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ABSTRACT

ATTENUATION RELATIONSHIP FOR PEAK GROUND VELOCITY
BASED ON STRONG GROUND MOTION DATA
RECORDED IN TURKEY
ALTINTAS, Siileyman Serkan

M.S., Department of Civil Engineering

Supervisor: Prof. Dr. Polat GULKAN

December 2006, 104 pages

Estimation of the ground motion parameters is extremely important for
engineers to make the structures safer and more economical, so it is one of the main
issues of Earthquake Engineering. Peak values of the ground motions obtained either
from existing records or with the help of attenuation relationships, have been used as

a useful parameter to estimate the effect of an earthquake on a specific location.

Peak Ground Velocities (PGV) of a ground motion is used extensively in the
recent years as a measure of intensity and as the primary source of energy-related
analysis of structures. Consequently, PGV values are used to construct emergency
response systems like Shake Maps or to determine the deformation demands of

structures.

Despite the importance of the earthquakes for Turkey, there is a lack of
suitable attenuation relationships for velocity developed specifically for the country.
The aim of this study is to address this deficiency by developing an attenuation
relationship for the Peak Ground Velocities of the chosen database based on the
strong ground motion records of Turkey. A database is processed with the
established techniques and corrected database for the chosen ground motions is

formed. Five different forms of equations that were used in the previous studies are

v



selected to be used as models and by using nonlinear regression analysis, best fitted

mathematical relation for attenuation is obtained.

The result of this study can be used as an effective tool for seismic hazard
assessment studies for Turkey. Besides, being a by-product of this study, a corrected
database of strong ground motion recordings of Turkey may prone to be a valuable

source for the future researchers.

Keywords: Attenuation Relationship, Peak Ground Velocity, Data Processing,

Nonlinear Regression Analysis, Seismic Hazard
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AZAMI ZEMIN HIZLARI iCIN TURKIYE KUVVETLI YER HAREKETLERI
KAYITLARINDAN AZALIM ILiSKiSi BULUNMASI

ALTINTAS, Siileyman Serkan
Yiiksek Lisans, Insaat Miihendisligi Boliimii
Tez Yéneticisi : Prof. Dr. Polat GULKAN

Aralik 2006, 104 sayfa

Deprem Miihendisligi’nin temel unsurlarindan biri olarak yer hareketi
parametrelerinin tayini daha giivenli ve ekonomik yapilarin yapilabilmesi agisindan
son derece dnemlidir. Mevcut kayitlardan yahut azalim iliskilerinden elde edilen yer
hareketlerinin azami degerleri, bir depremin belirli bir noktadaki etkisini tahmin

etmek amaci igin faydali bir degisken olarak kullanilagelmistir.

Yer hareketlerinin Azami Zemin Hizlann (AZH), siddet Ol¢limlerinde ve
yapilarin enerji yontemleri ile analizlerinde yogun olarak kullanilmaya baslanmistir.
Dolayisiyla, AZH degerleri, Sarsinti Haritalar1 gibi acil durum sistemlerinin
olusturulmasinda yahut yapilarin deformasyon gerekliliklerinin  tespitinde

kullanilmaktadir.

Tiirkiye i¢in depremlerin 6nemine ragmen, Ozellikle iilke igin gelistirilmis
uygun hiz azalim iligkileri eksikligi mevcuttur. Bu ¢alismanin amaci, Azami Zemin
Hizlan icin Tiirkiye kuvvetli yer hareketi kayitlarindan secilmis bir veritabani ile
azalim iligkisi gelistirerek bu noksanligi azaltmaktir. Bunu yapabilmek igin,
veritabani tespit edilen yontemler ile islenmis ve secilmis yer hareketleri igin

diizeltilmis veritaban1 olusturulmustur. Daha Once yapilmis olan c¢alismalarda
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kullanilan bes farkli denklem model olarak kullanilarak dogrusal olmayan regresyon

analizi ile azalim1 tanimlayan en uygun matematiksel bagint1 olusturulmustur.

Bu calismanin sonuglart Tiirkiye’de deprem tehlikesinin  tespiti
calismalarinda etkili bir ara¢ olarak kullanilabilir. Bunun yaninda, bu ¢aligmanin bir
yan iriinii olarak Tiirkiye yer hareketi kayitlar1 i¢in islenmis veritabaninin sonraki

arastirmacilara degerli bir kaynak olabilecegi diisiintilmektedir.

Anahtar Kelimeler: Azalim iliskisi, Azami Zemin Hizlar, Veri Isleme, Dogrusal

Olmayan Regresyon Analizi, Deprem Tehlikesi
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CHAPTER 1

INTRODUCTION

1.1. GENERAL

Earthquakes are among great phenomena of the nature. Today, we know that
the source of the earthquakes is not based on mythological explanations, but there are
still many questions to answer. Apart from the arguments on whether the
destructiveness of earthquakes originate from quality of human made structures,
scientists and engineers should be able to interpret rationally the effects of

earthquakes for safer facilities in the future.

As an empirical approach to quantify interior mechanisms of the earth’s crust
during an earthquake, attenuation relationships are developed by the engineers.
Attenuation relationships, that are now more correctly called the ground motion
prediction expressions, have been used excessively to model earthquake effects for
many years as a practical way of estimating seismic motion on a specific location.
Generally used with peak values of ground motion, attenuation relationships have

served as the primary damage predictor of earthquakes in engineering practice.

Turkey is an earthquake prone country. Nevertheless, there is a lack of
suitable attenuation relationships developed uniquely for the country because of the
grossly inadequate number of strong ground motion recording instruments deployed.
Specifically, attenuation relationship for Peak Ground Velocity (PGV) derived from
earthquake records of Turkey is a missing item that should be studied. The aim of

this study is to address this deficiency.



1.2. USE OF PEAK GROUND VELOCITY IN EARTHQUAKE
ENGINEERING

Traditionally, the most commonly used parameter of ground motion in
earthquake engineering is the peak ground acceleration (PGA). Ease of defining
inertial forces in terms of ground acceleration is the main reason behind this fact. Use
of response spectrum methodology in earthquake engineering makes PGA the
primary objective to determine for analysis and design of structures against

earthquake effects.

Although there are various possible uses of peak ground velocity in
earthquake engineering, prediction of PGV is a relatively new item to be studied.
Listed below are some applications that use PGV in earthquake engineering

(Bommer and Alarcon, 2006):

1. PGV can be used to predict the damage potential of an earthquake. There
are various research results that correlate PGV with intensity of the earthquake
(Trifunac and Brady, 1975; Wald et al., 2003; Wu et al., 1999). Rapid response
system tools, e.g. Shake Maps, are based on PGV wvalues obtained from
accelerograms. Influence of PGV on inelastic demand of SDOF systems and effects
of PGV on vulnerability of structures to damage are also studied (Akkar and Ozen,

2005; Zhu et al., 1987, 1988; Sucuoglu, et al., 1998).

ii. Damage in buried pipelines correlated well with PGV in many empirical
studies. Peak horizontal strain in the soil due to the passage of seismic waves is
proportional to the PGV (Bommer and Alarcon, 2006); therefore, a relationship can

be defined between the damage and PGV.

iii. Liquefaction potential is also correlated with PGV in some researches. It
has been found that capacity of ground shaking triggering liquefaction can be defined
in terms of PGV for saturated cohesionless soils (Trifunac, 1995; Kostadinov and

Towhata, 2002; Orense, 2005).



iv. Although the periods of most structures are within the limits of
acceleration-sensitive part of the response spectrum, structures with relatively long
natural periods should be defined in velocity-sensitive part of the spectrum.
Therefore, scaling of response spectra in terms of PGV for velocity-sensitive
branches should be evaluated. Colombian and Canadian Seismic Codes use PGV as a
scaling factor for intermediate period sections of the response spectrum (IAEE, 1996;

Basham et al., 1985).

v. An increasing number of studies demonstrate the important role that PGV
plays in building fragility estimates where seismic intensity is measured in terms of
PGV since maximum inelastic displacements are better correlated with PGV than

peak ground acceleration PGA (Akkar et al., 2005).

1.3. STRONG GROUND MOTION NETWORK IN TURKEY

The main source of information for this study is the raw acceleration records
database of Turkey for selected earthquakes. These records are obtained from special
instruments operated uniquely for the purpose of recording strong ground motions
and they are called accelerographs. During an earthquake, accelerographs record
ground acceleration for two horizontal orthogonal directions according to their

emplacement, N-S and E-W traditionally, and in the vertical direction.

The greater part of the strong ground motion network of Turkey is operated
by Earthquake Research Department of General Directorate of Disaster Affairs
(ERD) and Kandilli Observatory and Earthquake Research Institute (KOERI).
Instruments deployed by ERD cover the entire seismic geography of the country
whereas those that have been procured by KOERI are supposed to serve as sensors
for an early warning system in Istanbul. There are also other institutions that have
local instrument arrays located for special purposes (Akkar and Giilkan, 2002).
Istanbul Technical University (ITU) has an array with limited number of instruments
set up in Istanbul, whose records are also used within this study. For more specific
purposes, monumental structures like Hagia Sophia Museum or Siileymaniye

Mosque are equipped with strong motion accelerographs in order to observe their
3



structural behavior and to determine their possible weaknesses against earthquakes.
General Directorate of State Highways (KGM) established accelerographs on the
suspension bridges crossing Bosphorus for the purpose of health monitoring. The
Scientific and Technical Research Establishment of Turkey (TUBITAK) supports
research programs that have enabled the setting up of small local networks. Despite
these efforts, number of instruments is far being sufficient for Turkey. Altogether,
there are around 300 strong ground motion stations in the country. Among 300
strong ground motion stations all over the country, 156 of them belong to ERD and
117 to KOERI. These instruments are mostly located near active earthquake zones of
Turkey like North Anatolian Fault. Although digital instruments are taking place of
analog ones, there are still a number of analog instruments mostly belonging to ERD.
SMA-1 is the only type of analog instrument still operated. SM2, GSR16, GSR18,
ETNA and GURALP are some of the digital based instrument types. Strong motion
instrument array of ERD and KOERI are shown in Figure 1.1 and Figure 1.2

respectively.

ULUSAL KUVVETLi YER HAREKETI KAYIT SEBEKESI

® Analog Istasyonlar (61)
T & Sayisal Istasyonlar (53)
Yerel Aglar
® DATNet (6)
& BYTNet (14)
M MATNet (18)
A ANANet (5)
a7 a8 39 40 Etl 42 43 44

Figure 1.1 ERD array of strong motion accelerographs (© Analog Ins., A Digital Ins.)
(from internet site of Turkey National Strong Motion Program).



B.U.
KANDILLI RASATHAMES| VE DEPREM ARASTIRMA ENSTITUSO
ULUSAL DEPREM iZLEME MERKEZI TEMMUZ 2008
DEPREM ISTASYOMLARI 117 ADET

'."'5.(1 = ik
PN

Ay
e
et O

LK L

Jr BROAD BAND
4 ONLINE B ISTNET
A NANOMETRICS

Figure 1.2 KOERI array of strong motion accelerographs (from internet site of

KOERI).

To make a comparison, at the end of 1980, there were about 1700
accelerographs in the United States and by January of 1982 there were over 1400
instruments in Japan (Trifunac and Todorovska, 2001). In 2005 Greece, a country

with 1/7 the area of Turkey, the number of sensors deployed was 500.

There are various types of accelerographs that have been used for recording
purposes. The main differentiation among them is their recording medium. Analog
instruments, developed in United States in 1930’s, were optical-mechanical devices.
These instruments produced traces of the ground acceleration against time on film or
paper (Trifunac and Todorovska, 2001). Digital instruments, which record on

reusable media were started to be used approximately 50 years after the analog ones.



