
AN ASSESSMENT AND ANALYSIS TOOL FOR
STATISTICAL PROCESS CONTROL OF SOFTWARE PROCESSES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERKAN KIRBAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

FEBRUARY 2007

Approval of the Graduate School of Natural and Applied Sciences

 Prof.Dr. Canan ÖZGEN

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master

of Science.

 Prof.Dr. Ayşe KİPER

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and quality, as a thesis for the degree of Master of Science.

______________________________ ______________________________

 Dr. Ayça TARHAN Assoc.Prof.Dr. Ali DOĞRU

 Co-Supervisor Supervisor

Examining Committee Members

Prof.Dr. Volkan Atalay (METU, CENG) ______________________________

Assoc.Prof.Dr. Ali Doğru (METU, CENG) ______________________________

Dr. Ayça Tarhan (METU, IS) ______________________________

Assoc.Prof.Dr. Onur Demirörs (METU, IS) ______________________________

Assoc.Prof.Dr. Halit Oğuztüzün (METU, CENG) ______________________________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Surname: Serkan Kırbaş

Signature: ________________

iv

ABSTRACT

AN ASSESSMENT AND ANALYSIS TOOL FOR

STATISTICAL PROCESS CONTROL OF SOFTWARE PROCESSES

Kırbaş, Serkan

MS, Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali Doğru

Co-Supervisor: Dr. Ayça Tarhan

February 2007, 217 pages

Statistical process control (SPC) which includes very powerful techniques used in

other mature engineering disciplines for providing process control is not used by

many software organizations. In software engineering domain, SPC is currently

utilized only by organizations which have high maturity levels according to the

process improvement models like CMM, ISO/IEC 15504 and CMMI. Guidelines

and software tools to implement SPC techniques should be developed for

effective use and dissemination of SPC especially for low maturity organizations.

In this thesis, a software tool (SPC-AAT) which we developed to assess the

suitability of software processes and metrics for SPC and use of SPC tools is

presented. With SPC-AAT, we aim to ease and enhance application of SPC

especially for emergent and low maturity organizations. Control charts,

histograms, bar charts and pareto charts are the supported SPC tools for this

v

purpose. We also explained the validation of the tool over two processes of a

software organization in three case studies.

Key Words: Statistical process control, software, measurement, control chart,

pareto chart.

vi

ÖZ

İSTATİSTİKSEL SÜREÇ KONTROLÜNÜN YAZILIM SÜREÇLERİNE

UYGULANABİLİRLİĞİNİ DEĞERLENDİRME VE ANALİZ ARACI

Kırbaş, Serkan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ali Doğru

Ortak Tez Yöneticisi: Dr. Ayça Tarhan

Şubat 2007, 217 sayfa

Birçok güçlü tekniği içinde barındıran İstatistiksel Süreç Kontrolü (İSK), diğer

olgun mühendislik disiplinlerinde süreç kontrolünü sağlamak için kullanılmasına

rağmen, çoğu yazılım şirketi tarafından kullanılmamaktadır. Yazılım mühendisliği

alanında İSK şuan yalnızca CMM, ISO/IEC 15504 ve CMMI gibi süreç

iyileştirme modellerine göre yüksek olgunluk seviyelerine sahip organizasyonlar

tarafından yararlanılmaktadır. İSK’nın özellikle düşük olgunluk seviyelerindeki

organizasyonlar tarafından etkin kullanımı ve yaygınlaştırılması için yeni

kılavuzların ve yazılım araçlarının geliştirilmesi şarttır.

Bu çalışmada yazılım süreç ve metriklerinin İSK için uygunluğunu

değerlendirmek ve İSK araçlarını kullanmak için geliştirdiğimiz bir yazılım

uygulaması (SPC-AAT) sunulmuştur. SPC-AAT ile İSK’nın özellikle gelişmekte

olan veya düşük olgunluk seviyelerindeki kurumlar için uygulanmasını

vii

kolaylaştırmak ve geliştirmek hedeflenmiştir. Kontrol grafikleri, histogramlar, bar

grafikleri ve pareto grafikleri bu amaç için SPC-AAT tarafından desteklediğimiz

İSK araçlarıdır. Bu çalışmada ayrıca uygulamamızın bir yazılım şirketinin iki adet

süreci üzerinde üç durum değerlendirmesini açıklamaktayız.

Anahtar Kelimeler: İstatistiksel süreç kontrolü, yazılım, ölçme, kontrol grafiği,

pareto grafiği.

viii

To the memory of my grandfather,

Mehmet KIRBAŞ

ix

ACKNOWLEDGEMENTS

I send my deepest regards and gratitude to Dr. Ayça Tarhan and Assoc. Prof. Onur

Demirörs for their expertise, insight, and guidance, and for their support during

my study.

I am grateful to S.Ş.S., Ö.Ö., A.Y., M.E., Y.G. and H.O.C. for their help and

contribution during development of the tool and case study implementations.

Also, I would like to thank to my family for their limitless patient and love which

motivated me to complete this study.

x

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ.. vi

ACKNOWLEDGEMENTS.. ix

TABLE OF CONTENTS... x

LIST OF TABLES ... xiv

LIST OF FIGURES... xv

LIST OF ABBREVIATIONS.. xxii

CHAPTER

1. INTRODUCTION ... 1

1.1. Problem Statement ... 2

1.2. Statistical Process Control Assessment & Analysis Tool (SPC-

AAT) 3

1.3. Roadmap .. 5

2. BACKGROUND ... 6

2.1. Variability in Processes and Statistical Control 6

2.2. SPC Tools .. 8

2.2.1 Shewhart’s Control Charts .. 13

2.3. SPC in Software Development ... 20

xi

2.4. Guidelines for Applying SPC in Software Development............. 23

2.4.1 Application of Statistical Process Control to Software

Processes 23

2.4.2 Utilization of SPC in Emergent Software Organizations:

Pitfalls and Suggestions.. 24

2.4.3 Statistical Process Control - Assessment Model (SPC-AM) 24

2.5. Measurement Data Collection... 29

2.5.1 INTERMEDIATE... 29

3. DETAILS OF SPC-AAT ... 31

3.1. Overview of the System.. 31

3.2. General Description.. 33

3.2.1 Product Perspective .. 33

3.2.2 Product Functions ... 34

3.2.3 Constraints, Assumptions and Dependencies....................... 34

3.3. Specific Requirements.. 34

3.3.1 Workspace Use cases.. 34

3.3.2 Process Metric Data Use cases .. 36

3.3.3 Process Execution Record Use cases................................... 37

3.3.4 Process Execution Questionnaire Use cases 38

3.3.5 Process Similarity Matrix Use cases.................................... 39

3.3.6 Base Process Clusters Use cases ... 41

3.3.7 Process Attributes Description Use cases 43

3.3.8 Process Metrics Use cases... 43

3.3.9 Metric Usability Questionnaire Use cases 45

xii

3.3.10 Metric Usability Rating Use cases....................................... 46

3.3.11 Metric Usability Assessment Results Use cases 47

3.3.12 Process Clusters Use cases.. 48

3.3.13 Use cases related with Using SPC Tools 49

3.3.14 Process Control Status Use cases .. 52

3.3.15 Use cases related with Out-of-Control Points 53

3.3.16 Help Use cases.. 55

3.4. Design of SPC-AAT... 56

3.4.1 Architecture.. 56

3.4.2 Detailed Descriptions.. 57

3.5. Example Scenario... 63

3.5.1 Creating a New Workspace... 63

3.5.2 Importing Metric Data .. 66

3.5.3 Update Process Execution Records 72

3.5.4 Operations on Process Similarity Matrix............................. 77

3.5.5 Identifying Base Process Clusters 78

3.5.6 Handling Metrics .. 79

3.5.7 Displaying Usability Results for Metrics............................. 81

3.5.8 Operations on Process Clusters ... 83

3.5.9 Using SPC Tools Supported.. 84

3.5.10 Overall Process Control Results.. 87

4. CASE STUDY... 89

4.1. Fundamentals of the Case ... 89

xiii

4.2. Context-1 (Case Study A)... 91

4.3. Context-2 (Case Study B) ... 118

4.4. Context-3 (Case Study C) ... 144

4.5. User Evaluation.. 171

5. CONCLUSION AND FUTURE WORK.. 173

5.1. Conclusion ... 173

5.2. Future Work ... 177

REFERENCES.. 179

APPENDICES... 185

A. SPC-AM ASSETS ... 185

B. TOOL INFORMATION .. 191

C. DETAILS OF CASE STUDY-A.. 204

D. DETAILS OF CASE STUDY-B .. 205

E. DETAILS OF CASE STUDY-C .. 206

F. SPC-AAT EVALUATION QESTIONNAIRES 207

xiv

LIST OF TABLES

TABLES

Table 1 Processes and Metrics used in Case Studies .. 4

Table 2 Processes and Metrics used in the Case Studies..................................... 90

Table 3 Process Metrics (Original and Derived) for Case A 96

Table 4 Initial Results from Charted Data in Context-1.................................... 107

Table 5 Assignable Causes for Out-of-Control Points in Context-1.................. 107

Table 6 Results of Case Study A.. 117

Table 7 Process Metrics (Original and Derived) for Case B 123

Table 8 Initial Results from Charted Data in Context-2.................................... 133

Table 9 Assignable Causes for Out-of-Control Points in Context-2.................. 133

Table 10 Results of Case Study B.. 143

Table 11 Processes and Data Sets (Original and Derived) in Context-3............ 149

Table 12 Initial Results from Charted Data in Context-3.................................. 162

Table 13 Assignable Causes for Out-of-Control Points in Context-3................ 162

Table 14 Results of Case Study C.. 170

Table 15 SPC-AAT Requirements ... 194

xv

LIST OF FIGURES

FIGURES

Figure 1 Example Check Sheet .. 8

Figure 2 Example Cause-and-Effect Diagram .. 9

Figure 3 Example Scatter Diagram .. 10

Figure 4 Example Run Chart ... 10

Figure 5 Example Histogram ... 11

Figure 6 Example Bar Chart .. 12

Figure 7 Example Pareto Chart .. 12

Figure 8 Example Control Chart .. 13

Figure 9 Example Control Chart .. 15

Figure 10 Control Charts supported for attributes data 18

Figure 11 Assessment Process of SPC-AM.. 28

Figure 12 General Use cases for SPC-AAT ... 32

Figure 13 Working Environment of SPC-AAT .. 33

Figure 14 Workspace Use cases... 35

Figure 15 Process Metric Data Use cases... 36

Figure 16 Process Execution Record Use cases.. 37

Figure 17 Process Execution Questionnaire Use case... 38

xvi

Figure 18 Process Similarity Matrix Use cases... 40

Figure 19 Base Process Clusters Use cases .. 42

Figure 20 Process Attributes Description Use cases ... 43

Figure 21 Process Metrics Use cases.. 44

Figure 22 Metric Usability Questionnaire Use cases .. 45

Figure 23 Metric Usability Rating Use cases.. 46

Figure 24 Metric Usability Assessment Results Use cases 47

Figure 25 Process Clusters Use cases... 48

Figure 26 SPC Tools Use cases.. 50

Figure 27 Process Control Status Use cases ... 52

Figure 28 Out-of-Control Points Use cases .. 54

Figure 29 Help Use cases... 55

Figure 30 Component Diagram.. 56

Figure 31 Class Diagram ... 57

Figure 32 Create Workspace.. 64

Figure 33 Create Assessment ... 64

Figure 34 Newly created Workspace.. 65

Figure 35 Import Metric Data .. 66

Figure 36 Open Metric Data File ... 67

Figure 37 Imported Metrics ... 68

Figure 38 Metric Data.. 69

Figure 39 Process Execution Records created .. 70

Figure 40 Metric Usability Assessments created .. 71

xvii

Figure 41 Process Execution Record Details.. 72

Figure 42 Inserting new Inputs .. 73

Figure 43 Input created.. 74

Figure 44 Roles of a Process Execution Record ... 75

Figure 45 Saving Process Execution Record .. 76

Figure 46 Process Similarity Matrix for Inputs... 77

Figure 47 Re-identify Process Clusters .. 78

Figure 48 Base Metrics.. 79

Figure 49 Base Metric Questionnaire... 80

Figure 50 Reporting Metric Usability Evaluation... 81

Figure 51 Four Kinds of Reports.. 82

Figure 52 Metric Usability Evaluation Report.. 82

Figure 53 Menu Items on a Process Cluster ... 83

Figure 54 SPC Tools supported ... 84

Figure 55 Choosing Metrics to be Charted ... 85

Figure 56 A Control Chart drawn... 85

Figure 57 Process Execution Questionnaire ... 86

Figure 58 Exclusion of a Metric Value... 87

Figure 59 Assessment Results Summary.. 87

Figure 60 Control Status Report... 88

Figure 61 eEPC for Bug Fixing Process (Case A) .. 93

Figure 62 Process Similarity Matrix for Bug Fixing (Case A) 95

Figure 63 Base Process Clusters for Bug Fixing Process.................................... 96

xviii

Figure 64 Derived Metrics Identified in Context-1... 97

Figure 65 Metric Usability Questionnaire for “Bug Aging” Derived Metric of

“Bug Fixing” Process... 98

Figure 66 Metric Usability Ratings for “Bug Aging” Derived Metric of “Bug

Fixing” Process.. 99

Figure 67 Metric Usability Report for Bug Fixing process 99

Figure 68 Cluster Distances for base Process Clusters...................................... 100

Figure 69 Process Clusters after first merge ... 101

Figure 70 Cluster Distances after first merge ... 101

Figure 71 Process Version B_C – Bug Aging Control Chart 103

Figure 72 Control Chart drawn for “Version B_C – Person Hours” pair........... 104

Figure 73 Control Chart drawn for “Version B_C – Person Hours” pair........... 105

Figure 74 Final Control Chart drawn for “Version B_C – Person Hours” pair.. 106

Figure 75 Control Chart for Combined Data of Bug Aging 108

Figure 76 Control Chart for Combined Data of Person Hours 109

Figure 77 Final Control Chart for Combined Data of Bug Fixing..................... 110

Figure 78 Final Control Chart for Combined Data of Person Hours 111

Figure 79 Process Version B_C – Bug Aging Histogram 112

Figure 80 Process Version B_C – Person Hours Histogram 113

Figure 81 Process Version D_E_B_C_A – Bug Aging Histogram 114

Figure 82 Process Version D_E_B_C_A – Person Hours Histogram................ 115

Figure 83 Bar Chart for Status ... 116

Figure 84 eEPC for Recruitment Process (Case B)... 120

Figure 85 Process Similarity Matrix for Recruitment (Case B)......................... 122

xix

Figure 86 Base Process Clusters for Bug Fixing Process.................................. 123

Figure 87 Derived Metrics Identified in Context-2... 124

Figure 88 Metric Usability Questionnaire for “Procurement Time Variance”

Derived Metric of “Procurement” Process.. 125

Figure 89 Metric Usability Ratings for “Procurement Time Variance” Derived

Metric of “Procurement” Process ... 126

Figure 90 Metric Usability Report for Procurement process............................. 126

Figure 91 Process Clusters after the merge... 127

Figure 92 Control Chart for Version B – Procurement Time Variance pair 128

Figure 93 Rules for OCPs (Case B) ... 129

Figure 94 Control Chart for Version B – Actual Procurement Time pair 130

Figure 95 Control Chart drawn for “Version B – Actual Procurement Time” pair

.. 131

Figure 96 Control Chart for Version A_B – Procurement Time Variance pair.. 134

Figure 97 Control Chart for Combined Data of Recruitment 135

Figure 98 Final Control Chart for Combined Data of Recruitment 136

Figure 99 Final Control Chart for Combined Data of Recruitment 137

Figure 100 Version B – Actual Procurement Time Histogram 138

Figure 101 Version B –Procurement Time Variance Histogram....................... 139

Figure 102 Version A_B – Actual Procurement Time Histogram..................... 140

Figure 103 Version A_B –Procurement Time Variance Histogram 141

Figure 104 Bar Chart for Position .. 142

Figure 105 eEPC for Bug Fixing Process (Case C) .. 146

Figure 106 Process Similarity Matrix for Bug Fixing....................................... 148

xx

Figure 107 Base Process Clusters for Bug Fixing Process................................ 149

Figure 108 Base and Derived Metrics Identified in Context-3.......................... 150

Figure 109 Metric Usability Questionnaire for “Bug Aging” Derived Metric of

“Bug Fixing” Process... 151

Figure 110 Metric Usability Ratings for “Bug Aging” Derived Metric of “Bug

Fixing” Process.. 152

Figure 111 Metric Usability Results (Case C) .. 153

Figure 112 OCP Rules for Case C.. 154

Figure 113 Version B – Bug Aging Control Chart ... 155

Figure 114 Version B – Bug Aging Final Control Chart................................... 156

Figure 115 OCP Rules for Case C (Final) .. 157

Figure 116 Control Chart drawn for “Version A – Bug Aging” pair................. 158

Figure 117 Control Chart drawn for “Version A – Bug Aging” pair................. 159

Figure 118 Final Control Chart drawn for “Version A – Bug Aging” pair 160

Figure 119 Process Clusters after the merge... 160

Figure 120 Control Chart for Combined Data of Bug Fixing............................ 161

Figure 121 Version A – Bug Aging Histogram .. 163

Figure 122 Version B – Bug Aging Histogram .. 164

Figure 123 Version A_B – Bug Aging Histogram.. 165

Figure 124 Bar Chart for Test Results.. 166

Figure 125 Version A_B – SB Found Pareto Chart .. 167

Figure 126 Version A_B – Error Reason Pareto Chart 168

Figure 127 Version A_B – Problem Source Pareto Chart 169

Figure A.1 Process Execution Record.. 185

xxi

Figure A.2 Process Execution Questionnaire ... 186

Figure A.3 Process Similarity Matrix... 187

Figure A.4 Process Attributes Description ... 188

Figure A.5 Metric Usability Questionnaire for Base Metrics............................ 189

Figure A.6 Metric Usability Questionnaire for Derived Metrics....................... 190

xxii

LIST OF ABBREVIATIONS

CMM: Capability Maturity Model

CMMI: Capability Maturity Model Integrated

CMU: Carnegie Mellon University

eEPC: Extended Event-Driven Process Chain

FO: Feature Owner

GQM: Goal-Question-Metric

IEC: International Electrotechnical Commission

IRS: Interface Requirements Specification

ISO: International Standards Organization

İSK: İstatistiksel Süreç Kontrolü

L3: Maturity Level 3

L4: Maturity Level 4

LCL: Lower Control Limit

LOC: Lines of Code

M3P: Model Manage Measure Paradigm

MUF: Metric Usability Factor

MUQ: Metric Usability Questionnaire

PSM: Practical Software Measurement

xxiii

QPM: Quantitative Process Management

SEI: Software Engineering Institute

SEPG: Software Engineering Process Group

SG: Specific Goal

SP: Specific Practice

SLOC: Source Lines of Code

SPC: Statistical Process Control

SPC-AM: Assessment Model for Statistical Process Control

SPC-AAT: Statistical Process Control Assessment & Analysis Tool

SW: Software

TL: Team Leader

UCL: Upper Control Limit

VE: Verification

XmR: X (Individual) and Moving Range

1

 CHAPTER 1

1. INTRODUCTION

It is a well known fact that there are lots of failure stories of Software Projects

[49]. The basic reason for this is that Software Engineering is not a mature

engineering discipline as Civil Engineering, Electrical Engineering, etc.

Especially, measurement is an open area to enhance in the maturing process of

software engineering. High number of failed software projects is not surprising if

we remember an old management adage; “You can't manage what you don't

measure”.

In the future, systems in Software Engineering will be much more complex and

controllability will decrease [32]. Keeping this in mind, the pressure on software

engineering industry to find mature ways to measure and control software

processes and product quality is increasing. In the past, measurement has been

treated as an additional and extra task in software industry [16]. But now software

measurement is considered to be a basic software engineering practice, as

evidenced by its inclusion in the Level 2 maturity requirements of the Software

Engineering Institute’s Capability Maturity Model Integration (CMMI) [9]

products and related commercial software process standards [32].

As it is stated implicitly before, measurement is not a target, it is just a tool in

order to control and manage software projects. In the mature manufacturing

industries, SPC (Statistical Process Control) has been widely used for this

purpose. SPC was originated by the studies of Walter Shewhart in 1930s [45]. W.

2

Edward Deming had also major contributions to SPC [11] [12]. The basic

principle of SPC is that by establishing and sustaining stable levels of variability,

processes will yield predictable results [17]. According to SPC, almost all

characteristics of processes and products display variation when measured over

time.

1.1. Problem Statement

SPC used in other mature disciplines to control processes is also recognized by

software industry and embedded into process improvement models like CMM

[38], ISO/IEC 15504 [27] and CMMI [9]. The companies that are using one of

these models start to implement SPC [8] [10], as a requirement of high maturity

levels (level 4 and above). Besides these process improvement models, some

researchers contribute to this trend by providing approaches to utilize SPC

techniques for software industry [5] [16] [17]. In the literature, there are also a

number of articles and tutorials that discuss the reasons of difficulties and provide

suggestions on implementation of SPC for software [6] [7] [14] [18] [20] [31]

[40] [41] [50]. But we lack satisfactory guidelines for software companies to

implement SPC techniques with convincing information. Realizing this need,

Sargut reported a study of applying SPC to an emergent software organization and

prepared guidelines to apply SPC techniques [43]. Then Tarhan proposed an

assessment model (SPC-AM) to evaluate the suitability of SPC for software

processes and metrics with the aim of providing guidelines to direct SPC

implementation [47].

Despite these studies on providing guidelines to direct SPC implementation there

is no tool to guide and start SPC implementation in a software organization.

Without proper software tools, it is still not easy to utilize SPC especially for

emergent organizations. Current techniques are cumbersome, hard to apply and

difficult to follow the results without the support of software tools. And because

of that, experts are needed to guide organizations to apply SPC techniques.

Moreover, consistency and correctness of the results are depending on the human

3

being. Without software tool support, external statistics tools (Minitab Statistical

Software [33], Matlab, etc.) should be used for generating the statistical charts.

The metric data should be entered and arranged manually to the related statistics

tools. Also it is not possible to relate metric data to process executions with

statistics tools. This needs high effort and consumes lots of time besides being

very error-prone. As a result; with the current techniques, it is not easy to continue

applying SPC for the people other than experts. This hinders the dissemination of

SPC in the emergent organizations.

1.2. Statistical Process Control Assessment & Analysis Tool (SPC-AAT)

In this study, we investigated how to ease and enhance applying SPC to the

emergent organizations and reduce the time required. In order to do this, we

developed an SPC assessment and analysis tool which is called SPC-AAT. SPC-

AAT automates the assessment process of SPC-AM to guide especially emergent

organizations to apply SPC and it is used for statistical analysis. Control charts,

histograms, bar charts and pareto charts are the supported SPC tools for this

purpose. With SPC-AAT, we will contribute to effective use and dissemination of

SPC among emergent software organizations. Therefore, feedback loops can be

provided easily regardless of the maturity level of the software organization. Also

SPC-AAT is one of the few tools which relate process metric data to process

executions for statistical analysis.

