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ABSTRACT 
 

 

YIELD CURVE ESTIMATION BY SPLINE-BASED MODELS 
 
 
 

Baki, İsa 

M.Sc. Department of Scientific Computing 

               Supervisor      : Prof. Dr. Tanıl Ergenç 

                                 Co-Supervisor : Assist Prof. Dr. Esma Gaygısız 

 
December 2006, 58 pages 

 
 
 
 

This thesis uses Spline-based model, which was developed by McCulloch, 

and parsimonious model, which was developed by Nelson-Siegel, to estimate the 

yield curves of zero-coupon bonds in Turkey. In this thesis, we construct the data by 

using Turkish secondary government zero-coupon bond data, which contain the data 

from January 2005 to June 2005. After that, relative performances of models are 

compared using in-sample goodness of fit. As a result, we see that performance of 

McCulloch model in fitting yield is better than that of Nelson-Siegel model.  

 
 
 
 
 
Keywords: Yield curves, zero-coupon bonds, B-spline, The McCulloch and Nelson-
Siegel Model 
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ÖZ 
 

 

GETİRİ EĞRİLERİNİN SPLINE BAZLI MODELLERLE 

BELİRLENMESİ 

 
 
 
 

Baki, İsa 

Yüksek Lisans, Bilimsel Hesaplama Bölümü 

              Tez Yöneticisi          : Prof. Dr. Tanıl Ergenç 

        Ortak Tez Yöneticisi : Yrd. Doç. Dr. Esma Gaygısız 

 
Aralık 2006, 58 sayfa 

 
 
 
 

Bu çalışmada, Türkiye’deki kuponsuz bonoların getiri eğrilerini belirlemek 

için, McCulloch tarafından geliştirilen Spline bazlı modelini ve Nelson ve Siegel 

tarafından geliştirilen, parsimonious modelini kullandık. Bu çalışmadaki verimizi 

Ocak 2005’ten Haziran 2005’e kadar olan Türkiye’deki kuponsuz bonoları 

kullanarak oluşturduk. Daha sonra, kullandığımız modellerin performansları bu 

veriye göre karşılaştırıldı. Sonuç olarak, McCulloch modeli, getirilerin tahmin 

edilmesinde Nelson-Siegel modelinden daha iyi performans göstermektedir. 

 
 
 
Anahtar Kelimeler: Getiri eğrileri, kuponsuz bonolar, B-spline, The McCulloch ve 
Nelson-Siegel modeli 
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CHAPTER   1 
 

 

 

 

INTRODUCTION 
 

 

 

 

The term structure modelling play a major role in fixed income attribution 

analysis, since movements in yield curves is crucial for pricing and the return of 

fixed income securities. Therefore, the modelling the term structure is one of the 

major subject in economics and in finance. There are many models proposed to 

construct term structure. There are two class of models used in estimating term 

structure, these are the equilibrium models and the empirical models. The 

equilibrium models are used by Vasicek (1977), Dothan (1978) and Schwartz 

(1979). If multi-factor models are not used, the performance of the equilibrium 

models is not good in fitting observed data. However, the empirical models use 

observed government bond prices to construct the term structure and have a good 

performance in the estimation of term structure. There are many examples of the 

empirical models, such as, models developed by McCulloch (1971), Vasicek and 

Fong (1982) and Nelson and Siegel (1987). The main purpose of these empirical 

models is to fit data sufficiently well and sufficiently smooth. Moreover, the 

resulting function must be continuous. 

 

    In this thesis we use Spline-based model, which was developed by McCulloch, 

and parsimonious model, which was developed by Nelson-Siegel. The 

parsimonious model specify a functional form for implied forwards rate, in other  

words, we can define implied forward rate with a function which has some 

parameters. However, in McCulloch model we use B-splines for fitting discount  
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function. Since B-splines are defined piecewise in small subintervals, they give 

stable and reliable results in fitting discount function. B-splines was firstly used in 

this thesis for fitting Turkish government zero-coupon bond data and we got 

reliable results in the application. In this study, we construct our data by using 

Turkish secondary government zero-coupon bond data, which contain the data 

from January 2005 to June 2005, and relative performances of models are 

compared using in-sample goodness of fit.  

 

    We proceed as follows. Chapter 2 provides basic definitions of the term 

structure theory, Chapter 3 presents basics of interpolation and spline methods and 

their applications, Chapter 4 contain descriptions of Mc Culloch and Nelson-

Siegel model respectively and also applications of these models to the Turkish 

government zero-coupon bond data. Finally, the conclusions of this study are 

presented in Chapter 5.  
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CHAPTER   2 
 

 

 

 

THE GENERAL THEORY OF THE 

TERM STRUCTURE MODELS 
 

 

 

 

In this chapter we present a general framework for the term structure models 

which describe the dynamics of bond prices. The main purpose of this chapter is 

to discuss the common features of the different models presented in the next 

sections [1]. 

 

2.1 AN INTRODUCTION TO PRICING OF BONDS 
 

The term structure of interest rates can be characterized either in term of discount 

bond prices, interest rates or forward rates, so we begin this section by defining 

the relationship between these concepts. In the following, t is the present time,     

T ≥ t is the time of maturity of the bond, while T tτ = −  is the time to maturity of 

the bond. 

 

    From the point of view of the holder a discount bond is a claim to one certain 

unit of account at some future point of time T. Since this bond only has one 

payment it is often called a zero coupon bond, but we will use the first term. We 

denote its price at time t by P(t,T). If P(t,T) is viewed as a function of T it is called 

the discount function which is denoted by d(t,T). The instantaneously  
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compounded interest rate R(t,T) is the yield to maturity at time t for investment in 

the bond maturing at time T. Since 

 
( , )( )

( , ) (2.1.1)
R t T T t

P t T e
− −=

 

 

Then we get the following equation for R(t,T). 

 

1
( , ) log ( , ) (2.1.2)R t T P t T

T t
= −

−
 

 

    The general definition of the term structure at time t is ( , )R t t τ+  as a function 

of the time to maturity τ, and in this sense ( , )R t t τ+  is often called the yield 

curve. The spot interest r(t) plays a crucial role in all term structure models, and it 

can be obtained by letting T approach t in (2.1.2) 

 

( ) ( , ) lim ( , ) for (2.1.3)r t R t t R t T T t= = →  

 

    The spot rate is sometimes called the instantaneous interest rate or risk free 

interest rate since it is the guaranteed return for placements between time t and 

t+dt. The final way to characterize the term structure is in terms of forward rates. 

The continuously compounded forward rate f(t,T) is defined as  

 

( , ) log ( , )
( , ) (2.1.4)

( , )

P t T T P t T
f t T

P t T T

−∂ ∂ −∂
= =

∂
 

 

    The forward rate f(t,T) is the guaranteed return for investments between time T 

and T+dt. It can be secured by selling one bond maturing at time T and using the 

proceeds to buy bonds maturing at time T+dt. Alternatively, f(t,T) can be viewed 

as the marginal rate of return between T and T+dt. Since the forward  rate is an 

interest rate it must be non-negative, and from (2.1.4) this is seen to be equivalent  
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to a monotonically declining discount function. By solving the differential 

equation (2.1.4) we can express bond prices in terms of forward rates 

 

log ( , )
log ( , ) log ( , ) ( , ) (2.1.5)

TT

t t

P t s
P t T P t t ds f t s ds

s

∂
− = = −

∂∫ ∫  

 

since P(t,t)=1, so we get 

 

( , ) exp( ( , ) ) (2.1.6)

T

t

P t T f t s ds= −∫  

 

From the definition of the forward rate we must obtain the spot rate if we let T 

approach t, i.e, 

 

( ) ( , ) lim ( , ) for (2.1.7)r t f t t f t T T t= = →  

 

    The traditional arbitrage-free models of the term structure are all based on the 

spot interest rate, whereas the recent arbitrage-free models based on the 

martingale measure technique use the discount function or the forward rates. 