Main advantages of digital instruments over analog ones can be summarized as

follows:

1. Digital instruments record continuously, so they have adjustable-duration
pre-event memory which is an important aspect of data processing. In contrast,
analog instruments are triggered by a specific threshold of acceleration so that they

do not have pre-event recordings.

ii. The second important difference is about their dynamic characteristics.
Dynamic range, which is related to the amplitude range that can be recorded is about
40-55 dB for analog instruments, whereas modern digital recorders have a range of
135 dB (Trifunac and Todorovska, 2001). Also natural frequencies of transducers
that limit the useable frequency range of recorded motion are much higher for digital
accelerographs than their analog counterparts. (See Figures 1.3 and 1.4 for a

comparison between dynamic characteristics of instrument types).
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Figure 1.3 Dynamic range comparison of selected strong motion accelerographs
(Trifunac and Todorovska, 2001).
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Figure 1.4 Natural frequency, f,, and useable bandwidth of commonly used strong
motion accelerographs between 1930 and 2000 (Trifunac and Todorovska, 2001).

iii. Digital instruments perform analog-to-digital conversion within the
instrument. Since analog recordings must be digitized by an operator, human
originated error is stored within the record which is the primary source of noise that
must be eliminated during data processing (Boore and Bommer, 2005). This

introduces an error into the derived velocity values that is difficult to quantify.

1.4. PREVIOUS STUDIES ON PGV

There are about 30 prediction relationships developed for PGV. They have
been developed from worldwide records, from records of specific regions like
Europe or from country wide records. In Table 1.1, a list of these attenuation
relationships categorized according to the geographical region, number of records
and earthquakes used in the analysis, use of horizontal component of each record,

magnitude range and type, distance range and type and site classes used is given. The
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first conspicuous property of the tabulated equations is the differences in defining
magnitude, use of component and distance terms. Although the range differences in
magnitude or distance or even number of site class differences do not violate
comparison purposes to some extent, it is not easy to state an opinion to the results
obtained for different investigations if distance, magnitude or choice of horizontal
components are different. It is possible to use empirical equations to adjust different
magnitude scales, different definitions of the horizontal component or even the
different terminologies used for distance definition; but their standard deviations are

so high that unreliable results may be obtained.

In the regional base, a number of investigations can be made for the equations
given. For western North America, there are a few new equations for PGV although
there are many more for PGA and for response spectral ordinates (Bommer and
Alarcon, 2006). Despite the fact that the western part of North America is
tectonically more active than Eastern region, Eastern region seems to be equally
studied. Among the dated studies, Joyner and Boore (1981) and Campbell (1997) are
noticeable ones within the given set. Joyner and Boore (1981) used rj, and My, in
defining their equations. Campbell (1997) has a complex form including distance
definition, rgjs, Which is not easy to identify for most of the recordings of Turkish
database. Besides, distance range for Campbell (1997) is limited to 50 km. Note that,
neither Sadigh and Egan (1998) nor Gregor et al. (2002) are published in the

scientific journals (Bommer and Alarcon, 2006).

For the worldwide records, Bray and Rodriguez-Marek (2004) studied near-
fault effects by limiting their equation to within 20 km. Pankow and Pechmann
(2004) used the database of Spudich et al. (1999) for extensional tectonic regions.
Japanese researchers have derived a number of equations for both crustal earthquakes
and subduction zone earthquakes with focal depth down to about 120 km (Bommer
and Alarcon, 2006). Although older expressions have used magnitude term as
Japanese Agency Magnitude, Ma, moment magnitude seems to be used commonly
for the newer expressions. Note that all Japanese researchers use rpn,, except

Kawashima et al. (1986).
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PGV is extensively studied also in Europe. Ten of the 30 equations presented
are from European database. They are primarily developed from the records of Italy,
Greece and Turkey, which are tectonically active regions of Europe and Middle East.
Excluding equations of Dost et al. (2004), Frisenda et al. (2005) and Bragato and
Slejko (2005) which have small magnitude ranges limiting their usage in terms
of earthquake-engineering (Akkar and Bommer, 2006b) and Theodulidis and
Papazachos (1992) and Rinaldis et al. (1998) because their usage of horizontal
component are not defined; Sabetta and Pugliese (1996), Margaris et al. (2002),
Tromans and Bommer (2002), Skarlatoudis et al. (2003) and Akkar and Bommer
(2006a) are prediction equations that should be evaluated. Sabetta and Pugliese
(1996) does not include style of faulting as a predictive parameter although
earthquakes in central and southern Italy are predominantly reverse events (Akkar
and Bommer, 2006a). Tromans and Bommer (2002) have been updated by Akkar
and Bommer (2006a) because of its limitations such as severe filters used in the
analysis and availability of new records coming from both new recordings and
change in lower limit of earthquake magnitude (Akkar and Bommer, 2006a). Note
that, both Margaris et al. (2002) and Skarlatoudis et al. (2003) used epicentral
distance terms which are poor measures of distance for earthquakes with large
rupture areas (Bozorgnia and Campbell, 2004), which is also mentioned in Chapter 2

describing source-to-site distance terms.

There are also relationships serving special purposes. Shabestari and
Yamazaki (2002) only include records from 1999 Chi-Chi earthquake and separated
hanging wall and footwall region recordings (Bommer and Alarcon, 2006). Singh et
al. (2003), Gaull (1988) and its subsequent study Hao and Gaull (2004) used records

from stable continental regions such as India and Australia.

Another common approach to estimate PGV is dividing the pseudo spectral
velocity (PSV) at 1.0 s by 1.65 (Bommer and Alarcon, 2006). Pankow and Pechmann
(2002) pointed out that approach was gaining popularity due to lack of recent PGV
predictive relations. In a recent study by Bommer and Alarcon (2006), this approach

is defined as a part of earthquake engineering ‘folklore’ with no scientific basis.
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1.4. OBJECT AND SCOPE

The object of this study is to provide a comprehensive methodology and
supporting commentary for the derivation of attenuation relationship for peak ground
velocity for Turkey based on strong ground motion records of Turkey. The same
database is used for the scope as had been used in deriving prediction equations for
peak ground acceleration and spectral acceleration ordinates (Kalkan and Giilkan,
2004). The aim of this study is to construct site geology, magnitude and distance
dependent attenuation relationship for possible use in design and research objectives
in Turkey. This study is intended to serve as a reference for the design of structures

and seismic hazard studies.

1.5. ORGANIZATION AND CONTENTS

There are five chapters in this thesis. Chapter 1 is the introductory part where
the basics of the study are introduced. Chapter 2 provides detailed information on the
strong motion database and its contents. Chapter 3 defines data processing
techniques and their applications to the database used in this study. Chapter 4
presents derivation of attenuation relationship for the processed database and
discusses the results obtained. Finally, Chapter 5 contains conclusions and a

discussion of the findings.
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CHAPTER 2

THE STRONG MOTION DATABASE AND ITS FEATURES

2.1. GENERAL

Being a characteristics of all statistical studies, selected database defines the
output, so the outcome of the work. Since aim of this study is to construct attenuation
relationship for Peak Ground Velocity for Turkey, selected strong ground motion
records are chosen from earthquakes that have occurred in Turkey. Another goal of
this study is to be a continuation and complementation of the studies done by Kalkan
and Giilkan for attenuation of PGA and Site-Dependent Spectra for earthquake
records of Turkey (Kalkan, 2001; Giilkan and Kalkan, 2002; Kalkan and Gilkan,
2004). Therefore, selected strong ground motion records within the Turkey database

by Kalkan and Giilkan (2004) are used for this work also.

Selected database consists of 223 horizontal components from 112 strong
motion records from 57 earthquakes that occurred between 1976 and 2003 in Turkey.
First and last entries of the database are 19.08.1976 Denizli and 26.07.2003 Buldan-
Denizli earthquakes. Seismic activity of Turkey within this period for My> 5.0 is
shown in Figure 2.1. Epicenter distance range for the records varies from 1 km to
300 km with the moment magnitude range of 4.0 to 7.4. All of the earthquakes
occurred in the shallow crustal tectonic zones of Turkey. List of the events,
corresponding faulting type, seismic moment and moment magnitudes of
earthquakes with epicentral coordinates together with the number of recordings for

each event classified according to the site conditions are given in Table 2.1.

For the purpose of studying attenuation relationship of PGV, several
properties of recording stations and related earthquakes must be known. That the
more complex the final prediction relationship is, more information should be

identified for the stations, is a general rule for these studies. With the knowledge

12



gained over time, it generally becomes possible to enhance the information for each
recording station. As mentioned earlier, the same database used by Kalkan and
Giilkan (2004) is used as a starting point for database knowledge but information

sources are broadened with time, so a more comprehensive dataset became possible.

Three information sources deserve to be mentioned here. First among them is
the dissemination of European strong motion data (Ambraseys et al., 2002).
Supported by the European Commissions, this catalog provides an interactive, fully
relational database and databank with more than 3,000 uniformly processed and
formatted European strong-motion records and associated earthquake, station and
waveform parameters. It is possible to search the database and databank interactively
and download selected strong motion records and associated parameters. Originally
published in CD-ROM format, it is possible to update the database by use of Internet
(Imperial College of London Department of Civil and Environmental Engineering
Internet Site for European Strong Motion Database). Turkish data covers much of the
database especially for strong earthquakes. As will be discussed in the following
chapters, raw data processing is also achieved in the database which makes the
catalog more valuable and a better tool for comparison purposes. The second
important source is the PEER Strong Motion Database (Pacific Earthquake
Engineering Research Center Internet Database). A new database, called the Next
Generation Attenuation expression or NGA, is available on the Internet. This has
also very valuable information for Turkey ground motion records and stations. The
third source is the catalog derived by National Strong Motion Project (NSMP) team'.
NSMP is comprehensive project aims to arrange and improve the seismic network
and strong motion database of Turkey. Financed by TUBITAK, the project is being

carried out under the supervision of researchers from METU.

By using above mentioned sources, earthquake and station information are
updated. Moment magnitudes of 36 earthquakes out of 57 are changed in the process.
Number of recordings with known Vg3 value is increased from 22 to 48. Local site

conditions of 21 recordings have been renewed. With the new information set

' Remark: There may be further revisions in the data because the project is still ongoing.
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provided, the database of strong motion records used in this study is given in Table

A.1 in Appendix A.

Since definitions of expressions that are used for defining the earthquake and
station parameters are of primary importance, the rest of Chapter 2 is devoted to the

definitions and concepts that are used within the context of this thesis study.
2.2. MOMENT MAGNITUDE

Although there had been ways to identify the intensity of an earthquake
objectively, instrumental measure of earthquake size became possible by the
relationship defined by C. Richter in 1930’s. Known by his name, Richter magnitude
of a local earthquake, My, was the logarithm to the base ten of the maximum seismic
wave amplitude in microns recorded on a Wood-Anderson seismograph located at a

standard distance of 100 km from the earthquake epicenter.

Today, there are a number of magnitude scale definitions based on different
formulas for epicenter distance and ways of choosing and measuring appropriate
wave amplitude. According to the definitions adopted by Bolt (2004), Surface Wave
Magnitude (M) is based on measuring the amplitude of surface waves with a period
of 20 s. Distant earthquake (epicentral distances more than 1000 km) records are
predominantly filled with surface waves with periods of 20 s. Body Wave Magnitude
(mp) measures the amplitude of the P-wave, which is not affected by the focal depth
of the source, whereas deep focus earthquakes have no trains of surface waves.
Moment Magnitude (My,) scale was defined to be able to constitute a relationship
between the magnitude of the earthquake with its seismic moment (M,), which is a

direct mechanical measure of size of the earthquake source:

_logMo _
15

where M, is in dyn-cm. Keeping in mind the relationship to define the seismic

moment:
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Mg = pAD 2.2)

where p is the shear modulus, D is the average displacement across the fault zone
and A is the area of the surface that ruptured, M, is directly related to the energy that

is spread from the fault rupture to produce the earthquake.

Moment magnitude scale is used in this study since others are empirical
quantities based on various instrumental measurement of ground shaking
characteristics, which results in a phenomenon called saturation for these scales.
Saturation is the insensitivity of the scale for relatively strong earthquakes.
Saturation of various magnitude scales with respect to the moment magnitude scale
is shown in Figure 2.2. Local magnitude (Mp) and body wave magnitude (my)
saturate about M;=7, whereas surface wave magnitude saturates at about Mgs=8.0.
The mp scale is similar to my, but calculated at slightly longer periods. Mpya is the
magnitude scale of the Japanese Meteorological Society, which is calculated from
the ground-motion amplitudes measured from medium period seismographs. The My
is the only extant magnitude scale that does not suffer from saturation for strong

earthquakes.

