

DEVELOPMENT OF A GRAPHICAL USER INTERFACE FOR

COMPOSITE BRIDGE FINITE ELEMENT ANALYSIS

DEN�Z GÜVEN

JANUARY 2007

DEVELOPMENT OF A GRAPHICAL USER INTERFACE FOR COMPOSITE
BRIDGE FINITE ELEMENT ANALYSIS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DEN�Z GÜVEN

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CIVIL ENGINEERING

JANUARY 2007

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science

Prof. Dr. Güney ÖZCEBE

 Head of the Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science

Assoc. Prof. Dr. Cem TOPKAYA

 Supervisor

Examining Committee Members

Prof. Dr. Çetin YILMAZ (METU, CE) ______________________

Assoc. Prof. Dr. Cem TOPKAYA (METU, CE) ______________________

Asst. Prof. Dr. Alp CANER (METU, CE) ______________________

Dr. Özgür KURÇ (METU, CE) ______________________

Ateeq AHMAD (M.S.) (PROYA) ______________________

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last name : Deniz GÜVEN

Signature :

iv

ABSTRACT

DEVELOPMENT OF A GRAPHICAL USER INTERFACE FOR COMPOSITE

BRIDGE FINITE ELEMENT ANALYSIS

Güven, Deniz

M.S., Department of Civil Engineering

Supervisor: Associate Professor Dr. Cem Topkaya

January 2007, 91 pages

Curved bridges with steel/concrete composite girders are used frequently in the recent

years. Analysis of these structural systems presents a variety of challenges. Finite element

method offers the most elaborate treatment for these systems, however its use is limited in

routine design practice due to modeling requirements. In recent years, a finite element

program named UTrAp was developed to analyze construction stages of curved/straight

composite bridges. The original Graphical User Interface could not be used with the

modified computation engine. It is the focus of this thesis work to develop a brand new

Graphical User Interface with enhanced visual capabilities compatible with the engine.

Pursuant to this goal a Graphical User Interface was developed using C++ programming

language together with OPENGL libraries. The interface is linked to the computational

engine to enable direct interaction between two programs. In the following thesis work

the development of the GUI and the modifications to the computational engine are

presented. Moreover, the analysis results pertaining to the newly added features are

checked against analytical solutions and recommendations presented in design

specifications.

Keywords: Composite Curved Bridge, Finite Element Method, Software, Graphical User

Interface

v

ÖZ

KOMPOZ�T KÖPRÜ SONLU ELEMAN ANAL�Z� �Ç�N KULLANICI GRAF�K

ARAYÜZÜ GEL��T�R�LMES�

Güven, Deniz

Yüksek Lisans, �n�aat Mühendisli�i Bölümü

Tez Yöneticisi : Doç. Dr. Cem Topkaya

January 2007, 91 sayfa

Son yıllarda, çelik/beton kompozit gövdeli kavisli köprüler sıklıkla kullanılmaktadır. Bu

yapı sistemlerinin analizi bir çok zorlu�u beraberinde getirmektedir. Sonlu elemanlar

metodu, modelleme gereksinimlerinden dolayı rutin tasarım uygulamalarında sınırlı

kullanımı olmasına kar�ın, bu tür sistemler için detaylı çözümler sunmaktadır. Son

yıllarda, kompozit gövdeli kavisli ve düz köprülerin yapım a�amalarını analiz etmek için

UTrAp adında bir sonlu elemanlar programı geli�tirilmi�tir. Orijinal grafik ara yüzü,

geli�tirilmi� hesap modülü ile kullanılamamaktadır. Bu tez çalı�masının amacı, hesap

modülü ile uyumlu, ileri seviyede görsel yetenekleri olan yeni bir kullanıcı grafik arayüzü

geli�tirmektir. Bu amaç do�rultusunda, OPENGL kütüphaneleri ile beraber C++

programlama dili kullanılarak bir kullanıcı grafik arayüzü geli�tirilmi�tir. Arayüz, iki

modül arasında do�rudan etkile�im kurmak için hesap modülüne direk olarak

ba�lanmı�tır. A�a�ıdaki tez çalı�masında, kullanıcı grafik arayüzünün geli�tirilmesi ve

hesap modülüne yapılan de�i�iklikler sunulmu�tur. Bunlara ek olarak, yeni eklenmi�

özelliklere ait olan analiz sonuçları, analitik çözümlerle ve tasarım �artnamelerinde

belirtilen de�erlerle kar�ıla�tırılarak do�rulukları kontrol edilmi�tir.

Anahtar Kelimeler: Kavisli Köprü, Sonlu Eleman Metodu, Yazılım, Kullanıcı Arayüzü

vi

TABLE OF CONTENTS

PLAGIARISM.. iii

ABSTRACT ... iv

ÖZ ... v

TABLE OF CONTENTS.. vi

CHAPTER

1. INTRODUCTION ... 1

 1.1 Background... 1

 1.2 Problem Statement and Organization of the Thesis.. 7

2. IMPROVEMENTS TO THE COMPUTATIONAL ENGINE 8

 2.1 Summary of the Improvements .. 8

 2.2 Details of the Improvements... 9

 2.2.1 Number of Girders... 9

 2.2.2 Internal Brace Types.. 9

 2.2.3 External Brace Types .. 9

 2.2.4 Lateral Braces.. 10

 2.2.5 Post-Processing of Support Reactions and Shear Flow....................... 10

 2.2.6 Shell Element Stiffness Matrix Formulation and Storage 10

 2.2.7 Live Load Analysis Capability.. 11

3. DEVELOPMENT OF A GRAPHICAL USER INTERFACE..................................... 13

 3.1 User Interface Components .. 13

 3.1.1 Main Frame Class.. 13

 3.1.2 View Window Class .. 14

 3.1.3 Dialog Box Classes.. 14

vii

 3.2 Object Classes in the Program.. 15

 3.2.1 AxObject Class.. 16

 3.2.2 AxEntity Class... 16

 3.2.3 AxNode Class.. 16

 3.2.4 AxShell Class .. 17

 3.2.5 AxExtBrFrame Class... 17

 3.2.6 AxIntBrFrame Class.. 17

 3.2.7 AxLatFrame Class ... 17

 3.2.8 AxSupport Class.. 17

 3.2.9 AxPin Class ... 17

 3.2.10 AxFiler Class... 17

 3.2.11 AxPoint3d Class .. 18

 3.2.12 AxGraph Class .. 18

 3.2.13 AxDatabase Class.. 18

 3.3 Difficulties Encountered and Recommendations for Future Improvements 26

4. PROGRAM VERIFICATION.. 28

 4.1 Part1: Interface Slip .. 28

 4.2 Part2: Comparison of Moment and End Reaction Values for Simply

 Supported Beams .. 34

5. SUMMARY, CONCLUSIONS AND FUTURE RECOMMENDATIONS 37

REFERENCES .. 39

APPENDICES

A. USER’S MANUAL AND EXAMPLE PROBLEM FOR UTrAp 40

B. USEFUL ALGORITHMS USED IN THE PROGRAM................................. 88

C. VARIABLES OF INPUT DATA STRUCTURE... 90

1

CHAPTER 1

INTRODUCTION

1.1. Background

Due to the advances in fabrication technology steel/concrete composite curved

bridge systems are being used frequently in the recent years. Based on the shape of the

steel section used there are basically two types of steel/concrete composite girder

systems. Traditionally the steel section is composed of a monosymmetric I shape as

shown in Fig.1.1 The disadvantage of this system is that the I-girders are torsionally and

laterally weak and need to be braced along its length. The alternative to I girder systems

is the box girder system as shown in Fig.1.2 and Fig.1.3.

Fig.1.1. A Typical I-Girder System

Fig.1.2. A Typical Box Girder System

2

Fig.1.3. A Photo of a Curved Box Composite Bridge

Both in I-girder and box girder systems, composite action between steel and

concrete is achieved by using connectors such as welded shear studs. Critical loads in

design develop usually at construction loads and service time. During construction, steel

girders are placed at top of the piers over the bearings. A permanent metal deck form

(PMDF) is installed in between girders and PMDF is basically used as a formwork for

reinforced concrete deck. Usually the reinforced concrete deck is placed in a number of

segments to reduce shrinkage. Depending on the time of concrete curing some parts of the

bridge may be partially composite. After the completion of the bridge, the system is

typically opened to heavy truck loads. Among the two, construction loads are critical

compared to the live loads, since 60 to 70 percent of maximum cross section stresses

occur during construction.

Analysis of horizontally curved girders presents a variety of challenges.

Approximate hand methods, grid analysis method and finite element method are

generally used for the analysis of these systems. Among the analysis methods mentioned

finite element method provides the most elaborate treatment. However, performing finite

3

element analysis requires the knowledge of this method by the designer and significant

amount of computer resources. Although there are well developed general purpose finite

element programs, their use in curved steel/composite bridge design is limited.

In the recent years there have been some bridge failures. These failures range

from buckling of a single member in a box girder system (Fig.1.4) to the complete

collapse of an I-girder system (Fig.1.5). These failures were mainly during the

construction stage and were attributable to the lack of adequate analysis tools for these

types of systems.

Fig.1.4. Buckling of a Brace Member in a Curved Box Girder Bridge

4

Fig.1.5. Complete Collapse of a Curved I-girder Bridge

In order to circumvent the problems related with curved bridge analysis a study

has been undertaken at the University of Texas at Austin in early 2000. The study aimed

to develop an easy to use finite element computer program for the analysis of curved

composite box girder systems under construction loads. The study was completed in the

year 2002 and as a deliverable a program named UTrAp was released.

The first version of UTrAp (Topkaya and Williamson, 2003) is a computer

program capable of analyzing curved composite box girder systems in an optimal manner.

The program includes a computational engine written in FORTRAN and a graphical user

interface (GUI) written in Visual Basic (Fig.1.6). The GUI prepares the text files

necessary for the input to the computational engine. After the analysis of the bridge

system important information such as deflections, stresses, brace forces are written to text

files which later on are read by the GUI for display.

5

a)

b)

Fig.1.6. View of the Graphical User Interface of UTrAp a) Main Form b) Cross
Sectional Properties Form

6

The computational engine has linear three dimensional finite element program.

Based on the input for geometry the computational engine automatically prepares the

mesh by producing nodes, elements, element properties, loading and etc. After

preprocessing, the element stiffness matrices are formed and assembled into a global

stiffness matrix. The unknown displacements are found using a sparse solver which is

optimized for PCs. After the processing stage, the displacements are post processed to get

stresses, stress resultants, member forces, rotations and etc. In UTrAp, the steel girders

and concrete deck are modeled with 9-node shell elements, and the bracing members are

modeled with truss elements. These elements can be used to model both thin and thick

shells. Results obtained from UTrAp have been shown to compare well with published

solutions and observations from field studies (Topkaya and Williamson 2003, Topkaya et

al. 2004).