 

    Most bonds have standardized repayment schemes e.g. straight bonds (fixed 

loans), annuities, serial bonds or consols, but we shall not be concerned with the 

exact payment profile, and we will therefore use the term coupon bond for all 

bonds with more than one payment. For a coupon bond with M payments c(Tj) 

denote the payment at time Tj with j=1,2,…,M, and we define the time to maturity 

of the bond as TM ,the date of the last payment. Corresponding to (2.1.1) we can 

define the yield to maturity Yc(t,T) for a coupon bond with price Pc(t,T) as the 

positive root of 
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1

( ) ( , )
( , ) ( ) (2.1.8)

M

c j
j

cT t Y T t
P t T c T e

− −

=

=∑  

 

    Two discount bonds maturing at the same date must obviously sell for the same 

prices, but this relationship does not hold for coupon bonds. The reason for this is 

quite obvious when we consider that two coupon bonds maturing at the same date 

may have quite different payment profiles. Contrary to discount bonds they are 

not identical, so we cannot use the law of one price. In general, unless the term 

structure is flat two coupon bond with different payment profiles will not sell for 

the same yield to maturity. 

 

    The solution to the problem is quite simple. A coupon bond is nothing else that 

a bundle of discount bonds, which suggests that it should command the price 

 

( , ) ( )

1 1

( , ) ( , ) ( ) ( ) (2.1.9)c

M M
T Tj j

j j
j j

R t t
P t T d t T c T c T e

− −

= =

= =∑ ∑  

    Note that we are using different interest rates to discount each payment. It is 

easily shown, that if coupon bonds are not priced in this way, arbitrage 

opportunities exist. For the moment, we define an arbitrage opportunity as a 

portfolio which generates a positive cash flow at time t and a non-negative cash 

flow at any future payment date. Let there be n bonds and m different payment 

dates, and let C={cij} be nxm payoff matrix. An arbitrage opportunity exists if we 

can find a vector w that solves the system of linear inequalities 

 

0

0 (2.1.10)

T

T

w P

C w

<

≥
 

 

    There is no need to formulate this as an mathematical optimization problem 

since once we have found an arbitrage opportunity, it can be carried out to an 
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unlimited scale. Stated otherwise, if w is a solution to (2.1.10), so is λw for any 

positive scalar λ. From Farka’s lemma we know that (2.1.10) does not possess a 

solution (i.e. no arbitrage opportunities exist) if and only if the following problem 

has a solution vector d 

 

0 (2.1.11)

Cd p

d

=

≥  

 

    We can take d as the vector of discount factors for the M payment dates. In 

general though, the mere knowledge of bond prices will not be sufficient to 

determine whether the bond market is in arbitrage equilibrium. In the paper of 

Guo Chen (1999), it was proved that arbitrage-free equilibrium is unique. The 

unique solution is a linear combination of some exponential functions, which is 

referred to as the Exponential Polynomial (EP) model, because it is equivalent to 

the component function of the Exponential Spline model of Vasicek and Fong 

(1982) defined on a subinterval of the maturity range. In other words, EP model is 

equivalent to the Vasicek-Fong model without spline fitting, i.e. with the 

subinterval stretched to the entire maturity range [0, )∞ . Intuitively, EP model 

represents a term structure space that is linearly spanned by its state factors on an 

exponential basis that consists of a number of distinct exponential functions.  

 

    McCulloch (1971) introduced the spline method because the observed cross-

sectional samples of treasury securities usually contain far more short-term 

securities than the long-term ones. To accommodate the data structure, he 

suggested dividing the maturity range into subintervals, such that the number of 

securities in each subinterval is roughly the same. By dividing the maturity, he 

applied the same spline function, e.g., a cubic function, to all subintervals. Since 

each spline function is defined only on a subinterval, every pair of adjacent spline  
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functions have to carefully connected to ensure continuity and differentiability at 

the knot. Let us now look at the firstly interpolation methods and then spline 

methods, which will be used in Chapter 4 in McCulloch model. 
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CHAPTER   3 
 

 

 

 

INTERPOLATION AND SPLINE 

METHODS 
 

 

 

 

3.1 INTERPOLATION 
 

Definition 3.1.1 For given data 1 2 n( , ) 1,..., with ...i ik y i n k k k= < < < , we 

determine function f such that  ( ) 1,...,i if k y i n= =  where f is called interpolating 

function, or interpolant for given data. Additional constraints might be imposed 

on interpolant, such as, smoothness, monotonicity or convexity. There are many 

purposes for interpolation [2]. 

(i) Plotting smooth curve through discrete data points. 

(ii) Quick and easy evaluation of mathematical function. 

(iii) Replacing difficult function by easy one. 

(iv) Differentiating or integrating tabular data. 

Interpolation is nonunique because there are arbitrarily many functions that 

interpolate given set of data points. Choice of interpolating function is based on: 

(a) How easy function is to work with, 

     (i) determining its parameters. 

    (ii) evaluating function. 

   (iii) differentiating or integrating function. 

(b) How well properties of function match properties of data to be fit 

(smoothness, monotonicity, convexity, etc.). 
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    Some families of functions commonly used for interpolation include, 

polynomials, trigonometric functions and exponentials. Family of functions for 

interpolating given set of data points is spanned by set of basis functions 

1( ),..., ( )nt tφ φ . Interpolating function f is chosen as a linear combination of basis 

functions, 

1

( ) ( ) (3.1.1)
n

j j
j

f t x tφ
=

=∑  

If we require that f interpolate data ( , )i ik y , we mean that  

1

( ) ( ) 1,...,,
n

i j j i i
j

f k x k y i nφ
=

= = =∑  which is system of linear equations Ax=y for 

parameters xj , where entries of matrix A are given by ( )i j j ia kφ= . 

 

    Simplest type of interpolation is polynomials. Unique polynomial of degree at 

most n-1 posses through n data points  ( , ), 1,...,i ik y i n=  where ik  are distinct. 

There are many ways to represent or compute polynomial, but in theory all must 

give same result. Let us look at types of basis are used in the interpolation. 

 

3.1.1 Monomial Basis 

 

We define monomial basis as follows, 

1( ) , 1,...,j
j t t j nφ −= =  

interpolating polynomial has form 

1
1 1 2( ) ... n

nnP t x x t x t
−

− = + + +  and its coefficients are determined by nxn linear 

system, 

1
1 1 11

1
2 2 22

1

1 ...

1 ...

...

1 ...

n

n

n
n n nn

k x yk

k x yk

k x yk

−

−

−

     
     
     =
     
         

    

� � �� �
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Matrix of this form is called Vandermonde matrix. For monomial basis, resulting 

matrix A is often ill-conditioned, especially for high-degree polynomials. 

Therefore, we should seek better alternatives. 

 

3.1.2 Lagrange Interpolation 

 

For given set of data points ( , ), 1,...,i ik y i n= ,Lagrange basis functions are given 

by  

1,

1,

( )

( )

( )

i

j

j i

n

i i j

n

i i j

t k

t

k k

= ≠

= ≠

−

=

−

∏

∏
�  

 

For Lagrange basis,  

1 if 1,...,
( )

0 if
j i

i j j n
k

i j

= =
= 

≠
�  

 

which means that matrix of linear system  Ax=y  is identity. Thus, Lagrange 

polynomial interpolating data points ( , )i ik y  is given by, 

1 1 1 2 2( ) ( ) ( ) ... ( )n nnP t x t x t x t− = + + +� � �  

Lagrange interpolant is easy to determine but more expensive to evaluate for 

given argument, compared with monomial basis representation. Lagrangian form 

is also more difficult to differentiate and integrate. 

 

3.1.3 Newton Interpolation 

 

For a given set of data points ( , ), 1,...,i ik y i n=  Newton interpolating polynomial 

has the form, 
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1 1 2 1 3 1 2 1 2 1( ) ( ) ( )( ) ... ( )( )...( )n n nP t x x t k x t k t k x t k t k t k− −= + − + − − + + − − −  

Basis functions for Newton interpolation are given by 

1

1

( ) ( ), 1,...,
j

j i
i

t t k j nφ
−

=

= − =∏  

 

For i<j, we have ( ) 0j ikφ =  so basis matrix A, with ( )i j j ia kφ=  is lower 

triangular. Hence, solution x to system Ax=y can be computed by forward-

substitution. Newton interpolation has better balance between cost of computing 

interpolant and cost of evaluating it. 

 

3.1.4 Disadvantages of Interpolation 

 

Interpolating polynomials of high degree are expensive to determine and evaluate. 

Moreover, in some basis coefficients of polynomial may be poorly determined 

due to ill-conditining of linear system to be solved. High-degree polynomial 

necessarily has lots of “wiggles” which may have not relation with the data to be 

fit. Polynomial goes through required data points, but it may oscillate wildly 

between data points. 

