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ABSTRACT

QCD SUM RULES FOR THE ANTICHARMED PENTAQUARK

Saraç, Yasemin

Ph.D., Department of Physics

Supervisor: Prof. Dr. Ahmet Gökalp

January 2007, 83 pages.

For the anti-charmed pentaquark state with and without strangeness a QCD sum

rule analysis, which is one of the nonperturbative approaches, is presented. For

this purpose we employ pentaquark currents with and without strangeness, with

two different current for each case. To refine the sum rules we also consider the

DN continuum contribution in our analysis since this procedure is important to

identify the signal of the pentaquark state. While the sum rules for most of

the currents are either non-convergent or dominated by the DN continuum, the

one for the non-strange pentaquark current composed of two diquarks and an

antiquark, is convergent and has a structure consistent with a positive parity

pentaquark state after subtracting out the DN continuum contribution. Argu-

ments are presented on the similarity between the result of the present analysis
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and that based on the constituent quark models, which predict more stable pen-

taquark states when the antiquark is heavy.

Keywords: Charmed pentaquark, QCD sum rules, DN continuum, Exotic hadrons.
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ÖZ

ANTİ-CAZİBELİ PENTAKUARK İÇİN KUANTUM RENK DİNAMİǦİ

TOPLAMA KURALLARI

Saraç, Yasemin

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Ahmet Gökalp

Ocak 2007, 83 sayfa.

Acayip kuark içeren ve içermeyen anti-cazibeli pentakuark durumu için pertur-

batif (tedirgemesi) olmayan yaklaşımlardan biri olan kuantum renk dinamiǧi

toplama kuralları analizi yapıldı. Bu amaçla acayip kuark içeren ve içermeyen

her pentakuark akımı için iki ayrı akım kullanıldı. Pentakuark durumundan ge-

len sinyali belirlemekte önemli olması nedeniyle analize toplama kurallarını iy-

ileştirmek için DN sürekliliǧi de katıldı. Toplama kuralı akımların çoǧu için

ıraksak ya da DN sürekliliǧinin baskın olmasına karşın acayip kuark içermeyen

ve iki ikili-kuark ve bir antikuark içeren pentakuark akımı için olan toplama

kuralı yakınsaktır ve DN sürekliliǧi çıkartıldıktan sonra pozitif pariteli pen-

takuark durumuna uygun bir yapıya sahiptir. Buradaki analizler ile antikuark

aǧır olduǧunda daha kararlı bir pentakuark tahmini veren kuark modeline dayanan
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analizler arasındaki benzerlikler üzerine argümanlar sunulmuştur .

Anahtar Kelimeler: Cazibeli pentakuark, Kuantum Renk Dinamiǧi toplama ku-

ralları, DN sürekliliǧi, Egzotik hadronlar.
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CHAPTER 1

INTRODUCTION

The observation of the pentaquark state Θ+ by the LEPS collaboration [1] and its

subsequent confirmation have brought a lot of excitements in the field of hadronic

physics [2]. On the other hand, there are increasing number of experiments

reporting negative results. In particular, the latest experiments at JLAB [3] find

no signal from the photoproduction process on a deuteron nor on a proton target,

from which the Θ+ was observed earlier by the SAPHIR collaboration with lower

statistics. Although the present experimental results are quite confusing and

frustrating [4], one can not afford to give up further refined experimental search,

because if a pentaquark is found, it will provide a major and unique testing

ground for quantum chromo dynamics (QCD) dynamics at low energy.

Other multiplet to search for a possible pentaquark states are those with one

heavy antiquark. The H1 collaboration at HERA has recently reported on the

finding of an anti-charmed pentaquark Θc(3099) from the D∗p invariant mass

spectrum [5]. Unfortunately other experiments could not confirm the finding [6,
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7, 8]. While the experimental search for the heavy pentaquark is as confusing

as that for the light pentaquark, theoretically, the heavy and light pentaquarks

stand on quite different grounds. Cohen showed that the original prediction for

the mass of the Θ+ based on the SU(3) Skyrme model, which resulted in a mass

value 1530 MeV [9], is not valid because collective quantization of the model for

the anti-decuplet states is inconsistent in the large Nc limit [10]. In contrast, many

theories consistently predicted a stable heavy pentaquark state. The pentaquark

with one heavy anti-quark was first studied in Ref. [11, 12] in a quark model

with color spin interaction. In Ref. [11] it was stated that the pentaquark states

with the quark contents P 0 (c̄uuds) and P− (c̄ddus) with spin-1
2

and their beauty

analogs have very good chances to become stable, but with a refined analysis they

turned out to be unstable [13]. Then it has been studied in quark models with

flavor spin interaction [14, 15] and in Ref. [14] it was pointed out that the non-

strange positive parity pentaquarks are the best candidates for stable compact

systems in contrast to the negative parity pentaqurks studied in Ref. [15] in

which it was suggested that pentaquarks of negative parity are unstable. In

addition to this there are important similarities between the result of Ref. [14]

and Ref. [16] which stated that the lowest pentaquark states have positive parity

for any flavor content and it is not necessary to contain strangeness to become

stable. In Ref. [14] the mass value for positive parity non-strange pentaquark

was obtained as m(uuddc̄) = 2.895 GeV. Another study was made using Skyrme
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models [16, 17] and in Ref. [16] it was predicted that both the strange and non-

strange pentaquarks might be stable. And Oh et al. [17] also stated a possibility

for the loosely bound non-strange pentaquark baryons. Although the binding

energy and the mass formula they used were different from the ones of Riska and

Scoccola [16] their results supported the result of [16]. Skyrme model calculation

was also applied in Ref. [18, 19, 20] for the pentaquark baryons whose result

showed a possibility of stable pentaquarks. And with the recent experiments,

pentaquarks have attracted renewed interests [21, 22, 23, 24, 25, 26, 27, 28, 29].

Cheung [21] employed the color-spin hyperfine interaction by considering the

picture of diquark-diquark-antiquark [30] and diquark-triquark [31] and obtained

that the diquark-diquark-antiquark picture gives the most favorable hyperfine

interaction while the diquark-triquark picture gives a slightly higher hyperfine

interaction. Cheung also obtained the mass of the Θc between 2938 and 2997

MeV. In Ref. [23] Nowak et al. discussed the possibility to interpret the mass of

the charmed pentaquark state in the chiral doubler scenario, forcing each heavy

light hadron to have opposite parity partner. In Ref. [28] using the quark model

with spin color interaction properties of the mass spectrum of the exotic states

was derived in an expansion in 1
Nc

. A mass estimation for exotic state and the

discussion about their weak decay were made in Ref. [29] considering the possible

existence of the pentaquark state, with a heavy antiquark, b̄ or c̄ and two light

diquarks in a relative S-wave, which are stable against strong decay. Pentaquark
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states are also studied in a coupled channel approach [32], and in the combined

large Nc and heavy quark limit of QCD [33]. If the heavy pentaquark state

is stable against strong decay, as was predicted in the D meson bound soliton

models [16], it could only be observed from the weak decay of the virtual D meson.

From a constituent quark model picture based on the color spin interaction [34],

one expects a strong diquark correlation, from which one could have a stable

diquark-diquark-antiquark [30] or diquark triquark [12] structure. The question

is whether such strong diquark structure will survive other non-perturbative QCD

dynamics in a multiquark environment and produce a stable pentaquark state.

Such questions are being intensively pursued in quark model approaches [35,

38, 39]. Hiyama et al. [35] obtained no resonance in reported energy region

of Θ+(1540) by solving the five-quark scattering problem by applying Gaussian

expansion method [36] and the Kohn-type variational method [37] to the large

model space including the KN (Kaon-Nucleon) scattering component. In Ref. [39]

the result of fully-antisymmetrized Goldstone boson and color magnetic model

calculations for the hyperfine energies of heavy pentaquark states was presented

and the mass value mΘc ' 2835 ± 30 MeV, which puts the Θc just above the

corresponding strong decay threshold, was obtained. In particular, an important

question at hand is whether the net attraction from the diquark correlations in

the pentaquark configuration is stronger than that coming from the corresponding

diquark and additional quark-antiquark correlation present when the pentaquark
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separates into a nucleon and a meson state. Since the correlation is inversely

proportional to the constituent quark masses involved, the attraction is expected

to be more effective for pentaquark state with heavy antiquark. Another non-

perturbative approach that can be used to answer such question is the QCD sum

rules method.

There have been several QCD sum rules calculations for the light pentaquark

states [40, 41, 42, 43, 44, 45, 46, 47]. Zhu [40] employed QCD sum rules to

estimate the mass of the pentaquark state with J = 1
2

and I = 0, 1, 2. Matheus

et al. [41] explored the diquark-diquark-antiquark state proposed by Jaffe and

Wilczek [30] as a possible organization of the quarks in Θ+(1540) state using

the QCD sum rules framework. In Ref. [42] the QCD sum rules were employed

to obtain the parity and the mass of the Θ+ state. They obtained the parity as

negative using the sum rulesrelativistic quantum theor with the standard values of

condensates. In Ref. [43] again a QCD sum rules approach was performed for Θ+

based on the proposal of Jaffe and Wilczek [30] but with a different current than

the current of Ref. [41]. A study, using the QCD sum rules approach including

OPE and direct instanton contribution, of triquark correlation was performed in

Ref. [44] and it was shown that the direct instanton might be important for the

pentaquarks. And again considering the direct instanton contributions Lee et

al. [45] performed a full QCD sum rules calculation to determine mass and parity

of the lowest lying pentaquark state which resulted in a positive parity for Θ+
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and a mass value mΘ+ ' 1.7 GeV. A QCD sum rules study of the decay of the

Θ+ pentaquark was presented in Ref. [46] using the diquark-diquark-antiquark

scheme with one scalar and one pseudoscalar diquark. The application to the

heavy pentaquarks was performed in a previous work [48], where a pentaquark

current composed of two diquarks and an antiquark was used, and the sum rules

consistent with a stable positive parity pentaquark state were found. A similar

sum rules approach was also applied to the Ds(2317) [49].

In this work, we extend the previous QCD sum rules calculations to inves-

tigate the anti-charmed pentaquark state with and without strangeness using

two different currents for each case. We find a convergent Operator Product

Expansion (OPE) only for the sum rules of the non-strange heavy pentaquark

obtained with an interpolating field composed of two diquarks and one anti-charm

quark, which was previously used in Ref. [48]. The stability of non-strange heavy

pentaquark is consistent with the result based on the quark model with flavor

spin interaction [38]. We then refine the convergent sum rules by explicitly in-

cluding the DN (D meson-Nucleon) two-particle irreducible contribution. The

importance of subtracting out such two-particle irreducible contribution was em-

phasized in Ref. [50, 51, 52] for the light pentaquark state. In these references

it was pointed out that in the naive pentaquark correlation functions the ex-

otic pentaquark interpolating current can couple to the meson-baryon scattering
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states. For the Θ+ pentaquark, the five quark current couples to the KN scat-

tering state and this would contaminate the analysis of Θ+ resonance. As a

result the removal of the KN state is important to understand the properties of

Θ+ from QCD sum rules analysis. In fact, estimating the contribution from the

lowest two-particle irreducible contribution is equally important in lattice gauge

theory calculations [53, 54] to isolate the signal for the pentaquark state from the

low-lying continuum state. We find that for the non-strange heavy pentaquark

sum rules, including the DN continuum contribution tends to shift the position

of the pentaquark state downwards. Given the negative experimental signatures

of the charmed pentaquark states above the threshold, the present result suggests

that the anti-charmed pentaquark states might be bound as was predicted in D

meson bound soliton models.