After success of the first version of UTrAp original developers independently

modified the program for new capabilities. At the University of Texas at Austin an

analysis module has been added to the program that is capable of performing an

eigenvalue buckling analysis (Popp 2004). This enabled for the solution of lateral

buckling loads for curved composite box girder systems. At the Middle East Technical

University side a totally different direction has been taken. The computational engine has

been restructured so that new capabilities can be added with minimal effort (Kalaycı

2005). Apart from the restructuring of the code some capabilities were also added. The

developments as of year 2005 were summarized by Kalaycı (2005) and are given here in

Table 1. As can be seen from this table several important features were added. With the

new additions users are capable of analyzing straight as well as curved bridges with

variable radius of curvature. There is a possibility of choosing different element types

depending on the desired accuracy. Element size along the bridge length can be input by

the user which was set to a constant value of two feet in the earlier program. In addition,

users can analyze I-girder systems using this updated version.

7

Table 1.1. Improvements to the Computational Engine as of 2005

UTrAp (2003) UTrAp (2005)

Has a rigid structure and changes

cannot be easily implemented

 Has a flexible structure

Element size is constant Element size is variable

Utilizes 9-node shell elements Utilizes both 9-node and 4-node shell

elements

Box Girders can be analyzed Box Girders and I-girders can be analyzed

Constant curvature and straight

bridges are analyzed

 Variable curvature and straight bridges are

analyzed

The adopted solver is a direct sparse

solver

 In addition to the direct solver an iterative

solver is adopted into the program

Uses Imperial system of units Uses imperial and metric system of units

1.2. Problem Statement and Organization of the Thesis

All the improvements made to the computational engine bring the necessity of

updating of the Graphical User Interface. Input requirements and output due to these

changes must be incorporated into the GUI. It is the focus of this thesis work to update

the GUI to meet the current needs. In order to have a program with enhanced graphical

capabilities and with a flexible code structure a new direction in the GUI programming

has been taken. A GUI was developed using Borland C++ and object oriented

programming rather than updating the old GUI. In addition to the newly developed GUI

some improvements to the computational engine were made also. Chapter 2 of this thesis

presents the additions and improvements to the computational engine. Chapter 3 details in

the development of the Graphical User Interface. Chapter 4 presents some computational

results obtained using the new software and finally Chapter 5 presents the conclusions. A

detailed User’s Manual along with an example problem is given in the Appendix.

8

CHAPTER 2

IMPROVEMENTS TO THE COMPUTATIONAL ENGINE

2.1. Summary of the Improvements

Several new features were added to the program to improve its capabilities. In

Table 2.1 modifications and additions to the 2005 version can be found.

Table 2.1: Summary of Improvements to the Computational Engine

UTrAp (2005) UTrAp (2007)

Only single and dual girder systems with
box and I- cross section are supported

Infinitely many girders with box or I-
section can be modeled and analyzed

Has only one type of internal brace for
box girders

Has two types of internal brace
configurations for box girders

Has only one type of external brace
configuration for box and I-girder systems

Has three types of external brace
configurations

Lateral braces can be connected to the top
flanges of I-girders and box girders

Lateral braces can be connected to top
flanges of box girders and top and
bottom flanges of I-girders

Does not post process support reactions Outputs support reactions
Does not post process shear flow at the
steel/concrete interface

Outputs shear flow at the steel/concrete
interface

Shell element stiffness matrices are
reformed for every placement sequence
analysis and for post processing

Shell element stiffness matrices are
stored in the physical memory and
retrieved for each analysis and post
processing

No live load analysis capabilities Has live load analysis capabilities
External braces are kept for all analysis External braces can be removed for live

load analysis

9

2.2. Details of the Improvements

2.2.1. Number of Girders

In earlier versions of the UTrAp the number of girders was limited to two girders

in analysis due to limitations in computational resources. In a recent version, the element

size is changed to a variable in computational engine so that bridges can be analyzed with

coarser meshes. Now it is possible to analyze systems with more than two girders on

personal computers. In the current version, users can model infinitely many girders

having an I-shape or a box shape cross section next to each other. The structure of the

program was completely renewed to enable meshing that is a function of the number of

girders. Girders can be modeled using either 9-node or 4-node shell elements.

2.2.2. Internal Brace Types

In earlier versions only one internal brace type (type 1) (Fig. 2.1) can be specified

for box girders. Following the design practice another brace type (type 2) (Fig. 2.1) is

implemented into the computational engine.

Fig. 2.1: Internal Brace Types Supported by the Computational Engine

2.2.3. External Brace Types

In the earlier versions only one external brace type (type 1) (Fig. 2.2) can be

specified for box and I- girders. Following the design practice two other brace types (type

2 and type 3) (Fig. 2.2) are implemented into the computational engine.

Type 1 Type 2Type 1 Type 2

10

Fig. 2.2: External Brace Types Supported by the Computational Engine

2.2.4. Lateral Braces

In the earlier versions of the program lateral braces can be connected to the top

flanges of box and I- girders. Following the design practice it was necessary to connect

the lateral braces to the bottom flanges of the I-girders. Due to the geometry there is no

need of lateral braces at bottom flange location in box girder systems. This new feature is

implemented into the computational engine.

2.2.5. Post-Processing of Support Reactions and Shear Flow

In earlier versions of the program support reactions and shear flow are not output

during the post processing stage. New subroutines are added to the computational engine

to calculate the support reactions for each analysis case. UTrAp uses a penalty

formulation to simulate the support conditions. Stiff springs are placed at the support

locations to prevent vertical movement. After obtaining the nodal displacements the

spring forces are calculated and summed up for each girder. The program reports support

reactions for each girder as well as for the entire structure.

UTrAp models shear studs as spring elements. Using the nodal displacements the

stud force at every location is calculated in this new version of the program. Later on

depending on the number of studs and their spacing the force value is converted to a shear

flow value. This shear flow represents the amount of shear force per length developing at

the steel/concrete interface. In Chapter 4 a detailed discussion of the shear flow and slip

at the interface is given.

2.2.6. Shell Element Stiffness Matrix Formulation and Storage

Due the changes in material properties in between the construction stages shell

element stiffness matrices must be formed repeatedly for each analysis case. This is also

true for the post processing stage. Formulation of shell element stiffness matrices is a

Type 1 Type 2 Type 3Type 1 Type 2 Type 3

11

major process in terms of computation time. In order to reduce the time required for

analysis another approach is taken in the current version of the computational engine.

Shell elements stiffness matrices are formed only once throughout an analysis and stored

in the physical memory. After meshing is complete, program forms the shell element

stiffness matrices for concrete sections using a modulus of unity. Later on for each

analysis case during the assembly phase element stiffness matrices are retrieved from the

memory and their entries are multiplied by the corresponding modulus or elasticity value

specified by the user. Although this approach requires more physical memory there is a

significant amount of savings in terms of the computation time.

2.2.7. Live Load Analysis Capability

This is the most significant improvement to the computational engine. In the

older versions the program can only perform analysis for placement sequence. In order to

have a complete package a live load analysis capability is added to the program. The live

analysis capability is based on generating influence lines for the desired output quantities.

Therefore, the computational engine does not require any type of live load as in input.

The program has been tailored to generate loading and produce influence lines for the

desired quantities. In the older version of the program only single right hand side can be

processed. The computational engine has been structured to process multiple right hand

sides that correspond to multiple load cases. The CXML solver implemented into the

program has the capability of performing solutions for systems having multiple right hand

sides.

It is impractical and computational very intensive to place loading to every single

node on the deck segment and produce a detailed influence surface. In order to

circumvent this problem it was decided to produce influence lines based on lane loads.

Therefore, user has to specify the number of lanes and their corresponding geometry as an

input. The program automatically develops distribution factors for the deck nodes based

on the geometric location of the nodes. Fig. 2.3 presents a generic load distribution for a

lane defined by a start and end location.

The distributed lane load has a magnitude of unity when integrated along the

width of the deck. This unit force is distributed to the nodes by statical equilibrium. This

is performed by a subroutine added to the program to find out the distribution factors.

After finding the distribution factors for each lane the load is traveled along the bridge

length. At this point the loading interval is conceived to be a variable. User can specify

12

the live load placement interval as a function of the element size. That is user can space

the loads at every element, two elements etc. The most accurate case would be to place

loading at every element; however, this has the drawback of producing a large number of

right hand sides thereby increasing the computational cost significantly. After the right

hand side vectors are formed the program calculates displacement vector for each right

hand side vector and performs post processing of the results. The output from post

processing is stored into arrays which are going to be processed further by the Graphical

User Interface. The Graphical User Interface generates influence lines for the desired

quantity. Making use of these influence lines the GUI calculates the final results due to

distributed or traveling truck loads. Details of the GUI are given in Chapter 3.

Another feature that is added to the program is the external brace removal

capability. Usually external braces are removed after the bridge is constructed due to

fatigue issues. Users can choose to remove external braces from the model during live

load analysis.

Fig. 2.3: Distribution of Lane Load to Individual Deck Nodes

13

CHAPTER 3

DEVELOPMENT OF A GRAPHICAL USER INTERFACE

In the first version of UTrAp, there was a computational engine in FORTRAN

and a graphical user interface developed in Visual Basic.

In current version, a new windows user interface is developed using C++

language. Unlike the former version, this interface is in direct interaction with the

computational engine. To accomplish this direct interaction, the FORTRAN part

(computational engine) of UTrAp is reformed as a DLL (Dynamic Link Library) file.

Hence, the program is composed of mainly two parts, the user interface part (EXE file)

and computational engine part (DLL file).

The main working principle is the fact that the interface calls the required

function in the DLL and passes the inputs to DLL part, and DLL part makes the

calculations and returns the results via this function.

In this chapter, structure of the user interface part is explained. Interface part is

composed of mainly two groups. These are visual user interface components and object

classes. Former group is composed of main frame of the interface, view window class and

number of dialog box classes used for input and output. Latter group consists of object

classes and database class.

3.1. User Interface Components

3.1.1. Main Frame Class

This class establishes the main window of the program. All the menus, toolbars

and view windows are created on it. In Fig. 3.1, the components on the main frame of the

program are shown. In the program, only one instance of this class is created.

14

3.1.2. View Window Class

This class creates the view window of program and handles all the drawing

operations and the interaction with user such as zoom, rotate and pan-move of model. In

the program multiple instance of this view window can be created. Each window has own

viewing settings. These settings include viewing position, scale of the model, and

visibility of the objects drawn. Therefore, with multiple views, model can be viewed from

different positions and with different draw states.

Figure 3.1. General View of the Program

3.1.3. Dialog Box Classes

The dialog boxes used in the program are listed below with their functions.

General Properties: Shows for bridge geometric properties and material constants.

Typical Sections: Shows typical sections i.e. box girder and I girder.

Plate Properties: Shows plate properties used in bridge.

Direct Access
Toolbar Main Menu of

the Program

Main Frame of
the Program

View Window
of the Program

Unit System
Selection

Finite Element
Model

View Filtering
Toolbar

15

Bracing Properties: Shows brace properties used in bridge.

Brace Types: Shows brace types for external, internal and lateral braces.

Support Positions: Shows support positions for the bridge.

Stud Properties: Shows stud properties used in the bridge.