As mentioned earlier, moment magnitude data given by Kalkan and Giilkan
(2004) is updated according to the NSMP database. Magnitudes are restricted to
about M,, > 4.0 to emphasize those ground motions having greatest engineering

interest and to limit the analysis to the more reliable recorded events.

2.3. SOURCE-TO-SITE DISTANCE

Source-to-site distance is used to characterize the diminution of ground
motion in terms of both geometric and anelastic attenuation, as it propagates away

from the earthquake source (Bozorgnia and Campbell, 2004).

Depending on the treatment of the source of an earthquake, distance measures can be
grouped into two broad classes. If source of an earthquake is treated as a point,

epicentral, Iey, and hypocentral distance, rhyyo, definitions are used. Hypocenter
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Figure 2.2 Relationship between various magnitude scales (Kramer, 1996).

is the point in the earth crust where the rupture begins and epicenter is the surface
projection of that point. Relation between them can be defined as (Bozorgnia and
Campbell, 2004):

2 2
Fepi” + Miypo (2.3)

Thypo =
where hnypo is the focal (hypocentral) depth of the earthquake. Generally speaking,
lepi and Ihypo, are poor measures of distance for earthquakes with large rupture areas
(i.e., large magnitudes). Therefore, they are used to define distance terms for small
earthquakes where it is more likely to define the earthquake source as a point source.
It has been shown that ground motion relations that use point-source measures
should not be used to estimate ground motions close to large earthquakes unless
some approximate adjustment is made to account for finite-faulting effects

(Bozorgnia and Campbell, 2004).
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The three finite-source distance measures used in the ground motion relations
must be defined. The first one is the Joyner-Boore distance or closest distance, Iy or
reg. Defined by Joyner and Boore (1981), rj, 1s the closest horizontal distance to the
vertical projection of the fault rupture plane. The second is the closest distance to the
fault rupture plane, Iryp. The third one is defined by Campbell (1997) as the shortest
distance between the recording station and the presumed zone of seismogenic rupture
on the fault, rejs. With the assumption that the fault rupture within the softer
sediments and within the upper 2 to 4 km of the fault zone is primarily non-
seismogenic, this shallow part will not contribute to the recordings within the periods
of engineering interest. The descriptive figure of these definitions can be shown in
Figure 2.3. Although ry is reasonably easy to estimate for a future (e.g., design)
earthquake, ryyp and rgis are not so easily determined, particularly when the
earthquake is not expected to rupture the entire seismogenic width of the crust

(Bozorgnia and Campbell, 2004).

Vertical Faults

Seismogenic
Depth
Hypocenter {
Dipping Faults .
e
| S

=
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___Seismogenic_____ N
Depth
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Figure 2.3 Relationship between distance measures used in the development of the
ground motion relations (Bozorgnia and Campbell, 2004).
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In this study, the distance term is defined as the closest distance between the
recording station and a point on the horizontal projection of the rupture zone on
earth’s surface. Since abbreviation r, and term “closest distance” is used instead of
abbreviation rj, and term “Joyner-Boore distance” for the studies made by Kalkan
and Giilkan, the same definitions are used in this study also. There are two basic
interdependent reasons for selecting closest distance term for the analysis made. The
first reason is the choice of form of relationship selected. Most of the attenuation
relationships selected to be used as the basis of study and comparison purposes use
the r.; definition. Secondly, r values can be obtained easily when compared to rgjs or
rp. However, for some of the smaller events, rupture surfaces have not been defined
clearly therefore epicentral distances are used instead. Since smaller events may be
interpreted as point source, it is believed that there would not be significant error
(Kalkan, 2001). Closest distance values for each recording station are given in Table

A.1 and closest distance vs. moment magnitude graph for the used database is shown

in Figure 2.4.
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Figure 2.4 Distribution of recordings in terms of magnitude and distance.
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As mentioned in Chapter 2.1, distance values are updated by searching new
databases. Unavoidably, there are some differences between the databases mentioned
for r¢ values which results in significant differences in the outcome. With the new
information obtained, closest distance values of 18 recordings that seems to be
defective are renewed, most of which belong to the 1999 Kocaeli and Diizce
earthquakes. The differences between mentioned databases and selected r.; values are

shown for the 1999 Kocaeli and Diizce earthquakes in Table 2.2.

Table 2.2 Defined r values for different databases and selected r.; values in km for
the 1999 Kocaeli and Diizce earthquakes.

from Kalkan &  from PEER from ESMD Values used

Station  Station Code Gilkan (2004) Database Catalog in this study
BURSA BRS 66.6 65.5 79.0 66.6
CEKMECE CEK 76.1 65.0 94.0 76.1
DUZCE DzC 11.0 13.6 12.0 11.0
EREGLI ERG 116.0 141.4 171.0 116.0
GEBZE GBz 15.0 7.6 30.0 30.0
GOYNUK GYN 32.0 31.7 31.0 32.0
ISTANBUL IST 49.0 49.7 71.0 71.0
— IZNIK IZN 30.0 30.7 29.0 29.0
E 1IZMIT 1ZT 4.3 3.6 5.0 5.0
a SAKARYA SKR 3.2 0.0 N/A 3.2
= BALIKESIR BLK 183.4 180.2 199.0 183.4
w CANAKKALE CNK 250.0 266.2 294.0 250.0
5 KUTAHYA KUT 144.6 145.1 140.0 144.6
2 GEBZE ARC 17.0 10.6 38.0 38.0
2 AMBARLI ATS 78.9 68.1 97.0 68.1
(<24 BOTAS BTS 136.3 1271 156.0 1271
85 YESILKOY DHM 69.3 58.3 87.0 58.3
~ BURSA BUR 62.7 60.4 77.0 60.4
- FATIH FAT 63.0 53.3 79.0 53.3
HEYBELIADA HAS 43.0 N/A 62.0 43.0
YARIMCA YPT 3.3 1.4 5.0 5.0
LEVENT YKP 60.7 N/A 77.0 60.7
MECIDIYEKOY MCD 62.3 51.2 77.0 62.3
MASLAK MSK 63.9 53.0 78.0 63.9
ZEYTINBURNU YT 63.1 52.0 80.0 63.1
ATAKOY ATK 67.5 56.5 85.0 67.5
BOLU BOL 20.4 12.0 18.0 12.0
e DUZCE DZC 8.2 0.0 0.0 8.2
g GOYNUK GYN 56.4 N/A 47.0 56.4
w IZNIK IZN 129.8 N/A 113.0 129.8
5 IZMIT 1ZT 95.0 N/A 86.0 95.0
N KUTAHYA KUT 169.5 168.3 171.0 169.5
[a] MUDURNU MDR 30.9 34.3 34.0 34.3
§ SAKARYA SKR 49.9 452 47.0 49.9
- AMBARLI ATS 188.0 188.0 188.0 188.0
- FATIH FAT 172.5 167.3 167.0 172.5
N HEYBELIADA HAS 179.0 N/A 154.0 154.0
YARIMCA YPT 101.7 97.5 98.0 101.7
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2.4. LOCAL SITE CONDITIONS

Local site conditions are the definition of type of deposits that lie beneath the
corresponding site; in our case, beneath the station where the ground motion is
recorded. Both the visual or instrumental studies can be used as the basis of the
classification of the site conditions. For the purpose of making a subjective study,
physical quantities that describe the soil conditions are preferred in determining the
soil conditions. Shear-wave velocity and sediment depth are the foremost ones of

these quantities (Bozorgnia and Campbell, 2004).

Most researchers use shear-wave velocity as the average value of shear wave
velocities of the top 30 m of the deposit underlying the surface, V3. The 30-m

velocity is calculated from the formula:

Y
i=l1

(2.4)
n dl
P

i=1 "sl

Vs30 =

where d; is the thickness and Vy; is the shear-wave velocity of the i" soil layer within
the upper 30m. Use of V3 values as the basic indicator of the site classes is so wide
that besides researchers, most seismic building codes including the Turkish Seismic
Code in both 1998 and 2006 versions, 1997 edition of Uniform Building Code
(UBC), 2000 edition of International Building Code (IBC) and European Seismic
Code (EUROCODEDS) defines the site classes on the basis of Vg3 values. The second
shear-wave velocity indicator is defined by Joyner et al. (1981) as the average
velocity of shear waves over a depth equal to a quarter-wavelength of a ground-
motion parameter of specified period or frequency, effective velocity. Effective

velocity is used to calculate site amplification factors using stochastic methods

(Boore, 2003).

Influence of local site characters on the ground motion amplification is an

empirical fact. Although ground motion recordings for rock sites are “sharp” and
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short period accelerations are dominant, soil sites amplify the peak values of ground
motion for medium or long periods of ground motion. Analogous to the amplification
of ground motion within the structure according to the natural vibration period of the
structure, soil stratum above the bedrock has an amplification affect on the ground
motion proportional to the vibration period of the stratum, which is related to the

average shear-wave velocity of that stratum.

Studies of 17 August 1999 and the 12 November 1999 Diizce earthquakes
indicated that the most damaging motions occur in zones of deeper, less consolidated
soils, in contrast to bedrock sites (Marmara ve Diizce Depremleri Miihendislik
Raporu, 2000). In several other earthquakes, many severe building damages have
been identified in areas where deep alluvium soils were located over bedrock. Most
interesting example of this effect was observed in 1985 Michoacan earthquake in
Mexico where most of the damage zones were those located over an historical lake
with silt and clay sediments that were 350 km away from the earthquake source, in

the city of Mexico.

Actual shear wave velocity and detailed site descriptions are still not available
for most stations in Turkey. For this reason, site classifications were estimated by
analogy with information of similar geologic materials (Kalkan, 2001). Obeying the
classification made by Kalkan and Giilkan (2004), three local site conditions are
defined for the study as rock, soil and stiff soil sites. Sites with shear wave velocities
below 300 m/s are designated as soil sites. Sites with shear wave velocities from
300m/s to 700m/s are classified as stiff soil sites. The rest are designated as rock
sites. It has not been possible to use NEHRP ground stratification classification
because the other relation utilized here as a yardstick with this work do not permit an
unambiguous correspondence of metrics. For some of the recording stations, site
condition information is revised by using new data for V3o values. Updated shear
wave velocities and local site classes for stations are mentioned in Table A.1. Pie-
chart distribution of shear wave velocities for a total number of 112 events used in
analysis is given in Figure 2.5. Also distribution of these events in terms of
magnitude, closest distance to rupture and local geological conditions are given in

Figure 2.6.
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Figure 2.5 Pie-chart distribution of local site geology for selected database.

2.5. FAULT MECHANISM

There are basically three types of tectonic faults. When motion of the fault is
horizontal, parallel to the strike of the fault, then it is named as a strike-slip fault.
When the motions of the adjacent blocks are downward or upward with respect to
each other, then the faulting is called as dip-slip fault. Dip slip faults are subdivided
into two groups with respect to the sense of motion. If the block on the upper side of
the fault drops down an inclined plane of constant inclination relative to the
underlying block, that fault is called as normal. In reverse or thrust faulting, the block

on the upper side of the fault moves up the fault-plane, overriding the underlying
block.

Most active faults in Turkey are in strike-slip faults. Examination of the peak
ground motion data from the small number of normal faulting earthquakes and
reverse faulting earthquakes in the data set showed that they were not significantly
different from ground motion characteristics of strike slip earthquakes (Kalkan,
2001). Since there is a limited number of data for reverse and normal faulting, it
would probably be untrustworthy to construct a relationship considering fault
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mechanism. Therefore, normal, reverse and strike slip earthquakes were combined
into one single faulting category. The distributions of the used earthquakes in terms
of magnitude, source to site distance and faulting mechanism are given in Figure 2.7.
Earthquake information with unknown fault mechanism is eliminated from the data

set of the Figure 2.7.
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Figure 2.6 Records in terms of magnitude, distance and local site geology.
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CHAPTER 3

DATA PROCESSING

3.1. GENERAL

Recorded either by analog or digital instruments, recordings from
accelerographs are contaminated with data that has not originated from signals of the
earthquake waves. This undesired stored energy in acceleration time series is called
noise and there are various sources of it. Although noise has limited effect on
acceleration time series in terms of peak values, velocity and displacement series can
be seriously distorted and unrealistic PGV and PGD values can be obtained from
such raw data, especially for analog recordings. Therefore, unlike the approach used
for attenuation relationships for PGA, direct results for PGV obtained from raw
accelerations files can not be used directly for analysis purposes. A number of

processes should be done on raw material to obtain the reliable data for PGV.