This thesis is organized as follows. In Chapter 2, QCD sum rules will be

discussed, throughout this discussion the Refs. [56, 58, 59, 60, 61, 62] will be fol-

lowed. In Chapter 3, the QCD sum rules will be applied to the heavy pentaquark

Θc, where we introduce the interpolating field for the Θc and discuss the disper-

sion relations that we will be using, and also the phenomenological side and the

OPE side will be given in this chapter. In Chapter 4, the QCD sum rules for Θc

and its numrical analysis will be given. And finally Chapter 5 is devoted to the

conclusions.
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CHAPTER 2

QCD SUM RULES

The QCD sum rules proposed by Shifman, Vainshtein, and Zakarov [55] proves

to be very useful in understanding and extracting the hadron masses and cou-

pling constants. It is a powerful nonperturbative framework in which one can

connect various hadronic properties with the nonperturbative nature of QCD,

which is represented by the vacuum condensates. Over the last decade QCD

sum rules technique has been applied successfully and it has suggested that spec-

tral properties of many hadrons can be determined in terms of a small number

of quark and gluon condensates [55, 56, 57]. In this chapter a review of the

most important features of the sum rules approach will be presented based on

Refs. [56, 58, 59, 60, 61, 62].

2.1 QCD Sum Rules

In QCD sum rules one expresses various hadronic properties in terms of QCD

parameters and studies the hadron corresponding to the lowest-mass state with

8



a given set of quantum number. For this purpose a time-ordered correlation

function of interpolating fields, which is built from quark fields, is employed. The

Fourier-transformed correlation function of interpolating field, or current J(x) is

given by

Π(q2) = i
∫

d4xeiqx〈0|T{J(x)J̄(0)}|0〉 = 6qΠq(q
2) + Π1(q

2) , (2.1)

where the |0〉 is the nonperturbative vacuum and T is the time ordering operator.

Πq(q
2) and Π1(q

2) are called the chiral-even and chiral-odd parts, respectively.

This correlation function is used to obtain the masses of the hadrons. J(x)

has the same quantum numbers as the hadron to be studied. One can have an

interpolating field J(x) which can be scalar, pseudoscalar, vector, spinor etc.,

depending on the quantum numbers of the hadron under consideration Eq. (2.1)

is written for a spinor current.

When QCD sum rules method is considered the starting point is the con-

struction of an interpolating field that carries the quantum numbers of the state

concerned. An extremely good choice for such a field can be obtained by taking

the constituent quark model as a base. An interpolating field which has the same

valance quark content and quantum numbers, such as spin, isospin, parity as the

hadron of interest, can be chosen. The interpolating field chosen for a state can

also annihilate or create other resonances and continuum states with the same

constituent quark content and quantum numbers. For instance, a Roper reso-

nance and higher states are also annihilated (created) by the interpolating fields

9



of nucleon. All of these contribute to the correlation function. Therefore some

other methods must be used to filter out the unwanted states. In order to do

that, the mathematical operation which is known as the Borel transformation

which will be explained in Subsection 2.5 is applied.

To calculate the correlation function which is given by Eq. (2.1) two methods

are used: On the one hand, using the so-called operator product expansion (OPE)

technique one can calculate the correlator in terms of QCD degrees of freedom

when q2 ¿ 0. On the other hand, one can also calculate the correlation function

phenomenologically with hadronic degrees of freedom.

QCD sum rules is obtained by equating the correlators calculated by the OPE

and phenomenologically and it directly relates the spectral parameters, such as

the masses and other parameters of the phenomenological ansatz, which is the

low-lying resonance, to QCD Lagrangian parameters and condensates. Borel

transformation improves the matching of the QCD and phenomenological de-

scriptions.

In the following sections the general details of the QCD sum rules technique

will be presented.

10



2.2 Phenomenological Representation and Dispersion Relation

One can calculate the correlator Π(q2) by inserting a complete set of physical

intermediate state in Eq. (2.1), and one then obtains the following equation for

the correlator

Π(q2) =
∑

H

〈0|J |H(p)〉〈H(p)|J̄ |0〉
q2 −m2

H

, (2.2)

where the hadronic states {|H〉} form a complete set. Here the interpolating field

couples through

〈0|J |H(p)〉 = λHu(p) (2.3)

if H is spin-1
2

particle (such as the pentaquark), λH is called the residue or overlap,

and u(p) is a spinor. λH measures the coupling strength between the interpolating

field and the physical state. Since the interpolating field J(x) is an operator

that annihilates (creates) all hadronic states whose quantum numbers and quark

contents are same with J(x) the information about all these hadronic states

which also includes the low mass hadron of interest are contained in Π(q2). In

this sense the correlator is analogous to a sum of propagators. In the narrow

state approximation one can write the correlator as,

ΠPhen(q2) = −|λH |2(6q ±mH)

q2 −m2
H + iε

− |λH∗
1
|2(6q ±mH∗

1
)

q2 −m2
H∗

1
+ iε

−|λH∗
2
|2(6q ±mH∗

2
)

q2 −m2
H∗

2
+ iε

+ ... , (2.4)

where the + (−) sign is for positive (negative) parity state, mHi
is the mass of the

ith resonance, λHi
is the coupling strenght of the ith resonance to the interpolating

11



field, and ... denotes the contribution coming from the higher-mass states. More

generally the correlator can be written as

ΠPhen
j (q2) = −

∫ ∞

0
ds

ρPhen
j (s)

q2 − s + iε
+ ... j = 1, q , (2.5)

since in general these states occupy a continuous rather than a discrete spectrum.

Here s is the particular invariant mass squared, ρPhen
j (s) is the spectral density

which contains the spectral properties of hadrons and ... denotes the subtraction

terms which are polynomial in q2 with unknown coefficients. From the Eq. (2.5),

it is easy to verify that

ρPhen
j (s) =

1

π
ImΠPhen

j (s) , (2.6)

and one immediately sees that the spectral densities for Eq. (2.4) are given as,

ρPhen
q (s) = |λH |2δ(s−m2

H) + |λH∗
1
|2δ(s−m2

H∗
1
) + |λH∗

2
|2δ(s−m2

H∗
2
) + ... , (2.7)

and

ρPhen
1 (s) = ∓|λH |2mHδ(s−m2

H)∓ |λH∗
1
|2mH∗

1
δ(s−m2

H∗
1
)

∓|λH∗
2
|2mH∗

2
δ(s−m2

H∗
2
) + ... . (2.8)

In order the QCD sum rules techniques to have predictive power, the phe-

nomenological spectrum must be parameterized in a useful way. The effect of

usually broader higher mass states in the spectrum will be eventually suppressed

and the lowest resonance which is often fairly narrow will be emphasized. There-

fore, the spectral density can, to a good approximation, be parameterized as

12



a single sharp pole representing the lowest resonance plus a smooth continuum

representing higher states:

ρPhen
q (s) = |λH |2δ(s−m2

H) + ρCont(s)

ρPhen
1 (s) = ∓|λH |2mHδ(s−m2

H) + ρCont(s) . (2.9)

Note that this description is not perfect; but as one shall see, only weighted aver-

age of ρPhen
j is important in QCD sum rules. Thus, only the most prominent fea-

tures of ρPhen
j are important; the detailed structures of ρPhen

j can not be resolved

in sum rule calculations [60]. For simplicity it is assumed that the continuum

contribution to the spectral density ρCont(s) vanish below a certain continuum

threshold s0; above this threshold one assumes the ρCont(s) to be given by the

result obtained with OPE. This equivalence which is called the quark hadron

duality is expected by the asymptotic freedom property of QCD for sufficiently

large s. As a result the contribution to the spectral density which comes from

the continuum is estimated as

ρCont(s) = ρOPE(s)Θ(s− s0) . (2.10)

Note that the choice of the s0, which is related to the 1st (or 2nd ) excited res-

onance, is quite artifical. It is chosen considering that around these excited

resonance regions the Borel stability is good (see Section 2.5). Since Eq. (2.10) is

a phenomenological ansatz, the sensitivity of the prediction of sum rules to the

choice of s0 is necessarily checked.
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2.3 Operator Product Expansion

Operator Product Expansion (OPE) which was first proposed by Wilson [63]

intuitively, is essential for nonperturbative analysis in QCD sum rules. The main

point is that one expands the time-ordered product of two nonlocal operators

at short distance in terms of local operators which are multiplied by c-number

coefficients. This expansion is

T [J(x)J̄(0)]
x→0
=

∑
n

cn(x)Ôn . (2.11)

The c-number coefficients are known as Wilson coefficients and information on

the short-distance physics is contained in these coefficients. On the other hand

the nonperturbative long-distance effects are contained in the local composite

operators Ôn. As an example the collection of all the composite gauge invariant

operators with dimension equal or less than six are given below

I (The unit operator) (d = 0) ,

q̄q (d = 3) ,

Ga
µνG

aµν (d = 4) ,

q̄σµνG
aµνtaq (d = 5) ,

q̄Γ1qq̄Γ2q (d = 6) ,

fabcG
aν
µ Gbλ

ν Gcµ
λ (d = 6) . (2.12)
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There are also other operators which are obtained by multiplying above operators

by quark mass factors, such as mq q̄q. And also other dimension six operators

such as (DαGµν)(DβGρσ), (DαDβGµν)Gρσ can be written in terms of the above

operators via the equation of motion

DνGµν = g
∑

f

q̄fγµt
aqf . (2.13)

After inserting Eq. (2.11) in Eq. (2.1) the two point correlation function will be,

Π(q2) = i
∫

d4xeiqx
∑
n

cn(x2)〈0|Ôn|0〉

=
∑
n

cn(q2)〈0|Ôn|0〉 . (2.14)

There is no dependence between the expansion Eq. (2.11) and the state in which

the operator is evaluated. The Wilson coefficients of higher dimensional operators

are suppressed by increasing powers of q2. Therefore, the operators with the

lowest dimension are dominant and give power corrections to the perturbative

contributions stemming from the unit operator.

The vacuum expectation matrix elements of Ôn are zero in perturbation the-

ory, but in QCD the nature of the vacuum is changed by the nonperturbative

effects (e.g. instantons) and nonvanishing vacuum expectation values are in-

duced for these operators. From these matrix elements it can be deduced that

nonperturbative effects modify the free particle propagator of quarks and gluons

at large distances. OPE separates long distance and short distance contribu-

tions. Wilson coefficients contain short distance information and hence can be
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calculated perturbatively using Feynman diagrammatic techniques.

An expression for the vacuum polarization Π(q2) is obtained in deep Euclidian

region in terms of fundamental parameters of QCD and the matrix elements of Ôn

in the physical nonperturbative vacuum of QCD after the calculation of Wilson

coefficients. Then equating this expression to the physical representation via

dispersion relation one obtains a relation between the parameters of the theory

and hadron parameters. The dispersion relation for the OPE side is given as

ΠOPE
j (q2) = −

∫ ∞

0
ds

ρOPE
j (s)

q2 − s + iε
+ ... j = 1, q , (2.15)

where ρOPE(s) is the spectral density for the OPE side defined as

ρOPE
j (s) =

1

π
ImΠOPE

j (s) , (2.16)

and ... denote the subtraction terms.