Analysis Options: Shows analysis options for the analysis

Placement Sequence: Shows placement sequence for the bridge

Live Loading Properties: Shows live loading parameters defined for the bridge.

Live Load Cases: Shows live load cases defined for analysis.

Load Combination: Shows load combinations defined for analysis

Run and Girder Selection: For run number and girder selection.

Stress Point Selection: For stress point selection at the section of the bridge.

Brace Item Selection: Dialog box for selection of sub item of external and internal

braces.

Load Case and Combination Selection: Used for selection of load case and/or load

combinations.

Result Type Selection: Used for result type selection i.e. Placement Sequence, Live

Load, Influence Line.

Log Viewer: Shows the report of the analysis immediately after its completion.

Graph and Table Result: A versatile graph and table visualization dialog box used for

analysis results.

About Box: Shows brief information about program

View Adjust: Displayed when user double clicked on an empty place on view screen.

Used for adjust of the view orientation and background color.

3.2. Object Classes in the Program

There are number of object classes used for the database and components of

bridge. Main visual objects on a bridge are Shell, Node, External Brace, Internal Brace,

Lateral Brace, Support, Pin elements. These visual objects are shown in Fig. 3.2.

16

Figure 3.2. Visual Objects on a Conventional Bridge

3.2.1. AxObject Class

This class is the base class for the entire database resident objects. This class has

no parent class. It only includes basic object properties and functions. This class is an

abstract class therefore no instance of this class can be created.

3.2.2. AxEntity Class

This class is the base class for all database resident and visual objects. It derives

from Object class. This class is also an abstract class. It includes basic functions with

visual operations.

3.2.3. AxNode Class

This class derives from Entity class and represents the finite element nodes in the

FE model of bridge. For every node in the model, an instance of this class is created an

appended to the database.

Shell Element

Support Element
Pin Element

Lateral Brace Element

Internal Brace Element

External Brace Element

17

3.2.4. AxShell Class

AxShell Class is derived from Entity class like all visual objects. It represents

Shell objects in the model. This class supports variable number of nodes for shell

elements.

3.2.5. AxExtBrFrame Class

AxExBrFrame Class is derived from Entity Class. It represents the external

braces in the bridge.

3.2.6. AxIntBrFrame Class

AxIntBrFrame Class is derived from Entity Class. It represents the internal braces

in the bridge.

3.2.7. AxLatFrame Class

AxLatBrFrame Class is derived from Entity Class. It represents the lateral braces

in the bridge.

3.2.8. AxSupport Class

AxSupport Class is derived from Entity Class. It represents the support objects in

the bridge.

3.2.9. AxPin Class

AxPin Class is derived from Entity Class. It represents the pin objects in the

bridge.

3.2.10. AxFiler Class

AxFiler class is implemented to make read and write operations of data. This

class makes possible to read and write of number of predefined data types. It can load

from and save to a memory stream as well as a file. This class writes to and reads from

the .axd file which holds the all project data.

Every database resident object writes and reads its data via this class.

18

3.2.11. AxPoint3d Class

 AxPoint3d class is a geometric class representing a point in three dimensional

space. It has three coordinates of double type. Database resident objects having a position

data uses this class to store that point.

3.2.12. AxGraph Class

 AxGraph mainly carries out the drawing operations of database resident objects.

AxGraph class also handles all the operations for initialization and destruction of the

OpenGL context and rotation, pan slide and zoom operations of the three dimensional

model. Each view window has its own AxGraph instance and uses this instance to

execute the drawing operations.

3.2.13. AxDatabase Class

AxDatabase class is the conductor of the program since it holds the entire project

information, and does all the operations related with the project. In the program there is

always one instance of database class and in the global scope, it can be accessed from

everywhere.

Figure 3.3. Class Hierarchy of Interface Objects

In Fig3.3, class hierarchy of database resident objects is presented. Basic database

resident object class is AxObject. This class has not drawing capability. AxEntity class is

derived from AxObject class. This class is the base class for the database objects with

drawing capabilities. In current version of UTrAp, there is no non-visual database

resident object class, but in future versions, new classes such as a material class can be

derived from AxObject.

Object

Entity

Node Pin Support LatBrFrame IntBrFrame ExtBrFrame Shell

19

Figure 3.4. Interaction Diagram of Objects

In Fig 3.4, Interaction diagram of the graphical user interface is presented. In this

diagram, mainly, object storage, drawing and save/load operations of the program are

demonstrated. The detailed information about these operations is given below.

Storage of Database Resident Objects:

 In database, database resident objects are stored in a vector type array. A vector

type array allocates a memory space for storage. Unlike link lists, all the items in the

array are sequentially stored in the allocated memory block. With the addition of newly

created objects, if the current size is not enough to store, it allocates a new memory block

to satisfy the required store size. To perform this reallocation, it reserves a memory block

of new size and copy the previously allocated memory block to newly allocated space.

This is an important drawback of vectors. To eliminate this drawback, the reallocation

size should be selected enough to store all objects.

In database array, the pairs of identity numbers (id) and pointers (memory

addresses) of objects are stored. Every object has a unique id. Upon the creation of a new

object, a new id is assigned to it. The database array is always kept sorted with respect to

Main Frame View Window

AxGraph
AxDatabase

AxNode
AxShell
AxExtBrFrame
AxIntBrFrame
AxLatBrFrame
AxPin
AxSupport

OpenGL
Render Context

.axd File
AxFiler

AxPoint3d

20

ids (For sorting algorithm, refer to Appendix B). This provides fast access to objects by

ids. To access any id in the array, a quick search algorithm is utilized (For quick search

algorithm, refer to Appendix B). This quick sort algorithm runs on only sorted arrays.

Save/Load Operations:

 For save and load operations, the database object creates an instance of AxFiler

class and associates it with an UTrAp project file specified by the user. And this instance

of AxFiler object is passed to the all objects by FileIn and FileOut virtual functions to

allow them to read and write their data. For write operations FileOut, for read operations

FileIn functions are called. The important point is to exactly match the count of bytes

written and read by any object. Since the entire project file is read and written

sequentially. Therefore any inconsistency in read and write procedures of an object will

fail the read and write operations of all project.

Drawing Operations:

 Drawing operations are performed basically by the OpenGL (Open Graphics

Library, Segal, M, Akeley, K, 1999). OpenGL is a software interface to graphics

hardware. The interface consists of a set of several hundred procedures and functions that

allow a programmer to specify the objects and operations involved in producing high-

quality graphical images, specifically color images of three-dimensional objects.

To use OpenGL commands, a rendering context has to be created. To create a

rendering context, OpenGL has to be associated with a drawing area (i.e. rendering

window). AxGraph class performs this association and the required initializations. Every

view window has its own AxGraph instance. This class prepares the OpenGL for drawing

operations.

Upon the request of drawing of the model, the OpenGL rendering context of the

active view window is made current by the AxGraph object, and then the database object

calls Draw functions of all the objects derived from AxEntity. In Draw functions, objects

calls directly OpenGL commands. By means of these commands, required drawing is

done on the current view window.

Analysis Operations:

Operations undertaken by database involve also loading and calling FORTRAN

analysis engine to make analysis, retrieving results and processing them.

21

Database class holds three sets of analysis data. These are the user inputs of

project, the input data structure to send to FORTRAN analysis engine and the analysis

results data structure obtained after the analysis.

The user inputs of project data are all the information entered by the user via

dialog boxes or an input file.

Input data structure includes all the data sets to be passed to the analysis engine.

In fact, this data set has the same information with the user inputs data set, but the format

is different. The variables in the input data structure are listed in Appendix C.

 Analysis results data set includes all the analysis result arrays obtained from the

analysis. During analysis results visualization, this data set is processed.

Fig 3.5. Interaction EXE and DLL Parts

 Parameters passed to and taken from the analysis engine are shown in Fig.3.5.

Steps of Analysis:

• Before the analysis is conducted, FORTRAN dynamic link library is loaded and

address of required function to make the analysis is taken.

• Then, the input data structure is created and filled by the database using the user

inputs.

• Following the preparation of inputs, analysis function is called with these inputs.

• After the analysis is done, a number of memory addresses pointing result arrays

are taken as analysis results. These memory addresses can not be used by C++

arrays directly, since FORTRAN and C++ array indexing are different.

FORTRAN constitutes multi dimension array in a single thread memory stream

in column wise ordering, whereas, C++ does the same job using multi thread

EXE File

Graphical
User
Interface

DLL File

Finite
Element
Analysis
Engine

Input Data Structure

Result Data Structure

22

memory streams. Therefore FORTRAN arrays can be copied to C++ arrays as

segments. This process is explained below on an example.

In Fig 3.5, for example, there is an array of n numbers and this array is same array

with a FORTRAN array of a x b. To calculate the index of (r,s) element of FORTRAN

array: index in memory stream= ((r – 1) x b + s)

1 2 3 n-2 n-1 n

A memory stream taken from FORTRAN

1,1 1,2 1,3 . 1,b . 2,b . . a,b

Corresponding multi-dimension array of (a x b) in FORTRAN

Figure 3.6 Memory Stream Correspondences

This array copying operation is valid for all number of dimensions of arrays.

After filling the result data structure as described above, the results are ready to be used

by database.

Result Quantity Calculation for Live Loading

In the live load analysis, any analysis result like force, displacement or stress at a

position or on an object such as shell, brace, support, can be obtained by using the

integration of influence line for that position of element under the given load.

23

Fig 3.7 Continuous Influence Line and Loading

24

Say that for a position along the bridge, we have a displacement influence line

s=s(x) as in Fig 3.7. The displacement quantity has to be found at that position under a

constant distributed load f=k extending from x=a to x=b, and n point loads p1, p2, …, pn

shown in Fig3.7.

Under the distributed load, the displacement value can be found as follows;

� ⋅⋅=∆
b

a

dxxsf)((1)

Under the point load, the displacement value can be found as follows;

�
=

⋅=∆
n

i
ii xsp

1

)((2)

In this program, influence line is obtained as discrete lines, therefore, instead of

analytical integration, numerical integration is used.

For distributed loads, to find the displacement value, the area corresponding to

portion x=a, b (shaded area in Fig 3.8) is calculated and scaled with f=k value.

 For point loads, using linear interpolation, to find the displacement value, the y

values at load positions on influence line graph are found and scaled with the pi values

and summed up.

25

Fig 3.8 Discrete Influence Line and Loading

26

3.3. Difficulties Encountered and Recommendations for Future Improvements

Main difficulties encountered during development of this program are basically

due to graphical operations, storage of database resident objects, save/load operations. In

the following paragraphs, the difficulties encountered during programming and the future

recommendations for improvements of the program are explained.

In graphical operations, the important point is to make the drawing routines fast.

Since, with the increasing size of the project, graphical operations such as rotation, zoom,

etc. will get slower. Therefore developer always has to optimize the drawing functions.

Any unnecessary operations inside drawing functions should be removed. The total

render of entire project has to be made within tens of milliseconds.