There are various procedures to be applied to accelerograms to stabilize or
lessen the error contained in the signal. What makes the correction or adjustment
procedure complicated is that the true answer of the question is never known; i.e.,
pure velocity or displacement series are not available. Thus, considering the
boundary conditions that are available and using some prescience, noise ratio of the
actual recording is reduced to an acceptable level. As will be related later in the
chapter, PGV values are highly sensitive to the choices of variables that are used
during processing. For this reason, great care must be given to abide by the

guidelines of the proposed methodology so as not to obtain unrealistic results.
In this chapter, analog and digital instrument properties, noise sources and its

effects, ways of reducing noisy content and results obtained from data processing are

discussed and presented in detail.
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3.2. ANALOG INSTRUMENTS

As mentioned in the introductory chapter, analog instruments are optical-
mechanical devices. Recordings may be in the form of: (1) a 35 or 70mm film
negative, (2) a photographic enlargement or copy on film or paper, positive or
negative, of a 35 or 75mm film, (3) a 12-inch wide photographic paper record or a
copy of it (Hudson, 1979). The first earthquake record is obtained by an analog
instrument was in 10 March 1933, Long Beach California Earthquake. In Turkey,
after deployment of Strong Motion Network of Turkey in 1973, first accelerograms
was obtained during the 19 August 1976 Denizli earthquake.

Most of the records of destructive earthquakes of 20" century were obtained
by analog instruments and these recordings altered our understanding of earthquakes
in a basic way. What is called earthquake engineering is developed by the
information gained from strong motion accelerograms. 1940 El Centro, 1966
Parkfield, 1971 Pacoima Dam earthquake accelerograms are the milestones of this
effort. Until 1995, in the Turkish database of accelerograms, almost all recordings
were from analog instruments. For the database used here, all analog recordings are
from SMA-1 type accelerographs, which is a type introduced by Kinematrics Inc. in
the late 1960s and sold more than 7200 units until its production was discontinued by
the early 1990s (Trifunac and Todorovska, 2001). Figure 3.1 demonstrates the

schematic diagram of analog instruments and photograph of SMA-1.

These instruments have proved themselves to be rugged and reliable but there
are serious drawbacks of analog accelerographs. Since they record mechanically, a
great deal of recording medium should be wasted. To limit this waste, they are
operated on standby and triggered by a specific threshold of acceleration (generally
triggered by shear wave), which means that some part of ground motion below the
threshold value can not be recorded prior the strong motion, or captured
subsequently. The importance of this prior recording will be discussed in the section
on digital recordings. Also, ease of access to instruments is required since they do

not use reusable medium.
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Figure 3.1 Schematic diagrams of analog instruments and photograph of SMA-1
accelerograph (Hudson, 1979).

The second drawback of analog instruments is related to their dynamic
characteristics. Dynamic range of instruments is related to the largest and smallest

amplitudes that can be recorded (Amax, Amin) With the following equation,

Anax.

in

DynamicRange = 20log| —* 3.1

For analog instruments, dynamic range is limited by the width of the
recording paper or film, thickness of the trace and resolution of the digitizing system
and equals 40-55 dB (Trifunac and Todorovska, 2001) (Refer to Figure 1.1 for a
comparison between dynamic ranges of instruments). Traditionally, seismometers
are sensitive and accelerometers are less sensitive against ground motion in order to
capture the strong motion. With a low dynamic range, it becomes impossible to
capture the strongest parts of the ground motion and a phenomenon called clipping
occurs. Clipping can be seen visually from acceleration time series. Another

drawback of dynamic characteristics of analog instruments has to do with their

31



bandwidths. Since the theory behind accelerographs dictates that the displacement
response of the instrument should be proportional to the base acceleration in order to
evaluate the strong motion, the natural frequency of the accelerographs has to be
much greater than the frequency of the recorded motion (Boore and Bommer, 2005).
Because of physical limitations, it is not possible to have analog instruments with
natural frequencies greater than 25 Hz (Refer to Figure 1.2 for a comparison between
natural frequencies of instruments). Therefore, high frequency motions can not be
evaluated in a correct manner beyond the natural frequency of the instrument itself.

Figure 3.2 demonstrates this issue.
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Figure 3.2 Measured and true acceleration values for an analog accelerograph
(Hudson, 1979).

Computers are inevitably needed for any kind of data analysis considering
strong motion records. To achieve this, analog instrument traces must be digitized.
Besides being a very time consuming and laborious exercise, it is one of the main
reasons of noise content stored in the traces. Digitization was made by hand till
1970s in US, then for approximately 10 years semi-automatic hand operated

digitizers were used. From beginning of 1980s, automatic digitizers were introduced
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(Trifunac and Todorovska, 2001). Each improvement decreased the amplitude of
digitization noise and limited human-related errors. Another important drawback of
digitization process is the effect of resolution on digitization. Figure 3.3 shows an

example of digitized accelerogram with low resolution.

Although noise in the traces can be limited to some extent, it is generally not
possible to remove the noise without processing the series after digitization. Most
obvious indicator of the problematic recording is the unrealistic time series of
velocity and displacement. Figure 3.4 displays an example of this phenomenon on an
uncorrected time series. Although it is known that velocity at the end of the record
should be zero as a terminal condition, this is not the case. Moreover, velocity and
displacement traces must normally assumed to be zero as an initial condition to start
plotting but this may not be the case since actual strong motion does not start as the
acceleration trace shown in figure. As explained in the previous paragraphs,
recording starts when acceleration exceeds a threshold limit. Also, displacement
trace seems to be unrealistic with a 4m drift, increases in a parabolic sense (which is

the integral of the linear shift in velocity trace).
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Figure 3.3 Uncorrected acceleration time series of Izmit Meteoroloji Istasyonu N-S
component record of the 12.11.1999 Diizce earthquake.

All these evidences show that baseline of the acceleration trace is shifted and
low-frequency noise content is involved in the traces (high frequency content has
limited effect on traces). Long-period noise can also be introduced by lateral
movements of the film during recording and warping of the analog record prior to

digitization (Boore and Bommer, 2005).
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Figure 3.4 Uncorrected acceleration, velocity and displacement time series of
GoOyniik Devlet Hastanesi E-W component record of the 17.08.1999 Kocaeli
earthquake.

3.3. DIGITAL INSTRUMENTS

As stated earlier, digital accelerographs are superior compared to their analog
counterparts in many aspects. First of all, they record on reusable media continuously
so there is no waste of film or paper. They hold a pre-event memory for each
recording so actual starting time of recording can be obtained contrary to unknown
initial conditions of analog instruments. Besides, this pre-event memory serves as a

basic source to identify the noise content of the recording.

The second important advantage of digital accelerographs is about their
dynamic properties. As shown in Figure 1.1 and Figure 1.2, both dynamic range and
bandwidth of the digital instruments are much better than analog ones. No high
frequency limitations or dynamic range problems exist for digital instruments, at

least in typical requirements of earthquake engineering.
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Most important advantage of digital instruments is generated by its digital
character. No external digitization is required for digital instruments because analog-
to-digital conversion is made within the instrument. Therefore, noise originated from
digitization process is not an issue for this kind of instruments. Nevertheless, noise
and baseline problems can not be eliminated completely from the digital instruments.
Data processing is still required for digital accelerographs. Figure 3.5 is the
acceleration, velocity and displacement time series obtained from Yarimca Petkim
Tesisleri during the 12.11.1999 Diizce earthquake. Although initial conditions are
satisfied in time series for the time of event starts for velocity and displacement
traces; i.e. excluding pre-event portion of time series, velocity and displacement are
zero when ground motion is started, baseline shifts therefore noise intrusion can be
realized when terminal condition of velocity trace and linear increase in the

displacement time series are considered.

Acceleration [cmfzec?)

=

Lo =W

Yelocity [cmisec]

b o

o El 10 15 20 25 30 35 40 45 50 55 B0 BS 70
Time [sec]

Displacement [cm]
= = oMW
ERETEE=T -]

w

o

Time [sec]

Figure 3.5 Uncorrected acceleration, velocity and displacement time series of
Yarimca Petkim Tesisleri E-W component record of the 12.11.1999 Diizce
earthquake.
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3.4. NOISE CHARACTERISTICS AND ADJUSTMENT PROCEDURES

Noise characteristics encountered in the recordings can be grouped into two
as standard and non-standard noise (Boore and Bommer, 2005). As explained briefly
in the preceding parts, standard noise is originated from the signal itself for both kind
of accelerographs or it stems from digitization process and the instrument itself for
analog instruments. Nonstandard noise, on the other hand, can be seen in some of the

records and they should be eliminated before routine process on the records is done.

Spikes are the unrealistic peaks shown in acceleration traces of digital
accelerographs. An example of the spikes is shown in Figure 3.6. These kinds of
spikes are eliminated from the records by interfering in the ground motion data. For
this unique example, spikes are just deleted from end of the record since strong
ground motion effect has already been diminished prior to that instant. As suggested
by Boore and Bommer (2005), spikes can be eliminated by replacing the ordinate of

spike with mean of acceleration data points on either side.

Another source of non-standard error is the baseline shifts (Boore and
Bommer, 2005). For both analog and digital recordings, baseline shifts result in

serious deviations on both velocity and displacement traces.

As “standard” errors, baseline problems, high frequency noise, transducer
errors and low frequency noise can be listed. Each one of these will be discussed in

detail in the succeeding parts.
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Figure 3.6 Uncorrected acceleration time series of Sakarya Baymdirlik ve Iskan
Miidiirliigi N-S component record of the 11.11.1999 Sapanca-Adapazari earthquake.
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3.4.1. BASELINE PROBLEMS

As can be seen from Figures 3.4 and 3.5, baselines for both analog and digital
instruments can be shifted. Generally, it is not possible to identify these shifts or
distortions from acceleration traces. With integration process for velocity and double
integration process for displacement series, it becomes possible to identify baseline

shifts.

There are several procedures to correct baselines. Sequential fitting of baselines to
the velocity trace is one of these procedures. Figure 3.7 displays the uncorrected
series of Yarimca Petkim Tesisleri N-S component record for the 1999 Kocaeli
earthquake. The baseline shift in the velocity trace is obvious. Both velocity and
displacement traces are unrealistic. To adjust the baseline, velocity fit from 30 to 135
s. is applied to the traces and the result obtained is shown in Figure 3.8. Not only the
traces are more realistic after adjustment, but also it becomes possible to observe the
permanent displacement after the earthquake ceases. Also shown in Figure 3.9 is the
Fourier spectrum of the record before and after baseline correction. Only minor
differences can be observed. Baseline corrections does not change Fourier spectrum
of the record significantly. There is almost no difference before and after baseline
correction. The spectrum in red in Figure 3.9 is the noise spectrum obtained from
pre-event memory, green lines represents the theoretical f* decrease (explained in

Part 3.4.2) of the spectrum amplitudes to identify low-cut filter frequency.

Baseline adjustments can also be used for removing low frequency noise.
Application is generally fitting baselines to velocity traces. This can be in the form of
fitting higher-order polynomials to the velocity trace such as Grazier (1979) has
proposed, or shifting velocity trace between time limits where predefined threshold
acceleration is exceeded as Iwan has suggested (Iwan et al., 1985). Figure 3.10
shows the schematic representation of these approaches. In Figure 3.10 on the left
side shaded line represents velocity from integration of the east—-west component of
acceleration recorded at TCU129, which is 1.9 km from the surface trace of the fault,
from the 1999 Chi-Chi earthquake, after removal of the pre-event mean from the

whole record. A least-squares line is fit to the velocity from 65 s to the end of the
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Figure 3.7 Uncorrected acceleration, velocity and displacement time series of
Yarimca Petkim Tesisleri N-S component record of the 17.08.1999 Kocaeli
earthquake.
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Figure 3.8 Acceleration, velocity and displacement time series of Yarimca Petkim
Tesisleri N-S component record of the 17.08.1999 Kocaeli earthquake after velocity
fit from 30 to 135 s.
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Figure 3.9 Acceleration Fourier spectrum of the Yarimca Petkim Tesisleri N-S
component record of the 17.08.1999 Kocaeli earthquake before (left) and after (right)
baseline correction.
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Figure 3.10 Schematic representations of baseline adjustment schemes (Boore and
Bommer, 2005).

record. Various baseline corrections using the Iwan scheme are obtained by
connecting the assumed time of zero velocity t; to the fitted velocity line at time t,.
Two values of t, are shown: 30, and 70 s. The dashed line is the quadratic fit to the
velocities, with the constraint that it is 0.0 at t=20 s. On the right hand side of the
figure are the derivatives of the lines fit to the velocity are the baseline corrections

applied to the acceleration trace (Boore and Bommer, 2005). Major drawback of the
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Iwan approach is that significantly different results can be obtained especially for
displacement time-series according to the selected shifting times, which are chosen

subjectively.