2.4 Analytic Continuation

As discussed earlier ΠOPE(q2) is valid in q2 → −∞ region. On the other hand,

ΠPhen(q2) is valid around q2 ∼ resonance region. Therefore one needs to apply

the analytic continuation to ΠOPE(q2) in order to match these two expressions.

In the case of the correlation function Eq. (2.1) one is allowed to perform the

contour integral in Fig. 2.1 using the Cauchy formula for the analytic function

Π(q2),
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Π(q2) =
1

2πi

∮

C
dz

Π(z)

z − q2

=
1

2πi

∮

|z|=R
dz

Π(z)

z − q2

+
1

2πi

∫ R

0
dz

Π(z + iε)− Π(z − iε)

z − q2
, (2.17)

where one can put the radius R of the contour to infinity which simplifies the right

hand side of the Eq. (2.17) considerably, since if the correlation function vanishes

sufficiently fast at |q2| ∼ R →∞, the integral over the circle tends to zero. The

second integral on the right hand side of the Eq. (2.17) can be replaced by an

integral over the imaginary part of Π(q2) making use of the Schwartz reflection

principle: Π(q2 + iε) − Π(q2 − iε) = 2i ImΠ(q2) if Π(q2) is real on the negative

q2 axis [62], so the dispersion relation results in

ΠOPE
j (Q2) =

∫ ∞

0
ds

ρOPE
j (s)

s + Q2
+ (subtraction terms) , (2.18)

where ΠOPE
j (Q2) = ΠOPE

j (q2) for Q2 = −q2, and ρOPE
j (s) is defined as in

Eq. (2.16). The subtraction terms which are polynomials in q2 are the result

of the circular integral at infinity.

2.5 Borel Transform And Sum Rules

So far we have two expression for the correlation function: one ΠPhen(q2) in

terms of physical parameters, as discussed in Sec. 2.1, and the other one ΠOPE(q2)

a theoretical expression which is a function of q2, αs, the quark masses and the
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q
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o x x x

Figure 2.1: The contour in the plane of the complex variable q2 = z. The open
point indicates the q2 < 0 reference point of the QCD calculations and the crosses
indicates the positions of hadronic thresholds at q2 > 0 [62].

vacuum expectation values of the operators Ôn. At this point one might attempt

to match these two descriptions of the correlator; however such a matching is

not yet practical. If one consider the OPE side, the contribution from higher

dimensional operators are not sufficiently suppressed, and if the phenomenological

side is considered, the spectrum is not sufficiently dominated by the lowest pole.

In another words, one can only make a valid QCD expansion at sufficiently large

spacelike q2, on the other hand one can obtain the phenomenological description

which is significantly dominated by the lowest pole only for sufficiently small q2

or better yet timelike q2 near the lowest-mass state. Hence it is not yet possible

to obtain information on the lowest-mass state.

Therefore besides analytic continuation, Borel transformation is often used to
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improve the reliability of the sum rule and the overlap of the OPE and phenom-

enological description . The Borel transformation for a given function f(Q2) is

defined as

f(Q2) → f̃(M2) = L̂−1f(Q2) = lim
Q2,n→∞

(Q2)n

(n− 1)!

( −d

dQ2

)n

f(Q2) , (2.19)

Q2 ≡ −q2, M2 ≡ Q2

n
(= finite) , (2.20)

where M is known as the Borel mass. In the QCD sum rules approach, the

Borel transforms of the OPE and the phenomenological correlation function are

equated

ΠOPE
j (M2) = ΠPhen

j (M2) . (2.21)

At this point we can express the advantages attained by Borel transformation

in QCD sum rules. First of all the polynomial terms appearing in the dispersion

relation Eq. (2.5) are removed by Borel transformation. For the phenomenological

side Borel transformation application leads to emphasis upon contribution from

the lightest resonance. On the phenomenological side the correlator has a form

ΠPhen
j (Q2) =

∫ ∞

0
ds

ρPhen
j (s)

s + Q2
, (2.22)

and therefore, for spacelike momentum, a power law suppresses the higher-mass

states. On the other hand Borel-transformed correlator is given by

ΠPhen
j (M2) =

∫ ∞

0
dse−

s
M2 ρPhen

j (s) ; (2.23)
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which shows Borel transform changes a power suppression to an exponential sup-

pression.

If the OPE side of the correlation function is considered, the Borel transfor-

mation also improves the convergence of this side. The nonperturbative part of

the OPE of the correlation function is of the form

ΠOPE
nonpert.(Q

2) =
∑

nonpert.

c′n
(Q2)n

〈Ôn〉 . (2.24)

After the Borel transformation, one obtains

ΠOPE
nonpert.(M

2) =
∑

nonpert.

c′n
(n− 1)!(M2)n

〈Ôn〉 . (2.25)

So higher dimensional terms which corresponds to higher n values are suppressed

by a factorial factor while in Eq. (2.24) they are only suppressed as a simple

power law in Q2.

In principle, M2 is completely arbitrary and the physical parameters should

be independent of M2, however in practice some moderate range of M2must be

chosen. Actually, in the phenomenological side, if M2 → 0, the Borel trans-

formed correlator is dominated most strongly by the lowest pole, while M2 →∞

guarantees better convergence in the OPE side. Therefore an intermediate re-

gion in M2, where the contributions from the higher-dimensional operators and

the higher-mass resonance are simultaneously suppressed to a sufficient degree,

is usually chosen.

Given the form of OPE correlator in Eq. (2.18), the correlator for OPE side
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under Borel transformation is given as

ΠOPE
j (M2) =

∫ ∞

0
dse−

s
M2 ρOPE

j (s) , (2.26)

and the sum rule takes the form

∫ ∞

0
dse−

s
M2 ρOPE

j (s) =
∫ ∞

0
dse−

s
M2 ρPhen

j (s) . (2.27)

If the spectrum is parameterized as in Eq. (2.9) and Eq. (2.10) then the sum rules

becomes

∫ s0

0
dse−

s
M2 ρOPE

j (s) =
∫ s0

0
dse−

s
M2 ρPhen

j (s) . (2.28)

2.6 Vacuum Condensates

To obtain the hadronic parameters such as mass and coupling strength from

the QCD sum rules, the vacuum condensates which are the nonvanishing ex-

pectation values of composite operators given in Eq. (2.12), have to be known.

In this section standard estimates of vacuum condensates will be reviewed. Be-

cause of the Lorentz invariance of the vacuum state |0〉 only spin-0 operators can

have nonvanishing vacuum expectation values. Here we will deal only with the

condensates that will be used in the next chapter.

Firstly the quark condensate 〈q̄q〉 will be considered. It follows from the

isospin symmetry that

〈q̄q〉 = 〈ūu〉 = 〈d̄d〉 . (2.29)
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One can determine the value of 〈q̄q〉 from the Gell-Mann-Oakes-Renner relation,

(mu + md)〈q̄q〉 = −m2
πf 2

π [1 + O(m2
π)] , (2.30)

where mπ and fπ denotes the pion mass and pion decay constant, and mu and md

are the up and down current quark masses. The value of the quark condensate can

be determined at a particular renormalization scale if the values of the current

quark masses are given at that same scale, since both sides of Eq. (2.30) are

renormalization-group invariant [64]. If the experimental values for mπ and fπ

are taken as 138 MeV and 93 MeV respectively and the standard values of the

light quark masses are used it is obtained that mu + md = 14 ± 4 MeV at a

renormalization scale of 1 GeV [65].Therefore, the value for the 〈q̄q〉 condensate

is obtained as

〈q̄q〉 ' −(0.225± 0.025 GeV)3 (2.31)

at the renormalization scale of 1 GeV [65]. The strange quark condensate value

is most often parameterized in terms of the up and down quark condensate as

〈s̄s〉 = (1 + γ̄s)〈q̄q〉 , (2.32)

The γ̄s value is estimated using the strange baryon sum rule as [56, 66, 67]

γ̄s ' −0.2 . (2.33)

The first estimation of the gluon condensate is obtained from an analysis of

leptonic decays of %0 and φ0 mesons [68] and from a sum-rule analysis of the
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charmonium spectrum [55] whose value is given as [69]

〈αs

π
G2〉 ' (0.33± 0.04 GeV)4 . (2.34)

Isospin symmetry implies for dimension five operators

〈gsūσ.Gu〉 ' 〈gsd̄σ.Gd〉 ≡ 〈gsq̄σ.Gq〉 . (2.35)

The quark-gluon condensate 〈gsq̄σ.Gq〉 is given in terms of the quark condensate

〈q̄q〉 as

〈gsq̄σ.Gq〉 = 2〈q̄D2q〉 ≡ 2λ2
q〈q̄q〉 . (2.36)

Here the first equality is obtained by using

Ga
µν =

i

gs

[Dµ, Dν ]
a , (2.37)

and the equations of motion

(i /D −mf )qf = 0 ,

q̄f (i
←−
/D + mf ) = 0 . (2.38)

In the QCD vacuum the average vacuum gluon field and the average virtuality

(momentum squared) of the quarks are parameterized by the λ2
q and the value

of this quantity is estimated as λ2
q = 0.4 ± 0.1 GeV2 by the standard QCD sum

rule [66, 70]. Latice calculation [71], and QCD sum rule analysis of the pion form

factor using nonlocal quark and gluon condensates [72] give larger values for λ2
q

which are λ2
q = 0.55± 0.05 GeV2 and λ2

q = 0.7± 0.1 GeV2, respectively.
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Having estimated the value of γ̄ from strange baryon sum rules [66, 67] which

is

γ̄g ' −0.2 , (2.39)

quark-gluon condensate is parameterized as

〈gss̄σ.Gs〉 = (1 + γ̄g)〈gsq̄σ.Gq〉 . (2.40)

In QCD sum rule applications, one usually approximates the four quark con-

densates in terms of 〈q̄q〉 and 〈αs

π
G2〉 via factorization, or vacuum saturation,

approximation. In this approximation one inserts a complete set of intermediate

states in the middle of four-quark matrix element, but keeps only the dominant

vacuum intermediate state. A more detailed discussion of the factorization ap-

proximation and estimation of four-quark condensates at finite density can be

found in Ref. [73].

Using the dilute instanton gas approximation [55] the three-gluon condensate

can be expressed in terms of two-gluon condensate as

〈g3
sfG3〉 ' 48π2

5
ρ−2

c 〈αs

π
G2〉 , (2.41)

where the instanton size cutoff is ρc ∼ (200 MeV)−1. This instanton-based esti-

mate and phenomenological estimate which is 〈g3
sfG3〉 ' 0.06 GeV6 are well in

agreement.

In practice, factorization assumption is used to determine the values of con-

densates with dimension dm ≥ 7 since there is no reliable way to estimate their
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values. So one can make effective estimations for the higher-dimensional conden-

sates in terms of the lower-dimensional condensates. In many cases of the sum

rule applications, the Borel transformed OPE converges quickly and one expects

negligible contribution from the higher dimensional condensates.
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CHAPTER 3

QCD SUM RULES FOR ANTICHARMED PENTAQUARK Θc

In this chapter, the sum rules to obtain the mass and parity of the Θc pen-

taquark will be established following the method discussed in Chapter 2. In the

OPE for Θc pentaquark correlator, contribution from all condensates up to di-

mension twelve, and the terms up to first order in the strange quark mass ms are

included. The contribution coming from the up and down current quark masses

are neglected since they give numerically small contribution.

