

 

 [ ]0)1(1" aHLH −== −  

 [ ] '" 1)1( TL γ+=Γ=Γ  

 ALALA == −1"  (B.2) 

 

Writing  P” in component form [8], 
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One obtains from Eq. (5.14) the following algebraic equations for a, b, 

and c: 
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Solving for ( β ) in terms of (α ) and (c) yield the quartic equation: 

 

 [ ] 01)1(2)( 2234 =+−++−−= xxxxxf λγγλλ  (B.5) 

 

where  

 

 21 x−=α  

 xλβ =  

 )1(
1
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α
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−
=c  (B.6) 

 

Observe that f(x) is a symmetric polynomial, that is, the coefficients of xi 

and x4-i are equal. It follows that: 

 

 0)1()1()( 2
2

1
2 =+−+−= xdxxdxxf  (B.7) 

 

where d1 and d2 are the roots of  
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 [ ] 0)1(4 22 =++−− γγλλ dd  (B.8) 

 

Eqs. (B.7) and (B.8) define all four roots of f(x). In order to satisfy the 

physical constraints 10 ≤≤α  and 0≥c , it follows that the correct choice of root 

is that given in Eq.(5.16). Having found the components of P”
 by means of the 

transformation: 
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This completes the solution. 

 

 