The basic functionalities that SPC-AAT provides are importing process metric

data to SPC-AAT, organizing process metric data for SPC analysis, defining

process metrics, creating new derived metrics from existing base and/or derived

metrics, assessing processes and process metrics for applicability of SPC,

performing rational sampling automatically according to assessment results,

applying SPC tools on the processes and process metrics, providing

questionnaires to find out the reasons for variation of the processes, supporting

what-if analysis for different rational sampling choices, reporting and printing the

assessment and analysis results.

4

To validate SPC-AAT, we implemented three case studies at a project-based

working software organization having CMMI L3. We worked on recruitment and

bug fixing processes (for two different projects) of the organization and related

metrics of these processes. These processes and the metrics used in the case

studies can be seen in Table 1.

Table 1 Processes and Metrics used in Case Studies

Process Name Metric Name

Bug Aging

Person Hours (Effort)

Bug Fixing (Project A)

Status

Actual Procurement Time

Procurement Time Variance

Recruitment

Position

Bug Aging

Estimated Bug Aging

Estimation Variance

Estimation Capability

Problem Source

Error Reason

Should-be found

Bug Fixing (Project B)

Status

5

Case studies showed us that using SPC-AAT we could utilize SPC in an emergent

organization besides assessing the usability of SPC for the processes and the

related metrics in hours. After that company staff can also continue monitoring the

analyzed processes with importing newly generated process metric data and can

use SPC tools easily on the process metric data. Besides these, we could also

detect improvement opportunities for the analyzed processes and SPC-AAT

during the case studies.

1.3. Roadmap

In Chapter 2, we provide the details about the related research concerning this

study. Statistical Process Control (SPC) and SPC implementations for software

are explained. The tools used to support SPC are described here. Especially

control charts are explained in detail. The basic components and assets of SPC-

AM are also given in this chapter.

In Chapter 3, we provide the details related to the tool we developed, SPC-AAT.

We describe the requirements of the tool as UML use case diagrams. We also

present the design of SPC-AAT application by using UML class diagrams and

UML component diagrams. Finally, usage of our tool is described over one

scenario.

In Chapter 4, we mention the validation of SPC-AAT by the case studies

implemented and questionnaires performed. We provide the details related to each

case study implementation. The results of these implementations are also

presented in this chapter. As a last thing, we provide the results of the

questionnaires held about SPC-AAT.

Finally in Chapter 5, we provide our conclusions on our study and portray overall

findings. In this chapter, we also describe potential subjects for future work.

6

 CHAPTER 2

2. BACKGROUND

As old management adage, “You can't manage what you don't measure”, points

measurement is very important in order to control and manage software projects.

In the mature manufacturing industries, SPC (Statistical Process Control) has been

widely used for this purpose. SPC was originated by the studies of Walter

Shewhart in 1930s [45]. W. Edward Deming had also major contributions to SPC

[11] [12]. Then Donald J. Wheeler followed Shewhart’s and Deming’s studies

[51]. In this section we will give details about SPC, SPC tools and SPC in

software industry. Besides we will described a study performed on measurement

data collection.

2.1. Variability in Processes and Statistical Control

Statistical process control principles hold that by establishing and sustaining

stable levels of variability, processes will yield predictable results [45] [46]. Then

we can say that the processes are under statistical control. Controlled processes

are stable processes, and stable processes enable you to predict results [17][20].

According to SPC, almost all characteristics of processes and products display

variation when measured over time and there are two types of the variation [46]:

• common cause variation

• assignable cause variation

7

Common cause variation is variation in process performance due to normal or

inherent interaction among the process components (people, machines, material,

environment, and methods). It is naturally existent within the defined processes

and can only be avoided by performing improvement programs.

The other type of variation in process performance is due to assignable causes.

Assignable cause variations arise from events that are not part of the normal

process. They represent sudden or persistent abnormal changes to one or more of

the process components [17] [20]. For example, if developers start to use a new

IDE for software development then source lines of code produced a day may be

lower during adaptation period. This can be explained as the assignable cause

variation in a process. In equation form, the concept is

[total variation] = [common cause variation] + [assignable cause variation]

When all assignable causes have been removed and prevented from reoccurring in

the future so that only a single, constant system of chance causes remains, we

have a stable and predictable process. Then we can expect the outcome will be

within certain limits for the same process. In this way, we can prepare achievable

plans, meet cost estimates and scheduling commitments, and deliver required

product functionality and quality with acceptable and reasonable consistency.

Several attributes or variables are defined to represent the outcomes of the process

in order to measure the variance in process behavior over time. Then the

variability in process behavior can be tracked through these measures. Errors

found during system test, effort spent for bug fixing, SLOC produced during a

project may all be examples to represent outcomes of the related processes.

Although a process is stable (under control) it may not be capable. In other words,

process performance may not be satisfactory according to the objectives of

organization or project. If this is the case, process should be improved to make the

process capable.

8

To conclude, with statistical process control we first aim to make the process

stable by detecting assignable causes of variation and removing them. As the

second step, we aim to provide a capable process by demonstrating the chance

causes and improving the process if necessary. To achieve these aims, SPC

provides powerful tools to analyze the processes. SPC tools are described in the

following section.

2.2. SPC Tools

The basic tools used for statistical process control are described below [25] [34]:

Figure 1 Example Check Sheet

Check Sheet: Check sheets are good means for collecting data efficiently, reliably

and easily. As the detail and characteristics of data are different, check sheets are

designed specifically considering the particular needs. Metric datasheets are used

extensively in order to represent the data in the desired format.

9

Figure 2 Example Cause-and-Effect Diagram

Cause-and-Effect Diagram: Cause-and-effect diagrams are useful tools to

visualize, categorize and rank potential causes of a problem, a situation or any

outcome. They are also named as fishbone diagrams because of their shapes and

are usually formed as a result of a discussion or a brainstorming session of a

group of people.

10

Figure 3 Example Scatter Diagram

Scatter Diagram: In a scatter diagram, data for two variables are collected in pairs

(xi, yi), and each point yi is plotted against corresponding xi. This is a useful plot

for identifying a potential relationship between two process characteristics. Scatter

diagrams may be used for regression analysis.

Figure 4 Example Run Chart

11

Run Chart: Run charts are specialized, time-sequenced form of scatter diagrams

that can be used to examine data quickly and informally for trends or other

patterns that occur over time. They dynamically observe performance of one or

more processes over time. They are useful for visualizing performance after a

process change.

Figure 5 Example Histogram

Histogram: Histograms show the frequency distribution of data in a sample. The

first step to draw a histogram is to categorize the data into classes with equal

ranges. Then the number of data in each class is found and depicted with bars on

the graph. The data represents the state of a system at a certain time; thus there is

no time dimension. Histograms are quite practical to visualize central tendency

and skewness of an attribute.

12

Figure 6 Example Bar Chart

Bar Chart: Bar charts are like histograms. But they are not only used for depicting

the frequencies of occurrences, but also for showing any numerical value of the

attribute.

Figure 7 Example Pareto Chart

13

Pareto Chart: Pareto chart is another form of bar chart. However, the occurrences

are ordered with respect to their frequencies. Pareto charts are good means to

visualize the ranking of an attribute among different categories.

Figure 8 Example Control Chart

Control Chart: Control charts are sophisticated statistical analysis tools, which

include upper and lower limits to detect any outliers. They look like run charts,

but with the control limits and center line. They are frequently used in SPC

analyses and described in detail in the following section.

2.2.1 Shewhart’s Control Charts

The control chart was invented by Walter A. Shewhart while working for Bell

Labs in the 1920s. The company's engineers had been seeking to improve the

reliability of their telephony transmission systems. Because amplifiers and other

equipment had to be buried underground, there was a business need to reduce the

frequency of failures and repairs. By 1920 they had already realised the

importance of reducing variation in a manufacturing process. Shewhart framed the

problem in terms of Common- and special-causes of variation and introduced the

control chart as a tool for distinguishing between the two in 1924. Shewhart

stressed that bringing a production process into a state of statistical control, where

14

there is only common-cause variation, and keeping it in control, is necessary to

predict future output and to manage a process economically [52].

Shewhart created the basis for the control chart and the concept of a state of

statistical control by carefully designed experiments. While Shewhart drew from

pure mathematical statistical theories, he understood data from physical processes

never produce a "normal distribution curve" (a Gaussian distribution, also

commonly referred to as a "bell curve"). He discovered that observed variation in

manufacturing data did not always behave the same way as data in nature

(Brownian motion of particles). Shewhart concluded that while every process

displays variation, some processes display controlled variation that is natural to

the process, while others display uncontrolled variation that is not present in the

process causal system at all times [52].

In 1924 or 1925, Shewhart's innovation came to the attention of W. Edwards

Deming. Over the next half a century, Deming became the foremost champion

and exponent of Shewhart's work. Deming spread Shewhart's thinking, and the

use of the control chart, widely in Japanese manufacturing industry throughout the

1950s and 1960s. More recent use and development of control charts in the

Shewhart-Deming tradition has been championed by Donald J. Wheeler.

Shewhart control chart model depends on hypothesis testing. First of all, a sample

of data (sufficient enough to represent the whole) is collected for the subject

measure (i.e. number of defects in a piece of code). Then, its mean and variance

are calculated. The lower and upper control limits (LCL and UCL) are derived

from the mean and variance by the formula “Mean ± 3 Standard Deviation” and

data is analyzed using the statistical evidence on hand. By analyzing the data

values with respect to upper and lower control limits together with their location

in the zones, assignable causes are detected. Then necessary actions are taken and

measurements are repeated. The charts are redrawn with the existing data values,

and this process is repeated until no evidence remains for the existence of

15

assignable causes. Once the process is brought under control, further improvement

activities are implemented to minimize the effect of common causes [43].

Figure 9 Example Control Chart

The measurement can be performed by means of either variables or attributes.

Burr and Owen [5] define a variable as “measure of a product that can have any

value between the limits of the measurement”, while an attribute as “count of

things which may or may not be present in the product”. The nature of these two

measurement categories necessitates different statistical analyses. Therefore, there

are different types of control charts.

For variables data we have:

• X-Chart

16

• XmR Chart

• Xbar-R Chart

• Xbar-S Chart

For attributes data we have:

• p-Chart

• np-Chart

• c-Chart

• u-Chart

• XmR Chart

It is recommended to use Xbar-R chart or Xbar-S chart for subgroups of, and X-

chart or XmR chart for individuals of variables data. p-charts, np-charts, c-charts,

and u-charts as well as XmR charts are used for counts or rates of attributes data

(see Figure 10). Below are further explanations on these control charts [17].

Xbar-R Chart: Averages and range chart is used to portray process behavior when

we collect multiple measurements within a short period of time under basically

the same conditions. Measurements are then grouped into self-consistent sets

(subgroups) that can reasonably be expected to contain only common cause

variation. The results of the groupings are used to calculate process control limits.

Xbar (average) charts answer the questions as “what is the central tendency of the

process?” and “how much variation has occurred from subgroup to subgroup over

time?”. The corresponding R (range) charts indicate the variation (dispersion)

within the subgroups. It is advised that range charts be used only when there are

10 or less observations in each subgroup.

Xbar-S Chart: Averages and standard deviation chart is used instead of Xbar-R

charts when subgroup size is larger than 10. S charts based on averages of the

standard deviation within subgroups give tighter control limits, which brings

17

increased sensitivity to assignable causes. As the size of the subgroup increases, it

becomes increasingly difficult to ensure homogeneity of the subgroup. Therefore,

for reliability, selection of the subgroup size should be dictated first by the

homogeneity of the subgroup and second by the subgroup size.

X-Chart: When measurements are spaced widely in time or when measurement is

used by itself to evaluate or control a process, a time-sequenced plot of individual

values, rather than averages, appears. This means that the subgroup size is 1.

An individual plot can detect more readily the following conditions than an Xbar-

R chart: cycles (regular repetitions of patterns), trends (continuous movement up

or down), mixtures (presence of more than one distribution), grouping or

bunching (measurements clustering in spots), and relations between the general

pattern of grouping and a specification.

XmR Chart: Individuals chart is frequently complemented by a corresponding

moving range chart which depicts successive two-point moving ranges. This

combination of charts for individual observations and moving ranges is called and

XmR chart. XmR charts are especially useful to view trends in the process.

The idea behind XmR chart is that, when subgroups can easily include nonrandom

components, we minimize the influence that nonrandom effects have upon

estimates for sigma by keeping the subgroups as small as possible. The smallest

possible subgroup size is 1. There is no way to estimate sigma from a single

measurement so that we do the next best thing: We attribute the changes that

occur between successive values to the inherent variability in the process. The

absolute values of these changes are called two-point moving ranges.

When median moving range is used instead of the average moving range to

compute the limits for an XmR chart, then we have “X and median mR” chart.

The median moving range is frequently more sensitive to assigned causes when

the moving range contains several very large values relative to the rest of the

moving range values. Several high range values unduly inflate the average

moving range and cause the upper and lower limits to expand.

18

Figure 10 Control Charts supported for attributes data

np-Chart: An np-chart is used when the count data are binomially distributed and

all samples have equal areas of opportunity. For example, when there is 100%

inspection of lots of size n (n constant) and the number of defective units in each

lot is recorded.

p-Chart: A p-chart is used instead of an np-chart when the data are binomially

distributed but the areas of opportunity vary from sample to sample. A p-chart is

appropriate in the inspection example given for np-chart, if the lot size n were to

change from lot to lot.

c-Chart: A c-chart is used when count data are samples from Poisson distribution

and the samples have equal-sized areas of opportunity. C-charts are suggested, for

example, when tracking the number of defects found in lengths, areas, or volumes

of fixed (constant) size.

u-Chart: A u-chart is used instead of a c-chart when the count data are samples

from a Poisson distribution and the areas of opportunity are not constant. Here,

the counts are divided by the respective areas of opportunity to convert them to

rates. A u-chart is more flexible than a c-chart because the normalizations that it

employs enable it to be used when the areas of opportunity are not constant.

19

An XmR chart can be used in any of the above situations described for attributes

data as well as when neither a Poisson nor a binomial model fits the underlying

phenomena or when little is known about the underlying distribution. However,

an XmR chart is not a reasonable choice when the events are so rare that the

counts are small and values of zero are common (then the discreteness of the

counts can affect the reliability of the control limits). If the average of the counts

exceeds 1.00, an XmR chart offers a feasible alternative to the traditional

attributes charts. In our study, we have used X charts for both attribute and

variable data.

Wheeler suggests the following tests for detecting the assignable causes in a

control chart [51] (“sigma” means standard deviation):

• Test-1: A single point falls outside the 3-sigma control limits.

• Test-2: At least two out of three successive values fall on the same side of, and

more than two sigma units away from, the centerline.

• Test-3: At least four out of five successive values fall on the same side of, and

more than one sigma unit away from, the centerline.

• Test-4: At least eight successive values fall on the same side of the centerline.

Tests 2, 3, and 4 are called run tests and are based on the presumptions that the

distribution of the inherent, natural variation is symmetric about the mean; that the

data are plotted in time sequence; and that successive observed values are

statistically independent. The symmetry requirement means that the tests are

designed primarily for use with X-bar and individuals charts. Strictly speaking,

they are not applicable to R charts, S charts, or moving range charts [17]. Using

test 1 avoids the need to make assumptions about the distribution of the

underlying natural variation.

In our tool, it is possible to configure the run tests to be performed while drawing

control charts. Each run test added increases our chances of detecting and out-of-

control condition; however, it also increases our chances of getting a false alarm.

Here the important point is that the decision to use a test should be given before

20

looking at the data. Determining the frequency with which a specific test leads to

false alarms would be wise to identify its effectiveness.

2.3. SPC in Software Development

On software engineering discipline Humphrey can be regarded as a reflection of

quality management. He describes a framework for software process management,

outlines the actions to provide higher maturity levels and acts as a basic guide to

improve processes in a software organization. In this book, Statistical Process

Control appears as a means of data analysis technique for level 4 organizations.

Humphrey emphasizes that measures should be robust, suggest a norm, relate to

specific product and process properties, suggest an improvement strategy and be a

natural result of the process. He also mentions that it is essential to have a model,

but believing it too implicitly can be a mistake [43].

As SPC is more regarded in software industry, additional studies are being

performed by the researchers. Lantzy is one of primary authors that mention the

application of SPC concepts for software.. In his paper [31], he summarizes the

concept of SPC and gives some practical examples from manufacturing industry.

Then he offers a set of transformations on these principles via software quality

characteristics revealing the uniqueness of software products. After giving the

process-product relationship, he outlines a seven-step guideline for successful

SPC implementation in a software organization. This study reveals four important

points for the application of SPC to software processes:

• Metrics should correlate to the quality characteristics of the products that

are defined by the customer

• Metrics should be selected for the activities that produce tangible items

• SPC should be applied only to critical processes

• The processes should be capable of producing the desired software product

21

In his article [6], Card discusses the utilization of SPC for software by also

considering some of the objections and mentioning about possible implementation

problems. He states that, as one objection, software development process does not

involve repeated delivery of equivalent services or the fabrication of identical

products. Another objection is the lack of a perfect measure of the attributes,

which actually underlies the importance of metric definition. However, he argues

that SPC does not rely on having a perfect measure, since SPC analysis is meant

only to give some insight into how the process is functioning and it does not have

to provide total visibility. He recommends beginning with a model of the process

and then selecting techniques to monitor performance, in implementing SPC. He

provides an example of a control chart to track testing efficiency, related to his

approach.

In their book [5], Burr and Owen describe the statistical techniques currently

available for managing and controlling the quality of software during

specification, design, production and maintenance. This book is one of the very

few resources in the area as it is a full reference on statistical methods from

technical background of statistics and measurement to managerial concerns in

software industry. The main focus is given to control charts as beneficial SPC

tools and guidelines are provided for measurement, process improvement and

process management within software domain.

A similar work is performed by Florac and Carleton [20]. This guidebook is about

using measurements to manage and improve software processes. It shows how

quality characteristics of software products and processes can be quantified,

plotted, and analyzed, so that the performance of activities that produce the

products can be predicted, controlled, and guided to achieve business and

technical goals. Although many of the principles and methods described in the

guidebook are applicable to individual projects, the primary focus is on the

enduring issues that enable organizations to improve not just today’s performance,

but the long-term success and profitability of their operations. They represent

22

CMM understanding on the utilization of Statistical Process Control for software

process improvement.

Barnard and Carleton [2] explain the results from a cooperative effort where

Software Engineering Institute and the Space Shuttle Onboard Software Project

experiment applying SPC analysis to inspection activities. During the study;

project process descriptions are reviewed, data definitions are verified and

validated, and experimentation and analysis are conducted. Since SPC analysis

assumes data come from different sources, six functional areas of the project are

treated separately. Control charts are depicted and examined for the metrics in

search of stability:

In their book [16], Fenton and Pfleeger provide an accessible and comprehensive

introduction to software metrics, now an essential component in the software

engineering process. It also takes account of the fast changing developments in

software metrics, most notably their widespread penetration into industrial

practice.

In his article [50], Weller provides a distinct case in his article by presenting

details on SPC implementation to analyze inspection and test data in a software

organization. He proposes that in order to regard defect density as an indicator of

product quality, he first wants to be sure that inspection process is stable in the

organization. He uses X and moving range charts for the lines of code inspected

per hour for each inspection, and achieves a stable inspection process after

removing the outliers from the dataset. Then he draws u-chart for the defect

density data for each inspection. By these findings, he makes reliable estimations

for inspection effectiveness and gains an insight on when to stop testing. The

results of the analysis are discussed with the project teams at their weekly

meetings, for three main reasons: It sends a message that the data is being used to

make decisions on the projects; keeping the estimates and data in front of the

teams make them aware of the progress toward the quality targets; and they want

23

to avoid the problem of “metrics are going into a black hole” which causes metric

programs to fail.

Radice [41] describes SPC techniques constrained within software domain and

gives a detailed tutorial by supporting his theoretical knowledge with practical

experiences. He states that all SPC techniques may not be applicable for software

processes and gives XmR and u charts as possible techniques. He also explains

the relevance of SPC for CMM Level 4 and regards back-off of control charts in

Level 4 as a mistake. He states five problems with control charts: too much

variation; unnecessary use of control charts; lack of enough data; lack of

specification limits from the clients; the idea that control charts cannot be used

with software processes [43].

2.4. Guidelines for Applying SPC in Software Development

2.4.1 Application of Statistical Process Control to Software Processes

In his article [31], Lantzy outlines a seven-step guideline for successful

application of SPC principles to the software process:

• Negotiate a set of prioritized software quality characteristics with the

customer.

• Design, specify, and implement a software process capable of producing

the desired software product.

• Establish process owners and empower them.

• Establish metrics for processes that correlate to the quality characteristics

established for the end-item software product.

• Employ control charting or comparable techniques to determine the

stability of each process.

• Bring processes in control by eliminating all special causes of variation.

24

• Continuously improve processes in order to bring control limits within

tolerances so that the end-item software product meets customer

requirements.

2.4.2 Utilization of SPC in Emergent Software Organizations: Pitfalls and

Suggestions

Realizing that the existing studies are far from being capable of providing

sufficient guidelines for applying SPC techniques to software processes, Sargut

provided guidelines for SPC. In this regard, Sargut revealed that:

• SPC is not applicable to all software processes.

• SPC should only be applied to critical processes in a software

organization.

• Not all SPC techniques are applicable to software processes.

• The processes should be well-defined and stable so that we can apply SPC

techniques successfully.

• SPC techniques are required for achieving CMM Level 4.

• Control chart is the most sophisticated and useful SPC technique.

In our study, we have also benefited from these guidelines revealed.

2.4.3 Statistical Process Control - Assessment Model (SPC-AM)

SPC-AM is an assessment model to evaluate the applicability of SPC for software

processes. It aims especially the emergent organizations that lack satisfactory

guidelines for SPC implementation. SPC-AM addresses two basic requirements,

with the purpose of providing guidance on initiating SPC applications for

software processes:

• Rational sampling of process executions and data

• Metric data utilization (or suitability) for statistical analysis

25

The first requirement, rational sampling, aims to obtain and use data that are

representative of the performance of the process with respect to the issues being

studied. Process executions should be homogenous enough to ensure a single and

constant system of chance causes. Otherwise, we can not use the basic assumption

that resides at the heart of SPC [17] [20]:

[total variation] = [common cause variation] + [assignable cause variation]

SPC-AM proposes a clustering method to help grouping the process executions so

that variations within any given group all come from the same system of chance

causes. This clustering method is based on the following attributes of process

executions:

• Inputs

• Outputs

• Activities

• Roles

• Tools and Techniques

Input is an entity that have been entered into the process or expended in its

operation to achieve one or more outputs. The process has a number of inputs to

each execution.

Output is an entity that have been produced by the process or created in its

operation to fulfill process purpose. The process has a number of outputs from

each execution.