 

    Fitting single polynomial to large number of data points yield unsatisfactory 

oscillating behaviour in interpolant. However, fitting data piecewise has an 

advantage that large number of data points can be fit with low-degree polynomials 

and we do not have oscillation. Thus, let us look at B-splines which are used for 

fitting data piecewise. 
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3.2 B-SPLINES 
 

In general a spline is a piecewise polynomial of degree k that is continously 

differentiable k-1 times. A cubic B-spline is a piecewise cubic polynomial that is  

twice continously differentiable. In this section we will collect the basic properties 

of splines and B-splines together for further reference. We will intuitively explain 

why B-splines are important. We will also give an impression of the 

computational complexity of the B-spline algorithms. In this section derivation of 

the cubic B-spline basis is involved, since it provides a useful tool for the general 

construction of cubic splines. A cubic B-spline is a piecewise cubic polynomial 

that takes positive values over only four adjacent subintervals in the overall 

partition. On all other subintervals, cubic B-spline vanishes. Morever, any cubic 

spline on [a,b] can be constructed as a linear combination of this sequence of 

cubic B-splines. Finally, because these cubic B-splines are defined piecewise, this 

linear combination is easy to compute and numerically stable [3]. 

 

    Let us begin with general demonstration of cubic B-spline. In this thesis we 

denote the cubic B-spline as Bi . This B-spline defined on an arbitrary interval in 

the following manner. 

 

4

4

0 if ( , )

( ) if [ , ] (3.2.1)

0 if ( , )

i

i i i i

i

x k

B x B x k k

x k

+

+

∈


= ∈
 ∈

∞

∞  

    This is the important property of the B-spline but the question remains as to 

how we employ these mathematical objects in the construction of cubic splines. 

We must first discuss how we might construct a basis for the cubic splines on a 

given interval. We do not generally talk about a single B-spline, but rather 

consider a sequence of B-splines. For example, to create a basis for the knot 

squence {k0, k1,…, kN}, we would require the collection, 
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{ }3 2 1, ,..., (3.2.2)NB B B− − −  

comprising N+3 B-splines defined on { }3 2 3, ,..., Nk k k− − + . 

By using this sequence of N+3 splines for a given knot sequence                     

{ }0 1, ,..., Nk k k  we can write, 

 

1

3

( ) ( ) (3.2.3)
N

i i
i

S x a B x
−

= −

= ∑  

In other words, a cubic spline can be written as a linear combination of the B-

spline basis. To be able to evaluate B-splines for an arbitrary point ( )1,i ix k k +∈  

we need recursion formula for B-splines. To write our recursion formula, we need 

to introduce the idea of the degree of a B-spline basis. Technically, an n order B-

spline with knot sequence { }0 1, ,..., Nk k k  is a (n-1) th degree polynomial that is  

(n-2) times continuously differentiable on the knot sequence. Thus, a cubic B-

spline has order equal to four; moreover, we denote the ith B-spline of order n as, 

,i nB . The order of the B-spline is important because the B-spline recursion 

formula is written in terms of B-splines of lesser order. It has the following form, 

 

, , 1 1, 1

1 1

( ) ( ) ( ) (3.2.4)i i n
i n i n i n

i i ni n i

x k k x
B x B x B x

k k k k

+
− + −

++ − +

− −
= +

− −  

 

for i=-3,...,N-1. To be able to use this formula, we need to know how to define Bi,1 

because it is the final point in the recursion. If we know Bi,1, it is sufficient to 

determine any value of our cubic B-spline of interest, Bi,4. The first-order B-

spline, defined as in the following form,  

 



 15 

[ ]

( )
,1 1

1

0 if ( , )

( ) 1 if , (3.2.5)

0 if ,

i

ii i

i

x k

B x x k k

x k

+

+

 ∈ −


= ∈


∈

∞

∞
 

 

Using equations (3.2.4) and (3.2.5), it is easy to evaluate a given cubic B-spline at 

any point 1( , )i ix k k +∈ , for example, if we want to evaluate Bi,2, B-spline of order-

2 (degree-1), we use the recursion formula and we get, 

 

2
,2 ,1 1,1

1 2 1

( ) ( ) ( ) (3.2.6)i i
i i i

ii i i

k xx k
B x B x B x

k k k k

+
+

+ + +

−−
= +

− −
 

 

To construct Bi,2(x), we need to know Bi,1(x) and Bi+1,1(x). Bi,1(x) is defined in 

equation (3.2.5), and using this equation we can determine Bi+1,1(x), where  

 

[ ]

( )

1

1,1 1 2

2

0 if ( , )

( ) 1 if , (3.2.7)

0 if ,

i

i i i

i

x k

B x x k k

x k

+

+ + +

+

 ∈ −


= ∈


∈

∞

∞
 

 

Using equations (3.2.5), (3.2.6), and (3.2.7) we evaluate Bi,2(x), which is a 

piecewise function defined on [ki , ki+2]. 

 

1

1

2
,2 1 2

2 1

for

for

otherwise

( ) (3.2.8)

0

i
i i

i i

i
i i i

i i

x k
k x k

k k

k x
B x k x k

k k

+

+

+
+ +

+ +

−
≤ < −


 −

= ≤ <
−





 



 16 

Continuing in this way, we determine our cubic B-spline, Bi,4(x), takes the 

following form, 

 

 

3

1

3 1 2

2

2 3 1

3 2 2 1 3 3 1 2 1

2

4 1

4 1 2 1 3

,4

( )
for

( )( )( )

( ) ( ) ( )( )( )
...

( )( )( ) ( )( )( )

( )( )

( )( )(

( )

i
i i

i i i i i i

i i i i i

i i i i i i i i i i i i

i i

i i i i i

i

x k
k x k

k k k k k k

x k k x x k k x x k

k k k k k k k k k k k k

k x x k

k k k k k

B x

+

+ + +

+ + +

+ + + + + + + + +

+ +

+ + + + +

−
≤ <

− − −

− − − − −
+ +

− − − − − −

− −

− −

=

1 2

1

2

3 4

3 3 1 3 2 4 1

1 3 4 2
2 3

3 1 3 2 4 2 3 2

4

for
)

( )( ) ( )
... (3.2.9)

( )( )( ) ( )

( )( ) ( )( )
for

( )( ) ( )( )

(

i i

i

i i i

i i i i i i i i

i i i i
i i

i i i i i i i i

i

k x k
k

x k k x k x

k k k k k k k k

x k k x k x x k
k x k

k k k k k k k k

k x

+ +

+

+ +

+ + + + + + +

+ + + +
+ +

+ + + + + + + +

+

≤ <
−

− − −
+

− − − −

 − − − −
+ ≤ < 

− − − − 

− 3

3 4

4 1 4 2 4 3

)
for

( )( )( )

0 otherwise

i i

i i i i i i

k x k
k k k k k k

+ +

+ + + + + +


















 ≤ <
 − − −




 

Moreover, B-splines also have the interesting property that for any arbitrarily 

selected knot ki , 

 

0

3

( ) 1 (3.2.10)i j
j

B x+
=−

=∑  

 

for all x∈{k0, k1,...,kN}. 

For example, if we apply this property in the equation (3.2.9), we get, 
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3

2

1

1
( )

6

2
( ) (3 .2 .1 1)

3

1
( )

6

( ) 0

ii

ii

ii

i i

B k

B k

B k

B k

−

−

−

=

=

=

=

 

which confirms the our last property. 

 

    To set up the system of equations in the cubic case, we need the values of the 

B-splines Bi i=-3,…,N-1, at the knots 0 ,..., nk k  as well as the values of the 

derivatives 
''
iB  at 0 for 3, 2, 1 and at for 3, 2, 1nk i k i N N N= − − − = − − − . 

Using equation (3.2.9) we have, 

 

3

1
3

1 2 1 1 1

( )
( )

( )( )( )

i
i

ii i i i i

k x
B x

k k k k k k

+
−

+ − + − +

−
=

− − −  

 

2

2 1
2

1 2 1

1 1 2

1 1 1 2 1

2

1 2 1 1

( )( )( )
( ) ...

( )( )( ) ( )

( )( ) ( )( )

( )( ) ( )( )

i i
i

i i i

ii i i

i i ii i i i i

i

ii i i i

k xx k k x
B x

k k k k k k k k

x k k x k x x k

k k k k k k k k

− +
−

− + −

− + +

+ − + + +

+

+ − + +

−− −
= +

− − − −

 − − − −
+ 

− − − − 

 

 

2
1 1 1 2

1

2 1 1 1 1 2 1 2 1

2
3

3 1 2

( ) ( ) ( )( )( )
( ) ...