3.1 Interpolating Field for Θc

One of the requirements of the QCD sum rule approach is the introduction of

an interpolating field having strong overlap with the hadron which is dealt with.

For this purpose, for the QCD sum rule analysis of anticharmed pentaquark

state Θc, which has no strangeness, the following two interpolating fields are

introduced:

Θc1 = εabc(uT
a Cγµub)γ5γµdc(c̄diγ5dd) ,

26



Θc2 = εabk(εaefuT
e Cγ5df )(ε

bghuT
g Cdh)Cc̄T

k . (3.1)

Here the roman indices a, b, . . . are color indices, C denotes charge conjugation,

and T denotes transpose. It is important to notice that Θc1 is composed of a

nucleon current (proton) and a pseudo scalar current (D meson),on the other

hand Θc2 which has been investigated by H. Kim et al. [48] in a previous work,

is composed of diquark-diquark-antiquark.

For the charmed pentaquark with strangeness, we consider the following two

possible currents,

Θcs1 = εabk(εaefuT
e Csf )(ε

bghuT
g Cdh)Cc̄T

k ,

Θcs2 = εabk(εaefuT
e Cγ5sf )(ε

bghuT
g Cdh)Cc̄T

k . (3.2)

Here, instead of choosing Θcs1 as a direct product of a nucleon and a Ds meson

or a hyperon and a D meson currents as in Θc1, we choose it to well represent

a state having two diquark structure with the same scalar quantum number but

with different flavor. Such configuration allows all the five constituent quarks to

be in the s-wave states, which will have the lowest orbital energy and consequently

could be the dominant ground state configuration [29]. Moreover, as it will be

seen, Θc1 couples dominantly to the nucleon and D meson state, suggesting that

currents composed of a direct product of a nucleon and a meson currents are not

suitable for investigating the properties of the pentaquark state.

Under parity transformation q′(x′) = γ0q(x) whereb x′ = (x0,−~x), the Θc1
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currents transform as,

Θ′
c1 = εabc(u′Ta Cγµu

′
b)γ5γµd

′
c(c̄

′
diγ5d

′
d) ,

= εabc((γ0ua)
T Cγµγ0ub)γ5γµγ0dc((γ0cd)iγ5γ0dd) , (3.3)

which, after a little algebra, becomes:

Θ′
c1 = −γ0ε

abc(uT
a Cγµub)γ5γµdc(c̄diγ5dd)

= −γ0Θc1 . (3.4)

Parity transformation of the other currents can be obtained similarly and under

the parity transformation, the Θc currents transform as

Θ′
c1 = −γ0Θc1 ,

Θ′
c2 = γ0Θc2 ,

Θ′
cs1 = −γ0Θcs1 ,

Θ′
cs2 = γ0Θcs2 . (3.5)

3.2 Dispersion Relation

In this calculation two types of QCD sum rules will be used. The first type of

QCD sum rules for the heavy pentaquarks that we will be using are constructed

from the time ordered correlation function, whose form is given in Chapter 2:

ΠT (q) = i
∫

d4xeiq·x〈0|T [Θc(x), Θ̄c(0)]|0〉 ≡ Π1(q
2)+ 6qΠq(q

2) , (3.6)
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where Θc can be any of the currents in Eq. (3.1) or in Eq. (3.2), and Πq, Π1

are called the chiral even and chiral odd parts respectively. As can be seen

in Eq. (3.5), the currents are not eigenstates of the parity transformation and

can couple to both positive and negative parity states. The spectral densities

calculated from the OPE of Eq. (3.6) are matched to that obtained from the

phenomenological assumption in the Borel-weighted dispersion integral,

∫ s0

m2
c

dq2e−q2/M2

W (q2)
1

π
Im[Πphen

i (q2)− Πope
i (q2)] = 0 , (i = 1, q) , (3.7)

where M2 is the Borel mass. Here, higher resonance contributions are sub-

tracted according to the QCD duality assumption, which introduces the con-

tinuum threshold s0. In this equation an additional weight function W (q2) have

also been introduced for later use.

The second type of QCD sum rule that we will be using in this work is the

“old-fashioned” correlation function, which is defined as [42]

ΠT (q) = i
∫

d4xeiq·x〈0|θ(x0)Θc(x)Θ̄c(0)|0〉 . (3.8)

Positive and negative parity states can be separated using the technique given

in [74] for the ordinary three quark baryons and this type of correlation function

has been used in projecting out positive and negative parity nucleon states [74].

To separate the positive-parity and negative parity baryons the correlation func-

tion Eq. (3.8) is used. In the zero-width resonance approximation, the imaginary

29



part in the rest frame ~q = 0 is written as

1

π
ImΠ(q0) =

∑

H

[
(λ+

H)2γ0 + 1

2
δ(q0 −m+

H) + (λ−H)2γ0 − 1

2
δ(q0 −m−

H)
]

≡ A(q0)γ
0 + B(q0) , (3.9)

where λ+
H (λ−H) is the coupling strenght between the interpolating field and the

physical state with the positive-parity (negative-parity), and A(q0) and B(q0) are

defined as

A(q0) =
1

2

∑

H

[(λ+
H)2δ(q0 −m+

H) + (λ−H)2δ(q0 −m−
H)] ,

B(q0) =
1

2

∑

H

[(λ+
H)2δ(q0 −m+

H)− (λ−H)2δ(q0 −m−
H)] . (3.10)

It can be seen that the combination A(q0) + B(q0) [A(q0) − B(q0)] contains the

contribution only from the positive-parity (negative-parity) states. So the imag-

inary part is divided into the following two parts, which are defined only for

q0 > 0,

1

π
ImΠ(q0) = A(q0)γ

0 + B(q0) . (3.11)

One should note that these can be identified with the imaginary part calculated

from Eq. (3.6),

A(q0) =
1

π
ImΠq(q0)q0

B(q0) =
1

π
ImΠ1(q0), (3.12)

for q0 > 0.
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Now, depending on the parity of the current Θc in Eq. (3.5), one can extract

the positive or negative-parity physical state only by either adding or subtracting

A and B. That is, the spectral density for the positive and negative parity

physical states will be as follows,

ρ±(q0) =
{ A(q0)∓B(q0) For Θc1, Θcs1

A(q0)±B(q0) For Θc2, Θcs2

. (3.13)

The sum rules are then obtained by again matching the corresponding spectral

density from the OPE and phenomenological side,

∫ ∞

0
dq0e

−q2
0/M2

[ρ±phen(q0)− ρ±ope(q0)] = 0 . (3.14)

3.3 Phenomenological Side

3.3.1 Θc1 and Θcs1

For Θc1 current, the interpolating field couples to a positive parity state as,

〈0|Θc1(x)|Θc(p) : P = +〉 = λ+,c1 γ5UΘ(p)e−ip·x , (3.15)

and to a negative parity state as,

〈0|Θc1(x)|Θc(p) : P = −〉 = λ−,c1UΘ(p)e−ip·x . (3.16)

Here, λ±,c1 denotes the coupling strength between the interpolating field and the

physical state with the specified parity and U(p) is the spinor of the pentaquark

with momentum p. Similar relations will hold for Θcs1. Using these, we obtain
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the phenomenological side of Eq. (3.6) separated into chiral even (Πq) and odd

(Π1) parts, which are defined to be the parts proportional to 6q and 1 respectively.

As was first pointed out in Ref. [50], the correlation function can also couple

to the DN (D meson-Nucleon) continuum state, whose threshold could be lower

than the expected Θc mass. Its phenomenological contribution can be estimated

by using,

〈0|Θc1|DN(p)〉 = iλDN,c1UN(p) . (3.17)

Combining these two contributions, we find

Πphen
T,c1 (q) = −|λ±,c1|2 6q ∓mΘ

q2 −m2
Θ

−i|λDN,c1|2
∫

d4p
(6p + mN)

p2 −m2
N

1

(p− q)2 −m2
D

+ · · ·, (3.18)

where the minus (plus) sign in front of mΘ is for positive (negative) parity. The

dots denote higher resonance contributions that should be parameterized accord-

ing to QCD duality. It should be noted however that higher resonances with dif-

ferent parities contribute differently to the chiral-even and chiral odd parts [75].

Thus, Πphen
q and Πphen

1 constitute separate sum rules. For Θcs1, the D meson

should be replaced by the Ds meson.

Spectral density for DN can be obtained from the second part of the right

hand side of the Eq. (3.18) which is given as

Πphen,DN
T,c1 (q) = −i|λDN,c1|2

∫
d4p

(6p + mN)

p2 −m2
N

1

(p− q)2 −m2
D

= 6qΠDN
q (q) + ΠDN

1 (q) . (3.19)
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If the trace of Eq. (3.19) is calculated the equation for ΠDN
1 (q) is obtained as

ΠDN
1 (q) =

1

4
Tr[Πphen,DN

T,c1 (q)]

=
−i

4
|λDN,c1|2

∫
d4p

1

p2 −m2
N

1

(p− q)2 −m2
D

Tr[6p + mN ] , (3.20)

and again after multiplying Eq. (3.19) by 6 q and then calculating the trace of it

the equation for ΠDN
q (q) is obtained as

ΠDN
q (q) =

1

4q2
Tr[6qΠphen,DN

T,c1 (q)]

=
−i

4q2
|λDN,c1|2

∫
d4p

1

p2 −m2
N

1

(p− q)2 −m2
D

×Tr[6q 6p+ 6qmN ] . (3.21)

After calculating the traces one takes the imaginary part of the Eq. (3.20) and

Eq. (3.21) and calculates the four dimensional integrals in these equations to

obtain the spectral density for DN contribution.

The corresponding spectral density for the pole and DN contributions are

given respectively by

1

π
ImΠpole

T,c1(q) = 6q|λ±,c1|2δ(q2 −m2
Θ)∓mΘ|λ±,c1|2δ(q2 −m2

Θ),

1

π
ImΠDN

T,c1(q) = 6q|λDN,c1|2 q2 + m2
N −m2

D

32 π2 q4

×
√

q4 − 2q2(m2
N + m2

D) + (m2
N −m2

D)2

+|λDN,c1|2 2mN

32 π2 q2

×
√

q4 − 2q2(m2
N + m2

D) + (m2
N −m2

D)2 . (3.22)
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We notice that the chiral-odd part has opposite sign depending on the parity

while the chiral even part has positive-definite coefficient.