Activity represents a distinct step within the process, when completed, supports

transformation of input(s) into output(s) to achieve process purpose. The process

has a number of activities that are carried out within each execution.

Role represents the actions assigned to or required of a person or group to carry

out the activities within the process. The process allocates responsibility to a

number of roles that participates in one or more process activities.

26

Tools and Techniques represent an implement used in or a practical method

applied to some particular activity to support its completion. The process holds a

number of tools and techniques that are used in one or more process activities.

Process executions are checked against the similarity in terms of these attributes.

More similar the attributes more possible that they are from a single system of

chance causes. Therefore, it is assumed that process executions in each group are

consistently performed. This part of SPC-AM is also called as “Process

Consistency Assessment” since consistency of the process executions is assessed

to ensure the correct results from SPC implementation, regardless of process

maturity or capability.

The second requirement is metric utilization. In the scope of this requirement,

SPC-AM evaluates metrics’ usability for applying SPC. SPC-AM proposes to use

six attributes which are called as “Metric Usability Attributes” for this purpose:

• Metric Identity

• Data Existence

• Data Verifiability

• Data Dependability

• Data Normalizability

• Data Integrability

Metric Identity includes general characteristics of a metric such as scale type, unit,

formula, data type, range. Especially, scale type is important since control charts

can not be used for nominal and ordinal scale metrics.

Data Existence is related with the availability of enough metric data points (20 at

a minimum) for statistical analysis.

Data Verifiability focuses on the consistency in metric data recording and storage

among process executions. Here the assumption of the model is that if

measurements follow the same procedures, results observed will be consistent.

27

Data Dependability is related with recording of metric data as close to its source

and for a specific purpose. The idea of measuring for a specific purpose is the core

of the quality models [4] [37].

Data Normalizability and Data Integrability are related with usefulness of a metric

for process improvement.

SPC-AM developed questionnaires based on these attributes for base and derived

metrics separately. These two types of questionnaires are called as “Metric

Usability Questionnaire” in the model. Questionnaires include a rating system

based on the answers of questions, and accordingly, evaluate the usability of a

specific metric for applying SPC.

The assessment process to follow when applying the model is given in Figure 11.

28

Figure 11 Assessment Process of SPC-AM

29

While performing assessment in accordance to SPC-AM, several assets shown as

document object of eEPC in Figure 11 are used. The list of assessment assets are

given below. Figures of these assets are provided in Appendix-A:

• Process Execution Record

• Process Execution Questionnaire

• Process Similarity Matrix

• Process Attributes Description

• Metric Usability Questionnaire for Base Metrics

• Metric Usability Questionnaire for Derived Metrics

In our study, we chose SPC-AM as the method to assess the suitability of process

and metrics to use for statistical analysis.

2.5. Measurement Data Collection

SPC-AAT supports XML files generated by INTERMEDIATE tool [44] besides

CSV and Excel files directly exported from third party tools holding metric data.

INTERMEDIATE is described in the following section.

2.5.1 INTERMEDIATE

INTERMEDIATE [44] is a tool which is developed to integrate different

measurement data and to provide necessary infrastructure to define new metrics.

This tool can work together with commercial measurement tools, custom-made

applications or directly databases. There are collectors defined in the framework

between the tool and these different third party applications, to collect metrics.

Collectors output XML files with a common DTD and Intermediate Tool parses

these XML documents and the outputs are written to its database. Then the results

of the metrics can be viewed by the user.

There are three kinds of collectors that collect metrics. They are differentiated

according to the tools they interact. Therefore, one type for commercial

30

measurement tools, one for custom-made applications and one for databases.

Intermediate Tool sends metric info that is going to be collected and collector

sends this information to the related tool and the tool collects intended metric and

return metric result to collector. Collector sends this metric value to Intermediate

Tool and it places this value into Intermediate Tool’s database.

INTERMEDIATE provides the facility of automatic data collection. User defines

the period, date and times of the data collection and the system automatically

triggers data collection operation when the time comes. If there is no need for the

user’s input then data collection is done full automatically behind the normal

operations and user is only informed but if there is need for the user to enter some

information then the collector should automatically pop-up on the window and

user enters necessary information. Besides these properties, Intermediate Tool has

the feature to define questionnaire-based forms that provide mapping between the

entered information and related metrics.

31

 CHAPTER 3

3. DETAILS OF SPC-AAT

The first section is the “Overview of the System” that describes the framework in

which SPC-AAT is to be used. The second part is the “General Description” that

is composed of “Product Perspective” and “Product Functions”. In Product

Perspective section, user interfaces, software interfaces and operations are

explained. In “Product Functions” section, information about general

characteristics of users is given. Assumptions and constraints that affect design

phase are also specified in this section.

In “Specific Requirements” section, the use cases of the system are explained by

using UML use case diagrams. Use cases are grouped into related components and

briefly described. In “Design of SPC-AAT” section, architecture of SPC-AAT

tool and detailed description about main classes are given.

Finally in “Example Scenario” section, usage of SPC-AAT is explained over one

example scenario.

3.1. Overview of the System

In the system there is only one user; SPC Implementer (or just User). SPC

Implementer basically imports metric data, assesses process for applicability of

SPC, applies SPC tools and displays assessment & SPC implementation results.

This is described as a use case diagram in Figure 12.

32

Figure 12 General Use cases for SPC-AAT

In the system, three kinds of metric data sources are defined to export metric

values; commercial measurement tools, custom-made applications and connect

directly to databases. There are also three kinds of collectors that collect metrics

from a different metric data source. One way of getting data to SPC-AAT is via

collectors with XML files. Collector1 sends the metric info that is going to be

collected to commercial tool and commercial tool collects intended metric and

return metric result to collector1. Collector1 saves these metric values into an

XML file and SPC-AAT imports this XML file to use the metric data collected.

Interaction of collector2 and collector3 through SPC-AAT is the same with

collector1 except that collector3 interacts with a database and collector2 interacts

with a custom-based application.

The second way to get metric data is importing Excel or CSV files generated by

other applications. The environment that SPC-AAT works is described in the

figure below.

33

Figure 13 Working Environment of SPC-AAT

3.2. General Description

This section presents general factors that affect SPC-AAT requirements.

3.2.1 Product Perspective

SPC-AAT software is developed in Java programming environment, Java

Development Kit version 1.5. SPC-AAT is platform independent and can run on

any operating system. Analysis data can be stored in XML files and then can be

XML Docs with Metric Values

Import

DB

Collector2

Measurement

Tool

Collector3

Custom Based

Application

Collector1

Export Data

as Excel or

XML XML Doc2 XML

SPC-AAT

Display

SPC Results

Import

Excel or CSV

34

restored. Database is not used to store data. For generating reports, a free java

library which is called JFreeReport is used. For charting utilities, another free java

library JFreeChart is used.

3.2.2 Product Functions

SPC Implementer (simply User) is the only actor defined within the system. Use

cases related to this actor are summarized in this chapter.

3.2.3 Constraints, Assumptions and Dependencies

The following assumptions have been made for the requirements specification:

• It is assumed that only one process at a time will be analyzed with SPC-

AAT

• Process executions entered to SPC-AAT should be in time sequence or

should be sorted later by using sort feature of SPC-AAT

3.3. Specific Requirements

Use case method is used for elicitation of the requirements for the SPC-AAT tool.

This section presents all of the specific requirements of SPC-AAT software tool.

Emphasis is placed on the functional requirements, which are explained as groups

of related use cases.

3.3.1 Workspace Use cases

35

SPC Implementer

Create a Workspace

Open an existing

Workspace

Save the current

Workspace

Import Metric Data

to Workspace

Figure 14 Workspace Use cases

Create a Workspace

In the scope of this use case, a new workspace is created to start a new assessment

on the usability of SPC tools for one process and to apply supported SPC tools on

the process. The name and the type (retrospective or prospective) of the process

are requested from the User before creation of the workspace. All existing data is

cleared when a new workspace is created.

Open an existing Workspace

Our tool stores workspace data for a process in a XML file. In other words, for

each process analyzed with our tool there will be one XML file that stores the

workspace data for the process. Therefore in the scope of this use case, User

selects an XML file from the file system and then all workspace data saved in the

XML file is restored and displayed to the User on GUI. User could see exactly the

same data as it is in the save time.

Save the current Workspace

Our tool does not store the workspace data to a database. Instead of this, XML

files are used for persistent storage. For each process analyzed with our tool there

will be one XML file that stores the workspace data for the process. Therefore in

36

the scope of this use case, User selects a directory from the file system and enters

a file name as the name of the XML file used for save operation. After that, all

workspace data and configuration are saved in the XML file specified. When this

XML file is restored, User could see exactly the same data as it is in the save time.

Import Metric Data to Workspace

In the scope of this use case, User selects a CSV, MS Excel or XML file from the

file system and then all metric data in the selected file is imported and workspace

is modified accordingly. The files containing the import data should specify all

metric names to be imported as well as the metric values for the process

executions. The formats for the import files are defined by examples in Appendix

B.

Process execution records, base metrics and metric data are updated according to

the data imported. If there are existing “process executions” defined in the

workspace, then a metric from the imported metrics is used to map existing

process executions with the ones come with imported data. If no metric name is

chosen for mapping, new process execution records created for the imported data

are appended to the end of the existing ones.

3.3.2 Process Metric Data Use cases

Figure 15 Process Metric Data Use cases

37

Update Process Metric Data

For each process execution defined in our tool, it is possible to enter metric values

for all process metrics defined so far.

Display Process Metric Data

For each process execution defined in our tool, User can see metric values for all

process metrics defined so far.

Exclude Process Metric Data Points

In the scope of this use case, User can exclude metric values of process executions

defined in the tool. The purpose of this functionality is not to include metric

values of Out-of-Control points in the statistical analysis.

3.3.3 Process Execution Record Use cases

Figure 16 Process Execution Record Use cases

Create a Process Execution Record

38

Besides creating process execution records during import of metric data from

files, User could also create process execution records manually from the GUI.

User can define inputs, outputs, activities, roles, tools & techniques of the created

process execution besides the name of the recorder and date of recording.

Display an existing Process Execution Record

In the scope of this use case, User can see inputs, outputs, activities, roles, tools &

techniques of the selected process execution besides the name of the person who

recorded this process execution and date of recording.

Update an existing Process Execution Record

In the scope of this use case, User can update inputs, outputs, activities, roles,

tools & techniques of the selected process execution besides the name of the

person who recorded this process execution and date of recording. To be clearer,

User can add new inputs or delete existing inputs or change the existing inputs.

This is also true for other process attributes.

Delete an existing Process Execution Record

In the scope of this use case, User can remove a selected process execution. All

data related with the removed process execution should be cleared: metric data

points, inputs, outputs, activities, roles, tools & techniques.

3.3.4 Process Execution Questionnaire Use cases

Figure 17 Process Execution Questionnaire Use case

39

Display an existing Process Execution Questionnaire

For each process execution defined, there is one process execution questionnaire

attached to it. This questionnaire is used for detecting abnormalities in the

execution of the process. In other words, this questionnaire helps User to find out

external factors that affect the process. This questionnaire is filled for each Out-

of-Control Point detected during retrospective analysis. For prospective analysis,

it is recommended to fill for each process execution record created.

In the scope of this use case, User can see the process execution questionnaire of a

selected process execution record on GUI. To be clearer, User can see the answers

for the questions of the process execution questionnaire besides the name of the

person who filled the questionnaire and the date of filling.

Update an existing Process Execution Questionnaire

For each process execution defined, there is one process execution questionnaire

attached to it. This questionnaire is used for detecting abnormalities in the

execution of the process. In other words, this questionnaire helps User to find out

external factors that affect the process. This questionnaire is filled for each Out-

of-Control Point detected during retrospective analysis. For prospective analysis,

it is recommended to fill for each process execution record created.

In the scope of this use case, User can update the process execution questionnaire

of a selected process execution record on GUI. To be clearer, User can change the

answers for the questions of the process execution questionnaire besides the name

of the person who filled the questionnaire and the date of filling.

3.3.5 Process Similarity Matrix Use cases

40

SPC Implementer

Display Process

Similarity Matrix (PSM)

Update Process

Similarity Matrix (PSM)

Synchronize Process

Similarity Matrix (PSM)

Synchronize Process

Executions accr. to PSM

Figure 18 Process Similarity Matrix Use cases

Synchronize Process Similarity Matrix (PSM)

In the scope of this use case, process similarity matrix should be updated

automatically according to the changes done on process execution records. In

other words, process attributes (inputs, outputs, activities, roles, tools &

techniques) defined for process execution records should be consistent with the

information resides on PSM. Execution of the following use cases will trigger this

use case:

• Import Metric Data to Workspace

• Create a Process Execution Record

• Update an existing Process Execution Record

• Delete an existing Process Execution Record

Display Process Similarity Matrix (PSM)

PSM is a grid which holds the process executions defined so far on one side and

the set of process attribute values of all process executions in the other side. PSM

helps User to see the differences among process executions in terms of process

attribute values.

41

In the scope of this use case, User can see the inclusion or exclusion of process

attribute values for existing process execution records defined so far.

Update Process Similarity Matrix (PSM)

PSM is a grid which holds the process executions defined so far on one side and

the set of process attribute values of all process executions in the other side. PSM

helps User to see the differences among process executions in terms of process

attribute values.

In the scope of this use case, User can add/remove process attribute values to

process executions by checking/un-checking the corresponding cells. User can

also create a new process attribute value which is not defined for any of the

existing process execution. Besides these, User can create a new process

execution record or delete an existing process execution records on PSM.

Synchronize Process Executions accr. to PSM

In the scope of this use case, process execution records should be updated

automatically according to the changes done on PSM. In other words, process

attributes (inputs, outputs, activities, roles, tools & techniques) defined for process

execution records should be consistent with the information resides on PSM.

Execution of the following use cases will trigger this use case:

• Update Process Similarity Matrix (PSM)

3.3.6 Base Process Clusters Use cases

42

SPC Implementer

Identify Base

Process Clusters from PSM

Display Base

Process Clusters

Print Base Process

Clusters

Report Base

Process Clusters

Figure 19 Base Process Clusters Use cases

Identify Base Process Clusters from PSM

In the scope of this use case, process execution records are clustered according to

their process attribute values and one process cluster is created for each cluster

found out. To be clustered in the same base process cluster, two process

executions should have exactly the same process attribute values for inputs,

outputs, activities, roles, tools & techniques.

Display Base Process Clusters

In the scope of this use case, User can see all the base process clusters identified

according to the process attribute values of existing process execution records.

User can also see inputs, outputs, activities, roles, tools & techniques of a selected

base process cluster.

Report Base Process Clusters

In the scope of this use case, a report which shows all the base process clusters

identified and the number of process executions clustered for each base cluster

should be generated and displayed to User.

43

Print Base Process Clusters

User can print the report generated in the Report Base Process Cluster use case.

3.3.7 Process Attributes Description Use cases

SPC Implementer

Create Process Attributes

Description for a Process

Cluster

Display a Process

Attributes Description

Figure 20 Process Attributes Description Use cases

Create Process Attributes Description for a Process Cluster

While clustering process execution records according to their process attribute

values and creating clusters, process attributes description of process clusters

should be created by using process attribute values (inputs, outputs, activities,

roles, tools & techniques) of the process execution records clustered. Process

attributes description contains information about inputs, outputs, activities, roles,

tools & techniques of a process cluster.

Display a Process Attributes Description

In the scope of this use case, User can see the process attributes description of a

selected process cluster. To be clearer, User should see information about inputs,

outputs, activities, roles, tools & techniques of a process cluster on GUI.

3.3.8 Process Metrics Use cases

44

SPC Implementer

Create a Process

Metric

Display a Process

Metric

Delete a Process

Metric

Update a Process

Metric

Report Metric

Definition for a metric

Print Metric

Definition for a metric

Figure 21 Process Metrics Use cases

Create a Process Metric

Besides creating process metrics during import of metric data from files, User

could also create process metrics manually from the GUI. User can enter metric

name, conceptual definition of the created process metric besides the name of the

person who created the metric and date of creation. Base metrics and derived

metrics should be differentiated. User can enter also metric formula for derived

metrics.

Display a Process Metric

In the scope of this use case, User can see type (base or derived), metric name,

conceptual definition of a selected process metric besides the name of the person

who created the metric and date of creation. User can see also metric formula for

derived metrics.

45

Update a Process Metric

In the scope of this use case, User can change metric name, conceptual definition

of a selected process metric besides the name of the person who created the metric

and date of creation. User can change also metric formula for derived metrics.

Delete a Process Metric

In the scope of this use case, User can remove a selected process metric. All data

related with the removed process metric should be cleared: metric data points,

metric name, and conceptual definition.

Report Metric Definition for a metric

In the scope of this use case, a report which shows name, definition, formula,

scale, unit, type and range of a selected process metric should be generated and

displayed to User.

Print Metric Definition for a metric

User can print the report generated in the Report Metric Definition for a metric

use case.

3.3.9 Metric Usability Questionnaire Use cases

Figure 22 Metric Usability Questionnaire Use cases

Display Metric Usability Questionnaire for a metric

For each process metric defined, there is one metric usability questionnaire

attached to it. This questionnaire is used for analyzing the usability of a process

46

metric for applying SPC tools on its values. In other words, this questionnaire

helps User to decide on using this process metric in statistical analysis or not. This

questionnaire is filled for each process metric defined.

In the scope of this use case, User can see the metric usability questionnaire of a

selected process metric on GUI. To be clearer, User can see the answers for the

questions of the metric usability questionnaire besides the name of the person who

filled the questionnaire and the date of filling.

Update Metric Usability Questionnaire for a metric

For each process metric defined, there is one metric usability questionnaire

attached to it. This questionnaire is used for analyzing the usability of a process

metric for applying SPC tools on its values. In other words, this questionnaire

helps User to decide on using this process metric in statistical analysis or not. This

questionnaire is filled for each process metric defined.

In the scope of this use case, User can update the metric usability questionnaire of

a selected process metric on GUI. To be clearer, User can change the answers for

the questions of the metric usability questionnaire besides the name of the person

who filled the questionnaire and the date of filling.

3.3.10 Metric Usability Rating Use cases

Display Metric

Usability Rating for a metric

Update Metric

Usability Rating for a metric

SPC Implementer

Figure 23 Metric Usability Rating Use cases

Update Metric Usability Rating for a metric

47

Metric usability attributes of metric usability questionnaires are rated within four

ordinal values, based on the answers to the questions of the questionnaires: Fully

satisfied (F: %86-100), Largely satisfied (L: %51-85), Partially satisfied (%16-

50), and Not satisfied (N: %0-15).

In the scope of this use case, User can change the rating of Metric Identity, Data

Existence, Data Verifiability and Data Dependability metric usability attributes.

According to these ratings assigned, overall rating of the metric should be

updated.

Display Metric Usability Rating for a metric

Metric usability attributes of metric usability questionnaires are rated within four

ordinal values, based on the answers to the questions of the questionnaires: Fully

satisfied (F: %86-100), Largely satisfied (L: %51-85), Partially satisfied (%16-

50), and Not satisfied (N: %0-15).

In the scope of this use case, User can see the rating of Metric Identity, Data

Existence, Data Verifiability and Data Dependability metric usability attributes

besides the overall rating of the process metric.

3.3.11 Metric Usability Assessment Results Use cases

Figure 24 Metric Usability Assessment Results Use cases

Report Metric Usability Results

48

In the scope of this use case, a report which shows metric name, metric type (base

or derived) and usability status (usable or not usable) of all existing process

metrics should be generated and displayed to User.

Print Metric Usability Results

User can print the report generated in the Report Metric Usability Results use

case.

3.3.12 Process Clusters Use cases

Figure 25 Process Clusters Use cases

Merge Process Clusters

In the scope of this use case, two process clusters can be merged to generate a new

process cluster which contains all the process executions of both process clusters

by preserving the order of process executions. Process attribute values of new

process cluster is the union of the process attribute values of two process clusters

merged. The purpose of merge operation is having process clusters which have

enough data points for statistical analysis.

Split a Process Cluster

49

In the scope of this use case, User can split one process cluster into two process

clusters which were merged before to create the process cluster being split.

Process attribute values of two process clusters should be same as their process

attribute values before merge operation. The purpose of split operation is being

able to roll back changes done on process clusters. Base process clusters can not

be split.

Load Base Process Clusters

In the scope of this use case, User can replace all the process clusters which are

created by merge and split operations by base process clusters which are identified

according to the current process attribute values of existing process executions.

Show Process Cluster Distances

The number of differing process attribute values between two clusters is called as

“cluster distance”. Cluster distance is used to identify the mergable clusters since

it is desired to merge process clusters whose differing attributes’ number is

minimal.

In the scope of this use case, User can see process cluster distances between all

existing process clusters to decide on the process clusters to be merged. Cluster

distance triangle can be used for this purpose.

3.3.13 Use cases related with Using SPC Tools

50

Figure 26 SPC Tools Use cases

Draw Control Charts for Process Cluster – Metric pairs

In the scope of this use case, User can draw control chat for each “process cluster

– process metric” pair except ordinal and nominal type process metrics.

Configuration done with Configure Rules for detecting Out-of-Control Points use

case should be used to detect OCPs.

Draw Bar Charts for Process Cluster – Metric pairs

51

In the scope of this use case, User can draw bar chat for each “process cluster –

process metric” pair except absolute and ratio type process metrics.

Draw Histograms for Process Cluster – Metric pairs

In the scope of this use case, User can draw histogram for each “process cluster –

process metric” pair except ordinal and nominal type process metrics.

Draw Pareto Charts for Process Cluster – Metric pairs

In the scope of this use case, User can draw pareto chat for each “process cluster –

process metric” pair except absolute and ratio type process metrics.

Exclude Metric Data Points on Control Charts

In the scope of this use case, User can exclude metric values of process executions

which are detected as OCP on a control chart shown. The purpose of this

functionality is not to include metric values of Out-of-Control points in the

statistical analysis.

Open Process Execution Questionnaire on Control Charts

In the scope of this use case, User can directly reach (from a control chart shown)

and update process execution questionnaire of a process execution which is

detected as OCP. The purpose of this use case is to help User for detecting

abnormalities in the execution of the process. Process execution questionnaire is

filled for each Out-of-Control Point detected during retrospective analysis.

Configure Rules for detecting Out-of-Control Points

When detecting OCPs on control charts, the following four tests are applied by

default:

• 1 point > 3 standard deviations from center line

• 9 points in a row on same side of center line

• 2 out of 3 points > 2 standard deviations from center line (same side)

• 4 out of 5 points > 1 standard deviation from center line (same side)

52

In the scope of this use case, User can choose the tests to be applied when

detecting OCPs. Therefore, these tests chosen should be used in any place where

calculations about OCPs are involved.

3.3.14 Process Control Status Use cases

Figure 27 Process Control Status Use cases

Display Process Control Status for each metric

In the scope of this use case, User can see control status of process cluster –

process metric (but only ratio and absolute type) pairs. Control status of process

clusters for ordinal and nominal process metrics is displayed as N\A.