( )( )( ) ( )( )( )

( )( )

( )( )( )

ii i i i
i

i i ii i i i i i i i i

ii

i i ii i i

x k k x x k k x x k
B x

k k k k k k k k k k k k

k x x k

k k k k k k

− + − +
−

+ − + − + + − + +

+

+ + +

− − − − −
= + +

− − − − − −

 − −
 

− − − 

 

 

3

3 1 2

( )
( )

( )( )( )

i
i

i i i i i i

x k
B x

k k k k k k+ + +

−
=

− − −
 

 

for   1i ik x k +≤ < . Let 1i ik k h+ − = , then we have, 
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3 3
1

3

1 2 1 1 1

( ) 1
( )

( )( )( ) (3 )(2 )( ) 6

ii

ii

ii i i i i

k k h
B k

k k k k k k h h h

+
−

+ − + − +

−
= = =

− − −
 

 

2
2 1 2

2

1 2 1 1 1 2 1

1 1 2

1 1 1 2 1

( )( ) ( )
( ) ...

( )( )( ) ( )

( )( ) ( )( ) 2

( )( ) ( )( ) 3

i

i i ii i i
i

ii i i i i i i

i i i i ii i i

i i ii i i i i

k k k k k k
B k

k k k k k k k k

k k k k k k k k

k k k k k k k k

− + +
−

+ − + − + + −

− + +

+ − + + +

− − −
= +

− − − −

 − − − −
+ = 

− − − − 

 

 

2
1 1 1 2

1

2 1 1 1 1 2 1 2 1

2
3

3 1 2

( ) ( ) ( )( )( )
( ) ...

( )( )( ) ( )( )( )

( )( ) 1

( )( )( ) 6

i i i i i ii i i i
ii

i i ii i i i i i i i i

i i ii

i i ii i i

k k k k k k k k k k
B k

k k k k k k k k k k k k

k k k k

k k k k k k

− + − +
−

+ − + − + + − + +

+

+ + +

− − − − −
= + +

− − − − − −

− −
=

− − −

 

 

3

3 1 2

( )
( ) 0

( )( )( )

i i

i i

i i i i i i

k k
B k

k k k k k k+ + +

−
= =

− − −
 

 

Similarly, 

' ' '' ''

3 0 2 0 1 0

'' ' ' ' '

3 2 1

( ) 1 ( ) 2 ( ) 1

( ) 1 ( ) 2 ( ) 1
N N N N N N

B k B k B k

B k B k B k

− − −

− − −

= = − =

= = − =
 

 

Then, if we use natural end conditions for cubic splines, i.e.  

' ' ' '

0

( ) ( ) 0,...,

( ) ( ) 0N

i iS k f k i N

S k S k

= =

= =
 

 

Our linear system has the matrix form, 
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3

02

1 1

2 1

1

0... 0 0 0 0
1 2 1 0

... 0 0 0 0
1 2 1 0

0 0 06 3 6 0
...

1 2 1 0 0 00 06 3 6

2 11 00 0 0 0 3 66
10 0 0 0 ... 1 20 66 3

0 0 0 0
0 11 2 0

N N

N N

N

a

fa

a f

a f

a f

a

−

−

−

− −

−

    
 −   
    
    
    
    
  = 
   
   
   
   
   

        

� �� �� �� � � �

�

(3.2.12)







 

Equation (3.2.12) is also can be written as, 

(3.2.13)Va f=  

Where 
( 4) ( 3) ( 4) 1 ( 3) 1, andN x N N x N x

V a f
+ + + +∈ ∈ ∈� � �  

As a result, solution of equation (3.2.12) is, 

1 (3.2.14)a V f
−=  

 

3.3 LEAST-SQUARES ESTIMATION 
 

There is an important difference between interpolation and least-squares method. 

In the interpolation when we fit the data, resulting interpolation function passes 

through all data we are given, and thus we have oscillations if we have large data. 

In the interpolation method since the curve has oscillations, we can not understand 

the feature of our data. Therefore, we need to use least-squares method in which 

the curve do not need to passes through all given data, thus we may release our 

curve from oscillations. In the least-squares method, our goal is to find parameters 

of our cubic spline that provides the best fit to the observed data. To accomplish 

this task we will minimize sum of squared error, or l2-norm by using least-squares 

method, which is in the following form [3], 

2 2

0

( ) ( ( ) ) (3.3.1)
N

i i
i

l S S k f
=

= −∑  
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Here, we are trying to find the cubic B-spline, S, of the form, 

 

3

( ) ( ) (3.3.2)
m

j j
j

S x a B x
=−

= ∑  

 

That is, we are trying to find the set of coefficients, aj , j=-3,-2,..., m, that 

minimizes equation (3.3.1). The set of first-order conditions of the optimization 

problem requires that the partial derivatives of l
2
(S) with respect to the 

coefficients aj  j=-3,-2,..., m  must vanish. In other words,  

 

2 ( )
0 (3.3.3)

j

l S

a

∂
=

∂

 

 

for j=-3,-2,...,m. We observe from equation (3.3.2), that each of these partial 

derivatives has the following form, 

 

( )
( ) (3.3.4)

j

j

S x
B x

a

∂
=

∂  

 

and using this to evaluate our set of first-order conditions, 
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2

2

0

0 3

0 3

0 3

( )
0

( ( ) ) 0

( )
2 ( ) 0 (3 .3 .5 )

2 ( ) ( ) 0

( ) ( ( )) ( ) 0

j

j

N

i i
i

N m

j j i i
i j j

N m

j j i i j i
i j

N m

j i j j i j i i
i j

l S

a

S k f
a

S x
a B k f

a

a B k f B k

B k a B k B k f

=

= = −

= = −

= = −

∂
=

∂

 ∂
− = 

∂  

  ∂
− = 

∂ 

 
− = 

 

 
− = 

 

∑

∑ ∑

∑ ∑

∑ ∑

 

 

Then, we get the normal equations in the matrix form, 

 

2

1

3

23 3 2 3
0 0 0

2
2 3 2 2

0 0 0
2

2
3 2

0 0 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

i

m

N N N

mi i i i i
i i i

N N N

mi i i i
i i i

m

N N N

m m mi i i i i m
i i i

a

aB k B k B k B k B k

B k B k B k B k B k

a

a

B k B k B k B k B k a

−

−

−

−− − −

− − − −

−

− −

= = =

= = =

= = =

 
 
 
 
 
 

 
 
 
 
 

 
 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

�

� � �

3
0

0

( )

(3.3.6)

( )

N

i i
i

N

m i i
i

B k f

B k f

−
=

=

  
  
  
  
  

   
   
   
   
     

 

=

∑

∑

�

 

If we define, 

 

( )

( )

3 0 2 0 0

3 1 2 1 1

3 2

1 ( 4 )

3 2

0 1

( 4) 1 ( 1) 1

and

( ) ( ) ( )...

( ) ( ) ( )...
(3.3.7)

( ) ( ) ( )...

where ,

(3.3.8)

(3.3.9)

where and , respectively.

m

m

N N m N

N x m

T

m

T

N

m x N x

B k B k B k

B k B k B k
V

B k B k B k

V

a a a a

f f f f

a f

− −

− −

− −

+ +

− −

+ +

 
 
 =
 
  
 

∈

=

=

∈ ∈

� � �

�

�

�

� �
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The definitions in equations (3.3.7) to (3.3.9) allow us to write equation (3.3.6) in 

the following form, 

 

(3.3.10)T T
V Va V f=  

which has the well known least-squares solution, 

 

1( ) (3.3.11)T T
a V V V f

−=  

 

Here, V
T
 V is symmetric and positive definite. Moreover, because of the nature of 

the B-splines, it has a large number of zero entries (i.e, it is a sparse matrix). Thus, 

solving this system is computationally straightforward and fast. 