3.3.2 Θc2 and Θcs2

As can be seen in Eq. (3.5), Θc2 transforms differently compared to Θc1 under

parity. Thus, the couplings to the interpolating field are

〈0|Θc2(x)|Θc(p) : P = +〉 = λ+,c2UΘ(p)e−ip·x ,

〈0|Θc2(x)|Θc(p) : P = −〉 = λ−,c2 γ5UΘ(p)e−ip·x . (3.23)

Similarly, the coupling to the DN continuum state changes as follows,

〈0|Θc2|DN(p)〉 = λDN,c2γ5UN(p) . (3.24)

Combining these changes, we find,

Πphen
T,c2 (q) = −|λ±,c2|2 6q ±mΘ

q2 −m2
Θ

+i|λDN,c2|2
∫

d4p
γ5(6p + mN)γ5

p2 −m2
N

1

(p− q)2 −m2
D

+ · · ·. (3.25)

Consequently, the spectral densities, which are obtained following the same steps

as the Θc1 and Θcs1 case, are

1

π
ImΠpole

T,c2(q) = 6q|λ±,c2|2δ(q2 −m2
Θ)±mΘ|λ±,c2|2δ(q2 −m2

Θ),

1

π
ImΠDN

T,c2(q) = 6q|λDN,c2|2 q2 + m2
N −m2

D

32 π2 q4

×
√

q4 − 2q2(m2
N + m2

D) + (m2
N −m2

D)2
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−|λDN,c2|2 2mN

32 π2 q2

×
√

q4 − 2q2(m2
N + m2

D) + (m2
N −m2

D)2 . (3.26)

3.3.3 Final Form of the Phenomenological Side

The final form for the phenomenological side to be used in Eq. (3.14) can be

obtained from combining Eq. (3.22) or Eq. (3.26) according to Eq. (3.13), both

of which are given in the following form,

ρ±phen(q0) = |λ±|2δ(q0 −mΘ) + θ(
√

s0 − q0)ρ
±
DN(q0)

+θ(q0 −√s0)ρ
±
cont(q0) , (3.27)

where the usual duality assumption has been used to represent the higher reso-

nance contribution above the continuum threshold
√

s0; i.e., ρ±cont(q0) = ρ±ope(q0).

The spectral density for the two-particle irreducible part is given by

ρ±DN,c1(q0) =
|λDN,c1|2

32π2

√
(q0 −mD)2 −m2

N

√
(q0 + mD)2 −m2

N

×(q0 ±mN)2 −m2
D

q3
0

, (3.28)

ρ±DN,c2(q0) =
|λDN,c2|2

32π2

√
(q0 −mD)2 −m2

N

√
(q0 + mD)2 −m2

N

×(q0 ∓mN)2 −m2
D

q3
0

. (3.29)

We substitute the above into the Borel transformed dispersion relation in Eq. (3.14).
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3.4 OPE Side

3.4.1 The OPE for Θc1

In this section we present the result of the OPE calculation for Θc1. We use

the momentum-space expression for the charm quark propagator and we keep

the charm quark mass finite. For the light quark part of the correlation function,

we calculate in the coordinate-space, which is then Fourier-transformed to the

momentum space in D-dimension. The resulting light-quark part is combined

with the charm-quark part before it is dimensionally regularized at D = 4.

Our OPE is given by

Πope,c1(q) = Π(a) + Π(b) + Π(c) + Π(d) + Π(e)

+Π(f) + Π(g) + Π(h) + Π(i) + Π(j), (3.30)

where the superscripts indicate each diagram in Fig. 3.1. At this part firstly the

detailed calculation for the Diagram (a) in Fig. 3.1 will be given. For the Diagram

(a), which represents the perturbative contribution, one obtains

Π(a)(q2) = i
∫

d4xeiq·x〈0|T{
[
εabcuα

a (x)(Cγµ)αβuβ
b (x)(γ5γµ)δσ

× dσ
c (x)c̄τ

d(x)(iγ5)
τθdθ

d(x)
] [
−εa′b′c′ d̄σ′

c′ (0)(γµ′γ5)
σ′δ′

×ūβ′
b′ (0)(γµ′C)β′α′ūα′

a′ (0)d̄θ′
d′(0)(iγ5)

θ′τ ′cτ ′
d′(0)

]
}|0〉 (3.31)
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Figure 3.1: Schematic OPE diagrams for the current Θc1 in Eq. (3.2). Each
label corresponds to that in Eq. (3.41). The solid lines denote quark (or anti-
charm quark) propagators and the dashed lines are for gluon. The crosses denote
the quark condensate, and the crosses with circle represent the mixed quark
gluon condensates. (c) represents diagrams proportional to gluon condensate
with gluons lines attached to the light quarks only, (d) represents those where
the gluons are attached to the heavy quarks only, while (e) represents those where
one gluon is attached to the heavy quark and the other to a light quark in all
possible ways. (f) and (g) represent all diagrams that contain the quark-gluon
condensate.
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where α, β, ..., α′, β′, ... are Dirac spinor indices. After making the required con-

tractions using the definition

iSαβ
q ,ab(x) ≡ 〈0|T [qα

a (x)q̄β
b (0)]|0〉 (3.32)

the Eq. (3.31) becomes

Π(a)(q2) = −i
∫

d4xeiq·xεabcεa′b′c′(Cγµ)αβ(γ5γ
µ)δσ(iγ5)

τθ(γµ′γ5)
σ′δ′(γµ′C)β′α′

×(iγ5)
θ′τ ′

[
iSαβ′

u, ab′(x)iSβα′
u, ba′(x)iSσσ′

d, cc′(x)iSτ ′τ
ch, d′d(−x)iSθθ′

d, dd′(x)

−iSαβ′
u, ab′(x)iSβα′

u, ba′(x)iSσθ′
d, cd′(x)iSτ ′τ

ch, d′d(−x)iSθσ′
d, dc′(x)

−iSαα′
u, aa′(x)iSββ′

u, bb′(x)iSσσ′
d, cc′(x)iSτ ′τ

ch, d′d(−x)iSθθ′
d, dd′(x)

+iSαα′
u, aa′(x)iSββ′

u, bb′(x)iSσθ′
d, cd′(x)iSτ ′τ

ch, d′d(−x)iSθσ′
d, dc′(x)

]

= −i
∫

d4xeiq·xεabcεa′b′c′
{
Tr

[
iSu, ab′(x)(γµ′C)iST

u, ba′(x)(Cγµ)
]

×Tr [iSd, dd′(x)iγ5iSch, d′d(−x)iγ5] γ5γ
µiSd, cc′(x)γµ′γ5

−Tr
[
iSu, ab′(x)(γµ′C)iST

u, ba′(x)(Cγµ)
]

×γ5γ
µiSd, cd′(x)iγ5iSch, d′d(−x)iγ5iSd, dc′(x)γµ′γ5

−Tr
[
iSu, bb′(x)(γµ′C)iST

u, aa′(x)(Cγµ)
]

×Tr [iSd, dd′(x)iγ5iSch, d′d(−x)iγ5] γ5γ
µiSd, cc′(x)γµ′γ5

+Tr
[
iSu, bb′(x)(γµ′C)iST

u, aa′(x)(Cγµ)
]

×γ5γ
µiSd, cd′(x)iγ5iSch, d′d(−x)iγ5iSd, dc′(x)γµ′γ5

}
(3.33)

For the perturbative part the propagators for light quarks and charm quark are
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given as,

iSαβ
q, ab(x) =

i

2π2

6xαβ

x2
δab = iSαβ

q δab

iSαβ
ch, ab(x) =

∫ d4k

(2π)4
e−ik·xi

(6k + mc)
αβ

k2 −m2
c

δab = iSαβ
ch δab (3.34)

where q denotes up and down quarks and ch denotes charm quark. After inserting

Eq. (3.34) in Eq. (3.33) the color factors of the right hand side of the Eq. (3.33)

are calculated for the first, second, third and fourth term respectively as

εabcεa′b′c′δab′δba′δcc′δd′dδdd′ = 3εabcεbac = −18

εabcεa′b′c′δab′δba′δcd′δd′dδdc′ = εabcεbac = −6

εabcεa′b′c′δaa′δbb′δcc′δdd′δd′d = 3εabcεabc = 18

εabcεa′b′c′δaa′δbb′δcd′δd′dδdc′ = εabcεabc = 6 (3.35)

Making use of these values of color factors the Eq. (3.33) becomes

Π(a)(q2) = i
∫

d4xeiq·x {
36Tr

[
iSu(x)(γµ′C)iST

u (x)(Cγµ)
]

×Tr [iSd(x)iγ5iSch(−x)iγ5] γ5γ
µiSd(x)γµ′γ5

−12Tr
[
iSu(x)(γµ′C)iST

u (x)(Cγµ)
]

×γ5γ
µiSd(x)iγ5iSch(−x)iγ5iSd(x)γµ′γ5

}
. (3.36)

After inserting iSq(x) and iSch(x) into Eq. (3.36) and calculating the traces and

contractions included in Eq. (3.36) the Eq. (3.36) becomes

Π(a)(q2) = i
∫

d4xeiq·x
{

33
(i)7

(2π2)4

43

(x2)7

∫ d4k

(2π)4
eik·x 6x k · x

k2 −m2
c
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+96
(i)7

(2π2)4

1

(x2)6

∫ d4k

(2π)4
eik·x mc

k2 −m2
c

}
. (3.37)

Using the equations given in App. D the result of the Eq. (3.37) can be obtained

as

Π(a)(q2) =
−11

5! 6! 213 π8

∫ 1

0
du

1

(1− u)5

{
6q

[
−36u(1− u)[−L(u)]5

+ 120q2u2(1− u)2[−L(u)]4
]
+ mc72[−L(u)]5

}
ln[−L] , (3.38)

whose imaginary part gives us

1

π
ImΠ(a)(q2) =

11

5! 6! 213 π8

∫ Λ

0
du

1

(1− u)5

{
6q

[
−36u(1− u)[−L(u)]5

+ 120q2u2(1− u)2[−L(u)]4
]
+ mc72[−L(u)]5

}
. (3.39)

Here the upper limit of the integrations is given by Λ = 1 −m2
c/q

2 and L(u) =

q2u(1− u)−m2
cu. A similar calculation is made for the Diagram (b) but for this

part of the calculation the propagator for one of the light quark will take the form

iSαβ
q, ab(x) = − 1

12
〈q̄q〉δabδ

αβ . (3.40)

Following the same steps followed for the calculation of the Diagram (a) the

imaginary part of each diagram is calculated as

1

π
ImΠ(a)(q2) =

11

5! 6! 213 π8

∫ Λ

0
du

1

(1− u)5

{
6q

[
−36u(1− u)[−L(u)]5

+ 120q2u2(1− u)2[−L(u)]4
]
+ mc72[−L(u)]5

}
,

1

π
ImΠ(b)(q2) =

5〈q̄q〉
4!4!29π8

∫ Λ

0
du

1

(1− u)3

{
6q16mcu[−L(u)]3
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+ 8q2u(1− u)[−L(u)]3 − [−L(u)]4
}

,

1

π
ImΠ(c)(q2) = − 11〈αs

π
G2〉

3 · 4!214π6

∫ Λ

0
du

1

(1− u)3

{
6q

[
− 3u(1− u)[−L(u)]3

+6q2u2(1− u)2[−L(u)]2 − 8

11
(1− u)[−L(u)]3

]

+
12

11
mc[−L(u)]3

}
,

1

π
ImΠ(d)(q2) =

11〈αs

π
G2〉

3!6!212π6

∫ Λ

0
du

u3

(1− u)5

{
6qm2

c

[
− 3u(1− u)[−L(u)]2

+4q2u2(1− u)2[−L(u)]
]
+ mc

[ 4

11
[−L(u)]3

+
6

11
q2(1− u)2[−L(u)]2

]}
,

1

π
ImΠ(e)(q2) =

〈αs

π
G2〉

4!5!3 · 210π6

∫ Λ

0
du

u

(1− u)4

{
6q

[(
96u(1− u)