3.4.2. LOW FREQUENCY NOISE

Low frequency noise in the signals can originate from digitization errors or
from the noise within the signal. It can be effectively eliminated from the records by
using low-cut filtering. Low-cut filters eliminate the noise content within the
recording according to the subjectively selected low-cut filter frequency. Both
velocity and displacement time series are very sensitive to the selected low-cut filter
frequency. Therefore, despite the subjectivity of the selection, selection criteria are
defined in order to limit the deviations from one to study to another. Besides
selection of low-cut frequency, selected techniques of the filtering and true

application are also very important to obtain results as much close as the actual ones.

A filter is a function that in the frequency domain has a value close to one in
the range of frequencies that the analyst wishes to retain and close to zero in the
range of frequencies that the analyst wishes to eliminate (Boore and Bommer, 2005).
According to the function selected, filters are named as Butterworth, Ormsby,
Chebychev, Bessel or elliptical. In practices, Butterworth filters are generally used
but differences between results obtained from filter types are not to be considered

here since the differences have limited effect to the results obtained.

If a Butterworth type of filtering is chosen to be applied, as will be done in
this study, the items to be decided include type of filter and filter order. Type of filter
can be causal or acausal. Acausal filters are actually causal filters that are applied to
the time series twice (forward and backward), to achieve zero phase shift. Although
they have very similar properties, acausal and causal filters can cause very different
outcomes especially for displacement time series. In Figure 3.11 result obtained for
accelerations, velocity and displacements time series from the 228° component of the

analog recording at Rinaldi during the 1994 Northridge earthquake for causal (top)
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and acausal (bottom) filtering are plotted. Displacement time series deviate

significantly according to the selected filter type (Boore and Bommer, 2005).

Data points with zero amplitude should be added to acceleration time series to
be able to apply acausal filters. This procedure is known as adding pads. Total length
of zero pads added is related to the filter order used in the analysis. Recommended

total time length for zero pads needed is given by the equation:

szad = f (3.2)

1.5n
C
where n is the filter order and f. is the low-cut filter frequency for Butterworth

acausal filter (Boore and Bommer, 2005).

Choice of filter order is decided by analyst according to the desired fall off
rate of the filter. In Figure 3.12, fall offs of Butterworth type filter is shown for both
time and frequency domains. It can be observed from the figure that, as the filter
order increases, rapid fall off filter response is observed. According to the
seismological theory, FAS of acceleration decays according to the square root of
frequency (), therefore it is desired to have a fall off for filter response that decays

more rapidly than f*.

The most important part of the data processing scheme is selecting low-cut
filter frequency. When signals are judged to be contaminated by the noise, it would
be possible to identify the noise from acceleration FAS. Also most of the criteria
adopted to decide the low-cut filter frequency are based on the studying on FAS.
Based on the papers published by Boore and Bommer (2005) and Akkar and
Bommer (2006b), four distinct ways of deciding low-cut filter frequency can be

identified.

i. One way of deciding low-cut filter frequency is to study the noise spectrum
and make a comparison between acceleration FAS of noise and record spectrum.

Noise spectrum can be obtained from pre-event memory of the record for digital
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Figure 3.11 Differences in the result obtained for accelerations, velocity and
displacements time series for acausal and causal filtering for different filtering
periods (Boore and Bommer, 2005).

Filter Response

Q T T : T T T r T - -
0 0.02 0.04 0.06 0.08 01 0O
Frequency (Hz) Period (s)

Figure 3.12 Fall offs for Butterworth type filter for both frequency (left) and time
(right) domains (Boore and Bommer, 2005).

instruments and from fixed traces of analog instruments. Analog instruments produce
two fixed traces on the film together with the three traces of motion (two horizontal,

one vertical) and the time marks. Since these fixed traces only contain noise for the
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record, noise spectrum can be obtained from them if digitization process is done also
for these fixed traces. Nevertheless, in practice, no such effort is made. Even if they
have been made, it is hardly possible to achieve these records. For the used database,

no fixed trace information is available.

Another important issue about the pre-event memory noise spectrum is
scaling the FAS to be able to use with record FAS. Acceleration FAS of the pre-
event portion is scaled proportional to time length of the record and pre-event

portion. As defined by Zare and Bard (2002), normalized signal to noise ratio is

S( 17
Ren(f)= % (3.3)
&

where Fourier transform of the signal is computed (S(f)) over a length t; and the

given in Equation 3.3,

Fourier transform of the noise N(f) is computed over a length of t, and (Ry,) is the
normalized signal to noise ratio. With some mathematical arrangement scale factor

for the noise spectrum can be defined as

SF="2 (3.4)

where SF is the Scale Factor, t; is the time length of the record, t, is the time length

of the pre-event part of the record.

Finally, desired ratio of signal-to-noise should be decided. It is generally
accepted by researchers that, noise ratio in the recording (by means of amplitude of
FAS) should not exceed half of the signal. Considering noise is also contained in
signal FAS, a signal-to-noise ratio of 3 is the limit for records to be evaluated. In
Figure 3.13, acceleration FAS of noise and record for the Malazgirt Meteoroloji Ist.
03.11.1997 earthquake is shown as an example of signal-to-noise ratio usage for

filtering. In Figure 3.13, Blue spectrum is the signal spectrum whereas red one is the
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noise spectrum obtained from pre-event memory. For a signal-to-noise ratio of 3,
low-cut filter frequency is found as 0.56 Hz for N-S component and 0.55 Hz E-W

component. 0.56 Hz is selected as the low-cut frequency for both components.

ii. According to the source theory, amplitudes of FAS of signal should decay
in proportional to the square root of decay in frequencies. Known as f* model,
deviation of FAS of record from decaying trend will be the frequency of low-cut
filter to be activated. Figure 3.14 expresses two examples of how to use the model
for both analog and digital instruments. In the figure, on the left, acceleration FAS of
the Goyniik Devlet Hastanesi E-W component record (analog) of the 17.08.1999
Kocaeli earthquake is plotted. Also shown in the figure is the subjectively fitted f*
decay model (in green) intersecting the FAS where deviation from the decaying trend
for FAS is observed; on the right, acceleration FAS, proposed f* decay model and
noise FAS (red) of the Yarimca Petkim Tesisleri E-W component record (digital) of
the 12.11.1999 Diizce earthquake is plotted. Notice that signal-to-noise ratio does not
give an idea about low-cut filter frequency for the digital recording. As can be
observed from the figures, subjective character of choosing a low-cut filter is limited

but does not vanished.

FAS, cm/s
FAS, cm/s

h

% h . M%w

Frequency, Hz Frequency, Hz

Figure 3.13 Acceleration FAS of the Malazgirt Meteoroloji Ist. N-S (left) and E-W
(right) components records of the 03.11.1997 Malazgirt earthquake.
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Figure 3.14 Use of f* decay model for analog (left) and digital instruments (right).

ii1. Visual inspection of velocity and displacement time series can be used to
judge whether used filter frequencies are appropriate. Since judgment does involve
subjectivity as the meaning of the word, differences between researchers about

appropriateness of the time series are unavoidable.

iv. Finally, appropriateness of selected low-cut frequency can be judged
numerically according to the corner frequencies calculated from source theory. Based
on Brune’s single-corner source spectrum model fro a stress drop of 100 bars, Joyner

and Boore (1988) defined a relationship to estimate filter frequency as,

-(M-5)
f,=10 2 (3.5)

where f, is the filter frequency and M is the moment magnitude. If a double-corner
source spectrum model is used, then corners of the theoretical decaying of

acceleration FAS are defined by Atkinson and Silva (2000) as,
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Since none of the criteria can be based on physical evidences or mathematical
proofs, the best way of deciding what the filter frequency should be, is to use all

criteria simultaneously to make a sound decision.

Because of the sensitivity of obtained time series after processing to the
selected low-cut filtering methodology and filter frequencies, acceptability of
outcome become questionable beyond some pre-defined periods. For a detailed
description of this debate, the reader can refer to the paper by Boore and Bommer

(2005).

3.4.3. HIGH FREQUENCY NOISE AND TRANSDUCER ERRORS

Transducer errors, as mentioned in Chapter 3.2, occur due to the insufficient
(small) natural frequencies of the accelerograph (Figure 3.2). Since sites with soft
soil conditions filter the high frequency content of the motion, high frequency
content in the acceleration traces are observed for recordings that have stiff site
conditions. Therefore no correction for transducer error is required for digital
instruments or analog instruments located on non-rocky sites. Transducer corrections
simply amplify the amplitudes of acceleration traces for high frequency content
where transducer natural frequency limits the instrument to evaluate the true
behavior. Figure 3.15 shows examples of analog and digital instrument recordings
and transducer effects. Analog instrument (left) is corrected for frequencies beyond
its natural frequency. Digital instrument (right) do not need any correction since its
response does not fluctuate within the frequency range investigated (Boore and

Bommer, 2005).

On the other hand, high frequency noise affects the frequency content of the
accelerograms contrary to transducer errors. Noisy content amplifies the high
frequency portion of the Fourier spectra. On the right side in Figure 3.14, Fourier
acceleration spectrum of the record and noise spectrum obtained from pre-event
memory of the accelerograph are shown. As can be seen from the figure, noise
overwhelms the record spectrum starting from frequencies 15 to 20 Hz. That is, what

is seen as the Fourier spectrum of the record is actually noise spectrum. Moreover,
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for high frequencies, acceleration FAS should decay inversely proportional to the
square root of increase in frequencies in an opposite sense of low frequencies. So,
flat portions at the end of the spectra are unreasonable. Therefore, it is convenient to
filter the recording for frequencies where noise is considered to be effective or where
the decaying of amplitudes flattens. The theory behind the necessity of using high-
cut filters is to limit the noise content as it is for low-cut filters. Since filtering works
on the contrary manner to the transducer correction, transducer correction will be

useless where frequency ranges of the two applications counteracts.

Another limitation for the high frequency applications comes from the
sampling rate. Nyquist frequency, the highest frequency at which characteristics of
the motion can be correctly determined, is equal to (1/2At) where At is the sampling

interval. A high cut filter greater than Nyquist frequency will be useless.
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Figure 3.15 High frequency noise in Fourier acceleration spectra in analog and
digital accelerograms (Boore and Bommer, 2005).

An important issue about data process is the compatibility of the time-series
after processing. Either filtering or baseline corrections are applied, acceleration
time-series are distorted or time lengths are changed because of padding. It should be
keep in mind that after any process, all time series should have the same format and

they should be compatible with each other. Researches have shown that pads that are
47



needed for acausal filtering, should not be removed after processing since removing

distorts long period spectral ordinates (Converse and Brady, 1992).

3.5. DATA PROCESSING METHODOLOGY

There are various methodologies that are proposed or applied by the
researchers or institutions for data processing. In this section, a brief summary of
these methodologies are given. Then, methodology applied for this study will be

given in detail.

For Dissemination of European Strong Motion Data, a correction for the
instrument response, when the required characteristics are known, and high cut
filtering, with a cosine transition from the roll-off frequency to the cut-off frequency;
followed by low-cut acausal Butterworth filtering of the acceleration after padding
has been applied to time series. Signal-to-noise ratios are used as the basis for
estimating low-cut filter frequency (Internet Site for European Strong Motion

Database).