 

    In the McCulloch model when we are modelling the discount function we use 

the least squares method. In the model, discount function is linear combination of 

B-splines, in other words, discount function vector is equal to multiplication of B-

spline matrix with some parameter vector. To find the parameter vector, we use 

least squares method. In the McCulloch model, we solve the optimization problem 

in which, we find the parameters which minimizes the deviation of weighted 

theoretical prices from the weighted observed prices. Thus, in the following 

chapter we will go over the applications of least-squares method and Term 

structure models. 
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CHAPTER   4 
 

 

 

 

TERM STRUCTURE MODELS  
 

 

 

 

One of the study in Turkey about term structure model was done by C. Emre 

Alper, Aras Akdemir and Kazim Kazimov (2004). They used both spline based 

method of McCulloch and parsimonious model of Nelson-Siegel to estimate 

monthly yield curves. In McCulloch model, they used cubic splines (piecewise 

cubic polynomial) to model discount function. In their study secondary 

government securities data from 1992 to 2004 of Turkey was used to estimate 

mothly yield curves in Turkey. They constructed their data set by calculating 

monthly volume weighted average of price and maturity. They used both in-

sample and out-of-sample analysis to compare McCulloch and Nelson-Siegel 

methods. From the results of their application, we understand that McCulloch 

method has superior in-sample properties, whereas Nelson-Siegel method has 

superior out-of-sample properties.  

 

    The other study was done by Derviş Bayazıt (2004). In his study, he estimated 

the zero-coupon bond yield curve of tomorrow by using Vasicek yield curve 

model with the zero-coupon bond yield data of today. The raw data in his study is 

the yearly simple spot rates of the Turkish zero-coupon bonds with different 

maturities of each day from July 1. 1999 to March 17. 2004. He completed the 

missing data by using Nelson-Siegel yield curve model and he estimated 

tomorrow yield curve with the discretized Vasicek yield curve model. He 
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concluded that by taking the Nelson-Siegel model as a benchmark he measured 

the performance of Vasicek model as a predictor and he found a considerable  

difference. Moreover, he concluded  that all methods used in his study are 

applicable to affine models in which solution of bond price is explicitly obtained. 

 

4.1 MC CULLOCH MODEL 
 

In the Mc Culloch model we observe the set of coupon bond prices that are traded 

in the bond market at a given time, and in this model we try to get a cubic 

polynomial such that the resulting discount function fits these observed prices 

with the minimal error. Let’s look at the necessary notations and formulas used in 

this model [3]. 

 

The price of a zero-coupon bond is the discounted cash flow or, 

 

( ) ( ) ( ) (4.1.1)P c dτ τ τ=  

 

1

1

where

number of bonds

... 0

( ) ...

0 ...

( ) [ ( ), ..., ( )] (4.1.2)

N

T

N

c

c

c

d d d

N

τ

τ τ τ

 
 

=  
 
 

=

=

� �

 

 

In this thesis, we use zero-coupon bond data, so we have only one coupon 

payment which is at the maturity. To fit our cubic splines to the observed bond 

price data we use B-spline basis. We define our knot sequence as, 

 

{ }1 2 1, 1,..., :0 ...mk m k k k k Mκκκ −< < < <= = =  

 



 25 

and the augmented knot sequence required for our B-spline basis as, 

 

{ }2 1 0 1 2 1 1 2 30 ...k k k k k k k k k k Mκκ κ κ κ− − − + + +< < < <= = = = = = = =  

In total, we have κ=K+2 B-splines defined over the interval [0,M]. We can write 

any cubic spline as, B(t) θ   for [0, ]t M∈  where  

 

1[ , ..., ] (4.1.3)T

κθ θ θ=  

 

and  

 

1

1

11 11

1 1

( ) ... ( )

( ) (4.1.4)

( ) ... ( )
N N

B B

B

B B

κ

κ

τ τ

τ

τ τ

 
 

=  
 
 

� � �  

 

After the notations, let us start to construct our model. We begin with an arbitrary 

function g(t), which is identity function in the Mc Culloch model,  

( (.), ) ( (.), ) ( ) for [0, ] (4.1.5)g h t g d t d t t M= = ∈  

 

The next step is to determine the form of the bond price function, P(θ) by using 

equation (4.1.5). 

 

( ) ( ) ( (.), )

( ) ( ) ( ) ( ) (4.1.6)

P c g h

c d c B

θ τ τ

τ τ τ τ θ

∧

=

= =
 

 

This expression aids in the calculation of X(θ), where X(θ), is of the form  
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( )
( ) ( ( ) ( ) )

( ) ( ) (4.1.7)

T T

P
X c B

c B

θ
θ τ τ θ

θ θ
τ τ

∂ ∂
= =

∂ ∂

=
 

 

As a result, our optimization problem becomes, 

 

       m in ( ) ( )T
P X W P X

θ
θ θ− −  

with the usual solution 

1* ( ) (4.1.8)T T
X WX X WPθ −=  

 

where W is the weight matrix. Our choice for the weights is the reciprocal of the 

modified duration of the bond. Notice that this places less weight on longer-term, 

or equivalently higher-duration bonds. This is because we expect the observed 

prices for these bonds to exhibit greater variability. In other words, the longer 

duration, the less weight a bond has and the shorter duration, the more weight a 

bond has. 

 

   After the calculation of teta, we can evaluate theoretical prices for our data and 

deviation of these theoretical prices from observed prices. Morever, since we 

know B-spline matrix and teta, we can calculate discount function for each bond 

by the formula, 

 

( , ) ( ) (4.1.9)d Bτ θ τ θ=  

 

And also, we can write our discount function is of the form, 

 

where time to maturity of ith bond

yield of ith bond

( ) (4.1.10)

i

i

i

Ri i

R

d e
τ

τ

τ
−

=

=

=
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Thus,  

 

log( ( ))
(4.1.11)i

i

i

d
R

τ

τ

−
=

 

From equation (4.1.11), we can calculate theoretical yield for each bond and so 

deviation of the theoretical yields from the observed yields. Algorithm of 

McCulloch model is as follows, 

Step 1: Construct B-spline matrix 

 

1

1

11 11

1 1

( ) ... ( )

( )

( ) ... ( )
N N

B B

B

B B

κ

κ

τ τ

τ

τ τ

 
 

=  
 
 

� � �  

 

Step 2: Find θ from, 

m in ( ) ( )T
P X W P X

θ
θ θ− −  

with the usual solution 

1* ( )T T
X WX X WPθ −=  

Step 3: Evaluate the discount function, 

( , ) ( )d Bτ θ τ θ=  

Step 4: Calculate the theoretical yields, 

log( ( ))i
i

i

d
R

τ

τ

−
=  

Step 5: Find the yield curve by interpolating the theoretical yields by using cubic 

spline interpolation. 
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4.2 NELSON-SIEGEL MODEL  
 

Nelson and Siegel Model (1987) is a model to obtain yield curves across 

maturities using zero-coupon government securities market data. The model has 

ability to describe variation in yield curves using only few parameters [4]. 

 

    A class of functions that generates the yield curve shapes is that associated with 

solutions to differential or difference equations. The expectations theory of the 

term structure of interest rates provides motivation for that class of functions 

since, if spot rates are generated by a differential equation, we can get the forward 

rate function which is a solution of the differential equation. If instantaneous 

forward rate at maturity τ, denoted f(τ) is given by the solution to a second-order 

differential equation with real and unequal roots, our solution is given by, 

 

( / ) ( / )1 2
0 1 2( ) (4.2.1)

T T
f e e

τ τ
τ β β β

− −
= + +

 

 

where T1 and T2 are time constants associated with the equation, and β0 , β1 and β2 

are determined by initial conditions. We can get many forward rate curves by 

using this equation and forward rate curves take on monotonic, humped, or S 

shapes depending on the values of β0 , β1 and β2 . The yield to maturity is the 

average of the forward rates, and given by, 

 

0

1
( ) ( ) (4.2.2)R r x dx

τ

τ
τ

= ∫
 

 

However, Nelson-Siegel concluded that the model is over-parametrized and 

decided to use equal root solution. Hence, instantaneous implied forward rate 

function becomes, 
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0 1 2
( / ) ( / )

( ) [( / ) ] (4.2.3)
T T

f e T e
τ ττ β β β τ− −= + +  

 

To obtain yield as a function of maturity for the equal roots, model (4.2.3) is 

integrated from zero to τ and divided by τ. The resulting function is, 

 

( / ) ( / )
0 1 2 2( ) ( )[1 ]/( / ) (4.2.4)T T

R e T e
τ ττ β β β τ β− −= + + − −  

 

If we  take the limit of model as τ approaches to zero and infinity, we can 

understand features of parameters. The limiting value of R(τ) as τ approaches to 

infinity, is β0 and, as τ approaches to zero, is β0+ β1. In other words, the 

contribution of the long term component is β0 and the contribution of the short 

term component is β0+ β1. 

 

    Let’s go over the algorithm of Nelson-Siegel model. In this model, from 

equation (4.2.4) we can write the theoretical price formula as follows. 