Synchronize Process Control Status

In the scope of this use case, control status of process cluster – process metric

pairs should be updated automatically according to the changes done on process

53

clusters, metric data values and configuration rules for OCPs. Execution of the

following use cases will trigger this use case:

• Configure Rules for detecting Out-of-Control Points

• Exclude Metric Data Points on Control Charts

• Load Base Process Clusters

• Split a Process Cluster

• Merge Process Clusters

• Exclude Process Metric Data Points

• Update Process Metric Data

• Import Metric Data to Workspace

Report Process Control Results

In the scope of this use case, a report which shows control status of all existing

“process cluster – process metric” pairs (Under Control or Out of Control),

process metric names and process clusters’ names should be generated and

displayed to User.

Print Process Control Results

User can print the report generated in the Report Process Control Results use

case.

3.3.15 Use cases related with Out-of-Control Points

54

Figure 28 Out-of-Control Points Use cases

Display Out-of-Control Points (OCPs)

In the scope of this use case, it is aimed to see more details about “process cluster

– process metric” (but only ratio and absolute type) pairs whose control status is

Out of Control. User can see the number of OCPs and reasons for OCPs for all

“process cluster – process metric” (but only ratio and absolute type) pairs.

Synchronize Out-of-Control Points (OCPs)

In the scope of this use case, information about OCPs of process “cluster –

process metric” pairs should be updated automatically according to the changes

done on process clusters, metric data values, process execution questionnaires and

configuration rules for OCPs. Execution of the following use cases will trigger

this use case:

• Configure Rules for detecting Out-of-Control Points

• Exclude Metric Data Points on Control Charts

• Load Base Process Clusters

55

• Split a Process Cluster

• Merge Process Clusters

• Exclude Process Metric Data Points

• Update Process Metric Data

• Import Metric Data to Workspace

• Update an existing Process Execution Questionnaire

Report Out-of-Control Points (OCPs)

In the scope of this use case, a report which shows number of OCPs and reasons

of OCPs for all existing “process cluster – process metric” pairs besides process

metric names and process clusters’ names should be generated and displayed to

User.

Print Out-of-Control Points (OCPs)

User can print the report generated in the Report Out-of-Control Points (OCPs)

use case.

3.3.16 Help Use cases

Figure 29 Help Use cases

Display Information about Tool

In the scope of this use case, User can see general information about the tool.

Functionality should be similar to “About” dialogs of commercial applications.

Display Help Documentation

56

In the scope of this use case, User can open help documentation when he needs

some information about the usage of the tool.

3.4. Design of SPC-AAT

3.4.1 Architecture

There are nine logical components that constitute SPC-AAT application. They are

shown as packages in the figure below.

Figure 30 Component Diagram

57

Namely, these logical components are panels, filechooser, toolbar, images, help,

reporting, logging, charting and data.

3.4.2 Detailed Descriptions

This section presents brief overviews of the basic classes. These classes and the

relations between them are shown in the class diagram below.

AProcessAttributes

AQuestionnaire

BaseMetricUsability

Questionnaire

DerivedMetricUsability

Questionnaire

MetricUsabilityAssessment

MetricUsabilityQuestionnaire

ProcessAssessment

ProcessAttributesDescription

ProcessConsistency

Assessment

ProcessConsistencyMatrix

ProcessExecutionQuestionnaireProcessExecutionRecord

ProcessVersion

UsabilityRating

- processAssessment

- processConsistencyMatrix

- processAssessment

- metricUsabilityQuestionnaire

attrRatings

- metricUsabilityAssessment

- processConsistencyAssessment

- processVersion

- processConsistencyAssessment

- processExecutionRecord

- processExecutionQuestionnaire

- processConsistencyAssessment

- processVersion

- processAttributesDescription

- processConsistencyAssessment

Figure 31 Class Diagram

The responsibility of each class, the collaborations with other classes is also

explained below:

ProcessAssessment Class

The ProcessAssessment class represents a process which is to be analyzed

statistically by using SPC-AAT. All classes related with a process are accessed

over this class. ProcessConsistencyAssessment and MetricUsabilityAssessment

classes are instantiated by ProcessAssessment Class. A ProcessAssessment object

has the following attributes: processName, isRetrospective, metricData,

58

nonNumericMetricData, processConsistencyAssessment,

metricUsabilityAssessments and rulesForDetectingOCPs.

This class contains methods for handling process metric data, process consistency

assessment and metric usability assessment.

ProcessConsistencyAssessment Class

The ProcessConsistencyAssessment class represents a consistency assessment of a

process which is to be analyzed statistically by using SPC-AAT. All classes

related with a process consistency assessment are accessed over this class.

ProcessSimilarityMatrix, ProcessExecutionRecord and ProcessVersion classes are

instantiated by ProcessConsistencyAssessment class. A

ProcessConsistencyAssessment object has the following attributes:

processAssessment, processConsistencyMatrix, processExecutionRecords and

processVersions.

This class contains methods for adding, removing, updating process execution

records; adding, removing, updating process versions; synchronization between

PSM and process execution records; creating and updating PSM; calculation of

cluster distances; merging, spliting process versions, finding Out-of-Control

points.

MetricUsabilityAssessment Class

The MetricUsabilityAssessment class represents a metric usability assessment of a

process which is to be analyzed statistically by using SPC-AAT. All classes

related with a metric usability assessment are accessed over this class.

MetricUsabilityQuestionnaire classes are instantiated by

MetricUsabilityAssessment class. A MetricUsabilityAssessment object has the

following attributes: processAssessment and metricUsabilityQuestionnaire.

This class contains methods for handling metric usability questionnaires, saving a

MetricUsabilityAssessment object to XML and creating a

MetricUsabilityAssessment object from XML.

AProcessAttributes Class

59

The AProcessAttributes class is an abstract class. ProcessExecutionRecord and

ProcessAttributesDescription classes are inherited from AProcessAttributes class.

All common attributes and methods of a process cluster and a process execution

reside in this class. AProcessAttributes class has the following attributes: inputs,

outputs, activities, roles, toolsAndTechniques, processName, recordedOn and

recordedBy.

This class contains methods for handling all process attributes (inputs, outputs,

activities, roles, toolsAndTechniques), saving an AProcessAttributes object to

XML and creating an AProcessAttributes object from XML.

AQuestionnaire Class

The AQuestionnaire class is an abstract class. MetricUsabilityQuestionnaire and

ProcessExecutionQuestionnaire classes are inherited from AQuestionnaire class.

All common attributes and methods of a metric usability questionnaire and a

process execution questionnaire reside in this class. AQuestionnaire class has no

attributes defined.

This class contains abstract methods for handling questions, answers, status and

attributes of a questionnaire. Besides abstract methods, this class has concrete

methods for saving an AQuestionnaire object to XML and creating an

AQuestionnaire object from XML.

ProcessSimilarityMatrix Class

The ProcessSimilarityMatrix class represents the process similarity matrix which

is created in the scope of process consistency assessment. A

ProcessSimilarityMatrix object has the following attributes:

processConsistencyAssessment.

This class contains methods for creating, updating and displaying PSM.

ProcessVersion Class

The ProcessVersion class represents a process cluster of a process assessment,

which is created in the scope of process consistency assessment. All data and

operations related with a process version are accessed over this class.

60

ProcessAttributesDescription classes are instantiated by ProcessVersion class. A

ProcessVersion object has the following attributes: mergedProcessVersions,

numberOfPEs, processAttributesDescription, processConsistencyAssessment and

oldPERsOfMergedProcessVersions.

This class contains methods for handling process attributes descriptions,

calculating cluster distance to another process version, handling merged process

versions, checking split support of a process version, handling process executions

of a process version, saving a ProcessVersion object to XML and creating a

ProcessVersion object from XML.

ProcessAttrRowData Class

The ProcessAttrRowData class represents a process attribute value of a process

execution or a process version. Inputs, outputs, activities, roles and

toolsAndTechniques of a process execution or a process version are stored at

ProcessAttrRowData objects. A ProcessAttrRowData object has the following

attributes: no, name, activityNo, and description.

This class contains methods for handling no, name, activityNo, and description of

process attribute values besides methods for saving a ProcessAttrRowData object

to XML and creating a ProcessAttrRowData object from XML.

ProcessAttributesDescription Class

The ProcessAttributesDescription class represents process attribute descriptions

(inputs, outputs, activities, roles, toolsAndTechniques) of a process version, which

is created in the scope of process consistency assessment. All data and operations

related with process attribute descriptions are accessed over this class.

ProcessAttributesDescription is inherited from AProcessAttributes abstract class.

A ProcessAttributesDescription object has the following attributes:

descriptionVersion and processVersion.

This class contains methods for handling descriptionVersion and processVersion

attributes, saving a ProcessAttributesDescription object to XML and creating a

ProcessAttributesDescription object from XML.

61

ProcessExecutionRecord Class

The ProcessExecutionRecord class represents a process execution record of a

process assessment, which is an instance of the assessed process. All data and

operations related with a process execution record are accessed over this class.

ProcessExecutionQuestionnaire classes are instantiated by

ProcessExecutionRecord class. A ProcessExecutionRecord object has the

following attributes: metricInclusion, processConsistencyAssessment,

processExecutionNo, processExecutionQuestionnaire and processVersion.

This class contains methods for handling process execution questionnaires,

handling process execution record identifier, handling process execution metric

data, saving a ProcessExecutionRecord object to XML and creating a

ProcessExecutionRecord object from XML.

ProcessExecutionQuestionnaire Class

The ProcessExecutionQuestionnaire class represents a process execution

questionnaire of a process execution which is an instance of the assessed process.

All data and operations related with a process execution questionnaires are

accessed over this class. ProcessExecutionQuestionnaire is inherited from

AQuestionnaire class. A ProcessExecutionQuestionnaire object has the following

attributes: questions, attributes, answers, attrCounts, statusArr, recordedOn,

recordedBy, emptyList, emptyListCellEditor and processExecutionRecord.

This class contains methods for handling questions, attributes, answers, status, cell

editor, recordedOn and recordedBy attributes besides saving a

ProcessExecutionQuestionnaire object to XML and creating a

ProcessExecutionQuestionnaire object from XML.

MetricUsabilityQuestionnaire Class

The MetricUsabilityQuestionnaire class represents a base or derived process

metric usability questionnaire of a process assessment, which is created in the

scope of metric usability assessment. All data and operations related with a metric

usability questionnaire are accessed over this class. MetricUsabilityQuestionnaire

62

is inherited from AQuestionnaire class. A MetricUsabilityQuestionnaire object

has the following attributes: questions, answers, attrCounts, conceptualDefinition,

assessedOn, assessedBy, attrRatings, metricName, choicesForAnswersItems,

reportItems and metricUsabilityAssessment.

This class contains methods for handling questions, attributes, answers, cell

editor, assessedOn, attrRatings, metricName, choicesForAnswersItems,

reportItems, conceptualDefinition and assessedBy attributes of metric usability

questionnaires besides saving a MetricUsabilityQuestionnaire object to XML and

creating a MetricUsabilityQuestionnaire object from XML.

BaseMetricUsabilityQuestionnaire Class

The BaseMetricUsabilityQuestionnaire class represents a base metric usability

questionnaire of a process assessment, which is created in the scope of metric

usability assessment. All data and operations related with a base metric usability

questionnaire are accessed over this class. BaseMetricUsabilityQuestionnaire is

inherited from MetricUsabilityQuestionnaire class. A

BaseMetricUsabilityQuestionnaire object has the following attributes inherited

from MetricUsabilityQuestionnaire and instantiated: questions, answers,

attrCounts, conceptualDefinition, assessedOn, assessedBy, attrRatings,

metricName, choicesForAnswersItems, reportItems and

metricUsabilityAssessment.

This class contains methods for creating table model for reporting of metric

usability results.

DerivedMetricUsabilityQuestionnaire Class

The DerivedMetricUsabilityQuestionnaire class represents a derived metric

usability questionnaire of a process assessment, which is created in the scope of

metric usability assessment. All data and operations related with a derived metric

usability questionnaire are accessed over this class.

DerivedMetricUsabilityQuestionnaire is inherited from

MetricUsabilityQuestionnaire class. A DerivedMetricUsabilityQuestionnaire

object has the following attributes inherited from MetricUsabilityQuestionnaire

63

and instantiated: questions, answers, attrCounts, conceptualDefinition,

assessedOn, assessedBy, attrRatings, metricName, choicesForAnswersItems,

reportItems and metricUsabilityAssessment.

This class contains methods for creating table model for reporting of metric

usability results besides getting and setting metric formula.

UsabilityRating Class

The UsabilityRating class represents rating of a metric usability questionnaire

attribute, which is handled in the scope of metric usability assessment. All data

and operations related with a usability rating are accessed over this class. A

UsabilityRating object has the following attributes: ratingValue, expectedRating

and rating.

This class contains methods for handling rating, expected rating and rating value

of a metric usability rating besides saving a UsabilityRating object to XML and

creating a UsabilityRating object from XML.

3.5. Example Scenario

In this section, we will go over one scenario to show the basic steps taken to use

SPC-AAT for statistical analysis. In the example scenario, we will import the

tasks planned and tracked by MS Project to SPC-AAT and we will show how this

information can be processed and analyzed by our tool. All the steps to be taken

are explained in the following sections:

3.5.1 Creating a New Workspace

Choose “Create Workspace” menu item.

64

Figure 32 Create Workspace

Enter process name and assessment type and press OK.

Figure 33 Create Assessment

Workspace is created and by default the context is “PROCESS DATA”.

65

Figure 34 Newly created Workspace

66

3.5.2 Importing Metric Data

Choose “Import Metric Data” menu item.

Figure 35 Import Metric Data

Choose the metric data file to be used for export:

67

Figure 36 Open Metric Data File

All imported metrics and their values will be shown in a chart:

68

Figure 37 Imported Metrics

69

Here are the values of imported metrics:

Figure 38 Metric Data

70

And all Process Execution Records and Metric Usability Assessments will be

generated automatically. Here is Process Execution Records:

Figure 39 Process Execution Records created

71

Here is Metric Usability Assessments:

Figure 40 Metric Usability Assessments created

72

3.5.3 Update Process Execution Records

Enter the desired info for the newly created Process Execution Records (PERs).

Fill “Recorded On”, “Recorded By” and “Process Execution No” fields on

“Record Info” tab:

Figure 41 Process Execution Record Details

73

Then add Input entries for the newly created PERs on “Inputs” tab. Create a new

Input entry by right clicking on the table and choose “Insert New Entry” menu

item or just click on the “New” button at the right side of the table:

Figure 42 Inserting new Inputs

74

Enter the desired info for the newly created Input entry:

Figure 43 Input created

75

Follow the same steps of Inputs for Outputs, Activities, Roles and

Tools&Techniques:

Figure 44 Roles of a Process Execution Record

76

When all the related info is entered for the Process Execution Record, “Save

Execution Record” button is pressed to save the changes. This button can also be

used for updating PERs.

Figure 45 Saving Process Execution Record

77

3.5.4 Operations on Process Similarity Matrix

Then Process Similarity Matrix can be seen by clicking on “ASSESSMENT”

toggle button and then on “Consistency Assessment” radio button. So context is

changed to “ASSESSMENT” from “PROCESS DATA”.

Below “Process Similarity Matrix” can be seen for Inputs:

Figure 46 Process Similarity Matrix for Inputs

Adding and deleting “Inputs” entries to the Process Executions can be done here

by updating the checkboxes accordingly.

Follow the same steps of Inputs for Outputs, Activities, Roles and

Tools&Techniques.

78

3.5.5 Identifying Base Process Clusters

Base Process Clusters can be seen by clicking on “ASSESSMENT” toggle button

and then on “Consistency Assessment” radio button and to “Process Clusters”

tab-sheet. To re-identify the base process clusters, choose “Re-identify Process

Clusters” menu item:

Figure 47 Re-identify Process Clusters

79

3.5.6 Handling Metrics

We can switch to “Metric Usability Assessment” by clicking on

“ASSESSMENT” toggle button and then on “Metrics Evaluation” radio button.

So context is changed to “Metrics Evaluation”:

Figure 48 Base Metrics

“Metric Name”, “Conceptual Definition”, “Assessed On” and “Assessed By”

fields on “General Info” tab can be updated here.

80

Then click on the “Questionnaire” tab to answer the questions and rate the

metrics:

Figure 49 Base Metric Questionnaire

When all the related info is entered for the metrics, press “Save Metric Usability

Assessment” to save the changes.

In this way, enter the info and fill the questionnaires for all base and derived

metrics.

81

3.5.7 Displaying Usability Results for Metrics

Usability results of the process metrics for statistical analysis can be seen by

clicking on the “Print” toolbar icon and choosing “Metric Usablity Evaluation

Report” check box in the panel shown:

Figure 50 Reporting Metric Usability Evaluation

82

Figure 51 Four Kinds of Reports

Below is the report generated:

Figure 52 Metric Usability Evaluation Report

83

3.5.8 Operations on Process Clusters

Process Clusters can be seen by clicking on “PROCESS IMPROVEMENT”

toggle button and then on “Proces Clusters” radio button. To load the base

process clusters, choose “Load Base Process Clusters” menu item under Process

Improvement menu.

When we right click on a Process Cluster, 6 menu items are shown:

Figure 53 Menu Items on a Process Cluster

“Merge Process Cluster” is used to merge two different process clusters.

“Split Process Cluster” is used to split one process cluster into two process

clusters which were merged before into one.

84

3.5.9 Using SPC Tools Supported

“Show Control Charts”, “Show Bar Charts”, “Show Pareto Diagrams”,

“Show Histograms” are the menu items that are used to apply SPC tools on

“process cluster – metric” pairs:

Figure 54 SPC Tools supported

When “Show Control Charts” is chosen, a panel is opened that asks for the

metrics to draw control charts for the chosen Process Cluster:

85

Figure 55 Choosing Metrics to be Charted

Then if OK is clicked, Control Charts are drawn:

Figure 56 A Control Chart drawn

86

The green points are the out-of-control points detected for the process analyzed.

When we click on an out-of-control point, a questionnaire (Process Execution

Questionnaire) is shown to detect the reason for this point by answering the

questions:

Figure 57 Process Execution Questionnaire

Then it is asked whether to remove the point from the analysis or not:

87

Figure 58 Exclusion of a Metric Value

3.5.10 Overall Process Control Results

Overall results for process control can be seen by clicking on “PROCESS

IMPROVEMENT” toggle button and then on “Results Summary” radio button:

Figure 59 Assessment Results Summary

88

Reports can be generated to show the results of the assessment and the analysis:

Figure 60 Control Status Report

89

 CHAPTER 4

4. CASE STUDY

4.1.Fundamentals of the Case

We designed our applications as a multiple-case study, and identified our unit of

analysis as “process-metric” pair. In our multiple-case study design, we decided

that every case would include more than one unit of analysis.

We used the following criteria while selecting the cases among nominations:

• Historical process execution: at least 20-25 metric data points are required;

• Accessibility of performers of historical process executions: performers will

be interviewed during the assessment of process consistency;

• If there is no historical data, ability of the process to generate 20-25 metric

data points in the near future;

• Availability of process performers to participate in the assessment.

To validate SPC-AAT, we implemented three case studies at a project-based

working software organization (referred as organization X in the study) having

CMMI L3. We worked on recruitment and bug fixing processes (for two different

projects) of organization X and related metrics of these processes. These

processes and the metrics used in the case studies can be seen in Table 2.

90

 Table 2 Processes and Metrics used in the Case Studies

Process Name Metric Name Comments

Creation Date Base Metric
Resolution Date Base Metric
Bug Aging Derived Metric

SPC Tools used: Control Chart - Histogram
Person Hours (Effort) Base Metric

SPC Tools used: Control Chart - Histogram

Bug Fixing (Project
A)

Status Base Metric
SPC Tools used: Bar Chart

Go Date Base Metric
Due date Base Metric
Start Date Base Metric
Planned Procurement
Time

Derived Metric

Actual Procurement
Time

Derived Metric
SPC Tools used: Control Chart - Histogram

Procurement Time
Variance

Derived Metric
SPC Tools used: Control Chart - Histogram

Recruitment

Position Base Metric
SPC Tools used: Bar Chart, Pareto Chart

Creation Date
Base Metric

Actual Finish Date
Base Metric

Estimated Finish Date
Base Metric

Bug Aging
Derived Metric

SPC Tools: Control Chart - Histogram
Estimated Bug Aging

Derived Metric
Estimation Variance

Derived Metric
Estimation Capability

Base Metric
Error Reason

Base Metric

SPC Tools: Bar Chart, Pareto Chart
Problem Source

Base Metric

SPC Tools: Bar Chart, Pareto Chart
Should-be found

Base Metric

SPC Tools: Bar Chart, Pareto Chart

Bug Fixing (Project B)

Status
Base Metric

SPC Tools: Bar Chart

Detailed information about the organization and the projects is given below:

91

Context-1 (project A in organization X): Project A is a software project in the

domain of communication technologies. Basically Java technologies are used for

development. There are 8 technical personnel working for project A.

Context-2 (organization X): Organization X which was founded in 2001 is a

project-based working software organization having CMMI L3. Basically projects

in the area of communication technologies are held by the organization. There are

about 80 technical personnel working for organization X. It is experiencing a

period of improvement since its foundation and currently aiming to achieve

CMMI L4.

Context-3 (project B in organization X): Project B is a software project in the

domain of communication technologies. Basically Java technologies are used for

development. There are 5 technical personnel working for project B.

4.2. Context-1 (Case Study A)

Within the first context, we worked on bug fixing (MR solving) process of a

telecom project. We especially focused on one feature of the project. We chose

the bug fixing sub-process because this part of the development process was being

heavily used and we could find a lot of instances of this sub-process to analyze.

Bugs had been reported during component integration tests, system tests or

operation at customer side. Bugs found during unit tests are not included in the

study. Bug fixing process had been performed by using a change management tool

which is used organization-wide. Bug fixing for the selected feature is analyzed

for 3 months period, from September 2006 to December 2006.

Bug fixing process starts when a bug is reported by a submitter via the change

management tool or e-mail directly. Bugs found in the project are usually entered

to the tool by a Submitter. The submitter should enter the following fields:

subject, problem description, project name, responsible person, priority, status.

Creation date and unique ID are automatically created by the tool for the bug

reported. Then the responsible person (Developer or Feature Owner) gets an e-

92

mail notification automatically from the tool and starts the analysis. If bug found

is not entered to the tool, the content of bug report is up to the Submitter.

Developer sends an e-mail to the Submitter if there is missing information about

the bug reported. When necessary information is received, analysis of the problem

is started by Developer. At the end of analysis, there can be two results. In one of

them, we decide that the bug reported is not a real bug, it is a problem related with

the usage of the application. As the other possibility, we decide that it is a

problem related with our application and start to solve it. After deciding on a

solution, implementation starts and implemented solution is tested by the

Developer. Then changes are checked-in to the configuration management tool

and integrated by using CruiseControl. After this step, if bug is entered to the

change management tool, the state of the bug is changed to “solved” in the change

management tool and resolution test is entered to explain the solution

implemented. After these steps taken by the developer, an e-mail notification is

automatically sent to the submitter by the tool. If bug is not reported by the tool,

Developer sends an e-mail to the Submitter manually. The whole process is

defined as an eEPC diagram in Figure 61.