PEER Center applied both baseline correction procedures and filtering
together. After removing mean (simple baseline correction), high-cut and low-cut
filter frequencies are determined from Fourier spectrum. Then, velocity and
displacement time series are formed and baseline correction is made for acceleration
trace. Again plotting time-series, displacement trace is controlled for its validity. If
not problematic, data process is finished; if it is, new filter frequencies are selected

(Darragh et al., from http://www.cosmos_eq.org/recordProcessingPapers.html).

The methodology applied for USGS National Strong Motion Program
contains a baseline correction based on fitting linear or low-order polynomials to the
velocity trace after a simple mean removal, then an acausal band pass filtering of

acceleration time series (Stephens and Boore, from http://www.cosmos_eq.org/

recordProcessingPapers.html).
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California Strong Motion Instrumentation Program (CSMIP) applied an
instrument correction after a baseline correction followed by a high frequency
filtering. Finally a low-cut filtering is made to the records considering a signal-to-

noise ratio of 2 or 3 (Shakal et al., from http://www.cosmos_eq.org/

recordProcessingPapers.html).

Akkar and Bommer (2006b) suggested an iterative procedure to identify low-
cut frequency based on source theory. After subtracting the mean from the record,
observing the FAS of signal and noise, signal-to-noise ratio of 3 is checked as the
frequency of filtering. If signal-to-noise ratio does not exist, or no consistent result is
obtained, theoretical corner frequencies are checked to determine low-cut filter
frequency. Starting with a filter frequency value that is lower than the theoretical
FAS corner frequencies estimated from the theoretical models of Joyner and Boore
(1988) and Atkinson and Silva (2000), low-cut filter frequencies are gradually
increased until the displacement waveforms do not contain long-period fluctuations
that run along the total record length or any other physically unjustifiable variation

such as ending with very large displacements.

For this study, a simplified form of data processing scheme is applied. Logic
tree of the applied procedure can be followed with Figure 3.16 where processing
scheme is explained in the flowchart manner. First of all, as an initial baseline
correction, mean of the pre-event portion of the recording for digital instruments or
mean of the all raw acceleration record for analog instruments is subtracted from the

accelerogram according to the type of instrument.

In order to eliminate noise, low-cut filter filters and high cut filters are
applied together. A procedure called “band-pass” filtering is done. The above told
procedure is applied with the help of commercial program called “MatLAB”.
Original codes used are written by David Boore (Earthquake Effects Project,
Western Earthquake Hazards Team, USGS) that can be obtained from his internet
site (U.S. Geological Survey, Homepage). These codes were used within MatLAB to
automate the procedure in a user friendly environment by Sinan Akkar (Earthquake

Engineering Research Center, METU).
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Figure 3.16 Data processing procedure applied for this study.
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With some modifications, that automated procedure was applied for both
analog and digital records. Since original codes dictate an embedded baseline
correction scheme in the program, no baseline adjustment were made during the
procedure because differences in time-series between filtering or filtering after a
baseline adjustment were negligible. Unavoidably, use of this procedure
exterminated residual displacements, i.e. residual displacements are all zero for the
filtered records even if it is observed that the reverse is true. Since peak values are
considered for this study, I believe that the outcomes are not severely distorted. In
Figure 3.17, velocity and displacement time series for both baseline corrected and
non-corrected applications after filtering with the same frequency cut-offs are drawn
for Heybeliada Sanatoryumu N-S component record of the 17.08.1999 Kocaeli
earthquake. Baseline is corrected for the time-series with sequential fits to velocity
traces from 6.5 to 55 and 55 to 105 sec. Time-series obtained are quite the same

especially for peak portions.

For low-cut filtering, a 4™ order acausal Butterworth filter is preferred in
order to have steep response curve for filter. In order to select filter frequencies,
procedures described in Section 3.4.2 are applied. For digital recordings, signal-to-
noise ratios are checked to see whether a filter frequency is applicable. If no filter
frequency can be obtained from signal-to-noise ratio (and most of the cases did not)
then an f* model is imposed to FAS to in order to estimate the frequency where
amplitude decay starts for decreasing frequencies. At the same time, theoretical filter
frequencies are checked to provide the convenience. After these steps are applied for
both orthogonal directions, a filter frequency for both directions is selected and
applied. Generally, higher of two is selected as the filter frequency of the recording.
In Appendix B.1, selected low-cut filter frequencies are given for each recording. In
Figure 3.14, acceleration FAS and proposed f* decay models of the GSyniik Devlet
Hastanesi E-W component record of the 17.08.1999 Kocaeli earthquake and Yarimca
Petkim Tesisleri E-W component record of the 12.11.1999 Diizce earthquake are
shown. Acceleration FAS of these records and time-series after filtering are given
from Figures 3.18 to 3.21. Note that, in Figures 3.19 and 3.21, dispersed lines at both
end of the spectrum are the results of band-pass filtering with low and high cut

filter values of 0.29 Hz - 20 Hz and 0.36 Hz - 18 Hz respectively. In Figure 3.22,
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Figure 3.17 Velocity and displacement time-series of Heybeliada Sanatoryumu N-S
component record of the 17.08.1999 Kocaeli earthquake after filtering for both
baseline corrected and non-corrected data.

theoretical corner frequencies obtained from Joyner and Boore (1988) and Atkinson
and Silva (2000) models compared with selected low-cut filter frequencies are
displayed. Extracting 1999 Kocaeli and Diizce events that are large magnitude with
low theoretical filter frequency earthquakes (filtering with that low frequencies are
practically do not yield meaningful time-series), analog instruments are filtered by
frequencies higher than theoretical Joyner and Boore (1988) frequencies, but they are
within the limits of theoretical Atkinson and Silva (2000) double corner frequency
model. On the contrary, digital instruments are generally filtered by frequencies that
are smaller than theoretical single corner frequencies. Generally, filter frequencies

are within acceptable limits considering theoretical filter frequencies.
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Figure 3.18 Corrected acceleration, velocity and displacement time series of
Goyniik Devlet Hastanesi E-W component record of the 17.08.1999 Kocaeli
earthquake.
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Figure 3.19 Corrected and uncorrected FAS of Goyniik Devlet Hastanesi E-W
component record of the 17.08.1999 Kocaeli earthquake.
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Figure 3.20 Corrected acceleration, velocity and displacement time series of Yarimca
Petkim Tesisleri E-W component record of the 12.11.1999 Diizce earthquake.
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Figure 3.21 Corrected and uncorrected FAS of Yarimca Petkim Tesisleri E-W
component record of the 12.11.1999 Diizce earthquake.
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Figure 3.22 Theoretical and selected low-cut filter frequencies.

Unfortunately, subjectivity of criteria for selecting filter frequencies and
application of different methodologies yield different choices for low-cut filter
frequencies. In Figure 3.23, selected low-cut filter frequencies for different
researches are shown for the 1999 Kocaeli earthquake. As a general trend, it can be
said that PEER Center applied low filter frequencies compared to the other
researches and harsh filters selected by Zare and Bard (2002) are noticeable.
Inevitably, these differences are reflected to the PGV’s obtained. In order to visualize
the sensitivity of obtained results with respect to selected low-cut filter frequencies,
GoOyniik Devlet Hastanesi E-W component record of the 17.08.1999 Kocaeli
earthquake is also filtered with filter frequencies suggested by ESMD, PEER and
Zare and Bard (2002). As mentioned before, this record is filtered by 0.29 Hz. Other
filter frequencies are 0.45, 0.06 and 0.77 Hz for ESMD, PEER and Zare and Bard
(2002) respectively. Obtained velocity and displacement traces are plotted in Figure
3.24. Peak values for velocity and displacement traces varies from 9.07 cm/s to 13.33
cm/s for velocity and 0.9 to 4.48 cm for displacement. Note that each trace has

different pad lengths because of different filter frequencies. These pads are removed
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from the traces while plotting for convenience. Researches have shown that digital
records are less sensitive to deviations in filter frequencies considering differences in

the outcome (Akkar and Bommer, 2006b).

For high-cut filtering, acceleration FAS of signal and noise (if it exists) are
observed. Fluctuations within decaying character of amplitudes of FAS as frequency
increased or dominance of noise content over signal are examined to identify the
filter frequency. Selected high-cut filter frequencies are given for each recording in
Appendix B.1. In Figure 3.14, acceleration FAS of both analog and digital
accelerographs can be observed as an example. Both FAS has a flat plateau beyond a

frequency level and for the digital accelerogram, noise dominates the signal FAS.

3.6. PEAK GROUND VELOCITY

Peak ground velocities of earthquakes commonly used as a measure of
intensity of the ground motion and in energy related analysis of structures (Bommer
and Alarcon, 2006). PGV for a given component of motion can not determined from
the raw data of the records. To be able to use PGV data as a variable for further
analysis, processing of the raw data must be done. Therefore, obeying the principles
explained in the previous chapters, all data set of 223 components from 112 records
obtained from main shocks of 57 earthquakes are processed. Selected cut-off
frequencies for each component of the records and obtained corrected PGV dataset is

given in Appendix B.1.
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Figure 3.24 Velocity and displacement time series of Goyniik Devlet Hastanesi E-W
component record of the 17.08.1999 Kocaeli earthquake for different low-cut filter
frequencies.
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CHAPTER 4

DERIVATION OF GROUND MOTION PREDICTION EXPRESSION

4.1. GENERAL

Attenuation of peak values of ground motions has been studied extensively
since 1970s. Since force methods are traditionally used to analyze structures in
earthquake engineering, primarily desired characteristic of possible ground motion is
the peak acceleration, which is easily converted to force terms. Therefore,
attenuation relationships for PGA are by far the most studied objective. According
to the worldwide summary of attenuation relationships, 141 attenuation relationships

for PGA are developed within the period 1969-2002 (Douglas, 2001).

Attenuation relationships for PGV are scarce when compared to PGA. There
are less than 30 relationship developed for PGV up to now (Bommer and Alarcon,
2006; Akkar and Bommer, 2006a) There are basically two reasons behind this fact.
Firstly, using PGV as a tool for engineering purposes is a rather new subject when
compared to PGA. Although limited now, using PGV in earthquake engineering
seems to increase in near future. A number of areas where PGV can be used are
given in Section 1.4. Second reason is the necessity of data processing for the used
database before developing attenuation relationships. Besides data processing is a
time consuming and laborious exercise, obtained results are questionable due to
unavoidable subjectivity involved. Data processing is explained in detail in Chapter

3.

Either for PGA or PGV, to be able to construct the attenuation relationship,
first of all, suitable model to analyze the data obtained has to be chosen. For all the
attenuation relationships derived, regression analysis is used as the statistical tool
since it provides a conceptually simple method for investigating functional

relationships among variables. The standard approach in regression analysis is to use
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a sample data to compute an estimate of the proposed relationship, and to evaluate
the fit using terms as Coefficient of Determination, R* and Coefficient of Variation,
o”. The relationship is expressed in the form of an equation connecting the response
or dependent variable y (in our case PGV), and one or more independent variables X,
X2,..., Xn.(in our case magnitude, site geology, distance, etc.). Then regression

equation, takes the form,

y=Db, +bX, +b,X, +...+b X, 4.1)

where bo,b1,b2,...b, are called regression coefficients and are determined from the
analysis (Chatterjee, 1977). In statistics, numerous regression models exist for
evaluating the relationship between any pair of variables, including models for linear

and nonlinear relationships and normal or non-parametric distributions of data.

In this study, the coefficients in the equations for predicting ground motion
were determined by least squares nonlinear regression procedure. Nonlinear
regression is a method of finding a nonlinear model of the relationship between the
dependent variable and a set of independent variables. Unlike traditional linear
regression, which is restricted to estimating linear models, nonlinear regression can
estimate models with arbitrary relationships between independent and dependent
variables (SPSS Manual, 2004). This is accomplished using iterative estimation
algorithms. When applying regression analysis, those parameters should be

quantitative in the data set.

In this chapter, model adequacy and variance estimation, development of
attenuation relationship for PGV, comparison of constructed relationship with other

relationships and reliability of obtained results are presented and discussed in detail.

4.2. MODEL ADEQUACY CHECK

Although sum of the squares of the residuals does give an idea about how

well the fit is for the developed equation on comparison basis, model adequacy check
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is done to evaluate the goodness of fit in statistical fashion. A quantity, termed as the
coefficient of determination (R?) is used for checking of analysis results and shows
quality of the curve fitting process. It can be determined by using the Equation (4.2)
(Chatterjee, 1977);

nooe 2
RSS _, ResidualSumofSquares _, Zj:j_( i)

- (4.2)
CSS CorrectedSumofSquares zn (3 — 7)2
j=1t 7l

where

¥; —y = Difference between it predicted value and observed value.