 

(4.2.5)
i

i iR
P e

τ−
=

 

 

where τ i is the time to maturity of the ith bond  and Ri is the yield of the ith bond. 

After that, in Matlab by using fmincon command, we can find the parameters of 

yield function (equation 4.2.4) which provide minimum deviation to theoretical 

prices from the observed prices, in other words, we calculate parameters β0, β1, β2 

and τ which are the solution of following problem. 
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0

0 1

2

theoretical observed
min(( ) ( ))

subject to

0

0 (4.2.6)

0

WP WP

T

β

β β

β

−

>

+ >

>

 

 

This optimization problem is nonlinear problem, to ease our problem we fix T to 

some real number which is greater then zero, and so our problem becomes linear 

problem. 

 

    Our first step in the problem is to give some starting value to our parameters, 

and then the fmincon command finds the parameters, which minimize the our 

residual. After finding the parameters, we can calculate our  theoretical yields for 

the zero-coupon bonds up to longest maturity we observed. Algorithm of the 

Nelson-Siegel model is as follows, 

 

Step 1: Give the initial values to the parameters, 

0 1 2, , andTβ β β  

Step 2: Fix T to some real number greater than zero.Then use fmincon command 

in Matlab and solve the following problem, 

0

0 1

2

theoretical observed
min(( ) ( ))

subject to

0

0

0

WP WP

T

β

β β

β

−

>

+ >

>

 
 

We find the parameters of yield function (equation 4.2.4) which provide minimum 

deviation to theoretical prices from the observed prices. 

Step 3: After finding parameters in step (2), calculate the theoretical yields R(τ). 
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Step 4: Finally draw the yield curve with respect to these theoretical yields. 

 

4.3 COMPARISON OF THE MODELS  
 

We compare the relative performances of two methods with respect to root mean 

squared yield error (RMSYE) and mean absolute yield error (MAYE). For each 

sample we evaluate RMSYE and MAYE then since for each month we have two 

sample, we evaluate the RMSYE and MAYE of the month by taking averages of 

RMSYE and MAYE of samples which are observed in the relating month. The 

RMSYE and MAYE are calculated by the following formulas [4]. 

 

2

1

1

1
RMSYE (4.3.1)

1
MAYE (4.3.2)

N

i
i

N

i
i

N

N

ε

ε

=

=

=

=

∑

∑
 

Where N= number of bonds in the sample 

          iε =  the error made in the ith yield, which is calculated by the model 

 

By using these error measures, we can also compare the performances of the 

models at the different time intervals. In our thesis we evaluate the RMSYE of 

each sample at each models in the time intervals 0-90 days, 90-180 days, 180-270 

days and 270-... days. Thus, we compare the ability of the models in fitting the 

yields for the long and short periods. We do our analysis as an in-sample analysis. 

Results of our application is presented in the table 4.3.1 and table 4.3.2 . Table 

4.3.1 gives errors made in yield by McCulloch model and table 4.3.2 gives errors 

made in yield by Nelson-Siegel model. Our results show that MAYE and RMSYE 

of the McCulloch model is less than that of Nelson-Siegel model, thus 

performance of McCulloch model in fitting yield is better than that of Nelson-

Siegel model. Prediction ability of Nelson-Siegel is better than McCulloch model 
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in the time interval 0-90 days but in the other time intervals McCulloch model 

shows better performances than Nelson-Siegel model. The results and figures of 

these applications as follows, 
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Date MAYE RMSYE 0-90 90-180 180-270 270- 

03.01.2005 

31.01.2005 

0,000452 

0,000617 

0,000602 

0,000903 

0,001844 

0,001241 

0,000882 

0,003097 

0,000643 

0,001336 

0,000358 

0,000384 

Average 0,000535 0,000753 0,001543 0,001990 0,000990 0,000371 

07.02.2005 

21.02.2005 

0,000631 

0,000555 

0,000987 

0,000673 

0,002558 

0,000342 

0,002265 

0,001593 

0,000060 

0,002060 

0,000139 

0,000899 

Average 0,000593 0,00083 0,00145 0,001929 0,00106 0,000519 

15.03.2005 

29.03.2005 

0,000141 

0,000670 

0,000172 

0,000955 

0,000002 

0,000735 

0,000538 

0,002219 

0,000198 

0,002698 

0,000342 

0,000137 

Average 0,000406 0,000564 0,000369 0,0013785 0,001448 0,0002395 

15.04.2005 

29.04.2005 

0,000332 

0,000742 

0,000450 

0,000942 

0,000383 

0,002319 

0,001469 

0,002699 

0,000924 

0,001970 

0,000296 

0,000549 

Average 0,000537 0,000696 0,001351 0,002084 0,001447 0,0004225 

13.05.2005 

31.05.2005 

0,000697 

0,000371 

0,000887 

0,000537 

0,002237 

0,001298 

0,001942 

0,001763 

0,002052 

0,000200 

0,000630 

0,000277 

Average 0,000534 0,000712 0,001768 0,0018525 0,001126 0,0004535 

14.06.2005 

29.06.2005 

0,000468 

0,000369 

0,000622 

0,000491 

0,000171 

0,000547 

0,002324 

0,001749 

0,000519 

0,000390 

0,000705 

0,000591 

Average 0,000419 0,000557 0,000359 0,0020365 0,0004545 0,000648 

 

Table 4.1: Monthly Averages of in sample Yield Errors (McCulloch) 

 

Date MAYE RMSYE 0-90 90-180 180-270 270- 

03.01.2005 

31.01.2005 

0,000709 

0,000694 

0,000898 

0,001009 

0,001801 

0,000987 

0,001522 

0,003249 

0,001504 

0,001857 

0,001632 

0,001150 

Average 0,000702 0,000954 0,001394 0,002385 0,001680 0,001391 

07.02.2005 

21.02.2005 

0,000730 

0,000615 

0,001003 

0,000769 

0,002388 

0,000114 

0,002404 

0,001703 

0,000492 

0,002300 

0,000591 

0,0013640 

Average 0,000672 0,000886 0,001251 0,002053 0,001396 0,000978 

15.03.2005 

29.03.2005 

0,000201 

0,000892 

0,000280 

0,001078 

0,000183 

0,000060 

0,000970 

0,002061 

0,000260 

0,002809 

0,000368 

0,002029 

Average 0,000547 0,000679 0,000121 0,001515 0,001534 0,001199 

15.04.2005 

29.04.2005 

0,000508 

0,001039 

0,000645 

0,001241 

0,001711 

0,001712 

0,001558 

0,004129 

0,001050 

0,002037 

0,000443 

0,002262 

Average 0,000774 0,000943 0,001712 0,002844 0,001544 0,001353 

13.05.2005 

31.05.2005 

0,001042 

0,000653 

0,001242 

0,000952 

0,001478 

0,001139 

0,003305 

0,003513 

0,003220 

0,000844 

0,001655 

0,001019 

Average 0,000848 0,001097 0,001309 0,003409 0,002032 0,001337 

14.06.2005 

29.06.2005 

0,000556 

0,000518 

0,000718 

0,000630 

0,000053 

0,000471 

0,002375 

0,002057 

0,000438 

0,000816 

0,001550 

0,001106 

Average 0,000537 0,000674 0,000262 0,002216 0,000627 0,001328 

 

Table 4.2: Monthly Averages of in sample Yield Errors (Nelson-Siegel) 
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Figure 4.1: Mc Culloch Model for 03.01.2005 

 

 

Figure 4.2: Nelson-Siegel Model for 03.01.2005 
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Figure 4.3: Mc Culloch Model for 31.01.2005 

 

 

Figure 4.4: Nelson-Siegel Model for 31.01.2005 
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Figure 4.5: Mc Culloch Model for 07.02.2005 

 

 

Figure 4.6: Nelson-Siegel Model for 07.02.2005 
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Figure 4.7: Mc Culloch Model for 21.02.2005 

 

 

Figure 4.8: Nelson-Siegel Model for 21.02.2005 
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Figure 4.9: Mc Culloch Model for 15.03.2005 

 

 

Figure 4.10: Nelson-Siegel Model for 15.03.2005 
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Figure 4.11: Mc Culloch Model for 29.03.2005 

 

 

Figure 4.12: Nelson-Siegel Model for 29.03.2005 
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Figure 4.13: McCulloch Model for 15.04.2005 

 

 

Figure 4.14: Nelson-Siegel Model for 15.04.2005 
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Figure 4.15: McCulloch Model for 29.04.2005 