The analysis was performed together with the owner (Developer) of the related

feature of the project. We spent 1 hour for collecting data and 4.5 hours for

applying the approach, performing the analyses, and interpreting the results. In

other words, we spent 5.5 hours for whole analysis. The set of assets produced

during this case study with the control charts are provided in Appendix C.

The study was retrospective, and instead of identifying process attribute values to

put on process similarity matrices by filling process execution records, we

preferred drawing general process flows with the Developer. We depicted the

executions as draft on a paper first together with the Developer, and then

converted the flows into eEPC (Extended Event Driven Process Change) diagram

by using MS Visio. The flow for bug fixing process is given in Figure 61.

93

E-mail arrived

about bug

Read MRTS

entry

XOR

Bug entry in MRTS?

Send e-mail

for more info

Analysis Of

the data in

hand

XOR

Is Info enough?

No

Yes

Yes

Necessary

Info received

Change

Application

Source Code

Read problem

description

from e-mail

No

Provide

additional info

to the related

party

XOR

Type of Problem

Real Bug Problem with Usage

Bug Fixed

No

Compile and

Test changes

Checkin

Changes to

Clearcase

XOR

Tests failed?

No

Yes

Analyse

CruiseControl

results

XORErrors?

Yes

XOR

Bug entry in MRTS?

Change bug

entry in MRTS

Yes

Send e-mail

about

resolution

No

Developer

Developer

Developer

Developer

Developer

Developer

Developer

Developer

Submitter

Change

Documentation

XOR

Any change in documentation?

Yes

MR Entry in

MRTS
E-mail

E-mail

MS OutlookMRTS

MS Outlook

Eclipse

Application

Source code

Changed

Source code

Changed

Source code
Eclipse

Changed

Source code
ClearCase

CruiseControl

MRTS

MS Outlook

Changed

MRTS Entry

Developer

E-mail

Developer

MR Entry in

MRTS

Developer

Figure 61 eEPC for Bug Fixing Process (Case A)

94

For the bugs which are reported via CM tool, the metric data had been exported in

an MS Excel file. Metric data is exported in the time order from CM tool since

this is very critical for statistical analysis. Then we added metric data for the bugs

reported by e-mail into the file. For these bugs, we checked the e-mails sent to the

Developer against the bugs reported for the analyzed feature. We found 9 bug

reports notified via e-mail directly from the Submitter. We read the creation date

of bug reports from the Received Date field of e-mails in MS Outlook. The Excel

file which holds info about all bugs can be seen in Appendix C. We first imported

this metric data to our tool. Therefore, one process execution record is

automatically created for each bug report entry in the Excel file imported. There

were 42 data points which were collected as bug reports. Then by using the

process elements (inputs, outputs, activities, roles, and tools) on the eEPC

diagram, we have added the values of process attributes for inputs, outputs,

activities, roles, and tools & techniques on the process similarity matrix.

Therefore we could add Process Attributes on the similarity matrix and checked

against process executions. The process similarity matrix for bug fixing process

executions is provided in Figure 62.

We had 33 process execution records for bugs reported via CM tool and 9 process

execution records for bugs reported via e-mail and this yielded 42 process

execution records totally. So that we completed process similarity matrices for

Inputs, Outputs, Activities, Roles, and Tools & Techniques of all bug fixing

process instances.

95

Figure 62 Process Similarity Matrix for Bug Fixing (Case A)

After finalizing the process similarity matrices, we checked under “Process

Clusters” tab-sheet to see the automatically identified process clusters by our tool.

Our tool identified 5 process clusters labeled as “Version A”, “Version B”,

“Version C”, “Version D”, and “Version E” as shown in the Figure below, by

observing the similarities between process executions. The number of data points

was enough (at least 20) just for Version B, all other process clusters had data

points less then 20.

96

Figure 63 Base Process Clusters for Bug Fixing Process

After we identified initial process clusters, we have changed our view to Metric

Evaluation (under ASSESSMENT view) to assess the usability of the process

metrics. The metrics which are imported to our tool from Excel at the beginning

of the case study are shown in the table below as Base metrics. We decided to

derive one new metric with the imported base metrics: Bug Aging. The

relationship between the base metrics and Bug Aging is shown visually in Figure

64. The metrics at upper side represent the base metrics.

 Table 3 Process Metrics (Original and Derived) for Case A

Metric Name Metric Type Explanation

Creation Date Base The date bug is reported
Resolution Date Base The date bug is resolved

97

Bug Aging Derived Actual Finish Date - Creation Date + 1
Person Hours Base Effort spent to fix the bug
Status Base Current status of the bug

We created one entry under Derived Metrics tab-sheet for the new derived metric.

After filling Metric Formula attribute for the Bug Aging derived metric, metric

data was calculated automatically from the entered formula and stored by our tool.

Figure 64 Derived Metrics Identified in Context-1

After deciding on the derived metrics, we filled Metric Usability Questionnaire

for each base and derived metric from Questionnaire tab-sheet under Metric

Evaluation view. Example questionnaire for “Bug Aging” derived metric and

usability ratings given are shown in Figure 65 and Figure 66 (completed

questionnaires for all metrics identified in Context-1 are provided in appendix C).

The usability status of all base and derived metrics are listed in Figure 67. In the

next step, only metrics which are evaluated as “usable” would be used for control

charting.

98

Figure 65 Metric Usability Questionnaire for “Bug Aging” Derived Metric of

“Bug Fixing” Process

99

Figure 66 Metric Usability Ratings for “Bug Aging” Derived Metric of “Bug

Fixing” Process

Figure 67 Metric Usability Report for Bug Fixing process

100

After identifying the base process clusters and assessing the usability of the

metrics, we have changed our view to Process Clusters (under PROCESS

IMPROVEMENT view) to finalize the process clusters. The number of data

points was enough (at least 20) just for Version B, and we decided to identify

possible merges between the clusters. We checked Process Cluster Distances

Table in Figure 68 and saw that cluster distance value is 1 between Version B &

Version C and between Version D & E. Therefore, Version B & Version C are

merged into Version B_C and Version D & Version E are merged into Version

D_E. Report generated for the new process clusters is shown in Figure 69. When

we checked the process attributes, we noticed that Version B_C represents the bug

fixing process where bugs are reported via CM tool and Version D & E via e-

mail. After these merges, again we checked Process Cluster Distances Table in

Figure 70 and we saw that distances between process clusters are very high.

Therefore we decided to apply control charting on these process clusters and also

the one which is produced by merging these three process clusters.

Figure 68 Cluster Distances for base Process Clusters

101

Figure 69 Process Clusters after first merge

Figure 70 Cluster Distances after first merge

102

SPC tools could only be applied to the qualified process cluster – metric pairs. In

this case, these were “Version B_C – Bug Aging” and “Version B_C – Person

Hours” for control charting since just process cluster Version B_C had enough

number of metric data points and Bug Aging, Person Hours metrics were assessed

as usable and were the type of ratio/absolute. Control charts drawn for these two

process cluster – metric pairs are shown in the following figures.

When we checked the control chart drawn for “Version B_C – Bug Aging” pair,

we observed that no OCP was detected and process is under control. The mean

was about 4 days and Upper Control Limit (UCL) was about 16. According to the

control chart results, we conclude that the process is not only under control but

also capable since mean and UCL were consistent with the service level

agreement of the company.

103

Figure 71 Process Version B_C – Bug Aging Control Chart

When we checked the control chart drawn for “Version B_C – Person Hours”

pair, we observed one Out-of-Control Point (OCP). When we checked this OCP

detected, we found out that corresponding process instance is not for an error

request but for a development request. Therefore we excluded this metric data

point from analysis and re-drew the control chart. This time, we detected again

one OCP. When we filled Process Execution Questionnaire for the detected OCP,

we have found out that for this bug fixing process instance, Developer had not had

enough knowledge about the related component and the support from other

experienced team members had been weak. We have reported this as a possible

improvement point for the project. For example, such bugs can be discussed in

more details at the weekly project meetings and one experienced team member

can be assigned for support.

104

Figure 72 Control Chart drawn for “Version B_C – Person Hours” pair

105

Figure 73 Control Chart drawn for “Version B_C – Person Hours” pair

When we excluded this OCP also and re-drew the control chart in Figure 74, we

saw that process was under control. The mean was about 9 person-hours and

Upper Control Limit (UCL) was about 35. According to the control chart results,

we conclude that the process is not only under control but also capable since mean

and UCL were consistent with the service level agreement of the company.

106

Figure 74 Final Control Chart drawn for “Version B_C – Person Hours” pair

As the second step, we merged the current three process clusters and drew control

charts for the combined data. When we checked the control charts drawn for

“Version D_E_B_C_A” process cluster, we observed one Out-of-Control Point

(OCP) on both control charts and these were for the same process execution (PE

no 6). When we checked this process execution, we found out that corresponding

process instance is not for an error request but for a development request.

Therefore we excluded this metric data point from analysis and re-drew the

control charts. This time, we detected again one OCP for “Version D_E_B_C_A -

Person Hours” pair while “Version D_E_B_C_A – Bug Aging” pair was under

control. When we checked the detected OCP, we found out again that

corresponding process instance is not for an error request but for a development

107

request. After excluding this OCP from the analysis, then process was also under

control for “Version D_E_B_C_A - Person Hours” pair (see Figure 77).

When we have analyzed the final control chart for “Version D_E_B_C_A -

Person Hours” pair, the mean observed was about 7 person-hours and Upper

Control Limit (UCL) was about 22. When these results are compared to the results

of Version B_C, it is observed that mean and UCL are smaller. This is an

expected result because Version D_E_B_C_A includes the bugs which do not

need change in the source code; therefore they could be resolved with less effort.

When we have analyzed the final control chart for “Version D_E_B_C_A – Bug

Aging” pair, the mean was about 3.75 days and Upper Control Limit (UCL) was

about 11 days. When these results are compared to the results of Version B_C, it

is observed that mean and UCL are smaller again. This is an expected result

because Version D_E_B_C_A includes the bugs which do not need change in the

source code; therefore they could be resolved in less time.

A summary of analysis done with control charts can be found in the following

tables.

Table 4 Initial Results from Charted Data in Context-1

Process Metric Cluster Status
Overall 1 OCPs Bug Aging

Version B_C Under Control

Overall 4 OCPs

Bug Fixing

Person Hours

Version B_C 2 OCPs

* OCP: Out-of-Control Point

Table 5 Assignable Causes for Out-of-Control Points in Context-1

Metric Cluster OCPs Assignable Cause
Version D_E_B_C_A 1 A development request was handled as a

bug fix, so bug aging was high
Bug Aging

Version B_C None Not applicable
Person Version D_E_B_C_A 4 3 of OCPs were due to development

108

requests handled as a bug fix. The other
was due to missing knowledge of the
Developer about the feature where bug
was found and missing support from the
team.

Hours

Version B_C 2 One OCP was due to development request
handled as a bug fix. The other was due to
missing knowledge of the Developer
about the feature where bug was found
and missing support from the team.

* OCP: Out-of-Control Point

Figure 75 Control Chart for Combined Data of Bug Aging

109

Figure 76 Control Chart for Combined Data of Person Hours

110

Figure 77 Final Control Chart for Combined Data of Bug Fixing

111

Figure 78 Final Control Chart for Combined Data of Person Hours

By using our tool, we have also drawn histograms for the metric data which are

used at final control charts of Version B_C and Version D_E_B_C_A. We have

used histograms for under control processes to visualize the frequency distribution

of metric data. These can be seen below:

112

Figure 79 Process Version B_C – Bug Aging Histogram

113

Figure 80 Process Version B_C – Person Hours Histogram

114

Figure 81 Process Version D_E_B_C_A – Bug Aging Histogram

115

Figure 82 Process Version D_E_B_C_A – Person Hours Histogram

Until now we have shown usage of SPC tools for metrics type of ratio or absolute

with our tool, but we have also supported analysis of nominal and ordinal metric

types. We have drawn bar chart for status of bugs, shown in the Figure below.

This bar chart revealed another problem about the project. Normally, when a bug

is resolved it is status is changed to RES. After that tests are performed to check

whether the problem reported is really resolved and status is changed to FIN.

When we checked the bar chart, there were lots of bugs which were in state RES.

In other words, we had lots of bugs which are resolved but not tested. This was

also another point for improvement of the project.

116

Figure 83 Bar Chart for Status

Findings from the study:

During the implementation of the case study, we have detected improvements

about the process analyzed, bugs and improvements for our tool and

improvements about the SPC assessment model we have used (SPC-AM) besides

gaining inside about the analyzed process. These will be described in detail below:

Inside about the process: We have learned mean values and control limits of

process metric data. This information is very precious especially for planning and

tracking. Mean values and control limits of process metrics for each cluster are

given in the table below.

117

Table 6 Results of Case Study A

Process Metric Cluster Mean UCL
Overall 3.707 11.154 Bug Aging

Version B_C 4.407 15.864

Overall 6.947 22.042

Bug Fixing

Person Hours

Version B_C 9.28 34.989

* UCL: Upper Control Limit

Improvements about the process: Two possible improvement points have been

detected for the analyzed project:

• Communication among Developers can be improved. Especially when a

Developer has problems about identifying the solution for a bug. These

problems can be discussed in more detail in the project meetings.

• Problems about testing of resolved bugs are detected. Most of the resolved

bugs are not tested. For each bug resolved, a tester can be assigned and

testing can be tracked.

Improvements for our tool: The following improvements are detected during the

study:

• Reading process definition from a file or providing a GUI to define

process visually and generating process attributes automatically from this

• Adding functionality for copying process attributes of a Process Execution

Record to another Process Execution Record.

• Disabling showing input dialogs when a Process Attribute is checked on

Process Similarity Matrix (PSM).

• Changing table cells of Process Attributes (PAs) to Combo boxes so that

existing PAs can be chosen

• Adding Paste menu item to table cells

118

• At PSM, working with the row or column where mouse is on instead of

the selected one

• At PSM, showing Process Attributes always at left side to ease identifying

the correct rows for PAs

Bugs for our tool: Six minor bugs had been detected during the study and they

were corrected later.

Improvements for SPC-AM: The following improvements are detected during the

study:

• Questions in “Process Performers” part of Process Execution

Questionnaire should be asked in negative form to be consistent with other

questions.

• Questions in “Metric Definition” part of Metric Usability Questionnaire

should be enhanced to consider the metrics in Date type.

• Two questions in “Data Existence” part of Metric Usability Questionnaire

can be changed to increase the understandability. Instead of using “What is

the amount of…” we can use “How many process instances are there…”

4.3. Context-2 (Case Study B)

Within the second case, we worked on recruitment process of a software

department of a company. We decided to analyze the recruitment process at the

initial meetings with the Managers. The aim was to have more inside about the

process and detect the possible problems. Recruitment process is analyzed for the

last 3 months period, from October 2006 to December 2006. The company had a

separate Human Resources (HR) department which supports Managers from other

departments during recruitment process.

Recruitment process starts when there is a free position in one of the existing

projects or a new project which is not started yet. This request usually comes from

a Requester who works for a partner department since most of the projects are

119

performed for some other departments in the company. First of all, Manager

evaluates existing available resources to fill the requested position. If there are

some available qualified resources then these are selected for further evaluation. If

there are no available resources, Manager fills an employee request form (Eleman

Talep Formu, ETF) and sends to HR department. Then HR creates an

advertisement on the web site (Kariyer.net) to announce the free position. When

there is enough number of applications, HR specialist performs the first selection

and grouping on the web site. After this first selection, Manager performs the

second selection and grouping on the web site. Then HR specialist arranges

meetings with the selected applicants. These meetings are face to face meetings

where both Manager and HR specialist attend. After the meetings, if both

Manager and HR specialist agree on some applicants, these applicants are

evaluated by the Requester. Then final decision is given and job is offered to the

agreed applicants. When one applicant accepts the offer, formal tasks are

performed for the recruitment. The whole process is defined as an eEPC diagram

in Figure 84.

The analysis was performed together with the related Managers of the

organization. We spent 1 hour 20 minutes for collecting data and 3.5 hours for

applying the approach, performing the analyses, and interpreting the results. In

other words, we spent about 5 hours for whole analysis. The set of assets

produced during this case study with the control charts are provided in Appendix

D.

The study was retrospective, and instead of identifying process attribute values to

put on process similarity matrices by filling process execution records, we

preferred drawing general process flows with one Manager. We depicted the

executions as draft on a paper first together with the Manager, and then converted

the flows into eEPC (Extended Event Driven Process Change) diagram by using

MS Visio. The flow for recruitment process is given in Figure 84.

120

Procurement

Request

arrived

XOR

Any free resources?

Send ETF to

HR

Enough number

of applications to

advertised job

HR creates

advertisement

at Kariyer.net

Fill Eleman

Talep Formu

(ETF)

Free position

filled

Perform first

selection and

grouping by

HR

Manager

performs own

selection and

grouping

HR arranges

first meetings

with

candidates

Meeting with

candidates

Manager

Requester

Procurement

Request
MS Word

Kariyer.net
Created

advertisement

Evaluate

whether they

are free

resources

No

Evaluation of

candidates

Evaluation by

requester

Job offer to

the selected

candidates

Acceptance by

one candidate

Performing

formal tasks

for new

employee

Manager

Manager

HR

HR

Manager

HR

HR Manager Candidate

HR Manager

HR Candidate

Candidate

HR Candidate

MS Outlook

Kariyer.net

Kariyer.net

MS Outlook

Face to face

meeting

TelephoneXOR

Evaluation by Requester needed

NoYes

Yes

Filled ETF

Filled ETF

Applications to

job

Applications

selected by

HR

Applications

selected by

HR

Applications

selected by

Manager

Applications

selected by

Manager

Figure 84 eEPC for Recruitment Process (Case B)

121

Managers were planning and tracking most of the recruitment information on one

Excel sheet including procurement ID, position, project name, due date, onsite

date, start date. But not all information is up-to-date and complete. We have also

realized that go date (the date recruitment request arrived) was missing. Therefore,

we checked the e-mails sent to the Managers to fill the missing information about

recruitments. We were successful in finding out missing information and the file

was complete. First of all, we imported this metric data to our tool. Therefore, one

process execution record is automatically created for each recruitment process

instance in the Excel file imported. There were 25 data points. Then by using the

process elements (inputs, outputs, activities, roles, and tools) on the eEPC

diagram, we have added the values of process attributes for inputs, outputs,

activities, roles, and tools & techniques on the process similarity matrix.

Therefore we could add Process Attributes on the similarity matrix and checked

against process executions. The process similarity matrix for recruitment process

executions is provided in Figure 85.

We had 25 process execution records totally and we completed process similarity

matrices for Inputs, Outputs, Activities, Roles, and Tools & Techniques of all

process execution records.

122

Figure 85 Process Similarity Matrix for Recruitment (Case B)

After finalizing the process similarity matrices, we checked under “Process

Clusters” tab-sheet to see the automatically identified process clusters by our tool.

Our tool identified 2 process clusters labeled as “Version A” and “Version B” as

shown in Figure 86, by observing the similarities between process executions. The

number of data points was enough (at least 20) for Version B, but not for Version

A. We realized that process cluster Version B represents the process where new

employee is found for the open position in the project while Version A represents

existing employee is moved to the open position.

123

Figure 86 Base Process Clusters for Bug Fixing Process

After we identified initial process clusters, we have changed our view to Metric

Evaluation (under ASSESSMENT view) to assess the usability of the process

metrics. The metrics which are imported to our tool from Excel at the beginning

of the case study are shown in the table below as Base metrics. We decided to

derive three new metrics with the imported base metrics: Actual Procurement

Time, Planned Procurement Time, and Procurement Time Variance. Explanation

and formulas of derived metrics are shown in the table below. Furthermore,

relationships between the base metrics and derived metrics are shown visually in

Figure 87. The metrics at upper side represent the base metrics.

 Table 7 Process Metrics (Original and Derived) for Case B

124

Metric Name Metric Type Explanation

Go Date Base Start of Recruitment process
Due date Base Planned Start Date for new project member
Start Date Base Start Date for joining of new project member
Planned
Procurement Time

Derived Due date-Go Date+1

Planned time spent for finding the right person for the
position

Actual
Procurement Time

Derived Start Date-Go Date+1

Realized time spent for finding the right person for the
position

Procurement Time
Variance

Derived Actual Procurement Time-Planned Procurement Time

The time difference between realized and planned
procurement time

Position Base The position for the new project member

We created one entry under Derived Metrics tab-sheet for each new derived

metric. After filling Metric Formula attribute for the derived metrics, metric data

was calculated automatically from the entered formula and stored by our tool.

Figure 87 Derived Metrics Identified in Context-2

After creating the derived metrics, we filled Metric Usability Questionnaire for

each base and derived metric from Questionnaire tab-sheet under Metric

125

Evaluation view. Example questionnaire for “Procurement Time Variance”

derived metric and usability ratings given are shown in Figure 89 (completed

questionnaires for all metrics identified in Context-2 are provided in appendix D).

The usability status of all base and derived metrics are listed in Figure 67. In the

next step, only metrics which are evaluated as “usable” would be used for control

charting.

Figure 88 Metric Usability Questionnaire for “Procurement Time Variance”

Derived Metric of “Procurement” Process

126

Figure 89 Metric Usability Ratings for “Procurement Time Variance” Derived

Metric of “Procurement” Process

Figure 90 Metric Usability Report for Procurement process

127

After identifying the base process clusters and assessing the usability of the

metrics, we have changed our view to Process Clusters (under PROCESS

IMPROVEMENT view) to finalize the process clusters. But we realized that the

order of process executions should be changed to be able to apply control

charting. Therefore, we have decided to add a new use case for our tool: Sorting

Process Execution Records. After the implementation of the use case we

continued to analyze. Process execution records were sorted according to “Due

Date” metric values. The number of data points was enough (20) just for Version

B, and we decided to include data points from Version A by merging both process

clusters. Therefore we decided to apply control charting on Version B process

cluster and also the one which is produced by merging these two process clusters.

Figure 91 Process Clusters after the merge

SPC tools could only be applied to the qualified process cluster – metric pairs. In

this case, these were “Version B – Actual Procurement Time”, “Version B –

Procurement Time Variance” and “Version B – Planned Procurement Time” for

control charting. We ignored “Version B – Planned Procurement Time” because

Managers had not been interested in the results. Control charts drawn for these

two process cluster – metric pairs are shown in Figure 92 and Figure 94.

128

When we checked the control chart drawn for “Version B – Procurement Time

Variance” pair, we observed that no OCP was detected and process is under

control. The mean was about 11 days, Lower Control Limit (LCL) was about -56

and Upper Control Limit (UCL) was about 78. According to the control chart

results, we conclude that the process is under control. But we concluded that the

process is not capable. Managers expected that the mean is near to 0 and the upper

limit is less. After this analysis, process improvement was initiated to enhance the

recruitment process.