The other important point is the storage data structure of database resident

objects. There are two well known data structures, i.e. vector and link list. The general

memory occupations of them are shown in Fig.3.9. The main advantage of vector is to

have direct access to any index in the vector. But important drawback of this data

structure is reallocation necessity as mentioned sections above. Unlike vector, link list has

no reallocation necessity. Since, it does not have to put entire data sequentially in a

memory block. But in link list data structure, direct access to a required index is

impossible. To reach any index in the list, all the nodes from start to required index has to

be passed. All adjacent nodes have links to each other.

For future improvements to the program, a binary tree data structure can be

embedded into the program. Binary trees have the advantages of both vector and link list.

They do not have to reallocate memory, since it works like a link list but in a tree

formation. Also access speed is much faster than a link list. With n step of search, 2n

number of items can be accessed.

 For save load operations, the important point is to put a version counter in every

save and load functions. Since, with modifications to the program data structures of

objects will change and the presaved projects can not be read anymore. To avoid this

situation, a version counter has to be inserted. This counter will orient the save load

procedures.

27

Fig.3.9. Structures of Vector, Link List and Binary Tree

1 2 3 4 5 6 7

1

2
3

4

5

6

7

A vector structure

A link list structure

Root

0 1

00 01 10 11

000 001 010 011 100 101 110 111

A binary tree structure

28

CHAPTER 4

PROGRAM VERIFICATION

In this chapter, the newly added features of the program were tested against

closed form solutions and design charts. In the first part of the verification, slip at the

interface for simple beams were compared to the closed form solutions. In the second

part, maximum moment and end reaction forces due to traveling truck load were

computed and are compared with the values presented in AASHTO design chart.

4.1. Part1: Interface Slip

The design of composite beams is controlled primarily by the magnitude of

horizontal shear force transferred between the concrete slab and the steel beam. This

force transfer is usually provided for by headed stud or other types of shear connectors,

all of which are characterized by similar load-slip behavior.

The force transfer in a composite beam can be visualized by drawing free-body

diagrams of the beam and the slab (Fig. 4.1) and writing equations of equilibrium of the

components and the overall system. For the linear elastic case, i.e. barring any nonlinear

behavior of materials and assuming that the slope of the load-slip curve for studs is

constant, it is possible to write a closed form solution. The derivation of interface slip is

presented by Viest et al. (1997). Following section focuses on the theory of incomplete

action as explained by Viest et al. (1997).

29

Figure 4.1 Forces Acting on a Composite Section (Ref: Viest et al., 1997)

Theory of Incomplete Interaction:

The force transfer in a composite beam with partial shear connection can be

visualized by separating the problem into its constituents, the beam and the slab, and

drawing their free-body diagrams (Fig. 4.1). For each of these constituents, the following

equations of equilibrium can be written.

For concrete slab:

xTVT ∂⋅−=∂ (4.1)

xF ∂⋅=∂ τ (4.2)

FtVM TT ∂⋅−=∂ (4.3)

For steel beam:

xTVB ∂⋅−=∂ (4.4)

xF ∂⋅=∂ τ (4.5)

FdVM BB ∂⋅−=∂ (4.6)

30

The moment at any cross section is given by

FhMMM BT ⋅++= (4.7)

Where; h : distance between centroids of concrete and steel sections.

Differentiating Eqns. (4.3) and (4.6) twice with respect to x yields

2

2

2

2

dx
Fd

t
dx

dV
dx

Md TT −= (4.8)

2

2

2

2

dx
Fd

d
dx

dV
dx

Md BB −= (4.9)

dx
yd

EIM
2

−= (4.10)

Defining also;

BT

BT
eq EAEA

EAEA
EA

)()(
)()(

+
= (4.11)

BTabs EAEAEI)()(+= (4.12)

2hEAEIEI eqabsfull += (4.13)

abs

full

eq

s

EI

EI

EA
k

=2α (4.14)

where;

ks : shear stiffness of a shear connector per unit length.

 (EA)T : axial stiffness of slab.

 (EA)B : axial stiffness of beam.

(EI)T : flexural stiffness of concrete slab.

(EI)B : flexural stiffness of steel section.

31

After rigorous derivations starting with the equations written above, following

result is obtained (Ref: Viest et al., 1997).

The slip, for the case of a uniformly distributed load q, is given by

�
�

�
�
�

�
−⋅++

⋅
⋅−⋅= x

l
xx

l
l

EI
qh

xs
abs

αααα
α

α
α 2

)sinh()cosh(
)sinh(

)cosh(1
)(3

 (4.15)

where; q : applied distributed force.

Example Problem:

The following problem was solved using UTrAp and the interface slip values are

compared against closed form solutions in Fig. 4.4 and Fig. 4.5.

6000 cm

0.001 t/cm

Figure 4.2 Loading of bridge for example problem

32

4
3

3

22
3

2

2

2

36000
12

250)12(

2500

2531250)75(4502
12

)150(

550

/2000

/200

cmI

cmA

cmI

cmA

cmtE

cmtE

c

c

s

s

s

c

=⋅=

=

=⋅⋅⋅⋅=

=

=

=

Studs every 100cm and 1 stud per flange.

250 cm

4 cm

150 cm

50 cm

12 cm

1 cm

Figure 4.3 Cross-sectional properties of bridge for example problem.

33

262

2

29292

296

6

6

29

26

6

10202.4
067.5
32.7

343750
1

/1
100

/100

1032.7)81(343750100675

1006.5102.7)()(

343750
101.1500000
101.1500000

)()(
)()(

1006.5)25312502000()()(

102.7)36000200()()(

101.1)5502000()()(

500000)2500200()()(

−−⋅=⋅=⋅=

==

⋅⋅=⋅+⋅⋅=⋅+=

⋅⋅+⋅=+=

=
⋅+
⋅⋅=

+
⋅=

⋅⋅=⋅==

⋅⋅=⋅==

⋅=⋅==

=⋅==

cm
EI

EI

EA
k

cmt
cm
cmt

k

cmthEAEIEI

cmtEIEIEI

t
EAEA
EAEA

EA

cmtEIEI

cmtEIEI

tEAEA

tEAEA

abs

full

eq

s

s

eqabsfull

BTabs

BT

BT
eq

SB

CT

SB

CT

α

�
�

�
�
�

�
−++−⋅

⋅
⋅= x

L
xx

L
L

EI
hq

xs
abs

αααα
α

α
α 2

)sinh()cosh(
)sinh(

)cosh(1
)(3

The results found from the Eqn. 4.15 and UTrAp are plotted in Fig. 4.4 and 4.5.

Ks=100 t/cm 100 cm stud spacing 1 stud per flange

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 1000 2000 3000 4000 5000 6000 7000

Distance (cm)

Sl
ip

 a
t I

nt
er

fa
ce

 (c
m

)

CLOSED FORM UTRAP

Fig.4.4 Results of slip at the interface for Ks=100t/cm

34

Ks=50 t/cm 100 cm stud spacing 1 stud per flange

-0.025
-0.02

-0.015
-0.01

-0.005
0

0.005
0.01

0.015
0.02

0.025

0 1000 2000 3000 4000 5000 6000 7000

Distance (cm)

Sl
ip

 a
t I

nt
er

fa
ce

 (c
m

)
CLOSED FORM UTRAP

Fig.4.5 Results of slip at the interface for Ks=50t/cm

As seen in Fig. 4.4 and Fig. 4.5, there is excellent agreement between the computational

results and the theoretical solution.

4.2. Part2: Comparison of Moment and End Reaction Values for Simply Supported

Beams

 In this part, moment and end reaction values recommended by AASHTO

specifications are compared with the results obtained from UTrAp. For this comparison,

simple span bridges in varying lengths are analyzed. For loading, AASHTO HS20 type

loading is selected. The results are tabulated and drawn below. In Table 4.1, moment and

end reaction values given in the AASHTO specifications are tabulated. Also in this table,

the analysis results from UTrAp are presented along with the percentage differences. In

addition to Table 4.1, Figs. 4.6 through 4.9 present the results in a graphical format.

35

Table 4.1. Maximum Moments and End Reactions for Given Bridge Lengths

 HS20 Loading
 AASHTO UTrAp
Span
Length(ft)

Moment
(kip.ft)

End Reac.
(kip)

Moment
(kip.ft) %difference

End Reac.
(kip) %difference

4 32.00 32.00 32.00 0.00 32.00 0.00
8 64.00 32.00 64.00 0.00 32.00 0.00

14 112.00 32.00 112.00 0.00 32.00 0.00
18 144.00 39.10 144.00 0.00 39.11 0.03
24 192.70 45.30 192.00 0.36 45.33 0.07
28 252.00 48.00 251.43 0.23 48.00 0.00
34 343.50 52.20 342.59 0.26 52.24 0.08
38 414.30 54.30 413.47 0.20 54.32 0.04
46 556.50 57.30 555.83 0.12 57.39 0.16
56 735.10 60.00 734.86 0.03 60.00 0.00
66 914.00 61.90 913.45 0.06 61.82 0.13
90 1344.40 64.50 1344.00 0.03 64.53 0.05

120 1883.30 66.40 1883.20 0.01 66.40 0.00
*170 3077.10 80.40 3076.57 0.02 80.40 0.00
*240 5688.00 102.80 5688.00 0.00 102.80 0.00
*300 8550.00 122.00 8548.80 0.01 122.00 0.00

(*) Governing loading is lane loading, otherwise truck loading governs.

MAXIMUM MOMENT

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250 300 350

BRIDGE LENGTH(ft)

M
O

M
E

N
T(

ki
p.

ft
)

AASHTO Moment
UTrAp Moment

Fig.4.6 Maximum moments obtained by UTrAp and recommended by AASHTO

36

MAXIMUM END REACTION

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350

BRIDGE LENGTH(ft)

E
N

D
 R

E
A

C
TI

O
N

(k
ip

)

AASHTO
UTrAp

Fig.4.8 Maximum end reactions obtained by UTrAp and recommended by

AASHTO

As can be seen from figures above, there is an excellent overlap between the

values obtained from UTrAp and recommended by AASHTO. Maximum percentage

difference is 0.36% for moment as shown in Fig.4.7. For end reaction values, maximum

percentage difference is 0.15% as can be seen in Fig.4.9. These differences are quite

small and in acceptable limits.

37

CHAPTER 5

SUMMARY, CONCLUSIONS AND FUTURE RECOMMENDATIONS

Due to the advances in fabrication technology steel/concrete composite bridges

are used more frequently in complex highway interchanges. Long span capability,

economics and aesthetics of these systems make them more favorable compared to the

other structural systems. Analysis of curved composite bridges presents a variety of

challenges. Approximate hand methods, finite strip method, grid analysis method, and

finite element method can be used to analyze these systems. Among the methods

presented finite element method provides the most elaborate treatment. However, this

analysis method had limited use in the past due to the vast amount of computational

resources needed and the knowledge of this analysis method on the designers part. In

order to circumvent these problems a research study has been undertaken at the

University of Texas in early 2000. In this research study a computer program named

UTrAp was developed to analyze these systems using the finite element method. The first

release UTrAp was capable of analyzing curved composite trapezoidal box girders under

construction loads. The program had a computational engine written in FORTRAN and a

Graphical User Interface written in Visual Basic.