 

 

Figure 4.16: Nelson-Siegel Model for 29.04.2005 
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Figure 4.17: McCulloch Model for 13.05.2005 

 

 

Figure 4.18: Nelson-Siegel Model for 13.05.2005 
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Figure 4.19: McCulloch Model for 31.05.2005 

 

 

Figure 4.20: Nelson-Siegel Model for 31.05.2005 



 44 

 

Figure 4.21: McCulloch Model for 14.06.2005 

 

 

Figure 4.22: Nelson-Siegel Model for 14.06.2005 
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Figure 4.23: McCulloch Model for 29.06.2005 

 

 

Figure 4.24: Nelson-Siegel Model for 29.06.2005 
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4.4 THE DATA 
 

The data that is used in this study is the Turkish secondary government zero-

coupon bond data. we use data from January 2005 through June 2005. In each 

month, we randomly select two days, and in application these data is used as a 

raw data.The raw data have some elements, which have the maturity is less than 

two months, when we construct the data set for empirical applications, we exclude 

these elements. We also exclude the bonds which are traded at the early hours of 

the morning and traded very seldomly on the day. After the exclusion, we have 

approximately 20 elements for each sample. Moreover, bond prices are 

constructed by using daily closing prices of zero-coupon bonds. The one sample 

used in this study is summarized in the following table. 

 

Issuing Date 

 

Time to Maturity 

(Days) 

Interest Rate 

(%) 

Bond Price 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

21.02.2005 

65 

79 

83 

128 

135 

156 

170 

184 

219 

226 

261 

289 

366 

415 

457 

499 

534 

15,48 

15,66 

15,85 

16,11 

16,38 

16,42 

16,68 

16,87 

16,96 

17,31 

17,54 

17,60 

18,03 

18,45 

18,58 

18,75 

18,78 

97,317 

96,721 

96,119 

94,651 

94,287 

93,442 

92,793 

92,163 

90,762 

90,320 

88,857 

87,772 

84,689 

82,660 

81,130 

79,600 

78,338 

 

Table 4.3: Sample Turkish government bonds used for fitting term structure 
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CHAPTER   5 
 

 

 

 

CONCLUSIONS 
 

 

 

 

The B-spline curve fitting technique is one of the most popular emprical 

methodologies for estimating the term structure of interest rates, due to its 

stability and reliability in practical applications. This thesis applies the B-spline 

technique for estimating the term structure and it compares McCulloch and 

Nelson-Siegel models’ performance in-sample analysis with respect to our data 

and from the results we see that B-spline technique, which was used in McCulloch 

model in this thesis, has better performances. Moreover, with respect to the time 

intervals, our analysis shows that prediction ability of Nelson-Siegel is better than 

McCulloch model in the time interval 0-90 days but in the other time intervals 

McCulloch model shows better performances than Nelson-Siegel model. 

 

    In this study, we used zero-coupon bond data of Turkish government zero 

coupon bond data. In the further research we may use data, which include coupon 

payments, and by using these data we may compare relative performances of 

model with respect to coupon effects on the prices. In the paper of Bing-Hui Lin 

(2002), who wrote the paper about fitting term structure of interest rates using B-

splines for Taiwanese government bonds, found the evidence that most of the 

bonds with coupons paying annually is almost consistently traded at lower yields 

than those with coupons paying semi-annually. We may do this analysis on 

Turkish government coupon bond data. 
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APPENDICES 
 

 

 

 

MATLAB CODES 
 

 

 

 

A. MATLAB CODES FOR MC CULLOCH MODEL 
 

A.1 Construction of B-Splines and Solution of the Optimization 

Problem 
 
data=xlsread('data_zero_07-02-2005'); 

P=data(:,4); 

D=data(:,2); 

E=[-20 -10 0 72  222 308 600 650 700 750]'; 

tt=[72 222 308 600]; 

uu=[0 0 0 0 0 0]; 

FF=zeros(1,6); 

x=(D./365)'; 

t=(E./365)'; 

n=length(t)-4; 

    for(i=1:length(x)) 

      for(k=1:n) 

          if(x(i)>=t(k)&x(i)<t(k+1)) 

              B(i,k)=(x(i)-t(k))^3/((t(k+3)-t(k))*(t(k+1)-t(k))*(t(k+2)-t(k))); 

          else if(x(i)>=t(k+1)&x(i)<t(k+2))  

                  B(i,k)=((x(i)-t(k))^2*(t(k+2)-x(i)))/((t(k+3)-t(k))*(t(k+2)-

t(k))*(t(k+2)-t(k+1)))+... 

                      ((x(i)-t(k))*(t(k+3)-x(i))*(x(i)-t(k+1)))/((t(k+3)-t(k))*(t(k+3)-

t(k+1))*(t(k+2)-t(k+1)))+... 

                      ((t(k+4)-x(i))*(x(i)-t(k+1))^2)/((t(k+4)-t(k+1))*(t(k+2)-

t(k+1))*(t(k+3)-t(k+1))); 

              else if(x(i)>=t(k+2)&x(i)<t(k+3)) 

                    B(i,k)=((x(i)-t(k))*(t(k+3)-x(i))^2)/((t(k+3)-t(k))*(t(k+3)-

t(k+1))*(t(k+3)-t(k+2)))+... 
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                        ((t(k+4)-x(i))/(t(k+4)-t(k+1)))*((x(i)-t(k+1))*(t(k+3)-

x(i)))/((t(k+3)-t(k+1))*(t(k+3)-t(k+2)))+... 

                        ((t(k+4)-x(i))/(t(k+4)-t(k+1)))*((t(k+4)-x(i))*(x(i)-

t(k+2)))/((t(k+4)-t(k+2))*(t(k+3)-t(k+2))); 

                else if(x(i)>=t(k+3)&x(i)<t(k+4)) 

                        B(i,k)=(t(k+4)-x(i))^3/((t(k+4)-t(k+1))*(t(k+4)-t(k+2))*(t(k+4)-

t(k+3))); 

                    else B(i,k)=0; 

                    end 

                end 

            end 

        end 

    end 

end 

B;   

for(i=1:12) 

vv(i)=1/D(i); 

end 

total=sum(vv); 

for(j=1:12) 

vvv(j)=vv(j)/total; 

W(j,j)=vvv(j); 

end 

W; 

for(c=1:12) 

cash_flow(c,c)=100; 

end 

cash_flow; 

X=(cash_flow)*B; 

KK_1=(X'*W*X); 

teta=(KK_1)\(X'*W*P); 

PP=(cash_flow)*B*teta; 

discount_factor=B*teta 

obs_yield=(data(:,6))'; 

for(u=1:12) 

    theo_yield(u)=(-log(discount_factor(u))/x(u))*100; 

end 

 

 

A.2 Error Measures 
 

discoun_mdl_07_02_2005; 

RMSYE_yield=(1/sqrt(12))*norm((theo_yield-obs_yield),2); 

RMSPE_price=(1/sqrt(12))*norm((PP-P),2); 
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MAYE_yield=(1/12)*norm((theo_yield-obs_yield),1); 

MAPE_price=(1/12)*norm((PP-P),1); 

RMSYE_yield 

RMSPE_price 

MAYE_yield 

MAPE_price 

D=data(:,2); 

for(s=1:12) 

if(D(s)<90) 

theo_yield_0_90(s)=theo_yield(s); 

obs_yield_0_90(s)=obs_yield(s); 

PP_0_90(s)=PP(s); 

P_0_90(s)=P(s); 

else if(D(s)>=90&D(s)<180) 

theo_yield_90_180(s)=theo_yield(s); 

obs_yield_90_180(s)=obs_yield(s); 

PP_90_180(s)=PP(s); 

P_90_180(s)=P(s); 

else if(D(s)>=180&D(s)<270) 

theo_yield_180_270(s)=theo_yield(s); 

obs_yield_180_270(s)=obs_yield(s);  

PP_180_270(s)=PP(s); 

P_180_270(s)=P(s); 

else  

theo_yield_270(s)=theo_yield(s); 

obs_yield_270(s)=obs_yield(s);  

PP_270(s)=PP(s); 