Figure 92 Control Chart for Version B – Procurement Time Variance pair

When we checked the control chart drawn for “Version B – Actual Procurement

Time” pair, we observed two Out-of-Control Points (OCPs). When we checked

these OCPs detected, we observed that for 5 positions same Due Date had been

129

given and all new employees had started to work at the same time. Therefore, we

decided not to count such situations as OCPs and changed the related

configuration accordingly (see Figure 93). After changing the configuration for

OCP Rules we re-drew the control chart in Figure 95, we saw that process was

under control. The mean was about 70 days, Lower Control Limit (LCL) was

about 11 and Upper Control Limit (UCL) was about 130. According to the control

chart results, we conclude that the process is under control. But we concluded that

the process is not capable. 70 days as the average to procure one person and 130

days as maximum value were found so high by the Managers. We decided to

initiate a study to reduce average recruitment time and the natural upper limit.

Figure 93 Rules for OCPs (Case B)

130

Figure 94 Control Chart for Version B – Actual Procurement Time pair

131

Figure 95 Control Chart drawn for “Version B – Actual Procurement Time” pair

As the second step, we merged the current two process clusters and drew control

charts for the combined data. When we checked the control charts drawn for

“Version A_B” process cluster (see Figure 97), we observed one Out-of-Control

Point (OCP) for “Version A_B – Procurement Time Variance” pair and three

OCPs for “Version A_B – Actual Procurement Time” pair. Process execution

with the number 19 was detected as OCP on both control charts. When we

checked this process execution, we found out that this new employee was

currently working at abroad and the procedure to leave the company takes more

than two months. The Manager who wanted to procure this candidate had decided

not to miss this candidate and to wait for him since he had been very appropriate

for the position requested. This was really an extraordinary situation and therefore

we excluded this metric data point from analysis and re-drew both control charts.

132

This time, we detected one OCP for “Version A_B – Actual Procurement Time”

pair while “Version A_B – Procurement Time Variance” pair was under control.

When we checked the detected OCP (Process execution with no 1), we found out

that an existing employee had just left his/her project and a request for a new team

member of a project had been arrived. The Manager had been lucky since this

employee had had enough skills for the new position and he/she had immediately

been moved to the new project. This was also an extraordinary situation and

therefore we excluded this metric data point from analysis. After excluding this

OCP from the analysis, then process was also under control for “Version A_B –

Actual Procurement Time” pair (see Figure 99).

When we have analyzed the final control chart for “Version A_B – Procurement

Time Variance” pair, the mean observed was about 6 days, Lower Control Limit

(LCL) was about -47 and Upper Control Limit (UCL) was about 59. When these

results are compared to the results of Version B, it is observed that mean and UCL

are smaller. This is an expected result because Version A_B includes recruitment

instances with moving existing employees of the department to the requested

position; therefore recruitment process takes less time. We have also observed that

distance between UCL and LCL is less for Version A_B. This is also related with

excluding one extreme metric data point from the analysis. This has reduced the

expected range for metric data values. In spite of the enhancements of mean and

control limits, we were again not satisfied with the capability of the process as it

had been for Version B.

When we have analyzed the final control chart for “Version A_B – Actual

Procurement Time” pair, the mean was about 69 days, Lower Control Limit

(LCL) was about 18 days and Upper Control Limit (UCL) was about 120 days.

When these results are compared to the results of Version B, it is observed that

mean and UCL are smaller again. This is an expected result because Version A_B

includes recruitment instances with moving existing employees of the department

to the requested position. The change for mean is not much as UCL since we have

also excluded one smallest metric data point besides one highest. We have also

133

observed that distance between UCL and LCL is less for Version A_B. This is

also related with excluding two extreme metric data points from the analysis. This

has reduced the expected range for metric data values. We were also not satisfied

with the capability of the process as it had been for Version B.

A summary of analysis done with control charts can be found in the following

tables.

Table 8 Initial Results from Charted Data in Context-2

Process Metric Cluster Status
Overall 2 OCPs Actual Procurement

Time Version B Under Control

Overall 1 OCP

Recruitment

Procurement Time
Variance Version B Under Control

* OCP: Out-of-Control Point

Table 9 Assignable Causes for Out-of-Control Points in Context-2

Metric Cluster OCPs Assignable Cause
Version B_A 2 One OCP was due to recruitment of a new

employee working at abroad. The other
was due to moving of an existing
employee internally to the requested
position.

Actual
Procurement
Time

Version B None Not applicable
Version B_A 1 The OCP was due to Recruitment of a

new employee working at abroad.
Procurement
Time Variance

Version B None Not applicable

* OCP: Out-of-Control Point

134

Figure 96 Control Chart for Version A_B – Procurement Time Variance pair

135

Figure 97 Control Chart for Combined Data of Recruitment

136

Figure 98 Final Control Chart for Combined Data of Recruitment

137

Figure 99 Final Control Chart for Combined Data of Recruitment

By using our tool, we have also drawn histograms for the metric data which are

used at final control charts of Version B and Version A_B. We have used

histograms for under control processes to visualize the frequency distribution of

metric data. These can be seen below:

138

Figure 100 Version B – Actual Procurement Time Histogram

139

Figure 101 Version B –Procurement Time Variance Histogram

140

Figure 102 Version A_B – Actual Procurement Time Histogram

141

Figure 103 Version A_B –Procurement Time Variance Histogram

We have also drawn bar chart for the requested positions at recruitment, shown in

Figure 104. This bar chart revealed that the most requested position at recruitment

was Software Engineer (SE). The others were Test Engineer (STE) and Vendor

Support (GVS) with 4 instances.

142

Figure 104 Bar Chart for Position

Findings from the study:

During the implementation of the case study, we have detected improvements

about the process analyzed, bugs and improvements for our tool and

improvements about the SPC assessment model we have used (SPC-AM) besides

gaining inside about the analyzed process. These will be described in detail below:

Inside about the process: We have learned mean values and control limits of

process metric data. This information is very precious especially for planning and

tracking. We have also concluded that recruitment process is not capable to reach

the goals about recruitment. Mean values and control limits of process metrics for

each cluster are given in the table below.

143

Table 10 Results of Case Study B

Process Metric Cluster Mean LCL UCL
Overall 68.87 18.096 119.643 Actual

Procurement
Time

Version B 70.579 10.739 130.419

Overall 6.208 -46.868 59.284

Recruitment

Procurement
Time Variance Version B 10.9 -56.009 77.809

* UCL: Upper Control Limit, *LCL: Lower Control Limit

Improvements about the process: Two possible improvement points have been

detected for the analyzed process:

• There are inefficiencies in the recruitment process and they cause

recruitment process to take much time than the aimed. To detect the

inefficiencies in the process and find possible solutions, process

improvement meetings will be arranged together with HR specialists and

Managers. Reducing recruitment time is very critical to remain

competitive.

• The variance between the planned procurement time and the realized is

high. We expect that the variance will be reduced if the process

improvement studies about reducing recruitment time reach the goals. But

in any case planned dates for recruitment should also be estimated

correctly to reduce the variance. Therefore, we will provide the control

chart results of our study to Managers to use them in the future recruitment

planning. In other words, planning phase of recruitment process will be

improved by providing recent control chart results to Managers.

Improvements for our tool: The following improvements are detected during the

study:

144

• Performing statistical analysis among Process Execution Records (PERs)

which have the specified metric value (Ex: the specific position looked for,

Software Engineer)

• Sorting according to a chosen metric

• Moving Process Execution Records (PERs) up or down in the summary

table

• Adding key short cuts for some operations

• Using tab key to navigate between GUI components

• At Process Similarity Matrix, showing Activities in the order they are in

PERs

Bugs for our tool: Three minor bugs had been detected during the study and they

were corrected later.

Improvements for SPC-AM: The following improvements are detected during the

study:

• Questions in “Metric Definition” part of Metric Usability Questionnaire

should be enhanced to consider the metrics in Date type.

4.4. Context-3 (Case Study C)

Within the first context, we worked on bug fixing (MR solving) process of a

telecom project. We especially focus on one feature of the project because

managements needed a detailed analysis about excessive time spent for this

feature implemented in the scope of this project. We saw this as a great chance to

use our tool to analyze this situation. We chose the bug fixing sub-process

because this part of the development process was problematic. Bugs had been

reported during component integration tests and system tests. Bugs found during

unit tests are not included in the study. Bug fixing process had been performed by

using a change management tool which is used organization-wide. Bug fixing for

145

the selected feature is started at May 2006 and finished at November 2006. We

could analyze all the bugs reported during this 6 month period.

Bug fixing process starts when a bug is reported by a submitter via the

configuration management tool or via an e-mail. Some bugs found in the project

are entered to the tool by a submitter (Tester). The submitter should enter the

following fields: subject, problem description, project name, responsible person,

priority, status. Creation date and unique ID is automatically created by the tool

for the bug reported. Then the responsible person (Developer or Feature Owner)

gets an e-mail notification automatically from the tool and starts the analysis.

Some bugs are not entered to the tool but submitter sends an e-mail directly to

Developer and Developer starts analysis. After deciding on a solution,

implementation starts and implemented solution is tested by the Developer. Then

changes are checked-in to the configuration management tool. After this step, the

state of the bug is changed to “solved” in the change management tool and

resolution test is entered to explain the solution implemented if bug is reported via

the tool. Also a tester (usually submitter) is assigned to test the implemented

solution. After these steps taken by the developer, an e-mail notification is

automatically sent to the submitter by the tool. If bug is not reported via the CM

tool, explanation about the solution is sent to the submitter via an e-mail.

The analysis was performed together with the owner of the related feature of the

project. We spent 5 hours for collecting the data, applying the approach,

performing the analyses, and interpreting the results. The set of assets produced

during this case study with the control charts are provided in Appendix E.

The study was retrospective, and instead of identifying process attribute values to

put on process similarity matrices by filling process execution records, we

preferred drawing general process flows with the Feature Owner (FO). We

depicted the executions as draft on a paper first together with the FO, and then

converted the flows into MS Visio files using eEPC (Extended Event Driven

Process Change) notation. The flow for bug fixing process is given in Figure 105.

146

Bug is found

XOR

Is bug entered to CM tool?

Get and read

the e-mail

notification

from CM tool

Get and read

the e-mail sent

by the

submitter

Yes No

Analysis of the

problem

Implementation

of the solution

Performing

component

test

Checking-in

the changes to

clearcase

repository

Change the

state of bug in

CM tool

Write a

resolution text

for the bug in

CM tool

XOR

Is bug entered to CM tool?

Yes

Assign a

tester for

testing the

resolved bug

CM tool

notifies the

submitter

automatically

Bug fixing

completed

Developer sends

e-mail to the

submitter about

the solution

Developer Developer

Developer

Developer

Developer

Developer

Developer

Developer

Changed

application

source code

Changed entry

in CM tool

Developer
Changed entry

in CM tool

Developer
Changed entry

in CM tool

CM Tool
Changed entry

in CM tool

Reported bug

entry in CM

tool

Bug definition

in e-mail

Application

source Code

Application

source Code

Changed

application

source code

Changed

application

source code

No

MS Outlook

Eclipse

Eclipse

Eclipse

EclipseClearcase

Reported bug

entry in CM

tool

Reported bug

entry in CM

tool

Reported bug

entry in CM

tool

CM Tool

CM Tool

MS Outlook

E-mail that

explains the

bug solution

Figure 105 eEPC for Bug Fixing Process (Case C)

147

For the bugs which are reported via CM tool, the metric data had been exported in

an MS Excel file. This file can be seen in Appendix B. Metric data is exported in

the time order from CM tool since this is very critical for statistical analysis. We

first imported this metric data to our tool. Therefore, one process execution record

is automatically created for each bug report entry in the Excel file imported. There

was 33 data points which were collected via CM tool. Then we used the elements

(inputs, outputs, activities, roles, and tools) used to represent process flows

showed us typical values of process attributes. Therefore we could add Process

Attributes on the similarity matrix and checked against process executions. The

process similarity matrix for bug fixing executions is provided in Figure 106.

For the bugs which are not reported via CM tool, we check the e-mails sent to the

Developer against the bugs reported for the analyzed feature. We found 29 bug

reports notified via e-mail directly from the submitter. We read the creation date

and resolution date of bug reports from the Received Date field of bug report e-

mails and the Sent Date field of e-mails about resolution in MS Outlook. We have

inserted the information collected from e-mails to an Excel file. Then we also

imported this data on Excel file to our tool. Therefore, one process execution

record is automatically created and appended to the existing table for each bug

report entry in the Excel file imported. By the help of eEPC diagram, we created

process attributes needed for the newly added process executions and put the

checks on similarity matrix accordingly. As a result, we have created 29 more

process execution records and this yielded 62 process execution records totally.

So that we completed process similarity matrices for Inputs, Outputs, Activities,

Roles, and Tools & Techniques of bug fixing process.

But there was a problem at this point: The execution records were not in the time

order. We used sorting functionality added to our tool during the last case study to

sort the process execution records according to creation date metric values.

148

Figure 106 Process Similarity Matrix for Bug Fixing

After finalizing the process similarity matrices, we checked under “Process

Clusters” tab-sheet to see the automatically identified process clusters by our tool.

Our tool identified 2 process clusters labeled by “Version A” and “Version B” as

shown in Figure 107, by observing the similarities between process executions.

Version A was representing the bug fixing process where bugs are reported and

tracked via CM tool while Version B was representing the bug fixing process

where bugs are reported via e-mails. The number of data points was enough for

both process clusters (33 and 29) to perform statistical analysis.

149

Figure 107 Base Process Clusters for Bug Fixing Process

 Table 11 Processes and Data Sets (Original and Derived) in Context-3

Metric Name Metric Type Explanation

Creation Date Base The date bug is reported
Actual Finish Date Base The date bug is resolved
Estimated Finish
Date

Base The last date bug is expected to be resolved

Bug Aging Derived Actual Finish Date - Creation Date + 1
Estimated Bug
Aging

Derived Estimated Finish Date - Creation Date + 1

Estimation
Variance

Derived Estimated Bug Aging - Bug Aging

Estimation
Capability

Derived Estimated Bug Aging / Bug Aging

Priority Base Priority of the bug reported. Allowed values: 1
(massive), 2 (serious), 3 (little effect), 4 (cosmetic)

Problem Source Base Source of the bug reported
Test Result Base Result of the test done after correction. Allowed

values: T* (successful), T- (unsuccessful), T0 (not
tested)

Project Name Base Name of the project for which bug is reported
MR Id Base Unique Id for the bug

After we identified base process clusters, we have changed our view to Metric

Evaluation to assess the usability of the process metrics. The metrics which are

imported to our tool from Excel at the beginning of the case study are shown in

150

the table above as Base metrics. We decided to derive four new metrics with the

imported base metrics: Bug Aging, Estimated Bug Aging, Estimation Variance

and Estimation Capability. Derived metrics and their formulas are also shown in

the above table. The relationships between the base metrics and the derived

metrics are shown visually in Figure 108. The metrics at upper side represent the

base metrics, all others are derived metrics.

We created one entry under Derived Metrics tab-sheet for each derived metric.

After filling Metric Formula attribute for the created entries, metric data for the

derived metrics were calculated automatically and stored by our tool.

Figure 108 Base and Derived Metrics Identified in Context-3

After deciding on the derived metrics, we filled Metric Usability Questionnaire

for each base and derived metric from Questionnaire tab-sheet under Metric

Evaluation view. Example questionnaire for “Bug Aging” derived metric is shown

in Figure 109 (completed questionnaires for all metrics identified in Context-3 are

provided in appendix E). The usability status of all base and derived metrics are

listed in Figure 111. In the next step, only metrics which are evaluated as “usable”

would be used for control charting. To be clearer, Expected Comp Date,

Estimated Bug Aging, Estimation Variance and Estimation Capability metrics are

151

evaluated as “Not Usable” because of missing metric data points and could not be

used for statistical analysis (see Appendix E for details).

Figure 109 Metric Usability Questionnaire for “Bug Aging” Derived Metric of

“Bug Fixing” Process

152

Figure 110 Metric Usability Ratings for “Bug Aging” Derived Metric of “Bug

Fixing” Process

153

Figure 111 Metric Usability Results (Case C)

After identifying the base process clusters and assessing the usability of the

metrics, we have changed our view to Process Clusters (under PROCESS

IMPROVEMENT view) to finalize the process clusters. The number of data

points was enough (at least 20) for both base process clusters to apply control

charting. Therefore we decided to apply control charting on process clusters

Version A and Version B separately. But we also decided to apply SPC tools on

the process cluster which is produced by merging these two base process clusters

to be able to see the overall picture.

SPC tools could only be applied to the qualified process cluster – metric pairs. In

this case, these were “Version B – Bug Aging” and “Version A – Bug Aging” for

control charting since just Bug Aging metric was assessed as usable and were the

type of ratio/absolute. Control charts drawn for these two process cluster – metric

pairs are shown in Figure 113 and Figure 116.

When we checked the control chart drawn for “Version B – Bug Aging” pair, we

observed two Out-of-Control Points (OCPs). When we checked these OCPs

154

detected, we observed that last 9 bugs of Version B had been resolved in one day.

This is not surprising when we consider the fact that only minor errors remain at

the end of testing periods. Therefore, we decided not to count such situations as

OCPs and changed the related configuration accordingly (see Figure below). After

changing the configuration for OCP Rules we re-drew the control chart in Figure

95, we saw that process was under control. The mean was about 1.5 days and

Upper Control Limit (UCL) was about 3.1. According to the control chart results,

we conclude that the process is under control. According to the control chart

results, we conclude that the process is not only under control but also capable

since mean and UCL were consistent with the service level agreement of the

company.

Figure 112 OCP Rules for Case C

155

Figure 113 Version B – Bug Aging Control Chart

156

Figure 114 Version B – Bug Aging Final Control Chart

When we checked the control chart drawn for “Version A – Bug Aging” pair, we

observed two Out-of-Control Points (OCPs). When we checked the OCP detected

(process execution No: 28), we found out that Project Manager had assigned the

developer to other more important tasks. We counted this action as an unusual

process instance and therefore we decided to exclude this metric data point from

analysis and re-drew the control chart. This time, we detected three OCPs. When

we filled Process Execution Questionnaire for the detected OCP (process

execution No: 22), we have found out that for this bug fixing process instance,

there had been a problem about regenerating the error and it had been forgotten

for 3 weeks. We have reported this as a possible improvement point for the

project. For example, such bugs can be discussed in more details at the weekly

157

project meetings and final decision can be made for old enough bugs. Then we

excluded this metric data point.

After excluding the metric data point from analysis and re-drew the control chart.

This time, we detected two OCPs. Although we filled Process Execution

Questionnaire for the detected OCP (process execution No: 15), we did not found

out any specific reason. Therefore we decided to exclude this metric data point

from analysis and re-drew the control chart. This time, we detected just one OCP

(process execution No: 21). Bug Aging metric value for this instance was 7 days

and this was not an extreme value for a bug with priority 4. Therefore, we decided

not to count such situations as OCPs and changed the related configuration

accordingly (see Figure 115).

Figure 115 OCP Rules for Case C (Final)

158

Figure 116 Control Chart drawn for “Version A – Bug Aging” pair

159

Figure 117 Control Chart drawn for “Version A – Bug Aging” pair

After changing the configuration for OCP Rules we re-drew the control chart in

Figure 118, we saw that process was under control. The mean was about 2.5 days

and Upper Control Limit (UCL) was about 8 days. According to the control chart

results, we conclude that the process is not only under control but also capable

since mean and UCL were consistent with the aims for the process.

160

Figure 118 Final Control Chart drawn for “Version A – Bug Aging” pair

Figure 119 Process Clusters after the merge

161

As the second step, we merged the two base process clusters and drew control

charts for the combined data (see Figure 120). When we checked the control

charts drawn for “Version A_B” process cluster, we observed six Out-of-Control

Points (OCPs) on both the control chart and these were for the process executions

34, 32, 21, 17, 16 and 3 besides three OCPs excluded before. In other words, Bug

fixing process was not under control for “Version A_B – Bug Aging” pair. Since

there were many OCPs, we thought this indicated a mixture of multiple cause

systems within the process. In this case, Version A and Version B should be

analyzed separately since Version A_B was not appropriate for statistical analysis.

Figure 120 Control Chart for Combined Data of Bug Fixing

162

A summary of analysis done with control charts can be found in the following

tables.

Table 12 Initial Results from Charted Data in Context-3

Process Metric Cluster Status
Overall Many OCPs

Version A 3 OCPs
Bug Fixing Bug Aging

Version B Under Control

* OCP: Out-of-Control Point

Table 13 Assignable Causes for Out-of-Control Points in Context-3

Metric Cluster OCPs Assignable Cause
Version A_B Many OCPs Mixture of multiple cause systems

Version A 3 OCPs One OCP was due to assignment of the
developer to other more important tasks
by Project Manager. One of others was
due to forgetting a bug (couldn’t
regenerated) open for 3 weeks. For the
last OCP, we couldn’t find a specific
reason.

Bug Aging

Version B None Not applicable

* OCP: Out-of-Control Point

By using our tool, we have also drawn histograms for the metric data which are

used at final control charts of Version A, Version B and Version A_B. We have

used histograms for under control processes to visualize the frequency distribution

of metric data. These can be seen below:

163

Figure 121 Version A – Bug Aging Histogram

164

Figure 122 Version B – Bug Aging Histogram

165

Figure 123 Version A_B – Bug Aging Histogram

Until now we have shown usage of SPC tools for metrics type of ratio or absolute

with our tool, but we have also supported analysis of nominal and ordinal metric

types. We have drawn bar chart for status of bugs, shown in Figure 124. This bar

chart revealed another problem about the project. Normally, when a bug is

resolved its status is changed to RES. After that tests are performed to check

whether the problem reported is really resolved and status is changed to FIN.

When we checked the bar chart, there were some bugs which are in state RES. In

other words, we had bugs which had been resolved but not tested. This was also

another point for improvement of the project.

166

Figure 124 Bar Chart for Test Results

We have also drawn pareto charts for “problem source”, “error reason” and

“should-be found” metrics of bugs, shown in Figure 125, Figure 126 and Figure

127. These pareto charts showed us the problematic areas in the whole software

development process. When we checked the pareto chart of “should-be found”

metric, we saw that about half of the bugs should have been normally detected

during Component Integration Testing (CIT). This pointed possible problems

about the process of CIT. We decided to initiate a study to detect the problems

about CIT. If we could remove all the problems about CIT, number of bugs

reported would be reduced to the half. Another major problematic phase of the

project was detected as Requirements Inspection. According to the pareto chart,

%85 of the bugs could have normally been detected at Requirements Inspection

167

and CIT. Therefore we decided to initiate a study to detect the problems about

Requirements Inspection too.