+5(1− u)
)
[−L(u)]3 − 192q2u2(1− u)2[−L(u)]2

]

+90mc[−L(u)]3
}

,

1

π
ImΠ(f)(q2) =

5〈q̄gσ ·Gq〉
3!3!211π6

∫ Λ

0
du

1

(1− u)2

{
12 6qmcu[−L(u)]2

−[−L(u)]3 + 6q2u(1− u)[−L(u)]2
}

,

1

π
ImΠ(g)(q2) =

〈q̄gσ ·Gq〉
3!4!210π6

∫ Λ

0
du

1

(1− u)3

{
6qmc

[
12u(1− u)[−L(u)]2

−60u2[−L(u)]2
]
− 12(1− u)[−L(u)]3

+72q2u(1− u)2[−L(u)]2

−u

2
[−L(u)]3 + 3q2u2(1− u)[−L(u)]2

}
,

1

π
ImΠ(h)(q2) =

〈q̄q〉2
9 · 29π4

∫ Λ

0
du

1

(1− u)2

{
6q

[
12u(1− u)[−L(u)]2

−16q2u2(1− u)2[−L(u)] + 3(1− u)[−L(u)]2
]
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+27mc[−L(u)]2
}

,

1

π
ImΠ(i)(q2) =

5〈q̄q〉3
9 · 24π2

∫ Λ

0
du

{
− 6qmcu + [−L(u)]− 2q2u(1− u)

}
,

1

π
ImΠ(j)(q2) =

〈q̄q〉4
216

(− 6q + 22mc) δ(q2 −m2
c). (3.41)

Our OPE calculation has been performed up to dimension 12 here. Up to di-

mension 5, we include all the gluonic contributions represented by the gluon

condensate and the quark-gluon mixed condensate. Beyond the dimension 5, we

include only tree-graph contributions which are expected to be important among

higher dimensional operators. Other diagrams containing gluon components are

expected to be suppressed by the small QCD coupling. Therefore, the higher

order tree-graphs, which are the higher order quark condensates, will be able

to give us an estimate on how big the typical higher order corrections should

be beyond dimension 5. The integrations can be done analytically but we skip

the lengthy and complicated analytic expressions. For the charm-quark propaga-

tors with two gluons attached, we use the momentum-space expressions given in

Ref. [56]. The Wilson coefficients for light-quark condensates come from 〈q̄q〉n,

where n = 2, 3, 4. This is in contrast with the OPE for Θc2, where the Wilson

coefficient are non-zero only for n = 4.
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The first important question to ask in the OPE is whether it is sensibly con-

verging as an asymptotic expansion. For that, we choose to plot the Borel trans-

formed OPE appearing in Eq. (3.14) after subtracting out the continuum contri-

bution,

Π(j)(M2) =
∫ ∞

0
dq0 e−q2

0/M2

[ρ±,(j)
ope (q0)− ρ

±,(j)
cont (q0)] = 0. (3.42)

Here j = a, b, c.. denotes each contribution in the OPE of the terms in Eq. (3.41)

after adding according to the rules in Eq. (3.13).

We use the following QCD parameters in our sum rules [55, 42],

ms = 0.12 GeV ,

mc = 1.26 GeV ,

〈
αs

π
G2

〉
= (0.33 GeV)4 ,

〈G3〉 = 0.045 GeV6 ,

〈q̄q〉 = −(0.23 GeV)3 ,

〈s̄s〉 = 0.8〈q̄q〉 ,

〈q̄gσ ·Gq〉 = (0.8 GeV2)× 〈q̄q〉 ,

〈s̄gσ ·Gs〉 = (0.8 GeV2)× 〈s̄s〉. (3.43)

Fig. (3.2) represents the OPE as defined in Eq. (3.42) with the imaginary part

given in Eq. (3.41). One notes that for the negative parity case, the perturbative

contribution is only a small fraction of the OPE, and hence do not converge.
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Figure 3.2: OPE as defined in Eq. (3.42) for the current Θc1 and S0 = (3.3 GeV)2.
The left (right) figure is for positive (negative) parity case. The solid line (a)
represents the perturbative contribution. The line specified as OPE represents
the sum of the power corrections only. (c) represents the gluon condensates.
Other labels represent contribution from each term in Eq. (3.41). Here we plot
only a few selected terms in the OPE.
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For the positive parity case, the power corrections alternate in sign, and the

gluon condensate, which represents the light diquark correlation, is only a small

correction to the power correction. Hence, such structure, would hardly couple

to a pentaquark state, and it is meaningless to perform a detailed QCD sum rule

analysis. We present the result with the continuum threshold s0 = (3.3 GeV)2.

This value is chosen in the range
√

s0 = 3.2 − 3.6 GeV, which has been used

to analyze the anticharmed-pentaquark sum rule in Ref [48]. However changing

s0 does not change the relative strength of each contribution, and hence the

conclusion of this section. We will therefore, analyze the subsequent OPE with

the same threshold.

3.4.2 The OPE for Θc2

The OPE for Θc2 are given in Ref.[48]. Here, we rewrite the result for com-

pleteness,

1

π
ImΠ(a)(q2) = − 1

5 · 5! 212π8

∫ Λ

0
du

1

(1− u)5
{6q(1− u) + mc} [−L(u)]5 ,

1

π
ImΠ(b)(q2) = − 1

3! 3! 210π6

〈
αs

π
G2

〉 ∫ Λ

0
du

1

(1− u)3
{6q(1− u)

+ mc} [−L(u)]3 ,

1

π
ImΠ(c)(q2) = − 1

54
〈q̄q〉4(6q + mc) δ(q2 −m2

c) ,

1

π
ImΠ(d)(q2) = − 1

5! 3! 3 · 210π6

〈
αs

π
G2

〉 ∫ Λ

0
du

u3

(1− u)5

×
{

3m2
c 6q(1− u) + mc(1− u)(3− 5u)q2 + 2um3

c

}
[−L(u)]2 ,
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Figure 3.3: Schematic OPE diagrams for the current Θc2 in Eq. (3.44). Each
label corresponds to that in Eq. (3.44). All the other notations in this figure are
the same as Fig. 3.1.
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1

π
ImΠ(e)(q2) = − 〈G3〉

5! 4! 213π8

∫ Λ

0
du

u

(1− u)

{
6q

[
q2

(
5u

2
− 1

)
(1− u)

−m2
c

(
3u

2
+ 7

)]
+ 6mcq

2(2u− 1)

−2m3
c

3u + 1

1− u

}
[−L(u)]. (3.44)

The diagrams corresponding to every term above, denoted by the superscripts

(a)− (e), is given in the Fig. 3.3 which can also be found in Ref. [48].

Fig. 3.4 represents the OPE as defined in Eq. (3.42) with the imaginary part

in Eq. (3.44). As can be seen from the left figure, the OPE without the pertur-

bative contribution is dominated by the gluon condensate coming from the light

diquarks. This suggests that the diquark correlation is the dominant interaction

among the quarks and heavy antiquark in the positive parity channel. Moreover,

the perturbative contribution is larger than sum of the power corrections denoted

as “OPE” in the figure. Therefore, the pentaquark could couple strongly to this

current and a detailed QCD sum rule analysis is sensible. The situation changes

for the negative channel, where the power corrections have alternating signs, and

hence becomes less reliable.

3.4.3 The OPE for Θcs1

The OPE for this current is given as follows

1

π
ImΠ(a)(q2) =

1

5 · 5! 212 π8

∫ Λ

0
du

1

(1− u)5
{6q(u− 1)−mc} [−L(u)]5 ,

1

π
ImΠ(b)(q2) =

ms(2〈q̄q〉+ 〈s̄s〉)
3!3!28π6

∫ Λ

0
du

1

(1− u)3
{6q(u− 1)−mc} [−L(u)]3 ,
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Figure 3.4: A similar figure as Fig. 3.2 for the current Θc2. Here each label
represents contribution from each term in Eq. (3.44). The gluon condensates (b)
are the dominant power correction in the positive parity channel (left figure).
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1

π
ImΠ(c)(q2) =

〈αs

π
G2〉

3!3!210π6

∫ Λ

0
du

1

(1− u)3
{6q(u− 1)−mc}[− L(u)]3 ,

1

π
ImΠ(d)(q2) = − 〈αs

π
G2〉

3 · 3!5!210π6

∫ Λ

0
du

u3

(1− u)5

{
6q3m2

c(1− u)

+mc(1− u)(3− 5u)q2 + 2um3
c

}
[−L(u)]2

1

π
ImΠ(e)(q2) =

(〈q̄q〉2 + 〈q̄q〉〈s̄s〉)
3 · 27π4

∫ Λ

0
du

1

(1− u)2
{6q(u− 1)−mc}[− L(u)]2 ,

1

π
ImΠ(f)(q2) =

ms〈q̄D2q〉
210π6

∫ Λ

0
du

1

(1− u)2
{6q(u− 1)−mc}[− L(u)]2,

1

π
ImΠ(g)(q2) =

ms〈s̄gσ ·Gs〉
3 · 211π6

∫ Λ

0
du

1

(1− u)2
{6q(u− 1)−mc}[− L(u)]2 ,

1

π
ImΠ(h)(q2) =

ms(2〈q̄q〉3 + 〈q̄q〉2〈s̄s〉)
9 · 24π2

∫ Λ

0
du {6q(u− 1)−mc} ,

1

π
ImΠ(i)(q2) =

〈q̄q〉3〈s̄s〉
54

(6q + mc) δ(q2 −m2
c). (3.45)

Note here again that the superscripts correspond to the diagrams shown in

Fig. 3.5. The dimension-5 condensate involving D2 is related to the quark-gluon

condensate via 〈q̄D2q〉 = 〈q̄gσ ·Gq〉/2. Similar relation holds for the correspond-

ing strange-quark condensate. The correction to this relation is proportional to

square of the quark mass which should be very small even for the strange quark.

Fig. 3.6 represents the OPE as defined in Eq. (3.42) with the imaginary part in

Eq. (3.45). We have only included a few terms in the OPE to show how each

term contributes differently to the sum rule. As can be seen from the figure, the

line denoted as “OPE”, sum of the power corrections are much larger than the

perturbative contribution. Moreover, the gluon condensate from diquarks is only

a small fraction of the large higher order correction. This suggests that the OPE

does not converge and it is very unlikely that the diquark correlation will remain
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Figure 3.6: A similar figure as Fig. 3.2 for the current Θcs1 with S0 = (3.3 GeV)2.
Here each label represents contribution from each term in Eq. (3.45).

an important mechanism in this configuration.