¥, — y = Difference between i predicted value and mean value.

R? values are given for each attempt to improve the fit process in the

development phase of attenuation relationship.
4.3. ESTIMATION OF VARIANCE

To be able to use the prediction equations with confidence, standard deviation
of the models from mean values should be determined. The unbiased estimator, 7,
expresses variations in the residuals. The formula for o” is given by Equation (4.3)

(Kalkan, 2001).

~ N2
ot = zn (Yi = ¥i) (4.3)

i=l n—p

In this formula, y; — J; denotes the difference between i observed value and

predicted value, ‘n’ represents the number of data used in regression analysis and ‘p’
is the number of parameters estimated. The o~ values are given for each attempt to

improve the fit process in the development phase of attenuation relationship.
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4.4. DEVELOPING ATTENUATION RELATIONSHIP

4.4.1. CONSTITUTION OF THE METHODOLOGY

In order to develop an attenuation relationship, the form of the equation
should be determined first. Instead of constructing a new form of relationship,
modifying the proposed relationships that have been studied earlier is preferred since

these forms reflect a virtue of the past experiences and studies.

Within the previous studies shown in Table 1.1, five equations are selected to
be studied. These are Joyner and Boore (1981) (JB81), Sabetta and Pugliese (1996)
(SP96), Tromans and Bommer (2002) (TB02), Pankow and Pechmann (2004) (PP04)
and Akkar and Bommer (2006a) (AB06). The basic principle behind this choice is
the terminology used for distance definitions. All of these equations use rj, as the
distance term that coincides with the terminology in the database used for this study.
Functional forms of these equations are given in Table 4.1. Note that the original
forms of these equations are modified to account for the properties of the dataset
which will be explained in the following paragraphs where properties of the given

studies are investigated.

In their study, Joyner and Boore (1981) restricted their dataset to California
and shallow earthquakes. Their functional form uses a magnitude-independent shape
based on geometric spreading and anelastic attenuation. Actually, Joyner and Boore
(1981) expression is the only one that allows anelastic attenuation within the grouped
studies examined here. Soil classification is made as rock and soil. Sites described by

N1

such terms as “granite,” “diorite,” “gneiss,” “chert,” “greywacke,” “limestone,”

9 ¢

“sandstone,” or “siltstone” are grouped as rock and “alluvium,” “sand,” “gravel,”
“clay,” “silt,” “mud,” “fill,” or “glacial outwash” as soil. For the regression analysis

made, rock site are used as rock and soil and stiff soil sites are grouped as soil sites.

Sabetta and Pugliese (1996) used Italian strong-motion data with magnitude
scale of M; for My is greater than 5.5 and My for the rest. Maximum M; value used

for the analysis is 6.8, which is significantly lower than the maximum value of M;
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within the database used; M of the 1999 Kocaeli earthquake is 7.8. Note that with
the usage of M; to My, conversion, the magnitude values do not vary from moment
magnitude values significantly (see figure 2.2). Both epicentral and Joyner-Boore
distances are used for the equation given. For the site classification, three categories
are defined as stiff (Vg0 > 800 m/sec), shallow alluvium (H is less or equal to 20 m)
and deep alluvium (H is greater than 20 m) (400 m/sec < Vg < 800 m/sec. for
alluvium sites). Although it is not mentioned, use of the same coefficient for the
alluvium sites depicts the unified alluvium site classes for PGV. For the regression
analysis made, rock site are used as rock and soil and stiff soil sites are grouped as

soil sites.

Tromans and Bommer (2002) used 51 European earthquakes to develop the
relationship with surface-wave magnitudes between 5.5 and 7.9. Three site classes
are defined based on average shear-wave velocity: Vo > 750 m/sec for rock sites,
Vao < 360 m/sec for soft soil sites and soil sites between these levels. This
classification is quite similar to the one suggested by this study: Vo > 700 m/sec for

rock sites, Vg3o < 300 m/sec for soil sites and stiff soil sites between these levels.

Table 4.1 Functional forms of relationships considered.

Study Functional Form

JB81- logPGV =C, +C,M —log[w/Cf +r2]+c4\/c327+css
SP96 - logPGV =C, +C,M —log(\/Cf + r2)+C4S

TBOZ2- logPGV =C, +C,M +C, log(W/Cf ¥ r2j+C551 +C,S,
PPO4 - logPGV =C, +C,(M —6)+C, log(w/Cf ¥ r2)+css

ABO6 - logPGV =C, +C,M +C;M? +(C, +C5M)10g(1/C62 +r2)+c7s1 +C,S,
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For their study based on worldwide records, Pankow and Pechmann (2004)
used the database of Spudich et al. (1999) for extensional tectonic regions. The
dataset includes many records from Europe, particularly Italy and Greece (Akkar and
Bommer, 2006a). Their use of constrained magnitude scaling for the functional form
is criticized for not being suitable for areas that are not extensional such as southern
Europe, North Africa and Middle East Greece (Akkar and Bommer, 2006a). Site
classification is made on two broad areas as rock and soil. Vo 1S defined as 910
m/sec which is significantly higher than the value used for this study. On the other
hand, Vi is defined as 310 m/sec. Horizontal component is defined as geometric
mean, which makes the comparison with other equations unreliable since other
studies including this study, use larger component (Akkar and Bommer (2006a) used
both terminologies). Note that, quadratic term in magnitude scaling is eliminated for

PGV in the functional form (Pankow and Pechmann, 2004).

In their recent study, Akkar and Bommer (2006a) updated Tromans and
Bommer (2002) due the its weaknesses as described in preceding part. 133
earthquakes from Europe and Midde East with 532 strong-motion accelerograms are
used for the study. Same site classification of Tromans and Bommer (2002) is used
for this study as well. Quadratic magnitude scaling and magnitude dependent
spreading terms are added to the functional form. Anelastic attenuation term was
examined but eliminated since it was understood that dataset is insufficient to
simultaneously constrain this term and geometric spreading, yielding positive values
of the coefficient for anelastic attenuation (Akkar and Bommer, 2006¢). Original
form does include influence of style-of-faulting. Since no such differentiation is
made for this study, these terms are eliminated from the form and comparison is

made accordingly.

In Figure 4.1, prediction curves for these equations are given for moment
magnitudes 7.5, 6.5 and 5.5. Necessary conversions are made to plot the graphs:
magnitude conversions for SP96 and TB02 are made obeying the equation given by

Ambraseys and Free (1997) as

M, =4.749-0.337M, +0.093M ° (4.4)
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Horizontal component conversion for PP04 is made according to the Bommer
et al. (2005) using the 0.5 s spectral ordinate as a surrogate for PGV as proposed by
Bommer and Alarcon (2006).

A striking observation made from these curves is the high values encountered
for JB81, especially for earthquakes with greater magnitudes. Also SP96 exaggerate
peak values when compared to the other 3 up to intermediate magnitudes. But it
should be kept in mind that SP96 is not suitable for My, = 7.5 since maximum

magnitude covered with this study is Mg = 6.8 (= My=6.76).

Applicability of these equations for the database used is judged numerically.
In Appendix C.1, goodness of fit values of the proposed relationships for their
original forms can be seen. Best fit is observed for AB06 and worst fit is observed
for JB81 which supports the observations that curves of JB81 seems to be unrealistic
when compared to other equations. Also in Figure 4.2 residuals for the given
equations are shown for mean of predicted values for five of them and for four of
them excluding JB81 are displayed at the top and bottom graphs respectively. The
aim of this attempt is to compare the worldwide PGV results with the database
examined here. Obviously this is a debatable approach when common recordings
used for different databases or different practices are considered, but it still gives an
idea about the database correctness compared to their counterparts. When compared
to the worldwide observations, it can be concluded that there are some inharmonious
data conserved in the database. This issue will be considered in the following chapter

in detail.

4.4.2. MODIFYING PROPOSED RELATIONSHIPS

After basics of the methodology are defined and proposed relationships are
investigated, these relationships are modified for the database used. For statistical
analysis, nonlinear least squares regression analysis is preferred which is based on

the principle of minimizing sum of squares of residuals in an iterative manner.
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To compile the data set obtained using iterative estimation algorithm, SPSS
statistical analysis software (Ver.13.0, 2004) is preferred. Among two iterative
algorithms for estimating the parameters of nonlinear models, Sequential Quadratic
Programming Algorithm (SQPA) and Levenberg-Marquardt Algorithm (LMA)
(SPSS Manual, 2004), Levenberg-Marquardt algorithm is selected since SQPA is
specifically used with constraint parameters or user defined loss functions. In the
defined problem, no constraint parameters are used and default loss function

(function to minimize sum of squares of residuals) is judged as adequate.

Results obtained from these analyses are given in Appendix C.1. Residuals
are decreased rapidly (RSS from 6012 to 3415 for the best fitted form) and model
adequacy increased significantly (R? from 0.75 to 0.86 for the best fitted form). Also
in Figure 4.3 updated equations are plotted. In the figure, observed values are from
the 1999 Kocaeli EQ with My=7.4 except (ERC) record of the 1992 Erzincan
earthquake. Note that, these predictive equations are not related to their origins in
any sense except for their form. As a notable feature of Figure 4.3, saturation of PGV
for near-fault is lost for TB02, PP0O4 and AB06 formulations. When spreading is
constrained as in JB81 and SP96 forms, this trend does not exist. This fact can be
seen from the coefficients located inside the distance terms in Appendix C.1. The
reason behind this fact is simply the scarcity of adequate data for the near-fault. The
relatively simple applied algorithm has a tendency to approach the peaks of the
database. Considering Figure 4.2 and 4.3 together, high PGV value of Erzincan
record of the 1992 Erzincan Earthquake and unexpectedly low PGV values obtained
from Sakarya and Izmit records of the 1999 Kocaeli earthquake affect the
trustworthiness of the result obtained. Actually, the Sakarya record of 1999 Kocaeli
earthquake is possibly defective since the N-S component of the record is lost during
recording. As a result, studies done for this chapter are renewed after elimination of

these three recordings.
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4.4.3. FINALIZING THE ATTENUATION RELATIONSHIP

As a last attempt to finalize the regression analysis exercise, the reduced dataset

is reanalyzed. The results obtained including finalized coefficients, sum of squares of

residuals (RSS), model adequacy (R?) and standard deviations (ol0gpGv) for the

expressions are given in Appendix C.1. A better fit to the database is obviously

achieved. Also in Figures 4.4, 4.5 and 4.6, finalized forms of equations are plotted

for rock, soil and stiff soil sites for Mw=7.5, 6.5 and 5.5. A number of observations

can be made from numerical results and from the figures plotted:

From adequacy checks and sum of squares of residuals, it can be concluded
that equation forms of TB02 and ABO6 fit analyzed dataset best. They fit the
used dataset significantly better than other equations in terms of statistical
values.

Close agreement of JB81, SP96 and PP04 forms are verified by the graphical
results of Figures 4.4 to 4.6. They are almost identical for all magnitudes and
site classes. Limited effect of anelastic decay with positive constant for JB81
form indicates that the decaying term cannot be used for the database used
here. Besides, constrained effect in the magnitude-scaling used for PP04 form
does not affect the results. This can be explained in mathematical terms
because the C, term in the PP04 relationship is multiplied by -6 summed with
C, term is equal to C; term of SP96. The small difference between them is
due to the C; term of PP04, which is close to but not equal to -1. Therefore, it
can be concluded that whether or not constraints are used for magnitude
scaling, same results would be obtained if a quadratic magnitude scaling term
is not involved, at least for the type of analysis made here.