P_270(s)=P(s); 

end 

end 

end 

end 

end 

error_yield_0_90=norm((theo_yield_0_90-obs_yield_0_90),2); 

error_yield_90_180=norm((theo_yield_90_180-obs_yield_90_180),2); 

error_yield_180_270=norm((theo_yield_180_270-obs_yield_180_270),2); 

error_yield_270=norm((theo_yield_270-obs_yield_270),2); 

error_price_0_90=norm((PP_0_90-P_0_90),2); 

error_price_90_180=norm((PP_90_180-P_90_180),2); 

error_price_180_270=norm((PP_180_270-P_180_270),2); 

error_price_270=norm((PP_270-P_270),2); 

error_yield_0_90 

error_yield_90_180 

error_yield_180_270 
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error_yield_270 

error_price_0_90 

error_price_90_180 

error_price_180_270 

error_price_270 

 

A.3 Interpolation and Fitting Yield Curve 
 

function [p]=tSpline_discmdl_07_02_2005(k,f) 

discoun_mdl_07_02_2005; 

step=10; 

A=xlsread('data_zero_07-02-2005'); 

k=A(:,5); 

f=theo_yield; 

obs_yield=A(:,6); 

N=length(k); 

for(i=2:N) 

    h(i-1)=k(i)-k(i-1); 

    s(i-1)=(f(i)-f(i-1))/h(i-1); 

end 

for(i=1:N) 

    if(i==1) 

        g(i)=0; 

        d(i)=0; 

    else if(i==N) 

            g(i)=1; 

            d(i)=0; 

        else 

            g(i)=h(i)/(h(i-1)+h(i)); 

            d(i)=6*(s(i)-s(i-1))/(h(i-1)+h(i)); 

        end 

        end 

    end 

    V=spalloc(N,N,3*N); 

    V(1,1:2)=[2 g(1)]; 

    for (i=2:N-1) 

        V(i,i-1:i+1)=[1-g(i) 2 g(i)]; 

    end 

    V(N,N-1:N)=[1-g(N) 2]; 

m=V\d'; 

for (i=1:N-1) 

    x=linspace(k(i),k(i+1),step) 

    x=x(1:step); 

    X1((1+(i-1)*(step)):i*(step))=x'; 
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    p((1+(i-1)*(step)):i*(step))=((m(i)*((k(i+1)-x).^3)))/(6*h(i))+... 

        ((m(i+1)*((x-k(i)).^3)))/(6*h(i))+... 

        ((f(i)-((m(i)*(h(i)^2))/6))*(k(i+1)-x))/h(i)+... 

        ((f(i+1)-((m(i+1)*(h(i)^2))/6))*(x-k(i)))/h(i);    

end 

X1; 

F=p'; 

end 

F 

X2=X1.*365; 

k1=k.*365; 

hold on 

plot(X2,F,'r'),xlabel('Time to Maturity in Days'),ylabel('Yield 

%'),text(150,16.0,'<-- observed yield'),text(150,16.2,'<--theoretical yield') 

title('Mc Culloch Model for 07.02.2005') 

plot(k1,obs_yield,'o') 

hold off 
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B. MATLAB CODES FOR NELSON-SIEGEL MODEL 
 

B.1 Fmincon and Solution of Optimization Problem 
 

AA=xlsread('data_zero_07-02-2005'); 

global m; 

global obs_price; 

global theo_price; 

m=AA(:,5); 

A=[-1 0 0;-1 -1 0;0 0 0]; 

B=[0.001 0.001 0.001]'; 

beta_16=[0.05 0.05 0.05]'; 

beta(4)=0.4; 

[beta,FVAL]=fmincon(@residual_07february,beta_16,A,B) 

 

B.2 Second Part of Optimization Problem 
 

function residual_07february=ns(beta_16) 

AA=xlsread('data_zero_07-02-2005'); 

weight_07february; 

global m; 

global obs_price; 

global theo_price; 

m=AA(:,5); 

obs_price=AA(:,4); 

weight_obs_price=W*obs_price; 

beta_16(4)=0.4; 

for(j=1:12) 

    theo_yield(j)=beta_16(1)+(beta_16(2)+beta_16(3))*(1-exp(-

m(j)/beta_16(4)))/(m(j)/beta_16(4))-beta_16(3)*exp(-m(j)/beta_16(4)); 

    theo_price(j)=exp(-theo_yield(j)*m(j))*100; 

end 

weight_theo_price=W*(theo_price)'; 

    residual_07february=norm((weight_obs_price-weight_theo_price),2); 

theo_yield; 

 

B.3 Weight Matrix 
 

AA=xlsread('data_zero_07-02-2005'); 

kk=AA(:,5); 

for(i=1:12) 

vv(i)=1/kk(i); 

end 
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total=sum(vv); 

for(j=1:12) 

vvv(j)=vv(j)/total; 

W(j,j)=vvv(j); 

end 

W; 

 

B.4 Error Measures 
 

beta_16=[0.15741 -0.0096151 0.04248 0.4]; 

AA=xlsread('data_zero_07-02-2005'); 

P=(AA(:,4))'; 

obs_yield=((AA(:,6))')./100; 

for(j=1:12) 

    theo_yield(j)=beta_16(1)+(beta_16(2)+beta_16(3))*(1-exp(-

m(j)/beta_16(4)))/(m(j)/beta_16(4))-beta_16(3)*exp(-m(j)/beta_16(4)); 

    PP(j)=exp(-theo_yield(j)*m(j))*100; 

end 

RMSYE_yield=(1/sqrt(12))*norm((theo_yield-obs_yield),2); 

RMSPE_price=(1/sqrt(12))*norm((PP-P),2); 

MAYE_yield=(1/12)*norm((theo_yield-obs_yield),1); 

MAPE_price=(1/12)*norm((PP-P),1); 

RMSYE_yield 

RMSPE_price 

MAYE_yield 

MAPE_price 

D=data(:,2); 

for(s=1:12) 

if(D(s)<90) 

theo_yield_0_90(s)=theo_yield(s); 

obs_yield_0_90(s)=obs_yield(s); 

PP_0_90(s)=PP(s); 

P_0_90(s)=P(s); 

else if(D(s)>=90&D(s)<180) 

theo_yield_90_180(s)=theo_yield(s); 

obs_yield_90_180(s)=obs_yield(s); 

PP_90_180(s)=PP(s); 

P_90_180(s)=P(s); 

else if(D(s)>=180&D(s)<270) 

theo_yield_180_270(s)=theo_yield(s); 

obs_yield_180_270(s)=obs_yield(s);  

PP_180_270(s)=PP(s); 

P_180_270(s)=P(s); 

else  
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theo_yield_270(s)=theo_yield(s); 

obs_yield_270(s)=obs_yield(s);  

PP_270(s)=PP(s); 

P_270(s)=P(s); 

end 

end 

end 

end 

error_yield_0_90=norm((theo_yield_0_90-obs_yield_0_90),2); 

error_yield_90_180=norm((theo_yield_90_180-obs_yield_90_180),2); 

error_yield_180_270=norm((theo_yield_180_270-obs_yield_180_270),2); 

error_yield_270=norm((theo_yield_270-obs_yield_270),2); 

error_price_0_90=norm((PP_0_90-P_0_90),2); 

error_price_90_180=norm((PP_90_180-P_90_180),2); 

error_price_180_270=norm((PP_180_270-P_180_270),2); 

error_price_270=norm((PP_270-P_270),2); 

error_yield_0_90 

error_yield_90_180 

error_yield_180_270 

error_yield_270 

error_price_0_90 

error_price_90_180 

error_price_180_270 

error_price_270 

 

B.5 Fitting Yield Curve 
 

fmincon_07february; 

AA=xlsread('data_zero_07-02-2005'); 

obs_yield=AA(:,6); 

beta(4)=0.4; 

m=AA(:,5); 

N=length(m); 

step=10; 

 for(i=1:N-1) 

 xx=linspace(m(i),m(i+1),step); 

xx=xx(1:step); 

XX((1+(i-1)*(step)):i*(step))=(xx)'; 

end 

NN=length(XX); 

for(j=1:NN) 

 theo_yield(j)=beta(1)+(beta(2)+beta(3))*(1-exp(-XX(j)/beta(4)))/(XX(j)/beta(4))-

beta(3)*exp(-XX(j)/beta(4)); 

end 
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theo_yield1=100.*theo_yield; 

XXX=XX.*365; 

md=m.*365; 

hold on 

plot(XXX,theo_yield1),xlabel('Time to Maturity in Days'),ylabel('Yield 

%'),text(220,16.4,'<--Nelson-Siegel Yield Curve') 

title('Nelson-Siegel Model for 07-02-2005') 

plot(md,obs_yield,'o') 

hold off 