3.4.4 The OPE for Θcs2

The OPE for this current is given as follows

1

π
ImΠ(a)(q2) =

1

5 · 5! 212 π8

∫ Λ

0
du

1

(1− u)5
{6q(u− 1)−mc} [−L(u)]5 ,

1

π
ImΠ(b)(q2) =

ms(−2〈q̄q〉+ 〈s̄s〉)
3!3!28π6

∫ Λ

0
du

1

(1− u)3
{6q(u− 1)−mc} [−L(u)]3 ,

1

π
ImΠ(c)(q2) =

〈αs

π
G2〉

3!3!210π6

∫ Λ

0
du

1

(1− u)3
{6q(u− 1)−mc}[− L(u)]3 ,

1

π
ImΠ(d)(q2) = − 〈αs

π
G2〉

3 · 3!5!210π6

∫ Λ

0
du

u3

(1− u)5

{
6q3m2

c(1− u)
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+ mc(1− u)(3− 5u)q2 + 2um3
c}

[
− L(u)]2

1

π
ImΠ(e)(q2) =

(〈q̄q〉2 − 〈q̄q〉〈s̄s〉)
3 · 27π4

∫ Λ

0
du

1

(1− u)2
{6q(u− 1)−mc}[− L(u)]2 ,

1

π
ImΠ(f)(q2) =

−ms〈q̄D2q〉
210π6

∫ Λ

0
du

1

(1− u)2
{6q(u− 1)−mc}[− L(u)]2,

1

π
ImΠ(g)(q2) =

ms〈s̄gσ ·Gs〉
3 · 211π6

∫ Λ

0
du

1

(1− u)2
{6q(u− 1)−mc}[− L(u)]2 ,

1

π
ImΠ(h)(q2) =

ms(−2〈q̄q〉3 + 〈q̄q〉2〈s̄s〉)
9 · 24π2

∫ Λ

0
du {6q(u− 1)−mc} ,

1

π
ImΠ(i)(q2) =

−〈q̄q〉3〈s̄s〉
54

(6q + mc) δ(q2 −m2
c). (3.46)

Again note that the OPE diagram for each label is shown in Fig. 3.5. Fig.

3.7 represents the OPE as defined in Eq. (3.42) with the imaginary part given

in Eq. (3.46). Again, we have only included a few terms in the OPE to show a

general trend of each contribution. For the negative parity case, the OPE has

large contributions with alternating signs. The situation is better for the positive

parity case, but again, the power corrections alternate in signs.

From all the previous analysis on the OPE for the charmed pentaquark with

and without strangeness, we find that the one without strangeness with diquark

structure are most reliable, and are dominated by gluon condensate coming from

diquark correlation. It is interesting to note that this result is consistent with

the Skyrme model calculation which predicts a bound state of pentaquarks in the

nonstrange sector [17]. In the following, we will perform a more detailed analysis

with the stable structure well represented by the interpolating current Θc2.
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Figure 3.7: A similar figure as Fig. 3.2 for the current Θcs2 with S0 = (3.3 GeV)2.
Here each label represents each term in Eq. 3.46
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CHAPTER 4

QCD SUM RULES AND ANALYSIS

4.1 The Couplings to the DN Continuum, λDN

As discussed before, it is important to subtract out the contribution from the

DN continuum. For that, one needs to know the coupling strength λDN . Here

we determine this for the currents without strange quarks, λDN,c2. In the case

of Θ+ (1540) [51], the soft-kaon theorem was used to convert the external kaon

state, corresponding to the D meson states in Eq. (3.17) and Eq. (3.24), to a

commutation relation of the operator and the corresponding axial charge. The

strength of the resulting five-quark operator with an external nucleon state was

then obtained from a separate nucleon sum rule analysis with the same five-quark

nucleon current. However, applying the soft D meson limit will not work in the

present case.

Instead, we determine the coupling strength directly from the sum rule method.

To do that, we eliminate the contribution from the low-lying pole by introducing
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the additional weight W (q2) = q2 − m2
Θ in Eq. (3.7). We take mΘ = 3 GeV,

and confirm that changing it by ±200 MeV have less than 5 % effect on the λDN

value. This way of eliminating a certain pole is sometimes used in QCD sum

rules [76, 77]. Then, substituting the corresponding imaginary parts, we find,

|λDN |2 =

∫ s0

m2
c
dq2 e−q2/M2

(q2 −m2
Θ) 1

π
ImΠope

i (q2)
∫ s0

(mN+mD)2 dq2 e−q2/M2(q2 −m2
Θ) 1

π
ImΠDN

i (q2)
, (i = 1, q) (4.1)

where the i = 1, q in ImΠ represent the part proportional to 1 or 6 q in the

respective imaginary part, and ImΠDN is the spectral density in Eq. (3.22) or in

Eq. (3.26) without the |λDN |2 prefactor.

Fig. 4.1 shows the plot of Eq. (4.1). The two dotted (solid) lines represent

boundary curves with the least Borel mass dependence for the λDN from the 1

(q) sum rules. λDN should not only be independent of the Borel mass but also

independent of the sum rule from which it is obtained. However, the results com-

ing from either i = q or i = 1 sum rule differ slightly. Inspecting the OPE, one

finds that the contributions from higher dimensional operators are consecutively

suppressed for the i = q sum rule, while that is not so for the i = 1 sum rule.

Therefore, the value from the former sum rule should be more reliable. Nonethe-

less, to allow for all variations, we will choose the following range for the |λDN |2

values,

2× 10−5GeV10 < |λDN,c2|2 < 3× 10−5GeV10. (4.2)

Similar attempts to determine λDN,c1 give vastly different values from either i = q
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Figure 4.2: The left figure shows the left-hand side of Eq. (4.3) using Θc2

for positive parity case with |λDN,c2|2 = 2 × 10−5 GeV10 (dashed line) and
|λDN,c2|2 = 3 × 10−5 GeV10 (dot-dashed line). The solid line is when there is
no DN continuum, |λDN,c2|2 = 0. The right figure is obtained with different
threshold parameters. See Eq. (3.12) for A and B.

or i = 1 sum rules. This reflects the non-convergence of OPE from which one can

not expect a consistent result.

4.2 Parity

We will now concentrate on the sum rule obtained from Θc2. Using the dis-

persion relation in Eq. (3.14) and the spectral density in Eq. (3.27), one finds the
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following sum rule,

|λ±,c2|2e−m2
Θ±/M2

=
∫ √

s0

0
dq0 e−q2

0/M2
[
ρ±ope(q0)− ρ±DN(q0)

]
. (4.3)

As can be seen from Fig. 4.2, the left hand side of Eq. (4.3) is positive for

positive parity case. For |λDN,c2|2 = 0 (the solid lines), we have chosen the

continuum threshold s
1/2
0 to be 3.4 GeV and 3.3 GeV, which gives the most

stable pentaquark mass as we will show in the next subsection. Similar method

was used to obtain the continuum thresholds when |λDN,c2|2 6= 0. However,

Fig. 4.3 shows that the corresponding sum rule is negative for the negative parity

case, suggesting that there can not be any negative parity state. This result

also confirms the non-convergence of the OPE for the negative parity case, from

which a consistent result can not be obtained. This can also be expected from the

constituent quark picture. The two diquarks in Θc2 current have opposite parities

and, when they are combined with the antiquark, the configuration should be

dominated by the positive-parity part in the nonrelativistic limit.

4.3 Mass

The sum rule for the Θc mass is obtained by taking the derivative of Eq. (4.3)

with respect to 1/M2. The solid and dashed lines in Fig. 4.4 represent the mass

for two different λDN values. The threshold parameters were obtained to give the

most stable mass within the Borel window plotted. One notes that the inclusion
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of the coupling to the DN continuum states, reduces the mass to smaller values

below 3 GeV. The curve with λDN,c2 = 2× 10−5 GeV10 lies between the solid and

dashed lines in Fig. 4.4. This suggests the possibility that the heavy pentaquark

might actually be bound; namely, lies below the DN threshold. This is consis-

tent with the constituent quark model picture, where one expects the diquark

correlation to be more dominant than that of the quark-antiquark correlation as

the participating antiquark becomes heavy. However, if this was the case, its

existence can only be measured through its weak decay.
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CHAPTER 5

CONCLUSIONS

In this thesis we have discussed one of the nonperturbative approaches, namely

the QCD sum rules, and applied it to the heavy pentaquark Θc. In our analysis we

have used pentaquark currents with and without strangeness with two different

currents for each case. We have also included the DN two-particle irreducible con-

tribution in our QCD sum rule calculation to refine the sum rules. To see whether

the OPE calculations are convergent as an asymptotic expansion we have plotted

the Borel transformed OPE, after subtracting out the continuum contribution,

for each interpolating fields. From all the analysis on the OPE of the charmed

pentaquark with and without strangeness we have found that the OPE is conver-

gent only for the nonstrange pentaquark with a diquark structure. The OPE for

this structure is dominated by the gluon condensate coming from the diquark,

which nonperturbatively represents their strong correlation. By considering the

result of the analysis on OPE we have performed a more detailed analysis with

the stable structure well represented by the interpolating current Θc2. First of
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all we have obtained the contribution coming from the DN continuum since it is

important to subtract its contribution as discussed before. We have determined

the coupling strength directly from the sum rule method and as a result we have

chosen the range for the |λDN |2 as 2× 10−5GeV10 < |λDN,c2|2 < 3× 10−5GeV10.

Then using the Eq. (4.3) the parity of the heavy pentaquark without strangeness

has been obtained as positive, in agrement with the result reported earlier [48].

This can also be expected from the constituent quark picture where the two di-

quarks in Θc2 currents have opposite parities and combined with an antiquark,

and where the positive parity part should be dominant in the nonrelativistic limit.

Taking the derivative of the Eq. (4.3) with respect to 1
M2 the sum rule for the

mass of the Θc has been obtained. This analysis has shown that its mass lies

below 3 GeV, when the DN irreducible contribution is explicitly included in the

phenomenological side of the sum rule. The picture that we described here does

not work so well in the light pentaquark Θ+, as the OPE are highly divergent [78]

which can be seen in the picture of the OPE in the original sum rule paper for

the light pentaquark state[42].
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APPENDIX A

NOTATIONS

In this Appendix some notations related to this thesis are given.

Dµ = ∂µ − igsA
a
µt

a , (A.1)

[ta, tb] = ifabct
c (A.2)

(ta = λa

2
, where λa are the standard Gell-Mann matrices)

Ga
µν =

i

gs

[Dµ, Dν ]
a

= ∂µA
a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν , (A.3)

iSαβ
q ,ab(x) ≡ 〈0|T [qα

a (x)q̄β
b (0)]|0〉 (A.4)

(a, b:color indices, α, β: Dirac spinor indices )

Minkowski Euclidean

gµν = diag(+1,−1,−1,−1) ↔ δµν = diag(+1, +1, +1, +1)
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ε0123
M = −εM

0123 = +1 ↔ ε0123
E = εE

0123 = +1

(x0
M , xi

M) ↔ (ix4
E, xi

E) (i = 1, 2, 3)

(P 0
M , P i

M) ↔ (iP 4
E, P i

E)

(γ0
M , γi

M) ↔ (γ4
E, γi

E)

γM
5 = iγ0

Mγ1
Mγ2

Mγ3
M ↔ γE

5 = iγ4
Eγ1

Eγ2
Eγ3

E

σM
µν =

i

2
[γM

µ , γM
ν ] ↔ σE

µν =
1

2i
[γE

µ , γE
ν ] . (A.5)
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APPENDIX B

GAMMA MATRIX ALGEBRA

In this Appendix the useful equations related to the algebras of Dirac gamma

matrices are given.