Over the following years the computational engine of the program was enhanced.

As of year 2005 the computational engine was capable of analyzing I-girder systems. In

addition, the number of finite element types were increased and meshing options were

added. In order to come up with a complete software package there was a need to enhance

the capabilities of the computational engine further and to develop a brand new Graphical

User Interface.

Pursuant to this goal several new features are added to the program as a part of

this thesis work. The modifications include the addition of live load analysis capability,

relaxing the limitations on the number of girders, post processing of support reactions and

38

shear flow, addition of new internal and external brace types. In addition several parts of

the computational engine is restructured to shorten computation time.

In addition to the modifications to the computational engine a new Graphical

User Interface was developed. The Graphical User Interface is written in C++ language

using OPENGL libraries for visualization. The GUI is in direct interaction with the

computational engine. Data is transferred between two modules using the Random

Access Memory, thereby providing no loss of accuracy. By making use of the GUI users

can input data easily into the program and be able to post process the results. The GUI

has the capability of displaying graphical and tabulated output. Users can post process for

deflections, rotations, support reactions, shear flow, stresses, cross sectional forces and

brace member forces. These quantities are given for placement sequence analysis as well

as live load analysis. GUI also has the capabilities of displaying influence lines for

desired quantities. Users can add truck and distributed live loads and can define load

combinations.

Results obtained from the software are compared against closed form solutions

and recommendations given by design specifications. Comparisons revealed that UTrAp

provides excellent solutions for the test cases.

In conclusion, the developed software can be easily used in routine design

practice. Complex bridges can be analyzed with minimal effort using this computer

program. As is true for most of the software new capabilities can be added in the future.

Some of the features that can be added to the program are as follows:

• Addition of user defined trucks

• Unit conversions

• Dynamic analysis capabilities

• Eigenvalue buckling analysis capability

• Addition of skew supports

• Addition of dapped ends

• Modeling of elevation difference between supports

• AASHTO design checks

39

REFERENCES

Topkaya, C., Williamson, E. B., Development of Computational Software for Analysis of

Curved Girders under Construction Loads, Computers and Structures, 2003, Vol. 81,

pp.2087-2098.

Topkaya, C., Williamson, E.B., and Frank, K.H., Behavior of

curved steel trapezoidal box-girders during construction,

Engineering Structures, 2004, No. 26, 721-733.

Popp, D. R., UTrAp 2.0: Linearized Buckling Analysis of Steel Trapezoidal Girders,

M.S. Thesis, 2004, The University of Texas at Austin.

Kalaycı, A. S., Improvement of Computational Software for Composite Curved Bridge

Analysis, M.S. Thesis, 2005, Middle East Technical University.

Viest , I. M., Colaco, J. P., Furlong, R.W., Griffis, L. G., Leon, R. T., Wyllie, L. A.,

Composite Construction Design For Buildings, 1997, ASCE Publications, McGraw-Hill.

American Association for State Highways and Transportation Officials (AASHTO),

Standard Specifications for Highway Bridges, 16th Ed., 1996, AASHTO, Washington

D.C.

Segal, M, Akeley, K., OpenGL Graphics System: A Specification, 1999, Silicon Graphics

Inc., CA

40

APPENDIX A

USER’S MANUAL AND EXAMPLE PROBLEM FOR UTrAp

 UTrAp is a computer program developed for analysis of curved/straight

steel/concrete composite bridges having box or I section. Multiple girder systems with

multiple segments with different curvatures can be analyzed with this program. The

program consists of a Graphical User Interface (GUI) and an analysis module. The

analysis module relies on the finite element method to compute the response of the three-

dimensional bridge structure. Input data is supplied to the program by making use of the

GUI. The program can handle multiple analysis cases and has graphics capability to

visualize the output. In the following sections, details of the program are presented along

with an example problem.

Example Problem Definition

 The example problem presented herein is a 3-span, dual girder system with a

centerline radius of curvature of 137m. The bridge is named as “Direct Connect Z” and

has a centerline arc length of 156m. The plan view of the bridge is given in Fig. A.1.

Figure A.1: Plan View of Direct Connect Z

PIER

PIER PIER

PIER
13Z

14Z 15Z

16Z

SPAN 13
SPAN 14

SPAN 15

DIRECT CONNECT Z

41

 In UTrAp, the radius of curvature can be variable along the bridge length.

Positions along the bridge are defined by the distance along the arc length relative to the

start end. In order to specify a bridge with a variable radius of curvature user has to input

the segment length and the radius of curvature of the segment. Positive radius of

curvature results in a concavity pattern shown in Fig. A.1 where the start end is pier 13Z.

Negative values for the radius of curvature result in an opposite concavity pattern. A

straight segment can be specified by assigning zero to the curvature.

Cross-sectional dimensions of the Direct Connect Z are given in Fig. A.2. Web

depth is measured between the centerline of top and bottom flanges. Centerline of each

girder is offset by 250 cm from the bridge centerline. The concrete deck width and

thickness are 900 cm and 25 cm, respectively.

Figure A.2: Cross-sectional Dimensions

 The steel plates that make up the girder have variable thickness along the length

of the bridge. Table A.1 provides the details of the plate thickness. Lengths given in this

table are the centerline arc lengths. Properties are listed beginning from the start end of

the bridge. In this program all girders must have the same plate thickness properties.

140cm

60cm 60cm

210cm

140cm

250cm

42

Table A.1: Plate Properties

WEB BOTTOM FLANGE TOP FLANGE

Length(m) Thickness(c

m)

Length(m) Thickness(cm) Length(m) Thicknes

s(cm)

32 1.2 32 2.0 40 3.2

31 1.6 8 3.2 3 4.5

30 1.2 4 4.0 9 7.0

31 1.6 8 5.0 3 4.5

32 1.2 3 4.0 46 3.2

 8 3.2 3 4.5

 30 2.0 9 7.0

 8 3.2 3 4.5

 3 4.0 40 3.2

 8 5.0

 4 4.0

 8 3.2

 32 2.0

ΣΣΣΣ = 156 m ΣΣΣΣ = 156 m ΣΣΣΣ = 156 m

Bracing members are provided throughout the girder. Internal, external

and lateral braces are present. Locations of the braces are given in Table A.2. For

internal and external braces, only one location value is required. For lateral braces,

the start and end location of each brace is needed.

43

Table A.2: Location of Braces

 Internal

Bracing

External

Bracing Lateral Bracing

Brace

Number

Location (m) Location (m) Start Location

(m)

End

Location

(m)

1 6 12 0 6

2 12 24 6 12

3 18 36 12 18

4 24 60 18 24

5 30 72 24 30

6 36 84 30 36

7 42 96 36 42

8 54 120 42 48

9 60 132 48 54

10 66 144 54 60

11 72 60 66

12 78 66 72

13 84 72 78

14 90 78 84

15 96 84 90

16 102 90 96

17 114 96 102

18 120 102 108

19 126 108 114

20 132 114 120

21 138 120 126

22 144 126 132

23 150 132 138

24 138 144

25 144 150

26 150 156

44

There are 23 internal and 26 lateral braces per girder. In addition, there are 10

external braces between the two girders. Internal braces are in the form of K-trusses,

which have members with cross-sectional area of 25.0 cm2. All lateral braces have a

cross-sectional area of 40 cm2, and their orientation is given in Fig .A.1. External braces

are comprised of truss members with a cross-sectional area of 30 cm2. Details of their

configuration are provided in Fig. A.1.

 The bridge has four supports which are located 0, 48, 108, and 156 meter away

from the start end. Studs are spaced every 30 cm at both ends of the bridge for a distance

of 3 m from the pier. For the remainder of the bridge, studs are spaced at every 60 cm.

There are 3 studs per flange over the entire length of the bridge.

 The concrete deck is placed in 5 segments. The lengths and the sequence of

placements are given in Fig. A.3.

Figure A.3: Concrete Placement Sequence

 This analysis example will consider all placement sequences. The program

requires the lengths of the placements and number of analysis to be performed. In this

example, 5 analysis cases will be considered.

In the first analysis, the concrete deck is placed on the first segment, and a

uniform loading of 0.055t/cm is applied on that segment to account for the concrete self-

weight. In the second analysis, it is assumed that the concrete on the first segment has

cured and attained a stiffness of 70t/cm2 with a corresponding stud stiffness of 45t/cm. A

uniform loading of 0.055t/cm is applied to the second segment due to the concrete

weight. In the third analysis, it is assumed that the concrete modulus and stud stiffness

have reached to 140t/cm2 and 90t/cm, respectively, for the first segment. For the second

21m

43m
28m

43m

21m

PLACEMENT 1

PLACEMENT 4

PLACEMENT 3
PLACEMENT 5

PLACEMENT 2

SPAN 13

SPAN 14

SPAN 15

13z

14z 15z

16z

45

segment, the concrete and stud stiffness values are assumed to attain values of 70t/cm2

and 45t/cm, respectively. A uniform loading of 0.055t/cm is applied to the third segment

to account for concrete weight. Finally for the fourth and fifth analysis, a uniform load of

0.055t/cm is applied to the respective segments. It is assumed that segments one, two and

three have concrete stiffness of 200t/cm2 and stud stiffness of 130t/cm.

The summary of analysis parameters are given in Table A.3.

Table A.3: Pour Sequence Analysis Parameters

 Analysis 1 Analysis 2 Analysis 3 Analysis 4 Analysis 5

Deck Length Con.

Mod.

Std.

Stf.

Load Con.

Mod.

Std.

Stf.

Load Con.

Mod.

Std.

Stf.

Load Con.

Mod

Std.

Stf.

Load Con.

Mod.

Std.

Stf.

Load

1 21 0 0 0.055 70 45 0 140 90 0 200 130 0 200 130 0

2 43 0 0 0 0 0 0 0 0 0 0 0 0.055 0 0 0

3 28 0 0 0 0 0 0 0 0 0.055 200 130 0 200 130 0

4 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.055

5 21 0 0 0 0 0 0.055 70 45 0 200 130 0 200 130 0

 ΣΣΣΣ=156m

In addition to placement sequence analysis, live load analysis is also performed.

For live loading analysis, two input sets are required; these are lane definitions and deck

properties for live loading analysis. In this example problem, only one lane having a

width of 3m is defined (Extends from -1.5m to 1.5m from the centerline of the bridge

deck). For the deck properties, stud stiffness and concrete modulus are entered for the

user defined bridge segments. In this case, only one segment along the bridge is defined

with stud stiffness 130 t/cm, and concrete modulus 200t/cm2.

Table A.4: Lane Definitions

Lane No Start Location (m) End Location (m)

1 -1.5 1.5

46

Table A.5: Live Loading Parameters

Segment

Number

Length(m) Concrete Modulus (t/cm2) Stud Stiffness (t/cm)

1 156 200 130

 To perform live load analysis, live load cases should be defined. A live load case

has two parameters: the first one is the load definition and the other one is the lane on

which the load applied. Load type can be moving load (i.e. truck type) or distributed load

over the lane defined.