Figure 125 Version A_B – SB Found Pareto Chart

When we checked the pareto chart of “error reason” metric, we reached similar

results with the last pareto chart. We saw that error reasons for %75 of the bugs

were detected as “Test: Not Escaped” or “Specification: Bad Review”. These

results were consistent with the results and decisions from the analysis of “should-

be found” metric.

168

Figure 126 Version A_B – Error Reason Pareto Chart

When we checked the pareto chart of “problem source” metric, we saw that

problem sources for %65 of the bugs were detected as “EC: Error in unchanged

code”, “IO: Implementation Other”, “RU: Requirement Unclear” or “RM:

Requirement Missing”. These were the four major sources for the bugs. The

feature whose bug fixing process was analyzed had been very similar to another

feature and source code of this feature was heavily reused. This explained the

reason for many “EC: Error in unchanged code” as the problem source. Another

important observation from the pareto chart was bad quality of the requirements.

Missing or unclear requirements were the sources of about %30 of the bugs

reported. This was another argument that supported the process improvement

initiative for Requirements Inspection.

169

Figure 127 Version A_B – Problem Source Pareto Chart

Findings from the study:

During the implementation of the case study, we have detected improvements

about the process analyzed, bugs and improvements for our tool and

improvements about the SPC assessment model we have used (SPC-AM) besides

gaining inside about the analyzed process. These will be described in detail below:

Inside about the process: We have learned mean values and control limits of bug

fixing process of the project. This information is very precious especially for

planning and tracking. Mean values and control limits of process metrics for each

cluster are given in the table below.

170

Table 14 Results of Case Study C

Process Metric Cluster Mean UCL
Overall 2.000 -
Version A 2.467 7.969

Bug Fixing Bug Aging

Version B 1.517 3.132

* UCL: Upper Control Limit

Improvements about the process: Two possible improvement points have been

detected for the analyzed project:

• Bugs which can not regenerated for one week can be discussed in the

project meeting and decision should be given. Currently, this is not

considered in the process.

• Problems about testing of resolved bugs are detected. There are some bugs

which are resolved but not tested. For each bug resolved, a tester can be

assigned and testing can be tracked. This should be a part of project

management.

• We have detected %85 of the bugs could have normally been detected at

Requirements Inspection and CIT. Therefore process improvement studies

were initiated for these two sub-processes of software development

process.

Improvements for our tool: The following improvements are detected during the

study:

• For some Out-of-Control points shown in the CCs, it is understood that

they are not out-of-control actually. There can be some way to ignore these

points.

• “No” field of Process Attributes can be automatically assigned during

creation

171

• Combo boxes can be used for the answers field of the appropriate

questions at questionnaires.

• “Recorded On” field can be set automatically according to the current time

while creating Process Execution Records (PERs)

Bugs for our tool: Four minor bugs had been detected during the study and they

were corrected later.

Improvements for SPC-AM: The following improvements are detected during the

study:

• Metric usability ratings can be assigned automatically according to the

answers given at Metric Usability Questionnaire.

• Questions in “Process Environment” part of Process Execution

Questionnaire (PEQ) concentrate on a change in the process. But may be

the cause for an OCP is not a change but a mistake or missing thing in the

current process. Questions can be enhanced to consider this.

• “Is metric data recorded precisely?” question at Metric Usability

Questionnaire is not clear. This question can be enhanced to increase the

understandability.

• The questions in the “Data Dependability” part of Metric Usability

Questionnaire do not intuitively direct the assessor for the correct usability

rating.

4.5. User Evaluation

The SPC-AAT has been evaluated by the users of the tool during case studies. A

questionnaire has been filled by these users for evaluating our tool. In the

questionnaires, the tool is rated according to the criteria which were defined as

critical according to our aims. In addition, open-ended questions are also supplied

for getting additional comments from the users. The filled questionnaires are

provided in Appendix F.

172

According to the user evaluations, we can conclude that SPC-AAT satisfied the

aims set at the beginning of the study. All three users have agreed about the

success of SPC-AAT about meeting the stated objectives and adequate utilization

of SPC tools. In the first questionnaire, we got feedbacks about the problems

related with user friendliness and use of SPC-AAT. These problems were fixed

later and with the next questionnaires SPC-AAT has been evaluated as user

friendly and easy to install and use. These were also some important aims targeted

in our study. According to the questionnaires, the most problematic area is

detected as help documentation. This is added as a future work for our study.

The users who evaluated the tool proposed some improvements concerning both

the functionality and usability of the tool. Some of them are also noted and added

as future work.

The positive feedbacks of the Manager from the organization were also very

important for our study (see questionnaire 2 in Appendix F). The Manager was

very eager to use SPC-AAT in the other processes of the organization. This also

proves that the people who were involved in our case studies saw and believed the

usefulness of our tool and eager to use in the future.

173

 CHAPTER 5

5. CONCLUSION AND FUTURE WORK

5.1.Conclusion

Statistical process control (SPC) which includes very powerful techniques used in

other mature engineering disciplines for managing projects with allowed variation

is not used by many software organizations. To disseminate and effectively use

SPC especially for emergent and/or low maturity organizations, guidelines and

software tools to implement SPC techniques should be developed. In this study,

we developed a software tool (SPC-AAT) to assess the suitability of software

processes and metrics for SPC and use SPC tools.

SPC-AAT aims to ease and enhance application of SPC especially for emergent

and/or low maturity organizations and reduce the time required to implement

SPC. SPC-AAT works integrated with the other tools in the environment which

hold measurement data about the processes performed in the organization. There

are two ways to integrate these tools to SPC-AAT: using INTERMEDIATE

infrastructure or using CSV, Excel file exports directly from the tools. For

INTERMEDIATE infrastructure, a collector which is a small application that

invokes the measurement tool and produces metric values is used to provide

measurement data to SPC-AAT as an XML file from other tools. By using

INTERMEDIATE infrastructure, commercial measurement tools, custom-made

applications and databases can be integrated to SPC-AAT. When measurement

174

data is imported to SPC-AAT, all necessary assets are created automatically by

the tool before SPC assessment and analysis are started. We used SPC-AM as the

assessment model to test the suitability of SPC for software processes and metrics.

In the scope of SPC-AM, process attributes are defined for process executions and

process clusters are identified by using this info. While doing this, insight about

the process analyzed is gained. Then metrics to use for statistical analysis are

identified and a questionnaire is filled for each metric. In this way, the

characteristics of metric data are discovered and performance of basic

measurement practices during data collection is investigated. At the end of

suitability assessment, qualified “process cluster – process metric” pairs are

identified for using SPC tools on them. On the qualified “process cluster – process

metric” pairs, control charts, histograms, bar charts and pareto charts are applied

as the supported SPC tools by SPC-AAT. In this way, SPC-AAT guides software

organizations to use SPC tools in a correct and efficient way on their processes

and metrics.

To validate our model, we performed three case studies in a multiple-case-study

context. For each of the case studies, we identified the different versions of the

process (process clusters), evaluated the usability of process metrics and

performed SPC analysis for the suitable process clusters and metrics. We worked

on recruitment process at one organization and bug fixing processes of two

different projects at the same organization. The organization at which case studies

were performed is a software development organization having CMMI L3. The

processes analyzed were not defined explicitly by the company. In the first case,

we investigated utilization of bug aging, effort and status metrics of bug fixing

process of an integration project. In the second case, we worked on planned

procurement time, actual procurement time, procurement time variance, and

position metrics of recruitment process of the software development organization.

In the third case, we worked on bug aging, estimated bug aging, estimation

variance, estimation capability, error reason, problem source, should-be found and

status metrics of bug fixing process of another project in the organization.

175

During the case studies we observed the benefits of SPC-AAT clearly. Since SPC-

AAT supports common file formats in Excel and CSV to which most of the tools

can export their data, we saved time during collecting metric data. In the previous

studies, it was stated that most of the effort for the analysis is spent during

collecting and organizing metric data [43] [14] [47] [48]. We can say that SPC-

AAT significantly enhance organizing metric data process and reduce time

required as it was aimed at the beginning of the study. As it is known metric data

should be in the time order to draw the control charts. If it is not satisfied then

results of the control charts will not be dependable. With the sorting feature of

SPC-AAT metric data could be put into time order according to any chosen

appropriate metric during case studies. We can again say that SPC-AAT

significantly enhance organizing metric data process and reduce time required as

it was aimed at the beginning of the study.

Another observation about benefits of SPC-AAT is that SPC-AAT could guide

users to define, understand metrics and choose the appropriate ones for analysis

by the help of questions answered by the users. With little expertise in the area,

users could decide the metrics which can be used in the statistical analysis just by

answering the questions in the questionnaires. With the reporting feature of SPC-

AAT metric definition reports have been taken, so that metrics had been defined

implicitly while filling metric usability questionnaires. Such reports are also

requested by CMMI; therefore this can be counted as another benefit of metric

definition reports. We also observed that SPC-AAT could guide users to choose

correct SPC tools for the metrics. SPC-AAT restricts the SPC tools that can be

used according to the type of the metric data (numeric or nonnumeric). Therefore

users did not need any expertise to choose the SPC tools to be used as it was

aimed at the beginning of the study. Especially for control charts, there are lots of

different types for different metrics and distributions. SPC-AAT hides these

details from the users and makes it simple.

SPC-AAT could also guide users to perform rational sampling which is very

critical for statistical analysis to guarantee a single and constant system of chance

176

causes. SPC-AAT hides details of rational sampling from users. Users even did

not hear about rational sampling but SPC-AAT gets the necessary input and

performs rational sampling. Users just enter the attributes of process executions

(inputs, outputs, activities, roles, tools & techniques) and SPC-AAT automatically

identifies the process clusters. Therefore we can say that SPC-AAT was

successful to ease rational sampling process by hiding the details and reduce the

time required. We also observed that defining new derived metrics by using

existing base or derived metrics was quite easy for users. User could define new

metrics by just typing the name and the formula of the new derived metric and

metric values for all process executions could be calculated automatically. We can

say that SPC-AAT enhance defining derived metrics and reduce the time required

for calculation as it was aimed at the beginning of the study.

Drawing control charts, histograms, pareto charts and bar charts without needing a

third party tool was also one of the benefits of SPC-AAT. This feature reduced the

time required for statistical analysis by providing a central place to analyze the

metric data besides collecting, organizing and assessing. During case studies

another observation about benefits of SPC-AAT is that SPC-AAT could guide

users to interpret the chart outcomes and detect possible problems. For control

charts, assignable causes (out of control points) are shown as large green points,

and when a green point is clicked on, a questionnaire is opened to find out the

reasons that cause this extraordinary measure. When questionnaire is filled, user

can choose to exclude this point if necessary and control chart is refreshed by re-

calculating the mean and the limits. The same process is started again at this point.

We observed that this was very intuitive to the users and it could be easily

realized. In this way, users could detect the assignable causes which make the

analyzed process out-of-control. We can again say that SPC-AAT significantly

enhance interpreting chart outcomes and reduce time required as it was aimed at

the beginning of the study.

Another observation about benefits of SPC-AAT is that SPC-AAT could ease the

what-if analysis done for different rational sampling choices. In other words,

177

SPC-AAT provides merging and splitting of process clusters and each merge or

split can be regarded as a different rational sampling. After merging or splitting

process clusters, users could see the analysis results immediately and could decide

on the correct rational sampling easily. We can say that SPC-AAT is very useful

for SPI purposes.

The results of all these enhancements can be seen from the time spent during case

studies. We spent 5.5 hours for case study-A, 5 hours for case study-B, and 5

hours for case study-C.

Besides easing applying SPC and reducing the time required, we have detected

improvements about the processes analyzed, bugs and improvements for SPC-

AAT and improvements about the SPC assessment model we have used (SPC-

AM). We have also gained insight about the analyzed processes by knowing mean

values and control limits of the processes. This information is very precious

especially for planning and tracking of the projects.

With SPC-AAT, we also contributed to the software engineering domain by

developing a tool which relate process metric data to process data for statistical

analysis. Using both data for statistical analysis in one tool is rare.

5.2.Future Work

During this study, we had some limitations because of time and data constraints.

Nevertheless, this study is a step to effectively use and disseminate statistical

process control in software industry and a good opportunity is left for researchers

who want to get into the issue in more detail. The following are some of the

possible items for further research studies in addition to the minor improvements

detected during case studies:

• SPC-AAT can be enhanced to monitor all the necessary processes in a

software organization at the same time. In this way, SPC-AAT can be used

as the central place in a software organization on which all necessary

178

processes and metrics are defined and the performance of the processes are

tracked.

• Integrating Goal-Question-Metric (GQM) approach to our tool to be able

to choose the metrics according to the goals of the organization

• Adding “Process Capability Evaluation” feature to report process

capability, define the target capability and track changes in the process

capability with process improvements. Mean and control limits on control

charts can be used to identify process capability.

• Reading process definition from a file or providing a GUI to define

process visually and generating process attributes automatically from this

• Performing statistical analysis not just on process clusters but adding a

second dimension: metric value (Ex: the specific position looked for,

Software Engineer)

• Providing an enhanced help documentation by using an third party java

library

• Implementing a “Wizard Mode” to guide the User by showing the next

steps to be taken

• Supporting more SPC tools. Scatter Diagrams can be useful to detect the

relations between the metrics

179

REFERENCES

[1] Argyris, C., “Good Communication that Blocks Learning”, HBR, July-

August 1994.

[2] Barnard, J., and Carleton, A., “Analyzing a Mature Software Inspection

Process Using Statistical Process Control”, National SEPG Conference,

Pittsburgh, 1999.

[3] Basili, V.R., "Software Modeling and Measurement: The Goal Question

Metric Paradigm," Computer Science Technical Report Series, CS-TR-2956

(UMIACS-TR-92-96), University of Maryland, College Park, MD,

September 1992.

[4] Basili, V.R., Caldiera, G., and Rombach, H.D., “The Goal Question Metric

Approach”, Encyclopedia of Software Engineering, Vol.1, pp.528-532, John

Wiley & Sons, 1994.

[5] Burr, A., and Owen, M., Statistical Methods for Software Quality,

International Thomson Computer Press, 1996.

[6] Card, D., “Statistical Process Control for Software?”, IEEE Software, pp.95-

97, May 1994.

[7] Carleton, A.D., and Paulk, M.C., “Can Statistical Process Control Be

Usefully Applied To Software?”, 4th European Software Engineering

Process Group (ESEPG) Conference, Amsterdam, June 1999

[8] CMU/SEI, “Process Maturity Profile of the Software Community – 2000

Year End Update” (presentation), March 2001(a).

180

[9] CMU/SEI, Capability Maturity Model Integration – Version 1.1, Technical

Report (Continuous: CMU/SEI-2002-TR-001, Staged: CMU/SEI-2002-TR-

002), December 2001(b).

[10] CMU/SEI, The 2001 High Maturity Workshop, CMU/SEI-2001-SR-014,

January 2002.

[11] Deming, W.E., Statistical Adjustment of Data, John Wiley and Sons, 1943.

(Re-printed by Dover Publications, July 1984.)

[12] Deming, W.E., Out of the Crisis, Massachusetts Institute of Technology,

Center of Advanced Engineering, Cambridge, Mass., 1986.

[13] Demirörs, O., and Sargut, K.U., “Utilization of a Defect Density Metric for

SPC Analysis”, 13th International Conference on Software Quality, Dallas,

Texas, October 2003.

[14] Demirörs, O., and Sargut, K.U., “Utilization of Statistical Process Control

(SPC) in Emergent Software Organizations: Pitfalls and Suggestions”,

Software Quality Journal, Vol.14, No.2, pp.135-157, 2006.

[15] Drucker, P.F., “The New Society Organizations”, HBR, September-October,

1992.

[16] Fenton, N.E., and Pfleeger, S.L., Software Metrics: A Rigorous and

Practical Approach (2nd Ed.), PWS Publishing Company, 1997.

[17] Florac, A.W., Carleton A.D., Measuring the Software Process: Statistical

Process Control for Software Process Improvement. Pearson Education,

1999 (a). ISBN 0-201-60444-2.

[18] Florac, A.W., Carleton A.D., “Statistically Controlling the Software

Process” (The 99 SEI Software Engineering Symposium), Software

Engineering Institute, Carnegie Mellon University, September 1999 (b).

181

[19] Florac, A.W., Carleton A.D., and Barnard, J.R., “Statistical Process Control:

Analyzing a Space Shuttle Onboard Software Process”, IEEE Software,

July/August 2000, pp.97-106.

[20] Florac, A.W., Park, R.E., and Carleton A.D., “Practical Software

Measurement: Measuring for Process Management and Improvement”,

Guidebook: CMU/SEI-97-HB-003, 1997.

[21] Florence, A., “Statistical Process Control Applied to Software Requirements

Specification Process”, 10th European Software Engineering Process Group

(ESEPG) Conference, London, June 2005.

[22] Grady, R.B., and Caswell, D.L., Software Metrics: Establishing a Company-

Wide Program, Prentice Hall PTR, 1998.

[23] Hall, T., and Fenton, N., “Implementing Effective Software Metrics

Programs”, IEEE Software, 1997.

[24] Hetzel, W.C., Making Software Measurement Work: Building an Effective

Software Measurement Program, QED Publishing, Wellesley, Mass., 1993.

[25] Ishikawa, K., Guide to Quality Control. Asian Productivity Organization,

1982. ISBN 92-833-1035-7.

[26] ISO, “ISO 9001: Quality Management Systems – Requirements”, 2000.

[27] ISO/IEC JTC1/SC7, “ISO/IEC TR 15504: Information Technology –

Software Process Assessment”, 1998(b).

[28] ISO/IEC JTC1/SC7, “ISO/IEC 15939: Software Engineering – Software

Measurement Process”, 2002.

[29] Jacob, L., and Pillai, S.K., “Statistical Process Control to Improve Coding

and Code Review”, IEEE Software, May/June 2003, pp.50-55.

[30] Jalote, P., Dinesh, K., Raghavan, S., Bhashyam, M.R., and Ramakrishnan,

M., “Quantitative Quality Management through Defect Prediction and

182

Statistical Process Control”, Proceedings of Second World Quality Congress

for Software, September 2000.

[31] Lantzy, M.A., "Application of Statistical Process Control to Software

Processes", WADAS '92. Proceedings of the Ninth Washington Ada

Symposium on Empowering Software Users and Developers, 1992, pp.113-

123.

[32] McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J., and Hall,

F., Practical Software Measurement: Objective Information for Decision

Makers, Addison-Wesley Professional, 1st edition, 2001. ISBN

0201715163.

[33] MINITAB Statistical Software, Release 14,

http://www.minitab.com/products/minitab/14/default.aspx, Last Access

Date: 19 February 2007

[34] Montgomery, D.C., Introduction to Statistical Quality Control (5
th

 Ed.).

John Wiley & Sons, Inc., U.S.A., 2005. ISBN 0-471-65631-3.

[35] NATO, “AQAP-150: NATO Quality Assurance Requirements for Software

Development (Edition 2)”, September 1997.

[36] Offen, R.J., and Jeffery, R., “Establishing Software Measurement

Programs”, IEEE Software, 1997.

[37] Park, R.E., Goethert, W.B., and Florac, W.A., “Goal-Driven Software

Measurement”, CMU/SEI-96-HB-002, August 1996.

[38] Paulk, M.C., Weber, C.V., Curtis, B., and Chrissis, M.B., The Capability

Maturity Model: Guidelines for Improving Software Process, Addison-

Wesley Publishing, October 1995.

[39] Paulk, M.C., “Practices for High Maturity Organizations”, Proceedings of

the 1999 Software Engineering Process Group Conference, Atlanta,

Georgia, March 1999, pp.28-31.

183

[40] Paulk, M.C., “Considering Statistical Process Control for Software”,

Software Engineering Institute, Carnegie Mellon University, Pittsburgh,

Pennsylvania, September 2001.

[41] Radice, R., “Statistical Process Control for Software Projects”, 10th

Software Engineering Process Group Conference, Chicago, Illinois, March

1998.

[42] Rozum, J.A., The SEI and NAWC: Working Together to Establish a

Software Measurement Program, Technical Report, CMU/SEI-93-TR-07,

ESC-TR-93-184, December 1993.

[43] Sargut, U., Application of Statistical Process Control to Software

Development Processes, Master Thesis Dissertation, Informatics Institute of

METU, May 2003.

[44] Sengul, E.S., Intermediate: An Integration Tool for Measurement Data

Collection, Master Thesis Dissertation, Informatics Institute of METU,

November 2001.

[45] Shewhart, W.A., Economic Control of Quality of Manufactured Product,

Van Nostrand, New York, 1931. (Re-printed by American Society of

Quality Control, Milwaukee, Wisc., 1980.)

[46] Shewhart, W.A., Statistical Method: From the Viewpoint of Quality Control,

Lancaster Press Inc., 1939.

[47] Tarhan, A., An Assessment Model for the applicability of Statistical Process

Control for Software Processes, Doctoral Thesis Dissertation, Informatics

Institute of METU, August 2006.

[48] Tarhan, A., Demirors O., Investigating Suitability of Software Process and

Metrics for Statistical Process Control, EuroSPI 2006, 2006.

[49] The Standish Group, The annual CHAOS report 10th edition, 2004.

184

[50] Weller, E.F., “Practical Applications of Statistical Process Control”, IEEE

Software, May/June 2000, pp.48-55.

[51] Wheeler, D.J., Advanced Topics in Statistical Process Control, SPC Press,

Knoxville, Tenn., 1995.

[52] Wikipedia, Control Chart, http://en.wikipedia.org/wiki/Control_chart, Last

Access Date: 19 February 2007

[53] Yin, R.K., Case Study Research: Design and Methods, Applied Social

Research Methods Series Vol.5, SAGE Publications, 2003.