In the light of above discussion above, TB02 and PP04 forms can be
compared. The only difference between these two equations is the site
classification. TB02 form has three classes whereas PP04 form has two. Since
TBO02 is one of the best fitted curves and PP04 is among other three, it can be
concluded that better fits of TB02 and ABO6 are basically due to their site

class definitions.
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e If Figures 4.4 to 4.6 are investigated for the effect of site class definitions, it
can be seen that TB02 and AB06 forms have higher values for rock sites in a
decreasing trend as the magnitude decreases. As expected for soil sites, these
two forms have lower values than the ones with two site classes but for the
soil sites the reverse hold. The reason behind this is that the two site classes
forms are somewhere between the soil and stiff soil classes.

e In order to investigate the effect of quadratic magnitude scaling and
magnitude spreading terms, TB02 and AB06 forms should be compared.
Although their adequacies for the dataset are mathematically on the same
level, significant differences can be observed in Figures 4.4 to 4.6. For high
values of moment magnitudes, TB02 form seems to yield higher PGV values
when compared to AB06 form. For the intermediate levels of magnitudes,
reverse hold. For lower moment magnitudes, more or less the same results are
obtained. Above comparison holds for distance range of up to 10 km. Above
this limit, both equations yield quite similar results. Considering low value of
magnitude dependent spreading term constant (Cs), it can be concluded that
the reason for this difference is mainly from the quadratic magnitude scale of
ABO6.

e Although it is not easy to judge which equation fits better for the database
used from the plotted figures, slightly lower RSS value of AB06 form and
considering the fact that it is the most recent work in ground motion
prediction that is applicable also to Turkey, AB06 form is concluded to be

proposed as an outcome of this study.

The regression coefficients and standard deviations for AB0O6 prediction
equation formulation that provides the best estimates for PGV for the selected
database of Turkish strong ground motion are given in Table 4.2. Also in Equation
4.5 finalized form of attenuation relationship for PGV suggested by this study is

given explicitly.
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Figure 4.6 Ground motion prediction curves for five different expression forms
obtained from the reduced database for soil site conditions for My= 7.5, 6.5 and 5.5.
Table 4.2 Regression coefficients and standard deviation for the prediction equation

derived in this study

Cl C2 C3 C4 Cs C6 C7 C8 GlogPGV
-2.921 1.204  -0.067 -1.162 0.050 7.183 0.200 0.359 0.32

log PGV = -2.921 + 1.204M — 0.067M > + (~1.162 + 0.05M )log(\/7.1832 +r? )+ 0.2S, +0.359S, +0.32p  (4.5)

where M is the moment magnitude, r is the closest distance (or Joyner-Boore
distance), S; and S, are the site terms where S; is equal to 1 for stiff soil sites and
zero otherwise and S, is equal to 1 for soil sites and 0 otherwise. The standard
deviation of this equation is encountered in this equation is 0.32P where 0.32 is the ¢
value with P being a variable that takes the value of 0 for the mean values of PGV

and 1 for the 84-percentile values.

Residuals of this expression are plotted in Figure 4.7 for both distance and
magnitude terms. Also shown are linear regression of residuals (LRR) of logarithm
of PGV on distance and magnitude for three different site classes. Linear regression
of the residuals depicts that the variation of residuals for rock sites are higher than
the other two site classes. This can be committed to the range of distance and
magnitude terms for rock site data that are shorter than the ones for other site classes.
For the range of interest, no significant trends are observed for rock sites as well as

the soil and stiff soil sites.

45. COMPARISON WITH OTHER GROUND MOTION PREDICTION
EXPRESSIONS

Finalized form of the derived attenuation relationship (Eq. 4.5) is compared

with original forms of JB81, SP96, TB02, PP04 and ABO06 relationships. Necessary
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arrangements for the differences in definitions of magnitude scale and distance terms

are made for SP96, TB02 and PP04. Results and + 1o curves are plotted out in
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Figure 4.7 Residuals of logarithm of PGV as a function of closest distance and
moment magnitude.
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Figures 4.8 to 4.10. The following conclusions can be made from these figures:

Attenuation of PGV with distance is limited when compared to the others
with increasing distances. This trend is clearly observed for lower moment
magnitudes. Considering soil and stiff soil sites for magnitudes 6.5 and 5.5,
proposed expression overpredicts PGV for distances above 10 km when
compared with the other relations (excluding JB81).

For rock sites, the expression here underestimates the PGV to some distance
and overestimates afterwards when compared to the others, which may be
caused because of limited number of rock site recording. For example, rock
sites contribute 33% (174/532) of all recordings for AB06 and 25% (62/249)
for TB02 which is much higher than the ratio for this study (19%, 21/112).
Very similar results are obtained for large moment magnitude (M, =7.5) for
this study and AB06. Dominance of Turkish recordings for M,,>7 for AB06
database and use of same mathematical form are the reasons for this.

For soil and stiff soil sites with intermediate moment magnitudes (M,, =6.5),
almost all curves (excluding JB81 and SP96) have the same peaks for near-
fault distances, beyond this level relative over-prediction concerns arise as
mentioned above.

For lower moment magnitudes (My, =5.5), TB02 and PP04 seem to have
better agreement with the proposed relationship for near fault distances.

High o values can be better achieved with the help of figures. Significant
differences for PGV are encountered when standard deviation is considered.

Almost all curves are enveloped for a non-exceedance probability of 84.1%.
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Figure 4.8 Comparison of PGV, predictions of the new equation with other
expressions for rock site conditions for M= 7.5, 6.5 and 5.5.
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Figure 4.9 Comparison of PGV, predictions from the new equation with other
expressions for stiff soil site conditions for M,,= 7.5, 6.5 and 5.5.
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Figure 4.10 Comparison of PGV predictions from the new equation with other
expressions for soil site conditions for M,,= 7.5, 6.5 and 5.5.
4.6. A-POSTERIORI CHECK OF THE PROPOSED EQUATION

On 24™ of October, 2006, a moderate size (My=5.2) earthquake occurred at
the Gulf of Gemlik in the province of Bursa. Accuracy of the proposed prediction
equation is checked for the strong ground motion records of this earthquake. In
Appendix D, earthquake and station information together with the filter properties,
observed and predicted peak ground velocities are given. Since closest distances can
not be identified, epicentral distances either calculated from trigger time of stations
or S-P wave arrival time differences are used. Although some assumptions are made
to use predictive equation, a good agreement seems to be obtained. Also in Figure

4.11, predictive curves (lines) together with the observed results (dots) are plotted.

100

— Rock
Stiff Soil
— Soil

e=a Observed

PGV (cm/s)
)

1 10 100
Closest Distance (km)

Figure 4.11 Comparison of PGV, predictions of the proposed attenuation
relationship with observed PGV values of the 24/10/2006 Gemlik earthquake.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

A consistent set of strong ground motion data extracted from earthquakes that
occurred in Turkey between 1976 and 2003 has been processed in order to develop
an attenuation relationship for larger horizontal component of PGV. This may be
viewed as a complementary study of Kalkan and Giilkan (2004) who used the same
database to derive predictive expressions for PGA and spectral accelerations up to T
= 2 s. The raw data is processed to eliminate noise and the corrected database is
assembled. Then the filtered database is processed by using statistical methods to
obtain an attenuation relationship for peak velocity that may be used in research and
practical  applications. The following observations, conclusions and
recommendations can be proposed for the processing phase and from the results

obtained.

One of the most important obstacles faced during the study was the lack of
necessary local geological information about the stations. A number of attenuation
relationships that may be useful to study are eliminated prematurely since they need
extra information for the stations. The trustworthiness of the recordings used is also
not fully assured for stations without a precise soil profile data since there is no
measurable basis for the selection of their site classes. The public agency in Turkey

in charge of the strong motion stations should address this drawback urgently.

Another disappointment for the author was that there is no reliable and broad
database collection for strong motion records of Turkey or a classification that
originated in Turkey. Unavoidably I was forced to search foreign sources to gain
information about Turkish records, which is a disappointing exercise. As a result,

expanding the strong motion station arrays, gaining operating information for
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stations and constructing a serviceable database must be the main concerns of the
people who make the decisions about these issues. Recent studies done for NSMP

catalog are a milestone to overcome these deficiencies.

The difference between prediction curves before and after data elimination is
consequential for near-fault where data is scarce. Near-fault records of the database
are mostly obtained from two major events of 1999, i.e. Kocaeli and Diizce
earthquakes, whose acceleration peak values are known to be low when compared
with worldwide records. Therefore it should be kept in mind that at short distances,

reliability of the prediction expression derived here appears to worsen.

The possible interdependence between moment magnitude and standard
deviation has not been explored in this work because of the relatively small number
of ground motion record. When future events enable this deficiency to be addressed,

the records should be re-processed with this objective.

There are only few recordings in the database for distances greater than 150
km. Although peak values of velocity approach values that are not significantly
damaging from the structural engineering point of view, from a strict statistical

viewpoint, its use may not be appropriate for distances greater than 150 km.

The results obtained here can be progressively modified and improved and
their uncertainties can be reduced as the number recordings used for the analysis are
increased, station information is enriched, distance terms verified and data
processing techniques are improved. Therefore, this study should be evaluated as an

introduction to this area.

Attenuation formulas for peak ground velocities of the earthquakes have been
used extensively in the recent years in many fields including as measures of intensity
of the ground motion and liquefaction studies. A future debate may be energy related
analysis of structures. Results of this study can be used as a guide for future research

and other supplementary studies. It is believed that the processed database can be
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attractive for future researchers not only in the field of deriving attenuation

relationships but other circumstances where reliable input data is required.
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APPENDIX C

Table C.1 Coefficients for the studied prediction equations and comparison of
model adequacy and unbiased estimator.

Original Form

:1\ 2
§ c1 c2 c3 c4 c5 RSS R°  opgpeyv
‘q'; -0.670 0.489 4.000 -0.0026 0.170 1E+05 -3.08 0.39
g Modified Form According to the Database
@ c1 c2 c3 c4 cs RSS R’ opgpav
: 0.323 0.297 9.752 0.00200 0.316 7615 0.69 0.38
=3 Final Form After Database Elimination

2
S c1 c2 c3 c4 c5 RSS R"  oiyprav

-0.124 0.369 10.673 0.00100 0.305 2970 0.82 0.35

g Original Form
S| a c2 c3 c4 RSS R’ oppav
g -0.710  0.455 3.600 0.133 25634 -0.05 0.34
% Modified Form According to the Database
E c1 c2 c3 ca RSS R®  Gupov
o3 0.357 0.303 11.696 0.320 7464 0.69 0.39
% Final Form After Database Elimination

2
-C% C1 C2 C3 C4 RSS R 0'|0ng\/
* -0.096  0.371 11.843 0.308 2991 0.82 0.35
§ Original Form
& | c c2 c3 c4 cs c6 RSS R’ Gppav
E 0.003 0.356 -1.058 6.060 0.138 0.280 9234 0.62 0.32
c Modified Form According to the Database
] c1 c2 c3 c4 cs5 cé RSS R®  Gpgpoev
ﬁ -1.409 0442 -0542 0.234 0.121 0.454 3624 0.85 0.32
S Final Form After Database Elimination
g c1 c2 c3 c4 cs c6 RSS R®  Gppov
= -0.691 0.396 -0.756  5.299 0.174 0.363 2320 0.86 0.32
é Original Form
81 a c2 c3 c4 cs RSS R’ Gppav
% 2.252 0.490 -1.196 7.060 0.195 17694 0.28 0.36
E Modified Form According to the Database
g c1 c2 c3 c4 cs5 RSS R®  Gppov
o3 1.267 0.35 -0.458  0.377 0.292 5815 0.76 0.36
g Final Form After Database Elimination

2
TCU C1 C2 C3 C4 C5 RSS R GlogPGV
o 2.061 0.371 -0.958 11.019 0.309 2988 0.82 0.35
& Original Form

2
§ c1 c2 c3 c4 c5 C6 c7 c8 RSS R® Gy
= -1.260 1.103 -0.085 -3.103 0.327 5.504 0.079 0.226 6012 0.75 0.36
E Modified Form According to the Database
g c1 c2 c3 c4 c5 C6 c7 c8 RSS R2 ojypav
g -5.415 1614 -0.085 0.058 -0.085 0.238 0.111 0.443 3415 0.86 0.33
= Final Form After Database Elimination
:x: C1 C2 C3 C4 C5 C6 Cc7 Cc8 RSS R2  ojgpav

-2.921 1.204 -0.067 -1.162 0.05 7.183 0.2 0.359 2299 0.86 0.32

R
R

N

n

: Residual sum of squares
. Coefficient of determination
clogpgy : Standard deviation for the expression
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APPENDIX D
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