 In this analysis, two live load cases, LL1 and LL2, will be defined. One for truck

type and one for distributed load. For truck type live load case LL1, standard HS20 truck

is selected. For second live load case LL2, 0.01t/cm distributed load extending from 0m

to 108m along the bridge length.

 The following representative load combinations are going to be defined for this

bridge example.

 LC1 = (PS1 + PS2 + PS3 + PS4 + PS5) * 1.0

 LC2 = LC1 + 1.5 * LL1

 LC3 = LC1 + 1.5 * LL2

 Where, PS stands for nth placement sequence.

USER’S GUIDE AND SOLUTION OF THE EXAMPLE PROBLEM

The Graphical User Interface of UTrAp has a total of 12 menus. This section will

explain each of these menus in detail. Use of these menus will be presented along with

the example problem.

File Menu: This menu has seven submenus and is used for data management. Files can

be stored and retrieved by making use of this menu. Details of each submenu are as

follows:

47

New: This submenu starts a blank project. If a new bridge model is going to be formed,

this option should be selected.

Open: This submenu is used to open an existing project. The UTrAp project files have an

extension of *.axd. When the existing project submenu is invoked, an open file box will

appear which is used to select the existing project file.

Save: This submenu is used to save a project to the hard disk. It can be used to save the

changes made to an existing project or the contents of a newly developed project. When

the Save submenu is invoked, if project is previously saved, project is saved with current

state, if not saved previously then save file box will appear which is used to name or

rename the project file.

Save As: This submenu has a similar function to the Save submenu. However, this button

always opens the save dialog box and gets a new project name.

Import: This submenu imports UTrAp input file in text format and apply these inputs to

the current project.

Export: This submenu exports the current project to UTrAp input file in text format.

Exit: This submenu is used to exit the program.

Example Problem: A new project is formed by making use of the New submenu.

View Menu: This menu has two submenus,

Create View: This submenu is used to create a new view of the finite element model.

Arrange: This submenu has 3 submenus; it is basically used to arrange multiple views

that are present. Three options are available; Cascade, Tile Horizontal, Tile Vertical.

Example problem: When a new project is selected, the program automatically generates a

view window; therefore this menu does not have to be used unless multiple views are

required.

General Menu: This menu is used to input the geometric properties of the bridge. Values

should be typed in the boxes provided. After entering all the required data, the user must

press OK button to save and exit the form. To exit without saving the data entered,

Cancel button must be pressed. This data saving process is valid for all subsequent forms.

48

Example Problem: Geometric property values are entered on the form and saved by

making use of OK button. Fig. A.4 shows the Geometric Properties form with the entered

data.

Figure A.4: General Properties Form

Figure A.5: Box Girder Dimensions

Top Width

Girder Spacing

Width of Deck

Depth of Web

Thickness of Concrete Deck

Width of Bottom Flange

Top Flange Width

49

Figure A.6: I Girder Dimensions

 The element size along the bridge length needs to be entered in the general

properties dialog box. It is recommended to have an element size less than 150cm and

values less than 100cm are desired. Is is also recommended that the element size be

chosen so as to ensure that the distance between internal brace panels be an integer

multiple of the element size. Users can input segment properties by using the

Add/Remove buttons provided on the form. To remove all the segments, Remove All

button can be used.

 The typical box and I girder dimensions can be viewed via pressing the Typical

Sections button in the dialog. In Fig. A.5 and Fig. A.6 these typical sections are shown.

Plate Properties Menu: This menu is used to input the plate properties related with the

bridge. The plate properties form has three folders. Each folder is reserved either for the

web, the bottom flange or the top flange properties. Properties are input in a tabular form.

The length of the plate and its thickness should be entered from the start to the end of the

bridge. There are two buttons used to add and remove properties. Their function is

explained below.

Add: This button is used to add properties. A change in plate thickness requires the user to

specify a new property. The user should enter the number of properties that will be

needed to characterize the bridge. After, the number of rows in the table is increased by

the total number of properties specified by the user.

Remove: This button is used to remove properties. The property number that is going to

be removed should be specified in the box next to the Remove button.

Width of Deck

Top Flange Width

Width of Bottom Flange

Girder Spacing

Depth of Web

Thickness of Concrete Deck

50

Example Problem: In each folder, the number of properties is increased by the Add

button. All plate properties are entered in a tabular format. A representative input for

bottom flange plate properties are given in Fig. A.7.

Figure A.7: Plate Properties Form

Bracing Menu: This menu is used to input bracing information related with the bridge.

The brace properties form has three folders. Each folder is reserved for either the internal,

external, or the lateral brace properties. Properties are input in a tabular form. Depending

on the version of the program, different geometrical types of braces can be specified for

internal and external braces. For internal braces, location, type, gird/spacing (For box

type girders, girder index, for I type girders, spacing index) and member cross-sectional

area information are required. Location, type, spacing and member cross-sectional area

information are required for external braces. The type, spacing, start location, end

location, and cross-sectional area are required for the lateral braces. There are buttons

provided to add and remove braces. Functions of the buttons are explained below.

51

Add: This button is used to add braces. The user should enter the number of braces that

will be added to the box next to the Add button. The number of rows in the table is

increased by the corresponding number entered by the user.

Equally Space: This button is used to add braces at equally spaced intervals. The number

of braces to be added is specified in the box next to the button. For this button to function

properly, two more location values must be entered. Braces are placed at equal intervals

between these values.

Remove: This button is used to remove braces. The brace number that is going to be

removed should be specified in the box next to the Remove button.

Remove All Braces: This button is used to remove all the braces specified previously in a

certain folder.

Type: This button is displayed in the internal and external braces folder. It is used to

assign the same type to all braces. The type of the brace should be entered into the box

next to this button. The available bracing types and their configurations are displayed in a

separate form using Show Internal/External Brace Types buttons.

Area: This button is used to assign the same cross-sectional area value to all brace

members. The cross-sectional area value should be entered into the box next to this

button.

Show Internal/External/Lateral Brace Types: These buttons are used to display the types

of braces that a user can specify in the program. When this button is pressed, a form that

shows the geometry and types of braces are displayed on the screen. Fig. A.8 shows the

types of internal and external braces supported by the current version of the program.

52

Figure A.8: Internal and External Brace Types

All Type: This button is displayed only in the lateral braces folder. It is used to assign a

type written in the edit box just right of the button to all lateral braces. Lateral braces can

have only four orientations. Therefore, there are four types of lateral braces which are

shown in Fig. A.9. Lateral braces of type 1 and 2 are connected to top flange. This type

bracing can be applied to both box and I type girders. Type 3 and 4 braces are connected

to bottom flange. Unlike type 1 and 2, these types of lateral braces can only be applied to

I girders.

Figure A.9: Lateral Brace Types

Alternating Lateral Brace Type: This button is displayed only in the lateral braces tab. It

is used to assign alternating types to consecutive braces. The first brace will be of type

written in the edit box just right of the button, and second brace will be of type written in

the other edit box, etc.

Type 2, 4 Type 1, 3

53

Example Problem: 23 internal braces and 26 lateral braces for each girder (i.e. total of 46

internal and 52 internal braces), 10 external braces are added to the folders by making use

of the Add button. Brace locations, types, spacing and cross sectional areas are entered

into the folders according to the information given in Table A.2. All internal and external

braces are type 1. Lateral braces have alternating types starting with type 2. In Fig A.10

and Fig. A.11, two tabs of the bracing properties form are shown.

Figure A.10: Bracing Properties Form - Internal Braces Tab

54

Figure A.11: Bracing Properties Form – Lateral Braces Tab

Support Menu: This menu is used to input support locations. Locations are input in a

tabular form. The program assumes that only one of the supports is pinned and the rest

are rollers. The first support specified is considered to be the pinned one. Number of rows

of the tabular input form is controlled by the Add and Remove buttons. Functions of the

buttons are explained below.

Add: This button is used to add supports. The user should enter the number of supports

that will be added to the box next to the Add button. The number of rows in the table is

increased by that specific amount.

Remove: This button is used to remove supports. The support number that is going to be

removed should be specified in the box next to the Remove button.

Example Problem: Four supports are added to the table by making use of the Add button.

Support locations given in the description of the bridge are entered on the table. Fig. A.12

shows the support locations form along with the entered data.

55

Figure A.12: Support Locations Form

Stud Menu: This menu is used to input stud properties. Properties are input in tabular

form. Spacing of the studs and the number of studs per flange should be supplied to the

program along the bridge length. The number of rows of the tabular input form is

controlled by the Add and Remove buttons. Functions of these buttons are explained

below.

Add: This button is used to add properties. The user should enter the number of properties

that will be added to the box next to the Add button. Number of rows in the table is

increased by that specific amount.

Remove: This button is used to remove properties. The property number that is going to

be removed should be specified in the box next to the Remove button.

Example Problem: For this problem, stud properties change three times along the bridge

length. Therefore, three rows are added to the table by making use of the Add button.

Cells of the table are filled according to the geometry information given in the bridge

description. Fig. A.13 shows the stud properties form along with the entered data.

56

Figure A.13: Stud Properties Form

Analysis Menu: This menu has five submenus. These are Options, Placement Sequence,

Live Load Parameters, Live Load Cases and Load Combinations.

1. Options: This menu is used to input element type, solver type analysis type, live load

placement interval, moving load step and the exclusion flag for external braces in live

loading analysis.

All this information must be supplied by the user. Bridges can be modeled using 9-

node shell element (Element type 1) or 4-node shell element (Element type 2). It is

recommended to use Type1 elements. Depending on the types of analysis user has to

choose between “placement sequence” analysis and “live load analysis”. Both

analyses can be performed in the same run also.

The precision of the influence lines can be controlled by the live load interval

parameter. The most accurate one is to have load interval at every element. If higher

values are used the run time will be shorter, however, the results for live load analysis

may be imprecise.

The moving load step variable is used to consider the different locations of truck that

is passing over the bridge. The axle loads of truck are displaced by this value along

the bridge.

As it can be understood from the caption, Exclude external braces in Live Load

Analysis check box is used to remove external braces during live loading analysis.

57

Example problem: In this problem, element type 1 and solver type 1 are selected. Moving

load step and element interval for live load placement are chosen as 50cm and 2 elements

respectively as shown in Fig. A.14. External braces in live load analysis are excluded.

Analysis type is chosen as both that is live load and placement sequence analysis are

going to be performed.

Figure A.14: Analysis Options Form

2. Placement Sequence Menu: This menu is used to input placement sequence analysis

parameters. Parameters are input in tabular form. The concrete deck can be divided

into segments corresponding to each placement, and there can be multiple analyses

that are independent from each other. For each analysis, properties of deck segments

and loading on the segments should be provided as input. Properties for a deck

segment include the stiffness of concrete and the stiffness of studs. Lengths of the

deck segments are the same for all analyses and their values should be given as input.