185

APPENDICES

A. SPC-AM ASSETS

Figure A.1 Process Execution Record

186

Figure A.2 Process Execution Questionnaire

187

Figure A.3 Process Similarity Matrix

188

Figure A.4 Process Attributes Description

189

Figure A.5 Metric Usability Questionnaire for Base Metrics

190

Figure A.6 Metric Usability Questionnaire for Derived Metrics

191

B. TOOL INFORMATION

Figure B.1 Excel file example used for importing data

192

Figure B.2 CSV file example used for importing data

193

Figure B.3 XML file example used for importing data

194

All specific requirements:

Table 15 SPC-AAT Requirements

UC

No

UC Name Comment

1 Create a Workspace

2 Open an existing Workspace

3 Save the current Workspace

4 Import Metric Data to Workspace

Use cases related with

Workspace handling

5 Update Process Metric Data

6 Display Process Metric Data

7 Exclude Process Metric Data Points

Use cases for handling

Process Metric Data

8 Create a Process Execution Record

9 Display an existing Process Execution Record

10 Update an existing Process Execution Record

11 Delete an existing Process Execution Record

Use cases related with

Process Execution Record

handling

12 Display an existing Process Execution Questionnaire

13 Update an existing Process Execution Questionnaire

Use cases related with

Process Execution

Questionnaire handling

14 Synchronize Process Similarity Matrix (PSM)

15 Display Process Similarity Matrix (PSM)

16 Update Process Similarity Matrix (PSM)

17 Synchronize Process Executions accr. to PSM

Use cases related with

Process Similarity Matrix

handling

18 Identify Base Process Clusters from PSM

19 Display Base Process Clusters

20 Report Base Process Clusters

21 Print Base Process Clusters

Use cases related with

Base Process Cluster

handling

22 Create Process Attributes Description for a Process Cluster Use cases related with

195

23 Display a Process Attributes Description Process Attributes

Description handling

24 Create a Process Metric

25 Display a Process Metric

26 Update a Process Metric

27 Delete a Process Metric

28 Report Metric Definition for a metric

29 Print Metric Definition for a metric

Use cases related with

metrics of the process

30 Display Metric Usability Questionnaire for a metric

31 Update Metric Usability Questionnaire for a metric

Use cases related with

Metric Usability

Questionnaire handling

32 Update Metric Usability Rating for a metric

33 Display Metric Usability Rating for a metric

Use cases related with

Metric Usability Rating

handling

34 Report Metric Usability Results

35 Print Metric Usability Results

Use cases related with

Metric Usability

Assessment Results

36 Merge Process Clusters

37 Split a Process Cluster

38 Load Base Process Clusters

39 Show Process Cluster Distances

Use cases for Process

Clusters

40 Draw Control Charts for Process Cluster – Metric pairs

41 Draw Bar Charts for Process Cluster – Metric pairs

42 Draw Histograms for Process Cluster – Metric pairs

43 Draw Pareto Charts for Process Cluster – Metric pairs

44 Exclude Metric Data Points on Control Charts

45 Open Process Execution Questionnaire on Control Charts

46 Configure Rules for detecting Out-of-Control Points

Use cases related with

using SPC Tools

47 Display Process Control Status for each metric

48 Synchronize Process Control Status

Use cases related with

Process Control Status

196

49 Report Process Control Results

50 Print Process Control Results

51 Display Out-of-Control Points (OCPs)

52 Synchronize Out-of-Control Points (OCPs)

53 Report Out-of-Control Points (OCPs)

54 Print Out-of-Control Points (OCPs)

Use cases related with Out-

of-Control Points (OCPs)

55 Display Information about Tool

56 Display Help Documentation

Help use cases

197

Class Diagrams:

ProcessAttributesDescription

- descriptionVersion : String = ""

+ getProcessVersion ()

+ setProcessVersion ()

+ display ()

+ print ()

+ getDescriptionVersion ()

+ setDescriptionVersion ()

+ getIdentifier ()

+ setIdentifier ()

+ toString ()

+ saveToXML ()

+ initializeWithXML ()

ProcessConsistencyMatrix

+ reCalculate ()

+ update ()

+ display ()

+ print ()

+ getProcessConsistencyAssessment ()

+ setProcessConsistencyAssessment ()

ProcessVersion

- numberOfPEs : int = 0

+ display ()

+ print ()

+ getProcessAttributesDescription ()

+ setProcessAttributesDescription ()

+ getProcessConsistencyAssessment ()

+ setProcessConsistencyAssessment ()

+ toString ()

+ getNumberOfPEs ()

+ setNumberOfPEs ()

+ setNumberOfPEs ()

+ getNumberOfPEsAsInteger ()

+ getNumberOfPEsStr ()

+ addMergedProcessVersion ()

+ getMergedProcessVersion ()

+ getMergedProcessVersions ()

+ setMergedProcessVersions ()

+ addOldPERsOfMergedProcessVersions ()

+ getOldPERsOfMergedProcessVersion ()

+ setOldPERsOfMergedProcessVersions ()

+ isSplitSupport ()

+ isEqualTo ()

+ calculateDistanceTo ()

+ saveToXML ()

+ saveHashTableToXML ()

+ initializeWithXML ()

- createMergedProcessVersionsFromXML ()

- createOldPERsOfMergedProcessVersionsFromXML ()

- createHashTableFromXML ()

198

AProcessAttributes

- processName : String = ""

- recordedBy : String = ""

+ update ()

+ delete ()

+ display ()

+ print ()

+ getIdentifier ()
+ setIdentifier ()
+ getProcessName ()

+ setProcessName ()

+ getRecordedOn ()

+ getRecordedOnStr ()

+ setRecordedOn ()

+ setRecordedOn ()

+ setInputs ()

+ inputsIterator ()

+ addInputs ()

+ removeInputs ()

+ isInputsEmpty ()

+ clearInputs ()

+ containsInputs ()

+ containsAllInputs ()

+ inputsSize ()

+ inputsToArray ()

+ setOutputs ()

+ outputsIterator ()

+ addOutputs ()

+ removeOutputs ()

+ isOutputsEmpty ()

+ clearOutputs ()

+ containsOutputs ()

+ containsAllOutputs ()

+ outputsSize ()

+ outputsToArray ()

+ getRecordedBy ()

+ setRecordedBy ()

+ setActivities ()

+ activitiesIterator ()

+ addActivities ()

+ removeActivities ()

+ isActivitiesEmpty ()

+ clearActivities ()

+ containsActivities ()

+ containsAllActivities ()

+ activitiesSize ()

+ activitiesToArray ()

+ setRoles ()

+ rolesIterator ()

+ addRoles ()

+ removeRoles ()

+ isRolesEmpty ()

+ clearRoles ()

+ containsRoles ()

+ containsAllRoles ()

+ rolesSize ()

+ rolesToArray ()

+ getToolsAndTechniques ()

+ setToolsAndTechniques ()

+ toString ()

+ getActivities ()

+ getInputs ()

+ getOutputs ()

+ getRoles ()

+ saveToXML ()

- saveProcessAttrVectorToXML ()

+ initializeWithXML ()

- createProcessAttrVectorFromXML ()

+ stringToInt ()

ProcessAssessment

- processName : String

- isRetrospective : boolean

+ ProcessAssessment ()

+ getProcessName ()

+ setProcessName ()

+ isRetrospective ()

+ setRetrospective ()

+ getProcessConsistencyAssessment ()

+ setProcessConsistencyAssessment ()

+ getPERNosForMetric ()

+ setMetricUsabilityAssessments ()

+ getMetricNames ()

+ doesMetricExist ()

+ getMetricUsabilityAssessments ()

+ getMetricUsabilityAssessment ()

+ getBaseMetricUsabilityAssessments ()

+ getDerivedMetricUsabilityAssessments ()

+ metricUsabilityAssessmentsIterator ()

+ addMetricUsabilityAssessments ()

+ createBulkMetricUsabilityAssessments ()

+ removeMetricUsabilityAssessments ()

+ isMetricUsabilityAssessmentsEmpty ()

+ clearMetricUsabilityAssessments ()

+ containsMetricUsabilityAssessments ()

+ containsAllMetricUsabilityAssessments ()

+ metricUsabilityAssessmentsS ize ()

+ metricUsabilityAssessmentsToArray ()

+ createTableModelForMetricUsabilityReporting ()

+ createTableModelForMetricDefinition ()

+ getMetricDataValue ()

+ getMetricDataValueStr ()

+ setMetricDataValue ()

+ setMetricDataValueStr ()

+ isMetricNumeric ()

+ isTypeOfDate ()

+ getDefaultDateFormat ()

+ dateToString ()

+ stringToDate ()

+ findNonNumericMetricObject ()

+ findNonNumericMetricValueStr ()

+ getMetricNamesFromMetricData ()

+ getNumericMetricNames ()

+ getNonNumericMetricNames ()

+ getNonNumericMetricData ()

+ setNonNumericMetricData ()

+ setNonNumericMetricDataValue ()

+ setNonNumericMetricDataValueStr ()

+ getNonNumericMetricDataValue ()

+ getNumericMetricdata ()

+ getNumericMetricdataS ize ()

+ setNumericMetricdata ()

+ setNumericMetricDataValue ()

+ setNumericMetricDataValue ()

+ getNumericMetricDataValue ()

+ createMetricDataForDerivedMetric ()

+ drawControlChart ()

+ drawBarChart ()

+ drawHistogram ()

+ getRulesForDetectingOCPs ()

+ setRulesForDetectingOCPs ()

+ saveToXML ()

+ saveMetricDataToXML ()

+ initializeWithXML ()

- setProcessConsistencyAssessmentFromXML ()

- setProcessExecutionRecordsFromXML ()

- setProcessVersionsFromXML ()

- setMetricUsabilityAssessmentsFromXML ()

- setMeasureValuesFromXML ()

- setRulesForDetectingOCPsFromXML ()

+ getNodeValue ()

199

ProcessExecutionRecord

- processExecutionNo : int

+ ProcessExecutionRecord ()

+ update ()

+ delete ()

+ display ()

+ print ()

+ getProcessExecutionQuestionnaire ()

+ setProcessExecutionQuestionnaire ()

+ getProcessConsistencyAssessment ()

+ setProcessConsistencyAssessment ()

+ getProcessExecutionNo ()

+ getProcessExecutionNoStr ()

+ setProcessExecutionNo ()

+ setProcessExecutionNo ()

+ toString ()

+ getIdentifier ()

+ setIdentifier ()

+ getProcessVersion ()

+ getProcessVersionName ()

+ isProcessVersionOf ()

+ isProcessVersionOf ()

+ setProcessVersion ()

+ isMetricIncluded ()

+ isMetricExcluded ()

+ excludeMetric ()

+ setMetricInclusion ()

+ setMetricDataValue ()

+ setMetricDataValueStr ()

+ getMetricDataValue ()

+ getMetricDataValueStr ()

+ saveToXML ()

+ initializeWithXML ()

+ stringToInt ()

+ stringToDate ()

ProcessConsistencyAssessment

+ ProcessConsistencyAssessment ()

+ synchronizeProcessExecutionRecords ()

- areProcessAttributesSame ()

- isPEROfGivenVersion ()

- calculateDifferenceBetweenProcessAttributes ()

+ calculateClusterDistance ()

+ calculateClusterDistances ()

- mergeProcessAttributes ()

+ mergeProcessVersions ()

- replaceProcessVersionWith ()

- replaceProcessVersionForGivenPERs ()

- doesPERCorrespondsToExistingVersion ()

- setVersionOfPER ()

+ splitProcessVersion ()

+ identifyProcessVersionsFromPCM ()

+ findOutBaseProcessVersionsFromPERs ()

+ isProcessVersionUnderControl ()

+ findOCPsFor ()

+ createProcessExecutionRecord ()

+ getProcessAssessment ()

+ setProcessAssessment ()

+ setProcessExecutionRecords ()

+ getProcessExecutionRecords ()

+ getNextPERNo ()

+ getProcessExecutionRecordByExNo ()

+ processExecutionRecordsIterator ()

+ addProcessExecutionRecords ()

+ createBulkProcessExecutionRecords ()

+ createBulkProcessExecutionRecords ()

+ removeProcessExecutionRecords ()

+ isProcessExecutionRecordsEmpty ()

+ clearProcessExecutionRecords ()

+ containsProcessExecutionRecords ()

+ containsAllProcessExecutionRecords ()

+ processExecutionRecordsSize ()

+ processExecutionRecordsToArray ()

+ getProcessConsistencyMatrix ()

+ setProcessConsistencyMatrix ()

+ setProcessVersions ()

+ getBaseProcessVersions ()

+ getSPIProcessVersions ()

+ getProcessVersion ()

+ processVersionsIterator ()

+ addProcessVersions ()

+ removeProcessVersions ()

+ isProcessVersionsEmpty ()

+ clearProcessVersions ()

+ containsProcessVersions ()

+ containsAllProcessVersions ()

+ processVersionsSize ()

+ processVersionsToArray ()

200

MetricUsabilityAssessment

+ MetricUsabilityAssessment ()

+ getProcessAssessment ()

+ setProcessAssessment ()

+ createMetricUsabilityQuestionnaire ()

+ displayMetricUsabilityJudgments ()

+ getMetricUsabilityQuestionnaire ()

+ setMetricUsabilityQuestionnaire ()

+ isAssessmentOfBaseMetric ()

+ saveToXML ()

+ initializeWithXML ()

ProcessAttrRowData

+ NO : String = "No"

+ NAME : String = "Name"

+ ACTIVITY_NO : String = "Act_No"

+ DESCRIPTION : String = "Description"

- no : String = ""

- name : String = ""

- activityNo : String = ""

- description : String = ""

+ ProcessAttrRowData ()

+ ProcessAttrRowData ()

+ ProcessAttrRowData ()

+ getActivityNo ()

+ setActivityNo ()

+ getDescription ()

+ setDescription ()

+ getName ()

+ setName ()

+ getNo ()

+ setNo ()

+ set ()

+ get ()

+ isEqual ()

+ saveToXML ()

+ initializeWithXML ()

DerivedMetricUsabilityQuestionnaire

- metricFormula : String = ""

+ DerivedMetricUsabilityQuestionnaire ()

+ update ()

+ delete ()

+ display ()

+ print ()

+ decideOnMetricsUsability ()

+ getMetricFormula ()

+ setMetricFormula ()

+ getDependentMetrics ()

+ getDependentMetricNames ()

+ replaceSpacesInFormulaWith_ ()

+ replaceSpacesInMetricNameWith_ ()

+ createTableModelForMetricUsabilityReporting ()

201

MetricUsabilityQuestionnaire

questions : String

- attributes : String = {"Metric Identity","Data Existence","Data Verifiability","Data Dependability","Data Normalizability","Data Integrability"}

emptyList : String

yesNoList : String = {"Yes","No"}

directIndirectList : String = {"Direct","Indirect"}

metricScaleList : String = {"Ratio","Absolute","Nominal","Ordinal"}

attrCounts : int

answers : String

choicesForAnswersItems : String

reportItems : String

- metricName : String = ""

- conceptualDefinition : String = ""

- assessedBy : String = ""

+ getMetricFormula ()
+ setMetricFormula ()
+ createTableModelForMetricUsabilityReporting ()
+ MetricUsabilityQuestionnaire ()

+ update ()

+ delete ()

+ display ()

+ print ()

+ decideOnMetricsUsability ()

+ getMetricUsabilityAssessment ()

+ setMetricUsabilityAssessment ()

+ toString ()

+ getMetricName ()

+ setMetricName ()

+ getConceptualDefinition ()

+ setConceptualDefinition ()

+ getAssessedOn ()

+ getAssessedOnStr ()

+ setAssessedOn ()

+ setAssessedOn ()

+ getAssessedBy ()

+ setAssessedBy ()

+ getAttrCount ()

+ getAttributes ()

+ getAttribute ()

+ getQuestionsCount ()

+ getQuestions ()

+ getQuestion ()

+ getAttributeCounts ()

+ getAnswers ()

+ getAnswer ()

+ setAnswers ()

+ setAnswer ()

+ doesHaveStatus ()

+ getAttrRatings ()

+ getAttrRating ()

+ setAttrRating ()

+ getMUF3_4Rating ()

+ saveToXML ()

+ initializeWithXML ()

- setUsabilityRatingsFromXML ()

+ getStatusArr ()

+ getStatus ()

+ getStatusStr ()

+ setStatusArr ()

+ setStatus ()

+ getReportItemsCount ()

+ getReportItems ()

+ getReportItem ()

+ getChoicesForAnswersItems ()

+ getCellEditorForAnswersItems ()

202

AQuestionnaire

+ getAttrCount ()
+ getAttributes ()
+ getQuestionsCount ()
+ getQuestions ()
+ getQuestion ()
+ getAttributeCounts ()
+ doesHaveStatus ()
+ getAnswers ()
+ getAnswer ()
+ setStatusArr ()
+ getStatusArr ()
+ getStatus ()
+ getStatusStr ()
+ setStatus ()
+ setAnswers ()
+ setAnswer ()
+ getChoicesForAnswersItems ()
+ getCellEditorForAnswersItems ()
+ saveToXML ()

+ initializeWithXML ()

- setAnswersFromXML ()

- setStatusValuesFromXML ()

UsabilityRating

+ FULLY_SATISFIED : String = "F"

+ LARGELY_SATISFIED : String = "L"

+ PARTIALLY_SATISFIED : String = "P"

+ NOT_SATISFIED : String = "N"

- rating : String = ""

- expectedRating : String = ""

+ UsabilityRating ()

+ UsabilityRating ()

+ UsabilityRating ()

+ getRating ()

+ getRatingValue ()

+ setRating ()

+ getExpectedRating ()

+ getExpectedRatingValue ()

+ setExpectedRating ()

+ isRatingOK ()

+ isRatingOK ()

- createRatingPrioHash ()

+ getValueForRating ()

+ saveToXML ()

+ initializeWithXML ()

203

BaseMetricUsabilityQuestionnaire

+ BaseMetricUsabilityQuestionnaire ()

+ update ()

+ delete ()

+ display ()

+ print ()

+ getMetricFormula ()

+ setMetricFormula ()

+ createTableModelForMetricUsabilityReporting ()

ProcessExecutionQuestionnaire

- questions : String = {"Are process performers trained in their roles in the process?","Are process performers exp...

- attributes : String = {"Process Performers","Process Environment"}

- attrCounts : int = {3,5}

emptyList : String

- answers : String = new String [8]

- statusArr : boolean = new boolean [8]

- recordedBy : String = ""

+ getProcessExecutionRecord ()

+ setProcessExecutionRecord ()

+ getAttrCount ()

+ getAttributes ()

+ getQuestionsCount ()

+ getQuestions ()

+ getQuestion ()

+ getAttributeCounts ()

+ getAnswers ()

+ getAnswer ()

+ getStatusArr ()

+ getStatus ()

+ getStatusStr ()

+ setAnswers ()

+ setAnswer ()

+ setStatusArr ()

+ setStatus ()

+ doesHaveStatus ()

+ getRecordedBy ()

+ getRecordedOn ()

+ getRecordedOnStr ()

+ setRecordedBy ()

+ setRecordedOn ()

+ setRecordedOn ()

+ saveToXML ()

+ initializeWithXML ()

+ getAssignableCauseExp ()

+ getChoicesForAnswersItems ()

+ getCellEditorForAnswersItems ()

204

C. DETAILS OF CASE STUDY-A

SPC-AM Assets

XML file for this workspace will not be provided due to space limitations.

205

D. DETAILS OF CASE STUDY-B

SPC-AM Assets

XML file for this workspace will not be provided due to space limitations.

206

E. DETAILS OF CASE STUDY-C

SPC-AM Assets

XML file for this workspace will not be provided due to space limitations.

207

F. SPC-AAT EVALUATION QESTIONNAIRES

SPC-AAT EVALUATION QESTIONNAIRE - 1

Date: 29.12.2006

Rating scale: A. excellent / B. good / C. fair / D. poor Please circle

1. User Friendliness of SPC-AAT

 (A) (B) (X) (D)

2. How easy is the software to use?

 (A) (B) (X) (D)

4. Is the program easy to install?

(X) (B) (C) (D)

208

6. Is installation documentation adequate?

(A) (X) (C) (D)

5. Does the program work as expected, without bugs?

 (A) (B) (X) (D)

7. Is help available and easy to use?

 (A) (B) (X) (D)

9. Does program meet the stated objectives?

 yes no

8. Is utilization of SPC tools adequate at SPC-AAT?

yes no

10. What do you see as SPC-AAT’s three main strengths?

a).........is a good method for realizing your own process, shows weaknesses and

things that are important in a process and helps in improving the process

b)........it is possible to see the data in different dimensions, and good to add new

variables.

c)........provides useful statistics and graphs about the tasks

209

11. What do you see as SPC-AAT’s three main weaknesses?

a)........All tasks are considered as having the same difficulty, and it is not always

possible to normalize the values

b)........User needs to change between views. It could be better to reorganize the

structure and provide additional info in other views, or link between contents.

c)........the link to the process is missing.

12. What are your suggestions for improving SPC-AAT?

The tool could include the process structure (integrated), and let the user modify

the process while working on the tasks. The tool could also indicate problematic

paths on the process.

..

..

Comments:

..

..

..

Name (optional):

Y. G..

210

We thank you for filling in the evaluation sheet and returning it after!

211

SPC-AAT EVALUATION QESTIONNAIRE - 2

Date: 08.01.2006

Rating scale: A. excellent / B. good / C. fair / D. poor

 Please circle

1. User Friendliness of SPC-AAT

 (X) (B) (C) (D)

2. How easy is the software to use?

 (A) (X) (C) (D)

4. Is the program easy to install?

(A) (B) (C) (D)

6. Is installation documentation adequate?

(A) (B) (C) (D)

5. Does the program work as expected, without bugs?

212

 (A) (X) (C) (D)

7. Is help available and easy to use?

 (A) (X) (C) (D)

13. Does program meet the stated objectives?

 yes no

9. Is utilization of SPC tools adequate at SPC-AAT?

yes no

14. What do you see as SPC-AAT’s three main strengths?

a).........Reporting functionality is excellent

15. What do you see as SPC-AAT’s three main weaknesses?

a)........They are some minor errors but these are easy to correct

16. What are your suggestions for improving SPC-AAT?

Also reporting functionalities can be added for Process Execution Records and

Metric Usability Assessments in the system. So that all PERs and MUAs can be

seen in one report

..

213

..

Comments:

We investigated the recruirement process and ended with results that showed us

we have a huge improvement potential in this area. With this tool we can than

measure our performance in recruitment. It can be also employed in many other

areas in the company but of course with the support of management.

..

...

Name (optional):

H. O. C. ..

We thank you for filling in the evaluation sheet and returning it after!

214

SPC-AAT EVALUATION QESTIONNAIRE - 3

Date: 9 January 2007

Rating scale: A. excellent / B. good / C. fair / D. poor Please circle

1. User Friendliness of SPC-AAT

 (A) (B) (C) (D)

2. How easy is the software to use?

 (A) (B) (C) (D)

4. Is the program easy to install?

(A) (B) (C) (D)

6. Is installation documentation adequate?

(A) (B) (C) (D)

5. Does the program work as expected, without bugs?

 (A) (B) (C) (D)

215

7. Is help available and easy to use?

 (A) (B) (C) (D)

17. Does program meet the stated objectives?

 yes no

10. Is utilization of SPC tools adequate at SPC-AAT?

yes no

18. What do you see as SPC-AAT’s three main strengths?

a) It can be used for any type of process that’s applied within a company

b) Graphical User Interface

c) SPC – AAT is a software, which is open for future enhancements and

improvements

19. What do you see as SPC-AAT’s three main weaknesses?

a) Help

b) Updated user manual (The user manual is not up to date. The pictures

should be changed accordingly. With the current document, it is not so easy to go

through the software)

216

c) Error handling (The occurred errors are visible only in the command line.

Some standard actions should be implemented that should be performed in case of

an error. e.g. refreshing a GUI component, opening a page or displaying an error

message)

20. What are your suggestions for improving SPC-AAT?

The user manual should contain “step by step” examples that explain the futures

of the software. More sample data should be provided within the installation

package.

..

..

Comments:

From my point of view SPC – AAT has fulfilled its requirements.

..

...

..

..

Name (optional):

217

M. E.

We thank you for filling in the evaluation sheet and returning it after!