{γµ, γν} = γµγν + γνγµ = 2gµν . (B.1)

γ5 = γ5 = iγ0γ1γ2γ3 . (B.2)

{γ5, γν} = 0 . (B.3)

C ≡ iγ2γ0 (charge conjugation matrix) . (B.4)

C = −C† = −CT = −C−1 , C2 = −1 . (B.5)

CΓT C = +Γ for Γ = γµ, σµν , γ5σµν . (B.6)

CΓT C = −Γ for Γ = γ5, γ5γµ, (6xσµν + σµν 6x) . (B.7)
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γµγµ = 4 ,

γµγνγµ = −2γν ,

γµγαγβγµ = 4gαβ ,

γµγαγβγγγµ = −2γγγβγα ,

γµγαγβγγγλγµ = 2(γλγαγβγγ + γγγβγαγλ) ,

γµσαβγµ = 0 . (B.8)

γασµν = σµνγα + 2igαµγν − 2igανγµ ,

σµνγα = γασµν + 2igναγµ − 2igµαγν . (B.9)

σαβσαβ = 12 ,

σαβγµγνσαβ = 4γνγµ + 8gµν = 16gµν − 4γµγν ,

σαβ(odd # of γ matrices)σαβ = 0 . (B.10)

γµσαβ = i(gµαγβ − gµβγα)− εµαβλγ
λγ5 or, (B.11)

εµνλωγω = −iγ5(gµνγλ − gµλγν + gνλγµ − γµγγγλ) or, (B.12)

εµναβγαγωγβ = −2iγ5(δ
ω
µγν − δω

ν γµ) . (B.13)

6xσµν + σµν 6x = −2εµναβγ5γα · xβ . (B.14)

σµν =
i

2
εµναβγ5σαβ ⇔ γ5σµν =

i

2
εµναβσαβ . (B.15)
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γµ(6xσµν + σµν 6x)γν = −12i 6x . (B.16)

εµναβ · γµ(6xσαβ + σαβ 6x)γν = 0 . (B.17)

Tr[I] = 4 ,

T r[γµ] = 0 ,

T r[γ5] = 0 . (B.18)

The trace of an odd product of γµ matrices vanishes

Tr[γµγν ] = 4gµν ,

T r[σµν ] = 0 ,

T r[γµγνγ5] = 0 ,

T r[γµγνγργσ] = (4gµνgρσ − gµρgνσ + gµσgνρ ,

T r[iγ5γµγνγηγδ] = 4εµνηδ (ε0123 = −1) ,

T r[γµγνγργσ...] = Tr[...γσγργνγµ] . (B.19)
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APPENDIX C

TRACES AND CONTRACTIONS

Tr[ 6xγµ′ 6xγµ] = 4(2xµ′xµ − x2gµ′µ) . (C.1)

Tr[γ5(6k + mc)γ5] = 4mc . (C.2)

Tr[6xγ5(6k + mc)γ5] = −4x · k . (C.3)

Tr[6xσαβ + σαβ 6x] = 0 . (C.4)

Tr[6xγ5σαβ(6k + mc)γ5] = 4i(xβkα − xαkβ) . (C.5)

Tr[6xγ5(6k + mc)σαβγ5] = −4i(xβkα − xαkβ) . (C.6)

Tr[( 6xσαβ + σαβ 6x)γµ′ 6xγµ] = −8i(x2gα
µgβ

µ′ − x2gα
µ′g

β
µ − xαxµg

β
µ′

+xβxµg
α
µ′ + xαxµ′g

β
µ − xβxµ′g

α
µ) . (C.7)
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γασαβ = 3iγβ . (C.8)

γβσαβγα = −12i . (C.9)

γα 6xσαβ = −i 6xγβ − i2xβ . (C.10)

σαβ 6xσαβ = 0 . (C.11)

σαβ(6k + mc) 6xγβ = i(2γαk · x−mcγα 6x+ 6x 6kγα − 2mcxα) . (C.12)

γασαβ( 6k + mc) 6xγβ = 3i(4k · x− 2mc 6x) . (C.13)

σαβ(6k + mc)σ
αβ = 12mc . (C.14)

σαβ(6k + mc) 6xσαβ = 4 6x 6k + 8k · x . (C.15)

σαβ 6x 6kσαβ = 4 6k 6x + 8k · x . (C.16)

γα 6x(6k + mc)σαβ = i[(2k · x−mc 6x)γβ + γβ 6k 6x− 2mcxβ] . (C.17)

γασαβ(6k + mc)γβ = −6i( 6k − 2mc) . (C.18)

γα(6k + mc)σαβ = i(− 6kγβ + 2mcγβ − 2kβ + mcγβ) . (C.19)
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γα( 6k + mc)γα = −2 6k + 4mc . (C.20)

γα 6x(6k + mc)γα = 4k · x− 2 6xmc . (C.21)

γα 6x(6k + mc) 6xγα = −2 6x 6k 6x + 4x2mc . (C.22)

γα 6xσαβ(6k + mc) 6xγβ = −4i 6xk · x− 2ix2 6k . (C.23)
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APPENDIX D

USEFUL INTEGRALS AND EQUATIONS

Feynman parameters:

1

A1A2...An

=
∫ 1

0
dx1...dxnδ(

∑
xi − 1)

(n− 1)!

[x1A1 + x2A2 + ...xnAn]n
(D.1)

A more general form of the Feynman parameters is

1

Am1
1 Am2

2 ...Amn
n

=
∫ 1

0
dx1...dxnδ(

∑
xi − 1)

∏
xmi−1

i

[
∑

xiAi]
∑

mi

Γ(m1 + ... + mn)

Γ(m1)...Γ(mn)
(D.2)

The d dimensional integrals in Minkowski space:

∫ dd`

(2π)d

1

(`2 −∆)n
=

(−1)ni

(4π)
d
2

Γ(n− d
2
)

Γ(n)

( 1

∆

)n− d
2 ,

∫ dd`

(2π)d

`2

(`2 −∆)n
=

(−1)n−1i

(4π)
d
2

d

2

Γ(n− d
2
− 1)

Γ(n)

( 1

∆

)n− d
2
−1

,

∫ dd`

(2π)d

`µ`ν

(`2 −∆)n
=

(−1)n−1i

(4π)
d
2

gµν

2

Γ(n− d
2
− 1)

Γ(n)

( 1

∆

)n− d
2
−1

,

∫ dd`

(2π)d

(`2)2

(`2 −∆)n
=

(−1)ni

(4π)
d
2

d(d + 2)

4

Γ(n− d
2
− 1)

Γ(n)

( 1

∆

)n− d
2
−2

,

∫ dd`

(2π)d

`µ`ν`ρ`σ

(`2 −∆)n
=

(−1)ni

(4π)
d
2

Γ(n− d
2
− 2)

Γ(n)

( 1

∆

)n− d
2
−2

×1

4
(gµνgρσ + gµρgνσ + gµσgνρ) . (D.3)

77



If the integral converges, one can set d = 4 from the start, if not the behavior

near d = 4 can be extracted by expanding

( 1

∆

)2− d
2 = 1− (2− d

2
)log∆ + ... . (D.4)

The expansion for Γ(x) near its pole:

Γ(x) =
1

x
− γ + O(x) , (D.5)

near x = 0 and the γ is the Euler-Mascheroni constant, γ ≈ 0.5772. And also the

following equation often appears in calculations:

Γ(2− d
2
)

(4π)
d
2

( 1

∆

)2− d
2 =

2

ε
− (log∆ + γ − log(4π)) + O(ε) , (D.6)

with ε = 4− d.

The d-dimensional Fourier transformation is given as

∫
ddx

eip·x

(−x2)n
= −iπ2 Γ(d

2
− n)

Γ(n)
2d−2n(− 1

p2
)

d
2
−n , (D.7)

and the inverse Fourier transformation will give

1

(x2)n
=

∫ ddp

(2π)d
e−ip·xi(−1)n+12d−2nπ

d
2
Γ(d

2
− n)

Γ(n)

(
− 1

p2

) d
2
−n

(D.8)

78



APPENDIX E

THE FULL PROPAGATOR FOR THE LIGHT QUARK

iSαβ
q ,ab(x) ≡ 〈0|T [qα

a (x)q̄β
b (0)]|0〉 (a, b:color indices, α, β: spinor indices )

=
i

2π2

1

(x2)2
· δab· 6xαβ − 1

12
· δabδ

αβ〈q̄q〉

− 1

192
x2 · δabδ

αβg〈q̄σ ·Gq〉

+
(
− i

32π2

) 1

x2
· gsG

A
µνt

A
ab(6xσµν + σµν 6x)αβ

+
(
− π2

3327

)
x4 · δabδ

αβ〈q̄q〉
〈αs

π
G2

〉

+
(
− 1

4π2

) 1

x2
· δabδ

αβ ·mq +
i

48
· δab ·mq〈q̄q〉 6xαβ

+
i

3227
x2 · δab ·mqg〈q̄σ ·Gq〉 6xαβ

+
(
− 1

32π2

)
[ln(−x2Λ2

4
) + 2γEM ] ·mq · gsG

A
µνt

A
ab(σ

µν)αβ

+
i

8π2

1

x2
· δab ·m2

q· 6xαβ +
1

96
x2 · δabδ

αβ ·m2
q〈q̄q〉

+
i

27π2
[ln(−x2Λ2

4
) + 2γEM ]m2

q · gsG
A
µνt

A
ab(6xσµν + σµν 6x)αβ

+
1

3228
x4 · δabδ

αβ ·m2
qg〈q̄σ ·Gq〉

− i

3525
x2 · δab · g2

s〈q̄q〉2 6xαβ − 1

3527
x4 · δabδ

αβ ·mqg
2
s〈q̄q〉2 (E.1)
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APPENDIX F

THE BOREL TRANSFORMATION

The definition of the Borel transformation is

L̂−1 ≡ lim
Q2,n→∞

(Q2)n

(n− 1)!

( −d

dQ2

)n

, M2 ≡ Q2

n
(= finite) . (F.1)

The transformation of typical functions in QCD sum rules are given as,

e(−zQ2) → δ(zM2 − 1) , (F.2)

(Q2)nlnQ2 → (−1)n+1n!(M2)n , (F.3)

αs(Q
2)(Q2)nlnQ2 → (−1)n+1n!αs(M

2)(M2)n + ... , (F.4)

1

(Q2)n
→ 1

(n− 1)!(M2)n
, (F.5)

αs(Q
2)

(Q2)n
→ 1

(n− 1)!(M2)n

4π

bln(M2/Λ2)

[
1 + O

(
1

ln(M2/Λ2)

)]

→ αs(M
2)

(n− 1)!(M2)n
+ ... , (F.6)

1

(Q2 + m2)n
→ 1

Γ(n)(M2)n
e
−m2

M2 , (F.7)
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where the ... denotes higher order αs corrections.

Practically, the following explicit table is useful:

q4ln(−q2) = Q4lnQ2 → −2M4 ,

q2ln(−q2) = −Q2lnQ2 → −M2 ,

ln(−q2) = lnQ2 → −1 ,

1

q2
= − 1

Q2
→ − 1

M2
,

1

q4
=

1

Q4
→ 1

M4
,

1

q6
= − 1

Q6
→ − 1

2M6
. (F.8)
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