The tabular form is controlled by four buttons. These buttons are used to add and

remove columns and rows to the table. Functions of the buttons are explained below.

58

Add Analysis Case: This button is used to add a new analysis case to the table. Three

columns for analysis parameters are added to the right of the table each time a new

analysis is added.

Remove Analysis Case: This button is used to remove a specific analysis case. The

analysis number that is going to be removed should be entered into the box next to

this button. Three columns related with the analysis number specified are removed

from the table.

Add Deck Property After: As mentioned before, the concrete deck can be divided into

segments. At least one deck property must be specified. This button is used to add a

new deck property row to the table. The new deck property is added after the deck

number specified in the box next to this button. If no deck has been defined in the

table previously, a value of zero should be used. Specifying a value of zero adds

blank cells to the first row.

Remove Deck Property: This button is used to remove a deck property row. The

number of the deck property to be removed should be entered into the box next to this

button. The specified row is deleted from the table.

Example Problem: In this problem, the concrete deck is divided into five segments. These

deck segments are added to the table by making use of the Add Deck Property After

button. There are a total of five analyses to be performed. These analysis cases are added

to the table by using the Add Analysis Case button. The table is filled with parameters

specified in Table A.3. Fig. A.15 shows the placement sequence form together with the

input data.

59

Figure A.15: Placement Sequence Form

3. Live Load Parameters: This menu is used to input the live loading parameters. In

live loading parameters dialog, two tabs are present; one is the lane definition, the

other one is the live loading parameters. In both tabs, using Add button new lane and

deck properties can be added and with Remove button, chosen rows can be deleted.

Example Problem: In this problem, one lane and one live loading segment are defined as

shown in Fig. A16 and Fig. A.17.

60

Figure A.16: Lane Definition Form

Figure A.17: Live Loading Parameters Form

61

4. Live Load Cases: This menu is used to define live load cases. Live load case dialog

has three sections; name of the live load case, lane on which live loading is applied,

loading type. In the loading section three radio buttons are used to define whether live

load case is a distributed load, truck type loading or point load. For distributed

loading, three edit boxes are present. These are for distributed load quantity, start

location and end location of distributed load. For truck type loading, a combo box is

present to select the type of truck. For point load, an edit box is present to get the

quantity of point load.

Add: This button is used to add new live load case after entering the required inputs.

Remove: This button removes the previously defined live load case selected in live

load list box.

Update: Update button updates the properties of the selected live load case.

Figure A.18: Live Load Case Definition Form (For Truck Type)

62

Figure A.19: Live Load Case Definition Form (For Distributed Load Type)

Figure A.20: Live Load Case Definition Form (For Point Load Type)

63

Example Problem: In this example, three live load cases named LL1, LL2, and LL3 are

defined. To create a live load case, first, Live Load Case Name edit box has to be entered

and Add button is pressed. Then, lane should be selected. At last, type of live load is

selected. For LL1, Truck Load radio box is checked and HS20 is selected from Truck

Type combo box. After these operations, Update button is pressed to assign these

properties to LL1. In a same manner, LL2 is created and assigned a distributed type of

load with a value of 0.01t/cm extending from 48 to 108m along the bridge. To assign a

distributed load to a live load case, user should check the Distributed Load radio box.

LL3 is created like the other live load cases but Point Load radio box is selected. For

quantity of point load, 10tons is entered in the Load edit box.

5. Load Combinations: This menu is used to define load combinations incorporating

placement sequences and live load cases with individual magnifying factors.

Create: This button creates a new load combination with the name entered in the

Combo Name edit box.

Remove: Remove button deletes the load combination selected from the list.

Update: This button updates the name of load combination selected from the list.

Add/Remove: After creating a load combination, selected load case can be added to

that combination using add/remove buttons at the left of the dialog box. To add a load

case, the target load combination should also be selected. While adding a load case to

a combination, magnification factor should be entered.

64

Figure A.21: Load Combination Definition Form

Example Problem: To define a load combination, user should enter a name into Combo

Name edit box and then press Create button. To modify a created load combination, the

load combination should be selected from the Load Combinations list box and then by

using the Add/Remove buttons at the left of the dialog box, load cases can be added to or

removed from the load combination. For this problem, three load combinations defined.

First load combination incorporates all placement sequence load cases. Second one

includes all placement sequence too, but in addition, LL1 load case with a factor of 1.5.

Third load combination is same with the second one but, instead of LL1, LL2 is included.

Generate Menu: This menu generates the three dimensional finite element model for the

current project. All the geometric and material properties have to be supplied before

invoking the Generate menu.

65

Figure A.22: General View of Finite Element 3d Model

Figure A.23: Perspective View of Finite Element 3d Model (Without Deck)

66

In the view window, there are view buttons to toggle of visibility of visual objects

and to look from axes.

Table A.6. Tool Buttons of View Window and Functions

Tool Button Icon Function of the Button

 Toggle for node visibility

 Toggle for shell visibility

 Toggle for shell outline visibility

 Toggle for external brace visibility

 Toggle for internal brace visibility

 Toggle for lateral brace visibility

 Toggle for deck visibility

 Toggle for support visibility

 Sectional view

 Side view

 Top view

 In the graphical user interface, user can manipulate the view using mouse buttons.

User can rotate the model by pressing the left mouse button and moving the

mouse to desired rotate direction at the same time. To activate the rotate mode, user must

press F8 button of keyboard before rotate operation. To deactivate rotate mode, F7 button

must be pressed.

Using mouse roller button, user can zoom in and out the model. If mouse roller

button is rolled to front, the model will be zoomed out, i.e. it will get smaller. On the

contrary, to look at the model closer, user must roll the roller button to back.

To slide the model, user must press the middle mouse button and move the mouse

to the desired slide direction.

Also, there is a view adjustment dialog box to adjust the view settings.

Appearance of the dialog box is shown in Fig. A.23. In the dialog box, the upper three

edit boxes are for the rotation degree of the model in the view (i.e. model is first rotated

67

about X axis, as much as the value written in X edit box, then Y value is applied for

rotation about Y axis. At last model is rotated about Z axis as much as the Z value.

The lower two exit boxes are used for the definition of the clipping plane

positions perpendicular to the screen. The objects only in the range between NearZ and

FarZ values are drawn in the view.

At the bottom, there is a button to change the background color. User can change

the background color by clicking on the button and picking a color from the dialog box

appearing immediately after clicking.

Figure A.24: View Adjust Dialog Box

Run Menu: This menu runs the analysis with the all given parameters. This run button

will be disabled after the run is completed. Following the end of the analysis, a log viewer

form as in Fig. A.25 will appear. In that log viewer, steps of analysis can be followed.

User has to make sure that the log viewer finally reports that the “Analysis has been

completed successfully”. After the end of the analysis, project is also locked to avoid any

changes in the input variables of the project. At the lock state, all the input boxes (i.e. edit

boxes, grid controls, etc.) are set to read-only mode.

68

Figure A.25: Analysis Log Viewer

Results Menu: Using this menu, results of the analysis can be obtained. This menu has 4

submenus; Placement Sequence, Live Load, Influence Lines, Load Combinations. Under

these submenus, a number of submenus are present, such as, displacements, rotations,

stresses, support reactions, etc.

• Placement sequence analysis results gives the displacements, rotations, forces and

stresses in the bridge upon the placement of the concrete deck according to the

predefined placement sequence scenario.

• Live load menu provides the results of the automatically generated unit loads on

lanes along the bridge. These results are only used for program verification

checks.

• Using Influence line menu, user can get the influence lines of displacements,

rotations, cross-sectional forces, stresses, braces, support reactions and shear flow

at specified positions or elements.

69

• Load Combination Results menu gives the results of the placement sequence

cases, live load cases and linear combination of the results according to the

defined load combinations.

The results of the analysis are displayed by graphs and/or tables. If the desired

analysis result is a result of a placement sequence or a load combination including no live

load case with truck that result will be shown with only one line graph and one column of

tabulated result. Whereas, for the results of live load case or load combinations including

at least one live load with truck, there will be two graphs and two columns in the table for

maxima and minima of the result. These maxima and minima values are obtained while

the truck is moved along the bridge.

In this manual, only placement sequence results will be presented. Results for

live loading, influence lines, load combinations can be obtained in the same manner.

Placement Sequence: Using this sub menu, results of placement sequence can be

viewed. Under this menu, there are eight submenus as shown in Fig. A.26.

Figure A.26: Placement Sequence Submenu

Under Cross-Sectional forces menu, there are three sub items such as V (Section

Shear), M (Section Moment), and T (Section Torsion). For Stresses and Stresses on

section menus, there are two sub items; S11 (Stress normal to section), S12 (Stress

70

perpendicular to the section). Brace forces menu also has three sub items for Internal

Braces, External Braces, and Lateral Braces.

Displacements: Using this menu, vertical deflections of the girders can be obtained.

After clicking the menu, a dialog for selecting the run number and girder will appear as in

Fig. A.27. Using this dialog, results for multiple runs and girders can be displayed. In this

example, only first run and first girder are selected.

Figure A.27 Run and Girder Selection for Displacements

After pressing OK button, a dialog box as in Fig. A.28 showing the displacement

of the selected girder under first placement sequence is displayed. In this dialog box two

tab pages are present. First tab page is showing the graph of the displacement under given

loading along the bridge. On the second tab page, there are tabulated results of the girder

displacements as in Fig. A.29.

At the bottom side of the dialog box, there are precision adjusters for x and y

axes. Using these controls, desired precisions can be adjusted on both the graph and the

table. At the bottom right of the dialog box, Save button is used to write out the results to

71

a text file. If Show after save check box is selected, after save operation, the saved file

will be opened. This output file can be either in text format or excel file format.

Figure A.28 Graph of Displacement Results

72

Figure A.29 Table of Displacement Results

These dialog boxes shown in Fig. A.28 and Fig. A.29 are conventionally utilized

for all the other analysis results.

Rotations: This menu is used the get the girder rotations. After selecting this menu, like

in displacement results, a dialog box will appear for selecting the girder and run number.

For rotations, for example, first girder and third run are selected as in Fig. A.30.

73

Figure A.30 Run and Girder Selection for Rotations

After pressing ok button, the rotation results will be presented in the results

dialog box as in Fig. A.31 and Fig. A.32.

74

Figure A.31 Graph of Rotation Results

Figure A.32 Table of Rotation Results

75

Cross-sectional Forces: Under this submenu there are three submenu i.e. V (section

shear force), M (Section bending moment), T (Section torsion moment). These force and

moments are obtained by integration of end forces of the finite elements at the sections.

In this manual, section bending moments will be presented. To obtain the

moment value, first the run number and girder must be selected. Unlike the displacements

and rotations, for section force results, sum of the results for all girders can also be

selected in Fig. A.33. First run and sum option are selected for this example.

Figure A.33 Run and Girder Selection for Section Moment

As a result, the graph in Fig. A.34 is obtained for the cross-sectional moment for

the first run and sum of the all girders.

76

Figure A.34 Graph of Cross-sectional Moment Results

Stresses: This menu is used to obtain the stress values of the selected point on every

cross section along the bridge. Under this menu S11, S12 submenus are present. S11 and

S12 are the stresses normal and parallel to the sections, respectively. To obtain the stress

graph of one of them, first, run and girder selection should be done; afterwards, stress

point on a typical cross section should be selected from the stress selection dialog box as

in Fig. A.36. Stress point selection dialog box will show the typical cross-section of Box

or I Beam girders according to the girder type of the current project.

For this case first run and first girder are selected and for the stress point, the

point at the bottom mid face of the girder is selected.

77

Figure A.35 Run and Girder Selection for Stresses

Figure A.36 Stress Point Selection for Box Girder

78

Figure A.37 S11 Stress Results along the Bridge

Stresses on Section: This menu is used to obtain the stress values on bridge as the

Stresses menu above does but this button shows all the stress values on a typical cross

section rather than reporting stress at points along the bridge length.

On the Run and Girder Selection dialog box, in addition to the run number and

girder number, user must select the position of the section on which the stress values

taken. Run1, Girder1 and section at 6000 cm is selected for S11 result as in Fig. A.38.

79

Figure A.38 Run, Girder and Section Position Selection Dialog Box

After selecting the run, girder and section position, the results for the stress values

will be shown on a typical cross section of the bridge as in Fig. A.39.

Figure A.39 Stress Results on the Section Selected

80

Brace Forces: Brace forces menu is used to obtain the forces on the braces under given

loading. There are three submenus under this menu, internal braces, external braces,

lateral braces.

To obtain the brace forces result, run number should be selected. Run1 is selected

for this example as in the Fig. A.40.

Figure A.40 Run Number Selection for Braces

After the selection of the run number, if external or internal brace forces are

required, a dialog box will appear to select the brace items as in Fig. A.41. The check box

count in the dialog box will be 5 and 4 for external and internal braces, respectively. If

lateral brace forces are desired, this brace item selection dialog box will not be shown. In

this example, internal brace is selected as brace type and first item is selected as brace sub

item.

81

Figure A.41 Brace Item Selection Dialog Box

Following the brace item selection dialog, the brace forces result dialog box will

appear as in the Fig. A.42.

Figure A.43 Brace Forces Result Dialog Box

82

Support Reactions: Support reactions menu will give the resultant reactions under the

supports of the bridge. To obtain the reactions, run number and girder numbers or the sum

of all girders should be selected as shown in Fig. A.43. For this case, Run1 and Sum

choices are selected. After pressing the OK button, the result dialog box will immediately

appear. The result dialog box for reactions has only tabulated tab as in Fig. A.44.

Figure A.43 Run and Girder Selection for Support Reactions

83

Figure A.44 Result Dialog Box for Support Reactions

Shear Flow: Using this menu, one can get the shear flow at the interface between

concrete deck and girders along the bridge. To obtain the shear flow result, run number

and girders should be selected as in Fig. A.45. In the girder list box, sum option is present

to get the total shear flow of all girders. For this example, Run5 and Sum are selected.

84

Figure A.45 Run and Girder Selection Dialog Box for Shear Flow

Following the run and girder selection, the shear flow result dialog box will be

shown. In the dialog box, shear flow along the bridge is shown as graph in Fig. A.46.

Figure A.46 Shear Flow Result

85

There is also a toolbar for direct access to results on the UTrAp main frame. After

pressing these buttons, a result type selection dialog box will appear as in Fig. A.47. On

this dialog box, there are three options present; Placement Sequence, Live Load, Influence

Line. After selecting and pressing OK button, the required dialog boxes for the type of

result will be shown.

Figure A.47 Result Type Selection Dialog Box

There are also other buttons on this toolbar other than result buttons. These

buttons are mainly for file operations.

All the buttons on this toolbar are tabulated in Table A.7.

86

 Table A.7. Tool Buttons of Main Frame Toolbar and Functions

Tool Button Icon Function of the Button

 Button to obtain the displacement results.

 Button to obtain the rotation results.

 Button to obtain the stress results of type S11.

 Button to obtain the stress results of type S12.

 Button to obtain the sectional shear force.

 Button to obtain the sectional moment.

 Button to obtain the sectional torsion force.

 Button to obtain the internal braces forces.

 Button to obtain the external braces forces.

 Button to obtain the lateral braces forces.

 Button to obtain the support reactions.

 Button to obtain the shear flow.

 Button to start a new project

 Button to open a presaved project from a file

 Button to save the active project to a file

 Button to save the active project with a different name

 Button to run the analysis. (Disabled in analyzed state)

 This button shows the lock state of the active project.
First and second labels show that project is in unlocked
and locked state respectively. In the unlocked state,
pressing this button will lock the project and label of the
button will change to second type. Similarly, in locked
state, pressing this button will unlock the project and
label of the button will change back to first type

 In the program, user can set the unit system by changing the selected item in the

unit system combo box at the lower right corner of the UTrAp main frame. This unit

system is only for the fact that user enters the inputs in a consistent unit system. No user

inputs are changed according to the adopted unit system. In the program, only predefined

standard truck loads are converted to adopted unit system before used in the calculations.

87

Final Comments

 The program works under Windows XP operating systems. A physical memory

of 1 GB is recommended for problems involving twin girders. In cases where the physical

memory is not enough, the program uses the virtual memory to solve the problem.

However, using virtual memory significantly increases the time for solution.

88

APPENDIX B

USEFUL ALGORITHMS USED IN THE PROGRAM

Quick Sort Algorithm:

 This algrotihm has three input parameters, these are a vector to be sorted and two

integer values for sorting bounds. To make a total sort of given array, start=0 and

end=vector.size()-1. This function sorts the array from smallest to largest number. It

returns true, unless it encounter same values in the array.

bool Sort(vector<int>& array, int start, int end){
 if(start < end) {
 //Take the pivot as the first value.
 int pivot = start, pivotValue = array[start];
 int temp;
 //Move the values less than pivot to below pivot.
 for(int i=start+1; i<=end; i++){
 if (array[i] < pivotValue){
 temp = array[i];
 array[i] = array[pivot+1];
 array[pivot+1] = temp;
 pivot++;
 }
 else if(array[i] == pivotValue){
 //There are two entries having same Id
 return false;
 }
 }
 //Put the pivot into its proper place.
 temp = array[start];
 array[start] = array[pivot];
 array[pivot] = temp;
 //Do the next quicksort.
 Sort(array, start, pivot-1);
 Sort(array, pivot+1, end);
 }
 return true;
}

89

Quick Search Algorithm:

 This function has two input and one output parameters, these are a vector in

which searching performed, a searched value of integer, and the index of the searched

value in the array. It returns true, unless the given array has no entries.

bool Search(vector<int>& array, int id,unsigned& index)const
{
 if(array.size()==0)
 return false;
 int tempIndex;
 int temp,l,r;
 l=0;
 r=array.size()-1;
 do
 {
 temp=(l+r)/2;
 if(id<array[temp])
 r=temp-1;
 else
 l=temp+1;
 }
 while(id!=array[temp] && l<=r);

 if(id==array[temp])
 tempIndex=temp;
 else
 return false;
 index=(unsigned)tempIndex;
 return true;
}

90

APPENDIX C

VARIABLES OF INPUT DATA STRUCTURE

Table A.8. Variables of Input Data Structure

Variable Type Variable Name Variable Definition
char* project Name of current project
int ngird Number of the girder
double elemsize Width of an element along the bridge
double steelmodulus Elastic Modulus of Steel
int isec_type Section type (I or Box)
int ioutelem Placement of unit load for every n element
double webdC Web depth of section
double botflC Width of bottom flange
double toplC Top width of section
double tfwC Width of top flange
double deckwC Deck width of bridge
double decktC Deck thickness of bridge
double girdspacingC Girder spacing
int nsegmC Segment count in the bridge
int nwebt Number of web plate thicknesses
int nbotft Number of bottom flange thicknesses
int ntft Number of top flange thicknesses
int n_int_brc Number of internal braces
int n_ext_brc Number of external braces
int n_top_ltr Number of lateral braces
int n_support Number support in the bridge
int ielemtype Shell element type used in the FE model
int n_studsp Number of stud properties
int ianalysistype Type of the analysis performed
int isolvertype Solver type used in the analysis
int n_runs Number of different runs for placement sequence
int n_deck Number of deck properties for placement sequence
int nlanes Number of lanes defined in the project
int n_deck_ll Number of deck prop. for live loading analysis
int iremextbr Flag for removal of external braces in live loading

analysis
double* al_segm Array of size nsegmC for length of segments
double* al_rcurv_segm Array of size nsegmC for radius of segments

continuation of the table is on the next page

91

double* alwebt Array of size nwebt for range of web thicknesses
along the bridge

double* webt Array of size nwebt for web thicknesses
double* albotft Array of size nbotft for range of bottom flange

thicknesses along the bridge
double* botft Array of size nbotft for bottom flange thicknesses
double* altft Array of size ntft for range of top flange

thicknesses along the bridge
double* tft Array of size ntft for top flange thicknesses
double* aloc_int_brc Array of size n_int_brc for location of internal

braces
double* area_int_brc Array of size n_int_brc for section area of internal

braces
int* ktype_int_brc Array of size n_int_brc for type of internal braces
int* kgird_int_brc Array of size n_int_brc for index of the girder

where internal braces are placed.
double* aloc_ext_brc Array of size n_int_brc for location of external

braces
double* area_ext_brc Array of size n_ext_brc for sectional area of

external braces
int* ktype_ext_brc Array of size n_ext_brc for type of external braces
int* kspa_ext_brc Array of size n_ext_brc for index of the spacing

where external braces are placed.
double* aloc1_top_ltr Array of size n_top_ltr for start location of lateral

braces
double* area_top_ltr Array of size n_top_ltr for sectional area of lateral

braces
double* aloc2_top_ltr Array of size n_top_ltr for end location of lateral

braces
int* kspa_top_ltr Array of size n_top_ltr for index of the spacing

where lateral braces are placed.
int* ktype_top_ltr Array of size n_top_ltr for type of lateral braces
double* aloc_support Array of size n_support for support locations
double* al_studsp Array of size n_studsp for range of studs along the

bridge
double* stud_sp Array of size n_studsp for stud spacing
int* n_s_flange Array of size n_studsp for number of stud per

flange
double* al_pour Array of size n_deck for length of deck segments

of placement sequence analysis
double* conc_mod Array of size n_runs*n_deck for elastic modulus

of concerete for placement sequence analysis
double* stud_stf Array of size n_runs*n_deck for stud stiffnesses

for placement sequence analysis
double* dist_load Array of size n_runs*n_deck for loading of

placement sequence analysis
double* st_lane Array of size nlanes for start position of lanes
double* ed_lane Array of size nlanes for end position of lanes
double* al_live Array of size n_deck_ll for length of deck

segments for live loading analysis
double* conc_mod_ll Array of size n_deck_ll for elastic modulus of

concrete for live loading analysis
double* stud_stf_ll Array of size n_deck_ll for stud stiffnesses for live

loading analysis

92

